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Abstract 

Marine transport has grown rapidly as the result of globalization and sustainable world growth rates. 

Shipping market risks and uncertainty have also grown and need to be mitigated with the 

development of a more reliable procedure to predict changes in freight rates. In this paper, we 

propose a new forecasting model and apply it to the Baltic Dry Index (BDI). Such a model 

compresses, in an optimal way, information from the past in order to predict freight rates.  To 

develop the forecasting model, we deploy a basic set of predictors, add lags of the BDI and introduce 

additional variables, in applying Bayesian Compressed Regression (BCR), with two important 

innovations. First, we include transition functions in the predictive set to capture both smooth and 

abrupt changes in the time path of BDI; second, we do not estimate the parameters of the transition 

functions, but rather embed them in the random search procedure inherent in BCR. This allows all 

coefficients to evolve in a time-varying manner, while searching for the best predictors within the 

historical set of data. The new procedures predict the Baltic Dry Index with considerable success.   

 

Key Words: Forecasting; Bayesian methods; Compressed Regression; Baltic Dry Index; Maritime 

Shipping.  

JEL Classifications: C11, C18, C53. 

__________________________________________________________________________  
a Corresponding Author. University of Nicosia, Institute For the Future (IFF), 46 Makedonitissa Av., Nicosia, 
2417 Cyprus 
b Department of Maritime Studies, University of Piraeus, Karaoli andDimitriou 40, 18534 Piraeus, Greece 
c Department of Economics, Deree College, The American College of Greece, 6 Gravias St., 15342 Athens, 
Greece  
d Lancaster University Management School, Lancaster LA1 4YX, United Kingdom 
 
 
DATA AVAILABILITY STATEMENT 
The data that support the findings of this study are available from the corresponding author upon reasonable 
request. 

 



 

 
This article is protected by copyright. All rights reserved. 

1. Introduction 

The Baltic Dry Index (BDI) has grown into a global economic indicator, a mirror of world trade, whose 

combined direct and indirect impact on the world economy contributes, through the operation of 

merchant ships, to about US$380 billion in freight rates, which is equivalent to around 5% of global 

trade according to UNCTAD (2015). As a weighted average of time charter freight rates, BDI reflects 

both the supply of cargo ships and the demand for transporting raw and other materials. Until 

recently, its low levels indicated vessel overcapacity, as well as a slowdown in demand for dry bulk 

commodities. Since mid 2017 the index has shown definite signs of recovery. 

In 2008, the index reached 12,000 points, the highest level in its history; since then, it has entered a 

spiraling fall, registering a low of 290 in the first quarter of 2016 ( Bloomberg, 2016). Yet, the 

purchase and sale activity of vessels both in 2014 and 2015, according to Clarkson’s research, 

exceeded the 2008 levels, with Europeans being net purchasers and Asians net sellers. This could 

indicate a turning point, at which economic activity may be entering a new phase of the shipping 

cycle.  

Shipping decisions on the part of ship owners and charterers alike depend on the expected 

fluctuations of the BDI. Decisions involve entering charter contracts of different durations, switching 

between spot and time charter operations, improving hedging performance using derivative 

contracts, as well as whether to invest in newly built or second hand vessels. Since its inception, the 

BDI has reflected major economic and political events that accounted for its volatile nature. Its time 

path appears to be close to a random walk, which renders predictions by both academics and 

practitioners an intriguing challenge. In this paper, we propose a new forecasting model aimed at 

improving the existing BDI prediction models while reducing uncertainty for decision-makers. 

Our study addresses the following research question: given a basic set of predictor variables 

influencing BDI, how can the dynamics of BDI be used to predict turning points which will take us to 

a new phase of the shipping cycle, but also reveal short-term upturns or downturns in the market? 

Valuable contributions in exploring freight rate dynamics and their stochastic seasonal behavior have 

been made by (Adland, and Cullinane, 2005; Koekebakker, Adland, and Sodal, 2006; Batchelor, 

Alizadeh, and Visvikis, 2007; and Alizadeh et al., 2007). Further, comparisons of volatility in the dry-

cargo ship sector have been conducted by Kavussanos et al., (1999), while the seasonal properties 

and forecasting in the dry bulk shipping sector have been investigated by (Cullinane 1995; Cullinane, 

Mason, and Cape, 1999; Kavussanos, and Alizadeh, 2001; and Kavussanos, and Alizadeh, 2002). 

More recently, (Lin and Wang, 2014; and Kaloupsidi, 2014) explored the nature of fluctuations in 

world bulk shipping by quantifying the impact of demand uncertainty and time-to-build on 
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investment and prices. Tsioumas et al., (2017) show that a VARX model is superior in predicting BDI, 

compared with ARIMA. Overall, most of the major time series methods (Makridakis et al., 1986, 

Makridakis et al., 1998) have been utilized by scholars in predicting the nature of the BDI, but with 

limited degrees of success. 

