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We study the detection of electrons undergoing coherent transfer via adiabatic passage (CTAP) in
a triple quantum-dot system with a quantum point-contact sensing the change of the middle dot. In
the ideal scenario, the protocol amounts to perfect change transfer between the external dots with
vanishing occupation of the central dot at all times, rendering the measurement and its backaction
moot. Nevertheless, even with minor corrections to the protocol, a small population builds up in
the central dot. We study the measurement backaction by a Bayesian formalism simulation of an
instantaneous detection at the time of maximal occupancy of the dot. We show that the interplay
between the measurement backaction and the non-adiabatic dynamics induce a change of the success
probability of the protocol, which quantitatively agrees with a continuous detection treatment. We
introduce a correlated measurement signal to certify the non-occupancy of the central dot for a
successful CTAP protocol, which, in the weak measurement limit, confirms a vanishing occupation
of the central dot. Our proposed correlated-signal purports that proper experimental method by
which to confirm CTAP.

PACS numbers: 03.65.Ta, 73.63.Nm,

I. INTRODUCTION

Quantum measurements constitute one of the main pil-
lars of quantum mechanics. They induce an unavoidable
backaction on the measured system [1]. This trait can be
advantageously used for applications in quantum infor-
mation processing, ranging from error correction [2], to
improved quantum state discrimination [3], and to quan-
tum feedback [4]. On the other hand, the impact of
measurement backaction can be particularly detrimen-
tal in the detection of quantum coherent processes, as
the measurement corresponds to a strong decoherence
channel [5]. The regime of weak measurement, in which
the backaction is reduced alongside the rate of informa-
tion acquisition, is therefore of particular interest. Weak
measurements, in fact, enable detection while minimally
disturbing the coherent process and make it possible
to define meaningful conditional outcomes in quantum
regimes [6, 7].

The detection of coherent quantum processes is rele-
vant for the study of quantum transport. Quantum ef-
fects play a crucial role in electronic transport through
nanostructures and have been at the core of mesoscopic
physics since its foundation. The direct detection of
quantum processes by weak measurements is, however,
a more recent development. A paradigmatic example
thereof involves a which-path detection in electronic in-
terferometers [8–10]. More recently, the direct detec-
tion of electronic transport through virtual state tran-
sition in cotunneling processes has been addressed theo-
retically [11, 12], showing that weak measurements make
it possible to collect information on the system through
conditional quantities, without destroying the coherent
cotunneling process. The adverse effect of backaction on
such transport has also been predicted [12] and conse-
quently measured [13].

The role of non-invasive detection of quantum trans-
port processes admits an extra layer of complexity when
an external time-dependent driving is applied to the sys-
tem. A relevant paradigmatic case is that of coher-
ent transfer via adiabatic passage (CTAP) [14–19]. The
CTAP scheme amounts to transporting an electron be-
tween two quantum wells (left-to-right) through an addi-
tional central well via dynamically tuned tunnel barriers.
For appropriate adiabatic driving of the system, the pro-
tocol fully transfers the particle, while maintaining a van-
ishing population at the central well at any time. Thus,
the CTAP scheme is manifestly robust against fluctua-
tions that couple to the charge of the central island. Ad-
ditionally, it is an all-electrical spatial implementation of
a well-known quantum optics techniques to transfer pop-
ulations between long-lived atomic-levels [20]. There are
various proposals to realize the CTAP in different physi-
cal systems [19], and a classical analog of the scheme has
been experimentally realized in optics [21] with follow-up
applications [19].

