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Abstract

This thesis builds upon recent developments in the areas o f international eco­

nomics, econometrics and computational statistics, to provide a robust framework 

for specifying, modelling and forecasting real exchange rates. The main research 

topics addressed are the following. First, the impact o f conditional heteroskedas- 

ticity on linearity tests. Second, the parsimonious modelling and forecasting o f 

the dollar-sterling real exchange rate using a long span o f data. Third, the re­

examination o f the well-documented real exchange rate-consumption anomaly 

from the viewpoint o f nonlinear dynamics. Finally, the relationship between real 

exchange rate persistence and time-varying trade costs.
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CHAPTER 1

Introduction

Learn from  yesterday, live fo r  today, 

hope f o r  tomorrow. The im portant 

thing is not to stop  questioning.

—  A lbert Einstein (1879 -  1955)

Over the last decades there has been a steadily increasing interest in the de­

velopment o f nonlinear time series models, and their application in international 

economics. This thesis focuses on a specific family o f these models, the smooth 

transition autoregressive, and their usage in explaining and forecasting the be­

haviour o f real exchange rates.

A natural starting point for the analysis o f  real exchange rates is the Purchasing 

Power Parity (PPP) theory. PPP states that the nominal exchange rate between two 

currencies should be equal to the ratio o f  aggregate price levels between the two 

countries, so that a unit o f  currency o f one country will have the same purchasing 

power in a foreign country . 1 The hypothesis that PPP holds in the long run is

1 Excellent surveys covering the origins o f PPP theory and the findings o f the associated em­
pirical literature are provided in Samo and Taylor (2002) and Taylor (2006).
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a building block o f many macroeconomic models. It is therefore o f interest to 

international economists.

However, the first empirical studies employing unit root tests in the late 1980s 

were consistent in their failure to reject the unit root hypothesis for major real 

exchange rates (e.g., Taylor, 1988; Mark, 1990). Subsequent studies using longer 

time series data sets or panel methods suggested that the early non-rejections o f 

the unit root hypothesis was due to low power o f the corresponding test (Lothian 

and Taylor, 1996). Despite the evidence o f mean reversion, the implied speeds o f 

adjustment o f the real exchange rate in these studies was implausibly slow, typi­

cally with half-life in the range o f  three to five years. Rogoff (1996) summarised 

this position as follows

“H ow can one reconcile the enormous short-term  volatility o f  real 

exchange rates with the extremely slow  rate a t which shocks appear  

to dam p out? ”

Rogoff (1996, p. 647)

After the work o f Rogoff (1996), perhaps the m ajor change in emphasis has 

been the application o f nonlinear rather than linear methods. These nonlinear 

models are based on theoretical analyses that embody factors such as transac­

tions costs, limits to arbitrage and heterogeneity o f expectations o f market par­

ticipants (see, e.g., Dumas, 1992; De Grauwe et al., 1993; Shleifer and Vishny, 

1997). As a consequence, the real exchange rate is described by a nonlinear data 

generating process that exhibits a region o f unit root (or near-unit root behaviour) 

near the equilibrium real exchange rate. Nonlinear models that capture this type 

o f behaviour are the threshold autoregressive model o f Tong (1983), and the ex­

ponential smooth transition autoregressive model o f Ozaki (1978) and Terasvirta 

(1994).

It follows that econometric modelling requires appropriate tests for linearity. 

Typically, researchers employ tests which are based on the assumption o f ho-
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moskedastic residuals. However, the fact that changes in regime (e.g., fixed to 

floating, or different monetary regimes) may induce time-varying volatility raises 

concerns regarding statistical inferences. A number o f authors have noted that the 

presence o f conditional heteroskedasticity may lead to poor performance (spu­

rious inference) o f linearity tests (Lundbergh and Terasvirta, 1998). Chapter 2 

examines the robustness o f conventional linearity tests and tests based on Boot­

strap methods to conditional heteroskedasticity o f unknown form. The impor­

tance o f robust inference is highlighted through M onte Carlo simulations, as well 

as, several empirical applications on economic and financial time series data. The 

insights gained are, in turn, exploited in the remaining chapters.

Chapter 3 deals with modelling and forecasting the dollar-sterling real ex­

change rate using a long span o f data. The motivation o f the chapter is twofold. 

First, the empirical literature on the out-of-sample performance o f nonlinear real 

exchange rate models is scarce. Second, there is a documented difficulty o f  non­

linear models to outperform their linear counterparts (Clements and Smith, 1999, 

see, e.g.,). In order to address these issues, special attention is paid to the speci­

fication stage o f the nonlinear model and the investigation o f the performance o f 

forecast evaluation measures. The former consists o f a battery o f recently devel­

oped statistical tests and computationally intensive techniques. While, the exam­

ination o f the small sample properties o f several forecast evaluation measures is 

implemented through extensive Monte Carlo simulations.

In Chapters 2 and 3, the equilibrium real exchange rate is assumed constant. 

However, a variety o f theoretical models, such as that o f Balassa (1964) and 

Samuelson (1964), imply a non-constant equilibrium in the real exchange rate 

and estimates, including proxies for the equilibrium determinants, appear signif­

icant (see e.g. Lothian and Taylor, 2008; Hegwood and Papell, 2002; Paya and 

Peel, 2006a). In this framework, International Real Business Cycle (IRBC) mod­

els imply a relationship between real exchange rates and consumption series (see 

Backus and Smith, 1993; Kollmann, 1995). However, these models have received
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little (if  any) empirical support. This discouraging finding gave rise to what is 

known as the “Backus and Smith puzzle” or the “consumption real exchange rate 

anomaly” . Chapter 4 examines the role o f nonlinear dynamics in the generation o f 

the puzzle and provides further evidence on this empirical regularity. Specifically, 

linear cointegration methods and nonlinear models are employed on quarterly data 

for several country pairs. In addition, Generalised Impulse Response Functions 

are introduced so as to examine the time profile o f  the impact o f shocks on the 

deviations from the IRBC equilibrium.

Chapter 5 explores a different approach to the explanation o f the behaviour 

o f the real exchange rate motivated by the recent gravity literature (Anderson and 

van Wincoop, 2004; Jacks et al., 2008). In Jacks et al. (2008) a micro-founded 

measure is derived, that enables the construction o f long-span trade costs indices. 

Using this measure, it is shown that trade costs have changed substantially over 

time. The crucial implication o f this finding is that if  trade barriers change over 

time then so should the “degree” o f nonlinearity in real exchange rate series. To 

this end, two nonlinear real exchange rate models are extended to accommodate 

time-varying market frictions. Moreover, the implications o f the estimated models 

are discussed and compared with those o f models based on constant trade costs.

The last chapter summarises the key results and discusses the contributions o f 

the thesis.
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C HAPTER 2

Specifying Smooth Transition Regression Models 

in the Presence of Conditional Heteroskedasticity 

of Unknown Form1

There are considerable dangers in 

overem phasising the role o f  signif­

icance tests in the interpretation o f  

the data

—  Sir D a v id  Roxbee Cox (1924 -  )

2.1 Introduction

Over the last decades there has been a steadily increasing interest in the devel­

opment and application o f nonlinear time series models. A widely used family 

o f nonlinear models is the Smooth Transition Autoregression (STAR) o f Ozaki

1 Monte Carlo experiments for the present and the following chapters were conducted on the 
Lancaster High Performance Cluster. We are grateful to the administrator, Mike Pacey, for his 
assistance.
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(1978), Granger and Terasvirta (1993), and Terasvirta (1994). By allowing regime 

dependent behaviour, STAR models appear to parsimoniously capture the nonlin­

ear dependence (in the mean) o f many economic and financial time series (see, 

e.g., van Dijk et al., 2002).

Due to the fact that there are various STAR formulations researchers typically 

adopt a modelling cycle, which consists o f  specification, estimation and evaluation 

stages (Eitrheim and Terasvirta, 1996). Testing linearity comprises the first step 

o f  the specification procedure. Several linearity tests against smooth transition 

nonlinearity have been proposed in the literature (e.g., Luukkonen et al., 1988; 

Terasvirta, 1994; Escribano and Jorda, 1999; Gonzalez and Terasvirta, 2006). The 

most widely used are the Lagrange M ultiplier type test o f Terasvirta (1994) and 

the test derived by Escribano and Jorda (1999). Despite the fact that there is a 

vast empirical literature suggesting that the residuals o f many regression models 

in economics and finance exhibit time-varying conditional variance (Engle, 1982, 

2 0 0 1 ), the robustness o f these tests to conditional heteroskedasticity has not been 

thoroughly addressed.

As noted by a number o f researchers neglected heteroskedasticity may result 

in substantial oversizing o f linearity tests. It also holds that the performance o f 

tests for conditional heteroskedasticity depends on the correct specification o f the 

conditional mean (see, e.g., Blake and Kapetanios, 2007, and references therein). 

Notably, Granger and Terasvirta (1993) argue that the Autoregressive Conditional 

Heteroskedastic (ARCH) model o f Engle (1982) although linear in mean can com­

plicate tests for linearity. Wong and Li (1997) show through M onte Carlo simu­

lations that tests for Threshold Autoregression (TAR) assuming a constant con­

ditional variance can be heavily oversized in the presence o f ARCH innovations. 

A similar empirical finding is provided by Hum and Becker (2007) for the neural 

network test o f  Terasvirta et al. (1993). Further, Bera and Higgins (1997) argue 

that bilinear processes can be confused with ARCH processes due to the similarity 

o f their unconditional moment structure.
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Granger and Terasvirta (1993), based on the work o f Davidson and M acK­

innon (1985), propose a robust test for linearity against STAR nonlinearity in 

the presence o f unknown form o f heteroskedasticity. However, Lundbergh and 

Terasvirta (1998) illustrate that although the above robustification significantly re­

duces oversizing it may result in a severe loss o f power. To this end, they suggest 

using the original test and examining the presence o f neglected heteroskedasticity 

in the following steps o f  the modelling procedure. However, such a modelling 

cycle may often lead to the misspecification o f  the conditional mean.

In this chapter, we investigate the effect o f conditional heteroskedasticity on 

the linearity test o f Escribano and Jorda (1999) as well as four heteroskedasticity 

robust versions. The first three utilise the Heteroskedasticity Consistent Covari­

ance M atrix Estimators (HCCMEs) considered in W hite (1980) and M acKinnon 

and White 1985, while the last one employs the Fixed Design Wild Bootstrap o f 

Kreiss (1997) and Gonsalves and Kilian (2004). HCCMEs are typically employed 

by researchers due to their asymptotic validity in the presence o f heteroskedastic­

ity o f unknown form, simple implementation and little computational cost (Long 

and Ervin, 2000) compared to bootstrap methods. However, in finite samples 

HCCMEs can be severely biased and, in many cases, they are outperformed by 

bootstrap methods (Flachaire, 2005). Although we focus on the Generalised A u­

toregressive Conditional Heteroskedastic (GARCH) model o f Bollerslev (1986), 

we also report results for the Asymmetric GARCH model o f Engle (1990), the Ex­

ponential GARCH model o f Nelson (1991), the GJR GARCH model o f Glosten 

et al. (1993) and the stochastic volatility model advocated by Taylor (1986) and 

Shephard (1996).

Our findings illustrate that conventional tests may seriously overreject the null 

o f  linearity when the null is true and the conditional variance o f the error term 

is time-varying. Further, the degree o f oversizing is much higher than the one 

reported by Lundbergh and Terasvirta (1998) for the Terasvirta (1994) test and 

tends to increase (in many cases rapidly) with the sample size. On the other hand,
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if  the true process is nonlinear in the mean, conditional heteroskedasticity can 

frequently result in choosing misspecified nonlinear models. Consequently, this 

can pose problems in the estimation stage o f STAR models.

In general, robust tests based on HCCMEs perform poorly. These tests do not 

always lead to an improvement in empirical size and, usually, result in very low 

size adjusted power. The final inference technique, the Fixed Design Wild Boot­

strap, is superior with respect to all the criteria employed in this study. First, the 

empirical size o f the tests is very close to the nominal significance level. Second, 

the empirical power is much higher than the rest o f  the methods. Finally, it results 

in the selection o f correctly specified models in the majority o f cases.

