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Abstract
Inspired by Imitation Learning, this paper trained a LSTM network by a mock-up
operation experience of a solar energy community distribution system. Unlike the
conventional method that implements LSTM only to predict features for the control
programme to calculate an operation action according to a strategy, the LSTM of the
proposed model integrates the strategy into its structure and thus can outputs actions
directly. To examine whether the proposed model outperforms the conventional model,
this paper first describes an operation strategy, adopted by both models, that aims to
decrease total operation cost. Since the strategy needs accurate predictions to work
effectively, an expert who can perfectly predict the future is created by historical data.
The behaviours of the expert that follows the strategy are used as the training data of the
LSTM in the proposed model. During simulation, the proposed model has better
performance and computation efficiency than the conventional LSTM model by 25%
higher and 75 times faster. Many researches have proposed control models for different
systems and implemented LSTM only to predict key uncertainty in those models. To these
researches, this paper demonstrates a promising result that the performance of a control
model can be improved by integrating the strategy of that model into a neural network

with mock-up operation experience.
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Chapter 1 Introduction

1 Introduction

This paper presents a practical application of Long Short-Term Memory neural network
(LSTM) [1] on a solar energy community distribution system. Unlike other models that
predict features individually for supporting operators or control programmes to decide on
operation actions, the proposed model in this paper was trained for directly determining

the next operation action based on input features.

LSTM is capable of predicting time sequence by learning long-term dependencies in a
dataset. It has the power of extracting non-linear relationship between input and output,
and the capability of identifying patterns in time sequence. Thus, it has been widely used
in electricity systems because key uncertainties, such PV generation, wind speed,
demands and electricity price, have a temporal dependency between each time step. Many

researches [2, 3, 4, 5, 6, 7] applied LSTM purely to predict key features related to

electricity industry, such as weather condition, electricity prices, and energy demands.
These predictions can be used to support operator’s decision making, but not directly

provide operation actions on the electricity equipment or systems.

In the field of sewer system operation, Zhang (2017, 2018) [8, 9] proposed operation

strategies for water managements, and then pointed out key uncertainty in these strategies.
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Chapter 1 Introduction

LSTM was implemented only to predict the uncertainty, such as future inflow of each
wastewater treatment plant or sewer. Similarly, LSTM predictions made in [8, 9] have no
connection to their proposed strategies, but only provide better information to operators

who use those strategies.

In this paper, we built three models to compare the performance of conventional and our
proposed method. Standard Model adopted the idea discussed above that forecast only
serves as a reference in operating the system. Operators or control programmes accept the
forecast and run the operation strategy to determine the current action. On the contrary,
our Proposed Model integrates the operation strategy into its training set, enabling the
model to directly control the system. Simulative results show that the Proposed Model
outperforms the Standard Model. Moreover, even though the Proposed Model takes more
resources to prepare the training set, no calculation need to be done when processing
online. In the long run, the Proposed Model consumes less processing time than the
Standard Model. Last, for comparison, the Vanilla Model follows a common strategy that

the storage always starts at fixed times to be charged or to be discharged.

Note that when we use the word, ‘operator,” in this paper, it usually means the same as

‘control programme’ since the three Models are controlled by computer programmes.

1.1 Standard Model

Applying the concept mentioned above, we build a Standard Model to provide a basis for
comparison to the Proposed Model. This concept is a straightforward implementation of
LSTM networks on operation of systems with uncertainty and has been adopted by many

researches.

Figure 1.1 depicts the Standard Model of using LSTM predictions to aid operators in

operation of a solar energy distribution system. The energy distribution system is showed
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Chapter 1 Introduction

in Figure 2.1 and detailed in Chapter 2. Each sub-model (green square) in Figure 1.1 has
one LSTM network. In the beginning of every half hour, each sub-model accepts input
from historical data to make prediction of five key features relevant to operation decision:
PV generation, electricity demand, heat demand, importing price of the grid and exporting
price of the grid. A computer programme that follows operating strategy (blue square)
then accepts those predictions as input for calculating the operation action in current half

hour.

Figure 1.1 Concept of Standard Model

historical data prediction operator's decision operation
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Electricty | | Electricty
Demand ; g Demand

.| Operation ‘ -
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Export Price —) model 5 — Export Price —+—

Note that sub-models of the Standard Model can be more complicated, taking more
features as input to increase its accuracy. However, since the Proposed Model in this
paper only use the five input features, we set sub-model of the Standard Model only take
its own feature as input for a fair comparison of the two models. Figure 1.2 shows the
training method of sub-models. The LSTM sub-models approximate the relationship
between two sets of time sequence. Operators or control programmes accept the output

sequence as a guideline to decide their operation action.
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Chapter 1 Introduction

Figure 1.2 Training of Standard Model
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1.2 Proposed Model

To design our Proposed Model, we first formulated an operating strategy that determines
the target level of heat storage every half hour, based on the five input features. Following
our proposed strategy, the heat storage will be charged if its current energy level is less
than the target level. Charging can be done not only by PV generation but also electricity
imported from the grid if future importing price is expected to become higher. If the
current energy level is more than the target level, the heat storage discharges. This
proposed strategy is designed to decrease total operation cost, detailed in Section 2.2. To
make the comparison meaningful, ‘Operation Strategy (blue square)’ in Figure 1.1 is the

same as our proposed operating strategy of heat storage in Figure 1.3.

To utilise the proposed strategy, uncertainties of the five input features must be eliminated.
Instead of training five LSTM sub-models that predict these features, we trained only one
LSTM model that takes these five features as inputs to directly output a target level for

every half hour.

We applied the principle behind Imitation Learning, of which a model learns from
expert’s behaviours. For example, when learning self-driving cars, a model is showed
with pairs of state and action for it to interpret the policy behind the decision of actions.
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Chapter 1 Introduction

Those demonstrated actions are recorded from an expert, such as a human driver.
Imitation Learning is usually implemented when calculation of an action is impossible or
too expensive, but the task is easy for a human to perform. In our case, although no person
can perfectly predict future when operating heat storage, we can create a mock-up expert
from historical data. This expert follows the proposed strategy in simulations of operating

a system. The expert’s behaviours are then used as the training set for the Proposed Model.

The training method of the Proposed Model is showed in Figure 1.4. In contrast to the
training pairs for the Standard Model in Figure 1.2, the Proposed Model learns to interpret
the relationship between a time sequence and one output value. The training pairs in
Figure 1.4 are ‘handcrafted’ by following the proposed strategy. Consequently, the
Proposed Model is connected to the proposed strategy itself, and its output is directly

determining the next operation action.

The working process of the Proposed Model is depicted in Figure 1.3. Compared with the
Standard Model, the Proposed Model runs the strategy only once during preparation of
training pairs, while the computer programme in the Standard Model must repeat
calculation of the strategy each half hour every time when it receives new forecasts of its

five predictive features.
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Chapter 1 Introduction

Figure 1.3 Concept of Proposed Model
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Figure 1.4 Training of Proposed Model
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1.3 Vanilla Model
A common strategy is to charge and discharge heat storage at fixed times. Examining the
actions performed by the expert discussed in the Proposed Model, we found that most of

the time the expert charges the storage at 13:30 and discharges the storage at 17:00.

6 Chih-Hisang Lee - March 2019



Chapter 1 Introduction

Therefore, we set the Vanilla Model always charge and discharge at these two times every

day. The storage is charged and discharged with a fix rate.

Another key difference between the Vanilla Model and other two models is that during
charging the Vanilla Model never imports electricity from the grid if PVV-generation is not
enough because the Vanilla Model have no ability to forecast electricity price. It would
end up in excessive expenditure if allowing the Vanilla Model to import electricity. When
there’s no PV-generation during charging, the Vanilla Model would stop charging the

storage until PVV-generation resumes.

The remainder of this paper is organized in the following way: Chapter 2 details the
components of the solar energy community distribution system and the objective of its
operation. Chapter 3 introduces the proposed strategy for operation of the community
system and describes how an expert is created and the operation behaviour of this expert.
Chapter 4 explains the implementation of the three Models and the simulation process in
python environment. Chapter 5 discusses and analyses the outcome of simulation.

Chapter 6 summarises the results and provides a suggestion of future researches.
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Chapter 2 Solar Energy Community Distribution System

2 Solar Energy Community
Distribution System

2.1 Details of the System

Showed in Figure 2.1, the design of this system is based on a real proposed project for a
community located in North West of England. PV generation is the only domestic supply
in the system. During each time interval, such as a half hour, PV generation is used to
meets electricity demand first, and any insufficiency is addressed by importing electricity
from the grid. After that, surplus of PV generation, if any, is used to run heat pumps for
meeting heat demand. Electricity demand takes priority over heat demand because PV
generation would suffer loss due to energy conversion in heat pumps. In Figure 2.1, COP
stands for Coefficient of Performance, which defines the conversion factor between

electricity energy and heat energy.
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Chapter 2 Solar Energy Community Distribution System

Figure 2.1 Solar Energy Community Distribution System
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If PV generation is insufficient to cover heat demand, the short of heat supply is
compensated by importing electricity from the grid to run heat pumps or by discharging
heat from the storage. When heat pumps run out of capacity, the only way to provide heat
is discharging the storage. In this paper, we assume that heat pump capacity is always
sufficient to cover demand peak. The heat pump capacity is set to be a little high than the

maximum heat demand in our simulative environment, but not infinite.

Finally, excess PV generation can be sold to the grid, or be used to charge heat storage if
heat pumps still has capacity. In this study, we assume that domestic use of PV generation

is always more economical than selling to the grid.

Heat storage can be charged by heat pumps that consume PV generation, imported
electricity or both. Due to the capacity of heat pumps, charging storage may be limited

sometimes.
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Chapter 2 Solar Energy Community Distribution System

In each half hour there are two prices: System Sell Price (SSP) and System Buy Price
(SBP). When the operator imports electricity from the grid, the operator needs to pay the
SBP. Likewise, the grid pays the SSP to the operators who export electricity to the grid.
These two prices are called ‘imbalance prices’ and originally designed to tackle the deficit
of imbalance energy. In our study, we use a historical data of SSP and SBP around

Lancaster area to simulate the price change faced by operators.

