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Captive breeding of the freshwater pearl mussel (Margaritifera margaritifera) is an important 

short-term strategy to conserve this critically endangered species. The aim of this thesis was 

to improve current knowledge of the factors affecting juvenile M. margaritifera in a captive 

setting, and to develop understanding of juvenile anatomy, ontogeny and the ecological 

requirements of juveniles in captivity. The substrate requirements of newly-excysted juveniles 

were investigated in an experimental flow-through system (Chapter 3) by analysing differences 

in survival and growth in two different substrate size clasts (0.25 - 1 mm or 1 - 2 mm), and 

cleaning regimes (weekly or monthly). Factors potentially affecting juvenile survival and 

growth were further investigated in Chapter 4. Results indicate that dissolved oxygen and 

flow were crucial for juveniles in this system. Investigations of juvenile anatomy and ontogeny 

(Chapter 5) using scanning electron microscopy have greatly improved our knowledge of the 

timing of key developmental stages, such as the onset of gill reflection. Analyses of gill ciliation 

suggest the species is capable of retaining very small particles (<2 µm diameter), offering a 

potential reason for why M. margaritifera is so sensitive to turbid and enriched conditions. 

Improving the efficiency and effectiveness of monitoring juveniles in captivity should be an 

objective for all rearing programmes. Batch marking of juveniles through immersion in calcein 

(Chapter 6) was shown to offer a quick and reliable method and has the potential to save 

rearing programmes time and money whilst improving juvenile monitoring. The findings of 

these investigations should inform other captive rearing programmes in order to improve 

juvenile survival. Rearing efforts should focus initially on ensuring sufficient flow and dissolved 

oxygen for post-excystment juveniles, before tailoring systems to ensure low-stress conditions 

for transforming juveniles.
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1.1.  Background and context of freshwater bivalve conservation
Freshwater mussels (Unionida) are among the most endangered invertebrates in the world 

(Machordom et al., 2003; Primack, 2006) and are disproportionately imperilled compared to 

other groups (Williams et al., 1993). They are a keystone group in aquatic systems making 

them a priority for conservation (Primack, 2006) and Margaritifera margaritifera (Linnaeus, 

1758) has simultaneously been described as fulfilling the role of a keystone, umbrella, indicator 

and flagship species (Geist, 2010). Freshwater mussels also provide valuable environmental 

services, with their presence greatly enhancing biodiversity (Killeen et al., 2004; Geist, 2010).

Due to the unprecedented decline of freshwater bivalves, the number of studies focusing 

on freshwater mussel biology, ecology and propagation began to gather pace at the end of the 

19th century (Lopes-Lima et al., 2014). One of the earliest concerted efforts to understand 

freshwater mussel ecology and propagation took place at Fairport Biological Laboratory, Iowa, 

USA, between 1908 – 1941 (Pritchard, 2001; Lopes-Lima et al., 2014). Lopes-Lima et al. (2014) 

provide an excellent review of important events in freshwater mussel biology, ecology and 

conservation research in which they describe the importance of concurrent and subsequent 

works by various groups and individuals; notably those of Ortmann (1911a; 1911c; 1911b; 

1912), Haas (1948), Bauer (1979; 1988; 1998) and Bauer & Wächtler (2001), Barnhart (2003; 

2004; 2006), Bogan (1998; 2008) and Bogan & Roe (2008), Neves; Neves & Widlak (1987), 

Gatenby et al. (1996), Beaty & Neves (2004), Hanlon & Neves (2006), Hua et al. (2013), and 

Strayer (1999a; 1999b), Sparks & Strayer (1998) and Newton et al. (2008). 

These works have gone a long way to describe bivalve biology, ecology and propagation 

but have mainly focused on unionid species. This is understandable considering that much of 

this early work was carried out in the USA and unionids make up the majority of the North 

American freshwater mussel fauna. Conservation of freshwater mussels is particularly difficult 

as they have complex life histories involving a parasitic stage on a wide range of hosts (usually 

fish), can occur in complex species assemblages which may have taken decades to establish, 

and may have very specific water quality requirements or be sensitive to different stressors 

at different life history stages. The freshwater pearl mussel M. margaritifera is classified as 

critically endangered (Moorkens, 2011a) and declined by over 90 % during the 20th Century 

(Bauer, 1988). Consequently, M. margaritifera has become the subject of increased research 

interest, particularly in Europe where the majority of remaining populations are found. The 
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life history and ecology of this species have been extensively studied since the early 1980’s, 

e.g. Bauer (1979); Bauer et al. (1980); Valovirta (1980); Young & Williams (1983); Young & 

Williams (1984a, 1984b); Bauer (1987a, 1987b); Bauer & Vogel (1987); Buddensiek (1989), and 

more recently the topic of captive breeding (propagation) has become popular as an increasing 

number of programmes have been initiated to save dwindling populations e.g. Hastie & Young 

(2003a); Lange (2005); Preston et al. (2007); Schmidt & Vandré (2010); Thomas et al. (2010); 

Gum et al. (2011); Moorkens (2011b); Scheder et al. (2011); Scriven et al. (2011); Eybe et al. 

(2013); Scheder et al. (2014); Simon et al. (2015); Gui et al. (2016); Lavictoire et al. (2016). 

Previous ecological and environmental studies have tended to focus on conditions in the wild 

and those affecting adult mussels. Whilst some have focused on benthic habitats and the 

effects on juvenile distribution and survival, e.g. Buddensiek et al. (1993); Geist & Auerswald 

(2007); Österling et al. (2008); Moorkens & Killeen (2014), there is still a paucity of research in 

this area. Similarly, propagation programmes for M. margaritifera are still in their infancy and 

because juveniles take a long time to grow and become sexually mature, concrete evidence of 

large-scale captive rearing successes are not widely published. Studies on releases of captive-

bred M. margaritifera are even more scarce as only a handful of research groups have reached 

this stage, e.g. Buddensiek (1995); Hruška (1999); Preston et al. (2007); Wilson et al. (2011); 

F. Thielen (pers. comm.). It has also become apparent that different rearing methods have 

variable success rates in different countries and that methods showing success at one location 

may not necessarily work at others (Thielen et al., 2015). This highlights the need for further 

investigative work to clarify the primary factors affecting survival of juvenile M. margaritifera 

so that propagation practitioners can refine and standardise rearing systems. The following 

sections serve to introduce the freshwater pearl mussel and the factors affecting survival in the 

wild, as well as to summarise current methods of captive breeding and their relative successes. 

Finally, the thesis objectives and structure is provided.

1.2.  The freshwater pearl mussel Margaritifera margaritifera
1.2.1  Life history, distribution, habitat requirements and factors 

causing decline

The freshwater pearl mussel (Margaritifera margaritifera) is a large freshwater bivalve 

occurring in very clean, highly oxygenated, low-calcium, neutral to slightly acidic, fast flowing 
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rivers and streams (Skinner et al., 2003; Geist & Auerswald, 2007). Within these habitat 

parameters, the species has a holarctic distribution (Young et al., 2001) and is classified as 

critically endangered in the UK (Seddon et al., 2014) and throughout Europe (Moorkens, 

2011a). The species is long-lived, slow-growing and requires a host fish in order to complete 

its life cycle (Fig. 1.1). Throughout this thesis, the term ‘adult’ refers to mussels which are 

sexually mature and ‘juvenile’ to those which are not. Juveniles are thought to become 

sexually mature at around 12 years old, or when shell length reaches approximately 6.5 - 

7 cm (Young & Williams, 1984a). The freshwater pearl mussel is typically dioecious (Skinner 

et al., 2003) but may become hermaphroditic at low population levels (Bauer, 1987b). Each 

year, male mussels release sperm between May – July, which are inhaled by female mussels 

during normal filtering activity. Sperm fertilise eggs which are brooded within the female’s 

gills for several weeks before mature larvae (glochidia) are released into the water column, 

typically in a temperature-dependent, synchronised event between July – September  

(Hastie & Young, 2003b). Glochidia must encyst upon a salmonid fish gill, typically salmon, 

Salmo salar (Linnaeus, 1758), or brown/sea trout, Salmo trutta (Linnaeus, 1758) in order to 

continue development. Once encysted within the fish gill epithelium, glochidia remain there 

for around 9 - 10 months and grow to around 5 – 6 times their original size (typically from 

approximately 0.07 – 0.08 mm to 0.4 mm). Between May – July the following year, juvenile 

Fig. 1.1: Diagram showing the life cycle of the freshwater pearl mussel (Margaritifera margaritifera) 
showing glochidia release, encystment on a salmonid host and eventual excystment into river gravels. 
Modified from Skinner et al. (2003). 

Glochidia released

EncystmentExcystment

Juveniles bury into 
substrate
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mussels excyst (drop off) the fish gills and must fall into suitable habitat if they are to continue 

growth and development into adult mussels. 

M. margaritifera is a good indicator species as it has very high water quality requirements 

and only thrives in very clean, oligotrophic rivers (Young, 2005; Geist & Auerswald, 2007; Geist, 

2010). The species is declining throughout its range (Young et al., 2001) with > 90 % loss of 

individuals during the 20th Century (Bauer et al., 1980) due to factors including aggravated 

siltation, eutrophication, loss/decline of host fish species and illegal pearl fishing (Bauer, 1988; 

Bogan, 1993; Young et al., 2001). By far the most significant factor leading to population declines 

across Europe has been degradation of juvenile habitats through siltation and increased 

nutrient inputs (Moorkens & Killeen, 2014). As is the case throughout its range, English pearl 

mussel populations have seen significant declines and population extinctions since the early 

20th Century (Fig. 1.2).  

Juveniles are particularly vulnerable to sub-optimal habitat conditions as they inhabit 

substrate interstices for the first few years of their post-parasitic life. Recruiting populations 

are found in areas where the river bed consists of stable, well-mixed coarse substrates with 

low proportions of fine material (Boycott & Bowell, 1898; Brim Box & Mossa, 1999; Hastie et 

al., 2000; Morales et al., 2004; Altmüller & Dettmer, 2006; Geist & Auerswald, 2007; Moorkens 

& Killeen, 2014) so that there is good exchange between the water column and interstitial layer 

Fig. 1.2: Map of England showing location of known English freshwater pearl mussel populations 
reported by Jackson (1925) and those present in 2016. N.B. Size of dots not indicative of population size. 
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(Buddensiek et al., 1993; Geist & Auerswald, 2007). This provides juveniles with sufficient food 

and oxygen (Brady, 2000). Where this is not the case, low dissolved oxygen (DO) concentrations 

may cause mortality due to asphyxiation but may also cause behaviours which make juveniles 

more susceptible to being washed away, e.g. moving to the surface in search of higher DO 

conditions (Sparks & Strayer, 1998; Moorkens, 2011b). Such behavioural changes can also 

have energetic consequences as juveniles spend time searching for suitable habitat conditions 

rather than foraging. 

1.2.2  Taxonomy

It is believed that the Margaritiferidae radiated from Asia (Bauer, 2001; Smith et al., 2001) 

and members of the family are known from the North American continent, Europe (including 

northern-most Africa), the Middle East and much of south and east Asia (Smith et al., 2001). 

Taxonomic studies of freshwater mussels foster lively debate and the relationships between 

factions of the Unionida are being regularly revised e.g. Smith et al. (2001); Carter et al. 

(2011). Many scholars believe the Margaritiferidae to be a primitive group within the Unionida 

(Ortmann, 1911c; Hannibal, 1912; Graf & Ó Foighil, 2000; Bauer, 2001; Smith et al., 2001), but 

this stance has been challenged by some e.g. Heard & Guckert (1970); Hoeh et al. (2001). More 

recent molecular studies tend to place the Margaritiferidae as a sister taxa of the Unionidae, 

but as new evidence comes to light this position may change (Graf & Cummings, 2007).

The main features which differentiate the Margaritiferidae from other families were 

outlined in the early 20th Century by Ortmann (1911b):

• Incomplete diaphragm

• Incomplete fusion of mantle margins resulting in failure to form separate siphons

• Lack of complete septa in the gills (and subsequent lack of water tubes)

• All four demibranchs marsupial

• Small size of hookless glochidia 

Matrices of morphological characters (Graf & Ó Foighil, 2000), particularly brooding characters 

(Cannuel & Beninger, 2006) have been analysed with genetic data to produce evolutionary trees 

for the Unionida e.g. Carter et al. (2011). However, at present there is insufficient agreement 

between researchers to achieve high phylogenetic resolution for the Order (Graf, 2013). To 

construct robust phylogenetic hypotheses, consideration of the ‘whole picture’ is needed. This 
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requires combining information from all pertinent sources in the areas of genetics, anatomy, 

morphology, behaviour and paleontology in order to build robust hypotheses on phylogeny 

e.g. Bogan & Roe (2008). Different scholars have based their hypotheses on a range of 

character features. For example the early work of Ortmann (1911c) and later Heard & Guckert 

(1970), based their taxonomic revisions primarily on soft-part anatomy and reproductive 

habits, and ignored conchological (shell) features, believing them to be too variable within 

species (Ortmann, 1911c; Smith, 1976). Walker et al. (2001) based their suggestions upon the 

differences in larvae (glochidia and lasidia), Beninger & Dufour (2000) consider the abfrontal 

gill surface and mucocyte distribution, Atkins (1938), Owen (1978) and  Beninger et al. (1994) 

discuss the usefulness of laterofrontal cirri in phylogenetic studies whereas Smith (1986) tried 

(unsuccessfully) to separate Margaritiferids by considering stomach anatomy. 

Characters for which there is open debate about their supposed ancestral or derived 

states are outlined in Table 1.1 with references arguing their individual cases. New investigations 

into juvenile anatomy and development could provide an important missing link between 

traditional biological and modern genetic studies and inform taxonomic debates. 

1.3.  Captive rearing strategies
Captive rearing is seen as a last resort strategy when habitat improvements are unlikely to 

deliver significant benefits to mussel populations within an appropriate timescale or where 

population numbers are so low that reproduction in the wild is not feasible (Neves, 2004). 

The aim of reintroduction/augmentation of propagated juveniles is to enhance long term 

population survival, to re-establish a keystone species and to establish viable populations in 

the wild within the species’ former range (IUCN, 1998; Lyons et al., 2005). Some populations 

of M. margaritifera require immediate attention if they are to persist and some countries have 

therefore undertaken captive rearing programmes as a short term strategy until catchment 

pressures can be alleviated. Different captive rearing strategies have been employed in different 

countries with some success. The methods used depend upon a range of factors including 

available resource (money, time, expertise and facilities), population-specific conservation 

priorities, and local environmental conditions.

 A major benefit of mussel culture is that environmental parameters can be controlled 

in order to optimise habitat and ultimately increase juvenile survival. Regardless of the already 
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substantial research activity into captive rearing of M. margaritifera, relatively little empirical 

information is available regarding parameters critical to juvenile survival. In order of least to 

most resource-intensive, these methods include:

1.        Bankside encystment of resident salmonids for immediate release. This strategy is 

only successful if employed where habitat conditions are sufficient to support juvenile 

mussels (Altmüller & Dettmer, 2006). 

2.        Allowing juveniles to excyst directly into gravels within raceways before placing out into 

rivers as older juveniles (Preston et al., 2007; Moorkens, 2011b). A recent modification 

of this method has been proposed by Moorkens (2015), whereby juveniles excyst into 

clean gravels which are immediately transported to mussel rivers and introduced into 

suitable habitat patches.

3.        Collection of juveniles and culture during the first growth period up to a size of > 1 mm 

length before transfer into “Buddensiek cages” or boxes either in raceways or rivers  

e.g. Buddensiek (1995); Schmidt & Vandré (2010); Lange & Selheim (2011).

Character state Ancestral Derived

Tetrageny – use of all 4 
demibranchs to brood glochidia

Ortmann (1911b; 1911c); 
Heard & Guckert (1970); 

Hoeh et al. (2001) 

Hoeh et al. (1998);  
Graf & Foighil (2000)

Endobranchy – Use of only the inner 
pair of demibranchs for brooding Hoeh et al. (1998) Heard & Guckert (1970); 

Hoeh et al. (2001)

Ectobranchy – Use of only the outer 
pair of demibranchs for brooding Graf & Foighil (2000)

Heard & Guckert (1970); 
Hoeh et al. (1998); 
Hoeh et al. (2001) 

Incomplete diaphragm Ortmann (1911b; 1911c) Graf & Foighil (2000); 
Hoeh et al. (1998)

Interlamellar junctions (rather 
than complete septa) Ortmann (1911b; 1911c) Hoeh et al. (1998);  

Graf & Foighil (2000)

Bradytictia - Long term brooding 
over winter before glochidial 
release the following spring

Ortmann (1911b, c); 
Graf & Foighil (2000)

Tachytictia - Short term brooding 
during spring before glochidia 
released in summer

Ortmann (1911b)

Lack of supra-anal aperture Graf & Foighil (2000) 

Table 1.1: Defining character state descriptions for M. margaritifera and references which argue their 
ancestral or derived origins showing there is still debate about the origins of M. margaritifera.



9

Chapter 1: Introduction

4.        Collection of juveniles and subsequent transfer into holding trays/baskets, (Hastie & 

Young, 2003a; Taylor, 2007; Lange & Selheim, 2011; Scriven et al., 2011; Sweeting & 

Lavictoire, 2013) or incubators (Hruška, 1999; Lange, 2005; Eybe et al., 2013) for growth 

and release as older juveniles.  

Gum et al., (2011) provide a useful review of M. margaritifera captive rearing programmes, 

their methods and rearing successes in Europe. Studies from the USA on unionid species 

employ a number of additional methods for species with less specific and/or demanding habitat 

requirements and include transfer of larger juveniles to different systems more appropriate to 

their larger size and more advanced stage of development (Barnhart, 2015). 

The type of captive rearing activities undertaken depends upon the specific set of 

threats within a mussel population or area. For example, where population numbers are not 

yet critically low but sustainable recruitment is not taking place, catchment restoration coupled 

with bankside encystment and release of encysted fish may be the most appropriate option 

e.g. Altmüller & Dettmer (2006). In contrast, in catchments with more complex environmental 

issues which will take several years to address, or where pearl mussels are sparsely distributed, 

aggregating adult mussels in captivity such as the FBA’s Freshwater Pearl Mussel Ark  

(Chapter 2) may be the only way to safeguard remaining individuals whilst improving the 

probability of successful fertilisation between male and female mussels (Downing et al., 

1993). This strategy also decreases the probability of mussels becoming hermaphroditic 

and potentially impacting population genetic diversity. Similarly, where populations consist 

of slightly higher numbers, captive rearing programmes need to consider the implications 

of broodstock selection and using different batches of mussels for broodstock to reduce the 

potential consequences of inbreeding depression and loss of genetic diversity (Neves, 2004; 

Jones et al., 2006; Geist, 2010) as well as maximising reproduction if females display different 

levels of fecundity (Hanlon, 2000; Mummert, 2001).

Overall rearing success appears to depend upon survival within the first few months 

post-excystment (Gum et al., 2011) with mortality within the first few weeks being particularly 

high (Gatenby et al., 1996; Gatenby et al., 1997; O’Beirn et al., 1998; Jones et al., 2005). 

Survival may be linked to pre-winter size (Buddensiek, 1995; Denic et al., 2015) with some 

researchers suggesting juveniles should be reared to a minimum size of 1 mm before the onset 

of the first winter (Lange, 2005; Lange & Selheim, 2011; Eybe et al., 2013). Whilst this stage is 
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clearly vital, steady mortality of juveniles appears to occur until juveniles are approximately 

3 years old, after which mortality is generally lower (pers. obs.). This may be due to other 

important ontogenic stages such as transformation from pedal to filter feeding (see Chapter 5) 

or changing habitat requirements with age. 

Captive rearing practices for M. margaritifera have typically favoured the more resource-

intensive methods (numbers 2, 3 and 4 above) due to the specific habitat requirements of the 

species. Some programmes favour the use of flow-through systems where untreated river/

lake water is used with no supplemental feeding e.g. Preston et al. (2007); Moorkens (2011b); 

Lavictoire et al. (2016), whilst others use recirculating or static systems which are supplemented 

with artificial diets e.g. Lange (2005); Lange & Selheim (2011); Capoulade (2012); Eybe et al., 

(2013). Only a small number of these programmes have reared juveniles to an age where 

release of free-living individuals has been trialled e.g. Wilson (2010); F. Thielen (pers. comm.), 

and it is too early to tell if these juveniles will survive to sexual maturity and contribute to the 

next generation.

1.4.  Thesis outline and objectives
The aim of this thesis is to investigate factors affecting juvenile mussel survival at the 

Freshwater Biological Association’s Freshwater Pearl Mussel Ark project (see Chapter 2) in 

order to tailor rearing techniques and ultimately improve survival. As mentioned in section 1.1, 

despite over 30 years of attempts to refine rearing methods for M. margaritifera, there is still 

a lack of information on juvenile ecology, ontogeny and captive rearing in general. Examples of 

unanswered questions include:

• Juvenile mussel ecology:
 □ What biotic and abiotic parameters affect juvenile mussels and how do they affect 

survival? 
 □ What parameters are juveniles particularly sensitive to?
 □ What is categorised as ‘good’ juvenile mussel habitat and do habitat requirements 

change with age/size?

• Juvenile mussel ontogeny:
 □ What developmental stages do juveniles go through post-excystment from the 

host?
 □ How do these stages affect behaviour and the ability of juveniles to survive?
 □ How may ontogenic factors affect captive rearing practices?
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• Captive rearing:
 □ How can conditions in captivity be improved to maximise survival whilst bearing 

in mind financial and practical constraints?
 □ What are the main advantages/disadvantages of different captive rearing methods 

and can they be tailored to juveniles at different ages/developmental stages to 
increase survival?

 □ How robust are captive-bred juveniles and once they are sexually mature, do they 
contribute to subsequent generations?

Investigations in this thesis will focus on three main topics, which are outlined below and in the 

thesis structure diagram (Fig. 1.3):

1.        What are the key environmental factors affecting juvenile survival and growth in 

captivity? This work will assess the suitability of a flow-through captive rearing system 

for newly-excysted juveniles and will investigate the importance of parameters such 

as substrate size, cleaning regime, interstitial dissolved oxygen, interstitial ammonia 

concentration and interstitial flow on juvenile growth and survival. These experiments 

seek to investigate which parameters are most important to juvenile survival so that 

captive rearing programmes may be tailored to juvenile requirements in order to 

improve overall survival rates – Chapters 3 & 4.

2.        What ontogenic stages do juvenile mussels undergo in their early post-parasitic 

life and how might these affect feeding behaviour, the switch from pedal to filter 

feeding, and survival? This work seeks to describe biological development of juvenile 

mussels between the ages of 1 – 44 months old, compare feeding behaviour at different 

developmental stages, and investigate the period when juveniles are thought to switch 

from pedal to filter feeding. This work is the first known attempt to describe the 

development of juvenile M. margaritifera at different ages in order to better understand 

the potential factors limiting survival – Chapter 5.  

3.        Is fluorescence marking with calcein a feasible method to improve monitoring of 

immature stages of M. margaritifera in captivity? This work will consider if batch-

marking of juvenile mussels using the fluorophore calcein is a useful tool to improve 

monitoring in captive rearing programmes. This work has the potential to enhance 

efficiencies within captive rearing programmes making them more time- and cost-

effective – Chapter 6.
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Experimental work took place at the captive rearing programme run by the Freshwater 

Biological Association which is described in more detail in Chapter 2 and a synopsis of findings 

and the wider implications of this work are covered in the final discussion (Chapter 7) along 

with suggested research priorities going forward.   
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2.1.  Introduction
This chapter describes the captive rearing facilities and the Freshwater Pearl Mussel Ark project  

at the Freshwater Biological Association (FBA) and also describes two pilot studies undertaken 

to inform the investigations carried out in Chapters 3 and 6 of this thesis.

2.1.1  Freshwater Pearl Mussel Ark project and the FBA captive rearing 

facility

In 2007 the FBA commenced a captive rearing programme entitled the Freshwater Pearl 

Mussel Ark project (‘Ark project’ or ‘Ark’) for priority populations of the freshwater pearl mussel 

Margaritifera margaritifera (Linnaeus, 1758) in England. In 2009, after two years of limited 

success rearing juveniles, work on this thesis commenced to investigate ways of improving 

captive rearing techniques for the species and increase survival for populations held at the 

FBA. At the time of writing, the project is ongoing and juvenile mussels are reared using captive 

adult mussels from each population as broodstock. All rearing activities take place at the FBA’s 

Windermere site. The Ark project’s aims are to:

1.        Maintain in captivity adult mussels from all priority English populations in captivity to 

provide a genetic ‘Ark’ to safeguard against local population extinction.

2.        Rear juvenile mussels using captive adult mussels as broodstock.

3.        Reintroduce juvenile mussels into suitable habitat in rivers from which the parent 

mussels originated.

Up until 2014, nine populations were housed at the FBA and breeding activities attempted 

with all present populations in all years. In 2014, surviving individuals from two populations 

were returned to their native rivers due to poor survival and breeding activity at the FBA. 

During 2015 all individuals from a further population died, leaving six remaining populations 

at the FBA at time of writing. 

The FBA Ark uses water from Windermere, a mesotrophic lake, which is filtered to  

30 µm (adult mussels and fish) or 20 µm (juvenile mussels). The rearing system encompasses 

all life cycle stages of M. margaritifera from glochidia encystment on salmonid hosts through 

to excystment (drop-off) and on to medium-term (up to 10 years) juvenile maintenance and 

monitoring (Fig. 2.1).  Adult mussels are kept within gravels in stainless steel cages in 1.6 m  

diameter fish tanks (https://www.youtube.com/watch?v=qPhFJUVa2vc). Around the time of 

https://www.youtube.com/watch?v=qPhFJUVa2vc
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glochidia release, host fish can be kept either in the same tank as mussels or in an adjoining  

tank. In some populations more than one host fish has been suitable for glochidial  

development. In these cases, two or more tanks can be connected so that the effluent from 

the tank containing mussels and one fish species can run directly into the adjoining tank 

meaning that several different host fish species may be used. At the Ark, adult mussels 

release glochidia typically between mid-August to mid-October each year (Lavictoire et al., 

2014). This is later than observed in lotic environments due to the temperature regime of 

the lake being different from rivers with respect to different temporal patterns; Windermere 

warms up slower in spring/summer and cools down later in autumn/winter with extremes 

of temperature minimised.  Work in previous years at the Ark has established suitable host 

fish species for each mussel population so that in subsequent years, only the most suitable 

host is provided. The most suitable hosts have primarily been salmon (Salmo salar) or 

brown/sea trout (Salmo trutta), but trials on Arctic charr (Salvelinus alpinus) have also had 

some success in some populations (Miles & Sweeting, 2011). Glochidia of M. margaritifera 

over-winter on fish and typically begin excysting around mid-May in the year following 

encystment (temperature dependent). At this time, plankton nets with a removable plastic 

bottle at the terminal end are used to collect excysting juveniles on a daily basis. From 

these bottles, juveniles are transferred into trays (Fig. 2.1) containing substrate measuring  

1 - 2 mm. Substrate in this system and for all investigations in this thesis was obtained from 

the western shore of Windermere (Cumbria). Substrate is left to air-dry before being sieved 

into different size clasts with a Fritsch Analysette sieve shaker. Trays containing juveniles are 

cleaned every two weeks and regular monitoring of survival and growth takes place twice per 

year.  

2.2.  Pilot studies
Mussels from the River Ehen (Cumbria) lineage were used for all experimental studies detailed 

in this thesis. These mussels provide the Ark project with a ‘control’ population against 

which to compare the performance of other mussel populations in captivity. The river Ehen 

population is the largest and healthiest pearl mussel population in England and juveniles from 

this population provide opportunities for research in order to refine captive rearing techniques. 

Two pilot studies were performed to refine methods for further investigations described in 
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Chapters 3 and 6. The pilots are described in the following sections, and a brief outline of 

results is provided. Pilot studies sought to investigate:

• The effect of substrate size, depth and cleaning regime on growth and survival of juvenile 

mussels (to inform Chapter 3), and;

• The success and usefulness of using the fluorophore calcein to mark juvenile mussels in 

captivity (to inform Chapter 6). 

2.2.1  The effect of substrate size, depth and cleaning regime on growth 

and survival of juvenile mussels

2.2.1.1 Method

This experiment sought to investigate the effect of substrate size, substrate depth and cleaning 

regime on growth and survival of newly-excysted juveniles. In spring 2011, five aquaria  

(600 x 297 x 300 mm) were set up as shown in Fig. 2.2 and supplied with water filtered to 

20 µm. Plastic styrene sheets were cut to fit inside each aquarium (600 x 297 mm) and holes 

were cut to comfortably house an effluent water pipe and 12 square Artemia sieves (Hobby, 

Germany). Artemia sieves consist of plastic sides and a plastic mesh bottom and were used 

to house substrate and juveniles. The styrene sheet was fixed to aquaria sides with EVO-STIK 

Wet Grab sealant (Bostick, UK). This product had been used previously in culture trays with no 

detrimental effects observed on juvenile survival. Gasket tape (10 x 10 mm) was stuck around 

the top lip of the sieves, which were then inserted into the holes so the gasket tape formed a 

loose seal with the styrene sheet in order to encourage water to flow through the substrate. 

Water was provided via a spray bar and flowed from the top chamber (above styrene sheet) 

into the bottom chamber  (below styrene sheet), creating a down-welling, flow-through system.  

The parameters investigated were:

• Substrate size: small (S1: 0.3 - 0.5 or S2: 0.18 - 0.5 mm); medium (M: 0.5 - 1 mm); large 

(L: 1 - 2 mm); mixed (MIX1: 0.3 - 2 or MIX2: 0.18 - 2 mm).

• Substrate depth: 0 cm(enough substrate to just cover the mesh); 1 cm; 3 cm.

• Cleaning regime: 2 months; 6 months; undisturbed (sampled at end of experiment at 

10 months).
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Fig. 2.2: Diagramatic representation (a) and photograph (b) of substrate pilot experimental set-up in 
an aquarium; (a) Water enters at the top of the system via a spray bar (SB) and flows through sieves 
(S) containing substrate and juveniles (arrows show direction of flow). Water exits from the bottom 
chamber via the downpipe (DP); (b) Sieves were filled with different substrate clasts (0.3 - 0.5, 0.5 - 1, 
1 - 2 & 0.3 - 2 mm) and to different depths (D = 0, 1 & 3 cm).

a)

b)
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Fig. 2.3: Light micrograph of juvenile mussel showing length (L) and height (H) measurements taken for 
each individual.

Aquarium 1 was set up as outlined in Fig. 2.2 and sieves with a mesh size of 0.3 mm were 

used to hold gravels and juveniles. Sieves in this aquarium were cleaned and sampled every 

two months. Aquaria 2 and 3 were set up with the same treatments as aquarium 1 but sieves 

in aquarium 2 were cleaned and sampled at six & ten months and in aquarium 3 at ten months. 

Sieve position was randomly selected and different in each aquarium. 

Aquaria 4 and 5 tested the S2 and MIX2 substrate treatments and so required sieves 

with a mesh size of 0.18 mm, again with the same treatments described above but with the 

‘small’ treatment containing substrate measuring 0.18 - 0.5 mm. Aquarium 5 contained the 

same treatments as in aquarium 4 with an additional three sieves containing an extra replicate 

each for the small (0.18 - 0.5 mm) substrate size at 0, 1 & 3 cm depth (15 sieves in total). 

Aquarium 4 was cleaned and sampled every two months and aquarium 5 cleaned and sampled 

at six and ten months.

Substrate was exposed to running water for at least five days prior to the experiment 

beginning in order for a biofilm to begin to establish on the sediment as food for juveniles.  One 

hundred active juveniles were added to each sieve (6,300 individuals total), of which 30 from 

each sieve were measured (length and height; Fig. 2.3).

At two-month intervals, all sieves from aquaria 1 and 4 were checked exhaustively for 

juveniles. This was done by washing small amounts of substrate into a petri dish and checking 

for juveniles under a low-power microscope. This process was repeated until all substrate 

within the sieve had been checked. The number of live and dead individuals was recorded.  

0.1 mm
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Any discrepancy between the number of juveniles found (alive plus dead) and the original number 

in the sieve was recorded as ‘unaccounted’. The length and height of 30 live individuals was 

recorded. Where fewer than 30 individuals remained, all individuals were measured. The 

same process of checking was carried out on aquaria 2 and 5 after six and ten months and 

on aquaria 3 after ten months. Dead individuals were measured, removed and were assigned to 

a ‘degradation class’ (Fig. 2.4) to indicate how degraded shells were when they were found.  

This was measured using a 4-point scale:

1.        Recently dead individual. Shell still has all of its calcium present. Soft tissue may still be 

present inside the valves.

2.        Less than ¼ of the shell dissolved.

3.        More than ¼ of the shell dissolved. Some parts of the shell may be transparent.

4.        No calcium present. Shell appears skeletal and transparent.

2.2.1.2 Data analysis

Throughout this thesis the statistical software SPSS (versions 19 - 22, IBM) was used for analysis 

unless otherwise specified. Data were checked for normality (Shapiro-Wilk test) and one-way 

Analysis of Variance (ANOVA) with post hoc Tukey’s HSD tests were used to analyse survival 

differences between treatments on the same sampling occasion where data were normal. 

Where data were not normal, Kruskal–Wallis tests were employed. Unless otherwise stated 

Fig. 2.4: Light micrograph of dead freshwater pearl mussel shells showing degradation classes; 1 = 
recently dead, no degradation; 2 = less than ¼ dissolved; 3 = more than ¼ dissolved; 4 = No calcium 
present, shell transparent. 
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June 2011 Aug. 2011 Oct. 2011 Dec. 2011 Feb. 2012 April 2012
Total survival 2,400 1,072 629 157 32 9
Total survival (%) 100 45 26 7 1 0.38

Table 2.1: Total survival in aquaria one and four on all sample occasions. Total survival has been rounded 
to whole individuals except where survival < 1 %.

standard deviation is given after mean values. Length and height are highly correlated in M. 

margaritifera (see Chapter 3) so only length was used for analysis in both pilot studies.

2.2.1.3 Results

Original length of juveniles were significantly different between sieves from aquaria 1 and 

four (F(23,696) = 2.825, P < 0.001) meaning that size could not be used as an accurate indicator of 

differences in juvenile performance over the course of the experiment. Size data can however 

provide a useful general benchmark for how much juveniles can grow within ten months post-

excystment under the conditions described. Considering all juveniles measured, juveniles grew 

from a mean initial length of 0.45 mm (± 0.04) on approximately 22 June 2011 to 0.63 mm  

(± 0.06) on approximately 2 May 2012 (Fig. 2.5). 

None of the treatments provided conditions suitable for adequate juvenile survival 

to ten months old. A summary of survival in aquaria 1 and 4 is provided in Table 2.1. 

Of the 6,300 individuals added to the system initially only ten individuals were found 

after ten months across all treatments and aquaria (0.16 %). Survival was recorded 

every two months in aquaria 1 and 4, providing opportunities for further analysis.  

Considering only aquarium 1 and ignoring any effect of substrate depth, there was a 

significant difference in survival between substrate size clasts in August 2011 (F(3,8) = 8.891,  

P = 0.006) and October 2011 (F(3,8) = 5.623, P = 0.023) but not in December 2011 (F(3,8) = 2.613,  

P = 0.123), February 2012 (χ2
(3) = 5.50, P = 0.139) or April 2012 (χ2

(3) = 4.156, P = 0.245). For August 

and October 2011, post hoc tests showed that juveniles in the 1 - 2 mm substrate treatments 

displayed higher survival compared with all other treatments. In aquarium 4, survival was not 

significantly different in any of the size classes in any month; August 2011 (F(3, 8) = 0.749, P = 0.553), 

October 2011 (F(3, 8) = 3.031, P = 0.093), December 2011 (χ2
(3) = 5.144, P = 0.162), February 2012  

(χ2
(3) = 1.745, P = 0.627) or April 2012 (χ2

(3) = 2.750, P = 0.432).  

When substrate size is ignored, there was no significant difference in survival at 0, 1 and  

3 cm depth in aquaria 1 or 4 in any month (P > 0.05) but sampling did take much longer for 
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deeper treatments and those with smaller substrate clasts due to the volume of substrate (up 

to 8 hours per sieve for the smallest substrate sizes when D = 3 cm).

At the six month check in December 2011, there was no significant difference in survival 

between treatments cleaned every two (aquarium 1) or six (aquarium 2) months (χ2
(1) = 0.145, 

P = 0.704). Similarly at the ten month check (May 2012), there was no significant difference in 

survival between these two aquaria (χ2
(1) = 1.338, P = 0.247).

At the two month check the percentage of dead individuals assigned to degradation 

classes 1, 2, 3 and 4 was 46, 18, 22 and 13 % respectively. Whilst it is not possible to know 

exactly when these individuals died, the majority (46 %) died close enough to the 2 month 

sample point for the shells to degrade only slightly. Thirteen percent of individuals were 

assigned to degradation class 4 (shell contains no calcium) showing that it can take less than 

two months for shells of dead juveniles of this size to dissolve completely in this system. 

2.2.1.4 Discussion

This pilot investigated factors thought to be important for juvenile survival such as substrate 

size, depth and cleaning regime as well as considering logistical aspects of experimental design 

such as sieve mesh size. As a pilot, replicate numbers were low and therefore statistical power 

was weak but some valuable insights were gained which informed experimental design for the 

final study (Chapter 3). 

Care was taken to ensure healthy and active juveniles were selected for this study 

as juveniles excysting at the beginning of the drop-off period can be under-developed and 

often suffer high mortality (Jones & Neves, 2002; Schmidt & Vandré, 2010, Eybe et al., 2015). 

Active juveniles were taken from the middle portion of the excystment period to ensure this 

potential bias was not observed. Substrate depth did not appear to affect survival in this 

experimental system and therefore does not warrant further investigation. Similar findings 

have been reported for Villosa iris by Beck (2001) and Beaty & Neves (2004). In addition, 

deeper treatments took longer to clean and check (up to 8 hours), a problem also observed 

by Hastie & Young (2003) in some of the systems investigated in Scotland. This is an important 

consideration for captive rearing programmes which have finite resources.  

Substrate size did appear to have an effect on juvenile size and survival in the early 

months of the experiment and larger substrates were easier and quicker to clean. Whilst 
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cleaning regime showed no differences in survival after 6 months (December 2011) or 10 

months (April 2012), mortality rates were high across all treatments posing concerns that 

cleaning every two months was not sufficient to provide suitable scope for survival. This is 

likely due to build-up of organic matter blocking interstitial spaces. As a result, substrate size 

and the frequency of cleaning were the two parameters chosen to be investigated in further 

detail (Chapter 3).

2.2.2  Investigating the suitability of calcein immersion as a marking 

technique for juvenile mussels

2.2.2.1 Method

This pilot study was carried out between 14 September – 10 October 2010 to test the 

efficacy of calcein (Fluorescein di-(methyliminodiacetic acid) sodium salt; Fisher Scientific Ref. 

No. F/1250/44) for marking juvenile M. margaritifera and the effects of calcein concentration 

and immersion duration on growth and survival. The calcein concentrations and immersion 

duration treatments investigated were 0 (control), 30, 60 and 120 mg/L and 3, 6, 12 and 24 

days respectively.

Four hundred and eighty juvenile mussels were selected at random from the Ehen 

juveniles excysting in 2010. Individuals were split into four groups of 120 individuals and 

allocated to a treatment (0, 30, 60, 120 mg/L). As in the substrate pilot, Artemia sieves were 

used to hold juvenile mussels (mesh size 0.18 mm). Approximately 1 cm of substrate (50 g 

dry weight) measuring 0.25 – 1 mm was added to each sieve. The substrate was exposed to 

running water for two days prior to the start of the experiment so a biofilm could begin to 

establish as food for the juvenile mussels. Length and height (Fig. 2.3) of 30 individuals from 

each treatment was recorded. 

Calcein stock solutions (1 L) were prepared in a dark room by dissolving powdered 

calcein, in lake water filtered to 20 µm. Calcium concentration was taken on 3 August 2010 as 

part of Environment Agency routine monitoring in Windermere south basin and was recorded 

as 5.99 mg/L (© Environment Agency and database right). On 16 September 2010, calcein 

stock solutions plus a blank for the control (filtered lake water) were added to four aerated 

treatment tanks containing 19 L of filtered lake water (Fig. 2.6). pH was measured during calcein 

addition to each aquarium using a Troll 9500 multi-parameter sonde (In-Situ, USA). Readings 
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were taken from tanks before stock solutions were added, after addition, and on days one, four 

and ten. Where pH showed a marked drop after addition of the calcein stock solution, sodium 

bicarbonate was used to buffer solutions and increase pH (Wilson et al., 1987; Frenkel et al., 

2002; Mohler, 2003; Thébault et al., 2006). Sieves containing juveniles were placed into the 

tanks. Tanks were situated in a dark room and were covered with a surround to block out any 

external light. 

On day three, the contents of the each sieve were emptied in turn into a beige-coloured 

metal tray and examined. The beige tray contrasted with the darker brown colour of juveniles and 

thus allowed them to be picked out by eye. The first 30 individuals encountered (alive or dead) 

were removed from the container. Where 30 individuals could not be located, the maximum 

number found was removed. The number of live and dead juveniles was recorded. Ten live 

juveniles from each treatment were placed individually onto a cavity slide with enough water 

to cover the mussel and examined under a Leitz Diaplan compound fluorescence microscope 

fitted with a calcein-specific filter cube (445 – 495 nm excitation filter; and a 510 – 570 nm 

emission filter). Illumination was with a mercury short arc lamp. Photographs of juveniles were 

taken with a Canon EOS 350D which was set to manual focus (ISO = 100, file type: Canon RAW). 

Previous tests investigating potential suitable shutter speeds for photographing juveniles 

informed the decision to further test shutter speeds of 0.6, 1 and 2 seconds with control and 

treatment individuals. Once photographed, juveniles were transferred to new sieves with 

fresh substrate (0.25 - 1 mm) and were placed into a large holding aquarium with aerated, 

Fig. 2.6: Photograph of tanks containing (left to right) 30, 60, 120 and 0 (control) mg/L calcein solutions. 
Sieves containing substrate and juveniles were suspended in aquaria with aeration provided throughout 
the experiment. 
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static water. This process was repeated on days six, 12 and 24, when final measurements of 

remaining individuals were taken in addition to recording survival. After 24 days, all sieves 

from the holding tank were placed onto the bottom of a fish egg tray and supplied with flowing 

water. Additional checks for survival and growth were made in January 2011 and January 2012. 

Fluorescence intensity was quantified from photographs using Adobe Photoshop 

(version 12.0.4), as described by Frenkel et al. (2002) and Mohler & Kehler (2007). RAW files 

were batch-processed and convert into high-quality JPEG files. Photoshop was used to select 

the green (fluorescent) pixels in each image. Mean values for green luminosity was recorded 

and these values were used to compare the level of fluorescence in each picture. 

2.2.2.2 Data analysis

Due to this study being a pilot, there was only one replicate of each treatment so robust statistical 

analysis of survival of juveniles between treatments was not possible. Size and luminosity data 

(taken from photographs) are however suitable for statistical analysis. Data were tested for 

normality (Shapiro-Wilk test) before ANOVA or Kruskal-Wallis tests were carried out. Post 

hoc Tukey’s HSD tests were carried out where significant differences were observed during 

ANOVA’s. 2-way ANOVA tests were carried out to assess the interaction between immersion 

time and calcein concentration. Unless otherwise stated, standard deviation is given after 

mean values. 

2.2.2.3 Results

During this pilot, temperature ranged from 14.7 – 15.3 °C and so growth of juveniles (and 

therefore sequestration of calcein) should have occurred. On day ten, an error was made when 

adding sodium bicarbonate to the 120 mg/L treatment tank which increased the pH to an 

average of 7.77 (max 7.94). Whilst this did not appear to be acutely or chronically toxic, it is 

possible that it could have affected feeding activity and therefore uptake of calcein after day 

ten in this treatment. 

Table 2.2 shows the highest total survival was found in the 30 mg/L calcein treatment 

(73 %) and the lowest was found in the 60 mg/L treatment and the control (58 % each). On day 

24 in the 120 mg/L treatment only a small number of live juveniles and a large number of dead 
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individuals were found compared to the other treatments. Total mortality was highest in the 

120 mg/L treatment also. 

Juveniles were found to have different mean starting lengths between the different 

treatments (F(3,116) = 4.005, P = 0.009). Post hoc analysis found individuals in the 120 mg/L 

treatment were significantly larger than in the 30 or 60 mg/L treatments (Fig. 2.7), but were 

not larger than the control (P < 0.05). The technique used for sampling juveniles was found 

to be biased with larger individuals being removed first because they were easier to see. Due 

to this, mean length of juveniles on day 24 was generally smaller than original measurements 

(Table 2.3). As a result of this the effect of calcein on growth of juveniles between day 0 and 

24 could not be analysed.