The rest o f the chapter is organised as follows. Section 2.2 outlines the ba­

sic STAR representation, which facilitates the analysis o f testing linearity against 

STAR nonlinearity in Section 2.3. Dealing with conditional heteroskedasticity o f 

unknown form using HCCMEs and the Fixed Design Wild Bootstrap is discussed 

in Section 2.3.1. The next section investigates the finite sample performance o f 

the tests through M onte Carlo simulations. Section 2.5 presents an empirical ap­

plication on empirical data. Finally, the last section concludes.

2.2 Smooth Transition Regression Models

The basic STAR model representation for a univariate time series {y t } is given

by

yt — tti.o +  +  • • • +  n i iPyt- p +  ( ^ o  +

+ 7r2,i?/t-i +  • • • +  tt2 ,p'yt-p)F{su 7 ) c) +  1 L — 1 , . . .  ,T ,  (2.1)

or equivalently

yt = i r [x t +  ir'2x tF ( s t \ 7 , c) +  et , t =  1 , . . . ,  T, (2 .2)



where x t =  (1, x ' J  with x t =  (yt- \ , . . . ,  yt-pY  and 7T,- =  (7rJ)0, . . . ,  7rj;P)', for 

j  =  1,2. The STAR model can be easily extended to a Smooth Transition Re­

gression (STR) model by augmenting Equation (2.2) with exogenous regressors. 

Hence, our analysis can be generalised to the STR model in a straightforward 

manner. Depending on the derivation o f the linearity test under consideration, it 

is assumed that the error term, et , is either an independent, identically normally 

distributed random variable, et ~  J\f{0 , <r£), or a martingale difference sequence. 

That is, E[et \Tt- \ \  =  0, where Xt- \  is the information set up to time t — 1 consist­

ing o f all lagged values o f y. Note that in the latter case the variance o f the error 

term is not restricted to be constant. Models that capture the dependence both in 

the conditional mean and the conditional variance can be found in Lundbergh and 

Terasvirta (1998) and Chan and M cAleer (2002).

The transition function F (  ) is at least fourth-order, continuously differen­

tiable with respect to 7  and is bounded between 0 and 1. The selection o f the 

transition function specifies the two common forms o f  the STAR model. For the 

Exponential STAR (ESTAR) the transition function is given by

F ( s t ; 7 ,c) =  1 -  exp ( -7  (st -  c)2) , 7  >  0, (2.3)

while for the Logistic STAR (LSTAR),

F ( s t ’, 7 , c) =  [1 4 - exp ( —7  (st — c))]- 1 , 7  >  0, (2.4)

where c is a constant and s t is the transition variable. The transition variable is 

usually set equal to the lagged endogenous variable yt-d,  where the delay param ­

eter d is a positive integer. For s t =  yt-d and c =  7r2)o =  0 the ESTAR model 

collapses to the Exponential Autoregressive (EAR) model o f Haggan and Ozaki 

(1981). Other choices are also possible for the transition variable, such as exoge­

nous variables, nonlinear functions o f yt- d or time trends (see, e.g., van Dijk et al., 

2002; Paya et al., 2003). The ESTAR transition function is symmetric around

9



(st -  c) and admits the limits

F(-) —► 1 as |s t -  c\ —► + 0 0 , (2.5)

F(-)  ^  0  as | — c| —*► 0 . (2 .6 )

While the logistic transition function is asymmetric around (st — c) and admits 

the limits

F(-)  —► 1 as (st — c) —> + 0 0 , (2.7)

F(-) —> 0 as (st — c) —» —0 0 . (2.8)

The smoothness parameter 7  e  (0 ,0 0 ) determines the speed o f transition o f F(-) 

towards the inner or outer regime and, therefore, the “degree” o f nonlinearity (see 

Figure 2.1). As 7  —► 0 both transition functions approach a constant and the 

models become linear. For the ESTAR model the same holds when 7  —> 0 0 . 

Therefore, STAR models nest linear AR models. Moreover, the LSTAR model 

nests the Threshold Autoregressive (TAR) model with two regimes since for 7  —> 

00  the logistic transition function approaches the indicator function.

The properties o f STR and STAR models are very appealing in modelling non­

linear economic and financial time series. For example, the fact that macroeco­

nomic time series as well as their relationships may be characterised by asym­

metries associated with the stages o f the business cycle (see, e.g., Skalin and 

Terasvirta, 1999; Sensier et al., 2002; Deschamps, 2008) makes Logistic STR 

models particularly applicable. On the other hand, factors such as market fric­

tions, the sunk costs o f  international arbitrage as well as heterogeneous agents, 

may induce nonlinear and symmetric adjustment o f many macroeconomic and fi­

nancial series (e.g., real exchange rates, long gilt futures, dividend-price ratios)

10



Exponential Transition Function Logistic Transition Function

Figure 2.1: The Logistic and Exponential Transition Functions for 7  e
{0 .0 1 , . . . ,  2 }, s t G ( —2 0 , . . . ,  2 0 } and c =  0 .

motivating the use o f Exponential STR models (e.g., Michael et al., 1997; Gal­

lagher and Taylor, 2001; McMillan and Speight, 2002).

2.3 Testing Linearity against Smooth Transition Non- 

linearity

There is usually uncertainty about the exact Data Generating Process (DGP) o f a 

variable. Data driven methods allow the selection between competing models and, 

therefore, provide evidence on the validity o f the implications o f theoretical m od­

els. Several testing procedures have been proposed in the literature to examine 

whether a series exhibits STAR-type nonlinearity and, in turn, if  the nonlinearity 

displayed is o f ESTAR or LSTAR form (e.g., Luukkonen et al., 1988; Terasvirta, 

1994; Escribano and Jorda, 1999; Gonzalez and Terasvirta, 2006).

Testing for the nonlinear part o f Equation (2.2) gives rise to an nuisance pa­

rameter problem (Davies, 1977, 1987). The null hypothesis o f  linearity corre­

sponds to both Hq\ tz'2 =  0 and H 0: 7  =  0. In the former case the parameters 

7  and c are not identified under the null. While in the latter parameters ir'2 and 

c are not identified. Consequently, classical Lagrange M ultiplier (LM) and Wald 

statistics may not follow standard distributions. Luukkonen et al. (1988) sug-
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gest replacing the transition function by a first-order Taylor-series approximation 

around 7  =  0 .2 This re-parameterisation resolves the identification problem since 

it does not involve nuisance parameters. The auxiliary regression is given by

Ut — $ox t 4- S[xtSt  +  S'2x t s j  +  Ut, (2.9)

where ut — et + R (7 , s t), R(-) is the remainder term o f the Taylor series. However,

if  s t =  yt-d and d < p  then

Vt = &ox t +  8[x ts t +  &2x ts t +  u ti (2 .10)

so as to avoid perfect multicollinearity among the explanatory variables. In order 

to ease notation we assume p < d. The null hypothesis o f linearity becomes 

HQ: 5[ — S'2 — 0. Under the null, the LM test statistic has an an asymptotic x 2 

distribution with the degrees o f freedom equal to the number o f restrictions. A 

drawback o f the above auxiliary regression arises for LSTAR processes (5^ =  0). 

In particular, if  yt is an LSTAR process and only intercept changes are significant 

across regimes then the nonlinearity test will lack power (see, e.g., Escribano and 

Jorda, 2001). To this end, the authors suggest using a third order Taylor series 

approximation o f the logistic function. This yields the auxiliary regression

yt — &ox t T S ^ tS t  T  ^2 Xt&t T  ^ 3x t$t ^t- (^ '1 0

Terasvirta (1994) proposes a modelling procedure based on Equation (2.11)

1. Specification o f a linear model. The selection o f  the lag order can be im­

plemented by using either a criterion such as the Akaike Information Crite­

rion (AIC) or significance tests.

2. Testing the null hypothesis o f linearity, H 00: 6[ = 8'2 — S'3 — 0. Often,

2Note that test based on Taylor-series approximations do not have direct power against a single 
alternative.
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the transition variable is set equal to the lagged endogenous variable yt_d. 

However, there may be uncertainty about the appropriate delay parameter, 

d, in the STR model. In this case, we can determine the transition variable 

by testing H 00 for various values o f d and selecting the one for which the 

p-value is smallest.

3. Selecting the transition function. The choice between ESTAR and LSTAR 

models can be based on the following sequence o f null hypotheses:

# 0 3  : ^3 — 0 ,

# 0 2  ■ $2 =  0  | ^3 =  0 ,

Hoi : S'l =  o I d '2 = S '3 =  0.

If  the p -value for the F -test o f H 02 is smaller than that for Hoi and H 03 then

we select the ESTAR family, otherwise we choose the LSTAR family.

Whilst, Terasvirta (1994) uses a third-order Taylor expansion o f the logistic 

transition function and a first-order Taylor expansion for the exponential function, 

Escribano and Jorda (1999) augment the regression equation with a second-order 

expansion o f the exponential function. Note that even (odd) powers o f  the Taylor 

approximation o f the logistic (exponential) function are all zero. The point o f 

using a second-order Taylor expansion lies in the fact that the logistic function has 

one inflection point while the exponential possesses two. The auxiliary regression 

is given by

P t  —  f>oX t  "L ^ 2x t $ t  "f" ^ 3 x t $ t  ^ 4 x t $ t  'U't' ( ^ ’ 1 2 )

Escribano and Jorda (1999) claim that this procedure improves the power o f 

both the linearity test and the selection procedure test. The null hypothesis o f 

linearity corresponds to Hq ■ S[ — 6'2 — — d '4 = 0. Under this null the test

statistic has asymptotically a x 2 distribution with 4(p +  1) degrees o f freedom. In

13



finite samples, however, the x 2 test can be oversized. To this end, the F  version 

is preferred because it has better small size properties. The selection procedure 

between ESTAR and LSTAR changes to

1. Test the null hypothesis Hq : 8'2 — 8'A =  0, with an F -test, (FL).

2. Test the null hypothesis Hq : <5J =  8'3 =  0, with an F-test, (FE).

3. I f  the p-value o f Fl is lower than FE then select an ESTAR. Otherwise, 

select an LSTAR.

The use o f the F -test is based on the assumption that the error term in Equation 

(2.2) is independent, identically and normally distributed. However, the assump­

tion o f constant conditional variance may be too strict when it comes to empirical 

applications.

2.3.1 Dealing with Conditional Heteroskedasticity

Since the work o f Engle (1982) and Bollerslev (1986) it has become a stylized 

fact that the residuals o f many dynamic regression models exhibit conditional 

heteroskedasticity. The evidence o f conditional heteroskedasticity becomes over­

whelming as we move from low frequencies o f data (annual, quarterly) to high 

frequencies (monthly,weekly, daily) and especially ultra high frequencies (five 

minutes, tick-by-tick) (see, e.g., Dacorogna et al., 2001).

Applications o f STAR models and, therefore, o f the corresponding linearity 

tests cover all possible frequencies. Notably, Skalin and Terasvirta (1999) investi­

gate the properties o f the Swedish business cycle by fitting STAR models to annual 

macroeconomic time series, which cover the period 1861 to 1988. Long spans o f 

annual data are also employed in studies examining the presence o f  nonlinearities 

in real exchange rates (Lothian and Taylor, 2008; Paya and Peel, 2006a). Gal­

lagher and Taylor (2001) investigate the risky arbitrage hypothesis by fitting an 

ESTAR-ARCH model to quarterly data on the U.S. market log dividend-price ra­

tio. Further, Taylor et al. (2001), Kilian and Taylor (2003) and Paya et al. (2003)
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show that ESTAR models can capture the behaviour o f quarterly and monthly 

real exchange rates in the post-Bretton Woods era. A similar conclusion is de­

rived for the futures basis o f the S&P 500 and the FTSE 100 by Monoyios and 

Samo (2002), who use daily data. A  model that allows simultaneous modelling 

o f the first and second moments is the STAR-Smooth Transition GARCH (STAR- 

STGARCH) introduced by Lundbergh and Terasvirta (1998). The model is ap­

plied to two daily series, the Swedish OMX index and the Japanese yen U.S. 

dollar exchange rate. In a related study, Chan and M cAleer (2002) investigate 

the statistical properties o f  the STAR-GARCH model and fit the model to the 

S&P 500 daily returns. Taylor et al. (2000) examine arbitrage opportunities in 

the FTSE 100 using 1,2 and 5 minutes frequency data. The authors adopt an Ex­

ponential Smooth Transition Error Correction model to obtain transactions costs 

and trade speeds faced by arbitrageurs who exploit mispricing o f FTSE 100 fu­

tures contracts relative to spot prices. Their results indicate significant ARCH 

type heteroskedasticity in the estimated residuals.

