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From Lichen to Lightning: Understanding Random
Growth

AMANDA TURNER

Abstract. Random growth arises in physical and industrial settings, from cancer to polymer creation. Despite
considerable e�ort, mathematicians and physicists have been unable to answer fundamental questions such
as “What do typical clusters look like?”. This article explores how combining probability and complex analysis
can provide mathematical descriptions of random growth.

Random growth in nature

Random growth processes occur widely in nature.
They appear as collections of particles (often cells
or molecules), called clusters, to which new particles
are attached according to some stochastic rule. The
physical mechanism by which the growth occurs de-
termines the precise stochastic rule, and di�erent
types of growth can produce very di�erent clusters.

Some of the most commonly seen examples of ran-
dom growth in nature arise through biological growth,
such as lichen on a rock or cancer tumours grown in
a lab. In these examples, growth occurs due to a re-
productive event taking place on the boundary of the
cluster and so (in the absence of environmental in�u-
ences) the next particle is equally likely to be added
anywhere on the cluster boundary. Many lichens tend
to grow as clusters that are round with roughness
at the edges. Other biological growth processes also
commonly produce this kind of shape.

Another way in which random growth can occur is
through mineral aggregation. An example of this is
soot deposition in a diesel engine. Fine particles of
carbon di�use around the engine until they either
hit the surface of the engine or the soot aggregate
which has started to line the engine. At this point
they stick, becoming part of the aggregate. Similar
kinds of clusters arise as frost �owers, which appear
on car windows on some winter mornings, and in
industrial processes such as electro-deposition. In
all of these examples, the position at which each
successive particle is attached is given by the hitting
distribution of a di�usion process (such as Brownian
motion) on the cluster boundary. It is no longer the
case that all positions on the cluster boundary are
equally likely as di�usion processes have a greater
chance of hitting protrusions than indentations. As
a result, clusters tend to be much more irregular

than those formed from biological growth processes,
often exhibiting long �ngers, deep fjords and fractal
branching structures (see Figure 1).

Figure 1. A “pseudo fossil” formed by the deposition of
manganese oxide in a sandy substrate. This illustrates the
typical features present in clusters formed through
mineral aggregation. (Photo: Alan Dickinson).

Although lightning may not look like an obvious ex-
ample of random growth, it also �ts into this frame-
work. The density, humidity, and conductivity of air
is very inhomogeneous. Lightning surveys all possible
paths through this medium and then strikes along
those paths with the least electrical resistance. The
molecules through which the lightning strike passes
can be viewed as a cluster to which molecules are
successively added in a way which minimises the total
electrical resistance at each time-step. Surface dis-
charges of lightning (also called Lichtenberg �gures)
and polymer formation are examples of random grow-
ing clusters which also arise in this way. The shape
of the cluster formed depends on the strength of
the local electric �eld and can range from a solid disk
if the electric �eld is very weak to a one-dimensional
path if the electric �eld is very strong.
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Discrete models

The earliest mathematical models for random growth
were discrete in nature. In discrete models, growing
clusters K0 ⊂ K1 ⊂ · · · are constructed as increasing
sets of connected vertices on an underlying (in�nite)
connected graph G = (V,E). At each time step a
new vertex is chosen from the neighbours of the
cluster according to some stochastic rule and added
to the cluster. To be precise, for any ∅ ⊂ A ⊂ V , let

∂A = {v ∈ V \ A : (u,v ) ∈ E for some u ∈ A}

denote the boundary of the subgraph A and suppose
pA : ∂A → [0,1] is some function which satis�es∑

v ∈∂A

pA(v ) = 1.

A random growth process K0,K1, . . ., of sets of con-
nected vertices, can be constructed recursively by
starting from some connected set ∅ ⊂ K0 ⊂ V and
taking Kn+1 = Kn ∪ {v } with probability pKn (v ). It is
usual to start with K0 = {v0} where v0 is some dis-
tinguished vertex called the seed particle. Typically
G is a lattice such as Zd and v0 = 0.

Figure 2. A representation of a random cluster grown on
Z2. The red disk represents the seed particle which was
placed at the origin. The blue disks are the �rst �ve
particles to be attached to the cluster. The empty black
circles represent the possible locations at which the next
particle might be attached.

