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Abstract: In order to maintain continuous production and to avoid the maintenance cost increment in power plants, it is 
important to monitor the condition of equipment, especially the generator. Regarding the impossibility of direct access to 
rotating diodes in brushless synchronous generators, the condition monitoring of these elements is very important. In this 
paper, a novel fault detection method is proposed for the diode rectifier of brushless synchronous generator. At the first 
stage of this method, the vibration signals are recorded and feature extraction is performed by calculating the relative energy 
of discrete wavelet transform components. Multiclass support vector machine (MSVM) is used for classification, and the best 
mother wavelet and number of decomposition level are chosen based on classification performance. To enhance the 
performance of the classification, a modified sequential forward subset selection approach is included by which the best 
statistical features are selected. In this approach, besides selecting the best subset of statistical features, the classification 
parameter is tuned according to the selected subset to achieve the best performance. The result of the proposed method is 
eventually compared with those results of classification performance using conventional subset selection. Experimental 
results show that the proposed method can detect rectifier faults effectively. 
 

1. Introduction 

Condition monitoring of the generators plays an 

important role in the industry as one small fault may lead to 

system frustration. Therefore, fast fault detection is a critical 

issue. The aim of this paper is to detect faults on the rotating 

rectifier of the brushless synchronous generators. Since the 

direct access to the rectifier bridge is not possible in these 

types of generators, a method must be considered in which the 

fault can be detected without any direct contact or access to 

the faulted part, and it is very arduous. The vibration signals 

are monitored almost in all generators in power plants, and 

therefore using these signals leads to minimum cost for 

protection systems modification in power plants.  Besides the 

mentioned advantages, they are measurable for all load 

conditions for example, the generator current is zero at No 

load conditions, while diode can be damaged under these 

conditions. The source of vibration in a rotary electric 

machine is divided into three general groups including 

electromagnetic sources, mechanical sources, and 

hydrodynamic sources [1]. An electrical fault in the rectifier 

in brushless synchronous generator affects the waveform of 

the field of the machine and consequently effects the 

electromagnetic performance of the machine. Therefore, it is 

expected that the vibration behavior of the brushless 

synchronous machine changes when a fault occurs in its 

rectifier. 

The fault detection in which there is no need to direct 

access to the faulted part has been investigated in some 

literature and some processes are proposed. In the articles, the 

fault detection is carried out using acoustic signals [2–5],  

vibration signals [6–11], some other types of signals [12–15], 

and the combination of some signals [16–20]. The KNN 

method is utilized to classify the short-circuit fault in the main 

winding and auxiliary coil of the single-phase induction motor 

using acoustic signals [2]. Shaft angular misalignment 

detection is carried out under varying operational conditions 

using acoustic emission technique and Fourier analysis in [3]. 

In [4] bearing defects detection of rotary machines using 

acoustic signals in different signal-to-noise ratio conditions 

has been investigated based on wavelet packet transform 

which has good performance in terms of low signal to noise. 

In [5] using audible noise recorded by smartphone an 

approach is proposed for induction machine fault detection. In 

[6] empirical mode decomposition technique is used to 

analyze the vibration signals of bearing defects since the 

vibration signals are non-stationary. In this article for the 

feature extraction of the signals, the statistical information is 

used and in order to identify the pattern, the neural network is 

utilized.  Helicopter main gearbox planetary bearing fault 

diagnosis is studied in [7] in which the envelope analysis and 

kurtogram were performed on vibration signals. Footprint 

analysis of Hilbert transform along with the neural network 

are used for ball bearings fault classification in [8]. The 

vibration of the transformer coil is modeled during 

mechanical faults that by analyzing the vibrations, the defects 

can be detected [9]. The energy and Shannon entropy of 

continuous wavelet transform of the vibration signals are used 

for the piston scuffing fault detection in the internal 

combustion engines [10]. Using vibration signals from journal 

bearings and wavelet transformation, some induced faults on 

journal bearing are classified by artificial neural network [11]. 

The motor current is decomposed into the intrinsic mode 

function components by empirical mode decomposition 

technique and the signals which are similar to the main signal 

are removed, then the rest of the components are used to 

extract the feature for induction motor bearing defect 

detection [12]. The wavelet decomposition and statistical 

features of the guided ultrasonic wave are extracted to analyze 

faults on thick steel based on support vector machine (SVM) 
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[13]. Detection of synchronous generator bearing defects is 

performed by calculating the energy of the stator current 

signals [14]. Short circuit fault on synchronous generator filed 

winding is investigated in [15] and twin signal sensing is 

proposed for the fault detection. A fault detection method for 

internal turn-to-turn short circuit fault on the winding of the 

rotor and the coil of the stator by external magnetic flux 

density and external housing vibration signals is proposed in 

[16]. The hypoid gear fault has been evaluated utilizing sound 

and vibration signals and a differential waveform has to detect 

the fault [17]. Mechanical and electrical faults detection of 

wind turbines has been investigated using the generator output 

power and rotational speed as well as continuous wavelet 

transform [18]. Simultaneous analysis of the stray flux and 

frame vibration of the synchronous machine have been used 

for a nondestructive and cheap method to detect short-circuit 

fault on the rotor winding of the synchronous machine [19]. 

