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Planar random growth processes occur widely in the physical world. Examples
include diffusion-limited aggregation (DLA) for mineral deposition and the Eden
model for biological cell growth. One of the curious features of these models is
that although the models are constructed in an isotropic way, scaling limits appear
to be anisotropic. In this talk, we construct a family of models in which randomly
growing clusters can be represented as compositions of conformal mappings. We
are able to show rigorously that for certain parameter choices, the scaling limits
are anisotropic and we obtain shape theorems in this case. This contrasts with
earlier work on related growth models in which the scaling limits are shown to be
growing disks [5, 2].

Clusters of particles can be represented using compositions of conformal map-
pings as follows. Let c > 0, and let fc denote the unique conformal map

fc : ∆ = {z ∈ C : |z| > 1} → D1 = ∆ \ (1, 1 + d]

having fc(z) = ecz + O(1) at infinity, and sending the exterior disk ∆ to the
complement of the closed unit disk with a slit of length d = d(c) attached at the
point 1. The capacity increment c and the length d of the slit satisfy

(1) ec = 1 +
d2

4(1 + d)
;

in particular, d ≍ c1/2 as c → 0. In terms of aggregation, the closed unit disk can
be viewed as a seed, while the slit represents an attached particle. Typically, we
think of the particle as being small compared to the seed.

A general two-parameter framework to model random or deterministic aggre-
gation, based on conformal maps, is given by the following construction. Pick
a sequence {θk}∞n=1 in [−π, π), and let {dk}∞k=1, or, equivalently, {ck}∞k=1, be a
sequence of non-negative numbers connected via (1). From the two numerical
sequences {θk} and {ck}, we obtain a sequence {fk}∞k=1 of rotated and rescaled
conformal maps, referred to as building blocks, via

fk(z) = eiθkfck(e
−iθkz).

Finally, we set

(2) Φn(z) = f1 ◦ · · · ◦ fn(z), n = 1, 2, . . . .

Each Φn is itself a conformal map sending the exterior disk onto the complement
of a compact set Kn ⊂ C, that is,

Φn : ∆ → C \Kn.

The sets {Kn}∞n=1 are called clusters. They satisfy Kn−1 ⊂ Kn, and model a
growing two-dimensional aggregate formed of n particles.
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We introduce the Aggregate Loewner evolution model, abbreviated ALE(α, η),
with parameters α ∈ R and η ∈ R. In ALE(α, η), conformal maps Φn are defined
as in (2) as follows. Let θ1 be uniform in [0, 2π), and, for k = 2, 3, . . ., let

θk ∝
|Φ′

k−1(e
σ+iθ)|−ηdθ∫

T |Φ
′
k−1(e

σ+it)|ηdt
.

Here, σ > 0 is a regularization parameter, which ensures that the angle distri-
butions are well defined even though Φ′

k−1 has zeros and singularities on T. The
parameter σ is allowed to depend on the basic capacity parameter c.

Next, we define a sequence of capacity increments for k = 2, 3, . . . by taking

ck =
c

|Φ′
k−1(e

σ̃+iθk)|α/2

where σ̃ is another regularization parameter. The ALE(α, 0) model (with σ̃ = 0)
is the same model as the Hastings-Levitov HL(α) model [1], and in particular
ALE(0, 0) coincides with the HL(0) model studied in depth in [5]. When α = 2,
the model coincides with the dielectric breakdown model (DBM) of Mathiesen
and Jensen [4]. When α = 0, the growth process is reminiscent of the Quantum
Loewner Evolution (QLE) of Miller and Sheffield [3] but without quantum gravity,
that is, with γ = 0, and with SLE curves replaced by straight slits.

Clusters that are formed by successively composing slit maps come with a nat-
ural notion of ancestry for their constituent particles. We say that a particle j has
parent 0 if it attaches directly to the unit disk. We say that the particle j has
parent k if the jth particle is directly attached to the kth particle. In the ALE(0, η)
model, each successive particle chooses its attachment point on the cluster accord-
ing to the relative density of harmonic measure (as seen from infinity) raised to
the power η. As the highest concentration of harmonic measure occurs at the tips
of slits, intuitively one would expect that for sufficiently large values of η each
particle is likely to attach near the tip of the previous particle. We show that this
indeed happens, and we identify the values of η for which the above event occurs
with high probability in the limit as c → 0. Figure 1 displays ALE(0, η) clusters
for different values of η.

Define the event

ΩN = {Particle j has parent j − 1 for all j = 1, . . . , N}

in which there is a simple ancestral line whereby each particle is attached to the
previous particle. Set n(t) = ⌊tc−1⌋. Our main result states that if N = n(T ) for
some fixed T > 0, then

lim
c→0

P(ΩN ) = 1 if η > 1

lim sup
c→0

P(ΩN ) < 1 if η = 1,

provided σ is small enough. When η > 1, we characterise how fast one must let
σ → 0 as c → 0 in order for P(ΩN ) → 1. We show that when this happens, the
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cluster Kn(t) converges in the Hausdorff topology to a slit of capacity t at position

eiθ1 .

(a) ALE(−1.0) (b) ALE(0.0)

(c) ALE(1.0) (d) ALE(1.5)

(e) ALE(2.0) (f) ALE(4.0)

Figure 1. ALE clusters with c = 10−4, σ = c2, and n = 10, 000.
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