In order to model the physical growth processes dis-
cussed in the previous section, we need to show
how to construct probability distribution functions pA
which correspond to the physical attachment rules
described above. We begin by considering biological

growth. One possible way to model uniformly ran-
dom reproductive events on the cluster boundary is
by choosing each successive particle uniformly from
all possible locations on the boundary i.e. pA(v ) =
1/|∂A | for each v ∈ ∂A. This model is called the
Eden model and was �rst proposed in 1961 [1]. This
is not the only way in which biological growth can be
modelled on a lattice. Observe that in Figure 2, the
vertex at position (1,−1) has three possible parents
whereas the vertex at position (2,0) has only one
possible parent. If the new particles are actually aris-
ing as o�spring of the parent particles, one would
expect the next particle to be more likely to be added
at (1,−1) than (2,0). A more realistic variation on the
Eden model is to pick each vertex with a probability
which is proportional to the number of edges which
connects that vertex to the cluster i.e. if

NA(v ) = {u ∈ A : (u,v ) ∈ E},

then

pA(v ) =
|NA(v )|∑

u∈∂A |NA(u)|
.

In 1981, Witten and Sander proposed the following
model for mineral aggregation which they called
di�usion-limited aggregation or DLA [6]. As before,
initialise with a seed at the origin or some other dis-
tinguished vertex. At each time step place a particle
on a random site at a large distance from the seed.
Allow the particle to perform a simple random walk
on the graph until it visits a site adjacent to the clus-
ter at which point attach the particle to the cluster
i.e. add the vertex on which the particle stopped. The
distribution function pA can therefore be obtained
by computing the hitting probabilities of the clus-
ter boundary ∂A by a simple random walk started
at “in�nity”. In order to guarantee that the particle
eventually reaches the cluster we need the random
walk to be a recurrent process on the underlying
graph. This means that if G = Zd , we must take
d ≤ 2. The case d = 1 is not very interesting as
particles will always just attach to the left or right
of the cluster with equal probability, so it is usual to
take d = 2 when talking about DLA. A variant of this
model is called multi-particle DLA in which in�nitely
many particles are simultaneously released from ran-
dom positions, rather than one at a time, and they
perform independent random walks until they hit
the cluster. Computing pA explicitly for larger and
larger sets A gets complicated very quickly and the
long-term behaviour of DLA is notoriously di�cult
to understand.
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In order to model clusters formed by electric dis-
charge, the notion of electric potential is needed. For
simplicity, take G = Z2 and v0 = 0. Suppose there
are two electrodes in the system: one placed at 0
and the second modelled as a large circle of radius
R. Let BR(0) ⊂ R2 denote the open ball with centre
0 and radius R. Given a conducting cluster {0} ⊆
A ⊂ BR(0) ∩ Z2, the electric potential is a discrete
harmonic function φA (see the aside on “Harmonic
functions”) de�ned on the lattice with φA(v ) = 0 if
v ∈ A and φA(v ) = 1 if |v | ≥ R. (It follows from
the discussion on harmonic functions that φA(v ) is
equal to the probability that a simple random walk
started at v exits the ball BR(0) before hitting the
set A.) The probability of attaching a particle at a
vertex v ∈ ∂A depends on the local electric �eld, or
potential di�erence, φA(v ) − φA(u) = φA(v ) for each
u ∈ NA(v ). Fix η ∈ R. For each v ∈ ∂A, let

pA(v ) =
|NA(v )|φA(v )η∑

u∈∂A |NA(u)|φA(u)η
.

This model is called dielectric-breakdown or DBM(η)
and it was proposed in 1984 by Niemeyer, Pietronero
and Wiesmann [3]. The parameter η determines the
extent to which the attachment locations are in�u-
enced by the electric potential. In the case when
η = 0, this model is just the variation of the Eden
model described above; when η = 1 it produces clus-
ters which are believed to behave qualitatively like
DLA; as η →∞ growth concentrates at the point of
maximal potential di�erence. It is conjectured that
the limit in this case is a simple path. Similarly to DLA,
computing φA (and hence pA) explicitly becomes in-
creasingly complicated as the cluster grows.

Conformal models for planar random growth

The discrete models de�ned above are challenging to
study, in part due to a lack of available mathematical
tools. In 1998 Hastings and Levitov [2] formulated an
approach to modelling planar growth, which included
versions of the physical models described above. The
idea was to represent growing clusters as composi-
tions of conformal mappings. This approach provided
a way in which techniques from complex analysis
could be used to study planar random growth.

Let K0 denote the unit disk in the complex plane C

and let D0 = C \ K0. A particle is any compact set
P ⊂ D0 such that K0 ∪ P is simply connected. By
the Riemann mapping theorem (see the aside) there
exists a unique conformal bijection fP : D0 → D0 \P

which �xes in�nity. We use this mapping as a mathe-
matical description of a particle attached to the unit
disk. We say that the particle is attached at 1 if 1 lies
in the closure of P . Examples of allowable particle
shapes include a bump, as shown in Figure 3, a disk
tangent to the unit circle at 1, or a slit (line segment)
of the form (1,1 + d ]. If P represents a particle at-
tached at 1, then e iθP represents a particle of the
same shape attached at e iθ . It has corresponding
conformal mapping

fe iθP (z ) = e
iθ fP (e−iθz ).

