A Transaction-Cost Perspective on the Multitude of Firm Characteristics^{*}

Victor DeMiguel

Alberto Martín-Utrera

Francisco J. Nogales

Raman Uppal

January 8, 2019

Abstract

We investigate how transaction costs change the number of characteristics that are *jointly* significant for an investor's optimal portfolio, and hence, how they change the dimension of the cross section of stock returns. We find that transaction costs increase the number of significant characteristics from six to 15. The explanation is that, as we show theoretically and empirically, combining characteristics reduces transaction costs because the trades in the underlying stocks required to rebalance different characteristics often cancel out. Thus, transaction costs provide an economic rationale for considering a larger number of characteristics than that in prominent asset-pricing models.

Keywords: cross section of stock returns, trading diversification, factor zoo. *JEL Classification*: G11

^{*}DeMiguel, London Business School, e-mail: avmiguel@london.edu; Martín-Utrera, Lancaster University Management School, e-mail: a.martinutrera@lancaster.ac.uk; Nogales, Universidad Carlos III de Madrid, e-mail: FcoJavier.Nogales@uc3m.es; Uppal, Edhec Business School and CEPR, e-mail: raman.uppal@edhec.edu. We thank the Editor (Andrew Karolyi) and two anonymous referees for valuable feedback. We gratefully acknowledge comments from Torben Andersen, Turan Bali, Pedro Barroso, Kerry Back, Malcolm Baker, Alexandre Belloni, Jonathan Berk, Harjoat Bhamra, John Birge, Michael Brandt, Svetlana Bryzgalova, Andrea Buraschi, Veronika Czellar, Serge Darolles, Alex Edmans, Wayne Ferson, Lorenzo Garlappi, René Garcia, Francisco Gomes, Amit Goyal, Nick Hirschey, Christian Julliard, Petri Jylha, Bige Kahraman, Nishad Kapadia, Ralph Koijen, Robert Kosowski, Apostolos Kourtis, Serhiy Kozak, Anton Lines, Abraham Lioui, Raphael Markellos, Lionel Martellini, Spyros Mesomeris, Maurizio Montone, Narayan Naik, Stefan Nagel, Andreas Neuhierl, Ľuboš Pástor, Barbara Ostdiek, Anna Pavlova, Julien Penasse, Ludovic Phalippou, Ilaria Piatti, Jeffrey Pontiff, Riccardo Rebonato, Scott Richardson, Thierry Roncalli, Shrihari Santosh, James Sefton, Georgios Skoulakis, Stephen Taylor, Nikolaos Tessaromatis, Grigory Vilkov, Christian Wagner, Michael Weber, Dacheng Xiu, Paolo Zaffaroni, Frank Zhang, Lu Zhang, and seminar participants at American Finance Association, Cass Business School, Citi Global Quant Research Conference, Conference on Computational and Financial Econometrics, Deutsche Bank Global Quantitative Conference, Durham University Business School, Edhec Business School, European Finance Association, Frankfurt School of Finance and Management, French Finance Association, Frontiers of Factor Investing Conference (Lancaster), HEC Paris, Imperial College Business School, INET Econometric Seminar Series (Oxford), INFORMS Annual Meeting, INQUIRE Europe, INQUIRE UK, Invesco, KU Leuven, Lancaster University Management School, London Business School, London School of Economics, New Methods for the Empirical Analysis of Financial Markets Conference, Northern Finance Association, Norwich Business School, Rice University, Saïd Business School, Stevanovich Center at University of Chicago, Universitat Pompeu Fabra, Université Catolique de Louvain, Université de Nantes, University College Dublin, Vienna University of Economics and Business, World Symposium on Investment Research (Montreal), 5th Luxembourg Asset Management Summit, 10th International Conference on Computational and Financial Econometrics (Seville), 30th Annual Seminar of the London Quant Group (Oxford), and XXIV Finance Forum (Madrid). Nogales acknowledges support from the Spanish government for projects MTM2013-44902-P and MTM2017-88797-P, and the UC3M-BS Institute of Financial Big Data.

1 Introduction

Hundreds of variables have been proposed to explain the cross-section of stock returns; see, for instance, Harvey, Liu, and Zhu (2015), McLean and Pontiff (2016), and Hou, Xue, and Zhang (2017). This abundance of cross-sectional predictors leads Cochrane (2011) to ask, "Which characteristics really provide independent information about average returns? Which are subsumed by others?" Likewise, Goyal (2012) states that "these days one has a multitude of variables that seem to explain the cross-sectional pattern of returns. The amount of independent information in these variables is unclear as no study to date [...] has conducted a comprehensive study to analyze the joint impact of these variables."

Cochrane and Goyal challenge researchers to characterize the *dimension* of the cross-section of stock returns by identifying a small set of characteristics that subsume the rest. Several papers address this challenge in the *absence* of transaction costs; these include Feng, Giglio, and Xiu (2017), Freyberger, Neuhierl, and Weber (2018), Green, Hand, and Zhang (2017), Kelly, Pruitt, and Su (2018), Kozak, Nagel, and Santosh (2018), and Messmer and Audrino (2017). However, transaction costs matter for the dimension of the cross section because they impact the number of characteristics that are *jointly* significant for an investor's optimal portfolio. To address this gap in the literature, our objective is to study how transaction costs affect the dimension of the cross section.

We build on the insightful work in Novy-Marx and Velikov (2016), which proposes a generalization of Jensen's alpha that takes transaction costs into account, and computes the "generalized alpha" of 23 characteristics with respect to the four factors in Fama and French (1993) and Carhart (1997). Novy-Marx and Velikov (2016) finds that in the presence of transaction costs the number of characteristics that have a significant generalized alpha is *smaller* than in the absence of transaction costs.

However, Novy-Marx and Velikov (2016) tests the significance of a *single* characteristic at a time. We, in contrast, consider all characteristics *simultaneously* and, as a result, find that the number of characteristics that are jointly significant for an investor's portfolio in the presence of transaction costs is *larger* than in the absence of transaction costs. The explanation for this is that, as we show theoretically and empirically, combining characteristics *reduces* transaction costs, and hence increases the investor's utility, because the trades in the underlying stocks required to rebalance different characteristics often cancel each other out.¹ Essentially, combining characteristics allows one to *diversify trading*, just as combining them allows one to diversify risk. As a consequence, our work shows that the impact of transaction costs is *smaller* when considering characteristics jointly than when considering them one at a time, as in Novy-Marx and Velikov (2016).

We first quantify the benefits from trading diversification in a simple manner by comparing the average trading volume (turnover) required to exploit an *equally weighted* portfolio of characteristics simultaneously with that required to exploit them in isolation. Analytically, we show that the turnover required to rebalance an equally weighted portfolio of K characteristics is about $1/\sqrt{K}$ of that required to rebalance the characteristics in isolation. Empirically, we find that while the average monthly turnover required to exploit a characteristic in isolation is 24.09%, the turnover required to exploit an equally weighted combination of characteristics is only 6.71%; that is, trading diversification delivers a 72.15% reduction in turnover. Note that a reduction in turnover will translate into a reduction in transaction costs regardless of the particular manner in which transaction costs are modeled.

We then turn to our main research question of how transaction costs impact the dimension of the cross section. To answer this question, we study how many firm-specific characteristics matter *jointly* from a *portfolio perspective*; that is, from the perspective of an investor who cares not only about average returns, but also about portfolio risk and transaction costs.² To do this, we extend the "parametric portfolios" in Brandt, Santa-Clara, and Valkanov (2009) and use them as an alternative method to the traditional

¹For instance, assume that rebalancing a momentum portfolio requires buying \$3,000 of the Apple stock, whereas rebalancing a value portfolio requires selling \$2,000 of Apple. Then, rebalancing a combination of these two characteristics requires buying only \$1,000 of Apple.

²We are agnostic about whether a particular characteristic is a proxy for the loading on a common risk factor or not; instead, we account for risk directly via the mean-variance utility of the investor.

regression approaches, which cannot answer our main research question because they either ignore transaction costs or consider characteristics one at a time.³

Parametric portfolios are obtained by adding to a benchmark portfolio a linear combination of the long-short portfolios associated with each characteristic considered. To determine which characteristics are jointly significant, we use a "screen-and-clean" method to test which characteristics have parametric-portfolio weights that are significantly different from zero. We then use this test to compare the number of characteristics that are jointly significant in the absence and presence of transaction costs.

We find that in the absence of transaction costs, out of the 51 characteristics that we consider, only a small number—about six—are significant. Moreover, in contrast to what one would observe if evaluating characteristics in isolation, we find that transaction costs *increase* the number of jointly significant characteristics from six to 15, thus increasing the dimension of the cross section.⁴ This is because the benefits of trading diversification are large when combining characteristics to maximize the investor's expected utility: we find empirically that the marginal transaction cost of trading the stocks underlying a characteristic is reduced by 65% on average when characteristics are combined optimally in the parametric portfolio.

Our findings have implications for asset-pricing theories based on stochastic discount factors (SDFs) because the investor's first-order optimality condition determines not only her optimal portfolio but also the associated SDF, as shown in Appendix B. Thus, our work shows that transaction costs provide a rationale for considering a larger number of characteristics than that in prominent asset-pricing models.

To alleviate data-mining concerns raised in the literature,⁵ we also undertake an *out-of-sample* analysis. We find that the out-of-sample performance of the parametric portfolios in the presence of transaction costs can be significantly improved by exploiting

³Although the distinguishing feature of our approach is that it accounts for *transaction costs*, in Appendix A we also characterize the theoretical relation of the parametric-portfolio approach to cross-sectional and time-series regressions in the *absence* of transaction costs.

⁴In Section IA.7 of the internet appendix, we show that our main insight is robust to considering a larger set of 100 characteristics. For this larger dataset, we find that while seven characteristics are significant in the absence of transaction costs, 15 are significant in the presence of transaction costs.

⁵See, for example, Fama (1991), Kogan and Tian (2013), Harvey et al. (2015), Bryzgalova (2015), McLean and Pontiff (2016), Linnainmaa and Roberts (2018), and Chordia, Goyal, and Saretto (2017).

a large number of characteristics instead of the small number typically considered in popular asset-pricing models.⁶

We now discuss how our work is related to the literature. Several papers use *cross-sectional regressions* to study the dimension of the cross section because they allow one to test which characteristics are *jointly* significant; see, for instance, Green et al. (2017), Freyberger et al. (2018), and Messmer and Audrino (2017). Light, Maslov, and Rytchkov (2017) uses an information-aggregation technique based on the three-pass regression filter in Kelly and Pruitt (2015) to aggregate multiple characteristics into a few composite variables that predict the cross section of expected stock returns. While all of these papers ignore transaction costs, we focus on the effect of transaction costs. Another difference is that while cross-sectional regressions focus on mean returns, our portfolio approach accounts for *both* mean and variance of returns.

The time-series approach regresses the return of a characteristic-based long-short portfolio on the returns of a few commonly accepted factors. If the intercept (or alpha) is statistically significant, then the return on the characteristic is not fully explained by the commonly accepted factors. Gibbons, Ross, and Shanken (1989) shows that this approach captures the tradeoff between mean return and risk. Novy-Marx and Velikov (2016) extends time-series regressions to capture transaction costs. The focus of the timeseries approach on the regression *intercept* implies that it evaluates the significance of a *single* characteristic at a time. This is a limitation because, as we show in Appendix A.2, the significance results depend on the *sequence in which variables are selected*. In contrast, our portfolio approach considers *all* characteristics simultaneously.⁷

There are also papers that combine elements from both cross-sectional and timeseries regressions; see, for instance, Back, Kapadia, and Ostdiek (2015), Baker, Luo, and

 $^{^{6}}$ The out-of-sample Sharpe ratio of returns net of transaction costs from exploiting 51 characteristics is around 100% larger than that from exploiting the three traditional characteristics considered in Brandt et al. (2009) and 25% higher than that from exploiting a set of four characteristics that include investment and profitability characteristics, highlighted in Hou, Xue, and Zhang (2014) and Fama and French (2016).

⁷We show analytically in Appendix A.2 that our approach of testing the significance of the characteristics for mean-variance parametric portfolios is *equivalent* to testing the significance of each *slope* in a particular time-series regression; that is, our significance test is equivalent to a t-test of explanatory variables in a multiple regression.

Taliaferro (2017), and Feng et al. (2017). Just as for time-series regressions, the inference in these papers also depends on the *sequence* in which characteristics are tested.

Finally, the stochastic discount factor (SDF) approach is closely related to our portfolio approach because the first-order optimality condition of the investor determines not only her optimal portfolio but also the associated SDF. Kozak, Nagel, and Santosh (2018) proposes a robust SDF and finds that a small number of principle components predict the cross section better than a small number of characteristics. There are two main differences between this paper and our work. First, we study the impact of transaction costs on the dimension of the cross section of stock returns. Second, while Kozak et al. (2018) focuses on prediction, our work focuses on inference because we wish to study how transaction costs impact the number of characteristics that are jointly significant. Our main finding is that transaction costs increase the number of characteristics that are jointly significant. Thus, our work provides another rationale for considering a larger number of characteristics than that in prominent asset-pricing models.

Several papers study the transaction costs associated with trading *individual* characteristics. Korajczyk and Sadka (2004) finds that momentum can be exploited on only a modest scale. Novy-Marx and Velikov (2016) finds that simple transaction-cost mitigation strategies such as introducing a buy/hold spread can substantially reduce transaction costs. Chen and Velikov (2017) shows that if, in addition to transaction costs, one accounts for post-publication decay, the profitability of anomaly-based trading strategies is substantially diminished. These papers use publicly available datasets to estimate the trading costs of an average investor. In contrast, Frazzini, Israel, and Moskowitz (2015) uses proprietary data and finds that the trading costs associated with exploiting size, momentum, and book to market can be quite small for large institutional investors.

Other papers have also found that combining characteristics helps to reduce transaction costs. Frazzini et al. (2015) explains that "value and momentum trades tend to offset each other, resulting in lower turnover which has real transaction costs benefits." Barroso and Santa-Clara (2015) considers currency portfolios based on six characteristics and explains that "transaction costs depend crucially on the time-varying interaction between characteristics." Novy-Marx and Velikov (2016) studies "filtering," a cost mitigation technique that allows investors trading one strategy to opportunistically take small positions in another at effectively *negative* trading costs. The distinguishing feature of our work is that we consider a large number of characteristics *jointly* to show how transaction costs lead to an increase in the dimension of the cross section.

2 Data

We combine U.S. stock-market information from CRSP, Compustat, and I/B/E/S, covering the period from January 1980 to December 2014. We start by compiling data on the 100 firm-specific characteristics considered in Green et al. (2017),⁸ but drop characteristics with a large proportion of missing observations to ensure that our results are reliable. Specifically, we drop characteristics with more than 5% of missing observations for more than 5% of firms with CRSP returns available for the entire sample from 1980 to 2014. In addition, we drop characteristics without any observations for more than 1% of these firms. Table 1 lists the resulting 51 characteristics together with their definitions, the name of the author(s) who identified them, and the date and journal of publication.

Our initial database contains every firm traded on the NYSE, AMEX, and NAS-DAQ exchanges. We then remove firms with negative book-to-market ratios. As in Brandt et al. (2009), we also remove firms below the 20th percentile of market capitalization because these are very small firms that are difficult to trade. Our final dataset contains 51 firm-specific characteristics for a total of 17,930 firms of which an average of 3,071 firms have return data in a particular month.

We cross-sectionally winsorize each characteristic; that is, we replace extreme observations that are beyond a certain threshold with the value of the threshold. Specifically, we set equal to the third (first) quartile plus (minus) three times the interquartile range any observations that are above (below) this threshold.⁹

⁸As in Green et al. (2017), when constructing monthly characteristics at time t, we assume that annual (quarterly) accounting data is available at the end of month t - 1 if the firm's fiscal year ended at least six (four) months earlier.

⁹This winsorization is the one used in the 2014 version of Green et al. (2017). Section IA.9 of the revised internet appendix shows that our findings are robust to winsorizing the data at the 1st and 99th cross-sectional percentiles, as in the published version of Green et al. (2017).

Finally, as in Brandt et al. (2009), we standardize each characteristic so that it has a cross-sectional mean of zero and standard deviation of one. The resulting standardized characteristic is a long-short portfolio that goes long stocks whose characteristic is above the cross-sectional average, and short stocks whose characteristic is below the crosssectional average.

3 Methodology

This section explains how we extend the parametric-portfolio methodology in Brandt et al. (2009) in order to study how transaction costs change the number of characteristics that are jointly significant for an investor's portfolio. We also describe below the screenand-clean test used to evaluate whether the parametric-portfolio weight corresponding to each characteristic is significant. In addition, Appendix A compares analytically and empirically our methodological approach based on parametric portfolios with cross-sectional and time-series regressions.

3.1 Mean-variance parametric portfolios

Parametric portfolios use a set of firm-specific characteristics to *tilt* the benchmark portfolio toward stocks that help to increase the investor's utility. The portfolios are obtained by adding to the benchmark portfolio a linear combination of long-short portfolios obtained by standardizing K firm-specific characteristics cross sectionally. The resulting parametric portfolio at time $t, w_t(\theta) \in \mathbb{R}^{N_t}$, can be written as

$$w_t(\theta) = w_{b,t} + (x_{1,t}\theta_1 + x_{2,t}\theta_2 + \ldots + x_{K,t}\theta_K)/N_t,$$
(1)

where $w_{b,t} \in \mathbb{R}^{N_t}$ is the *benchmark portfolio* at time $t, x_{k,t} \in \mathbb{R}^{N_t}$ is the long-short portfolio obtained by standardizing the *k*th firm-specific characteristic at time t, θ_k is the weight of the *k*th characteristic in the parametric portfolio, and N_t is the number of firms at time t.¹⁰ As in Brandt et al. (2009), we consider a portfolio that is fully invested in risky

¹⁰The weights of the characteristics in the parametric portfolio are scaled by the number of stocks N_t so that they are meaningful for the case with a varying number of stocks. Without this scaling parameter, increasing the number of stocks while keeping the weights fixed would result in more aggressive portfolio allocations.

assets.¹¹ The parametric portfolio can also be written in compact matrix notation by defining $X_t \in \mathbb{R}^{N_t \times K}$ to be the matrix whose kth column is $x_{k,t}$:

$$w_t(\theta) = w_{b,t} + X_t \theta / N_t, \tag{2}$$

where $\theta \in \mathbb{R}^{K}$ is the *parameter vector*, whose kth component is the weight of the kth characteristic θ_{k} , and $X_{t}\theta/N_{t}$ is the characteristic portfolio at time t.

The return of the parametric portfolio at time t + 1, which we denote as $r_{p,t+1}(\theta)$, can thus be rewritten as

$$r_{p,t+1}(\theta) = w_{b,t}^{\top} r_{t+1} + \theta^{\top} X_t^{\top} r_{t+1} / N_t = r_{b,t+1} + \theta^{\top} r_{c,t+1},$$
(3)

where $r_{t+1} \in \mathbb{R}^{N_t}$ is the return vector at time t + 1, $r_{b,t+1} = w_{b,t}^{\top} r_{t+1}$ is the benchmark portfolio return at time t + 1, and $r_{c,t+1} = X_t^{\top} r_{t+1}/N_t$ is the *characteristic return vector* at time t + 1, which contains the returns of the long-short portfolios corresponding to the K characteristics scaled by the number of firms N_t .¹² Equation (3) shows that the parametric-portfolio return is the benchmark-portfolio return plus the return of the characteristic portfolio.

We assume that the investor optimizes mean-variance utility. The advantages of mean-variance utility, as we will show below, are that it allows us to identify the marginal contribution of each characteristic to the investor's utility and to compare analytically the parametric-portfolio weights to the results from time-series and cross-sectional regressions.¹³ In particular, we assume the investor solves the following problem:

$$\min_{\theta} \quad \frac{\gamma}{2} \operatorname{var}_t[r_{p,t+1}(\theta)] - E_t[r_{p,t+1}(\theta)], \tag{4}$$

where γ is the risk-aversion parameter and $\operatorname{var}_t[r_{p,t+1}(\theta)]$ and $E_t[r_{p,t+1}(\theta)]$ are the variance and mean of the parametric-portfolio return, respectively.

¹¹Consequently, the parametric-portfolio weights on the stocks sum to one. Because the weights on the stocks in the long-short portfolios sum to zero, this implies that the parametric weight on the benchmark portfolio must equal one.

¹²Note that we use only lagged values of characteristics to build portfolios; thus, the returns of the characteristic portfolio formed at time t, $X_t \theta / N_t$ are evaluated using the return at time t + 1; that is, $\theta^{\top} X_t^{\top} r_{t+1} / N_t$.

¹³We have run our empirical analysis also for power utility and the main insights are unchanged.

Given T historical observations of returns and characteristics, the following proposition shows that the parametric-portfolio problem can be formulated as a tractable quadratic optimization problem.

Proposition 1. The mean-variance parametric-portfolio problem in (4) is equivalent to

$$\min_{\theta} \quad \underbrace{(\gamma/2)\theta^{\top}\widehat{\Sigma}_{c}\theta}_{var(char)} + \underbrace{\gamma\theta^{\top}\widehat{\sigma}_{bc}}_{cov(bench)} - \underbrace{\theta^{\top}\widehat{\mu}_{c}}_{mean}, \tag{5}$$

where $\widehat{\Sigma}_c$ and $\widehat{\mu}_c$ are the sample covariance matrix and mean of the characteristic-return vector r_c , and $\widehat{\sigma}_{bc}$ is the sample vector of covariances between the benchmark portfolio return r_b and the characteristic-return vector r_c .

Proposition 1 shows that the mean-variance parametric-portfolio problem finds the vector θ with the optimal tradeoff amongst the variance of the characteristic portfolio return, $(\gamma/2)\theta^{\top}\widehat{\Sigma}_{c}\theta$; the covariance of the characteristic portfolio return with the benchmark portfolio return, $\gamma\theta^{\top}\widehat{\sigma}_{bc}$; and the mean characteristic portfolio return, $\theta^{\top}\widehat{\mu}_{c}$.

3.2 Transaction costs

We consider an investor who faces proportional transaction costs that decrease with firm size and over time, as parameterized in Brandt et al. (2009) and Hand and Green (2011). Sections IA.1 and IA.2 of the internet appendix, respectively, show that our findings are robust to estimating proportional transaction costs from daily price data and to considering quadratic transaction costs, which are often used to model the price-impact costs of large investors.

Let the proportional transaction-cost parameter for the ith stock at time t be

$$\kappa_{i,t} = y_t z_{i,t},\tag{6}$$

where y_t and $z_{i,t}$ capture the variation of the transaction-cost parameter with time and firm size, respectively. Following Brandt et al. (2009) and Hand and Green (2011), we assume y_t decreases linearly from 3.3 in January 1980 to 1.0 in January 2002, and after that it remains at 1.0.¹⁴ We set $z_{i,t} = 0.006 - 0.0025 \times me_{i,t}$, where $me_{i,t}$ is the market

¹⁴Brandt et al. (2009) defines y_t so that transaction costs in 1974 are four times larger than in 2002. Therefore, if we decrease y_t uniformly until 1980, we would have a starting value for y_t approximately equal to 3.3.

capitalization of firm i at time t after being normalized cross sectionally so that it takes values between zero and one. This functional form results in proportional transaction costs in the 1980s of about 180 basis points for the smallest firms and 100 basis points for the largest firms, and after 2002 of about 60 basis points for the smallest firms and 35 basis points for the largest firms.

Given T historical observations of returns and characteristics, the transaction cost associated with implementing the parametric portfolios can be estimated as

$$TC(\theta) = \frac{1}{T-1} \sum_{t=1}^{T-1} \|\Lambda_t(w_{t+1}(\theta) - w_t^+(\theta))\|_1,$$
(7)

where the transaction-cost matrix at time t, Λ_t , is the diagonal matrix whose *i*th diagonal element contains $\kappa_{i,t}$, $||a||_1 = \sum_{i=1}^{N} |a_i|$ is the 1-norm of the N-dimensional vector a, and w_t^+ is the portfolio before rebalancing at time t + 1, that is,

$$w_t^+ = (w_{b,t} + X_t \times \theta / N_t) \circ (e_t + r_{t+1}), \tag{8}$$

where e_t is the N_t -dimensional vector of ones and $x \circ y$ is the Hadamard or componentwise product of vectors x and y. Combining (5) and (7), the mean-variance parametricportfolio problem *with* transaction costs is

$$\min_{\theta} \quad \underbrace{(\gamma/2)\theta^{\top}\widehat{\Sigma}_{c}\theta}_{var(char)} + \underbrace{\theta^{\top}\gamma\widehat{\sigma}_{bc}}_{cov(bench)} - \underbrace{\theta^{\top}\widehat{\mu}_{c}}_{mean} + \underbrace{\mathrm{TC}(\theta)}_{transaction\ costs}$$
(9)

3.3 Understanding why a characteristic matters

To understand why particular characteristics are significant from a portfolio perspective, it is useful to consider the first-order optimality conditions for the mean-variance parametric-portfolio problem with transaction costs in (9).

By decomposing the variance of the characteristic portfolio return, $\theta^{\top} \hat{\Sigma}_c \theta$, into a term associated with the characteristic *own-variances*, $\theta^{\top} \operatorname{diag}(\hat{\Sigma}_c)\theta$, and a term associated with the characteristic covariances, $\theta^{\top}(\hat{\Sigma}_c - \operatorname{diag}(\hat{\Sigma}_c))\theta$, where $\operatorname{diag}(\hat{\Sigma}_c)$ is the diagonal matrix whose kth diagonal element contains the variance of the kth characteristic return, the mean-variance parametric-portfolio problem with transaction costs can be rewritten as

$$\min_{\theta} \quad \underbrace{(\gamma/2)\theta^{\top}\operatorname{diag}(\widehat{\Sigma}_{c})\theta}_{own-var(char)} + \underbrace{(\gamma/2)\theta^{\top}(\widehat{\Sigma}_{c} - \operatorname{diag}(\widehat{\Sigma}_{c}))\theta}_{cov(char)} + \underbrace{\theta^{\top}\gamma\widehat{\sigma}_{bc}}_{cov(bench)} - \underbrace{\theta^{\top}\widehat{\mu}_{c}}_{mean} + \underbrace{\operatorname{TC}(\theta)}_{tran. \ costs} \quad (10)$$

Note that the transaction-cost term $TC(\theta)$ is a convex function of the parameter θ , but it is not differentiable at values of θ for which $w_{i,t+1}(\theta) = w_{i,t}^+(\theta)$ for some i and t. Therefore, the optimality conditions must be formally defined in terms of the subdifferential $\partial TC(\theta)$.¹⁵

Proposition 2. The first-order optimality conditions for problem (10) are

$$0 \in \underbrace{\gamma \operatorname{diag}(\widehat{\Sigma}_c)\theta}_{\operatorname{own-var}(char)} + \underbrace{\gamma(\widehat{\Sigma}_c - \operatorname{diag}(\widehat{\Sigma}_c))\theta}_{\operatorname{cov}(char.)} + \underbrace{\gamma\widehat{\sigma}_{bc}}_{\operatorname{cov}(bench.)} - \underbrace{\widehat{\mu}_c}_{\operatorname{mean}} + \underbrace{\partial \operatorname{TC}(\theta)}_{\operatorname{costs}},$$
(11)

where the kth component of the subdifferential of the transaction-cost term is

$$\partial_{\theta_k} TC(\theta) = \frac{1}{T-1} \sum_{t=1}^{T-1} sign(w_{t+1}(\theta) - w_t^+(\theta))^\top (\Lambda_t[(X_{t+1})_{\bullet,k} - (X_t)_{\bullet,k} \circ (e_t + r_{t+1})]), \quad (12)$$

where $A_{\bullet,k}$ is the kth column of matrix A, and

$$sign(w_{i,t+1}(\theta) - w_{i,t}^{+}(\theta)) = \begin{cases} +1 & \text{if } w_{i,t+1}(\theta) > w_{i,t}^{+}(\theta), \\ -1 & \text{if } w_{i,t+1}(\theta) < w_{i,t}^{+}(\theta), \\ [-1,1] & \text{if } w_{i,t+1}(\theta) = w_{i,t}^{+}(\theta). \end{cases}$$
(13)

The first-order optimality conditions in (11) allow us to identify the marginal contribution of each characteristic to the investor's mean-variance utility. Specifically, the kth component of the right-hand side in (11) is the marginal contribution of the kth characteristic to the parametric-portfolio mean-variance utility; that is, the marginal change to mean-variance utility associated with a unit increase in the weight that the parametric portfolio assigns to the kth characteristic. Moreover, the five terms on the right-hand side of (11) are: the marginal contributions of the kth characteristic to the characteristic own-variance, $\gamma \text{diag}(\hat{\Sigma}_c)\theta$; the characteristic covariance with the other characteristics,

¹⁵See Rockafellar (2015) for an extensive treatment of subdifferentials.

 $\gamma(\widehat{\Sigma}_c - \operatorname{diag}(\widehat{\Sigma}_c))\theta$; the covariance between the characteristic and the benchmark portfolio, $\gamma \widehat{\sigma}_{bc}$; the characteristic portfolio mean, $-\widehat{\mu}_c$; and the subdifferential of the transactioncost function, $\partial \operatorname{TC}(\theta)$.

Finally, to gauge the size of the trading-diversification benefit associated with combining characteristics, it will be useful to compute the marginal contribution to transaction costs of trading the kth characteristic in isolation (that is, without the benchmark or any other characteristics), which is

$$\partial_{\theta_k}^{iso} \mathrm{TC}(\theta) = \frac{1}{T-1} \sum_{t=1}^{T-1} \|\Lambda_t[(X_{t+1})_{\bullet,k} - (X_t)_{\bullet,k} \circ (e_t + r_{t+1})]\|_1.$$
(14)

Straightforward algebra shows that the marginal contribution to transaction costs of trading the kth characteristic in isolation given in (14) is larger in general than that of trading it in combination given in (12).