Linearity tests against smooth transition nonlinearity are implemented in most 

o f the above studies. The question that naturally arises is whether these tests are 

robust to a time-varying conditional variance and, if  not, whether there are ways 

o f  robustification.

In this study, we focus on the Escribano and Jorda (1999) test and adopt a 

nonparametric approach to deal with conditional heteroskedasticity o f unknown 

form in Equation (2.12). The use o f parametric models requires knowledge o f 

the type and the precise form o f conditional heteroskedasticity. However, it is 

unlikely that such information is available in practice. Therefore, we examine 

the performance o f the HCCME o f White (1980), two HCCMEs examined by 

MacKinnon and White (1985), and, finally, the Fixed Design Wild Bootstrap o f 

Kreiss (1997) and Gonsalves and Kilian (2004, 2007).
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2.3.2 Hypothesis Testing

A general representation for all the linear auxiliary regressions o f the previous 

section is given by

yt = S 'z t  + u t . (2.13)

For the Escribano and Jorda (1999) test 8 = (8'0, , 8'A)' and z t =  (Co,*, • • •, C^tY 

with Cj,t =  x ts{, for j  — 0 , . . . ,  4. The null hypothesis o f linearity, ESTAR or 

LSTAR can be written as H 0: R 8  — 0, where R  is the q x 5 ( p + 1) selector matrix 

with q denoting the number o f restrictions. Testing for linearity requires 4(p +  1) 

restrictions while for the ESTAR and LSTAR 2(p +  1). The Wald form o f the test 

statistic can be written as

W  =  ( R S ) '  ( r ? )  , (2.14)

where 'F =  { Z 1Z ) _1 Z ' f l Z ( Z ' Z ) ~ l denotes the covariance matrix o f the esti­

mates 8 . Consistency o f the estimator \F is required when drawing inferences. 

Assuming that the residuals, u t , are independent, identically and normally dis­

tributed with variance o \  yields

LS : n  =  (2.15)

where I  is the identity matrix. In this case, W /q  is F  distributed under the null.

However, in the presence o f heteroskedasticity the diagonal elements o f 

will not be constant. It follows that the ordinary least squares estimator o f the 

covariance matrix (LS) will be biased and conventional tests will generally have 

non-standard distributions (e.g., Flachaire, 2005; Long and Ervin, 2000). That is, 

the Wald statistic will not follow an F  distribution, even asymptotically. In this 

case, HCCMEs are usually employed by researchers .3 Eicker (1963) and White

3 Although we focus on the presence o f heteroskedastic errors, serial correlation may also be 
present in real world applications. In that case, heteroskedasticity and autocorrelation covariance 
estimators can be employed.
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(1980) propose the following heteroskedasticity consistent estimator

HCO : ft =  diag(u?) (2.16)

which allows asymptotic inference. The idea is to use u j  to estimate the variance 

o f the error term at time t. Unfortunately, the HCO and F -tests can be heavily 

biased in finite samples. To this end, MacKinnon and White (1985), based on 

the work o f Hinkley (1977), Horn et al. (1975) and Efron (1982), consider three 

alternative HCCMEs. The two estimators employed in this study are

where h tt — zt ( Z ' Z ) ~ l z't is the tth diagonal element o f the “hat” matrix. The 

authors show that both HC2 and HC3 lead to a marked improvement in small 

samples. Further, Long and Ervin (2000) suggest using HC3 when the sample 

size is less than 250 observations. Despite the fact that the latter estimators are 

superior to HCO, they too are biased.

The fact that Wald tests do not follow F  distributions, even asymptotically, as 

well as the poor finite size properties o f HCCMEs motivate the use o f bootstrap 

methods for conducting statistical inference. The rationale o f bootstrap methods 

is to approximate the finite sample distribution o f the test statistic under the null 

by simulation. In general, bootstrap tests may lead to a significant improvement in 

terms o f the Error in Rejection Probability (ERP) (see, e.g, Davidson and M acK­

innon, 1999). The findings o f  Beran (1988) indicate that the ERP o f a bootstrap 

test is o f  lower order, in general O (T _0 5), than the asymptotic tests when the test 

statistic is asymptotically pivotal. Moreover, Davidson and M acKinnon (1999) 

illustrate that a further refinement o f the same order occurs when the test statistic 

is independent o f the bootstrap DGP. It follows that, in many cases, bootstrap tests 

are more precise than asymptotic tests by 0 ( T ~ l ).

(2.18)

(2.17)
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A bootstrap technique which deals with heteroskedasticity o f  unknown form 

is the Wild Bootstrap. The asymptotic validity o f the Wild Bootstrap for linear 

regressions is established in Wu (1986), Liu (1988) and M ammen (1993). Kreiss 

(1997) and Gonsalves and Kilian (2004) extend the analysis to stationary autore­

gressions with conditional heteroskedastic errors. As far as linearity tests are con­

cerned, Hum  and Becker (2007) illustrate that the Wild Bootstrap improves upon 

the neural network test o f  Terasvirta et al. (1993) when there is GARCH type 

conditional heteroskedasticity in the residuals.

We now describe the Fixed Design Wild Bootstrap procedure for testing the 

hypothesis o f linearity, ESTAR nonlinearity or LSTAR nonlinearity

1. Estimate Equation (2.13) and compute the F-statistic, F.

2. Estimate the restricted model and obtain the estimated coefficient vector Sr 

and the restricted residuals ur t̂ -

3. Generate B  “fake” series according to null DGP

v i = K z t +

where the residuals cht are constructed by multiplying the estimated restricted 

residuals u r}t by a random variable 77*.The rjt must be m utually independent 

drawings from a distribution independent o f the original data with mean

0 and variance 1. Liu (1988) and Davidson and Flachaire (2001) suggest

using the Rademacher distribution

— 1 with probability p — 0.5 ,

+  1 with probability (1  — p).

The Rademacher distribution has the properties E[r)t] =  0, E[itf] =  1, 

E[rjf] =  0, and E[r]f} =  1. A consequence o f these properties is that any 

heteroskedasticity or symmetric non normality in the estimated residuals
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u r>t is preserved in the newly created residuals. The Wild Bootstrap matches 

the moments o f the observed error distribution around the estimated regres­

sion function at each design point, Liu (1988) and M ammen (1993) 

show that the asymptotic distribution o f the Wild Bootstrap statistics are the 

same as the statistics they try to mimic.

4. Regress each “fake” series y b on Z and compute the F-statistic, Fb, so as to 

obtain the empirical distribution for the F-statistic under the null.

5. Compute the p -value as the percentage o f times the simulated statistic Fb is 

more extreme than the original statistic F

where 1(A)  is the indicator function, which takes the value o f  1 if  event A  

occurs and 0  otherwise.

6 . Reject the null if  pb is smaller than the chosen significance level.

In the next section, we conduct Monte Carlo simulation exercises in order to 

examine the accuracy o f the inference procedures under different error processes 

and sample sizes.

As aforementioned, the LM test o f Terasvirta (1994) performs poorly, in terms 

o f size, when there is conditional heteroskedasticity. On the other hand, the ro­

bust version proposed by Granger and Terasvirta (1993) appears to lack power 

(Lundbergh and Terasvirta, 1998). In this section, we investigate whether there is 

a similar effect on the Escribano and Jorda (1999) test and the performance o f the 

heteroskedasticity robust inference techniques.

2.4 Monte Carlo Simulation
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The simulation exercises focus on a simple STAR(l) conditional mean equa­

tion examined by Escribano and Jorda (2001)

Vt =  7Ti,m -i +  +  et , t = l , . . . , T ,  (2.19)

where 7Ti i =  0.3 and 7T2,i =  —0.9 and c =  0. For the error term we adopt various 

conditional heteroskedastic processes. The first type is the standard GARCH(1,1) 

proposed by Bollerslev (1986) to capture volatility clustering,

t t =  eth lt /2, h t = uj +  aej_! +  /3ht- 1, et ~  A f(0 ,1) (2.20)

where ht denotes the conditional variance at time t. We follow Gongalves and Kil- 

ian (2004) and set (a , (3) € {(0 ,0), (0 .5 ,0), (0.3,0.65), (0.2,0.79), (0.05, 0.94)} 

and uj — 1 — a  — (3, which implies an unconditional variance o f unity. We also 

consider ARCH type models which allow asymmetric effects o f  positive and neg­

ative shocks on volatility (see Bollerslev et al., 1993). In particular, we employ 

the Exponential GARCH (EGARCH) model o f  Nelson (1991), the Asymmetric 

GARCH (AGARCH) o f Engle (1990) and the GJR GARCH model proposed by 

Glosten et al. (1993).

EGARCH:

ct =  eth lJ 2, In (ht) =  -0 .2 3  +  0.9 l n ( V i )  +  0.25 (e?_i -  O .S e ^ )  ,

et ~  0 ,1) .  (2.21)

AGARCH:

et = eth]/2, h t =  0.0216 +  0.6896/i*_i +  0.3174 ( e ^  -  0.1108)2 ,

~  A/”(0 ,1 ). (2.22)

GJR GARCH:
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t ,  =  eth lJ 2, /)., =  0.005 +  0.7/(,_i +  0.28 (e?_i -  0 2 3 ^ ! )  ,

et ~  V ( 0 , 1). (2.23)

The form o f the error processes and the parameter values are based on Engle and 

Ng (1993). The above models are motivated by the so-called “leverage effect” 

characterising stock returns. This effect was first noted by Black (1976)

“a  drop in the value o f  the firm  w ill cause a  negative return on its 

stock, and w ill usually increase the leverage o f  the s to c k . . .  That rise 

in the debt-equity ratio w ill surely mean a rise in the vo latility  o f  the 

stock.”

An alternative explanation is the asymmetric reaction o f asset markets to “good” 

and “bad” news. Finally, we consider a stochastic volatility model proposed by 

Taylor (1986) and employed by Shephard (1996) to capture the volatility o f re­

turns on the Nikkei index and the Japanese yen and Deutsch mark against the 

pound sterling.

et = et exp (h t), h t =  0.951 ht~\ +  0.5e*,

(ct , e t ) ~  A/r(0 ,d iag (0 .18 ,1)). (2.24)

We restrict the experiments to sample sizes o f 100, 250, 500, and 1000 obser­

vations, which cover the majority o f data sets used in applied work. Larger sizes, 

such as the ones available in ultra high frequency studies, are not examined due 

to the computationally intensive nature o f  the experiment. However, our results 

are indicative o f  the change o f the performance o f the tests with the sample size. 

The nominal significance level is set to 5% and the number o f simulated series as 

well as the number o f Wild Bootstrap replications per series is 1000.4 The first

100  observations are discarded to avoid initialisation effects.

4In this case, the overall significance level may differ from the 5% due to multi-step testing.
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2.4.1 Empirical Size of Linearity Tests

In order to investigate the size properties o f the tests, we set the smoothness pa­

rameter 7  equal to 0. Hence, Equation (2.19) becomes an AR(1) model with 

conditional homoskedasticity (when a  — (3 — 0 ) or conditional heteroskedastic­

ity. Tables 2.1 and 2.2 report results for the null hypotheses o f linearity and the 

percentage o f times an ESTAR model is selected rather than an LSTAR. The per­

centage o f LSTAR selections can be computed by subtracting the percentage o f 

ESTAR selections from the empirical size o f the tests. Results for the tests based 

on the least squares covariance matrix estimator, the three heteroskedasticity con­

sistent covariance matrix estimators and the Wild Bootstrap are presented in the 

columns labelled LS, HCO, HC2 and HC3, and WB, respectively. In addition, Fig­

ure 2.2 provides a visual view o f the ERP (the difference between the empirical 

size and the nominal level o f a test) for stationary GARCH processes.

