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Abstract

The centipede game (Rosenthal, 1981) posits one of the most well-known paradoxes of

backward induction in the literature of experimental game theory. Given that deviations

from the unique subgame perfect Nash equilibrium generate a Pareto improvement, sev-

eral theoretical models have been employed in order to rationalise this kind of behaviour

in this social dilemma. The available explanations range from social preferences including

fairness, altruism or cooperation motives, errors in playing, inability to perform backward

induction or different depths of reasoning. In the present study, we use the Blavatskyy

(2015) theoretical contribution, and relax the assumptions of Expected Utility maximisation

and risk-neutral attitudes, to test an alternative explanation. We compare various proba-

bilistic decision theory models in terms of their descriptive (in-sample) and predictive (out-

of sample fit) performance, using data from experimental centipede games. We find that

introducing non-Expected Utility preferences to the Quantal Response Equilibrium model,

along with a non-linear utility function, provides a better explanation compared to alter-

native specifications such as the Level-k or the Quantal Response Equilibrium model with

altruistic motives.
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1 Introduction

Social dilemmas in general, involve a conflict between an immediate self-interest and collec-

tive, mutual benefits. In the literature, various different frameworks have been used as a ba-

sis of social dilemmas, such as the Prisoner’s Dilemma, the Chicken game, the Trust game,

Public Good contributions, Common-Pool Resources games or Centipede games. All of the

above frameworks share two common elements, namely the game-theoretic prediction which

promotes the self-interest action as a dominant strategy, and the common findings from the

experimental research in social dilemmas, that the decision makers usually deviate from the

Nash-equilibrium and cooperate largely.

Krockow et al. (2016b) highlight that different explanations have been suggested to ratio-

nalise the deviations from the game-theoretic solution and classifies them to two broad cat-

egories: insufficient cognitive ability to perform backward induction reasoning, and other-

regarding motives that interfere with rational, selfish decision-making. In a systematic review

of centipede game experiments Krockow et al. (2016a) conclude by summarising the poten-

tial reasons why players cooperate and do not follow the rational prescription of backward

induction reasoning. They include four explanations: (1) the hidden assumption explanation

that expectations about co-players’ future actions are unaffected by observations of their past

actions; (2) the cognitive burden explanation based on the idea that backward induction is cog-

nitively taxing and therefore players do not realise that defecting at an earlier stage may be

more beneficial; (3) the common knowledge breakdown explanation, where players do not expect

their co-players to be fully rational; and (4) the other regarding preferences explanation. The au-

thors conclude that “other-regarding preferences, including prosocial behavioural dispositions

and collective rationality, provide the most powerful explanation for cooperation”. Van Lange

et al. (2013) provide a review of the psychology of social dilemmas, and focus on recent devel-

opments in three broad areas which include the theoretical frameworks, the interdisciplinary
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approaches to social dilemmas, and additional factors that influence behaviour (structural,

psychological and dynamic influences) in an effort to understand the theoretical puzzles and

the ways cooperation is achieved.

In the present study, we focus on the developments in the theoretical frameworks as a

way to explain cooperation in social dilemmas. Van Lange et al. (2013) discuss mostly theo-

ries that have been developed in the psychology literature such as the interdependence theory,

the appropriateness framework and evolutionary theorising such as altruism and reciprocity.

Nevertheless, the theoretical framework that has been adopted by the economic literature, in

an effort to explain cooperation in social dilemmas, has mostly studied models of insufficient

cognitive ability or social preferences. In a recent theoretical contribution, Blavatskyy (2015)

shows, using a particular family of social dilemma games (the centipede game), that coopera-

tion may be the result of non-Expected Utility preferences, a hypothesis that we test using data

from experimental centipede games.

The centipede game, first introduced in (Rosenthal, 1981), is one of the most well known

examples in the literature of social dilemmas, where the available experimental evidence sig-

nificantly contradicts the predictions of backward induction. The centipede game is a dy-

namic game of perfect information, with a finite number of players, rounds and strategies.

In its two-player version, players choose alternatively either to Take or to Pass. Playing Take

at any decision node ends the game, while playing Pass gives the opportunity to the other

player to choose. Each decision node corresponds to the split of a pie between the two players,

with unequal payoffs, while the size of the pie increases as the players postpone to end the

game for later rounds. In the particular version that we consider (see Figure 1), the game is

characterised by a particular exponential payoff structure. More specifically, the pie increases

exponentially (doubles) from each decision node to the next, generating social gains. Applying

the cornerstone assumption of game theory, that of backward induction, along with common

knowledge of rationality, predicts that all players, at all decision nodes will play Take, leading
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to the unique subgame perfect Nash equilibrium where player 1 ends the game at the very first

decision node.

The centipede game induces both competitive and cooperative motives, leading to a con-

flict between self-interest and mutual benefits. This makes the backward induction solution

look counter-intuitive, given that ending the game at a later decision node, leads to a Pareto

improvement. There is a rich experimental literature confirming that subjects usually do not

reason according to the backward induction logic in centipede games. A common finding is

that centipede games very rarely end at the first or the last decision node, with the majority

of the games ending at the intermediate nodes 4 or 5, in a six-move game. This kind of result

is observed both during one-shot (or the first round of play) games, and in repeated games,

where there is very little evidence of learning and convergence to Nash equilibrium (see McK-

elvey and Palfrey 1992). Many different explanations have been given in the literature trying

to explain this finding, ranging from social preferences including fairness, altruism or cooper-

ation motives, errors in playing, inability to perform backward induction or different depths

of reasoning1.

Additional assumptions that are usually made in game theory are that agents are Expected

Utility (EU) maximisers, and that they tend to be risk neutral (have linear utility functions on

payoffs). Nevertheless, empirical research in the field of decision theory, has provided strong

evidence against the validity of EU, or against risk neutrality, or both. Alternative theories such

at the (Quiggin, 1982) Rank Dependent Utility (RDU) or the Tversky and Kahneman (1992)

Cumulative Prospect Theory might fit the data better2. In a recent theoretical contribution,

Blavatskyy (2015) showed that introducing advances from the field of decision theory, such

as non-linear probability weighting in the spirit of RDU preferences, along with a stochastic

component in the choice process, may explain the deviations from backward induction.

1We do not aim to provide a thorough review of the literature given that there exist excellent recent reviews of
the experimental literature (see Krockow et al. 2016a and Dhami 2016, chapter 12, p. 729).

2See Wakker (2010) and Hey (2014).
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In the present study we use data from experimental centipede games to test whether al-

ternative decision models can provide an alternative explanation of why subjects choose to

continue. More particularly, using Maximum Likelihood Estimation (MLE) techniques, we

econometrically explore the performance of various theoretical specifications. We investigate

the performance of the models in two ways. First, we estimate models to test their in-sample

performance, that is how well a model can explain a known dataset. Then, given the overfit-

ting problems that may appear as the complexity of a model increases, we perform a cross-

validation test, where we compare the predictive (out-of sample fit) capacity of each model.

In addition to alternative models of choice over lotteries, we also include models of different

depths of reasoning models and of social preferences. Overall, we find that relaxing the as-

sumptions of EU preferences and risk-neutral attitudes best fits the observed deviations. The

result is robust in both descriptive and predictive terms.