3.4 The regularized parametric portfolios

To deal with the large number of characteristics in our dataset, we develop a new class of parametric portfolios, which we term *regularized parametric portfolios*. These portfolios are obtained by imposing a lasso¹⁶ constraint on the parametric portfolio. This constraint reduces the impact of estimation error and acts as a variable-selection method that helps to reduce problem dimensionality, a feature that makes the regularized parametric portfolios suitable for the first stage of the screen-and-clean significance test described below in Section 3.5.

The regularized parametric portfolios are obtained by solving problem (9) subject to the lasso constraint,

$$\min_{\theta} \quad \frac{\gamma}{2} \theta^{\top} \widehat{\Sigma}_{c} \theta + \theta^{\top} \gamma \widehat{\sigma}_{bc} - \theta^{\top} \widehat{\mu}_{c} + \mathrm{TC}(\theta), \tag{15}$$

s.t.
$$\|\theta\|_1 \le \delta$$
, (16)

¹⁶The term lasso originated as the acronym for *least absolute shrinkage and selection operator*. The lasso was originally proposed in Tibshirani (1996) in the context of statistical learning and has become a prominent tool in the age of machine learning. See Hastie, Tibshirani, and Wainwright (2015) for an in-depth treatment of the lasso and DeMiguel, Garlappi, Nogales, and Uppal (2009a) for a Bayesian interpretation of the lasso constraint in the context of portfolio choice.

where $\|\theta\|_1 = \sum_{k=1}^{K} |\theta_k|$ is the 1-norm of θ and δ is the threshold parameter. To gain intuition about δ , note that for $\delta = \infty$, we recover the standard parametric portfolios, and for $\delta = 0$, we recover the benchmark portfolio. Thus, as one increases δ , the regularized parametric portfolios change from the benchmark portfolio toward the unregularized parametric portfolio.

3.5 Screen-and-clean significance test

We now explain how to test whether the parametric-portfolio weights corresponding to the different characteristics are significantly different from zero. Because we consider a large number of characteristics, it is desirable to use a variable-selection method such as lasso to reduce the number of characteristics before testing for significance. However, Chatterjee and Lahiri (2011) shows that it is challenging to test for significance in the presence of a lasso constraint. To address this challenge, we use a *two-stage* screenand-clean method, similar to the methods proposed in Wasserman and Roeder (2009), Meinshausen and Yu (2009), and Meinshausen, Meier, and Buhlmann (2009).

In the first stage, we *screen* the characteristics by using the regularized parametric portfolios. Specifically, we employ five-fold cross-validation, as explained in Hastie et al. (2015, Section 2.3), to select the lasso threshold δ that optimizes the mean-variance criterion.¹⁷ Using the resulting optimal lasso threshold, we compute the regularized parametric portfolios and "screen" or remove any characteristics with a zero parameter, thus reducing problem dimensionality and paving the way for the second (clean) stage.

In the second stage, we *clean* the characteristics that were not removed in the first stage. That is, we compute the parametric portfolios using the characteristics that survived the first stage, but now *without* a lasso constraint, thus circumventing the concerns highlighted in Chatterjee and Lahiri (2011). We then apply a bootstrap method to establish which of these characteristics have parametric-portfolio weights that are

¹⁷In particular, we divide the sample into five equal intervals. For j from 1 to 5, we remove the jthinterval from the sample and use the remaining sample returns to compute the regularized parametric portfolio for several values of δ . We then evaluate the return of the resulting portfolios on the jthinterval. After completing this process for each of the five intervals, we have out-of-sample portfolio returns for the entire sample for each value of δ . Finally, we compute the mean-variance utility of these out-of-sample returns and select the value of δ that optimizes mean-variance utility.

significantly different from zero. Specifically, we apply the percentile-interval method (Hastie et al., 2015, Section 6.2) to establish significance of the surviving characteristics. First, we generate 1,000 bootstrap samples from the original dataset using sampling with replacement. Second, we estimate the optimal parametric portfolio for each bootstrap sample. Third, we declare as significant those characteristics whose estimated parameter is strictly positive (strictly negative) for at least 95% of the bootstrap samples, and compute the *p*-value as the proportion of bootstrap samples for which the parameter is nonpositive (nonnegative).¹⁸

We now explain how our significance test relates to several regularization approaches used in the literature to identify the characteristics that are jointly relevant. For instance, Freyberger et al. (2018) and Messmer and Audrino (2017) use "adaptive lasso" and Kozak et al. (2018) uses "elastic net." These regularization methods are similar to the first (screen) stage of our approach because they employ cross-validation to maximize *out-of-sample fit*. However, because of our focus on *significance*, unlike these papers, our analysis includes a *second* (clean) stage that performs a bootstrap significance test on the parametric portfolios of those characteristics that survived the first (screen) stage.¹⁹

Another alternative is to use a *sequential* bootstrap method to test the significance of adding one more characteristic to an existing parametric portfolio. This approach would be similar to the methodology proposed in Harvey and Liu (2018) in the context of sequential factor selection. However, a sequential significance test would not capture the risk- and trading-diversification benefits from adding *several* characteristics simultaneously. This is crucial because both risk and transaction costs depend critically on how characteristics are combined.²⁰

¹⁸We have repeated the tests using the stationary bootstrap in Politis and Romano (1994), which takes serial dependence into account, and we have found that the results are robust.

¹⁹The adaptive lasso and elastic net could be used instead of lasso for the first (screen) stage of our significance method. Indeed, in Section IA.3 of the internet appendix, we repeat the screen-and-clean significance test, but employing elastic net for the first (screen) stage, and our results are robust.

²⁰Note that lasso can be interpreted also as a sequential procedure because as one increases the lasso threshold δ , the regularized parametric portfolios assign a nonzero weight to a larger number of characteristics. However, the lasso does not suffer from the limitation of a purely sequential procedure because it allows for characteristics to drop out of the active set as the lasso threshold increases; see Efron and Hastie (2016, Section 16.4). More importantly, we employ the lasso only in the first (screen)

We conclude this section with some comments on the robustness of our significance First, the screen-and-clean significance test is unlikely to suffer from the type test. of overfitting bias documented in Novy-Marx (2016) and Rytchkov and Zhong (2017) because it tests the *marginal* significance of each characteristic when considered jointly with the others, and thus follows exactly the recommendation in Novy-Marx (2016) that "the marginal contribution of each individual signal should be evaluated individually;" see Section IA.6 of the internet appendix for a more detailed discussion. Second, our main finding that transaction costs increase the number of significant characteristics is robust to using alternative significance tests and data samples, as we show in Sections IA.3, IA.4, and IA.8 of the internet appendix. This is because our main finding is obtained by *comparing* the number of significant characteristics for the cases with and without transaction costs, and therefore, any differences due to the method or sample are likely to wash out. Third, because the characteristics that we consider were discovered in the literature for their ability to explain the cross-section of *expected* stock returns rather than something related to transaction costs and trading diversification, it is unlikely that our findings about the impact of transaction costs on the dimension of the cross section are driven by data mining.

4 Trading diversification

We now characterize analytically and empirically the magnitude of the trading-diversification benefits obtained by combining characteristics. We do this by comparing the average trading volume (turnover) required to exploit characteristics in combination with that required to exploit them in isolation. Note that the reduction in turnover that we characterize in this section will result in a reduction in transaction costs *regardless* of the particular manner in which transaction costs are modeled. Indeed, the analysis in Section 6 and Sections IA.1 and IA.2 of the internet appendix shows that, in the presence of either proportional or quadratic transaction costs, the benefits of trading

stage of the significance test. The second (clean) stage is carried out on the *unregularized* parametric portfolios and tests the *joint* significance of all the characteristics that survived the screen stage.

diversification lead to a substantial reduction in the transaction costs associated with the optimal investor's portfolio.

4.1 Analytical results

To simplify the exposition, in this section we focus on the case where the investor holds an *equally weighted* portfolio of the characteristics, but all results can be extended to the case of a generic portfolio of characteristics.

Proposition 3 below characterizes the reduction in turnover obtained by combining characteristics. The intuition underlying this proposition is that, just as we get diversification of risk when we combine stocks, we get trading diversification when we combine characteristics. To see this, note that rebalancing the long-short portfolio associated with *each* characteristic requires trading in the *same* set of underlying stocks. Thus, exploiting multiple characteristics allows one to cancel out some of the trades in the underlying stocks required to rebalance the characteristic long-short portfolios. For instance, if to rebalance a characteristic long-short portfolio we need to buy a particular stock, whereas to rebalance another characteristic we need to sell the same stock, then the net amount of trading required to exploit these two characteristics in combination will be smaller than that required to exploit them in isolation.

Proposition 3. Assume that the trades in the *i*th stock required to rebalance K > 1 different characteristics, that is, the quantities

$$trade_{i,k} = (X_{t+1})_{i,k} - (X_t)_{i,k}(1+r_{i,t+1}), \qquad k = 1, 2, \dots, K$$
(17)

are jointly distributed as a multivariate Normal distribution with zero mean and positivedefinite covariance matrix Ω . Then:

1. The ratio of the average trading volume (turnover) in the ith stock required to rebalance an equally weighted portfolio of the K characteristics to that required to rebalance the K characteristics in isolation is

$$\frac{turnover(trade_i^{ew})}{turnover(trade_i^{iso})} = \frac{\sqrt{e^{\top}\Omega e}}{\sum_{k=1}^{K}\sqrt{\Omega_{kk}}} < 1,$$

where $e \in \mathbb{R}^{K}$ is the vector of ones, Ω_{kk} is the variance of trade_{*i*,*k*},

$$turnover(trade_i^{ew}) = E\left[\frac{1}{K} \left|\sum_{k=1}^{K} trade_{i,k}\right|\right], \quad and$$
$$turnover(trade_i^{iso}) = E\left[\frac{1}{K} \sum_{k=1}^{K} |trade_{i,k}|\right].$$

2. If, in addition, the covariance matrix Ω is symmetric with respect to all K characteristics, that is, if the variances and correlations between the trades in the ith stock required to rebalance the K different characteristics are all equal to σ^2 and ρ , respectively, then²¹

$$\frac{turnover(trade_i^{ew})}{turnover(trade_i^{iso})} = \sqrt{\frac{1+\rho(K-1)}{K}} < 1.$$
(18)

3. If, in addition, the correlations between the trades in the *i*th stock required to rebalance the K different characteristics are all zero ($\rho = 0$), then

$$\frac{turnover(trade_i^{ew})}{turnover(trade_i^{iso})} = \frac{1}{\sqrt{K}} < 1.$$

Part 1 of Proposition 3 shows that, provided the covariance matrix of the rebalancing trades is positive definite (and thus, the rebalancing trades between some of the characteristics are not perfectly correlated), combining characteristics will result in trading diversification and a reduction in turnover. Also, Part 2 of Proposition 3 shows that trading diversification increases with the number of characteristics and decreases with the correlation between the rebalancing trades of different characteristics.

4.2 Empirical results

We now evaluate empirically the benefits from trading diversification. Figure 1 compares the monthly turnover required to exploit the 51 characteristics in isolation with that

²¹Note that in (18) the term $1 + \rho(K - 1)$ is strictly positive because of the assumption that Ω is positive definite.

required to exploit them in an equally weighted combination.²² The figure shows that the trading-diversification benefits of combining characteristics are large empirically. While the average monthly turnover required to exploit the 51 characteristics in isolation is 24.09%, the turnover required to exploit an equally weighted combination of them is only 6.71%; that is, trading diversification delivers a 72.15% reduction in turnover.²³

Note that this 72.15% reduction in turnover is similar in magnitude to that predicted by Part 3 of Proposition 3 for the symmetric case with zero correlation between rebalancing trades across characteristics: $1 - 1/\sqrt{K} = 1 - 1/\sqrt{51} \approx 86\%$. Indeed, Figure 2 gives a heatmap of the correlations between the rebalancing trades for the 51 characteristics for a particular stock and shows that many of the correlations are close to zero.²⁴ Moreover, we find that the average correlation between rebalancing trades across the 51 characteristics and the entire universe of stocks is 5.47%, not very different from zero. This explains why the empirical benefits from trading diversification are so large and in line with those predicted by Part 3 of Proposition 3.

In this section, we have shown analytically and empirically that combining characteristics in an equally weighted portfolio results in a substantial reduction in *turnover* compared to trading them in isolation. In the next two sections, we show that combining characteristics in the parametric portfolio that maximizes an investor's expected utility also results in a substantial reduction in *transaction costs*.

²²For this section only, we have adjusted the sign of every characteristic so that its associated longshort portfolio produces positive average returns. The marginal contributions to turnover are computed using Equation (12) for the case where the transaction-cost matrix Λ_t is replaced by the identity matrix and for an equally weighted portfolio of the 51 characteristics without the benchmark; that is, $w_t = X_t e/(51N_t)$, where e is the vector of ones.

²³In fact, Figure 1 shows that the turnover required to exploit each characteristic in isolation (blue bars) is much larger than the marginal contribution to turnover of each characteristic in an equally weighted combination (yellow bars). Most strikingly, for the volatility of share turnover (*std_turn*) characteristic, the marginal contribution to turnover in an equally weighted combination is *negative*, implying that including this characteristic results in an absolute reduction in turnover of the portfolio.

²⁴We have produced heatmaps for several stocks as well as the heatmap for the average correlations across stocks and the insights are similar.

5 How many characteristics matter without costs?

This section studies how many characteristics are jointly significant in the absence of transaction costs and Section 6 studies the effect of transaction costs.

We use the screen-and-clean method, described in Section 3.5 above, to test the significance of the characteristics on the sample containing the 319 monthly observations from May 1988 to December 2014.²⁵ When computing the parametric portfolios, we use the value-weighted portfolio as the benchmark and assume a risk-aversion parameter $\gamma = 5.^{26}$ The first (screen) stage finds that 10 characteristics survive the screening. We then run the second (clean) stage on the *unregularized* parametric portfolios for these 10 characteristics to determine how many are significant.

Table 2 reports the significance of each characteristic that survived the first (screen) stage. We observe from the second column of Table 2 that, in the absence of transaction costs, six characteristics are significant. Five are significant at the 5% confidence level: unexpected quarterly earnings (*sue*), return volatility (*retvol*), asset growth (*agr*), 1-month momentum (*mom1m*), and gross profitability (*gma*); and one characteristic, beta, is significant at the 10% level. Our results show that, in the absence of transaction costs, a small number of characteristics is sufficient to explain the cross section of stock returns. This is consistent with several papers in the literature. For instance, Hou et al. (2014) and Fama and French (2016) show that four and five variables, respectively, are enough to explain the cross section. Likewise, Green et al. (2017) considers 94 characteristics and finds that 12 are jointly significant, Freyberger et al. (2018) considers 36 characteristics and finds that eight are significant.²⁷

²⁵Although our dataset covers the period from January 1980 to December 2014, we drop the first 100 months so that the significance test is run on the exact same sample as the out-of-sample analysis in Section 7. However, Section IA.8.3 in the internet appendix shows that our findings are robust to considering the full sample from 1980.

²⁶Section IA.10 of the internet appendix considers other values of risk-aversion: $\gamma = 2$ and 10.

²⁷In contrast to these papers, Kozak et al. (2018) finds that, in the absence of transaction costs, a small number of principal components predict the cross section better than a small number of characteristics. The explanation for these contrasting results is that while Kozak et al. (2018) focuses on *out-of-sample fit*, most of the aforementioned papers focus on *significance*, with the exception of Freyberger et al.

For each characteristic, the last four columns of Table 2 give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Marginal contributions that drive the characteristic to be nonzero are in **blue sans serif** font, and marginal contributions that drive the characteristic toward zero are in **red italic** font.²⁸

The marginal contributions reported in Table 2 show that the five characteristics significant at the 5% level matter because they help to reduce the risk of the portfolio of characteristics and increase its mean return.²⁹ In contrast, the beta characteristic is significant at the 10% level only because of its ability to reduce the risk of the portfolio of characteristics. To see this, note that Table 2 shows that, consistent with the findings in the existing literature (see Black (1993)), the marginal contribution of beta to the portfolio's mean return is very small. However, the beta return has a large negative covariance with the returns of the other characteristics (marginal contribution -0.01381), and this is what makes it relevant from a portfolio perspective. This is illustrated in Figure 3, which depicts the marginal contributions of the six significant characteristics, and shows that beta has a large negative marginal contribution to the covariance with the other characteristics that helps to reduce the overall portfolio risk.

Table 2 also explains why size, book to market, and momentum are *not* significant. For instance, 12-month momentum (mom12m) and book to market (bm) are not significant, even though their expected returns are large, because their returns have a very large positive covariance with the returns of the other characteristics in the portfolio. In contrast, market capitalization (mve) has only a small mean return, consistent with findings in the literature (see Asness, Frazzini, Israel, Moskowitz, and Pedersen (2018)),

²⁹For instance, return volatility has large positive mean return (marginal contribution 0.00323) and negative return covariance with the other characteristics (marginal contribution 0.02914).

^{(2018).} This suggest that, while a large number of characteristics may help to *predict* the cross section, not all may be statistically significant.

²⁸Note that for characteristics with a positive parametric-portfolio weight, negative (positive) marginal contributions help to decrease (increase) the objective function in the minimization problem (9) and thus increase (decrease) the investor's mean-variance utility. Therefore, for characteristics with positive parametric-portfolio weights, negative (positive) marginal contributions are in blue **sans** serif font (red *italic* font). The opposite color and font convention applies to characteristics with negative parametric-portfolio weights.

and hence, although mve helps to diversify the characteristic portfolio, the risk reduction is not sufficient to make it significant.

As discussed above, the contribution of characteristics to portfolio risk plays an important role, and thus, the correlations between the characteristic returns matter. Table 3 reports the correlation matrix for the returns of the six significant characteristics and the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.

We first observe from Table 3 that the returns of the size, book to market, and momentum characteristics are not highly correlated, with their correlation coefficients being smaller than 20%. On the other hand, the returns of the six significant characteristics we identify are more highly correlated. To understand why these characteristics with highly correlated returns are jointly significant for portfolio choice, consider the case of return volatility and beta. The returns of these two characteristics are highly positively correlated (93%), but the mean return of beta is very small. As a consequence, the investor optimally goes long the beta characteristic to hedge the risk of her short position in the return-volatility characteristic, while preserving most of its mean return. The benefit of this strategy is illustrated in Panel (a) of Figure 4, which shows the cumulative returns of a blended strategy that assigns a -50% weight to return volatility and a +50% weight to beta. This blended strategy has large cumulative returns and very low volatility.³⁰

Asness, Moskowitz, and Pedersen (2013) finds that the returns of value and momentum are negatively correlated and a blended strategy of these two characteristics performs well. We compare the return volatility and beta blended strategy with the value and momentum blended strategy. Panel (b) in Figure 4 shows the cumulative returns of these two blended strategies, where we have scaled them so that they have the

³⁰Our finding that, despite the high correlation between the return volatility and beta characteristics, the return-volatility characteristic commands a much higher average return than beta is consistent with results in the existing literature. As explained in Bali, Engle, and Murray (2016), return volatility and idiosyncratic volatility are very similar in the cross section. Therefore, the high average return of the return-volatility characteristic can be traced back to the high average return of the idiosyncratic-volatility characteristic, which is documented in Ang, Hodrick, Xing, and Zhang (2006). Moreover, Bali et al. (2016, Table 15.7) shows that the idiosyncratic risk characteristic commands a high average return mostly when computed from daily data over short horizons, which is how return volatility is computed in our analysis. Beta, on the other hand, is computed from weekly returns over the past three years, and thus delivers much lower average returns; see also Liu, Stambaugh, and Yuan (2018).

same volatility. We find that the return-volatility and beta blend attains a cumulative return of 110%, whereas the value and momentum blend attains a cumulative return of around 80%.

Summarizing, we find that, in the absence of transaction costs, only six characteristics are significant and that risk diversification plays an important role in determining which characteristics are significant. We now study the role of trading diversification.

6 What is the effect of transaction costs?

In this section, we examine how transaction costs influence the optimal portfolio of a utility-maximizing investor, and hence, the dimension of the cross section. As explained in Section 3.2, we consider an investor who faces proportional transaction costs that decrease with firm size and over time, as in Brandt et al. (2009) and Hand and Green (2011). Sections IA.1 and IA.2 of the internet appendix, respectively, show that our findings are robust to estimating proportional transaction costs from daily price data and to considering quadratic transaction costs.

Intuitively, one may expect that in the presence of transaction costs *fewer* characteristics would be significant because transaction costs can only erode the benefits from exploiting characteristics. Indeed, we find that this is the case if one were to consider each characteristic *individually*: Section IA.13 in the internet appendix shows that 21 characteristics are individually significant in the absence of transaction costs, but only 14 in the presence transaction costs. However, when considered *jointly*, we find that the number of characteristics that are jointly significant at the 5% level *increases* from five in the absence of transaction costs to 15 in the presence of proportional transaction costs.³¹

The explanation for this result can be found in Table 4, which gives the significance and marginal contributions of the characteristics for the parametric portfolios in the presence of transaction costs. Of particular interest are the last two columns of the table, which give (i) the marginal contribution of each characteristic to transaction costs when

³¹For the case with proportional transaction costs estimated from daily price data reported in Section IA.1, the number of characteristics that are jointly significant increases from five to 14, and for the case of quadratic transaction costs reported in Section IA.2, the number of characteristics that are jointly significant increases from five to 19.

combined in the optimal parametric portfolio and (ii) the marginal contribution of each characteristic to transaction costs when traded in *isolation*; that is, independently from the benchmark portfolio and the other characteristics. Comparing these two columns reveals that the reason why the number of significant characteristics is *larger* in the presence of transaction costs is that the transaction costs associated with trading the portfolio of characteristics that maximizes the investor's utility are *substantially smaller* than those associated with trading characteristics in isolation. We find that the marginal transaction cost associated with trading the 15 significant characteristics is reduced by around 65% on average when they are combined in the optimal portfolio. This reduction is illustrated in Figure 5, which depicts the marginal contributions to transaction costs of the 15 significant characteristics are combined in the optimal portfolio and in isolation.

A stark example of the trading-diversification benefits from combining characteristics is the short-term reversal characteristic (mom1m in the 14th row of Table 4), which has an enormous marginal contribution to transaction costs if traded in isolation (marginal contribution 0.00857), but a dramatically smaller marginal contribution to transaction costs when traded in the optimal portfolio (marginal contribution 0.00211). As a result, the short-term reversal characteristic, which is significant in the absence of transaction costs as shown in Table 2, is significant even in the presence of transaction costs when combined in the optimal portfolio of characteristics.³²

In Section 4, we showed analytically and empirically that combining characteristics in an equally weighted portfolio results in a substantial reduction in turnover compared to trading them in isolation. The results in this section confirm that combining characteristics in the optimal parametric portfolio leads to a substantial reduction in *transaction costs*, and hence, an increase in the investor's utility. The explanation is that combining

³²This result contrasts with DeMiguel, Nogales, and Uppal (2014) and Novy-Marx and Velikov (2016) that find that the short-term reversal characteristic is not profitable after transaction costs when traded in isolation. DeMiguel et al. (2014) finds that a short-term reversal (contrarian) strategy is not profitable in the presence of even modest proportional transaction costs of 10 basis points. Novy-Marx and Velikov (2016) finds that the short-term reversal strategy does not improve the investment opportunity set of an investor with access to the Fama and French (2016) and Carhart (1997) factors, even when a buy-and-hold transaction-cost-mitigation strategy is employed.

a larger number of characteristics is advantageous in the presence of transaction costs because the benefits from trading diversification grow with the number of characteristics exploited, as shown in Proposition 3. The main takeaway is that transaction costs *increase* the dimension of the cross-section of stock returns and provide a rationale for non-sparse characteristic-based asset-pricing models.

7 Out-of-sample analysis

The previous sections studied the effect of transaction costs on the number of characteristics that are jointly significant *in sample*. In this section, to alleviate data-mining concerns, we study whether an investor can improve *out-of-sample* performance net of transaction costs by exploiting a larger set of characteristics than that considered in prominent asset-pricing models.

7.1 Methodology for out-of-sample evaluation

To evaluate the out-of-sample performance of the various portfolio strategies we use a "rolling-horizon" procedure, similar to that used in DeMiguel, Garlappi, and Uppal (2009b). First, we choose a window over which to perform the estimation. The total number of monthly observations in the dataset is $T_{tot} = 419$ and we choose an estimation window of T = 100. Second, using the return data over the estimation window, we compute the various portfolios we study. Third, we repeat this "rolling-window" procedure for the next month, by including the data for the next month and dropping the data for the earliest month. We continue doing this until the end of the dataset is reached. At the end of this process, we have generated $T_{tot} - T = 319$ portfolio-weight vectors, w_t^j , for $t = T, \ldots, T_{tot} - 1$ and for each strategy j. Holding the portfolio w_t^j for one month gives the *out-of-sample* return net of transaction costs at time t + 1:

$$r_{t+1}^{j} = (w_{t}^{j})^{\top} r_{t+1} - \|\Lambda_{t}(w_{t}^{j} - (w_{t-1}^{j})^{+})\|_{1},$$

where $(w_{t-1}^j)^+$ is the portfolio for the *j*th strategy before rebalancing at time *t*; that is,

$$(w_{t-1}^j)^+ = w_{t-1}^j \circ (e_{t-1} + r_t),$$

and Λ_t , e_{t-1} , and $x \circ y$ are as defined in Section 3.2. Then, for each portfolio we study, we compute the monthly turnover, and the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns net of transaction costs:

$$\text{turnover}^{j} = \frac{1}{T_{tot} - T} \sum_{t=T}^{T_{tot} - 1} ||w_{t}^{j} - (w_{t-1}^{j})^{+}||_{1},$$
$$\hat{\mu}^{j} = \frac{12}{T_{tot} - T} \sum_{t=T}^{T_{tot} - 1} (w_{t}^{j})^{\top} r_{t+1},$$
$$\hat{\sigma}^{j} = \left(\frac{12}{T_{tot} - T} \sum_{t=T}^{T_{tot} - 1} \left((w_{t}^{j})^{\top} r_{t+1} - \hat{\mu}^{j}\right)^{2}\right)^{1/2}, \quad \text{and} \\ \widehat{\text{SR}}^{j} = \frac{\hat{\mu}_{j}}{\hat{\sigma}_{j}}.$$

To test if the out-of-sample performance of the regularized parametric portfolio is statistically significantly better than that of the other portfolios we consider, we use the iid bootstrap method in Ledoit and Wolf (2008), with 10,000 bootstrap samples to construct a one-sided confidence interval for the difference between Sharpe ratios. We use three/two/one asterisks (*) to indicate that the difference is significant at the 0.01/0.05/0.10 level.³³

7.2 Out-of-sample performance

Table 5 reports the out-of-sample performance of several portfolios in the presence of transaction costs with risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the portfolios that do not use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of three parametric portfolios: two portfolios that exploit a small number

³³Note that to reduce computation time, we compute the optimal parameter vector θ only in January of each year, and use this parameter vector to compute the parametric portfolios for every month of the year. Also, we find that the regularized parametric portfolios that solve problem (15)–(16) result in very large turnovers. Although we find that these portfolios are profitable even after transaction costs (see Section IA.12.3 of the internet appendix), they may not be implementable for institutional investors facing turnover constraints. Therefore, we report the results for the parametric portfolios after scaling them to control for turnover. Specifically, we scale the optimal parameter vector θ so that the portfolio monthly turnover is around 100%.

of characteristics and the regularized portfolio that exploits a large set of 51 characteristics.³⁴ The first parametric portfolio exploits the *three* characteristics considered in Brandt et al. (2009): size, book to market, and momentum. The second parametric portfolio exploits *four* characteristics: size, book to market, asset growth, and gross profitability, which include the investment and profitability characteristics such as those highlighted in Fama and French (2016) and Hou et al. (2014).

We observe from Table 5 that the gains from exploiting a large set of characteristics are significant: the regularized parametric portfolios achieve an out-of-sample Sharpe ratio that is 100% higher than that of the parametric portfolios based on three characteristics and 25% higher than that of the parametric portfolios based on four characteristics, with the differences being statistically significant. The magnitude of the economic gains is evident also from Figure 6, which depicts the out-of-sample cumulative returns of the value-weighted portfolio and the three parametric portfolios we consider, after scaling them so that they all have the same volatility.

These out-of-sample results confirm that in the presence of transaction costs the cross section of stock returns is not fully explained by a small number of characteristics.

7.3 Can factor models explain regularized portfolio returns?

The previous section demonstrates that the regularized parametric portfolios that exploit a large set of 51 characteristics significantly outperform the two parametric portfolios that exploit only small sets of characteristics. To check the robustness of this result, we run a time-series regression of the out-of-sample returns of the regularized parametric portfolio onto three sparse factor models from the literature: the Fama and French (1993) and Carhart (1997) four-factor model (FFC), the Fama and French (2016) five-factor model (FF5), and the Hou et al. (2014) four-factor model (HXZ). All factors are obtained from Kenneth French's and Lu Zhang's websites. Table 6 shows that none of these three sparse factor models fully explains the returns of the regularized parametric portfolios, which

 $^{^{34}}$ For the regularized parametric portfolio, we calibrate the lasso threshold to optimize mean-variance utility by using the five-fold cross-validation methodology explained in Section 3.5, but using only the 100 observations in each estimation window so that there is no look-ahead bias.

achieve an economically and statistically significant abnormal average monthly return of about 1% for each of the three models.³⁵

This analysis, however, does not account for the transaction costs that an investor would incur to exploit the characteristics underlying the sparse factor models. To check whether transaction costs affect the abnormal out-of-sample returns delivered by the regularized portfolio, we compute the generalized alpha in Novy-Marx and Velikov (2016). Table 7 reports the intercept, slope, and t-statistic (in brackets) from regressing the outof-sample regularized portfolio returns net of transaction costs onto the out-of-sample returns net of transaction costs of the parametric portfolio that exploits: (1) the size, book-to-market, and momentum characteristics (Size/val./mom.); and (2) the size, bookto-market, investment, and profitability characteristics (Size/val./inv./prof.). We observe that the regularized parametric portfolio has an economically and statistically significant generalized alpha of about 1% with respect to these two portfolios.

