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ABSTRACT 

In recent years, concern has been raised over the possibility that substances in foods, consumer 

products and the environment are causing health effects in humans and the environment due to their 

ability to perturb endocrine signalling.  Toxicological risk assessments therefore need to be protective 

for these modes of action.  The accepted approach for assessing potential ‘endocrine disrupting 

chemicals’ (EDCs) involves the generation of laboratory animal data.  The growing dissatisfaction of 

many scientists with the relevance of animal studies to the assessment of human risk and increasing 

societal demand for an end to animal testing presents challenges and opportunities in the safety 

evaluation of these substances.  This thesis examines the opportunities to apply non-animal 

approaches to the risk assessment of anti-androgenic substances in consumer products.  Gaps were 

identified that are currently preventing the adoption of such an approach, which broadly cover three 

areas.  Firstly, under the current paradigm, in vitro alerts for anti-androgenicity invariably trigger 

animal testing, so an approach to allow risk-based decision making using only in vitro and exposure 

data is needed.  Secondly, there is a lack of in vitro tools able to characterise the effects of substances 

affecting the hypothalamic and pituitary control of gonadotropin secretion; a search was conducted for 

cells that could address this.  Thirdly, there are currently no in vitro models capable of distinguishing 

between exposures that cause adaptive changes to endocrine signalling and those that cause adverse 

health effects.  The use of 3D prostate microtissues was therefore investigated to assess whether these 

would provide biomarkers to identify tipping points between adaptive and adverse responses.  A 

tiered, exposure-led, and human-relevant risk assessment approach was developed that can be applied 

to safety decision making and prevent unnecessary animal use.  Further developments in some of the 

higher-tier tools investigated will further reduce and ultimately replace the use of animals in risk 

assessment of anti-androgens. 
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INTRODUCTION 

1. Background

In Georgian London, a surgeon named Percival Pott observed an unusual incidence of scrotal cancer 

affecting young chimney sweeps.  Because the scrotal sores that were the first clinical symptom of 

this disease were seldom seen in pre-pubescent chimney sweeps, physicians at the time considered the 

most likely cause to be venereal, leading to treatment with mercurials.  Pott observed that this 

treatment led to an exacerbation of the disease, whereby ‘in no great length of time it pervades the 

skin, dartos, and membranes of the scrotum, and seizes the testicle…from whence it makes its way up 

the spermatic processes into the abdomen’.  Challenging the current understanding of the aetiology of 

this illness, Pott observed that ‘the disease, in these people, seems to derive its origin from a 

lodgement of soot in the rugae of the scrotum’, thus suggesting that these symptoms were 

occupational in origin.  These observations triggered measures to manage the risk of scrotal cancer 

such as mandatory bathing and a weekly change of clothes, and research to discover the chemical 

within soot responsible for the disease.  Although this is one of the earliest and best-known 

documented examples of exposure to chemical substances being linked with occupational disease, it is 

not the first.  Pott himself refers to other widely known cases of the time, stating that ‘Every body is 

acquainted with the disorders to which painters, plummers [sic], glaziers, and the workers in white 

lead, are liable’ (Pott, 1775). 

The purpose of toxicological safety assessment is to characterise risks to human health so that they 

can be managed before they affect workers, consumers, patients, or the incidentally exposed.  

Animals have been used to detect hazards to human health and to help manage risk for centuries.  For 

example, the toxic potential of tropical cycads has been well known for many years, and although 

causing both gastrointestinal and neurological illness, various parts of the plant have been used in 

many countries for centuries as both a staple and a food of last resort (Whiting, 1963).  To ensure the 

plant is fit for human consumption preparation involves a lengthy process of soaking the seeds, roots 

or leaves to remove the harmful agents.  On the pacific island of Guam, the local custom is to wash 

seeds in water for several days, changing the water periodically, because ‘When fresh the seeds are so 
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poisonous that the water in which they are steeped is fatal to chickens if drunk by them.’ (Safford, 

1905).  Thus, water was used to remove the toxic agents and chickens were used as sentinels to test 

the water and to determine when the seeds were safe for humans to consume.  Other species have 

been used in industrialised countries to similar effect.  In the United Kingdom, the custom of using 

canaries in coal mines to detect carbon monoxide and other dangerous gases dates back to 1911.  The 

sensitivity of the canary to the presence of CO, the portability and cost-effectiveness of these 

creatures meant the practice of taking canaries into mines was only superseded by electronic monitors 

in 1986 (Eschner, 2016). 

2. The emerging discipline of toxicology

In the 19th Century there was an explosion in the development of techniques to aid understanding of 

the natural world, and this extended to the study of cells and tissues (Bracegirdle, 1977).  From 1850 

these technological developments in the field of histopathology provided tools to allow toxicology 

studies to evolve from crude observations of mortality or severe debilitation to a deeper understanding 

of subtle pathological changes, thereby forming the basis for controlled experiments to better 

characterize the adverse effects of chemicals in animals.  Following industrialisation, methods to 

ensure worker and consumer protection were necessary to deal with the ever-increasing growth of 

chemical, pharmaceutical and agrochemical industries.  One example of early legislation to protect 

consumers in the United States is the 1906 Pure Food and Drug Act.   This Act outlawed states from 

buying and selling food, drink and drugs that were mislabelled or tainted, and was deemed necessary 

to control what were seen as serious abuses in the consumer product marketplace.  A series of high-

profile tragedies in the latter half of the 20th Century were further drivers for the strengthening of both 

pharmaceutical and chemical safety regulatory frameworks.  For example, in 1962, an unusual 

increase in the incidence of children born with rare developmental defects was noticed, initially in 

Australia.  The defects apparent at birth included phocomelia and amelia, shortening or absence of the 

long bones.  The factor connecting these cases was the maternal administration of the sedative 

thalidomide during pregnancy (Vargesson, 2011).  Shortly after the thalidomide tragedy was 

discovered, another teratogenic disaster struck.  Between 1966 and 1969, seven young women aged 
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15 to 22 years of age presented at a single hospital (Vincent Memorial Hospital, Massachusetts) with 

adenocarcinoma of the vagina (Herbst, Ulfelder and Poskanzer, 1971; Herbst et al., 1972).  As this is 

such a rare tumour, clinicians at that hospital looked for similarities among these patients.  It was 

discovered that the mothers of these young women received the synthetic oestrogen diethylstilboestrol 

(DES) to prevent recurrent miscarriage, and from the 1940s millions of women worldwide were 

exposed during pregnancy (Reed and Fenton, 2013; Al Jishi and Sergi, 2017).  The children of these 

women were apparently normal at birth, but adverse effects including cancer began to appear at 

puberty.  Rather than being solely due to a mutational event, exposure to this potent oestrogen during 

foetal development is now thought to have caused epigenetic changes that would be expressed later in 

life (Al Jishi and Sergi, 2017).  Although the first signal of this tragedy was seen in DES daughters, 

DES sons also experienced a spectrum of disorders of the reproductive tract.  These included 

cryptorchidism (undescended testes), epididymal cysts, testicular and sperm abnormalities (Gill et al., 

1979; Palmer et al., 2009).  The DES and thalidomide disasters resulted in changes to the animal test 

requirements for drugs, industrial and agricultural chemicals and foods and a call for better scrutiny 

and regulation. 

The 1960s also heralded a new era of worker protection with the introduction of threshold limit values 

and occupational exposure limits (Ballantyne and Marrs, 1999), and in 1983 the US National 

Research Council (NRC) published the influential ‘Red Book’ (NRC, 1983).  This milestone 

document, not to be confused with the US FDA’s Redbook which provides guidance on performing 

toxicological studies (FDA, 1982), described the paradigm by which chemical risks to workers and 

consumers are characterized and assessed, and therefore managed.  Given the slow pace of change in 

the discipline of toxicology it is perhaps unsurprising that the principles outlined in the Red Book are 

still broadly followed today, using a process comprising the steps of hazard identification, dose-

response assessment, exposure assessment and risk characterization (Figure 1). 
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Figure 1: Process of toxicological risk assessment for thresholded effects outlined in the Red Book (NRC, 

1983) 

Around the same time as the publication of the Red Book there was an explosion in the 

documentation of test methods for toxicological testing, both by individual government agencies 

(notably the US EPA and FDA) and the Organization for Economic Cooperation and Development 

(OECD).  These test guidelines provided harmonised tools with which the hazard identification and 

dose-response assessments were performed.  For the study of systemic, reproductive and 

developmental toxicity a very heavy reliance was placed on data from animals.  Figure 2 shows a 

schematic of a typical 13-week rodent repeat-dose toxicity study, which includes assessments that are 

intended to detect signs of pathology in virtually every organ system.  This type of study involves 

treating groups of at least 10 male and 10 female rodents (usually rats) with different doses of the test 

item by an appropriate route of administration and use of a control group that is dosed only with the 

vehicle.  In-life observations include body weight, food consumption and clinical signs, as well as 

more detailed neurobehavioural observations to detect any subtle changes in the animals’ behaviour 

and response to stimuli.  Blood samples are withdrawn on at least one occasion during treatment for 

analysis of clinical chemistry and haematology markers indicative of compromised organ function.  

Ophthalmoscopy is performed before treatment and towards the end of the treatment period to 

identify any ocular pathology.  Finally, at the end of the treatment period the animals are euthanised 

and a full autopsy performed, including macroscopic observations, organ weights, and a 

comprehensive list of organs preserved for histological examination.  A recovery phase may be 
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included, whereby a subset of animals is maintained off-treatment for a specified period (usually 4-

weeks), during which time the in-life observations are repeated and after which an autopsy performed.  

This enables the reversibility of any findings seen during the treatment period to be assessed. 

 Figure 2: Example 13-week repeat-dose toxicity study plan, based on OECD Test Guideline 408 (OECD, 

2018b) 

The overall goal of this type of study is to identify target organs and the highest concentration that is 

not associated with any adverse changes (the ‘no-observed-adverse-effect level’ or NOAEL).  

Identification of target organs and the NOAEL forms the basis of the hazard identification and dose-

response assessments of the risk assessment as outlined in the Red Book.  In recent years benchmark 

dose modelling (BMD) has been used as an alternative to the use of the NOAEL (Edler et al., 2002).  

BMD modelling is a statistical technique which takes into account the overall shape of the dose-

response curve to estimate the dose which is associated with a stated level of change, with an 

associated estimation of uncertainty.  The BMDL10 is the lower 95th percent confidence limit on the 

dose that is associated with a 10% change, for example a 10% increase in the incidence of a particular 

pathology.  In practice, either the NOAEL or BMD provide the point of departure for determining a 

safe level of human exposure, and is usually derived from a repeat dose toxicity study, carcinogenicity 

study, or reproductive or developmental study.  In response to the thalidomide disaster, the most 

common developmental study involves dosing groups of at least 20 pregnant rats or rabbits by the 

1          2         3         4          5         6          7         8         9         10       11       12       13 Week of treatment:  ‐1       ‐2  R1       R2       R3      R4 
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selected route of exposure throughout organogenesis and foetal growth (OECD, 2001).  This 

corresponds to approximately day 6 after mating to day 19 for rats and day 28 for rabbits.  Maternal 

health is monitored throughout by recording body weight, food consumption and clinical signs, and 

the day before the animals are expected to litter, the females are euthanised and a Caesarean section 

performed to remove the uterus and ovaries.  The foetuses are sexed, weighed, and macroscopically 

examined.  In addition, detailed visceral examinations are performed either by fresh microdissection 

or following fixation in Bouin’s solution and serial sectioning.  A proportion of the foetuses are 

eviscerated, cleared in potassium hydroxide and stained for cartilage using alizarin red.  This enables 

skeletal malformations to be recorded as well as the stage of ossification of the bones. 

In a non-cancer risk assessment, the point of departure (usually the lowest relevant NOAEL or BMD 

from the available dataset) is divided by assessment or uncertainty factors to extrapolate between 

species (e.g. rodent to human) and between individuals to ensure the risk assessment is protective of 

the whole population.  This results in a default assessment factor of 100, subdivided into factors of 10 

to take into account these species and inter-individual differences (Renwick, 1993). 

The reliance on animal data to inform the hazard identification and dose-response assessment is 

understandable.  As discussed, the expansion and development of toxicology as a discipline occurred 

for the most part from the mid-20th century, when the modes of action underlying adverse effects were 

not well understood.  Therefore, administering high doses of a test substance to animals and observing 

the pathologies caused was the logical way to produce data to inform the risk assessment.  The 

strength of in vivo toxicology studies is that they allow the study of the unexpected effects that can 

arise from administration of a test item, in the hope that unforeseen tragedies such as DES and 

thalidomide would not be repeated.  The scientific weakness is that humans are not 70 kg rodents, and 

there are many examples of animal pathologies that are of limited relevance to man (Clark, 1998; 

Cook et al., 1999; Leist and Hartung, 2013; Chamanza and Wright, 2015; Cunha et al., 2015; Bartsch 

et al., 2018).  Part of the role of the toxicologist is to use the wealth of information on these species-

specific effects to determine which findings seen in a toxicology study have relevance to humans.  

However, given the many differences that are now well known, a legitimate question is whether a 
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more thorough understanding of the mechanism underpinning the adverse effects might help identify 

new data types that are more informative than the in vivo data. 

 

3. Development of non-animal approaches 

The use of cell cultures in place of whole organisms is an attractive concept from both an economical 

and an ethical perspective, since performing repeat-dose toxicity and carcinogenicity studies uses 

many animals (Table 1). 

Table 1: Minimum number of animals used in various repeat-dose studies performed according to the relevant 

OECD Test Guideline 

Study Type Species OECD Test Guideline number Total number of animals used 

28-day repeat-dose Rodent 407 (OECD, 2008) 40 

90-day repeat-dose Rodent 408 (OECD, 2018b) 80 

Prenatal developmental 

toxicity 

Rodent 

or rabbit 

414 (OECD, 2001) 1360# 

Carcinogenicity Rodent 451 (OECD, 2018c) 400† 

Extended one-generation 

reproduction toxicity 

Rodent 443 (OECD, 2012) 1440-2720* 

# Assuming 4 groups of 20 pregnant females each carrying 16 foetuses 

† Minimum number assuming no interim sacrifices 

* Higher number if optional F2 generation produced, assumes 16 offspring per litter 

One of the early examples of a useful in vitro test system was described in the early 1970s in the 

shape of the Ames test (Ames et al., 1972, 1973; Ames, Lee and Durston, 1973).  This reverse 

mutation assay in bacteria was developed following the observation that mutagenicity is a key step in 

the formation of many tumours.  Therefore, instead of administering a test substance to large groups 

of rodents over their lifetime and observing whether tumours developed, a short assay could be 

performed in bacteria to identify whether the substance is mutagenic or not.  Since mutagenic 
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substances are more likely to be carcinogenic, this information could be used to inform the hazard 

assessment.  Although there is a rich heritage of using in vitro data to inform the hazard potential for 

substances that are genotoxic, this does not apply to many other modes of action or health effects.  

Part of the reason for this is that for many years the area of ‘alternatives’ was focussed on developing 

in vitro tests which could be validated by comparing the results of the in vitro test with the results of 

the existing animal study.  For the types of complex effects observed in in vivo studies for systemic 

effects (Figure 1) this is clearly not possible.  The absorption, distribution, metabolism and excretion 

(ADME) characteristics of xenobiotics play an important role in determining their toxicity, and unlike 

in vivo models, traditional cell culture techniques do not model these characteristics.  Furthermore, 

because in vitro systems represent a lower level of biological organisation than do intact animals, the 

types of adverse effects observed in in vivo studies cannot be recapitulated in vitro.  Whether this is 

necessary or even desirable is debatable, however the fact remains that to this day in vivo studies for 

systemic effects remain integral to many toxicological risk assessments.  However, public interest in 

animal welfare and a realization by some toxicologists that the process of risk assessment can and 

should be improved has led to an increased dissatisfaction with the status quo. 

4. Toxicity Testing in the 21st Century

In the early 2000s, the US National Academies of Sciences tasked a group of scientists to produce a 

report outlining how the science of toxicological risk assessment might be improved.  The resulting 

report was entitled ‘Toxicity Testing in the 21st Century: A Vision and a Strategy’ (Krewski et al., 

2010).  It recommended shifting the emphasis away from high-dose studies in laboratory animals and 

towards studies performed in vitro using human-relevant cells or tissues.  Instead of basing the risk 

assessment on observed pathologies, it should instead be based on an understanding of the 

concentrations that cause changes in normal cellular signalling pathways that lead to adverse effects.  

This led to the term ‘toxicity pathway’, which simply refers to a normal signalling process, which if 

significantly perturbed, would result in an adverse cellular outcome.  This report signalled a sea 

change in the approach to developing non-animal risk assessments, and provided a vision that 
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appeared not only desirable, but given advances in molecular techniques, bioinformatics and systems 

biology, also achievable.  This concept has more recently been expanded by the description of 

‘Adverse Outcome Pathways’ (AOPs). An AOP is a cascade of events across different levels of 

biological organization (subcellular, cellular, sub-organ, organ, individual and population) which 

could result in an adverse outcome (Ankley et al., 2010).  Although the AOP concept was originally 

developed to support ecotoxicology risk assessment, its utility to human health was soon recognized 

(Villeneuve et al., 2014).  AOPs offer the opportunity to refine hazard characterization and risk 

assessment by organizing the knowledge relating to different modes of action.  The starting point of 

an AOP is a Molecular Initiating Event (MIE), which is the initial interaction between a molecule and 

a biomolecule or biosystem that can be causally linked to an outcome via a pathway (Allen et al., 

2014).  The OECD has recently used this universal framework based on AOPs to capture and peer 

review the mechanistic understanding of specific toxic effects and provide a framework for the 

evaluation of non-animal methods that aim to predict key events (KEs) in these pathways.   

One of the tools that has been developed to standardise the development of AOPs is a collaborative 

platform known as the AOP-Wiki (www.aopwiki.org), which enables the transparent, peer-reviewed 

development of AOPs.  Figure 3 is an AOP present in the AOP-Wiki which describes reproductive 

impairment (decreased spawning) in fish following androgen receptor (AR) agonism.  In this 

example, AR agonism is the MIE, and the KEs that follow triggering of this MIE which are necessary 

for the manifestation of the adverse outcome (declining fish populations) include a reduction in 

circulating gonadotrophins (GtH), reduced testosterone (T) synthesis from ovarian theca cells, 

reduced 17β-oestradiol (E2) synthesis from ovarian granulosa cells, resulting in lower plasma 

concentrations of E2.  This in turn causes a reduction in hepatic vitellogenin (VTG) synthesis, a 

decrease in circulating VTG, and lower uptake of VTG into the oocytes, impacting their growth and 

development.  The result of these cell and organ/tissue changes is adverse effects on the individual 

(reduced fecundity and spawning), population (declining numbers), and ultimately the community, 

with alterations in the food web. 
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Figure 3: AOP 23 from AOP wiki: Androgen receptor agonism leading to reproductive dysfunction (in repeat-

spawning fish) 

Thus, the KEs occur at different levels of biological organization, but are all measurable phenomenon 

which are essential to link the MIE with the AO.  AOPs therefore provide an opportunity to provide 

the mechanistic insight that has historically been lacking in many toxicological risk assessments. 

 

Figure 4 shows some of these important milestones in the development of toxicological risk 

assessment.  Such a timeline would not be complete without mention of Paracelsus, Philippus 

Theophrastus Aureolus Bombastus von Hohenheim.  Almost 500 years ago, the man credited as the 

father of toxicology first stated that ‘sola dosis facit venenum’ or ‘only the dose makes the poison’ 

(Borzelleca, 2000).  Paracelsus made this statement in his ‘Third Defence’, published in 1538 to 

justify his therapeutic use of substances considered toxic by his contemporaries.  This concept is 

fundamental to the principles and application of toxicological risk assessment.  The time elapsed 

between this simple statement on the importance of considering dose-response, and the publication in 

1983 of the Red Book which describes how characterising the dose-response can be used to support 
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decision making is staggering.  The delay of almost 200 years between clear evidence of 

understanding that occupational exposure to chemical agents can cause specific diseases and the 

introduction of occupational exposure limits in the 1960s is also difficult to understand.  Although the 

establishment of toxicological risk assessment as a discipline experienced seemingly tremendous 

inertia, of consolation is its rapid development in recent years.  This development has been catalysed 

not only by the Toxicity Testing in the 21st Century report and emergence of the AOP concept, but 

also by legislators across the world responding to public opinion against the use of animals in 

research.  In 2013, the European Commission enforced a ban on the marketing of any cosmetic 

product containing ingredients that have been tested on animals.  This ban, which is being followed in 

other geographies across the world, provided fresh incentive for the cosmetics industry to implement 

non-animal approaches to safety evaluation, and alongside the technological advances described 

above served as an important impetus for improvements in the science of risk assessment. 

 

Figure 4: Timeline showing the drivers and developments in the history of toxicological risk assessment 

Therefore, combined drivers of regulatory change, a desire for more scientifically robust assessments, 

and consumer demand for products not tested on animals lend hope that the progress of positive 

change is hastening.  However, in the search for better approaches to toxicological risk assessment 
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there is no room for complacency.  As observed by Percival Pott, “Our fathers thought themselves a 

great deal nearer to perfection than we have found them to be; and I am much mistaken, if our 

successors do not, in more instances than one, wonder both at our inattention, and our ignorance.” 

(Pott, 1775) 

5. Perception of risk and the emergence of endocrine disrupting chemicals (EDCs)

Consumers rightly expect the products they use to be safe.  Since all products and activities carry 

some form of risk, to a toxicological risk assessor, ‘safe’ has a very specific meaning, referring to a 

substance that presents a low risk to health under its conditions of use (SCCS, 2016).  However, to 

consumers, ‘safe’ is an ambiguous term which is not easily defined (Boholm, Möller and Hansson, 

2016), and the concept of risk is notoriously difficult to communicate to the general public who 

interpret chemical risks very differently to toxicologists (Neil, Malmfors and Slovic, 1994).  

Efforts have been made to discover how the general public forms judgements about risk (Slovic, 

1987; Sjoberg, 2000).  It has been suggested that individuals are less likely to tolerate risks that they 

do not have control over (such as the presence of an environmental contaminant), that they are 

unfamiliar with (such as a new vs. existing technology) or that have catastrophic consequences (such 

as loss of life).  In the 1990s a new class of substances emerged that appeared to meet all these 

criteria, causing significant concern amongst scientists, consumers and policy makers. 

In 1992, a meta-analysis of 61 epidemiology studies performed between 1938 and 1990 was 

published, which implied that human sperm concentrations were declining by approximately 1% per 

year (Carlsen et al., 1992).  This conclusion triggered a significant amount of debate.  Some 

challenged the analysis (Lerchl, 1995; Olsen et al., 1995) whilst others sought to hypothesise a cause.  

One of the original hypotheses was that human exposure to oestrogens might be fuelling a decline in 

sperm counts (Sharpe and Skakkebaek, 1993).  The rationale was that if DES can cause reproductive 

tract abnormalities in humans following gestational exposure, maybe other, less potent oestrogens 

could too.  Attention quickly moved to the role that anti-androgens may play in the development of 
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adverse effects (Wolf et al., 1999; Gray et al., 2001), and the term testes dysgenesis syndrome (TDS) 

was coined (Skakkebaek, Rajpert-De Meyts and Main, 2001).  TDS describes various trends in male 

reproductive health, including an increase in reported cases of testicular cancer, low sperm quality, 

and increased reporting of undescended testes and hypospadias.  Given the similarity between TDS 

and the spectrum of changes caused by DES it was suggested that apparent increases in some of these 

pathologies were environmentally-mediated, caused by ‘endocrine disrupting chemicals’ (EDCs). 

 

The World Health Organization defines an EDC as “an exogenous substance or mixture that alters 

function(s) of the endocrine system and consequently causes adverse health effects in an intact 

organism, or its progeny, or (sub)populations” (WHO, 2002).  Therefore, an EDC is an endocrine 

active chemical (EAC) that can cause adverse health effects due to its endocrine mode of action.  

EDCs are often cited as ubiquitous and therefore unavoidable, even being detected in foetal cord 

blood and breast milk (Stefanidou, Maravelias and Spiliopoulou, 2009) so consumers do not have 

control over whether they are exposed.  Synthetic EDCs may be viewed as unnatural, and therefore 

unfamiliar, even though their activities may be similar to natural substances (Tinwell et al., 2013). 

 

Figure 5: Factors converging to fuel public concern regarding exposure to EDCs 

Because the ‘catastrophic consequences’ of EDCs include birth defects, cancer, and infertility, EDCs 

are viewed by some as a threat to the very survival of our species (Marques-Pinto and Carvalho, 

2013).  This convergence has created significant media attention and public concern, leading to 

Involuntary 
exposure

Possible 
catastrophic 

health 
effects

Synthetic 
chemistry

28



 
 

several regulatory initiatives to assess and restrict exposure to EDCs.  In the USA, the 1996 Food 

Quality Protection Act mandated the development of “a screening program, using appropriate 

validated test systems and other scientifically relevant information, to determine whether certain 

substances may have an effect in humans that is similar to an effect produced by a naturally occurring 

estrogen, or such other endocrine effects” (Food Quality Protection Act of 1996).  This Act led to the 

formation of the Environmental Protection Agency’s (EPA’s) Endocrine Disruptor Screening 

Program (EDSP) which is discussed further in Section 6.5.  In Europe, the “Community Strategy on 

Endocrine Disruptors” (European Commission, 1999) was published to deal with the “growing 

concern about a range of substances, which are suspected of interfering with the endocrine system”.  

This has led to the establishment of criteria for identifying EDCs in products regulated as pesticides or 

biocides (Regulations (EC) 1107/2009 and (EU) 528/2012).  These criteria seek to identify those 

substances considered EDCs according to the WHO definition and to prevent their use.  This type of 

hazard-led approach is a response to the high level of concern regarding EDCs illustrated in Figure 5.  

Throughout and in spite of these initiatives, EDCs still represent an area of concern for both 

consumers and scientists (Diamanti-Kandarakis et al., 2009; Gore et al., 2015), and significant 

challenges remain in their safety assessment.  From a risk assessment perspective, the distinction 

between substances considered to be EDCs and those that are EACs is meaningless.  Whether a 

substance is merely ‘active’ or causes ‘disruption’ (harm) is dependent on many factors, including its 

potency, as well as the timing of exposure and the dose.  For this reason, the term EAC is used from 

here on in, unless the term EDC is used as quoted.  

 

6. Current testing and assessment of EACs 

The human endocrine system encompasses a multitude of receptors, signalling molecules and 

enzymes affecting the growth, development and functioning of every organ system.  Substance 

exposures which disrupt endocrine signalling can therefore have diverse consequences depending on 

the mode of action of the substance, the dose, and the timing of exposure (Macleod et al., 2010).  For 

practical purposes, the approaches for testing and assessment of EACs has focussed on specific 
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interactions with oestrogen, androgen, thyroid and steroidogenesis (EATS) pathways using a tiered 

approach involving both in vitro and in vivo animal studies.  The desire to reduce and ultimately 

replace the use of animals in experiments therefore presents challenges as well as opportunities for the 

assessment of EACs. 

One example of such a tiered approach is the OECD Conceptual Framework for the Testing and 

Assessment of Endocrine Disrupting Chemicals (the ‘OECD Conceptual Framework’), which is 

illustrated in graphical form in Figure 6. 

Figure 6: Graphical representation of the OECD Conceptual Framework for the Testing and Assessment of 

Endocrine Disrupting Chemicals (OECD, 2018a) 

6.1. Level 1: existing data/non-test information 

In the OECD Conceptual Framework existing test data and structure-activity relationship predictions 

(Level 1) are used to prioritize substances to be tested in Level 2 in vitro screening assays.  This 

includes all the available data from standard (eco)toxicological tests.  The reason for this is that 

adverse effects related to EATS pathways can be detected in general and reproductive toxicology 
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studies (OECD, 2018a), and the existing database may be sufficient to both identify whether the 

substance meets the definition of ‘endocrine disruptor’ and to complete a risk assessment for 

endocrine effects.  In the absence of any test data the physical and chemical properties of the test 

substance may provide information relevant to the assessment; for example, if the substance is a high 

molecular weight polymer expected to be stable under its conditions of use, low bioavailability may 

prevent it from causing any adverse effects, including those relating to the endocrine system.  In these 

cases, the assessment would likely focus on any residual monomers or impurities present, highlighting 

the importance of a comprehensive understanding of the composition of the test substance.  In the 

absence of test data, the use of read across, chemical categories, (quantitative) structure activity 

relationships (QSARs) and other in silico predictions may provide useful insights.  Read across for 

systemic effects such as endocrine activity is challenging because small changes to a molecule can 

have a large effect on its ADME characteristics as well as its biological activity.  Read across should 

therefore be mechanistically-based, and not simply based on structural comparisons (Ball et al., 

2016).  Such mechanistic links can be strengthened with further data generation in subsequent levels 

of the framework, for example to test hypotheses that the test substance is equipotent with a 

comparator or group of comparators.  Various tools are available to help bring transparency and 

rigour to the application of both read across and QSARs, including the OECD toolbox 

(http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm), which amongst other 

functions explores chemical similarity, groups chemicals based on mechanism of action, structural 

similarity, or common metabolites, and runs QSAR models relevant to endocrine activity.  The OECD 

Conceptual Framework and associated guidance (OECD, 2018a) refers to toxicokinetics data and 

ADME model predictions at Level 1 in the context of guiding the design of future in vivo studies and 

in cross-species extrapolation, and in determining whether metabolising systems should be included in 

in vitro studies.  Exposure information is not used quantitively to prioritize or deprioritize further 

testing as part of this framework. 
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6.2. Level 2: in vitro mechanistic assays 

The in vitro assays described in Level 2 of the OECD Conceptual Framework are listed in Table 2. 

Table 2: in vitro mechanistic assays included in the OECD Conceptual Framework 

Mode of action Assay 

Oestrogen receptor (ER) 

agonism/antagonism 

- ER binding affinity (OECD TG 493) 

- ER transactivation (OECD TG 455 and 457) 

- MCF-7 cell proliferation 

Androgen receptor (AR) 

agonism/antagonism 

- AR binding affinity  

- AR transactivation (OECD TG 458) 

Thyroid hormone receptor (TR) 

agonism/antagonism 

- TR transactivation 

Steroidogenesis - In vitro steroidogenesis assay (OECD TG 456) 

 

Although there are no in vitro assays capable of detecting functional changes related to AR signalling 

described in the OECD Conceptual Framework, high quality AR reporter gene assays exist to allow 

the characterization of (ant)agonistic responses (OECD, 2016).  The greatest coverage in Level 2 

assays is for ER (ant)agonists, where in chemico assays are available examining competitive binding 

of a test substance to a recombinant human ERα (OECD, 2015).  These methods assess the binding of 

a radioactive ligand ([3H]17β-oestradiol) to the ER in the presence of increasing concentrations of the 

test substance using liquid scintillation counting.  Test substances with a high affinity for the ER will 

compete with the radioactive ligand at lower concentrations than do those with a lower affinity.  Since 

a receptor binding assay cannot predict the biological consequence of the receptor-ligand interaction, 

reporter gene assays are necessary to determine whether a material binding to the receptor is an 

agonist or an antagonist, providing an EC50 or IC50 value respectively.  Functional tests such as the 

MCF-7 proliferation assay investigate the physiological consequence of any (ant)agonism seen.  

Although the results of MCF-7 proliferation assays are not directly relatable to normal cells and to 
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intact organisms, used together these tests can provide valuable mechanistic information to determine 

whether a substance exhibits endocrine activity in vitro. 

 

6.3. Level 3: in vivo mechanistic assays 

Positive results at Level 2 may trigger Level 3 testing to determine whether the in vitro activity leads 

to an in vivo response.  Furthermore, results in Level 4 or 5 assays that are suggestive of an endocrine 

mode of action may also trigger Level 3 testing to confirm or refute this.  The Level 3 in vivo study 

relevant for anti-androgens is the Hershberger assay, OECD Test Guideline 441 (OECD, 2009).  The 

assay is a short-term screening test capable of detecting AR agonists, antagonists, and 5α-reductase 

inhibitors.  It involves castration of adult male rats to minimize endogenous androgen production, 

followed by treatment of groups of at least 6 animals with the test item for 10 days concomitant with a 

fixed dose of testosterone proprionate (TP) to provide a uniform level of androgenic stimulation.  The 

day after the last dose, animals are necropsied and the weight of several androgen-sensitive tissues 

(ventral prostate, seminal vesicles, levator ani-bulbocavernosus muscle, Cowper’s glands, and glans 

penis) are recorded.  To distinguish specific and non-specific responses, a significant decrease in the 

weight of at least 2 of these tissues is required to identify a substance as an anti-androgen.  

Furthermore, optional hormone measurements (testosterone, LH and FSH) may be included.  In the 

case of testosterone these are to assess whether positive responses are due to increased hepatic 

clearance of the hormone rather than anti-androgenicity, and in the case of LH and FSH to assess 

effects on the hypothalamic-pituitary-testicular axis.  Serum T3 and T4 measurements may also be 

taken to assess the potential for the test substance to impact thyroid hormone homeostasis. 

Figure 7 illustrates the marked changes that can be seen in the size of seminal vesicles in a 

Hershberger assay.  These images were taken from a published study in which the anti-androgenic 

fungicide prochloraz was administered to castrated or intact rats in a Hershberger assay (Vinggaard et 

al., 2002).  The seminal vesicles from the castrated rat experiencing very little androgenic stimulation 

were clearly atrophic, whereas the same organ from the castrated rat treated with TP at 0.5 mg/kg/day 

(by subcutaneous injection) was a similar size to the organ from the intact rat.  Treatment with TP at 
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0.5 mg/kg/day together with flutamide at 20 mg/kg/day (by subcutaneous injection) maintained the 

organ at castrate dimensions, whereas treatment with TP with orally-administered prochloraz (at doses 

of 50, 100 or 200 mg/kg/day) resulted in a dose-dependent reduction in organ size. 

Figure 7: Photograph of seminal vesicles from intact or castrated rats treated with TP with or without flutamide 

or prochloraz at 50, 100 or 200 mg/kg/day (Vinggaard et al., 2002, with permission) 

In that study, prochloraz exposure at all dose levels also markedly reduced weights of ventral prostate, 

levator ani-bulbocavernosus muscle and Cowper’s glands, meeting the guideline criteria to declare the 

response positive.  The Hershberger assay is therefore a simple test which provides information on 

whether in vitro positive responses (e.g. in a transcriptional activation study) will be translated to in 

vivo activity.  The uterotrophic assay (OECD, 2007) is the equivalent assay for detecting (anti-

)oestrogens.  Although similar in many respects, the treatment period is shorter (3 days) and more 

reliance is placed on the weight of a single organ (the uterus) rather than on a pattern of effects. 

6.4. Level 4: in vivo data able to distinguish between activity and adversity 

Many of the studies described in Level 4 of the OECD Conceptual Framework are not specific to 

endocrine activity, as they also provide information about general toxicity.  The most commonly 

performed and informative are repeat-dose toxicity studies as illustrated in Figure 2 (e.g. OECD 407 

and 408) or prenatal developmental toxicity studies (OECD 414). 

In addition to the endpoints described in Figure 2, the 28- and 90-day repeat-dose toxicity studies 

(OECD 407 and 408 respectively) have recently been updated to include the optional analysis of T3, 
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T4 and TSH.  Substances disrupting hormonal signalling may result in adverse effects in these studies, 

manifest as changes in growth, organ weights and histopathology, although these may not always be 

detectable.  For example, although administration of androgen antagonists can cause effects on 

spermatogenesis and testicular morphology, because repeat-dose studies are not conducted at a life 

stage that is sensitive to their effects, negative results in repeat-dose studies are not considered 

definitive (OECD, 2008).  The longer duration of chronic or carginogenicity studies (OECD 451-453) 

means these tests are more likely to detect adverse effects relating to weak androgen antagonists.  For 

example, the herbicide Linuron which is an AR antagonist, produced no findings in 90-day studies 

associated with AR antagonism, but produced an increased incidence of Leydig cell adenomas in a 2-

year study (Cook et al., 1993).  The reason for this difference is that for all but the most potent 

antiandrogens it is likely that a treatment period of more than 3 months would be necessary to cause 

the chronic LH over stimulation that would lead to Leydig cell hyperplasia and adenoma (Dent, 

2007).  However, because humans are quantitatively less sensitive than rats to the effects of non-

genotoxic substances that cause Leydig cell tumours, this finding has low relevance to humans (Cook 

et al., 1999).  This leads to the question of the appropriateness of performing a large and lengthy 

animal test for substances with this mode of action.  

Prenatal developmental toxicity studies such as OECD Test Guideline 414 (OECD, 2001) can 

demonstrate adverse effects of anti-androgenic substances, and depending on the precise mode of 

action these may include hypospadias, cryptorchidism or agenesis of the testes or prostate (Wolf et 

al., 1999; Gray et al., 2001).  Other Level 4 assays include the male pubertal assay and the intact adult 

male endocrine screening assay, which do not exist as OECD test guidelines and are therefore less 

widely used (OECD, 2018a). 

 

6.5. Level 5: in vivo studies providing more comprehensive data on adversity especially at 

different life stages 

The extended one-generation reproduction toxicity study, OECD Test Guideline 443 (OECD, 2012) is 

the most comprehensive in vivo evaluation of reproduction and development, especially relating to the 
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identification of endocrine modes of action.  The complex design of this study makes it challenging to 

perform, and each test uses over 2700 rodents if an F2 generation is produced (Table 1). 

However, concern that developing organisms may show increased sensitivity to certain modes of 

action means that for an EAC, the point of departure for the risk assessment (either a NOAEL or 

BMDL10) is often derived from a breeding study.  Although in recent years the existence of thresholds 

for EACs has been questioned (Vandenberg et al., 2012), the risk assessment for EACs is still based 

on the 4 fundamental steps of risk assessment described in Figure 1, including the application of 

assessment or uncertainty factors to this point of departure to arrive at a safe human exposure level.  

This rodent assay is therefore considered under the current paradigm to be the gold standard assay to 

detect endocrine activity at all live stages.  Given the many uncertainties and difficulties in 

extrapolating effects at high doses in rodents to effects at much lower exposures in humans this 

represents a significant weakness in the overall approach. 

Other frameworks for the testing and assessment of EACs similarly rely on a mixture of (Q)SARs, in 

vitro and in vivo data.  For example, the EPA’s EDSP is a tiered approach which, although originally 

targeted at pesticides, now covers commercial chemicals and environmental contaminants (Kavlock, 

1999). The major pathways considered by the EDSP pertain to oestrogen, androgen and thyroid 

signalling.  One major difference between the OECD Conceptual Framework and the EDSP is that the 

latter includes an assessment of risk in addition to hazard.  Tier 1 of the EDSP uses many of the tools 

described in the OECD Conceptual Framework Levels 1-3 to identify substances that have the 

potential to interact with the endocrine system (i.e. to detect endocrine activity).  Chemicals that are 

endocrine active proceed to Tier 2 testing, using similar methods to those described in the OECD 

Conceptual Framework Levels 4 and 5.  Like the OECD Conceptual Framework, Tier 2 of the EDSP 

assesses whether the activity results in adversity and to determine a point of departure.  The EDSP 

Tier 2 combines the hazard data with an exposure assessment to arrive at a risk assessment, which is 

used to inform risk mitigation measures and regulatory decisions concerning chemicals.  Another key 

feature of the EDSP is the desire to use high throughput in vitro assays and computational tools to 

improve decision making predictions (Rotroff et al., 2013). 
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7. Opportunities to improve assessment of EACs

The historical approach to the testing and assessment of EACs is therefore hazard focussed and 

largely based on either predicting effects in animals or using animal data.  This observation highlights 

two main opportunities for improvement. 

7.1. Better understanding and use of consumer exposure data 

Whilst the process of toxicological safety evaluation was historically hazard-driven, there is an 

increasing awareness and desire to develop exposure-driven approaches (Scientific Committee on 

Health and Environmental Risks (SCHER), Scientific Committee on Emerging and Newly Identified 

Health Risks (SCENIHR) and Scientific Committee on Consumer Safety (SCCS), 2013).  Therefore, 

the first step in a consumer safety risk assessment for a new ingredient considers the route and extent 

of human exposure, which informs problem formulation and determines the type and extent of 

toxicological data needed to complete the risk assessment.  An improved evaluation of EACs would 

seek to answer the question ‘is a specific use of this substance likely to result in endocrine activity in 

humans?’ at an earlier step, rather than at Level 4 or 5.  Furthermore, understanding of possible 

effects at low exposure levels may help to address some of the debate that surrounds the validity of 

extrapolating from high-dose animal studies to much lower human exposures (Rhomberg and 

Goodman, 2012; Vandenberg et al., 2012).  To assess the amount of an ingredient that consumers will 

encounter, both the level of the ingredient in the product(s) and consumer habits and practices data 

(how much of the product is applied, how frequently, to which parts of the body) are required.  This 

allows an estimation of the ‘applied dose’ of the ingredient.  To refine this further, information 

informing bioavailability such as data from in vitro skin penetration experiments performed in a 

relevant product formulation, can be used to provide an estimate of systemic exposure (in mg/kg 

bodyweight/day).  Considering the metabolism, distribution and excretion of the substance provides a 

further tier of refinement.  This can be done by applying physiologically-based biokinetic modelling 

37



 
 

(PBBK, also called physiologically-based pharmacokinetic modelling or PBPK).  PBBK is the use of 

mathematical models to describe the ADME profile of a specific chemical exposure. Different organs 

are described in different compartments of the model, and the physiological parameters associated 

with the compartments (e.g. the rate of blood flowing in and out of the organs) are described by a set 

of equations (Campbell et al., 2012), as illustrated in Figure 8.   

