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e A filtration technique that permits the use of the FCVAR model for making inference in
systems with 1(0) and I(d) variables.

e This technique yields more precise model estimates and superior out-of-s mple forecasts for
the I(0) variable.

e Results are demonstrated using Monte Carlo simulations.
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Avstract

We propose a filtration tech’ ique 1 r making inference in systems with 7(0) and I(d)
variables using the fractionallv co ‘nte srated vector autoregressive (FCVAR) model with
long memory in the co-integ atir g residuals. Superior predictions for the I(0) variable are
demonstrated using simula’ions.
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1. Introduct.or.

The fractionally cc -integ1 “ted vector autoregressive (FCVAR) model was introduced by Johansen
(2008) and furtlicr developed by Johansen and Nielsen (2012). In serving as a direct model
of fractional cc integ ation, it provides a central tool for the analysis of long-run equilibrium

relationships ar.oug the I(d) variables. Compared with traditional I(1)/1(0) co-integration,
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fractional co-integration allows linear combinations of I(d) processes to ‘jive I(d — b) processes
with d > b > 0 and with d and/or b as fractional numbers.

In addition to the analysis of long-run relationships among th . I(; .-riables, the FCVAR has
also been employed in several studies involving a mixture of /(-/, and . '0) variables, see Bollerslev
et al. (2013) and Chen, Chiang, and Karl (2018). In their wo.%, ths estimation of the FCVAR is
simplified by letting d = b; i.e. no memory in the co-integ ati* g1 siduals. According to Definition
2 in Johansen (2008), the FCVAR allows for variation 1. the integration order of the variables
within the system. Consequently, the inclusion of the 7(0), variable is natural in the FCVAR,
which is similar to the coexistence of the I(1) anc 7} ...iables in the VECM. However, the case
of d > b poses a challenge for the analysis of “1.~ FCOVAR as the fractional differencing operator
A4~Y is applied, not only to the real I(d — ¢ co-1. *egrating vectors, but also to the I(0) variable
serving as pseudo co-integrating vector. "This g, es rise to the anti-persistence of the latter. As a
result, under the FCVAR model, the represeniation of the 7(0) variable is found to be I(d — b),
which may lead to biased parameter estim: tes.

This paper proposes a filterirg proceuure for the pre-application of the FCVAR model in a
mixture of /(d) and I(0) variebles '~ .vade the potential bias arising from the over-differencing
of the pseudo co-integrating vect.® when d > b. Specifically, the fractional differencing operator
(A47%) is applied to the 7(d) variables within the system prior to the estimation of the FCVAR
model. This procedure does nou alter the representation theorem and the calculation of maximum
likelihood estimators ot .he FCVAR. With this adjustment, the I(0) variable is shown to be
correctly represent 'd as a1 I(0) process.

We illustra’ e the ~1sefulness of our technique using Monte Carlo simulations containing both
stationary and 1.~ ~.ationary fractional co-integration. Our findings show that the pre-filtration
tends to redu « the observed bias in the estimates of parameters d, b and co-integrating vectors
and that the gains are more evident with the gap between d and b. In the out-of-sample (OOS)

forecasts for the I(0) variable, the filtration leads to better predictions across various horizons



where the forecasting gains tend to be significant over long horizons.
The rest of this paper is organized as follows. Section 2 presenu. the JCVAR specifications
and the proposed filtering procedure. The Monte Carlo study is out'.uc? in Section 3. Section 4

concludes.

2. The Model
The FCVAR model is defined as

AX, = af' ATPLX, :LAdLgXt + & (1)

C 1

where X; € I(d) contains p elements and ¢; is p- c.mensional 7.i.d.(0,Q). Let L, = 1 — A® be the
fractional lag operator and A¢ be the fractiona' a.®erence operator where A = (1—L)?. The error
correction term is denoted by 'A%’ X,, wu.ve 5 is a (p x r) matrix consisting of  co-integrating
vectors and r is the so-called co-inte .ta..n rank. The linear combination 3'X; is integrated of
order (d—b) with d > b > 0. The mati. - « s of order (p x r) and contains parameters representing
the speed of adjustment toward. lor g-r7 n equilibrium. The short-run dynamics are measured by
the lag coefficients (I'y,...,T";, As suggested by Johansen (2008), the FCVAR in equation (1)
does not require that all coun »onents of X; exhibit the same order of integration. As a result,
the representation theorem .nd the properties of maximum likelihood estimators (MLE) of the
FCVAR remain unchc~erd waen the I(0) variables are introduced into the system of fractional
variables.