Our study shares similarities with McKelvey and Palfrey (1992), McKelvey and Palfrey

(1995), Zauner (1999), Kawagoe and Takizawa (2012) and Ho and Su (2013) in the sense that

all the aforementioned studies fit experimental centipede data to test different preference func-

tionals. McKelvey and Palfrey (1992) provide the first experimental study in centipede games,

and compare the performance of a model where every player believes that there is a small

chance that their opponent is an altruist. McKelvey and Palfrey (1995) introduce the idea of

the Quantal Response Equilibrium (QRE), while Zauner (1999) fits a model where the pay-

offs of the game are augmented by additive noise, showing an improvement against QRE and

the social preferences model. Kawagoe and Takizawa (2012) test the performance of differ-

ent depths of reasoning models (Level-k and Cognitive Hierarchy) showing that the Level-k

model with a Poisson distribution provides a better fit compared to Cognitive Hierarchy, QRE

and the social preferences model. Ho and Su (2013) compare models of different levels of rea-

soning (Level-k, dynamic Level-k and Cognitive Hierarchy models) in a repeated centipede

game where past choices could be used to update beliefs and adapt strategies, showing that
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dynamic Level-k models provide a better fit. All the studies above with the exception of Ho

and Su (2013), compare the models only in terms of their in-sample fit.

Our contribution to this literature can be summarised as follows: (1) using experimental

data we test whether the inclusion of non-EU preferences and non-neutral risk attitudes, along

with a probabilistic choice model, may provide an alternative explanation to deviations from

the subgame Bayesian Nash equilibrium; (2) we compare a particular non-EU specification

against the popular alternatives in the literature such as Level-k or social preferences models

and; (3) we compare the models not only in terms of their in-sample fit but also in terms of

their predictive capacity (out-of-sample fit).

The remainder of the paper proceeds as follows. Section 2 presents the theoretical specifi-

cations that we study. Section 3 discusses the datasets we used and the econometric method-

ology, while section 4 reports the results. We then conclude.

2 Theoretical Framework

In this section we present the five theoretical specifications that we investigate, the Agent

Quantal Response Equilibrium model with Expected Utility preferences (EU-AQRE), the AQRE

model with Quiggin (1982) Rank Dependent Utility preferences (RDU-AQRE), an extension of

the RDU-AQRE where non-linear utility on monetary payoffs is assumed (RDU-AQRE-U), a

behavioural model of different depths of reasoning (LEVEL-K), and an extension of the EU-

AQRE where players play best responses according to their beliefs of the other player’s altruis-

tic motives (AQRE+). All the models that we compare are models of probabilistic choice, that is

they consist of two parts, a deterministic part which provides a choice criterion and a stochas-

tic part, which models the noise (errors) that a decision maker makes. The stochastic part is

crucial as it facilitates econometric modelling and analysis, but it also captures an important

behavioural aspect which is usually ignored in the literature. In the present study, we assume
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a logit type of errors, which is the main component of the AQRE equilibrium. Blavatskyy

(2015) provides functional forms with alternative error specifications, including the Fechner

model (Fechner 1860; Hey and Orme 1994), the Wilcox (2011) contextual utility model and the

Blavatskyy (2012) probabilistic model of choice, for both EU and non-EU preferences. In our

analysis we include only the specifications with a logit link function 3.

2.1 Expected Utility-AQRE

The Quantal Response Equilibrium is one of the most popular models of equilibrium be-

haviour in behavioural game theory, developed in McKelvey and Palfrey (1995). In this model

it is assumed that best responses are not played with certainty, but players play their noisy

best replies, given their beliefs about the noisy play of their opponents. This noise is captured

by a logit-type error specification. The model has been extended to accommodate behaviour

in extensive form games in McKelvey and Palfrey (1998) where a player is assumed to be rep-

resented by different agents, each agent deciding at a particular decision node, independently

of the other agents, therefore the name Agent Quantal Response Equilibrium (AQRE).

The game is solved assuming backward induction. Using the game in Figure 1 as an ex-

ample, we consider player 2 at the final decision node (node 6). Player 2 can play Take and get

12.80 or Pass and receive a payoff of 6.40. While standard game theory predicts that the player

will play the best response with probability 1, AQRE predicts that due to the stochastic part

of the choice process, the probability P(T) of playing the dominant strategy is given by the

following logistic function:

P(T) =
exp

(
EU(T)

λ

)
exp

(
EU(T)

λ

)
+ exp

(
EU(P)

λ

) (1)

with the parameter λ being a noise parameter and EU(T) the Expected Utility of Take (similarly

3We performed our analysis including all the error specifications mentioned above. To save on space we report
only the results assuming a logit error specification, as this noise structure is one of the most commonly used in the
literature of behavioural game theory, and it is also the one that outperformed in terms of predictive capacity. The
Blavatskyy (2012) probabilistic model of choice was a specification that followed very closely. The full results are
available upon request.
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for EU(P)), for any given utility function u(.). Notice that a high value of λ leads behaviour to

random choice with P(T) = 0.5, while a value of λ in the neighborhood of zero predicts that

the dominant strategy is played with probability very close to 1. We denote the probability

that player 2 will play Take at node 6 as p6.

At the penultimate node (node 5), player 1, knowing that player 2 will play Take with p6,

can either Take and receive 6.40 or play Pass and get 3.20 with probability p6 and 25.60 with

probability 1− p6. The probability of playing Take in node 5 for player 1, is given by Equation

1, with EU(T) = 6.40 and EU(P) = p63.20 + (1− p6)25.60.

Following the same methodology, it is possible to calculate the probability of each player

ending the game at each decision node. Using these probabilities, one can then calculate the

probability of reaching each decision node, for a given value of the noise parameter λ4.

2.2 Rank Dependent Utility-AQRE

All the models presented above share a common characteristic, they predict that players will

play Pass at each of the nodes with some positive probability, which is close to zero near the

terminal nodes and increases as one gets towards the intermediate and initial nodes. Neverthe-

less, Blavatskyy (2015) shows that while these EU specifications improve upon the subgame

perfect Nash equilibrium, they predict that a decision maker will never choose to play Pass

with a probability more than 0.5 when EU(P) < EU(T). However, if the decision maker

overweights the probability of rare events, then the expected utility of Pass increases and may

become greater that the utility of Take. A natural candidate model to accommodate this kind

of behaviour is the (Quiggin, 1982) Rank Dependent Utility model 5.

The RDU model relaxes the independence axiom of EU, and allows for the probabilities to

be transformed to decision weights according to a probability weighting function. Throughout

4The backward induction solution is presented here to illustrate how we solve the game for each of the theoret-
ical specifications. The same analysis applies to all the remaining cases with the exception of the Level-k model, so
we refrain from repeating it below.

5Note that since the game is defined is the gains domain the RDU models is equivalent to the Tversky and
Kahneman (1992) Cumulative Prospect Theory model.
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our analysis we assume a Tversky and Kahneman (1992) weighting function of the following

form

w(p) =
pγ

(pγ + (1− p)γ)1/γ

which transforms any objective probability p to a decision weight in the interval [0,1]. γ is a

parameter to be estimated and its value defines the behavioural transformation of probabili-

ties. When γ = 1, there is no probability distortion and the model reduces to the standard EU.

When γ < 1, the probability function has an inverse-S shape and it represents the tendency of a

decision maker to over (under)-weight low (high) probabilities. On the contrary, when γ > 1,

the decision maker tends to under (over)-weight low (high) probabilities. In RDU, a lottery

choice with two outcomes, is evaluated by ranking the payoffs from the best to the worst and

calculating the expected utility after having attached the appropriate decision weights. For

instance, for a lottery L which yields x with probability p and y with probability 1− p, with

x > y, the Rank Dependend Utility is given by RDU(L) = w(p)u(x) + (1−w(p))u(y), for any

given utility function u(.).

Applying this notion to the centipede example and following the backward example pre-

sented above, at node 5 in Figure 1, player 1 must choose between Take which yields a sure

payment of 6.40, or Pass and get 3.20 with probability p6 or 25.60 with probability 1 − p6
6.

