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Abstract

We investigate how transaction costs change the number of characteristics that
are jointly significant for an investor’s optimal portfolio, and hence, how they
change the dimension of the cross section of stock returns. We find that trans-
action costs increase the number of significant characteristics from six to 15. The
explanation is that, as we show theoretically and empirically, combining character-
istics reduces transaction costs because the trades in the underlying stocks required
to rebalance different characteristics often cancel out. Thus, transaction costs pro-
vide an economic rationale for considering a larger number of characteristics than
that in prominent asset-pricing models.
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mans, Wayne Ferson, Lorenzo Garlappi, René Garcia, Francisco Gomes, Amit Goyal, Nick Hirschey, Christian Julliard,
Petri Jylha, Bige Kahraman, Nishad Kapadia, Ralph Koijen, Robert Kosowski, Apostolos Kourtis, Serhiy Kozak, Anton
Lines, Abraham Lioui, Raphael Markellos, Lionel Martellini, Spyros Mesomeris, Maurizio Montone, Narayan Naik, Stefan
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1 Introduction

Hundreds of variables have been proposed to explain the cross-section of stock returns;

see, for instance, Harvey, Liu, and Zhu (2015), McLean and Pontiff (2016), and Hou, Xue,

and Zhang (2017). This abundance of cross-sectional predictors leads Cochrane (2011)

to ask, “Which characteristics really provide independent information about average

returns? Which are subsumed by others?” Likewise, Goyal (2012) states that “these

days one has a multitude of variables that seem to explain the cross-sectional pattern

of returns. The amount of independent information in these variables is unclear as no

study to date [...] has conducted a comprehensive study to analyze the joint impact of

these variables.”

Cochrane and Goyal challenge researchers to characterize the dimension of the

cross-section of stock returns by identifying a small set of characteristics that subsume

the rest. Several papers address this challenge in the absence of transaction costs; these

include Feng, Giglio, and Xiu (2017), Freyberger, Neuhierl, and Weber (2018), Green,

Hand, and Zhang (2017), Kelly, Pruitt, and Su (2018), Kozak, Nagel, and Santosh (2018),

and Messmer and Audrino (2017). However, transaction costs matter for the dimension

of the cross section because they impact the number of characteristics that are jointly

significant for an investor’s optimal portfolio. To address this gap in the literature, our

objective is to study how transaction costs affect the dimension of the cross section.

We build on the insightful work in Novy-Marx and Velikov (2016), which proposes

a generalization of Jensen’s alpha that takes transaction costs into account, and computes

the “generalized alpha” of 23 characteristics with respect to the four factors in Fama

and French (1993) and Carhart (1997). Novy-Marx and Velikov (2016) finds that in

the presence of transaction costs the number of characteristics that have a significant

generalized alpha is smaller than in the absence of transaction costs.

However, Novy-Marx and Velikov (2016) tests the significance of a single charac-

teristic at a time. We, in contrast, consider all characteristics simultaneously and, as a

result, find that the number of characteristics that are jointly significant for an investor’s

portfolio in the presence of transaction costs is larger than in the absence of transaction
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costs. The explanation for this is that, as we show theoretically and empirically, com-

bining characteristics reduces transaction costs, and hence increases the investor’s utility,

because the trades in the underlying stocks required to rebalance different characteristics

often cancel each other out.1 Essentially, combining characteristics allows one to diversify

trading, just as combining them allows one to diversify risk. As a consequence, our work

shows that the impact of transaction costs is smaller when considering characteristics

jointly than when considering them one at a time, as in Novy-Marx and Velikov (2016).

We first quantify the benefits from trading diversification in a simple manner by

comparing the average trading volume (turnover) required to exploit an equally weighted

portfolio of characteristics simultaneously with that required to exploit them in isolation.

Analytically, we show that the turnover required to rebalance an equally weighted port-

folio of K characteristics is about 1/
√
K of that required to rebalance the characteristics

in isolation. Empirically, we find that while the average monthly turnover required to

exploit a characteristic in isolation is 24.09%, the turnover required to exploit an equally

weighted combination of characteristics is only 6.71%; that is, trading diversification

delivers a 72.15% reduction in turnover. Note that a reduction in turnover will trans-

late into a reduction in transaction costs regardless of the particular manner in which

transaction costs are modeled.

We then turn to our main research question of how transaction costs impact the

dimension of the cross section. To answer this question, we study how many firm-specific

characteristics matter jointly from a portfolio perspective; that is, from the perspective of

an investor who cares not only about average returns, but also about portfolio risk and

transaction costs.2 To do this, we extend the “parametric portfolios” in Brandt, Santa-

Clara, and Valkanov (2009) and use them as an alternative method to the traditional

1For instance, assume that rebalancing a momentum portfolio requires buying $3,000 of the Ap-
ple stock, whereas rebalancing a value portfolio requires selling $2,000 of Apple. Then, rebalancing a
combination of these two characteristics requires buying only $1,000 of Apple.

2We are agnostic about whether a particular characteristic is a proxy for the loading on a common
risk factor or not; instead, we account for risk directly via the mean-variance utility of the investor.
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regression approaches, which cannot answer our main research question because they

either ignore transaction costs or consider characteristics one at a time.3

Parametric portfolios are obtained by adding to a benchmark portfolio a linear

combination of the long-short portfolios associated with each characteristic considered.

To determine which characteristics are jointly significant, we use a “screen-and-clean”

method to test which characteristics have parametric-portfolio weights that are signifi-

cantly different from zero. We then use this test to compare the number of characteristics

that are jointly significant in the absence and presence of transaction costs.

We find that in the absence of transaction costs, out of the 51 characteristics

that we consider, only a small number—about six—are significant. Moreover, in con-

trast to what one would observe if evaluating characteristics in isolation, we find that

transaction costs increase the number of jointly significant characteristics from six to 15,

thus increasing the dimension of the cross section.4 This is because the benefits of trad-

ing diversification are large when combining characteristics to maximize the investor’s

expected utility: we find empirically that the marginal transaction cost of trading the

stocks underlying a characteristic is reduced by 65% on average when characteristics are

combined optimally in the parametric portfolio.

Our findings have implications for asset-pricing theories based on stochastic dis-

count factors (SDFs) because the investor’s first-order optimality condition determines

not only her optimal portfolio but also the associated SDF, as shown in Appendix B.

Thus, our work shows that transaction costs provide a rationale for considering a larger

number of characteristics than that in prominent asset-pricing models.

To alleviate data-mining concerns raised in the literature,5 we also undertake an

out-of-sample analysis. We find that the out-of-sample performance of the parametric

portfolios in the presence of transaction costs can be significantly improved by exploiting

3Although the distinguishing feature of our approach is that it accounts for transaction costs, in
Appendix A we also characterize the theoretical relation of the parametric-portfolio approach to cross-
sectional and time-series regressions in the absence of transaction costs.

4In Section IA.7 of the internet appendix, we show that our main insight is robust to considering
a larger set of 100 characteristics. For this larger dataset, we find that while seven characteristics are
significant in the absence of transaction costs, 15 are significant in the presence of transaction costs.

5See, for example, Fama (1991), Kogan and Tian (2013), Harvey et al. (2015), Bryzgalova (2015),
McLean and Pontiff (2016), Linnainmaa and Roberts (2018), and Chordia, Goyal, and Saretto (2017).
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a large number of characteristics instead of the small number typically considered in

popular asset-pricing models.6

We now discuss how our work is related to the literature. Several papers use cross-

sectional regressions to study the dimension of the cross section because they allow one

to test which characteristics are jointly significant; see, for instance, Green et al. (2017),

Freyberger et al. (2018), and Messmer and Audrino (2017). Light, Maslov, and Rytchkov

(2017) uses an information-aggregation technique based on the three-pass regression filter

in Kelly and Pruitt (2015) to aggregate multiple characteristics into a few composite

variables that predict the cross section of expected stock returns. While all of these

papers ignore transaction costs, we focus on the effect of transaction costs. Another

difference is that while cross-sectional regressions focus on mean returns, our portfolio

approach accounts for both mean and variance of returns.

The time-series approach regresses the return of a characteristic-based long-short

portfolio on the returns of a few commonly accepted factors. If the intercept (or alpha)

is statistically significant, then the return on the characteristic is not fully explained by

the commonly accepted factors. Gibbons, Ross, and Shanken (1989) shows that this

approach captures the tradeoff between mean return and risk. Novy-Marx and Velikov

(2016) extends time-series regressions to capture transaction costs. The focus of the time-

series approach on the regression intercept implies that it evaluates the significance of a

single characteristic at a time. This is a limitation because, as we show in Appendix A.2,

the significance results depend on the sequence in which variables are selected. In contrast,

our portfolio approach considers all characteristics simultaneously.7

There are also papers that combine elements from both cross-sectional and time-

series regressions; see, for instance, Back, Kapadia, and Ostdiek (2015), Baker, Luo, and

6The out-of-sample Sharpe ratio of returns net of transaction costs from exploiting 51 characteristics
is around 100% larger than that from exploiting the three traditional characteristics considered in Brandt
et al. (2009) and 25% higher than that from exploiting a set of four characteristics that include investment
and profitability characteristics, highlighted in Hou, Xue, and Zhang (2014) and Fama and French (2016).

7We show analytically in Appendix A.2 that our approach of testing the significance of the charac-
teristics for mean-variance parametric portfolios is equivalent to testing the significance of each slope in
a particular time-series regression; that is, our significance test is equivalent to a t-test of explanatory
variables in a multiple regression.
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Taliaferro (2017), and Feng et al. (2017). Just as for time-series regressions, the inference

in these papers also depends on the sequence in which characteristics are tested.

Finally, the stochastic discount factor (SDF) approach is closely related to our

portfolio approach because the first-order optimality condition of the investor determines

not only her optimal portfolio but also the associated SDF. Kozak, Nagel, and Santosh

(2018) proposes a robust SDF and finds that a small number of principle components pre-

dict the cross section better than a small number of characteristics. There are two main

differences between this paper and our work. First, we study the impact of transaction

costs on the dimension of the cross section of stock returns. Second, while Kozak et al.

(2018) focuses on prediction, our work focuses on inference because we wish to study

how transaction costs impact the number of characteristics that are jointly significant.

Our main finding is that transaction costs increase the number of characteristics that

are jointly significant. Thus, our work provides another rationale for considering a larger

number of characteristics than that in prominent asset-pricing models.

Several papers study the transaction costs associated with trading individual char-

acteristics. Korajczyk and Sadka (2004) finds that momentum can be exploited on only

a modest scale. Novy-Marx and Velikov (2016) finds that simple transaction-cost mitiga-

tion strategies such as introducing a buy/hold spread can substantially reduce transaction

costs. Chen and Velikov (2017) shows that if, in addition to transaction costs, one ac-

counts for post-publication decay, the profitability of anomaly-based trading strategies

is substantially diminished. These papers use publicly available datasets to estimate the

trading costs of an average investor. In contrast, Frazzini, Israel, and Moskowitz (2015)

uses proprietary data and finds that the trading costs associated with exploiting size,

momentum, and book to market can be quite small for large institutional investors.

Other papers have also found that combining characteristics helps to reduce trans-

action costs. Frazzini et al. (2015) explains that “value and momentum trades tend to

offset each other, resulting in lower turnover which has real transaction costs benefits.”

Barroso and Santa-Clara (2015) considers currency portfolios based on six characteris-

tics and explains that “transaction costs depend crucially on the time-varying interaction

between characteristics.” Novy-Marx and Velikov (2016) studies “filtering,” a cost mit-
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igation technique that allows investors trading one strategy to opportunistically take

small positions in another at effectively negative trading costs. The distinguishing fea-

ture of our work is that we consider a large number of characteristics jointly to show how

transaction costs lead to an increase in the dimension of the cross section.

2 Data

We combine U.S. stock-market information from CRSP, Compustat, and I/B/E/S, cov-

ering the period from January 1980 to December 2014. We start by compiling data on

the 100 firm-specific characteristics considered in Green et al. (2017),8 but drop charac-

teristics with a large proportion of missing observations to ensure that our results are

reliable. Specifically, we drop characteristics with more than 5% of missing observations

for more than 5% of firms with CRSP returns available for the entire sample from 1980 to

2014. In addition, we drop characteristics without any observations for more than 1% of

these firms. Table 1 lists the resulting 51 characteristics together with their definitions,

the name of the author(s) who identified them, and the date and journal of publication.

Our initial database contains every firm traded on the NYSE, AMEX, and NAS-

DAQ exchanges. We then remove firms with negative book-to-market ratios. As in

Brandt et al. (2009), we also remove firms below the 20th percentile of market capital-

ization because these are very small firms that are difficult to trade. Our final dataset

contains 51 firm-specific characteristics for a total of 17,930 firms of which an average of

3,071 firms have return data in a particular month.

We cross-sectionally winsorize each characteristic; that is, we replace extreme

observations that are beyond a certain threshold with the value of the threshold. Specif-

ically, we set equal to the third (first) quartile plus (minus) three times the interquartile

range any observations that are above (below) this threshold.9

8As in Green et al. (2017), when constructing monthly characteristics at time t, we assume that
annual (quarterly) accounting data is available at the end of month t− 1 if the firm’s fiscal year ended
at least six (four) months earlier.

9This winsorization is the one used in the 2014 version of Green et al. (2017). Section IA.9 of the
revised internet appendix shows that our findings are robust to winsorizing the data at the 1st and 99th
cross-sectional percentiles, as in the published version of Green et al. (2017).
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Finally, as in Brandt et al. (2009), we standardize each characteristic so that it has

a cross-sectional mean of zero and standard deviation of one. The resulting standardized

characteristic is a long-short portfolio that goes long stocks whose characteristic is above

the cross-sectional average, and short stocks whose characteristic is below the cross-

sectional average.

3 Methodology

This section explains how we extend the parametric-portfolio methodology in Brandt

et al. (2009) in order to study how transaction costs change the number of characteristics

that are jointly significant for an investor’s portfolio. We also describe below the screen-

and-clean test used to evaluate whether the parametric-portfolio weight corresponding to

each characteristic is significant. In addition, Appendix A compares analytically and em-

pirically our methodological approach based on parametric portfolios with cross-sectional

and time-series regressions.

3.1 Mean-variance parametric portfolios

Parametric portfolios use a set of firm-specific characteristics to tilt the benchmark port-

folio toward stocks that help to increase the investor’s utility. The portfolios are obtained

by adding to the benchmark portfolio a linear combination of long-short portfolios ob-

tained by standardizing K firm-specific characteristics cross sectionally. The resulting

parametric portfolio at time t, wt(θ) ∈ RNt , can be written as

wt(θ) = wb,t + (x1,tθ1 + x2,tθ2 + . . .+ xK,tθK)/Nt, (1)

where wb,t ∈ RNt is the benchmark portfolio at time t, xk,t ∈ RNt is the long-short portfolio

obtained by standardizing the kth firm-specific characteristic at time t, θk is the weight

of the kth characteristic in the parametric portfolio, and Nt is the number of firms at

time t.10 As in Brandt et al. (2009), we consider a portfolio that is fully invested in risky

10The weights of the characteristics in the parametric portfolio are scaled by the number of stocks Nt

so that they are meaningful for the case with a varying number of stocks. Without this scaling parameter,
increasing the number of stocks while keeping the weights fixed would result in more aggressive portfolio
allocations.
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assets.11 The parametric portfolio can also be written in compact matrix notation by

defining Xt ∈ RNt×K to be the matrix whose kth column is xk,t:

wt(θ) = wb,t +Xtθ/Nt, (2)

where θ ∈ RK is the parameter vector, whose kth component is the weight of the kth

characteristic θk, and Xtθ/Nt is the characteristic portfolio at time t.

The return of the parametric portfolio at time t+ 1, which we denote as rp,t+1(θ),

can thus be rewritten as

rp,t+1(θ) = w>b,trt+1 + θ>X>t rt+1/Nt = rb,t+1 + θ>rc,t+1, (3)

where rt+1 ∈ RNt is the return vector at time t + 1, rb,t+1 = w>b,trt+1 is the benchmark

portfolio return at time t+ 1, and rc,t+1 = X>t rt+1/Nt is the characteristic return vector

at time t + 1, which contains the returns of the long-short portfolios corresponding to

the K characteristics scaled by the number of firms Nt.
12 Equation (3) shows that

the parametric-portfolio return is the benchmark-portfolio return plus the return of the

characteristic portfolio.

We assume that the investor optimizes mean-variance utility. The advantages of

mean-variance utility, as we will show below, are that it allows us to identify the marginal

contribution of each characteristic to the investor’s utility and to compare analytically

the parametric-portfolio weights to the results from time-series and cross-sectional re-

gressions.13 In particular, we assume the investor solves the following problem:

min
θ

γ

2
vart[rp,t+1(θ)]− Et[rp,t+1(θ)], (4)

where γ is the risk-aversion parameter and vart[rp,t+1(θ)] and Et[rp,t+1(θ)] are the variance

and mean of the parametric-portfolio return, respectively.

11Consequently, the parametric-portfolio weights on the stocks sum to one. Because the weights
on the stocks in the long-short portfolios sum to zero, this implies that the parametric weight on the
benchmark portfolio must equal one.

12Note that we use only lagged values of characteristics to build portfolios; thus, the returns of the
characteristic portfolio formed at time t, Xtθ/Nt are evaluated using the return at time t + 1; that is,
θ>X>t rt+1/Nt.

13We have run our empirical analysis also for power utility and the main insights are unchanged.
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Given T historical observations of returns and characteristics, the following propo-

sition shows that the parametric-portfolio problem can be formulated as a tractable

quadratic optimization problem.

Proposition 1. The mean-variance parametric-portfolio problem in (4) is equivalent to

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ γθ>σ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

, (5)

where Σ̂c and µ̂c are the sample covariance matrix and mean of the characteristic-return

vector rc, and σ̂bc is the sample vector of covariances between the benchmark portfolio

return rb and the characteristic-return vector rc.

Proposition 1 shows that the mean-variance parametric-portfolio problem finds

the vector θ with the optimal tradeoff amongst the variance of the characteristic port-

folio return, (γ/2)θ>Σ̂cθ; the covariance of the characteristic portfolio return with the

benchmark portfolio return, γθ>σ̂bc; and the mean characteristic portfolio return, θ>µ̂c.

3.2 Transaction costs

We consider an investor who faces proportional transaction costs that decrease with firm

size and over time, as parameterized in Brandt et al. (2009) and Hand and Green (2011).

Sections IA.1 and IA.2 of the internet appendix, respectively, show that our findings

are robust to estimating proportional transaction costs from daily price data and to

considering quadratic transaction costs, which are often used to model the price-impact

costs of large investors.

Let the proportional transaction-cost parameter for the ith stock at time t be

κi,t = ytzi,t, (6)

where yt and zi,t capture the variation of the transaction-cost parameter with time and

firm size, respectively. Following Brandt et al. (2009) and Hand and Green (2011), we

assume yt decreases linearly from 3.3 in January 1980 to 1.0 in January 2002, and after

that it remains at 1.0.14 We set zi,t = 0.006 − 0.0025 ×mei,t, where mei,t is the market

14Brandt et al. (2009) defines yt so that transaction costs in 1974 are four times larger than in 2002.
Therefore, if we decrease yt uniformly until 1980, we would have a starting value for yt approximately
equal to 3.3.
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capitalization of firm i at time t after being normalized cross sectionally so that it takes

values between zero and one. This functional form results in proportional transaction

costs in the 1980s of about 180 basis points for the smallest firms and 100 basis points

for the largest firms, and after 2002 of about 60 basis points for the smallest firms and

35 basis points for the largest firms.

Given T historical observations of returns and characteristics, the transaction cost

associated with implementing the parametric portfolios can be estimated as

TC(θ) =
1

T − 1

T−1∑

t=1

‖Λt(wt+1(θ)− w+
t (θ))‖1, (7)

where the transaction-cost matrix at time t, Λt, is the diagonal matrix whose ith diagonal

element contains κi,t, ‖a‖1 =
∑N

i=1 |ai| is the 1-norm of the N -dimensional vector a, and

w+
t is the portfolio before rebalancing at time t+ 1, that is,

w+
t = (wb,t +Xt × θ/Nt) ◦ (et + rt+1), (8)

where et is the Nt-dimensional vector of ones and x◦y is the Hadamard or componentwise

product of vectors x and y. Combining (5) and (7), the mean-variance parametric-

portfolio problem with transaction costs is

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
transaction costs

(9)

3.3 Understanding why a characteristic matters

To understand why particular characteristics are significant from a portfolio perspec-

tive, it is useful to consider the first-order optimality conditions for the mean-variance

parametric-portfolio problem with transaction costs in (9).

By decomposing the variance of the characteristic portfolio return, θ>Σ̂cθ, into

a term associated with the characteristic own-variances, θ>diag(Σ̂c)θ, and a term as-

sociated with the characteristic covariances, θ>(Σ̂c − diag(Σ̂c))θ, where diag(Σ̂c) is the

diagonal matrix whose kth diagonal element contains the variance of the kth character-

istic return, the mean-variance parametric-portfolio problem with transaction costs can
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be rewritten as

min
θ

(γ/2)θ>diag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ (γ/2)θ>(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
tran. costs

(10)

Note that the transaction-cost term TC(θ) is a convex function of the parameter

θ, but it is not differentiable at values of θ for which wi,t+1(θ) = w+
i,t(θ) for some i

and t. Therefore, the optimality conditions must be formally defined in terms of the

subdifferential ∂TC(θ).15

Proposition 2. The first-order optimality conditions for problem (10) are

0 ∈ γdiag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ γ(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char.)

+ γσ̂bc︸︷︷︸
cov(bench.)

− µ̂c︸︷︷︸
mean

+ ∂TC(θ)︸ ︷︷ ︸
costs

, (11)

where the kth component of the subdifferential of the transaction-cost term is

∂θkTC(θ) =
1

T − 1

T−1∑

t=1

sign(wt+1(θ)−w+
t (θ))>(Λt[(Xt+1)•,k− (Xt)•,k ◦ (et + rt+1)]), (12)

where A•,k is the kth column of matrix A, and

sign(wi,t+1(θ)− w+
i,t(θ)) =





+1 if wi,t+1(θ) > w+
i,t(θ),

−1 if wi,t+1(θ) < w+
i,t(θ),

[−1, 1] if wi,t+1(θ) = w+
i,t(θ).

(13)

The first-order optimality conditions in (11) allow us to identify the marginal con-

tribution of each characteristic to the investor’s mean-variance utility. Specifically, the

kth component of the right-hand side in (11) is the marginal contribution of the kth char-

acteristic to the parametric-portfolio mean-variance utility; that is, the marginal change

to mean-variance utility associated with a unit increase in the weight that the parametric

portfolio assigns to the kth characteristic. Moreover, the five terms on the right-hand

side of (11) are: the marginal contributions of the kth characteristic to the characteris-

tic own-variance, γdiag(Σ̂c)θ; the characteristic covariance with the other characteristics,

15See Rockafellar (2015) for an extensive treatment of subdifferentials.
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γ(Σ̂c−diag(Σ̂c))θ; the covariance between the characteristic and the benchmark portfolio,

γσ̂bc; the characteristic portfolio mean, −µ̂c; and the subdifferential of the transaction-

cost function, ∂ TC(θ).

Finally, to gauge the size of the trading-diversification benefit associated with

combining characteristics, it will be useful to compute the marginal contribution to trans-

action costs of trading the kth characteristic in isolation (that is, without the benchmark

or any other characteristics), which is

∂isoθk TC(θ) =
1

T − 1

T−1∑

t=1

‖Λt[(Xt+1)•,k − (Xt)•,k ◦ (et + rt+1)]‖1. (14)

Straightforward algebra shows that the marginal contribution to transaction costs of

trading the kth characteristic in isolation given in (14) is larger in general than that of

trading it in combination given in (12).

3.4 The regularized parametric portfolios

To deal with the large number of characteristics in our dataset, we develop a new class of

parametric portfolios, which we term regularized parametric portfolios. These portfolios

are obtained by imposing a lasso16 constraint on the parametric portfolio. This constraint

reduces the impact of estimation error and acts as a variable-selection method that

helps to reduce problem dimensionality, a feature that makes the regularized parametric

portfolios suitable for the first stage of the screen-and-clean significance test described

below in Section 3.5.

The regularized parametric portfolios are obtained by solving problem (9) subject

to the lasso constraint,

min
θ

γ

2
θ>Σ̂cθ + θ>γσ̂bc − θ>µ̂c + TC(θ), (15)

s.t. ‖θ‖1 ≤ δ, (16)

16The term lasso originated as the acronym for least absolute shrinkage and selection operator. The
lasso was originally proposed in Tibshirani (1996) in the context of statistical learning and has become
a prominent tool in the age of machine learning. See Hastie, Tibshirani, and Wainwright (2015) for an
in-depth treatment of the lasso and DeMiguel, Garlappi, Nogales, and Uppal (2009a) for a Bayesian
interpretation of the lasso constraint in the context of portfolio choice.
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where ‖θ‖1 =
∑K

k=1 |θk| is the 1-norm of θ and δ is the threshold parameter. To gain

intuition about δ, note that for δ =∞, we recover the standard parametric portfolios, and

for δ = 0, we recover the benchmark portfolio. Thus, as one increases δ, the regularized

parametric portfolios change from the benchmark portfolio toward the unregularized

parametric portfolio.

3.5 Screen-and-clean significance test

We now explain how to test whether the parametric-portfolio weights corresponding to

the different characteristics are significantly different from zero. Because we consider a

large number of characteristics, it is desirable to use a variable-selection method such

as lasso to reduce the number of characteristics before testing for significance. However,

Chatterjee and Lahiri (2011) shows that it is challenging to test for significance in the

presence of a lasso constraint. To address this challenge, we use a two-stage screen-

and-clean method, similar to the methods proposed in Wasserman and Roeder (2009),

Meinshausen and Yu (2009), and Meinshausen, Meier, and Buhlmann (2009).

In the first stage, we screen the characteristics by using the regularized parametric

portfolios. Specifically, we employ five-fold cross-validation, as explained in Hastie et al.

(2015, Section 2.3), to select the lasso threshold δ that optimizes the mean-variance

criterion.17 Using the resulting optimal lasso threshold, we compute the regularized

parametric portfolios and “screen” or remove any characteristics with a zero parameter,

thus reducing problem dimensionality and paving the way for the second (clean) stage.

In the second stage, we clean the characteristics that were not removed in the

first stage. That is, we compute the parametric portfolios using the characteristics that

survived the first stage, but now without a lasso constraint, thus circumventing the

concerns highlighted in Chatterjee and Lahiri (2011). We then apply a bootstrap method

to establish which of these characteristics have parametric-portfolio weights that are

17In particular, we divide the sample into five equal intervals. For j from 1 to 5, we remove the jth-
interval from the sample and use the remaining sample returns to compute the regularized parametric
portfolio for several values of δ. We then evaluate the return of the resulting portfolios on the jth-
interval. After completing this process for each of the five intervals, we have out-of-sample portfolio
returns for the entire sample for each value of δ. Finally, we compute the mean-variance utility of these
out-of-sample returns and select the value of δ that optimizes mean-variance utility.
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significantly different from zero. Specifically, we apply the percentile-interval method

(Hastie et al., 2015, Section 6.2) to establish significance of the surviving characteristics.