Starting with the standard F  version o f the Escribano and Jorda test (column 

LS), several interesting conclusions emerge. First, the test may exhibit serious 

size distortions. The null o f linearity can be rejected up to 81% o f the times for 

a nominal significance level o f 5% when the error process is AGARCH or GJR 

GARCH and T  — 1000. These size distortions are much more severe than the 

ones reported in Lundbergh and Terasvirta (1998) for the Terasvirta (1994) test. It 

should be noted that the two simulation experiments differ. The authors examine 

an AR(4) model with a different GJR-GARCH residual process. Therefore, direct 

comparisons between the two tests cannot be made. For the GARCH models 

there is a positive relationship between the degree o f oversizing and the value o f 

the ARCH parameter (see Figure 2.2). Second, the bias o f the empirical size can 

rapidly increase with the sample size. Hence, application o f  the test to large data 

sets, such as the ones available for daily or intra-daily stock returns and exchange 

rate returns, is most likely to result in false inference. Finally, it appears that the 

test does not favour either alternative (ESTAR and LSTAR), which is also true for 

the remaining inference techniques.
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Figure 2.2: Error in rejection probability in LS, HCO, HC2, HC3 and WB linearity 
tests in the presence o f conditional heteroskedasticity. The DGP is an AR(1)- 
GARCH(1,1) model. The AR coefficient 0  =  0.3, and the GARCH parameters 
a  G {0 , 0 . 1 , . . . ,  0.8,0.9} and (3 € {0 , 0 . 1 , . . . ,  0 .8,0.9} satisfy a  + (3 < 1. The 
unconditional variance o f the error process is set to unity (a; =  1 - a -  (3).
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Table 2.1: Empirical Size o f Wald F-tests

DGP: yt — 0.3t/t_i +  et , t t = eth j  ,

ht =  u  +  a u l_ x +  P h t- i ,  et ~  A7(0, 1).

Sample Size T  — 100

H 0: Linearity ESTAR selection

a 0 LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.05 0.39 0 .21 0.09 0.06 0 .0 2 0.19 0 .1 0 0.05 0.03

0.50 0 .0 0 0.37 0.59 0.30 0.13 0.08 0.18 0.29 0.15 0.07 0.04

0.30 0.65 0.28 0.55 0.28 0 .1 2 0.06 0.14 0.27 0.13 0.04 0.03

0 .2 0 0.79 0 .2 0 0.50 0.23 0.09 0.06 0 .1 0 0.23 0 .11 0.04 0.03

0.05 0.94 0.07 0.40 0 .2 0 0 .1 0 0.06 0.04 0.19 0.09 0.04 0.03

Sample Size T  — 250

H 0: Linearity ESTAR selection

a P LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.04 0.32 0.18 0 .1 0 0.05 0 .01 0.15 0.09 0.04 0 .0 2

0.50 0 .0 0 0.50 0.60 0.32 0.13 0.08 0.25 0.33 0.18 0.06 0.05

0.30 0.65 0.47 0.58 0.30 0 .1 2 0.08 0 .2 2 0.28 0.16 0.05 0.05

0 .2 0 0.79 0.38 0.53 0.29 0.13 0.06 0.18 0.28 0.15 0.06 0.03

0.05 0.94 0 .1 0 0.39 0 .21 0 .11 0.05 0.05 0 .2 1 0 .1 2 0.05 0 .0 2

Sample Size T  = 500

H 0: Linearity ESTAR selection

0  LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.04 0.28 0.16 0.09 0.06 0 .01 0.14 0.08 0.04 0 .0 2

0.50 0 .0 0 0.64 0.63 0.35 0.16 0.08 0.36 0.38 0 .2 2 0.09 0.05

0.30 0.65 0.62 0.60 0.34 0.14 0.07 0.33 0.34 0 .2 0 0.08 0.04

0 .2 0 0.79 0.52 0.51 0.28 0 .1 1 0.05 0.26 0.29 0.16 0.07 0.03

Continued on Next P age ...
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0.05 0.94 0.11 0.33 0.19 0.10 0.04 0.05 0.20 0.11 0.05 0.02

Sample Size T  -  ] 0 0 0

a P

H 0: Linearity ESTAR selection

LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.06 0.24 0.15 0 .1 1 0.06 0.04 0.14 0.08 0.05 0.03

0.50 0 .0 0 0.70 0.57 0.35 0.13 0.07 0.36 0.36 0 .21 0.07 0.05

0.30 0.65 0.72 0.56 0.30 0.14 0.07 0.39 0.35 0 .2 0 0.08 0.04

0 .2 0 0.79 0 .6 6 0.50 0.29 0.14 0.06 0.34 0.28 0.17 0.07 0.03

0.05 0.94 0.18 0.34 0 .2 1 0 .1 2 0.06 0 .1 0 0 .2 1 0 .1 2 0.06 0.03

NOTE: The table reports the empirical size o f the LS, HCO, HC2, HC3 and the WB linearity tests, 

as well as the percentage o f times an ESTAR model is selected rather than an LSTAR (ESTAR 

selection). The nominal significance level is 5%.

Turning to the heteroskedasticity robust tests, we observe a strong resemblance 

between the properties o f HCO and HC2. Both tests seriously overreject the null 

hypothesis o f linearity even when the errors are homoskedastic. Furthermore, 

oversizing does not appear to decrease (or increase) as we move to larger sample 

sizes. It should be noted that HC2 gives substantially better results than HCO. A 

significant reduction in size distortions is achieved by employing the third HC- 

CME, HC3. The associated test leads to only moderate oversizing with the em ­

pirical size reaching a maximum o f 16%. However, tests based on HC3 are out­

performed by the Fixed Design Wild Bootstrap. The latter method gives almost 

always the best results and its empirical size is very close to the nominal level irre­

spective o f the sample size and the error process. In the case o f  homoskedasticity 

the performance o f the Wild Bootstrap is similar to the LS test.
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Table 2.2: Empirical Size o f  Wald F-tests

AR-EGARCH 

DGP: yt =  0.3j/t_i +  eu et = eth]/2,

ln{ht) =  —0.23 +  0.91n(/it_ i) +  0.25 (e^_1 -  0.3et_ i) ,  et ~  A f ( 0 , 1).

H 0: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.37 0.60 0.30 0 .1 2 0.08 0.18 0.30 0.16 0.06 0.04

250 0.57 0.64 0.34 0.13 0.09 0.27 0.34 0.18 0.06 0.06

500 0.69 0.64 0.35 0.15 0.08 0.35 0.39 0 .2 1 0.08 0.06

10 00 0.79 0.63 0.34 0.13 0.07 0.41 0.39 0 .2 0 0.06 0.04

AR-AGARCH

DGP: Vt = 0 .3 ^ _ i +  et, =  eth 1/2 
t 9

h t = 0.0216 T  0.6896/it_i +  0.3174 (et_! — 0.1108)2, et ~  A7(0 4 ) .

Ho Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.29 0.57 0.26 0.09 0.06 0.14 0.26 0 .1 2 0.04 0.03

250 0.55 0.59 0.30 0.15 0.08 0.26 0.29 0.16 0.08 0.04

500 0.71 0.57 0.31 0 .11 0.06 0.35 0.34 0.17 0.06 0.03

1 00 0 0.81 0.57 0.29 0 .1 2 0.05 0.41 0.33 0.16 0.05 0 .0 2

AR-GJR-GARCH

DGP: Vt = 1

COo

+  £t =  eth 1/2 
t >

ht = 0.005 +  0.7ht- i +  O.28 ( ^ i - O ^ e t - i ) , et ^ ^ 7 ( 0 , 1 ).

Ho Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.29 0.59 0.28 0 .11 0.07 0.14 0.27 0 .1 2 0.05 0.04

250 0.53 0.58 0.31 0.13 0.07 0.26 0.32 0.16 0.06 0.04

Continued on Next P age ...
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Table 2.2: Empirical Size o f Wald F-tests(C ont’d.)

500 0.67 0.59 0.35 0 .1 2 0.06 0.33 0.34 0 .2 0 0.06 0.03

10 00 0.81 0.57 0.30 0.15 0.07 0.38 0.32 0.17 0.07 0.04

AR-Stochastic-Volatility

DGP: yt = 0.3yt- i  +  et , et = et exp (ht),

h t = 0.951ht- i  +  0.5et, (e*, et ) ~  A7(0, d iag(0 .18 ,1)).

H q\ Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.28 0.59 0.28 0.07 0.06 0.13 0.27 0.13 0.04 0.03

250 0.45 0.59 0.32 0 .11 0.07 0.23 0.28 0.16 0.04 0.05

500 0.59 0.59 0.30 0 .11 0.06 0.30 0.32 0.15 0.06 0.03

1000 0.71 0.59 0.32 0.13 0.06 0.38 0.34 0.18 0.07 0.03

NOTE: See note to Table 2.1.

2.4.2 Empirical Size Adjusted Power of Linearity Tests

Clearly, LS, HCO, and HC2 based tests are seriously oversized. It follows that 

their empirical power may take large values, which can, partially, be attributed 

to the presence o f conditional heteroskedasticity. In order to make comparisons 

between alternative methods meaningful, we adjust for the bias in the empirical 

size. Empirical size adjusted power is reported for all tests but the Fixed Design 

Wild Bootstrap, for which no size adjustment is made. This should not have a 

significant impact on inference, since the empirical size o f  the Wild Bootstrap is 

very close to the nominal level. For the power experiments, we set the transition 

variable equal to yt- \  and the transition parameter equal to 1. The rest o f  the 

details for the simulation procedure are the same as for the size experiment. Tables
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2.3 and 2.4 report the results. We have also examined a LSTAR DGR The results 

are qualitatively similar to the ESTAR case and are omitted so as to save space.

Table 2.3: Empirical Size Adjusted Power o f  Wald F -tests

DGP: yt =  0.3j/t_i -  Q.9yt- i [ l  -  e x p ( - ^ 2_ 1)] +  et, et =  eth l /2,

ht = u  + otul_x +  P h t-u  et ~  A/^O,1 ).

Sample Size T  =  100

H 0: Linearity ESTAR selection

a P LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.23 0.07 0 .1 0 0.14 0.30 0 .2 0 0.05 0.08 0 .1 2 0.26

0.50 0 .0 0 0 .0 2 0.07 0.04 0.09 0.27 0 .0 2 0.05 0.03 0.07 0.24

0.30 0.65 0 .1 0 0 .1 2 0 .11 0.13 0.28 0.07 0.07 0.07 0 .1 0 0.25

0 .2 0 0.79 0.17 0.14 0.19 0.17 0.28 0.14 0 .1 0 0.15 0.15 0.25

0.05 0.94 0.26 0 .1 2 0 .1 2 0.17 0.32 0.23 0.08 0.09 0.15 0.29

Sample Size T  = 250

Ho: Linearity ESTAR selection

a P LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.65 0 .11 0 .2 2 0.37 0 .6 8 0.64 0 .1 0 0 .2 1 0.36 0 .6 6

0.50 0 .0 0 0.04 0.08 0.08 0 .1 0 0.40 0.03 0.06 0.07 0.09 0.39

0.30 0.65 0 .1 0 0.09 0 .1 0 0.17 0.48 0.08 0.06 0.08 0.16 0.47

0 .2 0 0.79 0.29 0.13 0 .2 2 0.29 0.53 0.27 0 .1 1 0 .2 0 0.29 0.51

0.05 0.94 0.55 0.15 0 .21 0.27 0.63 0.53 0 .1 1 0.19 0.26 0.61

Sample Size T  = 500

H q: Linearity ESTAR selection

P LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 0.92 0.42 0.63 0.76 0.92 0.91 0.41 0.62 0.76 0.91

0.50 0 .0 0 0.05 0.07 0.06 0 .2 0 0.57 0.04 0.05 0.05 0.18 0.56

0.30 0.65 0 .1 2 0.06 0 .1 2 0.23 0.56 0 .1 0 0.04 0 .1 0 0 .2 1 0.54

Continued on Next P age...
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0 .2 0 0.79 0.45 0.16 0.28 0.43 0.67 0.43 0.14 0.25 0.41 0 .6 6

0.05 0.94 0.79 0.29 0.45 0.62 0.81 0.78 0.27 0.44 0.62 0.80

Sample Size T  =  1000

H q: Linearity ESTAR selection

a P LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0 .0 0 0 .0 0 1 .00 0.93 0.97 0.99 1 .00 0.99 0.92 0.97 0.99 0.99

0.50 0 .0 0 0 .1 0 0.06 0.09 0.33 0.70 0.09 0.04 0.08 0.32 0.70

0.30 0.65 0.15 0 .1 0 0 .21 0.33 0.63 0.13 0.06 0.19 0.32 0.61

0 .2 0 0.79 0.54 0.17 0.34 0.49 0.73 0.51 0.15 0.32 0.48 0.72

0.05 0.94 0.94 0.40 0.65 0.78 0.94 0.93 0.38 0.64 0.77 0.93
NOTE: The table reports the empirical size adjusted power o f  the LS, HCO, HC2, HC3 and the 

WB linearity tests described in Section 2.3, as well as the percentage o f times an ESTAR model is 

selected rather than an LSTAR (ESTAR selection). The nominal significance level is 5%.