The results in Tables 6 and 7 confirm that sparse factor models cannot fully explain the out-of-sample performance of the regularized parametric portfolios.

8 Conclusion

A multitude of variables have been proposed to explain the cross-section of stock returns. When addressing the challenge posed in Cochrane (2011), which we highlighted in the introduction, the existing literature either ignores transaction costs or considers one characteristic at a time. We, in contrast, study the impact of *transaction costs* on the number of characteristics that are *jointly* significant for an investor's portfolio. We show analytically that combining characteristics *always* reduces turnover, and thus, transaction costs. The ability to reduce transaction costs by investing in a larger number of characteristics changes the optimal portfolio of a utility-maximizing investor, and hence, increases the

 $^{^{35}}$ The table also shows that the regularized parametric-portfolio returns load significantly on the market, value (HML), and momentum (UMD) factors for the FFC model, on the market, value, and investment (CMA) factors for the FF5 model, and on the market, investment (I/A), and profitability (ROE) factors for the HXZ model. Finally, the loading of the regularized parametric-portfolio returns on the market factor is close to one because, following Brandt et al. (2009), we use the value-weighted portfolio as the benchmark for the parametric portfolios.

dimension of the cross section. Our empirical work establishes that the magnitude of this effect is substantial: transaction costs roughly double the number of jointly significant characteristics. Our findings have implications for asset-pricing theories based on SDFs because the investor's optimality condition determines not only her optimal portfolio but also the associated SDF. In particular, our work shows that transaction costs provide a rationale for considering a larger number of characteristics than that in prominent asset-pricing models.

A Relation to regression approaches

In this appendix, we study the relation of our approach based on parametric portfolios to the regression approaches frequently used in the literature. Section A.1 studies the relation to Fama-MacBeth cross-sectional regressions, Section A.2 to time-series regressions, and Section A.3 to the generalized-alpha approach developed in Novy-Marx and Velikov (2016). Proofs for the propositions and corollary that appear in this section are given in Appendix C.

A.1 Relation to Fama-MacBeth regressions

In this section, we study analytically and empirically the relation between our approach and the Fama-MacBeth regressions in the absence of transaction costs. The Fama-MacBeth procedure can be described as running cross-sectional regressions of stock returns, r_t , onto firm-specific characteristics at each date t:

$$r_t = X_{t-1}\lambda_t + \epsilon_t, \tag{A1}$$

where $X_{t-1} \in \mathbb{R}^{N_{t-1} \times K}$ is the matrix of firm-specific characteristics at time t-1,³⁶ $\lambda_t \in \mathbb{R}^K$ is the vector of slopes at time t, and $\epsilon_t \in \mathbb{R}^{N_{t-1}}$ is the vector of pricing errors at time t. The Fama-MacBeth approach then tests the significance of the average of the slopes over time, $\overline{\lambda}$.

Most of the existing literature estimates the Fama-MacBeth cross-sectional regressions using ordinary least squares (OLS). Lewellen, Nagel, and Shanken (2010), however, recommends using generalized least squares (GLS) cross-sectional regressions because their goodness-of-fit metric has a clear economic interpretation. In particular, Lewellen et al. (2010) extends a result in Kandel and Stambaugh (1995) to show that the GLS R^2 measures the mean-variance efficiency of the model's factor-mimicking portfolios.³⁷

³⁶For the sake of simplicity and without loss of generality, we assume that X_{t-1} is divided by the number of firms at time t-1, as we do for parametric portfolios.

³⁷Lewellen et al. (2010) studies two-pass cross-sectional regressions, rather than Fama-MacBeth regressions; see (Cochrane, 2009, Sections 12.2 and 12.3). For our theoretical analysis, we make the simplifying assumption that the characteristics are time invariant, and in this case the cross-sectional regressions coincide with the Fama-MacBeth regressions. In addition, we use firm-specific characteristic data, rather than factor data, and thus all of our analysis is based on a single pass regression of stock returns onto characteristics.

The following proposition clarifies the relation between our portfolio approach and the Fama-MacBeth OLS and GLS regressions.

Proposition A1. Assume that the standardized firm characteristics are constant through time so that $X_t = X$. Then, the OLS and GLS Fama-MacBeth average slopes are

$$\overline{\lambda}_{OLS} = (X^{\top}X)^{-1}X^{\top}\widehat{\mu}_r, \quad and \tag{A2}$$

$$\overline{\lambda}_{GLS} = (X^{\top} \widehat{\Sigma}_r^{-1} X)^{-1} X^{\top} \widehat{\Sigma}_r^{-1} \widehat{\mu}_r, \qquad (A3)$$

where $\hat{\mu}_r \in \mathbb{R}^N$ is the sample mean of stock returns and $\hat{\Sigma}_r \in \mathbb{R}^{N \times N}$ is the sample covariance matrix of stock returns. Assume also that the sample vector of covariances between the benchmark portfolio return and the characteristic portfolio return vector is zero ($\sigma_{bc} = 0$). Then the optimal mean-variance parametric portfolio is

$$\theta^* = \frac{1}{\gamma} (X^\top \widehat{\Sigma}_r X)^{-1} X^\top \widehat{\mu}_r.$$
(A4)

Proposition A1 shows that the OLS and GLS Fama-MacBeth slopes differ in general from the mean-variance parametric-portfolio weights; that is, testing the significance of Fama-MacBeth slopes is different from testing the significance of the weights a meanvariance investor assigns to each characteristic. Note, in particular, that the OLS and GLS Fama-MacBeth slopes are different in general from the mean-variance parametricportfolio weights *unless* the sample covariance matrix of asset returns is equal to the identity matrix ($\Sigma_r = I$).

The following corollary provides further insight into the difference between the parametric-portfolio weights and the OLS Fama-MacBeth slopes.

Corollary A1. Let the assumptions in Proposition A1 hold, and assume in addition that the columns of the firm-specific characteristic matrix X are orthonormal; that is, $X^{\top}X = I$. Then, the optimal mean-variance parametric portfolio is

$$\theta^* = \frac{1}{\gamma} \widehat{\Sigma}_c^{-1} \overline{\lambda}_{OLS},\tag{A5}$$

where $\widehat{\Sigma}_c$ is the sample covariance matrix of characteristic returns and γ is the riskaversion parameter. Corollary A1 shows that, for the particular case in which the columns of the firm-specific characteristic matrix are orthonormal, there is a componentwise one-to-one relation between mean-variance parametric-portfolio weights and OLS Fama-MacBeth slopes only if the sample covariance matrix of characteristic returns, $\hat{\Sigma}_c$, is diagonal.³⁸ If, on the other hand, characteristic returns are correlated, then a given characteristic k could have a zero OLS Fama-MacBeth slope ($\bar{\lambda}_k = 0$), and yet have a nonzero parametric-portfolio weight ($\theta_k^* \neq 0$). This is the case, for instance, when the correlation of the kth characteristic return with the returns on the other characteristics can be exploited by the investor to reduce risk, and thus, improve her overall mean-variance utility.

The above theoretical results demonstrate that testing the significance of Fama-MacBeth slopes will, in general, produce results that are different from those of testing the significance of the weights that a mean-variance investor assigns to each characteristic. We now compare empirically the significance results from OLS Fama-MacBeth regressions with those of our approach.³⁹ Table A1 reports the significance of the Fama-MacBeth slopes for the six characteristics we found to be significant in Section 5 plus size, book to market, and momentum. The first column lists the name of the characteristics, the second column reports the multiple regression slopes and Newey-West *t*-statistics (in brackets),⁴⁰ and the third column reports the individual regression slopes and Newey-West *t*-statistics.

We see from Table A1 that the five characteristics that are significant at the 5% level in Section 5 are also jointly significant for cross-sectional regressions. However, in contrast to the finding in Section 5, beta is not significant in the Fama-MacBeth regressions even at the 10% level. This is because, as shown in Proposition A1, Fama-MacBeth slopes differ in general from parametric-portfolio weights when the returns on the characteristics are correlated over time and the investor can exploit this to reduce the risk of the mean-variance portfolio. Regarding the book-to-market and momentum

³⁸To see this, note that if $\widehat{\Sigma}_c$ is diagonal, then $\theta_k^* = (\overline{\lambda}_{OLS})_k / (\gamma(\widehat{\Sigma}_c)_{kk})$, where $(\widehat{\Sigma}_c)_{kk}$ is the *k*th element of the diagonal of $\widehat{\Sigma}_c$, and thus there is a one-to-one correspondence between the *k*th component of θ^* and the *k*th component of $\overline{\lambda}_{OLS}$.

³⁹We do not run GLS Fama-MacBeth regressions because the sample covariance matrix of stock returns is singular for our case with thousands of stocks and only hundreds of monthly dates.

⁴⁰We compute *t*-statistics with Newey-West adjustments of 12 lags, as in Green et al. (2017).

characteristics, we see from Table A1 that both book to market (bm) and 12-month momentum (mom12m) are significant for multiple cross-sectional regressions, whereas they were not significant from a portfolio perspective. Intuitively, these characteristics are significant in multiple cross-sectional regressions because these regressions ignore the large contribution of these characteristics to the risk of the overall portfolio of characteristics, which reduces their appeal from a mean-variance portfolio perspective.

A.2 Relation to time-series regressions

In this section, we study analytically and empirically the relation of our portfolio approach to the time-series regression approach in the absence of transaction costs. The time-series approach may be described as regressing the return of a *new* characteristic long-short portfolio onto the returns of K_c commonly accepted characteristic long-short portfolios; that is,

$$r_{n,t} = \alpha_{TS} + \beta_{TS}^{\top} r_{c,t} + \epsilon_t, \tag{A6}$$

where $r_{n,t} \in \mathbb{R}$ is the return of the *new* characteristic long-short portfolio at time t, $r_{c,t} \in \mathbb{R}^{K_c}$ is the return of the commonly accepted characteristic long-short portfolios at time t, the error term $\epsilon_t \in \mathbb{R}$ follows a Normal distribution with zero mean and standard deviation σ_{ϵ} , $\alpha_{TS} \in \mathbb{R}$ is the intercept of the regression, and $\beta_{TS} \in \mathbb{R}^{K_c}$ is the slope vector. If the intercept in this regression is significant, the return on the new characteristic is not fully explained by the return of the commonly accepted characteristics. Gibbons et al. (1989) shows that a significant intercept implies that the new characteristic-based long-short portfolio improves the investment opportunity set of a mean-variance investor who already has access to the returns of the set of commonly accepted characteristics.

As explained above, the time-series regression approach tests the significance of the intercept. In contrast, the following proposition shows that, in the absence of transaction costs, our approach is equivalent to testing the significance of the *slopes* of a particular constrained time-series multiple regression. Britten-Jones (1999) shows that the tangency mean-variance portfolio can be identified by solving a linear regression. We extend this result to the context of *any* parametric portfolio on the mean-variance efficient frontier by introducing a constraint on the mean return of the portfolio.

Proposition A2. For a given risk-aversion parameter γ , the optimal parameter θ^* for the mean-variance parametric-portfolio problem without transaction costs (5) is equal to the ordinary least square (OLS) estimate of the slope vector in the following time-series regression model:

$$r_{b,t} = \alpha - \beta^{\top} r_{c,t} + \epsilon_t, \tag{A7}$$

subject to the constraint that

$$\beta^{\top} \mu_c = (\theta^*)^{\top} \mu_c, \tag{A8}$$

where $r_{b,t} \in \mathbb{R}$ is the return of the benchmark portfolio, $r_{c,t} \in \mathbb{R}^K$ is the return on the characteristics, $\alpha \in \mathbb{R}$ is the intercept, $\beta \in \mathbb{R}^K$ is the slope vector, μ_c is the mean characteristic return vector, and $(\theta^*)^\top \mu_c$ is the average return of the mean-variance parametric portfolio.

The advantage of the parametric-portfolio approach is that by focusing on the slopes, it allows one to test the significance of the different characteristics when they are considered *jointly*. The traditional time-series approach, on the other hand, is designed to test the significance of a single characteristic when it is added to a set of commonly accepted characteristics. This is a limitation of the time-series regression approach because the result of the statistical inference depends on the sequence in which variables are selected. For instance, when regressing the return of each characteristic in our dataset onto the returns of the four Fama and French (1993) and Carhart (1997) factors downloaded from Kenneth French's website, we find that eight characteristics are significant in the absence of transaction costs, but beta *is not* significant.⁴¹ Beta, however, *is* significant when its returns are regressed onto the four Fama and French (1993) and Carhart (1997) factors *plus* the return of the return-volatility long-short portfolio, because beta helps to hedge the return-volatility characteristic.⁴² Accordingly, beta *matters* if one controls for return volatility.⁴³ Our portfolio approach considers all characteristics simultane-

 $^{^{41}}$ We run 48 significance tests corresponding to the 51 characteristics except size, value, and momentum and thus, following Harvey et al. (2015) we apply Bonferroni's adjustment.

⁴²We again apply Bonferroni's adjustment.

 $^{^{43}}$ This result is analogous to that in Asness et al. (2018), which finds that despite the weak performance of the *size* characteristic when evaluated in isolation, it becomes significant once it is considered in combination with a quality characteristic.

ously and finds that return volatility and beta are jointly significant together with four other characteristics. These empirical results highlight the importance of considering all characteristics simultaneously. Other advantages of our portfolio approach are that it allows one to consider transaction costs in a straightforward manner and to identify the marginal contribution of each characteristic to the investor's utility.

A.3 Relation to generalized alpha

In this section, we compare empirically the results from our portfolio approach in the presence of transaction costs with those from using the generalized alpha developed in Novy-Marx and Velikov (2016), which extends the traditional time-series regression framework to take transaction costs into account. Novy-Marx and Velikov (2016) proposes computing the returns of the mean-variance portfolio in the presence of transaction costs for the commonly accepted characteristics, MVE_X , and the returns of the mean-variance portfolio in the presence of transaction costs for the commonly accepted characteristics plus the new characteristic, $MVE_{X,y}$. Then it runs the following regression:

$$MVE_{X,y}/w_y = \alpha + \beta MVE_X + \epsilon,$$
 (A9)

where w_y is the weight of the mean-variance portfolio on the new characteristic. Novy-Marx and Velikov (2016) shows that in the absence of transaction costs, the generalized alpha in (A9) equals the alpha from the traditional time-series approach. In the presence of transaction costs, this approach tests the significance of adding the new characteristic to a set of commonly accepted characteristics taking transaction costs into account.⁴⁴

As discussed in Section A.2, the main advantage of our portfolio approach with respect to the time-series approach is that it considers all characteristics simultaneously and tests their significance when considered jointly, whereas the time-series regressions are designed to consider one characteristic at a time. To illustrate this, we compute the generalized alpha for each of our characteristics with respect to the four Fama and French (1993) and Carhart (1997) factors downloaded from Kenneth French's website. We find

⁴⁴Although the implementation in Novy-Marx and Velikov (2016) considers the transaction cost associated with each characteristic independently, here we extend the approach in Novy-Marx and Velikov (2016) to capture trading diversification.

that, in the presence of transaction costs, *none* of the characteristic portfolios has a significant generalized alpha with respect to the four factors.⁴⁵ However, in the absence of transaction costs, Section A.2 showed that eight characteristics were significant with respect to the four factors. That is, the number of characteristics that are significant with respect to the four factors for the time-series approach *decreases* in the presence of transaction costs when the characteristics are considered in isolation. In contrast, our portfolio approach shows that the number of significant characteristics *increases* in the presence of transaction costs. This is because our approach allows one to consider all characteristics simultaneously and identify the optimal combination of characteristics that results in substantial trading diversification.

⁴⁵To address the multiple testing problem, we again apply Bonferroni's adjustment because we carry out 48 significance tests corresponding to our 51 characteristics except size, value, and momentum.
B Relation between optimal portfolio and SDF

In this appendix, we establish the relation between the investor's optimal portfolio and its associated SDF in the presence of transaction costs. For exposition purposes, we first derive the relation for the case where the transaction-cost function is differentiable, as is the case for the quadratic transaction costs that we consider in Section IA.2 of the internet appendix. Then, we show how the relation can be extended to the case where the transaction-cost function is convex, but not differentiable, as is the case for the proportional transaction costs considered in the main body of the manuscript.

B.1 Differentiable transaction-cost function

Consider an investor who holds a parametric portfolio with return $r_{pt} = r_{bt} + \theta^{\top} r_{ct}$, where r_{bt} is the benchmark portfolio return, r_{ct} is the characteristic return vector, and θ is the parameter vector. The investor selects the parametric portfolio that maximizes her expected utility of returns net of transaction costs:

$$\max_{\theta} \quad E\left[u\left(r_{bt} + \theta^{\top}r_{ct} - \mathrm{TC}(\theta)\right)\right],\tag{B1}$$

where $TC(\theta)$ is the transaction cost of holding the parametric portfolio.

Assuming that the transaction-cost function, $TC(\theta)$, is differentiable, the investor's first-order optimality condition is

$$E\left[u'(r_{bt} + \theta^{\top} r_{ct} - \mathrm{TC}(\theta))(r_{ct} - \mathrm{TC}'(\theta))\right] = 0,$$
(B2)

where $u'(\cdot)$ and $TC'(\cdot)$ are the first derivatives of the utility and transaction cost functions, respectively. From Equation (B2) it is apparent that the investor's optimal portfolio, θ , will depend on transaction costs.

To derive the SDF associated with the investor's optimal portfolio, one can rewrite Equation (B2) as

$$E\left[M_t(r_{ct} - \mathrm{TC}'(\theta))\right] = 0, \tag{B3}$$

where the SDF is

$$M_t = u'(r_{bt} + \theta^\top r_{ct} - \mathrm{TC}(\theta)).$$
(B4)

Thus, the SDF is the marginal utility of the returns net of transaction costs of the optimal parametric portfolio. This demonstrates that our finding that transaction costs increase the number of characteristics that are significant for the investor's optimal portfolio applies also to the associated SDF.⁴⁶ Note that transaction costs affect asset prices through *three* channels. First, Equation (B3) shows that the SDF prices returns *net* of marginal transaction costs. Second, Equation (B4) shows that the SDF depends on the investor's optimal portfolio, θ , which itself depends on transaction costs. Third, the SDF is the investor's marginal utility evaluated using returns *net* of transaction costs.

B.2 Convex transaction-cost function

We now establish the relation for the case where the transaction-cost function is convex, but not differentiable, as in the case with proportional transaction costs considered in the main body of the manuscript.

Most popular utility functions are differentiable. This is the case for power utility or for the quadratic utility that underlies mean-variance preferences. Also, it is straightforward to show that the proportional transaction-cost function in Equation (7) of the manuscript is convex and Lipschitz continuous. Therefore, (Clarke, 1990, Theorem 2.6.6) implies that the chain rule can be applied to obtain the subdifferential of the investor's utility. Thus, the investor's first-order optimality condition is:

$$0 \in E\left[u'(r_{bt} + \theta^{\top} r_{ct} - \mathrm{TC}(\theta))(r_{ct} - \partial \mathrm{TC}(\theta))\right],$$
(B5)

where $\partial TC(\cdot)$ is the subdifferential of the transaction-cost function. Note that, unlike a differential, the subdifferential is a set-valued function, and thus, the optimality conditions state that zero must be an element in the set defined by the expectation of the subdifferential of the investor's utility function.

To derive the SDF, note that the first-order optimality condition can be rewritten as

$$0 \in E\left[M_t(r_{ct} - \partial \mathrm{TC}(\theta))\right],\tag{B6}$$

where the SDF is

$$M_t = u'(r_{bt} + \theta^\top r_{ct} - \mathrm{TC}(\theta)).$$
(B7)

The pricing condition (B6) states that zero must be an element of the expectation of the SDF multiplied by the return vector minus the subdifferential of the transaction-cost

⁴⁶For the case with quadratic utility, which underlies mean-variance preferences, the SDF is an affine function of the parametric portfolio returns net of transaction costs, and thus, there is a particularly close relation between the optimal portfolio and the SDF.

function. For the case with proportional transaction-cost function, the subdifferential is a polyhedral set, and thus, the pricing condition can be rewritten as a system of pricing inequalities. This is consistent with Luttmer (1996) and De Roon, Nijman, and Werker (2001). In particular, Luttmer (1996) states that "In an economy with proportional transaction costs consumer intertemporal marginal rates of substitution have to satisfy a set or Euler *inequalities*."

Finally, it is clear from Equations (B6) and (B7) that transaction costs affect the SDF for the case with convex nondifferentiable transaction-cost function through the same three channels discussed for the case with differentiable transaction-cost function.

C Proofs for all propositions

Proof of Proposition 1

Equation (3) shows that the parametric portfolio is a combination of the benchmark portfolio and the K standardized firm-specific characteristics, scaled by the number of firms N_t . Therefore, we can define this combination as $w = [1, \theta] \in \mathbb{R}^{K+1}$ and the vector of benchmark and characteristic returns as $R_t = [r_{b,t}, r_{c,t+1}/N_t]$. Under this specification, the mean-variance parametric-portfolio problem takes the familiar form:

$$\min_{w} \quad \frac{\gamma}{2} w^{\mathsf{T}} \widehat{\Sigma} w - w^{\mathsf{T}} \widehat{\mu}, \tag{C1}$$

s.t.
$$w_1 = 1,$$
 (C2)

where $w = [w_1, \theta] \in \mathbb{R}^{K+1}$ and $\widehat{\Sigma}$ and $\widehat{\mu}$ are the sample covariance matrix and mean of $R_t = [r_{b,t}, r_{c,t+1}]$. The result follows by using straightforward algebra to eliminate the decision variable w_1 and the constraint, and then removing terms in the objective function that do not depend on the parameter-vector θ .

Proof of Proposition 2

The marginal contributions of the characteristics are given by the subdifferential of the objective function in (10) with respect to θ . Note that the first four terms in (10) are differentiable with respect to θ and thus their subdifferentials coincide with their gradient. It is straightforward to show that the gradients of these four terms are given by the first four terms in the right-hand side of (11).

The only term that is not differentiable is the transaction cost from trading asset i at time t + 1. From expression (7), we can define the transaction-cost term for asset i at time t + 1 as

$$u_{i,t+1} = |\Lambda_{ii,t} \left(w_{i,t+1}(\theta) - w_{i,t}^{+}(\theta) \right) |,$$
(C3)

where $\Lambda_{ii,t}$ is the associated transaction-cost parameter for asset *i* at time *t*. Therefore, it suffices to characterize the subdifferential of expression (C3). Note that the function inside the absolute value is differentiable with respect to θ . Thus, applying the chain rule for subdifferentials, we have that the subdifferential of $u_{i,t+1}$ with respect to the *k*th parametric-portfolio weight θ_k is equal to the subdifferential of the absolute value function times the differential of $\Lambda_{ii,t} \left(w_{i,t+1}(\theta) - w_{i,t}^+(\theta) \right)$.

Note that $\Lambda_{ii,t} > 0$ and thus, the subdifferential of the absolute-value function is given by the sign function as precisely defined in (13). Finally, the differential of the

term $\Lambda_{ii,t} \left(w_{i,t+1}(\theta) - w_{i,t}^+(\theta) \right)$ is

$$\frac{d[\Lambda_{ii,t}\left(w_{i,t+1}(\theta) - w_{i,t}^{+}(\theta)\right)]}{d\theta_{k}} = \Lambda_{ii,t}[(X_{t+1})_{ik} - (X_{t})_{ik}(1 + r_{i,t+1})]$$

The result follows by adding the subdifferentials of $u_{i,t+1}$ for $i = 1, 2, ..., N_t$, and then combining the subdifferentials with respect to θ_k for k = 1, 2, ..., K into a single vector.

Proof of Proposition 3

Part 1. The trade in the *i*th stock required to rebalance an equally weighted portfolio of K characteristics is:

$$\operatorname{trade}_{i}^{ew} = \frac{1}{K} \sum_{k=1}^{K} \operatorname{trade}_{i,k} = \frac{1}{K} \sum_{k=1}^{K} [(X_{t+1})_{i,k} - (X_t)_{i,k}(1+r_{i,t+1})].$$
(C4)

Because trade_{*i,k*} for k = 1, 2, ..., K are jointly distributed as a multivariate Normal distribution with zero mean and covariance matrix Ω , we have that trade^{*ew*}_{*i*} is distributed as a Normal distribution with zero mean and standard deviation $\sqrt{e^{\top}\Omega e}/K$.

By definition, the average trading volume (turnover) in the *i*th stock required to rebalance an equally weighted portfolio of the K characteristics is the average of the absolute value of trade^{ew}_i. Geary (1935) shows that the mean absolute deviation of a Normally distributed random variable is $\sqrt{2/\pi}$ times its standard deviation. Therefore, the average turnover in the *i*th stock required to rebalance an equally weighted portfolio of K characteristics is

turnover(trade^{ew}_i) =
$$\sqrt{2/\pi} \times \sqrt{e^{\top}\Omega e}/K.$$
 (C5)

Following a similar argument, the average cost of the trade in the *i*th stock required to rebalance a quantity 1/K of each of the K characteristics in isolation is

turnover(trade^{iso}_i) =
$$\sqrt{2/\pi} \times \sum_{k=1}^{K} \frac{\sqrt{\Omega_{kk}}}{K}$$
. (C6)

Taking the ratio of (C5) to (C6), we get

$$\frac{\operatorname{turnover}(\operatorname{trade}_{i}^{ew})}{\operatorname{turnover}(\operatorname{trade}_{i}^{iso})} = \frac{\sqrt{e^{\top}\Omega e}}{\sum_{k=1}^{K}\sqrt{\Omega_{kk}}}.$$
(C7)

To show that this ratio is strictly smaller than one, we note that the square of the ratio in (C7) is

$$\frac{e^{\top}\Omega e}{(\sum_{k=1}^{K}\sqrt{\Omega_{kk}})^2} = \frac{\sum_{k=1}^{K}\Omega_{kk} + \sum_{l=1}^{K}\sum_{m\neq l}\rho_{lm}\sqrt{\Omega_{ll}}\sqrt{\Omega_{mm}}}{\sum_{k=1}^{K}\Omega_{kk} + \sum_{l=1}^{K}\sum_{m\neq l}\sqrt{\Omega_{ll}}\sqrt{\Omega_{mm}}},$$
(C8)

where ρ_{lm} is the correlation between the rebalancing trade in the *i*th stock for the *l*th and *m*th characteristics. The ratio in (C8) is smaller than one because $\rho_{lm} < 1$ by the assumption that Ω is positive definite.

Part 2. Because Ω is symmetric with respect to the K characteristics, we have that $\operatorname{trade}_{i}^{ew}$ is distributed as a Normal distribution with zero mean and standard deviation $\sqrt{e^{\top}\Omega e}/K = \sigma(1 + \rho(K - 1))/K$. The result follows using arguments identical to those in the proof of Part 1.

Part 3. Because $\rho = 0$, we have that $\operatorname{trade}_{i}^{ew}$ is distributed as a Normal distribution with zero mean and standard deviation $\sqrt{e^{\top}\Omega e}/K = \sigma/K$. The result follows using arguments identical to those in the proof of Part 1.

Proof of Proposition A1

Let us consider the following cross-sectional regression model:

$$r_t = X\lambda_t + \epsilon_t,\tag{C9}$$

where $r_t \in \mathbb{R}^N$ is the vector of stock returns at time $t, X \in \mathbb{R}^{N \times K}$ is the matrix of standardized firm characteristics, $\lambda_t \in \mathbb{R}^K$ is the vector of slopes at time t, and $\epsilon_t \in \mathbb{R}^N$ is the vector of pricing errors at time t.⁴⁷ The OLS and GLS Fama-MacBeth slopes of model (C9) are

$$\overline{\lambda}_{OLS} = (X^{\top}X)^{-1}X^{\top}\widehat{\mu}_r \tag{C10}$$

$$\overline{\lambda}_{GLS} = (X^{\top} \widehat{\Sigma}_r^{-1} X)^{-1} X^{\top} \widehat{\Sigma}_r^{-1} \widehat{\mu}_r, \qquad (C11)$$

where $\hat{\mu}_r$ is the vector of sample mean returns. It is straightforward to see that $\overline{\lambda}_{OLS}$ and $\overline{\lambda}_{GLS}$ are identical when $\hat{\Sigma}_r$ is the identity matrix. On the other hand, we know that the solution of a mean-variance parametric portfolio is

$$\theta^* = \frac{1}{\gamma} \widehat{\Sigma}_c^{-1} \widehat{\mu}_c - \widehat{\Sigma}_c^{-1} \widehat{\sigma}_{bc}.$$
 (C12)

Now, given the assumption that firm characteristics are constant, we can define the vector of mean characteristic-portfolio returns and the covariance matrix of characteristic-portfolio returns as $\hat{\mu}_c = X^{\top} \hat{\mu}_r$ and $\hat{\Sigma}_c = X^{\top} \hat{\Sigma}_r X$, respectively. Assuming that the

⁴⁷Note that we now assume that characteristics X_t and the number of firms N_t are constant through time and therefore we drop the subscript t.

covariance between characteristic portfolio returns and the benchmark portfolio is zero, expression (C12) can be then expressed as

$$\theta^* = \frac{1}{\gamma} (X^\top \widehat{\Sigma}_r X)^{-1} X^\top \widehat{\mu}_r.$$
(C13)

Therefore, one can see that $\overline{\lambda}_{OLS}$, $\overline{\lambda}_{GLS}$, and θ^* will be equivalent when $\widehat{\Sigma}_r$ is the identity matrix of dimension N and the covariance between characteristic portfolio returns and the benchmark portfolio is zero.