The RDU from playing Take is simply RDU(Take) = u(6.40), while the RDU of playing Pass

is RDU(Pass) = w(1− p6)u(25.60) + (1− w(1− p6))u(3.20)7. Since it is possible to calculate

the RDU at every node, for both strategies of each player, it is possible to extend all the previ-

ous specifications and define the probability of ending the game at each decision node, for a

particular set of behavioural parameters. Therefore, combining RDU with the logit stochastic

error specification presented above, we obtain the RDU-AQRE specification.

6Remember p6 is the probability that player 2 is playing T at node 6, which is a noisy best response defined
according to one of the four specifications presented above.

7The same logic applies to all the previous nodes, using the compound probabilities and attaching the appro-
priate decision weights according to the ranking of the outcomes.

10



While in several experimental studies it is often convenient to assume linear utility func-

tions on the payoffs, it is a well established result in the literature of decision making under

risk, that attitudes towards risk are expressed via both the probability weighting function and

the curvature of the utility function, with a concave (convex) shape of the function represent-

ing risk averse (seeking) attitudes (see Hey 2014 for a review). On top of that, there is also

evidence, that failing to account for non-linearity in the utility function during the estimation

of subjective beliefs, may lead to biases of the point belief estimates8. Goeree et al. (2003) and

Goeree and Holt (2004) show that subjects exhibit moderate levels of risk aversion in games.

Following Goeree et al. (2003) we adjust the models to account for risk non-neutral attitudes

by assuming a constant absolute risk aversion (CRRA) function of the form u(x) = x1−r

1−r where

r is a parameter to be estimated9. We call this specification RDU-AQRE-U.

2.3 The Level-k model

In this model, players are assumed to be heterogeneous regarding their depth of reasoning,

and can be grouped to different levels (types) denoted as L0, L1, L2, . . . Lk
10. The L0 type is

assumed to be a non-strategic type, that is, this type does not play any kind of best response.

Every type Lk plays a best response to the belief that all the other players are of type Lk−1. That

is, a L1 type plays her best response to a L0, a L2 to a L1 and so on.

Following Kawagoe and Takizawa (2012), in our analysis we are using a Level-k model

under the assumption that the distribution of types across the population follows a Poisson

distribution. More particularly, the proportion sk of Lk type decision makers in a population is

8Andersen et al. (2014) show how the elicitation of subjective beliefs is improved when one accounts for both
risk attitudes and probability weighting.

9It is a common finding in the literature that the CRRA utility provides a good fit in empirical applications (see
Wakker (2008), Stott (2006).

10Level-k models have been applied to a variety of one-shot games. A non exhaustive list includes Stahl and
Wilson (1995), Nagel (1995), Camerer et al. (2004), Costa-Gomes and Crawford (2006) and Crawford and Iriberri
(2007).
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determined by the following formula

sk =
exp(−τ)τk−1/(k− 1)!

∑k′≤K exp(−τ)τk′−1/(k′ − 1)!

with K being the total number of types. This assumption is convenient for two reasons. On

the one hand, it accommodates a usually observed result from experimental studies, that the

proportion of higher types is lower relative to the proportion of lower types, which can be

captured by a Poisson distribution. On the other hand, this specification provides a parsimo-

nious way to model behaviour according to a Level-k model, given that two parameters are

sufficient to describe behaviour (the parameter τ for the distribution and a noise parameter λ).

Furthermore, the Level-k model with a Poisson distribution appears to provide a good fit (see

Kawagoe and Takizawa 2012). As a starting point, we assume that the L0 type is an altruist

type who plays Pass at all decision nodes. Therefore, a L1 player 1, would play Pass at node

5, expecting player 2 to be L0 and play Pass. Similarly, a L1 player 2, would play Pass at node

4, thinking that she is playing against a L0, and would play Take at node 6. Table 1 illustrates

the full strategies of both players, for all levels of reasoning. We assume 6 levels of reasoning,

given that the subgame perfect Nash equilibrium is achieved when player 1 is of level 6. On

top of the deterministic model, we also assume that players choose their best response with

some noise, which is modeled using the logistic function as above. Throughout our analysis,

we denote this model as LEVEL-K.

2.4 AQRE with Altruistic Motives

The final model that we include to our analysis, is motivated by the work of McKelvey and

Palfrey (1992). In this study, the authors provided an alternative explanation for their data, by

transforming the game to one of incomplete information in which there is some uncertainty

over the payoffs of the players. Each player in this model is assumed to believe with a very

small probability ρ that their opponent is an altruist who plays Pass at all nodes. The model

is an extension of the EU-AQRE specification presented above, with the main difference being
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that each player holds a prior belief ρ that the other player is an altruist. After having observed

an opponent to play Pass in the previous node, the player updates her current beliefs regarding

the altruism of the other player, and chooses accordingly. In our previous example, assuming

that player 2 plays Take with probability p6, at the penultimate node, player 1’s belief regarding

the altruism of player 2, using Bayes rule, is given by

β5 =
ρ

ρ + (1− ρ)(1− p4)

Then, the expected utility of playing Pass, is given by EU(P) = p6(1 − β5)u(3.20) + (1 −

p6)(1− β5)u(25.60) + β5u(25.60). The errors in choice are assumed to follow the logistic func-

tion as above, and solving the set of nonlinear simultaneous equations for each decision node,

for a given set of behavioural parameter values, we can calculating the probability of reaching

each ending node. We call this specification AQRE+.

At this point it would be useful to provide an explanation of how a specification that incor-

porates both probabilistic choice under uncertainty and overweighting of rare events (RDU-

AQRE) differs from the alternative models presented above. With the exception of the LEVEL-

K model, the remaining two models (EU-AQRE and AQRE+) are based on the Expected-Utility

hypothesis, augmented by a probabilistic choice rule. As Blavatskyy (2015) notes, subgame

perfect equilibria derived from these models improve upon the subgame perfect Nash equilib-

rium. The probability of choosing P is close to zero in the last decision nodes for both players.

This probability increases in the intermediate nodes but it never exceeds 0.5, at least for the 4

final nodes. As a result, the prospect P (pass) looks like the St Petersburg’s lottery in the sense

that it yields an ever greater payoff with an ever lower probability. As a consequence, a deci-

sion maker will never play P with a probability higher than 0.5, as long as the Expected Utility

of stopping the game by playing T, is greater than playing P. Nevertheless, if a decision maker

tends to overweight the likelihood of rare events, the utility of playing P, and therefore the

probability of playing P at each decision node, increases (and becomes higher than 0.5 when
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the utility of playing P exceeds that of T). To illustrate this point, in Figure 3 we compare the

predicted probabilities of a player playing P for both EU-AQRE and RDU-AQRE, at each deci-

sion node. We assume a value of λ equal to 1.6 for both models, and a value of γ equal to 0.61

for the probability weighting function (the median value from Tversky and Kahneman 1992).

In both cases, the probability of playing P in the final two nodes is very close to zero. Then,

it is apparent that for all the remaining nodes, the probability of playing P is always higher

for the RDU-AQRE model. For instance, in node 3, the probability of P is equal to 0.36 for

the EU-AQRE model, compared to 0.67 for the RDU-AQRE. This difference is attributed to the

over-weighting of the low probabilities of P in nodes 4-6, which in turn increases the utility of

playing P in all earlier rounds. To summarise, the RDU-AQRE predicts that a decision maker

overweights the likelihood that their opponent will play P in the subsequent nodes, increasing

the probability of playing P him- or herself. Consequently, this model puts larger probability

mass on the intermediate nodes, compared to the alternative models, which is in line with the

empirical evidence which shows that players usually stop the game at node 4 or 5.