Based on analysis of the modal voltage and the modal current 

of the stator, an approach is proposed in [20] for detection of 

induction motors stator turn-faults. 

Due to advantages of vibration signal analysis, in this 

paper, using vibration signals, we propose a strategy for 

detecting and classifying such rectifier bridge faults in 

brushless synchronous generator with the enhanced 

classification accuracy utilizing the wavelet transform and a 

modified sequential forward subset selection approach 

applied to the time-domain (statistical) features. Here the 

search is done over all parameters, nevertheless in case of a 

large number of parameters evolutionary algorithm can be 

used at this stage [21, 22]. In this approach, both subset 

selection and MSVM parameter tuning are performed 

simultaneously which improves the classification 

performance. This approach is compared with a conventional 

subset selection in which the subset of features are just 

selected and the classification parameters do not change. 

This paper is structured as follow. First, the considered 

faults in diode rectifier bridge are studied. Then, discrete 

wavelet transform and MSVM are discussed. The proposed 

method for diode rectifier bridge fault detection is represented 

in the next section. After discussion on the best mother 

wavelet and order of decomposition, tuned subset selection 

method is introduced and utilized, for testing proposed 

method a modified brushless synchronous generator that its 

rectifier bridge moved from the shaft to the outside machine 

is used.  For classifying faulty and normal conditions of the 

rectifier bridge. Eventually, a conclusion of the work and best 

features for detection rectifier bridge diode open circuited 

faults are compared and represented in the final section. 

2. Studied diode fault types on the rectifier bridge 

Synchronous generators are widely used to generate 

electrical power all around the world. In this type of machines, 

the field winding is placed on the rotor and a direct current 

power supply is required to produce the magnetic field. 

Supplying the field winding has been carried out in several 

ways such as external auxiliary DC generators, external 

auxiliary synchronous generator along with power electronic 

converters, and supplying the field winding by an external 

power electronics power supplies using brushes and rings. In 

the second type synchronous generator, the field supply is 

provided by another synchronous generator whose armature 

is placed on the rotor and its AC output is rectified by a 

rectifier bridge to provide a direct current. Hence, the rectifier 

bridge must rotate with the shaft and there is no direct access 

to it. This type of generator is called brushless synchronous 

generator. In the brushless synchronous generators, because 

of the brushes and rings removal, the reliability increases and 

the need for maintenance diminishes comparing to the other 

types of synchronous generator. Due to their benefits, they are 

a suitable choice in sensitive applications, such as submarines 

or aircraft. The AC output of the auxiliary generator whose 

field coil is stationary and armature winding rotates with shaft 

must be rectified to provide the demanded direct current for 

supplying the main generator field winding. To do so, a 

rectifier bridge mounted on a plate attached to the shaft 

rectifies further to the AC output voltage of the auxiliary 

generator [23]. Since the direct access to the rectifier bridge is 

not possible, usually uncontrolled rectifiers (diode) are used 

for rectifying. Each diode of the rectifier bridge could be 

open-circuited or short-circuited when it is faced with fault. 

Besides the special case of diode open circuit, open circuited 

fault could happen as a result of unprotected diode short-

circuited. In this paper, two kinds of fault are studied, in the 

case of one diode open-circuit, that diode ceases rectifying, 

and hence open circuit of one of the diodes in the rectifier 

bridge is considered as the first type of fault. In addition, if 

one another diode becomes open-circuit beside the open-

circuited diode in the same leg of the rectifier bridge that is 

equal to the loss of one input phase of the rectifier bridge and 

it defines as the second type of fault. The aim of this research 

is to propose an approach to be applicable to the brushless 

synchronous generators in thermal plants. The operation of 

thermal power plants is such that in order to minimize the 

operational costs and thermal and mechanical stresses, in start 

up the generator stay in no-load condition and after a certain 

period, loading from the generator starts. Due to the fact that 

thermal power plants are used in the base load, their 

generators usually work close to full-load condition [24]. 

 Considering the three states of the rectifier bridge, i.e. 

healthy, one diode open circuit, and one phase open circuit, 

the vibration signals of the machine under full-load and no-

load conditions are recorded. All six possible states of this 

study are listed in Table 1 below. Since the vibration behavior 

changes with generator load changes, measurements are made 

for each state individually. But due to the fact that in case of 

no load or full load the condition of the rectifier bridge does 

not change, states 1 and 2, 3 and 4 and 5 and 6 are considered 

as classes 1, 2 and 3 respectively. 