2.2 Objective of Operation

In our system, PV generation is always used to meets electricity demand first and then
heat demand. After that if any PV generation remains, it can be used to charge the storage
or be sold to the grid. Thus, we defined ‘PV Surplus’ as the amount of remaining PV

generation we can manipulate:

PV Surplus = PV generation — electricity demand — (heat demand + COP) (1)
if PV Surplus <0, PV Surplus =0

When PV generation is unable to cover all heat demand, we defined a term ‘Shortage’ as

the amount of remaining heat demand that we need to cope with by heat storage:

Shortage = heat demand — [(PV generation — electricity demand) X COP] (2)

if (PV generation — electricity demand) < 0, Shortage = heat demand

if Shortage < 0, Shortage =0
Every half hour the operator determines a target level for the heat storage. If current level
is high than the target level, the heat storage is discharged until current level drops to the
target level. If current level is lower than the target level, the heat storage is charged by
PV surplus first. It can also be charged by imported electricity only if importing electricity
with current SBP is beneficial, compared to importing electricity with future SBP when

the demand actually occurs in the future. In other words, the operator must have the
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Chapter 2 Solar Energy Community Distribution System

capability to forecast future electricity prices to know when the best time to buy electricity
Is. Furthermore, the operator must be able to forecast future PV generation and demands
to determine what is the actual amount of heat needed to be prepared in advanced. For
example, if a sunny day is expected, the operator has no need to import electricity to

charge the storage even though current SBP is low

The goal of the operator is to reduce operation cost of the system. Operation cost is equal
to the expenditure of importing electricity from the grid subtracted by the income of

selling PV generation to the grid. In terms of cost, income is negative:

Operatoin cost = expenditure of importing + (—income of exporting) (3)

With heat storage and a good predictor of future PV generation, demands and system

prices, the operator can accomplish several tasks to decrease operation cost:

A. If the operator has PV surplus in the current moment and expects a Shortage in a
future moment and importing electricity with future SBP is expensive than not selling
PV surplus with current SSP, the operator should charge the storage with current PV

surplus:

(i) Selling PV surplus right now, and importing electricity in the future:

income = —PV surplus X current SSP

expenditure = [Shortage - COP] X future SBP

(i) Saving PV surplus right now for the future:

income =0
expenditure =0

(Assuming: PV surplus x COP x loss(future~tcurrent) = Shortage)

Chih-Hsiang Lee - March 2019 11



Chapter 2 Solar Energy Community Distribution System
if Operation cost(ii) — Operation cost(i) < 0:

— 0 — (—PV surplus x current SSP + [Shortage +~ COP] x future SBP) < 0
— PV surplus X current SSP < [Shortage +~ COP] X future SBP
— PV surplus X current SSP < PV surplus x loss(ruure~teurrent) X future SBP

— current SSP = loss(tfuture~teurrent) < future SBP (4)

, Where teyure — teurrene 1S the difference between current and future time. And

loss is the heat loss in storage per unit time. In our study, the unit time is equal to
a half hour, and transition loss is ignored for simplification.
If the operator has no PV surplus in the current moment and expects a Shortage in a
future moment and importing electricity with future SBP is expensive than importing
electricity with current SBP, the operator should import electricity with current SBP

to charge the storage.

(i) Do nothing right now, and importing electricity in the future:

expenditure . ent = 0

expenditurey,,,. = [Shortage + COP] X future SBP

(ii) Importing electricity right now for the future:

expenditure  .n: = Importing electricity X current SBP

expenditurey, ;. = 0

(Assuming: Importing electricity x COP x lossfutwre~tcurrent) — Shortage)

if Operation cost(ii) — Operation cost(i) < 0:
— Importing electricity X current SBP — [Shortage +~ COP] X future SBP <0
— Importing electricity X current SBP < [Shortage ~ COP] X future SBP

— Importing electricity X current SBP

< Importing electricity x loss{future=tcurrent) x fyture SBP

- current SBP = lossfuture~teurrent) < future SBP (5)

Chih-Hisang Lee - March 2019
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Chapter 2 Solar Energy Community Distribution System

If the operator expects several available electricity sources at tq,t,,t3, ts, and a
Shortage at t, the operator must compare the prices, which are modified by loss and

different time spans. The modified prices could be:

current SSP = lossfutwre=tcurrent) i f the source is PV surplus
current SBP =+ loss(future=teurrent) i f the source is importing electricity

After comparison, the operator exploits the sources in order of profitability.
Consequently, depending on the amount of heat required by Shortage at ts, some of
the sources may be exhausted, some never used, and some used only part of their
available supply. It is important for the operator not to consume an electricity source
more than the requirement; otherwise operation cost would increase. For example, if
the operator takes the exact amount of electricity, remaining PV generation can be
sold to the grid instead of suffering unnecessary loss in the heat storage and being
used in somewhere not actually profitable. Similarly, if the operator imports the exact

amount of electricity from the grid, no extra expenditure would be incurred.
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Chapter 3 Operation Strategy for the Community System

3 Operation Strategy for the
Community System

With historical data, we can assume that there is a perfect predictor, “an expert,” who can
forecast all we need in next 24 hours, which is divided equally into t, to t,,. Our
operation strategy is to analyse the relationship of PV surplus, Shortage, SSP and SBP at
t, to ty;, to determine the profitability of each available electricity source and to
distribute all available electricity sources to all Shortage at t, to t,, accordingly.

Available electricity sources include PV Surplus and importing electricity from the grid.

At the start of t, the expert holds the values of PV surplus, Shortage, SSP and SBP at ¢,

to t,,. First, it creates a profit table, in which each entry is called a ‘profit number’:

profit number (6)
_ (SSPIJ + loss(t"“P)) +~SBP,, if using PV Surplus at t, to charge heat storage
(SBP, + loss''»"%)) - SBP,,  if importing electricity at t, to charge heat storage

, Where t, > t, and t,,, t, € t,t0ty;. SSP, is the SSP att,, SBP, is the SBP at t,, and

SBP, is the SBP at t,,. We only consider t,, when there is a Shortage at t,,.

We set pf,, be the profit number when using PV Surplus at ¢, to charge heat storage for
future Shortage at t,,. Similarly, pﬁ,?,‘} is the profit number when importing electricity

from the grid at t,, to charge heat storage for future Shortage at ¢,, . Refer to Equation (4)
and (5), it is obvious that if pf, , < 1, it’s profitable to use electricity source at t, . On
the other hand, if pf,,, = 1, it has no need to use electricity source at t,, and this pf, »

would be excluded from the profit table.
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Chapter 3 Operation Strategy for the Community System
Next, the expert distributes all available electricity source to all Shortage, starting from
the smallest pf, ,. The expert calculates the exact amount of electricity needed at t,, for

the Shortage at t,, :

electricity requirment at t, = (Shortage at t,, + loss"»"')) x COP (7)

The expert then adjusts the electricity requirement at ¢, according to heat pump capacity
at t,, and heat storage capacity at t,, tp41, tptz,....-. , and t,, because heat pump capacity

limits the amount of heat that can be charged, and heat storage capacity limits the amount

of heat that can be stored in the heat storage.

Finally, the expert decreases the electricity source at t,, as much as possible according to
the modified electricity requirement at t,,. If the electricity source is PV Surplus, the

expert records how much amount of PV Surplus remains. If the electricity source is from
the grid, the expert can import as much as it need, because we assume that the connection

to the grid is always available. The amount of electricity consumed at t,, turns into heat,
which reduces heat pump capacity at t,,. The expert also records the decrease of Shortage

at t,, and the decreases of heat storage capacity at t,,, tp41, tptzs------ ,and t,,.

To increase the efficiency of the algorithm, when a heat pump capacity at t,, is exhausted,
all pf,,, with t, will be deleted from the profit table. Similarly, when a heat storage
capacity at t, is used up, all pf, , with ¢, < t, < t, will be deleted. In addition, after a

Shortage at ¢, is fully fulfilled, all pf, , with t,, will be deleted.

After the expert goes through all entries of the profit table, all Shortages that are not fully
fulfilled will be coped with importing electricity at their current time. We obtain an
optimal operation curve, such as showed in Figure 3.1 and Figure 3.2. A pseudo code is

showed in Table 3.1.
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Chapter 3 Operation Strategy for the Community System

In Figure 3.1 and Figure 3.2, the heat level of heat storage (purple dot) of t,, is the heat
level at the start of t,,, and the bars (orange and indigo) show how much amount of heat
is charged into the storage at the end of t,,. For example, at the start of ¢, and t, in Figure
3.1 there is no heat in the storage, and the operator charges the storage by 243.18 kWh
during t;. Thus, at the start of t, the heat level is equal to 243.18 kWh as showed in the

figure.

Note that PV generation in Figure 3.1 and Figure 3.2 has been subtracted by electricity
demand first and then converted to heat energy for clearly demonstrating how PV

generation is used to charge the storage.

The operation curves in Figure 3.1 and Figure 3.2 demonstrate several behaviours that

our Proposed Model must learn:

A. Avoid storing excessive heat:

Comparing the sum of heat demand from t;, and t,,(approx. 771.36 kWh) and the
total heat released from the heat storage from ¢, and t;, (approx. 762.98 kWh) in
Figure 3.1, it can be seen that heat prepared in the storage is slightly less than the heat
demand because it can be covered by the PV generation at t;, (approx. 8.38 kwWh).
After that, heat demand from t;g and t,4 is fully covered by PV generation. This
behaviour demonstrates that our expert knows the optimal amount of heat that needs
to be prepared before a certain time, depending on when PV generation begins and
what amount of PV generation occurs in the future.

Likewise, expecting a low demand during the evening in Figure 3.2, the expert fills
the storage to a sufficient amount of heat (approx. 794.52 kWh), but not to its full
capacity (1500 kWh). This shows the expert’s capability of operating the storage

optimally by knowing PV generation and heat demand in advanced.
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B. Charge the storage economically:

Knowing how much amount of heat needs to be prepared is not enough. The expert
must figure out how to charge the storage in a cost-effective way. In Figure 3.1, the
expert imports electricity at ¢4, t,, ts and t;; to meet the target level at ¢, because
SBPsat t4, t,, ts and t,; are lower than other SBPs between t, to t,;. Note that even
though SBP at t; (0.03232 £/kWh) is lower than SBP at t,,( 0.03472 £/kWh), the
expert still chooses to import electricity at t;; due to the modification of SBP made
by heat loss, as discussed in Equation (5). Similarly, in Figure 3.2, the expert
consumes PV generation at t,s3, taq, tas, tog and ts, because of low modified prices.
From t,g to t5, in Figure 3.1, the expert has several different electricity sources from
PV generation or from the grid for meeting the target level at t55. The expert exploits
PV generation as much as possible from t,q to t,, and stop using PV generation at
t,3 because the modified SSP starts to be higher than modified SBP at t,4 to t5,. Note
that PV generation between t,, and t,q is not fully used by the heat pump because
PV generation need to meet heat demand first. On the other hand, PV generation

between t,, and t, is not fully used due to the maximum capacity of heat pump.
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Figure 3.1 Expert’s Operation Curve on a cold day
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Chapter 3 Operation Strategy for the Community System

Table 3.1 Pseudo Code: Operation strategy for optimal operation curve

Algorithm 1 operation strategy for optimal operation curve
(Note that COP must be considered in actual codes)

Input PV generation, Electricity Demand, Heat Demand, SSP and SBP of t, to t,;
PV Surplus = max(0, PV generation — Electricity Demand)
3. Create Cost Table:
Table =[]
for n €t, when thereis a Shortage do
forp=n—-1,n-2,n-3,.. do
calculating pfyn
if pf,n < 1:Table.append(pf, )
else: break
Table.sort(ascending)
4. Distribute energy:
for pf,n inTable do
supply = Shortage at ¢,
A. check remaining heat pump capacity at t,,
reduce supply if need
B. check remaining heat storage capacity at t,, tp41, tpiz,...., and t, (heatloss considered)
reduce supply if need
C. According to supply:
update PV Surplus or Importing electricity at ¢,
if remaining PV Surplus at ¢, =0:
delete all pfy, at t, inTable
update remaining heat pump capacity at t,
if remaining heat pump capacity at t, =0:
delete all pf,, at t,inTable

if any remaining heat storage capacity at tp) tp+1s tps2senen, OF ty =0t
delete all pf,,, thatuse heatstorage att,, tp+1, tpi2,m., OF ty, inTable
update Shortage at t,
if Shortage at t, =0:
delete all pf,, at t, inTable

update remaining heat storage capacity at t,, tp41, tp42,...., and t, (heatloss considered)

Chih-Hsiang Lee - March 2019
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Chapter 4 Python Implementation

4 Python Implementation

We use Python and Jupyter Notebook to create the Models and to conduct simulations.