3 Econometric Analysis

3.1 Data

Using data from experimental centipede games we compare the models presented in section

2 in two dimensions. First, we compare the models based on their descriptive validity, that is

how well each model performs in terms of in-sample fitting. Then, given that overfitting may

lead to wrong conclusions, we compare the various specifications based on their predictive

capacity, or in other words their performance on out-of-sample fit. We use the data from the

following four experimental studies: McKelvey and Palfrey (1992), Palacios-Huerta and Volij

(2009), Levitt, List, and Sadoff (2011) and Kawagoe and Takizawa (2012).

The rationale behind choosing these studies lies on the fact that all share two common
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characteristics: (1) they use the McKelvey and Palfrey (1992) 6-move, increasing-pie centipede

game with payoffs as those illustrated in Figure 1 and; (2) the game was played in its extensive

form rather than its equivalent normal form, with players choosing sequentially and receiv-

ing immediate feedback of their counterpart’s choice. Regarding the first characteristic, the

increasing-pie game satisfies an exponentially increasing total payoff structure which gener-

ates this conflict between self-interest and social optimality and potentially provides motives to

players to further cooperate11. As far as the extensive form is concerned, there are several stud-

ies where alternative methods have been used to elicit players’ strategies, like asking players to

indicate their preferred exit node in a reduced, normal form centipede game (Nagel and Tang,

1998), or using the strategy method and asking subjects in advance of their planned moves for

each stage of the game as in Le Coq et al. (2015). Cox and James (2012) use two variations of

the game adopting an independent private values (IPV) information environment. They rep-

resent the game by employing two different institutional formats (clock or tree) and two differ-

ent dynamic structures (sequential or simultaneous move). While each variation provides the

flexibility to obtain more data per subject, they also carry additional disadvantages as it is not

straightforward whether subjects perceive the various forms of the game as equivalent12. In

addition, with the exception of McKelvey and Palfrey (1992), in all the other studies the game

was played only once, without providing the subjects the opportunity to learn and adapt their

strategies. This is in line with the spirit of Costa-Gomes and Crawford (2006) who claim that

modelling initial responses in games is of paramount importance in providing insights into

cognition and strategic behaviour. All of the aforementioned studies, share a common exper-

imental design, that is players are randomly matched in pairs without knowing the identity

of the other player, players make choices sequentially in the game with the payoffs illustrated

in Figure 113 and all choices were financially incentivised. The set of data we analyse consists

11Note that in a constant sum centipede game, the size of the pie does not alter throughout the game and playing
Take at node 1 is the only strategy that leads to a fair allocation.

12See Brants and Charness (2011) for an exposition on this topic.
13Most recent studies have scaled up the payoffs of McKelvey and Palfrey (1992) by 100. This does not seem to
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of both lab and field experiments. McKelvey and Palfrey (1992) and Kawagoe and Takizawa

(2012) conducted traditional lab experiments, Palacios-Huerta and Volij (2009) provide data

from both a field study with professional chess players and lab sessions with chess players

and student participants, while Levitt, List, and Sadoff (2011) analyse data from a field ex-

periment with chess players from two international open chess tournaments. This gives us

in total five independent datasets (three lab and two field studies). The raw data from each

experimental study are shown in Table 5. 14

3.2 In-sample fit

To compare the in-sample fit performance of the models, we estimate all the theoretical specifi-

cations using the pooled dataset from the four studies. This gives us a total of 295 observations

(590 subjects). In the pooled set, it is apparent that the subgame perfect Nash equilibrium as-

sumption can be safely rejected, with only 3% of the pairs ending the game at node 1, while

more than 50% ending the game at nodes 4 and 5. Figure 2 illustrates this result. We esti-

mate our models using standard Maximum Likelihood Estimation (MLE) techniques. More

particularly, for each of the models, we are able to work out the probability pi(v) of playing

Take at each decision node i according to the assumptions of each theoretical specification re-

garding both the deterministic and the stochastic part of the decision making process, given a

particular set v of behavioural parameters. The latter provides a vector P(v) of length n for the

n-move game containing all pi(v) for i = 1, 2, . . . , n. Then, we are able to calculate the proba-

bility qi(P(v))) of reaching each decision node i (e.g. q1 = p1(v), q2 = (1− p1(v))p2(v) and so

on). Following Zauner (1999) and Kawagoe and Takizawa (2012), the log-likelihood function

for each model can be written as

L(v) =
n+1

∑
i=1

ni ln(qi(P(v))) (2)

affect our econometric analysis and therefore we are able to pool all the data together.
14The data have been retrieved from the Appendix in Kawagoe and Takizawa (2012). As in Kawagoe and Tak-

izawa (2012), we also exclude the field experiment of Palacios-Huerta and Volij (2009) with chess players, given the
remarkably high level of backward induction play.
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where ni is the observed frequency of playing Take at decision node i. Using MLE techniques,

we are able to estimate the parameter vector v̂ that maximises Equation 2. Then, based on the

value of the maximised likelihood, along with appropriate goodness of fit measures and sig-

nificance tests, we can select models based on their in-sample fit performance15. For simplicity,

we assume homogeneity in the parameters for both players.

3.3 Out-of-sample fit

Comparing models based only on their descriptive adequacy (in-sample fit) is susceptible to

drive to misleading conclusions. More specifically, more complex models are prone to over-

fitting. That is, while the dataset may be generated by a simple model plus some noise, a more

complex model is able to fit this noise and provide an artifactually better fit. Over-fitting is a

particular characteristic of analysis conducted with both lab and field data due to their limited

sample size and the fact that tests based on asymptotic distributions are not valid for these

small sample size datasets. An alternative model selection method is to use the K-fold cross-

validation (rotation estimation) method (Geisser, 1993)16. The cross validation technique is able

to assess how well the results of an econometric estimation will generalise to an independent

dataset. More concretely, this method evaluates the accuracy with which a model can predict

choices in an unknown dataset. To this end, a fold is formed by partitioning the whole sample

to two subsets, the training set (70-80% of the sample) which is used to estimate parameters for

the models, and the validation set (20-30% of the sample), which is excluded from the estimation

and is used to assess the predictive accuracy. The same process is repeated K times, for each of

the K folds, where in each fold a different part of the data is used as the training (validation)

15The estimation was conducted using the R programming language for statistical computing (The R Manuals,
version 3.0.2. Available at: http://www.r-project.org/). To avoid local optima, a multiple-restarts routine was
applied, with different starting values at each restart. The routine is using a general non-linear optimization using
the augmented Lagrange multiplier method. (package rsolnp, Ghalanos and Theussl (2012)). The estimation code
is available upon request.

16For applications on model selection and validation see Zhang (1993) and Keane and Wolpin (2007). For a
recent discussion on overfitting and predictive accuracy see Wilcox (2007) and Stahl (2018). Recent studies of
model selection based on the predictive power of the models include Hey et al. (2010) and Kothiyal et al. (2014).
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test, resulting to the calculation of an appropriate statistical measure. Note that we partition

data at the level of datasets, the entire dataset from a particular experimental study appears

either in the training set or the validation set, but not in both. The validation set is always an

entire dataset from an experimental study, that has not been included in the training set.

In our context, the training set of each fold is used to estimate the vector v̂ of behavioural

parameters. This set v̂ is then applied to the validation dataset to generate the implied Take

probability vector. Then, using this probability vector along with the actual Take frequencies of

the validation set, we are able to calculate the out-of-sample predictive log-likelihoodLOUT(v̂).

