
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Exploiting Binary-level Code
Virtualization to Protect Android
Applications Against App Repackaging
ZHONGKAI HE1,2, GUIXIN YE1,2, LU YUAN1, ZHANYONG TANG1,2, XIAOFENG WANG1, JIE
REN3, WEI WANG1,2, JIANFENG YANG1, DINGYI FANG1,2, AND ZHENG WANG4,5
1School of Computer Science and Technology, Northwest University, China
2Shaanxi International Joint Research Centre for the Battery-free Internet of things, China
3Shaanxi Normal University, China
4Lancaster University, U. K.
5Xi’an University of Posts & Telecommunications, China

Corresponding authors: Zhanyong Tang (e-mail: zytang@nwu.edu.cn) and Xiaofeng Wang (e-mail: xfwang@nwu.edu.cn)

Zhongkai He and Guixin Ye are co-first authors. This work was supported in part by the NSFC under grant agreements 61672427,
61672428 and 61872294, the International Cooperation Project of Shaanxi Province (2019KW-009, 2017KW-008) and the Key R&D
Project of Shaanxi Province (2017GY-191), the ShaanXi Science and Technology Innovation Team Support Project under grant agreement
2018TD-O26, the China Scholarship Council (201806970007), Ant Financial through the Ant Financial Science Funds for Security
Research.

ABSTRACT Application repackaging is a severe problem for Android systems. Many Android malware
programs pass the mobile platform fundamental security barriers through repackaging other legitimate apps.
Most of the existing anti-repackaging schemes only work at the Android DEX bytecode level, but not for
the shared object files consisting of native ARM-based machine instructions. Lacking the protection at
the native machine code level opens a door for attackers to launch repackaging attacks on the shared
libraries that are commonly used on Android apps. This paper presents CodeCloak, a novel anti-repackaging
system to protect Android apps at the native code level. CodeCloak employs binary-level code virtualization
techniques to protect the target application. At the native machine code level, it uses a newly designed stack-
based virtualization structure to obfuscate and protect critical algorithm implementations that have been
compiled into native instructions. It leverages multiple dynamic code protection schemes to increase the
diversity of the program behavior at runtime, aiming to increase the difficulties for performing code reverse
engineering. We evaluate CodeCloak under typical app repackaging scenarios. Experimental results show
that CodeCloak can effectively protect apps against repackaging attacks at the cost of minimum overhead.

INDEX TERMS Android code protection, code obfuscation, app repackaging, code virtulization

I. INTRODUCTION

APPLICATION repackaging is a prevalent and severe
threat to the Android ecosystem. With the help of

dynamic profiling and reverse engineering tools, an attacker
can unpack an app, replace and insert code to, e.g., remove
advertisements, steal privacy information, or make purchases
without the user’s authorization [1]. A prior study shows that
over 80% of the malware samples were implemented through
repacking legitimate apps [2]. Therefore, there is a critical
need to protect Android apps from repackaging attacks.

Code obfuscation is a viable means to protect applica-
tions against reverse engineering and repackaging [3]. By

creating code that preserves the intention and semantics of
the original code but is challenging to understand, code
obfuscation increases the time and efforts for performing
code reverse engineering. There is considerable work in
applying code obfuscation to protect Android applications
against repackaging. In Figure 1, we summarize some of
the most relevant work. Many of the previous approaches
target at the Android DEX bytecode level. Proguard [4] and
DexGuard [5] are two representative work, which, however,
cannot effectively protect the obfuscated code if the entry
point (such as the memcpy method) is found using tools
like DexExtractor [6]. Other implementations overwrite the

VOLUME 1, 2019 1

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

8

10

11

9

7

6

12

5

LowHigh

FIGURE 1: Summary of prior code protection schemes their corresponding attacks for Android apps. Here, different color
blocks represent levels of different risks. A red color indicates high risk while the green suggests the risk to be low. Most
protection systems do not target the binary level.

way a DEX file is loaded by changing the Android DEX
class loader, aiming to increase the difficulties for observing
standard function calls. However, an attacker can still bypass
such a defense by debugging the native commands through
tools like ZjDroid [7] or DexHunter [8] to observe standard
library calls. DIVILAR [9] was able to protect apps against
function call observations, but it is proven to be vulnerable
under more advanced tools like PackGrind [10] that can
decrypt and reconstruct the mapping between code semantics
and function calls.

In addition to DEX files, there are many Android apps
built upon shared libraries which were firstly written in
high-level languages like C and C++ and then compiled
into native machine instructions. These shared libraries often
implemented the frequently used core algorithms. Therefore,
there is a need to protect share object (SO) files against code
reverse engineering and app repackaging. However, existing
SO protection schemes often adopt a simple but less effective
code obfuscation or encryption strategy. They do not provide
sufficient protection against sophisticated code reverse engi-
neering attacks. For example, UPX shelling [11] is one of
such protection methods, but an attacker can use the UPX
Shell tools [12] to launch the attack as shown in Figure 1.
OLLVM confusion [13] is compiler-based code obfuscation
performed at the source code level, but it is proven to be
vulnerable under new anti-obfuscation methods [14], [15].

This paper aims to propose a better code obfuscation ap-
proach for SO files. Our work targets applications compiled
for the ARM instruction set, a de-facto Android hardware
architecture. As a departure from prior work, our code obfus-
cation scheme, namely CodeCloak, works at the binary level.
It employs a stack-based virtualization scheme to protect
the logic of algorithms and protocols implemented in SO
files. At the native machine code level, it uses a novel stack-

based virtualization structure to protect native ARM instruc-
tions. To enhance the security strength, we adopt multiple
virtual protection schemes, where a scheme is dynamically
chosen at runtime. Furthermore, our implementation is fully
compatible with existing protection schemes for DEX. As a
result, CodeCloak closes the gap between DEX and SO file
protection.

We evaluate CodeCloak under typical app repackaging
settings. Our evaluation results show that CodeCloak can
effectively protect apps from repackaging attacks, and it
achieves this at the cost of minimum overhead. One of the key
contributions of this paper is a novel approach for protecting
native share object files against app repackaging on Android
systems. The other contribution is the first approach for
binary-level code virtualization for ARM instructions, and it
can be applied to many embedded systems that are powered
by ARM processor architectures.

II. BACKGROUND
A. VM-BASED ANDROID APP PROTECTION SHCEME

The VM protection process consists of the following steps.
We first decompile the binary SO file and extract the key
ARM instructions according to the pre-set tags. Then, the
extracted ARM instructions are mapped to virtual instruc-
tions which are still turning equivalent. Next, the virtual
instructions are encoded into the SO file in a binary form
utilizing the custom encoding rules. Finally, the combined
custom interpreter is inserted in a binary SO file. By using
these strategies over the binary SO file as it is shown above,
the VM-based protection scheme will effectively increase the
attack cost of the attacker.

To illustrate operations of the scheme, we take DIVILAR
[9] as an example. DIVILAR is a VM-based protection
method, and it converts the real instructions into a virtual

2 VOLUME 1, 2019

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

...

0x112E CMP

0x1130 ASRS

0x1132 ASRS

0x1134 LSRS

0x1136 LSRS

0x1138 LDRH

0x113A BVC

0x113C B

...

(a)StirngFromJNI after UPX shelling.

...