 

 

Figure 8: Diagram of the structure of a published PBBK model structure for styrene (Campbell et al., 2012 with 

permission).  The concentration (C) of the chemical in the compartments listed is determined by the volume of 

the compartment, blood flow between compartments (Q), and the partition coefficient for the chemical.  QAlv is 

the alveolar ventilation rate, which determines uptake of styrene vapour.  In the liver, maximum velocity (Vmax) 

and affinity (Km) determine metabolism (clearance) of the chemical. 

Understanding the distribution of the substance under evaluation therefore allows the level of 

exposure at the target site (e.g. receptors in a specific organ) to be characterized, which represents a 

further refinement and arguably the most biologically relevant metric to use in the risk assessment.  

PBBK models are therefore one of the most critical tools in non-animal risk assessment for systemic 

effects as their output is ultimately used to compare with the in vitro points of departure in a process 

termed quantitative in vitro to in vivo extrapolation (QIVIVE) (Yoon, Blaauboer and Clewell, 2015). 
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PBBK models can be developed using very little input data, including in silico predictions relating to 

physico-chemical properties of the test item and in vitro data describing clearance in cultured 

hepatocytes or in microsomes.  PBBK models allow different exposure conditions (e.g. inclusion levels, 

product types, consumer habits) and the impact on internal exposure to be modelled.  Since PBBK 

modelling is a well-established technique, guidance is available to ensure the quality and transparency 

of the methods used (WHO, 2010).  However, although models can be built using little input data, such 

a simplified model will not perform well in cases where specific transporters are critical to the uptake 

or clearance of the test item (Watanabe et al., 2009).  Confidence in the model output is therefore greatly 

enhanced with human exposure studies to verify that the model accurately predicts the model output. 

 

7.2. More human-relevant models 

The Toxicity Testing in the 21st Century report (Krewski et al., 2010) envisions a future where the 

cellular models used in safety assessments are human-derived to enhance the species relevance of the 

data collected.  Several of the in vitro assays described in the OECD Conceptual Framework use 

animal-derived cells, and Levels 3, 4, and 5 rely solely on laboratory animal data.  Furthermore, for 

practical reasons, excellent efforts by the US EPA to replace the use of animals in Tier 1 of the EDSP 

are based on benchmarking to effects in uterotrophic or Hershberger assays rather than focussing on 

effects in humans (Rotroff et al., 2014; Kleinstreuer et al., 2017).  Although there is some 

conservation in the endocrine system of vertebrates there are also some notable differences.  In 

addition to differences in sensitivity to Leydig cell tumour formation following exposure to anti-

androgens already discussed, these include differences in the development of androgen sensitive 

tissues (Cunha et al., 2015), marked differences in foetal exposure to endogenous oestrogen (Clark, 

1998), and major differences in thyroid physiology (Bartsch et al., 2018). 

It is therefore crucial that any models applied to human safety decision-making reflect human biology, 

and that the differences between the model and the in vivo situation are well understood. 
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8. Towards an exposure-led framework for the risk assessment of EACs.

Better (and earlier) use of human exposure data and an increased focus on human-based in vitro and 

computational models could be integrated into an exposure-led framework for the risk assessment of 

EACs, as described in Figure 9.  In this tiered framework assessors progress through the 5 levels until 

there is enough information upon which to base a risk assessment decision.  In other words, like the 

OECD Conceptual Framework there is not an expectation that data will be generated at all levels.  

Unlike the OECD Conceptual Framework, Figure 9 is a risk assessment approach, where quantitative 

exposure data are considered in a tiered manner to drive decision making at the very start, not just 

once all bioactivity or hazard data are generated.  This exposure-led and human-relevant framework 

includes the considerations described below. 

Figure 9: Framework using exposure data to guide human-relevant decision making 

8.1.  Level 1: Existing Data  

The first step in the evaluation is to calculate the likely human exposure level, followed by a thorough 

search for all the substance-specific data available.  This enables the suitability of tools such as 

exposure-based waiving using the threshold of toxicological concern to be assessed (Munro et al., 

1996; Yang et al., 2017).  In silico tools to determine the likelihood of an interaction with specific 
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receptors can be useful in guiding the assessment, but a negative prediction is not considered 

sufficiently reliable to waive in vitro testing altogether. 

8.2. Level 2: in vitro human-based mechanistic assays 

Many modes of action need to be considered in human health risk assessment, not just those relating 

to the endocrine system.  For this reason, a broad suite of human relevant in vitro tests, including 

some relevant to the endocrine system should form the basis of any non-animal next generation risk 

assessment (NGRA).  Such panels have been proposed (Bowes et al., 2012) and are commercially 

available, providing an important guide to the MIEs that may be relevant for a chemical exposure.  An 

important consideration is whether the panel used covers the breadth of modes of action necessary to 

be useful in risk assessment.  The MIEs that may be responsible for adverse effects in humans relating 

to endocrine signalling pathways therefore need to be understood.  It is also critical that the 

cells/targets are human derived, that they provide reliable dose-response data that can be used in a 

quantitative way alongside exposure.  The safety decision made at Level 2 would be based on a 

QIVIVE using the most relevant in vitro data.  This clearly requires internal exposure data (plasma 

levels) to be generated or predicted at Level 2.  Where there is a sufficient margin between exposure 

and effects concentrations from relevant assays this would provide sufficient information to complete 

the risk assessment.   

8.3. Level 3: human-based organotypic mechanistic assays 

Where a risk assessment cannot be completed at Level 2 (e.g. due to the point of departure exceeding 

the exposure estimate) the assessment may progress to Level 3.  This requires the development of 

tools that can bridge the gap between simple 2D monolayer cultures and the complex in vivo situation.  

For example, a reporter gene assay may be specific enough to determine whether a test substance may 

impair AR signalling at relevant exposure levels.  However, different types of assays and data are 

needed to determine the consequences of that impairment and address questions such as ‘How likely 
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is it that a specific substance exposure will impair foetal prostate development and function?’.  

Answering increasingly complex questions requires cellular models that reflect higher levels of 

biological organisation.  This is because the normal functioning of cells in vivo is dependent on many 

factors that are not present in simple 2D cell cultures, such as the physical organisation and 

arrangement of cells within a tissue, and the inter-dependence of different cells.  It has long been 

accepted that 3D cultures have the potential to improve the physiological relevance of in vitro 

experiments and to provide data that are more reflective of tissue responses in whole organisms 

(Pampaloni, Reynaud and Stelzer, 2007).  Addressing questions relating to changes in the normal 

development or function therefore requires an understanding of the critical interdependencies within 

the tissue of interest.  For example, because the development and maintenance of the prostate is 

dependent on cell-cell signalling between cells within the stroma of the organ and the epithelium 

(Hayward, Rosen and Cunha, 1997), creating a microenvironment that more closely mimics human 

tissue would require both cell types to be present.  This would allow an assessment of whether normal 

development and functioning of the tissue may be perturbed by chemical exposure. 

The refinement at Level 3 is therefore use of 3D tissue cultures that better represent human biology.  

The cells/3D cultures chosen depends on the hypothesis to be tested and requires the development of 

3D cell cultures of endocrine-sensitive tissues and identification of molecular and morphological 

biomarkers that are reflective of perturbed functioning of the relevant tissue. 

 

8.4. Level 4: Computational models of relevant endocrine axes based on human biology 

The endocrine system consists of a complex series of receptors, enzymes and signalling molecules 

working together to maintain homeostasis.  A simplified example, showing the hypothalamus-

pituitary-testicular axis is presented in Figure 10.  Due to these interactions, if one part of the axis is 

affected this may lead to compensation in other parts.  These types of interactions can be studied 

using computational models of the relevant signalling pathways, to enable events in single cells to be 

extrapolated to the organ level and across the entire HPT axis (Yvinec et al., 2018).   
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Figure 10: Feedback loop of gonadotrophin releasing hormone (GnRH), luteinising hormone (LH), follicle 

stimulating hormone (FSH), testosterone (T).  DHT is converted to the more potent dihydrotestosterone (DHT) 

by the enzyme 5α-reductase (5α-R).  

For example, a computational model describing the kinetics of androgen synthesis, transport, 

clearance and regulation of the rodent prostate has been published (Potter, Zager and Barton, 2006), 

and describes the in vivo situation well.  This model includes metabolism of testosterone to DHT by 

5α-reductase, regulation of testosterone production by LH, and the negative feedback of testosterone 

and DHT on testosterone synthesis.  The model accurately captured the effects of castration on 

prostate regression, and subsequent effects on circulating hormone levels. 
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Correctly parameterized for human biology, such a model could help to improve risk assessment of 

EACs.  For example, as mentioned above, it is the ability of Linuron to antagonise the AR that causes 

hypersecretion of LH from the pituitary gland, resulting in Leydig cell hyperplasia and tumour 

formation in rats.  Because humans are thought to be less sensitive to tumour formation by this mode 

of action (Wolf et al., 1999), the rodent data do not provide a relevant point of departure for the risk 

assessment.  However, a computational model describing the human HPT axis may give valuable 

information on concentrations of AR antagonists at target sites that are capable of causing 

hypersecretion of LH in humans.  Furthermore, such a model would be invaluable in assessing the 

impact of different exposure scenarios, especially at low (environmentally relevant) doses, and in 

assessing substances, like Linuron, which have a mixed mode of action (i.e. affecting the axis at more 

than one point). 

 

8.5. Level 5: Estimate probability that under given exposure conditions adverse effects will 

occur 

The goal of this framework is to determine the likelihood that a specific substance exposure will result 

in adverse effects in humans.  How this risk is expressed depends on the techniques used.  For 

example, if a Level 2 benchmarking approach is used, whereby substance exposure is compared with 

exposures to dietary components, the risk will be expressed relative to that dietary comparator; e.g. 

‘The androgenic activity of daily use of a deodorant containing ingredient x at at y% is equivalent to 

consumption of z g raw kale’.  If more sophisticated risk assessments using Level 4 computational 

models are used it may be possible to express the risk much more precisely; e.g. ‘It is predicted that x 

% of the exposed population will experience LH hypersecretion from use of this product, resulting in 

a y% increase in infertility and miscarriage’.  It is an important principle for the risk assessment to 

stop generating information once there is enough information to make a decision.  In other words, the 

techniques used should be as simple as possible and only as complex as they need to be.  The same is 

true of the way the risk is expressed and communicated, to allow risk managers and the general public 

to make informed decisions. 
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9. Aims and Objectives

The aim of this thesis is to investigate how exposure data might be incorporated into a risk assessment 

framework for anti-androgens at an earlier stage, and how it can be used to develop risk assessments 

that are increasingly human-relevant rather than benchmarked against the results of animal studies.  

The initial objective was therefore to use information on human disorders to determine some of MIEs 

that can result in adverse outcomes relating to androgen signalling and to investigate whether tools are 

already available to characterize these MIEs.  This review enabled the gaps that are currently 

preventing us from performing non-animal safety assessments for anti-androgenic effects in humans 

to be identified.  These gaps included: 

- Lack of a structured way to perform a human-relevant and exposure-led risk assessment using 

Level 2 in vitro mechanistic assays 

- Paucity of human models to characterize perturbations in pituitary release of gonadotrophins 

- Lack of organotypic models of androgen-sensitive tissues to help distinguish between 

endocrine activity and adversity 

The objectives that arose from the identification of these gaps were: 

- Development of an exposure-led risk assessment approach for anti-androgens using only 

Level 2 in vitro data and human exposure information  

- Identify a human cell-based system that can be used to characterise GnRHR-mediated release 

of gonadotropins from the pituitary 

- Develop and characterise a human-derived prostate microtissue model 

Developments in these areas will lead to improved testing and assessment of EACs by increasing the 

use of exposure data at an earlier stage of the paradigm and by ensuring the approaches used are 

relevant to human safety, whilst negating the use of animals in experiments. 
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mals to one founded primarily on in vitromethods that evaluate changes in normal cellular signalling pathways
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1. Introduction

There are a number of human disorders demonstrating that impaired
androgen signalling can result in severe and irreversible adverse effects in
humans (Table 1). Faulty receptors or enzymes that are part of the
androgen-signalling pathway can cause a variety of disorders, including
malformations of the internal and externalmale genitalia, impaired fertil-
ity, and increased cancer risk. Pharmaceuticals, plant protection products,
and industrial chemicals that interferewith testosterone synthesis, action
or metabolism have been shown to cause embryo-foetal malformations,
impaired fertility and cancer in experimental animals (Table 2), and for
some chemicals the critical effect in the risk assessment could be related
to their endocrine activity. Since these are health effects that are devastat-
ing to individuals, costly to healthcare systems, and even have the poten-
tial to impact the reproductive fitness of our species, it is critical that the
risk assessments that underpin the safe use of chemicals that have the
potential to alter androgen signalling are based on the best techniques
possible.

For many years this has involved performing in vitro screening tests
to prioritize chemicals for subsequent animal testing. The animal tests
routinely used to study perturbations in androgen signalling are
amongst the most animal intensive, including prenatal developmental
toxicity studies and the extended one generation reproduction toxicity
study (OECD Test Guidelines 414 and 443 respectively OECD, 2001,
2012a). Although animal-based safety assessments are generally con-
sidered protective of human health, there is a growing dissatisfaction
with the lack of mechanistic insight that often exists between the
level, duration and timing of human exposure to these chemicals and
the nature and incidence of adverse effects. This requires the application
of conservative assessment factors to the no-observed-adverse-effect
levels in animal studies that are orders ofmagnitude above systemic ex-
posures reached in humans. Coupled with a desire to reduce and ulti-
mately replace the use of animals in experiments, this has triggered
the realization that the process of toxicological risk assessment can
and should be improved. This proposal was well-articulated in the
2007 National Academy of Sciences report on ‘Toxicity Testing in the
21st Century’ (TT21C) (Krewski et al., 2010). In addition, the ban on an-
imal testing of cosmetic ingredients sold in the EU further highlights the
Table 1
Examples of human disorders causally linked with dysfunction of the HPT axis.

Disturbance in HPT
axis

Results in Symptom

AR gene mutations (inactivating) Impaired ligand interaction of AR Androgen
caused b
infertility

5α-R gene mutations Reduced activity of 5α-R enzyme 5α-R defi
masculin

GnRHR gene mutations Impaired ligand interaction of GnRHR Isolated H
congenit
or congen
(IGD)): D

LHR gene mutations (activating) Activation of LHR in absence of hormone Familial m
LHR gene mutations (inactivating) Impaired ligand interaction of LHR Leydig ce

impaired
FSHR gene mutation (inactivating) Impaired ligand interaction of FSHR Variable

causes co
FSHR gene mutation (activating) Activation of FSHR in absence of hormone Extremel
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need to find newways of assuring safety for chemicals used in cosmetic
products.

The TT21C report made an appeal to transform toxicity testing from
a system based on high-dose studies in laboratory animals to one
founded primarily on in vitromethods that evaluate changes in normal
cellular signalling pathways using human-relevant cells or tissues. The
term ‘toxicity pathway’ refers to a normal signalling process, which if
significantly perturbed, would result in an adverse cellular outcome.
More recently, this concept of pathways-based approaches to risk as-
sessment has been expanded by the description of ‘Adverse Outcome
Pathways’ (AOPs). The starting point of an AOP is a molecular initiating
event (MIE), which is the initial interaction between a molecule and a
biomolecule or biosystem that can be causally linked to an outcome
via a pathway (Allen et al., 2014). The AOP is a cascade of events across
different levels of biological organization (subcellular, cellular, sub-
organ, organ, individual and population) which could result in an ad-
verse outcome (Ankley et al., 2010). AOPs therefore provide an opportu-
nity to provide themechanistic insight that has historically been lacking
inmany toxicological risk assessments. The OECD has recently used this
universal framework based on AOPs to capture and peer review the
mechanistic understanding of specific toxic effects and provide a frame-
work for the evaluation of non-animal methods that aim to predict key
events in these pathways. This effort includes several AOPs relating to
(anti-)androgenic effects. However, there is no clear view on how
these individual AOPs may be used together to provide practical tools
to those expected to make safety decisions on the use of chemicals.
Adverse effects relating to endocrine-sensitive endpoints represent a
particular challenge, since the sameMIEmay result in different adverse
outcomes not just at different exposure levels, but also during different
windows of development. In addition, although not unique to the endo-
crine system, MIEs and key events will be shared across multiple AOPs,
making it difficult to see how a linear AOP is of any use in safety decision
making. We have been trying to address this by providing practical ex-
amples of how TT21Cmethodologies may be combined to inform a risk
assessment decision. These case studies have included p53-mediated
DNA damage (Adeleye et al., 2014), and oxidative stress (www.TT21C.
org). In this review we consider how TT21C principles could be applied
to a new case study: perturbations in androgen signalling.
s in males Reference(s)

insensitivity syndrome (AIS): Spectrum of phenotypes
y impaired masculinisation of external genitalia,

Hiort et al. (1996)

ciency: Spectrum of phenotypes caused by impaired
isation of external genitalia

(Brinkmann, 2001;
Azzouni et al., 2012)

ypogonadism Disease (also called idiopathic or
al hypogonadotrophic hypogonadism (CHH) or isolated
ital gonadotrophin-releasing hormone deficiency
elayed puberty and infertility

Jin and Yang (2014)

ale-limited precocious puberty: Early puberty (b4 y) Piersma et al. (2007)
ll hypoplasia: Spectrum of phenotypes caused by
masculinisation of external genitalia, infertility

Piersma et al. (2007)

suppression of spermatogenesis and fertility. Note
mplete infertility in females.

Tapanainen et al. (1997)

y rare; only 1 male identified so far Ulloa-Aguirre et al. (2014)

http://www.TT21C.org
http://www.TT21C.org


Table 2
Chemicals that cause adverse effects in rats by interfering with the HPT axis.

Chemical Chemical use Mode of action (reference) Examples of adverse effects in rat study (reference)⁎

Vinclozolin Plant protection (fungicide) AR antagonism (Wong et al., 1995;
Kavlock and Cummings, 2005)

In utero exposure causes shortened AGD, retained areola, hypospadias,
hypoplastic penis, reduced testicular size, aplasia/agenesis or reduced
size of male accessory sex glands; Leydig cell hyperplasia and prostatic
atrophy in adult rats (Wong et al., 1995; Fegert et al., 2012)

Linuron Plant protection (herbicide,
photosynthesis inhibitor)

AR antagonism (McIntyre et al., 2000)
May also impair T synthesis (Wilson et al.,
2009)

In utero exposure causes permanently shortened AGD, retained areola,
epididymal malformations, testicular atrophy; Leydig cell hyperplasia
and adenoma in adult rats (EPA, 1995; McIntyre, 2002)

Flutamide Pharmaceutical (prostate cancer
treatment)

AR antagonism (Wong et al., 1995) Chronic treatment in rats associated with reduced weight of androgen
sensitive organs, suppression of spermatogenesis, Leydig cell
adenoma, impaired fertility (Anon, 2012)

Ketoconazole Pharmaceutical (anti-fungal) Inhibits steroidogenic enzymes, including
CYP17A1 (Yap et al., 2008)

Reduced epididymis and accessory sex organ weights, spermatid
retention, decrease in serum T and increases in estradiol, LH and FSH
in young adult rats (Shin et al., 2006). In utero exposure does not
result in significant anti-androgenic effects in offspring as pregnancy is
compromised at doses lower than those required for anti-androgenic
activity (Wolf et al., 1999)

Finasteride Pharmaceutical (treatment for benign
prostatic hypertrophy)

5α-R inhibitor (Finn et al., 2006) In utero exposure causes shortened AGD, hypospadias, cleft phallus,
delayed balano-preputial separation (Clark et al., 1993)

Diethyl hexyl
phthalate

Industrial chemical (plasticiser) Reduced T synthesis (Fisher, 2004) In utero exposure causes agenesis of epididymis, hypospadias, ectopic
testes (Wolf et al., 1999)

⁎ Note that shortened AGD and nipple retention are not regarded as adverse effects but indicate biological activity.
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It is important to note that it is not our aim to identify tools that can
be used to label chemicals as ‘endocrine disrupters’ (‘EDs’). Identifying a
chemical as an ED does not inform whether specific exposures to that
chemical are safe, or whether risk management measures are required
to assure consumer or environmental safety. Rather, our aim is to use
exposure data to make better use of in vitro mode of action data to en-
able risk-based safety decisions to be made for chemicals that may
have specific anti-androgenic activities. The objectives are:

— To use information on human disorders to determine some of the
critical MIEs that can result in adverse outcomes relating to andro-
gen signalling;

— To investigate whether tools are already available to characterize
these MIEs; and

— To highlight the gaps which currently prevent us from performing a
non-animal safety assessment for anti-androgenic effects in humans.

2. Description of the ‘toxicity pathway’

Androgens play a critical role in many physiological processes,
including sexual differentiation, male sexual development, and
maintenance of spermatogenesis (Walker, 2011; Macleod et al.,
2010; Hughes, 2001) as well as non-reproductive functions as di-
verse as maintenance of muscle mass and bone density (Van den
Belda et al., 2000) and functioning of the meibomian gland (Sullivan
et al., 2002). Since androgen signalling is broad-reaching and affects
many biological processes in both males and females, we restrict the
scope herein to the hypothalamus–pituitary–testicular (HPT) axis,
and review the tools and information currently available to make a
safety decision based on perturbation of this axis.

The major function of the HPT axis is the maintenance of spermato-
genesis. The important hormones of the HPT axis are gonadotrophin-
releasing hormone (GnRH), the gonadotrophins luteinizing hormone
(LH) and follicle stimulating hormone (FSH) and the sex steroids,
particularly testosterone (T) anddihydrotestosterone (DHT). Other hor-
mones such as activin and inhibin are also required for the feedback
control necessary to regulate the system. In addition, genetic and para-
crine factors are known to play a role in maintenance of spermatogene-
sis. However, for the purpose of constructing a useable risk assessment
approach relevant to chemicals that can perturb androgen signalling,
only the major hormones of the HPT axis are considered here. Current
knowledge of the molecular regulation of the HPT axis and endocrine
59
control of spermatogenesis has been summarized in several reviews
(Jin and Yang, 2014; O'Donnell et al., 2006; Smith and Walker, 2014).
A detailed review of these hormones is not presented here, but their
roles during maintenance of spermatogenesis are briefly summarized
below.

GnRH is synthesized in the hypothalamus in a pulsatile manner.
Octamer-binding transcription factor-1 (Oct1) plays an important role
in GnRH gene transcription, which is suppressed by androgens (Jin
and Yang, 2014). GnRH receptors are present in the anterior pituitary
gland, and the pulsatile GnRH signals result in transcription of LH and
FSH gene transcription. LH enters the systemic circulation and binds
with LH receptors on Leydig cells to activate secretion of testosterone,
which in turn activates androgen receptors (ARs) present in Sertoli
cells. FSH receptors are also present on Sertoli cells, and the combination
of T and FSH signalling results in the synthesis of products required for
optimal spermatogenesis (O'Donnell et al., 2006). As T levels rise, the
negative feedback loop is completed as T binds with ARs present on
GnRH cells of the hypothalamus to suppress GnRH gene transcription.
DHT has a higher affinity for the AR and a longer receptor-bound half-
life. This means that DHT is 5- to 10-fold more potent than T (O'Donnell
et al., 2006). T is irreversibly converted to DHT in the testes and prostate
by 5α-reductase type 2 (5α-R). Although the activity of this enzyme is
low in adult tissues, studies in rats have shown that in cases of low
intra-testicular T concentrations, conversion of T to DHT can ensure the
maintenance of a low level of spermatogenesis (O'Donnell et al., 2006).
This example illustrates that data in experimental animals can be helpful
in understanding the biology of the pathway being evaluated. However,
care needs to be taken to ensure that animal data are used in the context
of understanding the biology in humans rather than providing a gold
standard to judge the results of in vitro methods, since the overall aim
of the TT21C approach is to develop more human relevant safety assess-
ments rather than replicating the results of animal tests.

The AR is central to this signalling pathway. This ligand-activated
transcription factor mediates the effects of androgens in many other
cells and tissues (Chang et al., 1995) via both genomic (‘classical’) and
non-genomic (‘non-classical’) routes (Smith and Walker, 2014). Andro-
gen signalling is established in foetal life, and several reviews are available
describing foetal testicular steroidogenesis and endocrine control of tes-
ticular differentiation (Svingen and Koopman, 2013; Scott et al., 2009;
Virtanen and Toppari, 2014). In summary, formation of the testis (sexual
differentiation) is not T-dependent. However, once the testes have differ-
entiated and testicular steroidogenesis has been activated, androgen sig-
nalling is required to masculinise the XY foetus. Development of the
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internal and external sexual organs is dependent on the right concentra-
tion of androgens (chiefly T and DHT) to be present in the right tissues
during the right period of development. One critical period of develop-
ment has been termed the ‘masculinisation programming window’. It is
thought that androgen action during this window, which precedes the
morphological differentiation of androgen-sensitive tissues, is what de-
termines penis size and anogenital distance (AGD) following birth.
Hence, insufficient androgen action during the masculinisation program-
ming window can result in disorders of development. Studies in rats
indicate a spectrum of effects including hypospadias, cryptorchidism, un-
derdeveloped prostate, reduced AGD and reduced penis length, and it is
assumed that the similar changes could occur in humans if androgen sig-
nalling were disrupted between weeks 8–12 of gestation. In rats, andro-
gen blockade after the masculinisation programming window does not
affect masculinisation but can affect elongation of the penis or testis size
due to reduced Sertoli cell number (Scott et al., 2009). Unlike the adult,
GnRH is not required for initiation of foetal testicular steroidogenesis,
which instead appears to be under the control of placental chorionic
gonadotrophin (hCG), with hypothalamic–pituitary control being
established once hCG levels start to fall around week 12–15 of gestation
(Scott et al., 2009).

Perturbation of the HPT axis can result in adverse effects in humans.
Several human disorders associated withmutations in the genes coding
for AR, LHR, GnRHR and 5α-R are illustrated in Table 1. The phenotypes
arising from activating or deactivatingmutations of receptors or deficien-
cy of 5α-R are predictable considering the physiological roles of these
proteins. Table 1 is not intended to showanexhaustive list of disorders as-
sociatedwith impairment of the HPT axis, but is intended to demonstrate
the human relevance of the MIEs described herein.

In addition, a number of pharmaceuticals, industrial chemicals and
plant protection products are known to interact with components of
the axis, demonstrating that high doses of sufficiently potent toxicants
Fig. 1. Feedback loop and sites of action of GnRH, LH, FSH, and T. PotentialMIEs considered
in this review are androgen antagonism, 5α-R inhibition, GnRH antagonism, LH antago-
nism, and FSH antagonism. Human disorders indicate that disturbances in these signalling
pathways can result in adverse effects (Table 1).
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can cause adverse effects. It is important to note that some chemicals
may disrupt the HPT axis via mechanisms that do not require interac-
tionwith the specific receptors or enzyme described in Fig. 1. For exam-
ple, the anti-androgenic effects of spearmint could be due to oxidative
stress in thehypothalamus (Kumar et al., 2008). However, in this review
wewill concentrate on a small number ofmodes of action andMIEs that
can form a starting point for a pathways-based safety evaluation rather
than trying to capture non-specific modes of action that could result in
adverse effects on the HPT axis.With the exception of the pharmaceuti-
cals listed, the chemicals in Table 2 have been shown to cause adverse
effects in animals, but there may be no proven endocrine activity or ad-
verse health effects demonstrated in humans.

In terms of developing a safety assessment for chemicals that inter-
act with the HPT axis, it is clear that some modes of action are of lower
priority than others. For example, it is interesting to note that very few
non-pharmaceutical chemicals have been shown to be agonists or an-
tagonists for the GnRHR, LHR or FSHR (Arey et al., 2002). This is likely
to reflect the fact that the ligands for these receptors are peptide hor-
mones rather than small molecules like the steroids. Since small mole-
cule industrial chemicals are less likely to interact with the active site
of these receptors, indirect effects on these signalling pathways are
more likely than direct interactionswith GnRHR, LHR or FSHRs. In addi-
tion, FSHR signalling does not appear to be as critical during male
embryo-foetal development, and is more critical for female fertility
than for male fertility in adulthood (Tapanainen et al., 1997; Siegel
et al., 2013). However, a number of chemicals are thought to be capable
of disrupting steroidogenesis by directly impacting the functioning of
Leydig cells (e.g., diethylhexyl phthalate Desdoits-Lethimonier et al.,
2012; Akingbemi, 2001, linuron Wilson et al., 2009, and ketoconazole
Yap et al., 2008). This indicates that as amode of action, LHR antagonism
may be less relevant than inhibition of key steroidogenic enzymes. The
human relevance of thismode of action is illustrated in humandisorders
caused bymutations in genes coding for steroidogenic enzymes, such as
CYP17A1 (Kim et al., 2014). Conversely, a number of pharmaceuticals,
plant protection products and industrial chemicals have been shown
to antagonize the AR, causing subsequent adverse effects in both off-
spring and adult animals. Furthermore, some pharmaceutical interven-
tions disrupt the HPT axis to treat endocrine disorders such as benign
prostatic hypertrophy, androgen responsive prostate cancer or male
pattern baldness. This indicates two things; firstly that high enough
doses of sufficiently potent anti-androgens with varying modes of action
can cause alterations of the HPT axis in humans. Secondly, it shows that
AR antagonism itself is highly predictive of anti-androgenic effects, and
may be the most common MIE for anti-androgenic chemicals. There are
clearly caveats regarding the second conclusion, since it is possible
that the chemicals that are known to cause adverse effects have
not been tested for their ability to interact with other parts of the
pathway, meaning that their AR antagonism may not account for
all the adverse effects seen.

3. Information needed to complete a pathways-based
safety assessment

Our overall approach to developing case studies to illustrate how
safety decisions can bemade using TT21C principles has been previous-
ly described (Adeleye et al., 2014). Fig. 2 shows the components of an
exposure-led risk assessment approach.

How each of these areas could relate to the androgen signalling
pathway and the available tools that could be used to make a safety
assessment decision for this pathway are described below.

3.1. Consumer use and internal exposure assessment

The OECD conceptual framework for the assessment of endocrine
effects does not take exposure into account, since it is purely a tool for
hazard identification and characterization. However, biological activity



Fig. 2. Components of exposure-led risk assessment approach.
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or adverse effects that only occur at exposures far in excess of those ex-
perienced by humans are arguably of no relevance to consumer safety
risk assessment. Some attempts have been made to use in vitro data to
predict anti-androgenic effects in experimental animals (Barton and
Andersen, 1998; Potter et al., 2006; Clewell et al., 2010; Zager and
Barton, 2012; Taxvig et al., 2013). However, to date no framework has
been proposed for putting anti-androgenic effects seen in vitro into a
human-relevant context using exposure information. The question
that would ultimately be answered by an exposure-led framework is
not ‘can this chemical disrupt androgen signalling?’, but rather ‘is a spe-
cific use of this chemical likely to result in (anti)-androgenic activity in
humans?’ This is a crucial first question, since if a chemical exposure
does not result in endocrine activity, it cannot cause an endocrine-
mediated adverse effect. Consumer habits data and understanding of
the bioavailability and clearance of a chemical of interest in a consumer
product can be used to develop a physiologically-based pharmacokinet-
ic (PBPK) model to predict exposure to target organs of the parentmol-
ecule and relevantmetabolites (Adeleye et al., 2014). For environmental
contaminants, factors such as biopersistence and bioaccumulation are a
key consideration in determining human exposure. The target organs of
concern depend on the toxicity pathway and adverse outcomeunder in-
vestigation. For androgen signalling, the relevant target organs could be
any part of the hypothalamus–pituitary–gonadal axis, either in adults or
in the embryo or foetus, and it is possible that metabolic products may
be more active than the parent molecule (as is the case with flutamide
Katchen and Buxbaum, 1975). The benefits of using pharmacokinetic
data to aid dose selection for in vivo toxicology studies has beenwell de-
scribed, and include ensuring that studies are designed to be ofmost rel-
evance to human health risk assessment (Creton et al., 2012), and the
same principles should apply to the generation of in vitro dose response
data. As well as informing dose selection, information on predicted ex-
posure of relevant metabolites at the target organ is used to perform
the quantitative in vitro to in vivo extrapolation (QIVIVE) that is required
at the last step of the safety assessment. The tools necessary to perform
metabolic profiling and exposure estimations are available today and in
routine use, but are more often used to guide in vivo data generation or
interpretation rather than negate it. However, since QIVIVE is a critical
component of a TT21C/AOP-based risk assessment, as confidence
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grows in the applicability of these approaches they will undoubtedly
be increasingly used to inform pathways-based safety assessments.

3.2. Develop high content in vitro assays in human cells andmodels to inter-
rogate pathways of concern

The first indication that an untested chemical has the potential to in-
teract with the HPT axis is likely to come from some form of in silico
alert. Computational techniques therefore play a critical role in defining
relevant MIEs and therefore which pathways may be affected (Allen
et al., 2014).

Different computationalmethods are available for predictingwheth-
er a chemical has the potential to interact with the endocrine system.
These generally cover modes of action which are receptor-mediated.
Models can be developed using different approaches and data. For ex-
ample, pharmacophore-based approaches are developed by evaluating
the properties of known receptor ligands and identifying those proper-
ties (type and position of functional groups, physical–chemical proper-
ties) which correlate with biological activity such as receptor binding
(Ekins et al., 2001). Pharmacophores can therefore be used to develop
three-dimensional quantitative structure activity relationship (QSAR)
models. The strengths of this approach lie in its simplicity, and the fact
that large numbers of chemicals can be screened in a short space of
time. Simplicity is also a limitation, in that this type of QSAR approach
does not attempt to describe the subtleties of the ligand–receptor inter-
action such as binding kinetics and flexibility of the receptor or ligand
(Hovarth et al., 2005). Understanding the nature of the ligand–receptor
interaction is critical, since low affinity ligands are much less likely to
exert biological effects due to the limited time spent in the receptor
binding site (Galli et al., 2014). Some of these limitations can be over-
come by developing models for which the starting point is not the li-
gand but the receptor. An understanding of the receptor conformation
and themolecular interactions required for a ligand to bindwith the re-
ceptor can allow the development of flexible docking approacheswhich
can better describe the subtleties of the MIE (D'Ursi et al., 2005; Vedani
et al., 2014). Although more complex than traditional QSAR and
pharmacophoremodels, these approaches do hold promise for generat-
ing data which are more biologically relevant. Furthermore, since they
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are not dependent on training the model against known ligands,
training-set bias is removed.

One internet available package is VirtualToxLab (http://www.
biograf.ch/index.php?id=projects&subid=virtualtoxlab), which uses
an automated protocol that simulates and quantifies the binding of
molecules with 16 target proteins, comprising 10 nuclear receptors
(AR, oestrogen receptor (ER)α, ERβ, glucocorticoid, liver X, mineralo-
corticoid, peroxisome proliferator-activated receptor γ, progesterone,
thyroid α, and thyroid β), four cytochrome P450 enzymes (1A2, 2C9,
2D6, and 3A4), the aryl hydrocarbon receptor and the hERG potassium
ion channel (Vedani et al., 2014).

Of the targets described in Fig. 1, most commercially available
models only include interactions with the AR, although there are some
published reports for other components of the pathway such as the
GnRHR (Fernández and Caballero, 2007). Once an in silico alert has
been identified, it is necessary to determine the relevance and reliability
of the prediction, and investigate the shape of any dose-response. This
involves moving from computer prediction to testing for biological ac-
tivity in relevant in vitro test systems.

A number of methods for identifying and characterizing perturba-
tions in various parts of the HPT axis have been developed over the
years. The OECD conceptual framework mentions the use of receptor
binding assays and transcriptional activation assays as part of the level
2 assessment (OECD, 2012b). Agents that bind to the AR are tested in
a relevant transcriptional activation study to determine whether bind-
ing to the AR results in an agonist or antagonist effect at the cellular
level. The recommended AR binding test is the same test used in the
EPA's Endocrine Disrupter Screening Program (EDSP) (EPA, 2009),
which tests the ability of the radiolabelled test chemical to competitive-
ly bind to ARs from the homogenized prostate of castrated rats. Al-
though no EPA or OECD harmonized guideline currently exists for the
transcriptional activation studies, this is currently being addressed. An
OECD test guideline for effects on steroidogenesis is available (OECD,
2011), as are non-guideline methods that could be used to detect
changes due to other MIEs. Several screening assays are available
based on non-human derived cells, such as the yeast androgen screen
(YAS) or the AR-EcoScreen™, which is based on Chinese Hamster
Ovary (CHO) cells. Although some find the YAS a useful tool (Kolle
et al., 2012), given the phylogenetic differences between yeast and
human cells, human cells are generally regarded as more suitable for
identifying chemicals that interact with the human endocrine system
(Mertl et al., 2014). Furthermore, in this review, in line with the NRC
TT21C report, emphasis has been placed on systems derived from
human cells. Some of the promising human derived test systems for
characterizing the MIEs highlighted in Fig. 1 and their strengths and
limitations are summarized below.

3.2.1. MIE 1: Androgen receptor antagonism
As described above, in silico tools are availablewhich provide predic-

tions about the potential for an untested chemical to interact with the
AR. If the chosen tool deems an interaction is plausible, a validated AR
binding study is available to test the ability of the radiolabelled test
chemical to competitively bind ARs from the homogenized prostate of
castrated rats (EPA, 2009). Although model protocols have been devel-
oped using recombinant AR which negates the requirement for animal
tissue (Freyberger et al., 2010a), differences in the ligand binding
domain between the human and rat AR (Galli et al., 2014) indicate
that a human-based system would be preferable. Receptor binding
studies cannot indicate whether a chemical will act as an agonist or an
antagonist, and can therefore not provide dose-response data needed
for a safety assessment. However, this type of test provides the first
piece of useful biological information for this MIE, testing the in silico
prediction of receptor binding before a more resource intensive
transcriptional activation assay is carried out.

An ideal assay to investigate the downstream consequences of a re-
ceptor interaction (i.e., whether agonist or antagonist activity is seen
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and at what doses) should be highly specific for the receptor being stud-
ied and provide a clear and quantitative readout. AR reporter gene assays
could meet these criteria, and several commercially available stably
transfected systems are available. For example, the US ToxCast pro-
gramme includes assays for characterizing competitive binding, AR
activation and cofactor recruitment, and several are based on human sys-
tems (Kavlock et al., 2012). Used together these have been shown to ac-
curately identify chemicals that provide positive responses in the US
EPA's EDSP Tier 1 in vitro and in vivo assays (Rotroff et al., 2013).

Sensitive protocols have also been developed to characterize the re-
sponse of MDA-kb2 cells to AR agonists and antagonists (Wilson, 2002;
Ermler et al., 2010). Two cell types that have undergone pre-validation
for the detection of (anti)androgens are described inmore detail below.

3.2.2. PC-3-androgen receptor-luciferase-MMTV (PALM) cells
PALM cells are derived from a human prostate adenocarcinoma (PC-

3) cell line stably transfected with hAR (pCMV5-hAR), along with the
firefly luciferase, under the control of MMTV (Térouanne et al., 2000).
This system has been in existence for some time, and was one of the sys-
tems evaluated as part of the 6th European Framework Programme
ReProTect project, which aimed to develop alternativemethods to reduce
or replace animal experimentation in the assessment of reproductive tox-
icity (Schenk et al., 2010). In the pre-validation study (Freyberger et al.,
2010b) androgen agonists (17α-methyldihydrotestosterone, levonorges-
trel, norethynodrel, progesterone), androgen antagonists (flutamide,
prochloraz, o,p′-DDT) as well as dibutylphthalate which is anti-
androgenic but not an AR antagonist were tested. The test protocol
correctly identified chemicals as agonists or antagonists, and EC50

values showed good correlation between two test laboratories. The
highest test concentration was limited to 10 μM, and full dose-
response curves were not obtained for some of the test chemicals.
As an AR agonist progesterone also showed variable results, which
may have been related to the MMTV-LTR promoter's ability to re-
spond to progestins. Overall it appears some optimization in the
published test protocols is needed to generate the dose response
data required for non-animal safety assessment.

3.2.3. AR chemically-activated luciferase-MMTV (AR CALUX) cells
This test system was also assessed as part of the ReProTect project.

The cells are derived from a U2-OS human osteosarcoma cell line stably
co-transfected with an expression construct for the human AR (pSG5-
neo-hAR) and a pGL3-based reporter construct containing three AREs
in front of a TATA box (Sonneveld et al., 2005). The assay appears to
be highly selective for androgen agonists and antagonists, and showed
promising results in the ReProTect prevalidation (Van der Burg et al.,
2010). In that pre-validation study, the ability of the assay to detect
AR agonists and antagonists was tested using the agonists DHT, 17α-
methyltestosterone, levonorgestrel, and norethynodrel, the antagonists
vinclozolin, o,p′-DDT, linuron, flutamide, and the negative controls pro-
gesterone and corticosterone (to test specificity for AR as opposed to
other steroid receptors) and dibutylphthalate (anti-androgenic but not
a AR antagonist). Specificity issues with other reporter systems do not
seem to be a feature of this assay, and in particular, the assay appears
able to distinguish between AR and other steroid receptor ligands, due
to the minimal promoter region. This leads to greater specificity but
lower luciferase expression than other assays. Overall, the ReProTect
project showed that the AR CALUX assay was able to detect the selected
androgens and anti-androgens, and correctly identified the negative
control agents. In one laboratorywhere several operatorswere involved
in data generation, coefficients of variation (CVs) appeared high (up to
51.8% for DHT). However, the average IC50s showed remarkable con-
cordance between laboratories; for all but one chemical the difference
was less than a factor of 2, and for one chemical (o,p′-DDT) the dif-
ference was less than a factor of 3.