The model selection criterion instructs to choose the model with the highest predictive log-

likelihood. Given that we have five independent datasets, we form the 5 folds, each consisting

of four pooled datasets as the training set, and the one dataset left out, as the validation set.

We rotate the datasets in such a way that each dataset is used for validation exactly once and

as a training set K-1 times (Table 6 summarises the data partition). We compare models based

on the aggregated value of their out-of-sample predictive log-likelihood value

K

∑
k=1
Lk,OUT(v̂)

3.4 Identification of models

Early work on comparing theories of learning in games (Salmon 2001; Wilcox 2006) has shown

that a particular family of learning models posses difficulties in identifying the actual data

generating process of simulated datasets. On the other hand, similar studies that compare

models of choice under uncertainty (Hey and Pace 2014; Kothiyal et al. 2014), have been more

successful in showing that it is actually possible to identify the underlying true model, making

this kind of comparisons more meaningful. To test whether the models are properly identified

and are indeed behaviourally distinguishable, we conduct an extensive Monte Carlo simula-

tion, similar to the one in Wilcox (2006) and Hey and Pace (2014)17. For each of the models, we

17Analytical details on the simulation are provided in the online Appendix.
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assume a reasonable set of parameters and we generate a simulated dataset (predicted proba-

bilities of playing T), which is then used to individually estimate each of the 5 specifications.

We use the Akaike Information Criterion (AIC) as a model selection criterion18. It is expected

that, if identification is possible, whenever the model assumed in the estimation coincides with

the data generating model (true model), the lowest AIC value will be generated, compared to

the AIC value that all the other specifications generate (best fit of the data corrected for the

degrees of freedom). We repeat this process for a number of 100 simulations. The results con-

firm that the data-generating model is always identified, and the underlying parameters are

successfully recovered.

3.5 Empirical content of the AQRE models

Another possible criticism relates to whether the estimated Quantal Response Equilibrium

models carry any empirical content. In a recent paper, Haile et al. (2008) show that QRE im-

poses no falsifiable restrictions, that is, it can rationalise any distribution of behaviour in any

normal form game. Nevertheless, under the particular structural assumptions we make in the

parameterisation of the models, there are three potential arguments against this criticism. First,

from a theoretical point of view, in order for the result in Haile et al. (2008) to be valid (Theo-

rem 1, page 184), one should relax the assumption of i.i.d. perturbations across each player’s

strategies. In our analysis, we maintain the standard assumption that the experimental liter-

ature is making on i.i.d. perturbations from a logit parametric family, when we specify and

estimate the AQRE models (as in McKelvey and Palfrey 1992; Kawagoe and Takizawa 2012

and Wright and Leyton-Brown 2017). Then, based on our simulation exercise, if the AQRE

models are able to rationalise any set of probabilities, and therefore are not falsifiable, one

would expect that they would provide a fit to the data, at least as good as any of the other

competing models, independently of the actual data-generating process. The results from the

18The AIC is defined as 2k − 2 ln(L), with k the number of parameters and ln(L) the value of the maximised
Log-likelihood. A lower value of AIC indicates a better fit.
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simulations do not provide any evidence in favour of this. On the contrary, the parameter

recovery exercise, shows that it is possible to both identify the AQRE models, and to recover

the corresponding distribution value of the parameters. Finally, our estimation/prediction

methodology shows that AQRE models carry empirical content. If the AQRE models carry

no empirical content, they will perform pretty well in the in-sample fitting (potentially due to

over-fitting) but because of this over-generalisation they will have a very poor predicting per-

formance. The results reported in the next section, show that those specification that perform

well in the in-sample analysis, perform well in the out-of-sample prediction, implying that the

empirical content that AQRE models carry is not due to over-fitting, and therefore verifying

their usefulness in empirical work.

4 Results

The results from our econometric analysis are presented in two parts. First, we rank models

based on their in-sample performance and we discuss model selection using the value of the

maximised log-likelihood, along with goodness of fit measures as criteria. In the second part

we present the results of the K-fold validation exercise, where models are ranked according to

their predictive capacity.

All the results from the estimations are presented in Table 2. The top panel of the Table

reports the implied probabilities of reaching each terminal node. All of the models allocate

some positive probability mass to each of the outcomes, with the main characteristic being the

unimodal distribution of the outcomes. In particular, most of the models predict a very low

probability of the game ending in one of the two extreme outcomes (play Take at 1 or Pass at

6) while all of the models put most of the probability mass to nodes 4 and 5, which is in line

with the actual observed frequencies as is illustrated in the second column of the Table (play

Take at nodes 4 or 5). The middle panel, reports the MLE estimates of the parameters for each
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model along with their standard errors. The bottom panel includes measures of goodness of

fit. The first row reports the value of the maximised loglikelihood. A higher value indicates a

better fit of the model. Nevertheless, given that the models under consideration differ in their

degrees of freedom, we also report the values of three information criteria which correct for the

different degrees of freedom and the size of the sample, namely the Akaike Information Crite-

rion (AIC), the corrected Akaike Information Criterion (AICc) and the Bayesian Information Criterion

(BIC).19 A lower value of each of the criteria indicates a better fit of the model.

While EU-AQRE predicts a very high probability of the game ending at node 1 (0.256),

RDU-AQRE-U and LEVEL-K attach a lower probability to this outcome and correctly assign

most of the probability mass to outcomes 4 and 5. As a consequence, the two latter models

provide a better fit to the data, fact which is reflected by the lower values of the AIC (1042.1

and 1045.1). Based on the AIC, the RDU-AQRE-U model seems to provide an overall best

fit. Nevertheless, one may ask whether this difference is statistically significant or not. In all

subsequent analysis we use two types of significance tests, the Vuong test (Vuong, 1989) for

non-nested models and the Likelihood ratio test for nested models20.

We start by testing whether the assumption on non-linear probability weighting improves

the in-sample fit of the EU-AQRE specification. Using a Likelihood ratio test within models

(EU-AQRE Vs. RDU-AQRE), with one degree of freedom, it is confirmed that RDU performs

significantly better than EU (p<0.000 at the 1% significance level). Observing the estimated

value of the probability weighting parameter γ, the parameter appears to be significantly dif-

19The standard AIC is defined as 2k− 2 ln(L), with k the number of parameters and ln(L) the value of the max-
imised Log-likelihood. While this measure corrects for the degrees of freedom, it does not take into consideration
the sample size, leading often to overfitting. (Burnham and Anderson (2004)). Sugiura (1978) and Hurvich and
Tsai (1989) proposed a modified version of AIC that also corrects for the sample size (second-order bias). The AICc
is defined as

AICc = AIC +
2k (k + 1)
n− k− 1

with n being the sample size. Finally, the BIC is defined as 2k ln(n)− 2 ln(L).
20Two models are nested, if the first model can be transformed into the second model by imposing constraints

on the parameters of the first model. EU-AQRE nests all the other AQRE specifications, while LEVEL-K and AQRE
are non-nested models.
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ferent than 1 (γ = 1 indicates linear probability weighting and therefore EU preferences). The

value of γ (0.714) implies the theoretical intuitive shape of the weighting function (for γ < 1

the function has an inverse S shape, indicating over-weighting of low probability events).

Relaxing the assumption of risk neutrality and assuming a concave utility function on mon-

etary payoffs, along with non-linear probability weighting (RDU-AQRE-U) leads to a dramatic

improvement in the in-sample performance of the model. The value of the AIC drops from

1126.5 to 1042.1, and a Likelihood ratio test confirms that this difference is statistically signif-

icant (p<0.000), showing that the curvature of the utility function may explain an important

part of the observed choices. The estimate of the risk curvature parameter r, is significantly

different than 0 and provides evidence of moderate risk aversion, with r being equal to 0.866.