Table 2.4: Empirical Size Adjusted Power o f Wald F-tests

ESTAR-EGARCH 

DGP: yt =  0.3yt- i  -  0.9y(_ i[l -  e x p ( - j /,2 j ]  +  et, e, =  eji);'1,

ln(/i.() =  -0 .2 3  +  0.9In(/>t-i) +  0.25 (e2_! -  0.3et- i ) , e t ~  A f(0 ,1).

H 0: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.04 0.08 0.05 0.07 0 .2 0 0.03 0.05 0.04 0.05 0.15

250 0.03 0.07 0.06 0.07 0 .2 2 0 .0 2 0.04 0.04 0.06 0.19

500 0.04 0.05 0.07 0.07 0.24 0 .0 2 0.03 0.04 0.05 0 .2 2

10 00 0.04 0.05 0.05 0.07 0.26 0 .0 2 0.03 0.03 0.06 0.23

ESTAR-AGARCH

DGP: yt =  0.3yt- i  -  0.9t/t_ i[ l  -  e x p ( - t / t2_ 1)] + et, et = eth lt /2 

Continued on Next P age...
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Table 2.4: Empirical Size Adjusted Power o f Wald F-tests(C ont’d.)

ht =  0.0216 4- 0 .6896/it-i +  0.3174 (et_i  -  0.1108)2, et ~  A 7(0,1 ).

H q\ Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.08 0 .1 1 0.07 0.17 0.23 0.06 0.06 0.05 0.14 0 .2 0

250 0.07 0.08 0 .1 0 0.15 0.33 0.04 0.05 0.08 0.14 0.32

500 0.08 0.08 0 .1 0 0.17 0.34 0.05 0.04 0.08 0.14 0.31

10 00 0.07 0.08 0.09 0.19 0.33 0.04 0.04 0.06 0.17 0.30

ESTAR-GJR-GARCH

DGP: Vt = O.Syt-i -  0.9yt- i [ l - e x p ( - V t- i)l +  et, u

rtc?II

ht = 0.005 +  0.7h t- i +  0.28 (ej_! — 0 .23et_i), et ~  A 7(0,1).

H q: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0 .1 2 0.07 0 .11 0 .1 0 0 .2 0 0.09 0.04 0.08 0.08 0.17

250 0.18 0 .1 0 0.16 0.23 0.42 0.16 0.08 0.15 0 .2 1 0.40

500 0.25 0.16 0.25 0.34 0.62 0.23 0.14 0.23 0.33 0.61

1 00 0 0.38 0.17 0.29 0.45 0.76 0.36 0.14 0.28 0.44 0.75

ESTAR-Stochastic-Volatility

DGP: Vt - 0.3yt_i -  0.9yt- i [ l - e x p ( - Vt-1)] +  et j €t =  et ex•P (ht),

h t = O-951/i* _i +  0.5e*, (t t , et ) ~ A7(0, d iag(0 .18 ,1)).

H 0: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.09 0.09 0.07 0.13 0.19 0.06 0.04 0.05 0 .1 0 0.15

250 0.06 0.06 0.05 0.08 0 .2 0 0.03 0.03 0.03 0.06 0.17

500 0.07 0.06 0.06 0.07 0.16 0.04 0.04 0.04 0.05 0.13

1 00 0 0.05 0.07 0.06 0 .1 0 0.17 0.03 0.03 0.03 0.06 0.14

NOTE: See note to Table 2.3.
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A broad tendency that emerges is that the performance o f all tests depends cru­

cially on the type o f conditional heteroskedasticity. Tests based on the HCCMEs 

and the ordinary least squares covariance matrix, generally, perform poorly in the 

presence o f conditional heteroskedasticity, with none o f them being superior to 

the others. Furthermore, in many cases these methods have virtually no power to 

discriminate between linear and nonlinear in mean processes.

The Fixed Design Wild Bootstrap is by far the best method. Its superiority 

becomes evident in the presence o f time-varying conditional variance. For the 

majority o f conditional heteroskedastic processes its power is relatively high and 

increases with the sample size. While in the case o f homoskedasticity its perfor­

mance is similar or better than the F-test. Unfortunately, the ability o f  the Wild 

Bootstrap to detect nonlinearity in the mean is not always satisfactory. For the 

stochastic volatility process the power o f  the Fixed Design Wild Bootstrap is ex­

tremely low (less than 20%), irrespective o f the sample size. Hence, there are 

cases where all inference techniques perform poorly.

2.4.3 Nonlinear Model Specification

So far we have assumed that the transition variable, or equivalently the delay 

parameter, is known. However, in real world application the transition variable 

has to be determined from the data. The selection o f a misspecified model is very 

likely to pose problems in the subsequent stage o f estimation. Terasvirta (1994), 

inspired by the work o f Tsay (1989) on TAR models, suggests choosing the delay 

parameter that minimises the p-value o f the linearity test. The basic idea behind 

this approach is that on average the power o f a correctly specified model should 

be higher than the power o f  a misspecified one.

In the last simulation experiments we follow Terasvirta (1994) and investigate 

the ability o f the tests to identify the correct transition variable. The model design 

is the same as before, except that we consider three delay parameters, d — 1 ,2 ,3 . 

The same delay parameters specify the candidate transition variables in the linear­
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ity tests. We restrict our attention to the GARCH(1,1) process with a  — 0.3 and 

/3 — 0.65. This choice is motivated by the severe oversizing o f the LS and HC 

tests. Table 2.5 shows the selection frequencies o f  the transition variables. Note 

that these are based on the fraction o f cases where linearity is rejected. Hence, 

the results show the probability o f choosing the correct delay parameter given 

linearity is rejected.

Table 2.5: Selection Frequencies o f  the Delay Parameter, d

DGP: y t = O.Syt-i -  0 . % _ i [ l  -  e x p ( - y 2_d)] +  u t,ut 

ht =  0.05 +  0.3u 2. !  +  0.65/it_ l5 ~  A f(0 ,1). I 
II 0̂

True Delay Parameter: d == 1

T delay LS HCO HC2 HC3 WB

100 d  =  1 0.50 0.21 0.31 0.46 0.72

d =  2 0.30 0.43 0.35 0.30 0.16

C
OII 0.20 0.36 0.34 0.24 0.12

250 d  =  1 0.57 0.28 0.39 0.56 0.83

CMII“S3 0.24 0.39 0.34 0.26 0.09

C
OII"S3 0.19 0.32 0.28 0.18 0.07

500 d  =  1 0.57 0.31 0.42 0.59 0.82

C
MII03 0.24 0.39 0.28 0.22 0.10

d =  3 0.20 0.30 0.30 0.19 0.08

1000 d  =  1 0.60 0.36 0.43 0.57 0.80

CMII"S3 0.25 0.36 0.31 0.23 0.11

C
OII03 0.15 0.28 0.26 0.21 0.08

True Delay Parameter: d =-  2

T delay LS HCO HC2 HC3 WB

100 d =  1 0.16 0.12 0.15 0.18 0.19

d  =  2 0.67 0.54 0.52 0.56 0.70

Continued on Next P age...
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d =  3 0.17 0.33 0.34 0.26 0.10

250 d =  1 0.11 0.17 0.17 0.18 0.14

d  =  2 0.75 0.56 0.59 0.65 0.78

C
OII^
3 0.14 0.27 0.24 0.17 0.08

500 d=l 0.15 0.26 0.24 0.23 0.22

d  =  2 0.76 0.50 0.57 0.63 0.74

C
OII•X3 0.09 0.24 0.20 0.14 0.04

1000 d =  1 0.27 0.29 0.26 0.25 0.29

d  =  2 0.70 0.51 0.56 0.63 0.69

C
OII 0.04 0.20 0.18 0.12 0.02

True Delay Parameter: d = 3

T delay LS HCO HC2 HC3 WB

100 d =  1 0.18 0.12 0.18 0.19 0.17

d =  2 0.23 0.41 0.33 0.25 0.12

d  =  3 0.59 0.47 0.49 0.56 0.71

250 d =  1 0.12 0.17 0.15 0.16 0.12

d =  2 0.15 0.38 0.27 0.20 0.06

d  =  3 0.73 0.45 0.58 0.64 0.82

500 d =  1 0.12 0.23 0.20 0.20 0.14

d = 2 0.11 0.31 0.22 0.15 0.06

d  =  3 0.77 0.47 0.58 0.65 0.80

1000 d =  1 0.19 0.23 0.19 0.19 0.15

d =  2 0.12 0.32 0.24 0.15 0.07

d  =  3 0.69 0.45 0.57 0.67 0.78

NOTE: The table reports selection frequencies o f the transition variable y t - d ,  with d  6 

{1 ,2 ,3 } , when the error term exhibits conditional heteroskedasticity. The chosen delay 

parameter corresponds to the minimum p-value o f the linearity test. True delay parameters 

are in bold.
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Obviously, the use o f HCO and HC2 leads frequently to the selection o f m is­

specified models with HC2 giving again better results. The probability o f  choos­

ing the wrong transition variable is substantially lower than half when the value 

o f the true delay parameter is one and slightly exceeds half for values two and 

three. On the contrary, HC3, LS and the Fixed Design Wild Bootstrap appear 

to perform reasonably well. Overall, the HC3 is outperformed by the ordinary 

least squares covariance matrix, which is in turn outperformed by the Fixed De­

sign Wild Bootstrap. The difference between the first two methods and the Wild 

Bootstrap is particularly apparent when the true d — 1. The correct selection fre­

quencies for the LS and the HC3 tests vary between 46% and 60%, which implies 

a high probability o f choosing a misspecified model. Whilst for the Wild Boot­

strap the corresponding bounds are 73% and 83%. The behaviour o f  the Wild 

Bootstrapping is stable across sample sizes and model specifications.

Clearly, the Wild Bootstrap is a valuable technique for testing linearity and, 

subsequently, specifying STAR models irrespective o f the conditional heteroskedas­

ticity o f the error process. In the majority o f cases it results in valid inferences for 

the mean equation o f a series. To this end, it allows modelling STAR processes 

when the errors are homoskedastic as well as models which STAR nonlinearity 

in the mean and conditional heteroskedasticity in the disturbances, such as the 

STAR-GARCH and the STAR-STGARCH models o f Chan and M cAleer (2002) 

and Lundbergh and Terasvirta (1998), respectively.

2.5 Empirical Applications

The simulation experiments illustrate the likelihood o f  finding spurious nonlinear­

ity in the mean o f economic and financial series when commonly used F -tests are 

employed and volatility changes occur across time. Since this problem becomes 

apparent for large sample sizes it would be interesting to apply the linearity tests 

to empirical data sampled at relatively high frequencies. Therefore, we employ 

financial time series for which volatility clustering is a well-known fact and high
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frequency data are available. The presence o f time-varying volatility in financial 

markets has been documented in numerous studies, going back to M andelbrot 

(1963) and Fama (1965). Notably, Mandelbrot wrote for stock market returns

“ . . .  large changes tend to be fo llo w ed  by large changes -o f  either 

sign- and sm all changes tend to be fo llo w ed  by sm all changes . . .  ” .

Mandelbrot (1963, p. 418)

A similar phenomenon is observed for other asset returns, such as exchange 

rates (Baillie and Bollerslev, 1991, 2002).

However, time-varying volatility is not constrained to high frequency data. 

The findings o f several empirical studies suggest that the volatility o f the real ex­

change rate tends to vary across nominal exchange rate regimes (see, e.g., Mussa, 

1986). As a consequence empirical models employing long spans o f data typically 

assume a non constant conditional variance o f the error term (see, e.g., Engel and 

Kim, 1999; Lothian and Taylor, 2008; Paya and Peel, 2006a). To this end, we 

employ the Lothian and Taylor (1996) two century data set for the dollar-sterling 

real exchange rate.