 

Even though substantial work has been done in approximating the time path of freight rates as well 

as other shipping indicators, when it comes to predicting turning points, what is being referred to as 

“real” forecasting, practitioners have not been able to rely on the available tools. The BCR model on 

the other hand, allows a search procedure that narrows down the information set with the aim of 

better knowing when turning points will occur within the volatile shipping cycle. To do so, the 

present work draws upon the BCR model by Koop, Korobilis and Pettenuzzo (2016) with two 

important innovations:  

 Apart from the relevant variables and their transformations, we also include transition 

functions in order to depict smooth or abrupt changes in the BDI. This way we can capture 

the likelihood of transitions to new states and identify the threshold for “jump effects”.  

 We do not estimate the parameters of the transition functions, but embed them in the 

random search procedure inherent in BCR. For this reason, we allow all coefficients to evolve 

in a time-varying manner and we search for those variables in the predictive set that may 

generate the most accurate forecasts. 

 

The paper contributes to the forecasting literature in two important ways: first, we show that BDI’s 

complex behavior cannot be captured using time series models by themselves. Instead, we attempt 

to make predictions indirectly through BCR, in a systematic procedure that can be adapted 

successfully in the present context. Specifically, the lagged variables account for non-linearity while 

trigonometric terms account for the cyclical behavior of the BDI by exploiting the properties of 

Fourier expansions. Furthermore, we use transition functions to account for structural breaks in the 

series. Second, we compare our model with alternative, popular ones to illustrate its value. These 

models are AR(1) and ARIMA(p,d,q), ARAR by Carter et al., (2002), ARMAAR by Parzen (1982),  

DARAR and  DARMAAR (differenced ARAR and ARMAAR), and finally the BVAR(m) models by 

Kadiyala et al., (1997). Our comparative results, which are expressed in the form of MAPE (Mean 

Absolute Percentage Error), are later presented in Table 4 and confirm the improved performance of 

the proposed model. 
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The remainder of this paper is organized as follows: Section 2, presents the proposed model; Section 

3, is a brief review of the nature of BDI and of the prior literature; Section 4, outlines the data; 

Section 5, discusses the main empirical findings and compares them with those of alternative 

models; Finally, Section 6, presents our conclusions and proposes some suggestions for further 

research. 

 

2. The proposed model 

Suppose ty  is the BDI, the series we need to forecast, and zd

tz R  is a vector of covariates thought 

to be useful for its predictions. Suppose also that wd

tw R  is a vector of functional transformations 

of the basic covariates and their lags, for example squared and higher order terms, interactions, lags 

of ty  viz.  1t t lI y l L    and various functional transformations along with interactions with 

the tw s -the functional transformations of tz s, trigonometric terms. Clearly, the number of 

elements wd  in the final set that includes tw  can be very large. For example if we have a single 

covariate tz  then we include in tw  terms of the form 2 3 2p

t t t t Lz z z z      3 p

t L t Lz z  , terms of the 

form 2 3

1 1 1

p

t t ty y y      2 3 p

t L t L t Ly y y    , terms of the formsin(2 ) sin(2 )t t Lk z k z   , 

1sin(2 ) sin(2 )t t Lk y k y   , and cos(2 ) cos(2 )t t Lk z k z     1cos(2 ) cos(2 )t t Lk y k y    

(for 1k K  ) and interactions with all previous terms. Moreover, we introduce smooth transition 

terms of the form:  

 
 

1 2

1 2

1
( ) 0

1 exp ( )( )
t c c c c

c t c t c

G c
c c

   
  

      
   

 (1) 

where c  is a parameter, tc  denotes elements of tI  and tz  and 1 2c c   denote parameters of the 

transition function (Terasvirta, 1998; Tsay, 1998) that allow for possibly non-monotonic behavior. 

Thus, we can capture smooth transitions to new states, regime switching (depending on the value 

of c ) etc. For example, values of c  close to one indicate slow transition, while values of c  close 

to zero indicate fast transitions or (almost) jumps. Moreover, the additional term 2( )t cc   is 

introduced to capture non-monotonic behavior. Further, any variable can be multiplied by the 

transition function in (1) to introduce possible threshold or “jump” (regime-switching) effects.  

Even with few covariates tz  the number wd  of functional transformations that we finally include 

in tw , may result into a large predictive set. Our basic specification is:  
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 1tt ty u t Tw        (2) 

Where we can have, wd T . (
w
d = dimensionality of w, T = sample size) 

 A more flexible model would have been:  

 
1

1tt t t

t o t t

y u t Tw

a



  

     

   
 (3) 

Where 
t
w is a vector of predictors and 

t
is a vector of coefficients  

In this model, we allow all coefficients to evolve in a time-varying manner. Clearly, the model cannot 

be estimated using standard estimation techniques, Boonstra (2005) so we need to search in tw  for 

variables or “features”, i.e transformations of the existing variables that can generate good 

forecasts. To this end, we use ideas from Bayes Compressed Regressions (BCR) by Guhaniyogi and 

Dunson (2015). Thus, we replace (3) with the following:  

 
1

1tt t t

t t t

y u t Tw

a



  

     

   
 (4) 

Where,  

 t tww     (5) 

 is an wd r  matrix, t  is 1r  and wr d .  

