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Abstract

Analysing subgroups defined by biomarkers is of increasing importance in clinical research. In many

situations the biomarker is subject to misclassification error, meaning the subgroups are identified with

imperfect sensitivity and specificity. In these cases, it is improper to assume the Cox proportional

hazards model for the subgroup specific treatment effects for time-to-event data with respect to the true

subgroups, since the survival distributions with respect to the diagnosed subgroups will not adhere to the

proportional hazards assumption. This precludes the possibility of using simple adjustment procedures.

Two approaches to modelling are considered; the corrected score approach of Zucker and Spiegelman

(2008) and a method based on formally modelling the data as a mixture of Cox models using an EM

algorithm for estimation. The methods are comparable for moderate to large sample sizes, but the EM

algorithm performs better when there are 100 patients per group. An estimate of the overall population

treatment effect is obtained through the interpretation of the hazard ratio as a concordance odds. The

methods are illustrated on data from a renal-cell cancer trial.

1 Introduction

There is increasing acknowledgement of the existence of patient subgroups within clinical research. While

some treatments work well for all patients with the same disease, it has been shown that some treatments

are only effective for some subgroups of patients defined by a certain predictive biomarker [1, 2, 3, 4].

As a consequence, many clinical trials look to perform subgroup analysis to assess whether a treatment

is beneficial for those patients that are biomarker positive or biomarker negative and many trial designs

have been developed to account for these subgroups. Enrichment designs [5, 6] seek to identify the most

promising (sub)group of patients during the study while other designs optimize the cost-efficiency of the

trials via patients allocation with respect to their biomarker status (subgroup membership) [7, 8] or use a

1



Figure 1: A biomarker stratified design

biomarker-strategy design [9]. All of these clinical trials assume 100% accuracy of the biomarker used in

defining subgroups. However, it is seldom possible to measure a biomarker with perfect diagnostic accuracy

meaning the observed subgroups will be subject to misclassification error. Without taking the sensitivity and

specificity of the biomarker into consideration, the resulting conclusion may be inaccurate [10, 11]. Existing

methods that account for the sensitivity and specificity [10, 11] consider normal and binary endpoints only,

while time-to-event data has not yet been considered.

In this paper, we propose a method to obtain point estimates and confidence intervals of the treatment effects

in biomarker stratified subgroups with time-to-event data for a biomarker by treatment interaction design

depicted in Figure 1 [12]: Assume the total number of patients available to be enrolled into the trial is fixed

to be N . Patients are classified into two subgroups according to the observed status (positive or negative)

of a specific biomarker. In each of the two subgroups, patients are randomized into either the treatment

or control arm and are administered experimental treatment or placebo/active control accordingly. The

primary outcome, which is the survival time subject to right censoring, of all patients enrolled are recorded

for analysis.

The remainder of the article is organized as follows. In Section 2, the statistical model for misclassified

biomarker subgroups is defined. Section 3 gives estimation procedures for the model parameters, measures

of overall efficacy and construction of confidence intervals. Section 4 presents a simulation results to assess

the performance of the estimator and confidence intervals. The method is illustrated on a data example

relating to metastatic renal-cell cancer in Section 5. The article concludes with a discussion.

2 Statistical Model

Conditional on the true biomarker status, a proportional hazards model is assumed to hold. Specifically the

hazard at time t for patient i is taken as

hi(t;xi, zi) = h0(t) exp(β1xi + β2zi + γxizi) (2.1)

where h0(t) is an unspecified baseline hazard function, xi and zi are binary indicators of treatment and true

biomarker status, respectively. Note that the biomarker status is 0 for the true negative subgroup and 1 for

the true positive subgroup. Further note that this model assumes that the biomarker status to be measured

2



without error in this model. Under this model, the hazard ratios associated with the treatment are exp(β1)

and exp(β1 + γ) for patients in the biomarker negative and positive group, respectively.

When the true biomarker status cannot be observed, a diagnostic test with imperfect sensitivity and speci-

ficity has to be used. Let vi ∈ {0, 1} be a binary indicator of whether the ith patient tests positive for the

biomarker. The marginal distribution of survival times among patients in each diagnosis group will then

be a mixture of Cox models corresponding to the models under true biomarker positive or negative status

and with the mixing proportions determined by the positive-predictive value (PPV) and negative-predictive

value (NPV) of the diagnostic test.

The PPV is given by

p+|⊕ :=
π × λ1

π × λ1 + (1− π)(1− λ2)
(2.2)

and NPV by

p−|	 :=
(1− π)λ2

π(1− λ1) + (1− π)λ2
(2.3)

where the sensitivity, λ1, and the specificity, λ2 are assumed to be known and the prevalence of the biomarker,

π, may either be considered known or will be estimated from the data.