The implement of LSTM networks is constructed by Keras, a neural networks API of

Python [10].

4.1 Simulation Environment

The pseudo code of simulation environment is showed in Table 4.1.

We first set up a four-year database of the five features (PV generation, electricity and

heat demand, SSP and SBP):

A. PV generation is based on a four-year real data.

B. We assumed that electricity demand per dwelling per year is set to be 3000 kWh and
there are 180 houses in the community. Electricity demand curve is based on a one-
year real data.

C. Heat demand per dwelling is set to be 4500 kWh. Heat demand curve is based on a
one-year estimated data.

D. SBP and SSP are based on a one-year real data. The average of SBP is 0.04756 £/kW,

and of SSP is 0.0366 £/kWh. SBP is always greater than or equal to SSP.

After picking a day, the simulation environment loads the five features at t_,g, t_47, ...,
to, t1, ..., and t4, of which ¢, is 12:00 AM of that day. The output of simulation is an
operation curve of each Model between t, and t,-, and the total operation cost of each

Model during t, to t4.
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4.2 Standard Model

In Standard Model, we trained five networks to predict each feature (PV generation, heat
demand, electricity demand, SSP and SBP). Each network receives a value sequence of
t,—ag 10 t,,_ to forecast the sequence of ¢,, to t,,47, as showed in Figure 1.2, in which
p = 48 and m = 47. The operator then put these predicted sequences of t, t0 t,,, 4 into
Algorithm 1 (Table 3.1) to determine the target level of heat storage at t,,. The pseudo

code of Standard Model is showed in Table 4.2.

The training sets of Standard Model are prepared by pairing the sequences of t,,_,g to

t,—1 With the sequences of t,, to t,,, 4, for each feature in the four-year database.

These five networks have the same figuration that the first layer is a LSTM layer with a
hard-sigmoid function as its activation function. The second layer is a dropout layer with
a dropout rate equal to 0.5, connected to the last layer which is a simple Dense layer with
hard-sigmoid function. The cost function is MSE. Input of the first layer is scaled to a
range of 0 to 1, and the output of the Dense layer is also between 0 to 1, which will be
transformed back to the original range based on the training set. This is because

normalization can make learning process faster.

4.3 Proposed Model

In Proposed Model, we trained only one network. The network receives five sequences
of t,,_,g t0 t,,_; to forecast one value: the target level for t,,, as showed in Figure 1.4, in
which p = 48. The operator has no need to run Algorithm 1 (Table 3.1) repeatedly. The

pseudo code of Proposed Model is showed in Table 4.3.

The training set of Proposed Model is prepared by putting five sequences of t,,_,g t0 t,,_;

of the four-year database into Algorithm 1 (Table 3.1) to obtain the target level for t,,.
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The figuration of the network in Proposed Model has similar structure of which the first
layer is a LSTM layer with a hard-sigmoid function as its activation function. The second
layer is a dropout layer with a dropout rate equal to 0.3, connected to the last layer which
is a simple Dense layer with hard-sigmoid function. Similarly, the cost function is MSE,
input of the first layer is scaled to a range of 0 to 1, and the output of the Dense layer is
also between 0 to 1, which will be transformed back to the original range based on the

training set. This is because normalization can make learning process faster.
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Table 4.1 Pseudo Code: Simulation Environment

Algorithm 2 Simulation Environment
(Note that COP must be considered in actual codes)

1. Load Features (PV generation, Electricity Demand, Heat Demand, SSP and SBP) of t_,5 to t,
2. Set Costs =0, Costp =0, Costy =0 ## Cost, isthe operation cost, x=5, Por V
## S = Standard Model, P = Proposed Model, V = Vanilla Model
3. heat levelg = [ ], heat levelp = [ ], heat level, =[]
For n =0,1, 2, ..,46,47 do
(A). Input Features of t,_,g to t,_; into Standard Model (Algorithm 3)
Return Targets ##target level predicted by Standard Model
Do step (B)., with Target = Targets, Cost = Costg, heat level = heat levelg

(B). Load HP capacity,, Storage capacity,, Shortage,, PV Surplus,
HP_capacity < HP capacity,
Storage_capacity « Storage capacity,
Shortage « Shortage,
PV _Surplus « PV Surplus,
Let HP_capacity, Storage_capacity, Shortage, PV_Surplus always 20

## whenever it’s a negative number, set it to be 0

if Target > heat level, ;:
charge, < min(Target — heat level,,_,, HP_capacity, Storage_capacity)
export, < 0
Let charge,, export, alwaysz0
heat level,, « heat level,,_, + charge,
if PV_Surplus > 0:
while charge, > 0:
export, « PV Surplus — charge,
charge, < charge, — PV_Surplus
import, < charge,
charge, < 0
Cost « Cost + import,, X SBP,
Cost « Cost — export, X S5P,
else if Shortage > 0:
Cost < Cost + Shortage X SBP,
while charge, > 0:
import, < charge,
charge, <0
Cost « Cost + import, X SBP,
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else if Target < heat level,_;:
discharge, « min(heat level, | — Target, Discharge_Rate)
Let discharge, always20
heat level,, < heat level,,_, — discharge,
if PV_Surplus > 0:
Cost « Cost — PV _Surplus X SSP,
else if Shortage > 0:
Shortage < Shortage — discharge,
Cost < Cost + Shortage X SBF,

(C). Input Features of t,,_,g to t,_; into Proposed Model (Algorithm 4)
Return Targetp ##target level predicted by Proposed Model
Repeat step (B).,

but with Target = Targetp, Cost = Costp, heat level = heat levelp

(D). Repeat step (B).,
but with Targety,, Costy, heat level = heat levelp, and this condition:
if n<27:
Target, = heat level,_,
else if n<34:
Target, = Full Storage Capacity
Set import, always=0
else:

Targety =0

Print Costs, Costp, Costy

Plot heat levels, heat levelp, heat level,,and features of t, to ty;

24
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Table 4.2 Pseudo Code: Standard Model

Algorithm 3 Standard Model
1. Receive Features of t,_,g to t,_; from Algorithm 2
2. Load Predictorpy, Predictorgp, Predictoryp, Predictorssp, Predictorsgp
## five trained LSTM network
3. For (item, label) in [ (PV generation, PV), (Electricity Demand, ED),
(Heat Demand, HD), (SSP, SSP), (SBP, SBP) ]do
input Feature(item) of t,_45 to t,_q into Predictorgpe
return Feature(item) of t, to tyy47
4. input Features of t, to ty,4; into Algorithm 1
return operation curve of t, to tyy4r
5. Targets « the value of operation curve at t,

6. return Targets to Algorithm 2

Table 4.3 Pseudo Code: Proposed Model

Algorithm 4 Proposed Model
1. Receive Features of t,_,4g to t,_; from Algorithm 2
2. Load Predictorp, ## trained LSTM network of Proposed Model
3. input Features of t,_,4g to t,_, into Predictorp
return Targetp of t,

4. return Targetp to Algorithm 2

Chih-Hsiang Lee - March 2019

25




Chapter 5 Results and Discussion

5 Results and Discussion

5.1 Training result of the networks in Standard Model

Figure 5.1 demonstrates six comparisons of predictive values and true values. More
examples can be found in Appendix A. Blue lines in the figures are the true values of one
day and red lines are the values predicted by the five networks in Standard Model.
Networks that predict PV generation, electricity and heat demands show the ability to
match a rough pattern to the curve of true values. However, the networks are unable to fit

those small and rapid changes on the curve delicately.

Predictions made for SBP and SSP are unsatisfying. Predictive values always fluctuate
around the average number. This means that the networks are not trained enough,
resulting in a bad approximation that sticks around average number to bring a smaller

MSE.

One reason could be that the networks need more features to better define an
approximation between input and output of the prices. Many factors influence the
variations of SBP and SSP, such as real-time changes of generation and consumption,

unexpected shutdowns of some units and grid imbalance caused by other occurrence.

In our study, we did not improve the SBP and SSP predictors of the Standard Model
because we aim to demonstrate the difference of performance between the Standard
Model and the Proposed Model. Therefore, the Standard Model can only receive the same

five features as used in the Proposed Model.
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Figure 5.1 Comparisons of predictive and true values in the Standard Model

(1) PV Generation

The x-axis shows feature values (PV generation in this case), which is varied in the
range of 0 and 1 since we 've normalized the data. The y-axis is between 0 and 48,

which denotes t, and t,g respectively. However, t, is not always match 12:00 AM

because all input sequences have been randomized
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(2) Electricity Demand Prediction

—— yhat
— y_test[0]

[] 1 E] )

(3) Heat Demand Prediction

(4) SBP Prediction

—— yhat
—— y_test[0]
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(5) SSP Prediction

— yhat
—— y_test[0]

5.2 Operation Performance

Showed in Figure 5.2, the Standard Model and the Proposed Model exhibit a similar
behaviour of the expert. Both Models identified the two demand peaks in the morning
and the evening. It is obvious that the Vanilla Model has no ability to predict future heat
demand. Therefore, the Vanilla Model saved more PV generation than the evening
demand and lost the income of exporting PV generation to the grid. The Vanilla Model
can be improved by setting two sets of on-and-off time, one for summer and another for

winter, since the averages of heat demand in summer and winter are different.

We can conclude that accurate predictions of heat demand are crucial to the operation of
heat storage. Figure 5.3 shows one example that the Standard Model incorrectly predicts
two demand peaks. Consequently, it prepared more heat than the actual need. The excess
use of heat storage in the morning leads to extra import of electricity. Another excess use

in the evening consumes PV generation unnecessarily.

Correct prediction of SBP and SSP is another key factor of a good performance. Even
though a Model accurately identifies the heat demand, its performance still can be
compromised by inaccurate prediction of price. In Figure 5.4, the Standard Model
predicts heat demand in the morning with accuracy to a certain extent. However, it
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expects a low SBP at t5; accordingly, the Standard Model starts to charge the heat storage
too early, hence unnecessary heat loss in the heat storage occurred and, more importantly,
the Standard Model imports electricity with a relative high SBP at t5, as showed in Figure
5.4 in which the SBP (red dot) at t; (approx. 0.048 £/kWh) is much higher than t;,
(approx. 0.036 £/kwh), of which time the expert starts to charge the storage in the

morning.

The same behaviour of the Standard Model can be seen in Figure 5.5 during the morning.
Since outputs of the unreliable SBP predictor in the Standard Model are stuck around the
average of SBPs, it’s hard for the Standard Model to detect the sudden drop of SBP at t;,

in Figure 5.5.

In addition, incorrect prediction of PV generation can also weaken the performance of the
Standard Model. In Figure 5.4, there are two PV generation peaks at t,3, and t,q. Unlike
the Proposed Model and the expert, the Standard Model charges no heat into the storage
during the peak at t,4 because it does not expect this PV generation peak. It uses PV
generation peak at t,5 to charge the storage, and hence suffers from unnecessary heat loss

in the heat storage.