Table 1         Studied sates definitions 

State Rectifier Condition 
Load  

Condition 
Class 
Label 

1 Healthy No Load 1 

2 Healthy Full Load 1 

3 
One of the six diodes is open 

circuited 
No Load 2 

4 
One of the six diodes is open 

circuited 
Full Load 2 

5 
A phase (two diodes) of three-phase 

connection is open circuited 
No Load 3 

6 
A phase (two diodes) of three-phase 

connection is open circuited 
Full Load 3 

 

 In Fig. 1 electrical rotating components of brushless 

synchronous generator along with its stator are demonstrated. 
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Fig. 1. Electrical components of the brushless synchronous 

generator. 

 

If the open-circuit fault occurs on diode D1 it can be assumed 

to be omitted from the circuit and rectifier bridge does not 

work as a balanced six-pulse rectifier. In the second case, if 

diodes D1 and D2 become open-circuited it leads to one phase 

open-circuit. The simulation results in Fig. 2 illustrates the 

effect of the incurred faults on the voltage and current of the 

rectifier bridge for various faults in the rectifier bridge. For 

this purpose, the current and voltage of the rectifier bridge 

under healthy, one diode, and one phase open-circuit faults are 

simulated and compared during no load and full load 

condition in Fig. 2. As can be seen from this figure, the 

number of harmonic components in both current and voltage 

increases by an increase in the number of open-circuit diodes. 

The incurred changes in the voltage and current of the rectifier 

bridge lead to further fluctuations of the air gap flux compared 

to the healthy condition and this, in turn, will result in 

unwanted changes in the vibration signals measured from the 

machine. 

 
Fig. 2. The simulation results for the rectifier output current 

and voltage during healthy, one diode open-circuit and one 

phase open-circuit conditions. 

3. Mathematical background 

3.1. Wavelet feature extraction 
Signal measurements are usually performed in the time 

domain. The measured time signals have a lot of information, 

some of which can be extracted in the time domain. To extract 

other information in the signal, frequency or time-frequency 

transformations are usually used. The wavelet transform is 

one of those transforms. Some articles dealing with fault 

detection using vibration signals, the wavelet transform is 

utilized for feature extraction [25–27]. The basis of the 

wavelet transform is that the input signal is decomposed into 

some components with different frequency resolutions that 

are called wavelets [28]. By using a unique mother wavelet

( )t , the wavelet family 
,a b  is resulted which is scaled by 

factor a and transformed by factor b of mother wavelet as 

,

1
a b

t b

aa
 

− 
=  

 
  

(1)  

In (1), t is the time and values of a and b are from 
domain [29]. In order to use the wavelet transform in 

performing numerical calculations, the discrete wavelet 

transform is usually used. For this purpose, a and b are 

substitute with 2 j

ja =   and
, 2 j

j kb k= .where, j is the scale 

factor and k is the shift factor. By replacing new variables, the 

mother wavelet family becomes 

( )/ 2

, 2 2j j

j k t k − −= −   (2)  

where 
,j k is for an orthonormal basis of square 

integrable space 2 ( )L  [30, 31]. Finally, the discrete wavelet 

transform of f(t) is defined as 

( )/ 2( , ) 2 2 ( )j jw j k t k f t dt− −= −  (3)  

As shown in Fig. 3, the vibration signal decomposition 

is carried out up to 4 levels where A1,…, A4 are approximation 

components of the vibration signal and D1,…, D4 are its detail 

components. The waveforms of the original signal, as well as 

the detail components and the last approximation component, 

are illustrated in Fig. 3. As can be seen, the signal F can be 

written as the composition of detail components and the last 

approximation component. One of the features of the discrete 

wavelet transform used here for the classification is the 

relative wavelet energy of the approximation and detail 

components for each vibration signal. This provides useful 

information about the vibration signal at different frequency 

bands. 

 
Fig. 3. Level-4 decomposition of discrete input vibration 

signal F. 
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Considering level-N decomposition for the input 

vibration signal, the energy of detail components at each 

decomposition level is defined according to (4) [30]and the 

energy of approximation components at level N is defined 

according to (5). 
2

[ ] 1,...,
jD j

k

E D k j N= =  
(4)  

2
[ ]

NA N

k

E A k=   (5)  

To derive relative energy, the total energy of the 

decomposed vibration signal is needed and it is defined as 

below. 

 
1

N j

N

tot A D

j

E E E
=

= +   
(6)  

Finally, the relative wavelet energy of decomposition 

components is defined as 

 

3.2. Multiclass support vector machine 
Support vector machine is a powerful machine learning for 

two-group classification problems [32]. The SVM classifies 

data by finding the best hyperplane which separates all data 

points of one class from the points that belong to the other 

class in a way that largest margin between the two classes is 

achieved. In some binary classification problems, the 

hyperplane is complex for an appropriate separating criterion. 