No auto-fluorescence was observed in unmarked juveniles at shutter speeds of 0.6, 1 

and 2 seconds. A shutter speed of 1 second was found to be adequate for analysis of calcein-

labelled individuals. It is almost impossible to discern any difference in mark intensity by eye 

by simply comparing photographs of treatment individuals (Fig. 2.8). There was no significant 

interaction between immersion time and calcein concentration on mark intensity (F(6,109) = 

1.07, P = 0.385) but when considering the effect of immersion time on mark intensity separately, 

there was a significant difference between treatments (F(3,151) = 3.644, P = 0.014) with individuals 

exposed for 24 days displaying brighter marks (mean luminosity = 73.55 ±33.08) compared 

to those exposed for only 3 days (mean luminosity = 49.08 ±29.70; P = 0.015; Fig. 2.9). All 

other comparisons were not significantly different from each other (P > 0.05). A significant 

difference was also found between calcein concentration and mark intensity (F(3,151) = 207.90, 

P < 0.001). Individuals in each of the calcein treatments had significantly brighter marks 

compared with the control (P < 0.001) and individuals in the 120 mg/L treatment also had 

significantly brighter marks (mean luminosity = 86.60 ±18.09) compared with the 30 mg/L 

Control 30 mg/L 60 mg/L 120 mg/L
Day Alive Dead Alive Dead Alive Dead Alive Dead 
3 28 2 30 0 30 0 29 1 
6 22 1 29 0 21 1 27 3 
12 12 1 19 0 11 1 12 3 
24 8 1 10 1 8 1 3 7 
Total number 70 5 88 1 70 3 71 14 

Table 2.2: Number of live and dead individuals found in the control (0 mg/L calcein) and treatment (30, 
60 or 120 mg/L calcein) sieves after 3, 6, 12 and 24 days.
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Control 30 mg/L 60 mg/L 120 mg/L
Day 0 0.72 ±0.14 0.69 ±0.14 0.69 ±0.10 0.79 ±0.13
Day 24 0.65 ±0.07 0.69 ±0.11 0.67 ±0.08 - 

Table 2.3: Mean length (mm, ±SD) of juvenile freshwater pearl mussels at the start (day 0) and end (day 
24) of the investigation. Measurements of the 120 mg/L individuals at the end of the experiment were 
not taken in error.

Fig. 2.7: Bar chart showing starting lengths of juvenile freshwater pearl mussels in the different calcein 
treatments (30, 60, & 120 mg/L) and the control (0 mg/L calcein). Letters above bars indicate statistically 
homogeneous groups (P = 0.05).
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Fig. 2.8: Example fluorescence micrographs of juvenile freshwater pearl mussels in the control (0 mg/L 
calcein) and 30, 60 & 120 mg/L calcein treatments (L - R) and those immersed for 3, 6, 12 & 24 days (top 
to bottom). No fluorescence was observed in control individuals but it is impossible to discern by eye 
any difference between different calcein treatments or immersion periods.
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treatment (mean luminosity = 74.92 ±11.43; P < 0.009). There was no significant difference in 

luminosity between the 60 and 120 mg/L treatments (P = 0.544; Fig. 2.9).

2.2.2.4 Discussion

Detectable marks from calcein-labelled calcium were visible after three days of immersion in 

calcein. Marks were significantly brighter after 24 days compared to three days but were not 

significantly brighter compared to those at six and 12 days. This finding concurs with previous 

studies that increased immersion time produces brighter marks (Day et al., 1995). This suggests 

that 3 days immersion provides sufficient marks for juvenile M. margaritifera. Live juveniles 

were observed in all treatments after 24 days immersion. Small numbers of live individuals 

were found approximately 120 days after the end of the experiment in all treatments exposed 

for 3 days, and in the 30 mg/L treatment exposed for 24 days. Extended immersion durations 

of up to 24 days were tested in this pilot which, to the author’s knowledge, is longer than any 

other study seeking to mark mussels in this manner. Other studies have found that immersion 

times of between 12 and 48 hours produce good quality marks in bivalves with faster growth 

rates than M. margaritifera (Day et al., 1995; Crocker, 1998; Eads & Layzer, 2002; Moran 

& Marko, 2005; Linard et al., 2011). Immersion durations of only four hours can produce 

successful results in the brown mussel, Perna perna (Kaehler & McQuaid, 1999). 

Luminosity was significantly lower in the 30 mg/L treatment compared to the 120 mg/L 

treatment but there was no significant difference between any other treatments. This suggests 

that concentrations of at least 60 mg/L will provide clear, bright marks in M. margaritifera. This 

finding concurs with previous studies on other bivalves (Day et al., 1995; Crocker, 1998; Eads 

& Layzer, 2002; Linard et al., 2011). Whilst it is almost impossible to discern any difference in 

mark intensity by eye, analysis using the luminosity method previously described by Frenkel 

et al. (2002) and Mohler & Kehler (2007) provides a way to quantify this. Findings from this 

pilot suggest a suitable marking regime for M. margaritifera may be exposing juveniles to 

concentrations of at least 60 mg/L calcein for at least three days. This hypothesis will be further 

tested in Chapter 6.
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2.3.  Conclusions
This chapter describes the location where most of the investigations in this thesis took place, 

and puts the experimental work in to context of what the FBA’s Freshwater Pearl Mussel Ark 

project is trying to achieve. This captive rearing programme provides an important opportunity 

to research potential factors affecting juvenile survival, an area of study which is impossible in 

the wild due to current poor recruitment levels and the small size of juvenile mussels. 

Whilst both pilot studies used low replicate numbers meaning that statistical power 

was weak, some conclusions can be drawn. The experiment considering substrate size, depth 

and cleaning regime found that survival was higher in larger substrates. This warrants further 

investigation with a smaller number of treatments and more replicates. Substrate depth does 

not appear to affect survival but does make a substantial difference to sampling effort with 

smaller, deeper substrate treatments taking over eight hours to check compared with larger, 

shallower substrate treatments taking < 1.5 hours. Cleaning every two months does not appear 

to be sufficient to ensure satisfactory juvenile survival so increasing the cleaning frequency will 

be considered in the full study.

Marking with a fluorophore has the potential to save rearing programmes time 

when monitoring very small juveniles. The pilot found that calcein appears to be a suitable 

fluorophore for batch-marking juvenile M. margaritifera and does not appear to be acutely or 

chronically toxic. Marking juveniles at a concentration of 60 mg/L calcein over 6 days produces 

adequate marks in this species, and increasing immersion time or calcein concentrations does 

not appear to increase mark brightness significantly. The effect of calcein on mussel growth 

needs to be established and a comprehensive marking protocol outlined using evidence with 

increased statistical power. Further investigations in Chapter 6 will use more replicates to 

investigate the effects on growth and survival of a similar range of calcein concentrations as 

considered in this pilot.
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3.1.  Introduction
In the wild, juvenile mussels excysting from host fish must fall into habitat suitable to support  

continued development. Juveniles are particularly vulnerable to factors which decrease 

substrate and water quality, for example, aggravated erosion, nutrient enrichment and 

pollution incidents. In captive rearing programmes parameters affecting juvenile survival can 

be controlled and manipulated in order to achieve higher survival rates than may be possible in 

the wild. Research in the early 2000’s into optimising captive rearing conditions for freshwater 

mussels (mainly by North American and some European practitioners) has led to near perfection 

of these techniques (Lopes-Lima et al., 2014). Rearing of particularly sensitive species such as 

the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) however has proven 

slightly more problematic and has required significant and ongoing investigation.  Several 

different methods of rearing M. margaritifera have been trialled in Europe (Gum et al., 2011) 

including propagating juveniles in trays or baskets (Hastie & Young, 2003; Taylor, 2007; Lange 

& Selheim, 2011; Scriven et al., 2011; Eybe et al., 2013; Lavictoire et al., 2014), suspending 

cages containing juveniles in raceways or rivers (Buddensiek, 1995; Schmidt & Vandré, 2010; 

Scheder et al., 2014), allowing juveniles to excyst directly into raceways (Preston et al., 2007; 

Moorkens, 2011) and holding juveniles in static systems in incubators (Lange & Selheim, 2011; 

Eybe et al., 2013). Additionally, wild populations may be augmented via bankside encystment 

and immediate release of encysted salmonids (Altmüller & Dettmer, 2006).

When designing captive rearing systems it is important to consider maintenance 

requirements in addition to maximising juvenile survival. Some early attempts at captive rearing 

of M. margaritifera were over-laborious due to small juvenile size and holding containers 

being disproportionately large (Hastie & Young, 2003). This led to poor monitoring and low 

survival. Subsequent captive rearing efforts have sought to use relatively simple systems which 

minimise handling e.g. Buddensiek (1995); Barnhart (2006); Preston et al. (2007); Lange & 

Selheim (2011); Eybe et al. (2013), but these also have their drawbacks.

Post-excystment there is often an initial period (approximately 4 - 8 weeks) of high 

mortality before survival rates stabilise (Gatenby et al., 1996; Gatenby et al., 1997; O’Beirn 

et al., 1998; Beaty, 1999; Rogers, 1999; Hanlon, 2000; Jones et al., 2005). It is important to 

understand the reasons behind high-mortality periods in order to reduce stress or tailor 
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environmental conditions for juveniles and maximise the number reared, especially for 

populations which are close to extinction.

3.1.1  Culture conditions affecting juvenile survival

Factors thought to affect the growth and survival of newly-excysted juveniles include substrate 

size (Beaty & Neves, 2004; Liberty et al., 2007; Hua et al., 2013) and depth (Yeager et al., 1994; 

Beaty & Neves, 2004; Jones et al., 2005), maintenance (cleaning) regime (O’Beirn et al., 1998; 

Liberty et al., 2007), diet (Gatenby et al., 1997; Lange, 2005; Kovitvadhi et al., 2006; Schmidt & 

Vandré, 2010; Eybe et al., 2013), mussel density and the presence of potentially harmful ions, 

such as ammonium (Eybe et al., 2013). 

3.1.1.1 Substrate

Substrate characteristics are the most important habitat parameters and are most likely to be 

the limiting factor in pearl mussel rivers (Hastie et al., 2000; Weber, 2005; Geist & Auerswald, 

2007; Tarr, 2008). In the wild, adult and juvenile pearl mussels can be found in the same habitat 

patches (Hastie et al., 2000) but utilise different microhabitats (Geist & Auerswald, 2007); lack 

of suitable substrate impedes juvenile growth and survival (O’Beirn et al., 1998). A functional 

pearl mussel population requires substrates which are stable, have a low proportion of fine 

sediments and organic matter, are well oxygenated and which are not too compact so as to 

inhibit burrowing (Bauer et al., 1980; Lewis & Riebel, 1984; Hruška, 1992; Geist & Auerswald, 

2007; Englund et al., 2008). It is the author’s belief that, where possible, these conditions 

should be adhered to in captivity in order to provide the best scope for survival and growth 

and to ‘prime’ juveniles for similar conditions in their native catchments upon reintroduction.

Previous studies on the requirements of unionids use species which are relatively 

fast-growing compared to M. margaritifera, but these studies provide useful benchmarks 

for comparison. Higher juvenile survival rates are typically observed in coarser substrates 

(Brady, 2000; Liberty et al., 2007), especially if substrate is compacted (Rogers, 1999) but 

there are exceptions to this (Beaty & Neves, 2004; Hua et al., 2013). Where compaction is 

not a problem, Rogers (1999) found that finer substrate sizes produced better survival rates 

for Lampsilis fasciola. Finer substrates also appear to provide better opportunities for growth 

(Rogers, 1999; Beaty & Neves, 2004; Liberty et al., 2007). This may be due to higher food 
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availability (Wahlström, 2006; Liberty et al., 2007). Contradictions to this have been reported 

by Brady (2000) who observed higher growth in larger substrate sizes for Lampsilis cardium and 

Hudson & Isom (1984) found the addition of silt increased survival in Anodonta (=Utterbackia) 

imbecillis. These contradicting findings suggest that substrate size preferences are likely to be 

specific to species or perhaps rearing systems.

The effect of substrate depth appears to be of limited importance. Beaty & Neves (2004) 

found depth had no effect on survival or growth in Villosa iris and the pilot study for this 

experiment found the same for M. margaritifera (see Chapter 2). In captivity, juveniles tend 

to be found within the top layer of the substrate, usually within the first centimetre (Yeager et 

al., 1994; Beaty & Neves, 2004). Some studies attempting to rear M. margaritifera have had 

success without any substrate (Lange & Selheim, 2011; Eybe et al., 2013) but studies on other 

species have found that the presence of substrate improved survival (Jones et al., 2005). The 

long-term implications (if any) of rearing juveniles in conditions which do not in some way 

mimic conditions in the wild, such as no substrate or constant, elevated temperatures, are as 

yet unknown.

3.1.1.2 Culture density

The density of juveniles in culture may have an effect on juvenile survival and growth. Eybe 

et al. (2013) reported no difference in survival of M. margaritifera juveniles in densities of 

200 - 400 per 500 ml of water but a significant difference in size was found with higher growth 

rates at lower densities. Beaty (1999) found no affect of juvenile density on growth or survival 

of V. iris and Barnhart (2006) reported good survival in small containers approximately 6 cm in 

diameter each supporting 2000 individuals. Density-dependent survival and growth is likely to 

differ between species and also between culture systems depending upon a variety of factors, 

for example, flow, temperature and mode of feeding (pedal or filter feeding).

3.1.1.3 Disturbance

In bivalve culture, routine maintenance and monitoring are required which may disturb 

juveniles. Some studies have found that cleaning substrate or simply sampling can positively 

affect growth and survival (O’Beirn et al., 1998; Hanlon, 2000; Zimmerman, 2003) but other 

studies have observed the opposite, with increased mortality through damage, accidental loss 
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(Beaty, 1999) and handling stress (O’Beirn et al., 1998). Zimmerman (2003) found that cleaning 

every two months or when siltation became a problem had a positive effect on growth and 

survival in Epioblasma capsaeformis and L. fasciola  but Liberty et al. (2007) found cleaning 

more frequently had a detrimental effect on growth and survival in V. iris. O’Beirn et al. 

(1998) reported mixed results with L. fasciola showing improved survival but slower growth in 

treatments sampled more frequently. 

3.1.1.4 Other factors

Juvenile survival during the first winter post-excystment may be positively correlated with 

size in M. margaritifera (Buddensiek, 1995; Lange, 2005; Lange & Selheim, 2011). Buddensiek 

(1995) found 100% mortality in juveniles measuring <0.7 mm in length at the onset of the 

first winter and Lange & Selheim (2011) found juveniles grown to >1 mm in captivity generally 

survive the first winter. However Moorkens (2011) found the mean length of captive juvenile 

Margaritifera (margaritifera) durrovensis after the first growth season to be 0.65 mm. These 

contradictions indicate the relationship between size and survival over the first winter is not 

a simple one. Under a near-natural temperature regime in captivity, individuals from different 

English pearl mussel populations display different growth rates (Sweeting & Lavictoire, 2013). 

Therefore growth and eventual maximum size may also be population-specific. If shell size is an 

indication of biological development or of specific individuals having more nutritional reserves 

than others, it stands to reason that size-dependent over-winter survival should be observed. 

Timing of glochidial excystment from host fishes may also be an important factor  

affecting growth and survival. Juveniles excysting earlier in the season have more time to 

grow before the onset of winter and therefore may have an advantage over juveniles which 

excyst later (Buddensiek, 1995; Beaty & Neves, 2004). However, juveniles which excyst at the 

beginning of the drop-off period are often under-developed, not very active and can suffer 

high mortality (Jones & Neves, 2002; Schmidt & Vandré, 2010). Captive rearing programmes 

should ensure that rearing efforts are focussed on healthy individuals to maximise output.  

3.1.2  Objective of this study

This investigation sought to test a new experimental culture system employing some features 

from previous studies e.g. Barnhart (2006), for M. margaritifera and to identify the most 
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appropriate substrate size clast and cleaning/maintenance regime. These initial investigations 

informed additional work to be undertaken (Chapter 4) to better understand the conditions 

limiting juvenile growth and survival within substrates. 

3.2.  Methods
3.2.1  Experimental design

Experimental design was based on the system described in Chapter 2, Section 2.2.1.1 with some 

key improvements. In this study, the effects on growth and survival of juveniles was tested in 

four treatments. Two substrate size clasts (0.25 - 1 mm and 1 - 2 mm) and two cleaning regimes 

(weekly and monthly) were investigated in the following treatments: 

• 0.25 - 1 mm substrate cleaned weekly; 

• 0.25 - 1 mm substrate cleaned monthly;

• 1 - 2 mm substrate cleaned weekly;

• 1 - 2 mm substrate cleaned monthly. 

There were nine replicates of each treatment (36 sieves total). As in the pilot study the system 

was a down-welling flow-through system supplying filtered lake water to juveniles at a rate of 

approximately 67 ml s-1 (4 L/min). A single aquarium (995 mm x 357 mm x 510 mm) was set up 

as outlined in the pilot with a spray bar, effluent pipe and a styrene sheet with 36 square holes 

cut out created upper and lower chambers in the aquarium (Fig. 3.1). Artemia sieves (Hobby, 

Germany) with a mesh size of 0.9 mm were adhered to the styrene sheet with EVO- STIK 

Fig. 3.1: Photograph of rearing system used for the substrate experiment. Water enters at the top of the 
system via a spray bar (arrow heads) and flows through sieves holding substrate and juvenile freshwater 
pearl mussels (arrows showing direction of flow). Water exits from the bottom of the aquarium (*).
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Wet Grab sealant (Bostick, UK) to create a fixed support for experimental sieves (mesh size  

0.18 mm) to clip in to. Experimental sieves were therefore removable for monitoring, cleaning 

and sampling purposes. This design ensured that the sole pathway for water from the top 

chamber into the bottom was through the substrate. 

Each experimental sieve contained one of the treatment substrate mixes to a depth 

of approximately 1 cm (50 g dry weight). Substrate was collected from the western shore of 

Windermere and left to air-dry before being sieved to the appropriate size. Substrate was 

exposed to flowing lake water for a minimum of 21 days prior to the start of the experiment 

to facilitate biofilm development. A suitable biofilm may develop after one week (Gum et 

al., 2011) but a stable biofilm should be formed after 21 days  (Battin et al., 2003; Romaní, 

2009). One hundred newly-excysted active juveniles were added to each experimental sieve 

(total 3,600 individuals) between 26 June and 3 July 2012. Thirty individuals from each sieve 

were randomly selected and their length and height measured (to the nearest 50 µm) before 

addition to sieves. The position of experimental sieves within the aquarium was assigned on a 

random basis so that each column within the aquarium had one of each of the four treatments 

(Fig. 3.2).

Sieves in treatments cleaned weekly (18 sieves in total) were removed from the aquarium 

once per week (7 days ±1.87) and the substrate was gently emptied into a glass container 

with filtered lake water. The substrate was elutriated by swilling it gently in the container to 

suspend organic particles and the elutriate poured through a 0.18 mm mesh sieve to retain 

any juveniles. Sieves were inspected under a low power microscope (x 10) and any juveniles 

replaced into the experimental sieve along with the substrate.  The sieve was then returned 

to the aquarium. The process above was repeated on a monthly basis (30 days ±7.71) for the 

treatments cleaned monthly. 

All sieves were sampled exhaustively approximately every two months during the first 

year on 51, 112, 167, 247, 308 and 362 days post excystment with a final check done on day 758 

days post excystment. On these occasions the number of live and dead juveniles was recorded. 

Where available, thirty live individuals from each sieve were chosen at random and measured. 

All dead juveniles were measured and removed. Sampling in this manner constituted a cleaning 

event as organic matter was removed during the sampling process. 
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Sixteen days after the experiment commenced, the surface of the styrene sheet was 

siphoned and 11 juveniles were found outside sieves, indicating some escapement. Similar 

observations have been made in studies on unionids (Hanlon, 2000; Liberty et al., 2007). As a 

result, 0.3 mm mesh sieves were placed on top of experimental sieves so juveniles could not 

escape. A small number of escaped mussels continued to be found (presumably circulating in 

water currents) until 31 October 2012, when numbers of juveniles outside of sieves dropped 

to zero. An additional 4 juveniles (2 alive, 2 dead) were found in the aquarium during a spot 

check on 05/04/2013. All escaped juveniles were removed from the system after each check. 

This experiment ran between June 2012 – July 2014. Temperature was logged every hour 

throughout the experiment using a Hobo temperature logger (U22-001, Onset, USA).

3.2.2  Data analysis

Central Limit Theorem (Elliott, 1993) was applied to assume normality where appropriate. 

When n < 30, normality was tested using a Shapiro-Wilk test and if samples were found to 

be normally distributed, parametric statistical tests were used. Unless otherwise stated, ± SD 

values are provided after mean values. The presence of outliers in data was tested using 

methods outlined in Hoaglin et al. (1986) and Hoaglin & Iglewicz (1987). 

One-way Analysis of Variance (ANOVA) with post hoc Tukey’s HSD tests were used to 

assess the significance of survival, survival rates and size between treatments on the same 

sampling occasion when data were normal. Where data were not normal Kruskal-Wallis tests 

were employed with post hoc Mann Whitney U tests. Two-way ANOVA’s were used to investigate 

the interaction of substrate size and cleaning regime and their effects on both survival and 

size in treatments on day 362. Repeated Measures ANOVA’s with pairwise comparisons were 

used to test survival between 0 – 362 days to see if survival changed at specific times (e.g. 

seasonal variation). For Repeated Measures ANOVA’s a Greenhouse-Geisser correction was 

applied if the assumption of sphericity was not met. Student’s t-tests were used to compare 

length pre- and post-winter to help establish if juveniles displayed size-dependent over-winter 

survival within treatments. Spearman’s rank correlation coefficient tests were used to test the 

significance of correlations between shell length and height, shell growth and temperature, 

and mean survival and shell length. Juvenile length and survival across rows and columns in 

the aquarium were tested in June 2013 to rule out any bias due to sieve positioning (lateral and 
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top-to-bottom positioning within the aquarium). There was no significant difference in survival 

between different columns (F(8,27) = 0.196, P = 0.989) or rows (F(3,32) = 0.025, P = 0.994) indicating 

that any significant results between treatments were not due to sieve positioning. The same 

was true for mean juvenile length in June 2013; there were no significant differences between 

columns (F(8,27) = 0.097, P = 0.999) or rows (F(3,32) = 0.163, P = 0.920).

Initial size in June 2012 was also tested to ensure juveniles in each sieve had the same 

starting length. Starting lengths of individuals in all 36 sieves were not significantly different 

(F(35,1044) = 1.35, P = 0.083) at the beginning of the experiment (mean length = 0.40 ± 0.02 mm). 

3.3.  Results
3.3.1  Survival

In this investigation survival was comparable to, and in most cases greater than, previous 

studies of similar duration on other species of freshwater mussel (Fig. 3.3a), and specifically 

M. margaritifera (Fig. 3.3b).  Higher survival was observed in the 1 - 2 mm monthly treatment 

with an average of over 55 % survival after 362 days and 23 % after 758 days (Table 3.1). The 

poorest survival was in the 0.25 - 1 mm weekly treatment, averaging 14 % and 7 % survival after 

362 and 758 days respectively, with the other two treatments showing intermediate survival  

(Table 3.2 & Fig. 3.4). 

362 days 758 days
Treatment Total no. 

survived
Mean 

survival (%)
Survival 

range (%)
Total no. 
survived

Mean 
survival (%)

Survival 
range (%)

0.25 - 1 mm weekly 123 14 8-19 67 7 8-12
0.25 - 1 mm monthly 253 28 19-40 61 7 4-15
1 - 2 mm weekly 333 37 18-47 184 20 7-30
1 - 2 mm monthly 498 55 45-63 206 23 15-29

Table 3.1: Survival (total number, mean and range) of juvenile freshwater pearl mussels in each 
treatment after 362 and 758 days.

Days post excystment
Treatment 51 112 167 247 308 362 758
1 - 2 mm monthly 84 ±4 75 ±4 71 ±4 68 ±3 65 ±3 55 ±6 23 ±5%

1 - 2 mm weekly 76 ±6* 51 ±5˄ 50 ±6 48 ±6 46 ±6 37 ±9 20 ±8%

0.25 - 1 mm monthly 75 ±4* 51 ±8˄ 43 ±8 40 ±8 33 ±7 28 ±6 7 ±3$

0.25 - 1 mm weekly 40 ±7 18 ±4 16 ±3 15 ±3 13 ±3 14 ±3 7 ±3$

Table 3.2: Mean survival (±SD) of juvenile freshwater pearl mussels at each sampling point in order of 
highest to lowest survival. Survival was significantly different between all treatments (Tukey’s HSD tests; 
P < 0.05) within each sampling point except where indicated on 51 (*P = 0.93), 112 (˄P = 0.97) and 758 
days post-excystment (%P = 0.734 and $P = 0.992). N.B. Results have been rounded to whole juveniles.
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Fig. 3.3: Time series graphs showing mean survival in (a) other published bivalve captive rearing studies 
and (b) more specifically on M. margaritifera. ‘Buddensiek (1995)’ figures taken from survival graphs; 
‘Hastie & Young (2003) Baskets’ estimated a sample of known volume and multiplied up to indicate 
likely survival in total volume. *Indicates figures based upon estimates; ^Indicates only one treatment 
selected for illustrative purposes; this study investigated survival of 8 different species over different 
timescales.  N.B. For all studies where several treatments are reported, only the best survival results are 
reported here for comparison.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100

Su
rv

iv
al

 (%
)

Time (days)

Buddensiek, 1995* Gatenby et al.,  1996 (Pyganodon grandis)
Gatenby et al., 1996 (Villosa iris) Gatenby et al., 1997
O'Beirn, 1998 Hanlon, 2000
Mummert, 2001 Hastie & Young, 2003 Baskets*
Hastie & Young, 2003 Cages Beaty & Neves, 2004
Barnhart, 2006^ Kovitvadhi et al, 2006
Liberty et al., 2007 Schmidt & Vandre, 2010
Eybe et al., 2013 This study

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100

Su
rv

iv
al

 (%
)

Time (days)

Buddensiek, 1995*

Hastie & Young, 2003 Baskets*

Hastie & Young, 2003 Cages

Schmidt & Vandre, 2010

Eybe et al., 2013

This study

b)

a)



54

Chapter 3: Effects of substrate size and cleaning regime on juvenile growth and survival

Fi
g.

 3
.4

: T
im

e 
se

rie
s 

gr
ap

h 
sh

ow
in

g 
m

ea
n 

su
rv

iv
al

 o
f 

ju
ve

ni
le

 f
re

sh
w

at
er

 p
ea

rl 
m

us
se

ls 
in

 d
iff

er
en

t 
tr

ea
tm

en
t 

w
ith

 S
D 

ba
rs

. T
he

 x
-a

xi
s 

is 
pr

ov
id

ed
 b

ot
h 

in
 d

ay
s 

sin
ce

 
ex

pe
rim

en
t c

om
m

en
ce

d 
an

d 
de

ta
ili

ng
 s

am
pl

e 
da

te
s 

(m
on

th
s)

 to
 s

ho
w

 h
ow

 s
ur

vi
va

l r
el

at
es

 to
 ti

m
e 

of
 y

ea
r. 

N
.B

. T
he

 fi
na

l d
at

a 
po

in
ts

 fo
r 0

.2
5 

- 1
 m

m
 tr

ea
tm

en
ts

 o
ve

rla
p 

pr
ec

ise
ly.

 Te
m

pe
ra

tu
re

 is
 a

lso
 p

ro
vi

de
d 

fo
r r

ef
er

en
ce

.



55

Chapter 3: Effects of substrate size and cleaning regime on juvenile growth and survival

Juvenile survival between treatments was significantly different on all sampling 

occasions (P < 0.001); 51 days (F(3,32) = 128.30), 112 days (F(3,32) = 148.285), 167 days (F(3,32) = 

145.296), 247 days (F(3,32) = 140.117), 308 days (F(3,32) = 145.350), 362 days (F(3,32) = 64.670) and 

758 days (F(3,32) = 25.400). The same pattern of survival was observed on all sampling occasions;  

1 - 2 mm monthly > 1 - 2 mm weekly > 0.25 - 1 mm monthly > 0.25 - 1 mm weekly. Post hoc 

tests indicate survival was the same where indicated in Table 3.2. 

There was no significant interaction between substrate size and cleaning regime 

affecting survival (F(1,32) = 0.805, P = 0.376) although when considering these two factors 

separately, survival was significantly higher in 1 - 2 mm substrate (F(1,32) = 136.022, P < 0.001) 

and in treatments cleaned monthly (F(1,32) = 57.178, P < 0.001). Likewise, on day 758 there was 

no significant interaction between the effects of substrate size and cleaning regime on survival 

(F(1,31) = 1.572, P = 0.219). When considering these two parameters separately survival was 

significantly higher in 1 - 2 mm substrate (F(1,31) = 83.381, P < 0.001) but there was no significant 

difference in survival between cleaning regimes (F(1,31) = 0.052, P = 0.822). 

3.3.1.1 Survival rate

Survival rates (i.e. difference between survival at one sampling point and the next as a 

percentage) were considered to examine the different mortality rates between treatments 

taking into account the high initial mortality observed in the 0.25 - 1 mm weekly 

treatment. Survival rates between the treatments were significantly different on days 51  

(F(3,32) = 128.303; P < 0.001), 112 (F(3,32) =  41.388; P < 0.001), 167 (F(3,32) =  9.743; P < 0.001), 247 

(F(3,32) =  6.553; P = 0.001), 308 (H(3) = 15.179; P = 0.002) and 758 (F(3,32) = 9.404; P < 0.001) but 

not different on day 247 (F(3,32) =  0.619; P = 0.608).

To investigate the relationship between juvenile size and survival rate, mean shell 

length was plotted against mean survival rate. There appears to be no relationship for either 

of the 1 - 2 mm treatments (Fig. 3.5) but a slight positive relationship is observed in the  

0.25 - 1 mm treatments, which is particularly strong in the treatment cleaned weekly. There 

was no significant correlation in the 0.25 - 1 mm monthly treatment (rs(4) = 0.515, P = 0.296) 

but there was a significant correlation in the 0.25 - 1 mm weekly treatment (rs(4) = 0.947,  

P < 0.01). In this treatment larger individuals had significantly higher survival rates compared 

to smaller individuals. 
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Days
Treatment 51 112 167 247 308 362 758
1 - 2 mm monthly 84 ±4 75 ±4 71 ±4 68 ±3 65 ±3 55 ±6 23 ±5
1 - 2 mm weekly 76 ±6 51 ±5% 50 ±6% 48 ±6 46 ±6 37 ±9 20 ±8
0.25 - 1 mm monthly 75 ±4 51 ±8 43 ±8 40 ±8 33 ±7 28 ±6 7 ±3
0.25 - 1 mm weekly 40 ±7 18 ±4 16 ±3* 15 ±3*$ 13 ±3^ 14 ±3^$ 7 ±3

Table 3.3: Mean survival (± SD) of juvenile freshwater pearl mussels in all treatments at each sampling 
point (days) in order of highest to lowest survival. Survival was significantly different within all treatments 
(i.e. between time points) using Repeated Measures ANOVA; P < 0.001, except where indicated by the 
same symbols: % (1 - 2 mm weekly) and *, $, ^ (0.25 - 1 mm weekly). N.B. Results have been rounded 
to whole juveniles.

3.3.1.2 Survival over time

Survival differences within treatments over the first 362 days of the experiment were tested 

with Repeated Measures ANOVAs to see if survival changed at specific times of year. Table 3.3 

provides a summary of results. Mean survival was different over the course of the experiment 

for all treatments (P < 0.001); 0.25 - 1 mm weekly (F(2.021, 16.171) = 1147.196), 0.25 - 1 mm 

monthly (F(6, 48) = 315.484), 1 - 2 mm weekly (F(2.126, 17.008) = 324.543) and 1 - 2 mm monthly 

(F(2.030, 16.243) = 167.912). Post hoc tests revealed that survival was the same only in the 1 - 2 mm 

weekly treatment between days 112 & 167 (October & December 2012; P = 0.086) and in the 

0.25 - 1 mm weekly treatment between days 167 & 247 (December 2012 & February 2013; 
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Fig. 3.5: Scatter plot showing mean survival rate (%) against mean shell length (mm) of juvenile 
freshwater pearl mussels for each treatment. Only the 0.25 - 1 mm weekly treatment shows a significant 
correlation (P < 0.01) between survival rate (%) and length (mm). 
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P = 0.122), 247 & 362 (February & June 2013; P = 0.128) and 308 & 362 (April & June 2013; 

P = 0.288), indicating that survival stabilised over winter in the 0.25 - 1 mm weekly treatment 

but not in any of the others. 

3.3.1.3 Over-winter survival

To establish if juveniles display size-dependent over-winter survival, t-tests were carried out 

comparing juvenile size pre- and post-winter in October 2012 (day 112) & April 2013 (day 308). 

As shown in Fig. 3.6, juveniles were significantly larger post-winter (P < 0.001) in all treatments; 

0.25 - 1 mm weekly (t(272) = -4.377), 0.25 - 1 mm monthly (t(522) = -5.239), 1 - 2 mm weekly  

(t(538) = -3.717), 1 - 2 mm monthly (t(530) = -5.027). Considering Fig. 3.6, there were more juveniles 

in larger size classes in April 2013 compared to October 2012. This implies that, rather than 

there being high mortality of smaller juveniles over winter, individuals have grown, pushing 

them into larger size classes.

3.3.2  Size

Length and height were found to be highly correlated in all treatments (P < 0.001; Fig. 3.7)  

therefore only length was used for analysis in this study. 

Length of juveniles between treatments was analysed for each sampling 

occasion (Table 3.4). Juvenile length was significantly different between all treatments  

(P < 0.001) on days 51 (F(3,1076) = 77.295), 112 (F(3,964) = 195.723), 167 (F(3,951) = 158.522), 247  

(F(3,941) = 175.247), 308 (F(3,906) = 162.465), 362 (F(3,883) = 167.377) and 758 (F(3,514) = 70.576).  

The same pattern was observed throughout the experiment; 1 - 2 mm weekly > 0.25 - 1 mm 

weekly > 1 - 2 mm monthly > 0.25 - 1 mm monthly (Fig. 3.8). Fig. 3.9 shows length histograms 

for each treatment during the first year. 

Days
Treatment 51 112 167 247 308 362 758
1 - 2 mm weekly 0.72 ±0.07 0.89 ±0.11 0.88 ±0.10* 0.90 ±0.09 0.92 ±0.10˄ 1.14 ±0.17 2.82 ±0.54
0.25 - 1 mm weekly 0.70 ±0.07 0.84 ±0.11 0.86 ±0.11* 0.87 ±0.10 0.90 ±0.11˄ 1.10 ±0.17 2.60 ±0.62
1 - 2 mm monthly 0.65 ±0.08 0.74 ±0.10 0.76 ±0.10 0.77 ±0.10 0.78 ±0.11 0.94 ±0.18 2.16 ±0.59
0.25 - 1 mm monthly 0.63 ±0.07 0.69 ±0.10 0.71 ±0.10 0.72 ±0.10 0.74 ±0.11 0.83 ±0.16 1.81 ±0.49

Table 3.4: Mean length ±SD (mm) of juvenile freshwater pearl mussels in all treatments at each sampling point (days)
in order of largest to smallest. Size was significantly different between all treatments (Tukey’s HSD tests; P < 0.05) 
within each sampling point except where indicated on days 167 (*P = 0.31) and 308 (˄P = 0.17).
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A 2-way ANOVA carried out on length data after 362 days found a significant 

interaction between substrate size and cleaning regime (F(1,883) = 7.414, P = 0.007).  

Analysis of simple main effects found juveniles were significantly larger in the 1 - 2 mm 

substrate when cleaned both weekly (F(1,883) = 6.336; P = 0.012) and monthly (F(1,883) = 54.916;  

P < 0.001) and the individuals cleaned weekly were significantly larger in both the 0.25 - 1 mm 

(F(1,883) = 204.378; P < 0.001) and 1 - 2 mm substrates (F(1,883) = 191.658; P < 0.001).  Another 

2-way ANOVA was carried out for juveniles at 758 days but no significant interaction was found 

(F(1,514) = 1.358; P = 0.244), although when considering these two factors separately, juveniles 

were significantly larger in 1 - 2 mm substrate (F(1,514) = 23.731, P < 0.001) and those treatments 

cleaned weekly (F(1,514) = 157.734, P < 0.001).

3.3.2.1 Growth per day and the effect of temperature

Shell growth is positively correlated with temperature (rs(214) = 0.76, P < 0.001). Near cessation 

of growth was observed below approximately 10 °C (Fig. 3.10). A summary of temperature 

data recorded at hourly intervals throughout the experiment is provided in Table 3.5.

Individuals in sieves cleaned weekly, regardless of substrate size, showed superior growth 

compared to those cleaned monthly (Table 3.4 & Fig. 3.8). Mean daily growth rates (Fig. 3.11) 

during the warmest period (June - August 2012) were almost 11 times higher than during the 

coolest period (March - May 2013). Growth decreased with temperature over winter but did 

not stop completely (Table 3.6) before increasing again between April and June 2013.

Temperature (°C)
Sampling interval Mean ±SD Max Min
29 June - 18 August 2012 15.4 ±1.0 17.6 13.8
19 August - 18 October 2012 14.7 ±2.0 17.7 11.4
19 October - 12 December 2012 9.0 ±1.7 11.7 5.9
13 December 2012 - 2 March 2013 5.6 ±1.1 9.3 4.2
3 March - 2 May 2013 5.5 ±1.5 8.6 3.8
3 May - 26 June 2013 10.7 ±1.3 13.9 8.6

Table 3.5: Summary of water temperature data within rearing system for the different sampling 
intervals during 2012 - 2013. This shows summer maximum temperatures between June - August 2012, 
temperature dropping over winter to a minimum between March - May 2013 before temperatures rise 
again between May - June 2013.
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3.3.3  Escaped mussels

A total of 88 juveniles were found outside of sieves between 19 July 2012 and 5 April 2013. This 

equates to around 2.5 % of experimental individuals. The majority (84 individuals) were found 

during the first four months of the experiment and the number decreased markedly once the 

0.3 mm sieves were placed on top of experimental sieves. Lengths of escaped juveniles are 

consistent with experimental individuals (Fig. 3.12). 
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Fig. 3.12: Scatter plot showing mean shell length (mm) of escaped juvenile freshwater pearl mussels 
compared to the overall mean shell length (mm) of juveniles found within sieves on normal sampling 
occasions.

Table 3.6: Mean daily growth in shell length (µm) for juvenile freshwater pearl mussels for the different 
sampling intervals in each treatment. N.B. Negative values in the 0.25 - 1 mm weekly treatment 
between December 2012 and February 2013 and in the 1 - 2 mm weekly treatment between October 
and December 2012 are due to sampling error. 

Treatment June – Aug 
2012

Aug – Oct 
2012

Oct – Dec 
2012

Dec 2012 – 
Mar 2013

Mar – May 
2013

May – Jun 
2013

0.25 - 1 mm weekly 6.15 2.10 0.42 -0.01 0.66 3.67
0.25 - 1 mm monthly 4.18 1.01 0.31 0.15 0.27 1.76
1 - 2 mm weekly 6.80 2.52 -0.24 0.22 0.46 4.00
1 - 2 mm monthly 4.58 1.58 0.35 0.11 0.21 3.20
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3.4.  Discussion
The objective of this study was to test the effectiveness of this culture system for rearing newly-

excysted juvenile mussels and to examine the effects of different substrate sizes and cleaning 

regimes on growth and survival of the freshwater pearl mussel Margaritifera margaritifera. 

This is a semi-natural rearing technique employing salient features from previous studies e.g.  

Hastie & Young (2003); Lange (2005); Barnhart (2006); Preston et al. (2007); Gum et al. (2011) 

to create a low-maintenance system which does not require supplemental feeding. This culture 

system proved successful in rearing juveniles to 25 months old and, if scaled up, could rear up 

to 2000 juveniles per year to a size of > 1 mm using 1 - 2 mm substrate cleaned monthly at a 

density of 100 juveniles per sieve. This equates to a maintenance effort of approximately three 

hours per month. This system may also safeguard against disease or fungal infection because 

juveniles are kept in separate sieves. If fungal infection was detected in a particular sieve then 

this could be removed to safeguard individuals in other sieves. Eybe et al. (2013) found fungal 

infection could be problematic and could spread rapidly, particularly when density is high. 

The proportion of mussels escaping experimental containers was minimal (total 2.5%) 

and in future this can be prevented by placing covers over containers from the beginning. 

Other studies have reported juvenile mortality in culture associated with predation by other 

invertebrates (Henley et al., 2001; Barnhart, 2003; Barnhart, 2004; Jones et al., 2005) but there 

was no evidence of predation in this system. Before the addition of juveniles, substrate was 

exposed to lake water to allow biofilm development. Whilst not a topic of focus in this study, 

other researchers have found the presence of a biofilm increases growth and survival during 

the earliest juvenile stages compared to a sterile surface (Ó Foighil et al., 1990, Gum et al., 

2011) and the use of substrate exposed for at least 21 days as per Battin et al. (2003) appears 

to be adequate for M. margaritifera juveniles.

Juveniles were reared to an age of 758 days with the most successful treatment achieving 

over 55 % mean survival by day 362 and 23 % by day 758. No other captive rearing programme 

has published this level of survival over a similar time scale (Fig. 3.3). However, published studies 

tend to lack specific information on periodic growth and survival over extended time periods. 

For example Schmidt & Vandré (2010) reported mean survival of 82 % over approximately 

120 days but no subsequent data, whereas Buddensiek (1995) details much lower survival but 

over a longer period e.g. 17% survival at 476 days and 2% survival at 1081 days. Hruška (1999) 
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detailed the rearing of 30,000 individuals to over 3 years old but does not provide information 

on original numbers of juveniles or survival rates. For a long-lived, slow growing species such 

as M. margaritifera, long term studies with periodic monitoring and standardised reporting 

are required to fully understand factors affecting growth and survival of juveniles in captivity. 

In this investigation growth was comparable with other published studies on M. 

margaritifera e.g. Hruška (1999); Scheder et al. (2011); Scriven et al. (2011); Eybe et al. 

(2013). Juveniles achieved 170 - 220 % growth during the first season (equating to lengths of  

0.68 – 0.89 mm) which compares favourably with Hruška (1999) who reported 250 % growth 

and Eybe et al. (2013) reporting 150 - 200 % growth (0.96 – 1.13 mm). It is not possible to 

use growth as an indicator of rearing success when comparing different rearing systems 

due to confounding issues such as differences in culture conditions, temperature regimes, 

handling and different growth rates displayed by different mussel lineages (pers. obs.). 

For example Eybe et al. (2013) exposed juveniles to a constant temperature of between  

17 - 18 °C at all times to extend the growth period, whereas the mean temperature for the 

same period during this study was 15.0 ± 1.7 °C. Equally Scheder et al.  (2014) kept juveniles at  

18 °C and achieved mean daily growth rates of up to 9.3 µm; higher than this study’s maximum 

of 6.80 µm. It is however encouraging that juvenile growth in this study is within the limits of 

other studies on this species. 

This study found that juveniles of the same age can display a large size range after 

a relatively short time period. This has also been observed in other populations at the  

Freshwater Pearl Mussel Ark (Sweeting & Lavictoire, 2013) and concurs with findings 

from studies on other species e.g. Hudson & Isom (1984); Beaty & Neves (2004); Barnhart 

(2006); Schmidt & Vandré (2010). By day 758, some individuals were four times the length 

of others and the standard deviations within the treatments were larger on this sampling  

occasion compared to all previous ones. It is thought that juveniles switch from pedal to filter 

feeding around 18 months old (E. Moorkens, pers. comm.) so this may indicate that differences 

in growth rates may be observed once filter feeding commences. This topic is explored further 

in Chapter 5. It is unlikely that the observed differences in growth rates arise from differences  

in excystment date as the maximum difference in this study was only 8 days. Some have 

suggested that different growth rates are governed by genetics or may even be due to the 

vitality of individual glochidia before leaving the female mussel (Loosanoff & Davis, 1963).  
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Whatever the reason, this pattern has been shown to continue as juveniles get older 

with some individuals reaching over 9 times the length of conspecifics by five years old  

(Sweeting & Lavictoire, 2013).

3.4.1  Effect of substrate size

Significantly higher survival was observed in larger substrates (1 - 2 mm) averaging between  

37 - 55 % after 362 days compared with 14 - 28 % in the smaller (0.25 - 1 mm) substrate 

treatments (Table 3.1).  These findings concur with previous studies on unionids e.g. Rogers 

(1999); Brady (2000); Liberty et al. (2007). By day 758, survival in the 1 - 2 mm monthly  

treatment appears to drop closer to other treatments although it is still significantly higher  

(Fig. 3.4). This may be because juveniles are outgrowing this system and the 0.3 mm sieve 

designed to retain juveniles may be causing some mortality due to squashing (pers. obs.). 