Proof of Corollary A1

The result in Corollary A1 follows from the assumption that $X^{\top}X = I$, which implies that $\overline{\lambda}_{OLS} = X^{\top}\widehat{\mu}_r = \widehat{\mu}_c$. Then, if the covariance between characteristic-portfolio returns and the benchmark portfolio is zero, we can define the solution to the mean-variance parametric portfolio as

$$\theta^* = \frac{1}{\gamma} \widehat{\Sigma}_c^{-1} \overline{\lambda}_{OLS}.$$
 (C14)

Proof of Proposition A2

We can estimate model (A7) with OLS. The corresponding optimization problem, in matrix form, is

$$\begin{split} \min_{\alpha,\beta} & r_b^{\top} r_b + \alpha^2 T + \beta^{\top} r_c^{\top} r_c \beta - 2\alpha r_b^{\top} e_T + 2r_b^{\top} r_c \beta - 2\alpha e_T^{\top} r_c \beta \\ \text{s.t.} & \widehat{\mu}_c^{\top} \beta = \mu_0, \end{split}$$

where e_T is a *T*-dimensional vector of ones. Now, given that $\widehat{\Sigma}_c = r_c^{\top} r_c - \widehat{\mu}_c \widehat{\mu}_c^{\top}$, $\widehat{\sigma}_{bc} = r_b^{\top} r_c - \widehat{\mu}_b \widehat{\mu}_c^{\top}$ and $e_T^{\top} r_c = T \widehat{\mu}_c$, we can write the above problem as

$$\begin{split} \min_{\alpha,\beta} \quad r_b^{\top} r_b + \alpha^2 T + \beta^{\top} \widehat{\Sigma}_c \beta + \beta^{\top} \widehat{\mu}_c \widehat{\mu}_c^{\top} \beta - 2\alpha r_b^{\top} e_T + 2(\widehat{\sigma}_{bc} + \widehat{\mu}_b \widehat{\mu}_c)^{\top} \beta - 2\alpha T \widehat{\mu}_c^{\top} \beta \\ \text{s.t.} \quad \widehat{\mu}_c^{\top} \beta = \mu_0. \end{split}$$

Because $\hat{\mu}_c^{\top}\beta$ is constant in the feasible region, we can obtain the OLS slopes of (A7) as the solution to the following problem:

$$\min_{\beta} \quad \beta^{\top} \widehat{\Sigma}_{c} \beta + 2 \widehat{\sigma}_{bc} \beta$$
s.t. $\widehat{\mu}_{c}^{\top} \beta = \mu_{0},$

which is a quadratic mean-variance optimization problem. If we set μ_0 equal to the solution of the mean-variance parametric-portfolio problem times the vector of mean characteristic portfolio returns (that is, $\mu_0 = \theta^{*\top} \hat{\mu}_c$), the OLS slopes of the time-series model in (A7) coincide with the solution of the mean-variance parametric-portfolio problem in (5).

Table 1: List of characteristics considered

This table lists the characteristics we consider, ordered alphabetically by acronym. The first column gives the number of the characteristic, the second column gives the characteristic's definition, the third column gives the acronym, and the fourth and fifth columns give the authors who analyzed them, and the date and journal of publication. Our definitions and acronyms match those in Green et al. (2017).

#	Characteristic and definition	Acronym	Author(s)	Date and Journal
1	Abnormal volume in earnings announcement: Average daily trading volume for 3 days around earnings announcement minus average daily volume for 1-month ending 2 weeks before earnings announcement divided by 1-month average daily volume. Earnings an-	aeavol	Lerman, Livnat & Mendenhall	2007, WP
2	nouncement day from Compustat quarterly Asset growth: Annual percent change in total assets	agr	Cooper, Gulen & Schill	2008, JF
3	Bid-ask spread: Monthly average of daily bid-ask spread divided by average of daily spread	0	Amihud & Mendelson	1989, JF
4	Beta: Estimated market beta from weekly returns and equal weighted market returns for 3 years ending month $t - 1$ with at least 52 weeks of returns	beta	Fama & MacBeth	1973, JPE
5	Book to market: Book value of equity divided by end of fiscal-year market capitalization	\mathbf{bm}	Rosenberg, Reid & Lanstein	1985, JPM
6	Industry adjusted book to market: Industry adjusted book-to-market ratio	bm_ia	Asness, Porter & Stevens	2000, WP
7	Cash productivity: Fiscal year-end market capitalization plus long term debt minus total assets divided by cash and equivalents	cashpr	Chandrashekar & Rao	2009 WP
8	Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted change in sales divided by average total assets	chatoia	Soliman	2008, TAR
9	Change in shares outstanding: Annual percent change in shares outstanding	chcsho	Pontiff & Woodgate	2008, JF
10	Industry adjusted change in employees: Industry-adjusted change in number of employees	chempia	Asness, Porter & Stevens	1994, WP
11	Change in 6-month momentum: Cumulative returns from months $t-6$ to $t-1$ minus months $t-12$ to $t-7$	chmom	Gettleman & Marks	2006 WP
12	Industry adjusted change in profit margin: 2-digit SIC fiscal-year mean adjusted change in income before extraordinary items divided by sales	chpmia	Soliman	2008, TAR
13	Change in tax expense: Percent change in total taxes from quarter $t - 4$ to t	chtx	Thomas & Zhang	2011 JAR
14	Convertible debt indicator: An indicator equal to 1 if company has convertible debt obligations	convind	Valta	2016 JFQA
15	Dollar trading volume in month $t-2$: Natural log of trading volume times price per share from month $t-2$	dolvol	Chordia, Subrahmanyan & Anshuman	2001, JFE
16	Dividends-to-price: Total dividends divided by market capitalization at fiscal year-end	dy	Litzenberger & Ramaswamy	1982, JF
17	3-day return around earnings announcement: Sum of daily returns in three days around earnings announcement. Earnings announcement from Compustat quarterly file	ear	Kishore, Brandt, Santa-Clara & Venkatachalam	2008, WP
18	Change in common shareholder equity: Annual percent change in book value of equity	egr	Richardson, Sloan, Soliman & Tuna	2005, JAE
19	Earnings to price: Annual income before extraordinary items divided by end of fiscal year market cap	ep	Basu	1977, JF
20	Gross profitability: Revenues minus cost of goods sold divided by lagged total assets	gma	Novy-Marx	2013 JFE
21	Industry sales concentration: Sum of squared percent of sales in industry for each company	herf	Hou & Robinson	2006, JF
22	Employee growth rate: Percent change in number of employees	hire	Bazdresch, Belo & Lin	2014 JPE
23	Idiosyncratic return volatility: Standard deviation of residuals of weekly returns on weekly equal weighted market returns for 3 years prior to month-end	idiovol	Ali, Hwang & Trombley	2003, JFE
24	Industry momentum: Equal weighted average industry 12-month returns	indmom	Moskowitz & Grinblatt	1999, JF

45

Table 1 continued: List of characteristics considered

#	Characteristic and definition	Acronym	Author(s)	Date and Journal
25	Leverage: Total liabilities divided by fiscal year-end market capitalization	lev	Bhandari	1988, JF
$\frac{-6}{26}$	Change in long-term debt: Annual percent change in total liabilities	lgr	Richardson, Sloan, Soliman & Tuna	2005, JAE
27	12-month momentum: 11-month cumulative returns ending one month before month-end	mom12m	Jegadeesh	1990, JF
28	1-month momentum: 1-month cumulative return	mom1m	Jegadeesh	1990, JF
29	36-month momentum: Cumulative returns from months $t - 36$ to $t - 13$	mom36m	De Bondt & Thaler	1985, JF
30	6-month momentum: 5-month cumulative returns ending one month before month-end	mom6m	Jegadeesh & Titman	1990, JF
31	Market capitalization: Natural log of market capitalization at end of month $t-1$	mve	Banz	1981, JFE
32	Industry-adjusted firm size: 2-digit SIC industry-adjusted fiscal year-end market capital- ization	mve_ia	Asness, Porter & Stevens	2000, WP
33	$\Delta\%$ CAPEX - industry $\Delta\%$ AR: 2-digit SIC fiscal-year mean adjusted percent change in capital expenditures	pchcapx_ia	Abarbanell & Bushee	1998, TAR
34	$\Delta\%$ gross margin - $\Delta\%$ sales: Percent change in gross margin minus percent change in sales	$pchgm_pchsale$	Abarbanell & Bushee	1998, TAR
35	$\Delta\%$ sales - $\Delta\%$ AR: Annual percent change in sales minus annual percent change in receivables	$pchsale_pchrect$	Abarbanell & Bushee	1998, TAR
36	Price delay: The proportion of variation in weekly returns for 36 months ending in month t explained by 4 lags of weekly market returns incremental to contemporaneous market return	pricedelay	How & Moskowitz	2005, RFS
37	Financial-statements score: Sum of 9 indicator variables to form fundamental health score	\mathbf{ps}	Piotroski	2000, JAR
38	R&D to market cap: R&D expense divided by end-of-fiscal-year market capitalization	rd_mve	Guo, Lev & Shi	2006, JBFA
39	Return volatility: Standard deviation of daily returns from month $t-1$	retvol	Ang, Hodrick, Xing & Zhanf	2006, JF
40	Return on assets: Income before extraordinary items divided by one quarter lagged total assets	roaq	Balakrishnan, Bartov & Faurel	2010, JAE
41	Revenue surprise: Sales from quarter t minus sales from quarter $t - 4$ divided by fiscal- quarter-end market capitalization	rsup	Kama	2009, JBFA
42	Sales to cash: Annual sales divided by cash and cash equivalents	salecash	Ou & Penman	1989, JAE
43	Sales to inventory: Annual sales divided by total inventory	saleinv	Ou & Penman	1989, JAE
44	Sales to receivables: Annual sales divided by accounts receivable	salerec	Ou & Penman	1989, JAE
45	Annual sales growth: Annual percent change in sales	sgr	Lakonishok, Shleifer & Vishny	1994, JF
46	Volatility of dollar trading volume: Monthly standard deviation of daily dollar trading volume	std_dolvol	Chordia, Subrahmanyan & Anshuman	2001, JFE
47	Volatility of share turnover: Monthly standard deviation of daily share turnover	std_turn	Chordia, Subrahmanyan & Anshuman	2001, JFE
48	Cashflow volatility: Standard deviation for 16 quarters of cash flows divided by sales	stdcf	Huang	2009, JEF
49	Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-quarter- end market cap. Unexpected earnings is I/B/E/S actual earnings minus median fore- casted earnings if available, else it is the seasonally differenced quarterly earnings before extraordinary items from Compustat quarterly file	sue	Rendelman, Jones & Latane	1982, JFE
50	Share turnover: Average monthly trading volume for most recent 3 months scaled by number of shares outstanding in current month	turn	Datar, Naik & Radcliffe	1998, JFM
51	Zero trading days: Turnover weighted number of zero trading days for most recent month	zerotrade	Liu	2006, JFE

Table 2: Significance and marginal contributions without transaction costs

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 25$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions to				
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	
sue	20.12^{***}	0.00341	-0.00068	-0.00019	-0.00254	
retvol	-10.85^{***}	-0.03529	0.02914	0.00292	0.00323	
agr	-10.37^{**}	-0.00397	0.00050	0.00057	0.00290	
mom1m	-3.10^{**}	-0.00509	0.00454	-0.00109	0.00164	
gma	5.97^{**}	0.00252	-0.00255	0.00069	-0.00066	
beta	2.36^{*}	0.00971	-0.01381	0.00419	-0.00008	
bm_ia	6.49	0.00337	-0.00328	0.00072	-0.00081	
chcsho	-5.89	-0.00210	-0.00111	0.00092	0.00228	
rd_mve	6.01	0.00215	-0.00096	0.00045	-0.00164	
std_turn	8.53	0.01442	-0.01576	0.00214	-0.00080	
bm	3.10	0.00264	0.00023	-0.00082	-0.00205	
mve	-4.02	-0.00136	0.00148	-0.00034	0.00022	
mom12m	-4.42	-0.00784	0.01125	-0.00066	-0.00275	

Table 3: Correlations of significant characteristics

This table reports the correlation matrix for the returns of the six characteristics that are most significant in the absence of transaction costs and the returns of the three characteristics considered in Brandt et al. (2009): book to market (bm), size (mve), and momentum (mom12m).

Characteristics	sue	retvol	agr	mom1m	gma	beta	bm	mve	mom12m
Unexpected quarterly earnings (sue)	1.00	-0.43	-0.08	0.18	-0.18	-0.36	-0.05	0.41	0.45
Return volatility (retvol)	-0.43	1.00	0.22	-0.18	0.45	0.93	-0.46	-0.63	-0.17
Asset growth (agr)	-0.08	0.22	1.00	-0.33	0.56	0.33	-0.64	0.03	-0.17
1-month momentum (mom1m)	0.18	-0.18	-0.33	1.00	-0.23	-0.26	0.14	0.19	0.28
Gross profitability (gma)	-0.18	0.45	0.56	-0.23	1.00	0.54	-0.62	-0.24	-0.06
Beta (beta)	-0.36	0.93	0.33	-0.26	0.54	1.00	-0.54	-0.52	-0.21
Book to market (bm)	-0.05	-0.46	-0.64	0.14	-0.62	-0.54	1.00	-0.05	-0.08
Size (mve)	0.41	-0.63	0.03	0.19	-0.24	-0.52	-0.05	1.00	0.20
12-month momentum (mom12m)	0.45	-0.17	-0.17	0.28	-0.06	-0.21	-0.08	0.20	1.00

Table 4: Significance and marginal contributions with transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 25$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions to					Isolation
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
rd_mve	11.85^{***}	0.00425	-0.00333	0.00045	-0.00164	0.00027	0.00055
agr	-7.27^{***}	-0.00278	-0.00012	0.00057	0.00290	-0.00057	0.00125
sue	3.00^{***}	0.00051	0.00077	-0.00019	-0.00254	0.00146	0.00240
turn	-3.41^{***}	-0.00806	0.00502	0.00279	0.00068	-0.00043	0.00177
retvol	-1.92^{***}	-0.00623	0.00148	0.00292	0.00323	-0.00139	0.00468
std_turn	1.28^{***}	0.00217	-0.00433	0.00214	-0.00080	0.00082	0.00493
zerotrade	-1.53^{***}	-0.00129	0.00284	-0.00205	0.00124	-0.00075	0.00235
chatoia	4.51^{**}	0.00029	0.00008	-0.00005	-0.00077	0.00046	0.00116
chtx	1.36^{**}	0.00026	-0.00022	0.00015	-0.00123	0.00104	0.00232
beta	3.39^{**}	0.01398	-0.01829	0.00419	-0.00008	0.00021	0.00126
\mathbf{ps}	4.94^{**}	0.00156	-0.00027	-0.00068	-0.00127	0.00066	0.00140
gma	6.60^{**}	0.00278	-0.00298	0.00069	-0.00066	0.00016	0.00090
herf	-5.78^{**}	-0.00144	0.00061	0.00041	0.00061	-0.00019	0.00077
mom1m	-0.62^{**}	-0.00102	0.00258	-0.00109	0.00164	-0.00211	0.00857
bm_ia	2.85^{**}	0.00148	-0.00168	0.00072	-0.00081	0.00029	0.00128
stdcf	-5.05^{*}	-0.00259	0.00101	0.00068	0.00114	-0.00024	0.00067
pchgm_pchsale	3.46^{*}	0.00034	0.00006	-0.00003	-0.00079	0.00042	0.00122
chcsho	-3.11^{*}	-0.00111	-0.00166	0.00092	0.00228	-0.00044	0.00123
bm	1.74^{*}	0.00148	0.00122	-0.00082	-0.00205	0.00017	0.00121
chmom	-0.67	-0.00065	0.00166	-0.00073	0.00044	-0.00072	0.00404
baspread	0.55	0.00240	-0.00795	0.00329	0.00279	-0.00053	0.00322
$^{\mathrm{ep}}$	1.27	0.00206	0.00045	-0.00166	-0.00104	0.00018	0.00125
idiovol	-1.80	-0.00680	0.00194	0.00308	0.00187	-0.00008	0.00109
roaq	-0.12	-0.00014	0.00292	-0.00114	-0.00215	0.00051	0.00186
mve	-2.28	-0.00077	0.00092	-0.00034	0.00022	-0.00003	0.00045
mom12m	-0.61	-0.00109	0.00418	-0.00066	-0.00275	0.00031	0.00265

Table 5: Out-of-sample performance

This table reports the out-of-sample performance of the different portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the portfolios that do not use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the monthly turnover, and the next three columns report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (*) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy	Turnover	Mean	SD	SR
		_		
Panel A: Portfolio	os with no	charact	eristics	5
VW	0.050	0.085	0.150	0.567^{***}
1/N	0.134	0.085	0.177	0.482^{***}
Panel B: Portfolic	os with cha	racteris	\mathbf{stics}	
Size/val./mom.	0.754	0.145	0.215	0.675^{***}
Size/val./inv./prof.	0.963	0.236	0.220	1.072^{**}
Regularized	0.979	0.241	0.178	1.356

Table 6: Factor loadings of regularized parametric portfolios

This table reports the intercept, slopes, and t-statistics (in brackets) from regressing the out-of-sample regularized portfolio returns onto three sparse factor models: (1) the Fama and French (1993) and Carhart (1997) four-factor model (FFC) that includes the market, size (SMB), value (HML), and momentum (UMD) factors; (2) the Fama and French (2016) five-factor model (FF5) that includes the market, size, value, profitability (RMW), and investment (CMA) factors; and, (3) the Hou et al. (2014) four-factor model (HXZ) that includes the market, size, investment (I/A), and profitability (ROE) factors. We report t-statistics with Newey-West adjustments of 12 lags. Factors are obtained from Kenneth French's and Lu Zhang's websites.

FFC	Coefficient	FF5	Coefficient	HXZ	Coefficient
α	0.0115	α	0.0102	α	0.0095
	[4.12]		[3.59]		[2.89]
Market	0.8898	Market	0.9747	Market	0.9147
	[15.29]		[15.35]		[11.90]
SMB	0.0745	SMB	0.1212	SMB	0.2547
	[0.49]		[0.84]		[1.37]
HML	0.3697	HML	-0.2640	I/A	0.7491
	[1.84]		[-1.71]		[2.65]
UMD	0.3249	RMW	0.2554	ROE	0.3316
	[2.46]		[1.31]		[1.69]
		CMA	1.0852		
			[3.64]		

Table 7: Generalized alpha of regularized parametric portfolios

This table reports the intercept, slope, and t-statistic (in brackets) from regressing the out-of-sample regularized portfolio returns onto the out-of-sample returns net of transaction costs of the parametric portfolio that exploits: (1) the size, book-to-market, and momentum characteristics (Size/val./mom.); and (2) the size, book-to-market, investment, and profitability characteristics (Size/val./inv./prof.). We report t-statistics with Newey-West adjustments of 12 lags.

	Size/val./mom.	Size/val./inv./prof.
Generalized α	0.0132	0.0090
Generalized α	[5.56]	[4.21]
Slope	0.5719	0.5647
	[13.54]	[11.83]

Table A1: Fama-MacBeth regressions for significant characteristics

This table reports the slope coefficients from Fama-MacBeth regressions and the corresponding t-statistics (in brackets) with Newey-West adjustments of 12 lags. We report the results for multiple and individual regressions for the six most significant characteristics in the absence of transaction costs, and the three characteristics considered in Brandt et al. (2009): book to market (bm), size (mve), and momentum (mom12m).

Characteristic	Multiple	Individual
Unexpected quarterly earnings (sue)	0.0019	0.0027
	[7.38]	[7.10]
Return volatility (retvol)	-0.0037	-0.0032
	[-4.42]	[-2.22]
Asset growth (agr)	-0.0026	-0.0031
	[-5.39]	[-5.09]
1-month momentum (mom 1 m)	-0.0033	-0.0017
	[-4.67]	[-2.13]
Gross profitability (gma)	0.0020	0.0007
	[3.80]	[1.34]
Beta (beta)	0.0013	0.0001
	[0.99]	[0.04]
Book to market (bm)	0.0016	0.0021
	[2.11]	[2.17]
Size (mve)	-0.0007	-0.0002
	[-1.76]	[-0.40]
12-month momentum (mom 12 m)	0.0026	0.0030
	[2.43]	[2.45]

Figure 1: Marginal contribution to turnover of characteristics traded in isolation and in equally weighted portfolio

This figure compares the average trading volume (turnover) required to exploit the 51 characteristics in isolation with that required to exploit them in an equally weighted portfolio. The horizontal axis gives the turnover in percentage and the vertical axis gives the acronyms of the characteristics and the equally weighted portfolio (EW). The blue bars give the turnover required to exploit each of the characteristics in isolation (Isolation), the yellow bars give the marginal contribution to turnover of each characteristic in an equally weighted portfolio (Combined), and the red bar gives the turnover of the equally weighted portfolio of the 51 characteristics (EW portfolio).

Figure 2: Correlations between rebalancing trades of different characteristics

This figure depicts a heatmap of the correlations between the rebalancing trades for the 51 characteristics for a particular stock.

Figure 3: Marginal contributions of significant characteristics without transaction costs

This figure shows the marginal contributions to the investor's utility of the six significant characteristics in the absence of transaction costs. The vertical axis gives the labels of the significant characteristics: unexpected quarterly earnings (*unexp. earn.*), return volatility (*ret. vol.*), asset growth, 1-month momentum (*reversals*), gross profitability (*profit.*), and beta. The horizontal axis gives the marginal contributions of each characteristic to (i) the characteristic own-variance (yellow bars, *variance*), (ii) the covariance of the characteristic with the other characteristics in the portfolio (blue bars, cov(char.)), (iii) the covariance of the characteristic to be nonzero are depicted with positive bars, and contributions that drive the characteristic to be nonzero are depicted with positive bars, and contributions that drive the characteristic to are depicted with negative bars; cf. Footnote 28.

Figure 4: Cumulative returns for beta and return-volatility blended strategy

This figure shows the cumulative returns of a blended strategy that goes long beta and short return volatility. Panel (a) depicts the cumulative returns of going long beta (Long beta), of going short return volatility (Short retvol), and of a blended strategy formed by assigning 50% weight to beta and -50% to return volatility. Panel (b) compares the cumulative returns of the blended strategy that is long beta and short return volatility with those of a blended strategy that assigns 50% to book to market (bm) and 50% to 12-month momentum (mom12m). For comparison purposes, in Panel (b) we normalize both strategies so that they have the same volatility.

(b) Comparison of two blended strategies

Figure 5: Marginal contribution to transaction costs of characteristics in isolation and in optimal parametric portfolio

This figure shows the marginal contribution to transaction costs when characteristics are traded in isolation and in an optimal parametric portfolio. We plot the marginal contribution to transaction costs of the 15 most significant characteristics in Table 4. The horizontal axis gives the marginal contribution to transaction costs and the vertical axis gives the acronyms of the characteristics. The blue bars give the marginal contribution of each characteristic to transaction costs when traded in isolation (Isolation) and the yellow bars give the marginal contribution of each characteristic to transaction costs when combined in the optimal parametric portfolio (Combined).

57

Figure 6: Out-of-sample cumulative returns

This figure shows the out-of-sample cumulative returns of the value-weighted portfolio (VW) and three different parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. Two of the parametric portfolios exploit a small number of characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third parametric portfolio is the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over only the estimation window. For comparison purposes we normalize all portfolio returns so that they have the same volatility.

References

- Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang. 2006. The Cross-Section of Volatility and Expected Returns. *The Journal of Finance* 61:259–299.
- Asness, C. S., A. Frazzini, R. Israel, T. J. Moskowitz, and L. H. Pedersen. 2018. Size Matters, if You Control Your Junk. Forthcoming in *Journal of Financial Economics*.
- Asness, C. S., T. J. Moskowitz, and L. H. Pedersen. 2013. Value and Momentum Everywhere. *The Journal of Finance* 68:929–985.
- Back, K., N. Kapadia, and B. Ostdiek. 2015. Testing Factor Models on Characteristic and Covariance Pure Plays. SSRN working paper.
- Baker, M., P. Luo, and R. Taliaferro. 2017. Detecting Anomalies: The Relevance and Power of Standard Asset Pricing Tests. HBS working paper.
- Bali, T. G., R. F. Engle, and S. Murray. 2016. Empirical Asset Pricing: The Cross Section of Stock Returns. John Wiley & Sons, Hoboken, New Jersey.
- Barroso, P., and P. Santa-Clara. 2015. Beyond the Carry Trade: Optimal Currency Portfolios. Journal of Financial and Quantitative Analysis 50:1037–1056.
- Black, F. 1993. Beta and Return. The Journal of Portfolio Management 20:8–18.
- Brandt, M. W., P. Santa-Clara, and R. Valkanov. 2009. Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns. *The Review of Financial Studies* 22:3411–3447.
- Britten-Jones, M. 1999. The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights. *The Journal of Finance* 54:655–671.
- Bryzgalova, S. 2015. Spurious Factors in Linear Asset Pricing Models. Stanford GSB working paper.
- Carhart, M. M. 1997. On Persistence in Mutual Fund Performance. *The Journal of Finance* 52:57–82.
- Chatterjee, A., and S. N. Lahiri. 2011. Bootstrapping Lasso Estimators. *Journal of the American Statistical Association* 106:608–625.
- Chen, A., and M. Velikov. 2017. Accounting for the Anomaly Zoo: A Trading Cost Perspective. Federal Reserve Board working paper.
- Chordia, T., A. Goyal, and A. Saretto. 2017. p-hacking: Evidence from Two Million Trading Strategies. HEC Lausanne working paper.
- Clarke, F. H. 1990. Optimization and Nonsmooth Analysis. SIAM, Philadelphia.

Cochrane, J. H. 2009. Asset Pricing: Revised Edition. Princeton University Press.

- Cochrane, J. H. 2011. Presidential Address: Discount Rates. *The Journal of Finance* 66:1047–1108.
- De Roon, F. A., T. E. Nijman, and B. J. Werker. 2001. Testing for Mean-Variance Spanning with Short Sales Constraints and Transaction Costs: The Case of Emerging Markets. *The Journal of Finance* 56:721–742.
- DeMiguel, V., L. Garlappi, F. J. Nogales, and R. Uppal. 2009a. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. *Management Science* 55:798–812.
- DeMiguel, V., L. Garlappi, and R. Uppal. 2009b. Optimal Versus Naive Diversification: How Inefficient Is the 1/N Portfolio Strategy? The Review of Financial Studies 22:1915–1953.
- DeMiguel, V., F. J. Nogales, and R. Uppal. 2014. Stock Return Serial Dependence and Out-of-Sample Portfolio Performance. The Review of Financial Studies 27:1031– 1073.
- Efron, B., and T. Hastie. 2016. *Computer Age Statistical Inference*. Cambridge University Press.
- Fama, E. F. 1991. Efficient Capital Markets: II. The Journal of Finance 47:427–465.
- Fama, E. F., and K. R. French. 1993. Common Risk Factors in the Returns on Stocks and Bonds. *Journal of Financial Economics* 33:3–56.
- Fama, E. F., and K. R. French. 2016. Dissecting Anomalies With a Five-Factor Model. The Review of Financial Studies 29:69–103.
- Feng, G., S. Giglio, and D. Xiu. 2017. Taming the Factor Zoo. Chicago Booth working paper.
- Frazzini, A., R. Israel, and T. J. Moskowitz. 2015. Trading Costs of Asset Pricing Anomalies. Fama-Miller working paper.
- Freyberger, J., A. Neuhierl, and M. Weber. 2018. Dissecting Characteristics Nonparametrically. Chicago Booth working paper.
- Geary, R. C. 1935. The Ratio of the Mean Deviation to the Standard Deviation as a Test of Normality. *Biometrika* 27:310–332.
- Gibbons, M. R., S. A. Ross, and J. Shanken. 1989. A Test of the Efficiency of a Given Portfolio. *Econometrica* 57:1121–1152.
- Goyal, A. 2012. Empirical Cross-Sectional Asset Pricing: A Survey. *Financial Markets* and Portfolio Management 26:3–38.

- Green, J., J. R. Hand, and X. F. Zhang. 2017. The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns. *The Review of Financial Studies* 30:4389–4436.
- Hand, J. R., and J. Green. 2011. The Importance of Accounting Information in Portfolio Optimization. *Journal of Accounting, Auditing & Finance* 26:1–34.
- Harvey, C. R., and Y. Liu. 2018. Lucky Factors. SSRN working paper.
- Harvey, C. R., Y. Liu, and H. Zhu. 2015. ...and the Cross-Section of Expected Returns. The Review of Financial Studies 29:5–68.
- Hastie, T., R. Tibshirani, and M. Wainwright. 2015. *Statistical Learning with Sparsity: The Lasso and Generalizations.* CRC Press.
- Hou, K., C. Xue, and L. Zhang. 2014. Digesting Anomalies: An Investment Approach. The Review of Financial Studies 28:650–705.
- Hou, K., C. Xue, and L. Zhang. 2017. Replicating Anomalies. NBER working paper.
- Kandel, S., and R. F. Stambaugh. 1995. Portfolio Inefficiency and the Cross-Section of Expected Returns. The Journal of Finance 50:157–184.
- Kelly, B., and S. Pruitt. 2015. The Three-Pass Regression Filter: A New Approach to Forecasting Using Many Predictors. *Journal of Econometrics* 186:294–316.
- Kelly, B., S. Pruitt, and Y. Su. 2018. Characteristics *Are* Covariances: A Unified Model of Risk and Return. Yale University working paper.
- Kogan, L., and M. H. Tian. 2013. Firm Characteristics and Empirical Factor Models: A Data-Mining Experiment. FRB International Finance discussion paper.
- Korajczyk, R. A., and R. Sadka. 2004. Are Momentum Profits Robust to Trading Costs? The Journal of Finance 59:1039–1082.
- Kozak, S., S. Nagel, and S. Santosh. 2018. Shrinking the Cross Section. Forthcoming in *The Journal of Financial Economics*.
- Ledoit, O., and M. Wolf. 2008. Robust Performance Hypothesis Resting with the Sharpe Ratio. *Journal of Empirical Finance* 15:850–859.
- Lewellen, J., S. Nagel, and J. Shanken. 2010. A Skeptical Appraisal of Asset Pricing Tests. Journal of Financial Economics 96:175–194.
- Light, N., D. Maslov, and O. Rytchkov. 2017. Aggregation of Information about the Cross Section of Stock Returns: A Latent Variable Approach. The Review of Financial Studies 30:1339–1381.
- Linnainmaa, J. T., and M. R. Roberts. 2018. The History of the Cross-Section of Stock Returns. The Review of Financial Studies 31:2606–2649.