Overall, the strengths of this test system are its use of human AR in a
human-derived cell line and shows high specificity.Weaknesses are the

http://www.biograf.ch/index.php?id=projects&amp;subid=virtualtoxlab
http://www.biograf.ch/index.php?id=projects&amp;subid=virtualtoxlab
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lower luciferase expression compared with other systems and that the
cells can only be used by or under licence from the manufacturers.

3.2.4. MIE2: 5α-R inhibition
Studies that assess the effects of a test chemical on the ability of an

enzyme to catalyse specific reactions are in routine use in toxicology
screening. Whilst standardized methods are available for some enzyme
inhibition studies such as those relevant for drug interactions (FDA,
2012), accepted methods are not available to assess the inhibition of
5α-R as this is not routinely used to support safety evaluations. Work
assessing the effects of 5α-R inhibitors has been published, using both
a prostate cell line or prostate tissue (Lo et al., 2007). This showed
some quantitative differences in the response between LNCaP cells
and human prostate biopsies, but both systems were responsive to
known 5α-R inhibitors. The use of a selective 5α-R inhibitor is required
to ensure the results obtained are due to inhibition of this enzyme. No
standardized or validated test is currently available, and an optimized
approach is required to provide information that could confidently be
used in risk assessment.

3.2.5. MIE3: GnRH antagonism
Mutations of the gene coding for the human GnRHR can cause a

disorder called isolated hypogonadism, idiopathic/congenital hypo-
gonadotrophic hypogonadism or isolated/congenital gonadotrophin-
releasing hormone deficiency, which can result in delayed puberty and
infertility (Table 1). Both GnRH agonists and antagonists are used to
treat both benign andmalignant disorders. Several reporter gene systems
have been developed which stably express the human GnRHR, using
hamster or mouse cells (Beckers et al., 1997; Oosterom et al., 2005).
Although some small molecules have been found which can antagonize
this receptor (Oosterom et al., 2005), since the endogenous ligand is a
peptide hormone it is likely that antagonism by small molecules would
be rare. Therefore, indirect effects on components of the GnRH signalling
pathwaymay be a higher priority for an integrated assessment of theHPT
axis than direct receptor-mediated effects adverse effects. This view is
supported by the lack of industrial chemicals that have so far been identi-
fied as interacting with this receptor.

As well as being expressed in normal pituitary tissue, GnRHR are
expressed in a number of cancer cells, including breast (MCF7, MDA
MB 231), prostate (PC-3, LNCaP, DU145) ovarian (OVCAR3) and endo-
metrial cell lines (Leuschner et al., 2003). Although the significance of
the expression of these receptors has been exploited in the search for
targeted cancer treatment (Kwok et al., 2014) rather than for safety
testing, such systems could be useful in evaluating the effects of a test
chemical on GnRH signalling. For example, one of the first indications
that GnRH agonists have direct anti-tumour effects came from studies
showing that addition of GnRH agonists daily for 4 days inhibited
growth of MCF7 cells, an effect which was blocked by the addition of a
GnRH antagonist (Miller et al., 1985). Although the low affinity of the
GnRH binding sites meant that very high concentrations of the
radiolabelled GnRH agonist (10−6–10−4 M) were needed to demon-
strate competitive binding, clear physiological effects on cell growth
were apparent at much lower concentrations (10−9 M). Sharoni et al.
demonstrated that certain GnRH antagonists inhibited the proliferation
of MDA-MD-231 cells, but the agonist Buserelin had no effect when
administered for 2 days (Sharoni et al., 1989). The observation that
agonists are capable of exerting similar growth/proliferative responses
as antagonists may be explained by the fact that following a sufficient
treatment period, GnRH agonists cause receptor down regulation.
Therefore depending on the dosing regimen, antagonists and agonists
can cause a similar physiological effect, and treatment for 2 days may
not be sufficient to detect the anti-proliferative effects of Buserelin in
this cell line. Care also needs to be taken using these data to interpret
the likelihood of biological activity on gonadotrophs in the pituitary.
The receptor expressed in these cells is GnRH Type I, whereas cancer
cell lines may also express the Type II receptor (Engel and Schally,
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2007). The GnRH Type I receptor is expressed in the human neuroblas-
toma cell linesM17 and SH-SY5Y, andM17 cells have been shown to re-
spond to GnRH treatment by increasing LH expression (Wilson et al.,
2006). How relevant these systems are to receptor expression in vivo
and how useful they would be in evaluating non-receptor mediated ef-
fects is unclear.

3.2.6. MIE4: LH antagonism
The H295R steroidogenesis assay (OPPTS 890.1550, OECD TG 456)

uses the H295R human adrenocortical carcinoma cell line, which has
the ability to produce the steroid hormones found in both the adult ad-
renal cortex and the gonads, allowing testing for effects on both cortico-
steroid synthesis and the production of sex steroid hormones such as
androgens (Hecker and Giesy, 2008). Although this is not a specific
LHR antagonist assay, H295R cells express LH/hCG receptors (Rao
et al., 2004), and as such are useful for evaluating the impact of a chem-
ical on the cascade of events between LHR activation and the production
of T. This assay therefore allows direct measurement of cellular hor-
mone production and cell viability/cytotoxicity. LHR antagonism may
not be a high priority MIE for non-pharmaceuticals, whilst inhibition
of steroidogenic enzymes is both a known cause of adverse effects in an-
imal studies and a human-relevantMIE (Kim et al., 2014). Therefore this
assay may be more informative than a LHR reporter gene assay.

Strengths of the assay are that it gives a functional readout (i.e., T
synthesis). However the assay is not designed to identify substances
that affect steroidogenesis due to effects on the hypothalamus or pitui-
tary gland. Furthermore,without a correction for significant cytotoxicity
there is a high likelihood of confounding results and erroneous identifi-
cation as a chemical with potential to inhibit steroidogenesis (Borgert
et al., 2011). In the OECD validation study for test guideline 456, there
was a high degree of consistency between laboratories of the fold
changes in T synthesis caused by different androgen agonists and antag-
onists, and there was a low number of false negatives or false positives
with respect to in vivo changes to T levels (Hecker et al., 2011). Howev-
er, the assay did not always correlatewith the direction of the in vivo re-
sponse. For example, aminoglutethimide, fenarimol, and letrozole have
been shown to increase T levels in vivo in either rodents or fish. Howev-
er, the H295R assay showed reduced T synthesis. This could reflect the
fact an isolated in vitro system cannot take into account the feedback
control present in the HPT axis. In addition, although the fold changes
were consistent between laboratories, the lowest observed effect con-
centrations (LOECs) varied considerably between laboratories. For ex-
ample, in Lab 1, the LOEC for prochloraz was 0.0001 μg/ml, whereas
for Lab 2 the LOEC was 0.1 μg/ml, indicating that if this assay were to
be used to provide dose response data some further optimization may
be required. Refinements already proposed include the addition of
metabolomic assessment (Rijk et al., 2012) and the use of a co-culture
system to mimic the fetoplacental unit (Thibeault et al., 2014). Overall,
since this human cell-based assay is capable of covering a number of
modes of action including LH receptor-mediated effects as well as ef-
fects mediated through interaction with steroidogenic enzymes it is
likely to be useful as part of an integrated in vitro approach to risk
assessment.

3.2.7. MIE5: FSH antagonism
Mutations resulting in reduced function of the FSHR are extremely

rare (Tapanainen et al., 1997; Siegel et al., 2013), and as for the other
peptide hormone receptors FSHR antagonism is not commonly reported
as a MIE associated with non-pharmaceuticals. Furthermore as a drug
target FSHR antagonism is of less interest than, e.g., LHR or AR antago-
nism. These factors explain why there are nowidely reported standard-
ized assays for characterizing the effects of chemicals on the FSHR.
However, recombinant human FSHR have been successfully transfected
into both rodent (Kelton et al., 1992; Christin-Maitre and Bouchard,
1996) and human (HEK293) cells (Karakaya et al., 2014).
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Both LHR and FSHR are expressed on some human cancer cell lines
such as OCC1, and this cell line proliferates in response to stimulation
by FSH or hCG (Parrott et al., 2001), thus providing a potential assay
of in vitro physiological response for agonism or antagonism at these
receptors.

3.3. Evaluate the dose-response from the chosen assays

Rather than being used purely in a hazard identification mode, the
selected assays used to characterize changes in the toxicity pathway
tools would be used in a risk assessment context. This means that
dose-response information is needed to define a relevant point of de-
parture. Different methods can be used to arrive at a point of departure
in a pathways-based risk assessment. One suchmethod is the use of the
biological pathway altering concentration (BPAC). The BPAC is the mini-
mum AC50 for the specific chemical in a collection of high throughput
assays that map to pathway genes or relevant cellular phenotypes
(Judson et al., 2011). An alternative method involves a more critical
selection of the assay output for the dose response assessment and
calculation of the benchmark dose (BMD). In either case, the most ap-
propriate test systems will not only be guided by the mode of action
of the chemical, but also its ADME characteristics. For example, if the
chemical is both an AR antagonist and a 5α-R inhibitor but does not
cross the blood brain barrier or the blood testes barrier, it is possible
that dose-response data from a 5α-R inhibition study could drive the
risk assessment even if this provides a higher point of departure.

The use of the in vitro screening tools described above in a risk as-
sessment context represents a significant change from their current
use as prioritization or research tools. Looking at the variability in the
dose-response data obtained between studies it is clear that optimiza-
tion and standardization would be needed before any could be reliably
used in this context.

3.4. Computational models of the circuitry of relevant pathways

A variety of computational models can be used to help interpret the
in vitro dose-response data obtained, depending on the question being
asked. For example, Kleinstreuer et al. integrated data relevant to AR
signalling from ToxCast with Tox21 assays (http://www.epa.gov/ncct/
Tox21/) relevant to the AR pathway using a simple linear additive
model, to distinguish true pathway activity from assay interference
(http://ntp.niehs.nih.gov/iccvam/meetings/toxcastds/kleinstreuer-
arpathway-poster-text-508.pdf). The model successfully distinguished
between different modes of action and showed a high level of predic-
tively across the reference chemical set. Mechanistic cell response
models can also help elucidate the biological impact of a specific change
by modelling the impact of perturbations in signalling motifs that form
part of the network, thus aiding understanding of processes control-
ling function in specific cell types exposure to chemical stress (Zhang
et al., 2010).

Furthermore, models that accurately describe the feedback loops il-
lustrated in Fig. 1 would enable a simulation of the effects of a particular
level of perturbation to one of the components of the axis on T and LH
levels. Understanding the levels of these hormones that are required
for normal functioning of the systemwould then allow safety assessors
to determine when a perturbation in the system caused by a specific
chemical exposure results in an adverse health effect. There are gaps
in our understanding of local T andDHT levels that are needed to ensure
foetalmasculinisation and even for spermatogenesis,whichwould need
to be filled to make this final step.

A mathematical model describing the basic interactions between
FSH, LH and T has been published which simulated the levels of these
hormones in testes and blood of adult rats (Barton and Andersen,
1998). The effects that a competitive AR ligand may have upon the
levels of these hormones can be modelled using such an approach.
This initial limited model was subsequently refined to include the
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effects of 5α-R on prostate regulation in adult rats (Potter et al., 2006;
Zager and Barton, 2012). This refined model allowed accurate recapitu-
lation of experimental data showing the approximate 77% decrease in
prostate size and almost total depletion of prostatic DHT following the
daily administration of finasteride to rats for 21 days. A mathematical
model describing the pulses of GnRH that lead to the production of
FSH in pituitary gonadotrophs has also been described (Magill et al.,
2013). Although this model focussed on the low GnRH pulse frequen-
cies required for FSH generation and did not include the faster pulses
that favour LH secretion, simulation results were consistent with
in vivo experimental data. Given the focus on rodent physiology these
models are of limited use in interpreting the results of in vitro assays
for human health risk assessment. However, with appropriate scaling
and parameterization to reflect human biology, and alongwith informa-
tion on the levels of gonadal hormones that are required for normal
functioning of the system these types of models could provide invalu-
able insight into the downstream consequences of a specific interfer-
ence with the HPT axis.

3.5. Risk assessment based on exposures below levels of significant pathway
perturbations

Identifying a chemical that interacts with components of the HPT
axis as an ‘anti-androgen’ does not indicate the level of risk associated
with consumer exposures to that chemical. The final step of the
pathways-based safety evaluation therefore requires taking the point
of departure from the in vitro test systems and performing a QIVIVE,
which provides some information on the likelihood that the effects
seen in vitro will be manifest in humans. Therefore, if the original hy-
pothesis was that the test chemical or its major metabolites could
cause adverse effects in humans due to their ability to antagonize the
androgen receptor, and no such interactions are seen using relevant
in vitro assays at relevant test concentrations, concern over adverse ef-
fects relating to that MIE is reduced. Conversely, if activity is seen at
doses close to those predicted to occur in relevant tissues following con-
sumer use of a product containing that ingredient, concern is increased.
It is critical to ensure that the QIVIVE represents a valid comparison be-
tween the actual dose in the in vitro test system rather than the applied
dose. It is therefore necessary to base the risk assessment on the free
concentration of the test chemical which is available to interact with
the in vitro or in vivo system rather than on total dose (Groothuis
et al., 2013). In a traditional animal-based risk assessment, interspecies
differences and population variability are taken into account by apply-
ing assessment factors to the point of departure in the animal study to
arrive at a presumed safe exposure level (dose) in humans (Renwick,
1993). Rather than relying on conservative default factors to translate
between the in vitro point of departure and the human in vivo dose,
there is an opportunity for mechanism-based safety assessments to
deal with uncertainty and variability much more transparently and ex-
plicitly. An example of this is the derivation of a biological pathway
altering dose (BPAD) from the BPAC (Section 3.3). Translating from the
BPAC to the BPAD requires not only a QIVIVE, but also needs to take
into account the population variability and uncertainty in both the phar-
macokinetics and pharmacodynamics predictions (Judson et al., 2011).
Although understanding the major sources of uncertainty and variability
in such assessments represents a significant challenge, thiswill ultimately
lead to more robust and transparent safety decision making.

3.5.1. Example risk assessment
An example was developed to demonstrate how some of these con-

ceptsmay be applied in practice. (Fig. 3). This is not afinished case study
but illustrates how a risk-based assessment for alterations in androgen
signalling could be approached. Fundamental to this workflow is the
concept that it is hypothesis driven rather than a proscriptive set of
tests. Therefore, dependent on the level of exposure and the nature of
and confidence in the in silico, in vitro or in vivo alerts for the test

http://www.epa.gov/ncct/Tox21/
http://www.epa.gov/ncct/Tox21/
http://ntp.niehs.nih.gov/iccvam/meetings/toxcastds/kleinstreuer-arpathway-poster-text-508.pdf
http://ntp.niehs.nih.gov/iccvam/meetings/toxcastds/kleinstreuer-arpathway-poster-text-508.pdf


Fig. 3. Example risk assessment to illustrate concept.
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chemical an initial hypothesis is formed, tested and refined. Although
themode of action hypothesis being tested in Fig. 3 relates to AR antag-
onism, this framework could be applied to any other disturbance in the
HPT axis.

The chemical in the example is andrographolide (AG), which is a
major component of the herbAndrographis paniculata, used in tradition-
al Asian medicines for centuries for many different indications (Akbar,
2011). In recent years, AG has been investigated as a possible chemo-
therapeutic (Shi et al., 2008; Chun et al., 2010) and treatment for
upper respiratory tract infections (Coon and Ernst, 2004). Standardized
extracts of A. paniculata have been in common use in Scandinavia to
treat and prevent the common cold for several decades (Gabrielian
et al., 2002). AG has a number of interesting biological activities, includ-
ing potential interactions with the immune system (Calabrese et al.,
2000) and with cytochrome P450 enzymes (Qiu et al., 2012; Chien
et al., 2010; Jarukamjorn et al., 2010; Pekthong et al., 2009). Several
rat male fertility studies are available on either A. paniculata or AG
which give conflicting results. Some studies show no adverse effects
on male fertility (Burgos et al., 1997; Allan et al., 2009), whilst others
showmarked changes such as complete infertility, disrupted spermato-
genesis, vacuolated Sertoli cells, reduced libido and epididymal sperm
with retained cytoplasmic droplets (Akbarsha et al., 2000; Akbarsha
and Murugaian, 2000; Sattayasai et al., 2010). Interpretation of these
studies is hampered by the different test items used, ranging from
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simple extracts of different parts of the plant to highly purified AG,
with the quality of the supporting analytical characterization of the
test items used varying considerably. Furthermore, for the most part
study designswere not optimal and suffered limitations such as low an-
imal numbers. In addition to these in vivo studies, one report details
how AG can affect androgen signalling in prostate cancer cell lines
(Liu et al., 2011). This study indicates an ability of AG to reduce AR
expression at the transcriptional level, inhibit nuclear translocation
of AR, inhibit the formation of stabilizing complexes with the co-
chaperone Hsp90, slow the growth of C4-2 prostate cancer cells, and in-
duce apoptosis. It seems likely that not all of the effects attributed to AG
in these rat fertility or in vitromechanistic studies relate to effects on an-
drogen signalling, so it is important to note that for any risk assessment
based only on in vitro data one of themost challenging aspects is deter-
mining the critical toxicity pathway upon which to base the risk assess-
ment. This highlights the importance of a broad high throughput
screening approach to evaluate a chemical for bioactivity in a wide
range of assays so that the critical mode(s) of action can be determined
for possible further evaluation. Failure to address this prioritization step
of the risk assessment will ultimately lead to the wrong risks being
assessed. For example, in addition to the biological activities mentioned
above, AG may block voltage-operated calcium channels (Burgos et al.,
2000) which could affect cellular function and sperm functioning and
fertility (Shukla et al., 2012). Furthermore, given limitations of available
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rodent male fertility studies, any adverse effects on male reproduction
are considered unproven. However, published data suggest that AG
has potential to interfere with androgen-signalling pathways, thus
representing a case study with which to illustrate a possible approach
for this biological activity.

The first question in Fig. 3 is whether there is significant human ex-
posure to the chemical in question. Answering this question requires
thehumanexposure scenario to be fully described (in this case a specific
use of AG in traditional medicine). It also requires other inputs obtained
from cheminformatics analysis, and any existing data on the substance.
In toxicological risk assessment, one tool that is commonly used to
judge whether human exposure is significant or not is the threshold of
toxicological concern (TTC). The TTC is a pragmatic risk assessment
tool that is based on the principle of establishing a human exposure
threshold value for all chemicals, belowwhich there is a very low prob-
ability of an appreciable risk to human health (Kroes et al., 2004).
Where exposure is below the relevant TTC value it can be argued that
exposure is not significant. The reason that cheminformatics ap-
proaches as well as exposure data are needed to judge whether the
TTC is an appropriate tool is that some chemical classes or structural fea-
tures are outside the domain of applicability of the TTC. For example,
chemical structures that may have or are suspected to have pharmaco-
logical properties should be excluded fromapplication of the TTC, unless
it can be shown that exposure is below that producing any effect (Kroes
et al., 2007). This means it may not be appropriate to use the TTC for
chemicals with strong receptor-mediated effects unless it can be
shown that these would not be manifest at relevant exposure levels.

In silico screening of AG using VirtualToxLab (Vedani et al., 2014)
predicts a very strong affinity for the AR (predicted IC50 for AG 88.5
nM compared with 3.86 μM for 2-hydroxyflutamide). Some of the ad-
verse effects seen at high doses in historical small-scale animal tests
are consistent with AR antagonism, and in vitro mechanistic data
strongly indicate that androgen signalling is affected by AG. AG has
been shown to inhibit interleukin-6 (IL-6) expression in human
DU145 prostate cancer cells (Chun et al., 2010). Since IL-6 can activate
AR-mediated gene expression via a Stat3 pathway, the reported effects
on the AR pathway may not be mediated by direct binding with the AR.
However, given the strong predicted affinity for the AR, the starting hy-
pothesis is that AG or one of its metabolites could cause adverse effects
in humans using this extract due to an ability to antagonize the AR. This
hypothesis can be tested by generating receptor binding data for AG and
its predicted major metabolites, to confirm or refute the in silico predic-
tion that themain component of the botanical extract does indeed bind
to the AR. Relevant dose-response reporter genedata could then be gen-
erated to substantiate the findings of Liu et al. and to determinewhether
the AR is likely to be antagonized at relevant tissue exposure levels
which are informed by PBPK modelling. If no antagonism is seen at ex-
posure ranges consistent with those predicted to occur in vivo following
consumer use of the traditional medicine, this provides data which sup-
ports the history of AG as used in botanical extracts or the use of this
chemical in other exposure scenarios. If some antagonism is seen at rel-
evant exposure levels it needs to be considered whether this could re-
sult in adverse effects, which may require the development of a
quantitative AOP and the ability to link theMIE to the adverse outcome
via clearly understood and measurable key events. Without tools or in-
formation to make this assessment the risk is uncertain and more data
are needed to inform the safety assessment. In the absence of new risk as-
sessment tools the only recourse may therefore be to perform targeted
animal testing.

4. Discussion

The strength of a pathways-based approach to the risk assessment of
anti-androgens is that it considers biologically relevant effects at rele-
vant consumer exposure. In other words, this approach avoids some
of the major uncertainty associated with extrapolating from effects
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seen in high-dose animal studies to much lower human exposures.
The limitations of this approach are also clear, in that it requires a
good understanding of the potential mode of action of the chemical in
question to provide confidence that the right effects are beingmeasured
in the right test systems. This is actually true of any toxicological safety
assessment, including those using animal data, where there is a tempta-
tion to only consider mode of action when unexpected results are ob-
tained. Failing to properly consider the potential mode of action of the
test chemical could therefore providemisleading animal test data if spe-
cies differences are not taken into account when selecting animal
models or doses. Therefore, although the uncertainties aremore explicit
when non-animal approaches are used they may not always be greater.
That being said, the MIEs described here clearly do not cover all those
that could cause perturbations in theHPT axis. Although theseMIEs pro-
vide a good starting point for evaluating possible non-animal risk as-
sessment approaches, any future risk assessment that considers the
likelihood that a specific receptor interaction at a given dose would re-
sult in adverse effects would need to also consider other MIEs.

There are many different in vitro systems available representing dif-
ferent components of the HPT axis to enable theMIEs described here to
be assessed. The focus for developing tools for safety assessment has
been on AR (ant)agonism and steroidogenesis, and some of these have
been used to predict points of departure for anti-androgenic effects in
rodents (Clewell et al., 2010; Taxvig et al., 2013). Whether some of
these systems can be used in an integrated way to provide reliable
dose response data formultiplemodes of action remains to be seen. Fur-
thermore, standardized human cell-based test systems are lacking for
events at the level of the hypothalamus and pituitary level, and to
allow interrogation of the HPT axis this gap needs to be addressed.
Without a computational model describing the pharmacokinetics of
the HPT axis and a thorough understanding of the levels of hormones
needed in target tissues to ensure normal biological function, the safety
assessment would need to be based on ensuring absence of endocrine
activity at relevant exposure levels, since if there is no activity there
can be no adversity. If activity is seen at doses close to those predicted
to occur in relevant tissues following consumer use of a product con-
taining that ingredient, concern is increased. Therefore, as always, care
needs to be taken not to over-interpret or misuse the data. This is espe-
cially important for endocrine modes of action, since in vitro data alone
cannot be used to conclude that a substance is an ED. This is because the
most widely accepted definitions of what constitutes an ED require the
endocrinemode of action (whichmay be informed by in vitro testing) to
result in an adverse health effect in an intact organism (IPCS, 2002).
However, evenwithout an explicit and quantitative link between endo-
crine activity and adversity, the available tools may give the safety as-
sessor useful information when constructing a weight of evidence
evaluation without any animal data. The chances of being able to per-
form a safety assessment for endocrine activity based on in vitro data
alone are highest where both exposure and endocrine activity is low.
In these scenarios there may be a greater possibility to demonstrate
lack of activity (and therefore adversity). This means that in the short
to medium term it is more likely that this type of approach will gain ac-
ceptance for chemicals associatedwith low systemic exposures (such as
some cosmetic ingredients) than for other chemical exposures such as
pharmaceutical treatments, which are designed to have systemic endo-
crine activity.

In the longer term, the question of testing the adequacy of new tools
need to be addressed. The concept of ‘validating’ the results of new
in vitro tests against the results of the animal studies needs careful con-
sideration. This is because following a more human-relevant TT21C
pathways-based approach, in vitro tests are not direct replacements
for single animal studies (Judson et al., 2013). However, steps such as
correlating predictions from pathways-based approaches against
existing animal study results would be informative of relative dose-
response differences for the more narrow in vitro assays against the in-
tegrated testing in an intact animal. This would form just one part of the
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test of adequacy and relevance of the new approach, since it is clear that
a risk assessment constructed around molecular events in human cells
or tissues cannot be ‘validated’ against apical endpoints in rodents.
4.1. Conclusion

It does appear that many of the tools are available to answer the
question, ‘is a specific use of this chemical likely to result in (anti-)an-
drogenic activity in humans?’ However, standardized tools are not
available for all MIEs that may be relevant (especially those relating to
events at the hypothalamus and pituitary). Furthermore, the knowledge
and tools do not currently exist to make the link between (anti)-andro-
genic activity and adversity. Further development of computational
models describing the human HPT axis and the levels of hormone re-
quired for normal biological function would be needed to make the
final step fromprediction of activity to prediction of adversity. However,
such models may not be necessary in situations where there is a low
probability of exposure and effects concentrations overlapping (i.e. for
low activity chemicals associated with low human exposures). In
these instances, a reliable safety decision can be made at a relatively
low tier of risk assessment without the need to generate animal data.
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ABSTRACT

This study investigated the use of androgen receptor (AR) reporter gene assay data in a non-animal exposure-led risk
assessment in which in vitro anti-androgenic activity and exposure data were put into context using a naturally occurring
comparator substance with a history of dietary consumption. First, several dietary components were screened to identify
which selectively interfered with AR signaling in vitro, using the AR CALUXVR test. The IC50 values from these dose-response
data together with measured or predicted human exposure levels were used to calculate exposure: activity ratios (EARs) for
the dietary components and a number of other well-known anti-androgenic substances. Both diindolylmethane (DIM) and
resveratrol are specifically acting dietary anti-androgens. The EARs for several anti-androgens were therefore expressed
relative to the EAR of DIM, and how this ‘dietary comparator ratio’ (DCR) approach may be used to make safety decisions
was assessed using an exposure-led case study for an anti-androgenic botanical ingredient. This highlights a pragmatic
approach which allows novel chemical exposures to be put into context against dietary exposures to natural anti-
androgenic substances. The DCR approach may have utility for other modes of action where appropriate comparators can
be identified.

Key words: androgen receptor; risk assessment; in vitro approaches; dietary comparison.

Performing safety risk assessments that are based on perturba-
tions in cellular signaling pathways rather than adverse effects
in animal studies requires the use of multiple tools and
approaches (Krewski et al., 2010). Ensuring risk assessments are
protective for all relevant health effects means that pathways
associated with cellular stress responses as well as with specific
targets such as nuclear receptors need to be considered
(Middleton et al., 2017). A Molecular Initiating Event (MIE), is the
initial interaction between a molecule and a biomolecule or bio-
system that can be causally linked to an outcome via a pathway
(Allen et al., 2014). Reporter gene assays are useful tools in dis-
covering or confirming the MIEs that may be associated with a
specific chemical exposure, and therefore have an important
role in the development of human-relevant mechanistic

toxicological risk assessments. One example of a receptor-
mediated MIE is androgen receptor (AR) antagonism. We have
previously described how a non-animal risk assessment for
anti-androgenic effects could be developed and the central im-
portance of the AR to this strategy (Dent et al., 2015).

A number of tools are already available to characterize the
effects of chemical exposure on many of the MIEs relevant for
perturbation of the hypothalamus-pituitary-testicular (HPT)
axis, including AR (ant)agonism. However, not all the tools
needed to make the link between in vitro anti-androgenic activ-
ity and an adverse health effect in humans are available. These
include higher tier in vitro tools able to distinguish endocrine ac-
tivity from adversity and computational models describing the
human HPT axis. Such higher tier tools may not be necessary
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where there is a low probability of exposure and effect concen-
trations overlapping. This principle has already been employed
to compare high-throughput exposure data and bioactivity in-
formation from the ToxCast program (Wetmore et al., 2015), and
such in vitro to in vivo extrapolation approaches are considered
robust enough to be used for testing prioritization (Wambaugh
et al., 2018). Comparison of AC50 or IC50 values from human-
relevant in vitro assays with human plasma exposures is there-
fore gaining popularity as a method of performing mechanistic
human safety risk assessments. In addition to broad screening
using multiple in vitro assays representing different modes of
action, this approach has also been used specifically for endo-
crine activity using data for estrogen receptor agonism and an-
drogen receptor antagonism (Dancik et al., 2015). One question
facing toxicologists performing risk assessments based on new
approaches is whether extrapolating from in vitro AC50 or IC50

values is protective of human health, and what ‘margin of expo-
sure’ is sufficient between the in vitro point of departure and the
predicted or measured plasma exposure level to assure human
safety? One way to address these questions is to put margins of
exposure derived from in vitro only risk assessments into con-
text against margins of exposure for comparator substances
with the same mode of action. One method that has been pro-
posed for estrogen agonists is to calculate the exposure: activity
ratios (EARs) for test substances, and directly compare these
with the EAR of a comparator with a history of dietary exposure
(Becker et al., 2014, 2015). In that approach for estrogen agonists,
the phytoestrogen genistein was selected as the comparator. An
EAR for genistein was calculated by dividing the human plasma
concentration of genistein at steady state (determined from
several studies examining plasma exposure following con-
sumption of soy products) by a measure of in vitro activity for
the estrogen signaling pathway. Based on the assumption that
normal dietary exposure to phytoestrogens is low risk, the EARs
for genistein were then compared with EARs calculated for
other estrogen agonists to provide ‘relative estrogenic activity
exposure quotients.’ Such an approach shows promise because
it considers exposure alongside bioactivity data, and because it
is focuses on the assessment of human safety risk rather than
an attempt to replicate the results of rodent toxicology studies
(Dent et al., 2018; Krewski et al., 2010). We therefore applied simi-
lar techniques to investigate the utility of this approach for
anti-androgenic materials. To provide the measure of anti-
androgenic activity we selected the AR CALUXVR assay
(Sonneveld et al., 2005) as a human relevant and highly specific
reporter gene assay for AR agonists and antagonists (van der
Burg et al., 2010).

The objectives of this work were to:

• Test a number of dietary components in the AR CALUXVR assay to

identify a comparator that could be used to help put the expo-

sure and activity of anti-androgens into context.
• Estimate plasma exposures in humans to the dietary comparator

to allow EARs for other anti-androgens to be put into context.
• Use a case study to investigate whether this approach could be

used to arrive at a safety decision for perturbations in AR signal-

ing for an ingredient in a consumer product without the need to

generate animal data.

MATERIALS AND METHODS: AR CALUXVR ASSAY
Test and reference substances

Common dietary constituents tested in the AR CALUXVR assay
were genistein, resveratrol, diindolylmethane (DIM), quercetin,

and rutin. Case study ingredients were andrographolide (AG)
and bakuchiol. Reference substances were dihydrotestosterone
(DHT), flutamide, and 2-hydroxyflutamide. All test or reference
substances were obtained from Sigma, with the exception of
DHT which was either prepared as a concentration series in
DMSO by Bio Detection Systems B.V. (BDS, Amsterdam, The
Netherlands) using DHT supplied by Steraloids Inc. (purity >

98%) or supplied by Sigma (purity � 99%) and prepared as a con-
centration series in DMSO in-house. The purity of all test sub-
stances was � 95%.

Cell culture

AR CALUXVR cells were obtained and used under license from
BDS. The cells were cultured in growth medium comprised of
Dulbecco’s Modified Eagle Medium (DMEM/F12, Thermofisher
31331028) containing 7.5% heat inactivated fetal calf serum
(FCS), 1% non-essential amino acid solution (NEAA, Sigma), and
10 000 U/ml penicillin/10 000 mg/ml streptomycin (Sigma).
During subculture, once per week 200 mg/ml G418 (gentamycin,
Sigma) solution was added to the medium. The assay was per-
formed in Phenol Red-free DMEM/F12 medium (Thermofisher
21041025) containing 5% charcoal stripped FCS (Gibco), 1%
NEAA, and 10 000 U/ml Penicillin/10 000 mg/ml streptomycin.

AR CALUXVR assay method

The assay was conducted in a GLP compliant laboratory using
test methods based on previously reported procedures
(Sonneveld et al., 2005). On Day 1 of the assay, cells were seeded
in white, clear-bottomed 96-well plates at a density of 1 � 105

cells/ml in assay medium, 100 ml of cell suspension per well.
Plates were incubated for at least 16 h (37�C 5% CO2). On Day 2,
wells were checked to ensure 50%–90% confluency. Medium
was removed and 200 ml of the test substance or reference stan-
dard in assay medium was added to triplicate wells. All test/ref-
erence substances were tested in both the agonism and
antagonism assay, with the exception of flutamide and 2-
hydroxyflutamide which were only tested in the antagonism
assay. In the agonism assay, each plate included a DHT concen-
tration series (1 � 10�12 to 1 � 10�7 M) for quality control pur-
poses as well as the concentration range of the test substance.
The concentration range for each test substance was deter-
mined by performing a cytotoxicity evaluation to ensure that
the highest concentration tested did not cause any changes in
cell number or morphology, and descending concentrations
were set at half log intervals or closer if required to investigate a
steep dose-response. Cell number was assessed using the
Sigma Cell Counting Kit 8, and morphology was evaluated by
light microscopy. For the antagonism assay, the medium was
supplemented with a non-saturating level of DHT approximat-
ing to the EC50 of this ligand (3 � 10�10 M). Each plate included a
flutamide concentration series (1 � 10�9 to 1 � 10�5 M) for qual-
ity control purposes as well as the concentration range of the
test substance. Plates were incubated for 24 h. On Day 3, the lu-
ciferase assay was performed, using the ONE-Glo Luciferase
Assay System (Promega). Luminescence was measured in a
Tecan Safire plate reader. In cases where antagonism was ob-
served (determined as at least a 20% decrease in relative induc-
tion of the test substance at a non-cytotoxic concentration) a
specificity control assay was performed to ensure the decrease
in relative induction was not due to a non-specific effect on eg
general cellular health. This was done by assessing whether the
decrease in relative induction was reversible in a saturating
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concentration of the ligand (DHT). Therefore, in the specificity
control assay each plate included the concentration range of
the test substance in medium containing the non-saturating
level of DHT, the concentration range of the test substance in a
saturating level of DHT (3 � 10�8 M), which approximates to the
EC50 � 100. A single concentration of flutamide (1 � 10�5 M) in
medium containing each level of DHT was also included to
serve as a reference. Each experiment comprised at least 3 inde-
pendent replicates.

Data interpretation

Correction for background luminescence was performed by sub-
tracting the relative luminescence of the control (DMSO only)
wells for each plate. The results were expressed relative to the
reference standard, which was DHT for the agonism assay (lu-
ciferase expression at highest DHT concentration ¼100%) and
Flutamide for the antagonism assay (luciferase expression at
highest Flutamide concentration ¼ 0%). Data were analyzed us-
ing GraphPad Prism and plotted as mean values 6 SEM. Dose-
response modeling was performed on log transformed data us-
ing the nonlinear variable slope (four parameters) equation
(four-parameter logistic curve) in GraphPad for either stimula-
tion (agonism assay) or inhibition (antagonism assay) according
to the equation: Y¼Bottom of dose-response curve þ (Top
of dose response curve-Bottom)/f1þ10ˆ[(LogIC50-X)�HillSlope]g
using a least squares (ordinary) fit with a maximum of 1000
iterations.

The antagonism assay was considered negative when there
was < 20% inhibition (relative induction � 80%) at all doses,
which was a cut-off suggested by the assay vendor and used to
interpret ERa CALUX data (OECD, 2016). Where the antagonism
assay showed inhibition of at least 20% (relative induction �
80%) the specificity control assay described above was per-
formed for all test substances with the exception of hydroxyflu-
tamide, which is a well-known specifically acting anti-
androgen. For specifically acting anti-androgens there is a clear
right shift in the dose-response between the non-saturating
and the saturating concentration of DHT (see flutamide curves
in Figure 2). Where this right shift was observed, or where the
test substance no longer showed an inhibition of luciferase in-
duction at the saturating concentration, this provided evidence
that the decrease in relative induction at the non-saturating
concentration was reversible and test substance was considered
to be a specifically acting anti-androgen. However, if the dose-
response remained the same the inhibition of luciferase was
considered to be due to a non-specific effect, and the test sub-
stance was not considered to be a specifically acting anti-
androgen. This was evaluated for at least 3 individual
replicates.

EXPOSURE: ACTIVITY PROFILING

Exposure: activity profiling was performed using a similar ap-
proach to that proposed for estrogenic responses (Becker et al.,
2014, 2015). First, a suitable comparator was identified from the
dietary components tested in the assay as a substance which
showed a specific effect on the AR signaling pathway. The only
dietary components that showed these characteristics were res-
veratrol and 3,3-diindolylmethane (DIM). DIM has previously
been proposed as a promising dietary comparator for exposure
to anti-androgens (Becker et al., 2014, 2015), and because the
dose-response for DIM was more typical of a AR antagonist this
was selected as the comparator (see Results section). An

exposure: activity ratio was therefore calculated for DIM using
the predicted total plasma exposure and in vitro anti-androgenic
activity data. The IC50 was selected as it is considered the most
appropriate metric to use in EAR calculations (Becker et al.,
2015):

EARðunitlessÞ ¼ Exposure ðplasma exposure in lMÞ
Activity ðIC50lMÞ

Because DIM exposure varies widely between individuals
(Fujioka et al., 2016), to give a representation of this variability,
EARs were calculated using PBBK (physiologically based bioki-
netic) modeling for individuals showing high, mean, and low
plasma exposures. A sub-population of concern with regards to
perturbations in AR signaling is pregnant women, due to the
risk of serious and irreversible harm associated with blockade
of AR signaling during the fetal masculinization programming
window (Macleod et al., 2010). We therefore modeled plasma ex-
posure to females of childbearing age to provide the benchmark
EAR.

EARs were calculated for the remaining test substances us-
ing the same equation. Where exposure data allowed, EARs for
the remaining test substances were also calculated to describe
the variability in human exposures. Where the dose-response
was not sufficiently well described to confidently set the IC50,
the concentration at which the response of the test substance
equalled 50% of the maximum response of the reference stan-
dard (flutamide) was calculated and this value (termed the PC50)
was used instead (OECD, 2016). EARs were also calculated using
AR CALUXVR IC50 values found in the literature for the anti-
androgens p,p0-DDE, vinclozolin, methoxychlor, HPTE, and BPA
(Sonneveld et al., 2005; Suzuki et al., 2011; Wang et al., 2014).

Dietary comparator ratios (DCRs) were calculated based on
the ratio of the EAR for the test substance to the EAR for DIM:

DCR ¼ EARTest substance

EARDIM

In considering these comparisons it should be noted that
some of the EARs were calculated using serum or plasma expo-
sure measured in males, most notably flutamide and hydroxy-
flutamide. The purpose of including these substances was to
illustrate ‘high risk’ DCRs, encompassing exposures that are
intended to completely suppress AR signaling in humans (in the
case of flutamide and its active metabolite hydroxyflutamide,
adult males suffering from prostate cancer). Complete suppres-
sion of AR signaling following flutamide administration to preg-
nant rats has been shown to cause serious and irreversible
adverse effects on their male offspring (Macleod et al., 2010). It is
therefore considered that the DCRs determined for flutamide
and hydroxyflutamide would indicate a high probability of
impacting AR signaling in all populations including pregnant
women.

Variability in DCR was expressed where data allowed the
range of variability in human exposure to be characterized by
calculating DCRs for the highest EARTest substance/the lowest
EARDIM, the mean (or where appropriate median) EARTest substance/
the mean EARDIM and the lowest EARTest substance/the highest
EARDIM. Where the range of variability was not available (eg,
for flutamide and hydroxyflutamide) the variability in DCR
was expressed by calculating this parameter for the mean
EARTest substance/the lowest, mean, and highest EARDIM (see
Supplementary Materials for more detail and all
calculations).
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EXPOSURE ASSESSMENT

It was only necessary to perform exposure assessments for those
test substances showing anti-androgenic activity in the AR
CALUXVR assay, because EARs cannot be calculated for substances
showing no activity. The human plasma or serum exposures that
were used in the EAR calculations were either found in the litera-
ture or generated using a PBBK model. References used to provide
the exposure data are summarized in Table 1, and full details of
the exposure data or predictions used and all EAR and DCR calcu-
lations are provided in the Supplementary Material.

No exposure assessment was performed for AG, which was
negative in the AR CALUXVR assay (see AR CALUXVR Assay section).

RESULTS
AR CALUXVR Assay

A summary of the results for AR CALUXVR assays is shown in
Table 2. None of the test substances showed a positive response
in the agonism assay, whereas in each experiment DHT gave a
consistent positive response with very little variability between
experimental replicates.

As expected, flutamide was less potent in the antagonism
assay than was its active metabolite 2-hydroxyflutamide
(Table 2, Figure 1).

Quercetin, rutin, and AG gave negative results in the antago-
nism assay, because in all 3 replicates there was less than a 20%
reduction in relative luciferase induction at any concentration.
Flutamide (which was run on all plates) showed the expected
antagonistic response.