The survivor function for patients observed to be positive and negative are then

S⊕(t;x) := S(t;x, v = 1) = p+|⊕S(t;x, z = 1) + (1− p+|⊕)S(t;x, z = 0) (2.4)

and

S	(t;x) := S(t;x, v = 0) = (1− p−|	)S(t;x, z = 1) + p−|	S(t;x, z = 0), (2.5)

respectively, where S(t;x, z) = exp{−H0(t) exp(β1x + β2z + γxz)} and H0(t) =
∫ t
0
h0(u)du is the baseline

cumulative hazard.

Note that unless there is either no treatment effect or the biomarker is observed without misclassification,

proportional hazards will not hold with respect to the treatment x, for either S⊕(t;x) or S	(t;x). Therefore

it is not possible to fit a Cox model to the observed data and perform some simple correction to adjust for

misclassification error.

3 Estimation

3.1 Corrected score estimation approach

The issue of misclassification in biomarker subgroup survival analysis can be considered a special case of

measurement error in covariates, for which there is a rich previous literature [13, 14, 15, 16]. While much
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of the literature concentrates primarily on continuous covariates, Zucker and Spiegelman [17] proposed an

estimating equations based approach for binary covariates subject to misclassification. The approach involves

constructing consistent estimates of each of the constituent terms in the Cox partial likelihood score equation

to obtain a corrected score equation. Here we present how the method proceeds specifically in the case of

the model given in 2. The score equation involves terms of the form G(xi, zi), but zi cannot be observed

directly. Therefore instead the method seeks a function G∗(xi, vi) based on the observable data, such that

E[G∗(xi, vi)|xi, vi] = G(xi, zi).

Specifically, let

A =

 λ2 1− λ2

1− λ1 λ1


be the 2× 2 matrix with (l,m) entry corresponding to P(vi = m− 1|zi = l − 1). Then

G∗(xi, vi) =
1∑
l=0

Bvi+1,l+1G(xi, l),

where B = A−1.

Let θ = (β1, β2, γ)
′
, then applying this approach to each of the partial likelihood score equations for the

model in (2.1) leads to equations

U∗1 (θ) =
1

n

n∑
i=1

δi

{
xi −

e∗x(ti)

e∗0(ti)

}
, (3.1)

U∗2 (θ) =
1

n

n∑
i=1

δi

{
Bvi+1,2 −

e∗z(ti)

e∗0(ti)

}
, (3.2)

U∗3 (θ) =
1

n

n∑
i=1

δi

{
Bvi+1,2xi −

e∗xz(ti)

e∗0(ti)

}
(3.3)

, (3.4)

where

e∗x(t) =
1

n

n∑
k=1

1∑
l=0

Yk(t)Bvk+1,l+1xk exp{θ
′
x∗k(l)},

e∗z(t) =
1

n

n∑
k=1

Yk(t)Bvk+1,2 exp{θ
′
x∗k(1)},

e∗xz(t) =
1

n

n∑
k=1

Yk(t)Bvk+1,2xk exp{θ
′
x∗k(1)},
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where Yk(t) = I(ti ≥ t) is the at risk indicator for patient k and x∗k(l) = (xk, l, l × xk)
′
, for l = 0, 1. The

score equations are not unbiased, but are asymptotically unbiased and therefore taking θ̂ as the solution to

U∗(θ) = 0.

An estimate of the cumulative baseline hazard can be obtained by

Ĥ0(t) =

n∑
i=1

δiI(ti < t)

e∗0(ti, θ̂)

which is analogous to the standard Breslow estimate.

Note that the estimator does not depend on the underlying prevalence of biomarker positive patients in the

population, π. Therefore, if an estimate of π is required, one can take

π̂ =
v̄ + λ2 − 1

λ1 + λ2 − 1
, (3.5)

where v̄ =
∑
i vi/n , which arises by maximizing

L∗(π) =
∏
i

(πλ1 + (1− π)(1− λ2))vi(π(1− λ1) + (1− π)λ2)1−vi .

The corrected score method has the advantage of being computationally efficient. However, a known draw-

back is that solutions to the score equations will not necessarily exist, particularly for small sample sizes or

when the misclassification rate is high.

3.2 Semi-parametric maximum likelihood approach

Alternatively, estimation of the model in (2) can proceed using a semi-parametric maximum likelihood

approach. A full likelihood for the data can be constructed by making the standard assumption that the

hazard function h0(t) is piecewise constant between observed event times [18]. The true biomarker status

may be considered missing data, for which the observed biomarker status and the patient’s survival can be

considered indicators.

3.3 EM algorithm

Direct maximization of the likelihood is difficult or infeasible due to the large number of nuisance parameters

associated with the increments of the baseline hazard. Instead, taking a similar approach to various previous

authors [19, 20, 21, 22], an Expectation-Maximization (EM) algorithm is used. The true biomarker status is

treated as missing data, such that the ‘M’-step of the algorithm involves fitting a weighted Cox model, where

each patient has two sets of data corresponding to being truly biomarker positive or biomarker negative. The
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weights correspond to the conditional probability of being truly biomarker positive (or negative) given the

current estimates of the parameters and the observed data (follow-up time, event indicator and diagnostic

test result).