First, we generate 1, 000 bootstrap samples from the original dataset using sampling with

replacement. Second, we estimate the optimal parametric portfolio for each bootstrap

sample. Third, we declare as significant those characteristics whose estimated parameter

is strictly positive (strictly negative) for at least 95% of the bootstrap samples, and

compute the p-value as the proportion of bootstrap samples for which the parameter is

nonpositive (nonnegative).18

We now explain how our significance test relates to several regularization ap-

proaches used in the literature to identify the characteristics that are jointly relevant.

For instance, Freyberger et al. (2018) and Messmer and Audrino (2017) use “adaptive

lasso” and Kozak et al. (2018) uses “elastic net.” These regularization methods are sim-

ilar to the first (screen) stage of our approach because they employ cross-validation to

maximize out-of-sample fit. However, because of our focus on significance, unlike these

papers, our analysis includes a second (clean) stage that performs a bootstrap signif-

icance test on the parametric portfolios of those characteristics that survived the first

(screen) stage.19

Another alternative is to use a sequential bootstrap method to test the signifi-

cance of adding one more characteristic to an existing parametric portfolio. This ap-

proach would be similar to the methodology proposed in Harvey and Liu (2018) in the

context of sequential factor selection. However, a sequential significance test would not

capture the risk- and trading-diversification benefits from adding several characteristics

simultaneously. This is crucial because both risk and transaction costs depend critically

on how characteristics are combined.20

18We have repeated the tests using the stationary bootstrap in Politis and Romano (1994), which
takes serial dependence into account, and we have found that the results are robust.

19The adaptive lasso and elastic net could be used instead of lasso for the first (screen) stage of our
significance method. Indeed, in Section IA.3 of the internet appendix, we repeat the screen-and-clean
significance test, but employing elastic net for the first (screen) stage, and our results are robust.

20Note that lasso can be interpreted also as a sequential procedure because as one increases the
lasso threshold δ, the regularized parametric portfolios assign a nonzero weight to a larger number of
characteristics. However, the lasso does not suffer from the limitation of a purely sequential procedure
because it allows for characteristics to drop out of the active set as the lasso threshold increases; see
Efron and Hastie (2016, Section 16.4). More importantly, we employ the lasso only in the first (screen)
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We conclude this section with some comments on the robustness of our significance

test. First, the screen-and-clean significance test is unlikely to suffer from the type

of overfitting bias documented in Novy-Marx (2016) and Rytchkov and Zhong (2017)

because it tests the marginal significance of each characteristic when considered jointly

with the others, and thus follows exactly the recommendation in Novy-Marx (2016) that

“the marginal contribution of each individual signal should be evaluated individually;” see

Section IA.6 of the internet appendix for a more detailed discussion. Second, our main

finding that transaction costs increase the number of significant characteristics is robust

to using alternative significance tests and data samples, as we show in Sections IA.3,

IA.4, and IA.8 of the internet appendix. This is because our main finding is obtained

by comparing the number of significant characteristics for the cases with and without

transaction costs, and therefore, any differences due to the method or sample are likely

to wash out. Third, because the characteristics that we consider were discovered in the

literature for their ability to explain the cross-section of expected stock returns rather

than something related to transaction costs and trading diversification, it is unlikely that

our findings about the impact of transaction costs on the dimension of the cross section

are driven by data mining.

4 Trading diversification

We now characterize analytically and empirically the magnitude of the trading-diver-

sification benefits obtained by combining characteristics. We do this by comparing the

average trading volume (turnover) required to exploit characteristics in combination with

that required to exploit them in isolation. Note that the reduction in turnover that we

characterize in this section will result in a reduction in transaction costs regardless of

the particular manner in which transaction costs are modeled. Indeed, the analysis

in Section 6 and Sections IA.1 and IA.2 of the internet appendix shows that, in the

presence of either proportional or quadratic transaction costs, the benefits of trading

stage of the significance test. The second (clean) stage is carried out on the unregularized parametric
portfolios and tests the joint significance of all the characteristics that survived the screen stage.
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diversification lead to a substantial reduction in the transaction costs associated with the

optimal investor’s portfolio.

4.1 Analytical results

To simplify the exposition, in this section we focus on the case where the investor holds

an equally weighted portfolio of the characteristics, but all results can be extended to the

case of a generic portfolio of characteristics.

Proposition 3 below characterizes the reduction in turnover obtained by com-

bining characteristics. The intuition underlying this proposition is that, just as we get

diversification of risk when we combine stocks, we get trading diversification when we

combine characteristics. To see this, note that rebalancing the long-short portfolio as-

sociated with each characteristic requires trading in the same set of underlying stocks.

Thus, exploiting multiple characteristics allows one to cancel out some of the trades in

the underlying stocks required to rebalance the characteristic long-short portfolios. For

instance, if to rebalance a characteristic long-short portfolio we need to buy a particular

stock, whereas to rebalance another characteristic we need to sell the same stock, then

the net amount of trading required to exploit these two characteristics in combination

will be smaller than that required to exploit them in isolation.

Proposition 3. Assume that the trades in the ith stock required to rebalance K > 1

different characteristics, that is, the quantities

tradei,k = (Xt+1)i,k − (Xt)i,k(1 + ri,t+1), k = 1, 2, . . . , K (17)

are jointly distributed as a multivariate Normal distribution with zero mean and positive-

definite covariance matrix Ω. Then:

1. The ratio of the average trading volume (turnover) in the ith stock required to

rebalance an equally weighted portfolio of the K characteristics to that required to

rebalance the K characteristics in isolation is

turnover(tradeewi )

turnover(tradeisoi )
=

√
e>Ωe∑K

k=1

√
Ωkk

< 1,
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where e ∈ RK is the vector of ones, Ωkk is the variance of tradei,k,

turnover(tradeewi ) = E

[
1

K

∣∣∣
K∑

k=1

tradei,k

∣∣∣
]
, and

turnover(tradeisoi ) = E

[
1

K

K∑

k=1

|tradei,k|
]
.

2. If, in addition, the covariance matrix Ω is symmetric with respect to all K char-

acteristics, that is, if the variances and correlations between the trades in the ith

stock required to rebalance the K different characteristics are all equal to σ2 and ρ,

respectively, then21

turnover(tradeewi )

turnover(tradeisoi )
=

√
1 + ρ(K − 1)

K
< 1. (18)

3. If, in addition, the correlations between the trades in the ith stock required to rebal-

ance the K different characteristics are all zero (ρ = 0), then

turnover(tradeewi )

turnover(tradeisoi )
=

1√
K

< 1.

Part 1 of Proposition 3 shows that, provided the covariance matrix of the rebal-

ancing trades is positive definite (and thus, the rebalancing trades between some of the

characteristics are not perfectly correlated), combining characteristics will result in trad-

ing diversification and a reduction in turnover. Also, Part 2 of Proposition 3 shows that

trading diversification increases with the number of characteristics and decreases with

the correlation between the rebalancing trades of different characteristics.

4.2 Empirical results

We now evaluate empirically the benefits from trading diversification. Figure 1 compares

the monthly turnover required to exploit the 51 characteristics in isolation with that

21Note that in (18) the term 1 + ρ(K − 1) is strictly positive because of the assumption that Ω is
positive definite.

18



required to exploit them in an equally weighted combination.22 The figure shows that the

trading-diversification benefits of combining characteristics are large empirically. While

the average monthly turnover required to exploit the 51 characteristics in isolation is

24.09%, the turnover required to exploit an equally weighted combination of them is

only 6.71%; that is, trading diversification delivers a 72.15% reduction in turnover.23

Note that this 72.15% reduction in turnover is similar in magnitude to that pre-

dicted by Part 3 of Proposition 3 for the symmetric case with zero correlation between

rebalancing trades across characteristics: 1 − 1/
√
K = 1 − 1/

√
51 ≈ 86%. Indeed,

Figure 2 gives a heatmap of the correlations between the rebalancing trades for the 51

characteristics for a particular stock and shows that many of the correlations are close to

zero.24 Moreover, we find that the average correlation between rebalancing trades across

the 51 characteristics and the entire universe of stocks is 5.47%, not very different from

zero. This explains why the empirical benefits from trading diversification are so large

and in line with those predicted by Part 3 of Proposition 3.

In this section, we have shown analytically and empirically that combining char-

acteristics in an equally weighted portfolio results in a substantial reduction in turnover

compared to trading them in isolation. In the next two sections, we show that combining

characteristics in the parametric portfolio that maximizes an investor’s expected utility

also results in a substantial reduction in transaction costs.

22For this section only, we have adjusted the sign of every characteristic so that its associated long-
short portfolio produces positive average returns. The marginal contributions to turnover are computed
using Equation (12) for the case where the transaction-cost matrix Λt is replaced by the identity matrix
and for an equally weighted portfolio of the 51 characteristics without the benchmark; that is, wt =
Xte/(51Nt), where e is the vector of ones.

23In fact, Figure 1 shows that the turnover required to exploit each characteristic in isolation (blue
bars) is much larger than the marginal contribution to turnover of each characteristic in an equally
weighted combination (yellow bars). Most strikingly, for the volatility of share turnover (std turn)
characteristic, the marginal contribution to turnover in an equally weighted combination is negative,
implying that including this characteristic results in an absolute reduction in turnover of the portfolio.

24We have produced heatmaps for several stocks as well as the heatmap for the average correlations
across stocks and the insights are similar.
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5 How many characteristics matter without costs?

This section studies how many characteristics are jointly significant in the absence of

transaction costs and Section 6 studies the effect of transaction costs.

We use the screen-and-clean method, described in Section 3.5 above, to test the

significance of the characteristics on the sample containing the 319 monthly observations

from May 1988 to December 2014.25 When computing the parametric portfolios, we

use the value-weighted portfolio as the benchmark and assume a risk-aversion parameter

γ = 5.26 The first (screen) stage finds that 10 characteristics survive the screening. We

then run the second (clean) stage on the unregularized parametric portfolios for these 10

characteristics to determine how many are significant.

Table 2 reports the significance of each characteristic that survived the first

(screen) stage. We observe from the second column of Table 2 that, in the absence

of transaction costs, six characteristics are significant. Five are significant at the 5%

confidence level: unexpected quarterly earnings (sue), return volatility (retvol), asset

growth (agr), 1-month momentum (mom1m), and gross profitability (gma); and one

characteristic, beta, is significant at the 10% level. Our results show that, in the ab-

sence of transaction costs, a small number of characteristics is sufficient to explain the

cross section of stock returns. This is consistent with several papers in the literature.

For instance, Hou et al. (2014) and Fama and French (2016) show that four and five

variables, respectively, are enough to explain the cross section. Likewise, Green et al.

(2017) considers 94 characteristics and finds that 12 are jointly significant, Freyberger

et al. (2018) considers 62 and finds that 13 provide independent information, and Kelly

et al. (2018) considers 36 characteristics and finds that eight are significant.27

25Although our dataset covers the period from January 1980 to December 2014, we drop the first
100 months so that the significance test is run on the exact same sample as the out-of-sample analysis
in Section 7. However, Section IA.8.3 in the internet appendix shows that our findings are robust to
considering the full sample from 1980.

26Section IA.10 of the internet appendix considers other values of risk-aversion: γ = 2 and 10.
27In contrast to these papers, Kozak et al. (2018) finds that, in the absence of transaction costs, a small

number of principal components predict the cross section better than a small number of characteristics.
The explanation for these contrasting results is that while Kozak et al. (2018) focuses on out-of-sample
fit, most of the aforementioned papers focus on significance, with the exception of Freyberger et al.
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For each characteristic, the last four columns of Table 2 give the marginal contri-

bution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of

the characteristic with the other characteristics in the portfolio, (iii) the covariance of the

characteristic with the benchmark portfolio, and (iv) the characteristic mean. Marginal

contributions that drive the characteristic to be nonzero are in blue sans serif font, and

marginal contributions that drive the characteristic toward zero are in red italic font.28

The marginal contributions reported in Table 2 show that the five characteristics

significant at the 5% level matter because they help to reduce the risk of the portfolio

of characteristics and increase its mean return.29 In contrast, the beta characteristic is

significant at the 10% level only because of its ability to reduce the risk of the portfolio

of characteristics. To see this, note that Table 2 shows that, consistent with the findings

in the existing literature (see Black (1993)), the marginal contribution of beta to the

portfolio’s mean return is very small. However, the beta return has a large negative

covariance with the returns of the other characteristics (marginal contribution −0.01381),

and this is what makes it relevant from a portfolio perspective. This is illustrated in

Figure 3, which depicts the marginal contributions of the six significant characteristics,

and shows that beta has a large negative marginal contribution to the covariance with

the other characteristics that helps to reduce the overall portfolio risk.

Table 2 also explains why size, book to market, and momentum are not signifi-

cant. For instance, 12-month momentum (mom12m) and book to market (bm) are not

significant, even though their expected returns are large, because their returns have a

very large positive covariance with the returns of the other characteristics in the portfolio.

In contrast, market capitalization (mve) has only a small mean return, consistent with

findings in the literature (see Asness, Frazzini, Israel, Moskowitz, and Pedersen (2018)),

(2018). This suggest that, while a large number of characteristics may help to predict the cross section,
not all may be statistically significant.

28Note that for characteristics with a positive parametric-portfolio weight, negative (positive)
marginal contributions help to decrease (increase) the objective function in the minimization prob-
lem (9) and thus increase (decrease) the investor’s mean-variance utility. Therefore, for characteristics
with positive parametric-portfolio weights, negative (positive) marginal contributions are in blue sans
serif font (red italic font). The opposite color and font convention applies to characteristics with negative
parametric-portfolio weights.

29For instance, return volatility has large positive mean return (marginal contribution 0.00323) and
negative return covariance with the other characteristics (marginal contribution 0.02914).
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and hence, although mve helps to diversify the characteristic portfolio, the risk reduction

is not sufficient to make it significant.

As discussed above, the contribution of characteristics to portfolio risk plays an

important role, and thus, the correlations between the characteristic returns matter.

Table 3 reports the correlation matrix for the returns of the six significant characteristics

and the three characteristics considered in Brandt et al. (2009): size, book to market,

and momentum.

We first observe from Table 3 that the returns of the size, book to market, and mo-

mentum characteristics are not highly correlated, with their correlation coefficients being

smaller than 20%. On the other hand, the returns of the six significant characteristics we

identify are more highly correlated. To understand why these characteristics with highly

correlated returns are jointly significant for portfolio choice, consider the case of return

volatility and beta. The returns of these two characteristics are highly positively corre-

lated (93%), but the mean return of beta is very small. As a consequence, the investor

optimally goes long the beta characteristic to hedge the risk of her short position in the

return-volatility characteristic, while preserving most of its mean return. The benefit of

this strategy is illustrated in Panel (a) of Figure 4, which shows the cumulative returns

of a blended strategy that assigns a −50% weight to return volatility and a +50% weight

to beta. This blended strategy has large cumulative returns and very low volatility.30

Asness, Moskowitz, and Pedersen (2013) finds that the returns of value and mo-

mentum are negatively correlated and a blended strategy of these two characteristics

performs well. We compare the return volatility and beta blended strategy with the

value and momentum blended strategy. Panel (b) in Figure 4 shows the cumulative re-

turns of these two blended strategies, where we have scaled them so that they have the

30Our finding that, despite the high correlation between the return volatility and beta characteristics,
the return-volatility characteristic commands a much higher average return than beta is consistent with
results in the existing literature. As explained in Bali, Engle, and Murray (2016), return volatility
and idiosyncratic volatility are very similar in the cross section. Therefore, the high average return of
the return-volatility characteristic can be traced back to the high average return of the idiosyncratic-
volatility characteristic, which is documented in Ang, Hodrick, Xing, and Zhang (2006). Moreover, Bali
et al. (2016, Table 15.7) shows that the idiosyncratic risk characteristic commands a high average return
mostly when computed from daily data over short horizons, which is how return volatility is computed
in our analysis. Beta, on the other hand, is computed from weekly returns over the past three years,
and thus delivers much lower average returns; see also Liu, Stambaugh, and Yuan (2018).
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same volatility. We find that the return-volatility and beta blend attains a cumulative

return of 110%, whereas the value and momentum blend attains a cumulative return of

around 80%.

Summarizing, we find that, in the absence of transaction costs, only six character-

istics are significant and that risk diversification plays an important role in determining

which characteristics are significant. We now study the role of trading diversification.

6 What is the effect of transaction costs?

In this section, we examine how transaction costs influence the optimal portfolio of a

utility-maximizing investor, and hence, the dimension of the cross section. As explained

in Section 3.2, we consider an investor who faces proportional transaction costs that

decrease with firm size and over time, as in Brandt et al. (2009) and Hand and Green

(2011). Sections IA.1 and IA.2 of the internet appendix, respectively, show that our

findings are robust to estimating proportional transaction costs from daily price data

and to considering quadratic transaction costs.

Intuitively, one may expect that in the presence of transaction costs fewer charac-

teristics would be significant because transaction costs can only erode the benefits from

exploiting characteristics. Indeed, we find that this is the case if one were to consider

each characteristic individually : Section IA.13 in the internet appendix shows that 21

characteristics are individually significant in the absence of transaction costs, but only

14 in the presence transaction costs. However, when considered jointly, we find that the

number of characteristics that are jointly significant at the 5% level increases from five in

the absence of transaction costs to 15 in the presence of proportional transaction costs.31

The explanation for this result can be found in Table 4, which gives the significance

and marginal contributions of the characteristics for the parametric portfolios in the

presence of transaction costs. Of particular interest are the last two columns of the table,

which give (i) the marginal contribution of each characteristic to transaction costs when

31For the case with proportional transaction costs estimated from daily price data reported in Sec-
tion IA.1, the number of characteristics that are jointly significant increases from five to 14, and for
the case of quadratic transaction costs reported in Section IA.2, the number of characteristics that are
jointly significant increases from five to 19.
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combined in the optimal parametric portfolio and (ii) the marginal contribution of each

characteristic to transaction costs when traded in isolation; that is, independently from

the benchmark portfolio and the other characteristics. Comparing these two columns

reveals that the reason why the number of significant characteristics is larger in the

presence of transaction costs is that the transaction costs associated with trading the

portfolio of characteristics that maximizes the investor’s utility are substantially smaller

than those associated with trading characteristics in isolation. We find that the marginal

transaction cost associated with trading the 15 significant characteristics is reduced by

around 65% on average when they are combined in the optimal portfolio. This reduction

is illustrated in Figure 5, which depicts the marginal contributions to transaction costs

of the 15 significant characteristics for the case when the characteristics are combined in

the optimal portfolio and in isolation.

A stark example of the trading-diversification benefits from combining charac-

teristics is the short-term reversal characteristic (mom1m in the 14th row of Table 4),

which has an enormous marginal contribution to transaction costs if traded in isolation

(marginal contribution 0.00857), but a dramatically smaller marginal contribution to

transaction costs when traded in the optimal portfolio (marginal contribution 0.00211).

As a result, the short-term reversal characteristic, which is significant in the absence of

transaction costs as shown in Table 2, is significant even in the presence of transaction

costs when combined in the optimal portfolio of characteristics.32

In Section 4, we showed analytically and empirically that combining characteristics

in an equally weighted portfolio results in a substantial reduction in turnover compared

to trading them in isolation. The results in this section confirm that combining character-

istics in the optimal parametric portfolio leads to a substantial reduction in transaction

costs, and hence, an increase in the investor’s utility. The explanation is that combining

32This result contrasts with DeMiguel, Nogales, and Uppal (2014) and Novy-Marx and Velikov (2016)
that find that the short-term reversal characteristic is not profitable after transaction costs when traded
in isolation. DeMiguel et al. (2014) finds that a short-term reversal (contrarian) strategy is not profitable
in the presence of even modest proportional transaction costs of 10 basis points. Novy-Marx and Velikov
(2016) finds that the short-term reversal strategy does not improve the investment opportunity set
of an investor with access to the Fama and French (2016) and Carhart (1997) factors, even when a
buy-and-hold transaction-cost-mitigation strategy is employed.
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a larger number of characteristics is advantageous in the presence of transaction costs

because the benefits from trading diversification grow with the number of characteris-

tics exploited, as shown in Proposition 3. The main takeaway is that transaction costs

increase the dimension of the cross-section of stock returns and provide a rationale for

non-sparse characteristic-based asset-pricing models.

7 Out-of-sample analysis

The previous sections studied the effect of transaction costs on the number of charac-

teristics that are jointly significant in sample. In this section, to alleviate data-mining

concerns, we study whether an investor can improve out-of-sample performance net of

transaction costs by exploiting a larger set of characteristics than that considered in

prominent asset-pricing models.

7.1 Methodology for out-of-sample evaluation

To evaluate the out-of-sample performance of the various portfolio strategies we use

a “rolling-horizon” procedure, similar to that used in DeMiguel, Garlappi, and Uppal

(2009b). First, we choose a window over which to perform the estimation. The total

number of monthly observations in the dataset is Ttot = 419 and we choose an estimation

window of T = 100. Second, using the return data over the estimation window, we com-

pute the various portfolios we study. Third, we repeat this “rolling-window” procedure

for the next month, by including the data for the next month and dropping the data for

the earliest month. We continue doing this until the end of the dataset is reached. At

the end of this process, we have generated Ttot − T = 319 portfolio-weight vectors, wjt ,

for t = T, . . . , Ttot − 1 and for each strategy j. Holding the portfolio wjt for one month

gives the out-of-sample return net of transaction costs at time t+ 1:

rjt+1 = (wjt )
>rt+1 − ‖Λt(w

j
t − (wjt−1)+)‖1,

where (wjt−1)+ is the portfolio for the jth strategy before rebalancing at time t; that is,

(wjt−1)+ = wjt−1 ◦ (et−1 + rt),

25



and Λt, et−1, and x ◦ y are as defined in Section 3.2. Then, for each portfolio we study,

we compute the monthly turnover, and the out-of-sample annualized mean, standard

deviation, and Sharpe ratio of returns net of transaction costs:

turnoverj =
1

Ttot − T
Ttot−1∑

t=T

‖wjt − (wjt−1)+‖1,

µ̂j =
12

Ttot − T
Ttot−1∑

t=T

(wjt )
>rt+1,

σ̂j =

(
12

Ttot − T
Ttot−1∑

t=T

(
(wjt )

>rt+1 − µ̂j
)2
)1/2

, and

ŜR
j

=
µ̂j
σ̂j
.

To test if the out-of-sample performance of the regularized parametric portfolio

is statistically significantly better than that of the other portfolios we consider, we use

the iid bootstrap method in Ledoit and Wolf (2008), with 10,000 bootstrap samples

to construct a one-sided confidence interval for the difference between Sharpe ratios.

We use three/two/one asterisks (∗) to indicate that the difference is significant at the

0.01/0.05/0.10 level.33

7.2 Out-of-sample performance

Table 5 reports the out-of-sample performance of several portfolios in the presence of

transaction costs with risk-aversion parameter γ = 5. Panel A reports the performance

for the portfolios that do not use any characteristics, which are the benchmark value-

weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the

performance of three parametric portfolios: two portfolios that exploit a small number

33Note that to reduce computation time, we compute the optimal parameter vector θ only in January
of each year, and use this parameter vector to compute the parametric portfolios for every month of
the year. Also, we find that the regularized parametric portfolios that solve problem (15)–(16) result in
very large turnovers. Although we find that these portfolios are profitable even after transaction costs
(see Section IA.12.3 of the internet appendix), they may not be implementable for institutional investors
facing turnover constraints. Therefore, we report the results for the parametric portfolios after scaling
them to control for turnover. Specifically, we scale the optimal parameter vector θ so that the portfolio
monthly turnover is around 100%.
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of characteristics and the regularized portfolio that exploits a large set of 51 charac-

teristics.34 The first parametric portfolio exploits the three characteristics considered

in Brandt et al. (2009): size, book to market, and momentum. The second paramet-

ric portfolio exploits four characteristics: size, book to market, asset growth, and gross

profitability, which include the investment and profitability characteristics such as those

highlighted in Fama and French (2016) and Hou et al. (2014).

We observe from Table 5 that the gains from exploiting a large set of characteris-

tics are significant: the regularized parametric portfolios achieve an out-of-sample Sharpe

ratio that is 100% higher than that of the parametric portfolios based on three character-

istics and 25% higher than that of the parametric portfolios based on four characteristics,

with the differences being statistically significant. The magnitude of the economic gains

is evident also from Figure 6, which depicts the out-of-sample cumulative returns of the

value-weighted portfolio and the three parametric portfolios we consider, after scaling

them so that they all have the same volatility.

These out-of-sample results confirm that in the presence of transaction costs the

cross section of stock returns is not fully explained by a small number of characteristics.

7.3 Can factor models explain regularized portfolio returns?

The previous section demonstrates that the regularized parametric portfolios that exploit

a large set of 51 characteristics significantly outperform the two parametric portfolios that

exploit only small sets of characteristics. To check the robustness of this result, we run a

time-series regression of the out-of-sample returns of the regularized parametric portfolio

onto three sparse factor models from the literature: the Fama and French (1993) and

Carhart (1997) four-factor model (FFC), the Fama and French (2016) five-factor model

(FF5), and the Hou et al. (2014) four-factor model (HXZ). All factors are obtained from

Kenneth French’s and Lu Zhang’s websites. Table 6 shows that none of these three sparse

factor models fully explains the returns of the regularized parametric portfolios, which

34For the regularized parametric portfolio, we calibrate the lasso threshold to optimize mean-variance
utility by using the five-fold cross-validation methodology explained in Section 3.5, but using only the
100 observations in each estimation window so that there is no look-ahead bias.
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achieve an economically and statistically significant abnormal average monthly return of

about 1% for each of the three models.35

This analysis, however, does not account for the transaction costs that an investor

would incur to exploit the characteristics underlying the sparse factor models. To check

whether transaction costs affect the abnormal out-of-sample returns delivered by the

regularized portfolio, we compute the generalized alpha in Novy-Marx and Velikov (2016).

Table 7 reports the intercept, slope, and t-statistic (in brackets) from regressing the out-

of-sample regularized portfolio returns net of transaction costs onto the out-of-sample

returns net of transaction costs of the parametric portfolio that exploits: (1) the size,

book-to-market, and momentum characteristics (Size/val./mom.); and (2) the size, book-

to-market, investment, and profitability characteristics (Size/val./inv./prof.). We observe

that the regularized parametric portfolio has an economically and statistically significant

generalized alpha of about 1% with respect to these two portfolios.

The results in Tables 6 and 7 confirm that sparse factor models cannot fully

explain the out-of-sample performance of the regularized parametric portfolios.

8 Conclusion

A multitude of variables have been proposed to explain the cross-section of stock returns.

When addressing the challenge posed in Cochrane (2011), which we highlighted in the

introduction, the existing literature either ignores transaction costs or considers one char-

acteristic at a time. We, in contrast, study the impact of transaction costs on the number

of characteristics that are jointly significant for an investor’s portfolio. We show analyti-

cally that combining characteristics always reduces turnover, and thus, transaction costs.