Genistein met the criteria to progress to a specificity control
assay (20% reduction in relative induction). A specificity control
assay was therefore performed to ensure this was due to a spe-
cific effect on the AR signaling pathway, which showed the re-
duction in relative induction of luciferase for flutamide was
reversible in the presence of a saturating concentration of DHT
for all 3 replicates (Figure 2). However, for genistein the dose-re-
sponse showed no right shift in the presence of a saturating
concentration of DHT. This indicates that the reduced luciferase
expression was due to an effect unrelated to the AR signaling
pathway, and genistein was not acting as a specific AR antago-
nist in this assay, highlighting the value of the specificity con-
trol assay.

Resveratrol showed a clear reduction in relative induction,
and the dose-response was so steep that additional experi-
ments were performed to ensure the full dose-response could
be described (Figure 2). The steep dose-response curve for res-
veratrol did complicate data interpretation, but overall the data
indicated that the effect on relative induction was considered at
least partly reversible with a slight increase in IC50 from 2.17 �
10�5 to 2.73 � 10�5 M.

DIM showed a clear reduction in relative luciferase induc-
tion, meeting the criteria for specificity control testing. Addition
of the saturating concentration of DHT clearly shifted the dose-
response to the right (Figure 2), increasing the IC50 from 1.27 �
10�6 to 7.50 � 10�6 M, indicating the effect on luciferase expres-
sion was reversible and that DIM was acting as a potent and
specific AR antagonist. DIM was therefore selected as the die-
tary comparator, primarily because the dose-response was
more clearly typical of an AR antagonist than was the dose-re-
sponse for resveratrol. In addition, although some studies have
shown a health protective effect of either resveratrol or red
wine (Baur and Sinclair, 2006), the safety of liberal consumption

of crucifers is less contentious than consumption of red wine.
The assumption is that although DIM is a potent anti-androgen,
normal dietary consumption of cruciferous vegetables is not
expected to cause adverse effects in humans relating to distur-
bance of AR signaling.

Bakuchiol showed a clear dose-dependent reduction in rela-
tive luciferase induction (Figure 2), with the 2 highest concen-
trations resulting in > 20% reduction. GraphPad was unable to
make a full dose-response fit to the bakuchiol data, meaning a
reliable IC50 for bakuchiol could not be calculated. Additional
(higher) concentrations of bakuchiol would be necessary to fully
describe the dose-response, but because the highest concentra-
tion of 3 mM was close to the cytotoxic dose range a higher dose
was not tested, and instead a mean PC50 value across all 6 repli-
cates was calculated (Table 2). The relationship between the rel-
ative induction values of bakuchiol at the non-saturating
concentration of the ligand (DHT) with the saturating concen-
tration confirmed that addition of the saturating concentration
reversed the effect on luciferase induction in all 6 replicates
(Figure 2). Therefore, the specificity control assay did indicate
that the reduction in relative luciferase induction was a specific
effect on AR-mediated signaling.

In Vitro to In Vivo Extrapolation

A comparison of the in vitro points of departure (IC50 or for baku-
chiol PC50) including upper and lower 95% CI where this could
be calculated, and the in vivo exposure data or predictions are
shown in Figure 3. For only 2 substances were the predicted or
measured systemic exposures greater than the in vitro points of
departure: hydroxyflutamide and p,p0-DDE exposure values
from one study (Aneck-Hahn et al., 2006). For all other case sub-
stance exposures, the in vitro point of departure was greater
than the predicted or measured systemic exposure.

Dietary Comparator Ratios (DCRs)

Calculations showing the individual EARs and corresponding
DCRs are detailed in the Supplementary Materials, and a com-
parison of the resulting DCRs is shown in Figure 4. Due to its
low bioavailability, the mean DCR for DIM was the lowest calcu-
lated. The DCR range for resveratrol, vinclozolin, BPA, and me-
thoxychlor overlapped with the DCR range for DIM. Aside from
the shampoo case study (see Case Study Risk Assessment sec-
tion), all other substance exposures provided DCRs that did not
overlap with the range for DIM, with hydroxyflutamide provid-
ing the highest value, with a mean DCR of 594 000.

Case Study Risk Assessment

Once we had determined the DCRs for the substances described
above, we considered how this approach could be used to assist
safety decision making using a hypothetical case study, the use
of bakuchiol or AG in a body lotion or shampoo at 0.5%. In a
safety risk assessment for a real consumer product other MIEs
and pathways would also need to be considered, but because
the purpose of this case study was to evaluate the DCR method-
ology we concentrated solely on AR antagonism.

AG was negative in both the agonism and antagonism assay
and was therefore not taken forward as the subject of the risk
assessment case study. The positive result in the AR CALUXVR

(antagonism) assay for bakuchiol was clear, although this sub-
stance was amongst the least potent anti-androgens tested
(Table 2; Figure 3). The exposure assessment based on worst-
case consumer exposure to 0.5% bakuchiol in a body lotion or
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shampoo predicted plasma exposure for adult females of 0.320
and 0.00234 mM, respectively. The in vitro point of departure (in
this case the PC50) was below these predicted human exposure
levels. To further put this margin into context, the DCRs for
bakuchiol in body lotion and shampoo were calculated
(Figure 4). The mean DCR for bakuchiol body lotion was 151,
which is in a similar range to the p,p0-DDE exposures included in
the benchmarking. The mean DCR for bakuchiol at 0.5% in
shampoo was 2.34.

DISCUSSION

Using the EAR for DIM as a comparator with other substances
by calculating their DCR is a pragmatic risk ranking approach,
whereby DCRs below 1 provide strong assurance that adverse
effects in humans relating to perturbations in AR signaling are
very unlikely for that exposure scenario. It is important to note
that a DCR greater than 1 does not necessarily indicate high
risk. If that were the case consumption of anything more than
50 g brussels sprouts would be considered by this approach to
be harmful (see Supplementary Material for DIM exposure
modeling). However, the closer the DCR is to the anti-
androgenic drug flutamide and its active metabolite hydroxyflu-
tamide, the greater the risk. This is because systemic exposure
to hydroxyflutamide following therapeutic use of flutamide is
intended to completely supress AR signaling, and as such signif-
icant health effects relating to AR signaling would be expected
in any population exposed to these levels. Use of DCRs for risk
ranking requires careful consideration of the mode of action of
the substance being risk assessed and how this compares with
the dietary comparator.

The range of DCRs for resveratrol, BPA, vinclozolin, and me-
thoxychlor overlapped with the range of DCRs for DIM. The
DCRs for the methoxychlor metabolite HPTE were outside the
range of DCRs for DIM. The exposure assessments for BPA, vin-
clozolin, and methoxychlor were based on the assumption that
the reference dose or TDI for these substances was ingested,
and HPTE was based on the assumption that the reference dose
of methoxychlor was ingested and completely converted to
HPTE, which is clearly worst-case. Because the reference doses
or TDI for BPA, vinclozolin, and methoxychlor were set to be

Table 1. Exposure Data Used in Calculation of EARs (See Supplementary Materials for All Exposure Data and Predictions Used)

Substance (Description) Exposure Data Description Reference

DIM (metabolite of glucobrassicin, widely
consumed in cruciferous vegetables)

PBBK model predicting DIM plasma exposure (Cmax) follow-
ing consumption of 50 g brussels sprouts

Reported here (see Supplementary
Materials)

Resveratrol (present in skin of berries in-
cluding grapes)

Human pharmacokinetic data describing Cmax following ex-
posure to 25 mg resveratrol. This represents a high level
of dietary intake (Presta et al., 2009) but is well below the
level used as a food supplement (Raederstorff et al., 2013).

Goldberg et al. (2003)

Flutamide and hydroxyflutamide (pros-
tate cancer drug and its active
metabolite)

Human pharmacokinetic data describing Cmax at steady
state following repeated exposure therapeutic dose of
flutamide

Radwanski et al. (1989)

BPA (industrial chemical) Predicted plasma concentration at steady state (Css) based
on kinetic modeling at human exposures of 4 mg/kg/day
(the Tolerable Daily Intake [TDI] set by European Food
Safety Authority [EFSA])

Wetmore et al. (2012)

Vinclozolin (plant protection product) Predicted plasma Css based on kinetic modeling at human
exposures of 25 mg/kg/day (the Reference Dose [RfD] set
by the US Environmental Protection Agency [EPA])

Wetmore et al. (2012)

Methoxychlor (plant protection product) Predicted Css based on kinetic modeling at human expo-
sures of 5 mg/kg/day (the RfD set by the U.S. EPA)

Wetmore et al. (2012)

HPTE (metabolite of methoxychlor) Predicted Css based on kinetic modeling at human expo-
sures of 5 mg/kg/day (the RfD for methoxychlor set by the
U.S. EPA)

Wetmore et al. (2012)

p,p0-DDE (metabolite of the insect control
agent DDT)

Human biomonitoring describing serum levels of popula-
tions exposed in the United States in the 1950s and 1960s
and a population exposed in a DDT-sprayed area in
South Africa in 2003–2005

Longnecker et al. (2002), Bhatia
et al. (2005), and Aneck-Hahn
et al. (2006)

Bakuchiol (risk assessment case study) PBBK model predicting bakuchiol plasma exposure (Cmax)
following once-daily use of a body lotion or a shampoo
containing this substance at 0.5% (hypothetical products)

Reported here (see Supplementary
Materials)

Table 2. AR CALUXVR Assay Results

Substance Agonism
Assay

Antagonism
Assay

Antagonism
Assay IC50

Positive or Negative (þ/�) (mM)a

Flutamide NT þ 0.876
Hydroxyflutamide NT þ 0.0282
Genistein — � —
Resveratrol — þ 21.7
Rutin hydrate — � —
Quercetin hydrate — � —
DIM — þ 1.27
Bakuchiol — þ 2.85b

AG — � —

All values presented to 3 significant figures.

NT, not tested.
aBest-fit IC50 from at least 3-independent experiments at a non-saturating con-

centration of DHT.
bPC50 value presented as a reliable IC50 value could not be obtained from the

dose-response.
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protective of all adverse effects on human health (including
those relating to AR signaling in both adults and the developing
fetus) although some were > 1, the DCR for these substances
are also likely to represent a ‘region of safety.’ The exposure as-
sessment for resveratrol was based on consumption of 25 mg/
day. Although some have described this as representing a mod-
erate intake of red wine (Walle, 2011), depending on the variety
it is possible that well over 600 ml of red wine may need to be
consumed to reach this level of intake (Presta et al., 2009). The
DCR approach suggests that even at this level of intake the res-
veratrol present in the wine is unlikely to have any significant
AR-mediated adverse effects.

The progression from an MIE to an adverse outcome is de-
pendent on the magnitude and duration of the initial interac-
tion, and transient activation of an MIE or a key event may not
result in an adverse outcome. It is therefore important to under-
stand these dose-dependent transitions (or ‘tipping points’) to
ensure the risk assessment is relevant to the protection of hu-
man health (Slikker et al., 2004a,b). From our data it is not possi-
ble to accurately determine a tipping point, that, if reached
would indicate a transition from adaptation to adversity. When
considering whether it was feasible to set a tipping point, we in-
vestigated whether exposures to p,p0-DDE, the active metabolite
of the organochlorine pesticide DDT could provide some useful
insights. Exposures to DDT and p,p0-DDE have been associated
with a number of adverse health effects, including adverse de-
velopmental/reproductive effects relating to the AR signaling
pathway such as cryptorchidism and hypospadias, and numer-
ous epidemiology studies have been performed examining the
link between serum p,p0-DDE levels and adverse outcomes
(Bonde et al., 2016). Case-control studies investigating the rela-
tionship between exposure to p,p0-DDE and birth defects which
were based on data collected in the United States in the 1950s
and 1960s with median maternal serum levels in the control
groups of 34.3 mg/l (Longnecker et al., 2002) or 43 mg/l (Bhatia
et al., 2005) have failed to show a conclusive association be-
tween exposure and hypospadias or cryptorchidism. Studies
performed in areas where DDT is still used for malarial control
have shown some associations between adult (male) serum lev-
els of p,p0-DDE and sperm quality/quantity. For instance, in one
cross-sectional study of 311 adult men from a DDT-sprayed
area in South Africa with a median serum p,p0-DDE level of 697

Figure 2. Androgen receptor antagonism and specificity control results for ge-

nistein, DIM, resveratrol, and bakuchiol. Each graph represents mean data from

at least 3-independent experiments, error bars 6 SEM. No model curve shown

for bakuchiol at DHT 100�EC50 as chosen model did not meet goodness of fit

criteria.

Figure 1. Androgen receptor antagonism results for hydroxyflutamide, mean

data from 3 independent experiments, error bars 6SEM.

380 | RISK ASSESSMENT USING DIETARY COMPARATORS

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/article-abstract/167/2/375/5106021 by U

nilever, Technical Inform
ation Services user on 07 February 2019

76



mg/l, exposure was associated with impaired sperm motility,
sperm cytoplasmic droplets, reduced ejaculate volume, and oli-
gozoospermia (Aneck-Hahn et al., 2006). We calculated EARs
and DCRs for these p,p0-DDE exposure scenarios using published
AR CALUXVR data (Suzuki et al., 2011) to see how they compared,
and only the exposure data from the high exposure study in
South Africa (Aneck-Hahn et al., 2006) exceeded the IC50 for p,p0-
DDE. When interpreting these data, it is important to remember
that the case-control studies reflected maternal serum expo-
sure, whereas the cross-sectional study reflected adult male se-
rum exposure. Therefore, it is not appropriate to use these data
to define a transition from ‘endocrine activity’ to ‘endocrine

disruption.’ They are however informative for the purposes of
risk ranking. It should be noted that although most studies in-
vestigating the effects of lower exposures to DDT or p,p0-DDE
(eg, recent studies in developed countries) do not show any
associations between either maternal or adult male exposure
and birth defects or impaired sperm, some have shown an asso-
ciation. For example, one well conducted study has shown an
association between maternal serum exposures of around 1 ng/
ml and hypospadias (Rignell-Hydbom et al., 2012). Whether the
association seen in that study was due to p,p0-DDE exposure is
not clear, especially given the large number of studies at similar
exposure levels which have not found associations (Carmichael
et al., 2010; Giordano et al., 2010). These include investigations
into the potential for long-term effects of in utero exposure to
p,p0-DDE. For example, in a well-designed study 176 male off-
spring from a Danish cohort of women, there was no relation-
ship between maternal p,p0-DDE levels and long term
consequences on male reproductive health with median mater-
nal serum levels of 8 pmol/ml (2.54 ng/ml) (Vested et al., 2014).
Given the contentious nature of potential low dose effects we
have focused our evaluation on populations exposed to high
levels of p,p0-DDE. This is in line with the conclusions of the US
Agency for Toxic Substances and Disease Registry, which con-
cluded that if a relationship between p,p0-DDE exposure and ad-
verse reproductive/developmental outcomes in humans exists,
it is found in populations exposed to high DDT concentrations
(ATSDR, 2002, 2008).

AG was negative in the AR CALUXVR assay, which was sur-
prising given the existing in vitro and in vivo data. Although sev-
eral rat male fertility studies on either Andrographis paniculata or
AG have shown no adverse effects (Allan et al., 2009; Burgos
et al., 1997), others have shown marked adverse effects on fertil-
ity (Akbarsha et al., 2000; Akbarsha and Murugaian, 2000;
Sattayasai et al., 2010). AG is also reported to affect androgen
signaling in prostate cancer cell lines (Liu et al., 2011), suggesting
an ability to reduce AR expression at the transcriptional level,
inhibit nuclear translocation of AR, inhibit the formation of sta-
bilizing complexes with the co-chaperone Hsp90, slow the
growth of C4-2 prostate cancer cells, and induce apoptosis. This
was the reason for including AG in this evaluation. The lack of
response seen in our study likely reflects differences between
AR CALUXVR cells and C4-2 cells, which were originally derived
from LNCaP prostate cancer cells (Wu et al., 1994). Given these
conflicting data, logical next steps for the evaluation of AG in-
clude assessing the reproducibility of the findings in C4-2 cells
and assessing whether metabolism of AG could account for dif-
ferences between these cell types.

Because different assays may provide different AC50 or IC50 val-
ues for the same test substance, it is important to ensure that all
data used for a specific mode of action are comparable, ie, pro-
duced in the same assay system, and that dose-response informa-
tion from that system are reproducible. The available pre-
validation data on the AR CALUXVR assay shows that the average
IC50s were within a factor of 3 between 2 laboratories (van der Burg
et al., 2010), and in our study where the same substance (flutamide)
was used our IC50 value was similar to the published range. In the
pre-validation study the average IC50 values for flutamide following
6 or 7 experiments were 0.399 and 0.516 mM for laboratory 1 and
laboratory 2 respectively, and our IC50 value was 0.876 mM.

Although the in vitro point of departure for bakuchiol (in this
case the PC50) was below the predicted human exposure levels
following use in both shampoo and body lotion, it was close for
body lotion (approximately 10-fold below). The DCR for baku-
chiol at 0.5% in body lotion was in a similar range to the DCRs

Figure 3. Comparison of AR CALUXVR point of departure (IC50 or PC50) and mea-

sured or predicted serum or plasma exposure. Circles represent IC50 values, tri-

angles represent serum, or plasma exposure. Dietary comparator (DIM) in blue,

case study ingredient (bakuchiol) with hypothetical exposure scenarios in red.

Bakuchiol uses PC50 rather than IC50. For exposure data, where values for un-

certainty (eg, 95%CI) or variability (eg, percentile exposure) were published these

are as described in the Supplementary Materials.

Figure 4. Dietary comparator ratios (DCRs). Dietary comparator (DIM) in blue,

case study ingredient (bakuchiol) with hypothetical exposure scenarios in red.
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calculated for the p,p0-DDE exposures included in the bench-
marking, and the DCR for bakuchiol at 0.5% in shampoo over-
lapped with range of DCRs for DIM. With the current
predictions, exposure to bakuchiol at 0.5% in a body lotion sug-
gests the possibility that AR signaling may be perturbed in con-
sumers, indicating the need for a more detailed evaluation in
higher-tier models. Alternatively, exposure to bakuchiol at 0.5%
in a shampoo appears low risk for this mode of action.

Sources of Uncertainty

As with any risk assessment, there are several uncertainties
with this approach that need to be understood to enable in-
formed safety decision making. These include the reliance on
predicted plasma exposures for the dietary comparator DIM.
However, as described in the Supplementary Materials, suffi-
cient data were available to build a model which correlated well
with measured human plasma levels following administration
of a known quantity of absorption-enhanced DIM and confi-
dence that these predictions are suitable for the purpose of this
investigation is high.

The skin penetration parameters used in the bakuchiol PBBK
model were all predicted, and no human kinetic data were
available to assess the performance of the model, meaning con-
fidence in these predictions is much lower than confidence in
the DIM model (see Supplementary Materials). Further data gen-
eration, especially in vitro skin penetration, plasma protein
binding, and hepatocyte clearance would refine the exposure
model, and obtaining human kinetic data to evaluate the per-
formance of the model would greatly increase confidence in the
model predictions.

In this study, plasma Cmax was used as the measure of expo-
sure. Some substances, like resveratrol and DIM are very rapidly
cleared, whereas others, like p,p0-DDE are very persistent. This
is significant because clearance of anti-androgens is an impor-
tant determinant in their efficacy (Gao et al., 2005). DCR values
must therefore be considered alongside the overall pharmacoki-
netic profile of the substance being evaluated. In other words,
substances in the ‘region of safety’ which are much more per-
sistent than DIM and the other benchmark substances may re-
quire further evaluation.

In Figure 3, we were able to characterize the level of uncer-
tainty or variability for some but not all bioactivity or exposure
data. As described in the Supplementary Materials, a measure
of uncertainty or variability was available in the exposure data
for all test substances apart from flutamide, hydroxyflutamide,
and resveratrol. A measure of uncertainty or variability was pre-
sented in the bioactivity data we generated, because in Figure 3
the best-fit and lower and upper 95% confidence intervals (CI) of
the IC50 were presented. However, because there was very little
variability in the data the error bars are generally not visible on
the logarithmic scale. The lack of 95% CI for the published AR
CALUXVR data is therefore not considered to be a significant con-
tributor to uncertainty within the risk assessment.

A number of anti-androgenic substances, including fluta-
mide, methoxychlor, and vinclozolin, have metabolites which
are more potent than the parent. This exposes a potential weak-
ness in the way we performed the AR CALUXVR assay, ie, without
metabolic activation. This refinement has been described
(Mollergues et al., 2017) and would be a useful additional test to
include to provide further information, firstly on whether a me-
tabolite of AG could cause transcriptional effects in the AR path-
way, and also whether a metabolite of bakuchiol could be more
active than its parent.

The in vitro to in vivo comparisons we have performed were
based on total concentration rather than free concentration in
test media and plasma, which in general are considered a more
appropriate dose metric for in vitro to in vivo extrapolation
(Groothuis et al., 2015). Therefore, any comparison for a sub-
stance that shows different kinetics in vitro and in vivo (eg, those
that are extensively bound to plastic or serum) will be flawed. A
lot of the substances we tested would be expected to be exten-
sively bound both in vitro and in vivo. We considered the
physico-chemical properties of our test and reference substan-
ces, and in particular our key comparator, DIM. Based on this
evaluation we determined that in vitro and in vivo exposures to
free DIM (and the other test substances) are likely to be within
one order of magnitude of their nominal concentration, al-
though analytical determination of free DIM in the assay me-
dium and plasma protein binding would provide further
confirmation of this.

CONCLUSION

Historically, reporter gene assays for endocrine modes of action
have been used to prioritize chemicals for follow-up in subse-
quent in vivo studies, to assess whether the endocrine activity
seen in vitro translates to an in vivo adverse effect and to set a
point of departure (eg, a no-observed-adverse-effect level) for
risk assessment. One of the objectives of this study was to in-
vestigate use of exposure data at an earlier step in this para-
digm to prevent the need to generate animal data on chemicals
with low activity relative to their associated human exposures.
We found that the use of DCRs is a pragmatic approach which
allows novel chemical exposures (as described by the bakuchiol
case study) to be put into context against normal dietary expo-
sure to anti-androgens such as DIM, and against other anti-
androgenic chemicals. The DCR approach may have utility for
other modes of action where appropriate comparators can be
identified.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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CHAPTER 2 SUPPLEMENTARY INFORMATION 

1. CASE STUDY INGREDIENTS

Bakuchiol is a monoterpene phenol, found in seeds of the herb Psoralea corylifolia, and has 

been used in traditional Chinese and Indian medicine for many different purposes (Alam et al. 2017 

Dec 15). It appears to show several different biological activities in vitro, including oestrogenic 

activity in receptor binding, transcriptional activation, and cell proliferation assays (Lim et al. 2009; 

Xin et al. 2010; Lim et al. 2011; Du et al. 2013). The (anti)androgenic activity of bakuchiol is less 

studied, although there is one report of inhibition of androgen-induced LnCaP cell proliferation and 

AR transcriptional activity with a similar potency to flutamide (Miao et al. 2013), and ethanolic 

extracts of P. corylifolia seeds which reportedly contained 20% Bakuchiol were reported to have 

marked effects on the reproductive tracts of both male and female rats and effects on LH, FSH and 

testosterone in male rats (Takizawa et al. 2002; Takizawa et al. 2004). 

Andrographolide (AG) is a major component of the herb Andrographis paniculata, which has 

been used in traditional Asian medicines for centuries for many different indications (Akbar 2011). In 

recent years AG has been investigated as a possible chemotherapeutic (Shi et al. 2008; Chun et al. 

2010) and treatment for upper respiratory tract infections (Coon and Ernst 2004). Standardized 

extracts of A. paniculata have been in common use in Scandinavia to treat and prevent the common 

cold for several decades (Gabrielian et al. 2002). AG has a number of interesting biological activities, 

including potential interactions with the immune system (Calabrese et al. 2000) and with cytochrome 

P450 enzymes (Pekthong et al. 2009; Chien et al. 2010; Jarukamjorn et al. 2010; Qiu et al. 2012). 

Several rat male fertility studies are available on either A. paniculata or AG, some showing no 

adverse effects (Burgos et al. 1997; Allan et al. 2009), and others showing marked adverse effects on 

fertility (Akbarsha et al. 2000; Akbarsha and Murugaian 2000; Sattayasai et al. 2010). AG is also 

reported to affect androgen signaling in prostate cancer cell lines (Liu et al. 2011). This study 

indicates an ability of AG to reduce androgen receptor (AR) expression at the transcriptional level, 
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inhibit nuclear translocation of AR, inhibit the formation of stabilizing complexes with the co-

chaperone Hsp90, slow the growth of C4-2 prostate cancer cells, and induce apoptosis. 

2. EXPOSURE DATA USED IN CALCULATION OF EARs 

2.1. Diindolylmethane (DIM) 

DIM is a product of the metabolism of glucobrassicin, one of the major glucosinolates present 

in cruciferous plants (Barba et al. 2016; Thomson et al. 2016). Indole-3-carbinol (I3C) is produced 

from glucobrassicin in a reaction catalysed by myrosinase, which is present both in the crucifer 

(physically separated from glucobrassicin in intact plant tissue) and in intestinal microflora. I3C is 

therefore produced once glucobrassicin comes into contact either with plant myrosinase after 

chopping or chewing of cruciferous vegetables, or with intestinal microfloral myrosinase in the lower 

intestine. DIM is then formed by acid condensation of two molecules of I3C. It is known to be a 

potent anti-androgen (Le et al. 2003) and has previously been proposed as a promising dietary 

comparator for exposure to anti-androgens (Becker et al. 2014; Becker et al. 2015). However, DIM 

has very low bioavailability (Reed et al. 2008), and there is a lack of human pharmacokinetic data 

showing plasma exposures of DIM following consumption of glucobrassicin. Data are however 

available quantifying plasma levels of DIM following consumption of either I3C or DIM (Reed et al. 

2006; Reed et al. 2008) and quantifying urinary excretion of DIM following consumption of a known 

quantity of glucobrassicin in vegetables (Fujioka et al. 2014; Fujioka et al. 2016). This information 

was used to develop a physiologically-based biokinetic (PBBK) model describing the plasma 

exposure to DIM following consumption of 50 g brussels sprouts. 

First, a PBBK model for DIM was developed, and all PBBK simulations were carried out 

using the commercially available software GastroPlusTM version 9.5 (Simulation Plus Inc., Lancaster, 

CA). The main parameters used to develop the PBBK model are listed in Table S1. Physicochemical 

and pharmacokinetic parameters of DIM were obtained from either predicted or measured data. 

DIM’s logP, unbound fraction in plasma (fup) and human blood-to-plasma partition ratio values were 
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predicted using ADMET Predictor (Simulations Plus Inc., Lancaster, CA).  Human total clearance 

(CLtotal) was derived using a scaling equation CLhuman/kg = 0.152ꞏCLrat/kg (Tang et al. 2007), with the 

CLrat value taken from a rat intravenous study which provided a total clearance value of 4.16 l/h/kg 

(Wu et al. 2015).  Assuming elimination of DIM is principally either through hepatic metabolism or 

renal excretion, the human CLhepatic was calculated by subtracting the predicted CLrenal (7.17 l/h) from 

the CLtotal. The programme’s Advanced Compartmental Absorption and Transit (ACATTM) model 

described the intestinal absorption and gut first pass extraction (FPE) for oral (p.o.) doses, coupled 

with the PBPKPlusTM module for simulation of the PK distribution. Population-dependent 

physiological parameters in human PBBK models were obtained using the Population Estimates for 

Age-Related Physiology™ module in GastroPlus. The PBBK model was verified by comparing 

against a clinical study using absorption-enhanced DIM in an oral exposure (Reed et al. 2008) and 

was found to predict the measured plasma values at all doses with a high degree of accuracy (see 

Supplemental Figure S1 for an example).  The extent of urinary excretion predicted by the model 

compared favourably with the results of another clinical study in which one person ingested 150 mg 

DIM (Sepkovic et al. 2001) and the observations that the majority of DIM is excreted within 12-hours 

(Fujioka et al. 2014; Fujioka et al. 2016).  This model therefore provided the ability to model DIM 

absorption and clearance and was used to back-calculate the plasma exposures that would be 

necessary to result in the levels of urinary excretion seen following the consumption of 50 g brussels 

sprouts with a known glucobrassicin content (Fujioka et al. 2014).  Total urinary excretion of DIM 

following consumption of a fixed quantity of glucobrassicin (92 µmol glucobrassicin in 50 g sprouts) 

showed a high level of inter-individual variability, with mean values per subject ranging from 3984 to 

60673 pmol DIM/24h.  This level of variation is not surprising, since the amount of DIM absorbed 

following consumption of crucifers is governed by highly variable parameters, including the amount 

of chewing and inter-individual differences in gut microbiota.  Therefore, a range of values were 

modelled using the 5th percentile, mean and 95th percentile 24-hour urinary excretion values which 

were 1.19, 3.61, and 7.64 µg respectively for the females on the study.  The model predicted that 

plasma exposures of 0.148, 0.447, and 0.946 nM would be necessary to result in these levels of 
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urinary excretion for the average female on the study (35.8 years of age), and these values were used 

in the calculation of the EARs for DIM.   

Table S1: DIM PBBK parameter list 

Parameter Value Reference 

LogP 4.17 Predicted (ADMET predictor) 

Solubility 0.012 mg/ml Predicted (ADMET predictor) 

Fraction unbound in plasma 2.84% Predicted (ADMET predictor) 

human blood-to-plasma 

partition ratio 

0.82 Predicted (ADMET predictor) 

CLhepatic 0.63l/h/kg Scaled from rat (Wu et al 2015; Tang et al 2007) 

CLrenal 7.17 l/h Predicted (GastroPlus) as equal to glomerular 

filtration rate (GFR) 

It is important to note that the model was verified against data generated on absorption-

enhanced DIM, which uses microencapsulation to increase solubility and therefore bioavailability. 

This means that the model may over-predict plasma exposure for non absorption-enhanced DIM. The 

only published comparisons of the bioavailability of absorption-enhanced DIM vs. crystalline DIM 

show approximately 34% greater overall plasma exposure (AUC0-24) of absorption enhanced DIM 

following oral exposure to mice (Anderton et al. 2004). It is not known whether bioavailability of 

DIM formed in the GI tract with a meal would be more similar crystalline or absorption-enhanced 

DIM, but worst case from the perspective of using DIM as a dietary comparator is that absorption-

enhanced DIM may be in the region of 30% more bioavailable than is DIM generated in the gut from 

consumption of glucobrassicin. This represents an area of uncertainty in the modelling. However, the 

amount of brussels sprouts provided to participants in this study was 50 g, which is significantly lower 

than the recommended portion size for vegetables of 80 g 

(https://www.nhs.uk/Livewell/5ADAY/Pages/Portionsizes.aspx). This means that even if the DIM 

84



plasma exposure following consumption of 50 g brussels sprouts is over-estimated by the model, 

consumers following a healthy diet and lifestyle will consume significantly more cruciferous 

vegetable than 50 g/day and therefore the model prediction is still likely to be conservative. Data from 

the UK National Diet and Nutrition Survey indicates 97.5th percentile consumption of cruciferous 

vegetables to be 85 g/day (calculated using DaDiet Dietary Intake Evaluation Tool 

(http://www.dazult.com/products/dadiet/) for the food code ‘Green Leafy Vegetables Not Raw’ using 

NDNS data for 2008-2015). 

2.2. Resveratrol 

Resveratrol is present in many fruits and berries, but notably in the skins of grapes. It is 

therefore a constituent of red wine. A number of pharmacokinetic studies have been performed 

measuring plasma levels of resveratrol following an intake of 25 mg, which has been described as 

corresponding to a moderate intake of red wine (Walle 2011).  However, resveratrol content of wines 

varies widely, and well over 600 ml wine may need to be consumed to reach this level of intake 

depending on the variety (Presta et al. 2009).  Much higher levels of resveratrol (>100 mg) are used as 

a health supplement (Raederstorff et al. 2013).  Two human pharmacokinetic studies have evaluated 

plasma exposures following oral ingestion of 25 mg resveratrol (Goldberg et al. 2003; Almeida et al. 

2009). Although resveratrol is well absorbed it is rapidly metabolised, and the peak plasma 

concentrations measured in these studies were between 6.48 and 37.2 nM. The highest (worst-case) of 

these plasma exposures was used in the EAR profiling.  The low number of panellists in this study 

mean that it was not possible from these data to reliably judge variability in exposure, so only the 

mean Cmax was used. 

2.3. Flutamide and Hydroxyflutamide 

Human plasma exposures for flutamide and 2-hydroxyflutamide of 0.334 µM and 5.882 µM 

respectively were taken from the mean Cmax at Day 6 from a pharmacokinetic study following 

repeated administration of the recommended therapeutic dose of 250 mg flutamide (Radwanski et al. 
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1989).  From these published data, it was not possible to reliably quantify the variability or 

uncertainty within the population, so only the mean Cmax values were presented. 

2.4. BPA, vinclozolin, Methoxychlor and HPTE 

Measured adult human plasma exposures for vinclozolin, methoxychlor or HPTE could not be 

located in the literature. Plasma exposures for these substances and for BPA was therefore based on 

previous high throughput exposure predictions (Wetmore et al. 2012). This previous work included 

predictions of the plasma concentration at steady state (Css) for these chemicals at a fixed human oral 

dose of 1 mg/kg/day. Assuming that the relationship between oral dose and Css will be linear at low 

doses, we adjusted the Css by US EPA’s oral reference dose (RfD) or the European Food Safety 

Authority’s tolerable daily intake (TDI) for these chemicals to arrive at a worst-case plasma level in 

humans using the equation: 

Css at oral RfD (µM) = Css at 1 mg/kg/day (µM) × 
Oral RfD or TDI (mg/kg/day) 

1 mg/kg/day 

The oral RfDs used were 0.025 mg/kg/day for vinclozolin, and 0.005 mg/kg/day for 

methoxychlor, although it should be noted that all pesticide uses of methoxychlor were suspended in 

the USA in 2000 (https://www.epa.gov/sites/production/files/2016-09/documents/methoxychlor.pdf). 

Since HPTE is a metabolite of methoxychlor no oral RfD was set for this substance. The Css for HPTE 

was therefore adjusted using the oral RfD of methoxychlor.  Although this provides an over-estimate 

of plasma HPTE levels, first-pass metabolism of methoxychor to form HPTE does appear to be high 

(Ohyama et al. 2005). The EFSA TDI of 4 µg/kg bw/day was used for BPA as this was based on the 

most recent evaluation (EFSA 2015).   The exposure values calculated were therefore: 
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Table S2 Calculation of Css based on modelling conducted by Wetmore et al., 2015 

Substance Css predicted at oral exposure of 1 mg/kg/day (µM) 

from Wetmore et al., 2015 

Oral 

RfD/TDI 

(mg/kg/day) 

Css at RfD/TDI (µM) 

5th percentile Median 95th percentile 5th 

percentile 

Median 95th 

percentile 

Vinclozolin 0.035677852 0.078779539 0.162652969 0.025 8.92×10-4 1.97×10-3 4.07×10-3 

HPTE 0.673816256 1.240577593 2.89992884 0.005 3.37×10-3 6.20×10-3 1.45×10-2 

Methoxychlor 2.833690676 5.197489089 12.0049649 0.005 1.42×10-2 2.60×10-2 6.00×10-2 

BPA 0.388648266 0.856920814 1.72731029 0.004 1.55×10-3 3.43×10-3 6.91×10-3 

As an indication of the uncertainty in the exposure evaluation the 5th, median and 95th 

percentile exposures were used to calculate the lowest, mean and highest EARs. 

2.5. p,p’-DDE 

In developed countries use of DDT is now severely restricted, resulting in low serum 

exposures to p,p’-DDE in many general populations. Case control studies investigating the 

relationship between exposure to p,p’-DDE and birth defects which were based on data collected in 

the USA in the 1950’s and 1960’s described median maternal serum levels in control groups of 34.3 

µg/l (Longnecker et al. 2002) or 43 µg/l (Bhatia et al. 2005). In developing countries where DDT is 

still used for malarial control, serum levels are much higher. For instance, in a cross sectional study of 

311 adult men from a DDT-sprayed area in South Africa the median serum p,p’-DDE level was 697 

µg/l (Aneck-Hahn et al. 2006). 

For the case control studies the 25th, median and 75th percentile serum levels in the control 

population were used in the calculation of EARs.  In the cross-sectional study the 25th, median and 

75th percentile serum levels of the study population were used.  Note that the total p,p’-DDE level in 

the serum was used in the calculations rather than lipid-adjusted values to enable a comparison with 

the other substances included in this study. In the cross-sectional study (Aneck-Hahn et al. 2006) only 
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lipid-adjusted values were presented for the 25th and 75th percentiles (43 and 345 µg/g respectively).  

However, since a total and lipid adjusted level for the median value was quoted (697 µg/l and 134 

µg/g respectively) an adjustment factor of x 5.201 was used to convert the lipid-adjusted serum 

concentration to a total serum level. 

2.6. Bakuchiol (case study substance) 

For the purpose of the consumer safety risk assessment case study we assumed that the case 

study ingredient would be present in either a skin cream (body lotion) or a shampoo at 0.5%.  The 

body lotion exposure scenario results in a consumer applying approximately 75 mg of the case study 

ingredient to their skin per day which is assumed to be left on the skin (Adeleye et al. 2014).  The 

shampoo exposure scenario results in approximately 0.0523 g of the case study ingredient being 

applied to the scalp, of which 1% is retained following rinsing (SCCS 2016).  The duration of 

exposure to the retained product was assumed to be 24-hours, representing once-daily use of the 

shampoo or body lotion.  A PBBK model for bakuchiol was developed to simulate these dermal 

exposure situations to predict the internal exposure of bakuchiol for humans. All PBBK simulations 

were carried out using the commercially available software GastroPlusTM version 9.5. The main 

parameters used to develop the PBBK model are listed in table S3. Physicochemical and 

pharmacokinetic parameters of bakuchiol were obtained from either predicted or measured data. 

Bakuchiol’s unbound fraction in plasma (fup), human blood-to-plasma partition ratio, and partition 

coefficient and diffusivity values for different skin layers were predicted using ADMET Predictor. 

Human total clearance (CLtotal) was derived using a scaling equation CLhuman/kg = 0.152ꞏCLrat/kg 

(Tang et al. 2007), with the CLrat value taken from a rat intravenous study which provided a total 

clearance value of 59.8 ml/min/kg (Zhuang et al. 2013).  Assuming elimination of Bakuchiol is 

principally either through hepatic metabolism or renal excretion, the human CLhepatic can then be 

calculated by subtracting the predicted CLrenal (0.2 l/h) from the CLtotal. The program’s transdermal 

module described the absorption for dermal exposure, coupled with its PBPKPlusTM module for 

simulation of the PK distribution. Population-dependent physiological parameters in human PBBK 
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models were obtained using the Population Estimates for Age-Related Physiology™ module in 

GastroPlus. No human kinetic data were available to verify the performance of the model, and as such 

confidence in the model predictions is considered low.  The model predicted a Cmax in females of 

0.320 and 2.34×10-3 µM for body lotion and shampoo respectively (See Supplemental Figures S3 and 

S4) 
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Table S3: Bakuchiol PBBK parameter list  

Parameter Value Reference 

LogP 5.72 Predicted (ADMET predictor) 

Solubility 0.0148 mg/ml  Predicted (ADMET predictor) 

Fraction unbound in plasma 3% Predicted (ADMET predictor) 

human blood-to-plasma 

partition ratio 

1.01 Predicted (ADMET predictor) 

CLhepatic 42.8l/h Scaled from rat (Tang et al. 2007; Zhuang et al. 