For those problems, a mathematical approach can be used to 

retain almost all the simplicity of an SVM separating 

hyperplane. The SVM problem is formulated on a set of 

features 
mD  defined as  ( , ) | 1,...,m i iD y i p= =x , where the 

index m =1,…, q refers to the subset number and the index i 

refers to the number of features for each subset. Here p is the 

total number of features and q is the total number of subsets 

on which the SVM method is applied. Moreover, x refers to 

the vector of features with the appropriate dimension for each 

subset
mD  and  1,1iy  −  is the class label used for training. 

The subsets
mD are defined more explicitly in the next section.  

Consider the class of nonlinear kernel functions K(xj,xk) as 

( ), ( ). ( )j k j kK  =x x x x   (8)  

where φ is a non-linear function which maps the input 

space to the N-dimensional space. Some of these so-called 

kernel functions and their definitions are introduced in Table 

2 [33]. 

Table 2         kernel function definition. 

Kernel function Definition 

Gaussian 𝑒−‖𝐱j−𝐱k‖
2

 

Linear 𝐱j
′𝐱k 

Polynomial (1 + 𝐱𝑗
′𝐱𝑘)

𝑞
 

 

As it was mentioned previously, the SVM is a binary 

classifier. Therefore, a method must be adapted to be 

combined with the SVM and make it useful for multiclass 

applications. In this paper, error-correcting output codes 

(ECOC) is used that is a classifier for multiclass learning by 

reduction to binary classifiers [33]. In the ECOC approach 

with N classes, up to 
12 1N − −  SVMs are trained where each is 

used to separate a different combination of classes [34]. For 

classification evaluation, v-fold cross-validation is used in 

which the original data is partitioned into v equal size subsets 

in which v-1 subsets are used for training and one subset is 

used for evaluation. This process is repeated v times for all 

subsets. The classifier accuracy is then defined as the fraction 

of accurately classified observations to all observations. A 

parameter that may affect the classification accuracy is the 

box constraint which is a parameter that controls the 

maximum penalty imposed on margin-violating observations, 

and aids in preventing overfitting. The box constraint 

increment leads to the SVM classifier fewer support vector 

assignment and on the other hand, the longer training times. 

For evaluation classification performance, the MSE 

method for input observations 𝑥ℎ is used. According to (9),  

𝑦ℎ and 𝑡ℎ are the number of real class label and the evaluated 

class for hth  input feature, l is the number of observations, and 

g is the index for each cross validation. 

( ) ( )
2

1 1

1 v l

h h h g
g h

MSE x y t
vl = =

= −  
(9)  

Due to the fact that the maximum classification 

accuracy is 1, the classification accuracy is defined as follows 

( ) ( )1h hAccuracy x MSE x= −   (10)  

4. The proposed fault detection approach 

In order to detect faults occurring on the rectifier 

bridge of the brushless synchronous machine, the vibration 

signal of the machine is recorded under the faulty and healthy 

conditions. Fig. 4 shows a diagram for the proposed algorithm 

by dividing it into three subsections. In the first step which is 

called preprocessing, all vibration signals are measured, 

standardized and outliers are neglected. The data 

segmentation is also performed at this stage. As the next step 

feature extraction is performed, and the classification 

performance is evaluated for different mother wavelet and 

decomposition level. Beside of wavelet features, ten statistical 

features including mean, mean of absolute value, root mean 

square (RMS), standard deviation, variance, skewness, 

kurtosis, impulse factor, crest factor, and energy are 

calculated and added (see Table 3). Note that using more 

features may decrease classifier speed and may lead to 

overfitting of the classifier. Therefore, the optimum set of 

features are selected in the last step using the forward subset 

selection method. For this purpose, the forward subset 

selection method is modified by searching for different 

classifier kernel functions and box constraints in the search 

areas for each epoch.  

The subset selection technique is explained by defining 

the statistical features of the vibration signal as  

 1 1 1 1

1 1 2, , , , ,i nF f f f f=     (11)  

where each element in 𝐹1 set is one statistical feature 

and n is the number of statistical features. In this notation,  

𝑓𝑖
𝑗
means ith statistical feature of set 𝐹1 and the superscript j 

indicated the reordering number. The best wavelet features are 

written as  

 1 2, , mW w w w=    (12)  

where 𝑤1 is the approximation component and others 

are detailed components. Here the subscript m is equal to the 

decomposition level plus one. Here Si defines different subsets 

and it is null at the beginning. As the first step of forward 

(D )

(D ) 100
j N

j N

or A

or A

tot

E

E
 =   (7)  
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subset selection, the statistical features are chosen from set 𝐹1 

one by one and put next to the wavelet features to form the 

first order subset S1.  