The ability to reduce transaction costs by investing in a larger number of characteristics

changes the optimal portfolio of a utility-maximizing investor, and hence, increases the

35The table also shows that the regularized parametric-portfolio returns load significantly on the
market, value (HML), and momentum (UMD) factors for the FFC model, on the market, value, and
investment (CMA) factors for the FF5 model, and on the market, investment (I/A), and profitability
(ROE) factors for the HXZ model. Finally, the loading of the regularized parametric-portfolio returns
on the market factor is close to one because, following Brandt et al. (2009), we use the value-weighted
portfolio as the benchmark for the parametric portfolios.
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dimension of the cross section. Our empirical work establishes that the magnitude of this

effect is substantial: transaction costs roughly double the number of jointly significant

characteristics. Our findings have implications for asset-pricing theories based on SDFs

because the investor’s optimality condition determines not only her optimal portfolio but

also the associated SDF. In particular, our work shows that transaction costs provide

a rationale for considering a larger number of characteristics than that in prominent

asset-pricing models.
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A Relation to regression approaches

In this appendix, we study the relation of our approach based on parametric portfolios

to the regression approaches frequently used in the literature. Section A.1 studies the

relation to Fama-MacBeth cross-sectional regressions, Section A.2 to time-series regres-

sions, and Section A.3 to the generalized-alpha approach developed in Novy-Marx and

Velikov (2016). Proofs for the propositions and corollary that appear in this section are

given in Appendix C.

A.1 Relation to Fama-MacBeth regressions

In this section, we study analytically and empirically the relation between our approach

and the Fama-MacBeth regressions in the absence of transaction costs. The Fama-

MacBeth procedure can be described as running cross-sectional regressions of stock re-

turns, rt, onto firm-specific characteristics at each date t:

rt = Xt−1λt + εt, (A1)

whereXt−1 ∈ RNt−1×K is the matrix of firm-specific characteristics at time t−1,36 λt ∈ RK

is the vector of slopes at time t, and εt ∈ RNt−1 is the vector of pricing errors at time

t. The Fama-MacBeth approach then tests the significance of the average of the slopes

over time, λ.

Most of the existing literature estimates the Fama-MacBeth cross-sectional regres-

sions using ordinary least squares (OLS). Lewellen, Nagel, and Shanken (2010), however,

recommends using generalized least squares (GLS) cross-sectional regressions because

their goodness-of-fit metric has a clear economic interpretation. In particular, Lewellen

et al. (2010) extends a result in Kandel and Stambaugh (1995) to show that the GLS

R2 measures the mean-variance efficiency of the model’s factor-mimicking portfolios.37

36For the sake of simplicity and without loss of generality, we assume that Xt−1 is divided by the
number of firms at time t− 1, as we do for parametric portfolios.

37Lewellen et al. (2010) studies two-pass cross-sectional regressions, rather than Fama-MacBeth re-
gressions; see (Cochrane, 2009, Sections 12.2 and 12.3). For our theoretical analysis, we make the
simplifying assumption that the characteristics are time invariant, and in this case the cross-sectional
regressions coincide with the Fama-MacBeth regressions. In addition, we use firm-specific characteristic
data, rather than factor data, and thus all of our analysis is based on a single pass regression of stock
returns onto characteristics.
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The following proposition clarifies the relation between our portfolio approach and the

Fama-MacBeth OLS and GLS regressions.

Proposition A1. Assume that the standardized firm characteristics are constant through

time so that Xt = X. Then, the OLS and GLS Fama-MacBeth average slopes are

λOLS = (X>X)−1X>µ̂r, and (A2)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (A3)

where µ̂r ∈ RN is the sample mean of stock returns and Σ̂r ∈ RN×N is the sample

covariance matrix of stock returns. Assume also that the sample vector of covariances

between the benchmark portfolio return and the characteristic portfolio return vector is

zero (σbc = 0). Then the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (A4)

Proposition A1 shows that the OLS and GLS Fama-MacBeth slopes differ in gen-

eral from the mean-variance parametric-portfolio weights; that is, testing the significance

of Fama-MacBeth slopes is different from testing the significance of the weights a mean-

variance investor assigns to each characteristic. Note, in particular, that the OLS and

GLS Fama-MacBeth slopes are different in general from the mean-variance parametric-

portfolio weights unless the sample covariance matrix of asset returns is equal to the

identity matrix (Σr = I).

The following corollary provides further insight into the difference between the

parametric-portfolio weights and the OLS Fama-MacBeth slopes.

Corollary A1. Let the assumptions in Proposition A1 hold, and assume in addition

that the columns of the firm-specific characteristic matrix X are orthonormal; that is,

X>X = I. Then, the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c λOLS, (A5)

where Σ̂c is the sample covariance matrix of characteristic returns and γ is the risk-

aversion parameter.
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Corollary A1 shows that, for the particular case in which the columns of the

firm-specific characteristic matrix are orthonormal, there is a componentwise one-to-one

relation between mean-variance parametric-portfolio weights and OLS Fama-MacBeth

slopes only if the sample covariance matrix of characteristic returns, Σ̂c, is diagonal.38

If, on the other hand, characteristic returns are correlated, then a given characteristic k

could have a zero OLS Fama-MacBeth slope (λk = 0), and yet have a nonzero parametric-

portfolio weight (θ∗k 6= 0). This is the case, for instance, when the correlation of the kth

characteristic return with the returns on the other characteristics can be exploited by

the investor to reduce risk, and thus, improve her overall mean-variance utility.

The above theoretical results demonstrate that testing the significance of Fama-

MacBeth slopes will, in general, produce results that are different from those of testing the

significance of the weights that a mean-variance investor assigns to each characteristic.

We now compare empirically the significance results from OLS Fama-MacBeth regressions

with those of our approach.39 Table A1 reports the significance of the Fama-MacBeth

slopes for the six characteristics we found to be significant in Section 5 plus size, book

to market, and momentum. The first column lists the name of the characteristics, the

second column reports the multiple regression slopes and Newey-West t-statistics (in

brackets),40 and the third column reports the individual regression slopes and Newey-

West t-statistics.

We see from Table A1 that the five characteristics that are significant at the 5%

level in Section 5 are also jointly significant for cross-sectional regressions. However,

in contrast to the finding in Section 5, beta is not significant in the Fama-MacBeth

regressions even at the 10% level. This is because, as shown in Proposition A1, Fama-

MacBeth slopes differ in general from parametric-portfolio weights when the returns on

the characteristics are correlated over time and the investor can exploit this to reduce

the risk of the mean-variance portfolio. Regarding the book-to-market and momentum

38To see this, note that if Σ̂c is diagonal, then θ∗k = (λOLS)k/(γ(Σ̂c)kk), where (Σ̂c)kk is the kth

element of the diagonal of Σ̂c, and thus there is a one-to-one correspondence between the kth component
of θ∗ and the kth component of λOLS .

39We do not run GLS Fama-MacBeth regressions because the sample covariance matrix of stock
returns is singular for our case with thousands of stocks and only hundreds of monthly dates.

40We compute t-statistics with Newey-West adjustments of 12 lags, as in Green et al. (2017).
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characteristics, we see from Table A1 that both book to market (bm) and 12-month

momentum (mom12m) are significant for multiple cross-sectional regressions, whereas

they were not significant from a portfolio perspective. Intuitively, these characteristics are

significant in multiple cross-sectional regressions because these regressions ignore the large

contribution of these characteristics to the risk of the overall portfolio of characteristics,

which reduces their appeal from a mean-variance portfolio perspective.

A.2 Relation to time-series regressions

In this section, we study analytically and empirically the relation of our portfolio approach

to the time-series regression approach in the absence of transaction costs. The time-series

approach may be described as regressing the return of a new characteristic long-short

portfolio onto the returns of Kc commonly accepted characteristic long-short portfolios;

that is,

rn,t = αTS + β>TSrc,t + εt, (A6)

where rn,t ∈ R is the return of the new characteristic long-short portfolio at time t,

rc,t ∈ RKc is the return of the commonly accepted characteristic long-short portfolios at

time t, the error term εt ∈ R follows a Normal distribution with zero mean and standard

deviation σε, αTS ∈ R is the intercept of the regression, and βTS ∈ RKc is the slope vector.

If the intercept in this regression is significant, the return on the new characteristic is

not fully explained by the return of the commonly accepted characteristics. Gibbons

et al. (1989) shows that a significant intercept implies that the new characteristic-based

long-short portfolio improves the investment opportunity set of a mean-variance investor

who already has access to the returns of the set of commonly accepted characteristics.

As explained above, the time-series regression approach tests the significance of the

intercept. In contrast, the following proposition shows that, in the absence of transaction

costs, our approach is equivalent to testing the significance of the slopes of a particular

constrained time-series multiple regression. Britten-Jones (1999) shows that the tangency

mean-variance portfolio can be identified by solving a linear regression. We extend this

result to the context of any parametric portfolio on the mean-variance efficient frontier

by introducing a constraint on the mean return of the portfolio.
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Proposition A2. For a given risk-aversion parameter γ, the optimal parameter θ∗ for

the mean-variance parametric-portfolio problem without transaction costs (5) is equal to

the ordinary least square (OLS) estimate of the slope vector in the following time-series

regression model:

rb,t = α− β>rc,t + εt, (A7)

subject to the constraint that

β>µc = (θ∗)>µc, (A8)

where rb,t ∈ R is the return of the benchmark portfolio, rc,t ∈ RK is the return on the

characteristics, α ∈ R is the intercept, β ∈ RK is the slope vector, µc is the mean charac-

teristic return vector, and (θ∗)>µc is the average return of the mean-variance parametric

portfolio.

The advantage of the parametric-portfolio approach is that by focusing on the

slopes, it allows one to test the significance of the different characteristics when they are

considered jointly. The traditional time-series approach, on the other hand, is designed

to test the significance of a single characteristic when it is added to a set of commonly ac-

cepted characteristics. This is a limitation of the time-series regression approach because

the result of the statistical inference depends on the sequence in which variables are se-

lected. For instance, when regressing the return of each characteristic in our dataset onto

the returns of the four Fama and French (1993) and Carhart (1997) factors downloaded

from Kenneth French’s website, we find that eight characteristics are significant in the

absence of transaction costs, but beta is not significant.41 Beta, however, is significant

when its returns are regressed onto the four Fama and French (1993) and Carhart (1997)

factors plus the return of the return-volatility long-short portfolio, because beta helps

to hedge the return-volatility characteristic.42 Accordingly, beta matters if one controls

for return volatility.43 Our portfolio approach considers all characteristics simultane-

41We run 48 significance tests corresponding to the 51 characteristics except size, value, and momen-
tum and thus, following Harvey et al. (2015) we apply Bonferroni’s adjustment.

42We again apply Bonferroni’s adjustment.
43This result is analogous to that in Asness et al. (2018), which finds that despite the weak performance

of the size characteristic when evaluated in isolation, it becomes significant once it is considered in
combination with a quality characteristic.
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ously and finds that return volatility and beta are jointly significant together with four

other characteristics. These empirical results highlight the importance of considering all

characteristics simultaneously. Other advantages of our portfolio approach are that it

allows one to consider transaction costs in a straightforward manner and to identify the

marginal contribution of each characteristic to the investor’s utility.

A.3 Relation to generalized alpha

In this section, we compare empirically the results from our portfolio approach in the pres-

ence of transaction costs with those from using the generalized alpha developed in Novy-

Marx and Velikov (2016), which extends the traditional time-series regression framework

to take transaction costs into account. Novy-Marx and Velikov (2016) proposes com-

puting the returns of the mean-variance portfolio in the presence of transaction costs

for the commonly accepted characteristics, MVEX , and the returns of the mean-variance

portfolio in the presence of transaction costs for the commonly accepted characteristics

plus the new characteristic, MVEX,y. Then it runs the following regression:

MVEX,y/wy = α + βMVEX + ε, (A9)

where wy is the weight of the mean-variance portfolio on the new characteristic. Novy-

Marx and Velikov (2016) shows that in the absence of transaction costs, the generalized

alpha in (A9) equals the alpha from the traditional time-series approach. In the presence

of transaction costs, this approach tests the significance of adding the new characteristic

to a set of commonly accepted characteristics taking transaction costs into account.44

As discussed in Section A.2, the main advantage of our portfolio approach with

respect to the time-series approach is that it considers all characteristics simultaneously

and tests their significance when considered jointly, whereas the time-series regressions

are designed to consider one characteristic at a time. To illustrate this, we compute the

generalized alpha for each of our characteristics with respect to the four Fama and French

(1993) and Carhart (1997) factors downloaded from Kenneth French’s website. We find

44Although the implementation in Novy-Marx and Velikov (2016) considers the transaction cost
associated with each characteristic independently, here we extend the approach in Novy-Marx and Velikov
(2016) to capture trading diversification.
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that, in the presence of transaction costs, none of the characteristic portfolios has a

significant generalized alpha with respect to the four factors.45 However, in the absence

of transaction costs, Section A.2 showed that eight characteristics were significant with

respect to the four factors. That is, the number of characteristics that are significant

with respect to the four factors for the time-series approach decreases in the presence

of transaction costs when the characteristics are considered in isolation. In contrast,

our portfolio approach shows that the number of significant characteristics increases in

the presence of transaction costs. This is because our approach allows one to consider

all characteristics simultaneously and identify the optimal combination of characteristics

that results in substantial trading diversification.

45To address the multiple testing problem, we again apply Bonferroni’s adjustment because we carry
out 48 significance tests corresponding to our 51 characteristics except size, value, and momentum.
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B Relation between optimal portfolio and SDF

In this appendix, we establish the relation between the investor’s optimal portfolio and

its associated SDF in the presence of transaction costs. For exposition purposes, we

first derive the relation for the case where the transaction-cost function is differentiable,

as is the case for the quadratic transaction costs that we consider in Section IA.2 of

the internet appendix. Then, we show how the relation can be extended to the case

where the transaction-cost function is convex, but not differentiable, as is the case for

the proportional transaction costs considered in the main body of the manuscript.

B.1 Differentiable transaction-cost function

Consider an investor who holds a parametric portfolio with return rpt = rbt + θ>rct,

where rbt is the benchmark portfolio return, rct is the characteristic return vector, and

θ is the parameter vector. The investor selects the parametric portfolio that maximizes

her expected utility of returns net of transaction costs:

max
θ

E
[
u
(
rbt + θ>rct − TC(θ)

)]
, (B1)

where TC(θ) is the transaction cost of holding the parametric portfolio.

Assuming that the transaction-cost function, TC(θ), is differentiable, the in-

vestor’s first-order optimality condition is

E
[
u′(rbt + θ>rct − TC(θ))(rct − TC′(θ))

]
= 0, (B2)

where u′(·) and TC′(·) are the first derivatives of the utility and transaction cost functions,

respectively. From Equation (B2) it is apparent that the investor’s optimal portfolio, θ,

will depend on transaction costs.

To derive the SDF associated with the investor’s optimal portfolio, one can rewrite

Equation (B2) as

E [Mt(rct − TC′(θ))] = 0, (B3)

where the SDF is

Mt = u′(rbt + θ>rct − TC(θ)). (B4)

Thus, the SDF is the marginal utility of the returns net of transaction costs of the optimal

parametric portfolio. This demonstrates that our finding that transaction costs increase
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the number of characteristics that are significant for the investor’s optimal portfolio ap-

plies also to the associated SDF.46 Note that transaction costs affect asset prices through

three channels. First, Equation (B3) shows that the SDF prices returns net of marginal

transaction costs. Second, Equation (B4) shows that the SDF depends on the investor’s

optimal portfolio, θ, which itself depends on transaction costs. Third, the SDF is the

investor’s marginal utility evaluated using returns net of transaction costs.

B.2 Convex transaction-cost function

We now establish the relation for the case where the transaction-cost function is convex,

but not differentiable, as in the case with proportional transaction costs considered in

the main body of the manuscript.

Most popular utility functions are differentiable. This is the case for power utility

or for the quadratic utility that underlies mean-variance preferences. Also, it is straight-

forward to show that the proportional transaction-cost function in Equation (7) of the

manuscript is convex and Lipschitz continuous. Therefore, (Clarke, 1990, Theorem 2.6.6)

implies that the chain rule can be applied to obtain the subdifferential of the investor’s

utility. Thus, the investor’s first-order optimality condition is:

0 ∈ E
[
u′(rbt + θ>rct − TC(θ))(rct − ∂TC(θ))

]
, (B5)

where ∂TC(·) is the subdifferential of the transaction-cost function. Note that, unlike

a differential, the subdifferential is a set-valued function, and thus, the optimality con-

ditions state that zero must be an element in the set defined by the expectation of the

subdifferential of the investor’s utility function.

To derive the SDF, note that the first-order optimality condition can be rewritten

as

0 ∈ E [Mt(rct − ∂TC(θ))] , (B6)

where the SDF is

Mt = u′(rbt + θ>rct − TC(θ)). (B7)

The pricing condition (B6) states that zero must be an element of the expectation of

the SDF multiplied by the return vector minus the subdifferential of the transaction-cost

46For the case with quadratic utility, which underlies mean-variance preferences, the SDF is an affine
function of the parametric portfolio returns net of transaction costs, and thus, there is a particularly
close relation between the optimal portfolio and the SDF.
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function. For the case with proportional transaction-cost function, the subdifferential is

a polyhedral set, and thus, the pricing condition can be rewritten as a system of pricing

inequalities. This is consistent with Luttmer (1996) and De Roon, Nijman, and Werker

(2001). In particular, Luttmer (1996) states that “In an economy with proportional

transaction costs consumer intertemporal marginal rates of substitution have to satisfy

a set or Euler inequalities.”

Finally, it is clear from Equations (B6) and (B7) that transaction costs affect the

SDF for the case with convex nondifferentiable transaction-cost function through the

same three channels discussed for the case with differentiable transaction-cost function.
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C Proofs for all propositions

Proof of Proposition 1

Equation (3) shows that the parametric portfolio is a combination of the benchmark

portfolio and the K standardized firm-specific characteristics, scaled by the number of

firms Nt. Therefore, we can define this combination as w = [1, θ] ∈ RK+1 and the

vector of benchmark and characteristic returns as Rt = [rb,t , rc,t+1/Nt]. Under this

specification, the mean-variance parametric-portfolio problem takes the familiar form:

min
w

γ

2
w>Σ̂w − w>µ̂, (C1)

s.t. w1 = 1, (C2)

where w = [w1, θ] ∈ RK+1 and Σ̂ and µ̂ are the sample covariance matrix and mean

of Rt = [rb,t , rc,t+1]. The result follows by using straightforward algebra to eliminate

the decision variable w1 and the constraint, and then removing terms in the objective

function that do not depend on the parameter-vector θ.

Proof of Proposition 2

The marginal contributions of the characteristics are given by the subdifferential of the

objective function in (10) with respect to θ. Note that the first four terms in (10) are

differentiable with respect to θ and thus their subdifferentials coincide with their gradient.

It is straightforward to show that the gradients of these four terms are given by the first

four terms in the right-hand side of (11).

The only term that is not differentiable is the transaction cost from trading asset

i at time t + 1. From expression (7), we can define the transaction-cost term for asset i

at time t+ 1 as

ui,t+1 = |Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
|, (C3)

where Λii,t is the associated transaction-cost parameter for asset i at time t. Therefore,

it suffices to characterize the subdifferential of expression (C3). Note that the function

inside the absolute value is differentiable with respect to θ. Thus, applying the chain

rule for subdifferentials, we have that the subdifferential of ui,t+1 with respect to the

kth parametric-portfolio weight θk is equal to the subdifferential of the absolute value

function times the differential of Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
.

Note that Λii,t > 0 and thus, the subdifferential of the absolute-value function is

given by the sign function as precisely defined in (13). Finally, the differential of the

40



term Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)

is

d[Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
]

dθk
= Λii,t[(Xt+1)ik − (Xt)ik(1 + ri,t+1)].

The result follows by adding the subdifferentials of ui,t+1 for i = 1, 2, . . . , Nt, and

then combining the subdifferentials with respect to θk for k = 1, 2, . . . , K into a single

vector.

Proof of Proposition 3

Part 1. The trade in the ith stock required to rebalance an equally weighted portfolio

of K characteristics is:

tradeewi =
1

K

K∑

k=1

tradei,k =
1

K

K∑

k=1

[(Xt+1)i,k − (Xt)i,k(1 + ri,t+1)]. (C4)

Because tradei,k for k = 1, 2, . . . , K are jointly distributed as a multivariate Normal distri-

bution with zero mean and and covariance matrix Ω, we have that tradeewi is distributed

as a Normal distribution with zero mean and standard deviation
√
e>Ωe/K.

By definition, the average trading volume (turnover) in the ith stock required to

rebalance an equally weighted portfolio of the K characteristics is the average of the

absolute value of tradeewi . Geary (1935) shows that the mean absolute deviation of a

Normally distributed random variable is
√

2/π times its standard deviation. Therefore,

the average turnover in the ith stock required to rebalance an equally weighted portfolio

of K characteristics is

turnover(tradeewi ) =
√

2/π ×
√
e>Ωe/K. (C5)

Following a similar argument, the average cost of the trade in the ith stock required to

rebalance a quantity 1/K of each of the K characteristics in isolation is

turnover(tradeisoi ) =
√

2/π ×
K∑

k=1

√
Ωkk

K
. (C6)

Taking the ratio of (C5) to (C6), we get

turnover(tradeewi )

turnover(tradeisoi )
=

√
e>Ωe∑K

k=1

√
Ωkk

. (C7)
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To show that this ratio is strictly smaller than one, we note that the square of the ratio

in (C7) is

e>Ωe

(
∑K

k=1

√
Ωkk)2

=

∑K
k=1 Ωkk +

∑K
l=1

∑
m6=l ρlm

√
Ωll

√
Ωmm∑K

k=1 Ωkk +
∑K

l=1

∑
m6=l
√

Ωll

√
Ωmm

, (C8)

where ρlm is the correlation between the rebalancing trade in the ith stock for the lth

and mth characteristics. The ratio in (C8) is smaller than one because ρlm < 1 by the

assumption that Ω is positive definite.

Part 2. Because Ω is symmetric with respect to the K characteristics, we have that

tradeewi is distributed as a Normal distribution with zero mean and standard deviation√
e>Ωe/K = σ(1 + ρ(K − 1))/K. The result follows using arguments identical to those

in the proof of Part 1.

Part 3. Because ρ = 0, we have that tradeewi is distributed as a Normal distribution

with zero mean and standard deviation
√
e>Ωe/K = σ/K. The result follows using

arguments identical to those in the proof of Part 1.

Proof of Proposition A1

Let us consider the following cross-sectional regression model:

rt = Xλt + εt, (C9)

where rt ∈ RN is the vector of stock returns at time t, X ∈ RN×K is the matrix of

standardized firm characteristics, λt ∈ RK is the vector of slopes at time t, and εt ∈ RN

is the vector of pricing errors at time t.47 The OLS and GLS Fama-MacBeth slopes of

model (C9) are

λOLS = (X>X)−1X>µ̂r (C10)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (C11)

where µ̂r is the vector of sample mean returns. It is straightforward to see that λOLS and

λGLS are identical when Σ̂r is the identity matrix. On the other hand, we know that the

solution of a mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c µ̂c − Σ̂−1

c σ̂bc. (C12)

Now, given the assumption that firm characteristics are constant, we can define the

vector of mean characteristic-portfolio returns and the covariance matrix of characteristic-

portfolio returns as µ̂c = X>µ̂r and Σ̂c = X>Σ̂rX, respectively. Assuming that the

47Note that we now assume that characteristics Xt and the number of firms Nt are constant through
time and therefore we drop the subscript t.
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covariance between characteristic portfolio returns and the benchmark portfolio is zero,

expression (C12) can be then expressed as

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (C13)

Therefore, one can see that λOLS, λGLS, and θ∗ will be equivalent when Σ̂r is the identity

matrix of dimension N and the covariance between characteristic portfolio returns and

the benchmark portfolio is zero.

Proof of Corollary A1

The result in Corollary A1 follows from the assumption that X>X = I, which implies

that λOLS = X>µ̂r = µ̂c. Then, if the covariance between characteristic-portfolio returns

and the benchmark portfolio is zero, we can define the solution to the mean-variance

parametric portfolio as

θ∗ =
1

γ
Σ̂−1
c λOLS. (C14)

Proof of Proposition A2

We can estimate model (A7) with OLS. The corresponding optimization problem, in

matrix form, is

min
α,β

r>b rb + α2T + β>r>c rcβ − 2αr>b eT + 2r>b rcβ − 2αe>T rcβ

s.t. µ̂>c β = µ0,

where eT is a T -dimensional vector of ones. Now, given that Σ̂c = r>c rc − µ̂cµ̂>c , σ̂bc =

r>b rc − µ̂bµ̂>c and e>T rc = T µ̂c, we can write the above problem as

min
α,β

r>b rb + α2T + β>Σ̂cβ + β>µ̂cµ̂
>
c β − 2αr>b eT + 2(σ̂bc + µ̂bµ̂c)

>β − 2αT µ̂>c β

s.t. µ̂>c β = µ0.

Because µ̂>c β is constant in the feasible region, we can obtain the OLS slopes of (A7) as

the solution to the following problem:

min
β

β>Σ̂cβ + 2σ̂bcβ

s.t. µ̂>c β = µ0,
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which is a quadratic mean-variance optimization problem. If we set µ0 equal to the

solution of the mean-variance parametric-portfolio problem times the vector of mean

characteristic portfolio returns (that is, µ0 = θ∗>µ̂c), the OLS slopes of the time-series

model in (A7) coincide with the solution of the mean-variance parametric-portfolio prob-

lem in (5).
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Table 1: List of characteristics considered

This table lists the characteristics we consider, ordered alphabetically by acronym. The first column gives the number of the characteristic, the second
column gives the characteristic’s definition, the third column gives the acronym, and the fourth and fifth columns give the authors who analyzed
them, and the date and journal of publication. Our definitions and acronyms match those in Green et al. (2017).