Removal of the top sieve could be beneficial after 12 months but escapement may still occur. 

On day 758 juveniles were observed clinging to the top edge of the 0.3 mm sieve approximately 

30 mm above the substrate, proving that they are still very mobile at this age and capable of 

climbing out of containers. An alternative option to ensure juvenile containment within sieves 

would be to place a piece of netting over the top of the sieve, secured with an elastic band.

When considering juvenile length, a significant interaction between substrate size and 

cleaning regime was found after 362 days whereby juveniles were larger in 1 - 2 mm substrate 

and substrate which was cleaned weekly. This interaction was not present after 758 days. One 

hypothesis for why this interaction was lost between these two sampling points is that pedal 

feeding juveniles (day 362) may be particularly vulnerable to sub-optimal substrate conditions 

which may impede feeding  and thus affect size. It is anticipated that there are higher flow 

rates through 1 - 2 mm substrates due to larger interstitial spaces which should mean higher 

levels of available dissolved oxygen or food, thus leading to larger juvenile size. Likewise, it is 

anticipated that weekly cleaning should increase water flow through sieves, providing a more 

suitable foraging environment for juveniles and perhaps increasing food delivery. Therefore 

it is thought that the interaction of substrate size and cleaning regime had a significant effect 

on the growth of pedal-feeding juveniles (362 days old) but this interaction disappeared when 

juveniles were filter feeding (758 days) because these juveniles are more capable of pumping 

water from the water column rather than being dependent solely upon the food available 
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within the substrate. For survival, there was no interaction between substrate size and cleaning 

regime on either of days 362 or 758.  

Culture conditions which allow water to flow through interstitial spaces but do not allow 

too much fine organic or particulate matter to infiltrate can supply juveniles with suitable 

habitat conditions with good levels of oxygen and food (Liberty et al., 2007). The potential 

benefits of using larger substrate sizes for M. margaritifera in culture are improved oxygen and 

food supply and also the more efficient removal of potentially toxic ions such as ammonium 

or nitrite, found to be a limiting factor for juvenile survival by Eybe et al. (2013). The superior 

growth and survival found in larger substrates in this study indicates that substrates measuring 

1 - 2 mm in diameter allow sufficient flow-through but provide suitable substrates for juveniles 

to move through. The ability of mussels to survive in different substrate clasts appears to be 

species specific, or at least relates to the habitat niche of the species in question. Survival may 

also be affected by the facility or culture system employed. For example, Hua et al. (2013) 

recorded  better growth and survival for Villosa iris in substrates < 0.2 mm in a recirculating 

system at the Freshwater Mollusk Conservation Centre in Virginia, USA, but Liberty et al. (2007) 

found superior survival in substrates between 0.50 - 0.85 mm in a flow-through system at the 

Aquatic Wildlife Conservation Centre, also in Virginia.

Individuals in the 0.25 - 1 mm weekly treatment were the only ones to show size-

dependent survival over the first 362 days of the experiment. This may be because this 

treatment provided the least suitable conditions for M. margaritifera so only the largest (and 

presumably healthiest) individuals could survive. It appears that the combination of small 

substrate size and weekly cleaning does not provide conditions under which M. margaritifera 

juveniles can thrive. 

3.4.2  Effect of cleaning regime

Cleaning substrate on a weekly basis detrimentally affects survival compared to monthly 

cleaning (Table 3.2 & Fig. 3.4). Differences in survival rates (i.e. the proportion of juveniles 

which survived between one sampling point and the next) between treatments were  

significant which indicates that observed differences in survival were not artefacts    of high initial 

mortality in the 0.25 - 1 mm weekly treatment after approximately 112 days. Similar results 

have been reported documenting poorer survival and growth in substrates cleaned more 
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frequently in studies on other mussel species (O’Beirn et al., 1998; Hanlon, 2000; Zimmerman, 

2003; Liberty et al., 2007) due to stress or accidental damage/loss during sampling.

Whilst survival was compromised in treatments cleaned more frequently, growth was 

found to be significantly higher. This may be because cleaner substrates allow juveniles to 

forage for more or better quality food and there is less build-up of potentially toxic waste 

products such as ammonia. Superior growth in treatments cleaned more frequently contradicts 

findings of studies on other mussel species e.g. Hanlon (2000) and Liberty et al. (2007). It 

appears that most captive-bred species require enough cleaning to remove fine particles in 

order that they do not affect normal behaviour (e.g. foraging) but too much cleaning may 

cause stress and damage/loss, leading to lower growth rates and higher mortality. Whilst this 

finding is interesting, higher growth rates should not be sought at the expense of survival in 

captive rearing programmes.

3.4.3  Effect of temperature 

This investigation confirms the findings of other studies showing juvenile growth is negligible 

when temperatures are below approximately 10 °C (Ziuganov et al., 1994; Buddensiek, 1995; 

Hruška, 1999; Scheder et al., 2014). Mean daily temperature dropped below 10 °C between 

early November 2012 and late May 2013, approximately half of the first year post-excystment. 

The temperature regime of Windermere is different from lotic systems because the lake is  

slower to heat up in summer and cool down in autumn (see Fig. 3.4 for temperature profile). 

This may provide an extended growth period for juveniles before the onset of winter. During 

the first growth season there were 127 days where temperatures were above 10 °C, equating 

to 1845 degree days. Whilst a higher rate of daily growth occurred at higher temperatures 

(Table 3.6), it is important to note for this experimental system that the growth season may be 

extended as long as water temperature remains above 10 °C. Some rearing programmes have 

adopted the strategy of holding juveniles at artificially high temperatures to promote growth 

to > 1 mm in early juvenile life (Lange, 2005; Eybe et al., 2013, Scheder et al., 2014). The long-

term effects of this are unknown. This strategy could lead to selection for individuals better 

suited to surviving at higher temperatures or it could lead to delayed mortality once individuals 

are introduced into a natural temperature regime. Wild individuals growing at the southern 

extreme of the natural range of M. margaritifera grow more quickly than those in northern 
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populations due to increased metabolism but these individuals also die younger (Bauer, 

1992; Hruška, 1992). Due to these concerns, a fluctuating temperature regime encompassing 

temperature ranges observed in native pearl mussel rivers was used in this study but the  

effects of selection or delayed mortality until later juvenile life of stable and/or elevated 

temperatures in early juvenile life should be investigated further.  

Across all treatments mortality was highest during the first growth season, after which 

it was relatively low and stable over winter before increasing slightly at the beginning of the 

second growth season (Fig. 3.4). This implies that juvenile survival is relatively stable when 

water temperature (and therefore metabolic rate) is low but increases with rising water 

temperature. At higher temperatures it is anticipated that certain processes will increase 

such as metabolic rate (leading to higher DO consumption and increased production of 

waste materials) and primary production (with subsequent breakdown of organic and waste 

materials), thus decreasing sediment quality for juveniles and increasing mortality. Some of 

these factors are investigated and discussed further in Chapter 4.

Regardless of the hypothesis posed above, the observed pattern of survival in 

this study was not expected because it was assumed that mortality would increase over 

winter for those juveniles lacking sufficient nutritional reserves (Lange & Selheim, 2011; 

Denic et al., 2015). Buddensiek (1995)  found high mortality during the first few months 

post-excystment (June – December) but also found size-dependent over-winter mortality 

of smaller mussels < 0.7 mm; a result which has not been replicated in this study. This 

investigation found some individuals in the treatment showing the slowest growth (0.25 - 

1 mm monthly) had still not attained 0.7 mm by 362 days. Whilst growth rates decreased 

substantially between 112 and 308 days in line with decreasing water temperature, a 

small amount of growth was still observed (approximately 0.3 µm/day) which matches  

almost exactly with the 0.31 µm/day Scheder et al. (2014) observed over late autumn and 

winter. This minimal growth was distinguished from mortality of smaller individuals by 

considering the number of individuals in the different size classes pre- and post-winter (Fig. 

3.6). There are more juveniles in larger size classes in April 2013 compared to October 2012 

and not simply fewer juveniles in the smaller size classes (which would indicate mortality in 

the smaller individuals). 



70

Chapter 3: Effects of substrate size and cleaning regime on juvenile growth and survival

3.4.4  Conclusions and further research 

This work has informed breeding practices at the FBA’s Freshwater Pearl Mussel Ark. A rearing 

protocol using 1 - 2 mm substrate cleaned every 2 weeks in modified fish egg trays described 

in Sweeting & Miles (2009) was introduced for all new juvenile cohorts collected from spring 

2013. Some success in this modified system allows tentative optimism that aspects of this 

investigation can be used to scale-up propagation of threatened populations at the FBA. This 

system facilitated rapid sampling and cleaning which is an important consideration when 

designing culture systems in order to maximise efficiency.

It is thought that juveniles undergo transformation from pedal to filter feeding at 

approximately 18 months old (~548 days - E. Moorkens pers. comm.) and observations made 

at 758 days indicated that most individuals were filtering. This system is therefore suitable for 

both pedal and filter feeding juveniles although as mentioned previously it may be beneficial 

to remove the 0.3 mm sieve after 12 months and replace it with an alternative mesh cover to 

avoid crushing juveniles.

Whilst this study has demonstrated significant differences in survival and growth in 

different substrate sizes and cleaning regimes a number of questions remain:

1.        What habitat parameters are responsible for these differences? This investigation 

sought to establish if there were differences between substrate size clasts and cleaning 

regimes but more information is required on why these differences were observed. 

Chapter 4 seeks to explore this by investigating parameters such as interstitial 

dissolved oxygen concentration, ammonia concentration, interstitial space and flow  

characteristics in this system.  

2.        Does juvenile density affect survival and growth within this system? This question 

is important to refine the system and optimise the number of juveniles reared. Eybe 

et al. (2013) found better juvenile growth at densities of < 300 juveniles per 500 ml 

water whilst Barnhart (2006) achieved good survival for several North American mussel 

species at densities of 2000 individuals in small cups. Similarly Beaty (1999) found no 

density dependent effects for Villosa iris. 

3.        Is this system suitable for juveniles beyond 758 days? Investigating this would 

demonstrate suitability of the system beyond 758 days and would also clarify when 
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survival stabilises. Sweeting & Lavictoire (2013) observed > 90 % year-on-year survival in 

some populations at the FBA after reaching 3 - 4 years old.

4.        Can juveniles ‘choose’ their habitat? Choice or preference for different types of  

substrate is likely to be species-specific (Huehner, 1987; Downing et al., 2000;  

Lara & Parada, 2009) and may change with age (or size). The current study did not  

provide a choice to juveniles so this aspect is worthy of further study. Larger substrate 

sizes (> 2 mm) could also be considered to see if survival could be increased in the 

current system. 

Findings of this chapter have been published in the following paper which can be found in the 

supplementary material at the end of this thesis:

Lavictoire, L., Moorkens, E., Ramsey, A.D., Sinclair, W. and Sweeting, R.A. (2016) Effects of 

substrate size and cleaning regime on growth and survival of captive-bred juvenile 

freshwater pearl mussels, Margaritifera margaritifera (Linnaeus, 1758). Hydrobiologia. 

766: 89-102. http://dx.doi.org/10.1007/s10750-015-2445-4. 
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4.1.  Introduction
In the wild, juvenile mussels are dependent upon the substrate conditions within the habitat 

patch into which they fall upon excystment. Juveniles are more vulnerable to poor interstitial 

habitat conditions as they live within the gravels for several years post-excystment (Skinner et 

al., 2003) and are much more likely to be washed away if poor habitat conditions force them 

to rise to the surface in search of better conditions (Moorkens, 2011). 

Physical habitat structure influences the organisms residing within substrates and 

factors such as habitat type, flow and biological activity act over different spatial scales, 

causing variations at the level of individuals and populations. In a natural river setting, 

hyporheic exchange delivers water rich in dissolved oxygen (DO) to the shallow hyporheic zone 

and removes the build-up of waste products and toxic chemicals (Buss et al., 2009; Tonina & 

Buffington, 2009). Flow also affects the structure and function of biofilm communities (Battin 

et al., 2003) which has the potential to be an important food source in early juvenile life.

In captive or laboratory settings, parameters such as flow (rate and direction), fine 

particle inputs, supplementary diet, substrate characteristics and disturbance can be controlled 

and monitored to achieve improved survival and/or growth of cultured species. Whilst many 

culture facilities adopt methods which are semi-natural e.g. Buddensiek (1995), Hruška (1999), 

Mummert (2001), Beaty & Neves (2004), Preston et al. (2007), Lavictoire et al. (2014), others 

have adopted methods which promote accelerated growth in systems which do not require 

water flow or sediment at all e.g. Lange (2005),  Eybe et al. (2013). This brings into question 

which parameters truly limit juvenile growth and survival in captivity and where captive rearing 

programmes should focus efforts to optimise survival.

4.1.1  Interstitial conditions affecting juvenile mussels

Many studies have been carried out to characterise pearl mussel habitat but relatively few 

have focused on the interstitial habitats which juveniles inhabit and are dependent upon 

(Scheder et al., 2015). Water flow through stream substrates is complex and dynamic often 

varying over very small spatial scales (cm) and is affected by a wide range of factors such as 

substrate particle size, discharge and channel slope (Geist & Auerswald, 2007; Quinlan et al., 

2014a). Such factors are outside of the scope of this study but it is important to note which 
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habitat parameters in the wild predict presence or absence of juvenile mussels in order to 

tailor rearing systems and investigate why these factors are good predictors. 

Margaritifera margaritifera (Linnaeus, 1758) requires pristine habitat conditions with 

high DO concentrations. In 1898, (Boycott & Bowell) described M. margaritifera inhabiting 

rivers with “...more or less a sandy bottom...”,  “...found in abundance at the head of rapids 

where the bottom consists of fairly large stones, the interstices filled with sand and fine gravel...” 

and “...sheltering behind larger stones...”. These early descriptions of pearl mussel habitat have 

since been echoed by many researchers, all of whom agree that the species prefers mixed 

substrate of coarse sand and smaller stones stabilised by larger cobbles and boulders (Boycott, 

1933; Vannote & Minshall, 1982; Purser, 1985; Neves & Widlak, 1987; Ziuganov et al., 1994; 

Gittings et al., 1998; Beasley & Roberts, 1999; Hastie et al., 2000; Moorkens, 2000; Skinner et 

al., 2003; Morales et al., 2004; Geist & Auerswald, 2007; Moorkens & Killeen, 2014; Quinlan et 

al., 2014a). Neither grain-size nor compaction should limit free-flowing water exchange with 

the interstitial (Buddensiek et al., 1993; Geist & Auerswald, 2007) and flow should be high 

enough to discourage sedimentation (Hastie et al., 2003; Morales et al., 2004). 

The most significant factor leading to population declines across Europe has been 

habitat degradation through siltation and increased nutrient inputs (Buddensiek et al., 1993; 

Moorkens & Killeen, 2014; Santos et al., 2015). Interstitial spaces can become clogged by fine 

particles (Buddensiek, 1995; Brim Box & Mossa, 1999; Geist & Auerswald, 2007) and anoxic 

through a combination of factors including direct smothering, decreasing water column-

interstitial water exchange, and decomposition of organic matter (Buddensiek et al., 1993; 

Patzner & Müller, 2001; Tarr, 2008; Buss et al., 2009) although the exact cause of juvenile mussel 

mortality has not yet been identified (Quinlan et al., 2014a). Juvenile mussels are intolerant of 

anoxia (Dimock & Wright, 1993). Therefore when interstitial conditions become sub-optimal 

they may seek higher oxygen levels by rising to the substrate surface (Moorkens, 2011) where 

the exchange with the water column is higher. This puts juveniles at risk of being washed 

away during high flows, indirectly leading to mortality (Sparks & Strayer, 1998). Many factors 

affect DO and concentrations can be highly variable even within dense mussel beds (Quinlan 

et al., 2014b). In addition to flow rate and the breakdown of organic matter, nitrification can 

also affect DO. Waste products (mainly ammonia) from juvenile mussels and other interstitial 

invertebrates are oxidized to nitrite and again oxidized to nitrate under aerobic conditions, 
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decreasing available oxygen. In addition, un-ionized ammonia and nitrite can be toxic to 

aquatic organisms (Patzner & Müller, 2001) so poor flow through substrates (and thus failure 

to remove nitrogenous waste products) may also  contribute to mortality. 

In a controlled environment such as captive rearing systems, much of this habitat 

complexity can be removed or simplified and it is possible to measure the effects of individual 

factors on juvenile survival and growth. 

4.1.2  Objective of this study

A number of studies have investigated nutrient concentrations from the water column in pearl 

mussel rivers e.g. Bauer (1988); Buddensiek et al. (1993); Moorkens (2006a); Geist & Auerswald 

(2007) but the suggested targets/limits are for the water column and not the interstitial layer 

where juveniles reside. 

The findings reported in Chapter 3 and published by Lavictoire et al. (2016) outline 

a lack of basic knowledge of the physical, chemical and biological requirements of juvenile 

mussels and why these are important for survival. The current chapter seeks to quantify some 

of the parameters which may contribute to the differences in survival and growth observed in 

the previous chapter. This will provide additional information on the habitat requirements of 

newly-excysted juvenile mussels and how these parameters ultimately affect survival. 

In Chapters 2 & 3, an aquarium system was described which uses a hydrostatic head to 

create a down-welling system through sieves containing juvenile mussels. Superior survival 

rates were observed in coarser substrates and higher growth was observed in treatments 

cleaned more frequently (Lavictoire et al., 2016). Substrate size and interstitial clogging affects 

interstitial flow, DO concentrations and the removal of potentially harmful ions. It is therefore 

probable that differences in these parameters are the cause of these significant differences in 

growth and survival in treatments with different substrate sizes (0.25 - 1 mm & 1 - 2 mm) and 

cleaning regimes (weekly & monthly). This chapter considers the habitat parameters below, as 

well as the growth and survival of newly-excysted juvenile mussels over a two month period 

in summer 2015 immediately following excystment. In the experiment carried out in 2012/13 

(Chapter 3), this was the period of highest mortality for newly-excysted juveniles and is likely 

to have the most challenging conditions with lower DO concentrations and higher productivity 

due to higher (summer) temperatures. 
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Parameters to be considered are:

1.        Effective pore space

2.        Flow rate

3.        Interstitial DO concentration 

4.        Interstitial ammonia concentration

5.        Total phosphorus (TP) concentration from organic matter within the interstices

6.        Dry weight of organic and inorganic material adhered to substrate (biofilm biomass).

4.2.  Methods
4.2.1  Experimental set-up

An aquarium (620 x 310 x 310 mm) was set up in the same way as described in Chapter 3 but 

with only three replicates of each treatment (total 12 sieves). New substrate was sieved to the 

two required sizes (0.25 - 1 mm and 1 - 2 mm) and heated in a muffle furnace (Carbolite 301) to  

550 °C for 4 hours to ash any organic matter. Forty grams (± 0.01 g) of substrate was added 

to each experimental sieve. Substrate was exposed to running lake water for at least 21 days 

before addition of juveniles to allow the establishment of a stable biofilm. Substrate was 

cleaned as described in Chapter 3 before the addition of juveniles. One hundred juveniles 

were added to each sieve (30 measured to obtain initial size as per Chapter 3) between  

18 - 23 July 2015 and a 0.3 mm sieve placed on top to stop juveniles escaping. The mesh of 

each 0.3 mm sieve had a hole through which 6 mm aquarium tubing was inserted so the tip 

rested approximately half way in to the substrate for water samples to be extracted. Tubing 

had 0.2 mm mesh over the end within the substrate to stop the removal of juvenile mussels 

when water samples were taken. Three sieves also had a second hole so DO loggers could be 

inserted to the same depth (Fig. 4.1). Sieves in the weekly treatments were cleaned weekly 

following the cleaning method described in Chapter 3 and the process repeated on a monthly 

basis for the monthly treatments. Where DO loggers were present in sieves which needed to 

be cleaned, loggers were downloaded and removed from sieves before cleaning.

A multi-parameter sonde (Troll 9500, In-Situ, USA) was suspended in the water column 

in the top chamber of the aquarium and this logged conductivity, DO, pH, redox potential, 

temperature and turbidity every 15 minutes for the duration of the experiment. DO loggers 

were introduced to the system at the beginning of week 5 (day 31; 17 August 2015). Table 4.1 
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outlines the treatments for which DO was logged, when, and for how long they were deployed. 

For the treatments cleaned weekly the PreSens DO dipping probe was sited in a 0.25 – 1 mm 

sieve for a single week, followed by a single week in a 1 – 2 mm sieve followed by a two 

week period in the same 0.25 – 1 mm sieve (different to the sieve in week 5). At experiment 

termination, the 0.25 – 1 and 1 – 2 mm monthly sieves were cleaned on 13 September 2015 and 

the probes reinserted until the following day while sampling of the other sieves took place. This 

was to ascertain if cleaning increased DO concentration in the monthly treatments following 

Fig. 4.1: Diagram showing sieve set-up in the rearing system. Upper and lower sieves sandwich the 
substrate. Holes are present in the mesh of the upper sieves for taking DO measurements and ammonia 
samples.

Make/model of logger Position Duration of 
deployment Parameters

In-Situ, Troll 9500 Water column Whole 
experiment 

Conductivity, DO, pH, redox 
potential, temperature, turbidity

PreSens DO dipping optode 
with Fibox 4 logger

0.25 – 1 mm weekly 
1 - 2 mm weekly
0.25 – 1 mm weekly

Week 5
Week 6
Weeks 7 & 8 

DO, temperature

Hobo U26-001 0.25 - 1 mm monthly Weeks 5 - 8 DO, temperature

Hobo U26-001 1 - 2 mm monthly Weeks 5 - 8 DO, temperature

Table 4.1: Summary of types of dissolved oxygen and multi-parameter loggers used, parameters 
measured, position in aquarium and duration of deployment.
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a cleaning event.  Optodes/sensors were calibrated following manufacturer’s instructions and 

measured to within an average of 0.32 mg/L and 0.08 °C of each other. 

Water samples for ammonia analysis were taken before cleaning on day 29 (see section 

4.2.2.1 below). On day 57 (14 September 2015) the experiment was terminated and all sieves 

were checked for juvenile survival. Size (length and height) of 30 individuals was measured 

before they were removed to the Ehen 2015 tray in the tray system described in Chapter 2. 

When checking substrate for juveniles on day 57, care was taken to retain all organic material 

from each sieve for analysis of TP (see section 4.2.2.2 below). Effective pore space, flow rate 

through substrate and organic content of biofilm was analysed as described in section 4.2.3 

below.

4.2.2  Chemical analyses

4.2.2.1 Ammonia

On day 29 (17 August 2015) before sieves were cleaned, a 2 ml water sample was extracted 

from each sieve and three samples taken from random spots in the water column. Initially, 1 

ml was siphoned out and discarded (water present in the tube) before the sample was taken. 

Ammonia-free water was prepared in advance using Amberlite IR 120 resin (Na+ form, 

Aldrich Chemistry). Three hundred and sixty ml of 1N HCl solution was passed through the 

resin at a rate of 7 ml/min until all Na+ ions on the resin had been replaced by H+ ions. The resin 

was flushed three times the bed volume with de-ionised water and the conductivity measured 

to ensure all acid had been flushed from the resin. De-ionised water was then passed through 

the resin to obtain ammonia-free water.

The phenate method for determination of ammonia concentration was used  

(Greenberg, 1985). Standards of ammonium chloride were prepared to concentrations of  

0.00625, 0.0125 and 0.025 µg/ml. A blank (ammonia-free water) was also used to check 

for potential sample contamination. The blank and standard solutions were used to 

create a calibration curve before analysis of samples using a Double-beam Cary 60 UV-VIS 

spectrophotometer (Agilent Technologies, USA) at 630 nm. 
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4.2.2.2 Total phosphorus

The amount of total phosphorus (TP) from organic matter washed from within the substrate 

interstices was analysed at the end of the experiment to give the amount of TP present after 

one week (treatments cleaned weekly) and one month (treatments cleaned monthly). After 

experiment termination, the contents of each sieve were emptied into a pyrex dish and 

elutriated in the same way as for juvenile cleaning to collect organic matter. Initially, attempts 

were made to filter two samples through Whatman GF/C filters but the pores became too 

clogged. All other samples were poured into a measuring flask, allowed to settle and the 

supernatant discarded. The organic material and excess water were then added to crucibles 

and dried at 105 °C overnight. In the two samples where filtration had been attempted the 

filter papers and the remaining organic matter and water were treated in the same way. The 

dry samples were weighed before being heated to 550 °C for 4 hours. The burned weight of 

each sample was recorded once crucibles had cooled to room temperature. Empty crucibles 

were  also weighed. 

To each ash sample, 5 ml of 5N hydrochloric acid was added and left to stand for 2 hours 

to make P available for analysis. Samples were filtered through Whatman No.1 filters and  

made up to 100 ml with distilled water. A 1 ml sub-sample was taken from each and neutralized 

by adding 1 drop phenolphthalein solution and concentrated sodium hydroxide dropwise 

until the solution turned bright pink. These sub-samples were then made up to 20 ml with 

distilled water. Mixed reagent was prepared by combining 5N hydrochloric acid with solutions 

of sodium molybdate, ascorbic acid and antimony potassium tartrate in the ratio 5:2:2:1. 

Phosphate standard solutions were prepared with potassium dihydrogen orthophosphate to 

concentrations of 0 (blank), 0.02, 0.05, 0.10, 0.15, 0.20, 0.40 and 1.00 µg/mL. To the 20 ml 

samples and standard solutions, 5 ml mixed reagent was added and solutions left for at least 

15 minutes for a blue colour to form and stabilise. In an acidified solution, orthophosphate 

reacts with acidified molybdate and antimony potassium tartrate to form molybdophosphoric 

acid which is reduced by ascorbic acid to the intensely blue coloured molybdenum blue. The 

blank and standard solutions were used to create a calibration curve before analysis of samples 

via spectrophotometry at 880 nm. Results are therefore reported as TP (filtered) but are not 

TP dissolved in interstitial water; they are the TP bound in organic material trapped within 

substrate interstices. 
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4.2.3  Flow and organic content analysis

Sieves were removed carefully from the test aquarium and placed over a bucket on a mesh 

surface. One litre of water was carefully poured into the sieve making sure that substrate and 

organic matter were not disturbed. The time taken for 1 L of water to pass through the sieve 

was recorded. Each sieve was examined to record the number of live juveniles remaining and 

the length and height of 30 randomly selected individuals. This process was repeated for all 

sieves. During juvenile processing, care was taken to collect all organic material from within 

the sieves for analysis of TP. 

The effective pore space in each sieve’s substrate was measured after juveniles were 

removed and substrate had been elutriated to remove organic matter. Substrate was placed 

into a measuring cylinder and water added until the meniscus rested on the substrate surface. 

Water was then drained into another measuring cylinder and the volume recorded. The drying 

and burning procedure described in section 4.2.2.2 was then carried out to measure the weight 

of biofilm on substrate. Loss On Ignition (LOI) was calculated using the following equation:

Loss on ignition = ((DS - AS) / (DS-DC)) x 100

Where:

DS = weight (g) of the crucible containing the sample dried at 105 °C over night.

AS = weight (g) of the crucible containing the ignited sample. 

DC = weight (g) of the empty crucible.

4.2.4  Data analysis

As mentioned in Chapter 3, juvenile length and height are highly correlated and so only length 

was used for analysis here. Juvenile length was not significantly different between sieves 

(F(11,348) = 1.366, P = 0.187) at the beginning of the experiment (mean length = 0.45 ± 0.05 mm).

Central Limit Theorem (Elliott, 1993) was applied to assume normality where 

appropriate. ANOVA’s with post hoc Tukey’s HSD tests were used for data relating to juvenile 

survival, juvenile length, weight of biofilm, weight of interstitial organic matter, total LOI, total 

phosphorus in the substrate and ammonia. Student’s t-tests were used to compare interstitial 

space in the two different substrate sizes. Unless otherwise stated, standard deviations are 

provided after means.
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To ensure there was no temporal autocorrelation bias within DO data, water column data 

were analysed using the autocorrelation and partial autocorrelation function in the statistical 

package R (version 3.2.2). This analysis indicated an appropriate interval of 11 data points. 

Every 11th data point was therefore extracted and used for analysis.  Spikes in data relating 

to cleaning events (section 4.3.3) were removed for data analysis purposes but are explained 

and discussed in detail in the following sections. Paired t-tests were performed to explore 

differences in DO concentrations between the water column and treatments. For these tests a 

Bonferroni correction for multiple tests was applied so that α = 0.006 (n = 9). Plots of DO data 

before and after cleaning in the 0.25 - 1 mm weekly treatments were visually inspected to 

observe any effect of cleaning on DO concentration. 

Juvenile survival during the first two months post excystment, temperature profiles 

and information on when juveniles were collected during the excystment period were also 

analysed between 2012 and 2015 to see if any differences could be found.

4.3.  Results
The Troll 9500 sonde measured water quality parameters every 15 minutes during its deployment. 

Analysis and summary of the period 23 August - 15 September 2015 are provided (Table 4.2 & Fig. 

4.2) to compliment DO data. All parameters measured by the sonde were within the ecologically 

acceptable range for Margaritifera margaritifera throughout the experiment and are within 

Parameter
Mean (±SD)

TROLL 9500 SONDE
Temperature (°C) 16.62 ±0.39
Turbidity (FNU) 4.21 ±3.68
Redox potential (Volts) 0.53 ±0.02
pH 7.28 ±0.09
Dissolved oxygen (mg/L) 8.57 ±0.25
Dissolved oxygen (% saturation) 88.42 ±2.96
Conductivity (µS/cm) 56.06 ±2.13
ENVIRONMENT AGENCY DATA
Phosphorus-P (mg/L) 0.02
Nitrogen-N (mg/L) 0.71
Filtered orthophosphate (mg/L) 0.002
Nitrogen-oxidised filtered (mg/L) 0.18
Ammonia filtered (mg/L) 0.002

Table 4.2: Mean (±SD) values for water quality parameters measured by the Troll 9500 sonde and from 
spot samples taken by the Environment Agency on 17 August 2015.
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the expected range for the time of year. Sonde malfunction between 17 - 23 August meant that 

data are missing for this period. Additional data were also provided by the Environment Agency  

(© Environment Agency and database right) in Table 4.2 for Windermere South Basin (grid 

ref: SD 38230 91552). Turbidity appeared to increase towards the end of the period but this 

was thought to be due to fouling on the sensor rather than an actual increase in suspended 

material.

4.3.1  Survival 

Survival differed significantly between treatments (F(3,8) = 4.713; P = 0.035) with highest 

survival in the 1 - 2 mm monthly treatment and the lowest survival in the 0.25 - 1 mm monthly 

treatment (Table 4.3). Despite this significant result, post hoc tests could find no significant 

difference between any two treatments, although the difference between the 0.25 - 1 mm 

monthly treatment was almost significantly different (P = 0.053) from the 1 - 2 mm monthly 

treatment. This may be because the number of replicates was low meaning that the post hoc 

tests did not have sufficient power to detect differences. The pattern of survival observed 

after 2 months in 2015 differs from 2012 results, with the 0.25 - 1 mm weekly treatment 

showing higher survival than the 0.25 - 1 mm monthly treatment in 2015 although since these 

differences in 2015 are not significant this is of limited importance (Table 4.3). In both 2012 

and 2015, highest mean survival was observed in the 1 - 2 mm monthly treatment.

Treatment 2012 2015 
0.25 - 1 mm weekly 40 ±7a 72 ±2a 
0.25 - 1 mm monthly 75 ±4b 68 ±4a 
1 - 2 mm weekly 76 ±6b 80 ±4a 
1 - 2 mm monthly 85 ±4c 81 ±8a 

Table 4.3: Mean survival (± SD) of juvenile freshwater pearl mussels after 2 months in the 2012 substrate 
experiment (Chapter 3) and the current (2015) experiment. Superscript letters within columns indicate 
statistically homogeneous subsets.
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4.3.2  Size

Juvenile length was not significantly different (F(3,356) = 0.744; P = 0.526) between treatments 

in September 2015. This is in contrast to findings in 2012 where juvenile size was significantly 

different after two months (Table 4.4).  

The mean starting length of juveniles used in the pilot substrate experiment in 2011, 

the full experiment in 2012 and the current experiment in 2015 were significantly different  

(F(2,3327) = 461.487, P < 0.001) with post hoc tests finding significant differences between 

all years. Juveniles in 2012 were the smallest (0.40 mm ±0.02) followed by those in 2011  

(0.44 ±0.02) and the largest juveniles were collected in 2015 (0.45 mm ±0.05). When 

considering temperature profiles (Fig. 4.3), excystment patterns (Fig. 4.4) and additional data 

such as degree days during the encystment and collection periods (Table 4.5) the effect of 

temperature (degree days) on juvenile growth does not appear to be a simple one. Juveniles 

collected in 2011 and 2012 had a similar number of degree days between encystment and 

excystment and total number of days encysted, yet the 2011 individuals were significantly 

larger than those in 2012. Juveniles in 2011 were collected during the peak excystment period 

(Fig. 4.4) whilst juveniles in 2012 were collected during the main excystment period but just 

before the 4-day peak. In comparison, the 2015 juveniles were collected at the end of the 

excystment period after the peak and had a larger number of degree days compared to the 

other two study periods. Individuals in 2015 were exposed to higher mean temperatures (and 

thus higher number of degree days) compared to 2012 individuals (Table 4.6) and the pattern 

of them being larger than the 2012 individuals thus continued when sampled after two months.

Treatment 2012 2015
0.25 - 1 mm weekly 0.70 ±0.07a 0.82 ±0.10a

0.25 - 1 mm monthly 0.63 ±0.07b 0.83 ±0.08a

1 - 2 mm weekly 0.72 ±0.07c 0.84 ±0.10a

1 - 2 mm monthly 0.65 ±0.08d 0.81 ±0.09a

Table 4.4: Mean length (mm) of juvenile freshwater pearl mussels after 2 months in the 2012 substrate 
experiment and the current (2015) experiment (± SD). Superscript letters within columns indicate 
statistically homogeneous subsets.
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2010/11 (pilot) 2011/12 (Chapter 3) 2014/15 (current study)
Total number (measured) 6300 (1890) 3600 (1080) 1200 (360)
Size at collection (mm) 0.44 (±0.02) 0.40 (±0.02) 0.45 (±0.05)
No. degree days 
(encystment - excystment) 1896 1845 2206

No. degree days 
(encystment - collection) 2335 2452 2877

No. days encysted 277 271 305
Drop-off period 14 May - 20 July 1 May - 26 July 27 May - 26 July

Collection period 16 - 28 June 
During peak excystment

26 June - 3 July 
During main excystment but 

just before the 4-day peak

18 - 23 July 
End of excystment after 

peak
No. of collection days 11 9 6

Table 4.5: Summary information on juvenile freshwater pearl mussel encystment and excystment during the 
three years juveniles have been used for experimentation during this thesis. Numbers in brackets in first row are 
the number of individuals measured (30 % of total).

2012 2015
Number of days 
between sampling 52 57

Mean temperature (0C) 15.44 (± 0.99) 16.31 (± 0.74)
Degree days (0C) 803 930
Max. temperature (0C) 17.58 17.52
Min. temperature (0C) 13.80 13.74

Table 4.6: Summary of temperature data between when juvenile freshwater pearl mussels were added 
to the aquarium system and next sampled in the 2012 and 2015 experiments. This data shows that 
higher mean temperatures in 2015 contributed to larger juveniles in 2015 compared to 2012.
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4.3.3  Dissolved oxygen

Sonde malfunction meant that the first week of DO data from the water column was not 

usable. In addition, in the 0.25 – 1 mm monthly treatment DO concentration did not regain the 

pre-cleaning level after the first cleaning event at approximately 11 am on 23 August 2015 and 

there was no apparent reason for a step-change in DO concentration during the middle of the 

second week. Therefore data between 10:00 on 23 August and 12:30 on 25 August 2015 were 

excluded from analysis for this treatment. In the 0.25 - 1 mm weekly treatment a step-change 

in DO concentration was also observed at approximately 11:15 on 20 August 2015 which also 

cannot be explained. Data from this first week are therefore also excluded from analysis. 

Fig. 4.5 and Fig. 4.6 show DO for all treatments in mg/L and % saturation respectively. 

Severe low spikes in DO were recorded in all treatments when sieves were removed for 

cleaning; as low as 0.07 mg/L (<1 % saturation) in the 0.25 – 1 mm weekly treatment on  

23 August 2015 (see spikes on 23 & 30 August and 6 September - Fig. 4.5 & Fig. 4.6). These 

spikes are thought to be due to a lack of flow through substrates. When any sieve is removed 

from the system for cleaning, a hole between the top and bottom chambers is created through 

which water preferentially flowed because it follows the path of least resistance. When the 

sieve being cleaned was replaced, flow was restored through substrate interstices. These low 

DO spikes were not recorded in water column data because flow to this sensor was not affected 

by sieve removal. 

Water column DO concentrations were consistently and significantly higher than any of 

the interstitial measurements (Fig. 4.5 and Table 4.7). Water column DO remained consistently 

high, never dropping below 7.94 mg/L (81 % saturation) and displayed a synchronous pattern 

with water temperature.  Statistical comparisons of DO concentration between treatments are 

provided in Table 4.8 with significant differences highlighted in bold. 

DO (mg/L) DO (% saturation)
Treatment Mean (±SD) Range (spike) Mean (±SD) Range (spike)
Water column 8.55 (± 0.25) 7.94 - 9.17 (N/A) 88 (± 3) 81 - 95 (N/A)
0.25 - 1 mm weekly 7.98 (± 0.44) 6.90 - 8.81 (1.54) 82 (± 5) 70 - 100 (16)
0.25 - 1 mm monthly 6.78 (± 1.27) 2.04 - 8.88 (0.07) 70 (± 14) 21 - 93 (1)
1 - 2 mm weekly 8.26 (± 0.19) 7.75 - 8.76 (5.12) 86 (± 2) 81 - 92 (53)
1 - 2 mm monthly 8.24 (± 0.44) 7.13 - 9.57 (2.67) 85 (± 5) 73 - 100 (27)

Table 4.7: Summary of dissolved oxygen data logged from the different probes (Table 4.1) in mg/L and 
% saturation (±SD). DO spikes identified as anomalies from cleaning events have been removed from 
analysis. N.B. Range includes low spike data in brackets. 
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DO concentration in the one week the 1 – 2 mm weekly treatment was monitored 

showed that DO remained high and did not decrease substantially over the course of the 

week. Whilst the 1 – 2 weekly and monthly treatments did show a significant difference, the 

average DO concentrations were both high (Table 4.8).  When considering the treatments 

cleaned monthly, DO concentrations were significantly higher in the 1 – 2 mm treatment (Fig. 

4.7 & Table 4.8) with the gap between the two increasing over time. The 1 – 2 mm treatment 

followed the same fluctuations observed in the water column and low spikes in DO were 

smaller in magnitude compared to the 0.25 – 1 mm treatment. DO concentration in the 0.25 - 1 

mm monthly treatment began to drop around 28 August 2015 and generally fluctuated around  

5.0 – 6.5 mg/L (51 – 66 % saturation; min & max values = 3.89 - 6.77 mg/L; 40 – 69% saturation) 

from approximately 1 September 2015 to experiment termination on 14 September 2015. 

This compares with concentrations generally around 8.0 mg/L (82 % saturation; min & max 

values = 7.13 – 8.76 mg/L; 73 – 89 % saturation) in the 1 - 2 mm monthly substrate over the 

same period. The only instances when any treatment had a higher DO concentration than the  

1 – 2 mm monthly treatment was when the 0.25 – 1 mm weekly treatment had been cleaned  

(Fig. 4.6). 

After cleaning events on 30 August and 6 September 2015, DO concentrations in the 

0.25 – 1 mm weekly treatment fell below the 1 -2 mm monthly treatment after approximately 

three and five days respectively indicating that when interstitial flow is limited, cleaning gravels 

can provide a temporary increase in DO to juveniles, although this increase lasts only a few 

days in this system. 

Test P Mean(1) Mean(2) t n
Water column(1) + 1 – 2 mm monthly(2) <0.001 8.55 8.10 28.399 183
Water column(1) + 0.25 – 1 mm monthly(2) <0.001 8.58 6.47 23.590 166
Water column(1) + 0.25 – 1 mm weekly(2) <0.001 8.52 7.98 21.420 123
Water column(1) + 1 – 2 mm weekly(2) <0.001 8.67 8.25 14.671 52
1 – 2 mm monthly(1) + 0.25 – 1 mm monthly(2) <0.001 8.25 6.78 22.166 214
1 – 2 mm monthly(1) + 0.25 – 1 mm weekly(2) 0.489 7.96 7.98 -0.694 123
1 – 2 mm monthly(1) + 1 – 2 mm weekly(2) <0.001 8.47 8.25 7.578 52
0.25 – 1 mm weekly(1) + 0.25 – 1 mm monthly(2) <0.001 7.98 5.86 30.396 123
0.25 – 1 mm monthly(1) + 1 – 2 mm weekly(2) 0.450 8.23 8.27 -0.762 43

Table 4.8: Results of paired t-tests carried out to investigate differences between dissolved oxygen 
concentrations (mg/L) over time. N.B. α = 0.006 due to Bonferroni correction for multiple tests (n = 9). 
Significant differences are highlighted in bold.
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When the experiment was terminated, the 0.25 – 1 mm and 1 – 2 mm monthly sieves 

were cleaned on 13 September 2015 and the probes reinserted to test the effect of cleaning 

on DO concentration in the monthly treatments (Fig. 4.8). In the 1 – 2 mm treatment DO 

concentration increased slightly after cleaning from around 8.5 mg/L before cleaning to 

8.8 mg/L after cleaning. The increase in the 0.25 – 1 mm treatment was more substantial 

however, increasing from around 6.5 to 8.5 mg/L. The same pattern was observed in the  

0.25 – 1 mm weekly treatment after the cleaning event on 06 September 2015 when DO 

increased from approximately 7.3 mg/L pre-cleaning to 8.1 mg/L post-cleaning (Fig. 4.9). As 

Fig. 4.8 shows, DO concentration in the 0.25 – 1 mm monthly treatment was more affected 

by sieve removal from the system than the 1 – 2 mm monthly treatment, leading to spikes of 

reduced DO concentrations when sieves were absent from the system (denoted by asterisks). 

Non-significant differences between the 0.25 – 1 mm monthly and 1 – 2 mm weekly 

treatments (Table 4.8) were a reflection of when the measurements were taken within the 

month. Comparisons were made before DO began to decrease substantially in the 0.25 – 1 mm 

weekly treatment (Fig. 4.5). The other non-significant comparison was between the 1 – 2 mm 

monthly and 0.25 – 1 mm weekly treatments. In the 0.25 – 1 mm weekly treatment the DO 

concentration dropped below the 1 – 2 mm monthly treatment towards the end of the week 

but the overall difference in DO values was not significantly different. 
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4.3.4  Interstitial space and flow

Comparison of interstitial space in the two substrate sizes showed that 0.25 - 1 mm substrates 

had significantly less space (t(10) = -4.725, P = 0.001; 2.6 ±0.61 ml) compared with 1 - 2 mm 

substrates (4.27 ±0.25 ml).

Flow through undisturbed (dirty) sieves exposed to the different cleaning regimes was 

significantly slower through the 0.25 - 1 mm monthly treatment compared with all other 

treatments (F(3,8) = 8.834, P = 0.006) with the slowest sieve taking almost 43 minutes to clear 

1 L of water. All 0.25 - 1 mm monthly sieves had to be lightly agitated periodically to encourage 

water flow as it often stopped completely indicating that there was minimal to no flow through 

these sieves within the system. Fig. 4.10 shows that flow through substrates once cleaned was 

significantly faster through the 1 - 2 mm substrates (28 ±5 seconds; F(3,8) = 18.802, P = 0.001) 

compared to the 0.25 - 1 mm substrate (44 ±4 seconds). Comparing each treatment before and 

after cleaning found flow was significantly faster post-cleaning in all treatments (Table 4.9). 

Treatment Flow rate 
before (mL s-1)

Flow rate 
after (mL s-1)

Flow rate 
before (L/min)

Flow rate 
after (L/min) t P

0.25 – 1 mm weekly 3.50 (± 0.93) 23.61 (± 2.87) 0.21 (± 0.05) 1.42 (± 0.17) -11.54 <0.001
0.25 – 1 mm monthly 0.61 (± 0.35) 22.11 (± 0.75) 0.04 (± 0.02) 1.33 (± 0.04) -44.95 <0.001
1 – 2 mm weekly 3.72 (± 3.29) 32.22 (± 3.95) 0.22 (± 0.20) 1.93 (± 0.24) -9.60 0.001
1 – 2 mm monthly 3.78 (± 2.50) 40.33 (± 4.32) 0.23 (± 0.15) 2.42 (± 0.26) -12.67 <0.001

Table 4.9: Mean flow rate of water through dirty (before) and cleaned (after) substrate. Flow rates are provided in SI 
units (mL s-1) and the more widely reported litres per minute (L/min). All flow rates are reported ± SD. Comparisons 
between flow rate (mL s-1) before and after cleaning found significant differences in all treatments; Student’s t 
values and P provided.
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Fig. 4.10: Bar graphs showing average time (minutes ±SD bars) for 1 L of water to flow through substrates 
in the different treatments before and after cleaning (a) and after cleaning enlarged to show detail (b). 
Letters over bars denote significant differences (note capital letters used for before cleaning and lower 
case used for after cleaning in (a)).

a)

b)
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Fig. 4.11: Bar graph showing the mean dry weight (±SD bars) of organic matter collected from substrates 
from the four treatments at experiment termination. The weight of organic matter was lower in the 
treatments cleaned weekly, particularly in 1 - 2 mm substrate, but this difference was not statistically 
significant (P = 0.072).