2013) 

CLrenal 0.2 l/h Predicted (GastroPlus) as glomerular filtration rate 

(GFR) x fraction unbound in protein (Fup) 

Partition coefficient 

(stratum corneum) 

1861.4 Predicted (ADMET predictor) 

Diffusivity (stratum 

corneum) 

5.169x10-11 cm2/s Predicted (ADMET predictor) 

Partition coefficient (viable 

epidermis) 

0.69899 Predicted (ADMET predictor) 

Diffusivity (viable 

epidermis) 

1.871x10-6 cm2/s  Predicted (ADMET predictor) 

Partition coefficient 

(dermis) 

0.69899 Predicted (ADMET predictor) 

Diffusivity (dermis) 1.871x10-6 cm2/s Predicted (ADMET predictor) 
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3. CALCULATION OF EARs AND DCRs

Note that all EAR and DCR calculations were performed on unrounded data and presented to 3 

significant figures.  The EARs for DIM, resveratrol (RES), flutamide (FLU), 2-hydroxyflutamide 

(HF) were calculated using the best fit IC50 values, and the EAR for bakuchiol (BAK) was calculated 

using the PC50: 

EARDIM(lowest) = 1.48 x10-4 µM = 1.16 x10-4 

1.27 µM 

EARDIM(mean) = 
4.47x10-4 µM 

= 3.51x10-4 
1.27 µM 

EARDIM(highest) = 
9.46 x10-4 µM 

= 7.43 x10-4 
1.27 µM 

EARRES  = 
3.72x10-2 µM 

= 1.72 x10-3 
21.7 µM 

EARFLU  = 
0.334 µM 

= 0.381 
0.876 µM 

EARHF  = 
5.88 µM 

= 208 
2.82x10-2 µM 

EARBAK(body lotion)  = 
0.320 µM 

= 0.112 
2.85 µM 
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EARBAK(shampoo)  = 
2.34×10-3 µM 

= 8.21×10-4 
2.85 µM 

   

The EARs that were calculated for the chemicals based on publicly available AR CALUX® data for 

bisphenol A (BPA) (Wang et al. 2014), vinclozolin (VIN), methoxychlor (MX), HPTE (Sonneveld et 

al. 2005) and p,p’-DDE (DDE) (Suzuki et al. 2011) were: 

EARBPA(lowest) = 
1.55×10-3 µM 

= 1.04×10-3 
1.5 µM 

   

EARBPA(mean) = 
3.43×10-3 µM 

= 2.29×10-3 
1.5 µM 

   

EARBPA(highest) = 
6.91×10-3 µM 

= 4.61×10-3 
1.5 µM 

   

EARVIN(lowest) = 
8.92×10-4µM 

= 8.92×10-4 
1 µM 

   

EARVIN(mean) = 
1.97×10-3µM 

= 1.97×10-3 
1 µM 

   

EARVIN(highest) = 
4.07×10-3µM  

= 4.07×10-3 
1 µM 
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EARHPTE(lowest) = 
3.37×10-3µM 

= 1.12×10-2 
0.3 µM 

EARHPTE(mean)  = 
6.20×10-3µM 

= 2.07×10-2 
0.3 µM 

EARHPTE(highest)  = 
1.45×10-2µM 

= 4.83×10-2 
0.3 µM 

EARMX(lowest) = 
1.42×10-2µM 

= 1.67×10-3 
8.5 µM 

EARMX(mean) = 
2.60×10-2µM 

= 3.06×10-3 
8.5 µM 

EARMX(highest) = 
6.00×10-2µM 

= 7.06×10-3 
8.5 µM 
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EARDDE(lowest)
1 = 

7.52×10-2 µM 
= 0.167 

0.45 µM 

EARDDE(median)
1 = 

0.108 µM 
= 0.240 

0.45 µM 

EARDDE(highest)
1 = 

0.166 µM 
= 0.368 

0.45 µM 

EARDDE(lowest)
2 = 

0.101 µM 
= 0.224 

0.45 µM 

EARDDE(median)
2 = 

0.135 µM 
= 0.300 

0.45 µM 

EARDDE(highest)
2 = 

0.178 µM 
= 0.394 

0.45 µM 

1 Based on exposure data from Longnecker et al., 2002 

2 Based on exposure data from Bhatia et al., 2005 
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EARDDE(lowest)
3 = 

0.704 µM 
= 1.57 

0.45 µM 

EARDDE(median)
3 = 

2.19 µM 
= 4.87 

0.45 µM 

EARDDE(highest)
3 = 5.64 µM = 12.5 

0.45 µM 

3 Based on exposure data from Aneck Hahn et al., 2006 
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The DCRs were calculated as: 

DIM (lowest) = 
1.16×10-4 

= 0.157 
7.43×10-4 

   

DIM (mean) = 
3.51×10-4 

= 1 
3.51×10-4 

   

DIM (highest)= 
7.43×10-4 

= 6.38 
1.16×10-4 

   

RES (lowest) = 
1.72×10-3 

= 2.32 
7.43×10-4 

   

RES (mean) = 
1.72×10-3 

=4.91 
3.51×10-4 

   

RES (highest) = 
1.72×10-3 

=14.8 
1.16×10-4 
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FLU (lowest) = 
0.381 

= 514 
7.43×10-4 

FLU (mean) = 
0.381 

= 1090 
3.51×10-4 

FLU (highest) = 
0.381 

= 3280 
1.16×10-4 

HF (lowest) = 
208 

= 281000 
7.43×10-4 

HF (mean) = 
208 

= 594000 
3.51×10-4 

HF (highest) = 
208 

= 1790000 
1.16×10-4 
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BAK (body lotion lowest) = 
0.112 

= 151 
7.43×10-4 

BAK (body lotion mean) = 
0.112 

= 320 
3.51×10-4 

BAK (body lotion highest) = 
0.112 

= 965 
1.16×10-4 

BAK (shampoo lowest) = 
8.21×10-4 

= 1.11 
7.43×10-4 

BAK (shampoo mean) = 
8.21×10-4 

= 2.34 
3.51×10-4 

BAK (shampoo highest) = 
8.21×10-4 

= 7.06 
1.16×10-4 

BPA (lowest) = 
1.04×10-3 

= 1.40 
7.43×10-4 

BPA (mean) = 
2.29×10-3 

= 6.52 
3.51×10-4 

BPA (highest) = 
4.61×10-3 

= 39.6 
1.16×10-4 
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VIN (lowest) = 
8.92×10-4 

= 1.20 
7.43×10-4 

   

VIN (mean) = 
1.97×10-3 

= 5.62 
3.51×10-4 

   

VIN (highest) = 
4.07×10-3 

= 35.0 
1.16×10-4 

   

HPTE (lowest) = 
1.12×10-2 

= 15.1 
7.43×10-4 

   

HPTE (mean) = 
2.07×10-2 

= 59.0 
3.51×10-4 

   

HPTE (highest) = 
4.83×10-2 

= 416 
1.16×10-4 
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MX (lowest) = 
1.67×10-3 

= 2.24 
7.43×10-4 

MX (mean) = 
3.06×10-3 

= 8.72 
3.51×10-4 

MX (highest) = 
7.06×10-3 

= 60.7 
1.16×10-4 

DDE (lowest)1 = 
0.167 

= 225 
7.43×10-4 

DDE (median)1 = 
0.240 

= 684 
3.51×10-4 

DDE (highest)1 = 
0.368 

= 3170 
1.16×10-4 

1 Based on exposure data from Longnecker et al., 2002 
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DDE (lowest)2 = 
0.224 

= 301 
7.43×10-4 

DDE (median)2 = 
0.300 

= 857 
3.51×10-4 

DDE (highest)2 = 
0.394 

= 3390 
1.16×10-4 

DDE (lowest)3 = 
1.57 

= 2110 
7.43×10-4 

DDE (median)3 = 
4.87 

= 13900 
3.51×10-4 

DDE (highest)3 = 
12.5 

= 108000 
1.16×10-4 

2 Based on exposure data from Bhatia et al., 2005 

3 Based on exposure data from Aneck Hahn et al., 2006 
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Figure  S1:  Verification  of  PBBK model  for  DIM.   Points  show measured 

plasma  values  following  oral  administration  of  150  mg  absorption‐

enhanced  DIM  to  volunteers  (Reed  et  al.,  2008).   Solid  line  shows 

predicted plasma values, dotted line shows predicted urinary excretion. 

Figure S2: PBBK predictions of plasma DIM levels from urinary excretion 

of 3.61 µg DIM over 24‐hours.  Solid line shows predicted plasma values, 

dotted line shows predicted urinary excretion. 
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Supplementary Figures 

Figure S3: PBBK predictions of plasma bakuchiol levels following exposure 

to 0.5% in a body lotion. Dotted line shows predictions for females, solid 

line shows predictions for males. 

Figure  S4:  PBBK  predictions  of  plasma  bakuchiol  levels  following 

exposure  to  0.5%  in  a  shampoo.  Dotted  line  shows  predictions  for 

females, solid line shows predictions for males. 
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Supplementary Figure 
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Figure S5:   AR‐CALUX® Assay Principle.  The potent androgen DHT added to the cell 

media  enters  the  cells  and binds with  the  androgen  receptor, whereby  the  ligand‐

receptor complex dimerizes and translocates to the nucleus.   Binding of the ligand‐

receptor complex to androgen responsive elements results in transcription of genes 

coding for luciferase, producing this enzyme.  Following cell lysis, luciferine is added as 

a substrate for  luciferase, and a  light signal  is produced as a result of this reaction. 

Light production detected in an appropriate plate reader is therefore proportional to 

receptor activation.  Addition of a competitive androgen receptor antagonist reduces 

DHT  binding  to  the  receptor,  resulting  in  a  reduced  production  of  luciferase  and 

therefore light.  Many CALUX assays are available, raising the possibility that a dietary 

comparator ratio approach may be developed for other modes of action if appropriate 

dietary comparators can be found. 
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ABSTRACT 

An exposure-led non-animal toxicological risk assessment approach for effects on the hypothalamus-

pituitary-gonadal axis requires integration of data from multiple sources.  This could include in vitro 

models of different parts of the axis, since chemicals may exert effects in any level of the axis.  To 

date, little attention has been paid to the development of human-derived in vitro tools to characterize 

the effects on gonadotropin releasing hormone (GnRH) signalling in the pituitary gland.  Although 

rodent in vitro or ex vivo models exist which could form part of a non-animal risk assessment 

approach for perturbations in pituitary function, a human-based system eliminating the need for inter-

species extrapolation would be more desirable to use in human health risk assessment.  In the absence 

of a human-derived gonadotrope cell line a search was conducted for a useful surrogate cell line that 

would fulfil the success criteria of 1. being human-derived; 2. expressing the GnRH receptor Type I 

(GnRHR); and 3. responding to GnRH stimulation by increasing expression of gonadotropes (LH and 

FSH).  For this evaluation two neuroblastoma cell lines (SH-SY5Y and BE(2)-M17) were shortlisted, 

and gene and protein expression experiments conducted to assess whether they met the success 

criteria.  In BE(2)-M17 cells there was no detectable expression of the genes coding for GnRHR 

(GNRHR) or FSH (FSHB), and no detectable GnRHR, FSH or LH protein.  Although SH-SY5Y cells 

were shown to express GNRHR and LHB genes, they showed no FSHB gene expression, and no 

GnRHR or LH protein was identified.  Furthermore, GNRHR and LHB gene expression was not 

affected in a consistent manner by stimulation with GnRH.  Therefore, neither cell line met the 

success criteria.  Given the challenges associated with developing a useful human gonadotrope cell 

line, it is likely that a future human in vitro model of the pituitary gland will rely on developments in 

stem cell research. 

Keywords: Hypothalamus-pituitary-gonadal axis; In vitro; Non-animal; Pituitary gland; Risk 

assessment 
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1. INTRODUCTION 

Efforts are underway to replace the use of animal data in toxicological risk assessment with in 

vitro methods that evaluate changes in normal cellular signalling pathways in human cells or tissues 

(Krewski et al., 2010). This presents a great opportunity to make safety risk assessments more human 

relevant, and in the ability to characterize the effects of more environmentally relevant exposure 

levels.  Both these areas are of interest to researchers assessing the safety risks associated with 

chemicals that interact with the endocrine system and could help address some of the key 

controversies in this area such as the presence or absence of so-called ‘low-dose effects’ (Rhomberg 

and Goodman, 2012; Vandenberg et al., 2012).  However, there are also enormous challenges in 

applying pathways-based risk assessment methodologies to endocrine active chemicals.  Chiefly, in 

vitro systems do not yet exist that enable a distinction to be made between chemical exposures 

capable of having endocrine activity and those capable of causing an adverse health effect (Tinwell et 

al., 2013).  In part this is due to individual screening tests representing one part of the endocrine 

system, rather than modelling the complex interactions within the system as a whole.  For example, 

whilst many tests exist to characterize androgen receptor (AR) or oestrogen receptor (ER) agonism or 

antagonism, effects occurring in the rest of the hypothalamus-pituitary-gonadal (HPG) axis also need 

to be represented by accepted in vitro methods and computational models that enable these data to be 

integrated.  This includes the key events relating to gonadotropin releasing hormone (GnRH) 

signalling which could be affected at the level of the hypothalamus and pituitary and thus have 

downstream effects on androgen or oestrogen signalling (Dent et al., 2015). 

The purpose of the work described here was to assess the availability and suitability of human cell 

lines to study effects at the level of the pituitary gonadotrope cells.  Such a test system will be needed 

to characterize either endocrine-mediated specific effects (such as GnRH receptor (GnRHR) 

antagonism) or non-specific effects (such as general toxicity causing a reduction in gonadotropin 

release) before an integrated model of the HPG axis can be described and a truly non-animal approach 

to risk assessment for perturbations in this axis can be achieved. 
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A number of rodent-derived gonadotrope cell lines exist which have been used to further 

understanding of GnRH signalling (Ooi, Tawadros and Escalona, 2004).  For example, LβT2 cells, 

derived from gonadotrope cells by tumourigenesis in transgenic mice have been widely used in the 

study of GnRH signalling and decoding of the GnRH pulse frequency (Thomas et al., 1996; Turgeon 

et al., 1996; Bédécarrats and Kaiser, 2003; Choi et al., 2016).  Although a number of rodent-derived 

gonadotrope cell lines have been well characterized, in-line with a desire to increase the human 

relevance of the toxicological risk assessment process, it is preferable to use human-derived cells 

wherever possible.  This presents a challenge in the area of GnRH signalling, because a readily-

available human gonadotrope cell line remains elusive.  HP75 cells, derived from a human clinically 

non-functioning human pituitary adenoma have been described which apparently express some 

characteristics of gonadotrope cells (Jin et al., 1998).  Although this appears to be the most studied 

human pituitary cell line, it has been referenced far less than any of the rodent cell lines and the cells 

are no longer commercially available.  This may be because researchers who have used this cell line 

have reported they are challenging to culture (Xun Zhang, personal communication).  In the absence 

of a source of HP75 cells a search for a surrogate human cell line that could provide useful 

information on perturbations in GnRH signalling in humans was conducted.  For cells to be a useful 

model to be used in routine toxicological safety evaluation they need to grow readily under laboratory 

conditions and provide reproducible results across different biological replicates.  In addition, we 

determined that for our purposes a surrogate for gonadotrope cells must meet the following basic 

criteria: 

‐ Be human-derived (thus eliminating the need for inter-species extrapolation) 

‐ Express the GnRHR Type I 

‐ Respond to GnRH stimulation by increasing expression of gonadotropes (LH and FSH) 

Several non-pituitary cancer cell lines reportedly express the GnRHR (Leuschner et al., 2003), 

although many of these express the Type II rather than the Type I receptor expressed by normal 

pituitary cells.  We therefore investigated the suitability of using neuroblastoma cell lines that 

reportedly express the Type I receptor and respond to GnRH stimulation as a surrogate for pituitary 
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gonadotrope cells.  SH-SY5Y cells and BE(2)-M17 neuroblastoma cell lines have been reported to 

express the Type I receptor and to respond to GnRH treatment by increasing luteinizing hormone 

(LH) gene (LHB) and protein expression (Wilson et al., 2006; Rosati et al., 2011).  A limitation of 

using these cells is that human-derived cancer cell lines may reflect normal human biology no better 

than rodent cells.  Therefore, an important part of any further characterization once the three initial 

criteria are met would be to assess whether the human-derived cell line replicates the human response 

any better than would a rodent cell line. 

2. EVALUATION OF SH-SY5Y AND BE(2)-M17 CELLS

2.1. Materials and methods 

2.1.1. Assessment of gene expression 

SH-SY5Y and BE(2)-M17 cells were obtained from the Culture Collection, Public Health England 

(ECACC). They were cultured in Ham's F12:Eagle’s Minimal Essential Medium (EMEM) (1:1) 

supplemented with final concentrations of 2mM Glutamine, 1% Non Essential Amino Acids (NEAA), 

10% Heat Inactivated Fetal Bovine Serum (FBS) and 100 U/ml/100 µg/ml Penicillin/Streptomycin.  

Cells were cultured in an atmosphere of 5% CO2 in air at 37 ºC.  The cells were maintained in 

monolayer culture and subcultured by trypsinisation when required.  Where SH-SY5Y cells were 

supplemented with GnRH, a serum-free medium was used to reduce background hormonal stimuli.  

The serum-free medium was Dulbecco’s Modified Eagle’s Medium with 1% 

insulin/transferrin/sodium selenite supplement. 

LH and FSH are dimeric glycoproteins with a common α subunit and unique β subunits which derive 

from different genes encoding distinct proteins (Bernard et al., 2010). In order to confirm that SH-

SY5Y and BE(2)-M17 cells express mRNA for GNRHR and LHB, and to establish whether mRNA 

for FSHB is present in these cells, SH-SY5Y and BE(2)-M17 cells were placed 12-well plates at a 

density of 2x106 cells/well (SH-SY5Y cells) or 1x106 cells/well (BE(2)-M17) in complete medium.  

At least 24-hours later RNA was extracted using the RNeasy mini kit (Qiagen).  The quality and 
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quantity of RNA extracted was analysed using the Agilent 2100 Bioanalyser and the Nanodrop ND-

1000 spectrophotometer.  The High Capacity RNA-to-cDNA (Applied Biosystems) was used to 

reverse transcribe mRNA to cDNA, with 1-1.05 µg total RNA used per 20 µl reverse transcription 

reaction.  qRT-PCR was performed using TaqMan® Gene Expression Assays (Applied Biosystems) 

in an Applied Biosystems 7500 Fast RT-PCR instrument according to the manufacturers’ 

recommended settings.  cDNA template was diluted 1:4 in RNase-free water.  TaqMan® assays used 

were GNRHR (Assay ID Hs00171248_m1), LHB (Assay ID Hs00751207_s1) and FSHB (Assay Id 

Hs00174919_m1), and the endogenous control used was β-actin (ACTB, Assay ID Hs99999903_m1).  

All experiments included template-free controls to ensure samples were not contaminated with 

genetic material. 

To assess the effects of time on gene expression in SH-SY5Y cells, they were grown in complete 

medium in 12-well plates at a density of 5 x 105 cells/well.  RNA was extracted as above at 24- or 72-

hours after seeding.  The amount of total RNA used per reaction was 0.9-1.5 µg.  qRT-PCR was 

performed as described above.  A total of 4 replicates were performed. 

To evaluate the effects of GnRH supplementation on gene expression in SH-SY5Y cells, cells were 

seeded in 12-well plates in complete medium for 48-hours until confluent.  The complete medium was 

then removed and serum-free medium used.  The following day the medium was supplemented with 

GnRH (acetate salt, Sigma) to give GnRH concentrations of 0, 0.1, 1, or 10 nM, and RNA was 

extracted at 1.5-hours or 6-hours following supplementation.  These dilutions and time points were 

selected as previous work suggested changes in gene expression would be observed in this range 

(Wilson et al., 2006; Rosati et al., 2011).  Reverse transcription was performed as above with 1.2-2.0 

µg total RNA used per 20 µl reaction, and PCR was as described above.  At each time point and 

GnRH concentration a total of 3 replicates were performed. 

Comparative CT (ΔΔCT) values were produced from the individual data by subtracting the CT value 

for the endogenous control (β-actin) from the CT value for the target (GNRHR, LHB or FSHB) 

obtained for the same well to provide a ΔCT value.  Within each biological replicate the mean ΔCT 

value for each target was subtracted from the mean ΔCT value of the baseline sample to provide the 
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ΔΔCT value.  For the timecourse experiments the baseline was the 24-hour sample; for the GnRH 

supplementation experiment the baseline sample was the vehicle control.  All individual values and 

calculations are presented in the Supplementary Materials.  Differences from baseline were analysed 

using Student’s T Test. 

2.1.2. Assessment of protein expression 

2.1.2.1 Preparation of cell lysates 

Lysates were prepared from confluent cultures of SH-SY5Y and BE(2)-M17 cells grown in 75cm2 

flasks  in complete medium to assess background protein expression in both cell types.  Media was 

removed from flasks and cells washed with PBS.  Cells were detached by trypsination and centrifuged 

at 300 × g for 5 min at 4°C to form a pellet which was lysed using freshly prepared cell extraction 

buffer (Life Tech FNN0011) containing 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma 93482) 

and Protease Inhibitor Cocktail (500µl per 5ml buffer, Sigma P-2714). 

Lysates were also prepared from SH-SY5Y cells exposed to GnRH.  SH-SY5Y cells were seeded into 

75cm2 flasks at 2x106cells/flask and cultured for 72-hours in complete medium.  The cells were then 

placed into serum-free medium, and 24-hours later were supplemented with varying concentrations of 

GnRH (0, 1 or 10 nM, Sigma L7134).  After incubation for either 6- or 30-hours, cells were detached 

by trypsinisation and lysed using the same method, with the exception that RIPA buffer (Sigma 

R0278), containing 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma 93482) and Protease 

Inhibitor Cocktail (500µl per 5ml RIPA buffer) was used.  The amount of protein in each lysate was 

quantified using bicinchoninic acid assay (BCA) analysis Micro BCA™ Protein Assay Kit (Pierce 

23235) according to the manufacturer’s instructions. 
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2.1.2.2 Western blotting for GnRHR, LHβ and FSHβ 

Western blots were prepared to identify key proteins of the GnRHR signalling pathway, namely 

GnRHR and the β subunits of the LH (lutropin) and FSH proteins using NuPAGE reagents (Life 

Technologies) as per the manufacturer’s instructions.  A variety of antibodies and experimental 

conditions were used as specified in Table 1.  Cell lysates were prepared for loading using NuPAGE 

LDS Sample Buffer (4×), NuPAGE reducing agent (10×), adjusting the volume of deionised water 

used according to the amount of protein required to be loaded in each lane.  The amount of protein 

used (as determined using BCA analysis) is also specified in Table 1.  Once mixed, samples for 

loading were heated for 10 minutes at 70oC.  SDS page was performed using NuPAGE 12% Novex 

Bis-Tris gels (Life Technologies NP0341) in XCell SureLock™ Mini Cells.  The protein standard 

used was Novex Pre-stained Protein Standard, although in some experiments MagicMark XP Western 

Protein Standard was used as an additional confirmation of the molecular weights of the bands seen.  

Gels were run using a PowerEase 500 powerpack set at 200V, 9.2 W, 46 mA for 1 hour 5 minutes 

until the dye/buffer front had nearly run off the bottom of the gel.  Proteins from the gels were 

transferred to nitrocellulose membranes (BioRad) using either a wet immunophoretic transfer method 

in tris/glycine buffer (BioRad) for approximately 1-hour or using the iBlot® 2 Dry Blotting System 

following the manufacturer’s instructions.  The iBlot settings were Program 0 (20V for 1 min, 23V for 

4 min, 25V for 2 min, total default run time 7 min).  Where indicated in Table 1 blots were blocked 

using 1% Bovine Serum Albumin (Sigma).  The antibodies used for each blot are specified in Table 1, 

and primary staining was performed overnight in a refrigerator under gentle agitation.  The following 

day, the blots were treated with the appropriate secondary antibodies.  Blots were rinsed thoroughly in 

phosphate buffered saline containing 0.05% Tween 20 (PBS-T) between each staining step.  Blots 

were imaged using Typhoon Trio+ variable mode imager system. 
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Table 1: Experimental conditions for western blotting 

Blot 
number 

Cell line Extraction 
buffer 

Quantity of 
protein loaded 
per lane (µg)

Transfer 
technique 

Blocking 
step 

Primary 
antibody* 

Secondary 
antibody# 

1 SH-
SY5Y + 
BE(2)-
M17 

CEB 9 iBlot No FSHβ (C-12) Alexa Fluor® 
488 Donkey 

Anti-Mouse IgG; 
2 CEB 9 iBlot No LHβ (B-6) 

3 CEB 9 iBlot No GnRHR (N-20) Alexa Fluor® 
488 Donkey 

Anti-Goat IgG; 
4 CEB 18 iBlot Yes GnRHR (N-20) Alexa Fluor® 

488 Donkey 
Anti-Goat IgG 

5 CEB 18 iBlot Yes GnRHR (C-18) 
6 CEB 18 Wet Yes GnRHR (N-20) 
7 CEB 18 Wet Yes GnRHR (C-18) 
8 SH-

SY5Y 
only 

RIPA 11 Wet Yes LH-β (B-6) Alexa Fluor® 
488 Donkey 

Anti-Mouse IgG
9 RIPA 11 Wet Yes GnRHR (N-20) Alexa Fluor® 

488 Donkey 
Anti-Goat IgG

CEB Cell extraction buffer (Life Technologies FNN0011) 

RIPA Radioimmunoprecipitation assay buffer (Sigma R0278) 

* Details of primary antibodies: GAPDH (FL-335), Santa Cruz Biotechnology (sc-25778) used as a loading

control on all gels; FSHβ (C-12), Santa Cruz Biotechnology (sc-374452); LHβ (B-6), Santa Cruz Biotechnology 

(sc-374017); GnRHR (N-20), Santa Cruz Biotechnology (sc-8682); GnRHR (C-18), Santa Cruz Biotechnology 

(sc8681) 

# Details of secondary antibodies: Alexa Fluor® 647 Donkey Anti-Rabbit IgG, Abcam (ab150075) used to 

detect loading control on gels 1-7; Alexa Fluor® 488 Donkey Anti-Rabbit IgG used to detect loading control on 

gels 8-9; Alexa Fluor® 488 Donkey Anti-Mouse IgG, Abcam (ab150105); Alexa Fluor® 488 Donkey Anti-

Goat IgG, Abcam (ab150129) 

In addition to the antibodies described above, primary antibodies GnRHR (Sigma SAB2500493) and 

LH-β (Sigma SAB1411828) and secondary antibodies DyLight® 350 donkey anti-mouse IgG (VWR) 

and CF™ 770 donkey anti-goat IgG (Sigma) were also used.  However, because the blots did not 

appreciably differ from those presented these are not shown. 
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2.2 Results 

2.2.1. Gene expression 

SH-SY5Y cells express mRNA for GNRHR and LHB, and BE(2)-M17 cells express mRNA for LHB.  

However neither cell line expressed mRNA for FSHB, and GNRHR mRNA was not detectable in 

BE(2)-M17 cells (Figure 1). 

 

Figure 1: Representative amplification plot for GNRHR showing normalized reporter value (Rn) plotted against 
cycle number.  SH-SY5Y cells yellow; BE(2)-M17 cells green; Template-free controls blue.  SH-SY5Y cells 
show low levels of GNRHR gene expression which was undetectable in BE(2)-M17 cells.  Two technical 
replicates included, hence two curves per sample shown. 

 

In SH-SY5Y cells gene expression for GNRHR was very low, with the number of cycles completed 

before the threshold was reached (CT) being 36.9, compared with LHB or ACTB, which showed mean 

CT values of 28.0 or 16.7 respectively. 
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Figure 2: Representative amplification plot for LHB showing normalized reporter value (Rn) plotted against 
cycle number.  SH-SY5Y cells yellow; BE(2)-M17 cells green; Template-free controls blue.  Both SH-SY5Y 
and BE(2)-M17 show LHB gene expression. Two technical replicates included, hence two curves per sample 
shown. 

A greater amount of starting cDNA template may therefore have allowed detection of GNRHR mRNA 

in BE(2)-M17 cells.  However, because GNRHR gene expression appeared to be greater in SH-SY5Y 

cells, further gene expression work was performed in SH-SY5Y cells only.  The response of the 

FSHB gene expression assay was checked by successfully measuring expression in human pituitary 

cDNA (US Biological Life Sciences) (Figure 3).  However, further culturing of SH-SY5Y cells in 

complete medium for up to 3 days failed to result in the detection of FSHB mRNA (see 

Supplementary Material 1).  Thus, under the culture conditions described here, SH-SY5Y cells do not 

express FSHB. 
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Figure 3: Amplification plot for expression of gene for FSHB in cDNA from a healthy human pituitary and from 

SH-SY5Y and BE(2)-M17 cells showing normalized reporter value (Rn) plotted against cycle number.  cDNA 

from healthy human pituitary blue; template-free controls purple; SH-SY5Y and BE(2)-M17 green.  No FSHB 

gene expression seen in either SH-SY5Y or BE(2)-M17 cells, whilst results from cDNA from healthy human 

pituitary shows assay was correctly functioning.  Two technical replicates included for pituitary cDNA and 

template-free controls hence two curves per sample shown, four technical replicates included for SH-SY5Y and 

BE(2)-M17 cells hence eight curves shown. 

Over the course of 3 days, GNRHR and LHB gene expression showed a high amount of inter-

experiment variability (Figure 4).  Although the mean RQ (relative quantitation of target gene) was 
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greater for both transcripts at 72-hours compared with at 24-hours, the variation meant that statistical 

significance was not reached. 

Figure 4: Expression of genes coding for GNRHR and LHB in SH-SY5Y cells grown in complete medium for 

up to 72-hours. RQ quantitation of target gene relative to 24-hours; Error bars = Standard Deviation. Gene 

expression at 72-h not significantly increased compared with 24-h (Student’s T Test).  Data represent 4 

independent replicates. 
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One of the criteria that a gonadotrope surrogate needs to meet is a consistent response to GnRH.  

However, exposing SH-SY5Y cells to varying concentrations of GnRH (0.1 to 10 nM) for 1.5 or 6 

hours did not result in consistent increase in GNRHR or LHB gene expression (Figure 5). 

 

 

 

 

 

 

 

Figure 5: Expression of genes coding for GNRHR and LHB following supplementation of SH-SY5Y cells with 

GnRH for 1.5 or 6-hours.  Relative quantitation to 0 nM, Error bars = Standard Deviation.  No statistical 

significance (Student’s T Test).  Data represent 3 independent replicates.  

Although there appeared to be an increase in expression of both GNRHR and LHB gene expression at 

1.5-hours at the 10 nM concentration, and for GNRHR at 6-hours at the 1 nM concentration this was 

not reproducible across all 3 replicates tested (Tables 2-3) and did not reach statistical significance. 
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Table 2: GNRHR mRNA expression in SH-SY5Y cells exposed to GnRH for 1.5-hours 

0 nM 0.1 nM 1 nM 10 nM 

RQ 

Replicate 1 1 1.3 0.9 3.5 

Replicate 2 1 1.0 1.0 1.0 

Replicate 3 1 1.1 1.6 1.3 

Mean 1.00 1.14 1.14 1.93 

SD - 0.14 0.36 1.41 

Table 3: LHB mRNA expression in SH-SY5Y cells exposed to GnRH for 1.5-hours 

0 nM 0.1 nM 1 nM 10 nM 

RQ 

Replicate 1 1 1.2 1.8 3.6 

Replicate 2 1 1.0 1.3 1.0 

Replicate 3 1 0.6 0.5 0.7 

Mean 1.00 0.91 1.21 1.76 

SD - 0.28 0.62 1.58 

RQ quantitation of target gene relative to 0 nM 

2.2.2. Western blotting for GnRHR, FSHβ and LHβ 

The initial western blotting (blots 1-3) for GnRHR, FSHβ and LHβ using the iBlot system did not 

reveal any clear bands for the proteins of interest (Figure 6).  However, bands for the endogenous 

control GAPDH were clearly evident as shown in the images presented.  Therefore, in subsequent 

experiments conditions were varied in an attempt to identify the proteins of interest.  These variations 

(as described in Table 1) included a different extraction buffer to prepare lysates, greater quantities of 

protein, a wet immunophoretic transfer method, addition of a blocking step, and different antibodies. 
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Blot 1 FSHβ (C-12), Santa Cruz (sc-374452) Blot 1 GAPDH (FL-335) Santa Cruz (sc-25778)

Blot 2 LHβ (B-6), Santa Cruz (sc-374012) Blot 2 GAPDH (FL-335) Santa Cruz (sc-25778)

Blot 3 GnRHR (N-20), Santa Cruz (sc-8682) Blot 3 GAPDH (FL-335) Santa Cruz (sc-25778)

Figure 6: Western blots for GnRHR, FSHβ and LHβ using the iBlot transfer system 
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Blots 4-7 are presented in Figure 7.  In these blots conditions were varied in an attempt to identify a 

clear band representing GnRHR with a greater quantity of starting protein (18 µg instead of 9 µg), 

using both the iBlot system and a wet immunophoretic transfer method, adding a blocking step, and 

using two different antibodies.  

No clear bands were identified using the same conditions as the previous experiment but using twice 

the quantity of protein and adding a blocking step (blot 4).  Similarly, a different antibody for GnRHR 

failed to identify a clear band (Blot 5). 

Use of a wet electrophoretic transfer resulted in more bands than were seen using the iBlot.  The 

strongest signal was seen with the GnRHR N-20 antibody was at 95-97 kD for SH-SY5Y cells and at 

89-92 kD for BE(2)-M17 cells (blot 6).  Neither range corresponded with the molecular weight of 

GnRHR of 68 kD.  THe bands identified using the GnRHR C-18 antibody corresponded to a protein 

of approximately 100-105 kD in size for both cell types (blot 7). 

Because varying the experimental conditions failed to identify a protein with a molecular weight close 

to 68 kD, a different extraction buffer was used for blots 8 and 9.  Given the greater GnRHR gene 

expression seen in SH-SY5Y cells compared with BE(2)-M17 cells, in this experiment only SH-

SY5Y cells were supplemented with GnRH for 6-hours in an attempt to increase expression of the 

protein. 

  

128



Blot 4: iBlot transfer using GnRHR (N-20), Santa 
Cruz (sc-8682)  

Blot 4 iBlot transfer using GAPDH (FL-335) 
Santa Cruz (sc-25778)  

Blot 5: iBlot transfer using GnRHR (C-18), Santa 
Cruz  (sc8681)  

Blot 5 iBlot transfer using GAPDH (FL-335) 
Santa Cruz (sc-25778)  

Figure 7: Western blots for GnRHR using both the iBlot transfer system, a wet immunoelectrophoretic method 

and two different primary antibodies 
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Blot 6: Wet transfer using GnRHR (N-20), 
Santa Cruz (sc-8682)  

Blot 6 Wet transfer using GAPDH (FL-335) Santa 
Cruz (sc-25778)  

Blot 7: Wet transfer using GnRHR (C-18), 
Santa Cruz (sc8681)  

Blot 7 Wet transfer using GAPDH (FL-335) Santa 
Cruz (sc-25778)  

Figure 7 (continued): Western blots for GnRHR using both the iBlot transfer system, a wet 

immunoelectrophoretic method and two different primary antibodies: 
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Blots 8 and 9 stained with LHβ (Santa Cruz sc-374017) and GnRHR N-20 antibodies (Santa Cruz sc-

8682) are shown in Figure 8.  A faint band was observed on the LHβ blot at 52-53 kDa, which did not 

correspond to the reported molecular weight of LH-β of 22 kDa.  However, several bands were faintly 

visible on the GnRHR blot, one of which was close to the reported molecular weight of GnRHR of 68 

kDa.  Blots prepared using more concentrated cell lysates, diferrent GnRH treatment times (30-hours 

instead of 6-hours), or different antibodies did not produce visibly better results so are not presented.  

Overall, in the blots imaged the staining was either too faint or the bands too numerous to be 

confident that either LHβ or GnRHR was present in the lysates.  Furthermore there was no difference 

in the inensity of the bands between the control (0 nM GnRH) or supplemented groups (1 or 10 nM 

GnRH) 

In all blots the signal for GAPDH was very intense, reflecting the large quantity of protein added to 

the wells. 

 

Blot 8: Cultures supplemented with GnRH for 6-hours, 
blots stained for LH-β (Santa Cruz sc-374017) and 
GAPDH (Santa Cruz sc-25778) 
 

 
 
 

Blot 9: Cultures supplemnted with GnRH for 6-hours, 
stained for GnRHR N-20 (Santa Cruz sc-8682) and 
GAPDH (Santa Cruz sc-25778) 
 

 
 

 
Figure 8: Western blots for GnRHR using a wet immunoelectrophoretic method and two different primary 
antibodies 
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2.3. Discussion 

Of the two cell types evaluated, SH-SY5Y cells appeared to show greater GNRHR gene expression.  

Although qRT-PCR of RNA extracted from SH-SY5Y cells confirmed the presence of mRNA for 

both GNRHR and LHB, no FSHB mRNA was detected following culturing in complete medium.  The 

ability of the assay to detect FSHB gene expression was confirmed using human pituitary cDNA.  

There was also a lot of variability in GNRHR and LHB gene expression meaning that 3-4 replicates 

were not sufficient to confidently detect changes in gene expression either with time or with GnRH 

supplementation. 

Proteins corresponding to the known molecular weights of LHβ (22 kDa) or FSHβ (21 kDa) were not 

apparent on any blot, despite several attempts to refine procedures.  Some faint bands were identified 

at a molecular weight close to GnRHR (68 kDa) when RIPA buffer was used to lyse cells and large 

quantities of protein were loaded.  Some bands were also identified which may have represented 

oligomers of these proteins, however overall these data suggest the proteins investigated are not 

highly expressed in SH-SY5Y or BE(2)-M17 cells.  Given the similar lack of response seen in the 

qRT-PCR experiments, further refinement of the western blotting procedure was not considered 

necessary or appropriate. 

 

These results appear to conflict with previous literature reports which showed detectable increases in 

LH gene and protein expression with similar levels of GnRH stimulation (Wilson et al., 2006; Rosati 

et al., 2011).  The reasons for these differences are not clear.  The experiments described here were 

performed using carefully controlled methods by the same operator in the same GLP-compliant 

laboratory using validated equipment, with different biological replicates using the same source of 

cells of similar passage number.  One variable between replicates was the amount of mRNA template 

used in the RT reaction (see Section 2.1.1.).  However, since PCR results were normalized to an 

endogenous control gene (ACTB) this should not have affected the quality of the results. Overall, the 

results suggest that the test system is not reproducible enough to be used as a practical tool in risk 
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assessment of chemicals that may interfere with gonadotrope cell functioning.  The basic criteria for 

selecting a useable surrogate for human gonadotrope cells to use in a pathways-based risk assessment 

for characterizing perturbations in GnRH-mediated signalling were therefore not met, and work to 

further characterize the response of either BE(2)-M17 cells or SH-SY5Y cells to GnRH and known 

GnRH antagonists was not warranted for this purpose. 

If the initial criteria described above had been met, further evaluation is clearly required to assess 

whether the test system is suitable to use as a surrogate for the human pituitary gonadotrope cells (see 

Figure 9).

Figure 9: Ideal elements of a cell system to evaluate changes in gonadotrope cells for human risk assessment 

This further evaluation includes performing repeat (pulsatile) exposures to GnRH.  It is well known 

that gonadotrope release is dependent on GnRH pulses from the hypothalamus.  Taking this approach 

may well have enhanced the responsiveness of the test system.  However, this is not included in the 

initial criteria since gonadotrope cell lines have been shown to increase gene or protein expression 

following a single dose of GnRH (Turgeon et al., 1996; Kaiser, Conn and Chin, 1997).  Therefore, a 

human-based model that does not respond to a single dose of GnRH would appear to not show an 
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advantage over the existing animal-derived models.  Further evaluation would also require an 

assessment of whether known GnRH antagonists block GnRH-mediated expression of gonadotropes.  

If the system met these criteria it would be considered useful for hazard screening purposes.  To have 

full utility in exposure-led risk assessment, it would be necessary to demonstrate that the points of 

departure for chemicals that are known to perturb gonadotrope release either by a receptor-mediated 

or a non-specific mode of action (e.g. oxidative stress in the pituitary) can be predicted, thus allowing 

a meaningful in vitro to in vivo extrapolation to be performed. 