A number o f theoretical and empirical studies suggest that exchange rate tar­

get zones and exchange rate policies, such as “leaning against the wind”, may 

lead to threshold type nonlinearity in the mean o f the exchange rate (see, e.g., 

Krugman, 1991; Lundbergh and Terasvirta, 2006; Hsieh, 1992). Similarly, factors 

such as agent heterogeneity, transactions costs or the sunk costs o f  international 

arbitrage can induce smooth transition nonlinearity in the the deviation process o f 

asset prices from their fundamental value (Dumas, 1992; Berka, 2002; Kilian and 

Taylor, 2001). Michael et al. (1997), Taylor et al. (2001) and Kilian and Taylor 

(2003) among others show that ESTAR models can parsimoniously fit a number 

o f real exchange rates. In the context o f stock index futures markets, the findings 

o f Yadav et al. (1994), Dwyer et al. (1996) and Monoyios and Samo (2002) sug­

gest that TAR and STAR models are capable o f explaining the behaviour o f the
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futures basis o f major stock indices.

The data set consists o f daily closing prices o f two stock market indices, 

namely the Dow Jones and the S&P 500, two nominal exchange rates, the yen- 

dollar and dollar-sterling, and daily spot and futures prices o f the FTSE 100. All 

series but the last two cover the period from January 1st, 1991 to the December 

31st, 2002, which gives a total o f 3,131 observations. The data for the spot and 

future prices o f the FTSE 100 span the period January 1st, 1988 to December 31st, 

1998, resulting in 2,780 observations. The data were obtained from Datastream. 

We calculate returns on the Dow Jones, the S&P 500, the dollar-sterling and yen- 

dollar nominal exchange rates as logarithmic differences o f daily closing prices 

scaled by a factor o f 100. Further, we compute the logarithmic FTSE 100 basis bt 

according to

where Ft)k denotes the future price for delivery o f the stock at time k > t and Pt 

is the the spot price at time t. Finally, we extend the dollar-sterling real exchange 

rate (RER) data set o f Lothian and Taylor (1996) by using annual data for the 

U.S. and U.K. consumer price indices and the dollar-sterling nominal exchange 

rate obtained from the International Financial Statistics database. The extended 

data set covers the period from 1791 to 2005.

As a preliminary exercise we examine if  the series exhibit conditional het­

eroskedasticity by employing the ARCH LM test derived by Engle (1982). The 

test is based on the regression equation

where et are the estimated residuals o f  AR models fitted to the series and /i and 

cii, i — 1 . . . . ,  q, are the regression parameters. The lag length o f the AR models 

is determined by using the AIC information criterion for all series but the FTSE 

100 basis. For the latter series, we follow M onoyios and Samo (2002) and set

100 In (2.25)

(2.26)
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Figure 2.3: Time series plots o f empirical data. Daily returns on the Dow Jones 
and the S&P 500 indices, and the yen-dollar and dollar-sterling nominal exchange 
rates cover the period January 2nd, 1991 to December 31st, 2002. The basis o f the 
FTSE 100 spans the period January 2nd, 1988 to December 31st, 1998, and the 
dollar-sterling real exchange rate (RER) the period 1791 to 2005.
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the lag length to five. This choice is supported by visual inspection o f the partial 

autocorrelation function. The null hypothesis o f  no ARCH effects is H q: a* =  0 V 

i. Let T  denote the sample size, the test statistic given by T  x  R 2 is asymptotically 

distributed as x 2 with q degrees o f freedom.

Table 2.6: Results for ARCH LM Tests
Series p-value x i p-value
DOW JONES 82.41 0.00 231.61 0.00
S&P 500 134.90 0.00 26.00 0.00
USD STERLING 53.45 0.00 136.00 0.00
YEN USD 39.29 0.00 44.42 0.00
FTSE 100 Basis 28.58 0.00 122.26 0.00
RER 0.03 0.86 0.95 0.92

NOTE: The table reports the x 2 statistics and the corresponding p -values for ARCH type 
heteroskedasticity up to orders 1 and 4.

Not surprisingly, Table 2.6 shows that the null hypothesis o f no ARCH effects 

can be rejected at all conventional levels o f  significance for the high frequency 

series. Note that at these stage, the rejection o f the null hypothesis may be at­

tributed to the presence o f STAR type nonlinearity, conditional heteroskedasticity 

or both. This is due to the fact that like nonlinear in mean tests tend to reject the 

null in the presence o f ARCH effects, ARCH tests also tend to reject the null due 

to nonlinearities in mean (Blake and Kapetanios, 2007).

Next, we apply the linearity test o f  Escribano and Jorda (1999) as well as the 

four robust versions. The choice o f the lag order is the same with the one used for 

the ARCH LM test and the delay parameter is d =  1 , . . . ,  4. Table 2.7 reports the 

p- values for the null o f linearity corresponding to each transition variable and the 

selected model.
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Table 2.7: Application o f Linearity Tests on Empirical Data

H 0: Linearity

Series Test d = l d =  2

COII d =  4 Model

DOW JONES LS 0.000 0.000 0.000 0.006 LSTAR

HC0 0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.063 0.000 0.478 ESTAR

HC3 0.321 0.988 0.000 0.995 LSTAR

WB 0.317 0.800 0.720 0.990 LINEAR

S&P 500 LS 0.000 0.000 0.000 0.006 ESTAR

HC0 0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.053 0.000 0.089 ESTAR

HC3 0.018 0.693 0.332 0.987 ESTAR

WB 0.756 0.539 0.237 0.968 LINEAR

USD LS 0.000 0.000 0.000 0.004 LSTAR

STERLING HC0 0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.000 0.000 0.000 LSTAR

HC3 0.000 0.330 0.000 0.451 LSTAR

WB 0.086 0.487 0.013 0.728 LSTAR

YEN USD LS 0.000 0.000 0.000 0.004 LSTAR

HC0 0.000 0.000 0.000 0.000 LSTAR

HC2 0.000 0.000 0.000 0.000 LSTAR

HC3 0.993 0.585 0.006 0.783 LSTAR

WB 0.961 0.628 0.136 0.710 LINEAR

FTSE 100 LS 0.000 0.010 0.071 0.524 LSTAR

BASIS HC0 0.000 0.003 0.000 0.156 LSTAR

HC2 0.000

Continued on Next P age...
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Table 2.7: Application o f Linearity Tests on Empirical Data(Cont’d.)

HC3 0.001 0.127 0.322 0.548 LSTAR

WB 0.000 0.410 0.491 0.656 LSTAR

RER LS 0.132 0.782 0.326 0.904 LINEAR

HCO 0.319 0.870 0.028 0.997 ESTAR

HC2 0.083 0.303 0.749 0.074 LSTAR

HC3 0.228 1.000 0.239 0.904 LINEAR

WB 0.043 0.616 0.462 0.948 ESTAR

NOTE: The table reports p- values o f the LS, HCO, HC2, HC3 and WB linearity tests (H 0: 

Linearity) and the type o f STAR nonlinearity selected. Figures in bold denote the selected 

delay parameter. The nominal significance level is 10%.

Overall, the results are in line with the findings o f  the simulation experiments. 

Starting with the returns on the the Dow Jones, the S&P 500 the dollar-sterling 

and the yen-dollar exchange rate, the Escribano and Jorda (1999) test as well as 

the HCO robustification reject the null o f linearity for all transition variables. The 

corresponding marginal significance level is less than 1% in all cases, indicating 

that the series are characterised by STAR nonlinearity. However, the use o f the 

HC2, HC3 and WB tests results in a substantial decrease in the number o f rejec­

tions. At the 5% significance level linearity cannot be rejected in 25%, 62.5% and 

93.75% o f the cases, respectively. Further, there is a wide disparity between the 

magnitudes o f  the tests’ p-values. An illustrative example is the returns on the 

yen-dollar exchange rate. For d = 1 the p-values o f the LS, HCO and HC2 tests 

are virtually zero, while the corresponding p-values o f the HC3 and WB tests are 

close to one. The only series for which all methods produce qualitatively similar 

results with respect to the linearity test is the returns on the dollar-sterling nominal 

exchange rate.
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Turning to the basis o f the FTSE 100 there is strong evidence o f nonlinearity in 

mean. At the 5% significance level, the Escribano and Jorda (1999) test indicates 

nonlinearity for d =  1,2, the HCO and HC2 based tests for d =  1, 2 ,3  and the last 

two tests only for d — 1 . Overall, the results support setting d — 1 since linearity is 

rejected at all conventional levels o f  significance irrespective o f the test employed. 

These findings are in line with the theoretical and empirical analysis o f M onoyios 

and Samo (2002).

As far as the real exchange rate (RER) series is concerned, the HCO and the 

Wild Bootstrap tests can reject the null hypothesis o f linearity at the 5% signif­

icance level. Both tests support the exponential transition function and, hence, 

symmetric adjustment o f the real exchange rate series. For the LS and HC2 tests 

the smallest p-values are close to the 10% significance, while for HC3 it is sub­

stantially larger. Given the results o f the ARCH LM test for the dollar-sterling 

real exchange rate and the superior performance o f the Wild Bootstrap, even in 

the case o f  homoskedasticity, these findings may be due to the low power o f tests 

based on the HCCMEs when applied to relatively small samples. In addition, 

nonlinearity tests generally tend not to reject linearity when applied to temporally 

aggregated nonlinear processes (see, e.g., Granger and Lee, 1999; Paya and Peel, 

2006b). Therefore, our findings provide evidence o f nonlinearity in the mean o f 

the real exchange rate data.

Overall, the above empirical applications together with the M onte Carlo ex­

periments illustrate the discrepancy between the conclusions drawn using different 

inference techniques.

2.6 Conclusion

The specification stage o f  STR models consists o f  a sequence o f tests, which are 

typically based on the assumption o f independent and identically distributed er­

rors. In this chapter, we relaxed this assumption and examined the impact o f 

conditional heteroskedasticity on the tests’ performance. We also considered four
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heteroskedasticity robust versions based on HCCMEs and the Fixed Design Wild 

Bootstrap.

The findings o f the chapter illustrate the dangers o f using conventional tests 

and tests based on HCCMEs. In particular, these tests can exhibit severe size dis­

tortions, which increase with the sample size and/or have very low size adjusted 

power. Further, they frequently lead to the selection o f misspecified nonlinear 

models. Among these methods a HCCME considered by M acKinnon and White 

(1985) appears to have the best performance. On the other hand, the Fixed Design 

Wild Bootstrap remedies, at least to a large extend, the deficiencies outlined, al­

lowing inference for both conditional heteroskedastic and homoskedastic errors. 

Consequently, the application o f the Wild Bootstrap provides a valuable alterna­

tive to conventional tests.
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C HAPTER 3

Forecasting the Behaviour of the Real Exchange

Rate using a Long Span of Data

Predictions are hard to make, especially  

about the future.

N iels Henrik D avid  Bohr (1885 -  1962)

3.1 Introduction

The inception o f floating exchange rates in mid-March 1973 was followed by 

a boom in the interest in explaining the movements o f real exchange rates. The 

observed near unit-root behaviour o f the series, however, casted doubts on the pre­

dictive ability o f the models typically employed until the early 1990s (see, e.g., 

Taylor and Taylor, 2004, and the references therein). Subsequently, a vast litera­

ture, motivated by the presence o f frictions in commodity markets, has emerged 

supporting the existence o f a nonlinear adjustment mechanism o f the real ex­

change rate. In accordance with the implications o f theoretical models, the find­

ings o f  numerous empirical studies illustrate that nonlinear models, such as the
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Smooth Transition Autoregressive (STAR), provide parsimonious fits to a number 

o f real exchange rates over different time frequencies (e.g., Taylor et al., 2001; 

Pavlidis et al., 2009a).

Despite the overwhelming evidence supporting the presence o f nonlinearites 

in real exchange rates, the empirical literature on the out-of-sample performance 

o f STAR models is scarce and the question o f whether nonlinear models outper­

form their linear counterparts and the random walk benchmark remains open. One 

o f the few studies on nonlinear real exchange rate forecasting is that o f  Sarantis 

(1999). By employing monthly real effective exchange rates for the G-10 coun­

tries from 1980 to 1996, the author provides evidence in favour o f  the presence o f 

significant smooth-transition nonlinear dynamics for the majority o f the processes. 

Moreover, the estimated STAR models provide more accurate forecasts, in terms 

o f the Root Mean Square Error (RMSE) criterion, against the Random Walk (RW) 

and the Markov Switching model but not the linear autoregressive (AR) model.