0x112A

0x112C

0x112E

0x1130

0x1132

0x1136

0x1138

0x113A

0x113C

...

(b)The repaired StirngFromJNI method.

R7,#0xD1

R6,R6,#4

R5,R5,#7

R4,R2,#0XD

R3,R7,#0X15

R3,[R5,R5]

_ZN7_JNIEnvGetStringUTF

loc_113E

R2,[SP,#0x50+var_34]

R3,[SP,#0x50+var_38]

R4,[SP,#0x50+var_3C]

R5,[SP,#0x50+var_40]

_ZN7_JNIEnvGetStringUTF

R0,[SP,#0x50+var_1C]

R0,#0

loc_1144

loc_113E

LDR

STR

STR

STR

BL

STR

CMP

BNE

B

FIGURE 2: Comparison before and after reverse peeling.
Red-marked instructions represent encrypted, unrecognized
instructions.
instruction set and adds a hook mechanism to restore and
interpret the virtual instructions at runtime. Although DIVI-
LAR provides protection only in the level of DEX file, it also
proves that the VM-based security method is effective against
common countermeasures, including static analysis, dynamic
analysis, and specific analysis for virtual machines.

Before showing the SO protection crack example, we
must point out that the most significant difference between
the scheme of CodeCloak and DIVILAR is the protection
objects are completely inconsistent. The object protected by
DIVILAR is the DEX file, while our system protects the
lower level SO file. Due to VM protection running in DEX
file, DIVILAR must use a hook mechanism to communicate
within components. However, it is a design defect that an
attacker can utilize this mechanism to obtain information be-
tween instructions during the translation process. CodeCloak
works in the level of SO file and avoids problems caused
by the instruction restoration process when the program is
interpreted.

B. SO PROTECTION CRACK EXAMPLE
As mentioned above in Figure 1, we have understood that
SO file protection scheme is more effective than that of DEX
file, but we would like to know the existing method could
take protection effective or not? To ameliorate our doubts,
as described next, we will manually attack several common
protection methods in SO files. Here we use the interactive
disassembler IDA Pro [16] to dynamically debug and analyze
SO files.

At present, the particular protection scheme of SO files
mainly employ encryption, as we all know, the deformation
of UPX shell [11] is one of the most commonly used forms
above in existing app reinforcement manufacturers. Here we
take the SO file protected by Ijiami [17] as the attacking
object. Figure 2 (a) shows partial instructions of the protected
function stringFromJNI.

As we can see, for the entire instructions are encrypted
and erroneous, it is very confusing for the adversary to
understand the semantics of the code section. However, as
a skillful cracker, he/she could first analyze the loading
mechanism of the SO file, then create a dump point before the
.init/.init_array in the memory. Contrary to static
analysis attacks, this method could fix the corresponding
load, dynamic, and section fields. After this series of oper-

ations, Figure 2 (b) shows the repaired StringFromJNI
method opened with IDA Pro.

OLLVM obfuscation is accomplished by hiding the real
control flow of the application. We choose the SO file pro-
tected by Tencent Legu [18] as the attacking target where the
JNI_Onload method in the SO file is confused.

To implement the attack, the adversary directly set the
breakpoint at .init/.init_array, he/she can debug
and decrypt the JNI_Onload method function. Using this
method, we can obtain new_JNI_Onload that is a new
"load" function decrypted from JNI_Onload. Alterna-
tively, the cracker can use the replacement cookie (Dalvik
mode) or modify the source code (ART mode) to attack, and
finally repair the dumped file while getting the decrypted
info. Hence, in this case, we can draw a clear conclusion
that the obfuscation based on OLLVM is more difficult to be
debugged than the UPX shell, but experienced attackers can
still bypass these protection mechanisms through dynamic
debugging.

These two crack cases show that it is urgent to perse-
vere a protection method to prevent both static analysis and
dynamic debugging. Attack experiments of this paper in
section IV show that CodeCloak can prevent a cracker from
conducting above two kinds of breakdown, and even prevent
special attacks on virtual machines.

C. THE ATTACK MODEL
The existing research [19] has illustrated the reverse steps of
the VM-protected program. Here we summarize as follows:
Step 1: to find the confused entry point address of the

VM interpreter;
Step 2: to find the address of the dispatcher and re-

store the handlers executed at runtime, record the handler
addresses. The cracker will discover the mapping relationship
between the virtual and the real instructions;
Step 3: using the knowledge obtained from the first two

steps to recover the logic of the target code region. These
steps are the basic operations for an attacker to launch an
attack.

Our attack model assumes that attackers have practical
experience in software reverse engineering. We assume that
attackers can use our protection program to protect any
Android applications multiple times in a specific application
environment. We also assume that attackers can debug, track,
and modify binary SO files in memory through analysis
tools such as IDA Pro [16] and Valgrind [20]. In a word,
the purpose of the attackers is to implement the attacks
through the analysis of VM’s working mechanism and the
transformation logic between instructions. Contrary to the
purpose of the attackers, our goal is to protect VM’s working
principles and mapping schemes between instructions from
being discovered by using as reliable protections as possible.

III. DESIGN OF CODECLOAK

VOLUME 1, 2019 3

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

Guest.apk

P
r
e
tr

e
a

tm
e
n

t

Guest_pro.apk

libDexpro.so

DEX_BDEX_BDEX_ADEX_A

 mov r0,#01;
 mov r1,#01;

 load #01
 store s0
 load #01
 store s1

 01 01
 02 00
 01 01
 02 01

Virtual IS
Encoding

Schemes

Encoding

�����������

ARM stack-based virtualization

Native Instr

Virtual Instr
Multi-bytecodes

Virtual

mapping
Key Instruction

extraction

Atomic

handlers set
VMContex

Embedding

VMContex

VMInit

Dispatcher

VMData

HD_Exit

Handlers

①

②

VM components

B VM

....Junk

....instr

VMSection

③

④

⑤

 1A 01
 80 00
 1A 01
 80 01

 3E 01
 01 00
 3E 01
 01 01

classes_new.

dex

lib

(libPro.so)

res、META-

INF and so on

Dispatcher VMInit HD_Exit
classes.dex

lib

(liborigin.so)

res、META-

INF and so on

VM_1 VM_2

VM_3 …

⑥

FIGURE 3: Overview of CodeCloak. The middle area highlighted by gray rectangle shows ARM stack-based virtualization, in-
cluding pre-processing, key instruction extraction, multiple virtualizations, building and embedding the interpreter VMSection.
The VMSection is executed as following steps: ¬ Jump into the virtual machine; Initialize the VM, enter the Dispatcher;
® Read the virtual instruction bytecodes; ¯ Dispatch handlers to process bytecodes; ° Exit the virtual machine; ± Go to the
subsequent instructions to continue execution.

A. OVERVIEW OF OUR APPROACH
To address the problems of repackaging attacks, we propose a
system which we coin CodeCloak, a native ARM instruction
virtualized system for Android apps. The purpose of Code-
Cloak is to provide protection for Android applications at the
lower and deeper binary code levels.

Figure 3 depicts the overall system architecture of Code-
Cloak. It takes the APK as input and binds the virtualized
binary file to the compiled APK as output. As mentioned
above, CodeCloak focuses on protection policies of Android
native SO files, including the original SO file and the shell file
after DEX protection such as DIVILAR [9]. We can divide
CodeCloak’s protection process into multiple virtualization
modules and construct custom interpreter engine modules.
The former is to convert the original ARM instructions into
the virtualized instructions by selecting a mapping rule from
multiple sets of the custom mapping conversion rules, and the
latter constructs the interpreter which interprets and executes
virtualized instructions while the program is running.