Focusing on the probability weighting parameter γ, the estimate is in line with the intuition

(and the common evidence from experimental studies) of an inverse S-shaped weighting func-

tion (γ = 0.744). Figure 4 illustrates the shape of the weighting function and the different

weighting of low and high likelihood events for both RDU-AQRE and RDU-AQRE-U.

Up to now, the analysis shows that the RDU model with non-linear utility performs signif-

icantly better compared to the EU specification. We now turn to the question, how well does

this RDU specification perform, compared to the popular alternatives from the literature of

behavioural game theory. Kawagoe and Takizawa (2012) compare the standard AQRE model

(under the assumption of EU along with risk neutrality) against the Level-k family of models

and the altruistic version of the AQRE (AQRE+). The two last columns of Table 2 report the

estimates of the LEVEL-K21 and the AQRE+ specifications. AQRE+ is ranked third over all

the specifications, showing that results probably are not driven by the players’ beliefs on their

opponent’s altruistic motives (the estimated parameter ρ is equal to 0.033), while the LEVEL-K

21The estimated parameter τ of the Poisson parameter shows the following distribution (percentage) of levels in
the population L1 = 16.7, L2 = 29.9, L3 = 26.7, L4 = 15.9, L5 = 7.1, L6 = 2.6, confirming the often observed result
of the majority being classified as levels 1-3.
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model is ranked second and very close to the best fitting model RDU-AQRE-U. This difference

is statistically significant at the 5% level according to a Vuong test (p=0.049).

When in-sample fit performance is used as a model selection criterion, the results show

that a RDU specification can explain the data better, closely followed by the LEVEL-K model.

Nonetheless, one could argue that this difference could be attributed to the over-fitting, caused

by the increased complexity of the model. To complete the analysis, we compare the models

using their predictive capacity as a criterion. Following the K-fold validation process, Table 3

reports the predicted log-likelihood for all the specifications that we have encountered in this

study. The Table reports the value for each of the five folds in the first five columns, with the

two last columns reporting the summed predictive log-likelihood and the mean value (cross-

validated likelihood) respectively. As a reminder, a higher value of the predictive likelihood

(a less negative value) indicates a stronger predictive capacity22. The results show that the

best predictive model is the RDU-AQRE-U specification with a cross-validated likelihood of

-95.7 and an aggregated value of -478.4. with the LEVEL-K being classified second with a

cross-validated likelihood of -97.7 and an aggregated value of -488.4, followed by the AQRE+.

EU-AQRE, has the worst predictive capacity.

As a robustness test of the out-of-sample fit, we use the results obtained above and perform

a final out-of-sample test on data that have not been yet used in the analysis. More specifi-

cally, we use the estimated values of the models to calculate the predicted likelihood in two

experimental datasets of 4-move centipede games. The 4-move centipede game is identical to

the one in Figure 1, with the only difference that ends at node 4 where players may end with

payoffs of 6.40 and 1.60 respectively, if they both play “Pass” at all nodes. We use the data

from the McKelvey and Palfrey (1992) 4-move game, as well as data from Treatment 1 in Cox

and James (2015) who replicate McKelvey and Palfrey (1992). The results are reported in Table

22As this is the predictive log-likelihood, one does not need to take into consideration different degrees of free-
dom.

23



4 and confirm the conclusions of the analysis above. RDU-AQRE-U and LEVEL-K are the two

specifications which outperform all other models, while the EU-AQRE model is ranked last

in both cases. Nevertheless, one should be careful when interpreting these results, given that

both datasets include a relatively small number of observations (10 and 20 pairs respectively)

and almost all the games end in either the second or the third node, with zero mass in the three

remaining outcomes. The latter point, argues in favour of the K-fold cross-validation as a model

selection method, which identifies a winner model, that can on average predict behaviour in a

better way compared to the competing models.

5 Discussion and Concluding Remarks

In this study, we use data from experimental centipede games to test the idea of Blavatskyy

(2015) that non-EU preferences may provide an alternative explanation of why subjects choose

Pass in later decision nodes rather than at the first node, as backward induction instructs.

Introducing a stochastic part to the decision making process to capture errors in choice, along

with a deterministic model, we form probabilistic decision making models. We then compare

the various specifications in two ways, first in terms of their descriptive capacity (in-sample

fit), that is how well a model can explain behaviour in a known dataset, and then in terms of

their predictive capacity (out-of-sample fit), that is how well a model can predict behaviour

in an unknown dataset. In addition to these specifications, we fit two of the most common

models in the literature that have provided an explanation of behaviour in centipede games,

namely the LEVEL-K model and a version of the Quantal Response Equilibrium with altruistic

motives.

The results show that a non-EU specification along with a concave (risk averse) utility

function provide an alternative explanation to the exit frequencies in centipede games. More

particularly, the RDU -AQRE-U, the specification which includes RDU preferences along with
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a logit stochastic error and a power utility function (CRRA) outperforms all other models, both

in terms of in-sample and out-of-sample performance. The second best model is the LEVEL-

K model, a popular model in the behavioural game theory literature. Both outperform the

EU-AQRE model that has also been extensively used in modelling behaviour.

These results seem to resemble the results from the field of dynamic decision making under

risk, where the existence of non-EU preferences leads to dynamic inconsistencies, fact which

leads to violations of backward induction (see Barberis 2012; Hey and Panaccione 2011). Our

analysis shows that relaxing the standard assumptions of game theory, namely Expected Util-

ity maximisation along with risk-neutrality, may provide a better explanation to the available

data, compared to limited cognitive ability or social preferences models. More particularly, in-

troducing the assumption of non-linear probability weighting, allows to model the behavioural

aspect of overweighting the likelihood of rare events, providing an alternative explanation of

why players keep passing in the centipede game, when they should not.

As Eichberger et al. (2018) highlight, “[· · · ] there have been attempts to modify Nash equi-

librium by introducing random deviations (Quantal Response Equilibria, k-level equilibria)

in order to obtain a better fit for experimental data. Though, more flexible due to the extra

parameters, these concepts provide no interpretation for these parameters which could allow

one to make ex-ante predictions”. Blavatskyy (2015) shows that the probabilistic choice models

could be benefited by introducing overweighting of the likelihood of rear events. Our analysis

shows that this modification, not only increases the in-sample fit, which would be expected

as the models becomes more flexible, but it also enhances the predictive power of the model.

Indeed, it appears that overweighting carries an actual economic meaning, given that in all

the specifications, the predictive capacity of the model dramatically increases when non-linear

probability weighting is allowed.

The LEVEL-K model differs from the AQRE specifications, in the sense that it first makes

exact predictions of what players of different levels will play, and then estimates a distribution

25



of the different types found in the dataset. As a result, it will always perform well in the in-

sample fit. Nevertheless, the only information one receives regarding behavioural traits of the

subjects, is the percentage of types in a population, information which is not straightforward

how it can be used to help understanding behaviour in different games and environments.

On the contrary, there is a plethora of converging empirical evidence regarding the degree

of risk aversion and probability weighting of experimental subjects, in various situations. It

also worths mentioning that the best fitting specification (RDU-AQRE-U) is one of the most

commonly used in analysing experiments of individual choice under risk, and is proven to

provide a good fit to the data. Combining the two points above, could make the results of the

present study portable to further applications.