The followine sec.’~.. gives an outline of the problem that may arise when the FCVAR in
equation (1) is applier. to a system containing /(d) and I(0) variables. We assume that there are
two I(d) va.rau. ., Xy, Xo, that are fractionally co-integrated of order b and one I(0) variable
X3¢ in the syste.n Xy, i.e. X; = (Xqy, Xoy, X3;)'. As a standard method employed in the literature

treating an /(0) variable in the VECM, we adopt the idea of a ‘pseudo’ co-integrating relation.



Specifically, we involve the extra co-integration vector as a unit vector wita unity in the position

corresponding to the I(0) variable and zeros elsewhere. We then cons uct
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The FCVAR in equation (1) is no longer appropriate for r10d- ... g a system containing a mixture
of I(d) and I(0) variables when d > b, in which case the te.™m ['2%7" X, contains the anti-persistent
error correction term that arises from the presence of tu. 7(0) variable in X;. The mis-specification
problem can also be seen by considering the represent~+- 5 theorem as follows.

Given « and (5 as defined in equation (2), v= obtau.

61\ 1
_ _ d1—a1d
B, = 1 . anla| = ot (3)
ajda—asgd
0 / aiéi—aiéé

With I' =T — 3% T, the matrix C = 5, ‘o/,T3,)"'e/, can be computed as

Q 7 azdi—aids a102—andy
| { . ﬁl? Do s 20 pu%
/ \ -
— / Q301 —Q103 Q102 —Q201
C (&LF:JJ_/ 1 agd3z—a3do agd3—a3d2 (4)
\ 0 0 0

which contains only zeros m he last row corresponding to the I(0) variable Xj3;. Following the

work of Johansen and IMielsen /2012), the FCVAR in equation (1) has the solution
X, = CAT%e, + AJVY 4, (5)

for d > 1/2 whr.c the operator Ajrd is used to define a nonstationary process and Y, is fractional

of order zero. 1 he so'ation of the FCVAR model for the I(0) X3; then reduces to
XEOVAR — o AT0y+ 4 o3y, (6)

where €3’ = (0, 0, 1). Tt is clear that the X5,VAE is integrated of order (d — b), which erroneously



exhibits long memory if d > b due to the mis-specifications. This pro! temr remains in the case of
d < 1/2 where the solution of the FCVAR becomes X; = CA~%¢, + ==V},

To adjust for this problem, we apply the fractional differenci ig ¢ po.~tor A%=° to each of the
I(d) variables in X; and construct a new system X; = (A%, A" X, X3) in the FCVAR

as follows .

APX) = af LX)+ TA L g (7)
c=1

Here, the model above differs from the FCVAR in (1) only in the way that the fractional I(d)
variables have been transformed to I(b) variables. “m wus basis, the Johansen representation
theorem must still hold for the FCVAR with the nre-filtering procedure in (7). We can then
demonstrate that, with the adjustments made t. tr e wiput vector X/, X3, is correctly represented

as the following I(0) process

X;;CVAR* = e;'ﬁl(b_b)Yf + e3'u, (8)

3. Simulation Stud

To illustrate the gains from th . adopu. sn of the filtering procedure, we conduct a simulation study
that compares the FCVAR with and without the filtration in terms of the model fit, parameter

estimation and predictive o ver.

3.1. In-sample e._‘iriation

We generate Xi; an! Xy, hat are fractionally co-integrated of order C'I(d, b) and one I(0) process

X3 from the F CVAR without including short-run dynamics
Xu = oA 7PLy(Xy + By Xay) + 1A Ly Xs + A%y, (9)

Xy = OZQAibLb(Xlt + 51 Xo) + 5o AT Ly X3 + A%y,

X3 = 043Ad7bLb(X1t + 51 Xot) + 03 Lp X3 + €3



where 14, €9; and e3; are randomly created from a trivariate normal dis' ribution with mean 0,
variance 1 and correlation equal to 0. The Monte Carlo simulation 15 “aseu on 5000 replications,
with sample sizes T' = (2500, 1000, 500). We vary d from 0.4 to C 8, ¢ »v."ing the range commonly
seen in empirical studies and consider several cases with the g- . betw.en d and b from 0.1 to 0.6.
The case of b = 0.5 is omitted in our analysis following Assumptica 4 in Johansen and Nielsen
(2012). Both stationary (d — b < 1/2) and non-stationar 7 (7 — 1 > 1/2) co-integrating relations

are included in our simulation based on the recent extew.*on of the FCVAR made in Johansen

--0.5 —0.1
and Nielsen (2018). In addition, we let 5, = —1 ana v= | 0.5 —0.3 |. By setting rank equal
0.01 -0.2

to 2, we estimate the FCVAR with X; = (Xy;. X, <)’ and the FCVAR with X} = (A4bX,,,
AP Xy, X3;)'. We take the natural normalizatic . of the 3 matrix as
5ol o)
00 1
and report the results of the model rstima. =s in Table 1.