Note that in Figure 5.4 the true values of SSP during the midday are nearly the same.
Thus, the reason for the expert to choose to consume PV generation at t,q, instead of t,5,
is not because of a notable difference of SSP but considering on heat loss over the course
of time. The predictive SSPs provided by SSP predictor in the Standard Model are almost
the same as the average number and therefore we can conclude that in Figure 5.4 the
Standard Model uses PV generation peak at t,; because it didn’t expect another peak at

t,q, but not because it expects a higher SSP around t,q.
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The operation curve of the Proposed Model demonstrates roughly the same pattern as of
the expert. Unlike the Standard Model, the network in the Proposed Model is trained to
directly predict a target level. We cannot discuss the behaviour of the Proposed Model

like we do with the Standard Model in above paragraphs because the network in the

Proposed Model does not predict each feature separately.

Figure 5.2 One-day simulation (Result 1)

curve_Heat_Demand ~ « point_SBP
curve_PV_Surplus_heat - point_SSP
—— curve_Expert
curve_Proposed
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curve_Vanilla

heat(kw))

" time step(half hour)

pncetpO\nnd/kW)

The blue, red, indigo and yellow lines are the operation curves of the expert, the Proposed
Model, the Standard Model and the Vanilla Model, respectively. Green dash line is the

PV generation that has been subtracted by electricity demand and converted into heat by

COP. Pink dash line is the heat demand. Red and Blue dots are SBP and SSP.
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Figure 5.3 One-day simulation (Result 2)
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Figure 5.4 One-day simulation (Result 3)
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Figure 5.5 One-day simulation (Result 4)
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5.3 Annual Cost

One way to examine the performance is to compare the operation costs of each Model in
simulation. We run three one-year simulations for the all the Models and summed the
daily operation cost according to Equation (3). The results are showed in Table 5.1. Note
that the last Model in the table has no heat storage. It sells all PV Surplus to the grid, and

whenever there is a Shortage, it imports electricity.

Negative operation cost indicates that the system exported more electricity than imported
from the grid in a year. Model without storage has the highest income of importing

electricity in all three simulations, as showed in Column (A) in Table 5.1.

Expenditure of importing in Equation (3) can be further separated depending on its
purpose, as showed in Column (B) and (C). Since the Vanilla Model and the Model
without storage cannot charging the heat storage by importing electricity, both shows zero

in Column (C).

Column (D) shows that the expert outperforms other four Models. Our Proposed Model

has close performance to the Model without heat storage. The Standard Model and the
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Vanilla Model fail to reduce overall operation cost, compared to the Model without heat

storage.

To compare the performance of these Models, we defined a number, e,,, that describes
the effectiveness of operation. Operating the heat storage, a Model decreases the total
revenue of exporting electricity and increases the total expenditure of importing
electricity from the grid for charging the heat storage, as showed in Equation (8) and (9).
Similarly, the operation of heat storage reduces the total expenditure of importing
electricity for meeting the heat demand, as Equation (10). The Models aim to decrease
Epy + Egriqg and increase R as much as possible because a higher e,, indicates that a
Model profits from its operation more effectively, as Equation (11). It is profitable to

implement a Model only if the e,,, of that Model is larger than 1.

Epy = Expenditure of PV Surplus for charging the storage

= (Revenue of a Model) — (Revenue of the Model without storage)

(8)

E¢ria = Expenditure of importing electricity for charging the storage

(9)
R = Reduction in Expenditure of importing electricity for heat demand

= (Expenditure of the Model without storage) — (Expenditure of a Model) (10)

R

Cop = Epy+Egria (11)

Table 5.2 shows each e,,, of each Model in the three simulations. As the same we observe
from the comparison of total operation cost of each Model, the expert has the highest e,
around 1.55. Our Propose Model nearly meets the requirement with a e, around 0.98.
The Standard Model and the Vanilla Model fails with e,, around 0.75 and 0.45

respectively.
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We also calculated different e,,, in each week in the simulation result 1, as showed in

Table 5.3, to examine how PV generation and heat demand affects e, of each Model.

During the cold weeks, such as week 1, 2, 12 and 13, we have smaller amount of PV
generation to meet the heat demand directly or to be charged into the heat storage in
advanced. Since SBP are always larger or equal to SSP, using PV Surplus is usually more
economical than importing electricity. Consequently, with less amount of economical PV

generation, the operation costs of these weeks are positive.

It should be note that the term, ‘cold’ or ‘warm,” does not mean that the weather is colder
or warmer in those weeks. ‘Cold’ means the system must import more electricity from
the grid because the total PV generation is relative lower, and/or the total heat demand is

relative higher.

The e,, of the Proposed Model, Standard Model and Vanilla Model is greater than 1
during the cold weeks. In addition, e,, of the expert during the cold weeks are greater
than during the warm weeks. This is because most of the time during the cold weeks the
Models has no need to predict PV generation correctly since PV generation in cold weeks
is relative less and has less influence on operation. Consequently, the Models need only
reliable predictions on demand and prices, and thus it is easier for the Models to make a
better decision. Since the price predictors of the Standard Model are less effective, the

e,p Of the Standard Model is lower than of others in the cold weeks.

The Vanilla Model sometimes has better e,,, during cold weeks because most of the time

in a cold week the remaining PV Surplus is usually small, and the heat demand is usually
large. Therefore, with a lower risk of suffering from unnecessary heat loss in the storage,

it’s tolerable to always store all remaining PV Surplus for the heat demand in the evening.
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Note that even though the e,,, of the Vanilla Model is greater, it does not guarantee that

the Vanilla Model can outperform other Models because the Vanilla Model has no

concern with price prediction and importing electricity. Table 5.4 shows the e,,, and the

total reduction, R, of operation cost during cold weeks. In week 1, the e,,, of the Vanilla

Model (1.54) is greater than the Proposed Model (1.32). However, R of the Vanilla Model

(E65) is less than the Proposed Model (£197). The same occurs in week 13.

Table 5.1 Yearly Operation Cost

Result 1:
(D) (A) (B) (C)
Model Operation Cost (£) Sell to the | Buy for Heat | Buy for
Grid Demand Charging
(D)=(A)+(B)+(C)
Expert -48999 -53150 1494 2657
Proposed Model | -46429 -53377 3889 3059
Standard Model | -44744 -52577 3212 4621
Vanilla Model -44433 -51245 6812 0
Without Storage | -46459 -54913 8454 0
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Result 2:
(A) (B) (C)
Operation Cost (£)
Model Sell to the | Buy for Heat | Buy for
(A)+(B)+(C)
Grid Demand Charging
Expert -51713 -55934 1428 2793
Proposed Model | -49154 -56131 3763 3214
Standard Model | -47452 -55345 3144 4749
Vanilla Model -47151 -54062 6911 0
Without Storage | -49272 -57608 8336 0
Result 3:
(A) (B) (C)
Operation Cost (£)
Model Sell to the | Buy for Heat | Buy for
(A)+(B)+(C)
Grid Demand Charging
Expert -42620 -46884 1619 2645
Proposed Model | -40072 -47185 4103 3010
Standard Model | -38491 -46326 3325 4510
Vanilla Model -38236 -45116 6880 0
Without Storage | -40223 -48689 8466 0
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Table 5.2 Operation effectiveness, €,y

Model Result 1 Result 2 Result 3
Expert 1.57 1.55 1.54
Proposed Model | 0.99 0.97 0.97
Standard Model | 0.75 0.74 0.75
Vanilla Model 0.45 0.40 0.44

Table 5.3 Operation effectiveness, €,,, of each week in Result 1

38

Proposed Standard Vanilla

Week Expert Operation Cost
Model Model Model

1 1.74 1.32 1.16 1.54 positive

2 1.6 1.16 0.99 1.47 positive

3 1.43 0.89 0.75 0.77 negative

4 1.43 0.71 0.58 0.31 negative

5 1.42 0.68 0.47 0.12 negative

6 1.63 0.62 0.41 0.07 negative
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Proposed Standard Vanilla

Week Expert Operation Cost
Model Model Model

7 1.46 0.36 0.26 0.05 negative

8 1.56 0.46 0.39 0.06 negative

9 1.43 0.65 0.49 0.13 negative

10 1.46 0.81 0.62 0.29 negative

11 1.45 0.85 0.75 0.49 negative

12 1.59 1.19 1.01 1.01 positive

13 1.72 1.27 1.06 1.50 positive

Table 5.4 e,, and R of operation cost during cold weeks in Result 1

Proposed Standard Vanilla
Expert
Model Model Model
Week 1
€op 1.74 1.32 1.16 1.54
R 462 197 106 65
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Proposed Standard Vanilla
Expert
Model Model Model
Week 2
€op 1.6 1.16 0.99 1.47
R 379 90 -7 103
Week 12
€op 1.59 1.19 1.01 1.01
R 363 113 7 2
Week 13
€op 1.72 1.27 1.06 1.50
R 440 169 46 63

5.4 Training and Computation Efficiency
Since the Standard Model and the Proposed Model follow the different concept as showed
in Figure 1.1, Figure 1.2, Figure 1.3 and Figure 1.4, it is interesting to examine the training

and computation efficiency of the two Models.

5.4.1 Preparation of Training Dataset
For the five predictors in Standard Model, time spent for preparing the training dataset is

neglectable because it is only a rearrangement of values according to each time steps. On
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the contrary, it took approx. 6 hours to prepare the dataset for the Proposed Model due to

the computation caused by running Algorithm 1 for a four-year historical data.

5.4.2 Training of Models

It is meaningless to compare the training time of each LSTM networks because the total
number of trainable weights/varaiables is different in different Model. In addition, the
training time can also be influenced by the complexity of the dataset, which is different

for each predictor.

5.4.3 Computation Efficiency

For a one-day simulation, it took approx. 0.8 second for the Proposed Model to make
decision, while for the Standard Model it took approx. 1 minute. The difference between
0.8 second and 1 minute is neglectable compared to one day (24 hours), though it
demonstrates to what extend an improvement of computation efficiency can be achieved
if we build models and train networks in a different way, as discussed in Figure 1.1, Figure

1.2, Figure 1.3 and Figure 1.4.
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6 Conclusion

In this paper we proposed a LSTM model for the operation of heat storage in a solar
energy community distribution system with PV generation as the only domestic
generation and a connection to the main grid. Unlike conventional LSTM model that the
networks are only used to predict features for supporting an operator or a control
programme to make a decision, our proposed model integrates the operation strategy into

the network, and thus provide an operation action directly.

With historical data, we created an expert who can perfectly predict future. This expert
follows the operation strategy we proposed in this paper, and then the operation

behaviours of this expert are used to train a LSTM network in our proposed model.
We set up three different Models:

A. The Standard Model has five LSTM networks that receive past values of PV
generation, electricity demand, heat demand, SSP and SBP to predict future values.
These predictive values are then passed to a control programme that follows the
operation strategy proposed in this paper to calculate the current target level of the
heat storage.

B. The Proposed Model has only one LSTM network that is trained by the operation
behaviour of the mock-up expert. This network receives past values of PV
generation, electricity demand, heat demand, SSP and SBP to provide the current
target level of the heat storage.