Due to the compression resulting from   we call the model “squeezing from the past”. Guhaniyogi 

and Dunson (2015) propose not to estimate [ ]ij    but generate random numbers for its 

elements as follows:  
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 (6) 

Where [0.11)   is a parameter  

With a uniform distribution over   in [0 1 1)   and for reasons of numerical stability, various values 

of dimensionality reduction r are being deployed in R  random searches over the random numbers 

that comprise the different elements of  , subject to the orthonormality constraint I  . 

Guhaniyogi and Dunson (2015) show that BCR has excellent performance in very large-dimensional 

data sets.  
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Our final extension to BCR is to replace the dynamic random coefficient specification in (4) with the 

following:  

 
1

1

( )

tt t t

tt t t

y u t Tw

a I w



   

     

     
 (7) 

Where   is an 1rs  vector of parameters, tw  is a different 1s  compressed version of tw , and  

 t tww     (8) 

Where [ ]ij    is another wd s  compression matrix for which we have:  
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 (9) 

Where [0.11)    is a parameter  

With a uniform distribution over   in [0 1 1)  , various values of dimensionality reduction r  were 

utilized in R  random searches, over the random numbers that comprise the different elements of 

  subject to the orthonormality constraint I  . Notice that the dimensionality r  and s  of   

and   respectively are allowed to be different.  

The purpose of including a set of compressed covariates tw  is to allow better tracking of the time 

varying coefficients but also better tracking of smooth transitions, regime switches and other 

changes. For the error term, we assume:  

  20 0t t ru N N  
 
 
     (10) 

 

Our prior has the following form:  

 

 

2

2

(0 )

0

aa N h I

N h I

 

 

 (11) 

Where I denotes the identity matrix.  

The smoothing parameters ah  and h  can be assigned arbitrarily based on prior beliefs or, according 

to our practice, can be selected using out-of-sample performance in a hold-out sample consisting of 

100 observations.  



 

 
This article is protected by copyright. All rights reserved. 

For 
u  and   we use the standard reference or “uninformative” priors (e.g. Zellner, 1971, p. 60 and 

p. 225).  

Our other choices involve the number of powers ( p ), the number of lags ( L ), and the number of 

Fourier terms ( K ). For the full predictive set tw , we set 4p  , 4L   and 5K  .  

We arrived at these values starting from a more general configuration setting p=8, L=12 and K=10 as 

an upper bound. We then used the marginal likelihood function (see equation (12) below) to 

determine optimal values. Our choice lead to overfitting, i.e. we do not actually need so many 

variables. We repeated the same exercise until, on the basis of the marginal likelihood criterion 

(standard use in Bayesian analysis), we finally ended up with p=L=4 and K=5.  These values maximize 

the marginal likelihood. 

We allow for full interactions of all (basic) variables in tw (see equation (5) above). Parameters c , 

1c  and 2c  in the transition function (1) are drawn randomly in the context of R  searches. All are 

drawn from standard uniform distributions, but series 
tc  in (1) is normalized to lie in [0 1] .  

Given that parameters   and   are drawn from uniform distributions in (0 1 1]   we perform 

610R   searches over the different random elements of   and  . We select the model that 

performs best in terms of out-of-sample behavior using a hold-out sample of 100 observations.  

Bayesian inference can be implemented using a standard Gibbs sampler in (4). We use 15,000 

passes, the first 5,000 of which are discarded to mitigate the possible impact of start-up effects. 

Since we do not estimate   or   the model can be executed easily, even with a large number of 

core processors. To maximize the marginal likelihood and select a model during the training period, 

we use the Laplace approximation by Lewis and Raftery (1997) that can be implemented in a straight 

manner, since the marginal likelihood is given by: 

 
( ) ( )

( )
( )

L X p
M X

p X

 




 


 (12) 

For any model whose parameter vector is 
dR  , the prior is ( )p  , the posterior is ( )p X   

and the likelihood is ( )L X  from data X . To estimate the denominator, which is unknown, we 

use a multivariate normal approximation. If the posterior mean and covariance matrix are 

( )E X    and ( )( )E X        
  , it is not difficult to establish that an approximation 

to (12) is  
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 log ( ) log ( ) log ( ) log
2

d
M X L X p         (13) 

 

The required posterior moments are estimated using MCMC (Markov Chains Monte Carlo) methods.  

 

3. The  Nature of BDI and Prior Literature 

The origin of BDI goes back to 1744, at a London coffeehouse named “Virginia and Baltik,” then 

known as a meeting place where merchants and ship owners negotiated agreements for shipping 

goods and products (Harlaftis et al., 2012). The modern BDI was launched in 1985 and in its current 

form covers freight rates on 26 shipping routes and four vessel sizes. It focuses solely on the shipping 

of dry-bulk goods; among its determining factors are the vessel size and the carried cargo (Silverberg 

et al., 2009). 

 

Even though, it is generally accepted that what determines BDI is the law of supply-and-demand, it is 

also true that BDI is influenced by several other factors (Stopford, 2009), such as commodity 

demand, seasonal variations, bunker prices, and choke points (ICS, 2016). The existing number of 

vessels and those newly delivered determines the vessel supply, minus the number of cargo ships 

that are withdrawn. Commodity demand, on the other hand, is influenced by that of raw and other 

material used in the production of intermediate and final goods, as well as the demand for grains. 