B. ARM VIRTUAL-MACHINE-BASED PROTECTION
Unlike the Java virtual machine, CodeCloak is a stack-based
virtualization protection scheme for ARM instructions. This
protection scheme can be implemented through the following
two phases: (1) utilizing multiple virtualization module to
perform code translation, and (2) creating a custom inter-
preter engine.

In the first phase, CodeCloak rewrites the instructions to
a new form, which inserts mapping tables, atomic handles,
and then packages .apk static file. To be specific, the system
first disassembles the key HEX and get the ARM instructions
from the pre-set label code segments or the start and end
addresses of Guest.apk. After applying these mapping
rules, the system could transform the native instructions into
the virtualized formats one by one. Concerning these two
types are Turing-equivalent; in general, we usually employ
multiple custom instructions to simulate a single native
instruction. As Figure 3 shows, we can quickly draw the

conclusion that the mapping rules are very important. To
avoid being cracked, multiple sets of mapping rules and
corresponding interpretation handlers are designed, which
instead of a single mapped ARM virtual machine. Using the
method above, every original protected instruction can be
converted to virtual instructions of different code sets each
time.

In the second stage, CodeCloak implements a global
abstract interpretation engine VMSection in a protected
SO file. VMSection can be considered as a code pump,
which is accomplished by simulating various kinds of
schedule functions on real CPU. VMSection contains
six components: the converted custom virtual instructions
VMData, the initialize program VMInit, the register en-
vironment VMContext, the virtual machine’s scheduler
Dispatcher, the exit program HD_Exit, and the corre-
sponding operations Handlers. VMSection embeds SO
files in binary form. Worthy of note is that the beginning of
the code region will be filled with B VM and junk instructions
to erase the traces of the original execution. Finally, Code-
Cloak outputs a brand new virtualized SO file.

Thus, in summary, if an attacker wants to crack this kind of
virtualization mechanism, he/she must grasp all information
completely through the internal working principles of the
custom interpreter and the functions of each virtual instruc-
tion. Meanwhile, he/she has to restore the original functions
of the running virtual instructions, which is a cumbersome
and error-prone process that can easily trigger the domino
effect.

C. TIME DIVERSITY

Time diversity is one of CodeCloak’s design goals, and which
devotes the system to build multiple sets of bytecode instruc-
tion and handlers during the protection code executing. Once
the system generates multiple instruction sets, the Dispatcher
randomly selects one type of those to perform every round.

In contrast, the classic VM protection scheme [21] uses
the dispatcher to acquire and parse the compiled bytecode

4 VOLUME 1, 2019

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

instructions during execution. We must point out that the
fetched instructions set are unaltered; in other words, the
operation code of bytecode instructions is delivered over to
a fixed handler. Since there is a one-to-one correspondence
between custom instructions and interpreters, the attacker can
quickly get the mapping rules of the real instructions and the
virtual instructions.

TABLE 1: An example of NI and Corresponding structure.

NI1 VI2 VMData
Rule1 Rule 2 Rule 3

load_reg r0 0x1B,0x00, 0x4D,0x00, 0x2F,0x00,
add r0,r0,r1 load_reg r1 0x1B,0x01, 0x4D,0x01, 0x2F,0x01,

vadd 0x2D, 0x0F, 0x1C,
store r0 0x02,0x00 0x2E,0x00 0x3B,0x00

1 In this table, NI indicates the native ARM instructions.
2 In this table, VI indicates the virtual instructions.

We address all of these issues in prior VM protection
scheme and provide empirical evidence of our ability to solve
problems beyond the reach of previous methods. CodeCloak
establishes mapping tables between multiple sets of custom
instructions and interpreters at the same time. We automat-
ically generate many alternative implementations for each
handler. These implementations can generate equivalent re-
sults for the original input instructions. Finally, the protected
program will randomly select a mapping table to execute with
the Dispatcher and handlers of the interpreter.

As a simple example consider the following add instruc-
tion, in this case, this native instruction mainly completes the
add operation of the r0 register and r1 register, and the sum
will be restored in the r0 register. These operations will be
divided into load_reg, vadd, and store virtual instruc-
tions after being virtualized by CodeCloak. The load_reg
instruction is used to push the operand to the stack, and the
store instruction is used to pop the stack and store the result
in the VMContext. According to different encoding rules,
the virtual instructions are randomly encoded into one of the
three bytecode formats as shown in Table 1. At the same
time, we generate corresponding sets of handlers for each
VM which are functionally equivalent in nature. However,
the same bytecodes have different meanings in different
VMs. We would like to add that the number of VMs is
flexible according to the runtime performance overhead and
protection strength of the app. A protected application with
diversity and uncertainty can easily invalidate the knowledge
gained by an adversary from previous reverse attacks.

D. AN EXAMPLE
1) Protection process
To illustrate how CodeCloak protects the APK, we have
selected a partial code snippet of 2048.apk [22] to explain
the protection process. The steps of CodeCloak’s protection
process are described as follows.
Step 1: As shown in Figure 4, we first unzip the ap-

plication installation package to get the binary SO file, then

.text:000017A8 EXPORT Java_com_implementist_game_game2048_GameView_swipeRight

.text:000017A8 Java_com_implementist_game_game2048_GameView_swipeRight

.text:000017A8 STMFD SP!, {R4-R11,LR}

.text:000017AC ADD R11, SP, #0x1C

.text:000017B0 SUB SP, SP, #0x64

.....

.....

.text:000019B0 STR R0, [SP,#0x80+var_74]

.text:000019B4 ADD R0, R10, #0x10

.text:000019B8 STR R0, [SP,#0x80+var_78]

.text:000019BC B loc_19D4

.....

FIGURE 4: Decompile key code segments to be protected.

VM_1 VM_2

…

FIGURE 5: Schematic diagram of handlers embedded in
VMs under custom configuration and the same striped boxes
represent the functionally equivalent handler.

disassemble it to select the key code segment. To simplify the
problem, we assume that the code fragment has a starting off-
set address 0x17A8 and an ending offset address 0x19B8.
Step 2: Next, the ARM instructions of the segments

being protected are virtualized one by one. As mentioned
above, using encoding rules, the designed scheme will ran-
domly select and embed the virtual instructions from the
multiple sets into the VMData in binary bytecode format.
Step 3: Generate the corresponding VM according to

the custom configuration choice. As shown in Figure 5, if the
configuration choice is VM_2, it will automatically generate
a functionally equivalent implementation for each handler.
In fact, for each running, every VM has different handles
execution sequences, and the mapping tables between the
virtual instructions and the handlers are also highly dynamic.
Namely, the control flow undergoes continuous changes.
Step 4: In order to cover up the real jumping entry

point of the virtual machine, the obfuscation is implemented
with the insertion of garbage instructions at the associated
particular location in the binary.
Step 5: The system embeds a new code fragment

VMSection into the SO file. VMSection is composed of
VMInit, VMData, several VM structures just established,
etc.
Step 6: In the last step, the system repackages the

new app. The function of the newly generated version
new_2048.apk is equivalent to the pre-protection one.