The detection of a vanishing charge in the central well
along with a successful left-to-right transfer is a striking
signature of the CTAP mechanism. At the same time,
however, the detector backaction affects the quantum in-
terference underlying the adiabatic passage. Indeed, a
strong projective measurement would destroy the coher-
ence of the central well and correspondingly disrupt the
adiabatic passage. Nevertheless, the central well occu-
pation can be addressed by continuous weak measure-
ments. In a recent work [22], the probability distribu-
tion function of the current signal of a quantum point
contact (QPC) sensing the charge in the central dot dur-
ing a single-shot CTAP , as well as, the fidelity of the
transport were numerically computed. The gradual ac-
quisition of information on the system was shown to in-
duce loss of fidelity to the population transfer, namely,
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(a)

FIG. 1. The CTAP protocol. (a) Sketch of a solid state sys-
tem implementing a CTAP using a triple single-level quantum-
dot setup with tunable tunnel barriers. The CTAP transfers
the electron from well 1 to well 3 without charge occupancy
in the central well 2. A QPCdetector weakly senses the charge
on the central dot. (b) The instantaneous eigenvalues of the
CTAP Hamiltonian, [cf. Eqs. (1) and (2)] for ε1 = ε3 = 0 and
ε = ε2 = Ωmax/10. (c) The time-dependent occupancy of the
three wells for εi = 0, with i = 1, 2, 3. (d) The time-dependent
occupancy of the central well for finite values of the central-
well energy ε = ε2, and (e) finite-adiabatic parameter γ. Both
a finite ε = ε2 and a finite γ lead to a non-vanishing charge
on the central well. The numerical time evolution in (e) is
computed with δt = 5× 10−4~/Ωmax.

it appears that the combined detection of the central-
well occupation alongside a successful adiabatic passage
is unattainable.

In this work, we analytically study the detection of the
charge in the central dot in a CTAP scheme conditional
to a successful electron transfer. This quantity provides a
direct evidence of the vanishing population of the central
dot during a successful CTAP . We show that the detec-
tion process is effective in a limited time window at the
maximal occupancy of the central well, thus enabling us
to introduce an efficient description of the probability dis-
tribution function of the detector’s signal. Our approach
allows us to determine the measured occupation of the
central well conditional to the electron passage in the
form of so-called weak values (WV) [6]. Our results con-
firm a vanishing central-well occupation in the limit of
weak-measurement backaction and adiabatic evolution.
Interestingly, the WVof the central-well population, con-
ditional on an unsuccessful CTAP transfer, approaches a

finite negative value, thus providing an indirect evidence
of the quantum coherence of the process. Such correlated
detection can prove valuable in sensing of other types of
prominent adiabatic passage processes, e.g., in topologi-
cal pumps [23–29].

II. THE CTAP SCHEME

We consider a system consisting of three single-level
quantum dots/wells with energy levels εi coupled to a
quantum point contact (QPC) which serves as charge
detector of the occupancy of the central dot/well, see
1(a). The external wells, 1 and 3, are connected to the
central one, 2, by time-dependent tunneling rates Ω12(t),
Ω23(t). The Hamiltonian of the system is written as

H3w =

3∑
i=1

εic
†
i ci +

(
~Ω12(t)c†1c2 + ~Ω23(t)c†2c3 + h.c.

)
,

(1)

where c†i creates an electron in well i. Provided that the
energy levels of the external wells are the same , ε1 = ε3 =
0, the CTAP protocol coherently transfers an electron
from well 1 to well 3 by applying Gaussian voltage pulses
to tune the tunnel barriers in time [14]

Ω12(t) = Ωmax exp

[
− (t− tmax/2− tdelay)2

2σ2

]
Ω23(t) = Ωmax exp

[
− (t− tmax/2)2

2σ2

]
, (2)

where both pulses have the same height, Ωmax, and
width, σ, and are delayed by tdelay. The probability of
transferring the electron is maximal when σ = tmax/8
and tdelay = 2σ [22], and in the ideal adiabatic limit, it
approaches 1.

The deterministic success of the CTAP relies on the
Hamiltonian (1) with ε1 = ε3 = 0 having a zero-energy,

E0 = 0, eigenstate at any time, as shown in Fig. 2
(b). The basic idea is that the time-dependence in
Eq. (2) adiabatically evolves the left-well occupancy to
the right-well occupancy through that zero-energy eigen-
state. Consider for simplicity the case where all εi = 0.
At the onset of the protocol, tstart → −∞, the system’s
eigenstates are degenerate at zero energy. The switch-
ing on of Ω2 (note that, the coupling Ω2 between wells
2 and 3 is switched on before the coupling Ω1 between 1
and 2) maintains only the left-well state at zero energy.
This zero-energy state adiabatically evolves to the right-
well state at the end of the protocol, tfin → ∞. Note,
that having ε2 6= 0 does not affect the properties of the
zero-energy eigenstate, see Fig. 1 (b).