        1 1 1 1

1 1 2, , , , , , , , ,i nS W f W f W f W f=     (13)  

 

 

 
Fig. 4. The flowchart of the proposed fault detection method. 

 

Considering (10), the accuracy of classification for 

each element of 𝑆1, is evaluated for different box constraint 

and kernel function in the search area. In this way, the best 

statistical feature 𝑓1
∗ = 𝑓𝑖

1  and the best performance for the 

first order subsets 𝑆1,  are calculated according to (14). 

𝑓1
∗ = arg 𝑚𝑎𝑥 {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦({𝑊, 𝑓1

1}), … 
, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦({𝑊, 𝑓𝑛

1})} 
(14)  

𝑚𝑎𝑥1 = max {𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦({𝑊, 𝑓1
1}), … 

, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦({𝑊, 𝑓𝑛
1})} 

(15)  

 Before going to the next step, it is necessary to delete 

𝑓1
∗ from the set 𝐹1 and define the set 𝐹2 as  

𝐹2 = 𝐹1 − {𝑓1
1} = {𝑓1

2, 𝑓2
2, … , 𝑓𝑖

2, … , 𝑓𝑛−1
2 } (16)  

By repeating the procedure successively, at step n all 

n-1 previously found statistical features are added to set 𝑆𝑛 

and the search is to find the best 𝑓1
𝑛 . 

𝑆𝑛 = {{𝑊, 𝑓1
∗, 𝑓2

∗, … , 𝑓1
𝑛}} (17)  

𝑓𝑛
∗ = arg 𝑚𝑎𝑥 {𝑊, 𝑓1

∗, 𝑓2
∗, … , 𝑓1

𝑛} (18)  

𝑚𝑎𝑥𝑛 = 𝑚𝑎𝑥{𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑊, 𝑓1
∗, 𝑓2

∗, … , 𝑓1
𝑛)} (19)  

 Finally, the best subset of features and the classifier 

performance are found according to (20) and (21) the best 

subset and features based on classifier performance are 

calculated. 

𝑎𝑟𝑔𝑚𝑎𝑥{𝑚𝑎𝑥1 , 𝑚𝑎𝑥2, … , 𝑚𝑎𝑥𝑛} (20)  

𝑚𝑎𝑥{𝑚𝑎𝑥1 , 𝑚𝑎𝑥2, … , 𝑚𝑎𝑥𝑛}  (21)  

 

Table 3        Statistical features definition. 

Item 

Number 

Statistical 
Feature 

Name 

Definition 

1 Mean 
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

2 
Mean of 
Absolute 

1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

3 RMS √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

4 
Standard 

Deviation 
√

1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 

5 Variance 
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 

6 Skewness 
1

𝑁
∑

(𝑥𝑖 − �̅�)3

𝜎3

𝑁

𝑖=1

 

7 Kurtosis 
1

𝑁
∑

(𝑥𝑖 − �̅�)4

𝜎4

𝑁

𝑖=1

 

8 
Impulse 

Factor 

√1
𝑁

∑ 𝑥𝑖
2𝑁

𝑖=1

1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1

 

9 Crest Factor 

𝑚𝑎𝑥|𝑥𝑖|

√1
𝑁

∑ 𝑥𝑖
2𝑁

𝑖=1

 

10 Energy ∑ 𝑥𝑖
2

𝑁

𝑖=1

 

5. Test rig and data acquisition 

In order to apply the proposed fault detection and 

classification in the rectifier bridge, the laboratory setup 

shown in Fig. 5 is built. As can be seen in Fig. , the setup is 

made of the following components: the modified three-phase 

380 V, 11 kVA, 4 poles brushless synchronous generator with 

rectifier bridge and switch set for applying faults, the 

induction motor for driving the generator, the DC supply as a 

direct current source for the auxiliary generator field winding, 

the 3-phase electric load, electrical drive for rotating motor 

and generator at synchronous speed and vibration 

measurement instruments. The used vibration measurement 

set is Easy-Viber® model of VMI company and the vibration 

sensor is an accelerometer. The sampling frequency chosen 

for data acquisition is 8192Hz. 

To apply faults to the rectifier bridge, brushless 

synchronous generator is modified and a diode rectifier bridge 

is installed outside of the machine along with a set of switches. 

The three-phase output of the auxiliary synchronous generator 

and the field winding of the main generator located on the 

rotor, are connected to the rectifier bridge through the 

embedded brushes and rings as shown in Fig. . When each 

switch becomes off, the corresponding diode becomes open-

circuit and in this way, the intended faults can be applied and 
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vibration measurements of the generator during faulty and 

normal condition are measured. The vibration of the machine 

is recorded in six states as it is listed in Table 1, i.e. healthy 

performance, one diode open-circuit fault, and two diode 

open-circuit fault under full-load and no-load conditions of 

the machine for each mentioned state. The recorded time-

domain vibration signals for the period of 0.4 second and 

different fault conditions are plotted in Fig. 6 to Fig. 11. 