2) Runtime execution flow
To illustrate how a protected app executes, we use the newly
generated new_2048.apk as an example. In what follows,
we describe the technical details of our case.
Step 1: When new_2048.apk executes to the pro-

tected code segment, the B VM instruction is executed first.
As described in Figure 3, the protected application jumps to
VMInit component to initialize the virtual machine. Specif-
ically, for the correct restoration after completing executions

VOLUME 1, 2019 5

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

TABLE 2: Comparison of mainstream reinforcement

Qihoo Ijiami Ali NetEase Baidu Tencent CodeCloak
SO Virtualization ×

√
×

√
× ×

√

SO Diversity
Virtualization × × × × × ×

√

Handler Tables:

3F36C:
Dispatcher:

VMData：

 1B 00 1B 01
 2D 1F 00 ...

 LDRB R0,[R7]

 MOV R5,R6

 …
 BLX R5

3F33C

 SUB R4,R4,R4

 B loc_3F2E0

 LDMFD SP!,{R0,R1}

 STR R1,[R0]

 B loc_3F2E0

Handlers：

3F33C:

… 3F36C …

FIGURE 6: The scheduling process of the Dispatcher.

of protected instructions, the values of the register in the
current runtime environment are saved to VMContext for
simulating the behavior of the real CPU register.
Step 2: After the VMContext is initialized, the Dis-

patcher executes the instruction bytecodes in the VMData.
For the bytecodes have been virtualized, CodeCloak needs to
choose a corresponding set of VMs to perform in accordance
with the coding rules of the virtual instructions. As can be
seen in Figure 6, here we choose the first set of rules (VM_1)
to explain. Once a decision has been made in the choice
of VM, we will further select the corresponding handler to
execute based on the parsed opcode. Let us take the add
instruction parsing process in Figure 6 as an example, the
R7

register points to the address of VMData. After parsing
the content of the R7 register, the program starts executing
the handler with the offset address 0x3F36C.
Step 3: The interpreter of VM starts to select and exe-

cute the first handler. For one original instruction is mapped
into semantic equivalents in several virtual ones, the system
will execute multiple handlers. As shown in Figure 6, when
an epoch successfully completes execution, the program
jumps to the Dispatcher’s entrance address 0x3F2E0.
Step 4: Inside the loop, the program executes the byte in

VMData. Once all the bytecodes are fetched out, the control
jumps to take Step 5 otherwise repeats Step 2.
Step 5: After interpreting and executing all VMData

bytecodes, the program jumps to HD_Exit, the function of
this point is to restore the latest VMContext values to the
real registers.
Step 6: The program jumps back to the end point ad-

dress of the protected code segment and continues perform-
ing outside instructions of the virtual machine.

IV. EVALUATION
CodeCloak provides effective protection on the bi-
nary level for Android apps against repacking. In
this section, we comprehensively evaluate the effec-
tiveness of CodeCloak by analyzing the security and

.nisl:00006384 STMFD SP!, {R3} .nisl:00006388
B loc_62E4 .nisl:0000638C ;------------------------------ .nisl:0000638C
LDMFD SP!, {R0} .nisl:00006390 ADD SP, SP, R0 .nisl:00006394
STR SP, [SP] .nisl:00006398 B loc_62E4 .nisl:0000639C
;------------------------------

FIGURE 7: Disassembly of the new .nisl code segments
after virtualization
performance of applications protected by CodeCloak.

TABLE 3: Dynamic shelling tools and features.

Tool name Open source Require root Principle

DrizzleDumper
√ √

Characteristics of the DEX file search
ZjDroid1

√ √
Shelling based on Hook injection

DexExtractor
√

× Modify the system method based on hook
DexHunter

√
× Proactive load and initialize the DEX file

PackerGrind × × Multi-layer unpacking detection
DroidUnpack × × Multi-layer unpacking detection
1 ZjDroid only opens the code of the Java layer, but the code of the native layer is not

open yet.

A. GENERAL ANALYSIS
In this section, we analyze the effectiveness of CodeCloak
from two aspects. On the one hand, CodeCloak uses atomic
operations to interpret the core instructions of the app to
be protected. This is difficult for prior attacking methods
to repack the protected app because atomic operations carry
little semantic information. On the other hand, we analyze
the app protected by CodeCloak and six popular commercial
protection tools. Table 2 shows the results of the analysis,
which shows that CodeCloak is the only one protection
approach to use the multi-virtualization technique to protect
SO files.

B. STATIC ANALYSIS
Before launching an attack on protected apps, the adversary
often uses static analysis tools to collect some valuable
information which contributes to repack apps. These tools
typically are disassemblers such as JEB [23] and Apktool
[24] that can parse DEX file to Java source code, or those such
as IDA Pro [16] that can parse SO files to ARM instructions.
JNI_OnLoad , often regarded as a potential vulnerability

by the cracker, primarily exists in all apps as an entry of
native layer functions. As shown in Figure 7, when the
JNI_OnLoad function is debugged in IDA Pro, we can see
that the new .nisl section abounds with lost of atomic
operations for the handler. Therefore it is useless for the
cracker to establish a complete logical relationship with static
analysis.

C. DYNAMIC ANALYSIS BY MEANS OF UNPACKING
TOOLS
As shown in Table 3, up to the present, we have collected six
representative shelling tools. Next, the most recent three of
them will be chosen as test cases for system resistance.

DexHunter [8]
DexHunter is an automatic unpacking tool for An-

droid DEX files. The main idea is to fully restore in-
structions in memory during class initialization. More
in details, it directly modifies the Android source

6 VOLUME 1, 2019

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

codes (Android 4.4.3) and replaces the original con-
tent in art/runtime/class_linker.cc (ART) and
dalvik/vm/native/dalvik_system_DexFile.cpp
(DVM) to own customized codes, to actively load and
initialize the classes in all DEX files before system invoking
dvmDefineClass.

As above mentioned, without loading and initializing the
upper DEX Java layer, the methods virtualized by the Code-
Cloak system are processed directly at the native layer. It is
lower than the DexHunter’s unpacking point, so we draw
a clear conclusion that DexHunter can not break through the
barrier of CodeCloak.
PackerGrind [10]
PackerGrind, a novel adaptive unpacking system, monitors

the protected app from the runtime, system, instruction layer
then recovers the DEX files according to the collected data. In
runtime, PackerGrind tracks the process of parsing DEX files,
loading classes, resolving methods, and executing methods.
This runtime tracking does not work in the app protected
by CodeCloak because our protected app does not have
the operation of shelling and DEX restoration. At the same
time, some system functions like memcpy(),strcpy()
are tracked in PackerGrind to monitor the memory operation,
even at the instruction level. Apps protected by CodeCloak,
however, do not involve the memory operation of the data
in DEX file, so PackerGrind can not monitor the useful data
when app running.

DroidUnpack [25]
We further use the advanced unpacking system DroidUn-

pack for the security evaluation of CodeCloak. As far as we
know, DroidUnpack is a powerful reverse analysis tool, it
can set up multiple unpacking detection points, including
the hidden code extraction, self-modifying code detection,
and multi-layer unpacking detection. However, the protection
methods involved in CodeCloak do not use the trick of shells,
and the scheme does not comprise a set of packing and
unloading, so the DroidUnpack’s shelling monitoring point
is invalid. We should point out that another important func-
tion in DroidUnpack is the detection of the JNI reflection
interface. Although JNI related API calls can be detected in
the protected APK file, it is still problematical to restore and
modify the instructions due to diversity virtualization, not to
mention repackaging.