4.3.5  Substrate organic content and ion concentrations

The weight of biofilm on the substrate of different treatments was not significantly different  

(F(3, 8) = 2.756; P = 0.112). Whilst the weight of organic matter from within the interstices at 

experiment termination appeared higher in treatments cleaned monthly (Fig. 4.11), there 

was no significant difference between any of the treatments (F(3,8) = 3.432, P = 0.072). When 

combining the weight of all organic matter in the samples (biofilm and loose organic matter)  

the LOI ranged between 0.47 - 0.76 % (mean = 0.59 ±0.08 %). There was no significant difference 

in the LOI results between different treatments (F(3, 8) = 0.542; P = 0.667).

Inorganic TP concentrations taken from burned organic matter in the interstices were not 

significantly different between treatments (Table 4.10; F(3,8) = 2.119, P = 0.176). The values in 

Table 4.2 show that whilst orthophosphate concentrations in Windermere would not indicate 

cause for concern during the spot sample on 17 August 2015 (0.002 mg/L), a large amount of 

organic material was found within substrate interstices in the captive rearing system indicating 

that available P is being taken up by phytoplankton. 

Ammonia samples taken before cleaning on day 29 (17 August 2015) showed no 

significant difference between treatments or the water column (F(4, 14) = 1.384; P = 0.307). 
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4.4.  Discussion
The aim of this investigation was to build upon the findings in Chapter 3 and to investigate a 

range of parameters potentially affecting survival and growth of juvenile mussels in different 

substrate sizes (0.25 – 1 and 1 – 2 mm) and cleaning regimes (weekly and monthly). Analysing 

the effects of various environmental parameters thought to be important to juvenile pearl 

mussel survival will help refine captive rearing methods and reduce the high mortality rates 

often observed in the first few weeks of juvenile life post-excystment. Dissolved oxygen, 

substrate size (and resulting interstitial space) and flow appear to be the limiting factors in this 

system with higher survival being observed in treatments with larger substrates which allow 

higher flow rates and DO concentrations, leading to significantly higher juvenile survival after 

two months. 

The period of highest mortality in the 2012 experiment (Chapter 3) was during the 

first four months post-excystment. This period has high summer temperatures which are 

particularly pronounced at this site because the water source is a large lake which has a more 

stable temperature regime with a high temperature lag into the autumn months. The decision 

was therefore taken to investigate the response (survival and growth) of juveniles to various 

environmental parameters during a two month period from 20 July – 14 September 2015; a 

period when environmental conditions are likely to be least suitable (Geist & Auerswald, 2007).

4.4.1  Effects on growth and survival – current investigation and 

comparisons over several years

In this investigation, survival was highest in treatments with coarser substrate cleaned monthly, 

mirroring results reported previously (Chapter 3). The most notable difference between the 

2012 and 2015 investigations was that survival in the least suitable treatment (0.25 - 1 mm 

weekly) was markedly higher in 2015 (72 ±2 %) compared with 2012 (40 ±7 %). This may 

Treatment Ammonia (mg/L) TP (mg/L)
Water column 0.014 (± 0.007) N/A
0.25 - 1 mm weekly 0.008 (± 0.009) 1012.33 (± 307)
0.25 - 1 mm monthly 0.019 (± 0.018) 998.00 (± 610)
1 - 2 mm weekly 0.026 (± 0.008) 462.93 (± 330)
1 - 2 mm monthly 0.012 (± 0.008) 1245.33 (± 397)

Table 4.10: Mean (± SD) concentrations (mg/L) of ammonia (taken on day 29) and total phosphorus (TP; 
taken on day 60) from the four different treatments. 
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be because 2015 juveniles were significantly larger upon excystment potentially leading to 

improved survival. 

Growth was not significantly different between treatments in this study, contradicting 

findings in Chapter 3 which showed juveniles were significantly larger in treatments cleaned 

weekly. Size is a difficult parameter with which to assess breeding success, particularly 

when it has been shown to vary significantly within age cohorts in several unionoid species 

(Beaty & Neves, 2004; Barnhart, 2006; Schmidt & Vandré, 2010). Buddensiek (1995) found 

size-dependent survival in pearl mussel streams whereas Lavictoire et al. (2016) did not find 

this in captivity. Table 4.5 shows that for the three years that juveniles were collected for 

experimentation, the timing of collection within the drop-off period and the number of degree 

days between the first sighting of glochidial encystment and juvenile collection differs. These 

factors may partly explain why the 2015 individuals were significantly larger than both the 

2011 or 2012 individuals upon excystment. In addition, the higher mean temperature and 

number of degree days during the first 2 months post-excystment in 2015 compared with 2012 

is likely to have contributed also. 

Degree days have been used previously to try and describe when certain aspects of the 

life cycle may occur (Hruška, 1992; Bauer, 1994; Hastie, 1999; Thomas et al., 2010) but they are 

only a crude tool because they usually describe the cumulative temperature for phenomena 

observed at the level of populations rather than individuals e.g. cumulative temperature 

between first observation of glochidia encystment to first observation of juvenile excystment. 

Whilst glochidial release can be highly synchronous in the wild (Young & Williams, 1984; 

Hastie, 1999; Hastie & Young, 2003), in captivity glochidial releases have been observed up 

to 6 weeks apart (FBA, unpublished data) indicating variability within populations even when 

maintained under the same environmental conditions. This could give rise to the observed 

extended period over which juveniles excyst in captivity (Lavictoire et al., 2014). The number 

of degree days between glochidial encystment and the start of juvenile excystment at the 

FBA (ranging from 1845 - 2206) is comparable to previous reports of between 1600 and 2619 

degree days (Hruška, 1992; Bauer, 1994; Thomas et al., 2010). The temperature required for 

the excystment period to commence, however, has not been as high as the 15 °C Hruška (1992) 

reported. Mean daily temperatures on the days when juvenile excystment has commenced 

at the FBA range from 8.82 - 12.25 °C in the various study years indicating that excystment 



104

Chapter 4: Interstitial factors affecting growth and survival

may commence upon attainment of sufficient size or when sufficient degree days have 

been accumulated regardless of ambient water temperature. Eybe et al. (2015) found that 

juveniles excysting at the beginning of the drop-off period did not grow as quickly or survive 

as well as juveniles excysting later. Further work is required on this topic to investigate the 

biological reasons for these differences and why breeding success may differ between years. 

This information is valuable to captive rearing programmes as it could help focus resources on 

juveniles which are more likely to survive, or focus on years when recruitment is likely to be 

particularly good. Selecting the fittest juveniles for captive rearing raises important questions 

about whether this constitutes genetic selection and whether this may affect genetic diversity 

and heterozygosity in wild populations when these juveniles are eventually reintroduced. 

4.4.2  Environmental parameters affecting juvenile growth and survival

4.4.2.1 Organic content, flow and total phosphorus & ammonia concentrations

The amount of organic matter in the interstices at experiment termination showed no 

significant difference between treatments, although those cleaned weekly had less organic 

matter compared to monthly treatments and the 0.25 - 1 mm substrates trapped more 

compared with their 1 - 2 mm counterparts (Fig. 4.11). Few data exist describing the amount 

of organic matter juveniles can withstand within the interstices. The percentage of organic 

matter (LOI) within the interstices and as biofilm adhered to the substrate was similar to that 

reported by Tarr (2008), who found 0.5 – 1 % in substrates supporting juveniles in Scottish 

pearl mussel rivers. Tarr (2008) however analysed only fractions < 0.5 mm compared to this 

study which did not discriminate on size. Therefore figures reported by Tarr (2008) may be 

an under-estimate of the true organic matter content. Regardless of this, the organic matter 

percentage of total substrate weight in this study was low and does not appear to be a problem 

in the context of concentrations found in this study. The amount of interstitial space in sieves 

did not allow for a sample of suitable volume to be taken to analyse interstitial soluble reactive 

phosphorus concentration. Little work has been done on determining toxic concentrations of 

phosphorus for adult mussels or juveniles but measurements taken by the Environment Agency  

(Table 4.2) do not indicate levels which are likely to be toxic to juveniles in the water column. 

The spot sample in August 2015 indicated that concentrations are within the range of values 

reported previously for European pearl mussel rivers (Bauer, 1988; Buddensiek et al., 1993; 
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Moorkens, 2006b). Total phosphorus concentrations were not significantly different between 

treatments which was expected since the organic matter results were not significantly 

different. TP concentrations reported here highlight the effects of elevated P availability as 

it is transferred into unavailable P during phytoplankton growth, underlining the problem of 

nutrient loading in Windermere (Reynolds & Irish, 2000). 

The system described is a downwelling one with 0.3 mm sieves placed on top of 

substrate in order to retain juveniles. This may impede the size of organic matter entering the 

substrate but would not stop organic matter growing within the substrate if conditions were 

suitable. Equally, the 0.18 mm sieve within which substrate and juveniles are held would stop 

organic matter > 0.18 mm passing through the bottom of the sieve, theoretically providing 

the opportunity for organic matter to accumulate over time. Data on flow through the pre- 

and post-cleaning substrates indicates that whilst the amount of organic matter within sieves 

did not differ significantly, treatments with smaller substrates and those cleaned monthly did 

accumulate more matter (Fig. 4.11). In addition, smaller pore size provided more resistance to 

flow so that the combination of small substrate size and monthly cleaning meant this treatment 

had significantly lower flow rates. High water column-interstitial exchange is a predictor of 

functional pearl mussel habitats and the presence of juvenile mussels (Buddensiek et al., 1993; 

Geist & Auerswald, 2007). Captive rearing systems should strive therefore to emulate these 

conditions.  In this system increased flow rates could be achieved by increasing sieve mesh size 

as juveniles grow. 

Ammonia concentrations in this investigation are lower than acutely or chronically  toxic 

concentrations reported for North American unionids (Augspurger et al., 2003; Mummert et 

al., 2003; Wang et al., 2007; Wang et al., 2008). The potential toxic effects of ammonia are not 

thought to be a source of mortality in this system at the FBA. It is assumed that the flow-through 

nature of the system prevents the accumulation of high ammonia concentrations and, whilst 

higher than the 0.01 mg/L concentration suggested by Moorkens (2006a), the treatments 

do not differ significantly from the ammonia concentration in the water column and do not 

appear to have negative effects on juvenile survival in this system. The presence of biofilm on 

the substrate and oxic conditions may help oxidise ammonia into less harmful ions. Eybe et al. 

(2013) reported lower ammonium and nitrite concentrations in treatments containing detritus 

and suggested that nitrifying bacteria found in detritus were the cause of this. The total mass of 
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biofilm was found to be the same across all treatments. If biofilm is a food source for juveniles, 

substrate size and cleaning frequency do not affect the biomass available, and therefore would 

not affect survival or growth in this system. The species composition of biofilm and its nutritive 

value was outside of the scope of this study but further studies would be beneficial to assess 

it’s potential as a food source for M. margaritifera. 

4.4.2.2 Dissolved Oxygen

The results of DO analyses in this system echo findings of Quinlan et al. (2014b) who found 

that surface water DO concentrations were generally higher than in the hyporheic zone in an 

English pearl mussel river. In smaller substrates (both cleaning regimes), there was a general 

trend of declining DO over time. This trend was not observed in the 1 - 2 mm sieves, even those 

cleaned monthly, with DO concentrations remaining consistently high and following the same 

fluctuations as water column readings.  

DO concentration in the 0.25 - 1 mm monthly treatment began to decrease after 

approximately 1.5 weeks and remained low for the rest of the sampling period. DO fluctuations 

in the 0.25 - 1 mm gravel were also higher than in the 1 - 2 mm substrate. Both low and 

fluctuating DO could cause stress to juveniles and may alter their behaviour, making them seek 

out more suitable conditions. The results reported here are similar to those of Quinlan et al. 

(2014b) who found that DO concentrations measured in different locations in a pearl mussel 

river varied substantially and that the site with the lowest DO concentrations also had the 

highest variability. The effects of low DO spikes (created by interrupting flow when removing 

sieves for cleaning) are not known, but the same phenomenon must have occurred during the 

2012 experiment for which there was relatively good survival after 25 months (14 % across all 

treatments). These results outline the importance of good interstitial flow in providing oxygen 

to juveniles and the unknown effects of routine activities such as cleaning in culture systems. 

To stop spikes in this system in future, a ‘blank’ sieve containing substrate should be placed in 

holes created when sieves are cleaned to minimise this effect and reduce stress on juveniles. 

In the 0.25 - 1 mm weekly treatment DO decreased over the course of the 7 days 

between cleaning events but increased post-cleaning. As observed in the monthly treatments 

DO decreases in smaller substrates over time. Decreases in DO may be observed in as little as 

two days but this is likely to depend upon the amount of organic matter entering the system. 
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As Quinlan et al. (2014a) point out, the direct cause of detrimental effects of fine sediment 

on hyporheic organisms (including salmonid eggs and juvenile mussels) are unknown but 

may be due to physical smothering effects, lowering of water exchange between the water 

column and the interstitial, or because of the oxygen-limiting effects of organic matter. Too 

much fine material entering the substrate could also lead to reduced feeding activity causing 

stress and starvation (see discussion in Chapter 5). In streams, DO can vary over small spatial 

scales (both vertically and horizontally) depending upon water surface velocity, substrate 

size and permeability of the stream bed (Quinlan et al., 2014a). All three parameters can be 

controlled in the system outlined in this thesis (surface velocity = flow rate) so equal flow and 

DO concentrations should be present in all sieves where the substrate size and cleaning regime 

is the same.

Whilst all treatments provided significantly lower DO concentrations compared to the 

water column, the 1 – 2 mm monthly treatment provided the highest and most stable DO 

profile of all treatments. An average of 8 mg/L (82 % saturation) appears to be suitable for 

juvenile M. margaritifera. The 1 – 2 mm weekly treatment also provided high DO conditions, 

however this treatment required four times more maintenance compared with the 1 - 2 mm 

monthly treatment.

4.4.3  Conclusions and significance for captive rearing programmes

This study confirms previous findings that coarser, uncompacted substrates lacking fine 

sediments and organic material provide better interstitial environments for a wide range of 

biota, including juvenile mussels (Wood & Armitage, 1997; Brim Box & Mossa, 1999; Geist & 

Auerswald, 2007; Liberty et al., 2007; Quinlan et al., 2014a; Lavictoire et al., 2016). Juveniles 

are often the limiting stage in populations which are displaying a lack of recruitment regardless 

of apparently sufficient adult mussel and host fish densities (Österling et al., 2008). In this 

system 1 – 2 mm substrate cleaned monthly provided the highest juvenile survival with the 

highest DO concentrations due to higher flow rates through larger substrate pores. All other 

parameters (ammonia, TP concentrations of organic matter within substrates, and the amount 

of organic material) did not significantly affect juvenile survival in this flow-through system. 

The 1 – 2 mm monthly treatment was also one of the least resource-intensive treatments, with 

cleaning occurring only once per month and taking between 3 – 5 minutes per sieve to clean. 
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Sampling and monitoring of newly-excysted juveniles was also easier and quicker in larger 

substrate because newly-excysted juveniles are in a different size bracket compared to the 

substrate, making them easier to find. Another important practical requirement in this system 

is temporarily replacing sieves which have been removed for cleaning with a blank sieve (just 

substrate) to maintain flow through other sieves. These practical considerations are important 

for captive rearing programmes which need to maximise the number and quality of juveniles 

reared, but which have finite resources.

This study has outlined several areas requiring additional investigation including:

• Dissolved oxygen: The body of evidence is growing that interstitial DO is one of the most 

critical parameters affecting juvenile mussel survival. To date, no work has been carried 

out on the dissolved oxygen limits for juvenile M. margaritifera or how different patterns 

of DO concentrations (e.g. low DO spikes) affect behaviour and survival. This makes it 

difficult to assess the reasons for poor juvenile survival in captive rearing programmes 

and impossible to provide guidelines for practitioners considering potential suitable 

donor sites for juvenile augmentation in to wild populations. As previously described, 

coarse but stable substrates provide suitable hyporheic exchange and DO concentrations 

of around 8 mg/L (> 80 % saturation) in this study provided suitable conditions for high 

juvenile survival during summer conditions at the FBA Pearl Mussel Ark.

• Timing of excystment: Comparison of juvenile size and survival in this study with 

previous years (2011 and 2012), and analysis of timing of excystment has corroborated 

findings by Eybe et al. (2015) that juveniles excysting at different times within the drop-

off period may display differences in growth and survival rates. This topic, and the link 

of glochidial development and degree days, warrants further investigation in order for 

captive rearing programmes to determine which environmental conditions produce the 

highest quality juveniles in the most cost- and labour-effective manner. 

• Different substrate mixes: Substrate mixes of 0.25 – 1 mm and 1 – 2 mm were used in 

this study and in Chapter 3 but use of larger substrate clasts have not been considered.  

Coarser (1 – 2 mm) substrates appear to allow sufficient flow, even when only being 

cleaned monthly, but consideration of larger substrate clasts within the same rearing 

system is warranted. Additionally, switching the 0.18 and 0.3 mm sieves for larger mesh 

sizes once juveniles are large enough may improve flow further and decrease the build 
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up of organic matter. The hypotenuse of the mesh size is the largest gap through which 

juveniles could fall or escape, but measurements from the 2012 experiment suggest 

that the number of juveniles lost to this by replacing the 0.18 mm with 0.3 mm sieves 

would be minimal after 1 year.  

• Biofilm and diet: The role and importance of biofilm for juvenile mussels has not been 

sufficiently described. Eybe et al. (2013) suggested that detritus could act to reduce 

ammonia concentrations in static systems and biofilm could have a similar role to play 

in flowing systems. The natural diet of M. margaritifera has not been studied and it is 

not known if food preferences or dietary requirements change with age and/or size. 

Phytoplankton species abundance and availability is season-specific. European captive 

rearing programmes have had success rearing M. margaritifera in systems with ‘natural’ 

food sources as well as in systems where supplemental feeling is provided (e.g. cultured 

algae/shellfish diets) without specific knowledge of dietary requirements. However, 

tailored diets for juvenile mussels during different seasons and developmental stages 

have the potential to improve juvenile condition, thus increasing survival.

There is still much we do not know about the biological requirements of juvenile  

M. margaritifera but the experiments outlined here (and in Chapters 2 and 3) provide some 

preliminary information about how simple factors such as substrate size and cleaning regime 

can have major impacts by influencing environmental conditions and therefore juvenile 

growth and survival. Ensuring high interstitial DO should be a primary consideration for captive 

rearing programmes and future research should focus on topics such as how diet and timing 

of excystment affects the quality of juveniles, their growth, and ultimately their suitability for 

restocking wild populations. 
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5.1.  Introduction
The amount of research into the ecology, captive rearing techniques and pressures facing 

Margaritifera margaritifera (Linnaeus, 1758) in the wild has increased markedly over the last 

three decades. Despite this, relatively little work is being undertaken on the fundamental 

biology of the species, particularly the vulnerable early-life stages (glochidia and juveniles). 

A better understanding of early life ontogeny is particularly important for practitioners 

undertaking captive rearing activities in order to improve breeding protocols and increase 

survival. Juveniles may have different requirements depending upon their mode of feeding 

(Henley et al., 2001) and mortality may increase when developmental changes occur (Fitt et 

al., 1984; Beninger et al., 1994; Cannuel & Beninger, 2006) due to inability to meet energetic 

demands during morphogenesis (Veniot et al., 2003). For example, poor understanding 

of dietary requirements is the main reason for stalling efforts to culture the commercially 

important New Zealand green-lipped mussel, Perna canaliculus (Gui et al., 2016). 

Margaritifera margaritifera undergoes several substantial ontogenic stages before 

adulthood which are undoubtedly sources of mortality:

1.        Glochidia development and metamorphosis: Initially, glochidia must encyst within 

the gills of a host fish where they grow to over five times their original size before 

metamorphosing into juveniles. This process includes the development of all major 

internal organs and two adductor muscles instead of the single adductor glochidia 

possess (Lasee, 1991; Nezlin et al., 1994; Ziuganov et al., 1994; Wächtler et al., 2001; 

Araujo et al., 2002). 

2.        Early juvenile development: Upon excystment, juveniles pedal feed which involves 

probing substrate with their foot and directing food particles into the pedal gape on 

water currents generated by cilia (https://www.youtube.com/watch?v=nHtE4rtkF9A). 

This stage also likely includes final development of digestive organs as juveniles begin 

to derive nutrients from algae and bacteria instead of from the fish host (Lasee, 1991). 

Very little is known about the feeding behaviour and dietary requirements of juvenile 

mussels once they have become established in river gravels  (Ziuganov et al., 1994). 

3.        Transformation: At some point during early juvenile life, a second metamorphosis 

occurs. Substantial development of the gills enables them to be used as a highly efficient 

feeding organ, and the primary mode of feeding switches from pedal feeding to siphonal 

https://www.youtube.com/watch?v=nHtE4rtkF9A
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filter feeding. From this point forward, this second metamorphosis will be termed 

‘transformation’ in this chapter. 

For the majority of freshwater mussels, including M. margaritifera, very little is known about  

this transformation stage. For example, it is unknown whether it is age- or size-dependent, 

the timing of transformation, what the main morphological changes are, or how these 

changes affect feeding behaviour. It is also not clear if habitat and/or dietary requirements or 

preferences change during or after transformation, or whether the stress caused by the process 

itself is a cause of mortality. Only a small number of studies have investigated the biological  

development of glochidia and juvenile freshwater mussels over time using scanning or 

transmission electron microscopy (SEM & TEM) e.g. Hudson & Isom (1984); Lasee (1991); 

Pekkarinen & Valovirta (1996); Kovitvadhi et al. (2001); Araujo et al. (2002); Fishera & Dimock 

(2002); Neumann & Kappes (2003); Kovitvadhi et al. (2007); Trump (2010). Even fewer have 

looked specifically at early life stages of M. margaritifera; Le Pennec & Jüngbluth (1983) 

considered ligament formation in juvenile M. margaritifera while Nezlin et al. (1994) studied 

the ultrastructure of glochidia. Additionally, Schartum et al. (2016) considered gill development 

in juvenile M. margaritifera using histology so this may be useful when considering findings 

from this investigation. 

Recently there has been renewed interest in the field of particle capture and transport in 

adult bivalves but a paucity of research on juvenile mussels and their development is apparent, 

particularly in freshwater species. There are some notable single-species exceptions, e.g. 

Kovitvadhi et al. (2007), but research is preferentially carried out on commercially important 

species (Ó Foighil et al., 1990; Beninger et al., 1994; Veniot et al., 2003; Cannuel & Beninger, 

2006; Cannuel et al., 2009; Gui et al., 2016). This lack of research is possibly due to the small 

size of juveniles and their scarcity in the wild but the recent proliferation of freshwater mussel 

captive rearing programmes can now supply experimental animals for these types of studies. 

In addition, a more comprehensive understanding of mussel biology and development, 

particularly of juvenile stages, also informs the ongoing development of our taxonomic 

understanding (see Chapter 1). 

The transition from pedal to filter feeding has been demonstrated to be a gradual one in 

unionids and individuals may employ both methods simultaneously for some time before the 

switch to filter feeding is complete (Gatenby et al., 1997). There is no reference or definition 
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which states what processes or biological features must be satisfied in order for an organism 

to be officially classified as filter feeding. Yonge (1947) suggests that gill filaments are not 

functional until the food groove and associated cilia develop but other questions remain 

unanswered. For example, does filter feeding become possible once the gills and the labial 

palps grow close enough to touch, as suggested by Veniot et al. (2003) and Trump (2010)? How 

does the development of different types of cilia on gill filaments affect filter feeding ability? 

What are the functions of pedal cilia once water transport is achieved using primarily gill cilia? 

These are all fundamental questions which are yet to be answered. 

5.1.1  Anatomy and juvenile ontogenesis in bivalves

An outline of mussel anatomy, development and feeding behaviour is provided below 

as a benchmark against which M. margaritifera development was measured during this 

investigation. A glossary of all anatomical terms and abbreviations used in this chapter is 

provided in section “5.6.1 Appendix 1: Glossary and abbreviations” on page 187. Killeen et 

al. (2004) outline the basic general anatomy of adult freshwater mussels and McMahon & 

Bogan (2001) provide a useful illustration of the main features (Fig. 5.1). Figure 5.2 shows the 

positioning of the left and right inner demibranchs in relation to the foot and a cross-section 

through the gills is provided in Fig. 5.3.

Bivalve gills are unique and vital organs which serve three main purposes: respiration, 

feeding and as a brooding organ for glochidia in sexually mature females (Neumann & Kappes, 

2003). In adults, the primary pumping mechanism is driven by the lateral cilia on gill filaments, 

although cilia around the inhalant siphon are also used. Cilia on the gills filter suspended 

particles and direct them to the ventral gill surface where they travel anteriorly along the oral 

groove towards the labial palps for sorting. Once sorted, particles are either directed towards 

the mouth to be ingested, or to mantle ciliary tracts to be rejected as pseudofaeces. Juvenile 

mussels with under-developed gills use cilia located on the foot, mantle and gill to pump water 

and suspended particles into the mantle cavity (Kovitvadhi et al., 2006). Juveniles also use their 

muscular foot to move through gravel interstices. Cilia on the foot may dislodge particles from 

substrate surfaces and direct them into the mantle cavity via self-generated water currents. 

Little is known about the process of particle sorting for ingestion or egestion as pseudofaeces.
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Fig. 5.1: Diagram of the general anatomy of the soft tissues of an unionoid freshwater mussel from Fig. 
2b, p. 333 of McMahon & Bogan (2001).

Fig. 5.2: Light micrograph of a 14 month old juvenile M. margaritifera showing the foot (FO) and left and 
right inner demibranchs (ID). 
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This study focuses primarily on the structure and function of juvenile mussel gills, but 

will also consider important additional features such as the foot, labial palps, siphons, mouth 

and mantle.

5.1.1.1 Gills

Broadly, there are two major gill types in bivalves: protobranch and lamellibranch, although 

pseudolamellibranchs also exist. Protobranchs have reduced simple plate-like gills whereas 

lamellibranchs have enlarged ciliated gills consisting of filaments which are connected via ciliary 

(filibranch) or tissue (eulamellibranch) connections (Barnes, 2006). Pseudolamellibranchs 

possess tissue connections which are not as extensive as those in eulamellibranchs (Saleuddin 

& Wilbur, 1983). In addition to gill type, species are also defined by the type of gill filaments 

they posses. Individuals with heterorhabdic gills have principal and ordinary filament types 

and particle selection can occur on the gills. Individuals displaying the homorhabdic condition 

possess only ordinary filaments with particles being transported to the labial palps for sorting 

(Saleuddin & Wilbur, 1983; Barnes, 2006). M. margaritifera is a eulamellibranch mussel 

displaying the homorhabdic condition. Homorhabdic filibranch gills are considered to be 

Fig. 5.3: Diagram of a dorso-ventral section through a eulamellibranch mussel showing the foot (ft), gill 
base (gb), inner demibranch (id), interlamellar junction (ilj), interlamellar space (ils), mantle (m) and 
outer demibranch (od). From Neumann & Kappes (2003).
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plesiomorphic since both the heterorhabdic filibranchs and the pseudolamellibranchs display 

a homorhabdic state in the early stages of gill development (Cannuel et al., 2009). 

Some aspects of gill development, morphology and function are very well documented 

(Morton, 1983; Jørgensen, 1990; McMahon & Bogan, 2001), however some important aspects 

have not been adequately researched such as ciliation, creation of junctions, and type of  

filament growth (Cannuel et al., 2009). M. margaritifera is tetragenous (using all four  

demibranchs for brooding) which is widely thought to be a primitive trait (see Table 1.1,  

Chapter 1). Other primitive gill features which M. margaritifera displays are the lack of  

complete septa (and therefore the absence of water tubes) and the incomplete fusion of 

mantle margins resulting in a failure to form separate siphons (Ortmann, 1911b; Heard & 

Guckert, 1970). 

Growth of bivalve gills is from the posterior end of the budding zone through 

proliferation of new gill filaments (Neumann & Kappes, 2003; Trump, 2010). Gills undergo 

continuous terminal growth correlated with body size (Neumann & Kappes, 2003; Veniot et 

al., 2003; Trump, 2010). This continuous growth implies that biological development is linked 

to size rather than age. It is therefore feasible that the phenomenon of large size ranges 

within age cohorts reported previously e.g. Beaty & Neves (2004); Barnhart (2006); Schmidt 

& Vandré (2010), could mean that individuals are at different stages developmentally. Mature 

filaments are made up of two limbs. Moving ventrally from the gill axis (called the gill base in  

Fig. 5.3), the descending limb terminates at the ventral bend where the oral groove may be 

present at the most ventral point. From here, the ascending limb runs dorsalward where it 

contacts the mantle cavity again via connective tissue, or is free but joined to the terminus of 

the other ascending limbs on adjacent filaments via the fused dorsal bend. Different types and 

stages of gill filament development have been described such as: 

1.        The presence of unreflected but curved filaments forming a temporary gill basket in 

scallops (Beninger et al., 1994; Veniot et al., 2003; Cannuel et al., 2009). This condition 

usually progresses to one of the stages below.

2.        Ventral elongation of the descending limb before dorsalward reflection for growth of the 

ascending limb (Neumann & Kappes, 2003; Veniot et al., 2003; Trump, 2010). 

3.        Cavitation extension where the ascending and descending limbs grow simultaneously 

e.g. Ansell (1962); Cannuel & Beninger (2006).
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The descending and ascending limbs of the lamellae are connected by interlamellar junctions. 

As well as being attached at the budding zone and the oral groove, adjacent filaments are 

connected to each other by interfilamentary junctions. In eulamellibranchs, interfilamentary 

junctions may develop as ciliary connections initially before tissue junctions form (Cannuel & 

Beninger, 2006; Cannuel et al., 2009; Trump, 2010). The spaces delimited by adjacent filaments 

and interfilamentary junctions (i.e. the gaps between filaments) are known as gill pores or ostia 

(Tankersley & Dimock, 1992; Cannuel & Beninger, 2006; Cannuel et al., 2009). True ostia may 

develop on thin sheets of tissue filling the gill pores depending upon the species (Ortmann, 

1911c; Kovitvadhi et al., 2007).

In newly-excysted juveniles, only a few gill filaments (< 5) are present which consist of 

only the descending limb of the inner demibranch (Trump, 2010). Several groups have shown 

that rather than the filaments bending back upon themselves and growing in a dorsalward 

direction as the term ‘reflection’ indicates, descending limbs continue to grow ventrally and 

ascending limbs grow in a dorsalward direction, originating from the ventral bend (Ansell, 

1962; Neumann & Kappes, 2003; Cannuel et al., 2009). Development of the inner demibranchs 

usually precedes that of the outer demibranchs and the outer demibranch lamellae may 

develop simultaneously or sequentially; see Table 1 of Cannuel et al. (2009). Additionally, 

attainment of a certain body size may be required for the onset of outer demibranch growth 

(Ansell, 1962; Neumann & Kappes, 2003).

Each filament is ciliated with groups of cilia or cirri responsible for different functions. 

Lateral cilia are responsible for water movement through the gills from the infrabranchial 

into the suprabranchial cavity. Laterofrontal cirri are responsible for particle capture although 

debate remains as to whether they act as bats/sieves to mechanically remove particles, or 

whether they create localised currents which direct particles onto the frontal cilia e.g. Owen & 

McCrae (1976); Jørgensen et al. (1984); Jørgensen, (1996); Riisgård et al. (1996); Silverman et 

al. (1996); Riisgård et al. (2014). A video taken through a low-power microscope of laterofrontal 

cirri of a 6 month old M. margaritifera juvenile can be viewed here https://www.youtube.

com/watch?v=_rwi98T7B4w. The frontal cilia transport particles ventrally towards the oral 

groove. From here, particles are directed anteriorly towards the labial palps and mouth. At an 

ultrastructural level, important structures such as laterofrontal cirri have been observed from 

https://www.youtube.com/watch?v=_rwi98T7B4w
https://www.youtube.com/watch?v=_rwi98T7B4w
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the time of excystment in some bivalve species (Lasee, 1991; Trump, 2010) but not in others 

(Beninger et al., 1994; Kovitvadhi et al., 2007).

Development of the filaments and of cilia and cirri with different functions may be a 

useful tool to estimate the onset and efficiency of filter feeding. Large interfilamentary spaces 

which would not facilitate effective particle capture have been observed in immature gills with 

spaces closing as development continues (Beninger et al., 1994; Veniot et al., 2003). Indeed, if 

laterofrontal cirri are to be an effective sieve for particles, they will be most efficient if the tips 

on adjacent filaments overlap slightly (Gui et al., 2016). The complexity of laterofrontal cirri can 

vary widely between species from simple cilia to those consisting of fused plates (Silverman, 

1995). Large, compound laterofrontal cirri are widespread throughout the Bivalvia (Riisgård & 

Larsen, 2001) although there are exceptions such as Bathypecten vulcani, a  peri-hydrothermal 

vent bivalve which does not possess laterofrontal cirri (Beninger et al., 2003). 

Whilst the form of gills is largely the same across the majority of bivalve species, cilia 

and/or cirri specialisations allow the exploitation of different niches. The number of cilia per 

laterofrontal cirrus can vary between species (Silverman, 1995). Lentic unionids have been 

found to have smaller laterofrontal cirri and fewer cilia per cirral plate compared with lotic 

species (Silverman et al., 1997). Because of these specialisations, Silverman et al. (1997) also 

found that lotic species could clear laboratory-raised Escherichia coli at a higher rate compared 

to lentic species. This provides evidence that complex cirri aid capture of smaller particles. 

5.1.1.2 Labial palps

The labial palps are paired triangular flaps located either side of the mouth (Morton, 1983) 

which sort particles into items which are either ingested or expelled as pseudofaeces. In 

Utterbackia imbecillis, Trump (2010) found that development of the labial palps began as 

a fold of tissue anterior to the foot 3 days post excystment and cilia were present around 

the mouth. The most anterior gill filament contacted the growing labial palps at around 113 

days old and by 130 days old the labial palps surrounded the heavily ciliated mouth and had 

begun to take on a ridge and groove morphology typically observed in adult labial palps. An 

important consideration for the development requirements of juvenile mussels is the size of 

food particles in relation to the mouth and oesophagus; particles larger than these structures 
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are unlikely to be ingested (Lasee, 1991; Beck & Neves, 2003) and this may limit juveniles’ 

ability to exploit particular algal species. 

5.1.1.3 Siphons 

In contrast to the Unionidae, M. margaritifera does not have a complete diaphragm and does 

not form a supra-anal opening (Ortmann, 1911c; Heard & Guckert, 1970; Graf & Ó Foighil, 

2000). Descriptions of siphon development in juvenile freshwater mussels are rare but the 

presence of a pigmented and plicated inhalant siphon may be a sign of filter feeding as the 

ridges are tactile and used as a loose sieve for particle selection before water enters the 

infrabranchial chamber (Cummings & Graf, 2009). 

5.1.1.4 Mantle

In Utterbackia imbecillis, Trump (2010) found that the mantle cavity of newly excysted 

juveniles was lined with cilia. Ciliary tufts developed on the anterior medial surface by 44 days 

old with cilia appearing in the posterior portion near the developing siphons by day 62. Thicker, 

compound cilia were present by 130 days old. Mantle ciliation is important for pseudofaeces 

rejection as captured particles are sorted by the labial palps before being transported from the 

anterior to the posterior region for ejection from the inhalant siphon or along the region of the 

ventral valve opening. This is done via particle rejection tracts which extend most of the length 

of the animal (Beninger et al., 1999). The authors describe different types of cilia covering 

the mantle surface, with longer compound cilia responsible for carrying pseudofaeces being 

elevated above simple cilia. Simple cilia also may be present sporadically across the rest of the 

mantle (Beninger et al., 1999). The presence of acid mucopolysaccharide-secreting mucocytes 

in this region helps to bind the pseudofaeces so that particles may be carried against the 

prevailing current in the mantle cavity (Beninger et al., 1999). 

5.1.1.5 Foot

In adults the function of the foot is mainly to anchor the individual within the substrate to 

avoid being washed away. In pedal feeding juveniles, the function of the foot is to move 

through substrate in order to find food particles which are directed into the pedal gape by 

water currents created by pedal cilia (https://www.youtube.com/watch?v=nHtE4rtkF9A). In 

https://www.youtube.com/watch?v=nHtE4rtkF9A
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Utterbackia imbecillis, Trump (2010) found that 3-day-old juveniles had a ring of  cilia on the 

distal portion of the foot but cilia were absent elsewhere. Tufts of cilia in the proximal region 

only formed later (113 days old). This incomplete pattern of ciliation indicates that particle 

transport into the pedal gape is unlikely to be via a train of particles travelling up the foot on 

cilia as suggested by Lasee (1991).  

5.1.1.6 Byssus threads

In some species, the presence of byssus threads may indicate a switch from pedal to filter 

feeding (Hanlon, 2000). Due to the lack of investigation into the juvenile life stage, the presence 

of byssus threads in juvenile mussels is poorly documented, although Ziuganov et al. (1994) 

observed them in juvenile M. margaritifera < 20 mm in length. The author has observed byssus 

threads in M. margaritifera from juveniles up to 25.5 mm (FBA, unpublished data) and they are 

common in wild juveniles that are still buried (E. Moorkens, pers. comm.).

5.1.2  Feeding behaviours of juvenile freshwater mussels

Acquiring food through an anterior aperture (as opposed to the posterior inhalant siphon) is a 

trait common to most juvenile and small bivalves (Reid et al., 1992) and one which the author 

has observed first-hand in M. margaritifera. There are many examples of species employing 

some type of pedal feeding behaviour immediately after excystment and before filter feeding 

commences, most likely due to the undeveloped gills and their inability to efficiently pump 

water. The term ‘pedal feeding’ has been used to describe several slightly different behaviours 

in a range of species, leading to confusion. For example, the movement of particles into the 

pedal gape on water currents generated by cilia has been referred to as ‘interstitial pedal 

feeding’, ‘interstitial suspension feeding’, ‘locomotory pedal feeding’ (when the individual is 

mobile) and ‘pedal-mantle-gill feeding’ (Reid et al., 1992; Yeager et al., 1994; Gatenby et al., 

1996; Gatenby et al., 1997; Hanlon, 2000; Kovitvadhi et al., 2006). The terms ‘pedal-sweep 

feeding’ and ‘pedal-probe feeding’ have been used for when particles adhered to pedal cilia 

are transferred directly in to the pedal gape or even to directly on to the labial palps (Reid 

et al., 1992; Yeager et al., 1994; Gatenby et al., 1996; Gatenby et al., 1997). Pedal feeding 

itself could be described as a type of filter feeding, as cilia on the foot and mantle entrain 

particles in water currents depending upon factors such as particle size and shape. It is clear 
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that the mechanisms and behaviours exhibited during this early feeding stage are still not 

fully understood and differ between species. Investigations in this area will help clarify the 

terminology used for describing feeding behaviours in juveniles before gill development 

facilitates true siphonal filter feeding. In this thesis, the term ‘pedal feeding’ is used to describe 

the movement of particles into the pedal gape on water currents generated by cilia on the foot, 

mantle or gill filaments, before the onset of siphonal filter feeding. This is typified by juveniles 

actively moving though substrate and particles entering the pedal gape predominantly from 

areas other than the posterior siphonal region.  

Descriptions of juvenile feeding behaviour specifically in M. margaritifera are scarce. 

Buddensiek (1995) describes juveniles probing and retracting their foot into the mantle cavity 

and particles being drawn into the mantle cavity around the anterior and ventral edges. 

Lange & Selheim (2011) demonstrate the activity of juvenile mussels during feeding through 

documenting trails left in fine particulate organic matter.  

Some species are reported to display both deposit and filter feeding behaviours into 

adulthood, e.g. Corbicula spp. (Reid et al., 1992), but reports of deposit feeding in adult mussels 

are uncommon and Raikow & Hamilton (2001) believe that the widely-held perception that 

adult mussels feed exclusively by filtering from the water column is not supported by empirical 

evidence. In fact, several studies have postulated that adult freshwater mussels may derive a 

significant proportion of their diet from the substrate, and this is obtained by deposit feeding 

(Hornbach et al., 1984; Way, 1989; Raikow & Hamilton, 2001, Nichols et al., 2005). Whilst the 

assumption has always been that M. margaritifera adults are strictly filter feeders, this has 

not been backed up by experimental data. It is therefore important to fully understand the 

feeding mechanisms of juvenile M. margaritifera pre- and post-transformation to establish 

if they exclusively filter feed or use a combination of feeding methods. These findings could 

have important implications for both captive rearing practices and river restoration activities 

in pearl mussel catchments.  

5.1.3  Objective of this study

The purpose of this study was to describe the feeding behaviour of juvenile M. margaritifera 

at different ages and feeding stages and to investigate the biological development of feeding 

apparatus and other pertinent structures. The aim is to provide evidence for the timing of 
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switching from pedal to filter feeding (transformation). This in turn could assist with the 

improvement of captive rearing practices where benefits may be derived from employing 

different rearing strategies at different developmental stages. The stages to be considered are:

1.        Post-metamorphosis (excystment); 1 - 8 months old;

2.        10 - 20 month old juveniles (around the suspected age of transformation), and;

3.        Post-transformation (> 3 years old).

These investigations will consider feeding behaviour through observation of video recordings 

and biological development using light and scanning electron microscopy (SEM).

5.2.  Methods
5.2.1  Comparing foraging and feeding behaviour

5.2.1.1 Experimental procedure

On 10 January 2015 three live individuals which excysted in 2014 (approximately 6 months 

old) were examined under a low-power light microscope (x10 to x200 magnification) to help 

inform the methodology for this investigation. Experimental work took place over ten months 

between May 2015 – March 2016. The feeding behaviour of juveniles was assessed at different 

ages and sizes by taking video recordings of individuals which had been observed filter feeding 

and had thus undergone transformation (excysted summer 2012), those which were expected 

to undergo transformation within the sampling period (excysted summer 2014) and newly 

excysted juveniles (excysted July 2015). Throughout this chapter size refers to shell length 

(mm).

In May 2015, 10 month old juveniles from the river Ehen population were sampled by 

disturbing sediment in the tray system described in Chapter 2 and siphoning water through a 

0.3 mm sieve. Juveniles were emptied into a petri dish and individuals encompassing a range of 

sizes were chosen for further investigation. The presence and activity of juveniles was recorded 

using a light microscope (x 100) with additional side lighting from a cold light source. Juveniles 

were placed into a glass petri dish containing filtered lake water. Locomotory behaviour was 

recorded for 3 minutes using a camera (Moticam 2000, Motic, China) mounted on a trinocular 

microscope (Meiji, UK). Individuals were then prepared for further ultrastructural investigation 

via scanning electron microscopy (SEM). The same procedure was carried out on all occasions 

for all cohorts. On 9 September 2015 an adult mussel from the FBA Ark (length = 99 mm) 
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was found to have recently died and the opportunity was taken to dissect some of the gill 

tissue for SEM investigation. Small square sections were taken from the mid-gill on the outer 

demibranch.  

5.2.1.2 Analysis of video recordings

Video files were assessed to document behaviour over a three minute period starting from one 

minute after the mussels were placed into the petri dish. Individuals therefore had one minute 

to recover from handling before recordings began. The total time spent active was converted 

into proportion of time active (%) for data analysis and different types of movements recorded:

• Pedal foot movement - the foot is extended away from the shell before the tip (or less 

frequently the entire region from the tip to the ‘heel’) is anchored and used to pull the 

individual in the direction of the foot tip;

• Pedal sweep - the foot is swept in a single motion along an arc following the curvature 

of the shell, usually in an anterior to posterior direction, and;

• Shell flipping - the juvenile starts from resting on one valve and performs a pedal foot 

movement whereby it rotates upon its ventral axis, and which results in the individual 

coming to rest on the opposite valve at the end of the manoeuvre.