Let t(j) denote the jth ordered uncensored event time and t(0) = 0, then

h0(t) = hj , for t(j−1) < t ≤ t(j).

The full information log-likelihood is then

logLF (θ,h, π) =
∑
i

δi(log h0(ti) + {(β1 + γzi)xi + β2zi})−H0(ti) exp{(β1 + γzi)xi + β2zi}

+zi log π + (1− zi) log (1− π),

where H0(t) denotes the cumulative baseline hazard. The likelihood contributions for the ith observed

subject given observed positive and negative subgroup status is

L+i = [h0(ti) exp{(β1 + γ)xi + β2}]δi exp[−H0(ti) exp{(β1 + γ)xi + β2}]

and

L−i = [h0(ti) exp{β1xi}]δi exp[−H0(ti) exp{β1xi}],

respectively.

The expectation step of the EM algorithm involves calculating E(zi|ti, δi, xi, vi,θ(l),h(l), π(l)). This produces

conditional weights of the form

wi := P (zi = 1|ti, δi, xi, vi,θ(l),h(l), π(l))

=

(
p+|⊕L+i

p+|⊕L+i + (1− p+|⊕)L−i

)vi ( (1− p−|	)L+i

(1− p−|	)L+i + p−|	L−i

)1−vi
.

Note that the weights depend on both θ, H0, as well as π via the PPV and NPV. The expected conditional

likelihood is given by

Q(θ,h, π|θ(l),h(l), π(l)) =
∑
i

δi[log h0(ti) + {(β1 + γwi)xi + β2wi}]−H0(ti)wi exp{(β1 + γ)xi + β2}

−H0(ti)(1− wi) exp{β1xi}+ wi log π + (1− wi) log (1− π).

(3.6)

If the simplifying assumption that censored patients’ follow-up time is taken to be directly after the previous

uncensored failure time, then for a given θ, (3.6) is maximized with respect to h by

hj =

{t(j) − t(j−1)} ∑
k∈Rj

wk exp{(β1 + γ)xk + β2}+ (1− wk) exp{β1xk}

−1

6



and Rj = {i : ti ≥ t(j)} denotes the risk set of patients at time t(j). Substituting this into (3.6) leads to

Qh(θ, π|θ(l), π(l)) =
∑
i

δi[(β1xi + β2wi + γxiwi)−

log{
∑
k∈Ri

wk exp{(β1 + γ)xk + β2]}+ (1− wk) exp(β1xk)}] + wi log π + (1− wi) log(1− π),

(3.7)

where Ri = {k : tk ≥ ti}. The first part of Qh is the same as a Cox partial likelihood for a weighted sample of

n biomarker positive patients weighted by {wi} and n biomarker negative patients weighted by {1−wi}. As

such the M-step for θ can be computed using standard software for Cox regression. In addition the update

for π is given by π(l+) = n−1
∑
i wi. Note that the values of p+|⊕ and p−|	 are also updated by plugging

the new estimate of π into (2.2) and (2.3).

The survival data contains essentially no additional information about π beyond that in the observed values

of vi. As a consequence taking the estimator of π in (3.5) gives a value very close to the maximum profile

likelihood estimate of π.

3.4 Construction of confidence intervals

Corrected score method

An estimate of the variance-covariance matrix of θ̂ = (β̂1, β̂2, γ̂)
′

can be found through taking

V̂ = D(θ̂)−1H(θ̂)D(θ̂)−1

where D(θ) is the 3×3 matrix of derivatives of U∗(θ) with respect to θ and H(θ) is an empirical estimate

of the covariance matrix of n1/2U∗(β). Full details are given in [17].

Given V̂, normal Wald confidence intervals can be constructed for individual parameters.

An estimate of the standard error of π̂ is

SE(π̂) =

√
v̄(1− v̄)√

n(λ1 + λ2 − 1)
,

and π̂ is asymptotically independent of θ̂.

EM algorithm approach

A convenient approach to constructing asymptotic confidence intervals for individual parameters when esti-

mation is via the EM algorithm is based upon the profile likelihood ratio, which continues to have standard

χ2 asymptotics even in the presence of a potentially infinitely dimensional nuisance parameter [26].
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The observed (or marginal) likelihood for the data is given by

L(θ, Ĥ0(t), π) =
∏
i

{P (ti, δi|xi, vi,θ, Ĥ0(t), π)P (vi|π)},

which may be expanded as

L(θ, Ĥ0(t), π) =
∏
i

{π × λ1L+i + (1− π)× (1− λ2)L−i}vi×

{π × (1− λ1)L+i + (1− π)× λ2L−i}1−vi .