D. MANUAL DYNAMIC ANALYSIS
We have performed static and dynamic analysis tools to
evaluate CodeCloak, and this part will further describe the
manual attack process [19] in details.

To intuitively analyze the reverse time cost of protected
applications, we first visualize the whole attacking processes
as the model shown in Figure 8, then we will apply this model
to specify our test case.

At the beginning of an attack process, it is possible for
an adversary to encounter some anti-debugging obstacles in
P1, P2. Suppose that the probability of encountering anti-
debugging obstacles in P1, P2 is p1, p2, respectively; the

P P P

.init JNI_Onload Java_com
_XXX

t t

t

P

1

2

3

P0: The state of the execution of .init
P1: The state of the execution of JNI_OnLoad
P2: The state of entry into the application layer function
P3: The state of obtaining the complete file by reverse enginneer

FIGURE 8: A formal model for manually reverse attack was
proposed. In this model, from P0 to P3, it indicates several
states that occur during manual dynamic analysis of protected
Android applications.

number of anti-debugging mechanisms is N1, N2, respec-
tively. Assume that the time required for an attacker to pass
an anti-debug is Tx, and the state after P2 is to enter a state
of the virtual machine, in other words, the method we protect
is the Java_com_XXX method. Since diversity protection
is introduced here, an attacker may randomly select one of
the three paths during the attack. We assume that the attacker
chooses path 2 here, and assume that the attacker needs Tt
time to find the mapping between a virtual bytecode and the
original instruction. So the time required to get to the state
P3 is as follows:

t1 = t0 + p1 ∗ (Tx ∗N1), (0 < p1 ≤ 1), (1)

t2 = t1 + p2 ∗ (Tx ∗N2) + (Ttn)m, (0 < p2 ≤ 1), (2)

Where n represents the number of virtual instructions;
m represents the number of mapping tables between virtual
instructions and original instructions.

Therefore, the total time cost will be as follows:

Tall = t0+(p1∗ (Tx∗N1))+(p2∗ (Tx∗N2))+(Ttn)m, (3)

It can be seen from equation 3 that the total time cost
required by the attacker is equal to the time cost of bypassing
the normal anti-debugging plus the time cost of breaking the
virtual machine. Due to the introduction of the diversified
virtual machine principle, the attacker’s attack cost increases
exponentially. If we also virtualize the JNI_OnLoad and
Java_com_XXX methods at the same time, t1 and t2 will
increase more significantly.

After a short discussion of model formation, specifically,
we will evaluate the security of our protection scheme
through a certain scale of attack experiments. Participants in
the program are 22 students from the host institution who are
pursuing a degree in computer network security. Among the
22 students, 20 are masters and 2 are doctors. 10 of them are
women and 12 are men. The 22 attackers need to complete
the following three tasks within the specified 48 hours:

VOLUME 1, 2019 7

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

TABLE 4: Number of completions and average time cost
per task.

Task 1 Task 2 Task 3

Completion number1 18 9 3
Time cost2 7.5 9.9 29.3

1 In this table, the completion number indicates the
number of people who successfully completed each
task.

2 In this table, the time cost indicates the average time
cost of successfully completing each task. The unit
of time cost is an hour.

original

entry

return

original

entry

condition

altered

(true)

(false) (true)

(false)

return

FIGURE 9: Data flow diagram before and after confusion by
OLLVM. The entry is the native swipeRight method, and the
altered refers to bogus logic.

Task 1: Given conventional anti-debugging and obfus-
cation mechanisms, find the entry point address of the real
VM interpreter.
Task 2: Given the entry address of the VM interpreter,

find the entry address of the scheduler.
Task 3: Given the scheduler’s entry address, find and

record the order, address, and content of handlers.
The three tasks describe the process that an adversary will

face when attempting to complete attack steps. The fewer
the number of task people completes, the more reliable the
protection of the solution performs. In addition, in order to
specify the level of attack difficulty, we count the average
time that attackers ended each task. In a word, the longer
each task takes, the more difficult CodeCloak makes it for
an attacker. Table 4 shows the completion of each task.

The table shows that eighteen volunteers have completed
task 1. Since all participants have some reverse experi-
ence, it is easy to find the entry address of the real VM inter-
preter. However, there are only nine volunteers to complete
task 2 because the virtual machine’s dynamic scheduling
mechanism makes it difficult for them to track. We apply the
existing detection algorithms [26] [27] to measure the ARM
instructions similarity between the handlers extracted by each
volunteer and the pre-protection code segments. We record
the total number of handlers collected in task 2 and task
3.

As shown in Table 5, most volunteers cannot extract and
restore the complete instruction set. Only three volunteers
extract all the handlers with over 95% instruction similarity.
We must point out that many volunteers mistake that they
obtain all the instruction sets. In fact, only part of those
instructions could be got because of multiple sets of virtual-

TABLE 5: The number of handlers collected by different
attackers and the similarity of instructions.

Attacker P1 P2 P3 P4 P5

(Hn,Sn)1 (7829,0.31) (0,0) (23496,0.96) (5829,0.24) (7834,0.32)

Attacker P6 P7 P8 P9

(Hn,Sn)1(15634,0.60) (23487,0.95) (15675,0.66) (23510,0.98)
1 This table shows the experimental data (Hn, Sn) of nine attackers (P1-

P9) who successfully found the scheduler entry address in Task 2.
where Hn is the number of all handlers collected by the attacker, and Sn
is the similarity between the ARM instructions of the extracted handlers
and the ARM instructions of the code segment to be protected. Zero
data indicates invalid data.

ization mechanisms(our configuration here is 3). At last, we
consider that three volunteers could complete all the attack
tasks.

These results lead to a further study finding more details
about time cost. We delved into the average time cost and the
reason why some volunteers can complete each task. Table
4 shows that the average time cost of anti-debugging by 18
attackers is 7.5 hours. The average time cost of breaking the
virtual machine mechanism is the sum of 9.9 hours to com-
plete task 2 and 29.3 hours to complete task 3. Considering
that most people do not complete task 2 and task 3, the
real time cost will only be greater.

E. VIRTUAL SPECIFIC ANALYSIS
In the past few years, code obfuscation based on virtual-
ization has exhibited a general trend in software protection.
However, at present, some well-designed attacks also involve
breaking these protections. It can be viewed at least from the
following two aspects.

1) Reverse Engineer VM-Based Protection
In the case of CodeCloak protection, we take Rolles’s
scheme [28] as a typical example to evaluate security
against reverse attack. As an adversary, he/she will try
his/her best to obtain code execution and data processing of
VMSection.However, the diversity of virtualization makes
it very difficult to crack and restore protected APKs. We must
point out that this kind of attack method for virtualization
protection is based on the process of interpreting the execu-
tion of bytecodes. So a conclusion can be easily drawn that
attackers must be familiar with the principle and structure
of the entire code virtualization protection in advance. This
means, in simple words, after parsing and semantic analysis
of VMSection, an adversary still needs to generate the
platform-dependent machine code that is similar to the pre-
virtualized code. And the diversity of the CodeCloak protec-
tion process will defend virtual machine attacks.