# Characteristic and definition Acronym Author(s) Date and Journal

1 Abnormal volume in earnings announcement: Average daily trading volume for 3 days
around earnings announcement minus average daily volume for 1-month ending 2 weeks
before earnings announcement divided by 1-month average daily volume. Earnings an-
nouncement day from Compustat quarterly

aeavol Lerman, Livnat & Mendenhall 2007, WP

2 Asset growth: Annual percent change in total assets agr Cooper, Gulen & Schill 2008, JF
3 Bid-ask spread: Monthly average of daily bid-ask spread divided by average of daily

spread
baspread Amihud & Mendelson 1989, JF

4 Beta: Estimated market beta from weekly returns and equal weighted market returns for
3 years ending month t− 1 with at least 52 weeks of returns

beta Fama & MacBeth 1973, JPE

5 Book to market: Book value of equity divided by end of fiscal-year market capitalization bm Rosenberg, Reid & Lanstein 1985, JPM
6 Industry adjusted book to market: Industry adjusted book-to-market ratio bm ia Asness, Porter & Stevens 2000, WP
7 Cash productivity: Fiscal year-end market capitalization plus long term debt minus total

assets divided by cash and equivalents
cashpr Chandrashekar & Rao 2009 WP

8 Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted change
in sales divided by average total assets

chatoia Soliman 2008, TAR

9 Change in shares outstanding: Annual percent change in shares outstanding chcsho Pontiff & Woodgate 2008, JF
10 Industry adjusted change in employees: Industry-adjusted change in number of employees chempia Asness, Porter & Stevens 1994, WP
11 Change in 6-month momentum: Cumulative returns from months t − 6 to t − 1 minus

months t− 12 to t− 7
chmom Gettleman & Marks 2006 WP

12 Industry adjusted change in profit margin: 2-digit SIC fiscal-year mean adjusted change
in income before extraordinary items divided by sales

chpmia Soliman 2008, TAR

13 Change in tax expense: Percent change in total taxes from quarter t− 4 to t chtx Thomas & Zhang 2011 JAR
14 Convertible debt indicator: An indicator equal to 1 if company has convertible debt

obligations
convind Valta 2016 JFQA

15 Dollar trading volume in month t−2: Natural log of trading volume times price per share
from month t− 2

dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

16 Dividends-to-price: Total dividends divided by market capitalization at fiscal year-end dy Litzenberger & Ramaswamy 1982, JF
17 3-day return around earnings announcement: Sum of daily returns in three days around

earnings announcement. Earnings announcement from Compustat quarterly file
ear Kishore, Brandt, Santa-Clara & Venkatachalam 2008, WP

18 Change in common shareholder equity: Annual percent change in book value of equity egr Richardson, Sloan, Soliman & Tuna 2005, JAE
19 Earnings to price: Annual income before extraordinary items divided by end of fiscal year

market cap
ep Basu 1977, JF

20 Gross profitability: Revenues minus cost of goods sold divided by lagged total assets gma Novy-Marx 2013 JFE
21 Industry sales concentration: Sum of squared percent of sales in industry for each company herf Hou & Robinson 2006, JF
22 Employee growth rate: Percent change in number of employees hire Bazdresch, Belo & Lin 2014 JPE
23 Idiosyncratic return volatility: Standard deviation of residuals of weekly returns on weekly

equal weighted market returns for 3 years prior to month-end
idiovol Ali, Hwang & Trombley 2003, JFE

24 Industry momentum: Equal weighted average industry 12-month returns indmom Moskowitz & Grinblatt 1999, JF
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Table 1 continued: List of characteristics considered

# Characteristic and definition Acronym Author(s) Date and Journal

25 Leverage: Total liabilities divided by fiscal year-end market capitalization lev Bhandari 1988, JF
26 Change in long-term debt: Annual percent change in total liabilities lgr Richardson, Sloan, Soliman & Tuna 2005, JAE
27 12-month momentum: 11-month cumulative returns ending one month before month-end mom12m Jegadeesh 1990, JF
28 1-month momentum: 1-month cumulative return mom1m Jegadeesh 1990, JF
29 36-month momentum: Cumulative returns from months t− 36 to t− 13 mom36m De Bondt & Thaler 1985, JF
30 6-month momentum: 5-month cumulative returns ending one month before month-end mom6m Jegadeesh & Titman 1990, JF
31 Market capitalization: Natural log of market capitalization at end of month t− 1 mve Banz 1981, JFE
32 Industry-adjusted firm size: 2-digit SIC industry-adjusted fiscal year-end market capital-

ization
mve ia Asness, Porter & Stevens 2000, WP

33 ∆% CAPEX - industry ∆% AR: 2-digit SIC fiscal-year mean adjusted percent change in
capital expenditures

pchcapx ia Abarbanell & Bushee 1998, TAR

34 ∆% gross margin - ∆% sales: Percent change in gross margin minus percent change in
sales

pchgm pchsale Abarbanell & Bushee 1998, TAR

35 ∆% sales - ∆% AR: Annual percent change in sales minus annual percent change in
receivables

pchsale pchrect Abarbanell & Bushee 1998, TAR

36 Price delay: The proportion of variation in weekly returns for 36 months ending in month
t explained by 4 lags of weekly market returns incremental to contemporaneous market
return

pricedelay How & Moskowitz 2005, RFS

37 Financial-statements score: Sum of 9 indicator variables to form fundamental health score ps Piotroski 2000, JAR
38 R&D to market cap: R&D expense divided by end-of-fiscal-year market capitalization rd mve Guo, Lev & Shi 2006, JBFA
39 Return volatility: Standard deviation of daily returns from month t− 1 retvol Ang, Hodrick, Xing & Zhanf 2006, JF
40 Return on assets: Income before extraordinary items divided by one quarter lagged total

assets
roaq Balakrishnan, Bartov & Faurel 2010, JAE

41 Revenue surprise: Sales from quarter t minus sales from quarter t − 4 divided by fiscal-
quarter-end market capitalization

rsup Kama 2009, JBFA

42 Sales to cash: Annual sales divided by cash and cash equivalents salecash Ou & Penman 1989, JAE
43 Sales to inventory: Annual sales divided by total inventory saleinv Ou & Penman 1989, JAE
44 Sales to receivables: Annual sales divided by accounts receivable salerec Ou & Penman 1989, JAE
45 Annual sales growth: Annual percent change in sales sgr Lakonishok, Shleifer & Vishny 1994, JF
46 Volatility of dollar trading volume: Monthly standard deviation of daily dollar trading

volume
std dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

47 Volatility of share turnover: Monthly standard deviation of daily share turnover std turn Chordia, Subrahmanyan & Anshuman 2001, JFE
48 Cashflow volatility: Standard deviation for 16 quarters of cash flows divided by sales stdcf Huang 2009, JEF
49 Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-quarter-

end market cap. Unexpected earnings is I/B/E/S actual earnings minus median fore-
casted earnings if available, else it is the seasonally differenced quarterly earnings before
extraordinary items from Compustat quarterly file

sue Rendelman, Jones & Latane 1982, JFE

50 Share turnover: Average monthly trading volume for most recent 3 months scaled by
number of shares outstanding in current month

turn Datar, Naik & Radcliffe 1998, JFM

51 Zero trading days: Turnover weighted number of zero trading days for most recent month zerotrade Liu 2006, JFE
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Table 2: Significance and marginal contributions without transaction costs

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For the first
(screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that
the lasso threshold that maximizes investor’s utility is δ = 25. For the second (clean) stage, we run the
bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the first
stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next four columns give the marginal contri-
bution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic
with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark
portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are
in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font (cf.
Footnote 28).

Marginal contributions to
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 20.12∗∗∗ 0 .00341 −0.00068 −0.00019 −0.00254
retvol −10.85∗∗∗ −0 .03529 0.02914 0.00292 0.00323
agr −10.37∗∗ −0 .00397 0.00050 0.00057 0.00290
mom1m −3.10∗∗ −0 .00509 0.00454 −0 .00109 0.00164
gma 5.97∗∗ 0 .00252 −0.00255 0 .00069 −0.00066
beta 2.36∗ 0 .00971 −0.01381 0 .00419 −0.00008
bm ia 6.49 0 .00337 −0.00328 0 .00072 −0.00081
chcsho −5.89 −0 .00210 −0 .00111 0.00092 0.00228
rd mve 6.01 0 .00215 −0.00096 0 .00045 −0.00164
std turn 8.53 0 .01442 −0.01576 0 .00214 −0.00080
bm 3.10 0 .00264 0 .00023 −0.00082 −0.00205
mve −4.02 −0 .00136 0.00148 −0 .00034 0.00022
mom12m −4.42 −0 .00784 0.01125 −0 .00066 −0 .00275
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Table 3: Correlations of significant characteristics

This table reports the correlation matrix for the returns of the six characteristics that are most significant in the absence of transaction costs and the
returns of the three characteristics considered in Brandt et al. (2009): book to market (bm), size (mve), and momentum (mom12m).

Characteristics sue retvol agr mom1m gma beta bm mve mom12m

Unexpected quarterly earnings (sue) 1.00 −0.43 −0.08 0.18 −0.18 −0.36 −0.05 0.41 0.45
Return volatility (retvol) −0.43 1.00 0.22 −0.18 0.45 0.93 −0.46 −0.63 −0.17
Asset growth (agr) −0.08 0.22 1.00 −0.33 0.56 0.33 −0.64 0.03 −0.17
1-month momentum (mom1m) 0.18 −0.18 −0.33 1.00 −0.23 −0.26 0.14 0.19 0.28
Gross profitability (gma) −0.18 0.45 0.56 −0.23 1.00 0.54 −0.62 −0.24 −0.06
Beta (beta) −0.36 0.93 0.33 −0.26 0.54 1.00 −0.54 −0.52 −0.21
Book to market (bm) −0.05 −0.46 −0.64 0.14 −0.62 −0.54 1.00 −0.05 −0.08
Size (mve) 0.41 −0.63 0.03 0.19 −0.24 −0.52 −0.05 1.00 0.20
12-month momentum (mom12m) 0.45 −0.17 −0.17 0.28 −0.06 −0.21 −0.08 0.20 1.00
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Table 4: Significance and marginal contributions with transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For
the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and
find that the lasso threshold that maximizes investor’s utility is δ = 25. For the second (clean) stage,
we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero
θ’s from the first stage. Characteristic p-values are computed using the percentile method discussed in
Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen stage plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next
five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance,
(ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance
of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction
cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is
traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and
contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions to Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.85∗∗∗ 0 .00425 −0.00333 0 .00045 −0.00164 0 .00027 0 .00055
agr −7.27∗∗∗ −0 .00278 −0 .00012 0.00057 0.00290 −0 .00057 0 .00125
sue 3.00∗∗∗ 0 .00051 0 .00077 −0.00019 −0.00254 0 .00146 0 .00240
turn −3.41∗∗∗ −0 .00806 0.00502 0.00279 0.00068 −0 .00043 0 .00177
retvol −1.92∗∗∗ −0 .00623 0.00148 0.00292 0.00323 −0 .00139 0 .00468
std turn 1.28∗∗∗ 0 .00217 −0.00433 0 .00214 −0.00080 0 .00082 0 .00493
zerotrade −1.53∗∗∗ −0 .00129 0.00284 −0 .00205 0.00124 −0 .00075 0 .00235
chatoia 4.51∗∗ 0 .00029 0 .00008 −0.00005 −0.00077 0 .00046 0 .00116
chtx 1.36∗∗ 0 .00026 −0.00022 0 .00015 −0.00123 0 .00104 0 .00232
beta 3.39∗∗ 0 .01398 −0.01829 0 .00419 −0.00008 0 .00021 0 .00126
ps 4.94∗∗ 0 .00156 −0.00027 −0.00068 −0.00127 0 .00066 0 .00140
gma 6.60∗∗ 0 .00278 −0.00298 0 .00069 −0.00066 0 .00016 0 .00090
herf −5.78∗∗ −0 .00144 0.00061 0.00041 0.00061 −0 .00019 0 .00077
mom1m −0.62∗∗ −0 .00102 0.00258 −0 .00109 0.00164 −0 .00211 0 .00857
bm ia 2.85∗∗ 0 .00148 −0.00168 0 .00072 −0.00081 0 .00029 0 .00128
stdcf −5.05∗ −0 .00259 0.00101 0.00068 0.00114 −0 .00024 0 .00067
pchgm pchsale 3.46∗ 0 .00034 0 .00006 −0.00003 −0.00079 0 .00042 0 .00122
chcsho −3.11∗ −0 .00111 −0 .00166 0.00092 0.00228 −0 .00044 0 .00123
bm 1.74∗ 0 .00148 0 .00122 −0.00082 −0.00205 0 .00017 0 .00121
chmom −0.67 −0 .00065 0.00166 −0 .00073 0.00044 −0 .00072 0 .00404
baspread 0.55 0 .00240 −0.00795 0 .00329 0 .00279 −0.00053 0 .00322
ep 1.27 0 .00206 0 .00045 −0.00166 −0.00104 0 .00018 0 .00125
idiovol −1.80 −0 .00680 0.00194 0.00308 0.00187 −0 .00008 0 .00109
roaq −0.12 −0 .00014 0.00292 −0 .00114 −0 .00215 0.00051 0 .00186
mve −2.28 −0 .00077 0.00092 −0 .00034 0.00022 −0 .00003 0 .00045
mom12m −0.61 −0 .00109 0.00418 −0 .00066 −0 .00275 0.00031 0 .00265
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Table 5: Out-of-sample performance

This table reports the out-of-sample performance of the different portfolios in the presence of transaction
costs, for risk-aversion parameter γ = 5. Panel A reports the performance for the portfolios that do not
use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted
portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number
of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The
first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.).
The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability char-
acteristics (Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all
51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation
window. For each portfolio, the first column reports the monthly turnover, and the next three columns
report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transac-
tion costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the
regularized parametric portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at
the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 0.754 0.145 0.215 0.675∗∗∗

Size/val./inv./prof. 0.963 0.236 0.220 1.072∗∗

Regularized 0.979 0.241 0.178 1.356
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Table 6: Factor loadings of regularized parametric portfolios

This table reports the intercept, slopes, and t-statistics (in brackets) from regressing the out-of-sample
regularized portfolio returns onto three sparse factor models: (1) the Fama and French (1993) and Carhart
(1997) four-factor model (FFC) that includes the market, size (SMB), value (HML), and momentum (UMD)
factors; (2) the Fama and French (2016) five-factor model (FF5) that includes the market, size, value,
profitability (RMW), and investment (CMA) factors; and, (3) the Hou et al. (2014) four-factor model (HXZ)
that includes the market, size, investment (I/A), and profitability (ROE) factors. We report t-statistics with
Newey-West adjustments of 12 lags. Factors are obtained from Kenneth French’s and Lu Zhang’s websites.

FFC Coefficient FF5 Coefficient HXZ Coefficient

α 0.0115 α 0.0102 α 0.0095
[4.12] [3.59] [2.89]

Market 0.8898 Market 0.9747 Market 0.9147
[15.29] [15.35] [11.90]

SMB 0.0745 SMB 0.1212 SMB 0.2547
[0.49] [0.84] [1.37]

HML 0.3697 HML −0.2640 I/A 0.7491
[1.84] [−1.71] [2.65]

UMD 0.3249 RMW 0.2554 ROE 0.3316
[2.46] [1.31] [1.69]

CMA 1.0852
[3.64]

Table 7: Generalized alpha of regularized parametric portfolios

This table reports the intercept, slope, and t-statistic (in brackets) from regressing the out-of-sample regular-
ized portfolio returns onto the out-of-sample returns net of transaction costs of the parametric portfolio that
exploits: (1) the size, book-to-market, and momentum characteristics (Size/val./mom.); and (2) the size,
book-to-market, investment, and profitability characteristics (Size/val./inv./prof.). We report t-statistics
with Newey-West adjustments of 12 lags.

Size/val./mom. Size/val./inv./prof.

Generalized α 0.0132 0.0090
[5.56] [4.21]

Slope 0.5719 0.5647
[13.54] [11.83]
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Table A1: Fama-MacBeth regressions for significant characteristics

This table reports the slope coefficients from Fama-MacBeth regressions and the corresponding t-statistics
(in brackets) with Newey-West adjustments of 12 lags. We report the results for multiple and individual
regressions for the six most significant characteristics in the absence of transaction costs, and the three char-
acteristics considered in Brandt et al. (2009): book to market (bm), size (mve), and momentum (mom12m).

Characteristic Multiple Individual

Unexpected quarterly earnings (sue) 0.0019 0.0027
[7.38] [7.10]

Return volatility (retvol) −0.0037 −0.0032
[−4.42] [−2.22]

Asset growth (agr) −0.0026 −0.0031
[−5.39] [−5.09]

1-month momentum (mom1m) −0.0033 −0.0017
[−4.67] [−2.13]

Gross profitability (gma) 0.0020 0.0007
[3.80] [1.34]

Beta (beta) 0.0013 0.0001
[0.99] [0.04]

Book to market (bm) 0.0016 0.0021
[2.11] [2.17]

Size (mve) −0.0007 −0.0002
[−1.76] [−0.40]

12-month momentum (mom12m) 0.0026 0.0030
[2.43] [2.45]
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Figure 1: Marginal contribution to turnover of characteristics traded in isolation and in equally weighted portfolio

This figure compares the average trading volume (turnover) required to exploit the 51 characteristics in isolation with that required to exploit them
in an equally weighted portfolio. The horizontal axis gives the turnover in percentage and the vertical axis gives the acronyms of the characteristics
and the equally weighted portfolio (EW). The blue bars give the turnover required to exploit each of the characteristics in isolation (Isolation), the
yellow bars give the marginal contribution to turnover of each characteristic in an equally weighted portfolio (Combined), and the red bar gives the
turnover of the equally weighted portfolio of the 51 characteristics (EW portfolio).
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Figure 2: Correlations between rebalancing trades of different characteristics

This figure depicts a heatmap of the correlations between the rebalancing trades for the 51 characteristics for a particular stock.
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Figure 3: Marginal contributions of significant characteristics without transaction costs

This figure shows the marginal contributions to the investor’s utility of the six significant characteristics in the absence of transaction costs. The
vertical axis gives the labels of the significant characteristics: unexpected quarterly earnings (unexp. earn.), return volatility (ret. vol.), asset growth,
1-month momentum (reversals), gross profitability (profit.), and beta. The horizontal axis gives the marginal contributions of each characteristic
to (i) the characteristic own-variance (yellow bars, variance), (ii) the covariance of the characteristic with the other characteristics in the portfolio
(blue bars, cov(char.)), (iii) the covariance of the characteristic with the benchmark portfolio (red bars, cov(bench.)), and (iv) the characteristic mean
(light-purple bars, mean). Contributions that drive the characteristic to be nonzero are depicted with positive bars, and contributions that drive the
characteristic toward zero are depicted with negative bars; cf. Footnote 28.
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Figure 4: Cumulative returns for beta and return-volatility blended strategy

This figure shows the cumulative returns of a blended strategy that goes long beta and short return volatility.
Panel (a) depicts the cumulative returns of going long beta (Long beta), of going short return volatility (Short
retvol), and of a blended strategy formed by assigning 50% weight to beta and −50% to return volatility.
Panel (b) compares the cumulative returns of the blended strategy that is long beta and short return volatility
with those of a blended strategy that assigns 50% to book to market (bm) and 50% to 12-month momentum
(mom12m). For comparison purposes, in Panel (b) we normalize both strategies so that they have the same
volatility.
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Figure 5: Marginal contribution to transaction costs of characteristics in isolation and in optimal parametric portfolio

This figure shows the marginal contribution to transaction costs when characteristics are traded in isolation and in an optimal parametric portfolio.
We plot the marginal contribution to transaction costs of the 15 most significant characteristics in Table 4. The horizontal axis gives the marginal
contribution to transaction costs and the vertical axis gives the acronyms of the characteristics. The blue bars give the marginal contribution of each
characteristic to transaction costs when traded in isolation (Isolation) and the yellow bars give the marginal contribution of each characteristic to
transaction costs when combined in the optimal parametric portfolio (Combined).
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Figure 6: Out-of-sample cumulative returns

This figure shows the out-of-sample cumulative returns of the value-weighted portfolio (VW) and
three different parametric portfolios in the presence of transaction costs, for risk-aversion parameter
γ = 5. Two of the parametric portfolios exploit a small number of characteristics. The first paramet-
ric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The
second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability
characteristics (Size/val./inv./prof.). The third parametric portfolio is the regularized parametric
portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using
cross-validation over only the estimation window. For comparison purposes we normalize all portfolio
returns so that they have the same volatility.
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IA Robustness checks

In this appendix, we investigate the robustness of our main finding that transaction costs

increase the number of significant characteristics to: estimating proportional transaction

costs from daily price data, considering quadratic instead of proportional transaction

costs, using alternative significance tests, excluding microcaps, applying the reality check

to our significance test, expanding our dataset to consider also characteristics with a

large number of missing observations, considering different subsamples, using different

methods to winsorize firm characteristics, considering different levels of risk-aversion,

and using different methods to standardize firm characteristics. In addition, we check

the robustness of our out-of-sample results to: firm size, shortsale constraints, and the

constraint on maximum turnover. We also apply a reality check to our out-of-sample

analysis. Finally, we also report which characteristics are significant when considered

individually instead of jointly, as done in the manuscript.

IA.1 Proportional transaction costs from daily price data

In the main body of the manuscript, we consider an investor who faces proportional

transaction costs parameterized as in Brandt, Santa-Clara, and Valkanov (2009) and

Hand and Green (2011). We now check the robustness of our results to estimating the

proportional transaction costs from daily price data. In particular, we use the two-day

corrected method proposed in Abdi and Ranaldo (2017) to estimate monthly bid-ask

spread of the ith stock as:1

ŝi,t =
1

D

D∑

d=1

ŝi,d, ŝi,d =
√

max{4(ci,d − ηi,d)(ci,d − ηi,d+1), 0}, (1)

where D is the number of days in month t, ŝi,d is the two-day bid-ask spread estimate,

ci,d is the closing log-price on day d, and ηi,d is the mid-range log-price on day d; that

is, the mean of daily high and low log-prices. Finally, because the effective trading cost

is half of the bid-ask spread, we set the transaction-cost parameter for the i th stock as

κi,t = ŝi,t/2.

1Lesmond, Ogden, and Trzcinka (1999) proposes another approach to estimate bid-ask spreads from
daily returns based on zero returns.
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Table IA.1 shows that the number of characteristics that are significant under

this specification of transaction costs is 14, while it was 15 for the transaction costs

parameterized as in Brandt et al. (2009) and Hand and Green (2011). Therefore, our

main insight that transaction costs increase the dimension of the cross section is robust

to estimating separately the transaction cost parameters for each stock from daily price

data.

Moreover, we can also observe from the last two columns of Table IA.1 that, similar

to the case reported in the manuscript, there is also substantial trading diversification

when estimating proportional transaction costs from daily price data. In particular, we

find that the marginal transaction cost associated with trading the 14 characteristics

that are significant in the presence of transaction costs estimated using daily price data

is reduced by around 66.71% on average when they are combined, compared to 64%

for transaction costs parameterized as in Brandt et al. (2009) and Hand and Green

(2011). This confirms that trading diversification benefits exist even when proportional

transaction costs are estimated separately for each stock using daily price data, which

allows one to account for business-cycle variation along with the effects of decimalization

and the financial crisis on transaction costs.

IA.2 Quadratic transaction costs

In the main body of the manuscript, we consider an investor who faces proportional trans-

action costs. Proportional transaction costs are a reasonable assumption for the average

investor; see Novy-Marx and Velikov (2016) and Chen and Velikov (2017). However, for

large investors, a common assumption is that the price impact of their trades is linear

in the amount traded, and thus, they face quadratic transaction costs; see, for instance,

Korajczyk and Sadka (2004). In this section, we show that our main finding is robust

to considering quadratic transaction costs; in particular, the number of characteristics

that are jointly significant at the 5% level increases from five to 19 in the presence of

quadratic transaction costs.
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IA.2.1 Modeling quadratic transaction costs

To model market-impact costs, we need to track dollar portfolio positions instead of

portfolio weights. To do this, we consider an investor with a wealth of $B billion, who

holds the following parametric portfolio:

wt(θ) = Bwb,t +Xtθ/Nt, (2)

where the notation is as in Section 3 of the manuscript. We assume the investor maximizes

her mean-variance utility of wealth growth, net of quadratic transaction costs:

min
θ

γa
2
θ>Σ̂cθ + γaBθ

>σ̂bc − θ>µ̂c + TC(θ), (3)

where γa = γ/B is the investor’s absolute risk-aversion parameter, defined as the ratio of

relative risk-aversion parameter to wealth,2 and TC(θ) is the quadratic transaction cost

TC(θ) =
1

T − 1

T−1∑

t=1

(wt+1(θ)− w+
t (θ))>Λt+1(wt+1(θ)− w+

t (θ)), (4)

where Λt = diag(λ1,t, . . . , λNt,t) is the diagonal matrix whose ith element is the Kyle

lambda of the ith stock at time t and w+
t (θ) is the parametric portfolio before rebalancing

at time t+ 1.

To calibrate our quadratic transaction cost function we rely on the empirical

results in Novy-Marx and Velikov (2016), which uses Trade and Quote (TAQ) data to

estimate the Kyle lambdas of individual stocks. The paper shows that the R-squared

of a cross-sectional regression of log Kyle lambda on log market capitalization is 70%

and the slope is not statistically distinguishable from minus one. This suggests that a

reasonable approximation to the cross-sectional variation of Kyle lambdas is to assume

they are inversely proportional to the market capitalization of each firm. Moreover,

Novy-Marx and Velikov (2016) shows that the average price elasticity of supply, defined

as the product of Kyle lambda and market capitalization, λi,t×mei,t, is about 6.5. Based

on this evidence, we assume the Kyle lambda of the ith stock at time t is λi,t = 6.5/mei,t,

where mei,t is the market capitalization of the ith stock at time t.

2Because the mean-variance optimization problem is defined in terms of dollar portfolio positions, we
formulate the problem in terms of absolute risk-aversion instead of relative risk-aversion, as in Gârleanu
and Pedersen (2013).
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IA.2.2 How many characteristics matter jointly with quadratic costs?

Table IA.2 reports the significance and marginal contributions of each characteristic in

the parametric portfolios in the presence of quadratic transaction costs. We consider an

investor who allocates B = $1 billion to the benchmark portfolio3 and has an absolute

risk-aversion parameter γa = 5/109, which corresponds to a relative risk-aversion param-

eter of γ = 5 for an investor with wealth of B = $1 billion. Similar to the analysis in

Section 6 of the manuscript, we run a screen-and-clean significance test.

Table IA.2 reports the significance and marginal contributions of each character-

istic in the parametric portfolios. Our main finding is that, similar to the case with

proportional transaction costs, the number of significant characteristics with quadratic

transaction costs is substantially larger than for the case without transaction costs. In

particular, the number of characteristics that are significant at the 5% level increases

from five in the absence of transaction costs to 19 in the presence of quadratic trans-

action costs. The explanation for this result can be found by comparing the last two

columns of Table IA.2, which report the marginal contribution of the characteristic to

the transaction cost when traded in the optimal parametric portfolio and in isolation, re-

spectively.4 We observe that combining characteristics reduces the marginal contribution

to quadratic transaction costs by an average of 93%; that is, the benefits from trading

diversification are very large also in the presence of quadratic transaction costs.

IA.3 Alternative significance test based on elastic net

The first stage of the screen-and-clean significance test uses a lasso approach to reduce

problem dimensionality by screening characteristics that are not relevant. We now repeat

the screen-and-clean significance test, but employing elastic net for the first (screen) stage

instead of lasso. As explained in Kozak, Nagel, and Santosh (2018), the elastic net does

not impose sparsity because it calibrates two parameters: one controlling the degree of

sparsity induced by a lasso constraint and the other controlling the degree of shrinkage

3We have also considered the cases with B = $10 and $100 billion and the results are similar.
4To compute the marginal contribution to transaction costs of a characteristic traded in isolation,

we assign to the single characteristic a weight equal to the sum of the absolute values of the optimal
parametric-portfolio weights for the case when characteristics are traded in combination. This allows
for a meaningful comparison for the case with quadratic transaction costs.
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induced by a ridge penalty.5 Tables IA.3 and IA.4 report the results for the cases without

and with transaction costs, respectively. Consistent with elastic net not imposing sparsity,

we find that the number of characteristics that survive the first (screen) stage based on

the elastic net is larger than that for the screen stage based on just the lasso. However,

the second (clean) stage, which tests the significance of the characteristics that survive

the first (screen) stage, finds that while 9 characteristics are significant in the absence

of transaction costs, 14 are significant in the presence of transaction costs. Thus, our

main finding that transaction costs increase the dimension of the cross section is robust

to using the elastic net for the screen stage.