(3.8)

To obtain a confidence interval for the interaction parameter γ, for instance, we use the fact that

Λ(γ̂, γ0) = 2 log
L(θ̂, Ĥ0(t))

L(β̂1, β̂2, γ0, Ĥ0(t))

d−→ χ2
1

and hence take {γ : Λ(γ̂, γ) ≤ χ2
1(1−α)} as a (1−α)× 100% confidence interval for γ. It is straightforward

to find the maximum profile likelihood estimates by using a modified EM algorithm where at each M-step

the fixed parameter, e.g. γ, is treated as a fixed offset term in the weighted Cox model.

For the subgroup analysis it is also desirable to construct a simultaneous confidence interval for the estimated

treatment effect in the biomarker positive and negative groups in order to control the familywise type I

error rate. In the parametrization used in (2.1) this corresponds to simultaneous confidence intervals for

(β1 + γ) and β1. In this case, the method proceeds by obtaining an estimate of the Hessian of the observed

profile likelihood with respect to (β1, γ). The method of [27] is used to approximate the profile likelihood

information. This approach has also been used in other contexts where estimation requires an EM algorithm

[28]. The profile likelihood information is approximated by computing the profile likelihood at values about

(β̂1, γ̂), perturbed by a suitably small value h to provide a ‘finite-differences’ type approximation. Specifically,

Iβ1β1
≈ − lp(β̂1 + 2h, γ̂)− 2lp(β̂1 + h, γ̂) + lp(β̂1, γ̂)

h2
,

Iβ1γ ≈ −
lp(β̂1 + h, γ̂ + h)− lp(β̂1, γ̂ + h)− lp(β̂1 + h, γ̂) + lp(β̂1, γ̂)

h2

and

Iγγ ≈ −
lp(β̂1, γ̂ + 2h)− 2lp(β̂1, γ̂ + h) + lp(β̂1, γ̂)

h2
.

The value of h is primarily chosen to ensure that numerical stability in the converged values of the EM

algorithm do not affect the estimate. Theoretically, the value of h should decrease with increasing sample

size, but taking h = 0.01 worked adequately in the examples considered in this paper and the results were

not particularly sensitive to the choice of h.
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Simultaneous confidence intervals

Using either the corrected score approach or profile likelihood, an estimate of Ψ, the variance covariance

matrix of (β̂, γ̂) can be found. For the corrected score approach this just involves taking the relevant

components of V̂, while for the profile likelihood method it involves inverting the profile information matrix

with respect to (β1, γ).

An estimate of Σ, the variance-covariance matrix of (β̂1 + γ̂, β̂1), can then be obtained by taking

Σ̂ =
(
1 1
1 0

)
Ψ
(
1 1
1 0

)
.

Simultaneous confidence intervals are then constructed of the form

(β̂1 + γ̂)± ξασ+ and β̂1 ± ξασ−

where ξα is the scaling factor chosen such that, for a bivariate normal random variable, X, with unit variances

and correlation ρ, P (|X1| ≤ ξα ∩ |X2| ≤ ξα) = 1 − α. This value can be found straightforwardly using the

qmvnorm function in the mvtnorm package in R [29, 30].

3.5 Missing biomarker status

In some trials, only a subset of patients may have had their biomarker status measured. If it can be assumed

that the missing diagnostic tests of biomarker status are missing at random, then the survivor function for

such patients, S�(t;x), is given by:

S�(t;x) = πS(t;x, z = 1) + (1− π)S(t;x, z = 0).

Such patients can easily be accommodated within the EM algorithm proposed in Section 3.3 by a simple

modification of the conditional weights for such patients. Specifically, the weight for a patient i with missing

diagnostic test is taken as

wi =
πL+i

πL+i + (1− π)L−i
.

Similarly, the marginal likelihood contribution of these patients, regardless of whether π is taken as known

or to be estimated is simply given by

Li(θ, Ĥ0(t), π) = πL+i + (1− π)L−i.

Since the corrected score approach does not directly use the prevalence, there does not seem an obvious way

to incorporate the information on survival for those with missing biomarker status into the corrected scores.
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If the diagnostic test results are missing completely at random then consistent estimates can be obtained by

deleting data from patients without a diagnostic test result. However, this will lead to a loss in efficiency

particularly with respect to estimating the overall treatment effect.

3.6 Measures of overall efficacy

The use of hazard ratios for subgroup analysis of time-to-event data has been criticized due to the absence

of a constant hazard ratio in a mixture population and as a consequence, other methods based on median

survival and parametric modelling have been proposed to obtain ‘subgroup mixable’ estimates [24].

However, the hazard ratio between two groups in a proportional hazards model can also be expressed as the

concordance odds [25]. Specifically, if T0 and T1 are the survival times of two randomly chosen individuals

from groups 0 and 1 and the hazard ratio of group 1 compared to group 0 is ψ, then P (T0>T1)
1−P (T0>T1)

= ψ, or

equivalently

P (T0 > T1) =
ψ

1 + ψ
. (3.9)

The concordance odds has a clear clinical meaning and has the advantage that an estimate of the overall

concordance odds in a subgroup model can be found as a function of just the individual subgroup concordance

odds and the prevalence. It also has the advantages of not requiring either fully parametric estimation

procedures, which may be less robust, or fully non-parametric procedures which will be less efficient.