Ideally, the CTAP process takes infinite time and yields
unitary transfer probability, cf. Fig. 1(c). Realistically, a
finite duration, tfin − tstart introduces a non-zero overlap
of the initial left-well state at time tstart = 0 with the
finite-energy eigenstates. Yet, the protocol is designed to
maintain a maximal overlap of the remaining zero-energy
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eigenstate with the left-well state. Note that the success
of the protocol is not altered by a finite ε2, since the
zero-energy eigenstate is preserved [cf. Fig. 1(b)] and its
initial and final overlaps with the left and right wells are
unaffected.

The adiabaticity of the process is con-
trolled by a generalized Landauer-Zener param-

eter γ = max
∣∣∣〈ψ1| ∂tĤ3w |ψ0〉 /(E1 − E0)2

∣∣∣ =

4
√
e/(tmaxΩmax) � 1, with Ej and |ψj〉 (j = −1, 0, 1)

the instantaneous eigenenergies and eigenstates of Ĥ3w

at time t. Remarkably, in the adiabatic limit and ε2 = 0,
the occupation of the central well is identically zero

[14, 22], 〈c†2c2〉 ≡ n2 = 0, as shown in Fig. 1(c). This
makes the system insensitive to any external interaction
with the central-well population, being it by undesired
fluctuations or by a charge detector. The features

n2(t) = 0 is modified by either ε2 6= 0 (alongside a finite
duration of the experiment) or by diabatic corrections
at γ 6= 0. Hence, a detection process of a CTAP should
be considered along with the γ → 0 and ε2 → 0 limits.

The effect of finite ε = ε2 can be accounted for analyt-
ically in the adiabatic limit yielding

n2(t) =
∑

j,k=−1,0,1

(
αtstartj

)? 〈ψj(t)| c†2c2 |ψj(t)〉αtstartj

=

∣∣∣∣∣αtstart1

√√
4Ω2

1 + 4Ω2
2 + ε2 + ε

−αtstart−1

√√
4Ω2

1 + 4Ω2
2 + ε2 − ε

∣∣∣∣∣
2

/2, (3)

where αtstartj ≡ 〈ψj(tstart)| 1〉 is the overlap amplitude
of the left well with the eigenstates at time t = tstart.
The resulting time-dependent occupation of the central
well is reported in Fig. 1(d), where a finite, yet small,

occupancy n2(t) is maintained around tmeas = (tmax +
tdelay)/2.

In the finite γ case, the evolution of the initial state
can be determined numerically. It can be obtained by dis-
cretizing the time in intervals δt where the Hamiltonian
is assumed to stay constant. We use the Crank–Nicolson
method [30, 31] to approximate the propagator over a
time period ∆t. The time evolution of the system is then
expressed as

ρ(t+ ∆t) = Û(∆t)ρ(t)Û†(∆t) , (4)

where the propagator in Cayley form [32] is

Û(∆t) = (1+ i
∆t

2
Ĥ3w(t))−1(1− i∆t

2
Ĥ3w(t)) . (5)

The time-evolution is applied to an initial state density
matrix elements ρ written in the {|1〉, |2〉 |3〉} basis at

time tstart = 0. Our numerical calculations for 〈c†2c2〉 =

n2(t) reported in Fig. 1(e) shows that, for relatively adia-
batic evolution, the largest correction to the central-well

population occurs at a short time-window around the
middle of the pumping protocol, (tmax + tdelay)/2. At

other times, n2 is exponentially small [22].This makes
the protocol exponentially insensitive to external fluctu-
ations on the dot, but, at the same, time poses a limit to
the direct detection of the charge in the central well [22].