A recent study that utilises more sophisticated forecast evaluation techniques 

and a longer data set for the post-Bretton Wood era is provided by Rapach and 

Wohar (2006). The authors replicate the results o f the seminal papers o f Obst- 

feld and Taylor (1997) and Taylor et al. (2001) by fitting Threshold Autoregres­

sive (TAR) and Exponential STAR (ESTAR) models to four monthly U.S. dollar 

real exchange rates. Subsequently, they adopt a fixed estimation scheme in order 

to generate predictions for the following eight years o f data. On the basis o f point, 

interval and density forecasts comparisons Rapach and Wohar conclude:

“any nonlinearities in monthly real exchange rate data  from  the post-  

Bretton Woods p e r io d  are quite “su b tle” fo r  Band-TAR and exponen­

tia l sm ooth autoregressive m odel specifications

Rapach and Wohar (2006, p. 341)

These discouraging findings may but do not necessarily imply that the non- 

linearity documented in the literature is a spurious artifact. Inoue and Kilian
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(2005) illustrate that for linear models in-sample tests tend to have, and in many 

cases substantially, higher power than out-of-sample tests, which contradicts the 

conventional view that forecasting comprises the ultimate test o f an econometric 

model. Rossi (2005) also raises concerns regarding the power o f out-of-sample 

predictability tests. Clark and McCracken (2001, 2005a,b) show that commonly 

used £-type tests, such as that proposed by Diebold and Mariano (1995) and Har­

vey et al. (1998), may exhibit low power. To this end, Clark and M cCracken 

(2005a) build upon the work o f Clark and McCracken (2001) and M cCracken 

(2004) and derive the asymptotic distribution o f two F-type tests for the com­

parison o f multi-step forecasts from nested linear models. The tests account for 

parameter uncertainty and exhibit better power properties than their F type coun­

terparts. Although their application in this context is appealing, it is not straight­

forward due to the fact that their derivation is based on the assumption that the 

regression models are linear in parameters and the processes are stationary. To 

this end, we relax these assumptions and examine the finite properties o f the tests 

in Section 3.5.

Regarding the comparison o f nonlinear with linear AR models, numerous 

studies suggest that in many cases the in-sample superiority o f the former is not ac­

companied by better predictive ability (see, e.g., Lundbergh and Terasvirta, 2002; 

Stock and Watson, 1999). In this framework, power issues turn out to be even 

more serious . 1

“M any papers exist in which a fe w  series are m odeled using a single  

nonlinear form  or class, and usually a g o o d  f i t  is obtained, but often 

with very little or no improvement in forecasting  ability.”

Sir Clive William John Granger (1934-2009)

A possible explanation is that nonlinear models perform better only in specific

'The related literature has focused mainly on the comparison o f Self-Exciting TAR (SETAR) 
and AR models. The results presented in Section 3.5 illustrate that this is also the case for STAR 
models.
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states (regime dependent) so that there are windows o f opportunity for substan­

tial reduction in prediction errors (Clements, 2005; Boero and M arrocu, 2004). If  

these occasions are relatively infrequent, then AR models would provide robust 

forecasts even if  the series under consideration is nonlinear (for simulation evi­

dence regarding SETAR models see Clements and Smith, 1999). Put it differently, 

it would be difficult to identify the gains o f forecasting macroeconomic series with 

nonlinear models, which is especially true when interval and density evaluation 

methods are applied (van Dijk et al., 2003). Hence, the results o f  Sarantis and 

Rapach and Wohar may well be attributed to the low power o f out-of-sample pre­

dictability tests.

In this chapter, we attempt to shed light on the forecast performance o f non­

linear real exchange rate models with respect to the linear AR and the RW bench­

marks. We depart from the approach o f previous studies and employ long spans o f 

annual data for the dollar-sterling real exchange rate. By doing so, we extend the 

out-of-sample period to the entire post-Bretton Woods era. To our knowledge the 

forecasting performance o f nonlinear real exchange rate models using long spans 

o f data has not been examined so far.

Our modelling cycle consists o f a battery o f recently developed unit root tests, 

linearity tests, as well as bootstrap methods, which enable us to obtain a parsim o­

nious specification o f the nonlinear real exchange rate model. Subsequently, we 

employ the chosen specification and use Monte Carlo simulation techniques so as 

examine the empirical size and power properties o f several forecast accuracy and 

encompassing tests.

Namely, we employ the f-type tests o f Diebold and M ariano (1995), van Dijk 

and Franses (2003) and Harvey et al. (1998) as well as the F -type tests o f  Clark 

and M cCracken (2005a). Our results indicate that all tests, with the exception 

o f the test proposed by van Dijk and Franses (2003), have good size properties. 

This is a particularly important finding given the fact that the properties o f  F-type 

tests have not been examined when one o f the competing models is nonlinear or
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nonstationary. Furthermore, we show that F-type tests have similar or substan­

tially better power properties than their i-type counterparts. Unfortunately, both 

appear to exhibit low power for the comparison o f nonlinear with linear AR m od­

els. Notwithstanding the above, our findings suggest that for the actual data the 

ESTAR model outperforms both the RW and AR benchmarks at short horizons 

for the majority o f tests.

The rest o f the chapter is structured as follows. Section 3.2 sets forth the 

STAR model and provides a description o f the specification strategy adopted. The 

next section deals with generating forecasts from nonlinear models. Section 3.4 

describes the forecast evaluation measures employed as well as the parametric 

bootstrap methodology for conducting statistical inference. Section 3.5 describes 

the empirical results for the actual real exchange rate data and the simulation 

exercise. The final section concludes.

3.2 Smooth Transition Models

The basic STAR model representation for a univariate time series {y t } is given by

Vt =  7 T l , 0  +  7 T l , l ! / t - l  + ---------- ,p V t - p  +  f a f l  +

T7T2,iZ/t—i T" ■ ■ ■ T '^2,pyt—p)P'{yt—\ > Ti 0̂ T (-t> f 11 • ■ • i F, (3.1)

or equivalently

yt =  7T-̂ Xt T  i, 'y, c) -(- t 1, . . . ,  F, (3.2)

where x t — (1, x't)' with x t =  (j/t-i, • • • > Vt-pY, and n j  — (7rJ)0, . . . ,  7rJiP)' for 

j  =  1,2. It is assumed that the error term, eu is a martingale difference sequence. 

That is, E[et \ l t- i \  =  0, where l t- i  is the information set up to time t -  1 con­

sisting o f all lagged values o f y. The transition variable is given by the lagged 

endogenous variable y t-1  and c is a constant. The function F(-)  is at least fourth-
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order, continuously differentiable with respect to the transition (or smoothness) 

param eter 7 .

There are two common forms o f the STAR model. The one we will discuss 

here in detail is the Exponential STAR (ESTAR) model o f Terasvirta (1994), in 

which transitions between a continuum o f regimes are assumed to occur smoothly 

and symmetrically. The transition function F (  ) o f the ESTAR model is

F{ yt- 1; 7 , c) =  [1 -  ex p (—7 ( ^ 1  -  c)2)]. (3.3)

This transition function is symmetric around (yt~i — c) and admits the limits,

F  (•; 7 , c) -*• 1 as |yt_i -  c | - + + 0 0 ,

F  (•; 7 , c) -> 0 as \yt-i  — c| —► 0.

Parameter 7  can be seen as the transition speed o f the function F(-)  towards 1 

(0) as the deviation grows larger (smaller). We are particularly interested in the 

special case that there is a unit root in the linear polynomial, Y%=i =  U n 2,i —

—tti ,i V i > 1, 7T1)0 =  0 and c =  7r2,o* Under these restrictions, Equation (3.1)

becomes

Vt =  7T2,0 +  [ni,l(yt-l — 712,0 ) T  • • • T- 7Ti}P(yt-p — 7T2)o )]

x e x p ( - 7 (j/t_i -  7t 2 ,o ) 2 )  +  Ct- (3.4)

The above formulation is very appealing for modelling real exchange rates (see, 

e.g, Kilian and Taylor, 2003; Paya et al., 2003). Unlike in a linear model, the 

process moves between a white noise and a unit root depending on the size o f 

the deviation from PPP, \yt- i  -  * 2,0 1- This type o f adjustment is in accordance 

with the implications o f theoretical models, which demonstate how frictions in 

international trade can induce nonlinear but mean reverting adjustment o f  the real 

exchange rate (see, e.g., Dumas, 1992; Berka, 2005). The rational is that small
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deviations are left uncorrected since they do not to cover transactions costs or 

the sunk costs o f international arbitrage. On the other hand, large deviations are 

much less persistent. Therefore, the process exhibits strong persistence and near 

unit root behaviour.

Although ESTAR models can parsimoniously capture the adjustment m ech­

anism proposed by theoretical models, their superiority in forecasting over rival 

models, like the RW and the AR, is clearly regime dependent. For instance, at the 

equilibrium, the process behaves similar to the RW, which implies that one cannot 

extract forecasting gains from using ESTAR models. On the other hand, substan­

tially better forecasts can be obtained when large absolute deviations occur and 

the process is mean reverting fast. For AR models the speed o f mean reversion 

is independent from the size o f PPP deviations which results in substantial un­

derestimation (overestimation) o f the speed o f mean reversion only for relatively 

large (small) deviations. The other common form o f STAR models is the Logistic 

STAR (LSTAR), where the transition function F(-)  is given by

F ( - ;7 ,c) =  [1 +  e x p ( - 7 (yf_i -  c))]_1.

The logistic transition function is asymmetric about (yt_ i -  c) and admits the 

limits,

F  (•; 7 ) c) 1 as (yt_i -  c) +oo,

F ( - ; 7 ,c) 0  as (yt- i  — c) -> -o o .

LSTAR models have also been fitted to real exchange rates (see Sarantis, 1999).

Even though the theoretical argument is not as strongly supported as with the case

o f the ESTAR, there are some attempts to rationalise the asymmetric adjustment 

in the real exchange rate (see Campa and Goldberg, 2002).

We point out that as 7  —► 0 the exponential and logistic transition functions 

approach a constant and both models collapse to a linear AR model. For the ES-
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TAR model the same also holds when 7  —> 0 0 .2 The fact that STAR models 

nest linear AR models has important implications regarding the asymptotic dis­

tribution o f commonly used forecast accuracy and encompassing tests (see, e.g., 

Clements and Galvao, 2004).

3.2.1 Linearity and Unit Root Tests

The fact that there is uncertainty about the exact DGP of real exchange rates m o­

tivates the use o f data driven methods for the specification o f parsimonious em­

pirical models. In this study, we employ several testing procedures so as to exam­

ine whether the long-span real exchange rate series exhibits mean reversion and 

smooth transition dynamics. The rest o f this section describes the linearity tests o f 

Escribano and Jorda (1999) and Harvey and Leyboume (2007), and the unit root 

tests o f  Kapetanios et al. (2003) and Kapetanios and Shin (2008).3

Testing for the nonlinear part o f Equation (2.2) gives rise to a nuisance param ­

eter problem (Davies, 1977). Consequently, classical Lagrange M ultiplier (LM) 

and Wald statistics may not follow standard distributions. In order to circumvent 

this problem, Luukkonen et al. (1988) suggest replacing the transition function by 

a Taylor series approximation around 7  =  0 . Escribano and Jorda (1999) build 

upon the work o f Luukkonen et al. (1988) and propose the following auxiliary 

regression

yt = d f0x t +  S [ x tyt- i  +  S2x ty 2_ x +  S ^ X t y ^  +  &\xty \_x +  u t (3.5)

for testing linearity and distinguishing between ESTAR and LSTAR processes. 

The null hypothesis o f linearity corresponds to Hq : =  S2 — S '3 =  8 'A — 0 and

the selection procedure between ESTAR and LSTAR is

1. Test the null o f  LSTAR nonlinearity, Hq : S2 = S '4 =  0, with an F  test,

2Moreover, the LSTAR model nests the TAR model since for 7  —> 0 0  the logistic transition 
function approaches the indicator function.

3For a more detailed discussion o f linearity and unit root tests see (Pavlidis et al., 2009a) and 
Chapter 2 .

50



( F l ).

2. Test the null o f ESTAR nonlinearity, Hq : 8'-̂ — S '3 =  0, with an F  test,

( F e ) .

3. I f  the p -value o f Fjr, is lower than Fe  then select an ESTAR. Otherwise, 

select an LSTAR.