Further, major economic and political events affect demand and influence the time path of BDI, 

while seasonal variations and weather can have a large impact on the shipping markets. For 

instance, unfavorable weather conditions may potentially affect the entrance to ports (e.g., ice in 

the ports), may cause reduced river levels, or may affect the size of harvest that correlates to the 

demand for raw material. In addition, bunker prices account for “between one quarter and one third 

of the cost of running a vessel” (Baltic Exchange, 2016), while choke points (the relatively narrow 

shipping lanes of the Suez and Panama canals) can become an important determinant of BDI 

volatility, as they may delay the smooth passage of ships, thus changing supplying patterns (Baltic 

Exchange, 2016). Moreover, piracy is another determining factor on world shipping, with an 

estimated annual cost that ranges from seven to twelve billion US dollars (Bowden et al., 2010). 

The literature on freight rates is rich. Several papers have addressed various aspects of the behavior 

and the time series properties of such rates. Driehuis (1970) first investigated and modelled liner 

freight rates. Beenstock and Vergottis (1989a, 1989b) built an econometric model for the world 

tanker market and the dry bulk market, while Randers and Goluke (2008) claimed that only time 
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patterns of oil tankers freight rates may be forecasted.  The model they used combined both 

transport demand and consumption in the oil market; it provided reasonable forecasts for a period 

of one to four years, with an uncertainty of plus/minus six months.  

The volatility in the dry-cargo ship sector has been studied by Kavussanos (1996), while its seasonal 

properties and forecasting were investigated by (Cullinane, 1995; Cullinane, Mason and Cape, 1999; 

and Kavussanos and Alizadeh, 2001). Further, there were more studies by (Adland and Cullinane, 

2005; Koekebakker, Adland and Sodal, 2006), while Batchelor, Alizadeh and Visvikis (2007) 

considered the properties and the dynamics of the BDI since 1990. They showed that spot freight 

rates are forecastable and Forward Freight Agreements (FFA’s) help to predict spot freight rates. 

They found that forward rates converge strongly on spot rates, and that Vector Error Correction 

models (VECM) provided the best in sample fit. In addition, they asserted that with some degree of 

speculative efficiency, forward rates help in the forecasting of spot rates using ARIMA or VAR models 

for the prediction of forward rates. The relationship of the BDI with trade and income was 

investigated by Lin and Wang (2014), and by Kaloupsidi (2014), who explored the nature of 

fluctuations in world bulk shipping by quantifying the impact of demand uncertainty and time-to-

build on BDI prices. More recently, Papailias et al., (2016) showed that the BDI has a cyclical pattern 

that has been stable, except for a period after the 2008 crisis, which suggests that such a pattern has 

implications for improved forecasting. 

To illustrate the volatility of BDI, we have traced its historic values since 19471. Its time path 

indicates that it is subject to major political and economic events that affect seaborne trade (see 

Figure 1 showing its value between 1947 and 2016). 

 [please insert Figure 1 here] 

 

It appears from the graph above that the shipping industry has been historically affected by the 

major political and economic events of the world. The closure of the Suez Canal in 1956-57 and 

1967, for instance, forced ships to go around the Cape of Good Hope, which added thousands of 

miles to voyages and dramatically increased fuel costs, thus in turn causing a sharp increase in 

freight rate prices. Likewise, in the early sixties, the increased demand for grains from China and the 

USSR led the BDI onto a higher level that was maintained amidst various wars, the Asia crisis, as well 

as the Dot.com collapse. 

 

                                                           
1 We have been allowed access to the records of a globally leading shipping company since the 

beginning of the 20th century. 
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It was intense demand, prior to the crisis, that led to an oversupply of ships afterwards. More 

specifically, China’s demand for raw material was so high that it provided the main impetus for the 

introduction of a large number of new ships to the shipping market (German, et. al., 2012).  As it 

usually takes two to three years between the placing of an order and the vessel being put into 

service, a large number of new ships arrived in the market during and after the 2008-9 Great 

Recession. For instance, in 2010 the global fleet increased by 23%, creating an over-supply of cargo 

ships that combined with the declining demand, contributed to the fall of BDI to one of its lowest 

levels (Oomen, 2012). 

 

Following the financial crisis, two developments occurred. One was the collapse in demand, as world 

exports stopped growing  (World Bank, 2016; OECD, 2016), and the other was the structural shift of 

the Chinese economy away from heavy manufacturing, which resulted in the drop of its economic 

growth rate from 20% to close to 7%. These changes affected the Baltic Dry Index that fell to a 30-

year low of 290 in February of 2016. There was a brief rebound in the summer of the same year, but 

the index continued its decline afterwards, reflecting vessel oversupply and lower growth in the 

demand for commodities. Since mid-2017, it has started to regain some of its lost ground. 