III. THE DETECTION PROCESS

To determine the effect of the measurement process,
we assume that the detector is an ideal quantum point
contact (QPC) [33, 34], whose current is solely sensitive
to the presence of an electron in the middle well. Be-
side being routinely used in experiments as a charge sen-
sor [35], a QPC provides a simple, yet general, model for
a detector. The QPC is characterized by the tunneling
amplitudes, Ω, and Ω + δΩ, depending on whether well
2 is unoccupied or occupied, respectively [33]. The cou-
pling between the system and the detector is then given
by the Hamiltonian

Hqpc =
∑
r

(Er − µr)a†rar +
∑
l

(El − µl)a†l al

+
∑
l,r

~
(

Ω + δΩ c†2c2

)
(a†ral + a†l ar), (6)

where a†r and a†l are the electron creation operators in the
right and left electrode respectively, while Er(l) stands for
the set of energy levels in the reservoirs kept at chemical
potentials µr(l) so that the difference is set by the applied
voltage bias µr−µl = eV . Here, we assume all tunneling
amplitudes to be real and independent of the states in the
QPC leads. We further restrict ourselves to the zero tem-
perature limit, so that no extra noise sources are present
and the detector is quantum limited [36]. The macro-
scopic (classical) signal in the detector is the current
through the QPC. This is a stochastic signal whose dis-
tribution generically depends on the system’s state and
the duration of the measurement, τV . When the central
well is empty the average current is Ie = eTeV/~ where
T = 2πνlνrΩ

2 is the transmission probability through the
QPC and νr,l the density of states in the leads. Similarly,
when the central well is occupied, we have the average
current Io = e(T + δT )eV/~.

For a generic (coherent) state of the system, the
stochastic current outcome I can be regarded as the frac-
tion of successfully transmitted electrons across the QPC,
I = en/N where N is the total number of impinging
electrons at a rate eV/~, during the measurement time
τV . The QPC current is therefore characterized by the
probability distribution P (I,N). For the empty case,
the transmission probability is T , and for large N , I
will be normal distributed with variance 4SI/τV , where
SI = 2eIe(1 − T ) is the current shot-noise. The vari-
ance of the distribution is the same for the occupied con-
figuration as long as δΩ � Ω. By increasing N , the
variance is gradually reduced and the state of the well
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FIG. 2. Detector signal. Probability distribution density
of the dimensionless detector signal, x for different measure-
ment strength, N/D at tmeas = (tmax + tdelay)/2 for (a)
ε/Ωmax = 1/50 and γ → 0 and (b) ε/Ωmax = 1/50 and
γ/4
√
e = 1/50. In all simulations for (b) δt = 510−2~/Ωmax.

The results reproduce with good accuracy those from the full
simulation in Ref. 22. The different color scales highlight the
acute difference in the to-be-measured accumulated charge in
the central well by the two scenarios, see also Figs. 1(d) and
(e).

being occupied or unoccupied is resolved. The two states
are distinguishable when 4SI/τV < (Ie − Io)2, which is
τV > τM = 4SI/(Ie − Io)2, where τM is referred as the
measurement time. As long as τV � τM , the measure-
ment is not sufficiently long to distinguish the two states,
and we are in the weak measurement regime.

It is convenient to rescale the stochastic current vari-
able I to a dimensionless outcome variable, x = (2I−Ie−
Io)/(Io−Ie), so that Ie and Io are linearly mapped to the
dimensionless outcome values −1 and 1, respectively. For
a given state of the system defined by the density matrix
ρ(t) =

∑
i,j=1,2,3 ρi,j |i〉〈j|, the probability distribution of

the QPC current is given by [34, 37]

P (x,N) = (ρ11 + ρ33)P (x,N | − 1) + ρ22P (x,N |1), (7)

where P (x,N |s) is a Gaussian distribution with an av-
erage of s, and a variance of D/N , where D = τMeV/~,
and D/N � 1 sets the weak measurement limit. The
measurement backaction alters the state of the system.
For a given measurement outcome x, the density matrix
after the measurement is [34, 37]

ρ′(t+ τV , x) =
1

P

 ρ11(t)eα ρ12(t) ρ13(t)eα

ρ12(t) ρ22(t)e−α ρ23(t)
ρ13(t)eα ρ23(t) ρ33(t)eα

 ,(8)

where P = ρ11(t)eα + ρ22(t)e−α + ρ33(t)eα, and we have
introduced α = xN/D. Controlling the duration of the
measurement, τV → 0, the Bayesian formalism makes it
possible to follow the quantum evolution of the system
state during the measurement process [34, 37].