Let Ti, i = 0, 1 represent the survival time of a random subject in treatment arm i and Gi ∈ {0, 1}, i = 0, 1

represent the subgroup membership with P (Gi = 1) = π, then

P (T0 > T1) = π2P (T0 > T1|G0 = G1 = 1) + (1− π)2P (T0 > T1|G0 = G1 = 0)

+ π(1− π)P (T0 > T1|G0 = 0, G1 = 1) + π(1− π)P (T0 > T1|G0 = 1, G1 = 0),

hence

P (T0 > T1) = π2P (T01 > T11) + (1− π)2P (T00 > T10) + π(1− π)P (T00 > T11) + π(1− π)P (T01 > T10)

where Tij is the survival time for a subject in treatment arm i and subgroup j. Each of the probabilities

on the right-hand side of the equation can be expressed in terms of the parameters β1, β2, γ of the model in

(2.1). Following (3.9), we have

P (T0 > T1) = π2expit(β1+γ)+(1−π)2expit(β1)+π(1−π)expit(β1+β2+γ)+π(1−π)expit(β1−β2), (3.10)

where expit(x) = (1 + exp(−x))−1 is the inverse logit function. An estimate of the overall effect of a

treatment, expressed as concordance odds, is then given by P̂ (T0>T1)

1−P̂ (T0>T1)
where P̂ (T0 > T1) is obtained by

plugging the estimates of β1, β2, γ and π into (3.10).

10



A disadvantage of the concordance odds as a measure of treatment efficacy is that there is no guarantee

that the overall efficacy measure lies in the interval between the two subgroup efficacy values. In fact, when

γ = 0 but β2 6= 0 the overall concordance odds will be closer to 1 than exp(β1). Nevertheless it is virtually

impossible, in practice, for a contradictory result to occur, i.e. for there to be statistically significant benefits

for both subgroups but a non-significant overall effect. Such a situation could only occur if |β̂2| is large and

SE(β̂2) is large compared to both SE(β̂1) and SE(β̂1 + γ̂). Moreover it is impossible for the overall effect

to be of a different sign to the two subgroup effects.

If desired, the procedures for constructing simultaneous confidence intervals in Section 3.4 can be ex-

tended to provide simultaneous confidence intervals for the two subgroup effects and the overall log con-

cordance odds by computing the variance-covariance matrix of (β̂1 + γ̂, β̂1, β̂
∗) using the delta method,

where β̂∗ = log
{

P̂ (T0>T1)

1−P̂ (T0>T1)

}
. Obtaining an analytical form for the first derivatives of the transformation

can be cumbersome, but a numerical approximation for the first derivatives can be used instead.

4 Simulations

To investigate the finite sample properties of the proposed semi-parametric likelihood estimator and compare

with the corrected score estimator, data sets of varying sizes and levels of biomarker subgroup diagnostic

accuracy are simulated. The underlying survival hazards are assumed to follow the model in (2.1), with

a decreasing Weibull baseline hazard assumed with rate parameter 0.1 and shape parameter 0.8 such that

h0(t) = 0.8× 0.10.8t−0.2.

Three scenarios are considered for the treatment effects. In the first, β1 = −0.5, β2 = 0.1 and γ = 0.3,

meaning the treatment is beneficial for both biomarker groups, but the effect is smaller for those who are

biomarker positive, corresponding to hazard ratios (HR) of 0.61 and 0.82. In the second, β1 = 0.1, β2 = 0.1

and γ = −0.7 corresponding to a stronger interaction effect where the treatment is beneficial for the biomarker

positive group but slightly harmful for the negative group (HRs of 0.55 and 1.11). Finally the third scenario,

β1 = 0, β2 = 0.1 and γ = 0, corresponds to a situation where the treatment has no effect in either biomarker

group.

Censoring is assumed to be independent and uniform distributed between 5 and 25, U(5, 25), which results in

an overall censoring rate of around 25%. The prevalence of a true positive biomarker status, π, is taken to be

0.3 and treated as unknown in the estimation procedure. The effect of assuming rather than estimating the

prevalence is negligible in the simulation (where the prevalence given is accurate). However, if the assumed
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prevalence value were far from its true value, this would lead to bias. The sensitivity and specificity of the

diagnostic test is assumed known in all cases, but varied and the sample size per randomization group is

varied across the simulation scenarios. The results using the EM algorithm approach and using the corrected

score (SC) approach of Section 3.1 for 5000 replications of each scenario are presented in Tables 1, 2 and

3. Using the EM approach, the parameter estimates have reasonably low levels of bias for all scenarios

considered. As would be expected, the standard deviation of the estimates increases as the diagnostic

accuracy decreases. In the scenarios considered, since the prevalence is lower than 0.5, imperfect specificity

has a greater impact than imperfect sensitivity. The standard deviation of the estimate of γ is around 75%

higher when the sensitivity and specificity are both 0.8 compared to the case of perfect diagnostic accuracy.