We now discuss the relation between our results and those in Giannone, Lenza,

and Primiceri (2017) and Kozak, Nagel, and Santosh (2018). While these papers focus on

out-of-sample fit, our work focuses on inference because we wish to study how transaction

costs impact the number of characteristics that are jointly significant. To establish signif-

icance, we rely on a two-stage screen-and-clean method similar to the methods proposed

in Wasserman and Roeder (2009), Meinshausen and Yu (2009), and Meinshausen, Meier,

and Buhlmann (2009). The first (screen) stage is similar to the approaches considered

in Giannone et al. (2017) and Kozak et al. (2018) because it employs cross validation

to calibrate the regularized parametric portfolios and, just like these papers, finds that

when using an elastic net for the screen stage, it is optimal to assign a positive weight to

a large number of characteristics in order to improve out-of-sample fit.6

However, because of our focus on significance, unlike Giannone et al. (2017) and

Kozak et al. (2018), our analysis includes also a second (clean) stage that performs

a bootstrap significance test on the parametric portfolios of those characteristics that

survived the first (screen) stage. This second stage finds that not all characteristics

that are useful to improving out-of-sample fit are statistically significant. Our result is

5Indeed, we find that the the lasso threshold selected by the cross-validation procedure in our test
is smaller than the maximum lasso threshold contained in the grid for the cases with and without
transaction costs. This demonstrates that the elastic net approach does not force sparsity, but rather
that the cross-validation procedure finds it optimal to induce a certain degree of sparsity even when
taking into account the trade-off between the lasso threshold and the ridge penalty.

6In particular, we find that 15 and 24 characteristics survive the screen stage with elastic net for
the cases without and with transaction costs, respectively. This finding is in line with the results in
Giannone et al. (2017), which finds that the posterior probability of inclusion of a characteristic in the
model to predict the cross section of stock returns is around 60%. For our case with 51 characteristics,
this would imply that approximately 30 characteristics are relevant for prediction.
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consistent with the findings in Kelly, Pruitt, and Su (2018) that “among a large collection

of characteristics explored in the literature, only eight are statistically significant . . . The

fact that only a small subset of characteristics is necessary to explain variation in realized

and expected stock returns shows that most characteristics are statistically irrelevant for

understanding the cross section of returns, once they are evaluated in an appropriate

multivariate context.”

Finally, we illustrate the distinction between out-of-sample fit and significance in

the context of the example given in Kozak et al. (2018):

. . . models based on present-value identities . . . do not really support the idea

that only a few stock characteristics should matter. For example, a present-

value identity can motivate why the book-to-market ratio and expected prof-

itability could jointly explain expected returns. Expected profitability is not

directly observable, though. A large number of observable stock character-

istics could potentially be useful for predicting cross-sectional variation in

future profitability—and, therefore, also for predicting returns.

Therefore many characteristics can help to predict expected profitability and thus a

parametric portfolio that assigns a positive weight to all characteristics is likely to perform

well out of sample. However, our main goal is to identify the dimension of the cross section

of stock returns. For this purpose, one needs to establish statistical significance. For

instance, consider the above example in which value and expected profitability jointly

explain the cross section, but expected profitability is not observable and instead K

observable characteristics are useful for predicting expected profitability. Then, although

the true dimension of the cross-section is two, the K observable characteristics are likely

to survive a first (screen) stage with an elastic-net penalty. However, the second (clean)

stage is unlikely to find all of them to be significant.

IA.4 Alternative significance test based on shrinkage estimator

We now study the robustness of our results to using shrinkage estimators of the covari-

ance matrix for the second (clean) stage. To do this, we perform the screen-and-clean

significance test (with elastic net for the first (screen) stage, as described in the previ-

ous section), but estimating the covariance matrix for the second (clean) stage with the
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shrinkage estimator of Ledoit and Wolf (2004). Tables IA.5 and IA.6 give the significance

results for the cases without and with transaction costs, respectively. We find that our

main finding that transaction costs increase the dimension of the cross section is robust:

while 13 characteristics are significant at the 5% level in the absence of transaction costs,

18 are significant in the presence of transaction costs.7

The advantage of using the sample covariance matrix for the second (clean) stage

as we do in the main body of the manuscript is that using a shrinkage estimator of

the covariance matrix (based either on lasso or ridge terms) would introduce a bias on

the estimates of the parametric-portfolio weights, distorting the inference results from

the bootstrap test. Indeed, the screen-and-clean method proposed in Wasserman and

Roeder (2009) relies on unregularized estimators for the second (clean) stage precisely to

avoid the challenges associated with inference in the presence of regularization terms as

explained in Bühlmann et al. (2013), Chatterjee and Lahiri (2010), and Deng (2012).

IA.5 Excluding microcaps

In the main body of the manuscript, we exclude stocks that are below the 20th per-

centile of market capitalization across the NYSE, AMEX and NASDAQ exchanges. We

now check the robustness of our significance results to excluding microcap stocks, which

are the stocks below the NYSE 20th percentile. Tables IA.7 and IA.8 report the sig-

nificance results for the cases where we compute the parametric portfolios without and

with transaction costs, respectively. The number of characteristics significant at the 5%

level increases from seven in the absence of transaction costs to 12 in the presence of

transaction costs. Thus, our central insight that transaction costs increase the dimension

of the cross section is robust to excluding microcaps.

IA.6 Reality check for significance test

Novy-Marx (2016) shows that when one combines many spurious (or weakly significant)

characteristics into a composite characteristic, the composite characteristic is likely to be

7Note that the number of characteristics that are significant when using the shrinkage estimator of
the covariance matrix in the clean stage is larger than when using the sample covariance matrix as in
Section IA.3. The reason is that using the shrinkage estimator of the covariance matrix is equivalent to
a particular type of ridge regularization, as shown in DeMiguel, Garlappi, Nogales, and Uppal (2009),
and this induces denser solutions.
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highly significant due to overfitting. Likewise, Rytchkov and Zhong (2017) shows that

the information-aggregation technique used in Light, Maslov, and Rytchkov (2017) is

likely to suffer from overfitting and propose an approach to alleviate this problem.

In particular, Novy-Marx (2016, Section 3) shows that, under the assumption that

there are K characteristic long-short portfolios whose returns are normally distributed,

uncorrelated across characteristics, and with the same volatility, the t-statistic of the

average return of the composite long-short portfolio obtained from an equally weighted

combination of the K characteristics is
√
K times the average t-statistic of the returns

of the K individual characteristics. For instance, if one builds an equally weighted

combination of nine characteristics with t-statistic of one, the t-statistic of the composite

portfolio would be
√

9 = 3.

Our significance test is unlikely to suffer from this type of overfitting because we

follow exactly the recommendation in Novy-Marx (2016) that “the marginal contribution

of each individual signal should be evaluated individually.” In particular, our significance

test checks the marginal significance of each characteristic when considered jointly with

the others.

To illustrate this point, consider the aforementioned setting from Section 3 in

Novy-Marx (2016). The mean-variance parametric portfolio, which is the solution to

problem (5) of the revised manuscript, can be expressed as

θ =
1

γ
Σ̂−1c (µ̂c − σ̂bc),

where Σ̂c and µ̂c are the sample covariance matrix and mean of the characteristic-return

vector rc that contains the returns of the K characteristic long-short portfolios, and

σ̂bc is the sample vector of covariances between the benchmark portfolio return rb and

the characteristic-return vector rc. For the setting considered in Novy-Marx (2016),

where the returns of the K characteristic long-short portfolios are uncorrelated and have

identical standard deviation σ, we have that Σ̂−1c is a multiple of the identity matrix,

Σ̂−1c = I/σ2. Therefore, the mean-variance parametric-portfolio weight for each of the K

characteristics coincides with the weight of the single-characteristic parametric portfolio

obtained by considering that characteristic in isolation. Consequently, the t-statistic

of each of the parametric-portfolio weights in the case with K characteristics coincides
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with the t-statistic of the single-characteristic parametric-portfolio weight. Thus, in

this case our significance test, which considers the marginal significance of each of the

characteristics when considered jointly, is unlikely to suffer from overfitting.

Nonetheless, to provide further reassurance that overfitting is unlikely to affect

our significance test, we adapt the reality check in White (2000) to check the robustness

of our significance test.8 First, we set the benchmark portfolio equal to the in-sample

optimal parametric portfolio instead of the value-weighted portfolio. By doing this we

essentially remove the predictability from our dataset while preserving the correlation

structure of the 51 characteristics. Second, we implement a variant of the screen-and-

clean test.9 Specifically, we generate 1,000 bootstrap samples from the original dataset

using sampling with replacement. For each of the 1,000 bootstrap samples we use five-fold

cross-validation to select the lasso threshold that optimizes the mean-variance criterion

and we screen any characteristics with zero weight for the resulting regularized paramet-

ric portfolio. We then compute the optimal parametric portfolio of the characteristics

that have survived the screen stage for each bootstrap sample, but without the lasso con-

straint. Finally, we use the percentile-interval method to establish the significance of the

characteristics across the 1,000 samples. Table IA.9 gives the results for the reality check

for both the cases with and without transaction costs. We observe that after removing

the predictability from our dataset, none of the 51 characteristics are significant either

in the absence or presence of transaction costs.

IA.7 Characteristics with many missing observations

To ensure our results are reliable, we consider in our main analysis only characteristics

with a small proportion of missing observations. Specifically, we drop characteristics with

more than 5% of missing observations for more than 5% of those firms with CRSP returns

available for the entire sample from 1980 to 2014. In addition, we drop characteristics

without any observations for more than 1% of these firms. Consequently, our main

analysis is based on 51 out of the 100 characteristics listed in Green, Hand, and Zhang

8Harvey and Liu (2018) applies the reality check in the context of sequential factor selection.
9We cannot implement the plain screen-and-clean test of Section 3.5 because, given that we are using

the in-sample optimal parametric portfolio as the benchmark portfolio, none of the characteristics would
survive the screen stage.
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(2017). However, to check the robustness of our results, we also run the screen-and-clean

significance test of Section 3.5 using all 100 characteristics.

Tables IA.10 and IA.11 report the results for the cases without and with transac-

tion costs, respectively. We find that our results are robust to the inclusion of characteris-

tics with a large proportion of missing observations. First, in the absence of transaction

costs, out of the 100 characteristics, only seven are significant at the 5% level, com-

pared to five in the case with 51 characteristics. Second, in the presence of transaction

costs, the number of significant characteristics increases to 15, just as in the case with

51 characteristics.

IA.8 Subsample analysis

We now study the robustness of our results to considering different subsample periods.

IA.8.1 Two subsamples from 1988

In the main body of the manuscript, we perform significance tests on the sample from May

1988 to December 2014 in order to match the sample used for the out-of-sample analysis.

We now split this sample into two subsamples with similar number of observations from

May 1988 to December 2002 and from January 2003 to December 2014, respectively.

Tables IA.12-IA.15 report the results. We find that for the period before 2003 the

number of significant characteristics increases from eight in the absence of transaction

costs to 14 in the presence of transaction costs. For the period after 2003, the number

of significant characteristics increases from two in the absence of transaction costs to

four in the presence of transaction costs. Our results confirm that our main finding that

transaction costs increase the dimension of the cross section is robust to considering these

subsamples. Our results also confirm the finding in Chordia, Subrahmanyam, and Tong

(2014) that the magnitude of asset return predictability has decreased in the last decade.

In particular, we find that the number of significant characteristics in the later subsample

is smaller than in the earlier one.10

10There are two reasons why we choose to split the sample around January 2003: first, Green et al.
(2017) shows that the number of priced characteristics in the cross-section of stock returns suffers an
abrupt drop after 2003. This subsample choice allows us to check the robustness of this result. Second,
we need to have a comparable number of observations in the two subperiods we consider, and therefore
January 2003 seems a reasonable cutoff point.
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IA.8.2 Two subsamples from 1980

The previous analysis considers data from May 1988 to December 2014 to match the

sample period of the significance analysis with that of the out-of-sample analysis in

Section 7. We now include also the observations we have in our dataset before May 1988.

In particular, we consider the entire sample from January 1980 to December 2014 and run

the significance analysis on two separate subsamples of equal size. The first subsample is

from January 1980 to June 1997 and the second subsample from July 1997 to December

2014. Tables IA.16–IA.19 report the results. Our main finding that transaction costs

increases the dimension of the cross section is robust to considering these subsamples.

We observe that for the period from January 1980 to June 1997 the number of significant

characteristics increases from five in the absence of transaction costs to 23 in the presence

of transaction costs, whereas for the period from July 1997 to December 2014 the number

of significant characteristics increases from four in the absence of transaction costs to 10

in the presence of transaction costs.

IA.8.3 Full sample from 1980

We now study the robustness of our results to using a longer sample. In particular, we

run the significance analysis on the full sample from January 1980 to December 2014.

Tables IA.20 and IA.21 report the results. The number of significant characteristics

increases from 14 in the absence of transaction costs to 21 in the presence of transaction

costs. Therefore, our main finding is robust to considering a longer sample, although the

magnitude of the effect is reduced.

IA.9 Winsorization

In our main analysis, we cross-sectionally winsorize each characteristic such that obser-

vations that are above (below) the third (first) quartile plus (minus) three times the

interquartile range are set equal to this threshold. We now check the robustness of our

main finding to using a different threshold to winsorize firm characteristics. In particular,

we set firm characteristics that take a value above (below) the 99th (1st) cross-sectional

percentile equal to this threshold. Tables IA.22 and IA.23 report the results. We observe

that our main insight is robust: the number of significant characteristics increases from
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seven in the absence of transaction costs to 15 in the presence of transaction costs, while

in the main body of the manuscript we find that it increases from five to 15.

IA.10 Risk-aversion

We now study how our results depend on the risk-aversion parameter. Tables IA.24 and

IA.25 report the significance of characteristics for the parametric portfolios with risk-

aversion parameter γ = 2 for the cases without and with transaction costs, respectively.

Likewise, Tables IA.26 and IA.27 report the significance of characteristics for γ = 10

for the cases without and with transaction costs, respectively. Our main finding that

transaction costs increase the dimension of the cross section is robust to the investor’s

risk-aversion parameter: For γ = 2, the number of significant characteristics increases

from six in the absence of transaction costs to 14 in the presence of transaction costs, and

for γ = 10, the number of significant characteristics increases from eight in the absence

of transaction costs to 13 in the presence of transaction costs.

IA.11 Quintile-standardized characteristics

We now consider characteristic long-short portfolios defined in terms of the top and

bottom quintiles instead of standardizing the characteristics by subtracting the cross-

sectional mean and dividing by the standard deviation. Specifically, we assign a weight

of 1/Qt to firms in the fifth quintile and−1/Qt to firms in the first quintile, whereQt is the

number of firms per quintile in month t. Tables IA.28 and IA.29 report the significance

of characteristics for the parametric portfolios with quintile-standardized characteristics

in the absence and presence of transaction costs, respectively. The tables show that the

number of significant characteristics increases from six in the absence of transaction costs

to 10 in the presence of transaction costs.

IA.12 Out-of-sample analysis

We now run several checks on the robustness of our out-of-sample analysis.
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IA.12.1 Firm size

To study how the out-of-sample performance of the regularized parametric portfolios

depends on firm size, we classify stocks (including those with market capitalization below

the 20th percentile of our sample, which are excluded in our main analysis) into five size

quintiles. Table IA.30 reports the out-of-sample performance of the parametric portfolios

in the presence of transaction costs applied to each of the five quintiles separately. It is

clear from the table that the performance of the regularized parametric portfolios is better

for the quintiles with small stocks. Indeed, this table demonstrates that the regularized

parametric portfolios outperform the benchmark value-weighted portfolios significantly

for the first four quintiles corresponding to the 80% of smallest stocks. These results are

consistent with the findings in Hand and Green (2011) and Fama and French (2008). Also,

the regularized parametric portfolios significantly outperform the parametric portfolios

based on a small number of characteristics for the first three quintiles corresponding to

the 60% of the smallest stocks.

IA.12.2 Shortsale constraints

Table IA.31 reports the out-of-sample performance of the regularized portfolios subject

to shortsale constraints.11 Panel A reports the performance for the parametric portfolios

with no shortselling and Panel B reports the performance for the parametric portfolios

after scaling the optimal parameter θ so that the short positions in the regularized para-

metric portfolio amount to around 50%. Panel A shows that with shortsale constraints,

although the out-of-sample Sharpe ratio of the regularized parametric portfolios is higher

than that of the value-weighted benchmark portfolio, the difference is not statistically

significant. Panel B, however, shows that the amount of shorting required for the regu-

larized parametric portfolios to significantly outperform the other portfolios is not large.

We observe that for the case with around 50% shortselling, the regularized parametric

portfolios attain an out-of-sample Sharpe ratio around 48% higher than that of the port-

folios that exploit three characteristics and 22% higher than that of the portfolios that

exploit four characteristics, with the differences being statistically significant.

11As in Brandt et al. (2009), we compute shortsale constrained portfolios by first computing the
unconstrained regularized parametric portfolios, then setting all negative firm weights equal to zero,
and finally normalizing the resulting vector so that its weights sum to one.
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IA.12.3 Turnover constraints

In Section 7, we evaluate the out-of-sample performance of the regularized parametric

portfolios after controlling their turnover to be around 100% per month. Table IA.32 re-

ports the performance of the regularized parametric portfolios in the absence of turnover

controls. The regularized parametric portfolios without turnover control have a monthly

turnover of around 386%. Despite their high turnover, the table shows that the reg-

ularized parametric portfolios attain an out-of-sample Sharpe ratio of returns net of

transaction costs around 125% higher than the parametric portfolio that exploits three

characteristics, and around 29% higher than the parametric portfolio that exploits four

characteristics with the difference significant at the 10% level.

IA.12.4 Reality check for out-of-sample analysis

Our out-of-sample analysis shows that the regularized parametric portfolios that exploit

the full set of 51 characteristics outperform the parametric portfolios that exploit only

a small set of characteristics in the presence of transaction costs. These out-of-sample

results provide reassurance that our main finding that transaction costs increase the di-

mension of the cross section is not driven by overfitting. However, to further check the

robustness of our finding, we now run an additional test of our out-of-sample results in

the spirit of the reality check for our in-sample returns discussed in Section IA.6 above.

In particular, we compare the out-of-sample performance of the regularized paramet-

ric portfolio that exploits all 51 characteristics to a parametric portfolio that exploits

the 15 in-sample significant characteristics; we estimate the weights of the parametric

portfolio that exploits only the 15 in-sample significant characteristics using only past

data in order to make a fair comparison. Theoretically, unless our out-of-sample results

are driven by overfitting, the regularized parametric portfolio should not outperform the

parametric portfolio that exploits the 15 in-sample significant characteristics. Table IA.33

shows that, while the regularized parametric portfolio significantly outperforms the two

parametric portfolios that exploit a small set of characteristics, it does not significantly

outperform the parametric portfolio that exploits the 15 in-sample significant character-

istics. Therefore, the out-of-sample performance of the regularized parametric portfolio

is unlikely to be driven by overfitting.

IA-15



IA.13 Significance of individual characteristics

We now evaluate the significance of the 51 characteristics individually. To do this, we

consider the parametric-portfolio problem defined in (9) for the case where only one char-

acteristic is available. Because we are considering a single characteristic at a time, we do

not need to use the first step of the screen-and-clean test, and instead we just run the

bootstrap significance test on each of the 51 single-characteristic parametric portfolios.

Finally, note that here we consider 51 individual significance tests and thus, following

the suggestion in Harvey, Liu, and Zhu (2015), we apply Bonferroni’s adjustment. Ta-

ble IA.34 reports the results.

Intuitively, one may expect that in the presence of transaction costs fewer charac-

teristics would be significant because transaction costs can only erode the benefits from

exploiting characteristics. Indeed, Table IA.34 shows that this is the case when each

characteristic is considered individually. After applying the Bonferroni adjustment (i.e.

significance threshold = 0.05/51), Table IA.34 shows that 21 characteristics are individu-

ally significant in the absence of transaction costs, but only 14 in the presence transaction

costs. This result contrasts with the finding from Tables 2 and 4 in the main body of the

manuscript that, when considered jointly, the number of characteristics that are jointly

significant at the 5% level increases from five in the absence of transaction costs to 15 in

the presence of proportional transaction costs.

IA-16



Table IA.1: Significance with proportional transaction costs from daily price data

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs estimated from daily price data as in Abdi and Ranaldo (2017), for risk-aversion pa-
rameter γ = 5. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the
regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that max-
imizes investor’s utility is δ = 25. For the second (clean) stage, we run the bootstrap experiment for the
parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values
are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗)
to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.27∗∗∗ 0 .00404 −0.00313 0 .00045 −0.00164 0 .00028 0 .00059
chtx 2.26∗∗∗ 0 .00044 −0.00030 0 .00015 −0.00123 0 .00094 0 .00198
sue 3.54∗∗∗ 0 .00060 0 .00079 −0.00019 −0.00254 0 .00134 0 .00231
turn −4.44∗∗∗ −0 .01048 0.00738 0.00279 0.00068 −0 .00036 0 .00159
retvol −2.00∗∗∗ −0 .00652 0.00162 0.00292 0.00323 −0 .00125 0 .00456
std turn 1.97∗∗∗ 0 .00334 −0.00554 0 .00214 −0.00080 0 .00087 0 .00421
agr −7.57∗∗ −0 .00290 −0 .00005 0.00057 0.00290 −0 .00052 0 .00117
ps 6.83∗∗ 0 .00215 −0.00073 −0.00068 −0.00127 0 .00052 0 .00120
zerotrade −2.50∗∗ −0 .00210 0.00358 −0 .00205 0.00124 −0 .00066 0 .00181
beta 3.48∗∗ 0 .01433 −0.01863 0 .00419 −0.00008 0 .00019 0 .00123
gma 6.54∗∗ 0 .00276 −0.00294 0 .00069 −0.00066 0 .00015 0 .00085
herf −6.80∗∗ −0 .00169 0.00082 0.00041 0.00061 −0 .00015 0 .00067
mom1m −0.84∗∗ −0 .00137 0.00264 −0 .00109 0.00164 −0 .00182 0 .00785
chatoia 4.93∗∗ 0 .00031 0 .00011 −0.00005 −0.00077 0 .00040 0 .00104
chcsho −4.19∗ −0 .00149 −0 .00133 0.00092 0.00228 −0 .00038 0 .00104
bm 2.03∗ 0 .00173 0 .00098 −0.00082 −0.00205 0 .00016 0 .00110
stdcf −5.07∗ −0 .00260 0.00099 0.00068 0.00114 −0 .00020 0 .00067
bm ia 3.26∗ 0 .00169 −0.00182 0 .00072 −0.00081 0 .00022 0 .00106
pchgm pchsale 3.48 0 .00034 0 .00013 −0.00003 −0.00079 0 .00035 0 .00114
chmom −0.83 −0 .00081 0.00166 −0 .00073 0.00044 −0 .00057 0 .00353
ep 1.11 0 .00181 0 .00079 −0.00166 −0.00104 0 .00009 0 .00123
roaq −0.50 −0 .00060 0.00349 −0 .00114 −0 .00215 0.00040 0 .00176
idiovol −0.80 −0 .00302 −0 .00191 0.00308 0.00187 −0 .00002 0 .00111
mve −2.43 −0 .00082 0.00097 −0 .00034 0.00022 −0 .00003 0 .00038
mom12m −0.89 −0 .00157 0.00470 −0 .00066 −0 .00275 0.00028 0 .00236
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Table IA.2: Significance with quadratic transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
quadratic transaction costs, for the case where the investor allocates B = $1 billion to the benchmark portfolio
and has an absolute risk-aversion parameter γa = 5/B. We run a screen-and-clean significance test. For the
first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that
the lasso threshold that maximizes investor’s utility is δ = 1.5 × B. For the second (clean) stage, we run the
bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the first
stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter (divided by 100 million) and the significance asterisks, and the next five columns give
the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the
characteristic with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the
benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the
marginal contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that
drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic
toward zero are in red italic font (cf. Footnote 28).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 2.592∗∗∗ 0 .00009 −0.00033 0 .00045 −0.00164 0 .00143 0 .01365
agr −1.347∗∗∗ −0 .00005 −0 .00041 0.00057 0.00290 −0 .00302 0 .02405
sgr −1.284∗∗∗ −0 .00004 −0 .00046 0.00075 0.00179 −0 .00203 0 .02672
chatoia 0.898∗∗∗ 0 .00001 0 .00005 −0.00005 −0.00077 0 .00077 0 .02745
turn −2.270∗∗∗ −0 .00054 −0 .00091 0.00279 0.00068 −0 .00203 0 .01855
retvol −0.668∗∗∗ −0 .00022 −0 .00141 0.00292 0.00323 −0 .00452 0 .11102
std turn 0.567∗∗∗ 0 .00010 −0.00123 0 .00214 −0.00080 −0.00020 0 .07697
zerotrade −0.817∗∗∗ −0 .00007 0.00092 −0 .00205 0.00124 −0 .00004 0 .07316
chcsho −1.104∗∗∗ −0 .00004 −0 .00056 0.00092 0.00228 −0 .00260 0 .01692
ps 1.017∗∗∗ 0 .00003 0 .00030 −0.00068 −0.00127 0 .00162 0 .02187
sue 0.310∗∗∗ 0 .00001 0 .00015 −0.00019 −0.00254 0 .00258 0 .07646
egr −0.819∗∗∗ −0 .00003 −0 .00035 0.00041 0.00231 −0 .00234 0 .02703
idiovol −1.781∗∗∗ −0 .00067 −0 .00109 0.00308 0.00187 −0 .00319 0 .03448
gma 1.408∗∗∗ 0 .00006 −0.00047 0 .00069 −0.00066 0 .00038 0 .01359
ep 0.718∗∗ 0 .00012 0 .00089 −0.00166 −0.00104 0 .00169 0 .03735
convind −1.187∗∗ −0 .00002 −0 .00032 0.00071 0.00051 −0 .00088 0 .01024
roaq 0.582∗∗ 0 .00007 0 .00078 −0.00114 −0.00215 0 .00244 0 .03971
cashpr −0.814∗∗ −0 .00004 −0 .00063 0.00091 0.00139 −0 .00163 0 .01514
indmom 1.534∗∗ 0 .00026 0 .00037 −0.00050 −0.00222 0 .00209 0 .02111
herf −1.044∗ −0 .00003 −0 .00002 0.00041 0.00061 −0 .00098 0 .01354
pchcapx ia −0.676∗ −0 .00001 −0 .00009 0.00018 0.00093 −0 .00100 0 .02260
mom12m 0.853∗ 0 .00015 0 .00043 −0.00066 −0.00275 0 .00282 0 .03359
stdcf −0.828∗ −0 .00004 −0 .00046 0.00068 0.00114 −0 .00131 0 .01370
lgr 0.329 0 .00001 −0.00044 0 .00064 0 .00182 −0.00203 0 .02653
saleinv 0.587 0 .00001 0 .00027 −0.00064 −0.00005 0 .00041 0 .00975
hire −0.288 −0 .00001 −0 .00051 0.00065 0.00197 −0 .00211 0 .02518
beta −1.003 −0 .00041 −0 .00164 0.00419 −0 .00008 −0 .00205 0 .01902
rsup 0.170 0 .00000 0 .00015 −0.00017 −0.00054 0 .00056 0 .04223
mve −9.661 −0 .00033 0.00041 −0 .00034 0.00022 0.00003 0 .00165
mom36m −0.627 −0 .00003 −0 .00034 0.00022 0.00125 −0 .00110 0 .01653
ear 0.082 0 .00000 0 .00013 0 .00004 −0.00137 0 .00120 0 .07008
bm ia 0.498 0 .00003 −0.00044 0 .00072 −0.00081 0 .00051 0 .02151
mom6m 0.305 0 .00006 0 .00068 −0.00093 −0.00247 0 .00266 0 .05988
baspread −0.192 −0 .00008 −0 .00181 0.00329 0.00279 −0 .00418 0 .08273
chtx 0.115 0 .00000 −0.00002 0 .00015 −0.00123 0 .00110 0 .04466
bm −0.442 −0 .00004 0.00084 −0 .00082 −0 .00205 0.00207 0 .02369
salerec 0.482 0 .00001 −0.00006 0 .00016 −0.00044 0 .00033 0 .01198
dy 0.591 0 .00006 0 .00084 −0.00161 −0.00029 0 .00100 0 .01251
pchgm pchsale −0.132 −0 .00000 0.00000 −0 .00003 −0 .00079 0.00082 0 .02849
lev 0.661 0 .00008 0 .00088 −0.00123 −0.00092 0 .00119 0 .01234
mom1m 0.083 0 .00001 0 .00045 −0.00109 0 .00164 −0.00102 0 .22528
std dolvol −0.040 −0 .00000 0.00061 −0 .00150 0.00003 0.00086 0 .08448
dolvol −0.130 −0 .00001 −0 .00057 0.00139 −0 .00025 −0 .00056 0 .03294
mve ia 0.318 0 .00001 −0.00004 0 .00016 −0.00013 −0.00000 0 .00613