Figure 3. The exterior unit disk and its image under the
conformal mapping corresponding to a single particle
attached at 1.

The Riemann mapping theorem

Let K ⊂ C be a connected compact subset of
C, larger than a single point, such that C\K is
simply connected. There exists a unique con-
formal bijection f : D0 → C \ K which �xes
in�nity in the sense that, for some C > 0,

f (z ) = C z +O (1) as |z | → ∞.

Given a sequence of particles P1,P2, . . . and their
associated conformal mappings f1, f2, . . . , de�ne a
sequence of conformal bijections Φn : D0 → C \ Kn
by setting Φ0(z ) = z and recursively de�ning

Φn(z ) = Φn−1 ◦ fn(z ) = f1 ◦ · · · ◦ fn(z ).

Note that Kn = Kn−1 ∪ Φn−1(Pn), so the sequence
K0 ⊂ K1 ⊂ K2 ⊂ · · · represents a growing cluster
where the unit disk K0 is the seed particle and at
time n the particle Φn−1(Pn) is added to the cluster
(see Figure 4).

When the particles which are being attached to the
cluster are small, relative to the unit disk, the lead-
ing order behaviour of each particle map depends
only on the attachment angle and the size of each
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particle. For each particle Pn , let θn denote the at-
tachment angle and dn the diameter. By choosing
the sequences θ1, θ2, . . . and d1,d2, . . . in di�erent
ways, it is possible to describe a wide class of growth
models. In the remainder of this section, we will ex-
plore how to choose these sequences in order to
construct models that correspond to the physical
processes described in the �rst section.

Figure 4. An example of a cluster Kn , grown by successive
compositions of conformal mappings, together with the
image of the exterior unit disk under the map Φn . The
seed particle is shown in red and the �rst �ve particles to
arrive are shown in blue.

In the model for biological growth, the probability of
attaching a particle along a section of the cluster
boundary should be proportional to the arc-length
along that section of the boundary. Speci�cally, given
an open arc in ∂Kn−1, there exist a < b ∈ R such
that θ 7→ Φn−1(e iθ) maps the interval (a,b) onto this
arc. The length of this arc is therefore given by∫ b

a
|Φ′n−1(e

iθ)|dθ.

Attaching the next particle onto this arc is equivalent
to picking θn ∈ (a,b) and so we need

P(θn ∈ (a,b)) ∝
∫ b

a
|Φ′n−1(e

iθ)|dθ

or equivalently θn must have density function propor-
tional to |Φ′n−1(e

iθ)|. Next consider how the diameter
dn should be chosen. For simplicity suppose that
the particle being attached is a small slit of length

dn i.e. Pn = e iθn (1,1 + dn]. In this case, an explicit
formula can be written down for the function fn (see
[2]). Furthermore, there exists some βn (which can be
expressed as a function of dn ) such that θ 7→ fn(e iθ)
maps the interval (θn, θn + βn] to Pn . Using the chain
rule, the particle Φn−1(Pn) which is added to the
cluster therefore has length∫ βn

0
|Φ′n−1(fn(e

i (θn+θ)))| | f ′n (e
i (θn+θ))|dθ.

Since

dn =
∫ βn

0
| f ′n (e

i (θn+θ))|dθ,

the length of Φn−1(Pn) is approximately equal to
dn |Φ′n−1(rne

iθn )| for some 1 ≤ rn ≤ 1 + dn . In the
physical models, the particles being attached are all
the same size, say d . We therefore need to choose
dn in such a way as to ensure that this expression is
approximately equal to d for all n. When d is small,
a possible choice is to take

dn = d |Φ′n−1(e
iθn )|−1. (1)

The above choices of θn and dn provide a model for
an o�-lattice version of the Eden model.

Now suppose we wish to construct an o�-lattice ver-
sion of DLA. Exactly the same argument as above
shows that we should again choose dn satisfying
(1). However, this time we need to pick θn so that
Φn−1(e iθn ) has the same distribution asWτ where
Wt is a Brownian motion started from in�nity (viewed
on the Riemann sphere) and τ is the �rst time that
the Brownian motion hits Kn−1. Equivalently, e iθn
should be the hitting distribution of Φ−1n−1(Wt ) on the
unit circle. However, Φ−1n−1 is a conformal mapping
and therefore its real and imaginary parts are har-
monic functions (see the aside). Using Itô’s formula,
Φ−1n−1(Wt ) is a continuous martingale and hence is
a time-change of Brownian motion. By symmetry,
the hitting distribution of a time-change of Brownian
motion on the unit circle is uniform, so θn should be
chosen with the uniform distribution on [0,2π).