In the first scenario where the interaction effect is relatively modest, the power to detect the interaction

term is low in all scenarios, but substantially lower when there is diagnostic error. For instance when the

number in each randomization group is 500, the power reduces from 0.43, with perfect diagnostic accuracy,

to 0.17 with sensitivity and specificity both 0.8. A similar pattern is observed in the second scenario, where

the interaction effect is stronger. In the scenario with no interaction effect the empirical Type I error of a

test of interaction is close to 5% for all configurations, with a slight tendency to be anti-conservative in the

smaller sample size and when misclassification rates are higher.

For sample sizes of 500 per randomization group the estimates based on the corrected score approach are

comparable with those using the EM algorithm; however, for N = 100, the biases are mostly higher and

similarly the SDs are slightly higher. Most significantly, the correct score method fails to produce an estimate

in some cases, with the frequency of non-convergence higher for scenarios with lower sensitivity and specificity

and up to 4.8% of the time.

The simultaneous confidence intervals for (β1, β1 + γ) have close to the nominal 95% level in all cases, with

a tendency to be slightly conservative. The apparently better coverage of simultaneous confidence intervals

for the corrected score method when N = 100 is likely due to only considering samples where an estimate

was obtained.

5 Example: Pazonpanib for renal-cell cancer

As an illustrative example of the impact of accounting for misclassification of biomarkers in a survival study,

data from a Phase III trial of patients with metastatic renal-cell cancer are analyzed. The trial involved 343

patients, 225 of whom were randomized to treatment with Pazopanib, with the remaining 118 on placebo.
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Table 1: Bias and Standard Deviation (SD) of parameter estimates, empirical coverage of simultaneous

(Simult) nominal 95% confidence intervals of (β1, β1 + γ) and the empirical power of likelihood ratio test of

interaction term in the mild interaction scenario (β1, β2, γ) = (−0.5, 0.1, 0.3).

Bias ×102 SD Coverage Power

N (Sens,Spec) Method β1 β2 γ β1 β2 γ Simult γ 6= 0 No est

100 (1,1) Cox 0.0191 0.7232 -0.6650 0.2153 0.2634 0.3847 0.9472 0.1226 0.00

100 (1,0.8)
EM -0.4598 0.9980 -2.0488 0.2416 0.3514 0.5154 0.9614 0.0902 0.00

CS -0.3064 1.7358 -0.3952 0.2452 0.3846 0.5701 0.9458 0.0951 0.78

100 (0.8,1)
EM -0.6302 1.1681 -1.1618 0.2299 0.3017 0.4473 0.9512 0.1128 0.00

CS -1.0677 0.4218 0.3820 0.2315 0.3104 0.4561 0.9462 0.1050 0.00

100 (0.9,0.9)
EM -0.6628 1.1261 -1.2436 0.2383 0.3366 0.4960 0.9622 0.0912 0.00

CS -0.6839 0.5528 0.7765 0.2396 0.3615 0.5276 0.9457 0.1004 0.24

100 (0.8,0.8)
EM -0.4748 0.0643 -1.7780 0.2685 0.4767 0.6887 0.9596 0.0814 0.00

CS -1.4529 1.2653 0.7808 0.2902 0.5524 0.8193 0.9412 0.0754 4.80

500 (1,1) Cox 0.1274 0.2206 -0.2761 0.0965 0.1157 0.1670 0.9506 0.4286 0.00

500 (1,0.8)
EM -0.1734 -0.1977 -0.0315 0.1077 0.1583 0.2280 0.9546 0.2490 0.00

CS -0.0209 0.2658 -0.2750 0.1073 0.1572 0.2340 0.9448 0.2756 0.00

500 (0.8,1)
EM -0.3087 -0.1782 0.4508 0.1012 0.1333 0.1948 0.9522 0.3514 0.00

CS -0.2403 -0.0325 0.4227 0.1010 0.1304 0.1965 0.9520 0.3470 0.00

500 (0.9,0.9)
EM -0.2142 -0.3322 0.1361 0.1052 0.1490 0.2172 0.9520 0.2834 0.00

CS -0.2195 -0.0461 0.5080 0.1054 0.1490 0.2214 0.9442 0.2990 0.00

500 (0.8,0.8)
EM -0.1233 -0.4452 -0.3492 0.1218 0.2051 0.2949 0.9578 0.1678 0.00

CS 0.0210 0.3294 -0.3753 0.1232 0.2097 0.3086 0.9448 0.1888 0.00

In addition, patients were classified by level of interleukin 6 (IL-6) into ‘low’ or ‘high’ groups. Interest

lies in determining whether Pazonpanib is an effective treatment for either or both groups of patient. In

the original analysis by [31], it was assumed that the assay used to determine the level of IL-6 had 100%

diagnostic sensitivity and specificity.