Table IA.3: Significance without transaction costs: Elastic net

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, and using a elastic net for the first (screen) stage of the
screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios
with five-fold cross-validation and find that the lasso threshold and the ridge penalty that maximize investor’s
utility are δ = 35 and ρ = 0.014, respectively. For the second (clean) stage, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic
p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one aster-
isks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the
optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for
the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and
momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the
parameter and the significance asterisks, and the next four columns give the marginal contribution of the
characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other
characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and
(iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif
font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

ps 17.05∗∗∗ 0 .00538 −0.00343 −0.00068 −0.00127
sue 17.59∗∗∗ 0 .00298 −0.00025 −0.00019 −0.00254
dolvol −26.88∗∗∗ −0 .02019 0.01906 0.00139 −0 .00025
retvol −15.39∗∗∗ −0 .05007 0.04392 0.00292 0.00323
agr −11.71∗∗ −0 .00448 0.00101 0.00057 0.00290
mom1m −3.53∗∗ −0 .00579 0.00524 −0 .00109 0.00164
std turn 16.00∗∗ 0 .02706 −0.02840 0 .00214 −0.00080
bm ia 7.20∗∗ 0 .00374 −0.00365 0 .00072 −0.00081
zerotrade −17.33∗∗ −0 .01458 0.01539 −0 .00205 0.00124
beta 6.08∗ 0 .02505 −0.02915 0 .00419 −0.00008
rd mve 4.78 0 .00171 −0.00052 0 .00045 −0.00164
indmom −3.35 −0 .00561 0.00832 −0 .00050 −0 .00222
mom6m −2.34 −0 .00485 0.00826 −0 .00093 −0 .00247
chcsho −4.07 −0 .00145 −0 .00175 0.00092 0.00228
bm 3.66 0 .00312 −0.00025 −0.00082 −0.00205
gma 2.88 0 .00121 −0.00125 0 .00069 −0.00066
mve 15.57 0 .00526 −0.00514 −0.00034 0 .00022
mom12m 2.17 0 .00386 −0.00045 −0.00066 −0.00275
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Table IA.4: Significance with transaction costs: Elastic net

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
transaction costs, for risk-aversion parameter γ = 5, and using a elastic net for the first (screen) stage of the
screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios
with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor’s
utility are δ = 30 and ρ = 0.0006, respectively. For the second (clean) stage, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic
p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one
asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute
the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s
for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market,
and momentum. For each characteristic, the first column gives the acronym, the second the optimal value of
the parameter and the significance asterisks, and the next five columns give the marginal contribution of the
characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other
characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the
characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the
characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic
to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in
red italic font (cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.56∗∗∗ 0 .00414 −0.00321 0 .00045 −0.00164 0 .00026 0 .00055
agr −6.98∗∗∗ −0 .00267 −0 .00026 0.00057 0.00290 −0 .00055 0 .00125
sue 3.05∗∗∗ 0 .00052 0 .00075 −0.00019 −0.00254 0 .00146 0 .00240
turn −3.55∗∗∗ −0 .00838 0.00535 0.00279 0.00068 −0 .00044 0 .00177
retvol −1.68∗∗∗ −0 .00548 0.00070 0.00292 0.00323 −0 .00137 0 .00468
std turn 1.31∗∗∗ 0 .00221 −0.00435 0 .00214 −0.00080 0 .00081 0 .00493
zerotrade −1.59∗∗∗ −0 .00134 0.00291 −0 .00205 0.00124 −0 .00077 0 .00235
beta 3.58∗∗ 0 .01476 −0.01909 0 .00419 −0.00008 0 .00022 0 .00126
chtx 1.37∗∗ 0 .00027 −0.00022 0 .00015 −0.00123 0 .00104 0 .00232
ps 5.17∗∗ 0 .00163 −0.00034 −0.00068 −0.00127 0 .00067 0 .00140
gma 7.20∗∗ 0 .00303 −0.00324 0 .00069 −0.00066 0 .00017 0 .00090
mom1m −0.66∗∗ −0 .00108 0.00263 −0 .00109 0.00164 −0 .00211 0 .00857
chatoia 4.64∗∗ 0 .00030 0 .00007 −0.00005 −0.00077 0 .00046 0 .00116
herf −5.90∗∗ −0 .00147 0.00063 0.00041 0.00061 −0 .00019 0 .00077
pchgm pchsale 3.58∗ 0 .00035 0 .00004 −0.00003 −0.00079 0 .00043 0 .00122
stdcf −4.76 −0 .00244 0.00086 0.00068 0.00114 −0 .00023 0 .00067
chcsho −2.78 −0 .00099 −0 .00181 0.00092 0.00228 −0 .00040 0 .00123
bm ia 2.56 0 .00133 −0.00150 0 .00072 −0.00081 0 .00025 0 .00128
chmom −0.73 −0 .00071 0.00174 −0 .00073 0.00044 −0 .00075 0 .00404
pchcapx ia −2.30 −0 .00049 −0 .00038 0.00018 0.00093 −0 .00024 0 .00126
cashpr −2.46 −0 .00127 −0 .00089 0.00091 0.00139 −0 .00014 0 .00091
bm 0.86 0 .00073 0 .00197 −0.00082 −0.00205 0 .00017 0 .00121
ep 0.94 0 .00153 0 .00100 −0.00166 −0.00104 0 .00017 0 .00125
idiovol −1.40 −0 .00530 0.00042 0.00308 0.00187 −0 .00007 0 .00109
roaq −0.02 −0 .00003 0.00279 −0 .00114 −0 .00215 0.00053 0 .00186
mve −2.32 −0 .00079 0.00094 −0 .00034 0.00022 −0 .00003 0 .00045
mom12m −0.78 −0 .00139 0.00452 −0 .00066 −0 .00275 0.00027 0 .00265
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Table IA.5: Significance without transaction costs: Elastic net and shrinkage cov. matrix

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, using a elastic net for the first (screen) stage and the
shrinkage estimator of the covariance matrix in Ledoit and Wolf (2004) for the second (clean) stage of the
screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios
with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor’s
utility are δ = 35 and ρ = 0.014, respectively. For the clean stage, we run the bootstrap experiment for
the parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic
p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one aster-
isks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the
optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for
the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and
momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the
parameter and the significance asterisks, and the next four columns give the marginal contribution of the
characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other
characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and
(iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif
font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

agr −11.71∗∗∗ −0 .00448 0.00101 0.00057 0.00290
ps 17.05∗∗∗ 0 .00538 −0.00343 −0.00068 −0.00127
sue 17.59∗∗∗ 0 .00298 −0.00025 −0.00019 −0.00254
dolvol −26.88∗∗∗ −0 .02019 0.01906 0.00139 −0 .00025
retvol −15.39∗∗∗ −0 .05007 0.04392 0.00292 0.00323
std turn 16.00∗∗∗ 0 .02706 −0.02840 0 .00214 −0.00080
rd mve 4.78∗∗ 0 .00171 −0.00052 0 .00045 −0.00164
mom1m −3.53∗∗ −0 .00579 0.00524 −0 .00109 0.00164
zerotrade −17.33∗∗ −0 .01458 0.01539 −0 .00205 0.00124
bm ia 7.20∗∗ 0 .00374 −0.00365 0 .00072 −0.00081
beta 6.08∗∗ 0 .02505 −0.02915 0 .00419 −0.00008
gma 2.88∗∗ 0 .00121 −0.00125 0 .00069 −0.00066
chcsho −4.07∗∗ −0 .00145 −0 .00175 0.00092 0.00228
bm 3.66∗ 0 .00312 −0.00025 −0.00082 −0.00205
indmom −3.35 −0 .00561 0.00832 −0 .00050 −0 .00222
mom6m −2.34 −0 .00485 0.00826 −0 .00093 −0 .00247
mve 15.57 0 .00526 −0.00514 −0.00034 0 .00022
mom12m 2.17 0 .00386 −0.00045 −0.00066 −0.00275
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Table IA.6: Significance with transaction costs: Elastic net and shrinkage cov. matrix

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5, using a elastic net for the first (screen) stage, and the
shrinkage estimator of the covariance matrix in Ledoit and Wolf (2004) for the second (clean) stage of the
screen-and-clean significance test. For the screen stage, we calibrate the regularized parametric portfolios
with five-fold cross-validation and find that the lasso threshold and ridge penalty that maximize investor’s
utility are δ = 30 and ρ = 0.0006, respectively. For the clean stage, we run the bootstrap experiment for the
parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values
are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗)
to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.56∗∗∗ 0 .00414 −0.00321 0 .00045 −0.00164 0 .00026 0 .00055
agr −6.98∗∗∗ −0 .00267 −0 .00026 0.00057 0.00290 −0 .00055 0 .00125
gma 7.20∗∗∗ 0 .00303 −0.00324 0 .00069 −0.00066 0 .00017 0 .00090
ps 5.17∗∗∗ 0 .00163 −0.00034 −0.00068 −0.00127 0 .00067 0 .00140
herf −5.90∗∗∗ −0 .00147 0.00063 0.00041 0.00061 −0 .00019 0 .00077
sue 3.05∗∗∗ 0 .00052 0 .00075 −0.00019 −0.00254 0 .00146 0 .00240
retvol −1.68∗∗∗ −0 .00548 0.00070 0.00292 0.00323 −0 .00137 0 .00468
std turn 1.31∗∗∗ 0 .00221 −0.00435 0 .00214 −0.00080 0 .00081 0 .00493
zerotrade −1.59∗∗∗ −0 .00134 0.00291 −0 .00205 0.00124 −0 .00077 0 .00235
beta 3.58∗∗∗ 0 .01476 −0.01909 0 .00419 −0.00008 0 .00022 0 .00126
chatoia 4.64∗∗ 0 .00030 0 .00007 −0.00005 −0.00077 0 .00046 0 .00116
chtx 1.37∗∗ 0 .00027 −0.00022 0 .00015 −0.00123 0 .00104 0 .00232
turn −3.55∗∗ −0 .00838 0.00535 0.00279 0.00068 −0 .00044 0 .00177
chcsho −2.78∗∗ −0 .00099 −0 .00181 0.00092 0.00228 −0 .00040 0 .00123
pchgm pchsale 3.58∗∗ 0 .00035 0 .00004 −0.00003 −0.00079 0 .00043 0 .00122
mom1m −0.66∗∗ −0 .00108 0.00263 −0 .00109 0.00164 −0 .00211 0 .00857
stdcf −4.76∗∗ −0 .00244 0.00086 0.00068 0.00114 −0 .00023 0 .00067
bm ia 2.56∗∗ 0 .00133 −0.00150 0 .00072 −0.00081 0 .00025 0 .00128
bm 0.86 0 .00073 0 .00197 −0.00082 −0.00205 0 .00017 0 .00121
chmom −0.73 −0 .00071 0.00174 −0 .00073 0.00044 −0 .00075 0 .00404
cashpr −2.46 −0 .00127 −0 .00089 0.00091 0.00139 −0 .00014 0 .00091
pchcapx ia −2.30 −0 .00049 −0 .00038 0.00018 0.00093 −0 .00024 0 .00126
idiovol −1.40 −0 .00530 0.00042 0.00308 0.00187 −0 .00007 0 .00109
roaq −0.02 −0 .00003 0.00279 −0 .00114 −0 .00215 0.00053 0 .00186
ep 0.94 0 .00153 0 .00100 −0.00166 −0.00104 0 .00017 0 .00125
mve −2.32 −0 .00079 0.00094 −0 .00034 0.00022 −0 .00003 0 .00045
mom12m −0.78 −0 .00139 0.00452 −0 .00066 −0 .00275 0.00027 0 .00265
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Table IA.7: Significance without transaction costs: Excluding microcaps

This table reports, for the case where microcaps are excluded from the dataset, the significance and marginal
contributions for the parametric portfolios without transaction costs, for risk-aversion parameter γ = 5. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 40. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic
mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions
that drive the characteristic toward zero are in red italic font (cf. Footnote 28)

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

ear 9.43∗∗∗ 0 .00173 −0.00086 0 .00025 −0.00112
indmom −4.12∗∗∗ −0 .00698 0.00843 −0 .00052 −0 .00093
retvol −6.74∗∗∗ −0 .02308 0.01817 0.00338 0.00153
std turn 9.57∗∗∗ 0 .01983 −0.02187 0 .00223 −0.00019
bm ia 5.63∗∗∗ 0 .00315 −0.00312 0 .00075 −0.00078
sue 8.48∗∗ 0 .00120 0 .00002 −0.00015 −0.00107
ps 6.87∗∗ 0 .00175 −0.00033 −0.00076 −0.00066
rd mve 5.96∗ 0 .00213 −0.00137 0 .00043 −0.00119
std dolvol 3.15∗ 0 .00088 0 .00001 −0.00061 −0.00028
chmom −2.14∗ −0 .00241 0.00208 −0 .00076 0.00110
agr −8.33 −0 .00439 0.00134 0.00098 0.00207
roaq 1.89 0 .00138 0 .00086 −0.00077 −0.00148
mom1m −0.96 −0 .00146 0.00152 −0 .00095 0.00089
egr −4.74 −0 .00218 −0 .00059 0.00083 0.00194
gma 1.46 0 .00085 −0.00136 0 .00070 −0.00019
bm 0.85 0 .00080 0 .00090 −0.00065 −0.00106
mve −0.19 −0 .00007 0.00023 −0 .00053 0.00037
mom12m −0.76 −0 .00150 0.00346 −0 .00045 −0 .00151

IA-23



Table IA.8: Significance with transaction costs: Excluding microcaps

This table reports, for the dataset without microcaps, the significance and marginal contributions for the
parametric portfolios in the presence of transaction costs, for risk-aversion parameter γ = 5. We run
a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 20. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28)

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

std turn 0.28∗∗∗ 0 .00057 −0.00300 0 .00223 −0.00019 0 .00039 0 .00472
rd mve 7.13∗∗∗ 0 .00255 −0.00205 0 .00043 −0.00119 0 .00026 0 .00051
ear 0.33∗∗∗ 0 .00006 −0.00019 0 .00025 −0.00112 0 .00100 0 .00324
bm ia 2.53∗∗∗ 0 .00142 −0.00181 0 .00075 −0.00078 0 .00043 0 .00125
mom36m 1.17∗∗∗ 0 .00069 −0.00256 0 .00046 0 .00107 0 .00034 0 .00177
chmom −1.01∗∗ −0 .00114 0.00181 −0 .00076 0.00110 −0 .00101 0 .00421
egr −4.09∗∗ −0 .00188 −0 .00032 0.00083 0.00194 −0 .00057 0 .00124
gma 3.84∗∗ 0 .00223 −0.00283 0 .00070 −0.00019 0 .00009 0 .00089
ps 2.72∗∗ 0 .00069 0 .00020 −0.00076 −0.00066 0 .00053 0 .00141
retvol −0.24∗∗ −0 .00081 −0 .00318 0.00338 0.00153 −0 .00092 0 .00492
zerotrade −0.23∗∗ −0 .00008 0.00094 −0 .00108 0.00064 −0 .00042 0 .00182
aeavol −0.17∗∗ −0 .00004 −0 .00050 0.00070 0.00021 −0 .00037 0 .00293
indmom −0.59∗ −0 .00101 0.00293 −0 .00052 −0 .00093 −0 .00047 0 .00252
saleinv 2.80∗ 0 .00040 0 .00023 −0.00058 −0.00020 0 .00016 0 .00069
chatoia 2.45∗ 0 .00023 0 .00020 −0.00016 −0.00067 0 .00040 0 .00118
herf −2.40∗ −0 .00067 0.00024 0.00049 0.00011 −0 .00017 0 .00076
sue 0.21 0 .00003 0 .00039 −0.00015 −0.00107 0 .00080 0 .00219
stdcf −2.31 −0 .00105 −0 .00008 0.00063 0.00073 −0 .00023 0 .00065
roaq 0.64 0 .00047 0 .00107 −0.00077 −0.00148 0 .00071 0 .00186
rsup 0.40 0 .00010 0 .00012 −0.00015 −0.00048 0 .00042 0 .00169
pchcapx ia −1.46 −0 .00039 −0 .00034 0.00034 0.00069 −0 .00030 0 .00123
pchgm pchsale 1.22 0 .00014 −0.00018 −0.00000 −0.00027 0 .00031 0 .00120
chtx 0.16 0 .00005 −0.00048 0 .00030 −0.00052 0 .00065 0 .00233
baspread −0.28 −0 .00122 −0 .00323 0.00380 0.00128 −0 .00062 0 .00344
cashpr −2.07 −0 .00092 −0 .00051 0.00063 0.00095 −0 .00016 0 .00085
pricedelay 0.06 0 .00001 0 .00093 −0.00079 −0.00033 0 .00018 0 .00286
sgr −1.69 −0 .00099 −0 .00107 0.00100 0.00127 −0 .00021 0 .00120
mom6m 0.63 0 .00131 0 .00066 −0.00076 −0.00101 −0.00020 0 .00397
turn −0.53 −0 .00156 −0 .00169 0.00288 0.00054 −0 .00017 0 .00171
beta 0.83 0 .00341 −0.00810 0 .00413 0 .00052 0 .00004 0 .00122
salerec 1.41 0 .00038 0 .00015 −0.00020 −0.00045 0 .00011 0 .00080
lev 1.84 0 .00219 −0.00072 −0.00071 −0.00081 0 .00005 0 .00081
chcsho −0.66 −0 .00026 −0 .00205 0.00098 0.00175 −0 .00042 0 .00126
convind −0.72 −0 .00013 −0 .00082 0.00068 0.00035 −0 .00008 0 .00076
agr −1.15 −0 .00060 −0 .00185 0.00098 0.00207 −0 .00060 0 .00123
ep 0.84 0 .00112 0 .00078 −0.00153 −0.00050 0 .00013 0 .00119
idiovol −0.01 −0 .00002 −0 .00407 0.00335 0.00081 −0 .00006 0 .00114
mom1m 0.08 0 .00013 0 .00111 −0.00095 0 .00089 −0.00117 0 .00850
bm −2.05 −0 .00194 0.00361 −0 .00065 −0 .00106 0.00004 0 .00114
mve −2.27 −0 .00079 0.00100 −0 .00053 0.00037 −0 .00005 0 .00059
mom12m −0.34 −0 .00068 0.00251 −0 .00045 −0 .00151 0.00013 0 .00274



Table IA.9: Reality check for significance test

This table reports the bootstrap p-values for the significance of the characteristics after removing their
predictability, as explained in Section IA.6.

Characteristic p-val Characteristic p-val Characteristic p-val

Panel A: Without transaction costs

mom1m 0.683 dolvol 0.918 chtx 0.963
lev 0.824 std turn 0.920 sue 0.963
beta 0.826 zerotrade 0.922 stdcf 0.965
indmom 0.833 gma 0.925 mve 0.967
chmom 0.844 roaq 0.927 cashpr 0.969
bm ia 0.871 mom36m 0.927 chatoia 0.971
baspread 0.874 std dolvol 0.927 pchgm pchsale 0.973
retvol 0.880 idiovol 0.927 ear 0.973
mom12m 0.882 salecash 0.928 pricedelay 0.979
mom6m 0.884 salerec 0.934 pchsale pchrect 0.981
herf 0.889 rsup 0.947 lgr 0.983
turn 0.891 chpmia 0.951 chempia 0.984
ep 0.899 chcsho 0.952 ps 0.985
bm 0.906 egr 0.953 rd mve 0.988
pchcapx ia 0.910 agr 0.956 convind 0.989
mve ia 0.913 hire 0.956 saleinv 0.990
dy 0.915 sgr 0.962 aeavol 0.990

Panel B: With transaction costs

mom1m 0.682 salerec 0.886 ear 0.928
baspread 0.764 mom36m 0.886 hire 0.930
bm ia 0.802 mve ia 0.888 sue 0.930
lev 0.806 bm 0.892 chatoia 0.934
beta 0.816 dy 0.894 cashpr 0.936
mom6m 0.822 ep 0.896 agr 0.938
chmom 0.824 salecash 0.896 stdcf 0.944
turn 0.834 chpmia 0.896 pricedelay 0.944
idiovol 0.846 retvol 0.898 pchgm pchsale 0.946
mom12m 0.852 zerotrade 0.906 ps 0.962
indmom 0.854 std dolvol 0.910 chempia 0.962
herf 0.858 std turn 0.910 pchsale pchrect 0.964
dolvol 0.864 chtx 0.914 convind 0.968
pchcapx ia 0.872 chcsho 0.920 aeavol 0.968
roaq 0.876 egr 0.924 saleinv 0.974
rsup 0.880 sgr 0.928 lgr 0.976
gma 0.882 mve 0.928 rd mve 0.982
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Table IA.10: Significance without transaction costs: Exploiting all 100 characteristics

This table reports the significance and marginal contributions for the parametric portfolios exploiting 100
firm characteristics without transaction costs, for risk-aversion parameter γ = 5. We run a screen-and-clean
significance test. For the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold
cross-validation and find that the lasso threshold that maximizes investor’s utility is δ = 75. For the second
(clean) stage, we run the bootstrap experiment for the parametric portfolios using those characteristics with
nonzero θ’s from the first stage. Characteristic p-values are computed using the percentile method discussed
in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen stage plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four
columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the
covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the
characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the
characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward
zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

sfe −25.04∗∗∗ −0 .02417 0.02471 −0 .00129 0.00075
retvol −14.71∗∗∗ −0 .04785 0.04170 0.00292 0.00323
sue 17.87∗∗ 0 .00303 −0.00030 −0.00019 −0.00254
mom1m −4.03∗∗ −0 .00661 0.00606 −0 .00109 0.00164
chcsho −12.71∗∗ −0 .00452 0.00132 0.00092 0.00228
std turn 13.69∗∗ 0 .02316 −0.02450 0 .00214 −0.00080
zerotrade −14.95∗∗ −0 .01258 0.01339 −0 .00205 0.00124
nanalyst −15.63∗ −0 .00993 0.00933 0.00063 −0 .00003
indmom −3.08∗ −0 .00516 0.00787 −0 .00050 −0 .00222
cfp 15.22∗ 0 .01280 −0.00962 −0.00088 −0.00230
stdcf −11.61∗ −0 .00596 0.00415 0.00068 0.00114
pchgm pchsale 12.64 0 .00123 −0.00041 −0.00003 −0.00079
ps 11.06 0 .00349 −0.00154 −0.00068 −0.00127
pctacc −12.44 −0 .00177 0.00028 0.00010 0.00140
depr 7.45 0 .00791 −0.00848 0 .00129 −0.00071
rd mve 5.62 0 .00202 −0.00082 0 .00045 −0.00164
chfeps 3.68 0 .00060 0 .00131 −0.00030 −0.00161
dolvol −13.14 −0 .00987 0.00874 0.00139 −0 .00025
chtx 7.55 0 .00147 −0.00039 0 .00015 −0.00123
cfp ia 3.59 0 .00091 −0.00054 0 .00052 −0.00090
agr −6.38 −0 .00244 −0 .00103 0.00057 0.00290
gma −1.26 −0 .00053 0.00050 0.00069 −0 .00066
grcapx −3.08 −0 .00062 −0 .00156 0.00051 0.00167
mom6m −0.48 −0 .00099 0.00439 −0 .00093 −0 .00247
bm ia 0.74 0 .00039 −0.00029 0 .00072 −0.00081
cash 3.24 0 .00631 −0.00732 0 .00154 −0.00053
roaq −0.72 −0 .00088 0.00417 −0 .00114 −0 .00215
beta 0.18 0 .00074 −0.00484 0 .00419 −0.00008
nincr 4.06 0 .00060 0 .00115 0 .00003 −0.00179
bm 1.67 0 .00142 0 .00145 −0.00082 −0.00205
mve 14.07 0 .00475 −0.00463 −0.00034 0 .00022
mom12m −3.61 −0 .00641 0.00982 −0 .00066 −0 .00275
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Table IA.11: Significance with transaction costs: Exploiting all 100 characteristics

