Comparison of approaches for identification of all-data cloud-based evolving systems

Blažič, Sašo and Angelov, Plamen and Škrjanc, Igor (2015) Comparison of approaches for identification of all-data cloud-based evolving systems. IFAC-PapersOnLine, 28 (10). pp. 129-134. ISSN 2405-8963

Full text not available from this repository.


In this paper we deal with identification of nonlinear systems which are modelled by fuzzy rule-based models that do not assume fixed partitioning of the space of antecedent variables. We first present an alternative way of describing local density in the cloud-based evolving systems. The Mahalanobis distance among the data samples is used which leads to the density that is more suitable when the data are scattered around the input-output surface. All the algorithms for the identification of the cloud parameters are given in a recursive form which is necessary for the implementation of an evolving system. It is also shown that a simple linearised model can be obtained without identification of the consequent parameters. All the proposed algorithms are illustrated on a simple simulation model of a static system.

Item Type: Journal Article
Journal or Publication Title: IFAC-PapersOnLine
Departments: Faculty of Science and Technology > School of Computing & Communications
ID Code: 133689
Deposited By: ep_importer_pure
Deposited On: 21 May 2019 11:15
Refereed?: Yes
Published?: Published
Last Modified: 01 Jan 2020 12:00

Actions (login required)

View Item View Item