Computing the signal of the QPC and its effect on the
efficiency of the CTAP process requires a numerical sim-
ulation of the system-detector evolution over the whole
cycle, as in Ref. 22. Taking advantage of the vanishing
occupancy of the central well during the CTAP proto-

col, we can make the numerical computation consider-
ably easier. We first note that in order to probe the
vanishing occupancy of the central well, it is sufficient
to sense it at the most volatile instance of time when
a nonvanishing population can develop, as opposed to
following the charge throughout the protocol with negli-
gible chance of detection. The specific dynamics of the
CTAP scheme makes the sensing at that given time as
informative as the full charge tracking. In fact, as shown

in Fig 1(e), the population in the central dot, n2, be-
comes appreciable only around tM = (tmax + tdelay)/2,
before decreasing once more. We therefore expect that
a short pulse measurement, a measurement kick, at a
single time, when the central-well population is in its
maximum, tM ≈ (tmax + tdelay)/2, plays the same role as
an integrated charge detection, and that the two descrip-
tions of the system-detector dynamics should essentially
capture the same physics. In other words, our simplifi-
cation decouples the system’s numerical time-evolution
from that of the detector until the measurement time,
tmeas = (tmax + tdelay)/2. At that time, the pulsed weak-
measurement can be treated analytically.

We plot P (x,N) in Figs. 2(a) and (b) for the ideal
adiabatic limit with ε ≡ ε2 6= 0 and for a finite adiabatic
parameter γ, respectively. The probability density distri-
bution we obtain in the adiabatic limit agrees extremely
well with the one obtained via a conservative numerical
ensemble averaging [22]. The difference between the two
plotted distributions arises due to the profound difference
in the to-be-measured accumulated charge in the central
well, i.e., the central well potential ε 6= 0 generates a
much smaller signal than the non-adiabatic correction
for the chosen parameters, see also Figs. 1(d) and (e).

IV. MEASUREMENT BACKACTION AND
CONDITIONAL SIGNAL

The advantage of the Bayesian approach is the possibil-
ity to address the backaction of any single measurement,
and not only its average effect. We can thus determine
the average outcome of sensing the charge on the central
well (2) conditional to the success of the pumping cycle

w

〈
x
〉

1
=

∞∫
−∞

xP (x|w)dx =

∫
x
P (w|x)P (x)

P (w)
dx. (9)

The expression involves the probabilities of finding, at
time tend = tmax + tdelay, the pumped electron at a given
well (w ∈ {1, 2, 3}) given a specific measurement out-
come x, i.e., P (w|x) = 〈w|Uρ′(tmeas, x)U−1|w〉 with U
the time-propagator from tstart to tmeas, and the prob-
ability of finding the particle in the well w, P (w) =
∞∫
−∞

P (w|x)dx. With the introduced rescaling of the de-

tector signal, the conditional detector outcome is di-
rectly translated to the conditional occupancy of the
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n2

FIG. 3. Charge measurement for successful CTAP. Prob-
ability of not-finding the electron in the final (right) well
at the end of the protocol (a) and corresponding condi-
tional occupancy of the central well,

2

〈
n2

〉
1

(b), at tmeas =
(tmax+tdelay)/2 as a function of the measurement strength in
the ideal adiabatic limit. Panels (c) and (d) plot the depen-
dence of the same variables as in (a) and (b), respectively
as a function of the adiabatic parameter, γ. The success
probability P (3) increases with the measurement strength
which statistically suppresses unwanted components of the
system state in the central well. All results are obtained with
δt = 5× 10−2~/Ωmax and tmax = 50~/Ωmax.

dot via n2 = (x + 1)/2 and equivalently
w

〈
n2

〉
1

=(
w

〈
x
〉

1
+ 1
)
/2. Note that, in our numerical method,

the time evolution in the calculation of P (w|x) can be
conveniently absorbed in the back-in-time evolution of
the state |w〉 rather than in the evolution of the density
matrix.