We show that estimates of t'e mou . parameters become more precise as the sample size
increases, which is in line with t.. as mptotic results in Johansen and Nielsen (2012). Under
the same fractional integrat’on .~der d, the precision in the estimates improves as b increases.
Notably, across different s amy le sizes, the MLE of d is more precise than b. On the other hand,
estimates of § are more disners "d. Results for the estimates of « are not reported for brevity since
a is a function of c/l\, b A f and so is heavily affected by the estimation uncertainty present in
the earlier steps. ' ‘urning to the comparison between the FCVAR and the pre-filtered FCVAR,
we show that t' e iatter achieves a better in-sample fit, i.e. lower BIC, in all cases considered and
tends to produc. moe e precise estimates.

The impr. ve ments made by adopting the pre-filtering technique are outlined in Table 2, where
the gains are measured by the reduction in the values of MSE and BIC of the pre-filtered FCVAR

relative to those of the FCVAR. For cases where the gap between d and b is within [0.3, 0.6], we
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observe greater gains of the pre-filtered FCVAR in terms of the estimat.on Jrecision in parameters
b and (3; as the difference between d and b increases. As for cases wit.. the .maller gap between d
and b, gains of the pre-filtered FCVAR remain for the estimates of / a. 1 3, as well as with the
in-sample fit but are absent for d under several scenarios. For - ..ious .ample sizes under analysis,
our Monte Carlo results show that the superiority given by t.~e use of the filtration technique is

more evident as the gap between d and b grows.

3.2. Out-of-sample forecasts

Better performances of the FCVAR relative to the --__. _..cional VAR and AR models in predicting
I(0) market returns are well documented in the -~k o1 Bollerslev et al. (2013) and Chen, Chiang,
and Karl (2018). In our analysis, we further "'nde. take OOS forecasting exercises to demonstrate
the superiority of the FCVAR using the fi'tered 'ong-memory series in predicting the I(0) variable
X3t

The forecasts are based on re-est’.nating the model parameters for each day with a fixed length
rolling window containing the pr- vious 1,2 days. We consider different forecasting horizons for
the 1(0) variable by replacing Vs . th %Z?Zl Xsi4; in the FCVAR (1) and pre-filtered FCVAR
(7), where h is set as 1, 5 and 22. Table 3 reports the average relative MSE of the predictions for
the I(0) variable X3; fror. th . two models, and this is computed such that values less than one
favor the pre-filtered F VAR 1a0del forecasts. Similar to the in-sample analysis, the simulation
results are generated bas.1 n 5000 replications, in which cases the Diebold and Mariano (DM)
test is employed t» exan ine the equal predictive ability. The results in Table 3 clearly favor
the pre-filtered FCVAR model forecasts over different sample sizes. Specifically, the pre-filtered
FCVAR exerts 1.~ superior predictive performance over longer horizons, i.e. = 5 and 22,

where the gai < in most replications undertaken are significant under the DM test.
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4. Conclusion

We propose the use of a pre-filtering technique that allows for bet’ .. inte. 2nce of the fractionally
co-integrated VAR (FCVAR) of Johansen (2008) for modelling sysi. ~ s with 7(0) and I(d) variables,
where there exists long memory in the co-integrating residuals The 1 "oblem occurring particularly
in the use of the standard FCVAR with /(0) and I(d) varial’cs is associated with the anti-persistent
error correction term when d > b, which brings fractional nropert- to the representation for the 7(0)
variable. Using the FCVAR with the pre-filtering precedure llows for a correct representation of
the dynamics underlying the 7(0) process. Our Monte “‘arlo simulations show that this technique
generally results in more precise model estimates ~nd better out-of-sample predictions of the

FCVAR for the /(0) variable. The gains are rea.’=zrd tor various sample sizes and combinations of

d and b.
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