 

4. Variables used and descriptive statistics  

The data employed in our study (see Table 1 below) covers the period from January 1990 to 

September 2016. It was collected mainly from Clarksons, a web-based shipping database. The data 

on the Baltic Dry index was gathered from the records of a leading shipping company that covered 

the annual period between 1947 and 1984; data from the period 1985 to 2016 was also derived 

from Clarksons. For consistency reasons, our study covers the period from 1990 to September 2016, 

in a monthly frequency. Panel A of Table 1 provides the definition of the variables used: We 

collected the main sub-indices of the dry bulk sector which reflect demand and supply conditions by 

segment and vessel type. The Baltic Capesize Index (BCI) reflects conditions in the Capesize segment, 

which consists of vessels between 80,000-100,000 DWT. The Baltic Panamax Index (BPI) reflects 

conditions in the Panamax segment, which consists of vessels between 65,000-80,000 DWT. The 

Baltic Handysize Index (HSI) reflects conditions in the Handysize segment, which consists of vessels 

between 10,000-40,000 DWT. We have also included the fleet size - as the main supply factor, in 

vessel numbers as well as in DWT - of the smaller segments of the dry bulk sector, i.e. Handysize and 

Handymax (40,000-65,000 DWT). The inclusion of IRONORE imports represents demand conditions 
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(demand for shipping services is a derived demand) in the dry bulk sector. Lastly, as a proxy to the 

phase of the shipping cycle we have included the second hand vessel price (SHP). 

Panel B in Table 1 shows the main descriptive statistics of the variables included in the model. We 

observe for all indices, BDI, BCI, BPI, HSI, but also for the second hand vessel price, SHP, and 

IRONORE imports large dispersion from their mean values. This shows the highly volatile nature of 

the market over the period we investigate. 

Panel C in T able 1, shows correlations between the variables included in the model. It appears that 

correlation over the entire period between the indices of the different types of vessels is over 95%, 

implying that there is not much scope for diversification within the dry bulk sector. Some other 

correlations, however, are smaller. 
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5. Empirical results 

We use monthly observations from 1990 to 2016. The model is estimated from January 1990 to 

December 2006. Our measures of predictive accuracy are compared to an AR(1) benchmark. To 

examine the precision of the h -step-ahead point forecasts for a given model i , we use the ratio of 

mean-squared forecast errors by Koop, Korobilis and Pettenuzzo (2016):  
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               (14)   

Where 1t  and 
2t  denote the start and end of the out-of-sample period, and 2

ˆi he   , 2
1ˆAR he    are the 

squared forecast errors at time   from models i  and AR(1) respectively, when the forecast horizon 

is h .  

In Table 2 we compare the out-of-sample forecasting performance of several alternatives relative to 

the benchmark, the simple AR(1) model. The alternatives differ in the contents of the predictive set 

as shown in Table 2. The basic set includes lags of BCI and BPI, HAMDWT, HAMNO, HANDNO, 

HANDWT, HSI, SHP, and IRONORE.  
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The results (MSFEs) support the idea that squeezing from E (which includes lags of basic sets, 

squares and interactions, plus trigonometric terms ( 5K  ) and transition functions) performs very 

well contrary to sets A, B, C, D which do not perform well relative to the benchmark AR(1) model.  

Following Geweke and Amisano (2010), we also use the log predictive likelihood differential 

between model i  and the benchmark AR(1) model:  

 
2

1

1

2 1

1

1

t h

i h i h AR j

t

ALPL LPL LPL
t t h

 



 
      



  
  

  (15) 

Where 
1i h AR jLPL LPL      are log predictive scores for model i  and benchmark AR(1) respectively 

at time h   , i.e. the log of the h -step-ahead predictive density evaluated at the outcome. Table 3 

below shows that positive values of ALPL indicate that on average model i  produces better forecasts 

compared to the benchmark.  

These results show that squeezing produces substantial improvements in the log predictive 

likelihood differentials relative to the benchmark AR (1). Both Tables 2 and 3 demonstrate that the 

forecasting performance depends a lot on including transition functions, rather than trigonometric 

terms or past values of the basic set.  

The actual forecasting performance of model E is presented in Figure 2 for the period 2007:1 to 

2016:6 and in Figure 3 for the period 2014:1 to 2016:6, showing detail.  

 

5.1 Sensitivity analysis for the hyperparameters  

As ψ is selected optimally, the issue remains of whether our results are sensitive to the 

hyperparameters 
a
h  and h  which have been selected based on a holdout sample. We change 

these hyperparameters by 
a
h  and h  where  is uniformly distributed in the interval (0.1, 10). 

We select 10,000 different and we repeat our forecasting exercise. We proceed by performing 

sensitivity tests on the results reported on Tables 2 and 3, with Table 4 and Table 5 reporting 

maximum absolute percentage changes. The results indicate that the maximum absolute percentage 

changes are trivial, meaning that changing the hyperparameters widely relative to their optimal 

values (derived from the hold-out sample) does not produce important differences in the final 

results. 
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Figures 2 and 3 show the forecasting performance of model E within and out of sample respectively. 

It appears that major turning points are being captured. 

In Figure 4 we report the log predictive likelihood of Model E (this time not relative to the 

benchmark AR(1) model). The log predictive likelihood is normalized to have the same mean with log 

BDI for visual clarity. This Figure shows that the log predictive likelihood increases in the middle of 

2008, before the sub-prime crisis, and continues to increase almost monotonically afterwards, 

suggesting that the model performs rather well and captures significant aspects of the data. Figure 4 

below presents the value of log predictive likelihood. It shows how the log predictive likelihood 

behaves over time relative to the data (It is only shown for completeness). 