The present study shows that introducing advances from the experimental literature of in-

dividual decision making, provides choice models with improved explanatory and predictive

power for an important class of social dilemma games, the centipede games. It is a first step

towards providing support in favour of an alternative theoretical explanation of why people

tend to cooperate in social dilemmas, showing that it is possible to construct a cooperative

equilibrium, based only on “selfish” behaviour. These results could contribute to our better

understanding of how people engage in strategic reasoning. First, adopting a probabilistic

decision making model which allows for non-linear probability weighting may be able to bet-

ter explain behaviour in centipede games that employ a different format or institution (Nagel

and Tang 1998; Le Coq et al. 2015; Cox and James 2012). Then, these results could be used to

explain behaviour in games that share the same structure with the centipede game (i.e. sequen-

tial two-player games with complete and perfect information). Examples of the latter include

the Rubinstein (1982) sequential bargaining game, the Selten (1978) chain store paradox or the

Kreps and Wilson (1982) repeated prisoner’s dilemma. We leave this question for future work.
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Figure 1: The 6-move centipede game McKelvey and Palfrey (1992).
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Figure 2: Distribution of playing Take at each decision node in the six-move centipede game in
the experimental data used in this study.
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Figure 3: Probability of playing Pass (P) at every decision node.

Level Player 1 Player 2

L0 P,-,P,-,P,- -,P,-,P,-,P

L1 P,-,P,-,P,- -,P,-,P,-,T

L2 P,-,P,-,T,- -,P,-,P,-,T

L3 P,-,P,-,T,- -,P,-,T,-,T

L4 P,-,T,-,T,- -,P,-,T,-,T

L5 P,-,T,-,T,- -,T,-,T,-,T

L6 T,-,T,-,T,- -,T,-,T,-,T

Table 1: Rule hierarchy for the LEVEL-K model in the 6-move centipede game. Player 1 makes
decisions at nodes 1, 3 and 5 {1,-,3,-,5,- } while player 2 at nodes 2, 4 and 6 {.,2,-,4,-,6}. P and T
stand for the strategies Pass and Take respectively. In this model each player of Level n plays
her best response against a player of Level n− 1. For example, a player of Level 3 will play T
at node 5 as she thinks she is playing against a Level 2 player, who plans to play T at node 6.
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Outcome Dist EU-AQRE RDU-AQRE RDU-AQRE-U LEVEL-K AQRE+

1 0.033 0.256 0.145 0.060 0.026 0.127

2 0.119 0.183 0.116 0.127 0.094 0.125

3 0.214 0.134 0.128 0.214 0.203 0.111

4 0.237 0.149 0.161 0.265 0.289 0.173

5 0.271 0.203 0.331 0.220 0.22 0.339

6 0.088 0.071 0.116 0.099 0.078 0.122

7 0.037 0.004 0.003 0.015 0.09 0.003

λ 2.131 1.719 0.066 0.018 1.712

s.e. 0.105 0.109 0.039 0.268 0.101

τ - - - 1.789 -

s.e. - - - 0.071 -

ρ - - - - 0.033

s.e. - - - - 0.055

γ - 0.714 0.744 - -

s.e. - 0.043 0.053 - -

r - - 0.866

s.e. - - 0.068

LL -591.348 -561.232 -518.037 -520.529 -560.282

AIC 1184.695 1126.463 1042.074 1045.058 1124.564

AIC_c 1184.709 1126.504 1042.156 1045.099 1124.605

BIC 1188.382 1133.837 1053.135 1052.432 1131.938

Obs 295 295 295 295 295

Table 2: In-sample comparison for all the specifications. The top panel of the Table reports
the implied probabilities of reaching each terminal node, the panel in the middle reports the
parameter estimates and the bottom panel the goodness of fit measures.
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Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall Mean

EU-AQRE -57.668 -91.917 -217.170 -67.150 -133.357 -567.262 -113.452

RDU-AQRE -51.982 -74.199 -202.609 -65.440 -122.615 -516.845 -103.369

RDU-AQRE-U -46.9972 -67.5331 -184.764 -61.4585 -117.613 -478.365 -95.673

LEVEL-K -46.836 -62.675 -184.267 -66.451 -128.155 -488.384 -97.677

AQRE+ -50.169 -63.271 -203.584 -63.644 -126.471 -507.140 -101.428

Table 3: Comparison of the predictive performance of all the models.

Model MP92-6 CJ

EU-AQRE -17.246 -19.176

RDU-AQRE -16.73 -18.777

RDU-AQRE-U -13.044 -14.665

LEVEL-K -12.78 -14.794

AQRE+ -16.985 -18.785

Table 4: Out-of-sample performance of the models in the 4-move centipede game. The abbre-
viations correspond to the data from the original study: MP92-4 McKelvey and Palfrey (1992),
CJ Cox and James (2015).
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Outcome MP92-6 KT LLS PHV-F PHV-L ALL

1 0 1 4 3 2 10

2 3 1 10 6 15 35

3 3 1 17 14 28 63

4 9 3 25 12 21 70

5 10 25 27 4 14 80

6 3 10 12 1 0 26

7 1 3 7 0 0 11

Total 29 44 102 40 80 295

Table 5: Raw data from all the experimental studies used in the analysis.

Fold Training set Validation set

1 KT, LLS, PHV-F, PHV-L MP92-6

2 MP92-6, LLS, PHV-F, PHV-L KT

3 MP92-6, KT, PHV-F, PHV-L LLS

4 MP92-6, KT, LLS, PHV-L PHV-F

5 MP92-6, KT, LLS, PHV-F PHV-L

Table 6: Folds in the fold-K cross validation. The abbreviations correspond to the data from
the original study, MP92-6 McKelvey and Palfrey (1992), PHV Palacios-Huerta and Volij (2009)
F for the field and L for the lab study, LLS Levitt, List, and Sadoff (2011) and KT Kawagoe and
Takizawa (2012).
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Appendix A Simulation (for online publication)

To test whether the models are properly identified and are indeed behaviourally distinguish-

able, we conduct an extensive Monte Carlo simulation with two parts similar to the one in

Wilcox (2006) and Hey and Pace (2014). For each of the models, we assume a reasonable set of

parameters and simulate experimental datasets. As all of the specifications incorporate a de-

terministic choice rule within a stochastic model, the parameters of the stochastic part reflect

the level of noise in the subjects’ decisions. When the level of noise is very low, the subjects

behave according to the Nash equilibrium prediction (play T at the first node). As the level of

noise increases, the statistical models predict that players will end the games at a later node.

To this end, it makes sense to assume different levels of noise ranging from low to high. In par-

ticular we assume three levels of noise, a LOW level, where the predicted outcome is that the

majority of the subjects ends the game during the first three nodes, a MEDIUM level, where

the game ends in nodes 3-5, which is also what is usually observed in experimental studies,

and a HIGH level, where the predicted probability is more uniformly distributed between all

the nodes of the game.

Table 7 reports the values that were used for each of the models. We also use an additional

set of parameters, the ACTUAL, which corresponds to the estimated values obtained by our

analysis reported in Table 2. Using these simulated data, we generate predicted probabilities.

To generate the datasets, we follow Wilcox (2006) and introduce variability by drawing the

parameters from a Gamma distribution, particularly specified for each parameter, which is

centered to the assumed values within each set. We set a level of variability equal to 5% (coef-

ficient of variation)23. For example, for the EU-AQRE specification, the MEDIUM λ parameter

for each simulation is drawn from a Gamma distribution with shape and rate values equal to

20 (these values correspond to mean equal to 1 and standard deviation 0.05). For the param-

23The results are qualitatively the same for various levels of variability. 5% level generates enough variability for
a meaningful simulation.
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eters which are common between models, such as the weighting function coefficient γ or the

power utility coefficient r we assumed values that are often observed in the literature. More

specifically, we assume that γ = 0.61, r = 0.70, τ = 1.50 for the LEVEL-K model and ρ = 0.01

for the AQRE+24.