- Liu, J., R. F. Stambaugh, and Y. Yuan. 2018. Absolving Beta of Volatility's Effects. Journal of Financial Economics 128:1–15.
- Luttmer, E. G. 1996. Asset Pricing in Economies with Frictions. *Econometrica* 64:1439–1467.
- McLean, R. D., and J. Pontiff. 2016. Does Academic Research Destroy Stock Return Predictability? *The Journal of Finance* 71:5–32.
- Meinshausen, N., L. Meier, and P. Buhlmann. 2009. p-Values for High-Dimensional Regression. *Journal of the American Statistical Association* 104:1671–1681.
- Meinshausen, N., and B. Yu. 2009. Lasso-Type Recovery of Sparse Representations for High-Dimensional Data. *Annals of Statistics* 37:246–270.
- Messmer, M., and F. Audrino. 2017. The (Adaptive) Lasso in the Zoo-Firm Characteristic Selection in the Cross-Section of Expected Returns. University of St. Gallen working paper.
- Novy-Marx, R. 2016. Backtesting Strategies Based on Multiple Signals. Simon Graduate School of Business working paper.
- Novy-Marx, R., and M. Velikov. 2016. A Taxonomy of Anomalies and Their Trading Costs. *The Review of Financial Studies* 29:104–147.
- Politis, D. N., and J. P. Romano. 1994. The Stationary Bootstrap. *Journal of the American Statistical Association* 89:1303–1313.
- Rockafellar, R. T. 2015. Convex Analysis. Princeton University Press.
- Rytchkov, O., and X. Zhong. 2017. Information Aggregation and Data Snooping. Fox School of Business and Management working paper.
- Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58:267–288.
- Wasserman, L., and K. Roeder. 2009. High-Dimensional Variable Selection. Annals of Statistics 37:2178–2201.

Internet Appendix to

A Transaction-Cost Perspective on the Multitude of Firm Characteristics *

Victor DeMiguel Alberto Martín-Utrera Francisco J. Nogales Raman Uppal

January 8, 2019

^{*}DeMiguel, London Business School, e-mail: avmiguel@london.edu; Martín-Utrera, Lancaster University Management School, e-mail: a.martinutrera@lancaster.ac.uk; Nogales, Universidad Carlos III de Madrid, e-mail: FcoJavier.Nogales@uc3m.es; Uppal, Edhec Business School and CEPR, e-mail: raman.uppal@edhec.edu.

IA Robustness checks

In this appendix, we investigate the robustness of our main finding that transaction costs increase the number of significant characteristics to: estimating proportional transaction costs from daily price data, considering quadratic instead of proportional transaction costs, using alternative significance tests, excluding microcaps, applying the reality check to our significance test, expanding our dataset to consider also characteristics with a large number of missing observations, considering different subsamples, using different methods to winsorize firm characteristics, considering different levels of risk-aversion, and using different methods to standardize firm characteristics. In addition, we check the robustness of our out-of-sample results to: firm size, shortsale constraints, and the constraint on maximum turnover. We also apply a reality check to our out-of-sample analysis. Finally, we also report which characteristics are significant when considered individually instead of jointly, as done in the manuscript.

IA.1 Proportional transaction costs from daily price data

In the main body of the manuscript, we consider an investor who faces proportional transaction costs parameterized as in Brandt, Santa-Clara, and Valkanov (2009) and Hand and Green (2011). We now check the robustness of our results to estimating the proportional transaction costs from daily price data. In particular, we use the *two-day* corrected method proposed in Abdi and Ranaldo (2017) to estimate monthly bid-ask spread of the *i*th stock as:¹

$$\widehat{s}_{i,t} = \frac{1}{D} \sum_{d=1}^{D} \widehat{s}_{i,d}, \quad \widehat{s}_{i,d} = \sqrt{\max\{4(c_{i,d} - \eta_{i,d})(c_{i,d} - \eta_{i,d+1}), 0\}},$$
(1)

where D is the number of days in month t, $\hat{s}_{i,d}$ is the *two-day* bid-ask spread estimate, $c_{i,d}$ is the closing log-price on day d, and $\eta_{i,d}$ is the mid-range log-price on day d; that is, the mean of daily high and low log-prices. Finally, because the effective trading cost is half of the bid-ask spread, we set the transaction-cost parameter for the i th stock as $\kappa_{i,t} = \hat{s}_{i,t}/2$.

 $^{^{1}\}mathrm{Lesmond},$ Ogden, and Trzcinka (1999) proposes another approach to estimate bid-ask spreads from daily returns based on zero returns.

Table IA.1 shows that the number of characteristics that are significant under this specification of transaction costs is 14, while it was 15 for the transaction costs parameterized as in Brandt et al. (2009) and Hand and Green (2011). Therefore, our main insight that transaction costs increase the dimension of the cross section is robust to estimating separately the transaction cost parameters for each stock from daily price data.

Moreover, we can also observe from the last two columns of Table IA.1 that, similar to the case reported in the manuscript, there is also substantial trading diversification when estimating proportional transaction costs from daily price data. In particular, we find that the marginal transaction cost associated with trading the 14 characteristics that are significant in the presence of transaction costs estimated using daily price data is reduced by around 66.71% on average when they are combined, compared to 64% for transaction costs parameterized as in Brandt et al. (2009) and Hand and Green (2011). This confirms that trading diversification benefits exist even when proportional transaction costs are estimated separately for each stock using daily price data, which allows one to account for business-cycle variation along with the effects of decimalization and the financial crisis on transaction costs.

IA.2 Quadratic transaction costs

In the main body of the manuscript, we consider an investor who faces proportional transaction costs. Proportional transaction costs are a reasonable assumption for the average investor; see Novy-Marx and Velikov (2016) and Chen and Velikov (2017). However, for large investors, a common assumption is that the price impact of their trades is linear in the amount traded, and thus, they face quadratic transaction costs; see, for instance, Korajczyk and Sadka (2004). In this section, we show that our main finding is robust to considering quadratic transaction costs; in particular, the number of characteristics that are jointly significant at the 5% level increases from five to 19 in the presence of quadratic transaction costs.

IA.2.1 Modeling quadratic transaction costs

To model market-impact costs, we need to track dollar portfolio *positions* instead of portfolio weights. To do this, we consider an investor with a wealth of B billion, who holds the following parametric portfolio:

$$w_t(\theta) = Bw_{b,t} + X_t \theta / N_t, \tag{2}$$

where the notation is as in Section 3 of the manuscript. We assume the investor maximizes her mean-variance utility of wealth growth, net of quadratic transaction costs:

$$\min_{\theta} \quad \frac{\gamma_a}{2} \theta^\top \widehat{\Sigma}_c \theta + \gamma_a B \theta^\top \widehat{\sigma}_{bc} - \theta^\top \widehat{\mu}_c + TC(\theta), \tag{3}$$

where $\gamma_a = \gamma/B$ is the investor's absolute risk-aversion parameter, defined as the ratio of relative risk-aversion parameter to wealth,² and TC(θ) is the quadratic transaction cost

$$TC(\theta) = \frac{1}{T-1} \sum_{t=1}^{T-1} (w_{t+1}(\theta) - w_t^+(\theta))^\top \Lambda_{t+1}(w_{t+1}(\theta) - w_t^+(\theta)),$$
(4)

where $\Lambda_t = \text{diag}(\lambda_{1,t}, \ldots, \lambda_{N_t,t})$ is the diagonal matrix whose *i*th element is the Kyle lambda of the *i*th stock at time *t* and $w_t^+(\theta)$ is the parametric portfolio before rebalancing at time t + 1.

To calibrate our quadratic transaction cost function we rely on the empirical results in Novy-Marx and Velikov (2016), which uses Trade and Quote (TAQ) data to estimate the Kyle lambdas of individual stocks. The paper shows that the *R*-squared of a cross-sectional regression of log Kyle lambda on log market capitalization is 70% and the slope is not statistically distinguishable from minus one. This suggests that a reasonable approximation to the cross-sectional variation of Kyle lambdas is to assume they are inversely proportional to the market capitalization of each firm. Moreover, Novy-Marx and Velikov (2016) shows that the average price elasticity of supply, defined as the product of Kyle lambda and market capitalization, $\lambda_{i,t} \times me_{i,t}$, is about 6.5. Based on this evidence, we assume the Kyle lambda of the *i*th stock at time *t* is $\lambda_{i,t} = 6.5/me_{i,t}$, where $me_{i,t}$ is the market capitalization of the *i*th stock at time *t*.

²Because the mean-variance optimization problem is defined in terms of dollar portfolio positions, we formulate the problem in terms of absolute risk-aversion instead of relative risk-aversion, as in Gârleanu and Pedersen (2013).

IA.2.2 How many characteristics matter jointly with quadratic costs?

Table IA.2 reports the significance and marginal contributions of each characteristic in the parametric portfolios in the presence of quadratic transaction costs. We consider an investor who allocates B = \$1 billion to the benchmark portfolio³ and has an absolute risk-aversion parameter $\gamma_a = 5/10^9$, which corresponds to a relative risk-aversion parameter of $\gamma = 5$ for an investor with wealth of B = \$1 billion. Similar to the analysis in Section 6 of the manuscript, we run a screen-and-clean significance test.

Table IA.2 reports the significance and marginal contributions of each characteristic in the parametric portfolios. Our main finding is that, similar to the case with proportional transaction costs, the number of significant characteristics with quadratic transaction costs is substantially larger than for the case without transaction costs. In particular, the number of characteristics that are significant at the 5% level increases from five in the absence of transaction costs to 19 in the presence of quadratic transaction costs. The explanation for this result can be found by comparing the last two columns of Table IA.2, which report the marginal contribution of the characteristic to the transaction cost when traded in the optimal parametric portfolio and in isolation, respectively.⁴ We observe that combining characteristics reduces the marginal contribution to quadratic transaction costs by an average of 93%; that is, the benefits from trading diversification are very large also in the presence of quadratic transaction costs.

IA.3 Alternative significance test based on elastic net

The first stage of the screen-and-clean significance test uses a lasso approach to reduce problem dimensionality by screening characteristics that are not relevant. We now repeat the screen-and-clean significance test, but employing elastic net for the first (screen) stage instead of lasso. As explained in Kozak, Nagel, and Santosh (2018), the elastic net does not impose sparsity because it calibrates *two* parameters: one controlling the degree of sparsity induced by a lasso constraint and the other controlling the degree of shrinkage

³We have also considered the cases with B =\$10 and \$100 billion and the results are similar.

⁴To compute the marginal contribution to transaction costs of a characteristic traded in isolation, we assign to the single characteristic a weight equal to the sum of the absolute values of the optimal parametric-portfolio weights for the case when characteristics are traded in combination. This allows for a meaningful comparison for the case with quadratic transaction costs.

induced by a ridge penalty.⁵ Tables IA.3 and IA.4 report the results for the cases without and with transaction costs, respectively. Consistent with elastic net not imposing sparsity, we find that the number of characteristics that survive the first (screen) stage based on the elastic net is larger than that for the screen stage based on just the lasso. However, the second (clean) stage, which tests the significance of the characteristics that survive the first (screen) stage, finds that while 9 characteristics are significant in the absence of transaction costs, 14 are significant in the presence of transaction costs. Thus, our main finding that transaction costs increase the dimension of the cross section is robust to using the elastic net for the screen stage.

We now discuss the relation between our results and those in Giannone, Lenza, and Primiceri (2017) and Kozak, Nagel, and Santosh (2018). While these papers focus on out-of-sample fit, our work focuses on *inference* because we wish to study how transaction costs impact the number of characteristics that are jointly *significant*. To establish significance, we rely on a two-stage screen-and-clean method similar to the methods proposed in Wasserman and Roeder (2009), Meinshausen and Yu (2009), and Meinshausen, Meier, and Buhlmann (2009). The first (screen) stage is similar to the approaches considered in Giannone et al. (2017) and Kozak et al. (2018) because it employs cross validation to calibrate the regularized parametric portfolios and, just like these papers, finds that when using an elastic net for the screen stage, it is optimal to assign a positive weight to a *large* number of characteristics in order to improve *out-of-sample fit.*⁶

However, because of our focus on *significance*, unlike Giannone et al. (2017) and Kozak et al. (2018), our analysis includes also a *second* (clean) stage that performs a bootstrap significance test on the parametric portfolios of those characteristics that survived the first (screen) stage. This second stage finds that not all characteristics that are useful to improving out-of-sample fit are statistically significant. Our result is

⁵Indeed, we find that the the lasso threshold selected by the cross-validation procedure in our test is *smaller* than the maximum lasso threshold contained in the grid for the cases with and without transaction costs. This demonstrates that the elastic net approach does not force sparsity, but rather that the cross-validation procedure finds it optimal to induce a certain degree of sparsity even when taking into account the trade-off between the lasso threshold and the ridge penalty.

⁶In particular, we find that 15 and 24 characteristics survive the screen stage with elastic net for the cases without and with transaction costs, respectively. This finding is in line with the results in Giannone et al. (2017), which finds that the posterior probability of inclusion of a characteristic in the model to predict the cross section of stock returns is around 60%. For our case with 51 characteristics, this would imply that approximately 30 characteristics are relevant for prediction.

consistent with the findings in Kelly, Pruitt, and Su (2018) that "among a large collection of characteristics explored in the literature, only eight are statistically significant... The fact that only a small subset of characteristics is necessary to explain variation in realized and expected stock returns shows that most characteristics are statistically irrelevant for understanding the cross section of returns, once they are evaluated in an appropriate multivariate context."

Finally, we illustrate the distinction between out-of-sample fit and significance in the context of the example given in Kozak et al. (2018):

... models based on present-value identities ... do not really support the idea that only a few stock characteristics should matter. For example, a presentvalue identity can motivate why the book-to-market ratio and expected profitability could jointly explain expected returns. Expected profitability is not directly observable, though. A large number of observable stock characteristics could potentially be useful for predicting cross-sectional variation in future profitability—and, therefore, also for predicting returns.

Therefore many characteristics can help to *predict* expected profitability and thus a parametric portfolio that assigns a positive weight to all characteristics is likely to perform well out of sample. However, our main goal is to identify the dimension of the cross section of stock returns. For this purpose, one needs to establish statistical *significance*. For instance, consider the above example in which value and expected profitability jointly explain the cross section, but expected profitability is not observable and instead K observable characteristics are useful for predicting expected profitability. Then, although the true dimension of the cross-section is two, the K observable characteristics are likely to survive a first (screen) stage with an elastic-net penalty. However, the second (clean) stage is unlikely to find all of them to be significant.

IA.4 Alternative significance test based on shrinkage estimator

We now study the robustness of our results to using shrinkage estimators of the covariance matrix for the second (clean) stage. To do this, we perform the screen-and-clean significance test (with elastic net for the first (screen) stage, as described in the previous section), but estimating the covariance matrix for the second (clean) stage with the shrinkage estimator of Ledoit and Wolf (2004). Tables IA.5 and IA.6 give the significance results for the cases without and with transaction costs, respectively. We find that our main finding that transaction costs increase the dimension of the cross section is robust: while 13 characteristics are significant at the 5% level in the absence of transaction costs, 18 are significant in the presence of transaction costs.⁷

The advantage of using the sample covariance matrix for the second (clean) stage as we do in the main body of the manuscript is that using a shrinkage estimator of the covariance matrix (based either on lasso or ridge terms) would introduce a bias on the estimates of the parametric-portfolio weights, distorting the inference results from the bootstrap test. Indeed, the screen-and-clean method proposed in Wasserman and Roeder (2009) relies on unregularized estimators for the second (clean) stage precisely to avoid the challenges associated with inference in the presence of regularization terms as explained in Bühlmann et al. (2013), Chatterjee and Lahiri (2010), and Deng (2012).

IA.5 Excluding microcaps

In the main body of the manuscript, we exclude stocks that are below the 20th percentile of market capitalization across the NYSE, AMEX and NASDAQ exchanges. We now check the robustness of our significance results to excluding microcap stocks, which are the stocks below the NYSE 20th percentile. Tables IA.7 and IA.8 report the significance results for the cases where we compute the parametric portfolios without and with transaction costs, respectively. The number of characteristics significant at the 5% level increases from seven in the absence of transaction costs to 12 in the presence of transaction costs. Thus, our central insight that transaction costs increase the dimension of the cross section is robust to excluding microcaps.

IA.6 Reality check for significance test

Novy-Marx (2016) shows that when one combines many spurious (or weakly significant) characteristics into a composite characteristic, the composite characteristic is likely to be

⁷Note that the number of characteristics that are significant when using the shrinkage estimator of the covariance matrix in the clean stage is larger than when using the sample covariance matrix as in Section IA.3. The reason is that using the shrinkage estimator of the covariance matrix is equivalent to a particular type of ridge regularization, as shown in DeMiguel, Garlappi, Nogales, and Uppal (2009), and this induces denser solutions.

highly significant due to overfitting. Likewise, Rytchkov and Zhong (2017) shows that the information-aggregation technique used in Light, Maslov, and Rytchkov (2017) is likely to suffer from overfitting and propose an approach to alleviate this problem.

In particular, Novy-Marx (2016, Section 3) shows that, under the assumption that there are K characteristic long-short portfolios whose returns are normally distributed, uncorrelated across characteristics, and with the same volatility, the t-statistic of the average return of the *composite* long-short portfolio obtained from an equally weighted combination of the K characteristics is \sqrt{K} times the average t-statistic of the returns of the K individual characteristics. For instance, if one builds an equally weighted combination of nine characteristics with t-statistic of one, the t-statistic of the composite portfolio would be $\sqrt{9} = 3$.

Our significance test is unlikely to suffer from this type of overfitting because we follow exactly the recommendation in Novy-Marx (2016) that "the marginal contribution of each individual signal should be evaluated individually." In particular, our significance test checks the marginal significance of each characteristic when considered jointly with the others.

To illustrate this point, consider the aforementioned setting from Section 3 in Novy-Marx (2016). The mean-variance parametric portfolio, which is the solution to problem (5) of the revised manuscript, can be expressed as

$$\theta = \frac{1}{\gamma} \widehat{\Sigma}_c^{-1} (\widehat{\mu}_c - \widehat{\sigma}_{bc})$$

where $\hat{\Sigma}_c$ and $\hat{\mu}_c$ are the sample covariance matrix and mean of the characteristic-return vector r_c that contains the returns of the K characteristic long-short portfolios, and $\hat{\sigma}_{bc}$ is the sample vector of covariances between the benchmark portfolio return r_b and the characteristic-return vector r_c . For the setting considered in Novy-Marx (2016), where the returns of the K characteristic long-short portfolios are uncorrelated and have identical standard deviation σ , we have that $\hat{\Sigma}_c^{-1}$ is a multiple of the identity matrix, $\hat{\Sigma}_c^{-1} = I/\sigma^2$. Therefore, the mean-variance parametric-portfolio weight for each of the K characteristics coincides with the weight of the single-characteristic parametric portfolio obtained by considering that characteristic in isolation. Consequently, the t-statistic of each of the parametric-portfolio weights in the case with K characteristics coincides with the t-statistic of the single-characteristic parametric-portfolio weight. Thus, in this case our significance test, which considers the marginal significance of each of the characteristics when considered jointly, is unlikely to suffer from overfitting.

Nonetheless, to provide further reassurance that overfitting is unlikely to affect our significance test, we adapt the reality check in White (2000) to check the robustness of our significance test.⁸ First, we set the benchmark portfolio equal to the in-sample optimal parametric portfolio instead of the value-weighted portfolio. By doing this we essentially remove the predictability from our dataset while preserving the correlation structure of the 51 characteristics. Second, we implement a variant of the screen-andclean test.⁹ Specifically, we generate 1,000 bootstrap samples from the original dataset using sampling with replacement. For each of the 1,000 bootstrap samples we use five-fold cross-validation to select the lasso threshold that optimizes the mean-variance criterion and we screen any characteristics with zero weight for the resulting regularized parametric portfolio. We then compute the optimal parametric portfolio of the characteristics that have survived the screen stage for each bootstrap sample, but without the lasso constraint. Finally, we use the percentile-interval method to establish the significance of the characteristics across the 1,000 samples. Table IA.9 gives the results for the reality check for both the cases with and without transaction costs. We observe that after removing the predictability from our dataset, none of the 51 characteristics are significant either in the absence or presence of transaction costs.

IA.7 Characteristics with many missing observations

To ensure our results are reliable, we consider in our main analysis only characteristics with a small proportion of missing observations. Specifically, we drop characteristics with more than 5% of missing observations for more than 5% of those firms with CRSP returns available for the entire sample from 1980 to 2014. In addition, we drop characteristics without any observations for more than 1% of these firms. Consequently, our main analysis is based on 51 out of the 100 characteristics listed in Green, Hand, and Zhang

 $^{^{8}}$ Harvey and Liu (2018) applies the reality check in the context of sequential factor selection.

⁹We cannot implement the plain screen-and-clean test of Section 3.5 because, given that we are using the in-sample optimal parametric portfolio as the benchmark portfolio, none of the characteristics would survive the screen stage.
(2017). However, to check the robustness of our results, we also run the screen-and-clean significance test of Section 3.5 using all 100 characteristics.

Tables IA.10 and IA.11 report the results for the cases without and with transaction costs, respectively. We find that our results are robust to the inclusion of characteristics with a large proportion of missing observations. First, in the absence of transaction costs, out of the 100 characteristics, only seven are significant at the 5% level, compared to five in the case with 51 characteristics. Second, in the presence of transaction costs, the number of significant characteristics increases to 15, just as in the case with 51 characteristics.

IA.8 Subsample analysis

We now study the robustness of our results to considering different subsample periods.

IA.8.1 Two subsamples from 1988

In the main body of the manuscript, we perform significance tests on the sample from May 1988 to December 2014 in order to match the sample used for the out-of-sample analysis. We now split this sample into two subsamples with similar number of observations from May 1988 to December 2002 and from January 2003 to December 2014, respectively.

Tables IA.12-IA.15 report the results. We find that for the period before 2003 the number of significant characteristics increases from eight in the absence of transaction costs to 14 in the presence of transaction costs. For the period after 2003, the number of significant characteristics increases from two in the absence of transaction costs to four in the presence of transaction costs. Our results confirm that our main finding that transaction costs increase the dimension of the cross section is robust to considering these subsamples. Our results also confirm the finding in Chordia, Subrahmanyam, and Tong (2014) that the magnitude of asset return predictability has decreased in the last decade. In particular, we find that the number of significant characteristics in the later subsample is smaller than in the earlier one.¹⁰

 $^{^{10}}$ There are two reasons why we choose to split the sample around January 2003: first, Green et al. (2017) shows that the number of priced characteristics in the cross-section of stock returns suffers an abrupt drop after 2003. This subsample choice allows us to check the robustness of this result. Second, we need to have a comparable number of observations in the two subperiods we consider, and therefore January 2003 seems a reasonable cutoff point.

IA.8.2 Two subsamples from 1980

The previous analysis considers data from May 1988 to December 2014 to match the sample period of the significance analysis with that of the out-of-sample analysis in Section 7. We now include also the observations we have in our dataset before May 1988. In particular, we consider the entire sample from January 1980 to December 2014 and run the significance analysis on two separate subsamples of equal size. The first subsample is from January 1980 to June 1997 and the second subsample from July 1997 to December 2014. Tables IA.16–IA.19 report the results. Our main finding that transaction costs increases the dimension of the cross section is robust to considering these subsamples. We observe that for the period from January 1980 to June 1997 the number of significant characteristics increases from five in the absence of transaction costs to 23 in the presence of transaction costs to 10 in the presence of transaction costs.

IA.8.3 Full sample from 1980

We now study the robustness of our results to using a longer sample. In particular, we run the significance analysis on the full sample from January 1980 to December 2014. Tables IA.20 and IA.21 report the results. The number of significant characteristics increases from 14 in the absence of transaction costs to 21 in the presence of transaction costs. Therefore, our main finding is robust to considering a longer sample, although the magnitude of the effect is reduced.

IA.9 Winsorization

In our main analysis, we cross-sectionally winsorize each characteristic such that observations that are above (below) the third (first) quartile plus (minus) three times the interquartile range are set equal to this threshold. We now check the robustness of our main finding to using a different threshold to winsorize firm characteristics. In particular, we set firm characteristics that take a value above (below) the 99th (1st) cross-sectional percentile equal to this threshold. Tables IA.22 and IA.23 report the results. We observe that our main insight is robust: the number of significant characteristics increases from

seven in the absence of transaction costs to 15 in the presence of transaction costs, while in the main body of the manuscript we find that it increases from five to 15.

IA.10 Risk-aversion

We now study how our results depend on the risk-aversion parameter. Tables IA.24 and IA.25 report the significance of characteristics for the parametric portfolios with risk-aversion parameter $\gamma = 2$ for the cases without and with transaction costs, respectively. Likewise, Tables IA.26 and IA.27 report the significance of characteristics for $\gamma = 10$ for the cases without and with transaction costs, respectively. Our main finding that transaction costs increase the dimension of the cross section is robust to the investor's risk-aversion parameter: For $\gamma = 2$, the number of significant characteristics increases from six in the absence of transaction costs to 14 in the presence of transaction costs, and for $\gamma = 10$, the number of significant characteristics increases from eight in the absence of transaction costs to 13 in the presence of transaction costs.

IA.11 Quintile-standardized characteristics

We now consider characteristic long-short portfolios defined in terms of the top and bottom quintiles instead of standardizing the characteristics by subtracting the crosssectional mean and dividing by the standard deviation. Specifically, we assign a weight of $1/Q_t$ to firms in the fifth quintile and $-1/Q_t$ to firms in the first quintile, where Q_t is the number of firms per quintile in month t. Tables IA.28 and IA.29 report the significance of characteristics for the parametric portfolios with quintile-standardized characteristics in the absence and presence of transaction costs, respectively. The tables show that the number of significant characteristics increases from six in the absence of transaction costs to 10 in the presence of transaction costs.

IA.12 Out-of-sample analysis

We now run several checks on the robustness of our out-of-sample analysis.

IA.12.1 Firm size

To study how the out-of-sample performance of the regularized parametric portfolios depends on firm size, we classify stocks (including those with market capitalization below the 20th percentile of our sample, which are excluded in our main analysis) into five size quintiles. Table IA.30 reports the out-of-sample performance of the parametric portfolios in the presence of transaction costs applied to each of the five quintiles separately. It is clear from the table that the performance of the regularized parametric portfolios is better for the quintiles with small stocks. Indeed, this table demonstrates that the regularized parametric portfolios significantly for the first four quintiles corresponding to the 80% of smallest stocks. These results are consistent with the findings in Hand and Green (2011) and Fama and French (2008). Also, the regularized parametric portfolios significantly outperform the parametric portfolios based on a small number of characteristics for the first three quintiles corresponding to the 60% of the smallest stocks.

IA.12.2 Shortsale constraints

Table IA.31 reports the out-of-sample performance of the regularized portfolios subject to shortsale constraints.¹¹ Panel A reports the performance for the parametric portfolios with no shortselling and Panel B reports the performance for the parametric portfolios after scaling the optimal parameter θ so that the short positions in the regularized parametric portfolio amount to around 50%. Panel A shows that with shortsale constraints, although the out-of-sample Sharpe ratio of the regularized parametric portfolios is higher than that of the value-weighted benchmark portfolio, the difference is not statistically significant. Panel B, however, shows that the amount of shorting required for the regularized parametric portfolios to significantly outperform the other portfolios is not large. We observe that for the case with around 50% shortselling, the regularized parametric portfolios attain an out-of-sample Sharpe ratio around 48% higher than that of the portfolios that exploit three characteristics and 22% higher than that of the portfolios that exploit four characteristics, with the differences being statistically significant.

¹¹As in Brandt et al. (2009), we compute shortsale constrained portfolios by first computing the unconstrained regularized parametric portfolios, then setting all negative *firm* weights equal to zero, and finally normalizing the resulting vector so that its weights sum to one.

IA.12.3 Turnover constraints

In Section 7, we evaluate the out-of-sample performance of the regularized parametric portfolios after controlling their turnover to be around 100% per month. Table IA.32 reports the performance of the regularized parametric portfolios in the *absence* of turnover controls. The regularized parametric portfolios without turnover control have a monthly turnover of around 386%. Despite their high turnover, the table shows that the regularized parametric portfolios attain an out-of-sample Sharpe ratio of returns net of transaction costs around 125% higher than the parametric portfolio that exploits three characteristics, and around 29% higher than the parametric portfolio that exploits four characteristics with the difference significant at the 10% level.