 

 

5.2 Comparison of BCR with Alternative Models 

In Table 6, we present a comparison between our model (normalized Mean Absolute Predictive 

Error) and a number of alternative ones accepted in the forecasting literature. The comparison is 

based on sliding forecasts of 36 months, starting from the end of 2016. The orders p,d,q in 

ARIMA(p,d,q) are selected using the Schwarz BIC criterion. The ARAR model, Carter et .al., (2002), is 

ttttt uyy  1   where  t  and t   follow a joint VAR scheme. The ARMAAR model, Parzen, 

(1982), is   11   ttttttt uuyy  where t  , t   and   t follow a joint VAR scheme. DARAR 

and DARMAAR are as ARAR and ARMAAR but formulated in first differences. BVAR(m) is a Bayesian 

VAR model consisting of m variables, Kadiyala et al. (1997). The six variables we consider for BVAR 

are BDI, BCI, BPI, SHP, NB, HSI and they enter in BVAR(2), BVAR(4), BVAR(6) in that order. The BVAR 

uses a Minnesota prior. TVP-VAR is a time-varying parameters VAR, where parameters follow a 

random walk, see Koop and Korobilis (2013). For all Bayesian models, we use a Gibbs sampler with 

15,000 passes, the first 5,000 of which are discarded to mitigate possible start-up effects. 

Finally, we present a more elaborate model that searches through all nonlinear combinations of the 

predictive set, rather than the “simplified” sets A-E in Tables 3 and 4. The model is presented in 

Table 7. 
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In Table 7, lags, lags2 and lags3 denotes powers of lags of the predictors (reported in the first 

column). For example, we need 1, 2 and 3 lags of BDI, and 1 lag of BDI squared. From BPI, we need 

lags 2, 3, 4, squared lags at periods 1 and 2 and the first lag of BPI to the third power. We also need 

interactions between lagged variables. Moreover, we need   DIt-1BDIt-2 which we denote by (1, 2) in 

the fifth column and BDIt-1BDIt-3 which we denote by (1,3). Moreover, we need HAMNOt-2HAMNOt-2 

denoted by (2, 3), HAMDWTt-1HAMDWTt-2 etc.  

Additionally, we need trigonometric terms of the form sin(kπz) and cos(kπz), where the values of k (a 

parameter) and z ( a variable) are to be determined. For example, in terms of BDI we need sin(πBDIt-

1), sin(πBDIt-1), sin(2πBDIt-2) and cos(πBDIt-1). Trigonometric terms are needed from BDI, BCI and BPI, 

which are the basic indices in our analysis. Their relevance means that cyclical features are captured 

which are important in short-term prediction. 

Finally, we need transition functions as in (1). From BCI, for example, we need terms of the form 

 1 1 1 2

1

1 exp 0.80( )( )t c t cBCI BCI     
   and 

 2 3 2 4

1
.

1 exp 0.80( )( )t c t cBCI BCI     
 ). 

From IRONORE, we need terms of the form 

 1 5 1 6

1

1 exp 0.90( )( )t c t cIRONORE IRONORE     
  and 

 2 7 2 8

1
.

1 exp 0.90( )( )t c t cIRONORE IRONORE     
  

 

In terms of economic significance, the use of lagged variables raised to certain powers, indicates that 

nonlinearity is essential in forecasting. The use of trigonometric terms is compatible with short-term 

cyclical behavior that is also essential in exposing additional nonlinearity that is capturable through 

the good approximation properties of (truncated) Fourier expansions. Finally, the use of transition 

functions with α coefficient close to unity means that nonlinearity exists also in the intermediate 

period between smooth transition and abrupt breaks. Specifically, coefficients close to 0.90 probably 

imply that we have structural breaks, but coefficients close to 0.80 probably imply that there is a 

relatively fast regime change and that, therefore, the market is between transition and structural 

breaks. This complex behavior cannot be captured using simple time-series models that allow 

structural breaks (at unknown dates), or exclusively smooth transition models that ignore other 

forms of nonlinearity, like lagged powers of certain variables and / or Fourier terms. Our approach 

allows for an examination of such complicated patterns using a simple and systematic procedure 

that can be adapted easily for use in other contexts.  
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The nonlinear character of several variables that lead to their exclusion from the final model is 

apparent in Table 7. Further, the fact that many αc are close to unity indicates structural changes 

rather than smooth transitions. The model performs equally well or even better relative to what we 

have presented so far, while its marginal likelihood is slightly better in comparison to what we 

presented in Table 6. However, we believe that even simpler models, without accounting for breaks 

or smooth transitions, can perform equally well in the context of BCR forecasting. 