A similar argument can be used to show that one
can obtain an o�-lattice version of DBM(η) by taking
θn with density function proportional to

|Φ′n−1(e
iθ)|1−η

and dn satisfying (1). Note that, as in the discrete case,
η = 0 corresponds to the Eden model and η = 1
corresponds to DLA. There are several variations on
this. In the original Hastings-Levitov model HL(α) [2],
θn is picked uniformly on the unit circle and

dn = d |Φ′n−1(e
iθn )|−α/2.
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The HL(α) model corresponds to DBM(η) via the re-
lation α = η + 1 so HL(2) gives DLA (see Figure 5).

Figure 5. A version of DLA grown by composing conformal
mappings using the Hastings-Levitov construction.

Mathematical study of random growth

Random growth clusters in the physical world usually
consist of a large number of particles, each of which
is small relative to the size of the cluster. Although the
randomness typically occurs at a microscopic level
through the attachment rule for each successive par-
ticle, we observe the clusters at a macroscopic level
where we cannot see the individual particles. Ran-
dom growth processes are completely unpredictable
at the level of particles, however large clusters of-
ten exhibit predictable or ‘universal’ behaviour. The
aim of studying mathematical models is to extract
the principle mechanisms underlying this universal
behaviour.

One of the intriguing features of random growth mod-
els is that, even though the models are isotropic by
construction, simulations suggest that large clusters
become anisotropic (see Figure 5). As yet there is
no satisfactory mathematical explanation for how
such complicated structures arise from the dynamics
of the model. Representing random growth clusters
using conformal mappings enables one to combine
analytic and probabilistic techniques. Research at the
interface of these two �elds has already given us
mathematical objects such as stochastic partial dif-

ferential equations (SPDEs) and stochastic Loewner
evolution (SLE). The recent developments in these ar-
eas have suggested approaches and techniques that
can be applied in a random growth setting and we are
beginning to be able to identify the characteristics
of random growth in speci�c cases [5, 4].

It has been over �fty years since mathematicians
and physicists �rst started seriously thinking about
random growth. Although progress has been made
in this time, we are still some way from being able to
answer the really important questions. Mathematical
tools and techniques that may shed light on these
questions have recently started to emerge. There is
a good chance that we will not need to wait another
�fty years for the major breakthrough, so right now
this is a very exciting area to be involved in.
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Harmonic functions

A continuous function u : D̄ → R, where D is some open subset of Rd and D̄ is its closure, is a
harmonic function if it satis�es Laplace’s equation

∆u = 0 in D (2)

where

∆u =
∂2u

∂x21
+ · · · +

∂2u

∂x2d
.

Using the Cauchy-Riemann equations, it can be shown that the real and imaginary parts of any
holomorphic function are harmonic functions. Harmonic functions are closely connected with Brownian
motion. Let D be a transient domain (i.e. a domain which Brownian motion will exit in �nite time almost
surely). Then if u is a harmonic function on D

u(x) = Exu(Wτ) (3)

whereW is a d -dimensional Brownian motion started at x and τ = τD is the �rst exit time from D . Set

ω(x ;dy) = Px (Wτ ∈ dy).

Then we can write (3) as

u(x) =
∫
∂D
u(y)ω(x ;dy).

We call ω(x ;dy) the harmonic measure on ∂D as seen from x . Using the symmetry of Brownian motion,
it follows that harmonic functions satisfy the mean value property

u(x) =
∫
∂Br (x)

u(y)dA(y)

for all balls Br (x) ⊆ D , where dA is the normalised uniform surface area measure on ∂Br (x).
A similar notion, with analogous properties, exists on a graph G = (V,E). Given any �nite connected
subgraph ∅ ⊂ D ⊂ V , a function u : D ∪ ∂D → R is discrete harmonic on D if it satis�es (2), where ∆
is now the discrete Laplacian

∆u(x) =
∑

y :(x,y)∈E

(u(y) − u(x)).

This implies the mean-value property

u(x) =
1
|∂{x}|

∑
y :(x,y)∈E

u(y).

For any A ⊂ ∂D , the harmonic measure of A with respect to D , ω(x,A,D), is the unique discrete
harmonic function on D with boundary values ω(x,A,D) = 1 when x ∈ A and ω(x,A,D) = 0 when
x ∈ ∂D \ A. Harmonic measure is closely connected with simple random walks via the relationship

ω(x, {y},D) = Px (Xτ = y)

where Xn is a simple random walk starting from x and τ = τD is the �rst exit time from D . If u is any
harmonic function on D then

u(x) =
∑
y ∈∂D

u(y)ω(x, {y},D) = Exu(Xτ).