2) VM replacement attack
The key of the scheme Sudeep Ghosh [29] is to replace
the VMSection module of the protection program with
the attack VM component. Once accomplishing this step,
an adversary could analyze the dynamic running state of the

8 VOLUME 1, 2019

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

.method public constructor <init>(...)V

.method public AddRandomNumber()V

.method public native swipeRight([[I)[[

.method public StartGame()V

.method private ClearScore()V
.method private InitGameView()V

.method private AddCards(I)V
.method protected onCreate(...)V

.method public static getGameView()Lcom/.../GameView

So-EXPORT Java_com_..._GameView_swipeRight

Dex-method public native swipeRight([[I)[[I

So-Handler_i:Address:0x7408 Ins:LDMFD SP!,{R0,R1}...

Dex-method protected onCreate(...)V

So-Handler_k:Address:0x734c Ins:ADD SP,SP,#0x10...

So-Dispatcher:Address:0x72e0 Ins:LDRB R0,[R7]...

So-VMinit:Address:0x72A8 Ins:STMFD SP!,{R0-R12,LR,PC}...

So-Handler_j:Address:0x7430 Ins:LDRB R0,[R7]...

Dex-method public constructor <init>(...)V

(a) DFD of original 2048.apk (b) Partial magnification of (a) (c) DFD of protected 2048.apk (d) Partial magnification of (c)
(c)

FIGURE 10: Using multi-virtualization protection or not: (a) The red nodes and the green nodes respectively refer to the APIs
of the DEX layer and the native layer’s ARM instruction blocks containing jumps and call relationships. (c) The green, blue, and
yellow nodes refer to the native layer’s ARM instruction blocks generated by CodeCloak’s first, second, and third protections,
respectively. The red nodes and the black nodes refer to the APIs of the DEX layer and the same instruction blocks generated
after three protections.

0 10 20 30 40 50 60 70 80 90 100
Amount

21000

22000

23000

24000

C
od

eC
lo

ak
-2

04
8

H
an

le
r

ad
dr

es
s

of
fs

et

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

FIGURE 11: Time diversity after protection by CodeCloak. The horizontal axis represents the scheduling order of the partial
handlers, and the vertical axis represents the position offset of the handler.

application in memory. In fact, the basic premise behind this
attack strategy is that the VMSection is not anchored suf-
ficiently to the execution environment, that is to say, the VM
needs to exist in the running environment as a single module.
However, as mentioned above, VMSection in CodeCloak-
protected application is embedded in SO files rather than in-
dependent. Therefore, the high coupling relationship between
VMSection and SO files effectively prevents this attack
method above.

F. COMPLEXITY ANALYSIS
1) Data flow diagram analysis
Complexity in the data flow diagram (DFD) is critical to
evaluate the security. In this section, we utilize the application
function call graph before and after protection. Applying
Androguard [30] to get the function call graph gexf of the
DEX layer for 2048.apk [22], we run the python script to
analyze the APIs of a protected code segment. Use IDA Pro
[16] to record the native layer call relationship manually and
then build the block call graph gexf, finally use the Gephi
tool [31] to parse the gexf files.

Fig 10 (a) shows the result of parsing gexf for the native
layer and the DEX layer before protection. DEX APIs are

displayed as red, and the native layer’s ARM instruction
blocks containing jumps and call relationships are marked in
green. There are a total of 93 DEX layer APIs and 12 native
layer blocks. Figure 10 (b) give a partial detail view of Figure
10 (a) with some tags. Figure 10 (c) is a schematic diagram
of the analysis results after protection by CodeCloak. The
yellow, green, and blue nodes describe several ARM instruc-
tion blocks that contain jumps in the native layer after three
executions, 40 blocks of native level are generated in each
protection round. Compared with the simple bogus control
flow and control flow flattening of the OLLVM [13] shown
in Figure 9, there are almost completely different blocks
calling graph in every protection round, for an adversary,
must plan well, get information, finish one attack at a time; or
she/he should know every possible running blocks sequence.
Without doing this a successful attack cannot be guaranteed.

2) Diversity evaluation

One of CodeCloak’s design goals is to increase the diversity
of program execution. To evaluate this goal, we record the
offset addresses and orders of the first hundred handlers
called at each run. The intuition behind this planning is
that if the program has different execution address offsets

VOLUME 1, 2019 9

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

TABLE 6: Information about App Collection Set.

App Name Category App Name Category

Dual Space Tools American Airlines Travel
2048 Games Tumblr Social

Lifelog Health&Fitness Yahoo Sports Sports
Oxford Dictionary Education Paper Camera Photography

Voice Changer Entertainment Fox News News&Magizines
Yandex Weather Weather Launcher IOS 12 Personliazation

Photo Video Music&Video Calculator Pro Business
HDplayer Media&Video

per round, an adversary would hardly complete tracking and
debugging. Applying 2048.apk [22] as a test program,
we run the protection system ten times. In order to collect
dynamic location information, we use IDA Pro [16] to debug
the protected application and manually collect the addresses
of the handlers.

As shown in Figure 11. For one protection, the 100 handler
offset addresses collected have changed a lot. However, for
ten protections, only 83 of the 10,00 nodes are entirely
overlapped. We can quickly draw reasonable conclusions:
CodeCloak-protected codes exhibit strong non-deterministic
behavior in one run; The offset addresses of the handlers
at each runtime are basically different. In other words, it
is difficult for an attacker to use the previously collected
runtime information to perform reverse engineering.

G. PERFORMANCE EVALUATION
In this section, we evaluate the overhead of CodeCloak in
terms of time and space complexity. The time complexity
includes the startup time of the apps, and the space complex-
ity consists of the size of the apps and the overall memory
consumption at runtime. In order to make the experiments
more convincing, we obeyed the following principles in the
selection process of the test apps: Firstly, we selected the
apps containing the binary SO file as much as possible,
which provide protected objects for the CodeCloak system.
Secondly, the selected apps must be popular enough, and
each app has more than 1,000,000 downloads in Google Play.
Finally, the selected apps must cover most of the application
categories defined by Google Play, such as tools, games, etc.
Details about them are shown in Table 6.

Our experimental platform is a Google Nexus 5 smart-
phone with Android version 4.4.2. We use Tencent’s GT tool
[32] for testing. The work of DSVMP [19] suggests that the
performance overhead of 5 VM configurations is moderate
in a virtual machine protection system, so we use CodeCloak
with 5 VM configurations in our experiments.

The size of the protected APK is an important indicator.
With that general outlook, it follows that if a protected pro-
gram increases the size heavily, the system CodeCloak will
be limited in many applications. As can be seen from Figure
12, the protected APK size has increased by an average
of 23.79%. That is because VMSection is embedded in
the ELF file. At the same time, we found that the growth
rates for different APK sizes vary widely. For example,
2048.apk [22] increased by 42.80% but Lifelog.apk
[33] by 11.49%. The reason is that the growth of each APK

TABLE 7: Comparing with the average performance of
apps protected by the prior work.