 

 
Fig. 5. Test rig designed for data acquisition. 

 
Fig. 6. Time domain vibration signals of the synchronous 

machine in the state of healthy and no-load condition of 

the machine. 

 
Fig. 7. Time domain vibration signals of the synchronous 

machine in the state healthy and full-load condition of the 

machine.  

 
Fig. 8. Vibration signals in the state of one diode open-

circuit and no-load condition of the machine. 

 
Fig. 9. Vibration signals in the state of one diode open-

circuit and full-load condition of the machine.  

 
Fig. 10. Vibration signals in the state of two diodes open-

circuit and no-load condition of the machine. 

 
Fig. 11. Vibration signals in the state of two diodes open-

circuit and full-load condition of the machine. 
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6. Selecting Mother Wavelet and Decomposition 
level 

The vibration signals are recorded for twenty-one 

second for each state for classification purpose. The relative 

wavelet energy for each sample is then calculated, and they 

are used for classification using MSVM and 5-fold cross-

validation is explained in section 3.2.  Looking at the available 

literature, various mother wavelets are applied for fault 

detection using vibration signals. For example, in [35–39] 

Daubechies wavelet, in [40, 41] Haar wavelet, in [42] Coiflet 

wavelet, and in [43] discrete Meyer wavelet are employed for 

fault detection using vibration signals. Moreover, wavelets are 

also used to detect faults in electrical rotating machines using 

an electrical signal. For example, in [39] Daubechies is used 

for inter-turn fault detection of induction machines, and Haar 

wavelet is utilized in [40], for detection of short circuits in 

induction motor winding. Considering this review, five 

mother wavelets reported in [44] as well as Fejer Korovkin 

are employed to investigate the influence of different mother 

wavelets on the rectifier bridge fault detection using vibration 

signal. The results in Figs. 12 to 17 show the effect of different 

mother wavelets and decomposition levels on the 

classification accuracy of the fault. For each wavelet, the 

classification algorithm is executed for 30 decomposition 

levels, and the decomposition level corresponding to the 

maximum classification accuracy is chosen. Finally, the best 

maximum accuracy for different wavelets indicates the best 

wavelet for this application. Considering Figs. 12 to 17, the 

maximum classification accuracy of 77% is achieved by the 

Symlet mother wavelet and level-6 decomposition. Therefore, 

the Symlet mother wavelet and level-6 decomposition are 

chosen for the rest of the work. 

 
Fig. 12. Classification accuracy with respect to 

decomposition level using Daubechies mother wavelet. 

 
Fig. 13. Classification accuracy with respect to 

decomposition level using Coiflet mother wavelet. 

 

 
Fig. 14. Classification accuracy with respect to 

decomposition level using Symlet mother wavelet. 

 

 
Fig. 15. Classification accuracy with respect to 

decomposition level using Haar mother wavelet. 

 

 
Fig. 16. Classification accuracy with respect to 

decomposition level using discrete Meyer mother wavelet. 

 

 
Fig. 17. Classification accuracy with respect to 

decomposition level using Fejer Korovkin mother wavelet. 
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7. Classification Performance of whole proposed 
approach 

The aim of this investigation is to use statistical 

features along with wavelet features to improve classification 

performance. On the one hand, the maximum classification 

accuracy using only wavelet features is 77% as shown in 

section 6. On the other hand, it is not clear adding which 

statistical feature will enhance the classification performance. 

Therefore, a subset selection approach is employed to choose 

the appropriate set of features. In Table 4, the results of the 

conventional subset selection are presented where Si is subset 

i as explained in section 4. The index i here refers to the 

number of the statistical feature in each subset and the item 

number used in Table 3 represents the name of the selected 

statistical feature and SW refers to Symlet Wavelet. In the first 

step of this approach, feature 7 (Kurtosis) is selected for S1 as 

it leads to the highest classification accuracy (about78%). In 

the next step, feature 3 (RMS) is selected to use besides 

Symlet wavelet and feature 7 as they result in the best 

classification performance amongst the other 9 remaining 

features. This procedure is repeated for 10 steps and 10 

subsets (S1, …, S10) with 1 to 10 additional statistical features 

are created. At the end of the procedure, the subset S5, as 

shown in Table 4, is selected for the highest possible accuracy 

of 84.75%. 
 