5.2.2  Ultrastructural analysis with scanning electron microscopy

After behavioural observations, each individual was transferred into an eppendorf tube and 

immersed in 1 mg/mL MS-222 (tricaine methanesulfonate) as per Galbraith et al. (2009) to 

relax the valves and expose soft tissues within the shell. Juveniles were processed with either 

both valves intact (to observe gill and siphonal connections between left and right sides), valves 

were teased open to better observe feeding structures, or one valve was removed completely 

(to observe shell-facing structures and gain a better overall view of gill filaments). Juveniles 

were fixed in 2 % glutaraldehyde in 0.1 M Sorenson’s Phosphate Buffer (SPB) over night. They 

were then washed in SPB (x 2) before being dehydrated through 25%, 50%, 75% and 2 x 100% 

ethanol washes. Samples were immersed in Hexamethyldisilazane (HMDS) for 2 x 30 minutes 

in place of critical point drying before being mounted onto SEM stubs and sputter coated with 

gold. A Leo 1450VP scanning electron microscope (Zeiss, Germany) at the University of Derby 

was used to view all samples. Slightly different methodologies were undertaken on different 
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sampling occasions to try and streamline the work process. Some of these variations led to 

poor quality samples. For example, some samples were treated up to the HMDS step before 

being mailed to the University of Derby for mounting and sputter coating whereas others 

were mounted on stubs before being mailed for sputter coating. The consequences of these 

different methodologies are discussed in the results. Adult mussel tissue was dissected and 

stored in 2 % glutaraldehyde in 0.1 M SPB for 3 weeks before the alcohol dehydration step was 

undertaken. All other steps were the same as described above.

5.2.3  Data analysis

All measurements of features on micrographs were taken with ImageJ (version 1.48; National 

Institutes of Health, Maryland, USA). As a measure of filtering efficiency at different ages, the 

distance between filaments (interfilamentary space) and distance between laterofrontal cirrus 

couplets were measured from micrographs. Where pictures contained interfilamentary junctions 

(ciliary or tissue), measurements were taken in the vicinity of the junction because, at this point, 

filament distance is less variable. Due to potential tissue shrinkage during sample preparation  

(Silverman et al. 1995; Beninger et al. 1999), all measurements reported should be considered 

minimum measurements as no attempt was made to quantify tissue shrinkage for this work.

All data were checked for normality using Shapiro-Wilk tests for normality before 

performing parametric tests. ANOVA’s (with post hoc Tukey’s HSD tests) were performed 

to test the difference in the size of interfilamentary space for individuals at different ages, 

to test the number of cilia per laterofrontal cirrus, and to test the proportion of time active 

between individuals of different ages. Unless otherwise specified, numbers given after means 

are standard deviation. The number of inner demibranch filaments was plotted against mussel 

length and age, and regression lines plotted. Linear regression analysis was performed for 

interfilamentary space against shell length and also for the number of inner demibranch ‘vs’ 

outer demibranch filaments, where the outer demibranch was present. 

5.3.  Results
The following descriptions and micrographs outline the most noteworthy features of juveniles 

at different ages observed using SEM. Table 5.1 provides information about the ranges of shell 

length (mm) and range of inner demibranch filaments observed for the different age cohorts. 
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Where possible, qualitative descriptions have been matched with micrographs from the correct 

age cohort. On some occasions however it was not possible to obtain images of adequate 

quality to illustrate structures within the correct age cohort and so electron micrographs from 

other cohorts are used for illustrative purposes. The age of individuals is provided in the top 

right corner of each micrograph. 

5.3.1  1 month old

Shortly after excystment, gill filaments of the inner demibranch were observed as long finger-

like projections (Fig. 5.4). Adjacent filaments were not connected other than by the gill axis. The 

distance between adjacent filaments was large. Frontal cilia, lateral cilia and laterofrontal cirri 

(illustrated in Fig. 5.5 of a 34 month old individual) were observed on filaments. Laterofrontal 

cirri had a similar structure to those reported previously in other species (Owen, 1974;  

Silverman et al., 1996; Gui et al., 2016). Cirral plates were orientated perpendicular to the 

filament and each laterofrontal cirrus consisted of two parallel rows of cilia which were shortest 

towards the frontal surface and became progressively longer towards the lateral surface 

(illustrated in Fig. 5.6 of a 34 month old individual). At this stage, the large interfilamentary 

distance meant that laterofrontal cirri on adjacent filaments were not able to span the gap 

between adjacent filaments. They are therefore unlikely to form an effective sieve at this stage. 

Age (months) Shell length 
range (mm) Number of ID filaments

1 0.49 - 0.66 5 - 6
2 0.58 - 0.83 Poor sample prep. 

prevented accurate counts
3 0.65 - 0.81 6 - 7
4 0.75 - 0.94 6 - 11
8 0.95 - 1.00 7 - 9

13 0.81 - 1.37 6 - 14
14 0.96 - 1.28 9 - 13
15 1.00 - 1.30 7 - 12
16 1.13 - 1.56 9 - 17
20 1.20 - 1.44 12 - 16
34 2.66 - 5.90 28 - 62
44 3.10 - 8.90 34 - 94

Adult 99 Not counted

Table 5.1: Summary information about the ranges of shell length (mm) of juvenile freshwater pearl 
mussels and number of inner demibranch (ID) filaments for the different age cohorts (months) described.
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FO

FI

LP
GA

Fig. 5.4: Scanning electron micrograph of a 1 month old juvenile; foot (FO), unreflected filaments (FI), 
gill axis (GA), left and right labial palps (LP).

1 month

LC LFC

FC
34 months

Fig. 5.5: Scanning electron micrograph of the frontal view of two gill filaments. The three different types 
of cilia/cirri; frontal cilia (FC), lateral cilia (LC) and laterofrontal cirri (LFC). In developed individuals like 
this 34 month old, the LFC are capable of reaching over half way across the interfilamentary space (as 
shown here).



132

Chapter 5: Transformation from pedal to filter feeding

LC

LFC *
†

AS

Fig. 5.6: Scanning electron micrograph showing the lateral view of a gill filament. Lateral cilia (LC), 
laterofrontal cirri (LFC) and the abfrontal surface (AS) are marked. Cilia making up the LFC are longer 
towards the lateral surface (*) and shorter towards the frontal surface (†).

34 months

FO

MO

UL

LL

LOP

LIP

ROP

RIP

1 month

Fig. 5.7: Scanning electron micrograph of the labial palp primordia, lips and mouth (MO); foot (FO), left 
inner palp (LIP), left outer palp (LOP), lower lip (LL), right inner palp (RIP), right outer palp (ROP), upper 
lip (UL).
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Filaments were observed to follow the curvature of the shell (Fig. 5.4) but because valves were 

separated during sample preparation it was not possible to tell if juveniles formed a gill basket, 

as described by Beninger et al. (1994). For the same reason it was also impossible to ascertain 

if the labial palp primordia had made contact with any of the gill filaments at this stage. Labial 

palp primordia, lips and the area around the mouth were heavily ciliated (Fig. 5.7).

5.3.2  2 & 3 months old

Experimentation of suitable sample preparation techniques meant that all 2 & 3 month old 

samples were either too damaged or did not show enough detail to ensure meaningful data 

were collected (see section 5.3.16). However, the mouth and labial palp primordia were 

observed in several 3 month old specimens and both were heavily ciliated, as observed in the 

1 month old individuals. Gill filaments were still unreflected at this stage.

5.3.3  4 months old

Filaments were joined at the distal tips by tissue connections (illustrated in Fig. 5.8 of a 14 

month old individual) which were covered in long simple cilia. Larger individuals had tissue 

connections between most filaments whereas smaller individuals had connections between 

only some filaments. Connections usually started developing between filaments at the 

posterior end (nearest the budding zone).

Simple cilia were visible around the mantle margin, with more dense aggregations near 

the posterior end. Cilia around the mantle margin were organised into rows (Fig. 5.9). On the 

outer-most margin was a band of short cirri composed of 6 - 10 individual cilia. Slightly dorsal 

to this ran two bands of long cilia. In addition to this were sparse aggregations of long cilia 

distributed over the visible part of the mantle and occasional instances of long cilia in two 

parallel rows (Fig. 5.10). 

5.3.4  8 months old

Specimens were slightly damaged leading to a potential under-estimation of the number of 

gill filaments present. Filaments remained unreflected and showed the same arrangement as 

described for 4 month old individuals. The labial palps were again observed but the morphology 
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Fig. 5.8: Scanning electron micrograph of the distal tips of filaments which are joined to each other by 
thin tissue connections (arrow heads). Points of connection between the anterior-most filament and the 
mantle are indicated (*).

*
*> >

14 months

†

*

Fig. 5.9: Scanning electron micrograph of lLong simple cilia (*) and short cirral tracts (†) near the mantle 
margin. Ventral shell margin is to the bottom of the image.

4 months
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†

*

Fig. 5.10: Scanning electron micrograph of patches of long simple cilia observed over the whole visible 
part of the mantle either in sparse patches (*) or arranged in two parallel rows (†).

4 months

did not differ from previous observations. Sparse aggregations of cilia covered the mantle 

surface with denser ciliation around the posterior mantle margin as previously described.

5.3.5  13 months old

In the largest individual (1.37 mm, 14 filaments), the first instance of gill reflection was  

observed. The most distal portion of filaments had a bulbous appearance and were still 

connected by thin tissue connections, but the terminal end of the ascending limb had a 

continuous, thicker piece of tissue joining all filaments which projected dorsally (illustrated in 

Fig. 5.11 of a 16 month old individual). This structure is known as the fused dorsal bend and 

had a sparse covering of short simple cilia. Reflection was observed concurrently on both the 

right and left inner demibranch. The ascending limbs on the middle filaments were longer 

than on the most anterior and posterior filaments, indicating that reflection may begin in the 

middle portion of the demibranch and radiate anteriorly and posteriorly (Fig. 5.11). Ciliation on 

the ascending limb was the same as on the descending limb with all types of cilia/cirri present 

(Fig. 5.11) although laterofrontal cirri were smaller and consisted of fewer cilia per cirrus (see 

section 5.3.14.3 on page 159). Labial palp morphology did not differ to previous observations.
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5.3.6  14 months old

Reflection was not observed in smaller individuals in this age class but filaments had started to 

reflect in the largest individual (1.28 mm, 13 filaments). Unreflected filaments were joined to  

each other by thin tissue connections at the distal tips as described previously, but the most 

anterior and posterior filaments were also connected to the mantle both anteriorly and  

posteriorly (as outlined previously in Fig. 5.8). There was no sign of oral groove development 

at this stage. 

5.3.7  15 months old

Samples from this age class were either too damaged or not preserved adequately due to 

specimen preparation trials discussed in section 5.3.16, but followed the same general pattern 

of development as observed in the 14 month old specimens.

Fig. 5.11: Scanning electron micrograph  showing gill reflection of the inner demibranch. Thin tissue 
connections join filaments at the ventral bend (VB) and the thicker fused dorsal bend (FDB) joins the 
terminal ends of the ascending arms. Even in the early stages, reflected filaments develop all three 
cilia types almost immediately; lateral cilia (LC), laterofrontal cirri (LFC) and frontal cilia (FC). Ciliation 
progresses with ascending limb (AL) growth. The ascending limb is longer on medial filaments compared 
to those at either anterior or posterior ends (to the left and right of the figure). Other features of note 
are the abfrontal surface (AS), descending limb (DL) and mantle (MA).

LC

FDB

AL
DLLFC

AS

VBMA FC

16 months 
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5.3.8  16 months old

Of the five individuals checked, gill reflection was observed in three. This was the first time 

that reflection was obvious under a light microscope before specimen preparation for SEM; 

subsequent micrographs confirmed the condition. As described in the 13 month old individual, 

filaments were observed reflecting from the medial filaments, followed by filaments in more 

anterior and posterior positions (Fig. 5.11). Development of laterofrontal cirri on the ascending 

limb was more advanced in medial filaments compared with those at the anterior and posterior 

ends, and again laterofrontal cirri on the ascending limb consisted of fewer cilia per cirrus 

compared with those on the descending limb (13 - 14 on ascending limb ‘vs’ 43 on descending 

limb).

Connections between filaments at the ventral bend were observed beginning as ciliary 

connections before tissue connections formed. Tissue connections were again covered in 

simple cilia and those connecting medial filaments were more developed than at either the 

anterior or posterior ends (Fig. 5.11). No oral groove was present at this stage but developing 

tissue connections at this most distal point is likely a precursor to oral groove development. 

The smallest individual (1.13 mm) did not have reflected filaments but thin tissue 

connections joined the distal tips and reflection appeared imminent. From the individuals in 

this age cohort, filament reflection was observed in individuals measuring just over 1.13 mm 

up to 1.22 mm (largest individual in age class), and when the inner demibranch consisted of 

more than nine filaments.

Dense patches of short cirri were present around the mantle margin, particularly around 

the posterior region where siphons will develop at a later stage.
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5.3.9  20 months old

The length of the two 20 month old individuals observed overlapped with those of 

16 month olds, as did the numbers of inner demibranch filaments. Gill reflection was 

observed in both individuals and new filaments were budding already reflected (i.e. via  

cavitation extension). Development of the labial palps was progressing with the first  

observation of folds developing in this organ. A ciliary connection was also observed for 

the first time between the labial palp and the penultimate anterior filament. This may have 

been present in younger specimens but due to the way in which samples were prepared the 

connection may have been broken previously. Again, no oral groove was observed. 

On the ascending limb, laterofrontal cirri development appeared to start from near the 

fused dorsal bend and progress towards the ventral bend because the bases of cirral plates 

were observed near the ventral bend but they lacked cilia (Fig. 5.12). However, this could have 

been due to specimen damage so this observation warrants further investigation.

Fig. 5.12: Scanning electron micrograph showing the ascending limb of the inner demibranch with bases 
(*) of the laterofrontal cirri (LFC) present, but cilia absent towards the ventral bend (VB). Cilia are present 
near the fused dorsal bend (FDB). 

LFC

*

FDB

VB

20 months 
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5.3.10  34 months old

The budding zone was observed in detail for the first time in 34 month old individuals. 

The whole region was densely covered in simple cilia. Gill buds were distinguished from 

‘true’ filaments by the absence of laterofrontal cirri. Each individual typically had 3 - 5 

buds before true filaments were observed (Fig. 5.13) and the budding zone was free within 

the mantle cavity (i.e. not connected to the mantle). All individuals had reflected inner  

demibranch filaments and new filaments were budding already reflected via cavitation 

extension. The most anterior gill filament was attached to the visceral mass along its entire 

length and only consisted of a descending limb. Laterofrontal cirri could reach over half way 

across interfilamentary spaces (as illustrated in Fig. 5.5) meaning that they were capable of 

forming an effective sieve for particle capture. In all individuals, the fused dorsal bend of the 

inner demibranch was not connected to the visceral mass i.e. the same condition as present in 

younger individuals (Fig. 5.14). As in younger juveniles, the abfrontal surface of filaments had 

only a very sparse coverage of cilia which did not appear to be organised into tracts (Fig. 5.15). 

Interfilamentary junctions between adjacent filaments were observed for the first time. 

These began as ciliary junctions between posterior (recently budded) filaments, giving way 

to tissue junctions between more anterior filaments. Between approximately filaments 1 - 11  

there were no interfilamentary junctions. After this, ciliary interfilamentary junctions were 

present until approximately the 14 – 15th filament, after which they became tissue (Fig. 

5.16). In addition to interfilamentary junctions in a posterior-anterior direction, additional 

interfilamentary junctions were present along the dorsal-ventral axis. These may be created 

as filaments elongate. In a single individual (length = 5.8 mm) the distance interfilamentary 

junctions were observed from the gill axis was measured. The maximum length of inner 

demibranch filaments was 1.59 mm and tissue interfilamentary junctions were present 

0.90 mm and 1.17 mm down the filament from the gill axis and a final ciliary interfilamentary 

junction (Fig. 5.17) was present 1.53 mm from the gill axis (most ventrally). 

Formation of both the outer demibranch (Fig. 5.18) and the oral groove on the 

inner demibranch (Fig. 5.19) were observed for the first time in 34 month old individuals.  

Development of the oral groove began on filaments which were approximately 3 – 13 true 

filaments away from the last gill bud. The outer demibranch had started to form in all but 

the smallest individual (< 3.2 mm) but no oral groove was observed on the outer demibranch 
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in any individual (Fig. 5.19). Outer demibranch filaments appear to proliferate via cavitation 

extension only, and are of a similar length to each other with the budding zone appearing to 

give rise to several filaments at once (Fig. 5.18). 

The labial palps were observed in several individuals. At this stage they consisted of two 

pairs of flattened plates which are highly ciliated on the inner surfaces but devoid of cilia on 

exterior surfaces (Fig. 5.18). 

Fig. 5.13: Scanning electron micrograph of the budding zone (BZ) with two gill buds (GB) and three true 
filaments (FI) numbered.  

BZ
GB1

GB2

FI1

FI2

FI3

34 months
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Fig. 5.15: Scanning electron micrograph of the abfrontal surface of filaments which is sparsely covered 
in cilia which were not organised into tracts.

34 months

Fig. 5.14: Scanning electron micrograph of the fused dorsal bend (FDB) which is not attached to the foot 
or visceral mass.

FDB

34 months
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†

*

*

†

34 months

Fig. 5.17: Scanning electron micrograph showing ciliary interfilamentary junctions present at the most 
ventral (distal) region of lamellae. Tissue interfilamentary junctions were present between filaments in 
dorsal and medial regions.

2 µm

A
34 months

Fig. 5.16: Scanning electron micrograph of ciliary and tissue interfilamentary junctions between 
filaments. No interfilamentary junctions were present between the first 1 - 11 filaments. Ciliary 
interfilamentary junctions (*) were present between approximately filaments 11 - 14 after which tissue 
interfilamentary junctions were present (†).



143

Chapter 5: Transformation from pedal to filter feeding

Fig. 5.19: Scanning electron micrograph showing the oral groove (A) developed on the inner demibranch 
some time between 20 - 34 months old but was not observed on the outer demibranch (B).

100µm20µm

BA 44 months44 months

Fig. 5.18: Scanning electron micrograph showing the right inner demibranch (ID), outer demibranch 
(OD) and labial palps (LP). Outer demibranch development occurs via cavitation extension with several 
filaments developing at once leading to filaments uniform in length. FO = foot; BZ = budding zone. Inset: 
Labial palps are highly ciliated on the inner surface but devoid of cilia externally. 

ID
OD

FO

LP

BZ

34 months
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5.3.11  44 months old

The outer demibranch was present in the three largest out of the four individuals observed. 

These data suggest that the outer demibranch begins to form in individuals which are  

> 3.1 mm long.  The budding zone was not attached to the mantle and was again highly ciliated 

with only simple cilia on developing gill buds. In all individuals, new buds on both the inner and 

outer demibranchs were already reflected (as in those at 34 months) and a ciliary connection 

joined the different parts of the budding zone which gave rise to the left and right budding 

zones (Fig. 5.20). Laterofrontal cirri on newly-budded filaments consisted of fewer cilia per cirral 

plate (i.e. were not as wide) as laterofrontal cirri on older filaments. The laterofrontal cirri on 

more developed filaments were capable of reaching over half way across the interfilamentary 

space making them an effective sieve for food particles.

Adjacent filaments at the anterior end of the inner demibranch were joined at the ventral 

bend but it was difficult to see if these connections were tissue or ciliary. If they were tissue 

as has been observed in younger individuals, cilia may still play an important role in ensuring 

these connections are strong (Fig. 5.21). The inner demibranch of the largest individual had six 

rows of tissue interfilamentary junctions in a dorsal-ventral direction; no ciliary interfilamentary 

junctions were observed. Tissue interfilamentary junctions were first observed between 

filaments 9 and 10 with no interfilamentary junctions before this. As filaments elongated, 

additional interfilamentary junctions were added in a dorsal-ventral direction.

The oral groove was observed on the inner demibranch in all specimens but never on the 

outer demibranch. The ventral bend on the outer demibranch was flattened and was covered in 

simple cilia, but no invagination into an oral groove was observed in any specimen. Invagination 

on inner demibranch filaments for the oral groove was observed after approximately 2 - 8 true 

filaments. 

The labial palps were more developed than previously observed and had a ‘corrugated’ 

morphology (Fig. 5.22). They were heavily ciliated on internal surfaces with both simple cilia 

and more complex cirri present. These structures are likely to play different roles in particle 

sorting and processing. The outer (mantle-facing) surface of the lips was ciliated in a similar 

manner to the rest of the mantle (see below). 

The mantle surface was covered in rows of simple cilia (Fig. 5.23) with ciliation becoming 

more dense close to the inhalant siphon. The inhalent siphon tissue was plicated (Fig. 5.24) 
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and ciliation extended to the shell-facing side of the mantle. Detailed observation of ciliation 

around the mantle margin was not possible in these individuals due to the unattached portion 

of the mantle folding down.

CC

Fig. 5.20: Scanning electron micrograph of the budding zone (BZ) and left inner (LID), left outer (LOD), 
right inner (RID) and right outer demibranchs (ROD) of 44 month old specimen. Inset box shows ciliary 
connection (CC) between left and right BZ. OG = oral groove.

LID

LOD
ROD

RID

BZ

OG

44 months
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Fig. 5.21: Scanning electron micrograph of the ventral bend connection in 44 month old individual. It is 
difficult to tell from micrographs if these are ciliary or tissue connections.

44 months 

10µm

A

RIP

ROP

LOP

LIP

†

*

44 months 

Fig. 5.22: Scanning electron micrograph of the right inner (RIP), right outer (ROP) and left inner (LIP) 
and left outer (LOP) labial palps which are plicated internally but still retain their flattened appearance 
on the outer surface. Inset (A): Internally labial palps are heavily ciliated with simple cilia (†) and more 
complex cirri (*).
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Fig. 5.23: Scanning electron micrograph of the mantle surface covered in rows of cilia (arrow heads).

>
>

44 months 

Fig. 5.24: Scanning electron micrograph of plication of the inhalent siphon (IS).

IS

44 months 
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5.3.12  Adult (> 50 years)

Adult gills were observed to have the same overall structure as the oldest juveniles in this 

study with some notable exceptions. Firstly, adults possessed a thin layer of tissue attached 

to the abfrontal surface of filaments which bore ostia. Ostia were arranged in approximate 

transverse rows (Fig. 5.25). Ostia were oval-shaped and were not uniform in size. A sample 

(n = 70) was measured and averaged (mean) 110 µm (± 47) long and 40 µm (± 16) wide. The 

abfrontal surface of this tissue was sparsely ciliated with some arrangement into tracts (Fig. 

5.26). There did not appear to be any pattern to these tracts; some ostia had ciliary clumps or 

tracts around them while others did not. Sparse cilia were also still present on the abfrontal 

surface of filaments (Fig. 5.27). The filaments in adult gills appeared closer in proximity to each 

other compared to juvenile mussels (see section 5.3.14.2 for more information).

The second significant observation was the presence of thick tissue projections 

(interlamellar junctions) joining the descending and ascending lamellae (Fig. 5.25), projecting 

out of the tissue layer on the abfrontal surface. The presence of interlamellar junctions was 

not noted in juvenile mussels, although these specimens were prepared with a focus on 

keeping them intact so observations of interlamellar junctions would have been difficult if not 

impossible if they were present. 

Finally, the sublateral surface of filaments (the lateral surface between the lateral cilia 

and the abfrontal surface) was wider in adults compared to juveniles, indicating the same form 

as Cannuel et al. (2009) observed in Mytilus edulis. 
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O ILJ

Adult

*

Ciliary tract

O

Fig. 5.26: Scanning electron micrograph showing ciliary tracts and clumps (*) on the abfrontal tissue 
surface in between the ostia (O) but no pattern of arrangement was obvious.

Adult

Fig. 5.25: Scanning electron micrograph showing tissue covering the abfrontal surface of filaments. Ostia 
(O) are variable in size and arranged in transverse rows. Interlamellar junctions (ILJ) were also present. 
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O
IFS

*

†

Adult

5.3.13  Other observations

5.3.13.1 Foot (all ages)

Foot form and ciliation was consistent throughout all age classes observed. The foot appears 

to have two distinct regions (Fig. 5.28). The distal region has a dense covering of simple cilia 

(Fig. 5.29) whilst the proximal region above the ‘heel’ is only very sparsely covered in patches 

of cilia (inset Fig. 5.29).  

The largest 44 month old juvenile (8.9 mm), had a fine byssus thread attached to a single 

grain of substrate when taken for processing. A thin hole was observed along the distal tip of 

the foot in this individual through which the byssus likely originated (Fig. 5.30). Byssus threads 

in juveniles have been observed at the Ark project in juveniles from 2.5 years old measuring 

from 2.8 mm long (FBA, unpublished data). 

Fig. 5.27: Scanning electron micrograph showing cilia presence on the abfrontal surface of gill filaments 
(*) as well as on the tissue attached to the abfrontal surface of filaments (†). O = Ostium; IFS = 
Interfilamentary space.
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Fig. 5.28: Scanning electron micrograph showing the two distinct regions present on the foot. The most 
distal part, below and right of the ‘heel’ (dashed line) is heavily ciliated. The more proximal region, 
above and left of the ‘heel’, bears only sparse ciliation.

PR

DR

Fig. 5.29: Scanning electron micrograph showing the distal region (DR) and proximal region (PR) of the 
foot. Inset (A) shows sparse ciliation covering parts of proximal region.

20 µm

A

34 months

34 months
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Fig. 5.30: Scanning electron micrograph showing the thin hole (*) along the most distal tip of the foot 
where the byssus thread likely originated.

*

44 months

5.3.13.2 Shell (all ages)

Whilst investigation of shell structure did not form a major part of this study, some useful 

observations were made. In one 14 month old individual there appeared to be 2 parts of 

the shell laying down calcium products (Fig. 5.31). In some 16 and 34 month old individuals 

balls of calcium carbonate were seen on the shell-facing part of the mantle which may be for 

sequestration into the nacreous layer (Fig. 5.32).

5.3.13.3 Style

During preparation of 4 month old juveniles, the rotating style was observed through the 

transparent cells in one individual (0.95 mm) - https://www.youtube.com/watch?v=Pvr_s8

9NCh4&list=PLBCF8F795289C1093&index=12. The style helps to break down food particles 

through mechanical means (rotation of the crystalline rod) and by enzymes present in the style 

sac.

https://www.youtube.com/watch?v=Pvr_s89NCh4&list=PLBCF8F795289C1093&index=12
https://www.youtube.com/watch?v=Pvr_s89NCh4&list=PLBCF8F795289C1093&index=12
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Fig. 5.31: Scanning electron micrograph showing the two shell ‘edges’ observed which appeared to be 
laying down material during new shell growth.

Dual shell  
edges

14 months

10 µm

Fig. 5.32: Scanning electron micrograph showing aragonite balls on the shell-facing part of the mantle, 
most likely for sequestration into the nacreous layer. 

16 months



154

Chapter 5: Transformation from pedal to filter feeding

5.3.14  Gill morphology

5.3.14.1 Number of filaments as a function of age/size

The number of filaments on the inner demibranch (n = 47) was counted and plotted 

against age (months) and shell length (mm). Shell length was correlated with the 

number of inner demibranch filaments (F(1,45) = 3520.585; P < 0.001; R2 = 0.99) and this 

relationship was stronger than the correlation of age with the number of inner demibranch 

filaments (R2 = 0.84). Length and age are covariates so both showed a strong relationship 

with the number of inner demibranch filaments (Fig. 5.33). The number of inner 

demibranch filaments was also able to predict the number of outer demibranch filaments  

(Fig. 5.34; F(1,4) = 483.909, P < 0.001, R2 = 0.99). 
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Fig. 5.33: Scatter plots showing the number of inner demibranch filaments against shell length (a) and 
age (b) in juvenile freshwater pearl mussels. The relationship between shell length and the number of 
inner demibranch filaments (R2 = 0.99) is stronger than the relationship between age and the number of 
inner demibranch filaments (R2 = 0.84).
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5.3.14.2 Interfilamentary space

There was a significant difference between interfilamentary space (Fig. 5.35) at different ages  

(F(5,80) = 15.487, P < 0.001) and shell lengths (F(8,70) = 8.761, P < 0.001). Interfilamentary space 

was generally wider in younger and smaller individuals although this was not always the 

case (Table 5.2 & Fig. 5.36). When differences with age are examined, post hoc tests found 

interfilamentary space was significantly narrower in 34 month old juveniles and adults 

compared with the other age cohorts (P < 0.05). The distance between filaments joined by 

interfilamentary junctions was set by the junction width whereas filaments with no junction 

could be a variable distance apart, hence the larger SD values in individuals < 16 months old  

(Table 5.2). The interfilamentary space between filaments joined by ciliary interfilamentary 

junctions was narrower (14 µm ±6) compared to filaments joined by tissue interfilamentary 

junctions (23 µm ±9) probably because ciliary connections are less rigid (Fig. 5.16). The length 

and width of ostia are strongly associated with each other (Fig. 5.37; R2 = 0.64). 
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Fig. 5.34: Scatter plot of the number of inner ‘vs’ outer demibranch filaments in juvenile freshwater pearl 
mussels. The number of inner demibranch filaments is correlated with the number of outer demibranch 
filaments and accounted for 99 % of the explained variability in number of outer demibranch filaments.
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IFS

LFC couplets

Fig. 5.35: Scanning electron micrograph showing interfilamentary space (IFS) and the space between 
laterofrontal cirri couplets (LFC) which were measured using ImageJ. 

34 months

Age 
(months)

Shell length 
(mm)

Interfilamentary 
space (µm) n

4 0.75 30 (± 7) 3
4 0.9 33 (± 17) 3

14 0.97 38 (± 10) 4
16 1.15 40 (± 12) 8
16 1.2 24 (± 6) 7
34 3.2 23 (± 9) 10
34 5.8 21 (± 7) 12
44 7.9 37 (± 3) 14
44 8.9 36 (± 6) 18

Adult  
(> 50 years) 99 14 (± 3) 7

Table 5.2: Mean interfilamentary space of individual freshwater pearl mussel specimens (± SD). The 
number of measurements taken from each individual is also provided (n). 
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5.3.14.3 Laterofrontal cirri

The number of cilia per laterofrontal cirrus depends upon the stage of cirral development. It 

has already been noted in 16 month old individuals that there were fewer cilia per laterofrontal 

cirrus on the developing ascending limb compared with the descending limb. Relatively few 

laterofrontal cirri were in the correct position for photographing but Table 5.3 shows that on 

developed laterofrontal cirri (i.e. only those on the descending limb of reflecting filaments), 

there is little difference in the number of cilia per laterofrontal cirrus between different age 

classes. Laterofrontal cirri couplets were spaced an average of 1.54 µm (± 0.40) apart (Fig. 5.35; 

n = 21 from three individuals at 16 and 34 months old).

Age 
(months)

Number of 
individuals

Number 
of LFC 

No. of cilia 
per LFC

4 5 6 42 (± 2)
16 1 3 43 (± 3)
34 1 2 39 (± 9)

Table 5.3: Mean (± SD) number of cilia per laterofrontal cirrus (LFC) in 4, 16 and 34 month old individuals. 
Counts were made when position of the laterofrontal cirrus allowed sufficient scope for counting 
individual cilia. The number of individuals and the number of laterofrontal cirri considered to obtain the 
mean number of cilia per LFC is also provided. 
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Fig. 5.37: Scatter plot showing ostia length against width. There is a strong association between ostia 
length and width.
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5.3.15  Feeding behaviour

The proportion of time spent active had no relationship with age or length (Fig. 5.38; R2 = 

0.12). Thirty four and 44 month old specimens were less active than younger juveniles with 

the majority of time spent resting on one or other of their valves with siphons protruding and 

them actively filtering. When movements were made they indicated attempts to bury and 

were observed to be slower compared to smaller juveniles; no ‘foraging’ type behaviour was 

observed in larger juveniles. Younger juveniles made more pedal foot movements, foot sweeps 

and shell flipping movements associated with ‘foraging’ activity (Fig. 5.39) but some individuals 

from around 10 months old did show behaviours which appeared to be attempts to bury. Fewer 

foraging-type movements were observed in 14 month old juveniles which coincides with the 

timing of when gill reflection begins to occur. When testing the proportion of time active, 1 and 

2 month old juveniles were significantly more active than all other age classes except 8, 10 and 

20 month old individuals (F(10,46) = 5.116, P < 0.001) although these comparisons do not take 

into account the type of movements being made (e.g. foraging, burying). 
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Fig. 5.38: Scatter plot showing the proportion of time juvenile freshwater pearl mussels were active 
against shell length (a) and age (b). There was no significant correlation between proportion of time 
active and length or age.
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Fig. 5.39: Stacked bar chart showing the mean number of pedal foot movements, pedal sweeps and 
shell flipping movements of juvenile freshwater pearl mussels arranged by age class. 
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5.3.16  Findings on procedure and advised methodology

Slightly different methodologies were used to try and streamline the work flow because 

specimen preparation was carried out in Cumbria and SEM at the University of Derby. These 

variations and their consequences are discussed in Table 5.4. SEM provides an invaluable tool 

for studying the ultrastructure of juvenile mussels, but the way in which specimens are prepared 

can affect the overall quality and positioning of structures as well as the connections between 

structures. One of the main problems encountered with the method described was that the 

mussel valves had to be open wide enough to allow sufficient exposure of the soft tissues to 

reagents. When not opened sufficiently, specimen quality was poor. Opening specimens too 

widely however may have affected the connections between structures, leading to an under-

representation of these in the observed specimens.    

Procedure deviation Consequence

Individuals not teased apart enough after 
treatment with MS-222 in order to try and 
preserve any cross connections/structures which 
may bridge left and right valves.

Exposure to reagents is impeded leading to poor 
preservation of structures and loss of fine detail. 
In addition, sputter coating is less effective leading 
to poor specimen quality.

Delay in sputter coating after the HMDS step.
Specimens had the opportunity to partially 
rehydrate leading to poor preservation of 
structures and loss of fine detail.

After fixing, valves and soft tissues were either 
separated completely or valves were just teased 
apart to expose internal organs. 

Separation of valves completely could lead to 
damaged and unusable specimens but leaving 
valves attached could obscure some structures.

Table 5.4: Procedural deviations from the suggested best method for preparing M. margaritifera 
specimens for scanning electron microscopy and their consequences for specimen quality.
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5.4.  Discussion
The objectives of this investigation were to describe the feeding behaviour and ontogeny of 

juvenile freshwater pearl mussels (Margaritifera margaritifera) in order to inform captive 

rearing practices at the FBA’s Pearl Mussel Ark. This work also intended to provide evidence for 

the timing of the switch from pedal to filter feeding (transformation) and to put any potential 

implications of this morphogenesis into context for captive rearing programmes. 

The nature of bivalve filter feeding is under regular review and certain topics remain 

the subject of ongoing discussion, e.g. the role of mucus versus water currents in feeding and 

particle retention and sorting (Ansell, 1962; Ward et al., 1993; Jørgensen, 1996; Ward et al., 

1998; Beninger et al., 2003; Ward & Shumway, 2004). Over the last 30 - 40 years, research in the 

field has focused on freshwater mussel ecology, habitat preferences and reasons for decline. 

The early works of only a handful of early researchers such as Lefevre & Curtis (1910; 1912), 

Ortmann (1911a; 1911c; 1911b) and Atkins (1936; 1937a) sought to describe the basic anatomy 

of a wide variety of freshwater mussels but relatively little attention has since been paid to this 

topic, leading to a lack of understanding about how juvenile biology and development may 

affect survival in captivity or in the wild. In addition, this lack of information and knowledge 

is holding back advances in systematics of freshwater mussels (Graf & Cummings, 2006), 

and morphological data are still required to complement genetic information to form robust 

phylogenetic hypotheses (Bogan & Roe, 2008). It is important to address these knowledge 

gaps in order to be able to make evidence-based decisions about captive rearing practices and 

river restoration/catchment enhancement activities for juvenile augmentation. 

There is still no single description of what biological features or behaviours an individual 

must attain before it is considered to be ‘filter feeding’. From the anatomical and behavioural 

observations during this work, the author considers pedal feeding to be movement of particles 

in to the pedal gape on water currents generated by cilia on the foot, mantle and gills, as described 

by Kovitvadhi et al. (2006). This in itself is a type of filter feeding which is different to siphonal 

filter feeding, described below. Pedal feeding is typified by high activity levels as individuals move 

through the substrate to maintain supply of particles. In contrast, juveniles are more sedentary 

when performing siphonal filter feeding, and can be observed in the more typical position with 

the most posterior and dorsal areas pointing upwards and the foot being used as an anchor.  
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It is suggested that, to be classed as filter feeding, individuals should:

• Use cilia on the ctenidia as the primary pump creating water currents.

• Have the ability to efficiently capture particles, i.e. small interfilamentary space (Gui et 

al., 2016).

• Have a functional oral groove or the ability to transmit particles to the labial palps 

(Yonge, 1947).

• Have contact between anterior gill filaments and the labial palps (Trump, 2010). 

In this investigation 20 month old individuals (1.45 mm long) had not yet developed an oral 

groove but labial palps were becoming plicated and filaments were beginning to contact the 

labial palps. By 34 months old (2.66 - 5.9 mm long) the oral groove had developed and juveniles 

were obviously filtering. It is therefore assumed that individuals began filter feeding between 

these two time points. 

This study is the first of its kind to describe the early ontogeny of juvenile M. margaritifera 

using SEM and has made several important findings which may help explain why the species 

is so sensitive to sub-optimal habitat conditions. Firstly, due to the slow-growing nature of 

M. margaritifera, the onset of transformation occurs much later than reported in any other 

bivalve species to date (Table 5.5). Gill reflection was observed to commence at approximately 

13 months old when length > 1.2 mm and the number of inner demibranch filaments was > 9. 

The extended period over which M. margaritifera pedal feeds may make them vulnerable to 

sub-optimal substrate conditions because pedal feeding involves high activity levels compared 

with filter feeding. In addition, juveniles are smaller for longer making them anatomically 

unable to exploit larger food particles due to the size of their mouth/oesophagus, thus limiting 

their dietary range. Secondly, observations of the complex structure of laterofrontal cirri 

in M. margaritifera and measurements of inter-cirral distance and the number of cilia per 

laterofrontal cirrus supports the previous observation that the species is capable of filtering 

very small particles (Baker & Levinton, 2003). Previous findings on studies from M. margaritifera 

and other species implicate sub-optimal substrate conditions to be the main cause of juvenile 

mortality (Aldridge et al., 1987; Geist & Auerswald, 2007; Österling et al., 2008; Lavictoire 

et al., 2016) and findings from the current study offer an explanation as to why this is so. 

The ability to filter very small particles makes juvenile M. margaritifera particularly sensitive 
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to the presence of unsuitable particles, including organic particles too large to consume, or 

inorganic particles with no nutritive value. Sub-optimal habitat conditions are likely to cause 

juveniles to close more frequently or for longer periods to avoid taking in unsuitable particles 

which may clog the gills (Ellis, 1936; Aldridge et al., 1987; Jørgensen, 1990). Taking in particles 

during these unsuitable periods has an energetic cost via the over-production of mucus and 

pseudofaeces. Thirdly, even the oldest/largest specimens observed during this study do not 

yet bear the adult condition of having true ostia meaning that their filtering capability may 

not be as efficient as it would be in fully developed individuals. It is also a useful indicator of 

when female mussels may be capable of reproduction because without this tissue, glochidia 

cannot be brooded within the gills. The information presented in this chapter is vital to captive 

rearing programmes and helps inform rearing and reintroduction practices in order to improve 

juvenile survival.

5.4.1  Ontogenic stages

Mussels at different ages have displayed overlapping ranges of shell length and the number 

of inner demibranch filaments (Table 5.1) indicating that shell length is a better predictor 

of development compared to age. This is confirmed by regressions of the number of inner 

Species
Age at onset of 

inner demibranch 
reflection

Size at onset of 
inner demibranch 
reflection (mm)

Number of true 
inner demibranch 

filaments
Reference

Freshwater pearl mussel 
(Margaritifera margaritifera) 13 - 16 months ~1.2 > 9 This study

Atlantic deep sea scallop 
(Placopecten megallanicus) - 0.95 - 1.1 > 9 Veniot et al. (2003)

Paper pondshell  
(Utterbackia imbecillis) 113 days 1.3 ~15 Trump (2010)

Anodonta sp. - - ~18 Kaestner (1967)
Great scallop (Pecten 
maximus) ~42 days 0.9 - 1.0 ~20 Beninger et 

al. (1994)

Pacific oyster  
(Crassostrea gigas)

Cavitation 
extension 

from outset
0.33 1 Cannuel & 

Beninger (2006)

Hyriopsis (Limnoscapha) 
myersiana 30 days - 10 Kovitvadhi et 

al. (2007)

*Blue mussel (Mytilus edulis) - < 1 15 - 16 Cannuel et 
al. (2009)

* Filaments already reflected at this stage so the size and no. of filaments at reflection is an over-estimate. 

Table 5.5: Age, size and number of inner demibranch filaments present at time of gill reflection in previous 
studies on freshwater and marine bivalves.
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demibranch filaments against both shell length and age (Fig. 5.33). Different numbers of 

developmental stages have been identified for different mussel species (Beninger et al., 1994; 

Veniot et al., 2003; Cannuel & Beninger, 2006) and Schartum et al. (2016) recently suggested 3 

stages for M. margaritifera; the ‘I’, ‘V’ and ‘W’ stages based upon single, unreflected filaments 

(I stage), reflected inner demibranch filaments (V stage) and fully developed, tetragenous ctenidia 

(W stage). These stages were based upon data from individuals between 1 - 29 months old  

(1 - 3 mm long). Here, a wider age range was considered and four stages of gill development 

are proposed for M. margaritifera based upon current data (Table 5.6). 

Stage 1 lasts for approximately the first 13 months post-excystment or when juveniles 

measure < 1.2 mm. Juveniles display approximately the same morphological features with 

new inner demibranch filaments being added with increasing length. Tissue connections form 

Stage Age 
(months)

Length 
(mm) Description No. of ID 

filaments
No. of OD 
filaments

1 0 - 14 0.40 - 1.17

Proliferation of unreflected filaments with the 
gradual formation of connections between 
adjacent filaments at the ventral bend in 
individuals ~4 months old (~0.75 mm). Labial palp 
primordia simple, flat and unfolded but heavily 
ciliated.  No oral groove on inner demibranch.

5 - 9 0

2 13 - 20 1.17 - 1.44

Filaments commence reflection starting with the 
medial filaments when ind. ~1.2 mm in length. 
Ascending limb joined at fused dorsal bend which 
has covering of simple cilia. Labial palps becoming 
larger and starting to take on folded morphology. 
No oral groove on inner demibranch. No outer 
demibranch development.

9 - 17 0

3 34 - 44 2.66 - 8.90

Reflected filaments on inner demibranch with 
new filaments developing via cavitation extension. 
Budding zone obvious giving rise to 3 - 5 buds 
before true filaments develop. Oral groove 
develops after 2 - 13 true filaments on the inner 
demibranch. Outer demibranch proliferation via 
cavitation extension in individuals ~3 mm long. 
First sighting of ciliary and tissue interfilamentary 
junctions on inner demibranch.

28 - 94 0 - 83

4
Older 

juvenile 
- adult

?? Tissue with semi-circular ostia forms on abfrontal 
surface of demibranchs. ?? ??

Table 5.6: Description of the four stages of gill development in juvenile freshwater pearl mussels in the age 
classes considered as part of this study. The age (months) at which individuals begin to display particular 
structures/developments is approximate and no attempt has been made to postulate when development of 
certain structures begins if they were not directly observed during this study.  The number of inner demibranch 
(ID) and outer demibranch (OD) filaments are the number observed during this study and may differ depending 
upon population or other parameters.
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between adjacent filaments at the most distal extremity after approximately 4 months when 

length > 0.75 mm. At this stage the labial palps are simple, flattened flaps which are heavily 

ciliated, as is the inner surface of the lips and the area around the mouth. 

M. margaritifera appears to begin the transformation stage (Stage 2) between 13 - 16 

months old when measuring ~1.2 mm in length and when the number of inner demibranch 

filaments was > 9. To the author’s knowledge this is the most delayed example of gill 

reflection in a freshwater bivalve in terms of age. However, both the size of the individual and 

developmental stages before reflection are similar to previous reports in other bivalves (Table 

5.5). The terminal ends of filaments making up the ascending limb are joined at the fused 

dorsal bend, which is covered in simple cilia, similar in form to the frontal cilia. Tissue at the 

ventral bend becomes thicker and more densely covered in cilia in more developed individuals, 

possibly as a precursor to oral groove development (Trump, 2010). Labial palps become larger 

and begin to take on a folded appearance. The outer demibranch is still not present at this 

stage. 

During Stage 3, inner demibranch filaments proliferate already reflected (cavitation 

extension), and the budding zone is clearly visible for the first time. Outer demibranch filaments 

also bud via cavitation extension in individuals > 3.1 mm. The oral groove is present on inner 

demibranch filaments only after approximately the 2 – 13th true filament, with invagination of 

the oral groove increasing in more anterior filaments. Interfilamentary junctions on the inner 

demibranch are observed for the first time, beginning as ciliary junctions but quickly giving way 

to tissue junctions. At this stage no ostia are present within the gill pores and so it is suggested 

that this development occurs in Stage 4. Tissue connected to the abfrontal surface with ostia 

was present in a single adult specimen but further investigation is required to clarify when the 

onset of this condition occurs. Once Stage 4 is reached, juveniles can be considered to have  

fully developed gills capable of brooding, in addition to their respiratory and feeding roles.