C. The Vanilla Model always starts to charge and to discharge the heat storage at fixed

times every day. This model has no LSTM network.
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We conducted one-year simulations for the expert, the three Models and a system without
heat storage. To decrease the total cost of importing electricity to meet the heat demand,
each model consumes PV generation that could have been sold to the grid or imports
electricity to charge the heat storage when SBP is relative low. We defined a number, e,

to describe the operation effectiveness of a Model:

R

e =
P Epy+Egria

R = Reduction in Expenditure of importing electricity for heat demand

E = Expenditure of PV Surplus or importing electricity for charging heat storage

The results of one-year simulations show that the expert has the highest e,,, around 1.55,
and the Propose Model has e,,, around 0.98. The Standard Model and the Vanilla Model
fails with e,,, around 0.75 and 0.45 respectively. The performance of our Proposed Model

is nearly to be profitable if its e,, can be further improved to be greater than 1.

We found that during the weeks when the PV generation is low, and the heat demand is
high, the e,,, of the Proposed Model, Standard Model and Vanilla Model is greater than
1. This is because the accuracy of prediction on PV generation has less influence on the
performance of a Model. Thus, it is easier for a Model to operate the heat storage during

a ‘colder’ week.

Since the Standard Model and the Proposed Model introduces different concepts of
implementing LSTM networks, computation efficiency of each Model during the
simulation is different. The Standard Model first runs its five LSTM networks to predict
features related to operation, and then run the operation strategy to decide an operation
action. On the other hand, the Proposed Model directly predicts an operation action. The

computation time spent by the Standard Model is 75 times larger than the Proposed Model.
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With the same input (five features at t,,_,g t0 t,,_4), our Proposed Model has a better
operation efficiency and less computation time in simulation than the Standard Model
that follows the conventional way of implement LSTM networks in decision making of

system operation.

In further studies, we intend to create other experts by new operation strategies or by real
experience of human operator. By introducing new operation strategy, the number of
input features may increase or decrease and further affect e,,, of the model. On the other
hand, if we introduce human operation experience, the selection of input features would
be the key decision for constructing the model. Alternatively, the model can learn directly
from extracting a policy from the human operation experience [11] without conducting a

supervised learning.

We also aim to examine different scenario for this solar energy community distribution
system, such as an increase or decrease in the number of houses or solar panels. This
would affect e,,, of the models because it changes the amount of PV generation and heat
demand in certain weeks, and thus makes a week ‘warmer’ or ‘colder,” as we discussed
in Chapter 5.3. Another scenario is that we can put the solar energy community
distribution system into another electricity market which is different from the imbalance
prices we used in this paper. We can also consider how carbon tax or subsidy for solar

energy influences the operation strategy and the performance of our Proposed Model.
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Appendix 1 Comparisons of predictive and true values
in the Standard Model

(1) PV generation Prediction
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(2) Electricity Demand Prediction
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(3) Heat Demand Prediction
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(4) SBP Prediction
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(5) SSP Prediction
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Appendix 2 Python Code

OOV wWwN R

14 ##
15 ##
16 ##
17 ##
18 ##

import
import
import
import
import

def

os
pandas as pd
numpy as np
time
math

class GridParameter():
_ init_ (self):

self.HP_CAPACITY = 250.0

self.HP_COP = 3.667

self .MAX_DISCHARGE_ABS = 250.0

self .DATA_FILENAME = 'Historical_Data.pkl’

Historical_Data.pkl is a pd.Dataframe with six columns:

DateTime PV ElecDemand HeatDemand SSP SBP

© 2014-09-17 00:00:00 0©.000000 18.05908@ 2.998558 ©.033500 0.039760
2014-09-17 00:30:00 0.000000 15.479212 2.998558 0.036650 0.037740
2014-09-17 01:00:00 ©.000000 13.544310 2.998558 0.037390 0.038200

1
2

19 ## ...

self.TIME_INTERVAL_PER_DAY = 48

self.TANK_CAPACITY = 1500.0

self.TANK_LOSS_PER_DAY = 0.7

self.TANK_LOSS_PER_T = pow(self.TANK_LOSS_PER_DAY,
1/self,TIME_INTERVAL_PER_DAY)

self.BENEFIT_THRESHOLD = 1.8

## a thresold of the ratio(of cost)

## = [stored heat from other time / import electricity right now]
## only ratio smaller than BENEFIT_THRESOLD would be taken into

## consideration. Thus, we can avoid storing heat(namely occupying
## tank capacity) that doesn't bring much benefit

self.DECISION_TIME = 1

## if set to be 24, the storage would only be charged after
## 12:00 AM everyday

self.PRIME_PV = 7

40 class Expert(GridParameter):

58

def

def

_init_ (self):

GridParameter.__init_ (self)

self.Data = pd.read_pickle(self.DATA_FILENAME)
self.Data_len = self.Data.shape[©]

self.DAYS = self.Data_len / self.TIME_INTERVAL_PER_DAY

np.random, seed(4944)
noise = 1 + np.random.normal(®, 1, self.Data_len)*9.03
self.Data.loc[:, 'ElecDemand’]=self.Data.loc[:, 'ElecDemand']*noise

np.random. seed(4944)

noise = 1 + np.random.normal(@, 1, self.Data_len)*@.05
self.Data.loc[:, 'HeatDemand']=self.Data.loc[:, 'HeatDemand']*noise
self.reset_dataframe()

reset_dataframe(self):

self.Data['Tank'] = 0.0
self.Data[ 'Prediction’] = 6.0
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61 self.Data[ 'HP'] = self.HP_CAPACITY - self.Data['HeatDemand']
62 self.Data[ 'PVOutput_h"'] =\

63 (self.Data[ 'PV']-self.Data[ 'ElecDemand’']) * self.HP_COP

64 updateby = self.Data[self.Data['PVOutput_h'] < @].copy()

65 updateby.loc[:, 'PVOutput_h'] = @.0

66 self.Data.update(updateby)

67

68 self.Data[ 'PVSurplus h'] =\

69 self.Data[ 'PVOutput_h'] - self.Data['HeatDemand']
70 self.Data[ 'Shortage_h'] = -self.Data[ 'PVSurplus_h']

71 updateby = self.Data[self.Data[ 'PVSurplus_h'] < @].copy()

72 updateby.loc[:, 'PvSurplus_h'] = 9.0

73 self.Data.update(updateby)

74 updateby = self.Data[self.Data['Shortage_h'] < @].copy()

75 updateby.loc[:, 'Shortage h'] = 0.0

76 self.Data.update(updateby)

77

78 self.Data[ 'GridCharge_h'] = 0.0

79 ## how much heat generated by imported electricity

80 ## for charging the storage

81 self.Data[ 'PVCharge_h'] = 8.0

82 ## how much heat generated by PV electricity for charging the stroage
83

84 def create_train_data(self):

85 self.reset_dataframe()

86

87 for index in range(©, self.Data_len, self.TIME_INTERVAL_PER_DAY):
88 self.generate_episode(index)

89 print('day:"', index/self.TIME_INTERVAL_PER_DAY, end='\r"')
90

91 if index%(500*48) == 0:

92 filename = 'Historical_Data_expert_done_checkpoint.pkl’
93 self.Data.to_pickle(filename)

94 print('checkpoint at *, filename)

95 print(' ')

96

97 filename = 'Historical_Data_expert_done.pkl"’

98 self.Data.to_pickle(filename)

99 print('pickle as ', filename)

160 print(' ")

101

1le2 def generate_episode(self, t):

1e3 episode = self.Data[t : t + self.TIME_INTERVAL_PER_DAY].copy()
1684 episode.reset_index(inplace=True)

1e5 self.tank_cp = self.TANK_CAPACITY

106

187 Profit = self.CreateProfitTable(episode)

108

189

110 ## ---- filling the episode, according to Profit table

111

112 for _ in range(Profit.shape[©]): ## --works like a while-loop,
113 try: ## --try to pick up first row
114 Profit.index[@]

115 except: ## --if there's no first row, all is done
116 #print('All entries in Profit table are done.')

117 break

118 else:

119 t_curr = Profit.loc[Profit.index[@], 't_curr']

120 t_past = Profit.loc[Profit.index[@], 't_past']
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121 source = Profit.loc[Profit.index[@], 'source']

122

123 Profit, trimmed = self.DistributeEnergy(t_curr, t_past,

124 source, episode, Profit)
125

126 if trimmed == False:

127 Profit = Profit.drop(Profit.index[@])

128 ## --delete first row because it's done.

129

130 episode.set_index('index', inplace=True)

131 self.Data.update(episode)

132

133

134 def CreateProfitTable(self, episode):

135

136 ## profit = stored price / current import price, smaller better

137 ## t_curr = current time

138 ## t_past = between t_0 and t_curr

139 ## source should be a string, either "PV" or "Grid"

140

141 listl = ['profit', 't_curr', 't_past', 'source']

142 Profit = pd.DataFrame(columns = listl)

143 rows = @

144

145

146 for t_curr in range(self.DECISION_TIME, self.TIME_INTERVAL_PER_DAY):
147 if episode.loc[t_curr, 'Shortage_h'] <= @:

148 pass  #i# no need to 'buy' heat, no need to calculate profit
149 else:

150 denominator = episode.loc[t_curr, ‘'SBP']

151

152 t_past = t_curr

153

154 while t_past »>= self.DECISION_TIME:

155 ## (1) importing electricity at t_past to charge tank
156 ## for later use at t_curr

157 numerator=episode.loc[t_past, 'SBP']/ \

158 (self.TANK_LOSS_PER_T**(t_curr-t_past))
159

160 ratio = numerator / denominator

161 ## alternative source / importing right now

162 if ratio < self.BENEFIT_THRESHOLD:

163 Profit.loc[rows] = [ratio, t_curr, t_past, 'Grid']
164 rows += 1

165

166 #4# (2) using PV surplus at t_past to charge tank

167 it for later use at t_curr

168 if episode.loc[t_past, 'PVSurplus_h'] > @:

169 numerator=episode.loc[t_past, 'SSP'] / \

170 ( self.TANK_LOSS_PER_T**(t_curr - t_past) )
171

172 ratio = numerator / denominator

173 if ratio < self.BENEFIT_THRESHOLD:

174 Profit.loc[rows] = [ratio, t_curr, t_past, 'PV']
175 rows += 1

176

177 t_past -= 1

178

179 ## break tie by t_curr, we deal with the energy distribution

180 ## at early time first. This would probably reduce the occurence of
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## occupying tank capacity for too long
Profit = Profit.sort_values(by = ['profit', 't_curr'])
Profit = Profit.reset_index(drop = True)

## this prime number is for sorting and deleting specific data
## PV = 7, a prime number, making any [label = t * 7] unique
## whenever the solar surplus runs out, or whenerer the solar surplus is
## still available but HP capacity or tank capacity runs out
## we can use this unique label to delete all related entries in profit
## table at once.
## If we delete entries that are no longer feasible,
## overall calculation will be more efficient
for index in range(Profit.shape[8]):
if Profit.loc[index, 'source'] == 'PV':
Profit.loc[index, 'PV_label'] = \
Profit.loc[index, 't_past'] * self.PRIME_PV

return Profit

def DistributeEnergy(self, t_curr, t_past, source, episode, Profit):
trimmed = False
## if Profit has been altered in this function,
## its first rows would have been deleted before being return.
## Consequently, its first two rows would be deleted in one main loop.
## (one happens in this function, another in the main loop)