Here, the data are re-analysed considering the possibility of misclassification of IL-6 status. The individual

level data were reconstructed from the Kaplan-Meier estimates provided in [31] using the method of [32].

Following [10], it is assumed that the assay has 95% sensitivity and 90% specificity to distinguish high IL-6

from low.
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Table 2: Bias and Standard Deviation (SD) of parameter estimates, empirical coverage of simultaneous

(Simult) nominal 95% confidence intervals of (β1, β1 + γ) and the empirical power of likelihood ratio test of

interaction term in the strong interaction scenario (β1, β2, γ) = (0.1, 0.1,−0.7).

Bias ×102 SD Coverage Power

N (Sens,Spec) Method β1 β2 γ β1 β2 γ Simult γ 6= 0 No est

100 (1,1) Cox 0.1509 0.1085 -0.5872 0.2034 0.2581 0.3966 0.9468 0.4562 0.00

100 (1,0.8)
EM -0.6065 -0.5878 1.0292 0.2210 0.3430 0.5144 0.9570 0.2968 0.00

CS 0.3274 0.8807 -5.2078 0.2303 0.3856 0.6366 0.9521 0.2250 0.18

100 (0.8,1)
EM 0.0270 1.2441 -1.6333 0.2132 0.3004 0.4587 0.9516 0.3682 0.00

CS 0.5297 0.9895 -2.4508 0.2128 0.3117 0.4644 0.9509 0.3607 0.20

100 (0.9,0.9)
EM -0.4779 -0.8028 -0.1945 0.2241 0.3650 0.5453 0.9578 0.2812 0.00

CS 0.0544 1.1910 -3.5591 0.2238 0.3572 0.5310 0.9542 0.2687 0.04

100 (0.8,0.8)
EM -1.5560 0.6694 -1.3342 0.2530 0.4714 0.8217 0.9502 0.2004 0.00

CS 0.6902 2.0582 -9.9004 0.2709 0.6015 0.9489 0.955 0.1140 3.66

500 (1,1) Cox 0.1167 0.1671 -0.5071 0.0900 0.1148 0.1705 0.9522 0.9878 0.00

500 (1,0.8)
EM 0.1796 0.3993 -0.3036 0.0967 0.1480 0.2173 0.9566 0.9042 0.00

CS 0.0853 -0.1995 -0.4834 0.0980 0.1565 0.2339 0.9552 0.8514 0.00

500 (0.8,1)
EM 0.1194 0.1749 -0.1344 0.0926 0.1306 0.1975 0.9536 0.9452 0.00

CS -0.0742 -0.3706 0.0946 0.0959 0.1335 0.2033 0.9434 0.9388 0.00

500 (0.9,0.9)
EM 0.1950 0.4669 -0.4286 0.0981 0.1563 0.2282 0.9556 0.8772 0.00

CS 0.0896 0.2334 -0.8122 0.0983 0.1509 0.2251 0.9514 0.8846 0.00

500 (0.8,0.8)
EM -0.0108 0.6640 -0.0728 0.1126 0.2010 0.2959 0.9600 0.6752 0.00

CS 0.1645 0.3244 -1.9795 0.1158 0.2032 0.3081 0.9528 0.6333 0.02

Table 4 compares the results of an analysis assuming no misclassification with estimates using the proposed

method. It is seen that the effect of adjusting for misclassification is to increase the estimated interaction

effect from -0.53 to -0.72, which also leads to the interaction being considered significant (p = 0.036).

The corrected score method gives similar estimates to the EM approach but with slightly wider confidence

intervals.

Table 5 gives the estimates and simultaneous 95% confidence intervals for the concordance odds of Pazonpanib

for Low and High IL-6 patients. For both the original and misclassification analyses, the confidence interval

for Low IL-6 includes 1, implying no treatment effect, whilst the confidence interval for High IL-6 is entirely
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Table 3: Bias and Standard Deviation (SD) of parameter estimates, empirical coverage of simultaneous

(Simult) nominal 95% confidence intervals of (β1, β1 + γ) and the empirical Type I error of likelihood ratio

test of interaction term in the null scenario (β1, β2, γ) = (0, 0.1, 0).