IA.12.4 Reality check for out-of-sample analysis

Our out-of-sample analysis shows that the regularized parametric portfolios that exploit the full set of 51 characteristics outperform the parametric portfolios that exploit only a small set of characteristics in the presence of transaction costs. These out-of-sample results provide reassurance that our main finding that transaction costs increase the dimension of the cross section is not driven by overfitting. However, to further check the robustness of our finding, we now run an additional test of our out-of-sample results in the spirit of the reality check for our in-sample returns discussed in Section IA.6 above. In particular, we compare the out-of-sample performance of the regularized parametric portfolio that exploits all 51 characteristics to a parametric portfolio that exploits the 15 *in-sample* significant characteristics; we estimate the weights of the parametric portfolio that exploits only the 15 in-sample significant characteristics using only past data in order to make a fair comparison. Theoretically, unless our out-of-sample results are driven by overfitting, the regularized parametric portfolio should not outperform the parametric portfolio that exploits the 15 in-sample significant characteristics. Table IA.33 shows that, while the regularized parametric portfolio significantly outperforms the two parametric portfolios that exploit a small set of characteristics, it does not significantly outperform the parametric portfolio that exploits the 15 in-sample significant characteristics. Therefore, the out-of-sample performance of the regularized parametric portfolio is unlikely to be driven by overfitting.

IA.13 Significance of individual characteristics

We now evaluate the significance of the 51 characteristics individually. To do this, we consider the parametric-portfolio problem defined in (9) for the case where only one characteristic is available. Because we are considering a single characteristic at a time, we do not need to use the first step of the screen-and-clean test, and instead we just run the bootstrap significance test on each of the 51 single-characteristic parametric portfolios. Finally, note that here we consider 51 *individual* significance tests and thus, following the suggestion in Harvey, Liu, and Zhu (2015), we apply Bonferroni's adjustment. Table IA.34 reports the results.

Intuitively, one may expect that in the presence of transaction costs *fewer* characteristics would be significant because transaction costs can only erode the benefits from exploiting characteristics. Indeed, Table IA.34 shows that this is the case when each characteristic is considered *individually*. After applying the Bonferroni adjustment (i.e. significance threshold = 0.05/51), Table IA.34 shows that 21 characteristics are individually significant in the absence of transaction costs, but only 14 in the presence transaction costs. This result contrasts with the finding from Tables 2 and 4 in the main body of the manuscript that, when considered *jointly*, the number of characteristics that are jointly significant at the 5% level *increases* from five in the absence of transaction costs to 15 in the presence of proportional transaction costs.

Table IA.1: Significance with proportional transaction costs from daily price data

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs estimated from daily price data as in Abdi and Ranaldo (2017), for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 25$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs	
rd_mve	11.27^{***}	0.00404	-0.00313	0.00045	-0.00164	0.00028	0.00059	
chtx	2.26^{***}	0.00044	-0.00030	0.00015	-0.00123	0.00094	0.00198	
sue	3.54^{***}	0.00060	0.00079	-0.00019	-0.00254	0.00134	0.00231	
turn	-4.44^{***}	-0.01048	0.00738	0.00279	0.00068	-0.00036	0.00159	
retvol	-2.00^{***}	-0.00652	0.00162	0.00292	0.00323	-0.00125	0.00456	
std_turn	1.97^{***}	0.00334	-0.00554	0.00214	-0.00080	0.00087	0.00421	
agr	-7.57^{**}	-0.00290	-0.00005	0.00057	0.00290	-0.00052	0.00117	
\mathbf{ps}	6.83^{**}	0.00215	-0.00073	-0.00068	-0.00127	0.00052	0.00120	
zerotrade	-2.50^{**}	-0.00210	0.00358	-0.00205	0.00124	-0.00066	0.00181	
beta	3.48^{**}	0.01433	-0.01863	0.00419	-0.0008	0.00019	0.00123	
gma	6.54^{**}	0.00276	-0.00294	0.00069	-0.00066	0.00015	0.00085	
herf	-6.80^{**}	-0.00169	0.00082	0.00041	0.00061	-0.00015	0.00067	
mom1m	-0.84^{**}	-0.00137	0.00264	-0.00109	0.00164	-0.00182	0.00785	
chatoia	4.93^{**}	0.00031	0.00011	-0.00005	-0.00077	0.00040	0.00104	
chcsho	-4.19^{*}	-0.00149	-0.00133	0.00092	0.00228	-0.00038	0.00104	
bm	2.03^{*}	0.00173	0.00098	-0.00082	-0.00205	0.00016	0.00110	
stdcf	-5.07^{*}	-0.00260	0.00099	0.00068	0.00114	-0.00020	0.00067	
bm_ia	3.26^{*}	0.00169	-0.00182	0.00072	-0.00081	0.00022	0.00106	
pchgm_pchsale	3.48	0.00034	0.00013	-0.00003	-0.00079	0.00035	0.00114	
chmom	-0.83	-0.00081	0.00166	-0.00073	0.00044	-0.00057	0.00353	
ep	1.11	0.00181	0.00079	-0.00166	-0.00104	0.00009	0.00123	
roaq	-0.50	-0.00060	0.00349	-0.00114	-0.00215	0.00040	0.00176	
idiovol	-0.80	-0.00302	-0.00191	0.00308	0.00187	-0.00002	0.00111	
mve	-2.43	-0.00082	0.00097	-0.00034	0.00022	-0.00003	0.00038	
mom12m	-0.89	-0.00157	0.00470	-0.00066	-0.00275	0.00028	0.00236	

Table IA.2: Significance with quadratic transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence of quadratic transaction costs, for the case where the investor allocates B =\$1 billion to the benchmark portfolio and has an absolute risk-aversion parameter $\gamma_a = 5/B$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 1.5 \times B$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter (divided by 100 million) and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions								
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. $\cos t$	tran. cost			
rd_mve	2.592^{***}	0.00009	-0.00033	0.00045	-0.00164	0.00143	0.0136			
agr	-1.347^{***}	-0.00005	-0.00041	0.00057	0.00290	-0.00302	0.0240			
sgr	-1.284^{***}	-0.00004	-0.00046	0.00075	0.00179	-0.00203	0.0267			
chatoia	0.898^{***}	0.00001	0.00005	-0.00005	-0.00077	0.00077	0.0274			
turn	-2.270^{***}	-0.00054	-0.00091	0.00279	0.00068	-0.00203	0.0185			
retvol	-0.668^{***}	-0.00022	-0.00141	0.00292	0.00323	-0.00452	0.1110			
std_turn	0.567^{***}	0.00010	-0.00123	0.00214	-0.00080	-0.00020	0.0769			
zerotrade	-0.817^{***}	-0.00007	0.00092	-0.00205	0.00124	-0.00004	0.0731			
chcsho	-1.104^{***}	-0.00004	-0.00056	0.00092	0.00228	-0.00260	0.0169			
ps	1.017^{***}	0.00003	0.00030	-0.00068	-0.00127	0.00162	0.0218			
sue	0.310^{***}	0.00001	0.00015	-0.00019	-0.00254	0.00258	0.076_{4}			
egr	-0.819^{***}	-0.00003	-0.00035	0.00041	0.00231	-0.00234	0.0270			
idiovol	-1.781^{***}	-0.00067	-0.00109	0.00308	0.00187	-0.00319	0.0344			
gma	1.408***	0.00006	-0.00047	0.00069	-0.00066	0.00038	0.013			
ep	0.718^{**}	0.00012	0.00089	-0.00166	-0.00104	0.00169	0.0373			
convind	-1.187^{**}	-0.00002	-0.00032	0.00071	0.00051	-0.00088	0.010			
roaq	0.582**	0.00007	0.00078	-0.00114	-0.00215	0.00244	0.039'			
cashpr	-0.814^{**}	-0.00004	-0.00063	0.00091	0.00139	-0.00163	0.015			
ndmom	1.534**	0.00026	0.00037	-0.00050	-0.00222	0.00209	0.021			
nerf	-1.044^{*}	-0.00003	-0.00002	0.00041	0.00061	-0.00098	0.013			
ochcapx_ia	-0.676^{*}	-0.00001	-0.00009	0.00018	0.00093	-0.00100	0.022			
nom12m	0.853*	0.00011	0.00043	-0.00066	-0.00275	0.00282	0.022			
stdcf	-0.828^{*}	-0.00004	-0.00046	0.00068	0.00213	-0.00131	0.013			
lgr	-0.320 0.329	-0.00004 0.00001	-0.00040	0.00064	0.00114 0.00182	-0.00131 -0.00203	0.0263			
saleinv	0.529 0.587	0.00001 0.00001	-0.00044 0.00027	-0.00064	-0.00102	-0.00203 0.00041	0.020			
hire	-0.288	-0.00001	-0.00027 -0.00051	0.00065	0.00197	-0.00211	0.009			
beta	-0.288 -1.003	-0.00001 -0.00041	-0.00051 -0.00164	0.00003	-0.00008	-0.00201	0.025			
	-1.003 0.170	-0.00041 0.00000	-0.00104 0.00015	-0.00419	-0.00008 -0.00054	-0.00203 0.00056	0.0190			
sup			0.00015							
mve	-9.661	-0.00033		-0.00034	0.00022	0.00003	0.001			
mom36m	-0.627	-0.00003	-0.00034	0.00022	0.00125	-0.00110	0.016			
ear .	0.082	0.00000	0.00013	0.00004	-0.00137	0.00120	0.0700			
om_ia	0.498	0.00003	-0.00044	0.00072	-0.00081	0.00051	0.021			
mom6m	0.305	0.00006	0.00068	-0.00093	-0.00247	0.00266	0.0598			
baspread	-0.192	-0.00008	-0.00181	0.00329	0.00279	-0.00418	0.082			
chtx	0.115	0.00000	-0.00002	0.00015	-0.00123	0.00110	0.0440			
bm	-0.442	-0.00004	0.00084	-0.00082	-0.00205	0.00207	0.0230			
salerec	0.482	0.00001	-0.00006	0.00016	-0.00044	0.00033	0.011			
dy	0.591	0.00006	0.00084	-0.00161	-0.00029	0.00100	0.0123			
ochgm_pchsale	-0.132	-0.00000	0.00000	-0.00003	-0.00079	0.00082	0.028_{*}			
ev	0.661	0.00008	0.00088	-0.00123	-0.00092	0.00119	0.0123			
mom1m	0.083	0.00001	0.00045	-0.00109	0.00164	-0.00102	0.2252			
std_dolvol	-0.040	-0.00000	0.00061	-0.00150	0.00003	0.00086	0.0844			
dolvol	-0.130	-0.00001	-0.00057	0.00139	-0.00025	-0.00056	0.0329			
mve_ia	0.318	0.00001	-0.00004	0.00016	-0.00013	-0.00000	0.0061			

Table IA.3: Significance without transaction costs: Elastic net

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, and using a elastic net for the first (screen) stage of the screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold and the ridge penalty that maximize investor's utility are $\delta = 35$ and $\rho = 0.014$, respectively. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions							
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean				
\mathbf{ps}	17.05^{***}	0.00538	-0.00343	-0.00068	-0.00127				
sue	17.59^{***}	0.00298	-0.00025	-0.00019	-0.00254				
dolvol	-26.88^{***}	-0.02019	0.01906	0.00139	-0.00025				
retvol	-15.39^{***}	-0.05007	0.04392	0.00292	0.00323				
agr	-11.71^{**}	-0.00448	0.00101	0.00057	0.00290				
mom1m	-3.53^{**}	-0.00579	0.00524	-0.00109	0.00164				
std_turn	16.00^{**}	0.02706	-0.02840	0.00214	-0.00080				
bm_ia	7.20^{**}	0.00374	-0.00365	0.00072	-0.00081				
zerotrade	-17.33^{**}	-0.01458	0.01539	-0.00205	0.00124				
beta	6.08^{*}	0.02505	-0.02915	0.00419	-0.00008				
rd_mve	4.78	0.00171	-0.00052	0.00045	-0.00164				
indmom	-3.35	-0.00561	0.00832	-0.00050	-0.00222				
mom6m	-2.34	-0.00485	0.00826	-0.00093	-0.00247				
chcsho	-4.07	-0.00145	-0.00175	0.00092	0.00228				
bm	3.66	0.00312	-0.00025	-0.00082	-0.00205				
gma	2.88	0.00121	-0.00125	0.00069	-0.00066				
mve	15.57	0.00526	-0.00514	-0.00034	0.00022				
mom12m	2.17	0.00386	-0.00045	-0.00066	-0.00275				

Table IA.4: Significance with transaction costs: Elastic net

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, and using a elastic net for the first (screen) stage of the screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor's utility are $\delta = 30$ and $\rho = 0.0006$, respectively. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs		
rd_mve	11.56^{***}	0.00414	-0.00321	0.00045	-0.00164	0.00026	0.00055		
agr	-6.98^{***}	-0.00267	-0.00026	0.00057	0.00290	-0.00055	0.00125		
sue	3.05^{***}	0.00052	0.00075	-0.00019	-0.00254	0.00146	0.00240		
turn	-3.55^{***}	-0.00838	0.00535	0.00279	0.00068	-0.00044	0.00177		
retvol	-1.68^{***}	-0.00548	0.00070	0.00292	0.00323	-0.00137	0.00468		
std_turn	1.31^{***}	0.00221	-0.00435	0.00214	-0.00080	0.00081	0.00493		
zerotrade	-1.59^{***}	-0.00134	0.00291	-0.00205	0.00124	-0.00077	0.00235		
beta	3.58^{**}	0.01476	-0.01909	0.00419	-0.00008	0.00022	0.00126		
chtx	1.37^{**}	0.00027	-0.00022	0.00015	-0.00123	0.00104	0.00232		
\mathbf{ps}	5.17^{**}	0.00163	-0.00034	-0.00068	-0.00127	0.00067	0.00140		
gma	7.20^{**}	0.00303	-0.00324	0.00069	-0.00066	0.00017	0.00090		
mom1m	-0.66^{**}	-0.00108	0.00263	-0.00109	0.00164	-0.00211	0.00857		
chatoia	4.64^{**}	0.00030	0.00007	-0.00005	-0.00077	0.00046	0.00116		
herf	-5.90^{**}	-0.00147	0.00063	0.00041	0.00061	-0.00019	0.00077		
$pchgm_pchsale$	3.58^{*}	0.00035	0.00004	-0.00003	-0.00079	0.00043	0.00122		
stdcf	-4.76	-0.00244	0.00086	0.00068	0.00114	-0.00023	0.00067		
chcsho	-2.78	-0.00099	-0.00181	0.00092	0.00228	-0.00040	0.00123		
bm_ia	2.56	0.00133	-0.00150	0.00072	-0.00081	0.00025	0.00128		
chmom	-0.73	-0.00071	0.00174	-0.00073	0.00044	-0.00075	0.00404		
pchcapx_ia	-2.30	-0.00049	-0.00038	0.00018	0.00093	-0.00024	0.00126		
cashpr	-2.46	-0.00127	-0.00089	0.00091	0.00139	-0.00014	0.00091		
bm	0.86	0.00073	0.00197	-0.00082	-0.00205	0.00017	0.00121		
$^{\mathrm{ep}}$	0.94	0.00153	0.00100	-0.00166	-0.00104	0.00017	0.00125		
idiovol	-1.40	-0.00530	0.00042	0.00308	0.00187	-0.00007	0.00109		
roaq	-0.02	-0.00003	0.00279	-0.00114	-0.00215	0.00053	0.00186		
mve	-2.32	-0.00079	0.00094	-0.00034	0.00022	-0.00003	0.00045		
mom12m	-0.78	-0.00139	0.00452	-0.00066	-0.00275	0.00027	0.00265		

Table IA.5: Significance without transaction costs: Elastic net and shrinkage cov. matrix

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, using a elastic net for the first (screen) stage and the shrinkage estimator of the covariance matrix in Ledoit and Wolf (2004) for the second (clean) stage of the screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor's utility are $\delta = 35$ and $\rho = 0.014$, respectively. For the clean stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions							
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean				
agr	-11.71^{***}	-0.00448	0.00101	0.00057	0.00290				
\mathbf{ps}	17.05^{***}	0.00538	-0.00343	-0.00068	-0.00127				
sue	17.59^{***}	0.00298	-0.00025	-0.00019	-0.00254				
dolvol	-26.88^{***}	-0.02019	0.01906	0.00139	-0.00025				
retvol	-15.39^{***}	-0.05007	0.04392	0.00292	0.00323				
std_turn	16.00^{***}	0.02706	-0.02840	0.00214	-0.00080				
rd_mve	4.78^{**}	0.00171	-0.00052	0.00045	-0.00164				
mom1m	-3.53^{**}	-0.00579	0.00524	-0.00109	0.00164				
zerotrade	-17.33^{**}	-0.01458	0.01539	-0.00205	0.00124				
bm_ia	7.20^{**}	0.00374	-0.00365	0.00072	-0.00081				
beta	6.08^{**}	0.02505	-0.02915	0.00419	-0.0008				
gma	2.88^{**}	0.00121	-0.00125	0.00069	-0.00066				
chcsho	-4.07^{**}	-0.00145	-0.00175	0.00092	0.00228				
bm	3.66^{*}	0.00312	-0.00025	-0.00082	-0.00205				
indmom	-3.35	-0.00561	0.00832	-0.00050	-0.00222				
mom6m	-2.34	-0.00485	0.00826	-0.00093	-0.00247				
mve	15.57	0.00526	-0.00514	-0.00034	0.00022				
mom12m	2.17	0.00386	-0.00045	-0.00066	-0.00275				

Table IA.6: Significance with transaction costs: Elastic net and shrinkage cov. matrix

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, using a elastic net for the first (screen) stage, and the shrinkage estimator of the covariance matrix in Ledoit and Wolf (2004) for the second (clean) stage of the screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor's utility are $\delta = 30$ and $\rho = 0.0006$, respectively. For the clean stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs	
rd_mve	11.56^{***}	0.00414	-0.00321	0.00045	-0.00164	0.00026	0.00055	
agr	-6.98^{***}	-0.00267	-0.00026	0.00057	0.00290	-0.00055	0.00125	
gma	7.20^{***}	0.00303	-0.00324	0.00069	-0.00066	0.00017	0.00090	
\mathbf{ps}	5.17^{***}	0.00163	-0.00034	-0.00068	-0.00127	0.00067	0.00140	
herf	-5.90^{***}	-0.00147	0.00063	0.00041	0.00061	-0.00019	0.00077	
sue	3.05^{***}	0.00052	0.00075	-0.00019	-0.00254	0.00146	0.00240	
retvol	-1.68^{***}	-0.00548	0.00070	0.00292	0.00323	-0.00137	0.00468	
std_turn	1.31^{***}	0.00221	-0.00435	0.00214	-0.00080	0.00081	0.00493	
zerotrade	-1.59^{***}	-0.00134	0.00291	-0.00205	0.00124	-0.00077	0.00235	
beta	3.58^{***}	0.01476	-0.01909	0.00419	-0.00008	0.00022	0.00126	
chatoia	4.64^{**}	0.00030	0.00007	-0.00005	-0.00077	0.00046	0.00116	
chtx	1.37^{**}	0.00027	-0.00022	0.00015	-0.00123	0.00104	0.00232	
turn	-3.55^{**}	-0.00838	0.00535	0.00279	0.00068	-0.00044	0.00177	
chcsho	-2.78^{**}	-0.00099	-0.00181	0.00092	0.00228	-0.00040	0.00123	
pchgm_pchsale	3.58^{**}	0.00035	0.00004	-0.00003	-0.00079	0.00043	0.00122	
mom1m	-0.66^{**}	-0.00108	0.00263	-0.00109	0.00164	-0.00211	0.00857	
stdcf	-4.76^{**}	-0.00244	0.00086	0.00068	0.00114	-0.00023	0.00067	
bm_ia	2.56^{**}	0.00133	-0.00150	0.00072	-0.00081	0.00025	0.00128	
bm	0.86	0.00073	0.00197	-0.00082	-0.00205	0.00017	0.00121	
chmom	-0.73	-0.00071	0.00174	-0.00073	0.00044	-0.00075	0.00404	
cashpr	-2.46	-0.00127	-0.00089	0.00091	0.00139	-0.00014	0.00091	
pchcapx_ia	-2.30	-0.00049	-0.00038	0.00018	0.00093	-0.00024	0.00126	
idiovol	-1.40	-0.00530	0.00042	0.00308	0.00187	-0.00007	0.00109	
roaq	-0.02	-0.00003	0.00279	-0.00114	-0.00215	0.00053	0.00186	
$^{\mathrm{ep}}$	0.94	0.00153	0.00100	-0.00166	-0.00104	0.00017	0.00125	
mve	-2.32	-0.00079	0.00094	-0.00034	0.00022	-0.00003	0.00045	
mom12m	-0.78	-0.00139	0.00452	-0.00066	-0.00275	0.00027	0.00265	

Table IA.7: Significance without transaction costs: Excluding microcaps

This table reports, for the case where microcaps are excluded from the dataset, the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 40$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28)

Marginal contributions

			Marginar c	contributions	
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean
ear	9.43^{***}	0.00173	-0.00086	0.00025	-0.00112
indmom	-4.12^{***}	-0.00698	0.00843	-0.00052	-0.00093
retvol	-6.74^{***}	-0.02308	0.01817	0.00338	0.00153
std_turn	9.57^{***}	0.01983	-0.02187	0.00223	-0.00019
bm_ia	5.63^{***}	0.00315	-0.00312	0.00075	-0.00078
sue	8.48^{**}	0.00120	0.00002	-0.00015	-0.00107
\mathbf{ps}	6.87^{**}	0.00175	-0.00033	-0.00076	-0.00066
rd_mve	5.96^{*}	0.00213	-0.00137	0.00043	-0.00119
std_dolvol	3.15^{*}	0.00088	0.00001	-0.00061	-0.00028
chmom	-2.14^{*}	-0.00241	0.00208	-0.00076	0.00110
agr	-8.33	-0.00439	0.00134	0.00098	0.00207
roaq	1.89	0.00138	0.00086	-0.00077	-0.00148
mom1m	-0.96	-0.00146	0.00152	-0.00095	0.00089
egr	-4.74	-0.00218	-0.00059	0.00083	0.00194
gma	1.46	0.00085	-0.00136	0.00070	-0.00019
bm	0.85	0.00080	0.00090	-0.00065	-0.00106
mve	-0.19	-0.00007	0.00023	-0.00053	0.00037
mom12m	-0.76	-0.00150	0.00346	-0.00045	-0.00151

Table IA.8: Significance with transaction costs: Excluding microcaps

This table reports, for the dataset without microcaps, the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 20$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28) Manginal contributi т 1.

			Mar	ginal contributi	ions		Indiv.
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
std_turn	0.28^{***}	0.00057	-0.00300	0.00223	-0.00019	0.00039	0.00472
rd_mve	7.13^{***}	0.00255	-0.00205	0.00043	-0.00119	0.00026	0.00051
ear	0.33^{***}	0.00006	-0.00019	0.00025	-0.00112	0.00100	0.00324
bm_ia	2.53^{***}	0.00142	-0.00181	0.00075	-0.00078	0.00043	0.00125
mom36m	1.17^{***}	0.00069	-0.00256	0.00046	0.00107	0.00034	0.00177
chmom	-1.01^{**}	-0.00114	0.00181	-0.00076	0.00110	-0.00101	0.00421
egr	-4.09^{**}	-0.00188	-0.00032	0.00083	0.00194	-0.00057	0.00124
gma	3.84^{**}	0.00223	-0.00283	0.00070	-0.00019	0.00009	0.00089
ps	2.72^{**}	0.00069	0.00020	-0.00076	-0.00066	0.00053	0.00141
retvol	-0.24^{**}	-0.00081	-0.00318	0.00338	0.00153	-0.00092	0.00492
zerotrade	-0.23^{**}	-0.00008	0.00094	-0.00108	0.00064	-0.00042	0.00182
aeavol	-0.17^{**}	-0.00004	-0.00050	0.00070	0.00021	-0.00037	0.00293
indmom	-0.59^{*}	-0.00101	0.00293	-0.00052	-0.00093	-0.00047	0.00252
saleinv	2.80^{*}	0.00040	0.00023	-0.00058	-0.00020	0.00016	0.00069
chatoia	2.45^{*}	0.00023	0.00020	-0.00016	-0.00067	0.00040	0.00118
herf	-2.40^{*}	-0.00067	0.00024	0.00049	0.00011	-0.00017	0.00076
sue	0.21	0.00003	0.00039	-0.00015	-0.00107	0.00080	0.00219
stdcf	-2.31	-0.00105	-0.00008	0.00063	0.00073	-0.00023	0.00065
roaq	0.64	0.00047	0.00107	-0.00077	-0.00148	0.00071	0.00186
rsup	0.40	0.00010	0.00012	-0.00015	-0.00048	0.00042	0.00169
pchcapx_ia	-1.46	-0.00039	-0.00034	0.00034	0.00069	-0.00030	0.00123
pchgm_pchsale	1.22	0.00014	-0.00018	-0.00000	-0.00027	0.00031	0.00120
chtx	0.16	0.00005	-0.00048	0.00030	-0.00052	0.00065	0.00233
baspread	-0.28	-0.00122	-0.00323	0.00380	0.00128	-0.00062	0.00344
cashpr	-2.07	-0.00092	-0.00051	0.00063	0.00095	-0.00016	0.00085
pricedelay	0.06	0.00001	0.00093	-0.00079	-0.00033	0.00018	0.00286
sgr	-1.69	-0.00099	-0.00107	0.00100	0.00127	-0.00021	0.00120
mom6m	0.63	0.00131	0.00066	-0.00076	-0.00101	-0.00020	0.00397
turn	-0.53	-0.00156	-0.00169	0.00288	0.00054	-0.00017	0.00171
beta	0.83	0.00341	-0.00810	0.00413	0.00052	0.00004	0.00122
salerec	1.41	0.00038	0.00015	-0.00020	-0.00045	0.00011	0.00080
lev	1.84	0.00219	-0.00072	-0.00071	-0.00081	0.00005	0.00081
chcsho	-0.66	-0.00026	-0.00205	0.00098	0.00175	-0.00042	0.00126
convind	-0.72	-0.00013	-0.00082	0.00068	0.00035	-0.00008	0.00076
agr	-1.15	-0.00060	-0.00185	0.00098	0.00207	-0.00060	0.00123
ep	0.84	0.00112	0.00078	-0.00153	-0.00050	0.00013	0.00119
idiovol	-0.01	-0.00002	-0.00407	0.00335	0.00081	-0.00006	0.00114
mom1m	0.08	0.00013	0.00111	-0.00095	0.00089	-0.00117	0.00850
bm	-2.05	-0.00194	0.00361	-0.00065	-0.00106	0.00004	0.00114
mve	-2.27	-0.00079	0.00100	-0.00053	0.00037	-0.00005	0.00059
mom12m	-0.34	-0.00068	0.00251	-0.00045	-0.00151	0.00013	0.00274

Table IA.9: Reality check for significance test

This table reports the bootstrap p-values for the significance of the characteristics after removing their predictability, as explained in Section IA.6.