## Shortage should be positive
if episode.loc[t_curr, 'Shortage_h'] < 0.0:
raise ValueError('Shortage should be positive at ', t_curr)

## toTake = how much we "aim"™ to take at t_past.

## Tank loss must be considered.

toTake = \

episode.loc[t_curr, 'Shortage_h']/(self.TANK_LOSS_PER_T**(t_curr-t_past))

#¥#---- checking feasibility --------------mmmmmmme e oo

## Grid is unlimited, but PV is not.
if source == 'PV':
if episode.loc[t_past, 'PVSurplus_h'] < @.8:
raise ValueError('PVSurplus should be positive at ', t_past)

if episode.loc[t_past, 'PVSurplus_h'] < toTake:
## PV surplus at t_past is less than we aim to take
toTake = episode.loc[t_past, 'PVSurplus_h']
## so we can only aim to take all the PV surplus
## else, we can keep our original aim

## HP capacity has a limit

if episode.loc[t_past, "HP"] < toTake:
## HP capacity at t_past is less than our aim
toTake = episode.loc[t_past, "HP"]
## so we can only aim to take all the PV surplus
## else, we can keep our original aim

240 ## now, check all the Tank capacity from t_past+l to t_curr
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Note: any change to the heat level of storage at t reflects on 'Tank' at t+1
for example, 'storage' at t=0 is a result from all events happened before t=0,
which means ‘storage’ at t represents the status of tank "at the start of t"

244 ## Thus, if we charge tank at time t_past,

245
246
247
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250
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254
255
256
257
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259
260
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263
264
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266
267
268
269
270
271
272
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299
300

#H

#H
##
#H
##
#H
#H
i3

we check tank capacity from t_past+l to t_curr

t =t _past +1
toStore = toTake

while t <= t_curr:

toStore = toStore * self.TANK_LOSS_PER_T

EmptyTank = self.tank_cp - episode.loc[t, 'Tank']

if EmptyTank < toStore:
## Tank capacity at t is less than our aim
toStore = EmptyTank
## so we can only aim to use all the remaining capacity
## else, we can keep our original aim for t

t+=1

## after all above,
## now toStore =
## a feasible amount of heat that can be stored at the start of t_curr

##---- updating episode data ------------------"--"-"--------------

let 'Shortage_h' at t_curr consumes the heat we stored for it
note that this doesn't means HeatDemand at t has consumed the stored heat yet,
nor the number of 'storage' at t_curr need to be decreased.
We can see that HeatDemand at t has been fulfilled only at the data of t+1 on
the final episode table.
'Shortage_h' is just a variable for calculation of how to distribute available
energy.

episode.loc[t_curr, 'Shortage_h'] -= toStore

if abs(episode.loc[t_curr, 'Shortage h']) < le-6:
trimmed = True
episode.loc[t_curr, 'Shortage_h'] = 8.0
Profit = Profit[Profit.t_curr != t_curr]
## delete all entries of t_curr in profit table
## because Shortage at t_curr has been fulfilled

## put toStore into storage at (the start of) t_curr
episode.loc[t_curr, 'Tank'] += toStore

if abs(self.tank_cp - episode.loc[t_curr, ‘Tank']) < 1le-6:
trimmed = True
episode.loc[t_curr, 'Tank'] = self.tank_cp
Profit = Profit[ np.logical_or(\
np.logical and(Profit.t_curr < t_curr, Profit.t_past < t_curr ),
np.logical and(Profit.t_curr > t_curr, Profit.t_past > t_curr ))]
## because storage is full at this t,
## any attempt from profit table that tries to "cross" t would fail
## "cross" means storing heat at time<t and reserving it until another time>t
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301

302 ## put toStore into storage in each t, retrospectively

363 ## (TANK_LOSS_PER_T should be considered)

304

3e5 t =+t _curr -1

306

307 while t > t_past:

308 ## charging storage at time t_past only affects tank from
309 ## t_past+l to t_curr

310 toStore = toStore / self.TANK_LOSS_PER_T

311 episode.loc[t, 'Tank'] += toStore

312

313 if abs(self.tank cp - episode.loc[t, 'Tank']) < 1le-6:
314 trimmed = True

315 episode.loc[t, 'Tank'] = self.tank_cp

316 Profit = Profit[ np.logical_or(\

317 np.logical_and(Profit.t_curr < t, Profit.t_past < t ),
318 np.logical_and(Profit.t_curr > t, Profit.t_past > t ) )]
319 ## because storage is full at t,

3208 ## Any attempt from profit table that tries to "cross" t would fail.
321 ## "Cross" means storing heat at time < t and reserving it until
322 ## another time > t.

323 t-=1

324

325 ## after above,

326 ## now toStore = the amount of heat would be stored at the end of t_past
327

328

329 ## use HP capacity at t_past to generate toStore

330 episode.loc[t_past, 'HP'] -= toStore

331 if abs(episode.loc[t_past, 'HP']) < le-6:

332 trimmed = True

333 episode.loc[t_past, 'HP'] = 0.0

334 Profit = Profit[Profit.t past != t past]

335 ## because HP can no long generate heat at t_past,
336 ## any attempt from profit table that tries to

337 ## charge storage at t_past would fail

338

339 ## spend and record the source

340 if source == 'PV':

341 episode.loc[t_past, 'PVSurplus_h'] -= toStore

342 episode.loc[t_past, 'PVCharge_h'] += toStore

343 if abs(episode.loc[t_past, 'PVSurplus_h']) < le-4:
344 trimmed = True

345 episode.loc[t_past, 'PVSurplus_h'] = 0.0

346 PV_label = t_past * self.PRIME_PV

347 Profit = Profit[Profit.PV_label != PV_label]

348 ## because there is no PV surplus at t_past,

349 ## any attempt from profit table that tries to
350 ## charge tank by PV at t_past would fail

351 else:

352 episode.loc[t_past, 'GridCharge_h'] += toStore

353

354

355 return Profit, trimmed

356

357

358

359 #iH####t Object: predictors ########s

360
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361 from keras.models import load_model
362 from sklearn.preprocessing import MinMaxScaler

363

364 class FORECASTER():

365 def __init_ (self):

366 self.agent_PV = self.PV_AGENT()

367 self.agent_HD = self.HD_AGENT()

368 self.agent ED = self.ED_AGENT()

369 self.agent_SSP = self.SSP_AGENT()

370 self.,agent_SBP = self,SBP_AGENT()

371 self.,expert_4forecast = self.EXPERT_FOR_FORECAST()

372 self.TIME_INTERVAL_PER_DAY = 48  ## should have avoided 'magic number'
373 self.set_cutoff()

374

375 def produce_yhat(self, ndarray, agent):

376 ndarray = ndarray.reshape([ndarray.shape[0], ndarray.shape[1], 1])

377 return agent.predict(ndarray)

378

379 def set_cutoff(self, start_from = 24):

380 self.start_from = start_from

381

382 def _forecast_each(self, input_arr):

383

384 self.tank_target = []

385 ## this should be a np.array with shape of (336, 1), this is yhat

386 self.SBPhat = []

387 self.SSPhat = []

388

389

390 for i in range(input_arr.shape[@]):

391 half_hour = i%self.TIME_INTERVAL_PER_DAY

392

393 if half_hour == 0:

394 dataframe = pd.DataFrame(columns=\

395 ['PV", 'ElecDemand', ‘'HeatDemand' ,'SSP' ,'SBP'])
396 dataframe.loc[:, 'PV'] = self.hatPV[i]

397 dataframe.loc[:, 'ElecDemand'] = self.hatED[i]

398 dataframe.loc[:, 'HeatDemand'] = self.hatHD[i]

399 dataframe.loc[:, 'SSP'] = self.hatSSP[i]

400 dataframe.loc[:, 'SBP'] = self.hatSBP[i]

401

402 self.tank_target.append(©.0)

403

404 else:

405 dataframe.loc[:half_hour-1, 'PV']= self.re_inputPV[i][-half_hour:]
406 dataframe.loc[half_hour:, 'PV']= self.hatPV[i][:-half_hour]

407

408 dataframe.loc[:half_hour-1, 'ElecDemand'] =\

409 self.re_inputED[i][-half_hour:]
410 dataframe.loc[half_hour:, 'ElecDemand’ ]=self.hatED[i][:-half_hour]
411

412 dataframe.loc[:half_hour-1, ‘'HeatDemand'] =\

413 self.re_inputHD[i][-half_hour:]
414 dataframe.loc[half_hour:, 'HeatDemand']=self.hatHD[i][:-half_hour]
415

416 dataframe.loc[:half_hour-1, 'SSP']=self.re_inputSSP[i][-half_hour:]
417 dataframe.loc[half_hour:, 'SSP']= self.hatSSP[i][:-half_hour]

418

419 dataframe.loc[:half_hour-1, 'SBP' ]=self.re_inputSBP[i][-half_hour:]
420 dataframe.loc[half_hour:, 'SBP']= self.hatSBP[i][:-half_hour]
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if half_hour < self.start_from:
self.tank_target.append(0.0)

else:
self.expert_4forecast.generate_episode(dataframe)
self.tank_target.append(dataframe.loc[half_hour, 'Tank'])

self.SBPhat.append(dataframe.loc[half_hour, 'SBP'])
self.SSPhat.append(dataframe.loc[half_hour, 'SSP'])

self.yhat
self.yhat

np.asarray(self.tank_target)
self.yhat.reshape(input_arr.shape[6], 1)

return self.yhat

def forecast(self, input_arr):
# PLZ check columns=['PV','ED",'HD"',"SSP',"SBP"]
self.inputPV = input_arr[:, :, @] ## scaled value
self.inputHD = input_arr[:, :, 2]
self.inputED = input_arr[:, :, 1]
self.inputSSP = input_arr[:, :, 3]
self.inputSBP = input_arr[:, :, 4]

self.re_inputPV = self.agent_PV.rescaler.inverse_transform(self.inputPV)
self.re_inputHD = self.agent_HD.rescaler.inverse_transform(self.inputHD)
self.re_inputED = self.agent_ED.rescaler.inverse_transform(self.inputED)
self.re_inputSSP = \
self.agent_SSP.rescaler.inverse_transform(self.inputSSP)
self.re_inputSBP = \
self.agent_SBP.rescaler.inverse_transform(self.inputSBP)

self.hatPV = self.produce yhat(input_arr[:, :, ©], self.agent PV)
self.hatHD = self.produce_yhat(input_arr[:, :, 2], self.agent_HD)
self.hatED = self.produce_yhat(input_arr[:, :, 1], self.agent_ED)
self.hatSSP = self.produce_yhat(input_arr[:, :, 3], self.agent_SSP)
self.hatSBP = self.produce_yhat(input_arr[:, :, 4], self.agent_SBP)

self.yhat = self._forecast_each(input_arr)

return self.yhat

class PV_AGENT():
def __init_ (self):
self.model = load_model('lstm_model_PV.h5")
self.scale_base = pd.read_pickle('PV_scale base.pkl')
## PV_scale_base.pkl is a pd.DataFrame, which is the training set used
## to train lstm_model_PV.h5 (a trained keras.model in Standard Model)
## columns = ['DateTime’', 'feature'], here feature = PV generation
try:
self.scale_base.drop(columns=[ 'DateTime'], inplace=True)
except:
pass
self.rescaler= MinMaxScaler()
self.rescaler.fit(self.scale_base)
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481 def predict(self, array):