5.4.2  Gill development

One of the reasons for considering development in very young juveniles was to try to better 

understand the early mortality event within the first few weeks post-excystment described by 

several authors e.g. Ó Foighil et al., (1990), Lasee (1991), Gatenby et al. (1997), O’Beirn et al. 

(1998), Jones et al. (2005) & Lavictoire et al. (2016). There is no significant change in gill form 
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or function during the first four months post-excystment so it is unlikely that gill development 

causes this early mortality event in M. margaritifera. However, mortality could be caused by the 

inability of mussels to meet energetic demands during intense morphogenesis of other organs 

during this period (Lasee, 1991; Veniot et al., 2003). This area warrants further investigation. 

Gill development follows patterns previously outlined by a number of researchers (see 

Table 5.5 for examples). In the youngest individuals there was no evidence of right and left 

inner demibranch filaments interdigitating to form a gill basket as described in previous studies 

(Beninger et al., 1994; Veniot et al., 2003), but this may be due to the way samples were 

prepared in this study which may have disrupted this feature, if present. Wide interfilamentary 

spaces, no connections between adjacent filaments, absence of the oral groove and the small 

size and under-developed nature of labial palp primordia makes it unlikely that particle capture 

and transport could be carried out by any but the most anterior gill filaments at this stage. The 

mode of particle collection and transport to the labial palps for sorting and ingestion during 

the first few months post-excystment could not be established in this study. 

Whilst there were significant differences between interfilamentary distance and both 

shell length and age, there was no distinct pattern although 34 month old and adult filaments 

were significantly closer together compared with all other age classes. This pattern has been 

observed before (Gui et al., 2016) but the shape of the gills varies depending upon whether 

active pumping is occurring (Tankersley, 1996) so it is possible that interfilamentary spaces 

may be variable between individuals and may differ due to the way in which samples are 

prepared. Once the tissue bearing ostia develops (connected to the abfrontal filament surface 

in M. margaritifera) it is likely that the interfilamentary space will be more fixed. 

The most distal points of filaments begin to form junctions at around 4 months old when 

measuring > 0.75 mm, marking the start of more complex gill development observed during 

Stage 2 (Table 5.6). Medial filaments are the first to undergo reflection followed by the anterior 

and posterior filaments. Once reflection has reached the budding zone, proliferation of new 

filaments is via cavitation extension as reported in previous studies (Ansell, 1962; Cannuel et 

al., 2009). Outer demibranch filaments proliferate via cavitation extension with no unreflected 

stage. The R2 value for the relationship between number of filaments and shell length found 

in this study is very similar to those reported by Cannuel & Beninger (2006) for C. gigas when 
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specimens had V-shaped (R2 = 0.93) and W-shaped gills (R2 = 0.98), providing evidence that 

certain traits are homologous between all bivalves. 

More observations are required to see how the fused dorsal bend of both the inner 

and outer demibranchs interact with the mantle surface/visceral mass in older individuals as 

specimens in this study were not in the correct position to properly observe these features. 

Cannuel et al. (2009) describe cilia on the fused dorsal bend of M. edulis (filibranch) matching 

with cilia on the mantle surface so that the two may interlock, holding the fused dorsal bend 

against the mantle thus aiding the shunt mechanism. Ansell (1962) also describes ascending 

filaments connecting with the mantle via ciliary connections in the eulamellibranch Venus 

striatula (= Chamelea gallina). Ansell (1962) also described in V. striatula that the most 

anterior filament was attached to the visceral mass along its entire length and only consisted 

of a descending limb; the same feature was observed in one of the largest individuals of 

M. margaritifera in this study (5.8 mm length). It is not known what function (if any) this 

filament has but it appears that the overall importance of this feature is minimal as the overall 

size of the individual increases (Ansell, 1962).

The purpose of the oral groove is to move particles from the frontal tracts of filaments 

in an anterior direction towards the labial palps and mouth for sorting and ingestion. In  

M. margaritifera the developing oral groove begins as a connection between the distal tips of 

filaments as early as 4 months old (0.75 mm long), with these tissue junctions becoming thicker 

as development continues. The oral groove was not present in 20 month old juveniles but was 

well developed on the inner demibranch of all 34 month old specimens (developing between 

1.45 – 2.60 mm long). This is earlier than described by Schartum et al. (2016), who observed 

onset of oral groove development in individuals measuring 3 - 6 mm long. In the current 

study, specimens were not observed between 20 - 34 months old so the exact mechanism 

of oral groove development can only be inferred from observations at these two points. It is 

postulated that the tissue connections thicken bringing adjacent filaments closer together, 

the distal tips flatten and then invagination begins. The oral groove region was not sampled in 

the adult specimen but on juvenile M. margaritifera the oral groove remains open, unlike the 

deep, enclosed oral groove of M. edulis described by Cannuel et al. (2009). In more developed 

individuals, the oral groove develops after approximately the 2 - 13th filament, similar to the 8 - 

10th filament observed in M. edulis (Cannuel et al., 2009). An oral groove was never observed 
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on the outer demibranch in any specimen. Particles captured on the outer demibranch may 

be conveyed on to the frontal surface of the inner demibranch before continuing ventralwards 

to the oral groove for onward transport to the labial palps (Atkins, 1937b; Tankersley, 1996). 

Cannuel et al. (2009) is the only reference the author is aware of referring to an oral groove 

developing on the outer demibranch. Both Cannuel et al. (2009) and Tankersley (1996) report 

that particles are incorporated into a mucus thread at the oral groove but this topic is still being 

actively discussed in the literature. Ansell (1962) observed anterior movement of particles 

via ciliary transport before the oral groove was developed in C. gallina suggesting that whilst 

transport is possible, the oral groove may make the process more effective. 

In M. margaritifera the budding zone is not attached to the mantle and instead 

projects into the mantle cavity. This condition has also been described for Anadara, Nucula 

and Dreissena spp. but budding zones of Unio spp. and Mya arenaria were attached to the 

mantle (Neumann & Kappes, 2003). Development of the budding zone in M. margaritifera 

requires further investigation because smaller/younger samples in this study were usually not 

of suitable quality to observe the budding zone properly. Specimens which were 20 months 

old and > 1.15 mm in length had an early budding zone visible but it was not of the same 

form as observed in 34 month old individuals. The early budding zone consisted of 1 - 2 gill 

buds and looked like it may be attached to the mantle. In more developed individuals ciliary 

connections were observed between the left and right budding zone regions (Fig. 5.20) which 

were not observed previously in individuals with valves fully separated. This outlines the value 

of observing individuals prepared in different ways i.e. with valves intact or with one valve 

removed. 

Interfilamentary junctions were first observed in 34 month old specimens (smallest 

individual 2.66 mm long) but their development likely begins in slightly smaller and younger 

individuals and is likely bourne out of a requirement to stabilise elongating filaments. Initially, 

a single transverse row of interfilamentary junctions develops with additional transverse rows 

being added as filaments elongate. Shorter, more recently budded filaments (filaments 0 - 11) 

had no interfilamentary junctions with ciliary junctions forming between filaments 11 - 14  

which then gave way to tissue junctions from approximately the 15th filament. Ciliary junctions 

also appear to develop before tissue junctions as a new transverse row of interfilamentary 

junctions is added ventrally. This pattern of ciliary and subsequently tissue junctions confirms 
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the findings of previous studies on other eulamellibranchs (Cannuel & Beninger, 2006; Cannuel 

et al., 2009; Trump, 2010). No ciliary junctions were observed in 44 month old specimens and 

it may be that only tissue connections form after attainment of a certain size. Where several 

rows of interfilamentary junctions were present they appeared to be spaced approximately 

evenly along the dorso-ventral axis. Addition of interfilamentary junctions along the dorso-

ventral axis suggests that the site of elongation i.e. ventral growth of filaments, may be from 

the ventral portion of the filament rather than from the gill axis. It is unclear where growth 

of the ascending lamella originates from although the position of interfilamentary junctions 

on the ascending lamella roughly matches with the positioning of interfilamentary junctions 

on the descending lamella along the dorso-ventral axis. Initial growth of the ascending limb 

upon reflection has been shown to be from the ventral bend region (Ansell, 1962; Neumann 

& Kappes, 2003; Cannuel et al., 2009) but elongation may be from the terminal end of the 

ascending limb i.e. near the fused dorsal bend. This area requires further investigation.

The outer demibranch was first observed in 34 month old individuals at around 3.2 mm 

long and proliferation was via cavitation extension (Ansell, 1962; Cannuel et al., 2009; Schartum 

et al., 2016). This is later than reported by Schartum et al. (2016) who observed development 

at 4.5 mm in M. margaritifera and Neumann & Kappes (2003) observed first development at 

4.9 mm in Unio pictorum. The onset of outer demibranch development may be population or 

species specific. Presence of the outer demibranch increases gill surface area for respiration 

and feeding although the mechanism of particle transfer from the outer demibranch to the 

labial palps and mouth is as yet unknown for M. margaritifera.

The ostia described here are unlike anything previously reported in the primary 

literature. Normally ostia are delimited by interfilamentary junctions, otherwise known as 

gill pores (Tankersley & Dimock, 1992; Cannuel & Beninger, 2006; Cannuel et al., 2009) or 

develop on thin sheets of tissue filling the gill pores (Ortmann, 1911c; Kovitvadhi et al., 2007). 

However in adult M. margaritifera ostia were observed on tissue connected to the abfrontal 

surface of filaments. The size of ostia in M. margaritifera ranged from 33 - 221 µm in length 

which compares favourably with other studies on marine bivalves (Cannuel & Beninger, 2006; 

Cannuel et al., 2009). Gill pores delimited by the interfilamentary junctions are very large in 

44 month old juveniles and there is still no sign of the abfrontal tissue at this stage meaning 

that even the oldest juveniles observed in this study do not display the adult condition. Whilst 
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there is no doubt these individuals are filter feeding, it is perhaps less efficient compared to 

adult mussels. It also highlights that these individuals are not sexually mature because eggs 

and glochidia would not be retained in the gills without the presence of the abfrontal surface 

tissue. This area requires further investigation. Development of the plicated inhalent siphon 

was complete before the gills were fully formed, as reported for Hyriopsis myersiana by 

Kovitvadhi et al. (2007). In captivity it has been observed that mortality is negligible in juveniles 

older than 3 - 4 years old (FBA, unpublished data) so it would appear that the addition of this 

tissue to the abfrontal surface and ostia development is not a major contributor to juvenile 

mortality. To understand the timing and development of this feature, further consideration of 

specimens older than 44 months and > 8.9 mm length is required. 

The adult specimen of M. margaritifera displayed the same wide sublateral surface 

observed in M. edulis  (Cannuel et al., 2009). This affords a larger respiratory area and if the 

widening of filaments continues with development, as suggested by Cannuel et al. (2009), this 

may provide larger, more developed individuals with an opportunity to increase metabolism 

and grow faster than their smaller, less developed counterparts.

5.4.2.1 Gill ciliation

A substantial body of research exists on the topic of gill ciliation, particularly the role of 

laterofrontal cirri in particle capture. This study shows that the full suite of ciliation is present in 

even the youngest individuals observed in this study. Ciliation develops shortly after budding, 

similar to previous reports in other freshwater (Kovitvadhi et al., 2007; Trump, 2010) and 

marine bivalves (Cannuel & Beninger, 2006; Cannuel et al., 2009). The branched structure of 

laterofrontal cirri in M. margaritifera is similar to that previously described in other species 

(Owen, 1974; Lasee, 1991; Silverman et al., 1995; Silverman et al., 1996; Silverman et al., 

1997; Gui et al., 2016) and form an effective ‘net’ or ‘sieve’ for particles. This complex type of 

laterofrontal cirrus is efficient in removing small particles from suspension compared to simple 

cirri (Riisgård, 1988). The range of particles filtered by a particular species may be an adaptation 

to algal/bacterial species present (Ward & Shumway, 2004) and therefore the implications of 

eutrophication on algal communities in pearl mussel rivers is of particular importance. Studies 

on the diet of M. margaritifera are particularly sparse but are critical to understanding the 

development and ecology of the species. 
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The number of cilia per laterofrontal cirrus is variable between species (Table 5.7 and 

references therein) and in M. margaritifera did not differ between individuals of different 

ages/sizes (Table 5.3) and was comparable with the number found in previous studies albeit 

towards the higher end of the spectrum (Table 5.7).  Silverman et al. (1997) found that species 

from lentic habitats had smaller, simpler laterofrontal cirri with fewer cilia per cirrus. They 

also found that species with larger gill surface areas and more cilia per cirrus could clear 

more bacteria and at a faster rate. Cirral plates in M. margaritifera averaged 1.54 µm apart 

(± 0.40) which makes them more closely aligned than the majority of inter-cirral distances 

previously reported, which typically range between 2.0 - 3.5 µm (Owen, 1974; Cannuel et 

al., 2006; Cannuel et al., 2009; Gui et al., 2016; Schartum et al., 2016), except in the ribbed 

mussel (Geukensia demissa) where the inter-cirral distance was 1.57 µm (Wright et al., 1982). 

Inter-cirral distance may increase slightly with age (Gui et al., 2016) but this requires further 

investigation in M. margaritifera. The small inter-cirral distance and high number of cilia per 

laterofrontal cirrus suggests that M. margaritifera juveniles may be capable of retaining very 

small (< 2 µm) algal and bacterial cells. Baker & Levinton (2003) found that M. margaritifera 

adults preferentially ingested particles < 4 µm and rejected larger algal species in pseudofaeces. 

However, M. margaritifera could not distinguish more nutritious algae (Microcystis aeruginosa) 

from less nutritious Typha pulp, indicating that selection may be by particle size alone (Baker & 

Levinton, 2003). This has important implications for captive rearing programmes because diet 

is a significant consideration, particularly when supplementary feeding is being provided. The 

findings of Baker & Levinton (2003) coupled with the findings in this study of relatively small 

inter-cirral distance and complex, branching laterofrontal cirri with a high number of cilia per 

laterofrontal cirrus indicate that M. margaritifera likely requires small algae and bacteria as 

food items. This may be particularly true for juvenile mussels which are likely to have a smaller 

mouth and may be less able to ingest large particles. If juveniles are not provided with a diet 

constituting suitably-sized, nutritious particles, or are in environments with a high suspended 

solids load they are likely to decrease their filtration rate (Jørgensen, 1990), potentially 

leading to stress, starvation, reduced growth and/or increased mortality. If inter-cirral distance 

increases with age/size in M. margaritifera, as it did in P. canaliculus (Gui et al., 2016), particle 

preference may also change. Inter-cirral distance was not measured in specimens older than 
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34 months so further investigation is required to inform decisions about juvenile mussel diets 

in systems which provide supplementary feeding. 

Cilia observed on the abfrontal surface of filaments were sparsely distributed and did 

not appear to be organised, suggesting they are unlikely to serve any functional purpose 

and may simply be vestigial (Cannuel & Beninger, 2006; Cannuel et al., 2009). Cilia on the 

abfrontal surface were still present in the adult specimen despite the abfrontal tissue overlying 

filaments. These cilia may interlock with cilia on the adjacent tissue surface to hold the tissue 

in place. Again, the sparse ciliation on the abfrontal surface in juveniles does not provide 

strong evidence to support this hypothesis and further investigation is required with either 

transmission electron microscopy or histology. 

5.4.3  Labial palps and mouth 

The inner surface of the labial palp primordia and the area around the mouth were heavily 

ciliated in 1 month old individuals. Labial palp morphology remained practically unchanged 

in subsequent specimens until approximately 20 months old (1.45 mm) when evidence of 

folding into the plicated form was initially observed. Also at 20 months old, a ciliary connection 

between the penultimate anterior gill filament and the labial palps was observed indicating 

that particle transport from the gill filaments to the labial palps may have been possible despite 

the absence of an oral groove at this stage. Development of labial palp morphology is not well 

described in the literature making comparisons difficult but Trump (2010) reports the onset of 

‘ridge and groove’ morphology in the labial palps from 130 days in U. imbecillis. In the current 

study, the outer surface of the labial palps in 44 month old specimens had the same pattern 

of ciliation as the rest of the mantle. Cilia and more complex cirri were distinguishable on the 

inner labial palp surface suggesting that more complex sorting of particles is possible at this 

age. Development of the labial palps and connection with the gills is another under-studied 

topic but obviously an important one which is likely to have a significant bearing on when 

juveniles can sort particles and therefore filter feed efficiently.

5.4.4  Foot ciliation

Foot ciliation was consistent in all age classes in this study. The proximal portion was only 

sparsely ciliated, whilst the distal portion was heavily ciliated with short simple cilia. These 
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short cilia have previously been observed directing particles into the pedal gape on water 

currents (https://www.youtube.com/watch?v=nHtE4rtkF9A). This pattern of ciliation differs to 

that observed Kovitvadhi et al. (2007) who report the whole foot being ciliated in Hyriopsis 

myersiana, but supports the findings of numerous other studies e.g. Lasee (1991), Passos et al. 

(2005), Trump (2010). These findings support the hypothesis that pedal cilia, along with mantle 

and gill cilia, have a function in directing particles into the pedal gape on water currents, but 

particles are not bound in mucus and transported in to the pedal gape on pedal ciliary tracts. 

5.4.5  Mantle ciliation

Whilst mantle ciliation was not a major consideration in this study, some general observations 

were made. At all stages of development, mantle ciliation was denser around the posterior 

region where the siphons would develop, but ciliation was also present around the majority 

of the mantle margin. Around the margin, short, compound cirri were present nearest the 

margin and longer, simple cilia were present slightly dorsal to this. Longer cilia may have a role 

in pseudofaeces transport as reported by Beninger et al. (1999) and the shorter cirri may have 

a role in creating water currents into the infrabranchial cavity but direct observation in live 

specimens is required to confirm these hypotheses. Ciliation away from the margins appeared 

to be unorganised and patchily distributed in younger individuals becoming more organised 

into tracts by 44 months old. It is likely that these cilia are involved in maintaining water 

currents through the infrabranchial cavity. By 44 months old, siphons were well-developed 

and the inhalant siphon had the characteristic plicated form and was highly ciliated.

5.4.6  Behaviour

Smaller and younger individuals at earlier developmental stages were more active than 

older, more developed individuals. This is most likely due to their ineffective filtering ability 

and the requirement for them to move through the substrate in search of food due to their 

under-developed gill pump. Older/larger individuals had more developed gills and mantle 

cilia, presumably facilitating the movement of water through the mantle cavity without the 

need to move through the substrate. This is an important consideration for captive rearing 

programmes using systems with flowing water. Smaller individuals are more susceptible to 

being washed out of substrate due to their small size and active behaviour. They require 

https://www.youtube.com/watch?v=nHtE4rtkF9A
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interstitial conditions which have a high exchange with the water column for dissolved oxygen 

and food delivery but also require stable substrates so that juveniles are not washed out. In 

contrast, larger individuals with more mature, reflected gills are not as active because they 

have a more efficient pump and they can orientate themselves within the gravels to take 

advantage of flow direction to aid water passage through their inhalant siphon. They are also 

heavier and therefore less likely to be washed out. These findings highlight that captive rearing 

programmes should consider juvenile behaviour as well as anatomical development when 

designing rearing systems and have a flexible approach to switching systems as juveniles grow 

and develop in order to maximise growth and survival.

The switch from active pedal feeding behaviour to the more sedentary filter feeding 

behaviour occurred from around 14 months old; around the age that gill reflection begins. This 

is much later than has been reported in faster-growing species such as Villosa iris (Gatenby et 

al., 1997) and Lampsilis fasciola (Hanlon, 2000). Scallops in particular seem capable of rapid 

gill development with the heterorhabdic stage reached by 2 months old (Beninger et al., 1994). 

Future studies should consider that biological development is more closely correlated with 

size rather than age (Veniot et al., 2003) so studies which quote development in relation to 

age alone are of limited value. In addition, growth is temperature-dependent so temperature 

data are useful to provide context to results. Activity may be linked to temperature with higher 

temperatures increasing metabolism. No consideration was given to water temperature during 

this study and so this topic requires further investigation. Temperature data for the period 

covered during this study can be requested from the author.

5.4.7  Procedure and suggested methodology for SEM work on juvenile 

mussels

Variable specimen quality was observed in some individuals due to differences in the way 

juveniles were prepared for SEM (Table 5.4). This led to the loss of some data, but outlined 

the importance of following a successful procedure for specimen preparation. Critical point 

drying was not used during these investigations but may offer a suitable alternative for the 

dehydration step, despite reports of this method leading to increased specimen damage  

(Trump, 2010). The very thin shells of newly-excysted and very young juveniles were very 

fragile after the HMDS step which led to increased specimen damage so investigation into 



180

Chapter 5: Transformation from pedal to filter feeding

the potential benefits of using critical point drying as an alternative for the dehydration step 

should be considered.

As a result of these findings, the methodology outlined in Appendix 2 on page 189 

is advised for preparation of juvenile M. margaritifera for SEM. The procedure was also 

successful on adult mussel gill tissue. All reagents should be prepared fresh at the time of 

use and steps should be carried out as soon as possible after one another to ensure the best 

results. If samples and reagents need to be stored for short periods of time then this should be 

done in the fridge until use. Once specimens have been sputter coated they can be transported 

or stored with no structural or tissue degeneration.

5.4.8  Conclusions and implications for captive rearing programmes

This study is the first to comprehensively describe the main anatomical developments in  

M. margaritifera juveniles aged 1 - 44 months old and goes some way to explaining behavioural 

changes associated with mode of feeding. These investigations considered juveniles from 

only one population of M. margaritifera and only a single adult specimen which was sampled 

opportunistically when it was found dead at the FBA Ark. It is not known whether the rate of 

development is population specific therefore sampling of additional populations should be 

undertaken to confirm the timings of key developments reported in this work.

Gill reflection begins to occur around the middle/end of the second growth season (13 - 

16 months old and when length > 1.20 mm) but it is likely that attainment of true filter feeding 

using fully developed ctenidia does not occur until much later. At termination of the 2012 

substrate experiment (Chapter 3) larger individuals were observed to be filter feeding. This 

agrees with observations of gill reflection and labial palp development by 20 months old and 

subsequent oral groove development by 34 months old during this study. It is likely that cilia on 

the foot and mantle are still heavily utilised to move particles in to the pedal gape in juveniles 

< 20 months old despite the amount of ‘active’ time decreasing with age. The heavily ciliated 

nature of the mantle margin around the siphons also implies these cilia play an important role 

in directing water in to the infrabranchial cavity before it is directed over the ctenidia by lateral 

cilia. Additional behavioural observations are required to fully understand these processes.  

The following conclusions can be drawn about how juvenile ontogeny may affect survival 

in captivity: 
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1.        Mortality during the first few months post-excystment is not related to transformation. 

The high mortality observed within the first 4 - 8 weeks post-excystment does not 

correlate with substantial ontogenic changes in gill morphology. Mortality during this 

period may be due to juveniles not being able to find enough food of suitable particle 

size or poor capture efficiency of suitable particles and the high level of activity required 

by juveniles in order to feed. Additional environmental risk factors during this period are 

discussed in Chapter 4 and in the conclusions and discussion chapter (Chapter 7).

2.        Juveniles may be particularly sensitive to stress factors from around 13 months old  

(> 1.20 mm) when gill reflection begins and labial palp development increases. 

Additional energy may be required to undergo these significant morphological changes 

and the timing of reflection suggests that juveniles may have to store additional 

nutritional reserves over the second growth season to meet this increased demand. 

Therefore, stress factors should be kept to a minimum during the second growth season 

and second winter. This area warrants further investigation. 

3.        44 month old juveniles (up to 8.9 mm) do not display the adult gill condition. Additional 

observations are required on older juveniles to see when the abfrontal surface tissue and 

ostia appear. Juveniles at the FBA Ark have displayed high survival (> 97 %) between the 

ages of 4 - 8 years (FBA, unpublished data) but presence of the abfrontal surface tissue 

and ostia cannot be confirmed in these individuals. Further investigation is required.  

4.        Margaritifera margaritifera may require/prefer small food particles and gill structure 

may limit their ecological niche to oligotrophic streams. Previous findings from Baker 

& Levinton (2003) on adult M. margaritifera and the findings here of high numbers of 

cilia per laterofrontal cirrus and small inter-cirral distance implies that the species is 

capable of filtering very small particles (< 2 µm) but not necessarily able to sort them by 

nutritional value. M. margaritifera requires oligotrophic conditions so may have to expend 

large amounts of energy clearing unsuitable particles where there is eutrophication/

aggravated erosion. This hypothesis is supported by the findings of ecological studies 

on the loss of juvenile function with increased catchment intensification and loss of 

oligotrophic conditions (Moorkens, 2010; Österling et al., 2010).

These observations and initial measurements have set the benchmark for further ontogenic 

studies on M. margaritifera and other freshwater species. The majority of studies on bivalve 
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gill ontogeny have been carried out on marine species but the recent increase in captive 

rearing programmes for freshwater mussels, particularly in Europe, has led to a requirement 

for additional information about the factors affecting juvenile growth and survival in captivity. 

Studies into ontogeny should complement those on general ecology and environmental factors 

affecting juvenile growth and survival in order to build a comprehensive management plan for 

threatened species.  
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5.6.  Appendices 
5.6.1  Appendix 1: Glossary and abbreviations

Description of terms and abbreviations used in this chapter.

Term Description Abbr.

Abfrontal surface The inward-facing surface of lamellae which are largely devoid of cilia. AS

Ascending limb Limb of the filament which ascends (extends dorsally) away from the gill 
axis. AL

Budding zone Zone from which new filaments proliferate at the posterior end. BZ

Ciliary 
connection

A connection between features comprised of cilia. Thought to be a more 
primitive version of tissue connections. CC

Ctenidium (gill) Mussels have two ctenidia (gills) each made up of the inner and outer 
demibranchs. The demibranchs themselves are made up of filaments. -

Descending limb Limb of the filament attached to the gill axis which descends (extends 
ventrally) away from the gill axis. DL

Filament
A single process of the gill which collectively make up a demibranch. A 
filament may consist of just a descending limb or both a descending and 
ascending limb.

FI

Foot Muscular appendage used to move, anchor in sediment and create 
water currents into the mantle cavity. FO

Frontal cilia Simple cilia covering the frontal surface of filaments which direct 
particles ventrally towards the oral groove. FC

Fused dorsal 
bend

In reflected demibranchs, the fused tissue at the terminal end of  
ascending filaments which is growing dorsally. FDB

Gill axis
The supporting axis which attaches the ctenidia to the visceral mass. 
As well as attaching ctenidia to the body wall the gill axis contains is 
vascularised, providing filaments with haemolymph for gas exchange.

GA

Infrabranchial 
(= mantle/
pallial) cavity

The cavity into which water is pumped through the inhalant siphon. -

Inner 
demibranch

The V-shaped structure consisting of the ascending and descending 
lamellae which develop first and are closest to the foot. ID

Interfilamentary 
junction A ciliary or tissue junction (connection) between adjacent filaments. IFJ

Interfilamentary 
space The spaces between adjacent filaments on the same lamella. IFS

Interlamellar 
junction

A tissue junction joining the ascending and descending limbs of a 
filament. Also known as a septum. ILJ

Labial palps
Particle-sorting organ anterior of the foot where particles are directed  
from the oral groove for sorting before ingestion or rejection as 
pseudofaeces.

LP

Lamella General term for the transverse filaments making up either the ascending 
or descending limbs of a demibranch. -
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Term Description Abbr.

Lateral cilia Cilia covering the lateral (side) portion of filaments. Primary function is  
creation of water current. LC

Laterofrontal 
cirri

Cirri covering the laterofrontal surface of filaments consisting of linear 
plates of long, simple cilia. Primary function is to capture particles and 
direct them on to the frontal cilia.

LFC

Mantle Tissue covering the inner surface of the shell which secretes calcium for 
shell formation. Attached along the pallial line. MA

Mouth Particles are passed from the labial palps to the mouth for ingestion via 
ciliary mechanisms. MO

Oral (=food) 
groove

Particles are directed by frontal cilia ventrally along filaments towards 
the oral groove where they continue towards the labial palps and mouth. OG

Ostia Holes through which water passes from the infrabranchial into the 
suprabranchial cavity. O

Outer 
demibranch

The V-shaped structure consisting of the ascending and descending 
lamellae which are furthest from the foot. Develop after the inner 
demibranch has reflected.

OD

Shell Hard, external skeleton protecting inner tissues. -

Suprabranchial 
cavity

The cavity into which water flows from the infrabranchial cavity (through 
the ostia) and from where water can exit via the exhalent siphon. -

Tissue 
connection A connection between features comprised of tissue. -

Ventral bend
The site where ascending and descending limbs are connected at the 
ventral-most tip. On the inner demibranch the oral groove develops 
here.

VB
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5.6.2  Appendix 2: Suggested protocol for specimen preparation

1.        Measure individuals (length) and place them into individual eppendorf tubes containing 

1 mg/mL MS-222 (enough to cover individuals). Leave for approximately 0.5 - 1 hour 

until valves are gaping. N.B. Individuals should not be left in MS-222 for too long as soft 

tissues and delicate structures may degrade.

2.        Depending upon study requirements, individuals can be prepared in either of the 

following ways:

a.  If the individual is to be kept intact the valves should be teased open wide enough to 

ensure soft tissues receive adequate exposure to reagents and so that structures are 

readily visible.

b.  The valves can be separated entirely to better observe structures with minimal 

obstruction. This should be done carefully with fine mounted needles and reverse 

forceps. Larger individuals could be separated by using a sharp scalpel to divide soft 

tissues in the left and right valves with minimal damage. 

3.        Specimens should be placed into fresh eppendorf tubes containing enough 2% 

glutaraldehyde in 0.1 M Sorenson’s phosphate buffer (SPB) to cover individuals. Leave 

over night.

4.        Transfer individuals to fresh eppendorf tubes containing SPB for 15 minutes. Repeat this 

step (2 x SPB rinses).

5.        Perform graded dehydration in ethanol; 25 % (30 mins), 50 % (30 mins), 75 % (30 mins), 

100 % (1 hour), repeat with 2nd 100 % ethanol wash (1 hour).

6.        Transfer to fresh eppendorf tubes with enough Hexamethyldisilazane (HMDS) to cover 

specimens, for 30 mins. HMDS is highly volatile so replace lids on eppendorf tubes. 

Repeat this step (2 x HMDS washes). N.B. Whilst not considered for this study, critical 

point drying provides an alternative method for this HMDS step (Trump, 2010). 

7.        Pipette juveniles on to filter paper and leave to air dry under a fume hood. Transfer onto 

carbon stickers mounted on SEM stubs.

8.        Gold coat specimens with a sputter coater.

This method provided clear and consistent results of fine structures when followed for all 

age classes investigated as part of this study. N.B. Appropriate health and safety and COSHH 

assessments should be carried out prior to any work as this method includes the use of 
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potentially damaging reagents, particularly glutaraldehyde and HDMS. A suitable fume 

cupboard is essential when using these reagents.
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6.1.  Introduction
Propagating Margaritifera margaritifera (Linnaeus, 1758) is labour-intensive, mainly due to  

the different requirements at the various life cycle stages and their small size and slow growth  

rate. Due to their small size, juvenile mussels are difficult to observe which can make 

maintenance and monitoring activities time consuming and difficult in captive settings. Marking 

juveniles to make them more visible is potentially one way of making rearing activities less 

laborious. Many methods of marking organisms are available to biologists, including internal 

and external tags and labels (reviewed by Nielsen, 1992). Due to their small size, marking 

juvenile mussels using traditional numbered tags or etching the shell is not an option (Eads & 

Layzer, 2002) while glues or paints may be toxic to small, thin-shelled animals (Moran, 2000). 

An alternative technique is to mark juvenile mussels with a fluorophore (or fluorochrome, i.e. 

a fluorescent compound). Fluorophores are chemical compounds which fluoresce upon light 

excitation. There are several advantages of using fluorophores including the ability to batch-

mark large numbers of mussels, provision of a relatively long-lasting mark, and suitability for 

use on mussels of any size. 

In fluorescence microscopy, light passes through an excitation filter which selectively 

allows the passage of a narrow band of wavelengths corresponding to the absorption 

maximum of the fluorophore (Rost, 1991). When this light hits the labelled specimen it is 

absorbed and the electrons are promoted to a higher energy state. This process is known 

as excitation. Excess energy is emitted from the fluorophore as light of a longer wavelength 

(lower energy) which passes through the microscope objective. A barrier filter allows light 

from a specific range to pass through (the emission range of the fluorophore) whilst blocking 

light of wavelengths outside this range. Light is detected against a dark background as it passes 

through the ocular lens (Fig. 6.1). Fluorescence fundamentals (2015) provides a good overview 

of the fundamentals of fluorescence microscopy.

6.1.1  Use of fluorophores in ecological studies

Marking molluscs with fluorescent compounds has a variety of applications such as monitoring 

augmentation efforts (Eads & Layzer, 2002), tracking dispersal patterns (Moran & Marko, 2005), 

linking growth patterns with environmental conditions (Ambrose et al. 2012) and monitoring 

shell growth rates (Thébault et al., 2006; Peharda et al., 2007; Trigg, 2009; Cáceres-Puig et 
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al., 2011). Marking with fluorophores has also been suggested as a way of distinguishing 

individuals from protected sites to combat poaching (Bolton & Dey, 1979). Here a new use of 

marking juvenile mussels as an aid to monitoring in a captive situation was investigated.

In this study fluorophores which bind to calcium are required as M. margaritifera 

sequesters calcium into its valves along the growth edge of the shell. Previously, exposure 

of molluscs to fluorophores has been through immersion, injection or, in one case, through 

the process of osmotic induction (U.S. Fish and Wildlife Service, 2002). Whilst injection of 

fluorophores is a useful tool for adult mussels or larger juveniles it is not practical for newly 

Fig. 6.1: Diagram of processes involved in observing fluorescence in a marked specimen (from Rost, 
1991). Light of a narow band of wavelengths excites the fluorophore on a marked specimen which then 
emits light of a different wavelength. This light is filtered before reaching the objective and the viewer.
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excysted juveniles due to their small size and is therefore not considered here. Immersion and 

osmotic induction techniques are considered in more detail below.

6.1.1.1 Immersion

Bolton & Dey (1979) were among the first to describe (and patent) a method for batch marking  

molluscs with tetracycline via immersion. This method has since been modified and adapted to 

test different types of fluorophores on a wide range of species. Fluorophores reported for use in 

marking molluscs include oxytetracycline (OTC) (Day et al., 1995; Eads & Layzer, 2002), calcein 

(Day et al., 1995; Eads & Layzer, 2002; Riascos et al., 2007; Linard et al., 2011), tetracycline (Dey 

& Bolton, 1978; Bolton & Dey, 1979; Day et al., 1995), strontium chloride (Riascos et al., 2007), 

alizarin red and xylenol orange (Day et al., 1995). Most marking experiments on molluscs have 

concentrated on marine molluscs although there are some examples of marking fresh water 

species e.g. Eads & Layzer (2002). 

6.1.1.2 Osmotic induction

Osmotic induction increases the rate of fluorophore uptake by creating an osmotic gradient 

between the target animal and the immersion medium (Alcobendas et al., 1991). Individuals 

to be marked are given a brief salt bath to create the osmotic gradient which facilitates faster 

uptake of fluorophores when immersed in fluorophore solutions. The osmotic induction  

method has been used to mark fish scales, fins and otoliths (Alcobendas et al., 1991; Mohler, 

2003; Negus & Tureson, 2004; Stubbing & Moss, 2007; Honeyfield et al., 2008) but the author 

knows of only one pilot study involving the osmotic induction method to mark juvenile 

freshwater bivalves (U.S. Fish and Wildlife Service, 2002). In this pilot on the freshwater 

mussel Elliptio complanata, survival was better in osmotic induction trials compared to static  

immersion trials (48% and 28% respectively) and there was no difference in growth rates of 

juveniles between the treatments. The effects of salt on M. margaritifera juveniles are unknown 

and so osmotic induction was not considered for marking juvenile mussels here. However, 

use of the osmotic induction method to mark encysted glochidia has not been tested. Purser 

(1985) argued that colonisation of rivers by M. margaritifera after the last ice age could have 

been by fish encysted with glochidia from one river ‘straying’ into other rivers where juveniles 

excysted and founded new populations. He hypothesised that short-term exposure to salt 
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water may not have a detrimental effect on encysted glochidia. Glochidia of M. margaritifera 

grow to over five times their original size whilst encysted in the fish host (Karna & Millemann, 

1978; Sweeting & Miles, 2009), so there may be scope for fluorophore uptake by glochidia 

from fish which are treated after a salt bath. Glochidia of M. margaritifera which are encysted 

in salmonids go through a rapid growth phase before the onset of colder winter temperatures, 

when their growth slows down or stops. Growth then resumes when temperatures increase, 

culminating in glochidial drop-off in late spring/early summer. Glochidia obtain nutrients from 

their host and therefore may also take up fluorophore-labelled calcium.

6.1.2  Suitability of calcein immersion for M. margaritifera

The fluorophore chosen for these investigations was calcein ((Fluorescein di- 

(methyliminodiacetic acid) sodium salt). Calcein (Fig. 6.2) has been used to mark a wide range 

of aquatic species including ascidians (Lambert & Lambert, 1996), echinoderms (Stewart, 

1996), fish (Alcobendas et al., 1991; Mohler, 2003; Negus & Tureson, 2004; Honeyfield et al., 

2006; Stubbing & Moss, 2007) and foraminifera (Bernhard et al., 2004). It has been used to 

mark both marine and freshwater bivalves and investigations have shown it has low toxicity, is 

easy to work with, produces clear and consistent marks and causes fewer growth and mortality 

issues for molluscs compared with other fluorophores (Day et al., 1995). Eads & Layzer (2002) 

recommend calcein as a fluorophore but report that marking success may vary between 

mussel species.

Calcein forms non-covalent interactions with dissolved calcium via the alanine rings (top 

of Fig. 6.2) providing a reference mark that is visible under ultraviolet (UV) light (Day et al., 

Fig. 6.2: Molecular structure of calcein (C30H26N2O13). Non-covalent interactions with calcium are formed 
via the alanine rings at the top of this figure.  
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1995; Smith et al., 2010). Calcein marks have been shown to deteriorate over time (Frenkel 

et al., 2002) with exposure to light (Stubbing & Moss, 2007). Even so, studies have shown 

that marks can persist for up to nine months in the brown mussel, Perna perna (Kaehler & 

McQuaid, 1999), 19 months in brown trout, Salmo trutta (Stubbing & Moss, 2007) and 3 years 

in Atlantic salmon, S. salar (Mohler, 2003). Marks have the potential to persist for several years 

in freshwater molluscs due to  their burrowing behaviour cutting out light to the marked part 

of the shell (Eads & Layzer, 2002). In a species which inhabits neutral to slightly acidic waters 

such as M. margaritifera, marks may be lost over time as the umbo is eroded or obscured as 

the thick periostracum develops (see section 6.1.3 below). 

There is evidence to suggest that mussels undergoing rapid growth display more intense 

marking (Day et al., 1995), presumably because they are sequestering more fluorophore-bound 

calcium. Marking of species which have distinct growth periods, such as M. margaritifera which 

grows at temperatures exceeding 10 °C (Hruška, 1999; Lavictoire et al., 2016), should only take 

place when individuals are going through a growth phase (Eads & Layzer, 2002). Some studies 

have found adverse effects on growth and survival in some species when juveniles are younger 

than two months old e.g. Eads & Layzer (2002) for Lampsilis cardium and Actinonaias pectorosa. 

However, Moran & Marko (2005) found no detrimental effect of calcein on growth and survival 

in three-day-old veligers of Argopecten irradians concentricus and Mytilus trossulus.

Marking experiments on a variety of bivalves testing different concentrations of calcein 

and immersion times have found that increasing calcein concentration and immersion time 

increases mark intensity (Day et al., 1995; Crocker, 1998; Eads & Layzer, 2002; Linard et al., 

2011). Single immersions have been reported most often and produce lower mortality rates 

compared with multiple immersions over a short period of time (Eads & Layzer, 2002). 

6.1.3  Shell structure

Many texts describe shell formation and layering. The following description has been taken 

from Lowenstam & Weiner (1989), Simkiss & Wilbur (1989) and Killeen et al. (2004). In 

bivalves, the mantle is responsible for shell formation and the valves consist of three layers 

(Fig. 6.3). The inner nacreous layer contains a proteinaceous conchiolin matrix containing 

horizontal crystals of aragonite. The middle prismatic layer is composed of vertical prisms of 

calcite separated by thin layers of conchiolin and the outer periostracum is formed entirely of 
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conchiolin and contains no calcium. Therefore, calcein-labelled calcium should be sequestered 

into the nacreous and prismatic layers but not the periostracum. In long-lived species like 

M. margaritifera, the periostracum is very thick and many conchiolin layers are laid down to 

prevent dissolution (Bauer & Wächtler, 2001). Indeed, according to Bauer & Wächtler (2001), 

M. margaritifera allocates 30 % of its organic matter to its valves so that it may survive in acid 

waters. Very young mussels lack a thick periostracum so fluorescence around the shell margin 

should be obvious.

6.1.4  Objective of this study

These investigations consider several questions surrounding marking of different life cycle 

stages with calcein:

1.        Is calcein immersion a suitable method for marking juvenile M. margaritifera and, if so, 

how do different concentrations affect mark intensity?

2.        How do different concentrations of calcein affect growth and survival of juvenile mussels?

3.        Does embedding juveniles in resin and freeze-fracturing them allow details of calcein 

sequestration to be observed under a fluorescence microscope?

Fig. 6.3: Diagram of a section through the mantle edge and shell (From Simkiss & Wilbur, 1989; p. 232): 
EPS, extrapallial space; IE, inner epithelium; IF, inner fold; LPM, longitudinal pallial muscle; MC, mucous 
cell; MF, middle fold; NC, nacreous layer; OE, outer epithelium; OF, outer fold; P, periostracum; PG, 
periostracal groove; PL, pallial line; PM, pallial muscle; PN, pallial nerve; PR, prismatic layer.
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4.        Can osmotic induction be used as a method of batch-marking glochidia encysted within 

fish gills?

If either immersion of juveniles or osmotic induction of fish to mark glochidia is successful for 

M. margaritifera, these could represent relatively inexpensive and simple methods for batch-

marking early life-stages of M. margaritifera to improve monitoring in captive settings.

6.2.  Methods
6.2.1  Marking of juveniles via immersion

The methodology for this experiment was largely the same as for the pilot (Chapter 2) with 

some key changes. Three tanks were prepared containing calcein solutions of 0 (control), 60 

and 120 mg/L using water from Windermere to dilute calcein stock solutions. Twelve Artemia 

sieves (four replicates of each of the three treatments) were prepared with 17 g (dry weight) of 

substrate measuring 1 – 2 mm which had been exposed to running water previously for at least 

eight days for a biofilm to develop. Thirty juvenile mussels were measured (length and height) 

and added to each sieve. Sieves were placed into each experimental tank containing calcein 

solutions of 0, 60 and 120 mg/L on 7 August 2012. Aeration was provided to each tank with a 

pump and air stones. Dissolved oxygen, pH and conductivity were measured at three points 

during the experiment: immediately prior to and during addition of calcein, after 24 hours and 

after 72 hours (end of the experiment). Aquaria were kept in the dark to avoid the potential 

loss of marks from sunlight (Honeyfield et al., 2008)

After 72 hours sieves from the control treatment were removed to a bucket of clean 

water and the sieves from the two calcein treatments were transferred to the no-calcein 

aquarium to stop the uptake of calcein. Each of the 12 sieves were checked for juveniles by 

washing a small amount of substrate into a petri dish and observing it under a low-power 

microscope. Juveniles were removed into a separate dish containing lake water and once all of 

the substrate had been checked, the number of live and dead individuals was recorded. Five live 

juveniles from each sieve were randomly selected and photographed under the fluorescence 

microscope (camera: Canon 350D; shutter speed: 1 sec.; ISO: 100; File type: Canon RAW). 

The intensity of fluorescence in each photograph was measured using the same Photoshop 

technique described in section 2.2.2.1 (Chapter 2).  For each sieve, substrate was replaced with 
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substrate which had not been exposed to calcein and all live juveniles were placed into the 

flow-through aquarium system described in Chapter 2. 

All sieves were subsequently checked for surviving juveniles in September, October and 

November 2012 and finally in April 2013. Length and height measurements were recorded 

on each of these occasions. On 13 October 2012 attempts were made to view juveniles with 

an SE Mark Detection Device (Mohler, 2004) to see if this device was suitable for searching 

for fluorescent mussels in larger containers. Briefly, the SE mark detection device is a small 

hand-held torch which shines UV light on to specimens. The specimens are viewed through a 

filter cube attached to the device which selectively allows the passage of light of a specified 

wavelength. 