 

3. FUTURE DIRECTIONS 

Although an extensive search has not revealed a cell system that meets these initial success criteria, 

this may not remain so for much longer given advances in stem cell biology.  Techniques used to 

develop 3-D cultures of functional anterior pituitaries from animal embryonic stem cells (Suga et al., 

2011) have now been successfully applied to human embryonic stem cells (Ozone et al., 2016; Kano 

et al., 2018).  It is possible to promote the differentiation of gonadotropes within these cultures, 

resulting in the appearance of LH and FSH positive cells.  The reports describing this embryonic stem 

cell model of the anterior pituitary focused upon the hypothalamus-pituitary-adrenal axis and the 

endocrine response of corticotrope cells.  Therefore, although successful rescue of hypopituitary mice 

by transplantation of corticotropes has been demonstrated, there are not yet reports of the response of 

gonadotropes derived from this model.  However, since these cultures provide a differentiated and 

responsive phenotype with exciting applications in the field of regenerative medicine, they may also 

be applied to chemical safety evaluation if the appropriate responses are seen. 
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4. CONCLUSION

Despite extensive efforts, a human-derived model of gonadotrope remains elusive, and the study of 

perturbations in GnRH signalling must currently still rely on either primary animal cell cultures or 

rodent-derived immortalized cell lines. 
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Supplementary Table S1: qRT‐PCR, Individual CT values and calculations – gene expression over time 

Replicate  Well  GnRH  Target  Cт  Cт  ΔCт  ΔΔCт 
Fold change 

(RQ) 

(nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  B3  24‐h  GNRHR  39.14194107  39.51361084  20.85364437 

B4  24‐h  GNRHR  39.88528061 

2  B5  24‐h  GNRHR  36.88287354  37.00176048  18.98575115 

B6  24‐h  GNRHR  37.12064743 

3  B3  24‐h  GNRHR  33.9397  33.9397  15.9849 

B4  24‐h  GNRHR  Undetermined 

4  B5  24‐h  GNRHR  36.1028  36.0478  17.85875 

B6  24‐h  GNRHR  35.9928 

1  B7  72‐h  GNRHR  35.31011581  34.98817825  16.02812767  ‐4.825516701  28.4 

B8  72‐h  GNRHR  34.66624069 

2  B9  72‐h  GNRHR  34.96794128  34.65510559  16.45094872  ‐2.534802437  5.8 

B10  72‐h  GNRHR  34.3422699 

3  B7  72‐h  GNRHR  37.0646  37.0646  18.19965  2.21475  0.2 

B8  72‐h  GNRHR  Undetermined 

4  B9  72‐h  GNRHR  Undetermined  34.1751  15.3015  ‐2.55725  5.9 

B10  72‐h  GNRHR  34.1751 

1  C3  24‐h  LHB  28.97784042  28.93382931  10.27386284 

C4  24‐h  LHB  28.88981819 

2  C5  24‐h  LHB  28.49560356  28.4936533  10.47764397 

C6  24‐h  LHB  28.49170303 

3  C3  24‐h  LHB  28.9888  27.25595  9.30115 

C4  24‐h  LHB  25.5231 

4  C5  24‐h  LHB  24.9604  25.0058  6.81675 

C6  24‐h  LHB  25.0512 
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Supplementary Table S1: qRT‐PCR, Individual CT values and calculations – gene expression over time 

Replicate  Well GnRH Target Cт Cт ΔCт ΔΔCт 
Fold change 

(RQ) 

(nM) Name Mean Mean Mean =2^(‐ΔΔCт) 

1  C7  72‐h  LHB  28.33241844  28.33255959  9.372509003  ‐0.901353836  1.9 

C8  72‐h  LHB  28.33270073 

2  C9  72‐h  LHB  28.70255089  28.70594311  10.50178623  0.024142265  1.0 

C10  72‐h  LHB  28.70933533 

3  C7  72‐h  LHB  24.9127  24.88895  6.024  ‐3.27715  9.7 

C8  72‐h  LHB  24.8652 

4  C9  72‐h  LHB  25.186  25.1533  6.2797  ‐0.53705  1.5 

C10  72‐h  LHB  25.1206 

1  D3  24‐h  FSHB  Undetermined 

D4  24‐h  FSHB  Undetermined 

2  D5  24‐h  FSHB  Undetermined 

D6  24‐h  FSHB  Undetermined 

3  D7  72‐h  FSHB  Undetermined 

D8  72‐h  FSHB  Undetermined 

4  D9  72‐h  FSHB  Undetermined 

D10  72‐h  FSHB  Undetermined 

1  E3  24‐h  ACTB  18.84661102  18.65996647 

E4  24‐h  ACTB  18.47332191 

2  E5  24‐h  ACTB  18.04948616  18.01600933 

E6  24‐h  ACTB  17.9825325 

3  D3  24‐H  ACTB  17.9974  17.9548 

D4  24‐H  ACTB  17.9122 

4  D5  24‐H  ACTB  18.6596  18.18905 

D6  24‐H  ACTB  17.7185 
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Supplementary Table S1: qRT‐PCR, Individual CT values and calculations – gene expression over time 

Replicate  Well GnRH Target Cт Cт ΔCт ΔΔCт 
Fold change 

(RQ) 

(nM) Name Mean Mean Mean =2^(‐ΔΔCт) 

1  E7  72‐h  ACTB  18.94941711  18.96005058 

E8  72‐h  ACTB  18.97068405 

2  E9  72‐h  ACTB  18.22721481  18.20415688 

E10  72‐h  ACTB  18.18109894 

3  D7  72‐h  ACTB  18.9791  18.86495 

D8  72‐h  ACTB  18.7508 

4  D9  72‐h  ACTB  18.991  18.8736 

D10  72‐h  ACTB  18.7562 
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

                   

Replicate  Well  GnRH  Target  Cт  Cт  ΔCт  ΔΔCт  Fold change (RQ) 

  (nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  A1  0  GNRHR  36.9963  36.5  19.7058    1.00 

  A2  0  GNRHR  36.2731   

  A3  0  GNRHR  36.2904   

  A4  0  GNRHR  36.3088   
2  A1  0  GNRHR  35.6772  35.9  19.1021    1.00 

  A2  0  GNRHR  35.9659   

  A3  0  GNRHR  35.7425   

  A4  0  GNRHR  36.0804   
3  A1  0  GNRHR  36.1864  36.4  24.1810    1.00 

  A2  0  GNRHR  36.4217   

  A3  0  GNRHR  36.4369   

  A4  0  GNRHR  36.6999   

       
1  A5  0.1  GNRHR  35.8889  36.0  19.1598  ‐0.5460  1.46 

  A6  0.1  GNRHR  35.2576   

  A7  0.1  GNRHR  36.1332   

  A8  0.1  GNRHR  36.5476   
2  A5  0.1  GNRHR  36.1826  36.4  19.7522  0.6501  0.64 

  A6  0.1  GNRHR  36.5904   

  A7  0.1  GNRHR  36.3334   

  A8  0.1  GNRHR  36.4996   
3  A5  0.1  GNRHR  36.5989  36.5  24.7362  0.5551  0.68 

  A6  0.1  GNRHR  36.4017   

  A7  0.1  GNRHR  36.8846   

  A8  0.1  GNRHR  36.2393   
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

Replicate  Well  GnRH  Target  Cт  Cт  ΔCт  ΔΔCт  Fold change (RQ) 

(nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  A9  1  GNRHR  36.3031  35.9  18.9677  ‐0.7381  1.67 

A10  1  GNRHR  35.7381 

A11  1  GNRHR  35.8416 

A12  1  GNRHR  35.8433 

2  A9  1  GNRHR  36.0874  35.9  19.1731  0.0710  0.95 

A10  1  GNRHR  35.6901 

A11  1  GNRHR  35.7536 

A12  1  GNRHR  36.0936 

3  A9  1  GNRHR  35.9958  35.6  23.1903  ‐0.9908  1.99 

A10  1  GNRHR  35.3408 

A11  1  GNRHR  35.5181 

A12  1  GNRHR  35.6489 

1  B1  10  GNRHR  35.7959  36.3  19.5479  ‐0.1579  1.12 

B2  10  GNRHR  36.5297 

B3  10  GNRHR  35.8335 

B4  10  GNRHR  36.9337 

2  B1  10  GNRHR  36.0782  36.4  19.5696  0.4674  0.72 

B2  10  GNRHR  35.9933 

B3  10  GNRHR  36.9809 

B4  10  GNRHR  36.488 

3  B1  10  GNRHR  36.3902  36.4  24.0531  ‐0.1280  1.09 

B2  10  GNRHR  36.9467 

B3  10  GNRHR  35.7689 

B4  10  GNRHR  36.3111 
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

Replicate  Well  GnRH  Target  Cт  Cт  ΔCт  ΔΔCт  Fold change (RQ) 

(nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  B5  0  LHB  28.2737  28.2  11.5  1.00 

B6  0  LHB  28.2371 

B7  0  LHB  28.2138 

B8  0  LHB  28.2163 

2  B5  0  LHB  22.9933  23.1  6.3  1.00 

B6  0  LHB  22.998 

B7  0  LHB  23.1897 

B8  0  LHB  23.2564 

3  B5  0  LHB  28.0616  28.1  15.8  1.00 

B6  0  LHB  28.0702 

B7  0  LHB  28.0623 

B8  0  LHB  28.056 

1  B9  0.1  LHB  28.0121  28.1  11.3  ‐0.1849  1.14 

B10  0.1  LHB  28.3101 

B11  0.1  LHB  28.1469 

B12  0.1  LHB  27.8751 

2  B9  0.1  LHB  22.8789  22.9  6.2  ‐0.0975  1.07 

B10  0.1  LHB  22.9807 

B11  0.1  LHB  22.8546 

B12  0.1  LHB  22.8728 

3  B9  0.1  LHB  27.8099  27.6  15.8  0.0392  0.97 

B10  0.1  LHB  27.6456 

B11  0.1  LHB  27.6002 

B12  0.1  LHB  27.5101 
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

Replicate  Well  GnRH  Target  Cт  Cт  ΔCт  ΔΔCт  Fold change (RQ) 

(nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  C1  1  LHB  28.9683  28.6  11.6  0.1303  0.91 

C2  1  LHB  28.696 

C3  1  LHB  28.6291 

C4  1  LHB  27.9787 

2  C1  1  LHB  23.0023  23.1  6.4  0.0567  0.96 

C2  1  LHB  23.0457 

C3  1  LHB  23.1496 

C4  1  LHB  23.3414 

3  C1  1  LHB  27.8616  27.9  15.5  ‐0.3015  1.23 

C2  1  LHB  27.9688 

C3  1  LHB  27.9549 

C4  1  LHB  27.9805 

1  C5  10  LHB  28.0333  28.0  11.3  ‐0.2151  1.16 

C6  10  LHB  28.0123 

C7  10  LHB  28.0217 

C8  10  LHB  27.8688 

2  C5  10  LHB  22.9506  23.2  6.4  0.0073  0.99 

C6  10  LHB  23.3448 

C7  10  LHB  23.2797 

C8  10  LHB  23.0961 

3  C5  10  LHB  27.7408  27.8  15.5  ‐0.3549  1.28 

C6  10  LHB  27.6953 

C7  10  LHB  27.7972 

C8  10  LHB  27.781 
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

                   

Replicate  Well  GnRH  Target  Cт    Cт  ΔCт  ΔΔCт  Fold change (RQ) 

  (nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  C9  0  ACTB  16.8267  16.8   

  C10  0  ACTB  16.8107   

  C11  0  ACTB  16.7613   

  C12  0  ACTB  16.6468   
2  C9  0  ACTB  16.844  16.8   

  C10  0  ACTB  16.7305   

  C11  0  ACTB  16.7959   

  C12  0  ACTB  16.6872   
3  C9  0  ACTB  12.3237  12.3   

  C10  0  ACTB  12.2623   

  C11  0  ACTB  12.3128   

  C12  0  ACTB  12.122   

       
1  D1  0.1  ACTB  16.6597  16.8   

  D2  0.1  ACTB  16.837   

  D3  0.1  ACTB  16.8457   

  D4  0.1  ACTB  16.8458   
2  D1  0.1  ACTB  16.4988  16.6   

  D2  0.1  ACTB  16.6665   

  D3  0.1  ACTB  16.7414   

  D4  0.1  ACTB  16.6905   
3  D1  0.1  ACTB  11.6834  11.8   

  D2  0.1  ACTB  11.8799   

  D3  0.1  ACTB  11.812   

  D4  0.1  ACTB  11.8046   
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Supplementary Table S2: qRT‐PCR, Individual CT values and calculations with GnRH supplementation 

                   

Replicate  Well  GnRH  Target  Cт    Cт  ΔCт  ΔΔCт  Fold change (RQ) 

  (nM)  Name  Mean  Mean  Mean  =2^(‐ΔΔCт) 

1  D5  1  ACTB  16.9817  17.0   

  D6  1  ACTB  16.9605   

  D7  1  ACTB  16.9764   

  D8  1  ACTB  16.9367   
2  D5  1  ACTB  16.7109  16.7   

  D6  1  ACTB  16.7269   

  D7  1  ACTB  16.7534   

  D8  1  ACTB  16.7411   
3  D5  1  ACTB  12.4581  12.4   

  D6  1  ACTB  12.4032   

  D7  1  ACTB  12.4839   

  D8  1  ACTB  12.3974   

       
1  D9  10  ACTB  16.7804  16.7   

  D10  10  ACTB  16.8075   

  D11  10  ACTB  16.7011   

  D12  10  ACTB  16.6122   
2  D9  10  ACTB  16.9658  16.8   

  D10  10  ACTB  16.985   

  D11  10  ACTB  16.5231   

  D12  10  ACTB  16.7883   
3  D9  10  ACTB  12.3583  12.3   

  D10  10  ACTB  12.3138   

  D11  10  ACTB  12.3144   

  D12  10  ACTB  12.2182   
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Supplementary Material: Characterisation of growth of SH-SY5Y cells. 

This Supplementary Material describes background work performed to understand the growth 

characteristics of SH-SY5Y and BE(2)-M17 cells in medium containing different levels of FBS, to 

inform seeding density and time-span of experiments.  In addition to cell enumeration, flow cytometry 

was performed to track the cell cycle and to assess the proportion of cells at each stage of the cycle. 

 

1. Materials and Methods 

1.1. Cell culture 

SH-SY5Y cells were obtained from the Culture Collection, Public Health England (ECACC). The 

standard medium for SH-SY5Y cells was Ham's F12:Eagle’s Minimal Essential Medium (EMEM) 

(1:1) supplemented with final concentrations of 2mM Glutamine, 1% Non Essential Amino Acids 

(NEAA), 15% Heat Inactivated Fetal Bovine Serum (FBS) and 100 U/ml/100 µg/ml 

Penicillin/Streptomycin.  Cells were cultured in an atmosphere of 5% CO2 in air at 37 ºC.  The cells 

were maintained in monolayer culture and subcultured by trypsinisation when required.  Where 

indicated in the text a 10% serum medium was used.  All other components were as per the standard 

medium described above.  The serum-free medium was Dulbecco’s Modified Eagle’s Medium with 

1% insulin/transferrin/sodium selenite supplement, and use of the serum-free medium is indicated in 

the text. 

1.2. Growth characteristics 

The growth characteristics of SH-SY5Y cells (passage 22 and 23) were investigated in both 6- and 

12-well plates, using a variety of seeding densities and media containing different levels of serum.  

Growth characteristics of BE(2)-M17 cells were not evaluated since no GNRHR gene expression was 

detected in this cell line.  In the first cell growth experiment SH-SY5Y cells were detached by 

trypsinisation and diluted with culture medium to densities of 1 x 105 /ml, 3 x 104 /ml, and 1 x 104 /ml.  

2 ml of each culture was seeded in duplicate into four 6 well plates in medium containing 15% FBS.  
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Cell counts were performed using the ChemoMetec NucleoCounter for 1 plate at 24-hours, 1 plate at 

48-hours, 1 plate at 72-hours, and 1 plate at 96 hours.  At the relevant timepoint for each plate, each 

well was washed with 1 ml PBS which was then removed.  0.5 ml of trypsin/EDTA (0.25%/1 mM) 

was added to each well and the plate incubated at 37C for 3-5 minutes until the cells detached.  0.5 

ml media was then added to each well, the cells dispersed and counted using the NucleoCounter. 

The remaining cell growth experiments also included an assessment of cell cycling (see Cell Cycling, 

Section 1.3.), and were conducted in 12-well plates.  The initial densities and number of wells seeded 

(technical replicates) and timepoints evaluated are described in the following table: 

Table S3 – Timepoints and seeding densities in SH-SY5Y cell growth experiments in 12-well plates (15% FBS 

medium) 

Starting density 

(cells/ml) 

Number of wells at timepoint 

6-h 12-h 24-h 48-h 72-h 96-h 

1 x 105 2 2 2 2 2 2

2 x 105 5 5 5 5 5 5

5 x 105 3* 3* 3* 3* 3* 3* 

* An additional 3 replicates were performed, but by 48-h all wells contained clumped cells which were starting

to detach by 72-h.  These wells were therefore aborted and counts are not reported. 

Growth characteristics were also investigated following seeding in 12-well plates at a density of 5 x 

105 cells/ml in medium containing 10% FBS, changed to serum-free 24-hours before cell counting.  In 

that experiment, cells from triplicate wells were detached and counted using the procedure described 

above according to the following schedule: 
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Table S4 – Timepoints for media change for SH-SY5Y cell growth experiments in 12-well plates (10% FBS 

medium changed to serum-free) 

Medium changed for 

serum-free (hr) 

Cells removed for 

counting (hr) 

48 72 

72 96 

120 144 

144 168 

 

1.3. Cell Cycling 

After counting, triplicate wells seeded with SH-SY5Y cells at 2x105 or 5x105 cells/well in 15% FBS 

medium were analysed by flow cytometry to determine the proportion of cells in different phases of 

the cell cycle at the time points described in Table S1. This was also performed in triplicate for SH-

SY5Y cells grown in 10% FBS medium which was subsequently changed to serum-free medium at 

the time points described in Table S2.  Samples were collected and analysed for the 1x105 cultures 

described in Table 1, but since for these samples the method was still being developed and data were 

not optimal these results are not reported.  Finally, the proportion of SH-SY5Y cells in different 

phases of the cell cycle were evaluated after culturing in 12-well plates at 2x105 or 5x105 cells/well in 

10% FBS medium for 24-h or 72-h.  This final experiment was performed using 2 biological 

replicates (replicate 1 cells were at P25, replicate 2 at P24) and 3 technical replicates (3 wells seeded 

at each density for each biological replicate). 

The method was based on analysis of DNA content in fixed cells (Ormerod, 2000). At the time points 

described above, following cell counting the remaining cultures were centrifuged at 300 x g for 5 

minutes at ~4ºC, and the supernatant discarded.  Cells were resuspended in 0.5 ml FACS buffer (0.1% 

bovine serum albumin (BSA) in PBS) and fixed by adding 5 ml of ice cold 70% ethanol dropwise 

while vortexing, before storing at ~4ºC until ready for analysis.  Before analysis the ethanol-fixed 

cells were centrifuged at 400 x g for 5 minutes to remove the fixative and resuspended in 0.5 ml 
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FACS buffer to wash.  Samples were centrifuged again at 400 x g for 5 minutes to remove the FACS 

buffer wash, and resuspended in a minimum of 0.5 ml FACS buffer containing 1 µg/ml 4',6-

diamidino-2-phenylindole (DAPI, Thermo Scientific) before analysis for DNA content using the 

FACS Canto II Flow Cytometer. 

2. Results and Discussion

2.1. Growth characteristics of SH-SY5Y cells 

Table S5: Growth of SH-SY5Y cells seeded at 3 different seeding densities in 15% FBS medium in 6 well 

plates 

Starting 

density 

(cells/well) 

Replicate Cells/well 

24-h 48-h 72-h 96-h 

2.00E+05 1 2.00E+05 4.05E+05 5.94E+05 1.10E+06 

2.00E+05 2 1.70E+05 2.85E+05 6.00E+05 1.01E+06 

6.00E+04 1 4.50E+04 1.20E+05 2.04E+05 3.39E+05 

6.00E+04 2 3.60E+04 1.26E+05 1.95E+05 3.27E+05 

2.00E+04 1 BLQ 3.60E+04 6.90E+04 6.90E+04 

2.00E+04 2 1.50E+04 5.40E+04 5.70E+04 1.26E+05 

BLQ Below level of quantitation 

150



Figure S1: Growth of SH-SY5Y cells in medium containing 15% FBS in 6-well plates (each line 

represents different seeding density) 

Figure S1 shows that SH-SY5Y cells grew well in medium containing 15% FBS when seeded at 

1x105 cells/ml (2x105 cells/well).  Cells seeding at 1x104 or 3x104 cells/ml (2x104 or 6x104 cells/well 

respectively) did not show the same level of growth as the higher seeding density.  A density of 1x105 

cells/ml was therefore chosen as the minimum density for future experiments, which were conducted 

in 12-well plates. 
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Table S6: Growth of SH-SY5Y cells seeded at 3 different starting concentrations in 15% FBS medium in 12-

well plates 

Starting 

density 

(cells/well) 

Replicate Cells/well 

6-h 12-h 24-h 48-h 72-h 96-h 

1.00E+05 1 7.00E+04 5.10E+04 7.95E+04 1.58E+05 2.73E+05 6.50E+05 

1.00E+05 2 4.05E+04 5.40E+04 1.02E+05 1.47E+05 2.31E+05 4.13E+05 

2.00E+05 1 1.17E+05 1.13E+05 1.68E+05 1.73E+05 4.17E+05 3.84E+05 

2.00E+05 2 1.20E+05 1.58E+05 1.55E+05 3.54E+05 4.11E+05 NM 

2.00E+05 3 1.32E+05 1.55E+05 1.70E+05 2.87E+05 4.67E+05 5.10E+05 

2.00E+05 4 1.76E+05 1.29E+05 1.56E+05 2.90E+05 3.92E+05 4.83E+05 

2.00E+05 5 1.41E+05 1.62E+05 1.46E+05 3.14E+05 3.81E+05 4.74E+05 

5.00E+05 1 3.41E+05 4.83E+05 5.45E+05 8.35E+05 1.05E+06 1.25E+06 

5.00E+05 2 3.99E+05 4.40E+05 5.35E+05 7.60E+05 9.65E+05 1.38E+06 

5.00E+05 3 3.60E+05 4.34E+05 5.50E+05 8.55E+05 9.40E+05 1.37E+06 

NM – no measurement, well contaminated, data for this plate (Replicate 1 and 2 at 2x105) not included in group 

means 
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Figure S2: Growth of SH-SY5Y cells in medium containing 15% FBS in 12-well plates (each line 

represents different seeding density) 

As shown in Figure S2, cultures seeded at 1x105 grew steadily but did not reach full confluence by 

96-h. Cells seeded at 2x105 did not grow as well as expected.  These plates were seeded at the same 

time as the original cultures seeded at 5x105/well were prepared which were abandoned due to cell 

clumping (see Table S1), and although no clumping was evident it is possible that the growth of these 

cells was also atypical. 
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At a seeding density of 5x105 cells/ml in medium containing 10% FBS (5x105 cells/well in 12-well 

plates) SH-SY5Y cells were around 80% 24-hours after seeding.  At 6-h there was a high attrition 

rate, with a mean of 3.7x105 cells counted.  However the cells then grew well and were fully confluent 

by 48-h.  This appeared to be an optimum seeding density for further experiments. 

Table S7: Growth of SH-SY5Y cells in 12-well plates in 10% FBS medium, changing to serum-free medium 

24-hours before counting 

Starting 

density 

(cells/well) 

Replicate Cells/well 

72-h 96-h 120-h 144-h 168-h 

5.00E+05 1 9.95E+05 1.29E+06 1.75E+06 2.52E+06 >3.00e+06 

5.00E+05 2 9.80E+05 1.26E+06 1.60E+06 2.24E+06 >3.00e+06 

5.00E+05 3 1.02E+06 1.17E+06 1.52E+06 2.05E+06 2.65E+06 

 

 

Figure S3: Growth of SH-SY5Y cells in medium containing 10% FBS, substituted with serum-free medium 24-

hours before counting 
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Use of medium containing 10% FBS did not appear to impede growth of SH-SY5Y cells, with the 

number present at 72-hours remarkably similar to the number present at 72-h when this seeding 

density was used with the medium containing 15% FBS.  By 120-h cells were beginning to detach 

from the plates, although cell counts continued to increase. At 168-h cell counts were too high in 2/3 

replicates.  Cultures were further diluted, but since the recount for replicate 3 did not correlate with 

the original count these data were considered unreliable and not reported.  However, it was clear that 

168-h would not be a useful timepoint for cultures seeded at this density due to the cells detaching 

from the plate. 

2.2. Cell Cycling 

The proportion of SH-SY5Y cells in different phases of the cycle after being grown in medium 

containing 15% FBS are described in Tables S6 and S7. 
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Table S8: Proportion of SH-SY5Y cells in G0/1, S or G2/M phase when grown in medium containing 15% FBS 

for different lengths of time 

Starting density 2x105/well (12-well plate) 

Timepoint (h) # cells/well # single cells 

assessed 

% in G0/G1 % in S % in 

G2/M 

6 mean 1.50E+05 10000 81 8 9 

SD 2.30E+04 0 1 0 0 

N 3 3 3 3 3 

12 mean 1.49E+05 10000 81 9 9 

SD 1.73E+04 0 0.6 0.5 0.0 

N 3 3 3 3 3 

24 mean 1.57E+05 10000 64 25 10 

SD 1.20E+04 0 2.5 1.2 1.4 

N 3 3 3 3 3 

48 mean 2.97E+05 10000 83 9 8 

SD 1.48E+04 0 1.6 0.5 1.2 

N 3 3 3 3 3 

72 mean 4.13E+05 10000 88 8 3 

SD 4.66E+04 0 1.3 0.6 0.7 

N 3 3 3 3 3 

96 mean 4.89E+05 10000 49 31 20 

SD 1.87E+04 0 1.0 0.6 0.6 

N 3 3 3 3 3 

156



Table S8 (continued): Proportion of SH-SY5Y cells in G0/1, S or G2/M phase when grown in medium 

containing 15% FBS for different lengths of time 

Starting density 5x105/well (12-well plate) 

Timepoint (h) # cells/well # single cells 

assessed 

% in G0/G1 % in S % in 

G2/M 

6 mean 3.67E+05 9969 72 12 16 

SD 2.98E+04 54 4 1 3 

N 3 3 3 3 3 

12 mean 4.52E+05 10000 75 9 16 

SD 2.70E+04 0 0.3 0.2 0.2 

N 3 3 3 3 3 

24 mean 5.43E+05 10000 71 12 17 

SD 7.64E+03 0 1.6 0.9 2.5 

N 3 3 3 3 3 

48 mean 8.17E+05 10000 87 5 7 

SD 5.30E+04 0 1.2 0.7 0.5 

N 3 3 3 3 3 

72 mean 9.83E+05 10000 86 5 8 

SD 5.48E+04 0 0.2 0.1 0.5 

N 3 3 3 3 3 

96 mean 1.33E+06 10000 52 17 31 

SD 6.95E+04 0 0.3 0.1 0.1 

N 3 2 2 2 2 

No statistical analysis was performed on these preliminary data.  However, at the density which 

provided optimal growth for cell-based experiments (5x105/well) the majority of cells were in G0 or 

G1 phase and there did appear to be a proportional increase in the number of cells in G0 or G1 and 

decrease in cells in S, G2 or M phase at 72-h compared with previous timepoints.  At 96-h the 
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proportion of cells in S, G2 or M phase markedly increased, which coincided with the observation that 

cells were detaching from the wells at this timepoint. 

Two timepoints were selected for further evaluation (24-h and 72-h) to confirm whether there was a 

difference in the proportion of cells in different phases of the cycle associated with these times when 

the 10% FBS medium was used. 

Table S9: Proportion of SH-SY5Y cells in G0/1, S or G2/M phase when grown in medium containing 10% FBS 

for different lengths of time 

Time (h) Number single 

cells 

G0/G1 %Parent S %Parent G2/M %Parent 

24 Mean 10000 65.6 20.6 13.4 

SD 0 1.62 1.01 0.66 

N 6 6 6 6 

72 Mean 10000 80.8 10.4 8.5 

SD 0 0.91 0.70 0.39 

N 6 6 6 6 

The Chi2 test indicated that there was a significant difference in the proportion of cells in different 

phases of the cycle between these two timepoints (p = 0.049), with fewer cells in S, G2 or M phase at 

72-h compared with at 24-h.  This is an interesting observation since the growth curve at this seeding 

density in this medium did not show any plateauing of population growth at 72-h or 96-h (Figure S3).  

This indicates that rather than being quiescent, these cells were still rapidly dividing and therefore 

transcriptionally active.  Since there was no slowing of cell growth, addition of factors to stimulate 

transcription of genes specific to the GnRH pathway may therefore result in increased ability to detect 

changes relating to GnRH-mediated signalling, although this was not investigated further as part of 

this study.  Representative histograms from 24-h and 72-h are presented in Figure S4. 
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Figure S4: Representative histograms showing the proportion of SH-SY5Y cells in G0/1, S or G2/M 

phase when grown in medium containing 10% FBS for 24-h or 72-h 

2.3. Cell cycling following change to serum-free medium 

Although the previous cell cycling experiments showed a clear difference between the time after 

seeding and the phase of the cell cycle, experiments to assess response of GNRHR signalling were 

conducted in serum-free medium.  Since placing cells into serum-free medium affects the cell cycle 
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(Rosner, Schipany and Hengstschläger, 2013) the effect of switching to serum-free medium at 

different times after seeding was assessed.  The results of this experiment are presented in Table S8.   

Table S10: Proportion of SH-SY5Y cells in G0/1, S or G2/M phase when grown in medium containing 10% 

FBS for different lengths of time then placed into serum-free medium for 24-h before analysis 

Time after seeding 

medium changed for 

serum-free (h) 

Time after seeding 

cells collected (h) 

# single 

cells 

assessed 

% in 

G0/G1 

% in S % in 

G2/M 

48 72 mean 10033 77.7 11.6 10.2 

SD 26.38813 0.72 0.80 0.35 

N 3 3 3 3

72 96 mean 10085 73.3 12.5 13.6 

SD 21.5484 1.15 1.03 0.15 

N 3 3 3 3

96 120 mean 10164 70.4 12.5 16.4 

SD 30.44667 0.68 0.50 0.95 

N 3 3 3 3

120 144 mean 10173 75.1 11.1 13.4 

SD 41.42865 0.21 0.32 0.44 

N 3 3 3 3

144 168 mean 10000 75.8 11.9 11.8 

SD 0 0.29 0.38 0.35 

N 3 3 3 3
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ABSTRACT 

The development and normal function of prostate tissue depends on signalling interactions between 

stromal and epithelial compartments.  Development of a prostate microtissue composed of these two 

components can help identify substance exposures that could cause adverse effects in humans as part 

of a non-animal risk assessment.  In this study, prostate microtissues composed of human derived 

stromal (WPMY-1) and epithelial (RWPE-1) cell lines grown in scaffold-free hydrogels were 

developed and characterized using immunohistochemistry, light microscopy, and qRT-PCR.  Within 5 

days after seeding, the microtissues self-organized into spheroids consisting of a core of stromal 

WPMY-1 cells surrounded by epithelial RWPE-1 cells.  The RWPE-1 layer is reflective of 

intermediate prostatic epithelium, expressing both characteristics of the luminal (high expression of 

PSA) and basal (high expression of cytokeratins 5/6 and 14) epithelial cells.  The response of the 

microtissues to an androgen (dihydrotestosterone, DHT) and an anti-androgen (flutamide) was also 

investigated.  Treatment with DHT, flutamide or a mixture of DHT and flutamide indicated that the 

morphology and self-organization of the microtissues is androgen dependent.  qRT-PCR data showed 

that a saturating concentration of DHT increased the expression of genes coding for the estrogen 

receptors (ESR1 and ESR2) and decreased the expression of CYP1B1 without affecting the expression 

of the androgen receptor. With further development and optimization RWPE-1/WPMY-1 microtissues 

can play an important role in non-animal risk assessments. 

HIGHLIGHTS 

- Non-animal risk assessment requires innovative cellular models representative of human 

biology 

- RWPE-1 and WPMY-1 cells form microtissues when grown in scaffold-free hydrogels 

- Microtissues represent an early stage of human prostate development 

- Morphological and molecular biomarkers are responsive to androgens/anti-androgens 
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1. INTRODUCTION

The risk assessment of endocrine active chemicals (EACs) relies heavily on the use of in vitro 

screening tests for endocrine activity.  Most in vitro tests for endocrine activity are based on detecting 

a biological response (e.g. transcriptional activation) that may or may not lead to an adverse response 

in vivo.  Assays that provide a functional response to endocrine active chemicals (e.g. inhibition of 

steroidogenesis) most often use two-dimensional (2D) culture systems that are not necessarily 

representative of the biology of normal endocrine sensitive tissues in vivo. These in vitro data are used 

to prioritize chemicals for subsequent in vivo testing, with the aim of identifying whether the observed 

endocrine activity gives rise to any adverse effects, and to characterize the dose-response of any 

effects seen.  The need to generate these confirmatory animal data is therefore driven in part by 

limitations of the existing reductionist in vitro systems, which cannot differentiate between endocrine 

activity and adversity in a physiologically-relevant way (Dent et al., 2015). 

The desire to reduce and to ultimately end the use of animal safety assessments has placed increased 

emphasis on the development of in vitro systems that are more representative of in vivo biology.  It 

has long been accepted that three-dimensional (3D) cultures have the potential to improve the 

physiological relevance of in vitro experiments and to provide data that are more reflective of tissue 

responses in whole organisms (Pampaloni, Reynaud and Stelzer, 2007).  The development of a non-

animal approach to the risk assessment of EACs therefore requires the development of 3D cell 

cultures of endocrine-sensitive tissues and identification of molecular and morphological biomarkers 

that are reflective of perturbed functioning of that tissue in the whole organism.  Our ambition is to 

use these tools in an exposure-led safety assessment to enable robust safety decision making for EACs 

without use of animals. 

The development of the prostate is under influence of the hypothalamus-pituitary-gonadal axis that 

may be affected by exposure to androgens and anti-androgens, and development of an in vivo-like 

microtissue model representing the normal prostate microenvironment would greatly advance our 

ability to perform non-animal risk assessments for EACs.  Because the development and function of 

the prostate is dependent on the close interaction between stromal and epithelial cells (Hayward, 
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Rosen and Cunha, 1997), physiologically-relevant 3D cultures of prostate cells require both cell types 

to be present.  Furthermore, androgenic stimulation of the stroma is an important trigger for 

development of the epithelium during organogenesis (Cunha, Donjacour and Sugimura, 1986; Peng 

and Joyner, 2015).  We therefore developed a 3D co-culture prostate microtissue model composed of 

commercially-available epithelial (RWPE-1) and stromal (WPMY-1) cell lines.  The RWPE-1 cell 

line was established from normal human prostate epithelial cells which were immortalized with 

human papillomavirus 18, and expresses both androgen receptor (AR) and prostate specific antigen 

(PSA) (Bello et al., 1997).  The WPMY-1 myofibroblast cell line was derived from the same prostate, 

and immortalized with the SV40 large-T antigen (Webber et al., 1999).  The objectives of this work 

are to: 1) assess whether RWPE-1 and WPMY-1 cells form microtissues when grown in scaffold-free 

hydrogels, 2) investigate the characteristics and function of the resulting microtissues using different 

molecular and imaging techniques, and 3) evaluate the response of this prostate co-culture model to 

androgenic and anti-androgenic responses. 

2. MATERIALS AND METHODS

2.1. Cell Culture 

RWPE-1 and WPMY-1 cells were obtained from ATCC (CRL-11609 and CRL-2854 respectively).  

RWPE-1 cells were maintained in keratinocyte serum free medium (K-SFM) supplemented with 0.05 

mg/ml bovine pituitary extract (BPE) and 5 ng/ml epidermal growth factor (EGF). WPMY-1 cells 

were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 5% fetal 

bovine serum (FBS), 1 mM sodium pyruvate, 4 mM L-glutamine and 1% penicillin streptomycin. 

Medium was changed every 2-3 days. Co-cultures were seeded at an equal ratio of the cell types and 

grown in a 1:1 mixture of K-SFM and DMEM, containing 2.5% FBS, 0.025 mg/ml BPE and 2.5 

ng/ml EGF, 0.5 mM sodium pyruvate, 2 mM L-glutamine, and 0.5% penicillin streptomycin.  A lower 

level of serum (1.25%) which was charcoal stripped was used in experiments where androgenic 

(DHT) or anti-androgenic (flutamide) test substances were administered to reduce interference from 
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background hormonal stimulation.  Cells were grown in an incubator at a temperature of 37°C at 5% 

CO2. 

2.2. 3D culture methods 

Hydrogels containing 2% agarose were cast from a 12-256 Small Spheroid mould from Microtissues 

Inc., RI, USA and placed into 12-well tissue culture plates.  In the initial characterization, cells were 

seeded at a total density of 3×105 cells/ml (approx. 222 cells/microtissue, 1:1 ratio of each cell type) 

and cultured for 7-days.  Medium was changed every 2-3 days.  For treatment with DHT and/or 

flutamide cells were seeded at a total density of 6×105 cells/ml (approx. 445 cells/microtissue, 1:1 

ratio of cell type) for 4-days. 

2.3. Treatment with dihydrotestosterone (DHT) and flutamide 

The response of microtissues to exposure to (anti-)androgenic substances was assessed by exposing 

the microtissues to DHT (Sigma, A8380) or flutamide (Sigma, F9397) in DMSO to achieve final 

concentrations in media of 10 nM or 10 µM respectively, and to a 1:1 mixture of these treatments for 

4-days.  Control microtissues were cultured for the same duration in plain medium containing the 

same concentration of DMSO (0.1%) as the treated microtissues.  The treatment concentrations were 

selected to represent a saturating concentration of the ligand and the antagonist.  Furthermore, 10 nM 

DHT is similar to the tissue concentration of DHT in cases of benign prostatic hypertrophy (Titus et 

al., 2005) 

2.4. Live cell imaging 

Cell imaging was performed using a Perkin Elmer Opera Phenix™ high content imaging system.  To 

enable the organization of the microtissue to be monitored over time, each cell line was tagged with a 

different fluorescent tracer.  WPMY-1 cells were tagged with a green tracer (Life Technologies 
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C7025) and RWPE-1 cells with a red tracer (Life Technologies C34552).  Confocal images were 

collected following treatment with DHT, flutamide or DHT+flutamide over consecutive days. 

2.5. Immunohistochemistry 

Immunohistochemistry (IHC) was performed to see if the proteins expressed in the microtissues 

reflected their expression in normal prostate tissue.  To characterize protein expression agarose 

hydrogels containing microtissues were fixed in 70% ethanol for at least 24-hours.  The gels were 

then embedded in paraffin, sectioned at 5 µm and mounted on glass slides.  Slides were stained with 

hematoxylin and eosin (H&E) or subjected to immunohistochemical staining.  After sections were de-

paraffinized and hydrated antigen retrieval was performed for cytokeratins (CK) by steaming for 20 

minutes in Tris/EDTA buffer composed of 1.21 g Trizma® base (Sigma T1503) and 0.37g EDTA 

(Sigma E5134) in 1L purified water.  Sections were then incubated with an Avidin/Biotin Block Kit 

(Vector Laboratories SP-2100) according to the manufacturer's instructions and blocked in 10% goat 

serum (Sigma G9023), 1% bovine serum albumin (BSA) (Sigma A2153) in a solution of 0.05% 

Tween 20 (Sigma P9416) in physiologically buffered saline (PBS-T) for 20-minutes.  Slides were 

incubated for 1-hour at room temperature with the appropriate antibody diluted in blocking solution at 

the following concentrations: Anti-CK5/6 (Dako M7237 at 1:100); Anti-CK8 (Sigma SAB5500133 at 

1:50); Anti-CK14 (Sigma SAB5500124 at 1:250); Anti-CK18 (Dako M7010 at 1:50); Anti-CK19 

(Dako M0888 at 1:100); Anti-vimentin (Sigma V6630 at 1:40); Anti-PSA (Dako A056201-2 at 

1:100).  Following washes in PBS-T, samples were incubated with the appropriate biotinylated 

secondary antibody (either goat anti-mouse IgG (Sigma B0529) or goat anti-rabbit (Sigma B8895)) 

for 1-hour at room temperature and subsequent incubation with Avidin/Biotin Peroxidase Complex 

Kit (Vector Laboratories PK-6100) as per manufacturer's instructions.  Antibody expression was 

detected using the DAB Kit (Vector Laboratories SK-4100), sections were counterstained with 

hematoxylin, cleared and coverslipped.  Where timepoints or treatments are compared, staining was 

conducted under the same conditions at on the same day.  For interpretation of morphology, an 

estimate of the ratio of epithelium to stromal cells was used. 
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2.6. Gene expression 

The expression of selected genes was evaluated in the microtissues over time, and the effect of 

treatment with DHT, flutamide or a mixture of DHT and flutamide on their relative expression was 

explored.  These included genes coding for the androgen receptor (AR), estrogen receptor 1 and 2 

(ER-α and ER-β) and cytochrome p450 1B1 (CYP1B1), a potential biomarker for the development of 

prostate cancer (Ragavan et al., 2004; Chang et al., 2017).  Each quantitative real-time PCR (qRT-

PCR) experiment consisted of 4 biological replicates (independent experiments) to ensure data 

reproducibility.  Microtissues were co-cultured at a 1:1 ratio at an initial density of 6×105 cells/ml in 

medium containing unstripped serum for 3, 5 or 7 days to assess gene expression over time.  To assess 

the effects of treatment with DHT or flutamide, microtissues were co-cultured at a 1:1 ratio at an 

initial density of 6×105 cells/ml in medium containing stripped serum and either DHT (10 nM), 

flutamide (10 µM), DHT+flutamide or control medium for 4 days.  Microtissues were collected from 

hydrogels, pelleted and homogenized in Buffer RLT using 0.15 mm Zirconium Oxide Beads in the 

Bullet Blender Storm (Next Advance). RNA was then isolated using the RNeasy Mini Kit (Qiagen) 

per manufacturer’s instructions. For use in qRT-PCR, cDNA was made using the RT2 First Strand Kit 

(Qiagen) per manufacturer’s instructions. qRT-PCR was performed using RT2 SYBR Green Rox 

qPCR Mastermix with RT2 qPCR Primer Assays (Qiagen) to determine expression levels of AR 

(PPH01016A), estrogen receptor 1 (ESR1, PPH01001A), estrogen receptor 2 (ESR2, PPH00992C), 

and CYP1B1 (PPH00435F) and normalized to ribosomal protein, large, P0 (RPLP0, PPH21138F) and 

β-actin (ACTB, PPH00073G) using RT2 qPCR Primer Assay (Qiagen). Plates were run on an Applied 

Biosystems ViiA 7 machine using cycling conditions recommended by the manufacturer.  The mean 

CT for the target (ESR1, ESR2, AR, CYP1B1) genes and the geometric mean CT for the endogenous 

control (RPLP0 and ACTB) genes was calculated for each of the 4 independent experiments and the 

mean CT for the endogenous controls was subtracted from the mean CT for each target gene within 

each experiment to give the Δ Mean.  For timecourse experiments, the ΔCт Mean at days 5 or 7 were 

subtracted from the ΔCт Mean at day 3 to provide the ΔΔCт for that gene at each timepoint.  For the 

experiments using DHT and flutamide, the ΔCт Mean at each treatment (DHT, flutamide, or 

169



DHT+flutamide) was subtracted from the control (untreated) ΔCт Mean to provide the ΔΔCт for each 

treatment. Finally, the ΔΔCт values were raised to the power of 2 (2-ΔΔCт) to provide the fold 

change in the target gene at each timepoint relative to day 3, or each treatment relative to control.  The 

mean of the 4 experiments was presented.  Data were analysed in GraphPad Prism using an ordinary 

one-way analysis of variance (ANOVA) followed by a multiple comparison test.  Tukey’s multiple 

comparison test was performed for the timecourse experiment (every timepoint vs. every other 

timepoint).  For the DHT and flutamide experiment, Dunnett’s multiple comparison test (each 

treatment vs. control) was performed. 