In the limit of weak measurement, D/N � 1, the con-
ditional detector outcome in Eq. (9) takes the form of so-
called weak values of the population of the middle well.
Weak values (WVs) were introduced as the distinctive re-
sult [6] of measurements consisting of (i) initializing the
system in a certain state |ψi〉—preselection, (ii) weakly

measuring an observable Â of the system via a von Neu-
mann interaction [1] with a detector, and (iii) retaining
the detector output only if the system is eventually mea-
sured to be in a chosen final state, |ψf 〉—postselection.
The average signal of the detector will then be propor-
tional to the real (or, possibly, the imaginary) part of the

WV
f

〈
A
〉
i

=
〈ψf |Â|ψi〉
〈ψf |ψi〉 . Apart from the role of weak val-

ues in addressing conceptual questions [38–40] and their
use for precision measurements [9, 37, 41–48], they pro-
vide a way to define conditional physical observables in-
dependent of the detector’s details [11, 12, 49]. In the
present case too, the weak value is the proper quantity to
address the detection of the charge in the central well for
successful CTAP adiabatic transfers. This coincides with
the conditional signal outcome introduced in Eq. (9).

The measurement backaction effects are presented in
Fig. 3, where the failure probability of CTAP , 1− P (3),

and the conditional occupancy of the well,
3

〈
n2

〉
1
, are

presented. In the ideal adiabatic limit, already in the ab-
sence of the measurement, the success probability of the
CTAP and the occupancy of the central well are not opti-
mal, i.e., there exists a finite CTAP failure probability and
non-vanishing central well population, see Figs. 3(a) and
(b). This is the result of of the finite-time duration of the
protocol and the finite energy, ε. theoretically expected
occupancy of the dot is correctly reproduced by the sim-
ulated conditional signal of the detector in Fig. 3(b).
Furthermore, the success of the CTAP is surprisingly in-
creasing with increasing measurement strength, and the
conditional measured charge on the central well is cor-
respondingly reduced. This effect can be explained by
noting that, given the low occupancy of the dot in the
absence of measurement, the measurement backaction
tends to statistically project the system onto the state
with an empty central well. This reduces the unwanted
weight of the system state on the central well, thus mak-
ing the state closer to the ideal CTAP state. Indeed, the
more likely such a projection is, e.g., by increasing ε = ε2,
the more the measurement backaction can correct for the
finite-duration error, see Figs. 3(a) and (b).

A similar effect of backaction occurs for the case of
diabatic corrections, see Figs. 3(c) and (d). In the ab-
sence of measurement, the failure probability [Fig. 3(c)]
and the conditional central-well occupation [Fig. 3(d)]
reduce to those set by the initial finite duration of the
protocol. The occupancy increases and the success prob-
ability decreases upon increasing the diabatic corrections.
The conditional signal of the detector follows the uncon-
ditional occupancy of the well in the adiabatic regime,
but deviates for large γ since the diabatic dynamics con-
siderably changes the success probability. Also in this
case, we see that the measurement backaction plays in
favor of the CTAP protocol: it reduces the occupancy of
the well [Fig. 3(d)], and increases the success probability
[Fig. 3(c)]. The rational is again that the measurement
reduced the unwanted state component on the central
well. However, this does not hold when the occupancy of
the central well starts deviating considerably from zero
and the success probability is low. In this regime, the
conditional charge deviated considerably from the uncon-
ditional one, and the coherence of the quantum evolution
shows up in peculiarities of the conditional value, e.g. the
negative values of

3

〈
n2

〉
1
.