Characteristic p-val Characteristic p-val Characteristic p-val

Panel A: Without transaction costs

mom1m	0.683	dolvol	0.918	chtx	0.963
lev	0.824	std_turn	0.920	sue	0.963
beta	0.826	zerotrade	0.922	stdcf	0.965
indmom	0.833	gma	0.925	mve	0.967
chmom	0.844	roaq	0.927	cashpr	0.969
bm_ia	0.871	mom36m	0.927	chatoia	0.971
baspread	0.874	std_dolvol	0.927	pchgm_pchsale	0.973
retvol	0.880	idiovol	0.927	ear	0.973
mom12m	0.882	salecash	0.928	pricedelay	0.979
mom6m	0.884	salerec	0.934	$pchsale_pchrect$	0.981
herf	0.889	rsup	0.947	lgr	0.983
turn	0.891	chpmia	0.951	chempia	0.984
ер	0.899	chcsho	0.952	\mathbf{ps}	0.985
bm	0.906	egr	0.953	rd_mve	0.988
pchcapx_ia	0.910	agr	0.956	convind	0.989
mve_ia	0.913	hire	0.956	saleinv	0.990
dy	0.915	sgr	0.962	aeavol	0.990

Panel B: With transaction costs

mom1m	0.682	salerec	0.886	ear	0.928
baspread	0.764	mom36m	0.886	hire	0.930
bm_ia	0.802	mve_ia	0.888	sue	0.930
lev	0.806	bm	0.892	chatoia	0.934
beta	0.816	dy	0.894	cashpr	0.936
mom6m	0.822	$^{\mathrm{ep}}$	0.896	agr	0.938
chmom	0.824	salecash	0.896	stdcf	0.944
turn	0.834	chpmia	0.896	pricedelay	0.944
idiovol	0.846	retvol	0.898	$pchgm_pchsale$	0.946
mom12m	0.852	zerotrade	0.906	\mathbf{ps}	0.962
indmom	0.854	std_dolvol	0.910	chempia	0.962
herf	0.858	std_turn	0.910	$pchsale_pchrect$	0.964
dolvol	0.864	chtx	0.914	convind	0.968
pchcapx_ia	0.872	chcsho	0.920	aeavol	0.968
roaq	0.876	egr	0.924	saleinv	0.974
rsup	0.880	sgr	0.928	lgr	0.976
gma	0.882	mve	0.928	rd_mve	0.982

Table IA.10: Significance without transaction costs: Exploiting all 100 characteristics

This table reports the significance and marginal contributions for the parametric portfolios exploiting 100 firm characteristics without transaction costs, for risk-aversion parameter $\gamma = 5$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 75$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

Integrate ContributionNumerical ContributionNumerical ContributionsinceContractSet -25.04^{***} -0.02417 0.002471 -0.00129 0.00075 retvol -14.71^{***} -0.004785 0.00132 0.00292 0.00292 mom1m -4.03^{**} -0.00452 0.00132 0.00292 0.00254 mom1m -4.03^{**} -0.00452 0.00132 0.00225 0.0127 0.002450 0.00214 -0.00083 $std_turn13.69^{**}-0.012580.002350.00124nangyst-15.63^{**}-0.009930.00066-0.00250-0.00222cfp15.22^{*}0.01280-0.00088-0.00088-0.00088-0.00088-0.00088-0.00025std_cf-11.61^{*}-0.00943-0.00088-0.00072-0.00088-0.00088-0.00088-0.000127pcta$	(/	Marginal c	ontributions	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristic	Param.	variance	0		mean
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(, , , , , , , , , , , , , , , , , , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sfe	-25.04^{***}	-0.02417	0.02471	-0.00129	0.00075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	retvol			0.04170	0.00292	0.00323
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sue	17.87^{**}	0.00303	-0.00030	-0.00019	-0.00254
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mom1m	-4.03^{**}	-0.00661	0.00606	-0.00109	0.00164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	chcsho	-12.71^{**}	-0.00452	0.00132	0.00092	0.00228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	std_turn	13.69^{**}	0.02316	-0.02450	0.00214	-0.00080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	zerotrade	-14.95^{**}	-0.01258	0.01339	-0.00205	0.00124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nanalyst	-15.63^{*}	-0.00993	0.00933	0.00063	-0.00003
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	indmom	-3.08^{*}	-0.00516	0.00787	-0.00050	-0.00222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cfp	15.22^{*}	0.01280	-0.00962	-0.00088	-0.00230
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	stdcf	-11.61^{*}	-0.00596	0.00415	0.00068	0.00114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$pchgm_pchsale$	12.64	0.00123	-0.00041	-0.00003	-0.00079
depr7.45 0.00791 -0.00848 0.00129 -0.00071 rd_mve5.62 0.00202 -0.00082 0.00045 -0.00164 chfeps3.68 0.0060 0.00131 -0.00030 -0.00161 dolvol -13.14 -0.00987 0.00874 0.00139 -0.00025 chtx7.55 0.00147 -0.00039 0.00015 -0.00123 cfp_ia3.59 0.00091 -0.00054 0.00052 -0.00090 agr -6.38 -0.00244 -0.00103 0.00057 0.00290 gma -1.26 -0.00053 0.00050 0.00069 -0.00066 grcapx -3.08 -0.00062 -0.00156 0.00051 0.00167 mom6m -0.48 -0.00099 0.00439 -0.00093 -0.00247 bm_ia 0.74 0.0039 -0.00732 0.00154 -0.00053 roaq -0.72 -0.00088 0.00417 -0.00114 -0.00215 beta 0.18 0.00074 -0.00484 0.00419 -0.00008 nincr 4.06 0.00660 0.00115 0.00003 -0.00179 bm 1.67 0.00142 0.00145 -0.00082 -0.00205 mve 14.07 0.00475 -0.00463 -0.00034 0.00022	\mathbf{ps}	11.06	0.00349	-0.00154	-0.00068	-0.00127
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	pctacc	-12.44	-0.00177	0.00028	0.00010	0.00140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	depr	7.45	0.00791	-0.00848		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-0.00164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	chfeps	3.68	0.00060	0.00131	-0.00030	-0.00161
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dolvol	-13.14			0.00139	-0.00025
agr -6.38 -0.00244 -0.00103 0.00057 0.00290 gma -1.26 -0.00053 0.00050 0.00069 -0.00066 grcapx -3.08 -0.00062 -0.00156 0.00051 0.00167 mom6m -0.48 -0.00099 0.00439 -0.00093 -0.00247 bm_ia 0.74 0.00039 -0.00029 0.00072 -0.00081 cash 3.24 0.00631 -0.00732 0.00154 -0.00053 roaq -0.72 -0.00088 0.00417 -0.00114 -0.00215 beta 0.18 0.00074 -0.00484 0.00419 -0.00008 nincr 4.06 0.00142 0.00145 -0.00082 -0.00205 mve 14.07 0.00475 -0.00463 -0.00034 0.00022	chtx	7.55	0.00147	-0.00039	0.00015	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cfp_ia			-0.00054	0.00052	-0.00090
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	agr	-6.38	-0.00244	-0.00103	0.00057	0.00290
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gma	-1.26	-0.00053	0.00050	0.00069	-0.00066
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	grcapx					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mom6m	-0.48	-0.00099	0.00439	-0.00093	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bm_ia	0.74	0.00039	-0.00029		-0.00081
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\cosh	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	roaq	-0.72		0.00417		-0.00215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
mve 14.07 0.00475 -0.00463 -0.00034 0.00022	nincr					
	bm					
mom12m -3.61 -0.00641 0.00982 -0.00066 -0.00275						
	mom12m	-3.61	-0.00641	0.00982	-0.00066	-0.00275

Table IA.11: Significance with transaction costs: Exploiting all 100 characteristics

This table reports the significance for the parametric portfolios exploiting 100 characteristics with transaction costs, for risk-aversion parameter $\gamma = 5$. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 50$. For the second (clean) stage, we run the bootstrap experiment for those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose *p*-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns the marginal contribution to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics, (iii) the covariance of the characteristic with the other characteristics, (iii) the covariance of the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic to are in *red italic* font (cf. Footnote 28).

			Mar	ginal contribut	ions		Indiv.
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
rsup	5.28^{***}	0.00116	-0.00114	-0.00017	-0.00054	0.00069	0.00178
sue	4.06^{***}	0.00069	0.00082	-0.00019	-0.00254	0.00122	0.00240
chfeps	1.36^{***}	0.00022	0.00087	-0.00030	-0.00161	0.00082	0.00471
sfe	-16.67^{***}	-0.01610	0.01717	-0.00129	0.00075	-0.00054	0.00115
retvol	-2.53^{***}	-0.00822	0.00327	0.00292	0.00323	-0.00119	0.00468
std_turn	1.81***	0.00306	-0.00507	0.00214	-0.00080	0.00067	0.00493
zerotrade	-2.71^{***}	-0.00228	0.00381	-0.00205	0.00124	-0.00072	0.00235
cfp	12.64^{**}	0.01063	-0.00802	-0.00088	-0.00230	0.00057	0.00115
mom1m	-1.30^{**}	-0.00213	0.00351	-0.00109	0.00164	-0.00194	0.00857
disp	-3.72^{**}	-0.00184	0.00023	0.00112	0.00097	-0.00047	0.00154
turn	-3.34^{**}	-0.00789	0.00469	0.00279	0.00068	-0.00027	0.00177
rd_mve	10.07^{**}	0.00361	-0.00256	0.00045	-0.00164	0.00015	0.00055
depr	6.51^{**}	0.00691	-0.00769	0.00129	-0.00071	0.00020	0.00093
pchgm_pchsale	6.43^{**}	0.00062	-0.00021	-0.00003	-0.00079	0.00040	0.00122
stdcf	-8.02^{**}	-0.00412	0.00250	0.00068	0.00114	-0.00019	0.00067
agr	-5.45^{*}	-0.00209	-0.00097	0.00057	0.00290	-0.00042	0.00125
chatoia	5.62^{*}	0.00036	0.00014	-0.00005	-0.00077	0.00032	0.00116
chcsho	-5.09^{*}	-0.00181	-0.00095	0.00092	0.00228	-0.00044	0.00123
nanalyst	-5.55	-0.00353	0.00307	0.00063	-0.00003	-0.00014	0.00104
pchcapx_ia	-3.56	-0.00076	-0.00009	0.00018	0.00093	-0.00026	0.00126
ear	1.15	0.00018	0.00045	0.00004	-0.00137	0.00070	0.00318
herf	-4.58	-0.00114	0.00020	0.00041	0.00061	-0.00008	0.00077
beta	1.52	0.00624	-0.01043	0.00419	-0.00008	0.00008	0.00126
pctacc	-3.99	-0.00057	-0.00049	0.00010	0.00140	-0.00044	0.00107
cash	2.83	0.00551	-0.00670	0.00154	-0.00053	0.00018	0.00115
ps	2.76	0.00087	0.00053	-0.00068	-0.00127	0.00055	0.00140
chtx	1.03	0.00020	0.00007	0.00015	-0.00123	0.00081	0.00232
ер	3.44	0.00561	-0.00310	-0.00166	-0.00104	0.00019	0.00125
roaq	1.38	0.00168	0.00099	-0.00114	-0.00215	0.00063	0.00186
gma	3.61	0.00152	-0.00165	0.00069	-0.00066	0.00010	0.00090
tang	2.33	0.00215	-0.00287	0.00097	-0.00037	0.00012	0.00098
bm_ia	1.20	0.00062	-0.00066	0.00072	-0.00081	0.00013	0.00128
nincr	0.40	0.00006	0.00100	0.00003	-0.00179	0.00070	0.00269
cfp_ia	1.10	0.00028	-0.00014	0.00052	-0.00090	0.00024	0.00121
grcapx	-1.79	-0.00036	-0.00159	0.00051	0.00167	-0.00022	0.00105
chmom	-0.66	-0.00065	0.00135	-0.00073	0.00044	-0.00042	0.00404
dolvol	0.35	0.00026	-0.00140	0.00139	-0.00025	0.00000	0.00214
idiovol	-1.18	-0.00445	-0.00044	0.00308	0.00187	-0.00006	0.00109
cashdebt	1.96	0.00139	0.00044	-0.00074	-0.00127	0.00018	0.00102
cashpr	-0.74	-0.00038	-0.00184	0.00091	0.00139	-0.00008	0.00091
baspread	-0.02	-0.00010	-0.00542	0.00329	0.00100	-0.00056	0.00322
mve	-0.11	-0.00004	0.00019	-0.00034	0.00022	-0.00003	0.00045
bm	1.44	0.00122	0.00151	-0.00082	-0.00205	0.00014	0.00121
chiny	-1.44	-0.00023	-0.00131	0.00037	0.00152	-0.00031	0.00121
roic	-0.02	-0.00023	0.00154	-0.00103	-0.00152	0.00017	0.00103
acc	-0.02 -1.05	-0.00002 -0.00026	-0.000230	-0.00103	0.00134	-0.00035	0.00105 0.00115
mom12m	-1.03 -2.22	-0.00395	0.00728	-0.00049 -0.00066	-0.00275	0.00007	0.00115 0.00265
11011112111	-2.22	-0.00595	0.00120	-0.00000	-0.00270	0.00007	0.00200

Table IA.12: Significance without transaction costs: Subsample from 1988 to 2003

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from May 1988 to December 2002. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 50$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean				
sue	33.61^{***}	0.00512	-0.00186	-0.00006	-0.00319				
mom1m	-8.95^{***}	-0.02126	0.01968	-0.00113	0.00271				
dolvol	-18.25^{***}	-0.02037	0.01868	0.00221	-0.00052				
retvol	-22.93^{***}	-0.10422	0.09605	0.00291	0.00526				
$\mathrm{std}_{-}\mathrm{turn}$	30.37^{***}	0.08025	-0.08169	0.00278	-0.00134				
rd_mve	21.20^{**}	0.00998	-0.00810	0.00051	-0.00239				
mom6m	-9.77^{**}	-0.02653	0.03157	-0.00080	-0.00423				
bm_ia	9.78^{**}	0.00697	-0.00707	0.00087	-0.00077				
agr	-6.63^{*}	-0.00334	-0.00149	0.00109	0.00374				
chmom	2.90	0.00359	-0.00396	-0.00070	0.00107				
bm	5.29	0.00636	-0.00148	-0.00178	-0.00310				
mve	12.13	0.00506	-0.00488	0.00002	-0.00019				
mom12m	1.59	0.00325	0.00235	-0.00029	-0.00531				

Table IA.13: Significance with transaction costs: Subsample from 1988 to 2003

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from May 1988 to December 2002. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 15$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs		
rd_mve	16.90^{***}	0.00796	-0.00654	0.00051	-0.00239	0.00046	0.00087		
agr	-8.35^{***}	-0.00421	0.00005	0.00109	0.00374	-0.00067	0.00190		
\mathbf{ps}	11.72^{***}	0.00427	-0.00319	-0.00048	-0.00175	0.00115	0.00211		
sue	3.01^{***}	0.00046	0.00084	-0.00006	-0.00319	0.00196	0.00353		
std_turn	1.07^{***}	0.00283	-0.00527	0.00278	-0.00134	0.00100	0.00722		
herf	-8.69^{**}	-0.00211	0.00074	0.00017	0.00160	-0.00040	0.00122		
chmom	-1.91^{**}	-0.00236	0.00414	-0.00070	0.00107	-0.00214	0.00600		
retvol	-1.79^{**}	-0.00814	0.00187	0.00291	0.00526	-0.00190	0.00676		
mom1m	-1.16^{**}	-0.00275	0.00568	-0.00113	0.00271	-0.00451	0.01288		
gma	11.62^{**}	0.00645	-0.00786	0.00117	-0.00008	0.00032	0.00141		
bm_ia	5.41^{**}	0.00386	-0.00445	0.00087	-0.00077	0.00050	0.00194		
zerotrade	-1.61^{**}	-0.00181	0.00433	-0.00237	0.00099	-0.00115	0.00371		
lev	8.35^{**}	0.01395	-0.00965	-0.00177	-0.00278	0.00024	0.00136		
chatoia	4.74^{**}	0.00029	0.00023	-0.00015	-0.00107	0.00070	0.00171		
cashpr	-6.86^{*}	-0.00448	0.00066	0.00135	0.00287	-0.00040	0.00144		
mom12m	-1.33	-0.00272	0.00761	-0.00029	-0.00531	0.00071	0.00393		
roaq	0.72	0.00128	0.00261	-0.00119	-0.00356	0.00087	0.00285		
chcsho	-0.66	-0.00034	-0.00388	0.00129	0.00321	-0.00029	0.00188		
idiovol	-0.31	-0.00168	-0.00528	0.00334	0.00371	-0.00009	0.00172		
ер	0.28	0.00064	0.00310	-0.00177	-0.00223	0.00026	0.00195		
bm	-3.94	-0.00473	0.00936	-0.00178	-0.00310	0.00025	0.00191		
mve	-3.35	-0.00140	0.00167	0.00002	-0.00019	-0.00010	0.00070		

Table IA.14: Significance without transaction costs: Subsample from 2003 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from January 2003 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 10$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean			
agr	-13.15^{***}	-0.00301	0.00116	-0.00008	0.00193			
sue	26.22^{***}	0.00490	-0.00287	-0.00032	-0.00171			
salecash	8.07^{*}	0.00176	-0.00046	0.00006	-0.00136			
salerec	7.53^{*}	0.00161	-0.00049	0.00045	-0.00157			
stdcf	-4.81	-0.00153	-0.00020	0.00057	0.00115			
retvol	-4.43	-0.00732	0.00376	0.00295	0.00061			
bm	0.39	0.00016	0.00022	0.00038	-0.00076			
mve	-7.47	-0.00182	0.00189	-0.00079	0.00071			
mom12m	-5.03	-0.00696	0.00756	-0.00106	0.00046			

Table IA.15: Significance with transaction costs: Subsample from 2003 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from January 2003 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 15$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Indiv.				
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
sue	4.99^{***}	0.00093	-0.00018	-0.00032	-0.00171	0.00128	0.00185
retvol	-0.62^{**}	-0.00102	-0.00161	0.00295	0.00061	-0.00094	0.00378
zerotrade	-5.10^{**}	-0.00255	0.00328	-0.00166	0.00155	-0.00061	0.00154
turn	-5.01^{**}	-0.00374	0.00155	0.00175	0.00079	-0.00035	0.00113
egr	-10.16^{*}	-0.00242	0.00132	-0.00019	0.00180	-0.00050	0.00090
lev	-8.58^{*}	-0.00653	0.00572	-0.00054	0.00146	-0.00012	0.00057
stdcf	-7.51	-0.00238	0.00082	0.00057	0.00115	-0.00017	0.00047
chtx	1.80	0.00021	-0.00016	-0.00010	-0.00076	0.00082	0.00180
rsup	2.80	0.00068	-0.00041	-0.00025	-0.00054	0.00051	0.00128
\mathbf{ps}	6.31	0.00163	-0.00033	-0.00093	-0.00069	0.00031	0.00100
indmom	-2.14	-0.00208	0.00236	0.00001	0.00017	-0.00047	0.00187
agr	-3.76	-0.00086	-0.00048	-0.00008	0.00193	-0.00052	0.00089
salerec	3.36	0.00072	0.00025	0.00045	-0.00157	0.00015	0.00054
salecash	-0.91	-0.00020	0.00142	0.00006	-0.00136	0.00008	0.00062
baspread	-1.75	-0.00404	0.00099	0.00347	0.00020	-0.00062	0.00251
gma	-1.53	-0.00039	0.00171	0.00008	-0.00138	-0.00001	0.00061
bm	5.46	0.00228	-0.00201	0.00038	-0.00076	0.00012	0.00080
mve	-5.48	-0.00133	0.00142	-0.00079	0.00071	-0.00001	0.00029
mom12m	-0.24	-0.00034	0.00105	-0.00106	0.00046	-0.00011	0.00198

Table IA.16: Significance without transaction costs: Subsample from 1980 to 1997

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from January 1980 to June 1997. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 75$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean				
rd_mve	32.47^{***}	0.00262	-0.00162	0.00017	-0.00117				
roaq	23.58^{***}	0.00554	-0.00310	0.00030	-0.00273				
mom1m	-24.17^{***}	-0.00941	0.00596	-0.00050	0.00395				
retvol	-19.36^{***}	-0.01821	0.01044	0.00130	0.00647				
chcsho	-23.05^{**}	-0.00306	0.00030	0.00054	0.00222				
chtx	27.71	0.00412	-0.00281	0.00058	-0.00190				
agr	-3.81	-0.00102	-0.00268	0.00092	0.00278				
std_turn	25.83	0.01354	-0.01444	0.00122	-0.00032				
sue	5.59	0.00047	0.00179	0.00011	-0.00238				
dolvol	-27.55	-0.01678	0.01640	0.00114	-0.00077				
mve_ia	-32.24	-0.00903	0.00928	0.00014	-0.00039				
mom12m	-1.32	-0.00075	0.00458	0.00059	-0.00442				
bm	4.92	0.00338	0.00186	-0.00129	-0.00395				
mve	42.03	0.01431	-0.01370	-0.00013	-0.00049				

Table IA.17: Significance with transaction costs: Subsample from 1980 to 1997

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from January 1980 to June 1997. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 75$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Indiv.				
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
rd_mve	23.42^{***}	0.00189	-0.00139	0.00017	-0.00117	0.00050	0.00086
chcsho	-6.16^{***}	-0.00082	-0.00108	0.00054	0.00222	-0.00086	0.00212
saleinv	13.03^{***}	0.00152	-0.00074	-0.00050	-0.00065	0.00037	0.00127
roaq	3.26^{***}	0.00077	0.00022	0.00030	-0.00273	0.00144	0.00309
turn	-3.86^{***}	-0.00336	0.00090	0.00182	0.00150	-0.00086	0.00326
std_dolvol	-0.79^{***}	-0.00021	0.00174	-0.00089	-0.00023	-0.00042	0.00885
std_turn	1.35^{***}	0.00071	-0.00218	0.00122	-0.00032	0.00057	0.00841
zerotrade	-1.43^{***}	-0.00055	0.00249	-0.00143	0.00051	-0.00102	0.00434
beta	9.43^{***}	0.01503	-0.01996	0.00280	0.00170	0.00043	0.00221
idiovol	-12.61^{***}	-0.01762	0.01130	0.00164	0.00517	-0.00049	0.00189
mve_ia	-14.35^{**}	-0.00402	0.00457	0.00014	-0.00039	-0.00030	0.00119
chtx	1.61^{**}	0.00024	-0.00049	0.00058	-0.00190	0.00157	0.00365
dy	-8.77^{**}	-0.00835	0.01241	-0.00173	-0.00231	-0.00002	0.00159
ps	7.87**	0.00099	0.00032	-0.00027	-0.00196	0.00092	0.00237
gma	10.49^{**}	0.00379	-0.00418	0.00084	-0.00051	0.00007	0.00148
ear	0.56^{**}	0.00003	0.00040	0.00017	-0.00164	0.00104	0.00509
mom12m	2.64^{**}	0.00151	0.00078	0.00059	-0.00442	0.00155	0.00455
cashpr	-9.84^{**}	-0.00427	0.00059	0.00111	0.00311	-0.00053	0.00162
retvol	-1.13^{**}	-0.00106	-0.00470	0.00130	0.00647	-0.00201	0.00804
mom1m	-0.95^{**}	-0.00037	0.00126	-0.00050	0.00395	-0.00434	0.01511
salecash	-6.72^{**}	-0.00070	0.00168	-0.00045	-0.00037	-0.00015	0.00170
agr	-8.16^{**}	-0.00219	-0.00058	0.00092	0.00278	-0.00093	0.00208
chatoia	5.54^{**}	0.00018	-0.00010	0.00008	-0.00062	0.00048	0.00193
baspread	-1.44^{*}	-0.00099	-0.00362	0.00050	0.00559	-0.00148	0.00521
sue	0.74	0.00006	0.00068	0.00011	-0.00238	0.00152	0.00376
chempia	-2.99	-0.00027	-0.00047	0.00038	0.00093	-0.00058	0.00209
sgr	-4.37	-0.00105	-0.00162	0.00089	0.00214	-0.00035	0.00204
convind	-3.72	-0.00019	-0.00046	0.00034	0.00049	-0.00019	0.00132
mom36m	1.11	0.00031	-0.00117	0.00054	0.00046	-0.00014	0.00268
dolvol	-1.32	-0.00081	0.00065	0.00114	-0.00077	-0.00022	0.00400
lev	2.71	0.00143	0.00196	-0.00073	-0.00289	0.00023	0.00142
\mathbf{bm}	2.10	0.00144	0.00325	-0.00129	-0.00395	0.00056	0.00204
ep	-0.29	-0.00017	0.00439	-0.00085	-0.00367	0.00029	0.00209
indmom	-0.16	-0.00011	0.00265	0.00037	-0.00322	0.00031	0.00416
pchgm_pchsale	0.05	0.00000	0.00059	0.00015	-0.00106	0.00032	0.00207
mve	4.24	0.00144	-0.00081	-0.00013	-0.00049	-0.00002	0.00083

Table IA.18: Significance without transaction costs: Subsample from 1997 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from July 1997 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 15$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean				
sue	15.94^{***}	0.00346	-0.00082	-0.00033	-0.00231				
gma	7.91^{**}	0.00362	-0.00344	0.00073	-0.00091				
agr	-10.08^{**}	-0.00468	0.00074	0.00055	0.00338				
mom1m	-1.32^{**}	-0.00312	0.00343	-0.00140	0.00109				
chcsho	-6.30	-0.00301	-0.00064	0.00120	0.00245				
retvol	-1.02	-0.00457	-0.00190	0.00424	0.00223				
bm	-2.38	-0.00243	0.00488	-0.00093	-0.00153				
mve	-5.17	-0.00176	0.00164	-0.00058	0.00070				
mom12m	-1.94	-0.00485	0.00770	-0.00126	-0.00158				

Table IA.19: Significance with transaction costs: Subsample from 1997 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, for the subsample from July 1997 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 20$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

				Indiv.			
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs
sue	4.03^{***}	0.00087	0.00052	-0.00033	-0.00231	0.00124	0.00196
rd_mve	9.47^{**}	0.00466	-0.00378	0.00059	-0.00164	0.00016	0.00045
stdcf	-12.47^{**}	-0.00899	0.00712	0.00102	0.00108	-0.00024	0.00054
zerotrade	-2.63^{**}	-0.00277	0.00495	-0.00247	0.00105	-0.00076	0.00177
herf	-8.12^{**}	-0.00259	0.00188	0.00057	0.00030	-0.00015	0.00061
mom1m	-0.97^{**}	-0.00228	0.00418	-0.00140	0.00109	-0.00158	0.00660
std_turn	1.03^{**}	0.00225	-0.00505	0.00259	-0.00044	0.00065	0.00387
retvol	-1.43^{**}	-0.00640	0.00079	0.00424	0.00223	-0.00086	0.00392
chatoia	6.32^{**}	0.00053	-0.00007	-0.00012	-0.00074	0.00040	0.00093
pchcapx_ia	-5.03^{**}	-0.00141	0.00020	0.00023	0.00132	-0.00034	0.00099
pchgm_pchsale	4.79^{*}	0.00058	-0.00015	-0.00011	-0.00064	0.00032	0.00096
mom6m	-1.11^{*}	-0.00329	0.00685	-0.00159	-0.00183	-0.00014	0.00305
idiovol	2.87^{*}	0.01448	-0.01994	0.00435	0.00103	0.00009	0.00085
\mathbf{ps}	5.26^{*}	0.00215	-0.00064	-0.00101	-0.00091	0.00041	0.00110
turn	-2.14^{*}	-0.00640	0.00224	0.00333	0.00097	-0.00014	0.00130
egr	-6.85^{*}	-0.00311	0.00011	0.00038	0.00302	-0.00040	0.00100
gma	4.40	0.00202	-0.00195	0.00073	-0.00091	0.00011	0.00072
agr	-3.21	-0.00149	-0.00201	0.00055	0.00338	-0.00044	0.00100
chcsho	-1.33	-0.00063	-0.00273	0.00120	0.00245	-0.00029	0.00095
bm	-0.83	-0.00084	0.00333	-0.00093	-0.00153	-0.00003	0.00095
mve	-3.75	-0.00128	0.00121	-0.00058	0.00070	-0.00005	0.00034
mom12m	-0.85	-0.00214	0.00497	-0.00126	-0.00158	0.00001	0.00210

Table IA.20: Significance without transaction costs: Full sample from 1980 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, for the full sample from January 1980 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 150$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean			
chtx	15.87^{***}	0.00292	-0.00191	0.00029	-0.00131			
mom1m	-4.98^{***}	-0.00682	0.00529	-0.00096	0.00249			
turn	-23.79^{***}	-0.04556	0.04183	0.00254	0.00119			
retvol	-20.78^{***}	-0.05643	0.04943	0.00271	0.00428			
std_turn	30.59^{***}	0.04104	-0.04250	0.00188	-0.00042			
beta	13.75^{***}	0.04918	-0.05406	0.00406	0.00082			
dolvol	-24.46^{**}	-0.01648	0.01537	0.00127	-0.00016			
zerotrade	-19.55^{**}	-0.01394	0.01508	-0.00193	0.00079			
chcsho	-14.45^{**}	-0.00437	0.00118	0.00086	0.00232			
rd_mve	12.00^{**}	0.00342	-0.00238	0.00037	-0.00141			
sue	12.82^{**}	0.00192	0.00052	-0.00011	-0.00233			
mom36m	10.70^{**}	0.00456	-0.00591	0.00033	0.00101			
saleinv	11.69^{**}	0.00170	-0.00075	-0.00066	-0.00029			
\mathbf{ps}	12.95^{**}	0.00345	-0.00140	-0.00063	-0.00142			
gma	6.71^{*}	0.00273	-0.00278	0.00077	-0.00072			
rsup	-8.71^{*}	-0.00164	0.00222	-0.00005	-0.00052			
ear	8.85^{*}	0.00117	0.00016	0.00009	-0.00142			
baspread	5.54^{*}	0.01897	-0.02515	0.00269	0.00349			
bm	4.99	0.00427	-0.00046	-0.00109	-0.00272			
mom6m	-3.52	-0.00608	0.00946	-0.00069	-0.00270			
agr	-7.75	-0.00283	-0.00096	0.00073	0.00306			
herf	-4.18	-0.00099	-0.00011	0.00052	0.00058			
sgr	-5.29	-0.00171	-0.00124	0.00082	0.00212			
bm_ia	1.18	0.00051	-0.00064	0.00053	-0.00040			
$pchgm_pchsale$	3.06	0.00031	0.00053	0.00002	-0.00086			
pchcapx_ia	-2.23	-0.00042	-0.00049	0.00015	0.00076			
mve	12.78	0.00441	-0.00421	-0.00034	0.00014			
mom12m	1.14	0.00175	0.00163	-0.00033	-0.00305			

Table IA.21: Significance with transaction costs: Full sample from 1980 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, for the full sample from January 1980 to December 2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 50$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions							
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs		
						0.0000 .			
rd_mve	13.17***	0.00375	-0.00305	0.00037	-0.00141	0.00035	0.00066		
gma	6.86***	0.00279	-0.00301	0.00077	-0.00072	0.00017	0.00111		
ps	4.35^{***}	0.00116	0.00011	-0.00063	-0.00142	0.00078	0.00177		
chtx	1.12^{***}	0.00021	-0.00042	0.00029	-0.00131	0.00123	0.00275		
sue	1.91^{***}	0.00029	0.00058	-0.00011	-0.00233	0.00157	0.00283		
mom36m	2.63^{***}	0.00112	-0.00290	0.00033	0.00101	0.00043	0.00207		
turn	-2.90^{***}	-0.00556	0.00248	0.00254	0.00119	-0.00065	0.00229		
retvol	-1.20^{***}	-0.00325	-0.00195	0.00271	0.00428	-0.00180	0.00615		
std_turn	1.04^{***}	0.00139	-0.00346	0.00188	-0.00042	0.00062	0.00614		
zerotrade	-0.94^{***}	-0.00067	0.00257	-0.00193	0.00079	-0.00076	0.00311		
beta	5.28^{***}	0.01887	-0.02405	0.00406	0.00082	0.00030	0.00158		
saleinv	5.46^{**}	0.00079	-0.00005	-0.00066	-0.00029	0.00020	0.00091		
std_dolvol	-0.45^{**}	-0.00020	0.00189	-0.00135	-0.00010	-0.00024	0.00634		
chatoia	4.13^{**}	0.00024	0.00007	-0.00002	-0.00069	0.00041	0.00147		
agr	-4.40^{**}	-0.00160	-0.00148	0.00073	0.00306	-0.00070	0.00156		
chcsho	-2.76^{**}	-0.00083	-0.00180	0.00086	0.00232	-0.00055	0.00156		
sgr	-4.58^{**}	-0.00148	-0.00115	0.00082	0.00212	-0.00032	0.00154		
pchgm_pchsale	2.68^{**}	0.00027	0.00005	0.00002	-0.00086	0.00053	0.00155		
idiovol	-3.82^{**}	-0.01232	0.00663	0.00294	0.00300	-0.00025	0.00140		
mom1m	-0.79^{**}	-0.00109	0.00245	-0.00096	0.00249	-0.00290	0.01100		
herf	-3.82^{**}	-0.00090	-0.00000	0.00052	0.00058	-0.00019	0.00099		
ear	0.34^{*}	0.00004	0.00051	0.00009	-0.00142	0.00078	0.00381		
bm	2.71^{*}	0.00232	0.00115	-0.00109	-0.00272	0.00034	0.00152		
mom12m	1.19^{*}	0.00182	0.00109	-0.00033	-0.00305	0.00046	0.00338		
salerec	2.68	0.00054	0.00008	0.00002	-0.00085	0.00020	0.00103		
convind	-2.51	-0.00033	-0.00074	0.00064	0.00058	-0.00015	0.00096		
mom6m	-1.29	-0.00223	0.00554	-0.00069	-0.00270	0.00008	0.00502		
bm_ia	1.28	0.000220 0.00056	-0.00092	0.00053	-0.00040	0.00023	0.00153		
mve	-2.72	-0.00094	0.00118	-0.00034	0.00014	-0.00004	0.00060		
pchcapx_ia	-1.32	-0.00025	-0.00040	0.00034	0.00014	-0.00026	0.00159		
dolvol	-1.52 -0.54	-0.00025 -0.00036	-0.00040 -0.00060	0.00127	-0.00016	-0.00020 -0.00014	0.00133 0.00271		
stdcf	-0.34 -1.37	-0.00056	-0.00007	0.00059	0.00110	-0.00014 -0.00017	0.00271 0.00075		
	-1.37 0.74	-0.00030 0.00104	-0.00097 0.00215	-0.00163	-0.00110	-0.00017 0.00029	0.00075 0.00156		
ep chmom	$0.74 \\ 0.24$	$0.00104 \\ 0.00019$	0.00213 0.00078	-0.00103 -0.00071	-0.00180 0.00068	-0.00029	0.00130 0.00524		
mve_ia	-0.75	-0.00030	0.00033	0.00011	-0.00011	-0.00003	0.00090		
roaq	0.04	0.00004	0.00216	-0.00078	-0.00208	0.00065	0.00226		
cashpr	-0.30	-0.00016	-0.00266	0.00111	0.00188	-0.00017	0.00118		

Table IA.22: Significance without transaction costs: Alternative winsorization

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$, and with alternative winsorization based on the 1st and 99th percentiles. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 25$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28). For this experiment, we winsorize firm characteristics such that those that take a value above (below) the 99th (1st) cross-sectional percentile are set equal to this threshold.

		Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean			
agr	-13.43^{***}	-0.00502	0.00122	0.00068	0.00313			
sue	13.90^{***}	0.00256	0.00005	-0.00030	-0.00231			
retvol	-8.89^{***}	-0.02872	0.02252	0.00288	0.00332			
gma	7.42^{**}	0.00323	-0.00330	0.00071	-0.00064			
mom1m	-3.23^{**}	-0.00536	0.00477	-0.00108	0.00166			
beta	3.54^{**}	0.01460	-0.01870	0.00419	-0.00009			
rd_mve	8.27^{**}	0.00266	-0.00154	0.00041	-0.00153			
std_turn	5.86	0.00787	-0.00945	0.00184	-0.00026			
bm	3.45	0.00293	-0.00006	-0.00082	-0.00204			
mve	-2.82	-0.00095	0.00107	-0.00034	0.00022			
mom12m	-1.38	-0.00242	0.00559	-0.00065	-0.00252			

Table IA.23: Significance with transaction costs: Alternative winsorization

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$, and with alternative winsorization based on the 1st and 99th percentiles. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 25$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28). For this experiment, we winsorize firm characteristics such that those that take a value above (below) the 99th (1st) cross-sectional percentile are set equal to this threshold.

			Marginal contributions						
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs		
rd_mve	15.49^{***}	0.00498	-0.00415	0.00041	-0.00153	0.00029	0.00052		
\mathbf{ps}	4.89^{***}	0.00153	-0.00027	-0.00067	-0.00126	0.00067	0.00140		
stdcf	-10.44^{***}	-0.00147	0.00025	0.00018	0.00125	-0.00020	0.00030		
sue	4.18^{***}	0.00077	0.00074	-0.00030	-0.00231	0.00110	0.00162		
retvol	-1.35^{***}	-0.00436	-0.00035	0.00288	0.00332	-0.00149	0.00464		
std_turn	1.02^{***}	0.00137	-0.00353	0.00184	-0.00026	0.00058	0.00446		
mom1m	-0.58^{**}	-0.00096	0.00309	-0.00108	0.00166	-0.00272	0.00849		
chatoia	5.54^{**}	0.00033	-0.00000	-0.00007	-0.00074	0.00048	0.00110		
turn	-2.78^{**}	-0.00618	0.00296	0.00270	0.00101	-0.00049	0.00170		
chtx	0.98^{**}	0.00017	-0.00019	0.00017	-0.00101	0.00086	0.00206		
agr	-5.67^{**}	-0.00212	-0.00113	0.00068	0.00313	-0.00055	0.00108		
beta	2.82^{**}	0.01164	-0.01596	0.00419	-0.00009	0.00022	0.00126		
gma	4.74^{**}	0.00206	-0.00226	0.00071	-0.00064	0.00013	0.00090		
$pchgm_pchsale$	4.27^{**}	0.00044	0.00039	-0.00014	-0.00108	0.00039	0.00079		
bm_ia	2.85^{**}	0.00092	-0.00129	0.00055	-0.00056	0.00038	0.00092		
zerotrade	-0.51^{*}	-0.00024	0.00130	-0.00157	0.00090	-0.00039	0.00179		
sgr	-3.61	-0.00120	-0.00140	0.00074	0.00208	-0.00022	0.00101		
idiovol	-1.99	-0.00755	0.00268	0.00308	0.00186	-0.00008	0.00109		
bm	0.77	0.00066	0.00208	-0.00082	-0.00204	0.00013	0.00121		
chmom	-0.38	-0.00038	0.00136	-0.00073	0.00045	-0.00070	0.00402		
roaq	-0.56	-0.00071	0.00384	-0.00121	-0.00224	0.00031	0.00164		
mve	-1.96	-0.00066	0.00083	-0.00034	0.00022	-0.00004	0.00045		
$\mathrm{mom}12\mathrm{m}$	-0.23	-0.00040	0.00314	-0.00065	-0.00252	0.00043	0.00259		

Table IA.24: Significance without transaction costs: Risk-aversion of $\gamma = 2$

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 2$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 75$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean		
sue	51.10^{***}	0.00347	-0.00085	-0.0008	-0.00254		
retvol	-27.05^{***}	-0.03520	0.03081	0.00117	0.00323		
bm	9.54^{**}	0.00325	-0.00087	-0.00033	-0.00205		
gma	14.88^{**}	0.00251	-0.00213	0.00028	-0.00066		
agr	-25.44^{**}	-0.00389	0.00077	0.00023	0.00290		
mom1m	-7.75^{**}	-0.00508	0.00388	-0.00043	0.00164		
bm_ia	16.42^{*}	0.00341	-0.00289	0.00029	-0.00081		
beta	6.69^{*}	0.01103	-0.01262	0.00167	-0.00008		
rd_mve	14.66	0.00210	-0.00064	0.00018	-0.00164		
std_turn	18.71	0.01266	-0.01271	0.00085	-0.00080		
chcsho	-13.50	-0.00192	-0.00073	0.00037	0.00228		
zerotrade	-6.41	-0.00216	0.00174	-0.00082	0.00124		
mve	-9.17	-0.00124	0.00115	-0.00014	0.00022		
mom12m	-10.59	-0.00752	0.01054	-0.00026	-0.00275		

Table IA.25: Significance with transaction costs: Risk-aversion of $\gamma = 2$

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 2$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 75$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when this is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs	
rd_mve	31.87^{***}	0.00457	-0.00332	0.00018	-0.00164	0.00022	0.00047	
agr	-18.14^{***}	-0.00278	0.00016	0.00023	0.00290	-0.00051	0.00115	
sue	8.40***	0.00057	0.00062	-0.00008	-0.00254	0.00143	0.00224	
turn	-9.17^{***}	-0.00866	0.00727	0.00111	0.00068	-0.00040	0.00168	
retvol	-5.26^{***}	-0.00685	0.00378	0.00117	0.00323	-0.00133	0.00445	
std_turn	3.45^{***}	0.00234	-0.00320	0.00085	-0.00080	0.00081	0.00478	
zerotrade	-5.25^{***}	-0.00177	0.00220	-0.00082	0.00124	-0.00085	0.00218	
beta	10.98^{***}	0.01811	-0.01992	0.00167	-0.00008	0.00023	0.00111	
chtx	3.85^{**}	0.00030	-0.00016	0.00006	-0.00123	0.00103	0.00222	
mom1m	-1.77^{**}	-0.00116	0.00207	-0.00043	0.00164	-0.00211	0.00833	
\mathbf{ps}	11.93^{**}	0.00151	-0.00056	-0.00027	-0.00127	0.00060	0.00130	
chatoia	12.45^{**}	0.00032	0.00004	-0.00002	-0.00077	0.00043	0.00107	
gma	16.17^{**}	0.00273	-0.00248	0.00028	-0.00066	0.00013	0.00081	
herf	-13.82^{**}	-0.00138	0.00073	0.00017	0.00061	-0.00012	0.00065	
$pchgm_pchsale$	9.58^{*}	0.00037	0.00004	-0.00001	-0.00079	0.00039	0.00112	
bm_ia	7.30^{*}	0.00152	-0.00125	0.00029	-0.00081	0.00026	0.00116	
stdcf	-14.34^{*}	-0.00294	0.00175	0.00027	0.00114	-0.00021	0.00060	
bm	5.70^{*}	0.00194	0.00029	-0.00033	-0.00205	0.00015	0.00104	
chcsho	-7.07	-0.00101	-0.00127	0.00037	0.00228	-0.00038	0.00114	
chmom	-1.98	-0.00077	0.00135	-0.00029	0.00044	-0.00073	0.00393	
ear	1.09	0.00007	0.00059	0.00002	-0.00137	0.00070	0.00305	
baspread	1.34	0.00233	-0.00594	0.00131	0.00279	-0.00049	0.00299	
idiovol	-4.59	-0.00693	0.00386	0.00123	0.00187	-0.00004	0.00091	
$^{\mathrm{ep}}$	3.57	0.00233	-0.00077	-0.00066	-0.00104	0.00014	0.00107	
roaq	-0.18	-0.00009	0.00219	-0.00046	-0.00215	0.00050	0.00171	
mve	-3.63	-0.00049	0.00045	-0.00014	0.00022	-0.00004	0.00038	
mom12m	-1.71	-0.00121	0.00393	-0.00026	-0.00275	0.00030	0.00255	

Table IA.26: Significance without transaction costs: Risk-aversion of $\gamma = 10$

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 10$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 15$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean		
agr	-6.82^{***}	-0.00522	0.00118	0.00115	0.00290		
\mathbf{ps}	7.84^{***}	0.00494	-0.00232	-0.00135	-0.00127		
sue	9.17^{***}	0.00311	-0.00019	-0.00038	-0.00254		
mom1m	-2.20^{***}	-0.00723	0.00776	-0.00217	0.00164		
std_turn	8.63^{***}	0.02919	-0.03265	0.00427	-0.00080		
dolvol	-5.98^{**}	-0.00898	0.00645	0.00278	-0.00025		
retvol	-4.58^{**}	-0.02980	0.02074	0.00583	0.00323		
bm_ia	3.70^{**}	0.00385	-0.00447	0.00144	-0.00081		
gma	2.37^{*}	0.00200	-0.00272	0.00138	-0.00066		
rd_mve	3.29	0.00236	-0.00161	0.00089	-0.00164		
chcsho	-1.34	-0.00095	-0.00317	0.00184	0.00228		
bm	1.13	0.00192	0.00176	-0.00164	-0.00205		
mve	2.35	0.00159	-0.00112	-0.00068	0.00022		
mom12m	-2.50	-0.00886	0.01294	-0.00132	-0.00275		

Table IA.27: Significance with transaction costs: Risk-aversion of $\gamma = 10$

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 10$. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 15$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic *p*-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when this is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. cost	tran. costs	
rd_mve	5.99^{***}	0.00429	-0.00375	0.00089	-0.00164	0.00020	0.00047	
gma	4.09^{***}	0.00345	-0.00432	0.00138	-0.00066	0.00015	0.00081	
ps	3.38^{***}	0.00213	-0.00017	-0.00135	-0.00127	0.00066	0.00130	
sue	1.69^{***}	0.00057	0.00091	-0.00038	-0.00254	0.00143	0.00224	
retvol	-0.77^{***}	-0.00501	-0.00288	0.00583	0.00323	-0.00117	0.00445	
std_turn	0.58^{***}	0.00197	-0.00633	0.00427	-0.00080	0.00090	0.00478	
zerotrade	-0.81^{***}	-0.00136	0.00495	-0.00410	0.00124	-0.00074	0.00218	
herf	-3.98^{**}	-0.00198	0.00072	0.00083	0.00061	-0.00018	0.00065	
chtx	0.72^{**}	0.00028	-0.00035	0.00030	-0.00123	0.00100	0.00222	
turn	-1.07^{**}	-0.00505	-0.00088	0.00557	0.00068	-0.00032	0.00168	
chatoia	3.13^{**}	0.00040	0.00006	-0.00011	-0.00077	0.00042	0.00107	
agr	-2.61^{**}	-0.00200	-0.00154	0.00115	0.00290	-0.00051	0.00115	
stdcf	-2.26^{**}	-0.00232	0.00003	0.00135	0.00114	-0.00020	0.00060	
mom1m	-0.37^{*}	-0.00122	0.00376	-0.00217	0.00164	-0.00200	0.00833	
chmom	-0.45^{*}	-0.00088	0.00268	-0.00146	0.00044	-0.00078	0.00393	
mve	-1.63	-0.00110	0.00160	-0.00068	0.00022	-0.00004	0.00038	
$pchgm_pchsale$	1.49	0.00029	0.00016	-0.00006	-0.00079	0.00040	0.00112	
bm_ia	1.21	0.00126	-0.00209	0.00144	-0.00081	0.00021	0.00116	
sgr	-2.25	-0.00154	-0.00159	0.00150	0.00179	-0.00015	0.00111	
chcsho	-1.39	-0.00099	-0.00277	0.00184	0.00228	-0.00037	0.00114	
$^{\mathrm{bm}}$	0.81	0.00138	0.00217	-0.00164	-0.00205	0.00013	0.00104	
pchcapx_ia	-1.11	-0.00047	-0.00060	0.00036	0.00093	-0.00021	0.00118	
roaq	-0.34	-0.00083	0.00488	-0.00228	-0.00215	0.00038	0.00171	
ep	0.74	0.00243	0.00176	-0.00331	-0.00104	0.00017	0.00107	
dolvol	-0.25	-0.00037	-0.00200	0.00278	-0.00025	-0.00015	0.00195	
idiovol	0.17	0.00131	-0.00930	0.00615	0.00187	-0.00003	0.00091	
mom12m	-0.74	-0.00264	0.00663	-0.00132	-0.00275	0.00008	0.00255	

Table IA.28: Significance without transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios without transaction costs, for risk-aversion parameter $\gamma = 5$. We sort firms by each characteristic every month into quintiles, assigning a weight of $1/Q_t$ to firms in the fifth quintile, a weight of $-1/Q_t$ to firms in the first quintile, and a zero weight to the remaining firms, where Q_t is the number of firms in each quintile in month t. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 10$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

		Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean		
rd_mve	2.11^{***}	0.03183	-0.02588	0.00284	-0.00879		
agr	-5.32^{***}	-0.01694	0.00844	0.00075	0.00775		
gma	2.79^{***}	0.01346	-0.01336	0.00247	-0.00257		
sue	9.03^{***}	0.01184	-0.00350	-0.00051	-0.00783		
mom1m	-1.08^{***}	-0.01310	0.01112	-0.00330	0.00528		
std_turn	4.37^{***}	0.06424	-0.06666	0.00681	-0.00439		
$^{\mathrm{ep}}$	3.21^{*}	0.04109	-0.03176	-0.00464	-0.00469		
stdcf	-2.26^{*}	-0.02143	0.01442	0.00325	0.00376		
retvol	-3.00	-0.07674	0.06176	0.00901	0.00597		
roaq	-1.14	-0.01051	0.02086	-0.00321	-0.00714		
bm	0.04	0.00033	0.00895	-0.00292	-0.00636		
chcsho	-0.21	-0.00081	-0.00885	0.00317	0.00649		
mve	-2.16	-0.01538	0.01612	0.00020	-0.00094		
mom12m	-1.27	-0.02163	0.03398	-0.00312	-0.00924		

Table IA.29: Significance with transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. We sort firms by each characteristic every month into quintiles, assigning a weight of $1/Q_t$ to firms in the fifth quintile, a weight of $-1/Q_t$ to firms in the first quintile, and a zero weight to the remaining firms, where Q_t is the number of firms in each quintile in month t. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor's utility is $\delta = 5$. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ 's from the first stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (*) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ 's for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the parameter and the significance asterisks, and the next five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic to transaction costs when this is traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in *red italic* font (cf. Footnote 28).

			Marginal contributions					
Characteristic	Param.	variance	cov (char.)	cov (bench.)	mean	tran. $\cos t$	tran. costs	
rd_mve	2.46^{***}	0.03707	-0.03198	0.00284	-0.00879	0.00086	0.00160	
agr	-3.56^{***}	-0.01133	0.00400	0.00075	0.00775	-0.00117	0.00223	
gma	2.58^{***}	0.01243	-0.01266	0.00247	-0.00257	0.00033	0.00141	
sue	4.01^{***}	0.00525	0.00003	-0.00051	-0.00783	0.00306	0.00368	
mom1m	-0.55^{***}	-0.00668	0.00864	-0.00330	0.00528	-0.00395	0.01160	
std_turn	1.08^{***}	0.01595	-0.02139	0.00681	-0.00439	0.00303	0.00651	
chmom	-0.53^{**}	-0.00442	0.00664	-0.00230	0.00200	-0.00192	0.00608	
ep	2.04^{**}	0.02609	-0.01738	-0.00464	-0.00469	0.00061	0.00206	
\mathbf{ps}	2.05^{**}	0.00388	0.00014	-0.00133	-0.00364	0.00095	0.00201	
bm	0.53^{**}	0.00414	0.00457	-0.00292	-0.00636	0.00057	0.00348	
retvol	-0.64	-0.01639	0.00310	0.00901	0.00597	-0.00168	0.00635	
stdcf	-1.08	-0.01020	0.00353	0.00325	0.00376	-0.00034	0.00136	
chcsho	-1.06	-0.00415	-0.00488	0.00317	0.00649	-0.00063	0.00180	
roaq	0.16	0.00145	0.00807	-0.00321	-0.00714	0.00083	0.00290	
mve	-1.08	-0.00767	0.00885	0.00020	-0.00094	-0.00044	0.00195	
mom12m	-0.58	-0.00987	0.02257	-0.00312	-0.00924	-0.00034	0.00421	

Table IA.30: Out-of-sample performance: Size quintiles

This table reports the out-of-sample annualized Sharpe ratio of returns net of transaction costs for the regularized parametric portfolios applied to each of the five quintiles of stocks sorted by size, for risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the portfolios that do not use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation window. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (*) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
Panel A: Portfolio	a with no a	honoctonictic			
VW	0.341^{***}	0.402^{***}	0.458^{***}	0.546^{***}	0.568
1/N	0.442^{***}	0.391^{***}	0.438^{***}	0.530^{***}	0.558
Panel B: Portfolio	os with char	acteristics			
Size/val./mom.	0.852^{***}	0.889^{***}	0.666^{***}	0.601^{*}	0.456
Size/val./inv./prof.	0.933^{***}	1.072^{***}	0.856^{**}	0.796	0.360
Regularized	1.734	1.456	1.008	0.769	0.497

Table IA.31: Out-of-sample performance with shortsale constraints

This table reports the out-of-sample performance of the regularized parametric portfolios in the presence of transaction costs and shortsale constraints, for risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the parametric portfolios with no shortselling, and Panel B reports the performance for the parametric portfolios with 50% shortselling. Each panel reports the results for four portfolios: the benchmark value-weighted portfolio (VW), which has zero shortselling in both panels, two parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). For the regularized parametric portfolio (Regularized), the lasso threshold is calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the monthly turnover, and the next three columns report the out-ofsample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (*) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy	Turnover	Mean	SD	SR
	• • •		11.	
Panel A: Portfolic	s with no		lling	
VW	0.050	0.085	0.150	0.567
Size/val./mom.	0.233	0.102	0.177	0.576^{**}
Size/val./inv./prof.	0.186	0.109	0.186	0.586^{**}
Regularized	0.301	0.125	0.187	0.669
Panel B: Portfolio	s with 50%	% short	selling	
VW	0.050	0.085	0.150	0.567^{***}
Size/val./mom.	0.429	0.119	0.165	0.721^{***}
Size/val./inv./prof.	0.319	0.132	0.152	0.868^{***}
Regularized	0.451	0.155	0.147	1.059

Table IA.32: Out-of-sample performance without turnover constraint

This table reports the out-of-sample performance of the regularized parametric portfolios that do not control for turnover in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the portfolios that do not use any characteristics, which are the benchmark valueweighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, bookto-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the monthly turnover, and the next three columns report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (*) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy	Turnover	Mean	SD	\mathbf{SR}
			• . •	
Panel A: Portfolio	os with no	charact	eristics	5
VW	0.050	0.085	0.150	0.567^{**}
1/N	0.134	0.085	0.177	0.482^{***}
Panel B: Portfolic	os with cha	racteris	stics	
Size/val./mom.	1.167	0.161	0.300	0.537^{***}
Size/val./inv./prof.	1.863	0.358	0.381	0.939^{*}
Regularized	3.859	0.738	0.611	1.209

Table IA.33: Out-of-sample performance: Reality check

This table reports the out-of-sample performance of the different portfolios in the presence of transaction costs, for risk-aversion parameter $\gamma = 5$. Panel A reports the performance for the portfolios that do not use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number of characteristics, and two parametric portfolios that exploit a larger set of characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is the parametric portfolio that exploits the 15 in-sample significant characteristics in the presence of transaction costs identified in Section 5 (Fifteen sign. characteristics). The fourth portfolio is calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the monthly turnover, and the next three columns report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (*) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy	Turnover	Mean	SD	SR
Panel A: Portfolios with	no charact	teristics	3	
VW	0.050	0.085	0.150	0.567^{***}
1/N	0.134	0.085	0.177	0.482^{***}
Panel B: Portfolios with	characteris	\mathbf{stics}		
Size/val./mom.	0.754	0.145	0.215	0.675^{***}
Size/val./inv./prof.	0.963	0.236	0.220	1.072^{**}
Fifteen sign. characteristics	1.065	0.223	0.166	1.343
Regularized	0.979	0.241	0.178	1.356

Table IA.34: Significance of individual characteristics

This table reports the bootstrap p-values for the significance analysis of individual characteristics.

-		0		v	
Characteristic	p-val	Characteristic	p-val	Characteristic	p-val

Panel A: Without transaction costs

bm	0.000	mom6m	0.000	dy	0.044
cashpr	0.000	retvol	0.000	rsup	0.070
agr	0.000	baspread	0.000	dolvol	0.102
chcsho	0.000	idiovol	0.000	salecash	0.110
lgr	0.000	pchcapx_ia	0.002	pricedelay	0.144
hire	0.000	mom12m	0.002	std_turn	0.208
sgr	0.000	chtx	0.004	$pchsale_pchrect$	0.254
$pchgm_pchsale$	0.000	mom36m	0.004	zerotrade	0.340
egr	0.000	indmom	0.006	salerec	0.464
convind	0.000	turn	0.008	mom1m	0.550
\mathbf{ps}	0.000	rd_mve	0.010	chmom	0.732
chatoia	0.000	std_dolvol	0.010	mve	0.762
chempia	0.000	ep	0.012	aeavol	0.828
roaq	0.000	herf	0.016	bm_ia	0.866
stdcf	0.000	beta	0.018	chpmia	0.886
sue	0.000	saleinv	0.030	gma	0.942
ear	0.000	lev	0.042	mve_ia	0.946

Panel B: With transaction costs

bm	0.000	idiovol	0.004	ear	0.278
cashpr	0.000	chatoia	0.012	dolvol	0.302
agr	0.000	mom6m	0.012	rsup	0.604
chcsho	0.000	turn	0.012	salerec	0.650
lgr	0.000	mom36m	0.014	mve	0.684
hire	0.000	indmom	0.016	$\mathrm{std}_{-}\mathrm{turn}$	0.886
sgr	0.000	beta	0.020	std_dolvol	0.962
egr	0.000	ер	0.022	gma	1.000
convind	0.000	herf	0.024	$pchsale_pchrect$	1.000
\mathbf{ps}	0.000	rd_mve	0.034	chpmia	1.000
chempia	0.000	pchcapx_ia	0.042	bm_ia	1.000
sue	0.000	dy	0.048	mve_ia	1.000
retvol	0.000	$pchgm_pchsale$	0.048	aeavol	1.000
baspread	0.000	lev	0.050	mom1m	1.000
stdcf	0.002	saleinv	0.058	chmom	1.000
mom12m	0.002	salecash	0.170	zerotrade	1.000
roaq	0.004	chtx	0.234	pricedelay	1.000

References

- Abdi, F., and A. Ranaldo. 2017. A Simple Estimation of Bid-Ask Spreads from Daily Close, High, and Low Prices. *The Review of Financial Studies* 30:4437–4480.
- Brandt, M. W., P. Santa-Clara, and R. Valkanov. 2009. Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns. *The Review of Financial Studies* 22:3411–3447.
- Bühlmann, P., et al. 2013. Statistical Significance in High-Dimensional Linear Models. Bernoulli 19:1212–1242.
- Chatterjee, A., and S. N. Lahiri. 2010. Asymptotic Properties of the Residual Bootstrap for LASSO Estimators. *Proceedings of the American Mathematical Society* 138:4497– 4509.
- Chen, A., and M. Velikov. 2017. Accounting for the Anomaly Zoo: A Trading Cost Perspective. Federal Reserve Board working paper.
- Chordia, T., A. Subrahmanyam, and Q. Tong. 2014. Have Capital Market Anomalies Attenuated in the Recent Era of High Liquidity and Trading Activity? *Journal of* Accounting and Economics 58:41–58.
- DeMiguel, V., L. Garlappi, F. J. Nogales, and R. Uppal. 2009. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. *Management Science* 55:798–812.
- Deng, A. 2012. Hypothesis Testing When a Linear Regression is Estimated by Biased Estimators. Bates White working paper.
- Fama, E. F., and K. R. French. 2008. Dissecting Anomalies. The Journal of Finance 63:1653–1678.
- Gârleanu, N., and L. H. Pedersen. 2013. Dynamic Trading with Predictable Returns and Transaction Costs. The Journal of Finance 68:2309–2340.
- Giannone, D., M. Lenza, and G. E. Primiceri. 2017. Economic Predictions with Big Data: The Illusion of Sparsity. Federal Reserve Bank of New York working paper.
- Green, J., J. R. Hand, and X. F. Zhang. 2017. The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns. *The Review of Financial Studies* 30:4389–4436.

- Hand, J. R., and J. Green. 2011. The Importance of Accounting Information in Portfolio Optimization. *Journal of Accounting, Auditing & Finance* 26:1–34.
- Harvey, C. R., and Y. Liu. 2018. Lucky Factors. SSRN working paper.
- Harvey, C. R., Y. Liu, and H. Zhu. 2015. ...and the Cross-Section of Expected Returns. The Review of Financial Studies 29:5–68.
- Kelly, B., S. Pruitt, and Y. Su. 2018. Characteristics *Are* Covariances: A Unified Model of Risk and Return. Yale University working paper.
- Korajczyk, R. A., and R. Sadka. 2004. Are Momentum Profits Robust to Trading Costs? The Journal of Finance 59:1039–1082.
- Kozak, S., S. Nagel, and S. Santosh. 2018. Shrinking the Cross Section. Forthcoming in The Journal of Financial Economics.
- Ledoit, O., and M. Wolf. 2004. A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices. Journal of Multivariate Analysis 88:365–411.
- Lesmond, D. A., J. P. Ogden, and C. A. Trzcinka. 1999. A New Estimate of Transaction Costs. The Review of Financial Studies 12:1113–1141.
- Light, N., D. Maslov, and O. Rytchkov. 2017. Aggregation of Information about the Cross Section of Stock Returns: A Latent Variable Approach. The Review of Financial Studies 30:1339–1381.
- Meinshausen, N., L. Meier, and P. Buhlmann. 2009. p-Values for High-Dimensional Regression. *Journal of the American Statistical Association* 104:1671–1681.
- Meinshausen, N., and B. Yu. 2009. Lasso-Type Recovery of Sparse Representations for High-Dimensional Data. Annals of Statistics 37:246–270.
- Novy-Marx, R. 2016. Backtesting Strategies Based on Multiple Signals. Simon Graduate School of Business working paper.
- Novy-Marx, R., and M. Velikov. 2016. A Taxonomy of Anomalies and Their Trading Costs. *The Review of Financial Studies* 29:104–147.
- Rytchkov, O., and X. Zhong. 2017. Information Aggregation and Data Snooping. Fox School of Business and Management working paper.
- Wasserman, L., and K. Roeder. 2009. High-Dimensional Variable Selection. Annals of Statistics 37:2178–2201.
- White, H. 2000. A Reality Check for Data Snooping. *Econometrica* 68:1097–1126.