3. RESULTS

Time-course experiments were conducted using medium containing normal (unstripped) FBS, to 

monitor the development of the microtissues at 3, 5 and 7 days after seeding.  Assessments on days 3, 

5 and 7 included morphology by confocal imaging and light microscopy, the expression of selected 

proteins using IHC, and qRT-PCR to monitor the expression of selected genes over time.  Following 

this initial characterization, a set of further experiments was conducted in which microtissues were 

grown in medium containing charcoal stripped FBS to remove background androgenic signals, and 

the response of the microtissues to treatment for 4 days with an androgen (DHT), an anti-androgen 

(flutamide) or a mixture of DHT+flutamide was assessed using the same evaluations. 

3.1. Morphology of untreated RWPE-1/WPMY-1 prostate microtissues 

After seeding in either medium containing standard or stripped FBS, the cells settled to the bottom of 

the recesses in the agarose gels (256 recesses per well) and self-assembled into spheroids over the 

course of 24-hours.  Confocal imaging showed untreated spheroids at early timepoints (up to 3 days) 

comprised a core of epithelial RWPE-1 cells adjacent to or surrounded by stromal WPMY-1 cells 

(Figure 1A).  By Day 5 after seeding, the untreated microtissues self-organized with a high proportion 

of spheroids consisting of an inner core of WPMY-1 cells surrounded by RWPE-1 cells (Figure 1B).  
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As the microtissues develop there is persistent arrangement of the epithelium on the surface of the 

mesothelium, with increased squamous metaplasia as the specimen ages (Figure 2).  The 

epithelium:stroma ratio of 1:1 was maintained throughout the culture period.  By day 5 scattered 

pyknotic nuclei were apparent in the stromal cells at the core of the microtissue, indicating cell death 

in this population of cells (Figure 2B).  By day 7 after seeding microtissues were approximately 200 

µm in diameter with a stromal core composed of both viable cells and nuclear debris indicative of cell 

loss (Figure 2C).  At day 7, in some instances, clusters of stromal cells not surrounded by epithelial 

cells were present and appeared viable (see Supplementary Figure S2 for representative micrographs). 

Figure 1. Confocal images of prostate co-culture microtissues. The co-cultures of epithelial RWPE-1 cells 

(yellow) and stromal WPMY-1 cells (green) were grown in medium containing charcoal-stripped serum for 3 

(A) or 5 (B) days and undergo a spontaneous re-arrangement so that by day 5 most microtissues consist of a 

core of WPMY-1 cells surrounded by RWPE-1 cells.  Scale bar = 2 mm. 
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3.2. Immunohistochemistry of untreated prostate microtissues 

IHC was performed to assess whether proteins expressed by the microtissues were reflective of 

normal human prostate tissue and to differentiate between the WPMY-1 and RWPE-1 cells.  Proteins 

detected using IHC are listed in Table 1, and representative micrographs are included in the 

Supplementary Material.  Of the cytokeratins (CKs) assessed, CK5/6 and CK14 were the most 

expressed in cuboidal epithelial cells, whereas the isolated cells staining for CK8 or 18 appeared 

squamous and were found on the surface of the microtissues.  Expression of CK5/6 and vimentin 

provided strong markers to differentiate RWPE-1 and WPMY-1 cells respectively (Figure 2) 

Table 1: Protein expression in prostate microtissues 

Protein RWPE-1 cells WPMY-1 cells 

CK5/6 ++ - 

CK8 + - 

CK14 ++ - 

CK18 + - 

CK19 + - 

PSA ++ - 

Vimentin - ++ 

- protein not detected 

+ low level detected 

++ high level detected 

172



Figure 2. RWPE-1 cells in microtissue co-cultures grown in medium containing charcoal-stripped serum for 3, 

5 or 7 days express CK5/6 (D-F) and PSA (J-L), while WPMY-1 cells express vimentin (G-I).  The distribution 

of these markers confirms the spontaneous rearrangement of the microtissues over 5 days.  By day 5 stromal 

cells show pyknotic nuclei (B).  Scale bar = 100 µm. 
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3.3. Gene expression in untreated microtissues 

Expression of AR and CYP1B1 genes were stable over 7-days in medium containing unstripped 

serum, while ESR1 and ESR2 gene expression increased over this period (Figure 3). 
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Figure 3. qRT-PCR in microtissue co-cultures grown in medium containing normal serum for 3, 5 or 7 days. 

Expression of AR and CYP1B1 are stable over 7 days, whist ESR1 and ESR2 expression increases over time.  

Data represent 4 independent experiments.  Error bars show standard deviation.  p value = Tukey’s multiple 

comparisons test. 
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3.4. Effects of treatment with androgens and anti-androgens on morphology, protein and gene 

expression 

Microtissues were seeded (day 0) and continually treated with flutamide (10 µM), DHT (10 nM), or 

flutamide+DHT (10 µM+10 nM respectively) to assess the androgen responsiveness of the 

microtissues.  The assessments on treated tissues were conducted at day 4 after seeding, representing a 

time when the microtissues had self-organized and contained a viable stromal core.  

The predominant arrangement in the DMSO control group was of a single stromal core of WPMY-1 

cells surrounded by an epithelial layer of RWPE-1 cells, as demonstrated by IHC and confocal 

imaging (Figures 4A and 4B).  Treatment with flutamide resulted in an increase in microtissues with 

fragmented stromal cores and an increase in the proportion of epithelial cells (Figures 4C and 4D).  

Treatment with DHT alone did not cause an appreciable change in the cellular morphology or the 

arrangement of stromal and epithelial cells compared with control (Figures 4E and 4F). Treatment 

with DHT+flutamide resulted in an irregular and ill-formed microtissue, including an increased 

incidence of spheroids consisting of an epithelial core surrounded by stromal cells, and an increase in 

the proportion of epithelial cells (Figures 4G and 4H).  The day 4 flutamide+DHT microtissues 

showed an arrangement that was similar to the day 3 control microtissues (compare Figures 5D,5H, 

5L and 5P with Figures 2A, 2D, 2G and 2J respectively). 

Microtissues treated with DHT, flutamide or DHT+flutamide continued to express PSA.  

Qualitatively the PSA staining intensity varied with treatment, with the highest staining in control, 

followed by DHT, followed by flutamide with or without DHT (Figure 5M to 5P).  In addition, 

treatment with DHT+flutamide resulted in increased viability of the WPMY-1 stromal cells than 

either the control group or the individual treatments (Figure 5). 

DHT treatment was associated with a >2 fold increase in both ESR1 and ESR2 gene expression at day 

4, although only the ESR1 increase was significantly different to control (Figure 6).  DHT was also 

associated with a significant decrease in CYP1B1 expression. 
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Figure 4.  Immunohistochemical staining for CK5/6 (A, C, E, G) and confocal images (B, D, F, H) of prostate 

microtissue co-cultures. Prostate microtissues were exposed for 4 days to flutamide (C, D), DHT (E, F), or 

DHT+flutamide (G, H).  Flutamide causes an increased incidence of fragmented cores of WPMY-1 cells (green 

in confocal images) compared with control and DHT, whilst DHT+flutamide causes fewer microtissues with 

clearly defined WPMY-1 cores, and in many cases the core consists of RWPE-1 cells (yellow in confocal 

images). 
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Figure 5.  Expression of CK5/6 (E-H) vimentin (I-L), and PSA (M-P) in co-cultures exposed to flutamide (B, F, 

J, N), DHT (C, G, K, O), or DHT+flutamide (D, H, L, P) for 4 days.  The distribution of IHC markers confirms 

that treatment with DHT+flutamide affects the arrangement of the cell types.  Treatment results in variation in the 

PSA staining intensity with the highest staining in control, followed by DHT, followed by flutamide +/- DHT.  

Scale bar = 100 µm. 
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Figure 6. qRT-PCR in microtissue co-cultures exposed to DHT, flutamide, or DHT+flutamide for 4 days.  DHT 

treatment resulted in significantly increased ESR1 expression and significantly decreased CYP1B1 expression.  

Data represent 4 independent experiments.  Error bars show standard deviation.  p value = Dunnett’s multiple 

comparisons test. 

4. DISCUSSION

In healthy prostate tissue interactions between the stromal and epithelial compartments are necessary 

to maintain epithelial differentiation, highlighting the importance of the stroma to ensure a 

differentiated in vivo-like phenotype (Hayward, Rosen and Cunha, 1997).  Furthermore, androgenic 

stimulation of the stroma is an important trigger for development of the epithelium during 

organogenesis (Cunha, Donjacour and Sugimura, 1986; Peng and Joyner, 2015).  These observations 

led us to develop prostate microtissues composed of co-cultures of epithelial and stromal cell lines. 
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Normal human prostatic epithelium consists of a basal layer of flat to cuboidal non-secretory cells 

expressing CK5 and 14, upon which rests the luminal layer of cuboidal or pseudo-columnar cells 

expressing CK8 and 18 which secrete PSA into the prostatic acini (Gauntner and Prins, 2018). 

RWPE-1 and WPMY-1 cells seeded in agarose molds underwent spontaneous rearrangement to form 

spheroids consisting of a core of WPMY-1 (stromal) cells surrounded by RWPE-1 (epithelial) cells.  

The microtissues formed no ducts or acini but did secrete PSA.   

During fetal and neonatal development the expression of CKs in the prostatic epithelium undergoes 

significant change, moving from a predominant expression of CKs 5 and 14 (associated with basal 

epithelium), towards expression of CKs 8 and 18 (associated with luminal epithelium) (Sherwood et 

al., 1991; Xue et al., 1998). The epithelial cell layer of our microtissues exhibited characteristics of 

both the basal and luminal epithelium of normal human prostate, comprising mostly of cuboidal or 

flattened cells with high expression of CK5/6 and CK14, low expression of CK8, 18 and 19, and over 

time, high expression of PSA.  Several investigators have described such an ‘intermediate’ cell type in 

human prostatic epithelium which may develop into differentiated luminal cells (Sherwood et al., 

1991; Bonkhoff, Stein and Remberger, 1994), and others have observed that the majority of prostate 

epithelial cells in culture show this intermediate phenotype (Festuccia et al., 2005).  It therefore 

appears that the epithelial layer of RWPE-1/WPMY-1 co-cultures grown described here consist of 

intermediate cells, analogous to an early stage of prostate development. 

These microtissues expressed PSA in medium containing stripped serum, representing a virtually 

androgen-free environment (Figure 2J-L).  Previous studies of LNCaP cells in culture have suggested 

an ability of prostate cancer cells to auto-regulate the metabolism of testosterone to DHT to provide 

an optimal level of DHT for growth, even under castrate conditions (Sedelaar and Isaacs, 2009).  

Furthermore, RWPE-1 medium contains EGF, which can directly activate the AR in the absence of 

androgens (Culig et al., 1994).  These are the two most likely reasons why the untreated microtissues 

in medium containing stripped serum continued to express PSA.  Conversely, the observation that 

culture in 10 nM DHT resulted in microtissues that were histologically indistinct from control with 

minimal changes in AR gene expression may reflect that at this high concentration of DHT AR 
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receptors are desensitized and no longer being up-regulated.  Events at lower concentrations may 

therefore be very different. 

The interesting observation that administration of flutamide or a combination of DHT and flutamide 

affected the morphology of the microtissues in different ways implies that the spontaneous 

arrangement of these microtissues is affected by androgenic signalling.  Treatment with either 

flutamide or DHT+flutamide caused an increase in the proportion of epithelial to mesothelial cells 

present in the microtissues.  This observation warrants further investigation of the 

epithelial/mesothelial ratio as a biomarker of effect for (anti-)androgens, providing a quantitative 

measure to identify substance exposures that alter the development of the microtissues compared with 

control.  Treatment with DHT+flutamide resulted in microtissues at day 4 that resembled day 3 

control microtissues, both in terms of the relative arrangement of the epithelial and stromal cells and 

lower relative expression of ESR1 and ESR2.  This treatment therefore appeared to slow the 

development of the microtissue.  Although DHT administration alone did not affect the arrangement 

or proportion of cells in the microtissue, it was associated with a 2-fold increase in ESR1 and ESR2 

gene expression.  The fact that co-administration of flutamide resulted in ESR1 and ESR2 gene 

expression levels similar to control suggests that the increased ESR1 and ESR2 gene expression seen 

with DHT was related to AR binding.  There are inter-relationships between the functioning of AR 

and ESR1 and ESR2, and our results were consistent with previous studies in MCF-7 cells.  These 

showed that administration of DHT counteracts the proliferative activity of estradiol, an effect which 

is reversed by coadministration with the flutamide metabolite hydroxyflutamide  (Andò et al., 2002).  

DHT has been shown to not only bind to the ESR1, it also has inhibitory or stimulatory effects on the 

proliferation of breast cancer cell lines depending on the dose, cell line, and whether estradiol was 

present (Somboonporn and Davis, 2004; Lin et al., 2009).  Taken together, the increased ESR1 and 

ESR2 gene expression was likely a response to AR-mediated suppression of estrogenic signalling.  In 

breast cancer cell lines CYP1B1 expression is regulated by estradiol via ESR1 (Tsuchiya et al., 2004), 

which makes mechanistic sense because estradiol is a substrate for the CYP1B1 protein.  The reduced 
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CYP1B1 expression seen in our study was therefore likely due to the AR-mediated suppression of 

estrogenic signalling. 

ESR1 is an oncogene in prostatic tissue and is expressed in stromal cells and in the basal epithelium.  

ESR2 is a tumour suppressor gene which tends to be localised in luminal epithelial cells, and 

undergoes substantial loss in castration resistant prostate cancer (Bonkhoff, 2018).  A change in the 

relative expression of these genes could therefore provide predictive biomarkers for the development 

of prostate cancer.  Similarly, CYP1B1 is expressed at much higher levels in prostate tumours 

compared with benign tissue (Ragavan et al., 2004), and is also over-expressed in prostate cancer cell 

lines compared with RWPE-1 cells (Chang et al., 2017).  These genes may therefore also be useful 

biomarkers to assess the transition from an adaptive to an adverse response to xenobiotics. 

The decreased viability of the WPMY-1 cells after 4 days of culture in this system is a significant 

limitation.  Optimization of culture conditions is therefore required to establish whether extended 

period in culture with a viable stromal compartment would increase the proportion of epithelial cells 

more reflective of a differentiated luminal phenotype.  The WPMY-1 cells at the core of the 

microtissues were less viable than those on the outside (see Supplementary Materials for 

micrographs).  Necrosis at the center of larger (>200µm) spheroids due to hypoxia is a well described 

phenomenon (Däster et al., 2017).  However, because poor viability was apparent in areas very close 

to the outside edge of our microtissues and not just at the centre this does not seem a likely cause.  

Mechanical stress upon core cells in spheroids grown in agarose molds has also been reported (Cheng 

et al., 2009), but again this appears to affect much larger microtissues.  It is unclear whether the 

WMPY-1 cells at the core of the microtissue showed poor viability because they were enclosed by the 

RWPE-1 cells or were enclosed because they were showing poor viability.  Although the order of 

events is not yet clear, it does appear that the viability of WPMY-1 cells in co-culture relies on a 

specific level of androgenic stimulation, because co-administration of DHT and flutamide resulted in 

improved viability of these cells at day 4. 

In summary, RWPE-1 and WPMY-1 cells formed microtissues when grown in scaffold-free 

hydrogels.  The proteins detected by immunohistochemistry indicated that the microtissues reflected 
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an early stage of human prostate development.  Morphological and molecular biomarkers including 

the arrangement of the stromal and epithelial compartments, expression of PSA, and gene expression 

showed that the microtissues were responsive to androgens and anti-androgens.  Long-term viability 

of the WPMY-1 cells in co-culture relies on a specific level of androgenic stimulation, and future 

work will include a dose-response study with a broad range of DHT concentrations to test this 

hypothesis.  The utility of the biomarkers described will also further be investigated, in particular, the 

use of automated confocal microscopy using the Opera Phenix system to provide quantitative readouts 

of cellular distribution and morphology.  

5. CONCLUSION

For a prostate microtissue to be useful in non-animal next generation risk assessment, it needs to be 

able to bridge the gap between in vitro studies providing a readout of ‘endocrine activity’ (e.g. 

transcriptional activation) and in vivo studies which characterize apical outcomes (i.e. observed 

pathology).  To do this requires the development of a human-relevant microtissue and the 

identification of molecular and morphological biomarkers that are predictive of adverse effects.  With 

further development and optimization RWPE-1/WPMY-1 microtissues can play an important role in 

non-animal risk assessments. 
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LIST OF FIGURES 

Figure 1. Confocal images of prostate co-culture microtissues. The co-cultures of epithelial RWPE-1 

cells (yellow) and stromal WPMY-1 cells (green) were grown in medium containing charcoal-

stripped serum for 3 (A) or 5 (B) days and undergo a spontaneous re-arrangement so that by day 5 

most microtissues consist of a core of WPMY-1 cells surrounded by RWPE-1 cells.  Scale bar = 2 

mm. 

Figure 2. RWPE-1 cells in microtissue co-cultures grown in medium containing charcoal-stripped 

serum for 3, 5 or 7 days express CK5/6 (D-F) and PSA (J-L), while WPMY-1 cells express vimentin 

(G-I).  The distribution of these markers confirms the spontaneous rearrangement of the microtissues 

over 5 days.  By day 5 stromal cells show pyknotic nuclei (B).  Scale bar = 100 µm. 

Figure 3. qRT-PCR in microtissue co-cultures grown in medium containing normal serum for 3, 5 or 

7 days.  Expression of AR and CYP1B1 are stable over 7 days, whist ESR1 and ESR2 expression 

increases over time.  Data represent 4 independent experiments.  Error bars show standard deviation.  

p value = Tukey’s multiple comparisons test. 

Figure 4.  Immunohistochemical staining for CK5/6 (A, C, E, G) and confocal images (B, D, F, H) of 

prostate microtissue co-cultures. Prostate microtissues were exposed for 4 days to flutamide (C, D), 

DHT (E, F), or DHT+flutamide (G, H).  Flutamide causes an increased incidence of fragmented cores 

of WPMY-1 cells (green in confocal images) compared with control and DHT, whilst DHT+flutamide 

causes fewer microtissues with clearly defined WPMY-1 cores, and in many cases the core consists of 

RWPE-1 cells (yellow in confocal images). 

Figure 5.  Expression of CK5/6 (E-H) vimentin (I-L), and PSA (M-P) in co-cultures exposed to 

flutamide (B, F, J, N), DHT (C, G, K, O), or DHT+flutamide (D, H, L, P) for 4 days.  The distribution 

of IHC markers confirms that treatment with DHT+flutamide affects the arrangement of the cell types.  

Treatment results in variation in the PSA staining intensity with the highest staining in control, followed 

by DHT, followed by flutamide +/- DHT.  Scale bar = 100 µm. 
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Figure 6. qRT-PCR in microtissue co-cultures exposed to DHT, flutamide, or DHT+flutamide for 4 

days.  DHT treatment resulted in significantly increased ESR1 expression and significantly decreased 

CYP1B1 expression.  Data represent 4 independent experiments.  Error bars show standard deviation.  

p value = Dunnett’s multiple comparisons test. 

Supplementary figures: 

Figure S1. Cytokeratin expression in microtissue co-cultures grown in complete medium for 3, 5 or 7 

days.  Predominant CK expression is CK5/6 and CK14.  Few, scattered cells show staining for CKs 8, 

18 or 19.  Scale bar = 100 µm. 

Figure S2.  Microtissues grown in medium containing stripped serum for 7 days and stained for 

CK5/6 expression. WPMY-1 cells on the outside of microtissues show improved survival compared 

with those in the core at 7 days after seeding. Scale bar = 100 µm. 
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Supplementary figure

Figure S1. Cytokeratin expression in microtissue co-cultures grown in complete medium for 3, 
5, or 7 days. Predominant CK expression is CK5/6 and CK14. Few, scattered cells show 
staining for CKs 8, 18 or 19. Scale bar = 100 µm.
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Supplementary figure

Figure S2. Microtissues grown in medium containing stripped serum for 7 days and stained 
for CK5/6 expression. WPMY-1 cells on the outside of microtissues show improved survival 
compared with those in the core at 7 days after seeding. Scale bar = 100 µm.
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A B S T R A C T

Consumer safety is a prerequisite for any cosmetic product. Worldwide, there is an ever-increasing desire to
bring safe products to market without animal testing, which requires a new approach to consumer safety. ‘Next
Generation Risk Assessment’ (NGRA), defined as an exposure-led, hypothesis driven risk assessment approach
that integrates in silico, in chemico and in vitro approaches, provides such an opportunity. The customized nature
of each NGRA means that the development of a prescriptive list of tests to assure safety is not possible, or
appropriate. The International Cooperation on Cosmetics Regulation (ICCR) therefore tasked a group of scien-
tists from regulatory authorities and the Cosmetic Industry to agree on and outline the principles for in-
corporating these new approaches into risk assessments for cosmetic ingredients. This ICCR group determined
the overall goals of NGRA (to be human-relevant, exposure-led, hypothesis-driven and designed to prevent
harm); how an NGRA should be conducted (using a tiered and iterative approach, following an appropriate
literature search and evaluation of the available data, and using robust and relevant methods and strategies); and
how the assessment should be documented (transparent and explicit about the logic of the approach and sources
of uncertainty). Those working on the risk assessment of cosmetics have a unique opportunity to lead progress in
the application of novel approaches, and cosmetic risk assessors are encouraged to consider these key principles
when conducting or evaluating such assessments.
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1. Introduction

Cosmetic products and ingredients should be safe for consumers for
their intended use. Historically the safety assessment for some tox-
icological endpoints relied on animal testing. However, concern for
animal welfare, regulatory action and a desire by companies to bring
safe products to market without the use of animal testing using more
human-relevant data has brought the need for a different approach to
evaluating safety. In 2007 the US National Academies of Science (NAS)
published a seminal document entitled Toxicity Testing in the 21st
Century, A Vision and a Strategy [20,16]. This NAS report called for a
transformation in toxicity testing, “from a system based on whole-animal
testing to one founded primarily on in vitro methods that evaluate changes in
biological processes using cells … of human origin.” This transformation,
looking at key events in toxicity pathways rather than animal organs,
will require the use of new types of data that have not routinely been
used in cosmetic safety evaluation. In 2017, the NAS followed up on the
conceptual frameworks laid out in both the 2007 report and a 2012
report on Exposure Science in the 21st Century [21], with the report Using
21st Century Science to Improve Risk-Related Evaluations [22]. This new
report discusses the advances and challenges in risk assessment related
to interpreting and integrating new types (and volumes) of data, with
an emphasis on exposure considerations. The momentum created by
these reports has led to various initiatives, including inter-agency ac-
tions on the part of the US government, seeking to expedite and facil-
itate the adoption of new approaches for the risk assessment of che-
micals and medicinal products [14]. In parallel, the use of data and
information from new approach methodologies (NAMs) has been dis-
cussed in a broader context in Europe in a dedicated European Che-
micals Agency (ECHA) Topical Scientific Workshop held in April 2016,
identifying their potential and existing barriers to support regulatory
decisions for the assessment of chemical substances [8].

The International Cooperation on Cosmetics Regulation (ICCR) is a
voluntary international group of cosmetics regulatory authorities from
Brazil, Canada, the European Union, Japan and the United States. Other
countries participate by written request in an observer status. ICCR was
founded in 2007, and provides a multilateral framework to maintain
and enable the highest level of global consumer protection by working
towards and promoting regulatory convergence, while minimizing
barriers to international trade. To achieve this, ICCR has previously
produced a number of recommendations relating to the safety evalua-
tion of cosmetic ingredients and products, including principles of cos-
metic product safety evaluation, and the use of alternative test methods
in cosmetics safety evaluation. Given the rapid evolution in the science

of toxicological safety and risk assessment, and the opportunities pro-
vided by NAMs as described in the above NAS and ECHA reports, ICCR
recognized that a fundamental change in the approach to the safety
evaluation of cosmetics is becoming possible. Therefore, under the
auspices of the ICCR, a joint working group comprising scientists from
each regulatory authority and Industry was convened to agree on and
outline the principles for incorporating NAMs into an integrated
strategy for risk assessment of cosmetics ingredients (or ‘Next
Generation’ risk assessment). In this context, a Next Generation Risk
Assessment (NGRA) is defined as an exposure-led, hypothesis driven
risk assessment approach that incorporates one or more NAMs to ensure
that use of a cosmetic product does not cause harm to consumers. This
paper introduces the principles described in the ICCR report “Integrated
Strategies for Safety Assessments of Cosmetic Ingredients – Part I”, and
provides a discussion and conclusion on the implications of these
principles. All previous ICCR reports and recommendations are avail-
able at http://www.iccr-cosmetics.org/topics/.

2. Principles for the Next Generation Risk Assessment of cosmetic
ingredients

Here we present nine principles to ultimately help those involved in
cosmetic safety assessment build integrated safety assessments without
generating animal data. These principles are illustrated in Fig. 1, and
further explained below. The nine principles relate to the overall goal of
the risk assessment, how it should be conducted, and how it should be
documented. These principles should be considered before initiating
the risk assessment because, to a greater or lesser extent, all the prin-
ciples inform problem formulation (which is the first step of any risk
assessment).

2.1. Principle 1: the overall goal is a human safety assessment

Firstly, the safety assessment should enable a decision to be made on
the safety of the ingredient/product to humans, not be designed as a
prescriptive or definitive battery of tests to replicate the results of an-
imal studies.

While there are differences in how countries regulate cosmetic
products, there are also many commonalities. For example, within the
ICCR, it is the responsibility of manufacturers rather than regulators to
substantiate the safety of the cosmetic product.

Thus, within each ICCR region there exists the overarching principle
that cosmetics must be safe when used according to directions and as
customarily intended. Similarly, it is consistent across all five regions

Fig. 1. Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients.
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that the regulations themselves do not prescribe specifically how the
safety of the cosmetic must be determined. In some geographies sci-
entific guidance is available describing how cosmetic risk assessments
may be performed, notably in the EU, where the Scientific Committee
on Consumer Safety (SCCS) has produced guidance for public autho-
rities and the cosmetic industry to improve harmonised compliance
with the EU cosmetic regulation [29]. However, it remains the re-
sponsibility of the manufacturer to ensure that cosmetics placed on the
market are safe for the consumer. Cosmetics are unlike many other
regulated product categories where a fixed testing data set or require-
ments, often including specified animal tests, is obligated by law or
regulation. When considered in the context of a desire to move away
from animal testing in general, this presents cosmetic manufacturers
with opportunities to ensure safety risk assessments are grounded in
human biology rather than replicating the results of a prescriptive list of
animal tests. This is especially important for mechanism-based risk
assessments, because points of departure based on perturbations in
signalling pathways in cells of human origin are not necessarily the
same as no-observed-adverse-effect levels based on organ pathology in
a rat study. This means that results of such tests cannot (and should not)
be ‘validated’ against the results of apical animal studies, and other
methods need to be used to assess whether NGRA approaches are
protective of health. It is here that case studies play a role in under-
standing how much confidence can be placed in developing a NGRA for
a particular signalling pathway [1]. The level of confidence could be
assessed using a number of approaches depending on how well the
quantitative relationship between the perturbation and the adverse
outcome is understood. Where this detailed understanding is not
available, benchmarking against substances with a significant history of
exposure may play a role [3], or comparing the safety decisions made
using risk assessments based on traditional or new approaches for a
number of substances with similar activities.

2.2. Principle 2: the assessment is exposure-led

Exposure assessment is “the process of estimating or measuring the
magnitude, frequency, and duration of exposure to an agent, along with the
number and characteristics of the population exposed. Ideally, it describes
the sources, routes, pathways, and uncertainty in the assessment” [15].

Exposure assessment is one of the four essential steps in cosmetic
ingredient human safety assessment; others include hazard identifica-
tion, dose-response assessment, and risk characterization. While his-
torically safety assessments have been hazard-driven, there is now a
shift towards exposure-driven approaches [30]. Estimating human ex-
posure as early as possible in the safety assessment is crucial. This is
because in an exposure-driven paradigm exposure estimates will define
the degree of hazard data needs and guide further data generation. For
example, techniques such as exposure-based waiving using thresholds
of toxicological concern (TTC) may be sufficient to assure the safety in
case of very low exposures (see Principle 6). Calculated internal ex-
posure concentrations may help to identify target organs at highest risk
and will guide concentrations to be used for possible in vitro tests per-
formed for the risk assessment. As well as the cosmetic ingredient itself,
it may also be necessary to characterize exposure to any relevant im-
purities present in the ingredient and/or metabolites.

Exposure may be estimated using an iterative tiered approach,
ranging from screening-level to a refined exposure assessment which
considers both external (applied dose) and internal (systemic) exposure.
Exposure data for human safety assessment can be deterministic or
probabilistic, and may describe exposure from a single product or
combined exposures from multiple products or sources (aggregate ex-
posure). As the first step, a screening level assessment using basic tools
(e.g., simple exposure calculations, default values, conservative as-
sumptions, deterministic approaches) can be conducted. Depending on
the results of the screening-level assessment, further evaluation through
refinements of the input data and exposure assumptions or by using

more advanced models, such as in vitro skin absorption studies and
probabilistic consumer exposure assessments using mathematical
modeling, may be warranted. Probabilistic models rely on data dis-
tributions instead of point values and, hence, result in exposure dis-
tributions better characterizing realistic consumer exposures.

In ‘traditional’ cosmetic safety evaluations, exposure is often ex-
pressed as either the applied dose per unit area (e.g. µg/cm2 for local
effects) or as total body burden (e.g. mg/kg body weight/day for sys-
temic effects). For risk assessments that integrate NAMs, depending on
the methodology and health effect being evaluated, it is likely that
exposure for systemic effects will be expressed on an internal basis
using metrics such as the maximum concentration (Cmax) or the area
under the curve (AUC) of the test chemical, calculated using relevant
pharmacokinetic models. In the cases where a quantitative in vitro to in
vivo extrapolation (QIVIVE) is required, the QIVIVE must allow a valid
comparison between the actual concentration in the in vitro test system
rather than the applied dose. In these cases, the free concentration of
the test chemical is a more valid metric than the total applied dose [13],
and may need to be measured depending on the level of precision re-
quired. This type of risk assessment compares points of departure from
NAMs with an estimate of internal dose, and recently the US EPA has
used reverse dosimetry methodologies in this way [33].

At each level of assessment, one needs to decide if the degree of
confidence in the data is good enough to achieve the purpose of the
assessment or if successive iterations using more data or refinements
are required. The ability to integrate the refined exposure assessment
with the hazard identification and dose-response assessment into the
human safety assessment (and possibly incorporate this into regulatory
decision making) is strongly influenced by the quality of the exposure
characterization.

2.3. Principle 3: the assessment is hypothesis-driven

Historically, safety assessments were animal-based relying on the
assumption that clinical and pathological effects seen at high doses in
animal models are relevant and titratable to much lower exposures
(often by a different exposure route) in humans. More specific MoA
hypotheses only tend to be articulated once adverse effects are seen in
intact animals and it is then determined whether the effects are relevant
to humans.

In the context of non-animal toxicological safety assessments, it is
important to use appropriate information to establish a hypothesis (or
hypotheses) about the biologically relevant key events leading to an
adverse outcome that may be associated with a specific chemical ex-
posure. This is the basis of the MoA, and of the Adverse Outcome
Pathway (AOP) framework [24]; https:aopwiki.org; [2,31]. In contrast
to MoAs, AOPs consider only the key events after the molecular in-
itiating event (e.g. receptor binding) and so are chemical-agnostic,
while MoAs also consider upstream exposure key events (e.g. dermal
absorption, metabolism) and so are chemical-specific.

The evidence that could be used to generate the initial hypothesised
MoA should include all available existing data. This could include in
vitro or in vivo data, read across and in silico predictions. Care needs to
be taken not to bias the hypothesis based on the focus of previous in-
vestigations. For example, if a chemical has been researched and shown
to interact with a specific receptor, this should not be the entire focus of
the safety evaluation, because other important key events could be
missed. This is where a broad high-throughput screen (HTS) could be
used to identify potential key events not seen in existing data. The as-
says represented in this HTS could include consideration of stress re-
sponse pathways (e.g. oxidative stress) as well as specific protein/re-
ceptor interactions (e.g. oestrogen receptor activity). Any available
animal data should be used with care at this step of the safety evalua-
tion. If relevant in vivo data are sufficient to complete a risk assessment
using traditional methodologies, the expectation is that a risk assess-
ment based on the in vivo data will be performed. However, where there
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are significant data gaps in the existing in vivo dataset, existing animal
data should only be used if it can help to establish or refine a hy-
pothesised MoA. Furthermore, because the goal is to produce a human-
relevant safety assessment, it is important that the hypothesis is not
focussed on predicting or confirming reported adverse effects in the
available limited animal data. For example, if limited animal test data
suggest hepatic toxicity at a particular dose, this information is only of
use if it can be used alongside the HTS data to help identify key events
in the MoA that may cause adverse effects in humans. The basis for the
safety assessment in this example should therefore not be ‘Chemical X
causes liver toxicity in rats after an oral dose of 10mg/kg bw/day’,
because this will send the safety assessment on course to evaluate
changes in animal models that may not be relevant for humans. Rather,
it should be focussed on the key events in the most plausible hy-
pothesised MoA. Examples based on HTS screens could be:

‘At relevant exposures, chemical X perturbs the p53 pathway which
results in increased cancer risk in consumers’, or ‘Chemical X has an
ability to antagonize the androgen receptor, but not at exposures re-
levant to consumers’.

Conversely, following the assessment of the available data and the
HTS screen, the hypothesis could be ‘At relevant exposures the biolo-
gical activity of Chemical X is insufficient to cause adverse effects in
consumers’. This hypothesis may be adequate where there is a wide
margin between any relevant in vitro activity and human exposures.
Whether the hypothesis centres on perturbation of a specific signalling
pathway or on a lack of activity at relevant exposures, the appropriate
tools need to be used to ensure confidence in the safety evaluation, and
the hypothesis should be tested using appropriate statistical analysis
while all underlying assumptions should be clearly defined.

Determining the appropriate hypothesis (or hypotheses) will enable
identification of relevant questions that need to be answered using
appropriate techniques to complete a safety evaluation.

2.4. Principle 4: the assessment is designed to prevent harm

It is normal practice in the interpretation of animal toxicity studies
to distinguish between adaptive perturbational effects of treatment
(effect level – EL) and those that are considered adverse (adverse effect
level – AEL), with the point of departure used in risk characterization
being based on the dose expected to cause no or minimal adverse effect
(no observed adverse effect level – NOAEL). A limitation of this ap-
proach is that the biological mechanisms that underlie these adverse
effects are rarely known. In contrast, most NAMs are based on defining
a chemical’s biological activity to inform a mechanism-based risk as-
sessment. When used in isolation, many NAMs are not designed to
distinguish between a biological effect (a treatment-related change
detectable in the test system) and an adverse effect (an effect that will
result in an adverse health effect in humans).

Whilst it may be relatively straightforward to identify an in vitro
concentration that results in perturbation of, for example, a stress re-
sponse pathway by measuring altered levels of signalling molecules or
the expression of genes controlling the pathway of interest, determining
a dose which could result in adverse health effects in humans is much
more challenging. An important reason for this is that many homeo-
static responses that allow an integrated in vivo system to compensate
for stress are missing in isolated in vitro test systems. Where no biolo-
gical effects at all are predicted to occur at human-relevant exposures,
this is not an issue because, if there are no effects, there can be no
adversity. However, many NAMs can identify biological effects with
great sensitivity, meaning that in many cases it will be necessary to
develop tools and approaches to enable experimenters and risk asses-
sors to distinguish between an adaptive and an adverse response.

Although this could be seen as an ambition that is currently out of
reach, this may be accomplished using pragmatic approaches such as
benchmarking exposure and effect concentrations against different
chemicals with similar MoAs (i.e. common key events) where there is a

strong presumption of safety (or otherwise). The use of more elaborate
approaches such as advanced in vitro systems (e.g. 3D models) which
are more in vivo-like, or bespoke computational models capable of
modelling the dynamics of the in vivo system are additional tools to
refine the risk assessment. Whichever approach is taken, Principle 6
(using a tiered and iterative process) should guide the process so that
the level of work is proportional to the level of concern, thereby en-
suring that work stops once there is enough precision to make a deci-
sion [12].

2.5. Principle 5: the assessment follows an appropriate appraisal of all
existing information

It is important to ensure that all available relevant knowledge and
information is used to shape the scope and direction of the assessment.
It is recommended to use systematic review methodology to identify,
select and critically appraise relevant information to ensure that all the
steps of the risk assessment (RA) process (hazard identification, hazard
characterization, exposure assessment, risk estimate) are based on re-
levant and robust data. The findings of systematic reviews can provide
information as input into risk assessment models.

A systematic review is an overview of existing evidence pertinent to
a clearly formulated question, which uses pre-specified and standar-
dized methods to identify and critically appraise relevant research, and
to collect, report and analyze data from the studies that are included in
the review [9]. Statistical methods to synthesize the results of the in-
cluded studies (meta-analysis) may or may not be used in the process.
Due to their methodological rigour, transparency and reproducibility,
systematic reviews are different from narrative reviews and can be very
helpful in the risk assessment process.

Firstly, an effective systematic review will reduce bias in the eva-
luation of existing information, and prevent the conduct of redundant
experiments which are not necessary to complete the risk assessment.
Where new data needs are identified, systematic reviews may improve
the design and, therefore, the relevance and reliability of new experi-
ments.

Secondly, a systematic review can allow the use of both high- and
low-quality data. Where the evidence located is of high quality, the
review may be able to produce an estimate of effect that is unbiased and
more precise than those available from any individual study. If research
is of poor quality, then the review will document the limitations and
flaws with the existing evidence, formally identify knowledge gaps, and
make informed proposals for the weight given to the data in the overall
assessment.

2.6. Principle 6: the assessment uses a tiered and iterative approach

The amount of resources allocated to conducting a risk assessment
should be based on, and be proportional to, the level of concern.
Because resources are finite, the greatest amount of money, time and
effort should be assigned to the most potentially significant risks.

Several factors can guide the resource prioritization process. Such
factors include, but are not limited to, the level of severity of the po-
tential injury, the level of exposure involved, whether a vulnerable
population (e.g. children, pregnant women, seniors) can be identified,
whether the hazard remains present when the cosmetic product is used
in accordance with its intended use, or the level of refinement of the
hypothesis to be tested.

To ensure the allocated resources allow the appropriate level of data
to be gathered, it may be useful to use a tiered approach for risk as-
sessment which would thereby involve tiered approaches for toxicity
and exposure estimation. This principle is a feature of the Health and
Environmental Sciences Institute’s RISK21 risk assessment approach
and accompanying webtool (http://www.risk21.org). The RISK21 ap-
proach is iterative, ensuring both hazard and exposure data are refined
until there is ‘enough precision to make the decision’. In some
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circumstances, it may be sufficient to develop low tier estimates based
on (Quantitative) Structure-Activity Relationships ((Q)SARs) paired
with a Threshold of Toxicological Concern (TTC) approach using
minimal information such as physico-chemical properties [17,12]. As
an exposure-based waiving approach, the TTC has been found to be
broadly applicable to cosmetics [18,35,29,34,36] and can also be used
for inhalation exposure to aerosol ingredients [5]. If low tier estimates
yield enough information to make a decision, then there is no need to
allocate further resources to obtain higher-tier estimates. If more re-
finement is required, however, increasing resources could be assigned
to produce higher tier in vitro estimates involving predictive assays
paired with IVIVE using deterministic exposure models encompassing
population-specific exposures, or further refinement yet using prob-
abilistic exposure scenarios. Finally, if an even-greater level of refine-
ment is needed, further resources can be allotted to produce estimates
based on the MoA “key event dose-response framework”, combined
with biomonitoring data [12].

The total amount of resources allocated to any risk assessment
should be no less and no more than that required to provide adequate
precision, to reach a conclusion, and to make a decision.

2.7. Principle 7: the assessment uses robust and relevant methods and
strategies

To ensure confidence in the validity of the safety assessment, it
should be based on robust and relevant methods.

Criteria to assess this may include adherence to Organization for
Economic Cooperation and Development (OECD) Test Guidelines and
work in a relevant quality system (e.g. Good Laboratory Practice
(GLP)). In addition, Good In VitroMethod Practices (GIVIMP) have been
introduced to reduce variability in in vitro methods for regulatory safety
assessment and to allow harmonisation of approaches [6,27]. GIVIMP is
based on good scientific and good quality practices, including con-
siderations on standard operating procedures (SOPs) of in vitro
methods, the minimum requirements and reporting features necessary
as well as describing good experimental design and establishing ac-
ceptance criteria for in vitro methods and performance standards. Si-
milarly, any in silico methods used should be sufficiently documented,
transparent and reproducible (see also Principle 9).

As noted in the GIVIMP guidance, new approaches need not ne-
cessarily be formally validated, endorsed by regulatory authorities, or
performed to GLP to be useful. In the ECHA Topical Scientific Workshop
on new approach methodologies in Regulatory Science held in April
2016, the usefulness of NAMs for a number of regulatory uses was
stressed, especially in providing pertinent information about mechan-
isms of action [8]. Similarly, the US FDA’s Predictive Toxicology
Roadmap [32] refers to the process of qualification rather than vali-
dation. Within the stated context of use, qualification is a conclusion
that the results of an assessment using the model or assay can be relied
on to have a specific interpretation and application in product devel-
opment and regulatory decision-making. Therefore, in determining the
usefulness of a method, the applicability domain and limitations of the
method need to be well understood and documented, so that the
methods can be applied appropriately. The relevance of the method for
the specific purpose also needs to be considered and justified.