6.2.2  Embedding

On 13 November 2012, five individuals were taken from one sieve from each treatment for 

fixing in Quetol 651 (EMS Catalogue No. 14640), a water-miscible resin. For this, two mixes 

were created:

Mix 1

•	 8 ml Quetol

•	 16 ml Nonenyl Succinic 

Anhydride (NSA)

•	 0.5 ml DMP-30

Mix 2

•	 11 ml Quetol

•	 14 ml Methyl-5-Norbornene-2,3-

Dicarboxylic Anhydride (NMA)

•	 0.5 ml DMP-30

The two mixes were combined in a ratio of 85:15 of Mix 1:Mix 2. This mixture was pipetted 

into circular moulds 11 mm in diameter and live juveniles added to the liquid resin. Moulds 

were put into an oven and heated to 60 °C for 24 hours before being removed and placed into 

a freezer at -80 °C until required. On 23 January 2013, the resin capsules were fractured in the 

vicinity of the juvenile mussels using a sharp blade and hammer. Individuals were observed 

again under the fluorescence microscope.

6.2.3  Use of the osmotic induction method to test calcein uptake by 

glochidia

The method used here was similar to the methods described by Mohler (2003) and Stubbing 

& Moss (2007) to mark fish. Atlantic salmon fry (Salmo salar) were challenged with glochidia 
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in late-summer 2012 at the FBA Pearl Mussel Ark. On 21 May 2013, sixty fish were randomly 

selected, checked for glochidial encystment by eye and split into two batches of 30. The 

treatment batch was placed into a net and immersed in a 2.5 % salt bath (125 g of NaCl in 5 L 

lake water) for 3.5 minutes. Fish were removed from the salt bath and placed momentarily 

into a fresh water bath to remove excess salt. The net was blotted onto a towel to remove 

excess water and fish were immersed in an aerated 0.5 % calcein bath (7.75 g calcein in 1.55 L 

lake water) buffered to pH 7 with ammonium acetate for 3.5 minutes. Fish were removed 

and dipped into fresh water to remove any excess calcein and then placed into an aquarium 

supplied with aerated lake water filtered to 20 µm. The control batch was treated in the same 

way but instead of a calcein bath following the salt bath, fish were immersed in 1.55 L of 

lake water with no calcein. Fish were provided with a natural light regime for 24 hours. After 

24 hours, 10 fish from each of the treatment and control batches were killed by immersing 

them in an MS-222 solution (tricaine methanesulfonate). Once dead, fish were rinsed with lake 

water, measured (fork length) and weighed. Ten glochidia from each fish were dissected from 

within cysts in the gills and placed into marked vials with a little fresh water. Scale scrapings 

from each fish were mounted on slides to see if fluorescence could be detected. 

The help of a colleague was required to ensure a ‘blind’ review of mark presence or 

absence in glochidia, similar to the method of Eads & Layzer (2002). The colleague selected a 

glochidium at random from the vials containing either treatment or control glochidia, measured 

the juvenile length and height and placed it on a cavity slide with a cover slip before passing 

it to the author. The author observed the glochidium under the Leitz Diaplan fluorescence 

microscope described in Chapter 2, and indicated if fluorescence could be detected or not. 

Presence or absence of a calcein mark was recorded by the colleague and the data analysed to 

establish how often a mark was correctly identified in glochidia from treated fish.  

6.2.4  Data analysis

Survival and luminosity data followed normal distributions (Shapiro-Wilk tests) so ANOVA (with 

post hoc Tukey’s HSD tests) and t-tests respectively were carried out on these data. Growth 

data did not follow a normal distribution so Kruskal-Wallis tests with post hoc Mann-Whitney 

U tests were employed to analyse these data. Pairwise comparisons (Mann-Whitney U) were 

made when testing for differences in initial length between treatments and a Bonferroni 
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correction for multiple comparisons was applied (α = 0.0167). Unless otherwise stated, 

standard deviation is provided after mean values.

For the osmotic induction investigation fish condition factor was calculated using 

equation 1 to compare glochidial load between fish:

    CF = (L/W)3 x 100        

(1)

where CF = condition factor; L = length; W = weight.

6.3.  Results
6.3.1  Marking of juveniles via immersion

The abiotic parameters measured remained within the expected range for M. margaritifera 

throughout the experiment in all aquaria; DO (10.94 mg/L ±0.13), conductivity (72.16 µS/

cm ±8.56) and pH (6.92 ±0.26). Temperature was stable throughout the experiment (17.78 

±0.26 °C) and remained above 10 °C so juveniles should have been growing throughout and 

therefore taking up calcein-labelled calcium. 

In October 2012 the SE-Mark detection device was used to see if it was possible to 

distinguish fluorescent juveniles from gravel. No marks were detectable from juveniles in the 

control group or from surviving individuals from the 2010 pilot study but marks were detectable 

in treatment juveniles from this investigation (Fig. 6.4).

A higher incidence of fungal infection was observed in juveniles in the 60 mg/L 

treatment. Fungal infection was suspected as the cause of death in 12% of juveniles in the 

60 mg/L treatment sieves compared to 2 and 0% respectively in the control and 120 mg/L 

treatments after 3 days.

Fig. 6.4: Light micrographs of marked juvenile freshwater pearl mussels observed using the SE mark 
detection device (not same scale); a) Fluorescent juveniles 2 months post-exposure; b) No observable 
fluorescence from juvenile marked in 2010 approximately 2 years and 2 months post-exposure.
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Survival was assessed after 3, 38, 68, 99 and approximately 241 days. On day 3 a 

significant difference in survival was observed between the control (28.75 ±0.50) and the  

60 mg/L treatment (23.5 ±3.11) (F(2,9) = 6.987, P = 0.015) but on all other sampling occasions 

no significant difference in survival was found between any treatments or the control  

(P > 0.05). Low numbers of surviving juveniles were observed after approximately 241 days 

in the control (15 %), 60 mg/L treatment (14 %) and 120 mg/L treatment (18 %) (Fig. 6.5). It 

is thought this relatively low survival rate is due to the post-marking system juveniles were 

maintained in rather than any effect of marking. The system used to hold individuals post-

marking in this experiment did not have the benefit of the refined system outlined in Chapters 

3 and 4 meaning that flow and dissolved oxygen concentrations were likely to be sub-optimal.  

Analysis of initial length found that juveniles in the different treatments were not the 

same size at the beginning of the experiment (χ2
(2) = 55.542, P < 0.001), meaning that direct size 

comparisons between treatments throughout the experiment were not possible.  

Some growth was observed in juveniles from all treatments over the 241 days (Fig. 6.6) 

but because of the reasons stated above, simple length data could not be used to compare 

the effect of calcein concentration on growth. Instead, growth rates were calculated using 

equation 2, and 95 % confidence limits between treatments were compared.

    length (t2) - length (t1)   

               length (t2)

(2)

As shown in Fig. 6.7 it appears that the growth rate increased between days 

99 and 241 (November 2012 - March 2013). However, due to temperatures being 

< 10 °C during this period (Fig. 6.6) juvenile growth should have been negligible.  

Using data presented in Chapter 3, the estimated maximum juvenile growth for this entire 

period was 20 µm. Therefore, it is thought this apparent increase in growth rate was actually 

an artefact of mortality of smaller juveniles. If no growth during this period is presumed, 

losses from each juvenile size class give us an indication of how the size distribution for each 

treatment changed over the period. Fig. 6.8 shows the percentage mortality between these 

sample points by size class. From this data we can see that a higher proportion of juveniles in 

smaller size classes died in the control and 60 mg/L treatment and highest mortalities in the 

120 mg/L treatment were from across the size distribution. 

x 100
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Considering summary statistics for the different treatments on day 241 (Table 6.1), 95% 

confidence intervals for the means overlap for the control (0.72 mm ± 0.02) and 60 mg/L 

treatment (0.71 mm ± 0.02) indicating individuals are the same size after 241 days of growth. 

Growth does however appear to be affected in the 120 mg/L treatment with individuals 

only attaining a mean length of 0.57 mm (± 0.01 mm) after 241 days. Fluorescence intensity 

(luminosity) was detected in both calcein treatments but was not observed in the control. 

Mean luminosity was lower in the 60 mg/L treatment (57.2 ±1.4) compared to the 120 mg/L 

treatment (60.5 ±1.6) (Fig. 6.9), but this difference was not significant (t(35) = -1.588; P = 0.12).

6.3.2  Embedding

Fragments of embedded juveniles were examined under the fluorescence microscope but no 

fluorescence could be detected. The Quetol resin was green in colour under the fluorescence 

microscope but fluorescent juveniles should have fluoresced brighter than the resin. It is 

thought that a different method of preparing the slides such as described by Eads & Layzer 

(2002) using a low-speed precision saw to take a thin section before examining under the 

microscope would have made it easier to see marks but this equipment was not available for 

this experiment.

6.3.3  Use of the osmotic induction method to test calcein uptake by 

glochidia

No mortality was observed in either the control or treatment fish after the osmotic induction 

procedure. Fish scales taken from individuals exposed to calcein fluoresced brightly compared 

to scales taken from control individuals (Fig. 6.10). Information on each fish is provided in 

section 6.6. Appendix 3). Out of a possible 100 glochidia, the number of specimens of 

satisfactory quality for analysis in the calcein treatment and control was 84 and 94 individuals 

respectively. 

Examples of individuals of unsuitable quality were glochidia which had remnants of gill 

tissue surrounding them, or individuals which were squashed during the handling processes. 

The number of samples correctly identified as treatment and control were 39 (46 %) and 

58 (62 %) respectively. Of these individuals for the treatment and control, 16 % and 21 % 

respectively were correctly identified with a high level of confidence. There was no significant 
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Fig. 6.9: Bar chart of mean luminosity of juvenile freshwater pearl mussels in each treatment (0, 60 or 
120 mg/L calcein solutions) after three days immersion. Whilst luminosity in the 60 mg/L treatment was 
lower than in the 120 mg/L treatment, this difference was not statistically significant (t(35) = -1.588; P = 
0.12). No fluorescence was observed in control individuals.

Fig. 6.10: Fluorescence micrograph of salmon fish scale from calcein treatment (left) showing successful 
marking, and a scale from a control individual (right) showing no fluorescence.
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Fish N No. correct Proportion 
correct

C1 10 8 0.80
C2 10 6 0.60
C3 10 6 0.60
C4 9 6 0.67
C5 9 8 0.89
C6 10 6 0.60
C7 9 2 0.22
C8 8 4 0.50
C9 10 5 0.50

C10 9 3 0.33
T1 4 0 0.00
T2 10 6 0.60
T3 10 5 0.50
T4 9 2 0.22
T5 9 6 0.67
T6 10 5 0.50
T7 10 3 0.30
T8 9 4 0.44
T9 8 5 0.63

T10 4 3 0.75

Table 6.2: Table showing the number and proportion of freshwater pearl mussel glochidia correctly 
identified as being fluorescently marked (with calcein) or unmarked from blind review of mark presence/
absence. Glochidia were taken from either control (C 1-10) salmon which were not exposed to calcein or 
from treatment salmon (T 1-10) which were exposed to calcein via osmotic induction.

difference in the proportion of individuals correctly identified in the treatment and control 

(t(18) = 1.143, P = 0.268). Analysis of fish condition factor found that control fish had a higher 

condition factor compared with treatment fish (t(18) = 2.205, P = 0.041) but that the number of 

glochidia per fish did not differ between control and treatment fish (t(18) = -1.366, P = 0.189).

Table 6.2 shows that marks (or lack of marks in the control) were more easily identified 

on some fish compared to others. For example, 80 % of glochidia were correctly identified 

as controls for fish C1 but only 22 % for fish C7. Similarly for treatment glochidia, 67 % were 

correctly identified in fish T5 but only 22 % for fish T4. For some specimens it was difficult 

to identify the presence or absence of marks indicating that this method may need refining 

before applying to a larger scale study.
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6.4.  Discussion
The objectives of these investigations were to assess if calcein immersion is a suitable method 

of batch-marking juvenile freshwater mussels and if so, what effect concentration has on mark 

intensity, growth and survival. In addition, the method of osmotic induction on encysted fish 

was tested to see if calcein uptake could be detected in encysted glochidia. 

6.4.1  Juvenile marking

Calcein immersion of young (< 4 months old) juveniles provided visible fluorescent marks and 

appears to have limited acute or chronic effects on survival and growth compared with controls. 

Fifty six juveniles (16 %) from the 2012 experiment survived for over 241 days before they were 

added to the mainstream culture trays at the FBA and three juveniles (0.63 %) survived from 

the pilot study to a minimum of 4 years post-exposure to calcein. 

6.4.1.1 Effect of immersion duration

The effect of immersion duration on mark intensity in has been sufficiently covered in Chapter 

2 but it should be noted that the slow-growing nature of M. margaritifera formed the basis 

of the decision to keep juveniles immersed for extended time periods compared to other 

published studies (up to 24 days in the pilot and 3 days in this study). Typically, immersion  

times of between 12 and 48 hours produce good quality marks in bivalves (Day et al., 1995; 

Crocker, 1998; Eads & Layzer, 2002; Moran & Marko, 2005; Linard et al., 2011) but immersion 

durations of as little as four hours have shown good results in some species (Kaehler & McQuaid, 

1999). In both the pilot study and the full investigation, detectable marks were observed after 

3 days in juvenile M. margaritifera. It is difficult to see any difference in mark intensity by 

simply comparing photographs of individuals (Fig. 2.8 in Chapter 2). However analysis using 

the Photoshop luminosity method described by Frenkel et al. (2002) and Mohler & Kehler 

(2007) was successful in quantifying fluorescence intensity in juvenile mussels. 

6.4.1.2 Effect of calcein concentration

In the pilot study (Chapter 2), luminosity was significantly lower in the 30 mg/L treatment 

compared to the 120 mg/L treatment but there was no significant difference between 

any other treatments. This result was replicated in the full experiment with no significant 
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difference in mark intensity detected between the 60 and 120 mg/L treatments. This agrees 

with previous studies on other bivalves e.g. Crocker (1998); Eads & Layzer (2002); Linard et al. 

(2011). Day et al. (1995) found that increasing calcein concentration above 60 mg/L did not 

affect mark brightness. This may be because the number of calcium ions in solution is finite 

and once all calcium ions are bound to calcein, increasing fluorophore concentration will have 

no additional effect. Marks were not significantly brighter at concentrations of 120 mg/L and 

it therefore seems likely that this is approaching the maximum useful concentration of calcein 

in this system.

There was no significant difference in juvenile survival between the control and the two 

treatments in the 2012 investigation, meaning that immersion in calcein for three days at either 

60 or 120 mg/L did not have any measurable negative effect on survival up to approximately 

241 days post-exposure. Linard et al. (2011) found no mortality in 10 month old pearl oysters 

(Pinctada margaritifera) while Eads & Layzer (2002) found survival depended on the species 

and age with mortality being low in older juveniles (≥ 4 months old).  

Growth rates were retarded in the 120 mg/L treatment compared to the control and 

the 60 mg/L treatment. This contrasts with the findings of Eads & Layzer (2002), who found 

no difference in growth between calcein treatments and controls for Lampsilis cardium and 

Actinonaias pectorosa of various ages. 

6.4.1.3 Suitability of marking for the purpose of monitoring juvenile mussels

Margaritifera margaritifera inhabits slightly acidic rivers where dissolution of the shell may 

lead to marks being eroded over time. The mark detection rate of calcein in brown trout fry 

has been shown to decrease over time (Stubbing & Moss, 2007) but this may be due to effects 

of the fish growing rather than fluorochrome breakdown following exposure to light. In the 

wild, mussels live buried in gravels so that exposure of marked parts of the shell to light would 

be minimal, increasing the longevity of the mark compared to species more exposed to light. 

In captivity however, juveniles are kept in shallow gravels or in some cases, no gravel at all 

(Lange & Selheim, 2011; Eybe et al., 2013). In these cases, care should be taken to not expose 

juveniles to direct sunlight.

When observing juveniles under the fluorescence microscope, generally the entire 

animal fluoresced green but results were variable. For example, in some individuals brighter 
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marks were observed along the pallial line, in others the gills were brightly marked, while in 

others the whole animal fluoresced green (Fig. 6.11). It was expected that marks would be 

bright near the growth edge but it appears that, due to the semi-transparent nature of mussels 

at this age, the effect of calcein was observed in all soft tissues which were visible through 

the shell. This may change as juveniles grow and the periostracum becomes thicker but once 

juveniles are large enough to see with the naked eye, marking for the purpose of improving 

monitoring becomes redundant. Calcium concentrations are thought to be high along the 

pallial line where calcium is directed for sequestration along the growth line (Simkiss & Wilbur, 

1989). The gills are also sites of higher calcium concentrations and in adult females play a vital 

role of storing calcium for liberation when glochidia are brooded (Silverman et al., 1987). 

The SE Mark Detection Device was successfully used to observe juvenile mussels 

without a microscope 68 days post-exposure (Fig. 6.4). Marks on individuals from 2010  

(27 months old) were not detected. This may have been because subsequent layers of calcium 

had been sequestered since marking, which obscured the fluorescence. This method of 

marking is unlikely to be suitable for adult mussels because the periostracum, which does not 

contain calcium, is relatively thick compared to juvenile mussels and would obscure marks. 

Handling of mussels and the SE Mark Detection Device had to be undertaken in complete 

darkness and sampling gravel whilst holding the device was difficult. If this type of device is 

used in future to observe marked individuals, it is suggested that a modified version is created 

Fig. 6.11: Fluorescence light micrographs of juvenile freshwater pearl mussels showing the variable 
pattern of fluorescence 99 days post-exposure to calcein; a) Gill filaments fluorescing brightly through 
shell (60 mg/L treatment); b) More uniform fluorescence over most of shell (3 days post-exposure, 120 
mg/L treatment); c) Bright fluorescent band with bright spot on shell (60 mg/L treatment).
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which can be attached to the sampler’s head (similar to wearing goggles) so that both hands 

are available for sampling activities. Alternatively, the method described by Moran (2000) 

using a dissecting microscope and a fibre-optic light, both fitted with suitable filters, could also 

provide a convenient method for observing juveniles in samples of substrate. 

The method employed here of embedding juveniles in a resin and freeze fracturing 

in order to observe which specific part of the shell was fluorescing was not successful. Well 

established methods of using a low speed precision saw and smoothing sections should be 

employed as by Eads & Layzer (2002), but this facility was not available to the author at this 

time.

6.4.2  Osmotic induction

The method outlined in this study for using osmotic induction as a method for marking 

glochidia was successful but results were highly variable. The ability to discern fluorescent 

marks appeared to depend upon the host fish and the author could attribute a high level of 

confidence to only 16 % of cases in marked individuals. This method requires refinement but 

is the first known example of attempting to mark this life cycle stage. Osmotic induction has 

previously been used to mark Atlantic salmon (Mohler, 2003), brown trout (Stubbing & Moss, 

2007) and juvenile mussels (U.S. Fish and Wildlife Service, 2002), but searches of the literature 

found no mention  of attempting to mark glochidia encysted within salmonid gills. 

Fluorescent marks were correctly identified only 46 % of the time for treatment 

glochidia. Table 6.2 shows that correct identification was high in some fish but not in others. A 

larger sample size may determine if there are indeed differences in calcein uptake depending 

upon the individual fish. As expected, calcein-marked fish scales showed very bright marks 

compared with scales from control fish but it appears that calcein uptake by glochidia did not 

occur to a similar degree under these conditions. The exposure time of 3.5 minutes followed by 

a 24 hour holding period does not appear to be sufficient for glochidia to become marked, at 

least to a level detectable for samplers to reliably observe. Longer exposure to the calcein bath 

or holding fish for longer post-exposure (perhaps a week or more) may produce clearer results. 

Arey (1932) found that glochidia derive nutrients from the ‘tissue juices’ of fish hosts but the 

timing of exposure to calcein or holding period may play an important role in uptake success. 

It is most likely that glochidia will take up calcein when they are going through a growth phase 
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so the timing of exposure may be important. There is also the question of whether marks may 

degrade faster in glochidia compared with juveniles due to their relatively low calcium content. 

Regardless of these considerations, marks were clearer in glochidia originating from some fish 

compared to others and this emphasises the variability between host fish individuals, which 

was not addressed in this study.

The effects of calcein exposure to glochidia shortly after release from the female mussel 

(before encystment) are unknown. Marking glochidia pre-encystment may be a simple way to 

batch-mark glochidia, removing the need to mark fish or juveniles at a later stage. Going one 

stage further, however, it may be possible to expose adult female mussels to calcein before 

brooding when calcium stores are being sequestered as concretions in the gills (Silverman et 

al., 1987). This may allow female mussels to build up a store of calcein-labelled calcium for 

transfer to directly to glochidia during brooding. Marking at this stage, however, may produce 

marks with limited longevity, as glochidia grow over five times their original length on fish and 

juveniles then grow rapidly through their first growth season as juveniles. 

It is clear that further investigations are required to consider marking various life stages 

of M. margaritifera to establish the best protocol for this species. The immersion method was 

successful in producing lasting marks on juvenile mussels and has potential to be useful for 

improving monitoring in captive rearing settings. The osmotic induction study presented here 

utilises a previously-described method but employs it for a new application. Mark intensity 

was variable between fish and further investigation is required to establish if marking glochidia 

pre-encystment or marking adult mussels before brooding provides a suitable alternative. 

6.4.3  Conclusions

• This work comprises the first known investigations into marking different life cycle stages 

of Margaritifera margaritifera with calcein for the purposes of improved monitoring in 

a captive rearing setting. 

• The recommended marking procedure for young (< 4 month old) juveniles is immersion 

in calcein at a concentration of 60 mg/L for three days at temperatures of approximately 

17 °C. This procedure should produce detectable marks without compromising juvenile 

growth or survival.
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• The first known example of attempting to mark glochidia encysted on host fish is 

described here. Results were variable depending upon individual host fish and work in 

future should focus on increasing sample size to determine whether this was an artifact 

of small sample size or a true effect. Future work could also attempt to mark free-living 

glochidia (before encystment) or adult female mussels before brooding. 
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6.6.  Appendix 3
Fish (salmon) fork length, weight, approximate number of attached freshwater pearl mussel 

glochidia and fish condition factor (CF). 

 Code Fork length 
(cm) Weight (g) Approx. no of 

glochidia attached CF

Fish 1 - Control F1C 7.9 4.90 600 0.99
Fish 2 - Control F2C 7.1 3.68 300 1.03
Fish 3 - Control F3C 8.3 6.10 300 1.07
Fish 4 - Control F4C 7.0 3.37 700 0.98
Fish 5 - Control F5C 8.0 5.84 400 1.14
Fish 6 - Control F6C 7.4 4.57 500 1.13
Fish 7 - Control F7C 6.9 3.45 400 1.05
Fish 8 - Control F8C 7.3 3.72 600 0.96
Fish 9 - Control F9C 7.5 4.63 300 1.10
Fish 10 - Control F10C 7.8 4.73 200 1.00
Fish 1 - Treatment F1T 8.4 5.40 600 0.91
Fish 2 - Treatment F2T 7.4 3.54 500 0.87
Fish 3 - Treatment F3T 7.4 3.63 600 0.90
Fish 4 - Treatment F4T 7.3 4.00 500 1.03
Fish 5 - Treatment F5T 7.2 3.80 400 1.02
Fish 6 - Treatment F6T 7.9 5.10 700 1.03
Fish 7 - Treatment F7T 7.5 4.16 400 0.99
Fish 8 - Treatment F8T 6.3 2.22 700 0.89
Fish 9 - Treatment F9T 8.0 5.19 200 1.01
Fish 10 - Treatment F10T 6.7 3.30 700 1.10
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7.1.  Introduction and restatement of research questions
The aim of the research presented in this thesis was to investigate factors affecting the growth 

and survival of juvenile freshwater pearl mussels, Margaritifera margaritifera (Linnaeus, 1758), 

in order to contribute to the conservation of this critically endangered species. The increase in 

the number of captive rearing programmes for M. margaritifera within the last three decades, 

and the onus to produce sufficient numbers of juveniles to save dwindling populations from 

extinction, has necessitated a better understanding of the factors affecting juvenile survival 

in order to maximise captive rearing outputs. This work focused on areas of study which 

have traditionally been difficult to achieve in the wild due to the small size, slow growth rate 

and scarcity of juveniles. The findings of this thesis contribute significant information on the 

importance of various interstitial parameters to juvenile survival and growth in captivity during 

the first 25 months post-excystment. This work also shows that it is possible to tailor habitat 

conditions to improve survival rates for unimpacted wild populations (Young & Williams, 1984; 

Bauer, 2001). Suggestions for improved rearing practices are proposed, including a potentially 

time-saving method of marking with a fluorochrome to aid monitoring or as a tool for batch 

identification for research and captive rearing purposes alike. Behavioural and ultrastructural 

studies using scanning electron microscopy (SEM) during the first 44 months post-excystment 

are the first known attempt to document ontogeny in M. margaritifera and its relation to 

feeding behaviour and mode during the period juveniles switch from pedal to filter feeding. 

Freshwater molluscs (Unionida) are among the most endangered invertebrates in 

the world (Machordom et al., 2003; Primack, 2006) and are disproportionately imperiled  

compared to other groups (Williams et al., 1993). They provide valuable environmental  

services for a wide range of taxa from the bottom to the top of the food chain, and M. 

margaritifera has been described as simultaneously fulfilling the criteria of a keystone, 

umbrella, indicator and flagship species (Geist, 2010). Attributing these roles to the freshwater 

pearl mussel demonstrates its importance in aquatic systems and highlights the need for a 

swift and urgent response to its catastrophic decline during the 20th Century (Bauer, 1988). 

Regardless of these ecological labels and its recent upgrade on the IUCN Red List of Threatened 

Species from ‘endangered’ to ‘critically endangered’ (Moorkens, 2011), numbers in the wild 

remain low and many populations are at imminent risk of local extinction. 
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The number of captive rearing programmes for M. margaritifera has increased 

substantially in Europe over the last 30 years in response to the urgent requirement to maintain 

the current distribution of the species at both a local and global level. As well as providing the 

important function of rearing juveniles for population augmentation, rearing programmes also 

provide unique opportunities to study aspects of the life cycle in controlled environments. 

For many populations, captive rearing offers a final chance to conserve the genetic integrity 

of populations from different rivers (Geist & Kuehn, 2005; Jones et al., 2006; Cauwelier et al., 

2009; Karlsson et al., 2014), and provides time for ecologists and practitioners to ameliorate 

the threats to pearl mussel survival in rivers (Atkins, 2012; Freshwater Biological Association, 

2013; Horton et al., 2015). Habitat restoration in pearl mussel catchments is difficult and time-

consuming due to the size of catchments and the complex range of threats the species faces, 

such as aggravated sediment and nutrient loading, changes in flow dynamics and habitat 

structure, loss or displacement of local host fish species and, in some areas, destructive pearl 

fishing. Even achievement of ‘High Ecological Status’ as set out in the EU Water Framework 

Directive does not adequately protect pearl mussel populations as this legislation does not 

consider the quality of the interstitial environment, which is critical to juvenile mussel survival. 

The recent introduction of water quality equipment capable of logging some interstitial 

parameters consistently over extended periods of time (Malcolm et al., 2008; Quinlan et 

al., 2014), has improved upon traditional methods of spot sampling in pearl mussel rivers 

e.g. Buddensiek et al. (1993); Geist & Auerswald (2007), and has enabled a more complete 

understanding of the issues facing juvenile mussels in individual catchments. Ecological studies 

and pearl mussel surveys have long documented the absence of juvenile cohorts in areas  

where adults survive (Ziuganov et al., 1994; Geist et al., 2010; Moorkens, 2010; Simon  

et al., 2015) but the frequency and precision of environmental data collection has, thus far, 

been insufficient to draw definitive conclusions about the specific causes of absences in 

these areas. More long-term investigations employing high-precision loggers which log at 

an appropriate frequency are required; every 15 minutes has been adopted by some pearl 

mussel practitioners and was thus adopted for DO measurements in Chapter 4 of this thesis 

(Moorkens, E.A. & Killeen, I.J. pers. comm.). Linking data on water column and interstitial water 

quality is also important and provides information on how the surrounding catchment and the 

river function together. 
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Information about juvenile mussel biology and ontogeny are particularly sparse in the 

primary literature, with only a handful of studies conducted on freshwater species (Hudson 

& Isom, 1984; Kovitvadhi et al., 2001; Neumann & Kappes, 2003; Kovitvadhi et al., 2007), 

and hardly any specifically on M. margaritifera (Le Pennec & Jungbluth, 1983; Nezlin et al., 

1994). There is a paucity of information on how juveniles develop and how sub-optimal habitat 

conditions may affect their survival. The recent proliferation of captive rearing programmes 

has made research into this under-studied topic possible, and the findings are important to 

inform rearing programmes and tailor rearing practices to age/size-specific requirements. For 

example, juveniles may have changing dietary requirements or habitat preferences depending 

on their developmental stages (Henley et al., 2001) which need to be understood in order to 

tailor captive rearing programmes and improve success.  

The original research questions posed at the beginning of this work focused on three 

main areas, summarised here and explored in more detail in the following sections:

1.        What are the key environmental factors affecting juvenile survival and growth in 

captivity? This work focused on designing a successful flow-through system and 

investigating the importance of environmental parameters in order to better understand 

the factors limiting juvenile survival and growth in captivity.

2.        What ontogenic stages do juvenile mussels undergo in their early post-parasitic life 

and how might these affect feeding behaviour, the switch from pedal to filter feeding 

and survival? This work is the first attempt to document the biological development of 

juvenile M. margaritifera in the early post-parasitic stage and beyond, up to 44 months 

old. Feeding behaviour was also compared at different developmental stages and the 

biological and behavioural changes which take place during the period that juveniles 

switch from pedal to filter feeding were investigated.  

3.        Is fluorescence marking with calcein a feasible method to improve monitoring of 

immature stages of M. margaritifera in captivity? This research considered the 

feasibility and usefulness of marking newly-excysted juveniles with the fluorophore 

calcein. The effects of different calcein concentrations and immersion durations on 

growth and survival were considered and a suggested marking protocol outlined for 

use with M. margaritifera. Also considered was the first known attempt in any mussel 

species of marking encysted glochidia via osmotic induction of host fish. 
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7.2.  Key findings and significance for captive breeding 
programmes
Here the salient findings from this thesis are explored and put into context for captive rearing 

of M. margaritifera. First, the biological development of juvenile mussels is considered and 

how this may affect survival and growth. Secondly, a successful flow-through system for  

rearing juveniles is outlined and the effects of interstitial substrate conditions on juvenile 

mussels within this system are described. Finally, a method of batch-marking juvenile mussels 

with a fluorophore is described and its usefulness for captive rearing programmes explored.

7.2.1  Effect of interstitial substrate conditions on growth and survival 

of juvenile mussels

This body of work describes a successful and low maintenance captive rearing system for 

M. margaritifera capable of rearing substantial numbers of juveniles up to 25 months old 

before they are transferred to systems designed for larger mussels (Lavictoire et al., 2016). 

Larger substrates (1 - 2 mm) cleaned monthly provided the best survival rate and the lowest 

maintenance effort of all treatments investigated. Utilisation of the system described in 

Chapter 3, employing 1 - 2 mm substrate and cleaning monthly could achieve survival of at least 

820 juveniles to 25 months old (23 % survival). As has been shown in numerous studies on other 

unionoids, mortality is high during the first few weeks post-excystment (Gatenby et al., 1997; 

O’Beirn et al., 1998; Jones et al., 2005; Gum et al., 2011) leading to low overall survival during 

the first year post-excystment (34 % across all treatments in this study). Survival improved 

slightly during the second year (43 % of surviving juveniles from year 1 across all treatments) 

and was highest in the third year and beyond (78 % survival between 25 – 45 months old in 

the tray system described in Chapter 2). This suggests that different systems can be utilised at 

different ages for M. margaritifera, as is the practise in captive rearing programmes on North 

American freshwater mussel species (Barnhart, 2015). These investigations have improved 

captive rearing success at the FBA’s Freshwater Pearl Mussel Ark and subsequent counts of 

juveniles from the 2012 cohort confirm that this system is still the most successful medium-

term (~4 years) rearing effort for M. margaritifera published to date (Fig. 7.1). 

Additional investigations were carried out to consider parameters thought to affect 

juvenile survival and growth. These parameters were substrate interstitial space (volume), 
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flow rate, ammonia and total phosphorus (from organic matter) concentrations, biomass 

from biofilm and organic content, and dissolved oxygen (DO). Dissolved oxygen and flow 

were the most important habitat parameters affecting juvenile survival at this facility using 

this system. This agrees with findings of previous studies in the wild on pearl mussel rivers 

(Geist & Auerswald, 2007; Liberty et al., 2007; Quinlan et al., 2014). The species requires near-

pristine habitat conditions and because juveniles inhabit the top 5 - 10 cm of substrate for 

the first few years of their post-parasitic lives, they are particularly vulnerable to degraded 

substrate conditions. Biological limitations (discussed in section 7.2.2 below) potentially make 

them vulnerable to low DO concentrations and high suspended solids loads and this is why 

poor exchange between the hyporheic zone, or high suspended solids loads are particularly 

damaging to juveniles. These issues are major contributors to juvenile mortality and likely the 

reason juvenile mussels are absent from the majority of pearl mussel rivers. 

The Loss On Ignition reported in Chapter 4 compared favourably with functional pearl 

mussel rivers (Tarr, 2008) indicating that, whilst Windermere is a mesotrophic lake, the amount 

of organic matter may not be a cause for concern. However, the combination of small substrate 

size (and therefore smaller interstitial spaces) and the amount of organic matter created very 

low flow conditions in the 0.25 - 1 mm treatment cleaned monthly (Fig. 4.10) which had a 

detrimental effect on DO (Fig. 4.5). Low DO and high suspended solids can cause juvenile 

mussels to reduce their filtering activity. In these investigations, larger substrates which allowed 

for flow rates of between approximately 0.23 - 2.42 L/min appeared to maintain sufficient DO 

concentrations for high juvenile survival. 

Ammonia and total phosphorus concentrations did not differ significantly between the 

treatments and did not appear to affect juvenile survival in this system. It is possible that 

the biofilm community adhered to the substrate may have contained nitrifying bacteria which 

could convert ammonia into less toxic compounds, but biofilm community structure was not 

considered during this study. Additionally because the system is not a static or recirculating 

one, ammonia build-up should not have occurred in the same way as was observed by Eybe 

et al. (2013) in their incubator system. Although the total phosphorus bound up in organic 

matter within the interstices was very high, these concentrations do not represent available 

phosphorus, but do indicate the enriched state of water in Windermere. Whilst outside of 

the scope of these investigations, a better understanding of juvenile diet is required to see 
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how much of the organic content (including biofilm) is usable for juveniles and how the algal 

and bacterial species and concentrations compare with those found in recruiting pearl mussel 

rivers. 

Additional studies on juvenile density within the aquarium system described here are 

required to see if output can be increased. Eybe et al. (2013) found that survival was unaffected 

at densities between 200 - 400 juveniles but that individuals were significantly larger in 

treatments containing fewer individuals. The current investigations found no size-dependent 

over-winter survival so regular monitoring of survival and growth at different densities would 

provide additional information about if the speed of growth during early juvenile stages affects 

survival later in life. 

7.2.2  Biology and ontogeny of feeding structures in juvenile freshwater 

pearl mussels

Gill ontogeny in M. margaritifera is slower than documented for other bivalves e.g. Veniot et 

al. (2003), Kovitvadhi et al. (2007), Cannuel et al. (2009), Trump (2010). This is not surprising 

because the species is long-lived and slow growing and may partially explain why juvenile 

M. margaritifera are particularly sensitive and difficult to rear in captivity. Younger and 

smaller juveniles are more active than older and larger ones indicating that they must expend 

more effort ‘foraging’ for food (pedal feeding) compared to larger individuals which have a 

more developed gill pump and are capable of filter feeding. This hypothesis is backed-up by 

ultrastructural observations of young juveniles (< 13 - 16 months old) which show simple, 

unreflected gills with no obvious method of transporting food particles from these filaments 

towards the mouth. Whilst the full suite of cilia and cirri are present even in the youngest 

individuals investigated (1 month old), particle transport and sorting processes cannot 

be well established given the simple arrangement of filaments, lack of oral groove and the 

under-developed labial palps. Particle transport towards the mouth may occur via water 

currents near the gill filaments at this stage, but further investigation is required to confirm 

this. Gill reflection and therefore the onset of the more developed and functional condition 

begins around 13 - 16 months old (> 1.2 mm in length) although it is not until approximately  

25 - 34 months old (> 3 mm in length) that the oral groove develops and the outer demibranch 

begins to form. The adult gill condition was not observed even in the largest/oldest individuals 
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considered for this study (44 months old, 8.9 mm long) because juveniles still did not possess the 

tissue bearing ostia attached to the abfrontal surface of filaments. Four stages of development 

are proposed for M. margaritifera (Table 5.6 on page 148) although additional data from 

a wider size and age range from different populations would help confirm and refine these 

stages. 

Measurements of inter-cirral distance (distance between laterofrontal cirri couplets)  

and the number of cilia per laterofrontal cirrus from individuals at various ages and 

developmental stages indicates that juveniles are capable of retaining very small particles 

(<2 µm). This builds upon previous findings that adult M. margaritifera preferably ingest 

particles <4 µm (Baker & Levinton, 2003) and provides an important insight into why the 

species may be particularly vulnerable to degraded habitats. The major impacts facing pearl 

mussel streams are aggravated erosion delivering fine particulate matter into the interstitial 

zone and increased nutrient loading leading to eutrophication. Juvenile mussels inhabit the 

interstices for around the first 5 - 10 years of their post-parasitic life (Moorkens et al., 2007) 

and are therefore vulnerable to sub-optimal substrate conditions during this time. Fine silt  

and organic matter can clog interstices decreasing water exchange with the shallow hyporheic 

zone and reduce DO and food delivery (see section 7.2.1). High levels of solids (both organic 

and inorganic) in the interstices may cause juveniles to expend more energy attempting to clear 

unsuitable particles by increasing the production of pseudofaeces, or reduce filtering activity 

to avoid inhalation of these particles. Reduced filtration due to high particulate concentration 

has been noted by several authors (see Jørgensen, 1996; Barnes, 2006) and references therein) 

and can lead to anaerobic respiration, reduced metabolism, decreased tissue pH and reduced 

oxygen consumption, which may be particularly exaggerated in species like M. margaritifera 

which requires high DO concentrations (De Zwaan & Wijsman, 1976; Chen et al., 2001). Due to 

their gill morphology allowing effective capture of very small particles (<2 µm), increased silt 

loading and primary production should be considered major stressors for the species. 

For this investigation juveniles from several age cohorts (2012, 2014 and 2015) 

from a single population reared at the FBA Freshwater Pearl Mussel Ark were used. The 

study would have benefitted from having a complete time series of juveniles as additional 

observations could have been made on developments such as gill reflection and how quickly 

it happens (gap from 16 - 20 months old), development of the oral groove and onset of outer 
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demibranch development (gap from 20 - 34 months), the mode and timing of development of  

interfilamentary junctions (gap from 34 - 44 months) and the abfrontal tissue bearing ostia  

(+ 44 months). This study was limited to observations on structures particularly thought to 

be involved in feeding and focused mainly on gill ontogeny. Further work is required on other 

pertinent features such as siphonal development and a more comprehensive consideration 

of mantle ciliation and labial palp development and ciliation. Finally, relatively low numbers 

of measurements and counts were taken when considering the number of cilia per 

laterofrontal cirrus, inter-cirral spacing and interfilamentary spacing. Increasing the number of 

measurements taken and the number of populations over which observations are made would 

help refine the stages of development outlined in Chapter 5. Additionally, similar studies on 

other margaritiferids and other freshwater mussel families would be interesting and may 

contribute information on ecological requirements/limitations of different species as well as 

phylogenetic positioning. 

7.2.3  Using fluorescence marking as a monitoring tool for juvenile 

mussels

The fluorochrome calcein was used to mark young juveniles and was successful at producing 

marks that lasted until at least 244 days post-marking. The suggested marking protocol is 

to immerse juveniles in calcein at a concentration of 60 mg/L calcein over three days. This 

was the first known attempt to mark such a slow-growing bivalve in this way and the pilot 

study attempted the longest known immersion of juveniles over 24 days. Even at the highest 

concentration considered in this pilot (120 mg/L), this immersion duration was not acutely 

toxic to juvenile mussels although the marks created were not significantly brighter than the 

suggested marking procedure above. Fluorescence marking can be a useful tool for a wide 

variety of applications including monitoring juveniles in captivity, monitoring shell growth 

rates, linking growth patterns with environmental conditions, or distinguishing juveniles from 

protected sites to tackle poaching (Bolton & Dey, 1979; Cáceres-Puig et al., 2011; Ambrose et 

al., 2012). It can also be a useful tool for monitoring augmentation methods (Eads & Layzer, 

2002), particularly where augmentation is taking place in populations with some natural 

recruitment to distinguish introduced from resident juveniles.
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Substrate investigations (Chapter 4) have shown that flow through substrates is important 

for DO delivery. Therefore a slightly modified aquarium which uses the same concept of an 

upper and lower chamber as described in Chapter 3, and which recirculates calcein-labeled 

water so that there is flow through the substrate may decrease stress, increase feeding activity 

(and calcein uptake) and increase survival. It is recommended that this modification is made to 

the system for future marking activities for juvenile M. margaritifera.

Also described here is the first known attempt to mark glochidia encysted within fish 

gills. Whilst results were variable and appeared to be affected by the specific fish from which 

glochidia originated, this work outlines a potentially time-saving way to batch-mark the 

glochidial stage. Future work should focus on the effects on mark identification and intensity of 

increasing the concentration of the calcein bath, increasing the exposure duration, or increasing 

the recovery period post-marking beyond that used in this study (0.5 % calcein bath for 3.5 

minutes followed by 24 hour recovery period before being sampled). Additionally, marking 

fish with dietary calcein has produced clear and consistent marks on salmon scales when fed 

over 5 consecutive days (Honeyfield et al., 2006) and may be an alternative for marking the 

late glochidial stage just before excystment.  Exposure of female adult mussels to calcein-

labeled water before brooding, as calcium concretions are being sequestered within the gills 

(Silverman et al., 1985) may be another effective way of creating marked glochidia without 

exposing immature life cycle stages directly to calcein. It is not known how long marks would 

persist in encysted glochidia and if they would still be present in juveniles on excystment but 

this concept warrants further consideration. Exposure of calcein to direct sunlight has been 

shown to decrease mark intensity (Honeyfield et al., 2008) but loss of fluorescence should 

be minimal because, depending upon the method of marking, the only potential exposure to 

sunlight would be when glochidia are released from the female mussel (before attachment to 

fish gills) or upon excystment from the host fish (before establishment in the river bed). 

Low juvenile survival observed in the pilot in 2010 and the main immersion investigation 

in 2012 are likely due to the system in which juveniles were maintained post-experiment not 

providing sufficient flow and DO rather than due to calcein toxicity. Findings from the 2012 and 

2015 substrate experiments have led to improvements being made to the aquarium system 

so marking activities via immersion in the future should produce marks of the same or better 

intensity and increase long-term juvenile survival.
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7.3.  Conclusions and practical implications 
These investigations have demonstrated several factors contributing to the vulnerable nature 

of juvenile M. margaritifera during the first few years of their post-parasitic life, which are 

summarised in Table 7.1. A more complete understanding of the factors affecting survival 

and growth, timings of key biological development and stressors, and the conditions in which 

juveniles are maintained are critical to improving the success of rearing programmes and 

increasing the numbers of juveniles for augmentation purposes. This is particularly important 

when wild population levels are critically low, as is the case for several populations held at the 

FBA Freshwater Pearl Mussel Ark. 

As shown in Table 7.1, the first two years post-excystment have several high risk periods. 

Factors affecting juveniles during this period include initial viability of juveniles post excystment 

(have they achieved sufficient development and do they poses sufficient nutritive reserves 

to be viable juvenile mussels?), lack of developed gills requiring an active feeding mode 

(pedal feeding), low DO concentrations and high primary production during summer months 

potentially leading to decreased filtration rates due to stressful environmental conditions 

(Jørgensen, 1990) and the onset of significant morphogenesis as gill reflection begins and 

progresses (Table 5.6). After this first two-year period the number of risk factors decreases 

somewhat as biological development progresses but higher summer temperatures will always 

present an elevated risk for juveniles (lower DO and higher primary production) particularly in 

environments suffering from nutrient enrichment. Ensuring adequate flow and low suspended 

solids concentrations during these periods will help minimize stress and mortality. In the 

wild, additional risk factors are present such as more extreme high temperatures in summer 

(smaller streams and rivers are more sensitive to air temperature), a more variable flow regime 

throughout the year leading to additional opportunities for juveniles to be washed out, or for 

low-flow conditions to cause low DO conditions. Hauer (2015) reviews hydro-morphological 

management techniques employed in pearl mussel rivers which can lead to better interstitial 

flow and the stabilization of juvenile mussel habitat.