Bias ×102 SD Coverage Type I err

N (Sens,Spec) Method β1 β2 γ β1 β2 γ Simult γ 6= 0 No est

100 (1,1) Cox 0.1389 0.0680 0.5389 0.2012 0.2629 0.3678 0.9508 0.0496 0.00

100 (1,0.8)
EM -0.1232 0.5505 0.1944 0.222 0.3356 0.4798 0.9580 0.0588 0.00

CS -0.2658 0.9895 0.3645 0.2236 0.3780 0.5497 0.9462 0.0526 0.44

100 (0.8,1)
EM -0.0146 0.2379 1.2609 0.2155 0.3109 0.4396 0.9492 0.0620 0.00

CS 0.0511 -0.0303 -0.0578 0.2126 0.3092 0.4304 0.9476 0.0516 0.00

100 (0.9,0.9)
EM -0.0436 -0.8576 1.3769 0.2257 0.3644 0.5110 0.9590 0.0588 0.00

CS -0.3642 1.0238 0.8097 0.2187 0.3590 0.5083 0.9508 0.0552 0.06

100 (0.8,0.8)
EM -0.3072 0.6792 0.1749 0.2541 0.4698 0.7010 0.9608 0.0662 0.00

CS -0.0386 0.4697 0.0128 0.2661 0.5555 0.8362 0.9444 0.0477 3.56

500 (1,1) Cox 0.1800 0.4851 -0.4689 0.0899 0.1171 0.1657 0.9436 0.0572 0.00

500 (1,0.8)
EM 0.2906 0.3950 -0.4087 0.0971 0.1480 0.2067 0.9528 0.0482 0.00

CS -0.0667 0.0301 0.1856 0.0996 0.1561 0.2192 0.9520 0.0530 0.00

500 (0.8,1)
EM 0.1894 0.1761 -0.0657 0.0928 0.1307 0.1848 0.9526 0.0508 0.00

CS 0.0961 0.2181 -0.3371 0.0941 0.1333 0.1866 0.9502 0.0434 0.00

500 (0.9,0.9)
EM 0.3246 0.4625 -0.5343 0.0994 0.1563 0.2196 0.9556 0.0472 0.00

CS 0.0532 -0.0989 0.0093 0.0985 0.1488 0.2100 0.9474 0.0544 0.00

500 (0.8,0.8)
EM 0.3481 0.6671 -0.630 0.1128 0.2011 0.2832 0.9622 0.0476 0.00

CS 0.3132 0.8912 -0.7429 0.1141 0.2072 0.2932 0.9424 0.0604 0.00

below 1, indicating a treatment benefit.

6 Conclusion and Discussion

In this paper, we investigate subgroup analysis for time-to-event responses in biomarker stratified subgroups

with misclassificated biomarkers using a proportional hazards model. Two approaches to point estimation

and the construction of (simultaneous) confidence intervals for the treatment effects in biomarker subgroups

in the form of the log-hazard ratio are provided. It is shown by simulation that the bias of the estimators and

the coverage probabilities of the simultaneous confidence intervals are acceptable for all considered simulation
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Table 4: Comparison of estimates from original Cox model analysis assuming no biomarker misclassification

and model assuming 95% sensitivity and 90% specificity to detect High IL-6 via EM algorithm method and

Corrected score (CS) method

Original analysis EM method CS method

Parameter Est 95% CI p Est 95% CI p Est 95% CI p

Pazonpanib (β1) -0.15 (-0.58, 0.27) 0.48 -0.12 (-0.57, 0.33) 0.58 -0.14 (-0.60, 0.32) 0.56

High IL-6 (β2) 1.18 (0.73, 1.62) < 0.001 1.50 (0.96, 2.10) < 0.001 1.46 (0.94, 1.97) < 0.001

Interaction (γ) -0.53 (-1.08, 0.03) 0.06 -0.72 (-1.40, -0.05) 0.04 -0.68 (-1.32, -0.03) 0.04

Prevalence (π) - - - 0.47 (0.41, 0.53) - - - -

Table 5: Simultaneous 95% confidence intervals for effect of Pazonpanib on overall survival for Low IL-6

patients, High IL-6 patients and all patients; CO=Concordance odds

Original analysis EM method CS method

Group CO 95% CI CO 95% CI CO 95% CI

Low IL-6 0.86 (0.52, 1.41) 0.88 (0.52, 1.50) 0.87 (0.51, 1.51)

High IL-6 0.51 (0.33, 0.77) 0.43 (0.25, 0.75) 0.44 (0.28, 0.70)

All 0.70 (0.51 , 0.95) 0.67 (0.50 , 0.92) 0.68 (0.50 , 0.92)

scenarios in the case of the EM algorithm approach. The corrected score method performs comparably in the

case where N = 500 and has computational advantages. However, for N = 100 the corrected score method

suffers from non-convergence issues and lower efficiency.

It is apparent from the simulation results that the power to detect a subgroup effect of treatment is diminished

in the presence of misclassification. Further work would be to develop sample size formulas which would

allow survival trials to be adequately powered to perform subgroup analysis in the presence of biomarker

misclassification.

The interpretation of a hazard ratio as the concordance odds allows an overall treatment effect estimate to

be computed in subgroup analyses of time-to-event data. While the focus of this paper has been cases with

misclassification of the biomarker status, the use of concordance odds can also be applied in the simpler case

where the biomarker status is perfectly observed.
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