482 yhat = self.model.predict(array, verbose=8)

483 yhat = self.rescaler.inverse_transform(yhat)

484 return yhat

485

486 class HD_AGENT():

487 def __init_ (self):

488 self.model = load model('lstm model HD.h5')

489 self.scale_base = pd.read_pickle('HD scale base.pkl')
490 try:

491 self.scale_base.drop(columns=[ 'DateTime'], inplace=True)
492 except:

493 pass

494 self.rescaler= MinMaxScaler()

495 self.rescaler.fit(self.scale_base)

496

497 def predict(self, array):

498 yhat = self.model.predict(array, verbose=0)

499 yhat = self.rescaler.inverse_transform(yhat)

500 return yhat

501

502 class ED_AGENT():

503 def __init_ (self):

504 self.model = load_model('lstm_model ED.h5')

505 self.scale_base = pd.read_pickle('ED_scale_base.pkl')
506 try:

507 self.scale_base.drop(columns=['DateTime'], inplace=True)
508 except:

509 pass

510 self.rescaler= MinMaxScaler()

511 self.rescaler.fit(self.scale_base)

512

513 def predict(self, array):

514 yhat = self.model.predict(array, verbose=0)

515 yhat = self.rescaler.inverse_transform(yhat)

516 return yhat

517

518 class SSP_AGENT():

519 def _ init_ (self):

520 self.model = load_model('lstm_model_SSP.h5")

521 self.scale_base = pd.read_pickle('SSP_scale base.pkl')
522 try:

523 self.scale_base.drop(columns=['DateTime'], inplace=True)
524 except:

525 pass

526 self.rescaler= MinMaxScaler()

527 self.rescaler.fit(self.scale_base)

528

529 def predict(self, array):

530 yhat = self.model.predict(array, verbose=0)

531 yhat = self.rescaler.inverse_transform(yhat)

532 return yhat

533

534 class SBP_AGENT():

535 def __init_ (self):

536 self.model = load_model('lstm _model SBP.h5')

537 self.scale_base = pd.read_pickle('SBP_scale _base.pkl")
538 try:

539 self.scale_base.drop(columns=['DateTime'], inplace=True)
540 except:
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pass
self.rescaler= MinMaxScaler()
self.rescaler.fit(self.scale_base)

predict(self, array):

yhat = self.model.predict(array, verbose=0)
yhat = self.rescaler.inverse_transform(yhat)
return yhat

class EXPERT_FOR_FORECAST(Expert):

def

def

def

__init_ (self):
GridParameter.__init__ (self)

reset_episode(self, episode):
episode['Tank'] = 8.8
episode[ 'HP'] = self.HP_CAPACITY - episode[ 'HeatDemand']

episode[ 'PVOutput_h'] =\
(episode['PV'] - episode['ElecDemand']) * self.HP_COP
updateby = episode[episode['PVOutput_h'] < @].copy()
updateby.loc[:, 'PVOutput_h'] = 6.0
episode.update(updateby)

episode[ 'PVSurplus_h'] = episode['PVOutput_h'] - episode['HeatDemand']
episode[ 'Shortage_h'] -episode[ 'PVSurplus_h']

updateby = episode[episode[ 'PVSurplus_h'] < @].copy()
updateby.loc[:, 'PVSurplus_h'] = 8.0
episode.update(updateby)

updateby = episode[episode['Shortage h'] < ©].copy()
updateby.loc[:, 'Shortage h'] = 6.0
episode.update(updateby)

episode[ 'GridCharge_h'] = 0.0

## how much heat generated by imported elec for charging tank
episode[ 'PVCharge_h'] = 0.0

## how much heat generated by PV elec for charging tank

generate_episode(self, episode):
self.tank_cp = self.TANK_CAPACITY
self.reset_episode(episode)

Profit = self.CreateProfitTable(episode)

## ---- filling the episode, according to Profit table

for _ in range(Profit.shape[@]):
## --works like a while-loop,
try:
## --try to pick up first row
Profit.index[@]
except:
## --if there's no first row, all is done
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#t print('All entries in Profit table are done.')

break

else:
t_curr = Profit.loc[Profit.index[@], 't_curr']
t_past = Profit.loc[Profit.index[@], 't_past']

source = Profit.loc[Profit.index[@], 'source']

Profit, trimmed =\
self.DistributeEnergy(t_curr, t_past,
source, episode, Profit)

if trimmed == False:

Profit = Profit.drop(Profit.index[@])
## --delete first row because it's done.

return episode.loc[@, 'Tank']

AR Object: simulator #HHHEEEHEHE

import pickle
import os

import pandas as pd
import numpy as np
import time

import math

from

from
from
from
from
from
from

matplotlib import pyplot

sklearn.preprocessing import MinMaxScaler
keras.models import load_model
keras.models import Sequential
keras.layers import Dense

keras.layers import LSTM

keras.layers import Dropout

class Simulator(GridParameter):

def __init_ (self, model, forecaster,

environment="Historical_Data_expert_done.pkl"'):

## Historical Data_expert_done.pkl = Historical_Data.pkl + expert's operation

## columns = ['DateTime’, 'PV', 'ElecDemand’', 'HeatDemand', 'SSP', 'SBP’,

it
##

'Tank',

'Prediction’, 'HP', 'PVOutput_h', 'PVSurplus_h', 'Shortage_h’,

'GridCharge_h', 'PVCharge_h']

## Note that we didn't delete the column 'Prediction' even though in our actual
## implementation we never use this column.

GridParameter.__init_ (self)

self.MODEL = model

self.FORECASTER = forecaster

self . HISTORY = pd.read_pickle(environment)
self.EPISODE_LEN = 7*self.TIME_INTERVAL_PER_DAY

self.rescaler = MinMaxScaler()
drops = ['DateTime’, 'Tank', 'Prediction’, 'HP', 'PVOutput_h',

"PVSurplus_h', 'Shortage_h', 'GridCharge_h', 'PVCharge h']

self.rscd_history = \

self.rescaler.fit_transform(self.HISTORY.drop(columns=drops))
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self.rscd_history = pd.DataFrame(self.rscd_history)
self.rscd_history.columns = \
self.HISTORY.drop(columns=drops).columns.tolist()

## vanilla strategy

self .VANI_CHARGE = 25
self.VANI_DISCHARGE = 34
self.VANI_MAX_TARGET = 1200.0

def run(self, start, figure=False, network=True, forecast=True,
vanilla=True, no_tank=True, day=1):
self.EPISODE_LEN = day*self.TIME_INTERVAL_PER_DAY
curve_expert, cost_expert = self.expert_perform(start)
print('expert ', curve_expert.shape, cost_expert)

if network:
curve_network, cost_network = \
self.network_perform(start, self.MODEL, scaled=True)
print('network operation ', curve_network.shape, cost_network)

if forecast:
curve_forecast, cost_forecast =\
self.network_perform(start, self.FORECASTER, scaled=False)
print('forecaster operation', curve_forecast.shape, cost_forecast)

if vanilla:
curve_vanilla, cost_vanilla = self.vanilla_perform(start)
print('vanilla operation[25,43] ', cost_vanilla)

if no_tank:
cost_no_tank = self.no_tank_perform(start)
print('no Tank ', cost no_tank)

AT R R T AR R R AR
if figure == True:
duration = self.EPISODE_LEN

curve_pv_output_heat = \
self.HISTORY[start:start+duration]['PVOutput_h'].values
curve_heat_demand = \
self.HISTORY[start:start+duration]['HeatDemand'].values
point_SBP = self.HISTORY[start:start+duration]['SBP'].values
point_SSP = self.HISTORY[start:start+duration]['SSP'].values

fig, axl = pyplot.subplots()

axl.set_xlabel('time (half hour)"')
axl.set_ylabel('heat(kw))")
axl.plot(curve_heat_demand, 'm:', label='curve_heat_demand')

axl.plot(curve_pv_output_heat, 'g:', label='curve_pv_output_heat')

axl.plot(curve_expert,'b', label='curve_expert"')
try:
axl.plot(curve_network, 'r', label='curve_ network')
except:
pass
try:
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721 axl.plot(curve_forecast, 'c', label='curve_forecast')
722 except:

723 pass

724 try:

725 axl.plot(curve_vanilla, 'y', label='curve_vanilla')
726 except:

727 pass

728

729 pyplot.legend(loc="upper left', prop={'size': 18})

730

731 ax2 = ax1.twinx()

732 # instantiate a second axes that shares the same x-axis
733 ax2.set_ylabel('price(pound/kW)")

734 ax2.plot(point_SBP, 'rD', label='point_SBP')

735 ax2.plot(point_SSP, 'b+', label='point SSP'})

736

737 fig.tight_layout() # otherwise the right y-label is slightly clipped
738 fig.set_size_inches(30, 12, forward=True)

739 pyplot.legend(prop={'size': 18})

740

741 pyplot.savefig('output.png')

742 pyplot.show()

743

744 HHHEHEEEHEE

745

746

747 def _provide(self, need, have):

748 assert need >= @

749 assert have >= @

750

751 if need >= have:

752 need -= have

753 provide = have

754 have = 0.0

755 else:

756 have -= need

757 provide = need

758 need = 0.0

759

760 return need, have, provide

761

762 R

763

764 def network_perform(self, start, agent, scaled=True, confident=True):
765 episode = self.HISTORY[start:start+simulator.EPISODE_LEN].copy()
766 episode['Tank'] = ©.8

767 episode[ 'HP'] = self.HP_CAPACITY - episode[ 'HeatDemand']

768

769 episode['PVSurplus_h'] = episode[ 'PVOutput_h'] - episode[ 'HeatDemand']
770 updated = episode[episode[ 'PVSurplus_h'] < @].copy()

771 updated[ 'PVSurplus_h'] = 0.0

772 episode.update(updated)

773 del updated

774

775 episode[ 'Shortage_h'] = episode[ 'HeatDemand'] - episode[ 'PVOutput_h']
776 updated = episode[episode[ 'Shortage h'] < @].copy()

777 updated[ 'Shortage h'] = 0.0

778 episode.update(updated)

779 del updated

780
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sode[ 'GridCharge_h'] = 0.0
sode[ 'PVCharge_h'] = 08.8
ex_start = start - self.TIME_INTERVAL_PER_DAY

ex_end_exclude = start + self.EPISODE_LEN
d_episode = self.rscd_history[index_start:index_end_exclude].copy()

ut_arr = np.zeros((self.EPISODE_LEN, 48, 5))

i in range(@, self.EPISODE_LEN):
input_arr[i] = rscd_episode[i:i+self.TIME_INTERVAL PER_DAY].values

scaled:
self.yhat = agent.predict(input_arr, verbose=0) * self.TANK_CAPACITY
keyword = 'proposed’
e:
self.yhat = agent.forecast(input_arr)
keyword = 'standard’
i in range(self.EPISODE_LEN):

index = i + start
if confident:

episode = self.step_confident(episode, index, self.yhat[i][@])
else:

episode = self.step(episode, index, self.yhat[i][e])

record how much PV-generated electricity remains

that can be exported at time t

sode[ 'Export_e'] = episode['PVSurplus_h'] / self.HP_COP
record how much shortage of electricity remains

that we need to import for it at time t

sode[ 'Import e'] = episode[ 'Shortage_h'] / self.HP_COP
record how much electricity imported to charge

the tank at time t

sode[ 'Import_forTank'] = episode['GridCharge_h'] / self.HP_COP
ort = -episode['SSP'] * episode[ 'Export e']

ort = episode['SBP'] * episode[ 'Import_e']

ort_charge = episode['SBP'] * episode['Import_forTank']
ve_network = episode['Tank'].values

t_network =\
Export.values.sum() + Import.values.sum() + Import_charge.values.sum()

urn curve_network, cost_network

p_confident(self, episode, index, target):

always fulfill the targer value requested,

no matter using PV generation or imported electricity
to charge heat storage

during good weather, step_naive() shows better performance than step(),
because there are less time that the system need to import electricity
for charging.