The conditional occupancy in Figs. 3(b) and (d) in
the limit of weak measurement and adiabatic dynam-
ics is a direct measurement of the vanishing occupa-
tion of the central well when restricting to successful
CTAP processes. This has to be contrasted with an un-
conditional measurement for which there is no guaran-
tee that the probability of a successful electron transfer,
results from CTAP alongside a vanishing central-well oc-
cupation. Also, as shown in Ref. 22, any measurement
asserting an unambiguous value of the central-well popu-
lation in a single run of a CTAP, would hinder the success
of the protocol, making it inconclusive.

Interestingly, we can access, via the Bayesian formal-
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P
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)

(a)

γ
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γ

−20
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FIG. 4. Unsuccessful CTAP. Probability of the finding the
electron in the initial (left) well at the end of the protocol
(a) and corresponding conditional occupancy of the central
well (b) at tmeas = (tmax + tdelay)/2 as a function of the
measurement strength in the ideal adiabatic limit. Panels (c)
and (d) report the dependence of the same quantities on the
adiabatic parameter. The decreasing of P (1) with the mea-
surement strength is consistent with the results in Fig. 3.
P (1) has a recurring behaviour as a function of the adiabatic
parameter. In correspondence with P (1)→ 0, the conditional
occupancy of the dot shows large or negative values charac-
teristic of peculiar weak values. All results are obtained with
δt = 5× 10−2~/Ωmax and tmax = 50~/Ωmax.

ism [34, 37], the conditional value for unsuccessful CTAP,
given by the probability of finding the electron in the left
or central wells. The results for P (1) and

1

〈
x
〉

1
, are

shown in Fig. 4. Analogous results are obtained for P (2)
and

2

〈
x
〉

1
. We note the decreasing of P (1) in Figs. 4(a)

and (c) with the measurement strength, which is consis-
tent with the increasing dependence of P (3) in Fig. 3.
The dependence on the adiabatic parameter, γ, shows
a recurring behavior. While the probability of failing
the CTAP, P (1) + P (2), is a monotonous function of γ,
cf. Fig. 3(c), the probabilities of detecting the particle
in either of the two wells is determined by the quantum
evolution in the finite Hilbert space of the system, which
generically shows revival as a function of time or system
parameters.

As expected, P (1) is small in the adiabatic limit. The
corresponding conditional occupation of the central well
is negative. This non-classical feature is an indirect sig-
nature of the quantum evolution of the CTAP. In fact,
as known from weak measurement theory [6], these pe-

culiar features are in one-to-one correspondence with the
violation of certain Leggett-Garg inequalities [50], which
set classical (i.e. from macroscopic realism) inequalities
for correlated outcomes of a sequence of measurements.
Specifically, if we indicate as xj(t) the dimensionless sig-
nal of a QPC detector coupled to the j-th quantum well at
time t, the classical constraint 0 6 |

1

〈
x1(t−meas)

〉
1
| 6

1 on the conditional outcome is violated in the limit of
weak measurements if and only if the Leggett-Garg in-
equality, −3 6 B 6 1 with B ≡ 〈x1(tstart)x2(tmeas)〉 +
〈x2(tmeas)x1(tfin)− 〈x1(tstart)x1(tfin)〉, is violated too.

V. SUMMARY AND CONCLUSION

In the present work, we address the detection of the
central-well occupancy in a CTAP along with the cor-
responding backaction. We model the measurement as
a an instantaneous process taking place at the time of
maximal occupancy of the central well, thus decoupling
the measurement from the system evolution. The in-
stantaneous detection reproduces the results of a contin-
uous detection of the central-well occupancy during the
entire pumping protocol and allows us to conveniently
define and compute the population of the central well
conditional to successful electron transfer via CTAP. This
quantity, as opposed to single-shot measurements and un-
conditional averages, is the one that directly probes the
occupation of the central well for the adiabatic transfer.
By analysing the weak-measurement limit, we show that
the conditional occupation of the central well vanishes in
the adiabatic limit, thus providing a direct measurable
evidence of the main feature of CTAP. We also find that
the occupation conditional to a non-successful pumping
remains finite in the adiabatic limit, which provides ev-
idence of the coherent quantum nature of the process.
Our work puts forward correlated detection as a valuable
method for sensing adiabatic passage processes, e.g., in
topological pumps [23–29].
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