Performance1 Original CodeCloak UPX shell Hikari

APK Volume (MB) 12.05 14.91 11.39 18.44
Memory Consumption (MB) 47.60 55.97 52.98 72.35

Startup Time (ms) 624.50 649.98 874.3 886.79
1 Performance includes average APK volume, average memory

consumption, and average startup time for 15 apps before and after
protection.

is only related to VMSection. So we think that if the
original program is smaller or approximately the same size
as VMSection, it could be the high growth rate. In another
word, if the size of the APK itself is small, the volume of the
APK caused by VMSection will increase significantly, and
vice versa. The volume of 2048.apk and Lifelog.apk
before protection are 2.9MB and 17.0MB respectively. The
overall volume increase is acceptable relative to the size of
the application itself, and the size of the APK can be reduced
by a series of slimming methods.

Next, we evaluate how CodeCloak affects memory con-
sumption and perform 100 protections in each sample. The
result shows that the memory consumption after virtualiza-
tion increases by an average of 17.61%. It is acceptable
relative to the importance of the algorithm in the program.

Figure 12 shows overhead of application start time ranges
from 1.28% to 7.33%, with an average of 4.08%. All pro-
tected apps start in less than 1 second on our platform, which
is modest.

Due to the different protection objects, we compare perfor-
mance evaluations with two commercial systems involving
SO protection: UPX shell [11] and OLLVM-based Hikari
[34] rather than DIVILAR [9]. Table 7 shows that in terms of
volume growth, the Hikari-confused apps have a significant
code expansion rate up to 50%, but CodeCloak only has
slightly increased the size of the protected code segment
compared to its peers. As for memory consumption, the
average cost of Hikari-confused apps is 1.52 times that of
the original programs, while the UPX shell is similar to
CodeCloak. In the startup time, the CodeCloak with 5 VMs
performs better than the other two protection systems. Dif-
ferent from common packer protection, CodeCloak has no
process of decryption and unpacking at startup. Therefore,
less time is spent processing load. As a result, the time
complexity and space complexity perform better to some
extent.

V. RELATED WORK
Research in this field mainly focuses on the detection and
preventing of repackaged apps. AdRob [35] is the first large
scale study on the characteristics of cloned mobile applica-
tions and their impact on the original developers. Repack-
aging detection based on code similarity includes [36]–
[39]. Other malicious behavior detection methods include
Apposcopy [40] and NDroid [41].

In code virtualization, code virtualization [42] built upon
virtual machine technologies is emerging as a viable method

10 VOLUME 1, 2019

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

Dual Space

2048
Lifelog

Oxford Dictionary

Voice Changer

Yandex W
eather

 Photo Video

HDplayer

American Airlines

Tumblr

Yahoo Sports

Paper Camera

Fox New

Launcher IOS 12

Calculator Pro

Average

0%

20%

40%

60%

80%

100%

APK Volume
Memory Consumption
Startup Time

FIGURE 12: This figure shows the growth rate of file size, memory, and startup time of several apps protected by CodeCloak.

for implementing code obfuscation to protect programs
against unauthorized analysis. VMGuards [43] is a PVM-
based code protection system that puts the security of VM
as the first class design concern. Xue [44] improves a VM-
based code obfuscation system by obfuscating the mapping
between the opcodes of bytecode instructions and their se-
mantics.

In repacking prevention, obfuscation [45]–[47], packag-
ing, and encryption [48] are often used, but they can just
defend against static analysis instead of dynamic reverse
engineering [49]. In addition, AppInk [50] uses software
watermark technology to tame app repackaging. AppIS [51]
exploits an interlocking guarding net with time diversity for
the tamper-proofing of Android applications. [52] analyzes
how different methods of protection, namely class encryption
and usage of native code, affect decompilation of Android
apps. Wu Zhou converted Davilk instructions into virtual
instructions, and explained the instructions by Hook mech-
anism [9].

An increasing number of developers usually put the critical
logic in the native shared library in C/C++ implementation,
the security of SO file needs to be solved urgently. Native
code obfuscation based on LLVM compiler [13] makes it
difficult for reverse engineering, but source-level processing
is often difficult to operate, and other OLLVM-based ap-
proaches [53] have the same problem.

VI. CONCLUSION
In this paper, we introduce CodeCloak, a new method of
native ARM instruction virtualization protection based on
time diversity. It can effectively resist the threat of deep
repackaging attacks. As far as we know, CodeCloak is the
first system to take advantage of virtualization technology to
protect native SO files.

Our evaluations show that CodeCloak can effectively resist
static analysis, dynamic analysis, and even specific attack
methods. Manual dynamic analysis experiments show that
the attack costs of malicious attackers increase exponentially
due to the introduction of diversified virtual machine princi-
ples. Performance experiments show that CodeCloak brings a

small increase in performance overhead, which is acceptable
relative to the importance of the algorithm in the program.

REFERENCES
[1] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and

M. Rajarajan, “Android security: A survey of issues, malware penetration
and defenses,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2,
pp. 998–1022, 2017.

[2] X. Jiang and Y. Zhou, “Dissecting android malware: Characterization and
evolution,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 95–109.

[3] P. Yong, L. Jie, and L. Qi, “A control flow obfuscation method for
android applications,” in International Conference on Cloud Computing
& Intelligence Systems, 2016.

[4] “Proguard,” https://www.guardsquare.com/en/products/proguard, 2012.
[5] “Dexguard,” http://www.saikoa.com/dexguard, 2017.
[6] “Dexextractor,” https://github.com/lambdalang/DexExtractor, 2015.
[7] JackJia, “Android app dynamic reverse tool based on xposed framework,”

https://github.com/halfkiss/ZjDroid, 2014.
[8] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: toward extracting hidden code

from packed android applications,” in European Symposium on Research
in Computer Security. Springer, 2015, pp. 293–311.

[9] Z. Wu, W. Zhi, Y. Zhou, and X. Jiang, “Divilar: Diversifying intermediate
language for anti-repackaging on android platform,” in Acm Conference
on Data & Application Security & Privacy, 2014.

[10] X. Lei, X. Luo, Y. Le, W. Shuai, and D. Wu, “Adaptive unpacking of
android apps,” in International Conference on Software Engineering, 2017.

[11] Fish_Ou, “Android so upx,” https://www.cnblogs.com/fishou/p/4202061.
html, 2015.

[12] Github, “Upx shell tools,” https://upx-shell.en.softonic.com/#, 2014.
[13] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm

software protection for the masses,” in IEEE/ACM International Workshop
on Software Protection, 2015.

[14] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15, 2015.

[15] Currwin, “Decllvm,” https://github.com/F8LEFT/DecLLVM, 2015.
[16] Hex-Rays, “Ida pro,” https://www.hex-rays.com/index.shtml, 2015.
[17] Ijiami, “Ijiami so protect,” http://www.ijiami.cn/soProtect, 2014.
[18] T. Legu, “Tencent legu,” http://legu.qcloud.com/, 2014.
[19] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, and W. Zheng, “En-

hance virtual-machine-based code obfuscation security through dynamic
bytecode scheduling ÂąÃő,” Computers & Security, vol. 74, pp. 202–220,
2018.

[20] J. Seward, “Valgrind,” http://valgrind.org/, 2013.
[21] Oreans, “Oreans-technology,” https://www.oreans.com/codevirtualizer.

php, 2015.
[22] G. Play, “2048.apk,” https://play.google.com/store/apps/details?id=com.

androbaby.game2048, 2018.
[23] pnfsoftware, “Jeb,” https://www.pnfsoftware.com/, 2015.
[24] R. Wisniewski, “Apktool,” https://ibotpeaches.github.io/Apktool/, 2010.