The interpretation and combination of information from different
methods to inform the risk assessment can be standardised in defined
approaches (DA) to testing and assessment, which can be components
of Integrated Approaches to Testing and Assessment (IATA). DA are
rule-based approaches and may be useful in supporting decision making
for some health effects. Data generated by different methods (in silico, in
chemico, in vitro, in vivo), which are deemed relevant and fit for purpose
for the health effect considered, are evaluated using a fixed data in-
terpretation procedure (DIP) [25]. A DA can have the form of a se-
quential testing strategy or an integrated testing strategy. An example is
the guidance on reporting of DA for use within IATA for skin

sensitisation [26]. Any remaining uncertainties relating either to the
methods used or to the risk assessment strategy should be transparently
documented (see Principle 8).

2.8. Principle 8: sources of uncertainty should be characterized and
documented

“Uncertainty can be caused by limitations in knowledge (e.g. limited
availability of empirical information), as well as biases or imperfections in
the instruments, models or techniques used” [7]. There are limitations,
biases or imperfections leading to uncertainty in any risk assessment
regardless of the methodology used. Traditional (animal-based) risk
assessments have evolved strategies to deal with uncertainty. These
include development of regulatory guidance describing data needed to
complete a risk assessment, test guidelines to describe how studies
should be performed, and guidance documents describing how data
should be interpreted. In terms of safety decision making, some un-
certainties are addressed with the use of default or data-driven un-
certainty factors [28]. These uncertainty factors (also referred to as
safety or assessment factors) are intended to allow for possible inter-
species and inter-individual differences in response to test chemicals
(both toxicokinetics and toxicodynamics) as well as other considera-
tions such as duration of study and overall quality of the database.
Therefore, although not always explicit, uncertainty has always been a
feature of toxicological risk assessment and has been addressed in a
variety of ways.

In NGRA, all sources of uncertainties should be identified and
characterised to provide transparency for the decision-making process,
ideally leading to a future where default ‘uncertainty factors’ are re-
dundant. Variability and uncertainty should be distinguished and all
different sources should be considered (e.g. measurement or method
uncertainties; [10,11].

Where novel tools are used in the safety or risk assessment process,
especially where guidance for the evaluation of these approaches is not
available, the uncertainty associated with their use should be explicitly
described, and take into consideration that the results from different
methods will be integrated in a weight of evidence approach [19]. For
example, many of the wide range of in silico and in vitro NAMs emerging
are based on human-derived systems, which negate the need for in-
terspecies extrapolation, but will require QIVIVE [4]. Sources of un-
certainty could therefore include how representative the test system is
of human cells/tissues (i.e. the mechanistic and human relevance).
Rather than relying on conservative default factors to address this un-
certainty, it would be scientifically more robust to transparently char-
acterize this uncertainty and, where required, develop a strategy to
reduce the uncertainty (e.g. by generating data addressing limitations
in knowledge). The data quality and uncertainties related to in vivo
study data considered in the Integrated Strategy should also be simi-
larly considered.

As stated in the ECHA document on uncertainty analysis, “[t]he
underlying principle is that a tiered approach should be followed and that the
amount of detail should be proportionate to the level of uncertainty and its
potential impact on the risk characterisation.” [7]. This means that the
assessment of uncertainty needs to be refined, and uncertainties in the
assessment reduced until an acceptable level is reached. If, for example,
an analysis of the sources of uncertainty associated with the use of
novel tools or approaches indicates that generation of further data to
address limitations in knowledge (e.g. on the relationship between the
response of a human-derived in vitro test system to human cells in vivo)
is unlikely to affect the outcome of the risk assessment, this should be
justified and documented.

This approach is dependent on the acceptable level of uncertainty
being defined as part of the problem formulation before the data are
generated, and depends on the purpose of the risk assessment. Defining
the acceptable level of uncertainty is even more critical when novel
tools are being used in the risk assessment. For example, determining
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the acceptable level of uncertainty a posteriori could introduce bias, for
example by deciding that a high level of uncertainty can be tolerated
after poor quality data are generated. Another outcome of not deciding
a priori which level of uncertainty is acceptable could be paralysis of the
decision making process, i.e. never being satisfied that the information
is sufficient to enable a decision to be made.

Ideally, the uncertainties should be quantified, but can also be de-
scribed qualitatively to support the decision making on a transparent
basis.

2.9. Principle 9: the logic of the approach should be transparently and
explicitly documented

When conducting a risk assessment, all data used, assumptions,
methodology and software should be clearly documented and be
available for independent review. More specifically, the following
should be considered: The problem formulation, the assumption(s), the
rationale for each assumption, the hypothesis(es), the potential MoA,
and why the selected approach is valid should all be clearly articulated.
Hyperlinks (preferably direct object identifiers; DOIs) to freely acces-
sible peer-reviewed literature should be provided along with the ori-
ginal risk assessment; the methods, reagents, cells, tissues, and statis-
tical tests (including outlier treatment) should be detailed and
unambiguous; for in silico methods, it should be stated whether com-
mercial or open-source application software is used. Such software
should be of high-quality (including the statistical level of confidence in
the predictions and the determination of the domain of applicability
(DoA)) and associated with transparent software descriptions and pro-
cesses to generate the predictions. Because software may be available in
numerous versions, it is important to document the exact version used
and, if possible, the substances used to build the model (the training set)
to ensure replicability and relevance. For documentation of QSARs, the
QSAR Model Reporting Format (QMRF) could be used, which follows
the OECD principles for validation of QSARs [23].

The levels of transparency and clarity need to be such as to allow
any decision-making reviewer to understand the data and reasoning
behind an assessment, to replicate it, and confirm the same conclusions
as those outlined in the original analysis.

3. Discussion

‘Traditional’ (animal data-based) risk assessments for cosmetic
products are based on many years of precedent, harmonized test
guidelines and (in some jurisdictions) regulatory guidance on how to
conduct the risk assessment. Conversely, NGRA is novel, likely to use
customized experimental designs, and currently lacks regulatory gui-
dance on how to integrate different data to support a safety decision.
The nine principles outlined here are arguably relevant to ‘traditional’
risk assessments as well as NGRA. However, given the long history of
using animal data in risk assessments, there is a danger that these
fundamentals may have been forgotten. Therefore, in the absence of
explicit regulatory guidance on how to integrate novel types of data
into cosmetic risk assessments, these principles serve as a reminder of
current best practices.

Developing an NGRA that does not rely on any animal data may
seem like a difficult challenge. Cosmetic ingredients are, for the most
part, applied externally, and unlike most pharmaceuticals, bioavail-
ability is not generally a pre-requisite for their function. Barring some
exceptions, the majority of cosmetic ingredients are not intended to
have a biological effect, whereas most pharmaceuticals or plant pro-
tection products are. These considerations, coupled with a regulatory
environment which is receptive towards non-animal test data, mean
there is a unique opportunity for the cosmetics industry and its reg-
ulators to lead the way in applying NGRA to safety decision making.

4. Conclusion

Scientific advances and changes in societal attitudes towards animal
testing mean that non-animal test data should no longer be considered
‘alternative’. Those working on the risk assessment of cosmetics have a
unique opportunity to lead progress in the application of new approach
methodologies, and cosmetic risk assessors in both industry and reg-
ulatory authorities are encouraged to apply these principles.
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OVER-ARCHING DISCUSSION 

As with any toxicological risk assessment, it is important to ensure that the risk assessments of 

endocrine active chemicals (EACs) use the best available approaches, are fit-for-purpose, and 

wherever possible do not use animals.  Developments in scientific methods and a change in mindset 

away from a desire to generate data that are equivalent to historical animal tests provide increasing 

hope that this is possible.  The term Next Generation Risk Assessment (NGRA) represents an 

example of this change in mindset.  NGRA is an exposure-led, hypothesis-driven risk assessment 

approach that integrates in silico, in chemico and in vitro approaches to deliver safety decisions that 

are human relevant (Dent et al., 2018).  The aim of this thesis was to investigate how an NGRA could 

be developed for substances in consumer products that may be anti-androgenic.  Several gaps were 

initially identified and solutions to fill them were investigated.  The key gaps and research areas were: 

1. Lack of a structured way to perform a human-relevant and exposure-led risk assessment using

in vitro mechanistic assays

2. Paucity of human models to characterize perturbations in pituitary release of gonadotrophins

3. Lack of models to help distinguish between endocrine activity and adversity

1. Lack of a structured way to perform a human-relevant and exposure-led risk assessment

using in vitro mechanistic assays

A focus of this thesis was to challenge the existing paradigm of testing and assessment of EACs, in 

which positive in vitro results are followed-up by performing potentially unnecessary animal tests.  

One of the reasons that an in vitro response is not replicated in the in vivo situation is due to the 

absorption, metabolism, distribution and excretion (ADME) characteristics of the test substance.  In 

other words, although the test substance may antagonise the androgen receptor (AR) when applied at 

a high concentration to cell culture media, human exposure may result in too little of the test 

substance reaching the target site (the AR) to result in a biologically-significant effect.  This thesis 
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therefore developed a systematic approach to integrating exposure data with in vitro mechanistic data 

for AR antagonists (Dent et al., 2019), building on a similar approach already developed for oestrogen 

agonists (Becker et al., 2015).  Importantly this approach is anchored to historical exposures to dietary 

anti-androgens, not on attempting to replicate the results of animal tests such as Hershberger assays, 

thereby meeting the NGRA principles of being exposure-led and human relevant.  This ‘dietary 

comparator ratio’ or DCR approach was therefore incorporated into a tiered approach to the risk 

assessment of anti-androgens, which is considered robust enough to be applied to the safety 

assessment of ingredients in consumer products (Figure 1).  Before entering this flowchart, the 

assumption is that a full literature search has been performed and there are insufficient data available 

to conclude on the risk of anti-androgenic effects in humans.  Data generation may be waived where 

exposure levels are below the Threshold of Toxicological Concern.  The TTC is a pragmatic approach 

that can be used in the absence of chemical-specific toxicology data, and is based on comparing 

exposure to the untested substance with toxicology data generated on a group of substances that share 

certain structural characteristics (Munro et al., 1996; Yang et al., 2017).  The TTC is not considered 

appropriate to use for very potent (i.e. pharmacologically-active) substances, as these are not well 

represented in the databases.  Therefore, in silico screening is important at this step to confirm 

whether the substance is expected to bind to the AR, as predicted binding will trigger in vitro testing.
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Figure 1: Tiered, exposure-led approach to non-animal risk assessment for anti-androgens.  This approach is 

also applicable to other modes of action, where these are sufficiently defined and dietary comparators are 

available. 
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The most appropriate in silico approach to predict ligand-receptor interactions is a molecular docking 

simulation.  This approach begins by developing a computational representation of the receptor, 

unlike traditional quantitative structure activity relationships (QSARs) which are based on identifying 

pharmacophores in a reference set of chemicals that are associated with a particular interaction or 

effect.  Molecular docking simulations allow for the more subtle ligand-receptor interactions to be 

modelled, including flexibility of the receptor.  Because the starting point of the method is a model of 

the receptor rather than a set of reference chemicals, training set bias is eliminated.  If it is appropriate 

to apply the TTC and human exposure is expected to be below this level, the risk of anti-androgenic 

effects (as well as effects mediated by other modes of action) is considered low.  If it is not 

appropriate to apply the TTC or if exposure is above this level, some testing is required.  It should be 

noted that testing for AR antagonism is just a small part of the broad suite of in vitro screening tests 

that will be required to develop a holistic safety assessment for the substance exposure.  However, if 

the substance is positive in the AR antagonism assay, a specific risk assessment for anti-androgenic 

effects needs to be performed.  The DCR approach can be used here to compare the specific exposure 

to the test substance with the dietary comparator diindolylmethane (DIM).  The DCR approach 

requires determination of the internal concentration (e.g. from a physiologically-based biokinetic 

(PBBK) model) as well as the bioactivity data.  Where the DCR approach indicates that anti-

androgenic activity of the test substance exposure exceeds that of the dietary comparator DIM, there 

may be opportunities to refine the exposure estimate by generating further data as described in the 

case study for bakuchiol.  However, where this is not possible it is necessary to determine whether the 

predicted endocrine activity could result in adversity.  If the DCR is extremely high (e.g. comparable 

with hydroxyflutamide) and confidence in the bioactivity and exposure modelling is high, this may be 

sufficient to conclude that adverse effects are likely.  However, in many cases, if the DCR is outside 

the range for DIM it will not be possible to make this distinction.  At this point it will be necessary to 

continue testing in higher-tier models that can detect adverse responses.  Because the assessment is 

exposure-led and tiered, the bakuchiol case study illustrates that, depending on exposure and 

bioactivity of the test substance, these higher-tier models may not be needed to make a safety 

decision. 

201



2. Paucity of human models to characterize perturbations in pituitary release of

gonadotrophins

The hypothalamus and pituitary play central roles in the regulation of androgenic signalling via the 

hypothalamus-pituitary-testicular (HPT) axis.  However, most in vitro assays to study anti-androgenic 

effects focus on events at the AR.  Prioritising tests that evaluate AR signalling is understandable 

given the central importance of the AR to the HPT axis and to human disease (Dent et al., 2015).  

Under the current animal-based risk assessment paradigm, the only way of detecting centrally-

mediated EACs (i.e. those acting at the hypothalamus or pituitary) is from the results of animal tests, 

chiefly repeat-dose and developmental toxicology studies.  Therefore, in a risk assessment that is 

solely based on data from non-animal approaches, lack of human-derived models to characterise 

changes in the release of gonadotrophin releasing hormone (GnRH) from the hypothalamus or 

luteinising hormone and follicle stimulating hormone (LH and FSH) from the pituitary represents a 

data gap.  This thesis therefore considered whether a surrogate model for the release of LH from 

gonadotrope cells in the pituitary gland could produce useful information to use in a NGRA.  Previous 

reports have suggested that neuroblastoma cell lines SH-SY5Y and BE(2)-M17 express the 

gonadotrophin releasing hormone receptor (GnRHR) and respond to GnRH stimulation.  Although 

these cell types are human in origin, they are cancer cell lines and do not originate from pituitary 

tissue.  They are therefore not wholly representative of normal gonadotrope biology, but may be 

useful models if they respond appropriately to GnRH stimulation and can be used to evaluate the 

dose-response of changes in LH or FSH secretion.  Experiments were therefore conducted in SH-

SY5Y and BE(2)-M17 cells to confirm the presence of the genes coding for GnRHR (GNRHR) and 

LH (LHB), and to establish whether they expressed the gene coding for FSH (FSHB).  Although 

GNRHR and LHB expression was detected in SH-SY5Y cells, neither cell line expressed FSHB.  

Furthermore, supplementing cells with GnRH did not result in a statistically significant change in 

gene expression, and none of the corresponding proteins were detected in cell lysates.  These cell lines 

therefore did not meet all the success criteria set at the start of the experiments, in that they failed to 

respond in a consistent way to GnRH stimulation.  Although human-derived cell lines, they offer no 

advantages above those offered by existing rodent gonadotrope cell lines.  Many substances that exert 

202



their effects at the hypothalamus or pituitary act via general modes of action such as oxidative stress, 

rather than by direct interactions with GnRH, LH or FSH release.  For example, spearmint has been 

reported to reduce serum testosterone in rats and in hirsutic women, and anti-androgenic effects in 

male rats are thought to be mediated though oxidative stress in the hypothalamus (Kumar et al., 

2008).  Similarly, it has also been show that the reduced LH synthesis caused by the chlorinated 

biphenyl Arochlor 1254 is due to oxidative stress in the pituitary, rather than due to a highly specific 

receptor mediated mode of action (Muthuvel et al., 2006).  The gonadal toxicity of cadmium is also 

thought to be at least in part due to oxidative stress in the pituitary (Lafuente, 2013).  Because stress 

responses are present in every cell, dose-response information relevant to stress responses do not need 

to be generated in every cell type in the body.  Rather, representative human cells or cell lines can be 

used and the results broadly extrapolated to the in vivo situation (Middleton et al., 2017).  Therefore, 

for substances that cause stress responses at relevant concentrations, a general risk assessment should 

be conducted to assess whether stress responses are saturated in the tissue compartments represented 

in the PBBK model.  This means that the current lack of specific models for GnRH, LH or FSH 

release may not prevent safety decision-making for most risk assessments for consumer products.  For 

those substances where the critical mode of action is considered to be GnRH-mediated release of LH 

or FSH, rodent cell lines will need to be used until such time as more advanced (e.g. iPSC-derived) 

models representative of normal human pituitary biology become available. 

3. Lack of models to help distinguish between endocrine activity and adversity

One of the principles underpinning the use of new methods in the risk assessment of cosmetic 

ingredients is that, where necessary, the overall assessment should distinguish between adaptation and 

adversity (Dent et al., 2018).  In vitro assays for anti-androgenic effects are not able to make this 

distinction for several reasons which can be broadly divided into two areas.  Firstly, in vitro test 

systems do not mimic the complex ADME characteristics of xenobiotics, meaning either that the 

exposures used in vitro may never be reached in vivo, or that metabolites formed in vivo may not be 

formed in vitro.  Secondly, because in vitro systems represent a lower level of biological organisation 

than do intact organisms, the complex interactions that may lead to adverse effects in vivo may not be 
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present in vitro.  This thesis sought to address questions relating to the second of these areas, by 

developing a prostate microtissue model that is more representative of in vivo human biology.  The 

human prostate is composed of an epithelial and a stromal compartment, and interactions between 

these two compartments are essential to ensure normal prostate development and maintenance 

(Hayward, Rosen and Cunha, 1997).  A prostate microtissue model based on a co-culture of human 

cell lines representing the epithelial compartment (RWPE-1 cells) and the stromal compartment 

(WPMY-1 cells) was therefore developed and characterised.  These microtissues were grown in 

hydrogels containing 2% agarose cast from a 12-256 Small Spheroid mould from Microtissues Inc., 

RI, USA and placed into 12-well tissue culture plates.  Time-course experiments were conducted 

using medium containing normal (unstripped) FBS, to monitor the development of the microtissues at 

3, 5 and 7 days after seeding.  Assessments on days 3, 5 and 7 included morphology by confocal 

imaging and light microscopy, the expression of selected proteins using immunohistochemistry (IHC), 

and quantitative real time PCR (qRT-PCR) to monitor the expression of selected genes over time.  

Following this initial characterization, further experiments were conducted in which microtissues 

were grown in medium containing charcoal stripped foetal bovine serum (FBS) to remove background 

androgenic signals, and the response of the microtissues to treatment for 4 days with an androgen 

(DHT), an anti-androgen (flutamide) or a mixture of DHT+flutamide.  When seeded in medium 

containing either normal (unstripped) or stripped FBS, the cells settled to the bottom of the recesses in 

the agarose gels (256 recesses per well) and self-assembled into spheroids over the course of 24-

hours.  These initial spheroids were composed of a core of RWPE-1 cells surrounded by WPMY-1 

cells. Over the next 48-hours the microtissues self-organised, to result in a predominant phenotype of 

WPMY-1 cells surrounded by RWPE-1 cells.  The cytokeratins (CKs) detected in the outer epithelial 

layer of these microtissues reflected an intermediate epithelium, expressing high levels of CK5/6 and 

CK14, and low levels of CK8, CK18 and CK19, and high levels of prostate specific antigen (PSA).  

This distribution of protein expression is consistent with an early stage of prostate development.  

Administration of flutamide or a combination of DHT and flutamide affected the morphology of the 

microtissues in different ways, indicating that the spontaneous arrangement of these microtissues is 

affected by androgenic signalling.  Flutamide alone caused an increase in the proportion of 
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microtissues showing more than one core of WPMY-1 cells, whereas in the DHT+flutamide group 

there was an increase in the number of microtissues with cores composed of RWPE-1 cells 

surrounded by WPMY-1 cells.  The microtissues expressed genes coding for androgen receptor (AR), 

oestrogen receptors 1 and 2 (ESR1 and ESR2) and cytochrome P450 1B1 (CYP1B1).  DHT 

administration caused a 2-fold increase in ESR1 and ESR2 gene expression, which was considered to 

be due to AR-mediated suppression of oestrogenic signalling.  Overall, the proteins and genes 

measured in these microtissues are useful biomarkers to assess the transition from an adaptive to an 

adverse response to androgens and anti-androgens.  Further development and optimization RWPE-

1/WPMY-1 microtissues can therefore have a role to play in future non-animal risk assessments to 

help answer the question in Figure 1 “Is the endocrine activity likely to result in adversity?”. 

Conclusions 

Many improvements can be made to the testing and assessment of EACs to increase human relevance 

and to reduce or replace animal use.  Using in vitro data to trigger in vivo testing without 

consideration of exposure results in unnecessary use of animals, and use of an exposure-led and 

hypothesis driven framework will mean that many risk assessments can be completed without animal 

data.  The use of human-relevant tools and approaches will also greatly enhance the robustness of risk 

assessment decisions, and increase confidence that safety decisions are both protective and realistic.  

Many of the tools needed to deliver exposure-led and human relevant risk assessments for anti-

androgens are available and can be applied today.  There are however gaps for some very specific 

modes of action and in tools that can distinguish between exposures that cause endocrine activity and 

those that can result in adverse effects.  However, because the proposed safety assessment is tiered 

and iterative these higher-tier tools may not always be needed to make a robust safety decision. 
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Future work 

Several improvements would make the DCR risk assessment approach more robust.  The most 

important is ensuring that the reporter gene assay (e.g. the AR CALUX® assay) is performed with 

and without metabolic activation.  This will help to address one of the key uncertainties in this 

approach, namely whether Phase 1 metabolism will cause the test substance to be more potent.  This 

improvement has already been described (Mollergues et al., 2017), but how this information is 

applied to the DCR risk assessment approach needs to be considered.  If inclusion of S9 does not 

significantly change the IC50 of the test substance, or if the IC50 is greater with S9, this indicates that 

Phase 1 metabolism is unlikely to result in a more potent anti-androgen than the parent.  However, if 

inclusion of S9 reduces the IC50, efforts need to be made to identify the more potent metabolite and to 

base the risk assessment on that entity.  The feasibility of performing the assessment in this way 

therefore needs to be assessed. 

A key area for future work is at the step of the risk assessment where the question ‘Is the endocrine 

activity likely to result in adversity?’ is answered.  As already discussed, where the DCR is so close to 

that of hydroxyflutamide, and the confidence in the exposure and bioactivity assessments are high, it 

is highly likely that adverse effects will be manifest.  However, in the more likely scenario the DCR 

will be somewhere between the top end of the range for DIM and hydroxyflutamide.  In these 

instances, data need to be produced to determine the likelihood that an adverse effect will occur.  This 

question may be answered by either refinement of in vitro models or by computational modelling of 

the HPT axis.  In terms of refinement of in vitro approaches to provide information on adversity as 

well as activity, the prostate microtissues composed of RWPE-1 and WPMY-1 are a promising tool.  

Further optimisation is needed to ensure longer-term viability of the WPMY-1 cells, and an 

assessment of whether increased time in culture alters the development of the epithelial phenotype.  

The available data support the hypothesis that viability of the WPMY-1 cells is androgen-dependent, 

so a logical next experiment is to evaluate microtissue morphology and viability in a dose-response 

study using DHT or testosterone.  The reason testosterone might be considered for this experiment is 

that the prostate is responsible for metabolising testosterone to DHT by the action of 5α-reductase.  
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Addition of testosterone instead of DHT may therefore allow the microtissues to perform a similar 

function to in vivo prostate tissue, thus increasing the physiological relevance of the model. 

In this project, imaging techniques were used in a subjective manner, to identify the presence/absence 

of a particular protein (by immunohistochemistry micrographs) or to visualise the overall arrangement 

of epithelial and stromal cells (Opera Phenix images).  The Opera Phenix system offers a much 

greater opportunity to perform automated phenotypic screening of live microtissues than was 

harnessed in this project.  Since a combination of DHT and flutamide caused clear morphological 

differences in the arrangement of the microtissues, automated real-time phenotypic screening could be 

used to objectively score nuclear size, microtissue volume, and the proportion of microtissues 

exhibiting specific morphologies, such as an altered ratio of epithelial to stromal cells, a stromal or 

epithelial core, and a single or fragmented core.  This would provide a much more powerful dataset 

with less bias.  A big challenge will be to assess the human relevance of these changes.  In other 

words, how can it be demonstrated that the point of departure from the in vitro prostate microtissue 

represents a concentration that would cause an adverse effect in humans?  Answering this question 

requires a shift away from the historical approach to validation of in vitro methods.  In that paradigm, 

the response of the microtissue would be compared to the response of prostate tissue in an animal 

study.  The microtissue would be considered to replicate the in vivo situation if analogous findings are 

seen at similar tissue concentrations of the test item and/or its metabolites.  However, since the 

microtissue is intended to model human rather than e.g. rodent biology, this approach is 

fundamentally flawed.  There is however an alternative approach that can be taken.  In the same way 

that in silico molecular docking models are based on the conformation of the nuclear receptor rather 

than the biological response of a reference set of positive control substances, so the human relevance 

of a novel microtissue needs to be assessed on how closely it mimics the human in vivo system, rather 

than simply how its responses compare to the response of positive controls in animal studies.  The 

ability to mimic the human in vivo system needs to be judged by whether the microtissue expresses 

the proteins that would be expected in normal prostate tissue, and how the microtissue responds to 

different conditions, i.e. physiological concentrations of testosterone, DHT, and other signalling 
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hormones.  How these responses are altered with pharmacologically-relevant concentrations of 

substances such as flutamide and hydroxyflutamide or finasteride (a 5α-reductase inhibitor) will then 

provide valuable information as to the in vivo-like status of the microtissue. 

Computational models of the HPT axis will provide significant improvements to the risk assessment 

approach (Yvinec et al., 2018).  Models have already been developed which are parameterised for rat 

biology (Barton and Andersen, 1998; Potter, Zager and Barton, 2006; Zager and Barton, 2012).  

These models describe the kinetics of hormone secretion and elimination, the flow of blood between 

the different compartments of the model (e.g. the brain, liver, prostate and testes) and the feedback 

loops between the testes and brain via LH, testosterone and DHT.  Developing equations that describe 

these interactions allows changes to the system to be modelled.  For example, addition of a known 

concentration of a 5α-reductase inhibitor with a known inhibitory constant (Ki) will reduce conversion 

of testosterone to DHT to a known extent, which will result in a decrease in plasma DHT levels, 

which via feedback will increase secretion of LH from the pituitary.  These models have had some 

success in recapitulating effects such as changes in organ weight following administration of anti-

androgenic substances or castration.   Parameterised for human biology, such a model would enable 

the results of in vitro tests to be better interpreted.  For example, if a substance is identified as an AR 

antagonist, knowledge of the dose-response of that substance and relevant exposure levels by 

determining the dose of an anti-androgen that is required to cause persistent LH secretion.  

Furthermore, such an integrated model would be invaluable for substances with a mixed mode of 

action such as Linuron, which can impair steroidogenesis as well as antagonise the AR (Wilson et al., 

2009).  Finally, the ability to interrogate the effects that low exposures of an anti-androgen may have 

on the HPT axis will be able to address some of the great controversies of endocrine toxicology, 

namely the significance of non-monotonic dose response curves (Vandenberg et al., 2012). 
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HAZARD OR RISK

Q1: Is Substance X an Endocrine 
Disruptor?

Q2: Can Substance X be safely 
included in product Y at Z%?

THE CURRENT APPROACH: HAZARD FOCUS

BASED ON OECD CONCEPTUAL FRAMEWORK FOR TESTING 
AND ASSESSMENT OF ENDOCRINE DISRUPTERS

Level 5 (in vivo studies providing more
comprehensive data on adversity especially 

at different life stages)

Level 4 (in vivo data able to 
distinguish between activity and 

adversity

Level 3 (in vivo mechanistic assays)

Level 2 (in vitro mechanistic assays)

Level 1 (existing data/non test 
information)

Hazard 
characterization

Hazard 
identification

Exposure 
considered at 
Level 4 and 5Designed to answer 

Question 1 and 
provide information 
that could be used 

to help answer 
Question 2
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WHERE ARE THE OPPORTUNITIES TO 
BUILD ON THE FRAMEWORK FOR RISK 
ASSESSMENT?

Improved 
understanding 

of human 
response at 

relevant 
exposures

Better 
understanding 

and use of 
consumer 

exposure data

More human-
relevant models

UNDERSTANDING CONSUMER EXPOSURE = 
UNDERSTANDING CONSUMERS

Who?
How?
How much?
How often?
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UNDERSTANDING CONSUMER EXPOSURE

Dermal kinetics

Understanding delivery to the systemic circulation following 
consumer exposure

Davies et al (2011) Toxicol Sci 119, 308-18

ex vivo 
human skin

Davies et al (2011) Toxicol Sci 119, 308-18

UNDERSTANDING CONSUMER EXPOSURE

Dermal kinetics
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UNDERSTANDING CONSUMER EXPOSURE
Systemic exposure

In Vitro Assays:
Kinetic Solubility
Thermodynamic Solubility
Metabolic Stability
-Human Hepatocytes
-Human CYP450 Isoforms
-Human Hepatic Microsomes
Stability in Human Plasma
Plasma Protein Binding
Partitioning in Human Blood PBPK 

Modelling

THE CURRENT APPROACH: HAZARD FOCUS

Level 5 (in vivo studies providing more 
comprehensive data on adversity 
especially at different life stages)

Level 4 (in vivo data able to 
distinguish between activity and 

adversity

Level 3 (in vivo mechanistic assays)

Level 2 (in vitro mechanistic assays)

Level 1 (existing data/non test 
information)

Hazard 
characterization

Hazard 
identification

Exposure 
considered at 
Level 4 and 5
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A FRESH APPROACH: FROM HAZARD TO 
RISK

USING EXPOSURE DATA TO GUIDE DECISION MAKING

Level 2 (in vitro mechanistic 
assays)

Level 1 (existing data/non test 
information)Ri

sk
 A

ss
es

sm
en

t C
on

tin
uu

m

Consider 
exposure 
earlier and 
throughout

Chemical Css (μM) Toxcast Assay endpoint AC50 (μM) Oral equivalent 
dose 
(mg/kg/day)

Dinoseb 485.94 Agonist for p53 signalling 
pathway in HCT-116 cells

1 0.002

Dieldrin 2.32 Activation of estrogen receptor 
response element in 
transfected HepG2 cells

1 0.431
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CHEMICAL TOXICITY TESTING
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Estimated using 
IVIVE and Monte 
Carlo simulation

Estimated oral 
dose required to 

reach AC50 in 
plasma
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http://dx.doi.org/10.1016/j.yrtph.2015.01.008

FROM: AN EXPOSURE:ACTIVITY PROFILING METHOD FOR 

INTERPRETING HIGH-THROUGHPUT SCREENING DATA FOR 

ESTROGENIC ACTIVITY—PROOF OF CONCEPT
Becker et al, Regulatory Toxicology and Pharmacology, Volume 71, Issue 3, 2015, 398–408

http://dx.doi.org/10.1016/j.yrtph.2015.01.008
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EXPOSURE SUMMARY

Considering exposure as part 
of the prioritization as well as 
risk assessment process

Risk assessment is an iterative 
process not a step at the end 
of a data gathering exercise

MORE HUMAN RELEVANT TEST MODELS

Level 5 (in vivo studies providing more 
comprehensive data on adversity 
especially at different life stages)

Level 4 (in vivo data able to distinguish 
between activity and adversity

Level 3 (in vivo mechanistic assays)

Level 2 (in vitro mechanistic assays)

Level 1 (existing data/non test 
information)

HEAVY 
RELIANCE ON 
RAT DATA: 
Interspecies 
extrapolation 
required

Species differences in 
exposure to endogenous 

estrogens during 
pregnancy

Estrogens cause 
masculinization of rat but 

not human fetus
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USA NRC REPORTS 2007 & 2017: TT21C

“Advances in toxicogenomics, 
bioinformatics, systems biology, 
epigenetics, and computational 
toxicology could transform 
toxicity testing from a system 
based on whole‐animal testing 
to one founded primarily on in 
vitromethods that evaluate 
changes in biologic processes 
using cells, cell lines, or cellular 
components, preferably of 
human origin.”

A FRESH APPROACH

USING EXPOSURE DATA TO GUIDE HUMAN-RELEVANT
DECISION MAKING

Level 3 (human-based
organotypic in vitro mechanistic 

assays)

Level 2 (in vitro human-based
mechanistic assays)

Level 1 (existing data/non test 
information)Ri

sk
 A

ss
es

sm
en

t C
on

tin
uu

m

Consider 
exposure 
earlier and 
throughout
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3D MICROTISSUES

24 hr Days 2-7Day 0

3D MICROTISSUES
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2D VS 3D CELL CULTURES

RWPE-1 cells WPMY-1 cells

A B CA

D E F

G H I

2D Monocultures

3D cocultures

Images courtesy of 
Chloe Bars, Lab of Prof.
Kim Boekelheide

IHC STAINING OF 5-DAY-OLD COCULTURED 
MICROTISSUES (VIMENTIN)
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IHC STAINING OF 3- TO 7-DAY-OLD 
COCULTURED MICROTISSUES (PSA)

3-days 5-days 7-days

1:
1

3:
1

HUMAN RELEVANCE SUMMARY

Ability to differentiate between 
endocrine activity and 
adversity in human-relevant 
models a key gap

Further development of 
organotypic models of key 
endocrine target organs 
needed
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CAN ALL THIS INFORMATION BE 
INTEGRATED TO PREDICT ORGANISM 
EFFECTS?

Example: 
Hypothalamus 
pituitary 
testicular axis…

Prostate

MODELS TO PREDICT PHYSIOLOGICAL 
HORMONAL FEEDBACK IN RATS

BARTON AND ANDERSEN TOXICOLOGICAL SCIENCES 45, 174-187 (1998) 
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A FRESH APPROACH

USING EXPOSURE DATA TO GUIDE HUMAN-RELEVANT 
DECISION MAKING

Level 5 (Estimate probability that 
under given exposure conditions 

adverse effects will occur)

Level 4 (Computational models of 
relevant endocrine axes based on 

human biology)

Level 3 (human-based organotypic
in vitro mechanistic assays)

Level 2 (in vitro human-based
mechanistic assays)

Level 1 (existing data/non test 
information)

Ri
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Consider 
exposure 
earlier and 
throughout

Chemical ingredient

Post-translational modification vs Transcription

In food/beverageApplied to skin/hair Inhaled

Penetrates skin

Bioavailable

Chemical stability/Metabolism/QSAR alerts/HTS Bioassays/for MIEs

Specific targets (receptor pharmacology) Non-specific effects

Stress networks (~10)

Resolution vs Persistence vs Progression over timeCharacterise and relate dose 
response to actual human 
exposure (dose/time)

Adaption vs Adversity

From Middleton et al (2017, 
Applied In Vitro Toxicology, In 
Press) ‘Workshop report from case 
studies in cellular stress: Defining
Adversity/Adaptation tipping 
points’
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CONCLUSIONS

Greater focus on exposure and more human relevant 
models will bring risk assessment of EACs into the 
21st Century

Predicting effects at low doses with human-relevant 
models will help to address some of the key 
controversies in EAC research as well as increase 
efficiency of our risk assessment paradigm
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APPLICATION OF THE ICCR
PRINCIPLES
TOXICOLOGICAL ALTERNATIVES AND TRANSLATIONAL 

TOXICOLOGY MEETING, OCTOBER 2018

MATT DENT, UNILEVER SAFETY AND ENVIRONMENTAL 
ASSURANCE CENTRE

ICCR NINE PRINCIPLES OF NGRA

Main overriding principles: 
The overall goal is a human safety risk assessment 
The assessment is exposure led 
The assessment is hypothesis driven
The assessment is designed to prevent harm

Principles describe how a NGRA should be conducted: 
Following an appropriate appraisal of existing information
Using a tiered and iterative approach
Using robust and relevant methods and strategies

Principles for documenting NGRA: 
Sources of uncertainty should be characterized and documented
The logic of the approach should be transparent and documented
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APPLICATION OF PRINCIPLES VIA A TIERED FRAMEWORK

Calculate 
Exposure

“The 
assessment is 
exposure-led”

Literature 
search

“Using all 
available 
information”

Next 
generation risk 

assessment

3

Can a 
decision be 
made?  If so 

STOP

“Using a 
tiered and 
iterative 
approach”

“Exposure-led, human-
relevant, hypothesis 
driven, designed to 
prevent harm”

ONE EXAMPLE NGRA WORKFLOW

4

Continue 
through tiers 

until sufficient 
information to 

make a 
decision: 

assessment 
may be 

complete at any 
tier

Berggren et al., (2017) Computational Toxicology 4: 31-44. 
https://doi.org/10.1016/j.comtox.2017.10.001
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5

In chemico assays

Human studies

Pathways modelling

3D culture systems

Organ‐on‐chip

Zebrafish larva assays

Metabolism and metabolite identification

Physiologically‐based kinetic modelling

Reporter gene assays

‘Omics

In vitro pharmacological profiling

In silico tools

ONE EXAMPLE NGRA WORKFLOW

Read across

Exposure‐based waiving

6

In chemico assays

Human studies

Pathways modelling

3D culture systems

Organ‐on‐chip

Zebrafish larva assays

Metabolism and metabolite identification

Physiologically‐based kinetic modelling

Reporter gene assays

‘Omics

In vitro pharmacological profiling

Read across

Exposure‐based waiving

In silico tools

ONE EXAMPLE NGRA WORKFLOW
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EXAMPLE – ANDROGEN RECEPTOR ANTAGONISM 
(SIMPLIFIED EXAMPLE)

Problem formulation: Can Bakuchiol be safely used at 0.5% in a 
body lotion or a shampoo?

• Calculate exposure –above TTC for both exposure scenarios
• Perform literature search – no ‘definitive’ toxicology data but

indications of hormonal activity
• In-silico screen – suggestive of AR interaction

7

HYPOTHESIS: Exposure to bakuchiol present at 0.5% in a body lotion or 
shampoo would not cause adverse effects in consumers due to perturbed 

androgen signalling

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245

“Hypothesis driven”

PHYSIOLOGICALLY-BASED KINETIC MODELLING

Low-tier assessment based on predicted/scaled values

8

Predicted 
concentration in 
plasma for females 
(dotted line) and 
males (solid line) 
following daily use of 
a body lotion 
containing Bakuchiol 
at 0.5%

“Exposure-led”

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245
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BAKUCHIOL DOSE-RESPONSE DATA

Dose-response data generated in a human-relevant system
(AR-CALUX® assay)

9

“Human 
relevant”

“Robust and 
relevant 
methods and 
approaches”

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245

BAKUCHIOL DOSE-RESPONSE DATA

Dose-response data generated in a human-relevant system
(AR-CALUX® assay)

10

Risk assessment = 
comparison of exposure 
and effect concentrations. 
Exposure concentration = 
IC50 or PC50

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245

“Human 
relevant”

“Robust and 
relevant 
methods and 
approaches”
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COMPARING EXPOSURE AND EFFECT CONCENTRATIONS

11

Triangles show 
plasma or serum 
levels, circles show 
IC50 values for 
bakuchiol and 
several anti-
androgens

What is an appropriate 
‘Margin of Exposure’?

50 g

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245

“Human 
relevant”

USING DIETARY COMPARATOR RATIOS TO BENCHMARK 
RISK

Calculation of Exposure:Activity Ratios (After Becker et al 2015 
Regul. Toxicol. Pharmacol. 71(3), 398–408):

12

EAR (unitless) =
Exposure (plasma exposure in μM)

Activity (IC50 μM)

DCR =
EAR (test substance)

EAR (dietary comparator)

If DCR<1 the activity of the test 
substance exposure would be 
lower than the activity of the 
dietary comparator exposure 
which has a history of safe use
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DIETARY COMPARATOR RATIOS

13

Range indicates variability in 
exposure for both dietary 
comparator and test 
substances

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245

DIETARY COMPARATOR RATIOS

14

Outcome: Enough 
precision to make a 
decision for 
shampoo, more 
refinement needed 
for body lotion

From Dent et al., (2018) Toxicological Sciences 
https://doi.org/10.1093/toxsci/kfy245
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UNCERTAINTIES?

• Predicted skin penetration for Bakuchiol
• Lack of metabolic activation in AR-CALUX® assay
• Reliance on Cmax as the measure of exposure – may not be

appropriate where comparator is cleared much faster than test
substance

• Total vs. free concentration

15

“Identifying and 
characterizing 
sources of 
uncertainty” 

Major areas for 
refinement

HIGHER TIER APPROACHES TO REFINE RISK 
ASSESSMENT

Where anti-androgenic activity is suspected we need to determine 
whether this will result in an adverse health effect

ACTIVITY ≠ ADVERSITY

16

“The assessment is designed to prevent harm”

Pathways modelling

3D culture systems
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3D PROSTATE CULTURES

17
Epithelial cells stained for CK5/6

Over time spheroids show 
secretion of PSA

“The assessment is 
designed to prevent 
harm”

“Human relevant”

ROLE OF COMPUTATIONAL MODELS
Barton and Andersen Toxicological Sciences 45, 174-187 (1998)

18

Computational model 
describing androgen 

homeostasis – can help 
determine the effects that 
perturbing one part of the 
axis will have across the 

whole system

“The assessment is 
designed to prevent 
harm”

“Human relevant”
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19

Metabolism and metabolite identification

Physiologically‐based kinetic modelling

Reporter gene assays

Read across  X
Exposure‐based waiving X
In silico tools

CASE STUDY SUMMARY

Applying ICCR principles and a 
tiered framework means a risk 

assessment for shampoo can be 
completed with these data.  Also 

likely to be possible for body lotion 
with further exposure/metabolism 

refinement

CONCLUSIONS

The 9 ICCR Principles underpin the use of novel data in Next 
Generation Risk Assessment

The Principles can be applied to improve safety decision making

Use of tiered approaches means that gaps in some of the higher 
tier tools does not prevent risk assessments from being completed

20
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