The major conclusions from this thesis and their practical implications (below) should 

inform captive rearing practices going forward and particular focus should be given to rearing 

larger numbers of juveniles through the initial high-risk two year period:
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Timing Age 
(months)

Time of 
year

Mortality 
risk

Important considerations and 
potential risk factors

First growth 
season 0 – 4 June – 

October High

• Insufficient reserves laid down as glochidia.
• Minimally-effective filter-pump so must be 

very active to forage - high metabolism and DO 
requirement.

• Lower DO concentrations due to high summer 
temperatures.

• Higher primary production of potentially 
unsuitable algal species leading to decreased 
filtration rate (clamming).

First winter 4 – 11 October 
– May Low

• No significant ontogenic changes.
• Minimal temperature and DO risk factors.
• Primary production lower than in summer 

so less energy required to clear excessive/
unsuitable algal loads.

Second growth 
season 11 – 16 May – 

October High

• Gill reflection begins (size dependent) – may 
require excess energy/increased metabolism.

• Lower DO concentrations due to high summer 
temperatures.

• Higher primary production of potentially 
unsuitable algal species leading to decreased 
filtration rate (clamming).

Second winter 16 – 23 October 
– May High

• Gill reflection begins/is ongoing (size 
dependent). May require excess energy/
increased metabolism.

Third growth 
season 23 – 28 May – 

October
Medium/

High

• Development of oral groove and outer 
demibranch begins. Unsure of other ontogenic 
changes during this period – requires further 
investigation. 

• Lower DO concentrations due to high summer 
temperatures.

• Higher primary production of potentially 
unsuitable algal species leading to decreased 
filtration rate (clamming).

Third winter 28 – 40 October 
– May Low

• Outer demibranch development progresses 
(size dependent).  May require excess energy/
increased metabolism.

Fourth growth 
season 40 – 45 May – 

October Medium

• Lower DO concentrations due to high summer 
temperatures.

• Higher primary production of potentially 
unsuitable algal species leading to decreased 
filtration rate (clamming).

Fourth winter 
season 45 – 52 October 

– May Low • Minimal known risk factors - requires  further 
investigation.

Table 7.1: Summary of main periods during the first approximately 4 years post-excystment outlining 
whether the mortality risk to juvenile freshwater pearl mussels is deemed to be low, medium or high 
and which factors may contribute to increased mortality during those periods. N.B. The mortality risk 
depends upon juvenile size and developmental stage and may therefore occur at different times in other 
captive rearing systems. Practitioners should consider how their individual rearing systems affect juvenile 
development and may therefore affect the timing of high-risk periods.
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• The culture method described in this thesis using a down-welling, flow through system 

with 1 -2 mm substrate cleaned monthly is a successful and low maintenance system.  

The substrate size allows sufficient flow through substrate interstices to prevent clogging and 

the size is distinct from newly-excysted juveniles making sampling faster and more effective. The 

system allows juveniles to be exposed to a natural temperature regime and natural fluctuations 

in food-availability which helps combat domestication selection (Jones et al., 2006) and is 

preferable when considering release into native rivers. 

• M. margaritifera requires high DO concentrations and flows capable of providing 

adequate scope for nutrition and removal of waste products. Whilst investigations 

into the biological limits of DO concentrations for juvenile mussels were outside of the 

scope of this study, juveniles survived better in treatments which provided the most 

similar DO concentrations to the water column. DO concentrations averaging 8.24 mg/L  

(85 % saturation) were adequate to achieve high juvenile survival (81 % ±8) over the first two 

months post-excystment. Larger substrates provided higher rates of flow which are crucial to 

maintaining high DO concentrations whilst delivering food and removing waste products. 

Practical considerations for rearing programmes are important to avoid undue stress to juveniles, 

such as replacing sieves removed for cleaning with blank (just substrate) sieves to maintain water 

flow and DO delivery. 

• M. margaritifera is capable of filtering particles <2 µm and thus requires low  

suspended solids concentrations. Gill and cilia/cirri morphology in M. margaritifera enable the 

species to filter particles  <2 mm. This makes individuals vulnerable to high suspended solids 

concentrations as juveniles must either remove unsuitable particles via elevated production 

of pseudofaeces, or close in order to avoid inhaling these particles. Valve closure for extended 

periods of time has important implications for oxygen consumption and metabolism and creates 

the potential for anaerobic respiration. These implications may be particularly severe for juvenile 

mussels which may not have significant somatic reserves upon which to draw, thus making them 

at risk of starvation and mortality. Captive rearing programmes should aim to reduce turbid 

conditions. The use of sediment traps or settling ponds could reduce the supply of smaller  

(<2 µm) suspended sediments (inorganic particles) to juveniles whilst the provision of appropriate 

filter sizes for the water source could assist in removing particles larger than the useful dietary 

range for M. margaritifera. 
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• Initial size of juveniles and collection time may have implications for juvenile vitality and 

survival. Data from 2011, 2012 and 2015 indicates that time of collection during the drop-off 

period may have important implications for initial size and survival. Eybe et al. (2015) have already 

outlined that juveniles from the first few days of the excystment period grew less and displayed 

lower survival but this work could be extended to investigate the growth and survival of juveniles 

from across the entire excystment period. This information benefits rearing programmes because 

effort can then be targeted on collecting and rearing juveniles most likely to survive. 

• Calcein is a suitable fluorophore for marking juvenile mussels. The method described is a useful 

one for improving monitoring in captivity and also for identification of captive reared juveniles if 

used for augmentation in rivers where juvenile mussels already exist. 

7.4.  Suggestions for future work
Findings outlined in this thesis raise several new questions about juvenile development and 

how this affects survival in captivity. More detailed information about juvenile development 

and vigor upon excystment should help make captive rearing programmes more efficient by 

ensuring high-quality juveniles are reared in systems which allow them to thrive. Building upon 

the initial work on juvenile development (Chapter 5) and adopting methods which emulate 

environmental conditions outlined in Chapters 3 & 4 should allow rearing programmes to 

achieve high survival provided that sufficient biofilm/diet is provided. It is suggested that 

additional work is required in the following areas:

7.4.1  Captive rearing systems

• Different stocking densities within sieves should be trialled to see if this can be increased without 

affecting survival. If higher densities are possible this would increase the potential yield of 

juveniles without impacting rearing effort.

• Larger substrate size clasts should be considered and the effects on DO should be quantified. 

Providing juveniles with a choice of substrates within which to bury would also provide a useful 

insight into whether substrate preferences/requirements change with age/size.  These studies 

could inform future culture methods by demonstrating whether juveniles could be moved up 

size clasts as they increase in length in order to maintain a size difference between juveniles and 

substrate, thus facilitating quicker and easier sampling and monitoring activities.
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• Little is known about the potential benefits of biofilm to juvenile mussels as both a food source 

and as a potential reservoir of nitrifying bacteria which could facilitate the breakdown of 

nitrogenous waste products. Investigation is required to establish if there is a difference in the 

structure and species assemblages of biofilm communities in recruiting ‘vs’ non-recruiting pearl 

mussel systems to assess their potential benefits for juvenile mussels.

• The natural diet of M. margaritifera is unknown and whilst some rearing programmes have had 

success culturing juveniles with artificial diets (Eybe et al., 2013), knowledge of preferred diets at 

different ages would provide invaluable information to both those working on captive breeding 

of M. margaritifera and practitioners working on the ecology and restoration of wild populations. 

• The effects on behaviour of low DO concentrations (both stable low DO and the effect of low 

DO spikes) should be investigated in tandem with quantifying lethal low DO concentrations for 

juvenile mussels at different ages/sizes. This would inform both captive rearing programmes and 

provide a benchmark against which to measure the suitability of potential reintroduction sites 

for juveniles in the wild. 

• In a study in Northern Ireland, Wilson et al. (2012) found small but significant levels of genetic 

differentiation between captive-bred juveniles and samples from their source river indicating 

a possible founder effect. To date there have been no studies which have resulted in a 

recommendation of a minimum cohort size of adult mussels to maintain genetic integrity when 

propagating M. margaritifera. These are important considerations as juveniles selected for captive 

conditions and loss of heterozygosity will directly affect the genetic fitness of wild populations 

once juvenile augmentation begins (Jones et al., 2006). Additionally, genetic selection may take 

place if juveniles are selected for vigor depending upon timing of excystment. Genetic studies 

should be undertaken before juvenile selection to ensure there is no loss of heterozygosity.

• Histological studies investigating lipid and polysaccharide presence/abundance would further 

inform data on collection time and provide information about the energetic reserves of juveniles 

excysting fish at different times. It would also provide additional information to developmental 

studies of juveniles post-excystment to gather more detailed information about the factors 

limiting juvenile survival. In turn, this would inform decisions about juvenile collection for captive 

rearing programmes in order to maximise juvenile vitality, survival and rearing effort.  
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7.4.2  Juvenile ontogeny

• In this thesis, data were collected from a total of 68 individuals across the age classes sampled. 

The number of individuals from each class could be increased in order to improve the quality of 

descriptions and different populations should be sampled to ensure that any structures observed 

or the timing of developments are not population-specific. 

• The additional age/size classes mentioned in section 7.2.2 above should be sampled in order 

to gain a better understanding of development during these periods. This includes sampling 

individuals older than 44 months to learn when the tissue bearing ostia develops on the abfrontal 

surface of the gills. Additionally, further samples of adult mussels should be taken for more 

complete descriptions to be made of the adult gill condition. 

• More measurements of structures such as length of laterofrontal cirri, inter-cirral distance, number 

of cilia/laterofrontal cirrus and ostia size should be taken from more individuals encompassing 

several populations to refine the preliminary conclusions outlined in this thesis. Descriptions 

from more individuals from different populations would also help refine the four stages of 

development and the timing of key developments. 

• The link between feeding activity/behaviour and ontogeny should be further investigated with 

more individuals to enhance our understanding of how these factors affect each other. Particular 

attention should be given to whether individuals which are inactive upon excystment differ 

morphologically from active individuals and whether development is linked to food quality/

quantity. 

7.4.3  Fluorescence marking

• Different methods of marking different life cycle stages should be explored as a way of improving 

the efficiency of marking activities. This could include immersing adult female mussels calcein-

labeled water so they sequester labeled calcium in concretions (Silverman et al., 1985) which 

would then be transferred to developing glochidia, providing dietary calcein to fish with encysted 

glochidia, or, using a longer calcein bath in the osmotic induction method for fish with encysted 

glochidia. 
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7.5.  Final remarks
This work provides a timely synthesis of important factors to consider for captive rearing 

programmes and outlines information on juvenile ontogeny which has important implications 

for juvenile survival both in the wild and in captivity. The last critical review of different captive 

rearing techniques and their success for M. margaritifera was six years ago (Gum et al., 2011) 

but focused on intensive methods which grew mussels to at least 1 mm before placing them 

in gravel boxes or sheet cages within rivers. Recently the 2nd International Seminar for Rearing 

Unionoid Mussels in Luxembourg (Thielen et al., 2015) provided a useful forum for the growing 

number of captive rearing programmes to communicate successes and failures of a number 

of rearing systems on a small number of mainly European unionoids. As M. margaritifera 

numbers decline in the wild, the means of producing sufficient numbers of captively-reared 

juveniles to make a difference to the restoration of wild populations becomes increasingly 

important. This thesis is an important addition to the growing body of knowledge available on 

captive rearing of M. margaritifera and outlines the importance of tailoring captive conditions 

to juveniles’ developmental stage, especially during the first two years of post-parasitic life 

when juveniles are at their most vulnerable. 
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Abstract The freshwater pearl mussel is critically

endangered and most English populations are at risk of

extinction unless conservation measures are imple-

mented immediately. The study objectives were to test

a culture system for rearing Margaritifera margari-

tifera in captivity, and to investigate the effects of

substrate size (0.25–1 and 1–2 mm) and cleaning

regime (weekly and monthly) on survival and growth.

In total, 1207 and 518 juveniles were reared to 362

(12 months) and 758 days (25 months), respectively.

After 362 days, survival was significantly higher in

1–2 mm substrate treatments cleaned monthly (55 ±

6 %) and lowest in 0.25–1 mm substrate cleaned

weekly (14 ± 3 %). Growth was significantly higher

in 1–2 mm substrates cleaned weekly (length =

1.15 ± 0.21 mm) and lowest in 0.25–1 mm substrates

cleaned monthly (length = 0.83 ± 0.23 mm). Juve-

niles from most treatments did not display size-

dependent over-winter survival, but a significant cor-

relation was found between shell length and survival in

the 0.25–1 mm weekly treatment. This low-mainte-

nance system utilised features of previously described

systems and growth and survival rates were comparable

to, if not better than, other studies culturing M.

margaritifera. The system could be scaled up to rear

significant numbers of juveniles in captivity.

Keywords Margaritiferidae � Captive rearing �
Low-maintenance system � Mussel conservation

Introduction

Freshwater molluscs are among the most endangered

invertebrates in the world (Machordom et al., 2003;

Primack, 2006) and are disproportionately imperilled

compared with other groups (Williams et al., 1993).

Understandably, the number of studies on freshwater

bivalves has increased substantially over the past

30–50 years with the quickest growing subject area

being ecology and conservation (Haag, 2012; Lopes-

Lima et al., 2014). Unsustainable pressures such as

habitat modification, unnatural silt and nutrient input,

pressures on host fishes and deteriorating water quality

are responsible for the decline of the freshwater pearl
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mussel, Margaritifera margaritifera (Linnaeus,

1758). This species declined by over 90 % in the

twentieth Century (Bauer, 1988) prompting urgent

conservation action from both Government agencies

and NGO’s to improve pearl mussel habitat and, in

some countries, to begin captive rearing activities for

populations particularly at risk. The type of conserva-

tion strategy employed by different counties (i.e.

emphasis on catchment improvements compared with

captive breeding) depends upon a variety of factors

including size of remaining populations, catchment

size and types of pressure. In England, there are

approximately 12 populations of M. margaritifera, all

of which are in decline (Chesney & Oliver, 1998). In

2007, the decision was taken to remove a subset of

individuals from the most imperilled English popula-

tions for captive rearing whilst catchment improve-

ments, including pearl mussel habitat restoration, took

place. The Freshwater Pearl Mussel Ark is a captive

rearing programme funded by Freshwater Biological

Association (FBA), Natural England and the Environ-

ment Agency, with the FBA managing captive rearing

activities. The overall objectives of the project are to

hold sub-populations from target rivers to protect

against local population extinction, and to rear juve-

nile mussels for release into natal rivers.

A major benefit of ex-situ mussel culture is that

environmental parameters can be controlled to opti-

mise habitat conditions and ultimately increase juve-

nile survival. Percentage survival of larval and

juvenile stages in the wild is low (Young & Williams,

1984) even in sustainable populations. Captive rearing

can offer a short-term solution to boost population size

until natural recruitment levels can be re-established in

the wild. Captive rearing is not a long-term solution

for declining populations and must be coupled with

catchment-wide habitat improvements to reduce pres-

sures on pearl mussel habitat. Substantial improve-

ments in habitat quality are required to allow more

sustainable levels of juvenile survival and enable

demographic recovery of wild populations.

Research in the early 2000’s into optimising captive

rearing conditions for freshwater mussels (mainly by

North American and some European practitioners) has

led to the near perfection of these techniques for

certain species (Lopes-Lima et al., 2014). Captive

rearing of particularly sensitive species such as M.

margaritifera however has proven slightly more

problematic and has required significant investigation.

Several different methods of propagating M. margar-

itifera have been trialled in Europe (Gum et al., 2011)

including bankside encystment and immediate release

of encysted salmonids (Altmüller & Dettmer, 2006),

rearing juveniles in trays or baskets (Hastie & Young,

2003; Taylor, 2007; Lange & Selheim, 2011; Scriven

et al., 2011; Eybe et al., 2013; Lavictoire et al., 2014),

suspending cages containing juveniles in raceways or

rivers (Buddensiek, 1995; Schmidt & Vandré, 2010),

allowing juveniles to excyst directly into raceways

(Preston et al., 2007; Moorkens, 2011) and holding

juveniles in boxes containing water and placing them

in incubators (Lange & Selheim, 2011; Eybe et al.,

2013). Whilst previous studies have investigated

growth and survival of M. margaritifera juveniles

under various culture conditions (Buddensiek, 1995;

Hruška, 1999; Schmidt & Vandré, 2010; Lange &

Selheim, 2011; Eybe et al., 2013), they have lacked

specific information on periodic growth and survival

rates over extended periods of time, mainly due to low

numbers of surviving individuals. Hruška (1999)

detailed the rearing of 30,000 individuals to over

3 years old but did not include information on original

numbers or survival rates. Further studies with peri-

odic monitoring and a standardised reporting system

are required to better understand the factors affecting

growth and survival of very young (\1 year) juveniles

in captivity.

Previous studies focussing on captive rearing of

mussel species (mainly North American) have found

that certain environmental conditions in culture are

important for optimal growth and survival. These

include substrate size (Beaty & Neves, 2004; Liberty

et al., 2007) and depth (Yeager et al., 1994; Beaty &

Neves, 2004; Jones et al., 2005), maintenance

(cleaning) regime (O’Beirn et al., 1998; Liberty

et al., 2007), diet (Gatenby et al., 1997; Lange, 2005;

Kovitvadhi et al., 2006; Schmidt & Vandré, 2010;

Eybe et al., 2013) and mussel stocking density (Eybe

et al., 2013).

This investigation sought to test an experimental

culture system for M. margaritifera using a flow-

through system with water sourced from a meso-

trophic lake. Substrate size and cleaning regime were

tested to identify optimal conditions for the species

within this system and to assess which method

provided the highest level of survival.
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Materials and methods

Experimental work was undertaken at the Freshwater

Biological Association headquarters in Cumbria, UK.

Water was sourced from Windermere, a large

mesotrophic lake, within a catchment with historic

records for M. margaritifera. Water used in experi-

ments had particles larger than 20 lm removed using a

Hydrotech 501 filter. Water temperature followed the

lake’s natural temperature regime.

A pilot study, carried out between June 2011 and

April 2012, informed experimental design for the

work described here. Data collection took place over a

12-month period from June 2012. Two different

substrate mixes (0.25–1 and 1–2 mm) and two clean-

ing frequencies (weekly and monthly) were tested,

giving a total of four treatment types. Substrate was

sourced from around the FBA facility on the western

shore of Windermere. Before use, substrate was air-

dried before it was sieved to the required clast sizes

(either 0.25–1 or 1–2 mm).

A down-welling, flow-through system was designed

which supplied filtered lake water to juveniles at a rate

of approximately 67 ml s-1. Thirty-six square holes

were cut out of a styrene sheet fixed to the sides of a

glass aquarium (995 mm 9 357 mm 9 510 mm).

Artemia sieves (Hobby, Germany) with a mesh size

of 0.9 mm were adhered to the styrene sheet to create a

fixed support structure for the experimental sieves.

Removable experimental sieves (mesh size 0.18 mm)

were inserted into the fixed sieves, providing the sole

pathway for water flow. Water entered the top of the

system via a spray bar, passed through the sieves

containing juveniles and substrate, and exited from the

bottom of the system through the down-pipe (Fig. 1).

Nine replicates of each of four treatments (36

experimental sieves in total) were set up. Each sieve

contained one of the experimental substrate mixes to a

depth of approximately 1 cm (50 g dry weight).

Treatment sieves containing substrate were exposed

to flowing lake water for a minimum of 21 days prior

to the start of the experiment to allow biofilm

development on the substrate, as per Gum et al.

(2011). Juveniles propagated from a single population

provided by the FBA’s Freshwater Pearl Mussel Ark

project (Sweeting & Lavictoire, 2013) were used. One

hundred newly excysted active juveniles were added

to each experimental sieve (total 3600 individuals).

For each sieve, 30 individuals were selected at random

and measured (length and height to nearest 50 lm)

before being added. The position of experimental

sieves within the aquarium was assigned on a random

basis so that each column within the aquarium had one

of each of the four treatments. Sixteen days after the

experiment commenced, the surface of the styrene

sheet was siphoned and 11 juveniles were found

indicating escapement. Artemia sieves with a 0.3-mm

mesh were placed over the experimental sieves so

juveniles could not escape.

Every week, sieves in the weekly cleaning treat-

ment (18 sieves in total) were removed from the

aquarium and substrate was gently emptied into a glass

container. Substrate was elutriated to suspend organic

particles and the elutriate poured through a 0.18 mm

mesh sieve to retain any suspended juveniles. Sieves

were inspected under a low power microscope (920)

and any juveniles replaced into the experimental sieve

along with the substrate. The 0.3 mm sieve (cover)

and 0.9 mm sieve (fixed within aquarium) were also

cleaned before the experimental sieve was replaced.

The same process was repeated on a monthly basis for

treatments requiring monthly cleaning.

Approximately every 2 months (51, 112, 167, 247,

308 and 362 days post-excystment), the numbers of

surviving juveniles and dead shells from each sieve

were recorded. In addition, 30 live individuals from

each sieve were chosen at random and measured.

Where fewer than 30 individuals remained, all juve-

niles were measured. Dead juveniles were measured

and removed from sieves. Sampling in this manner

constituted a cleaning event as organic matter was

removed during sampling.

Sampling for growth and survival ceased after

12 months but the system and cleaning regimes were

retained for a further 13 months. Sieves were sampled

for the final time at 758 days post-excystment.

Survival and size were recorded as before but instead

of being returned to sieves, all juveniles were removed

to a modified salmon egg tray containing substrate

measuring 1–2 mm as described in Sweeting & Miles

(2010). Statistical analysis on juvenile size and

survival are reported for the first 12 months only,

unless otherwise stated.

Data analysis

Central Limit Theorem (Elliott, 1993) was applied to

assume normality where appropriate. Standard
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deviation values are provided after mean values. One-

way Analysis of Variance (ANOVA) with post hoc

Tukey’s HSD tests were used to assess the significance

of survival, survival rates and size between treatments

on the same sampling occasion when data were

normal. Where data were not normal Kruskal–Wallis

tests were employed. Two-way ANOVA’s were used

to investigate the interaction of substrate size and

cleaning regime and their effects on both survival and

size in treatments on day 362. Repeated Measures

ANOVA’s with pairwise comparisons were used to

test survival between 0 and 362 days to see if survival

changed at specific times. For Repeated Measures

ANOVA’s a Greenhouse–Geisser correction was

applied if the assumption of sphericity was not met.

Student’s t tests were used to compare length pre- and

post-winter to help establish if juveniles displayed

size-dependent over-winter survival within treat-

ments. Spearman’s Rank Correlation Coefficient tests

were used to test the significance of correlations

between shell length and height, shell growth and

temperature, and mean survival and shell length.

Juvenile length and survival across rows and

columns in the aquarium were tested in June 2013 to

rule out any bias due to sieve positioning (lateral and

top-to-bottom positioning within the aquarium). There

was no significant difference in survival between

different columns (F(8,27) = 0.196, P = 0.989) or rows

(F(3,32) = 0.025, P = 0.994) indicating that any

significant results between treatments were not due to

sieve positioning. The same was true for mean juvenile

length in June 2013; there were no significant differ-

ences between different columns (F(8,27) = 0.097,

P = 0.999) or rows (F(3,32) = 0.163, P = 0.920).

Initial size in June 2012 was also tested to ensure

juveniles in each sieve had the same starting length.

Starting lengths of individuals in all 36 sieves were not

significantly different (F(35,1044) = 1.35, P = 0.083)

at the beginning of the experiment (mean length =

0.40 ± 0.02 mm).

Results

Size

Spearman’s Rank Correlation Coefficient tests found

juvenile length and height were significantly corre-

lated (P\ 0.001); 0.25–1 mm weekly treatment

(rs(1216) = 0.980), 0.25–1 mm monthly treatment

(rs(1837) = 0.965), 1–2 mm weekly treatment

(rs(1876) = 0.974) and 1–2 mm monthly treatment

(rs(1888) = 0.968). As such only the length parameter

was used for analysis in this study.

Length of juveniles on each sampling occasion was

considered in turn to establish any effects of the

different treatments over time (Fig. 2). Juvenile

lengths were all significantly different (P\ 0.001)

Fig. 1 Experimental set-

up. Water enters at the top of

the system via a spray bar

(SB) and flows through

sieves (S) containing

substrate and juveniles

(arrows show direction of

flow). Water exits via the

downpipe (DP)
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among treatments on days 51 (F(3,1076) = 77.295),

112 (F(3,964) = 195.723), 167 (F(3,951) = 158.522),

247 (F(3,941) = 175.247), 308 (F(3,906) = 162.465)

and 362 (F(3,883) = 167.377). The same pattern was

observed throughout the experiment; 1–2 mm weekly

[0.25–1 mm weekly [1–2 mm monthly [0.25–1

mm monthly. Table 1 summarises these results giving

mean length (mm) on each sampling occasion. A

2-way ANOVA was carried out for the June 2013

sample (362 days) and a significant interaction was

found between substrate size and cleaning regime

(F(1,883) = 7.414, P = 0.007). Analysis of simple

main effects found significant interactions at all levels.

Shell growth in M. margaritifera is positively

correlated with temperature (rs(214) = 0.76, P\
0.001). Apparent cessation of growth was observed

below approximately 10�C (Fig. 3). Mean daily

growth rates during the warmest period (June–August

Fig. 2 Juvenile length (mm) with SD bars, and daily mean temperature (�C) during the course of the experiment. The x-axis is provided

both in days since experiment commenced and per month to show how growth relates to time of year

Table 1 Mean length ± SD (mm) of juveniles on different sampling occasions in order of largest to smallest

51 days 112 days 167 days 247 days 308 days 362 days

1–2 mm weekly 0.72 ± 0.07 0.89 ± 0.09 0.88 ± 0.10* 0.90 ± 0.09 0.92 ± 0.10K 1.15 ± 0.17

0.25–1 mm weekly 0.70 ± 0.07 0.84 ± 0.11 0.86 ± 0.11* 0.87 ± 0.10 0.90 ± 0.12K 1.10 ± 0.17

1–2 mm monthly 0.65 ± 0.08 0.74 ± 0.10 0.76 ± 0.10 0.77 ± 0.10 0.78 ± 0.11 0.94 ± 0.18

0.25–1 mm monthly 0.63 ± 0.07 0.69 ± 0.10 0.71 ± 0.10 0.72 ± 0.10 0.74 ± 0.11 0.83 ± 0.16

Size was significantly different between all treatments (P\ 0.001). Tukey’s HSD tests showed significant differences within each

sampling point (P\ 0.05) except where indicated 167 days (* P = 0.31) and 308 days post-excystment (K P = 0.17)
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2012) were almost 11 times higher than during the

coolest period (February–April 2013). Average

growth per day highlighted that growth slowed over

winter but did not halt completely (Table 2).

Survival

We report survival rates comparable to, and in most

cases greater than, previous studies of a similar

duration on other species of freshwater mussel

(Fig. 4a), and specifically M. margaritifera (Fig. 4b).

In this investigation, higher survival was observed in

the 1–2 mm monthly treatment with an average of

over 55 % survival after 12 months and 23 % after

25 months. The lowest survival was in the 0.25–1 mm

weekly treatment with the other two treatments

displaying intermediate survival (Tables 3, 4; Fig. 5).

Survival over time

Survival differences within treatments over time were

tested with Repeated Measures ANOVAs to see if

there were specific times when survival changed.

Mean survival was different over the course of the

experiment for all treatments (P\ 0.001); 0.25–1 mm

weekly (F(2.021,16.171) = 1147.196), 0.25–1 mm

monthly (F(6,48) = 315.484), 1–2 mm weekly

(F(2.126,17.008) = 324.543) and 1–2 mm monthly

(F(2.030,16.243) = 167.912). Post hoc tests revealed that

survival was the same only in the 1–2 mm weekly

treatment between days 112 and 167 (P = 0.086) and

in the 0.25–1 mm weekly treatment between days 167

and 247 (P = 0.122), days 247 and 362 (P = 0.128)

and days 308 and 362 (P = 0.288).

Survival rate

Survival rates were considered to further examine data

taking into account the high initial mortality observed

in the 0.25–1 mm weekly treatment. Survival rates

between the treatments were significantly different

(P\ 0.002) on days 51 (F(3,32) = 128.303), 112

(F(3,32) = 41.388), 167 (F(3,32) = 9.743), 308
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(F(3,32) = 6.553) and 362 (H(3,32) = 15.179) but were

not statistically different on day 247 (F(3,32) = 0.619,

P = 0.608).

When mean survival rate was plotted against mean

shell length, no relationship was found for either of the

1–2 mm treatments (Fig. 6). In the 0.25–1 mm treat-

ments however, there was a positive relationship,

which is stronger in the treatment which is cleaned

weekly. Spearman’s rank correlation coefficient tests

found no significant correlation in the 0.25–1 mm

monthly treatment (rs(4) = 0.515, P = 0.296) but

there was in the 0.25–1 mm weekly treatment (rs(4) =

0.947, P\ 0.01). Larger individuals displayed signif-

icantly higher survival compared with smaller indi-

viduals in this treatment.

Over-winter survival

To establish whether juveniles displayed size-depen-

dent over-winter survival, t tests were carried out

comparing juvenile size pre- and post-winter (October

2012 and April 2013). Across all treatments, juveniles

were significantly larger post-winter (P\ 0.001);

0.25–1 mm weekly (t(272) = -4.377), 0.25–1 mm

monthly (t(522) = -5.239), 1–2 mm weekly (t(538) =

-3.717), 1–2 mm monthly (t(530) = -5.027). How-

ever, there were more juveniles in larger size classes in

April 2013 compared to October 2012. This implies

that, rather than there being high mortality of smaller

juveniles over winter, individuals have grown, thereby

pushing them into larger size classes.

Table 2 Average growth per day (lm) for individuals in each treatment and mean daily temperature (± SD) between sampling

points

Treatment 0–51 days 51–112 days 112–167 days 167–247 days 247–308 days 308–362 days

Mean daily temp. (�C) over period 15.4 (1.0) 14.7 (2.0) 9.0 (1.7) 5.6 (1.1) 5.5 (1.5) 10.7 (1.3)

0.25–1 mm weekly 6.15 2.10 0.42 -0.01 0.66 3.67

0.25–1 mm monthly 4.18 1.01 0.31 0.15 0.27 1.76

1–2 mm weekly 6.80 2.52 -0.24 0.22 0.46 4.00

1–2 mm monthly 4.58 1.58 0.35 0.11 0.21 3.20

Negative values are due to sampling error and do not indicate shrinkage

Table 3 Summary survival statistics. Total number of individuals surviving, percentage survival and the range of percentage

survival for all treatments in June 2013

Treatment Total no. survived Survival (%) Survival range (%)

0.25–1 mm weekly 123 14 8–19

0.25–1 mm monthly 253 28 19–40

1–2 mm weekly 333 37 18–47

1–2 mm monthly 498 55 45–63

Table 4 Mean number of juveniles surviving (± SD) at each

sampling point in order of highest to lowest survival. Survival

was significantly different between all treatments. Tukey’s

HSD tests showed significant differences within each sampling

point (P\ 0.05) except where indicated on days 51

(* P = 0.93) and 112 (K P = 0.97). Results have been

rounded to whole juveniles

51 days 112 days 167 days 247 days 308 days 362 days

1–2 mm monthly 85 ± 4 74 ± 4 71 ± 4 68 ± 3 65 ± 3 55 ± 6

1–2 mm weekly 76 ± 6* 51 ± 5K 50 ± 6 48 ± 6 46 ± 6 37 ± 9

0.25–1 mm monthly 75 ± 4* 51 ± 8K 43 ± 8 40 ± 8 33 ± 7 28 ± 6

0.25–1 mm weekly 40 ± 7 18 ± 4 16 ± 3 15 ± 3 13 ± 3 14 ± 3
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Discussion

The objective of this study was to test the effectiveness

of the proposed culture system for rearing juvenile

mussels (M. margaritifera) and to examine the effects

of different substrate sizes and cleaning regimes on

growth and survival. Here, we describe a culture

method employing some features from previous

studies (e.g. Hastie & Young, 2003; Lange, 2005;

Barnhart, 2006; Preston et al., 2007; Gum et al., 2011)

to create a low-maintenance system which utilises

a natural temperature regime. The proportion of

mussels escaping experimental containers was mini-

mal (2.5 %) and can be prevented in future by placing

covers over containers from the beginning. Juveniles

were reared to an age of 758 days (25 months) with

optimum treatments achieving 55 % mean survival

after 12 months and 23 % after 25 months. No other

captive rearing facility has published this level of

survival over similar timescales for M. margaritifera

(Fig. 4b). Growth during the first 362 days (12 months)

was comparable with other studies (e.g. Hruška, 1999;

Scheder et al., 2011; Scriven et al., 2011; Eybe et al.,

2013). Juveniles in this study achieved growth rates of

between 170 and 220 % (0.68–0.89 mm) during the

first growth season, which compares favourably with

Hruška (1999) reporting 250 %, and Eybe et al. (2013)

with rates between 150 and 200 %. While it is not

possible to directly compare growth from different

captive rearing programmes due to differences in

culture systems, temperature regimes, handling, and

population-specific growth rates, the desired outcome

of growth and survival from the techniques used in

this study are positive compared with other reported

methods.

This investigation concurred with other studies

which have found that juveniles display a large size

range after a relatively short period (Beaty & Neves,

2004; Barnhart, 2006; Schmidt & Vandré, 2010). By

the end of the first year, some individuals were 2.5

times larger than others. This pattern has been shown

to continue as juveniles get older with some individ-

uals reaching over 9 times the length of conspecifics

by 5 years old (Sweeting & Lavictoire, 2013).

Significantly higher survival was observed in larger

substrates (1–2 mm) which concurs with previous

studies on unionids (e.g. Liberty et al., 2007).

Substrate size preference appears species-specific but

may also be affected by the culture system. For

example, different substrate size preferences were

found for Villosa iris (Lea, 1829) in different culture

systems in Virginia. Superior growth and survival

were found in substrates \0.2 mm in a recirculating

system (Hua et al., 2013) but higher survival was

recorded in substrates between 0.5 and 0.85 mm in a

flow-through system (Liberty et al., 2007). M. mar-

garitifera is slower growing and has a longer juvenile

stage compared to most other freshwater mussels, so

rearing techniques from other species may have

limited relevance. There remains a lack of under-

standing of the specific habitat requirements (physical,

chemical and biological) for M. margaritifera, both in

the wild and in captivity. For captive rearing pro-

grammes to become more successful a greater under-

standing of the factors limiting survival is needed.

Individuals in the 0.25–1 mm weekly treatment

showed size-dependent survival, something which

was not apparent in the other treatments. This may be

because this treatment appeared to be the least suitable

for M. margaritifera (displaying the highest mortal-

ity), so only the largest individuals were able to

survive. If smaller substrate sizes impeded water flow

to an extent where food or oxygen supply was not

sufficient then size-dependent survival would also

have been observed in the 0.25–1 mm monthly

treatment. Likewise, if a weekly cleaning regime

was too stressful for juveniles, size-dependent survival

would have been observed in the 1–2 mm weekly

treatment, but it was not. It appears that the combi-

nation of small substrate size and frequent (weekly)

cleaning does not provide suitable conditions for M.

margaritifera juveniles to thrive. This finding is

important when considering catchment management

and habitat improvements to ensure that enough

coarse substrate is available for juveniles.

bFig. 4 Mean survival in a other published bivalve captive

rearing studies and b more specifically in M. margaritifera

studies. Mean survival up until July 2014 has been provided for

this study. Asterisk indicates figures based upon estimates;

Buddensiek (1995) figures taken from survival graphs; Hastie &

Young (2003) Baskets estimated a sample of known volume and

multiplied up to indicate likely survival in total volume. Hat

indicates only one treatment selected for illustrative purposes;

this study investigated survival of 8 different species over

different timescales. For all studies where several treatments are

reported, only the best survival results are reported here for

comparison
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Cleaning of substrate on a weekly basis has a

detrimental effect on survival compared to monthly

cleaning (Table 4). Differences in survival rates

between treatments were significant which infers that

observed differences in survival were not artefacts of

high initial mortality in the 0.25–1 mm weekly

treatment after approximately 112 days. Poorer sur-

vival and growth in treatments cleaned more fre-

quently has been documented in studies on different

mussel species (O’Beirn et al., 1998; Liberty et al.,

2007) due to stress or accidental damage/loss during

sampling.

Whilst survival was compromised in treatments

cleaned more regularly, growth was found to be

significantly higher, contradicting findings of studies

on some unionid species (e.g. Liberty et al., 2007).

This higher growth rate may be because cleaner

substrate conditions allow pedal-feeding juveniles to

forage for more or better quality food. Whilst this

finding is interesting, higher growth rates for M.

margaritifera should not be sought at the expense of

survival in captive rearing programmes. It appears that

most captive-bred species of mussel require enough

cleaning to remove fine particles in order that normal

foraging behaviour is not affected, but too much

cleaning may cause stress and damage/loss, leading to

higher mortality (O’Beirn et al., 1998). As reported in

other studies (e.g. Buddensiek 1995), juvenile growth

was found to be negligible at low temperatures and

near-cessation (approximately 0.3 lm per day) of

Fig. 5 Mean juvenile survival for each treatment with SD bars.

The x-axis is provided both in days since experiment com-

menced and per month to show how survival relates to time of

year. Juvenile survival between treatments was significantly

different on all sampling occasions (P\ 0.001); 51 days

(F(3,32) = 128.30), 112 days (F(3,32) = 148.285), 167 days

(F(3,32) = 145.296), 247 days (F(3,32) = 140.117), 308 days

(F(3,32) = 145.350) and 362 days (F(3,32) = 64.670). The same

pattern in survival was observed on all sampling occasions;

1–2 mm monthly [1–2 mm weekly [0.25–1 mm monthly

[0.25–1 mm weekly. A 2-way ANOVA showed no significant

interaction between the effects of substrate size and cleaning

regime on survival in June 2013 after 362 days (F(1,32) = 0.805,

P = 0.376)
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growth occurred below 10�C, corroborating the find-

ings of Hruška (1999).

Across all treatments, mortality was highest during

the first growth season (June–October 2012), after

which mortality was relatively low over winter. This

implies that survival is relatively stable when temper-

ature (and therefore metabolic rate) is low. This was

unexpected as it was assumed that mortality would

increase over winter for those juveniles lacking

sufficient nutritional reserves. Buddensiek (1995) not

only found high mortality during the first few months

post-excystment but also found complete mortality of

smaller mussels (\0.7 mm) over-winter; a result

which has not been replicated in this study. Size-

dependent over-winter survival was not observed in

this investigation, contrasting with the findings of

Buddensiek (1995).

It is unclear if there is any intraspecific competition

within sieves at a density of 100 juveniles in 34 cm3 of

substrate, and testing different juvenile densities is an

aspect which requires further investigation. Eybe et al.

(2013) found significantly higher growth in containers

with 200 mussels suggesting that density-dependent

competition was occurring in treatments with higher

numbers. Barnhart (2006) achieved good survival for

several North American freshwater mussel species at

densities of 2000 individuals in small cups. Similarly

Beaty (1999) found no density-dependent effects for

V. iris. Higher densities however may lead to higher

instances of fungal infection which can spread rapidly

and kill large numbers of juveniles (L. Lavictoire,

pers. observation). This system may safeguard against

the spread of fungal infection because juveniles are

contained in separate, removable sieves. Eybe et al.

(2013) found fungal infections could be problematic

and could spread rapidly, especially in containers with

a density of 500 individuals per 500 ml water.

Culture conditions which allow water to flow

through interstitial spaces but do not allow too much

fine organic or particulate matter to infiltrate can
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supply juveniles with suitable habitat conditions with

good levels of oxygen and food (Liberty et al., 2007).

The benefits of rearing juveniles in substrate[1 mm

diameter could be improved oxygen and food supply

and the more efficient removal of potentially toxic ions

such as ammonia or nitrite found to be a limiting factor

for juvenile survival (Eybe et al., 2013). Further

investigations considering interstitial dissolved oxy-

gen concentration, nitrite and ammonia concentration,

and flow characteristics through different substrates

and types of culture system (e.g. down-welling versus

laminar flow) are required to better understand the

habitat requirements of young juveniles. Investigation

is also required to establish the natural diet of M.

margaritigera and the importance of different algae

and bacteria species as food items for juveniles. Whilst

diet was not studied during this investigation, a

comprehensive list of recorded phytoplankton in

Windermere can be found in Reynolds & Irish (2000).

The exact age (or size) at which juvenile M.

margaritifera metamorphose and switch from pedal-

to filter-feeding is unknown but observations made

during this experiment suggest that juveniles were still

pedal-feeding at 12 months old but had switched to

filter-feeding by 25 months old. This down-welling

system is therefore suitable for juveniles which are

pedal- as well as filter-feeding. Further investigation is

required to establish if substrate requirements are

different for pedal-feeding versus filter-feeding

juveniles.

Although mussel culture systems have been some-

what perfected (Lopes-Lima et al., 2014) culture of M.

margaritifera remains challenging. This culture sys-

tem was successful in rearing 1207 juveniles to

12 months old and 518 juveniles to 25 months old.

Juveniles were easy to find when sampling due to the

small size of containers. This is important when

designing culture systems to maximise efficiency. If

scaled up, this system could potentially rear up to 2000

juveniles to 12 months old to a size of[1 mm using

1–2 mm substrate cleaned monthly, requiring minimal

maintenance time (approx. 3 h/month). This work has

informed breeding practices for the Freshwater Pearl

Mussel Ark project at the FBA. A rearing protocol

using 1–2 mm substrate cleaned approximately every

2–3 weeks in modified fish-egg trays (described in

Sweeting & Miles, 2010) was introduced for all new

juvenile cohorts collected from 2013. Initial results

show good numbers of juveniles surviving after

24 months. Early success in this modified system

allows tentative optimism that aspects of this inves-

tigation can be used to scale up propagation of

threatened populations at this facility and could be

replicated elsewhere.

Captive rearing programmes are an important

activity to safeguard the most vulnerable populations

and provide more time for catchment restoration to

improve pearl mussel habitat in the wild (Gum et al.,

2011), especially where problems are diverse and

difficult to solve. It is important to understand the

limiting factors of juvenile culture and to maximise

survival in captivity but these initiatives should not

replace restoration activities in the wild.
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band Südsachsen Mulde/Elster e.V.

Lange, M. & H. Selheim, 2011. Growing factors of juvenile

freshwater pearl mussels and their characteristics in

selected pearl mussel habitats in Saxony (Germany). In:

Thielen, F. (ed.), Ferrantia 64. Musée national d’histoire

naturelle, Luxembourg.

Lavictoire, L., R. A. Sweeting & E. Benito, 2014. Freshwater

pearl mussel ark project: sixth report (November 2012–

October 2013). Freshwater Biological Association,

Ambleside.

Liberty, A. J., B. J. Ostby & R. J. Neves, 2007. Determining a

suitable substrate size and sampling frequency for rearing

juvenile rainbow mussels Villosa iris. North American

Journal of Aquaculture 69: 44–52.

Lopes-Lima, M., A. Teixeira, E. Froufe, A. Lopes, S. Varandas

& R. Sousa, 2014. Biology and conservation of freshwater

bivalves: past, present and future perspectives. Hydrobi-

ologia 735: 1–13.

Machordom, A., R. Araujo, D. Erpenbeck & M. A. Ramos,

2003. Phylogeography and conservation genetics of

endangered European Margaritiferidae (Bivalvia: Union-

oidea). Biological Journal of the Linnean Society 78:

235–252.

Moorkens, E. A., 2011. Progress report on Margaritifera dur-

rovensis captive breeding programme. Unpublished Report

for the Department of Environment, Heritage and Local

Government. Republic of Ireland.

O’Beirn, F. X., R. J. Neves & M. B. Steg, 1998. Survival and

growth of juvenile freshwater mussels (Unionidae) in a

recirculating aquaculture system. American Malacological

Bulletin 14: 165–171.

Preston, S. J., A. Keys & D. Roberts, 2007. Culturing freshwater

pearl mussel Margaritifera margaritifera: a breakthrough

in the conservation of an endangered species. Aquatic

Conservation: Marine and Freshwater Ecosystems 17:

539–549.

Primack, R. B., 2006. Essentials of Conservation Biology, 4th

ed. Sinauer Associates, Inc., Sunderland, MA.

Reynolds C. S. & A. E. Irish, 2000. The phytoplankton of

Windermere (English Lake District). FBA Special Publi-

cation No. 10, Freshwater Biological Association,

Ambleside.

Scheder, C., C. Gumpinger & D. Csar, 2011. Application of a

five-stage field key for the larval development of the

freshwater pearl mussel (Margaritifera margaritifera
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