VOLUME 1, 2019 11

https://www.guardsquare.com/en/products/proguard
http://www.saikoa.com/dexguard
https://github.com/lambdalang/DexExtractor
https://github.com/halfkiss/ZjDroid
https://www.cnblogs.com/fishou/p/4202061.html
https://www.cnblogs.com/fishou/p/4202061.html
https://upx-shell.en.softonic.com/#
https://github.com/F8LEFT/DecLLVM
https://www.hex-rays.com/index.shtml
http://www.ijiami.cn/soProtect
http://legu.qcloud.com/
http://valgrind.org/
https://www.oreans.com/codevirtualizer.php
https://www.oreans.com/codevirtualizer.php
https://play.google.com/store/apps/details?id=com.androbaby.game2048
https://play.google.com/store/apps/details?id=com.androbaby.game2048
https://www.pnfsoftware.com/
https://ibotpeaches.github.io/Apktool/

He et al.: Exploiting Binary Virtualization to Protect Android Applications Against Repackaging

[25] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, Li, and X. Wang,
“Things you may not know about android (un) packers: a systematic
study based on whole-system emulation,” in 25th Annual Network and
Distributed System Security Symposium, NDSS, 2018, pp. 18–21.

[26] L. Luo, M. Jiang, D. Wu, L. Peng, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Acm Sigsoft International Sympo-
sium on Foundations of Software Engineering, 2014.

[27] Zoran and Dragan, “A source code similarity system for plagiarism detec-
tion,” Computer Journal, vol. 56, no. 1, pp. 70–86, 2013.

[28] R. Rolles, “Unpacking virtualization obfuscators,” in Usenix Conference
on Offensive Technologies, 2009.

[29] S. Ghosh, J. Hiser, and J. W. Davidson, “Replacement attacks against vm-
protected applications,” Acm Sigplan Notices, vol. 47, no. 7, pp. 203–214,
2012.

[30] jbremer, “Androguard,” https://pypi.org/project/androguard/3.0/, 2015.
[31] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source software

for exploring and manipulating networks,” in Third international AAAI
conference on weblogs and social media, 2009.

[32] Tencent, “Gttool,” https://github.com/TencentOpen/GT, 2016.
[33] G. Play, “Lifelog.apk,” https://play.google.com/store/apps/details?id=

com.sonymobile.lifelog, 2018.
[34] Tencent, “Hikari,” https://github.com/HikariObfuscator/Hikari, 2017.
[35] C. Gibler, R. Stevens, J. Crussell, C. Hao, Z. Hui, and H. Choi, “Adrob:

examining the landscape and impact of android application plagiarism,” in
Proceeding of the International Conference on Mobile Systems, 2013.

[36] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a scalable
resource-driven approach for detecting repackaged android applications,”
in Computer Security Applications Conference, 2014.

[37] Z. Wu, Y. Zhou, X. Jiang, and N. Peng, “Detecting repackaged smartphone
applications in third-party android marketplaces,” in Acm Conference on
Data & Application Security & Privacy, 2012.

[38] C. Jonathan, C. Gibler, and C. Hao, “Andarwin: Scalable detection of
semantically similar android applications,” 2013.

[39] W. Zhou, “Repackaged smartphone applications: Threats and defenses,”
Dissertations & Theses - Gradworks, 2013.

[40] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantic-based
detection of android malware through static analysis,” in Acm Sigsoft
International Symposium on Foundations of Software Engineering, 2014.

[41] C. Qian, X. Luo, Y. Shao, and A. T. S. Chan, “On tracking information
flows through jni in android applications,” in IEEE/IFIP International
Conference on Dependable Systems & Networks, 2014.

[42] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, T. Xing, G. Ye, J. Zhang,
and Z. Wang, “Exploiting dynamic scheduling for vm-based code obfus-
cation,” in 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 2016, pp. 489–
496.

[43] Z. Tang, M. Li, G. Ye, S. Cao, M. Chen, X. Gong, D. Fang, and Z. Wang,
“Vmguards: A novel virtual machine based code protection system with
vm security as the first class design concern,” Applied Sciences, vol. 8,
no. 5, p. 771, 2018.

[44] C. Xue, Z. Tang, G. Ye, G. Li, X. Gong, W. Wangg, D. Fang, and Z. Wang,
“Exploiting code diversity to enhance code virtualization protection,” in
2018 IEEE 24th International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 2018, pp. 620–627.

[45] Z. Tang, K. Kuang, L. Wang, C. Xue, X. Gong, X. Chen, D. Fang, J. Liu,
and Z. Wang, “Seead: A semantic-based approach for automatic binary
code de-obfuscation,” in 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE,
2017, pp. 261–268.

[46] B. Zhao, Z. Tang, Z. Li, L. Song, X. Gong, D. Fang, F. Liu, and Z. Wang,
“Dexpro: A bytecode level code protection system for android applica-
tions,” in International Symposium on Cyberspace Safety and Security.
Springer, 2017, pp. 367–382.

[47] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, H. Zhang, J. Liu,
and Z. Wang, “Exploit dynamic data flows to protect software against
semantic attacks,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable Computing & Com-
munications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE, 2017, pp. 1–6.

[48] R. Fan, D. Fang, Z. Tang, X. Chen, F. Liu, and Z. Li, “Thwarting android
app repackaging by executable code fragmentation,” International Journal
of High Performance Computing and Networking, vol. 10, no. 4-5, pp.
320–331, 2017.

[49] K. Lim, Y. Jeong, S.-j. Cho, M. Park, and S. Han, “An android application
protection scheme against dynamic reverse engineering attacks.” JoWUA,
vol. 7, no. 3, pp. 40–52, 2016.

[50] Z. Wu, X. Zhang, and X. Jiang, “Appink:watermarking android apps for
repackaging deterrence,” 2013.

[51] L. Song, Z. Tang, Z. Li, X. Gong, X. Chen, D. Fang, and Z. Wang,
“Appis: protect android apps against runtime repackaging attacks,” in 2017
IEEE 23rd International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2017, pp. 25–32.

[52] S. Ilic and S. Dukic, “Protection of android applications from decompi-
lation using class encryption and native code,” in Zooming Innovation in
Consumer Electronics International Conference, 2016.

[53] F. Zhang, H. Huang, S. Zhu, D. Wu, and L. Peng, “Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection,” 2014.

12 VOLUME 1, 2019

https://pypi.org/project/androguard/3.0/
https://github.com/TencentOpen/GT
https://play.google.com/store/apps/details?id=com.sonymobile.lifelog
https://play.google.com/store/apps/details?id=com.sonymobile.lifelog
https://github.com/HikariObfuscator/Hikari

	Introduction
	Background
	VM-based Android APP Protection Shceme
	SO Protection Crack Example
	The attack model

	Design of CodeCloak
	Overview of Our Approach
	ARM Virtual-Machine-Based Protection
	Time diversity
	An Example
	Protection process
	Runtime execution flow

	Evaluation
	General Analysis
	Static Analysis
	Dynamic Analysis by Means of Unpacking Tools
	Manual Dynamic Analysis
	Virtual Specific Analysis
	Reverse Engineer VM-Based Protection
	VM replacement attack

	Complexity Analysis
	Data flow diagram analysis
	Diversity evaluation

	Performance Evaluation

	Related Work
	Conclusion
	REFERENCES