The simulation exercise proceeds as follows. For a given model under consideration, we

generate a simulated dataset. Then, this dataset is fitted to generate estimates for all the 14

models along with goodness of fit measures. If it is possible to identify the data generating

model, this will be demonstrated by a goodness of fit measure (the data generating model

should provide a better fit compared to the other models). We test this by comparing the value

of the Akaike Information Criterion (AIC) between all models, where the best fitting model

should generate the lowest value of AIC. We repeat the same procedure for 100 simulations.

Tables 9-12 report the average value of AIC for all cross-model comparisons for the LOW,

MEDIUM, HIGH and ACTUAL sets of parameters respectively. Each row model corresponds

to the data-generating model (the true model) and each column model corresponds to the one

used during the estimation. The results in the Tables show that the models under analysis are

fully distinguishable. In each row, the element of the diagonal (when the true and the assumed

model coincide) is always smaller than the off-diagonal elements. That is for instance, if we

know that the data-generating model is the RDU-AQRE, then the RDU-AQRE model, better

fits the data. For example, in Table 9, when both the true and the estimated model is the

RDU-AQRE, the average value of AIC is equal to 808.33, while when the true model is the

RDU-AQRE and the estimated is the EU-AQRE, the average AIC is 844.11, indicating that

when the true and the estimated models are the same, we obtain a better fit and therefore we

can identify the true model. This result is identical across all the sets of simulated parameters,

LOW, MEDIUM and HIGH, as well as for the ACTUAL set of parameters.

The second part of the simulation was to confirm that it is not only possible to identify

24Introducing variability to these parameters does not change the results. We keep these parameters fixed in
order to focus on those parameters that differ between models.
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the data generating model, but also to recover the value of the parameters that generated

the simulated dataset. Table 8 reports the mean estimated value of the parameters for all the

specifications based on the 100 simulations, when the true and the assumed model used for the

estimation coincide. The first column reports the actual value of the parameters (MEDIUM set),

while columns 2-5 report the mean estimated parameters of the models. Below each estimated

parameter, the standard deviation is reported. From the Table it is apparent that the estimated

value of the parameters is, on average, quite close to the actual value. The relatively large

standard deviation confirms that despite the variability in the simulated datasets, it is still

possible to identify the data-generating model and recover the value of the parameters.

Model LOW MEDIUM HIGH ACTUAL

EU-AQRE λ=0.5 λ=1 λ=2 λ=2.131

RDU-AQRE λ=0.5 λ=1 λ=2 λ=1.719

RDU-AQRE-U λ=0.1 λ=0.15 λ=0.2 λ=0.07

LEVEL-K λ=0.05 λ=0.1 λ=0.2 λ=0.018

AQRE+ λ=0.5 λ=1 λ=2 λ=1.712

Table 7: The Table reports the values of the three set of parameters (LOW, MEDIUM, HIGH
and ACTUAL) that were used for the simulation. The parameters differ between models since
they represent error in choices in different ways each. For the shared parameters we set γ =
0.61, r = 0.70, τ = 1.5 and ρ = 0.01.
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Model REAL ESTIMATED

EU-AQRE λ=1 λ=1.003

0.057

RDU-AQRE λ=1 λ = 1.003 γ = 0.610

0.096 0.07

RDU-AQRE-U λ=0.15 λ = 0.149 γ = 0.642 r = 0.682

0.154 0.375 0.286

LEVEL-K λ=0.1 λ=0.092 τ = 1.501

0.397 0.08

AQRE+ λ=1 λ=0.991 ρ = 0.011

0.02

Table 8: The Table reports the actual value of the parameters (MEDIUM set) used for the sim-
ulation (column 1) along with the mean value of the estimated parameters (columns 2-5) from
100 simulations for each of the models. The standard deviation is reported below each es-
timate. The shared parameters of probability weighting γ and risk aversion r for the RDU
specifications, have been set to 0.61 and 0.70 respectively. The parameter τ for the LEVEL-K
model is set to 1.5 and the ρ parameter of the AQRE+ model has been set to 0.01.

EU-AQRE RDU-AQRE RDU-AQRE-U LEVEL-K AQRE+ MIN(AIC)

EU-AQRE 786.21 787.86 792.15 958.19 800.26 786.21

RDU-AQRE 844.11 808.33 813.88 970.41 820.97 808.33

RDU-AQRE-U 830.06 779.68 732.69 1030.86 882.16 732.69

LEVEL-K 1328.83 1219.43 1108.41 1017.22 1221.22 1017.22

AQRE+ 986.28 787.62 785.12 826.63 650.95 650.95

Table 9: The Table reports the results from the LOW simulation. Each cell reports the mean
Akaike Information Criterion (the lower the better) from 100 simulations, for each column
model when the row model is the data-generating one (true model). The last column reports
the minimum average value of the AIC for each cross-model comparison for each specification.
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EU-AQRE RDU-AQRE RDU-AQRE-U LEVEL-K AQRE+ MIN(AIC)

EU-AQRE 939.04 941.04 954.02 1084.78 941.04 939.04

RDU-AQRE 1005 935.6 952.77 1066.51 940.51 935.6

RDU-AQRE-U 1029.49 989.51 962.74 1057.82 997.75 962.74

LEVEL-K 1329.52 1219.36 1108.23 1015.69 1220.88 1015.69

AQRE+ 1040.6 896 899.82 969.96 854.88 854.88

Table 10: The Table reports the results from the MEDIUM simulation. Each cell reports the
mean Akaike Information Criterion (the lower the better) from 100 simulations, for each col-
umn model when the row model is the data-generating one (true model).The last column re-
ports the minimum average value of the AIC for each cross-model comparison for each speci-
fication.

EU-AQRE RDU-AQRE RDU-AQRE-U LEVEL-K AQRE+ MIN(AIC)

EU-AQRE 1039.43 1041.43 1062.22 1219.74 1041.43 1039.43

RDU-AQRE 1130.07 1061.79 1094.14 1266.02 1063.66 1061.79

RDU-AQRE-U 1060.89 1023.33 998.24 1114.91 1048.69 998.24

LEVEL-K 1333.11 1218.92 1107.57 1007.99 1219.01 1007.99

AQRE+ 1100.64 1056.47 1084.82 1249.28 1055.55 1055.55

Table 11: The Table reports the results from the HIGH simulation. Each cell reports the mean
Akaike Information Criterion (the lower the better) from 100 simulations, for each column
model when the row model is the data-generating one (true model). The last column reports
the minimum average value of the AIC for each cross-model comparison for each specification.
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EU-AQRE RDU-AQRE RDU-AQRE-U LEVEL-K AQRE+ MIN(AIC)

EU-AQRE 1043.84 1045.84 1066.82 1230.26 1045.84 1043.84

RDU-AQRE 1103.55 1028.21 1058.02 1207.25 1030.62 1028.21

RDU-AQRE-U 586.31 511.09 425.57 1018.39 739.75 425.57

LEVEL-K 1328.71 1219.36 1108.96 1017.97 1221.09 1017.97

AQRE+ 1090.47 1025.9 1049.39 1187.26 1022.78 1022.78

Table 12: The Table reports the results from the ACTUAL simulation. Each cell reports the
mean Akaike Information Criterion (the lower the better) from 100 simulations, for each col-
umn model when the row model is the data-generating one (true model). The last column
reports the minimum average value of the AIC for each cross-model comparison for each spec-
ification.
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