This table reports the significance for the parametric portfolios exploiting 100 characteristics with transaction
costs, for risk-aversion parameter γ = 5. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility
is δ = 50. For the second (clean) stage, we run the bootstrap experiment for those characteristics with
nonzero θ’s from the first stage. Characteristic p-values are computed using the percentile method discussed
in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen stage plus size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns the marginal contribution to: (i) the characteristic
own-variance, (ii) the covariance of the characteristic with the other characteristics, (iii) the covariance
of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction
cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is
traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and
contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rsup 5.28∗∗∗ 0 .00116 −0.00114 −0.00017 −0.00054 0 .00069 0 .00178
sue 4.06∗∗∗ 0 .00069 0 .00082 −0.00019 −0.00254 0 .00122 0 .00240
chfeps 1.36∗∗∗ 0 .00022 0 .00087 −0.00030 −0.00161 0 .00082 0 .00471
sfe −16.67∗∗∗ −0 .01610 0.01717 −0 .00129 0.00075 −0 .00054 0 .00115
retvol −2.53∗∗∗ −0 .00822 0.00327 0.00292 0.00323 −0 .00119 0 .00468
std turn 1.81∗∗∗ 0 .00306 −0.00507 0 .00214 −0.00080 0 .00067 0 .00493
zerotrade −2.71∗∗∗ −0 .00228 0.00381 −0 .00205 0.00124 −0 .00072 0 .00235
cfp 12.64∗∗ 0 .01063 −0.00802 −0.00088 −0.00230 0 .00057 0 .00115
mom1m −1.30∗∗ −0 .00213 0.00351 −0 .00109 0.00164 −0 .00194 0 .00857
disp −3.72∗∗ −0 .00184 0.00023 0.00112 0.00097 −0 .00047 0 .00154
turn −3.34∗∗ −0 .00789 0.00469 0.00279 0.00068 −0 .00027 0 .00177
rd mve 10.07∗∗ 0 .00361 −0.00256 0 .00045 −0.00164 0 .00015 0 .00055
depr 6.51∗∗ 0 .00691 −0.00769 0 .00129 −0.00071 0 .00020 0 .00093
pchgm pchsale 6.43∗∗ 0 .00062 −0.00021 −0.00003 −0.00079 0 .00040 0 .00122
stdcf −8.02∗∗ −0 .00412 0.00250 0.00068 0.00114 −0 .00019 0 .00067
agr −5.45∗ −0 .00209 −0 .00097 0.00057 0.00290 −0 .00042 0 .00125
chatoia 5.62∗ 0 .00036 0 .00014 −0.00005 −0.00077 0 .00032 0 .00116
chcsho −5.09∗ −0 .00181 −0 .00095 0.00092 0.00228 −0 .00044 0 .00123
nanalyst −5.55 −0 .00353 0.00307 0.00063 −0 .00003 −0 .00014 0 .00104
pchcapx ia −3.56 −0 .00076 −0 .00009 0.00018 0.00093 −0 .00026 0 .00126
ear 1.15 0 .00018 0 .00045 0 .00004 −0.00137 0 .00070 0 .00318
herf −4.58 −0 .00114 0.00020 0.00041 0.00061 −0 .00008 0 .00077
beta 1.52 0 .00624 −0.01043 0 .00419 −0.00008 0 .00008 0 .00126
pctacc −3.99 −0 .00057 −0 .00049 0.00010 0.00140 −0 .00044 0 .00107
cash 2.83 0 .00551 −0.00670 0 .00154 −0.00053 0 .00018 0 .00115
ps 2.76 0 .00087 0 .00053 −0.00068 −0.00127 0 .00055 0 .00140
chtx 1.03 0 .00020 0 .00007 0 .00015 −0.00123 0 .00081 0 .00232
ep 3.44 0 .00561 −0.00310 −0.00166 −0.00104 0 .00019 0 .00125
roaq 1.38 0 .00168 0 .00099 −0.00114 −0.00215 0 .00063 0 .00186
gma 3.61 0 .00152 −0.00165 0 .00069 −0.00066 0 .00010 0 .00090
tang 2.33 0 .00215 −0.00287 0 .00097 −0.00037 0 .00012 0 .00098
bm ia 1.20 0 .00062 −0.00066 0 .00072 −0.00081 0 .00013 0 .00128
nincr 0.40 0 .00006 0 .00100 0 .00003 −0.00179 0 .00070 0 .00269
cfp ia 1.10 0 .00028 −0.00014 0 .00052 −0.00090 0 .00024 0 .00121
grcapx −1.79 −0 .00036 −0 .00159 0.00051 0.00167 −0 .00022 0 .00105
chmom −0.66 −0 .00065 0.00135 −0 .00073 0.00044 −0 .00042 0 .00404
dolvol 0.35 0 .00026 −0.00140 0 .00139 −0.00025 0 .00000 0 .00214
idiovol −1.18 −0 .00445 −0 .00044 0.00308 0.00187 −0 .00006 0 .00109
cashdebt 1.96 0 .00139 0 .00044 −0.00074 −0.00127 0 .00018 0 .00102
cashpr −0.74 −0 .00038 −0 .00184 0.00091 0.00139 −0 .00008 0 .00091
baspread −0.02 −0 .00010 −0 .00542 0.00329 0.00279 −0 .00056 0 .00322
mve −0.11 −0 .00004 0.00019 −0 .00034 0.00022 −0 .00003 0 .00045
bm 1.44 0 .00122 0 .00151 −0.00082 −0.00205 0 .00014 0 .00121
chinv −1.41 −0 .00023 −0 .00134 0.00037 0.00152 −0 .00031 0 .00118
roic −0.02 −0 .00002 0.00258 −0 .00103 −0 .00169 0.00017 0 .00103
acc −1.05 −0 .00026 −0 .00024 −0 .00049 0.00134 −0 .00035 0 .00115
mom12m −2.22 −0 .00395 0.00728 −0 .00066 −0 .00275 0.00007 0 .00265



Table IA.12: Significance without transaction costs: Subsample from 1988 to 2003

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, for the subsample from May 1988 to December 2002. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 50. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 33.61∗∗∗ 0 .00512 −0.00186 −0.00006 −0.00319
mom1m −8.95∗∗∗ −0 .02126 0.01968 −0 .00113 0.00271
dolvol −18.25∗∗∗ −0 .02037 0.01868 0.00221 −0 .00052
retvol −22.93∗∗∗ −0 .10422 0.09605 0.00291 0.00526
std turn 30.37∗∗∗ 0 .08025 −0.08169 0 .00278 −0.00134
rd mve 21.20∗∗ 0 .00998 −0.00810 0 .00051 −0.00239
mom6m −9.77∗∗ −0 .02653 0.03157 −0 .00080 −0 .00423
bm ia 9.78∗∗ 0 .00697 −0.00707 0 .00087 −0.00077
agr −6.63∗ −0 .00334 −0 .00149 0.00109 0.00374
chmom 2.90 0 .00359 −0.00396 −0.00070 0 .00107
bm 5.29 0 .00636 −0.00148 −0.00178 −0.00310
mve 12.13 0 .00506 −0.00488 0 .00002 −0.00019
mom12m 1.59 0 .00325 0 .00235 −0.00029 −0.00531
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Table IA.13: Significance with transaction costs: Subsample from 1988 to 2003

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
transaction costs, for risk-aversion parameter γ = 5, for the subsample from May 1988 to December 2002. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 15. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 16.90∗∗∗ 0 .00796 −0.00654 0 .00051 −0.00239 0 .00046 0 .00087
agr −8.35∗∗∗ −0 .00421 0.00005 0.00109 0.00374 −0 .00067 0 .00190
ps 11.72∗∗∗ 0 .00427 −0.00319 −0.00048 −0.00175 0 .00115 0 .00211
sue 3.01∗∗∗ 0 .00046 0 .00084 −0.00006 −0.00319 0 .00196 0 .00353
std turn 1.07∗∗∗ 0 .00283 −0.00527 0 .00278 −0.00134 0 .00100 0 .00722
herf −8.69∗∗ −0 .00211 0.00074 0.00017 0.00160 −0 .00040 0 .00122
chmom −1.91∗∗ −0 .00236 0.00414 −0 .00070 0.00107 −0 .00214 0 .00600
retvol −1.79∗∗ −0 .00814 0.00187 0.00291 0.00526 −0 .00190 0 .00676
mom1m −1.16∗∗ −0 .00275 0.00568 −0 .00113 0.00271 −0 .00451 0 .01288
gma 11.62∗∗ 0 .00645 −0.00786 0 .00117 −0.00008 0 .00032 0 .00141
bm ia 5.41∗∗ 0 .00386 −0.00445 0 .00087 −0.00077 0 .00050 0 .00194
zerotrade −1.61∗∗ −0 .00181 0.00433 −0 .00237 0.00099 −0 .00115 0 .00371
lev 8.35∗∗ 0 .01395 −0.00965 −0.00177 −0.00278 0 .00024 0 .00136
chatoia 4.74∗∗ 0 .00029 0 .00023 −0.00015 −0.00107 0 .00070 0 .00171
cashpr −6.86∗ −0 .00448 0.00066 0.00135 0.00287 −0 .00040 0 .00144
mom12m −1.33 −0 .00272 0.00761 −0 .00029 −0 .00531 0.00071 0 .00393
roaq 0.72 0 .00128 0 .00261 −0.00119 −0.00356 0 .00087 0 .00285
chcsho −0.66 −0 .00034 −0 .00388 0.00129 0.00321 −0 .00029 0 .00188
idiovol −0.31 −0 .00168 −0 .00528 0.00334 0.00371 −0 .00009 0 .00172
ep 0.28 0 .00064 0 .00310 −0.00177 −0.00223 0 .00026 0 .00195
bm −3.94 −0 .00473 0.00936 −0 .00178 −0 .00310 0.00025 0 .00191
mve −3.35 −0 .00140 0.00167 0.00002 −0 .00019 −0 .00010 0 .00070
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Table IA.14: Significance without transaction costs: Subsample from 2003 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without transac-
tion costs, for risk-aversion parameter γ = 5, for the subsample from January 2003 to December 2014. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 10. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

agr −13.15∗∗∗ −0 .00301 0.00116 −0 .00008 0.00193
sue 26.22∗∗∗ 0 .00490 −0.00287 −0.00032 −0.00171
salecash 8.07∗ 0 .00176 −0.00046 0 .00006 −0.00136
salerec 7.53∗ 0 .00161 −0.00049 0 .00045 −0.00157
stdcf −4.81 −0 .00153 −0 .00020 0.00057 0.00115
retvol −4.43 −0 .00732 0.00376 0.00295 0.00061
bm 0.39 0 .00016 0 .00022 0 .00038 −0.00076
mve −7.47 −0 .00182 0.00189 −0 .00079 0.00071
mom12m −5.03 −0 .00696 0.00756 −0 .00106 0.00046
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Table IA.15: Significance with transaction costs: Subsample from 2003 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5, for the subsample from January 2003 to December
2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regular-
ized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes
investor’s utility is δ = 15. For the second (clean) stage, we run the bootstrap experiment for the para-
metric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values
are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗)
to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

sue 4.99∗∗∗ 0 .00093 −0.00018 −0.00032 −0.00171 0 .00128 0 .00185
retvol −0.62∗∗ −0 .00102 −0 .00161 0.00295 0.00061 −0 .00094 0 .00378
zerotrade −5.10∗∗ −0 .00255 0.00328 −0 .00166 0.00155 −0 .00061 0 .00154
turn −5.01∗∗ −0 .00374 0.00155 0.00175 0.00079 −0 .00035 0 .00113
egr −10.16∗ −0 .00242 0.00132 −0 .00019 0.00180 −0 .00050 0 .00090
lev −8.58∗ −0 .00653 0.00572 −0 .00054 0.00146 −0 .00012 0 .00057
stdcf −7.51 −0 .00238 0.00082 0.00057 0.00115 −0 .00017 0 .00047
chtx 1.80 0 .00021 −0.00016 −0.00010 −0.00076 0 .00082 0 .00180
rsup 2.80 0 .00068 −0.00041 −0.00025 −0.00054 0 .00051 0 .00128
ps 6.31 0 .00163 −0.00033 −0.00093 −0.00069 0 .00031 0 .00100
indmom −2.14 −0 .00208 0.00236 0.00001 0.00017 −0 .00047 0 .00187
agr −3.76 −0 .00086 −0 .00048 −0 .00008 0.00193 −0 .00052 0 .00089
salerec 3.36 0 .00072 0 .00025 0 .00045 −0.00157 0 .00015 0 .00054
salecash −0.91 −0 .00020 0.00142 0.00006 −0 .00136 0.00008 0 .00062
baspread −1.75 −0 .00404 0.00099 0.00347 0.00020 −0 .00062 0 .00251
gma −1.53 −0 .00039 0.00171 0.00008 −0 .00138 −0 .00001 0 .00061
bm 5.46 0 .00228 −0.00201 0 .00038 −0.00076 0 .00012 0 .00080
mve −5.48 −0 .00133 0.00142 −0 .00079 0.00071 −0 .00001 0 .00029
mom12m −0.24 −0 .00034 0.00105 −0 .00106 0.00046 −0 .00011 0 .00198
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Table IA.16: Significance without transaction costs: Subsample from 1980 to 1997

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, for the subsample from January 1980 to June 1997. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 75. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

rd mve 32.47∗∗∗ 0 .00262 −0.00162 0 .00017 −0.00117
roaq 23.58∗∗∗ 0 .00554 −0.00310 0 .00030 −0.00273
mom1m −24.17∗∗∗ −0 .00941 0.00596 −0 .00050 0.00395
retvol −19.36∗∗∗ −0 .01821 0.01044 0.00130 0.00647
chcsho −23.05∗∗ −0 .00306 0.00030 0.00054 0.00222
chtx 27.71 0 .00412 −0.00281 0 .00058 −0.00190
agr −3.81 −0 .00102 −0 .00268 0.00092 0.00278
std turn 25.83 0 .01354 −0.01444 0 .00122 −0.00032
sue 5.59 0 .00047 0 .00179 0 .00011 −0.00238
dolvol −27.55 −0 .01678 0.01640 0.00114 −0 .00077
mve ia −32.24 −0 .00903 0.00928 0.00014 −0 .00039
mom12m −1.32 −0 .00075 0.00458 0.00059 −0 .00442
bm 4.92 0 .00338 0 .00186 −0.00129 −0.00395
mve 42.03 0 .01431 −0.01370 −0.00013 −0.00049
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Table IA.17: Significance with transaction costs: Subsample from 1980 to 1997

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
transaction costs, for risk-aversion parameter γ = 5, for the subsample from January 1980 to June 1997. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 75. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 23.42∗∗∗ 0 .00189 −0.00139 0 .00017 −0.00117 0 .00050 0 .00086
chcsho −6.16∗∗∗ −0 .00082 −0 .00108 0.00054 0.00222 −0 .00086 0 .00212
saleinv 13.03∗∗∗ 0 .00152 −0.00074 −0.00050 −0.00065 0 .00037 0 .00127
roaq 3.26∗∗∗ 0 .00077 0 .00022 0 .00030 −0.00273 0 .00144 0 .00309
turn −3.86∗∗∗ −0 .00336 0.00090 0.00182 0.00150 −0 .00086 0 .00326
std dolvol −0.79∗∗∗ −0 .00021 0.00174 −0 .00089 −0 .00023 −0 .00042 0 .00885
std turn 1.35∗∗∗ 0 .00071 −0.00218 0 .00122 −0.00032 0 .00057 0 .00841
zerotrade −1.43∗∗∗ −0 .00055 0.00249 −0 .00143 0.00051 −0 .00102 0 .00434
beta 9.43∗∗∗ 0 .01503 −0.01996 0 .00280 0 .00170 0 .00043 0 .00221
idiovol −12.61∗∗∗ −0 .01762 0.01130 0.00164 0.00517 −0 .00049 0 .00189
mve ia −14.35∗∗ −0 .00402 0.00457 0.00014 −0 .00039 −0 .00030 0 .00119
chtx 1.61∗∗ 0 .00024 −0.00049 0 .00058 −0.00190 0 .00157 0 .00365
dy −8.77∗∗ −0 .00835 0.01241 −0 .00173 −0 .00231 −0 .00002 0 .00159
ps 7.87∗∗ 0 .00099 0 .00032 −0.00027 −0.00196 0 .00092 0 .00237
gma 10.49∗∗ 0 .00379 −0.00418 0 .00084 −0.00051 0 .00007 0 .00148
ear 0.56∗∗ 0 .00003 0 .00040 0 .00017 −0.00164 0 .00104 0 .00509
mom12m 2.64∗∗ 0 .00151 0 .00078 0 .00059 −0.00442 0 .00155 0 .00455
cashpr −9.84∗∗ −0 .00427 0.00059 0.00111 0.00311 −0 .00053 0 .00162
retvol −1.13∗∗ −0 .00106 −0 .00470 0.00130 0.00647 −0 .00201 0 .00804
mom1m −0.95∗∗ −0 .00037 0.00126 −0 .00050 0.00395 −0 .00434 0 .01511
salecash −6.72∗∗ −0 .00070 0.00168 −0 .00045 −0 .00037 −0 .00015 0 .00170
agr −8.16∗∗ −0 .00219 −0 .00058 0.00092 0.00278 −0 .00093 0 .00208
chatoia 5.54∗∗ 0 .00018 −0.00010 0 .00008 −0.00062 0 .00048 0 .00193
baspread −1.44∗ −0 .00099 −0 .00362 0.00050 0.00559 −0 .00148 0 .00521
sue 0.74 0 .00006 0 .00068 0 .00011 −0.00238 0 .00152 0 .00376
chempia −2.99 −0 .00027 −0 .00047 0.00038 0.00093 −0 .00058 0 .00209
sgr −4.37 −0 .00105 −0 .00162 0.00089 0.00214 −0 .00035 0 .00204
convind −3.72 −0 .00019 −0 .00046 0.00034 0.00049 −0 .00019 0 .00132
mom36m 1.11 0 .00031 −0.00117 0 .00054 0 .00046 −0.00014 0 .00268
dolvol −1.32 −0 .00081 0.00065 0.00114 −0 .00077 −0 .00022 0 .00400
lev 2.71 0 .00143 0 .00196 −0.00073 −0.00289 0 .00023 0 .00142
bm 2.10 0 .00144 0 .00325 −0.00129 −0.00395 0 .00056 0 .00204
ep −0.29 −0 .00017 0.00439 −0 .00085 −0 .00367 0.00029 0 .00209
indmom −0.16 −0 .00011 0.00265 0.00037 −0 .00322 0.00031 0 .00416
pchgm pchsale 0.05 0 .00000 0 .00059 0 .00015 −0.00106 0 .00032 0 .00207
mve 4.24 0 .00144 −0.00081 −0.00013 −0.00049 −0.00002 0 .00083



Table IA.18: Significance without transaction costs: Subsample from 1997 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, for the subsample from July 1997 to December 2014. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 15. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 15.94∗∗∗ 0 .00346 −0.00082 −0.00033 −0.00231
gma 7.91∗∗ 0 .00362 −0.00344 0 .00073 −0.00091
agr −10.08∗∗ −0 .00468 0.00074 0.00055 0.00338
mom1m −1.32∗∗ −0 .00312 0.00343 −0 .00140 0.00109
chcsho −6.30 −0 .00301 −0 .00064 0.00120 0.00245
retvol −1.02 −0 .00457 −0 .00190 0.00424 0.00223
bm −2.38 −0 .00243 0.00488 −0 .00093 −0 .00153
mve −5.17 −0 .00176 0.00164 −0 .00058 0.00070
mom12m −1.94 −0 .00485 0.00770 −0 .00126 −0 .00158
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Table IA.19: Significance with transaction costs: Subsample from 1997 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
transaction costs, for risk-aversion parameter γ = 5, for the subsample from July 1997 to December 2014. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 20. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

sue 4.03∗∗∗ 0 .00087 0 .00052 −0.00033 −0.00231 0 .00124 0 .00196
rd mve 9.47∗∗ 0 .00466 −0.00378 0 .00059 −0.00164 0 .00016 0 .00045
stdcf −12.47∗∗ −0 .00899 0.00712 0.00102 0.00108 −0 .00024 0 .00054
zerotrade −2.63∗∗ −0 .00277 0.00495 −0 .00247 0.00105 −0 .00076 0 .00177
herf −8.12∗∗ −0 .00259 0.00188 0.00057 0.00030 −0 .00015 0 .00061
mom1m −0.97∗∗ −0 .00228 0.00418 −0 .00140 0.00109 −0 .00158 0 .00660
std turn 1.03∗∗ 0 .00225 −0.00505 0 .00259 −0.00044 0 .00065 0 .00387
retvol −1.43∗∗ −0 .00640 0.00079 0.00424 0.00223 −0 .00086 0 .00392
chatoia 6.32∗∗ 0 .00053 −0.00007 −0.00012 −0.00074 0 .00040 0 .00093
pchcapx ia −5.03∗∗ −0 .00141 0.00020 0.00023 0.00132 −0 .00034 0 .00099
pchgm pchsale 4.79∗ 0 .00058 −0.00015 −0.00011 −0.00064 0 .00032 0 .00096
mom6m −1.11∗ −0 .00329 0.00685 −0 .00159 −0 .00183 −0 .00014 0 .00305
idiovol 2.87∗ 0 .01448 −0.01994 0 .00435 0 .00103 0 .00009 0 .00085
ps 5.26∗ 0 .00215 −0.00064 −0.00101 −0.00091 0 .00041 0 .00110
turn −2.14∗ −0 .00640 0.00224 0.00333 0.00097 −0 .00014 0 .00130
egr −6.85∗ −0 .00311 0.00011 0.00038 0.00302 −0 .00040 0 .00100
gma 4.40 0 .00202 −0.00195 0 .00073 −0.00091 0 .00011 0 .00072
agr −3.21 −0 .00149 −0 .00201 0.00055 0.00338 −0 .00044 0 .00100
chcsho −1.33 −0 .00063 −0 .00273 0.00120 0.00245 −0 .00029 0 .00095
bm −0.83 −0 .00084 0.00333 −0 .00093 −0 .00153 −0 .00003 0 .00095
mve −3.75 −0 .00128 0.00121 −0 .00058 0.00070 −0 .00005 0 .00034
mom12m −0.85 −0 .00214 0.00497 −0 .00126 −0 .00158 0.00001 0 .00210
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Table IA.20: Significance without transaction costs: Full sample from 1980 to 2014

This table reports the significance and marginal contributions for the parametric portfolios without transac-
tion costs, for risk-aversion parameter γ = 5, for the full sample from January 1980 to December 2014. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 150. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

chtx 15.87∗∗∗ 0 .00292 −0.00191 0 .00029 −0.00131
mom1m −4.98∗∗∗ −0 .00682 0.00529 −0 .00096 0.00249
turn −23.79∗∗∗ −0 .04556 0.04183 0.00254 0.00119
retvol −20.78∗∗∗ −0 .05643 0.04943 0.00271 0.00428
std turn 30.59∗∗∗ 0 .04104 −0.04250 0 .00188 −0.00042
beta 13.75∗∗∗ 0 .04918 −0.05406 0 .00406 0 .00082
dolvol −24.46∗∗ −0 .01648 0.01537 0.00127 −0 .00016
zerotrade −19.55∗∗ −0 .01394 0.01508 −0 .00193 0.00079
chcsho −14.45∗∗ −0 .00437 0.00118 0.00086 0.00232
rd mve 12.00∗∗ 0 .00342 −0.00238 0 .00037 −0.00141
sue 12.82∗∗ 0 .00192 0 .00052 −0.00011 −0.00233
mom36m 10.70∗∗ 0 .00456 −0.00591 0 .00033 0 .00101
saleinv 11.69∗∗ 0 .00170 −0.00075 −0.00066 −0.00029
ps 12.95∗∗ 0 .00345 −0.00140 −0.00063 −0.00142
gma 6.71∗ 0 .00273 −0.00278 0 .00077 −0.00072
rsup −8.71∗ −0 .00164 0.00222 −0 .00005 −0 .00052
ear 8.85∗ 0 .00117 0 .00016 0 .00009 −0.00142
baspread 5.54∗ 0 .01897 −0.02515 0 .00269 0 .00349
bm 4.99 0 .00427 −0.00046 −0.00109 −0.00272
mom6m −3.52 −0 .00608 0.00946 −0 .00069 −0 .00270
agr −7.75 −0 .00283 −0 .00096 0.00073 0.00306
herf −4.18 −0 .00099 −0 .00011 0.00052 0.00058
sgr −5.29 −0 .00171 −0 .00124 0.00082 0.00212
bm ia 1.18 0 .00051 −0.00064 0 .00053 −0.00040
pchgm pchsale 3.06 0 .00031 0 .00053 0 .00002 −0.00086
pchcapx ia −2.23 −0 .00042 −0 .00049 0.00015 0.00076
mve 12.78 0 .00441 −0.00421 −0.00034 0 .00014
mom12m 1.14 0 .00175 0 .00163 −0.00033 −0.00305
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Table IA.21: Significance with transaction costs: Full sample from 1980 to 2014

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5, for the full sample from January 1980 to December
2014. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regular-
ized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes
investor’s utility is δ = 50. For the second (clean) stage, we run the bootstrap experiment for the para-
metric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values
are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗)
to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 13.17∗∗∗ 0 .00375 −0.00305 0 .00037 −0.00141 0 .00035 0 .00066
gma 6.86∗∗∗ 0 .00279 −0.00301 0 .00077 −0.00072 0 .00017 0 .00111
ps 4.35∗∗∗ 0 .00116 0 .00011 −0.00063 −0.00142 0 .00078 0 .00177
chtx 1.12∗∗∗ 0 .00021 −0.00042 0 .00029 −0.00131 0 .00123 0 .00275
sue 1.91∗∗∗ 0 .00029 0 .00058 −0.00011 −0.00233 0 .00157 0 .00283
mom36m 2.63∗∗∗ 0 .00112 −0.00290 0 .00033 0 .00101 0 .00043 0 .00207
turn −2.90∗∗∗ −0 .00556 0.00248 0.00254 0.00119 −0 .00065 0 .00229
retvol −1.20∗∗∗ −0 .00325 −0 .00195 0.00271 0.00428 −0 .00180 0 .00615
std turn 1.04∗∗∗ 0 .00139 −0.00346 0 .00188 −0.00042 0 .00062 0 .00614
zerotrade −0.94∗∗∗ −0 .00067 0.00257 −0 .00193 0.00079 −0 .00076 0 .00311
beta 5.28∗∗∗ 0 .01887 −0.02405 0 .00406 0 .00082 0 .00030 0 .00158
saleinv 5.46∗∗ 0 .00079 −0.00005 −0.00066 −0.00029 0 .00020 0 .00091
std dolvol −0.45∗∗ −0 .00020 0.00189 −0 .00135 −0 .00010 −0 .00024 0 .00634
chatoia 4.13∗∗ 0 .00024 0 .00007 −0.00002 −0.00069 0 .00041 0 .00147
agr −4.40∗∗ −0 .00160 −0 .00148 0.00073 0.00306 −0 .00070 0 .00156
chcsho −2.76∗∗ −0 .00083 −0 .00180 0.00086 0.00232 −0 .00055 0 .00156
sgr −4.58∗∗ −0 .00148 −0 .00115 0.00082 0.00212 −0 .00032 0 .00154
pchgm pchsale 2.68∗∗ 0 .00027 0 .00005 0 .00002 −0.00086 0 .00053 0 .00155
idiovol −3.82∗∗ −0 .01232 0.00663 0.00294 0.00300 −0 .00025 0 .00140
mom1m −0.79∗∗ −0 .00109 0.00245 −0 .00096 0.00249 −0 .00290 0 .01100
herf −3.82∗∗ −0 .00090 −0 .00000 0.00052 0.00058 −0 .00019 0 .00099
ear 0.34∗ 0 .00004 0 .00051 0 .00009 −0.00142 0 .00078 0 .00381
bm 2.71∗ 0 .00232 0 .00115 −0.00109 −0.00272 0 .00034 0 .00152
mom12m 1.19∗ 0 .00182 0 .00109 −0.00033 −0.00305 0 .00046 0 .00338
salerec 2.68 0 .00054 0 .00008 0 .00002 −0.00085 0 .00020 0 .00103
convind −2.51 −0 .00033 −0 .00074 0.00064 0.00058 −0 .00015 0 .00096
mom6m −1.29 −0 .00223 0.00554 −0 .00069 −0 .00270 0.00008 0 .00502
bm ia 1.28 0 .00056 −0.00092 0 .00053 −0.00040 0 .00023 0 .00153
mve −2.72 −0 .00094 0.00118 −0 .00034 0.00014 −0 .00004 0 .00060
pchcapx ia −1.32 −0 .00025 −0 .00040 0.00015 0.00076 −0 .00026 0 .00159
dolvol −0.54 −0 .00036 −0 .00060 0.00127 −0 .00016 −0 .00014 0 .00271
stdcf −1.37 −0 .00056 −0 .00097 0.00059 0.00110 −0 .00017 0 .00075
ep 0.74 0 .00104 0 .00215 −0.00163 −0.00186 0 .00029 0 .00156
chmom 0.24 0 .00019 0 .00078 −0.00071 0 .00068 −0.00095 0 .00524
mve ia −0.75 −0 .00030 0.00033 0.00011 −0 .00011 −0 .00003 0 .00090
roaq 0.04 0 .00004 0 .00216 −0.00078 −0.00208 0 .00065 0 .00226
cashpr −0.30 −0 .00016 −0 .00266 0.00111 0.00188 −0 .00017 0 .00118



Table IA.22: Significance without transaction costs: Alternative winsorization

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5, and with alternative winsorization based on the 1st and
99th percentiles. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate
the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that
maximizes investor’s utility is δ = 25. For the second (clean) stage, we run the bootstrap experiment for
the parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic
p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one aster-
isks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the
optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for
the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and
momentum. For each characteristic, the first column gives the acronym, the second the optimal value of the
parameter and the significance asterisks, and the next four columns give the marginal contribution of the
characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other
characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and
(iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans serif
font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28). For
this experiment, we winsorize firm characteristics such that those that take a value above (below) the 99th
(1st) cross-sectional percentile are set equal to this threshold.