Also, there are more oppotunities for the system to

ert target >= 0
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tank_curr
action =
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rget <= self.TANK_CAPACITY

= episode.loc[index, ‘Tank']
target - tank_curr

> episode.loc[index, 'HP']:

action = episode.loc[index, 'HP']

## charge
if action

tank_

>= @ and episode.loc[index, 'PVSurplus_h'] > @:
next = tank_curr * self.TANK_LOSS_PER_T + action

action, episode.loc[index, 'PVSurplus_h'], episode.loc[index, \

'PVCh

if ac
e

elif acti

tank_

arge h'] = self. provide(action,

episode.loc[index, 'PVSurplus_h'])
tion > @9:
pisode.loc[index, 'GridCharge_h'] = action

on >= @ and episode.loc[index, ‘Shortage_h'] >= ©:
next = tank_curr * self.TANK_LOSS_PER_T + action

episode.loc[index, 'GridCharge_h'] = action

## discha
elif acti

rge
on < © and episode.loc[index, 'PVSurplus_h'] > @:

action = abs(action)

if ac
a

tank_

elif acti

tion > self.MAX_DISCHARGE_ABS:
ction = self.MAX_DISCHARGE_ABS

next = (tank_curr - action) * self.TANK_LOSS_PER_T

on < @ and episode.loc[index, 'Shortage h'] >= @:

action = abs(action)

if action > self.MAX_DISCHARGE_ABS:
action = self.MAX_DISCHARGE_ABS
tank_next = (tank_curr - action) * self.TANK_LOSS_PER_T
episode.loc[index, 'Shortage_h'], _, _ =\
self. provide(episode.loc[index, 'Shortage h'], action)
else:
raise ValueError('Error')

if index+l > episode.index[-1]:

pass
else:

episode.loc[index+1, 'Tank'] = tank_next

return ep

isode

step(self, episode, index, target):

assert ta
assert ta

tank_curr
action =

## charge

rget >= 0@
rget <= self.TANK_CAPACITY

= episode.loc[index, ‘Tank']
target - tank_curr
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901 if action »>= @ and episode.loc[index, 'PVSurplus_h'] > @:

902

903 action, episode.loc[index, ‘PVSurplus_h'], episode.loc[index, \
904 'PVCharge_h']=self._provide(action, episode.loc[index, 'PVSurplus_h'])
985

906 tank_next = \

907 tank_curr*self.TANK_LOSS_PER_T + episode.loc[index, 'PVCharge_h']
908

909

910 elif action >= @ and episode.loc[index, 'Shortage_h'] »>= @:

911 tank_next = tank_curr * self.TANK_LOSS_PER_T #+ action

912 #episode.loc[index, 'GridCharge_h'] = action

913

914 ## discharge

915 elif action < @ and episode.loc[index, 'PVSurplus_h'] > 0:

916 action = abs(action)

917 if action > self.MAX_DISCHARGE_ABS:

918 action = self.MAX_DISCHARGE_ABS

919

920 tank_next = (tank_curr - action) * self.TANK_LOSS_PER_T

921

922

923 elif action < @ and episode.loc[index, 'Shortage_h'] »>= @:

924 action = abs(action)

925 if action > self.MAX_DISCHARGE_ABS:

926 action = self.MAX_DISCHARGE_ABS

927

928 tank_next = (tank_curr - action) * self.TANK_LOSS_PER_T

929

930 episode.loc[index, 'Shortage_h'], _, _ =\

931 self. provide(episode.loc[index, 'Shortage h'], action)

932

933 else:

934 raise ValueError('Error')

935

936

937 if index+1 > episode.index[-1]:

938 pass

939 else:

940 episode.loc[index+1, 'Tank'] = tank_next

941

942

943 return episode

944

945 HHHHHHHHHEHHHENEHHHE R

946

947 def expert_perform(self, start):

948 episode = self.HISTORY[start:start+self.EPISODE_LEN].copy()

949 print(episode.loc[start, 'DateTime'])

9508

951 ## record how much PV-generated electricity remains

952 ## that can be exported at time t

953 episode[ 'Export_e'] = episode['PVSurplus_h'] / self.HP_COP
954 ## record how much shortage of electricity remains

955 ##that we need to import for it at time t

956 episode[ 'Import_e'] = episode['Shortage_h'] / self.HP_COP
957 ## record how much electricity imported to charge

958 ##the tank at time t

959 episode[ 'Import_forTank'] = episode['GridCharge_h'] / self.HP_COP
960
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961 Export = -episode['SSP'] * episode[ 'Export_e']
962 Import = episode['SBP'] * episode[ 'Import_e']
963 Import_charge = episode['SBP'] * episode[ 'Import_forTank']
964
965 curve_expert = episode['Tank'].values
966 cost_expert = \
967 Export.values.sum() + Import.values.sum() + Import_charge.values.sum()
968
969
970 return curve_expert, cost_expert
971
972 ## ; S
973
974 def vanilla_perform(self, start):
975 episode = self.HISTORY[start:start+simulator.EPISODE_LEN].copy()
976 episode['Tank'] = ©.0
977 episode['HP'] = self.HP_CAPACITY - episode[ 'HeatDemand']
978
979 episode['PVSurplus_h'] = episode[ 'PVOutput_h'] - episode[ 'HeatDemand']
980 updated = episode[episode[ 'PVSurplus_h'] < 8].copy()
981 updated[ 'PVSurplus_h'] = 8.8
982 episode.update(updated)
983 del updated
984
985 episode[ 'Shortage_h'] = episode['HeatDemand'] - episode[ 'PVOutput_h"]
986 updated = episode[episode[ 'Shortage h'] < @].copy()
987 updated[ 'Shortage_h'] = 0.0
988 episode.update(updated)
989 del updated
990
991 episode['GridCharge _h'] = 0.0
992 episode[ 'PVCharge_h'] = 8.8
993
994 for i in range(self.EPISODE LEN):
995 index = i + start
996 episode = self.step_vanilla(episode, index)
997
998
999 ## record how much PV-generated electricity remains
1000 ## that can be exported at time t
1001 episode['Export_e'] = episode[ 'PVSurplus_h'] / self.HP_COP
1002 ## record how much shortage of electricity remains
1003 ## that we need to import for it at time t
1004 episode[ 'Import_e'] = episode[ 'Shortage_h'] / self.HP_COP
1005 ## record how much electricity imported to charge
1006 ## the tank at time t
1007 episode[ 'Import_forTank'] = episode['GridCharge_h'] / self.HP_COP
1008
1009 Export = -episode['SSP'] * episode[ 'Export_e']
1010 Import = episode['SBP'] * episode['Import_e']
1011 Import_charge = episode['SBP'] * episode[ 'Import_forTank']
1912
1013
1014 curve_vanilla = episode['Tank'].values
1015 cost_vanilla =\
1016 Export.values.sum() + Import.values.sum() + Import_charge.values.sum()
1017
1018 return curve_vanilla, cost vanilla
1019
1020 def step_vanilla(self, episode, index):
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tank_curr = episode.loc[index, 'Tank']

if index%self.TIME_INTERVAL_PER_DAY < self.VANI_CHARGE:
action = 0.9
elif index%self.TIME_INTERVAL_PER_DAY < self.VANI_DISCHARGE:
action = self.VANI_MAX_TARGET - tank_curr
if action > episode.loc[index, 'HP']:
action = episode.loc[index, 'HP']
else:
target = tank_curr - self,MAX_DISCHARGE_ABS
if target < 6:
target = @
action = target - tank_curr

## charge
if action >= @ and episode.loc[index, 'PVSurplus_h'] > @:

action, episode.loc[index, 'PVSurplus_h'], episode.loc[index, \
'"PVCharge_h'] = self._provide(action,
episode.loc[index, 'PVSurplus_h'])

tank_next = \
tank_curr * self.TANK_LOSS_PER_T + episode.loc[index, 'PVCharge_h"]

elif action »>= @ and episode.loc[index, 'Shortage_h'] »>= @:
tank_next = tank_curr * self.TANK_LOSS_PER_T #+ action (Disabled line)
#tepisode.loc[index, 'GridCharge_h'] = action (Disabled line)
## Disable two lines above in order to avoid
## incorrect prediction that costs extra expenditure

## discharge
elif action < @ and episode.loc[index, 'PVSurplus_h'] > @:
action = abs(action)
if action > self.MAX_DISCHARGE_ABS:
action = self.MAX_DISCHARGE_ABS

tank_next = (tank_curr - action) * self.TANK LOSS PER T

elif action < @ and episode.loc[index, 'Shortage_h'] »>= @:
action = abs(action)
if action > self.MAX_DISCHARGE_ABS:
action = self.MAX_DISCHARGE_ABS

tank_next = (tank_curr - action) * self.TANK_LOSS_PER_T

episode.loc[index, 'Shortage_h'], _, _ =\
self._provide(episode.loc[index, 'Shortage_h'], action)

else:
raise ValueError('Error')

if index+1 > episode.index[-1]:
pass
else:
episode.loc[index+1, 'Tank'] = tank_next
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1081

1082 return episode

1083

1084 ###H#HHHHFH A A F R R AR

1085

1086 def no_tank_perform(self, start):

1087 episode = self.HISTORY[start:start+self.EPISODE_LEN].copy()

1088

1089 ## record how much PV-generated electricity remains

1090 ## that can be exported at time t

1091 episode[ 'Export_e'] =\

1092 (episode[ 'PVOutput_h'] - episode['HeatDemand'])/ self.HP_COP
1093 pick _positive export = episode[episode['Export e'] > 8].copy()

1094

1095 ## record how much shortage of electricity remains

1096 ## that we need to import for it at time t

1097 episode[ 'Import_e'] = episode['Export_e'] * -1

1098 pick_positive_import = episode[episode['Import_e'] > @].copy()

1099

1100

1101 Export = -pick_positive_export['SSP'] * pick_positive_export['Export_e']
1102 Import = pick_positive_import['SBP'] * pick_positive_import['Import_e’]
1103

1104 cost_no_tank = Export.values.sum() + Import.values.sum()

1165

1106 return cost_no_tank

1107

1108

1109 expert_history = 'Historical_Data_expert_done.pkl’

1110 model = load_model('lstm_model_Proposed_Model.h5")

1111

1112 forecaster_for_simu = FORECASTER()

1113

1114 simulator = Simulator(model, forecaster for_simu, expert_history)
1115 simulator.FORECASTER.set cutoff(start_from=simulator.DECISION_TIME)
1116

1117 simulator.run(1918*48, figure=True,network=True,

1118 forecast=True,vanilla=True,no_tank=False, day=1)
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