Table 4        Forward Subset Selection.   
Names Features  Accuracy 

S1 SW,7 78.25 

S2 SW,7,3 78.75 

S3 SW,7,3,2 
82.5 

S4 SW,7,3,2,6 84.25 

S5 SW,7,3,2,6,4 
84.75 

S6 SW,7,3,2,6,4,8 
84.5 

S7 SW,7,3,2,6,4,8,5 84.25 

S8 SW,7,3,2,6,4,8,5,10 84.25 

S9 SW,7,3,2,6,4,8,5,10,9 83.75 

S10 SW,7,3,2,6,4,8,5,10,9,1 83 

 

 

In the conventional subset selection, the classification 

parameters are left unchanged while they may influence the 

classification accuracy and the selected subset. For instance, 

by using the proposed method, the classification accuracy for 

different kernel functions and different box constraint values 

using one statistical feature besides Symlet wavelet is 

presented in Fig. 18 to Fig. 27. According to these figures, the 

highest accuracy, 88.75% is achieved by using the mean of 

absolute, the Gaussian kernel, and the box constraints either 1 

or2. However, using the conventional subset selection, the 

highest accuracy achieved by Kurtosis is about 78% (using 

linear kernel and box constraint 1). For other statistical 

features, the influence of the kernel function and box 

constraint is also significant. For example, according to 

Fig.25, the maximum classification accuracy for the impulse 

factor using Gaussian kernel and box constraint 1 is 81.25%, 

while the other choices for classification parameters lead to 

the classification accuracy of lower than 80%. Obviously, to 

achieve the best possible performance the kernel function and 

box constraint must be considered in subset selection. 

Therefore, in the proposed subset selection approach, for each 

statistical feature, the classification parameters are considered 

in the algorithm to be tuned. 
 

 
Fig.18. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with average 

feature. 

 
Fig. 19. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with mean of 

absolute feature. 

 

 
Fig. 20. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with RMS 

feature. 

 

 
Fig. 21. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with 

standard deviation feature. 

 

 
Fig. 22. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with 

variance feature. 
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Fig. 23. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with 

skewness feature. 

 

 
Fig. 24. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with kurtosis 

feature. 

 

 
Fig. 25. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with impulse 

factor feature. 

 
Fig. 26. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with crest 

factor feature. 

 
Fig. 27. Accuracy for kernel functions Gaussian, Linear, 

and Polynomial using Symlet wavelet along with energy 

feature. 

This is investigated further in Tables 5 to 14, by listing 

the classification accuracy for each statistical feature using the 

subsets (S1,…, S10).  In each case, the kernel functions and the 

box constraints are tuned to achieve the highest classification 

accuracy for the corresponding features. For example, in the 

first step of the proposed approach, the algorithm selects mean 

of absolute as the best first statistical feature while the chosen 

kernel function and box constraint for this feature by the 

algorithm is Gaussian and 1 respectively. Considering the 

lower training time, it is desired to have less value for the box 

constraint for equal accuracy. Therefore, according to Fig. 19, 

the box constraint 1 is chosen for the classification accuracy 

of 88.75% after choosing the kernel and box constraint for 

maximum accuracy. However, according to Table 5, the 

algorithm employs only box constraint 1. This procedure is 

repeated for all other features and all other steps. After 

selecting a suitable statistical feature in the first step, nine 

other statistical features are employed for subset selection and 

used along with the wavelet feature in the next step.  

 

Table 5       Tuned Forward 1st Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,1 Gaussian 1 80.25 

SW,2 Gaussian 1 88.75 

SW,3 Gaussian 2 87.25 

SW,4 Gaussian 2 87.25 

SW,5 Polynomial 1 87 

SW,6 Gaussian 1 81.25 

SW,7 Gaussian 1 85.75 

SW,8 Gaussian 1 81.25 

SW,9 Gaussian 1 83.75 

SW,10 Gaussian 2 87 

 

 

Table 6        Tuned Forward 2nd Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,1 Gaussian 4 89.5 

SW,2,3 Polynomial 1 89.5 

SW,2,4 Polynomial 1 89.5 

SW,2,5 Polynomial 1 89.75 

SW,2,6 Gaussian 1 89.75 

SW,2,7 Gaussian 2 91.25 

SW,2,8 Gaussian 2 88 

SW,2,9 Gaussian 1 90 

SW,2,10 Polynomial 1 89.75 

 

 

Table 7        Tuned Forward 3rd Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1 Gaussian 6 91.75 

SW,2,7,3 Gaussian 2 91.5 

SW,2,7,4 Gaussian 2 91.5 

SW,2,7,5 Gaussian 2 91.5 

SW,2,7,6 Gaussian 2 91.25 

SW,2,7,8 Gaussian 2 90.5 

SW,2,7,9 Gaussian 4 91.25 

SW,2,7,10 Gaussian 2 91.5 
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Table 8        Tuned Forward 4th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3 Gaussian 6 92.5 

SW,2,7,1,4 Gaussian 6 91.75 

SW,2,7,1,5 Gaussian 6 91.5 

SW,2,7,1,6 Gaussian 2 92.25 

SW,2,7,1,8 Gaussian 3 90.75 

SW,2,7,1,9 Gaussian 4 91.75 

SW,2,7,1,10   Gaussian 6 92.25 

 

 

Table 9       Tuned Forward 5th Subset Selection. 