Concerning economic interpretation, it appears from Table 7 that the forecasting of the BDI involves 

variables like HAMNO and HAMDWT, reflecting the number and capacity respectively of the 

Handymax fleet. Handymax is the largest fleet in the sector (3,303 vessels) and has the second 

largest capacity in dry bulk after the Panamax fleet. It usually carries grains and fertilizer. We have 

also used  the BCI that reflects demand and supply for capsize services, which are primarily carrying 

iron ore with annual trade growth in the area of 5%, while the capsize fleet grows at -0.1%. Similarly, 

the BPI, which represents the second largest fleet in the dry bulk sector, with trade growth for its 

cargo about 4.6% and fleet growth about 2%. So, supply-and-demand conditions pertaining to the 

two largest categories of the dry bulk sector, and specifically iron ore trade, seem to play a decisive 

role in explaining and predicting the BDI. The year 2018 will most likely prove a turning point for the 

BDI; this is supported by the fact that demand growth outweighs supply consistently for over a year 

now. 

(Helpful insights for this section, 5.2, were drawn from Bunn et al. (1982) and Nembhard et al., 

2001). 

 

6. Concluding Remarks 

This paper contributes to the existing forecasting literature of the shipping sector. It explores the 

time path of BDI by proposing a new model based on a set of lagged predictors, as well as lagged 

values of the BDI itself.  It extends previous research that treats BDI mostly as a forward-looking 

indicator of economic activity, by providing a reliable time path for it on which future prediction of 

economic activity reflecting global trade may be based. 

 

We have implemented two novel procedures in our study in the context of the Bayesian Compressed 

Regression. We included transition functions in our predictive set, in order to capture sudden 

changes in the BDI; then, instead of estimating the transition functions, we let the coefficients vary 

and searched for the variables in the predictive set that contributed to the most accurate forecasts. 

Furthermore, we have advanced the literature aimed at predicting BDI, by demonstrating a more 
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successful out-of-sample forecasting performance, able of capturing the abrupt fall of 2008 but also 

the rest of behavior of the BDI until present.  

  

Our results provide justification for the use of Bayesian analysis in forecasting and demonstrate that 

through its proper implementation, forecasting in shipping can be successful. Thus, the main policy 

implication of our study for shipping is that future performance can be approximated, and 

consequently result to optimal choice of strategies by stakeholders in the sector.  

 

Future research on forecasting in the shipping industry should extend the scope of studying the time 

path of the BDI to include sub-indices such as BCI (Baltic Cape Index), BPI (Baltic Panamax Index), BSI 

(Baltic Supramax Index) and HSI (Baltic Handysize Index). The latter is known to reflect the cost of 

shipping and hence activity in the four dry bulk markets, Capes, Panamax, Supramax and Handysize.  
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Figure 1. Natural Logarithms of BDI: 1947-2016 
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Figure 2. Forecasting performance of model E for BDI (Sliding Predictions 2007:1 to 2016:6) 
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Figure 3. Out of sample Forecasting performance of model E for BDI (2014:1 to 2016:6) 
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Figure 4. Log predictive likelihood (2006:1 to 2016:6) 
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Table 1. Data: Variables Used, descriptive statistics and correlations 

Panel A: Definition of variables 

BDI                BALTIC DRY INDEX 
 
BCI                 BALTIC CAPE INDEX 
 
BPI                  BALTIC PANAMAX INDEX 
 
HIS                  HANDYSIZE INDEX 
 
HAMNO         HANDYMAX FLEET IN NUMBERS 
 
HAMDWT       HANDYMAX IN MILLION DWT 
 
HANDNO        HANDYSIZE   FLEET IN NUMBERS 
 
HANDWT        HANDYSIZE FLEET IN MILLION DWT 

IRONORE        TOTAL IMPORTS IN THOUSAND TONNES 

 

 

Panel B: Descriptive Statistics 

 BDI BPI BCI HAMDWT HAMNO HANDNO HANDWT HSI SHP IRONORE 

           

Mean 2096.9 2350.5 3832.1 74.6 1509.8 3024.9 80.4 942.2 144.7 49481.5 

Median 1449.0 1582.9 2765.9 55.9 1204.0 3069.0 80.8 678.1 120.3 36990.2 

Maxim 10843.6 10631.2 16808.1 185.5 3403.0 3350.0 93.2 3221.2 499.6 123173.0 

Min 306.9 324.2 868.8 30.4 658.0 2678.0 70.7 197.2 56.9 0.000000 

Std.Dev. 1823.6 2078.8 3185.0 46.3 828.8 199.2 6.3 725.9 86.2 29146.6 
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Panel C: Correlation Matrix 

 

 

 
 
 
 
 
 
 
 
Table 2: Out-of-Sample Forecasting Performance, MSFEs Relative to Benchmark AR(1) [Using 
equation (14)] 
 

Predictive Set      Forecast Horizon (months)   

 h=1 h=2 h=3 h=6 h=9 h=12 

Only lags of basic set 0.083 1.011 1.133 1.342 1.515 1.617 

B. Lags of basic sets, 

squares and interactions 

0.081 0.089 1.103 1.213 1.366 1.891 

C. As in B plus trigonometric 

terms. (K=5) 

0.082 1.277 1.381 1.417 1.617 1.781 

D. As in B plus transition 

functions 

0.040 0.042 0.051 0.059 0.072 1.025 

E. As in C plus transition 

functions 

0.011 0.014 0.019 0.022 0.029 0.035 

 