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

agr −13.43∗∗∗ −0 .00502 0.00122 0.00068 0.00313
sue 13.90∗∗∗ 0 .00256 0 .00005 −0.00030 −0.00231
retvol −8.89∗∗∗ −0 .02872 0.02252 0.00288 0.00332
gma 7.42∗∗ 0 .00323 −0.00330 0 .00071 −0.00064
mom1m −3.23∗∗ −0 .00536 0.00477 −0 .00108 0.00166
beta 3.54∗∗ 0 .01460 −0.01870 0 .00419 −0.00009
rd mve 8.27∗∗ 0 .00266 −0.00154 0 .00041 −0.00153
std turn 5.86 0 .00787 −0.00945 0 .00184 −0.00026
bm 3.45 0 .00293 −0.00006 −0.00082 −0.00204
mve −2.82 −0 .00095 0.00107 −0 .00034 0.00022
mom12m −1.38 −0 .00242 0.00559 −0 .00065 −0 .00252
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Table IA.23: Significance with transaction costs: Alternative winsorization

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5, and with alternative winsorization based on the 1st
and 99th percentiles. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate
the regularized parametric portfolios with five-fold cross-validation and find that the lasso threshold that
maximizes investor’s utility is δ = 25. For the second (clean) stage, we run the bootstrap experiment for the
parametric portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values
are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗)
to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
stage plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28). For this experiment, we winsorize firm characteristics such that those that take a value
above (below) the 99th (1st) cross-sectional percentile are set equal to this threshold.

Marginal contributions Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 15.49∗∗∗ 0 .00498 −0.00415 0 .00041 −0.00153 0 .00029 0 .00052
ps 4.89∗∗∗ 0 .00153 −0.00027 −0.00067 −0.00126 0 .00067 0 .00140
stdcf −10.44∗∗∗ −0 .00147 0.00025 0.00018 0.00125 −0 .00020 0 .00030
sue 4.18∗∗∗ 0 .00077 0 .00074 −0.00030 −0.00231 0 .00110 0 .00162
retvol −1.35∗∗∗ −0 .00436 −0 .00035 0.00288 0.00332 −0 .00149 0 .00464
std turn 1.02∗∗∗ 0 .00137 −0.00353 0 .00184 −0.00026 0 .00058 0 .00446
mom1m −0.58∗∗ −0 .00096 0.00309 −0 .00108 0.00166 −0 .00272 0 .00849
chatoia 5.54∗∗ 0 .00033 −0.00000 −0.00007 −0.00074 0 .00048 0 .00110
turn −2.78∗∗ −0 .00618 0.00296 0.00270 0.00101 −0 .00049 0 .00170
chtx 0.98∗∗ 0 .00017 −0.00019 0 .00017 −0.00101 0 .00086 0 .00206
agr −5.67∗∗ −0 .00212 −0 .00113 0.00068 0.00313 −0 .00055 0 .00108
beta 2.82∗∗ 0 .01164 −0.01596 0 .00419 −0.00009 0 .00022 0 .00126
gma 4.74∗∗ 0 .00206 −0.00226 0 .00071 −0.00064 0 .00013 0 .00090
pchgm pchsale 4.27∗∗ 0 .00044 0 .00039 −0.00014 −0.00108 0 .00039 0 .00079
bm ia 2.85∗∗ 0 .00092 −0.00129 0 .00055 −0.00056 0 .00038 0 .00092
zerotrade −0.51∗ −0 .00024 0.00130 −0 .00157 0.00090 −0 .00039 0 .00179
sgr −3.61 −0 .00120 −0 .00140 0.00074 0.00208 −0 .00022 0 .00101
idiovol −1.99 −0 .00755 0.00268 0.00308 0.00186 −0 .00008 0 .00109
bm 0.77 0 .00066 0 .00208 −0.00082 −0.00204 0 .00013 0 .00121
chmom −0.38 −0 .00038 0.00136 −0 .00073 0.00045 −0 .00070 0 .00402
roaq −0.56 −0 .00071 0.00384 −0 .00121 −0 .00224 0.00031 0 .00164
mve −1.96 −0 .00066 0.00083 −0 .00034 0.00022 −0 .00004 0 .00045
mom12m −0.23 −0 .00040 0.00314 −0 .00065 −0 .00252 0.00043 0 .00259
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Table IA.24: Significance without transaction costs: Risk-aversion of γ = 2

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 2. We run a screen-and-clean significance test. For the first
(screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that
the lasso threshold that maximizes investor’s utility is δ = 75. For the second (clean) stage, we run the
bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the first
stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next four columns give the marginal contri-
bution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic
with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark
portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are
in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font (cf.
Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 51.10∗∗∗ 0 .00347 −0.00085 −0.00008 −0.00254
retvol −27.05∗∗∗ −0 .03520 0.03081 0.00117 0.00323
bm 9.54∗∗ 0 .00325 −0.00087 −0.00033 −0.00205
gma 14.88∗∗ 0 .00251 −0.00213 0 .00028 −0.00066
agr −25.44∗∗ −0 .00389 0.00077 0.00023 0.00290
mom1m −7.75∗∗ −0 .00508 0.00388 −0 .00043 0.00164
bm ia 16.42∗ 0 .00341 −0.00289 0 .00029 −0.00081
beta 6.69∗ 0 .01103 −0.01262 0 .00167 −0.00008
rd mve 14.66 0 .00210 −0.00064 0 .00018 −0.00164
std turn 18.71 0 .01266 −0.01271 0 .00085 −0.00080
chcsho −13.50 −0 .00192 −0 .00073 0.00037 0.00228
zerotrade −6.41 −0 .00216 0.00174 −0 .00082 0.00124
mve −9.17 −0 .00124 0.00115 −0 .00014 0.00022
mom12m −10.59 −0 .00752 0.01054 −0 .00026 −0 .00275
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Table IA.25: Significance with transaction costs: Risk-aversion of γ = 2

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 2. We run a screen-and-clean significance test. For
the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and
find that the lasso threshold that maximizes investor’s utility is δ = 75. For the second (clean) stage,
we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero
θ’s from the first stage. Characteristic p-values are computed using the percentile method discussed in
Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen stage plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next
five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance,
(ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of
the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost.
The last column reports the marginal contribution of the characteristic to transaction costs when this is
traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and
contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 31.87∗∗∗ 0 .00457 −0.00332 0 .00018 −0.00164 0 .00022 0 .00047
agr −18.14∗∗∗ −0 .00278 0.00016 0.00023 0.00290 −0 .00051 0 .00115
sue 8.40∗∗∗ 0 .00057 0 .00062 −0.00008 −0.00254 0 .00143 0 .00224
turn −9.17∗∗∗ −0 .00866 0.00727 0.00111 0.00068 −0 .00040 0 .00168
retvol −5.26∗∗∗ −0 .00685 0.00378 0.00117 0.00323 −0 .00133 0 .00445
std turn 3.45∗∗∗ 0 .00234 −0.00320 0 .00085 −0.00080 0 .00081 0 .00478
zerotrade −5.25∗∗∗ −0 .00177 0.00220 −0 .00082 0.00124 −0 .00085 0 .00218
beta 10.98∗∗∗ 0 .01811 −0.01992 0 .00167 −0.00008 0 .00023 0 .00111
chtx 3.85∗∗ 0 .00030 −0.00016 0 .00006 −0.00123 0 .00103 0 .00222
mom1m −1.77∗∗ −0 .00116 0.00207 −0 .00043 0.00164 −0 .00211 0 .00833
ps 11.93∗∗ 0 .00151 −0.00056 −0.00027 −0.00127 0 .00060 0 .00130
chatoia 12.45∗∗ 0 .00032 0 .00004 −0.00002 −0.00077 0 .00043 0 .00107
gma 16.17∗∗ 0 .00273 −0.00248 0 .00028 −0.00066 0 .00013 0 .00081
herf −13.82∗∗ −0 .00138 0.00073 0.00017 0.00061 −0 .00012 0 .00065
pchgm pchsale 9.58∗ 0 .00037 0 .00004 −0.00001 −0.00079 0 .00039 0 .00112
bm ia 7.30∗ 0 .00152 −0.00125 0 .00029 −0.00081 0 .00026 0 .00116
stdcf −14.34∗ −0 .00294 0.00175 0.00027 0.00114 −0 .00021 0 .00060
bm 5.70∗ 0 .00194 0 .00029 −0.00033 −0.00205 0 .00015 0 .00104
chcsho −7.07 −0 .00101 −0 .00127 0.00037 0.00228 −0 .00038 0 .00114
chmom −1.98 −0 .00077 0.00135 −0 .00029 0.00044 −0 .00073 0 .00393
ear 1.09 0 .00007 0 .00059 0 .00002 −0.00137 0 .00070 0 .00305
baspread 1.34 0 .00233 −0.00594 0 .00131 0 .00279 −0.00049 0 .00299
idiovol −4.59 −0 .00693 0.00386 0.00123 0.00187 −0 .00004 0 .00091
ep 3.57 0 .00233 −0.00077 −0.00066 −0.00104 0 .00014 0 .00107
roaq −0.18 −0 .00009 0.00219 −0 .00046 −0 .00215 0.00050 0 .00171
mve −3.63 −0 .00049 0.00045 −0 .00014 0.00022 −0 .00004 0 .00038
mom12m −1.71 −0 .00121 0.00393 −0 .00026 −0 .00275 0.00030 0 .00255
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Table IA.26: Significance without transaction costs: Risk-aversion of γ = 10

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 10. We run a screen-and-clean significance test. For the first
(screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that
the lasso threshold that maximizes investor’s utility is δ = 15. For the second (clean) stage, we run the
bootstrap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the first
stage. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen stage plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next four columns give the marginal contri-
bution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic
with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark
portfolio, and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are
in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font (cf.
Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

agr −6.82∗∗∗ −0 .00522 0.00118 0.00115 0.00290
ps 7.84∗∗∗ 0 .00494 −0.00232 −0.00135 −0.00127
sue 9.17∗∗∗ 0 .00311 −0.00019 −0.00038 −0.00254
mom1m −2.20∗∗∗ −0 .00723 0.00776 −0 .00217 0.00164
std turn 8.63∗∗∗ 0 .02919 −0.03265 0 .00427 −0.00080
dolvol −5.98∗∗ −0 .00898 0.00645 0.00278 −0 .00025
retvol −4.58∗∗ −0 .02980 0.02074 0.00583 0.00323
bm ia 3.70∗∗ 0 .00385 −0.00447 0 .00144 −0.00081
gma 2.37∗ 0 .00200 −0.00272 0 .00138 −0.00066
rd mve 3.29 0 .00236 −0.00161 0 .00089 −0.00164
chcsho −1.34 −0 .00095 −0 .00317 0.00184 0.00228
bm 1.13 0 .00192 0 .00176 −0.00164 −0.00205
mve 2.35 0 .00159 −0.00112 −0.00068 0 .00022
mom12m −2.50 −0 .00886 0.01294 −0 .00132 −0 .00275
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Table IA.27: Significance with transaction costs: Risk-aversion of γ = 10

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 10. We run a screen-and-clean significance test. For
the first (screen) stage, we calibrate the regularized parametric portfolios with five-fold cross-validation and
find that the lasso threshold that maximizes investor’s utility is δ = 15. For the second (clean) stage,
we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero
θ’s from the first stage. Characteristic p-values are computed using the percentile method discussed in
Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen stage plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next
five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance,
(ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of
the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost.
The last column reports the marginal contribution of the characteristic to transaction costs when this is
traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and
contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 5.99∗∗∗ 0 .00429 −0.00375 0 .00089 −0.00164 0 .00020 0 .00047
gma 4.09∗∗∗ 0 .00345 −0.00432 0 .00138 −0.00066 0 .00015 0 .00081
ps 3.38∗∗∗ 0 .00213 −0.00017 −0.00135 −0.00127 0 .00066 0 .00130
sue 1.69∗∗∗ 0 .00057 0 .00091 −0.00038 −0.00254 0 .00143 0 .00224
retvol −0.77∗∗∗ −0 .00501 −0 .00288 0.00583 0.00323 −0 .00117 0 .00445
std turn 0.58∗∗∗ 0 .00197 −0.00633 0 .00427 −0.00080 0 .00090 0 .00478
zerotrade −0.81∗∗∗ −0 .00136 0.00495 −0 .00410 0.00124 −0 .00074 0 .00218
herf −3.98∗∗ −0 .00198 0.00072 0.00083 0.00061 −0 .00018 0 .00065
chtx 0.72∗∗ 0 .00028 −0.00035 0 .00030 −0.00123 0 .00100 0 .00222
turn −1.07∗∗ −0 .00505 −0 .00088 0.00557 0.00068 −0 .00032 0 .00168
chatoia 3.13∗∗ 0 .00040 0 .00006 −0.00011 −0.00077 0 .00042 0 .00107
agr −2.61∗∗ −0 .00200 −0 .00154 0.00115 0.00290 −0 .00051 0 .00115
stdcf −2.26∗∗ −0 .00232 0.00003 0.00135 0.00114 −0 .00020 0 .00060
mom1m −0.37∗ −0 .00122 0.00376 −0 .00217 0.00164 −0 .00200 0 .00833
chmom −0.45∗ −0 .00088 0.00268 −0 .00146 0.00044 −0 .00078 0 .00393
mve −1.63 −0 .00110 0.00160 −0 .00068 0.00022 −0 .00004 0 .00038
pchgm pchsale 1.49 0 .00029 0 .00016 −0.00006 −0.00079 0 .00040 0 .00112
bm ia 1.21 0 .00126 −0.00209 0 .00144 −0.00081 0 .00021 0 .00116
sgr −2.25 −0 .00154 −0 .00159 0.00150 0.00179 −0 .00015 0 .00111
chcsho −1.39 −0 .00099 −0 .00277 0.00184 0.00228 −0 .00037 0 .00114
bm 0.81 0 .00138 0 .00217 −0.00164 −0.00205 0 .00013 0 .00104
pchcapx ia −1.11 −0 .00047 −0 .00060 0.00036 0.00093 −0 .00021 0 .00118
roaq −0.34 −0 .00083 0.00488 −0 .00228 −0 .00215 0.00038 0 .00171
ep 0.74 0 .00243 0 .00176 −0.00331 −0.00104 0 .00017 0 .00107
dolvol −0.25 −0 .00037 −0 .00200 0.00278 −0 .00025 −0 .00015 0 .00195
idiovol 0.17 0 .00131 −0.00930 0 .00615 0 .00187 −0.00003 0 .00091
mom12m −0.74 −0 .00264 0.00663 −0 .00132 −0 .00275 0.00008 0 .00255
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Table IA.28: Significance without transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios without transac-
tion costs, for risk-aversion parameter γ = 5. We sort firms by each characteristic every month into quintiles,
assigning a weight of 1/Qt to firms in the fifth quintile, a weight of −1/Qt to firms in the first quintile, and
a zero weight to the remaining firms, where Qt is the number of firms in each quintile in month t. We
run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is
δ = 10. For the second (clean) stage, we run the bootstrap experiment for the parametric portfolios using
those characteristics with nonzero θ’s from the first stage. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and
marginal contributions, we include all characteristics with nonzero θ’s for the screen stage plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each character-
istic, the first column gives the acronym, the second the optimal value of the parameter and the significance
asterisks, and the next four columns give the marginal contribution of the characteristic to: (i) the charac-
teristic own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio,
(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean.
Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that
drive the characteristic toward zero are in red italic font (cf. Footnote 28).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

rd mve 2.11∗∗∗ 0 .03183 −0.02588 0 .00284 −0.00879
agr −5.32∗∗∗ −0 .01694 0.00844 0.00075 0.00775
gma 2.79∗∗∗ 0 .01346 −0.01336 0 .00247 −0.00257
sue 9.03∗∗∗ 0 .01184 −0.00350 −0.00051 −0.00783
mom1m −1.08∗∗∗ −0 .01310 0.01112 −0 .00330 0.00528
std turn 4.37∗∗∗ 0 .06424 −0.06666 0 .00681 −0.00439
ep 3.21∗ 0 .04109 −0.03176 −0.00464 −0.00469
stdcf −2.26∗ −0 .02143 0.01442 0.00325 0.00376
retvol −3.00 −0 .07674 0.06176 0.00901 0.00597
roaq −1.14 −0 .01051 0.02086 −0 .00321 −0 .00714
bm 0.04 0 .00033 0 .00895 −0.00292 −0.00636
chcsho −0.21 −0 .00081 −0 .00885 0.00317 0.00649
mve −2.16 −0 .01538 0.01612 0.00020 −0 .00094
mom12m −1.27 −0 .02163 0.03398 −0 .00312 −0 .00924
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Table IA.29: Significance with transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. We sort firms by each characteristic every month
into quintiles, assigning a weight of 1/Qt to firms in the fifth quintile, a weight of −1/Qt to firms in the
first quintile, and a zero weight to the remaining firms, where Qt is the number of firms in each quintile in
month t. We run a screen-and-clean significance test. For the first (screen) stage, we calibrate the regular-
ized parametric portfolios with five-fold cross-validation and find that the lasso threshold that maximizes
investor’s utility is δ = 5. For the second (clean) stage, we run the bootstrap experiment for the parametric
portfolios using those characteristics with nonzero θ’s from the first stage. Characteristic p-values are com-
puted using the percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those
characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal paramet-
ric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen stage
plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For
each characteristic, the first column gives the acronym, the second the optimal value of the parameter and
the significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when this is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 28).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 2.46∗∗∗ 0 .03707 −0.03198 0 .00284 −0.00879 0 .00086 0 .00160
agr −3.56∗∗∗ −0 .01133 0.00400 0.00075 0.00775 −0 .00117 0 .00223
gma 2.58∗∗∗ 0 .01243 −0.01266 0 .00247 −0.00257 0 .00033 0 .00141
sue 4.01∗∗∗ 0 .00525 0 .00003 −0.00051 −0.00783 0 .00306 0 .00368
mom1m −0.55∗∗∗ −0 .00668 0.00864 −0 .00330 0.00528 −0 .00395 0 .01160
std turn 1.08∗∗∗ 0 .01595 −0.02139 0 .00681 −0.00439 0 .00303 0 .00651
chmom −0.53∗∗ −0 .00442 0.00664 −0 .00230 0.00200 −0 .00192 0 .00608
ep 2.04∗∗ 0 .02609 −0.01738 −0.00464 −0.00469 0 .00061 0 .00206
ps 2.05∗∗ 0 .00388 0 .00014 −0.00133 −0.00364 0 .00095 0 .00201
bm 0.53∗∗ 0 .00414 0 .00457 −0.00292 −0.00636 0 .00057 0 .00348
retvol −0.64 −0 .01639 0.00310 0.00901 0.00597 −0 .00168 0 .00635
stdcf −1.08 −0 .01020 0.00353 0.00325 0.00376 −0 .00034 0 .00136
chcsho −1.06 −0 .00415 −0 .00488 0.00317 0.00649 −0 .00063 0 .00180
roaq 0.16 0 .00145 0 .00807 −0.00321 −0.00714 0 .00083 0 .00290
mve −1.08 −0 .00767 0.00885 0.00020 −0 .00094 −0 .00044 0 .00195
mom12m −0.58 −0 .00987 0.02257 −0 .00312 −0 .00924 −0 .00034 0 .00421
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Table IA.30: Out-of-sample performance: Size quintiles

This table reports the out-of-sample annualized Sharpe ratio of returns net of transaction costs for the reg-
ularized parametric portfolios applied to each of the five quintiles of stocks sorted by size, for risk-aversion
parameter γ = 5. Panel A reports the performance for the portfolios that do not use any characteristics,
which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B
reports the performance of two parametric portfolios that exploit a small number of characteristics, and
the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric
portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second
parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics
(Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all 51 charac-
teristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation window.
We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized para-
metric portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at the 0.01/0.05/0.1
level.

Policy Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Panel A: Portfolios with no characteristics
VW 0.341∗∗∗ 0.402∗∗∗ 0.458∗∗∗ 0.546∗∗∗ 0.568
1/N 0.442∗∗∗ 0.391∗∗∗ 0.438∗∗∗ 0.530∗∗∗ 0.558

Panel B: Portfolios with characteristics
Size/val./mom. 0.852∗∗∗ 0.889∗∗∗ 0.666∗∗∗ 0.601∗ 0.456
Size/val./inv./prof. 0.933∗∗∗ 1.072∗∗∗ 0.856∗∗ 0.796 0.360
Regularized 1.734 1.456 1.008 0.769 0.497
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Table IA.31: Out-of-sample performance with shortsale constraints

This table reports the out-of-sample performance of the regularized parametric portfolios in the presence
of transaction costs and shortsale constraints, for risk-aversion parameter γ = 5. Panel A reports the
performance for the parametric portfolios with no shortselling, and Panel B reports the performance for the
parametric portfolios with 50% shortselling. Each panel reports the results for four portfolios: the benchmark
value-weighted portfolio (VW), which has zero shortselling in both panels, two parametric portfolios that
exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large
set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum
characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset
growth, and gross profitability characteristics (Size/val./inv./prof.). For the regularized parametric portfolio
(Regularized), the lasso threshold is calibrated using cross-validation over the estimation window. For each
portfolio, the first column reports the monthly turnover, and the next three columns report the out-of-
sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test
the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric
portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no shortselling
VW 0.050 0.085 0.150 0.567
Size/val./mom. 0.233 0.102 0.177 0.576∗∗

Size/val./inv./prof. 0.186 0.109 0.186 0.586∗∗

Regularized 0.301 0.125 0.187 0.669

Panel B: Portfolios with 50% shortselling
VW 0.050 0.085 0.150 0.567∗∗∗

Size/val./mom. 0.429 0.119 0.165 0.721∗∗∗

Size/val./inv./prof. 0.319 0.132 0.152 0.868∗∗∗

Regularized 0.451 0.155 0.147 1.059
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Table IA.32: Out-of-sample performance without turnover constraint

This table reports the out-of-sample performance of the regularized parametric portfolios that do not control
for turnover in the presence of transaction costs, for risk-aversion parameter γ = 5. Panel A reports
the performance for the portfolios that do not use any characteristics, which are the benchmark value-
weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two
parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio
that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market,
and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-
to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is
the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is
calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the
monthly turnover, and the next three columns report the out-of-sample annualized mean, standard deviation,
and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe
ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (∗) indicate
that the difference is significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 1.167 0.161 0.300 0.537∗∗∗

Size/val./inv./prof. 1.863 0.358 0.381 0.939∗

Regularized 3.859 0.738 0.611 1.209
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Table IA.33: Out-of-sample performance: Reality check

This table reports the out-of-sample performance of the different portfolios in the presence of transaction
costs, for risk-aversion parameter γ = 5. Panel A reports the performance for the portfolios that do not
use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted
portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number of
characteristics, and two parametric portfolios that exploit a larger set of characteristics. The first parametric
portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second
parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics
(Size/val./inv./prof.). The third portfolio is the parametric portfolio that exploits the 15 in-sample significant
characteristics in the presence of transaction costs identified in Section 5 (Fifteen sign. characteristics). The
fourth portfolio is the regularized parametric portfolio that exploits all 51 characteristics (Regularized).
The lasso threshold is calibrated using cross-validation over the estimation window. For each portfolio, the
first column reports the monthly turnover, and the next three columns report the out-of-sample annualized
mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test the significance
of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric portfolio.
Three/two/one asterisks (∗) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 0.754 0.145 0.215 0.675∗∗∗

Size/val./inv./prof. 0.963 0.236 0.220 1.072∗∗

Fifteen sign. characteristics 1.065 0.223 0.166 1.343
Regularized 0.979 0.241 0.178 1.356
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Table IA.34: Significance of individual characteristics

This table reports the bootstrap p-values for the significance analysis of individual characteristics.

Characteristic p-val Characteristic p-val Characteristic p-val

Panel A: Without transaction costs

bm 0.000 mom6m 0.000 dy 0.044
cashpr 0.000 retvol 0.000 rsup 0.070
agr 0.000 baspread 0.000 dolvol 0.102
chcsho 0.000 idiovol 0.000 salecash 0.110
lgr 0.000 pchcapx ia 0.002 pricedelay 0.144
hire 0.000 mom12m 0.002 std turn 0.208
sgr 0.000 chtx 0.004 pchsale pchrect 0.254
pchgm pchsale 0.000 mom36m 0.004 zerotrade 0.340
egr 0.000 indmom 0.006 salerec 0.464
convind 0.000 turn 0.008 mom1m 0.550
ps 0.000 rd mve 0.010 chmom 0.732
chatoia 0.000 std dolvol 0.010 mve 0.762
chempia 0.000 ep 0.012 aeavol 0.828
roaq 0.000 herf 0.016 bm ia 0.866
stdcf 0.000 beta 0.018 chpmia 0.886
sue 0.000 saleinv 0.030 gma 0.942
ear 0.000 lev 0.042 mve ia 0.946

Panel B: With transaction costs

bm 0.000 idiovol 0.004 ear 0.278
cashpr 0.000 chatoia 0.012 dolvol 0.302
agr 0.000 mom6m 0.012 rsup 0.604
chcsho 0.000 turn 0.012 salerec 0.650
lgr 0.000 mom36m 0.014 mve 0.684
hire 0.000 indmom 0.016 std turn 0.886
sgr 0.000 beta 0.020 std dolvol 0.962
egr 0.000 ep 0.022 gma 1.000
convind 0.000 herf 0.024 pchsale pchrect 1.000
ps 0.000 rd mve 0.034 chpmia 1.000
chempia 0.000 pchcapx ia 0.042 bm ia 1.000
sue 0.000 dy 0.048 mve ia 1.000
retvol 0.000 pchgm pchsale 0.048 aeavol 1.000
baspread 0.000 lev 0.050 mom1m 1.000
stdcf 0.002 saleinv 0.058 chmom 1.000
mom12m 0.002 salecash 0.170 zerotrade 1.000
roaq 0.004 chtx 0.234 pricedelay 1.000

IA-50



References

Abdi, F., and A. Ranaldo. 2017. A Simple Estimation of Bid-Ask Spreads from Daily

Close, High, and Low Prices. The Review of Financial Studies 30:4437–4480.

Brandt, M. W., P. Santa-Clara, and R. Valkanov. 2009. Parametric Portfolio Policies:

Exploiting Characteristics in the Cross-Section of Equity Returns. The Review of

Financial Studies 22:3411–3447.
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