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,4 Gaussian 2 92.5 

SW,2,7,1,3,5 Gaussian 2 92.5 

SW,2,7,1,3,6 Gaussian 2 92.75 

SW,2,7,1,3,8 Gaussian 3 91.5 

SW,2,7,1,3,9 Gaussian 2 92.5 

SW,2,7,1,3,10 Gaussian 2 92.5 

 

 

Table 10      Tuned Forward 6th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,6,4 Gaussian 2 92.75 

SW,2,7,1,3,6,5 Gaussian 2 92.5 

SW,2,7,1,3,6,8 Gaussian 6 92.25 

SW,2,7,1,3,6,9 Gaussian 3 92.5 

SW,2,7,1,3,6,10 Gaussian 2 92.5 

 

 

Table 11        Tuned Forward 7th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,6,4,5 Gaussian 2 92.5 

SW,2,7,1,3,6,4,8 Gaussian 2 92 

SW,2,7,1,3,6,4,9 Gaussian 2 92 

SW,2,7,1,3,6,4,10 Gaussian 2 92.25 

 

 
Table 12        Tuned Forward 8th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,6,4,5,8 Gaussian 2 91.75 

SW,2,7,1,3,6,4,5,9 Gaussian 1 92.5 

SW,2,7,1,3,6,4,5,10 Gaussian 2 92.25 

 

Table 13        Tuned Forward 9th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,6,4,5,9,8 Gaussian 2 91.5 

SW,2,7,1,3,6,4,5,9,10 Gaussian 1 92.75 

Table 14        Tuned Forward 10th Subset Selection.   

Features  Kernel 

function 

Box 

Constraint 

Accuracy 

SW,2,7,1,3,6,4,5,9,10,8 Gaussian 1 91.75 

 

This approach runs until no statistical feature remains 

and therefore, in the last step all ten statistical features are 

used along with the wavelet feature (Table 14). The best 

classification performance for each step of subset selection is 

plotted in Fig. 28 for both conventional subset selection and 

the proposed method. 

According to Fig. 28, the proposed subset selection 

selects S5 obtained from step 5 of subset selection which is 

Symlet wavelet with features 2, 7, 1, 3, 6; the selected box 

constraint is 2 and the selected kernel function is Gaussian 

kernel. The classification accuracy achieved using the 

proposed subset selection is 92.75 while it is 84.75% using the 

conventional subset selection. It is obvious from Fig. 28 that 

the classification performance is significantly enhanced using 

the proposed approach compared with the conventional 

method. 

 

 
Fig. 28. The classification accuracy against the obtained 

subsets in each level of the proposed subset selection and the 

conventional subset selection. 

8. Conclusion 

This paper deals with the rectifier fault detection in the 

brushless synchronous machines using vibration signals. The 

vibration signals are measured from the machine’s frame for 

three states of the machine, healthy state, one diode open-

circuit, and two diodes open-circuit from the same arm of a 

three-phase rectifier. For the fault detection of the rectifier, an 

improved approach using MSVM, discrete wavelet 

transformation, statistical feature, and a modified forward 

subset selection is proposed in this paper. At the first 

performance of classification is compared to find the best 

mother wavelet and the best decomposition level, using 

discrete wavelet transformation, the wavelet features are 

extracted from vibration signals; also, employing MSVM the 

mother wavelet and the decomposition level of the discrete 

wavelet transformation, the maximum obtained classification 

accuracy is about 77%. In order to enhance the classification 

accuracy of fault detection, statistical features are considered 

ReView by River Valley Technologies IET Science, Measurement Technology

2019/04/15 17:31:21 IET Review Copy Only 11

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



11 

 

to be added to the wavelet features. To find out which features 

are appropriate for improving classification accuracy the 

forward subset selection can be employed. However, using 

the conventional forward subset selection in which only be the 

best subset of statistical features are selected, the 

classification accuracy is obtained about 85%. Therefore, an 

improved model of the forward subset selection is proposed. 

In the proposed approach, along with statistical features 

subset selection, the classification parameters are tuned. 

Consequently, the algorithm selects the subset of features 

includes Symlet wavelet feature and five statistical features 

mean of absolute, Kurtosis, mean, RMS, and skewness; and 

chooses the Gaussian kernel and box constraint 2. By this 

approach, the classification accuracy of about 93% is 

achieved.  
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