 

 

 
 

BDI BPI BCI HAMDWT HAMNO HANDNO HANDWT HSI SHP 

          
BDI          
BPI 0.99         
BCI 0.99 0.97        
HAMDWT -0.65 -0.65 -0.61       
HAMNO -0.66 -0.65 -0.61 0.99      
HANDNO -0.68 -0.66 -0.64 0.93 0.94     
HANDWT -0.67 -0.66 -0.62 0.97 0.97 0.98    
HSI 0.98 0.98 0.95 -0.63 -0.64 -0.65 -0.64   
SHP 0.95 0.94 0.93 -0.64 -0.64 -0.63 -0.63 0.96  
IRONORE -0.55 0.54 -0.51 0.90 0.90 0.85 0.87 -0.53 -0.55 
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Table 3: Log Predictive Likelihood Differentials Relative to Benchmark AR(1) (Positive values that 
the model produces better forecasts than the benchmark). 

Predictive Set      Forecast Horizon (months)   

 h=1 h=2 h=3 h=6 h=9 h=12 

A. Only lags of basic set 0.0032 0.0015 -0.032 -0.065 -0.082 -0.093 

B. Lags of basic sets, 

squares and interactions 

0.0044 0.0023 -0.043 -0.071 -0.091 -0.095 

C. As in B plus 

trigonometric terms. 

(K=1,…,4) 

-0.015 -0.022 -0.045 -0.063 -0.070 -0.085 

D. As in B plus transition 

functions 

0.0032 0.015 0.022 0.033 0.055 0.072 

E. As in C plus transition 

functions 

0.252 0.257 0.260 0.262 0.268 0.277 
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Table 4: Out-of-Sample Sensitivity analysis to hyperparameters, maximum absolute 
percentage change relative to results in Table 2 
 

Predictive Set      Forecast Horizon (months)   

 h=1 h=2 h=3 h=6 h=9 h=12 

Only lags of basic set 0.014% 0.017 0.017 0.014 0.014 0.013 

B. Lags of basic sets, 

squares and interactions 

0.011% 0.012 0.012 0.013 0.013 0.013 

C. As in B plus 

trigonometric terms. (K=5) 

0.014% 0.015 0.011 0.011 0.011 0.011 

D. As in B plus transition 

functions 

0.012% 0.012 0.012 0.012 0.011 0.010 

E.As in C plus transition 

functions 

0.010% 0.010 0.011 0.010 0.008 0.008 

(all numbers in the Table are percentages) 

 

 

 

Table 5: Log Predictive Likelihood Differential Relative to Benchmark AR(1), Sensitivity 
analysis to hyperparameters, maximum absolute percentage change relative to results in 
Table 3 
 

Predictive Set      Forecast Horizon (months)   

 h=1 h=2 h=3 h=6 h=9 h=12 

B. Only lags of basic set 0.003% 0.005 0.005 0.006 0.004 0.004 

B. Lags of basic sets, 

squares and interactions 

0.012% 0.007 0.007 0.005 0.003 0.002 

C. As in B plus 

trigonometric terms. 

(K=1,…,4) 

0.004% 0.005 0.003 0.003 0.002 0.004 

D. As in B plus transition 

functions 

0.001% 0.003 0.005 0.006 0.004 0.002 

E. As in C plus transition 

functions 

0.003% 0.005 0.002 0.003 0.002 0.002 

   (all numbers in the Table are in percentages) 
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Table 6: Comparison of MAPE (Mean Absolute Predictive Error) with Alternative Models 

Model MAPE 

This Study 1.000 

AR(1) 1.414 

ARMA(1,1) 1.401 

ARIMA(p,d,q) 1.389 

ARAR 1.353 

ARMAAR 1.355 

DARAR 2.441 

DARMAAR 2.301 

BVAR(2) 1.474 

BVAR(4) 1.512 

BVAR(6) 1.503 

TVP-BVAR(2) 1.381 

TVP-BVAR(4) 1.477 

TVP-BVAR(6) 1.515 

 
Notes: A number greater than one indicates that the model performs worse relative to the Bayesian 
Compression model in this study.  
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Table 7. List of best predictors for BDI  

 lags lags2 lags3 Interaction 

of lags 

sin(kπz) cos(kπz) transition 

function 

BDI 1-3 1 - (1,2), (1,3) z=lag1,  k=1 

z=lag2, k=1 &2 

z=lag1, k=1 lag1, αc=0.90 

BCI 1-4 1 1 - z=lag1, k=1 z=lag1, k=1 lag1, αc=0.80, 

lag2, αc=0.80 

BPI 2-4 1-2 1 - z=lag1, k=1, 

z=lag2, k=1 &2 

z=lag1, k=1 lag1, αc=0.90, 

lag2, αc=0.90 

HSI - - - - - - - 

HAMNO - - - (2,3) - - - 

HAMDWT - - 1 (1,2) - -  

HANDNO - 1-2 - - - - - 

HANDWT - 1 1 - - - - 

IRONORE 1-2 1 1 (1,2), (1,3) - - lag1, αc=0.90, 

lag2, αc=0.90 

 

 