The use o f the F -test is based on the assumptions that the process under ex­

amination is stationary and the error term in Equation (3.2) is i.i.d. However, a 

major concern in the PPP literature is that real exchange rates exhibits a unit root 

in which case the asymptotic distribution o f linearity tests changes (Kilig, 2004). 

Therefore, in order to avoid false inference one should first test for a unit root 

in the real exchange rate series. If  the unit root hypothesis is rejected, the i.i.d. 

assumption can be relaxed by employing the wild bootstrap method (see Pavlidis 

et al., 2009b).

Harvey and Leyboume (2007) derive a more general linearity test statistic 

which has the same critical values under the null hypotheses o f  a linear 1(0 ) and a 

linear 1(1) processes. Rejection o f the null therefore is indicative o f nonlinearity 

and cannot be attributed to a linear 1(1) DGP.

The Harvey and Leyboume test procedure consists o f two steps. First is the 

test o f linearity. Second, the order o f integration o f the linear or nonlinear process 

is determined. Consider the case o f an 1(0) process. By setting p  =  1 and taking a 

second-order Taylor series expansion o f Equation (3.1) around 7  =  0 we obtain

Vt = P0 +  PiVt- 1 +  faVt- i  +  f a y f - i  +  u t- (3.6)

Whilst, in the case o f an 1(1) variable, the Taylor expansion yields 

A y t  = P o ^ y t - 1 +  < /h (A ^ -i) 2 +  ( f i ( A y t_ i )3 4 - et .

In order to combine both possibilities, 1(0) and 1(1), Harvey and Leyboume (2007)
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propose the following regression model

Vt — OtQ +  & l V t - l  +  Ot 2Vt - l  a 3 V t - l  +  a 4 ^ V t - l  +  +

+ “ 6(Aj/(_1)3 +  r)t . (3.7)

In the presence o f serial correlation, Equation (3.7) is augmented with lags o f the 

first difference o f the dependent variable. The null hypothesis o f linearity is H q : 

=  <̂ 3 =  =  otQ — 0 against the alternative hypothesis (nonlinearity) H i : at

least one o f  a 2, 0 :3 , a 5, a 6 is different from zero. The corresponding Wald statistic 

is
. . .  R S S i  -  R S S 0
14/ '-p    — ■ ■— - ■ _  1 ..

T R S S o / T  ’ 

where the restricted residual sum o f squares (R S S i ) comes from an OLS regres­

sion o f  yt on a constant, yt- i ,  and A y t- \ .  As Harvey and Leyboume point out, 

the distribution o f W T under the null differs depending on whether the process 

followed by yt is 1(0) or 1(1). In order to make the limiting distribution o f W T 

homogeneous under the null, they multiply it with a correction that is the ex­

ponential o f a weighted inverse o f the absolute value o f the Augmented Dickey 

Fuller (ADF) statistic ,4

=  exp (—b \ A D F t \ ~ 1) W t -  (3-8)

An expression for the value o f b is provided such that, for a given significance 

level, the critical value o f VFf coincides with that from a x 2 (4). They also prove 

that, under Hi, W £ is consistent at the rate Op(T).  The second step is to test 

whether the series is an 1(0 ) or an 1( 1) process.

We note that pretesting for a unit root is also important in selecting forecasting 

models. Diebold and Kilian (2000) illustrate that the conventional view o f  em­

ploying models in first-differences when the series under examination is highly 

persistent can lead to less accurate forecasts. To this end, the authors advocate the

4This approach is suggested by Vogelsang (1998).
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application o f unit root tests for choosing between levels and differences.

Kapetanios et al. (2003) develop a test o f a unit root null against the alternative 

o f a globally stationary ESTAR. Their test is also based on a Taylor approximation 

o f the nonlinear autoregressive model. For simplicity, assuming p — 1„ 7̂  =  1, 

7t2,i =  — 7Ti;i, and c — 0, then (3.1) becomes

yt =  yt- i  +  [l -  exp (~ 'yyt_1)] { - y t- 1) +  u t . (3.9)

Using the first-order Taylor expansion and rearranging yields

k y t = &yl-i + v*. (3.10)

Hence, the null and alternative hypotheses are H 0 : 8 — 0 and Hi : 8 < 0, 

respectively. The corresponding ^-statistic is given by

N̂L —  TjT, (3.11)
s.e.(o)

where s.e.(<5) denotes the standard error o f 8. The asymptotic distribution o f £NL 

converges weakly to a functional o f Brownian motions.

The issue o f possible residual autocorrelation can be addressed by augmenting 

Equation (3.10) with lags o f  the dependent variable. Further, in the presence o f 

deterministic components, the authors suggest replacing yt in Equation (3.10) with 

the residuals from the regression o f y  on an intercept (demean case) or an intercept 

and a time trend (detrend case).

Kapetanios and Shin (2008) proceed in the spirit o f Elliott et al. (1996) by 

employing a GLS procedure in order to increase the power o f  the nonlinear unit 

root test. In the case o f a mean and a time trend in the data, the first step o f the 

testing procedure includes computing the GLS estimate o f 0  in

yt = d ' z t + yti (3-12)
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by regressing y p =  (y1, y2- p y \ , . . . ,  v r - p v r - i ) '  on z p = ( z i , z 2- p z i , . . .  , z T -  

pZT- i ) '  where z t =  (1, t)'  and p =  1 — c / T  so as to obtain the estimated resid­

uals, yt .5 For the demean case z t is replaced by z t — 1. Subsequently, Equation 

(3.10) is fitted to the GLS demeaned or detrended series and the t-statistic, 

corresponding to H 0 : 8 — 0 is obtained. Kapetanios and Shin (2008) illustrate 

that the statistic, like the fNL, has a non-standard distribution.

Researchers typically employ Heteroskedasticity Consistent Covariance M a­

trix Estimators in order to robustify unit root tests against heteroskedasticity o f 

unknown form. Cook (2006) illustrates that in small samples this practice can 

lead to moderate oversizing o f the ADF and the Kapetanios et al. (2003) tests. 

Pavlidis et al. (2007) draw a similar conclusion for the test o f  Kapetanios and Shin 

(2008). In order to address this issue we construct exact sample critical values for 

the heteroskedasticity-robust test statistics via stochastic simulation.

3.3 Forecasting with Nonlinear Models

A general dynamic model for the process {yt } can be written as

2/t =  0(*t5 0 )  +  et , (3.13)

where x t — (1, yt_ i , . . . ,  y t-P)', 0  is a parameter vector and et ~  iid(0, a 2). By 

assuming a quadratic loss function the optimal h-step ahead forecast is yt+h\t = 

E  [yt+h | It], where l t denotes the information set at time t, (Clements, 2005). 

The complexity o f generating forecasts from the above model depends crucially 

on function g(-). When g(-) is a linear operator so that Equation (3.13) specifies 

an AR (p), a closed-form solution always exist. In this context, one- and multi- 

step ahead forecasts can be easily obtained through recursion (see, e.g., Hamilton, 

1994, ch. 4). On the other hand, when g(-) is a nonlinear function closed-form

5 Kapetanios and Shin (2008) set c equal to -17.5 so that the asymptotic power o f the test under 
the local alternative is 0.5.
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solutions for multi-step forecasts are not generally available. In this case, the 

one-step ahead forecast is given by

yt+i\t = E[yt+i | It] =  E [g (x t+i, <f>) +  et+1] =  g ( x t+i\ 4>). (3.14)

and, therefore, yt+i\t can be computed in a analogous way to the linear AR(p) 

model. For larger forecast horizons, say h =  2, however,

yt+2\t =  E  [yt+2 | It] = E  [g(xt+2, <j>) +  et+2 \ I t] (3.15)

=  E  [g(xt+2, <f>) | It] +  E[et+2] (3.16)

=  E  \g(x t+2', <t>) I It] ■ (3.17)

Because the expected value o f a nonlinear function is not necessarily equal to the 

function value calculated at the expectation o f its argument, E  [#(•)] ^  g (£[•]),

Vt+2\t = E[g(xt+1\ <f>) I %t] = E  [g(xt+2\t +  et+2 ; 4>) \ I t]  7̂  (3.18)

^  g (E [ x t+2 | I t] +  E[et+2 \ J J ;  <f>) = g { x t+2\t, <t>)- (3.19)

It follows that a recursive relationship between forecasts at different horizons can­

not be established.

A widely used method to approximate E  [yt+h | I t\ when g(-) is nonlinear is 

bootstrap integration.6 The procedure o f generating the h -step ahead forecast is

1. Use Equation (3.14) and l t to compute yt+i \t.7

2. Randomly draw with replacement h — 1 values from the estimated residuals

e o f the nonlinear time series model (3.13).

Alternative methods proposed in the literature for constructing multi-step forecasts for non­
linear models are the Naive or Skeleton method, the Exact method and Monte Carlo simula­
tion (e.g., Terasvirta, 2006). The former method is based on recursive substitution by setting 
£[#(')] — 9 ( E[ ] )  and, therefore, produces biased results. The Exact method employs numerical 
integration, which requires assumptions regarding the error distribution and is computationally 
intensive for large forecast horizons. The final method, Monte Carlo simulation, is similar to the 
bootstrap but again requires distributional assumptions.

7Note that in practice there is parameter uncertainty since <j> is not known and has to be esti­
mated.
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3. Use the bootstrap innovations, Xt, and yt+i\t obtained in the first step, and 

iterate on the nonlinear model so as to compute a forecast yt+h\t-

4. Repeat Steps 2 and 3 B  times, where B  is large number, so as to get y lt+h\t , 

where i — 1 , . . . ,  B.

5. The h -step ahead boostrap forecast is given by

An attractive feature o f the bootstrap method is that it does not require distribu­

tional assumption. The errors, however, are presumed to be iid. The results o f 

Clements and Smith (1997) support the use o f bootstrap methods in forecasting 

from nonlinear autoregressive models. For a survey on forecasting with STAR 

models see Lundbergh and Terasvirta (2002).

3.4 Evaluating Forecasts

Forecast evaluation provides an alternative way o f model selection. We restrict 

our attention to the comparison o f point forecasts on the basis o f  forecast ac­

curacy and forecast encompassing measures. The former measures include the 

M SE-f o f  Diebold and Mariano (1995), the M SE -F  test o f  Clark and M cCracken 

(2005a) and the Weighted MSE-f (W-MSE-t) proposed by van Dijk and Franses 

(2003). The latter are the Harvey et al. (1998) ENC-i and the E N C -F  o f Clark 

and M cCracken (2005a).

Our setting is similar to the one adopted by Clark and McCracken (2005a). 

The number o f in-sample and out-of-sample observations is denoted as R  and F , 

respectively, so that the total number o f observations is T  = R  +  P.  We adopt 

a recursive scheme for forecasting, where as t increases from R  to T  -  h the 

parameters o f  the models are re-estimated by employing data up to time t so as 

to generate forecast for the following h horizons. In accordance with the notation

(3.20)
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used in the previous section, y t + h  denotes the variable to be predicted at time 

t  =  R , . .. , T  — h  with the number o f forecasts corresponding to horizon h being 

equal to P  — h +  1 .  The forecast errors are defined as e l  t + / l  =  y t + h  -  y i t t+ h \ t  for 

the benchmark model and e2j+h — Vt+h — il2,t+h\t for the competing model.

3.4.1 Tests of Forecast Accuracy

The first three tests examine forecast accuracy by setting the Mean Square Error 

(MSE) as the measure o f  predictive ability. In this setting, the null hypothesis 

is that the MSEs o f the two competing models are equal against the one-sided 

alternative that the MSE for the second model is smaller. Diebold and Mariano

(1995) develop the following widely used f-type test

M S E - t  =  ( P - / i  +  l ) 1 / 2 ^ ,  (3.21)
Sdd

where d t + h  =  P u + h  -  ^ t + h , d — { P  — h +  I ) - 1  Z I = r  d t + h  =  M SEX -  M SE2, 

F d d ( j )  =  { P  ~  h  +  I ) - 1  Y ? t= R + j d t + h d t + h - j  for j  ^  O a n d fd d ( j )  =  f dd( - j ) , a n d  

S dd — Y j j = - j  K ( j / M ) T d d ( j )  denotes the long-run variance o f d t + h  estimated 

using a kernel-based estimator with function K(-) ,  bandwith parameter M  and 

maximum num ber o f lags j . 8

For non-nested models the long-run variance o f d t + h  is positive and the M SE-f 

statistic follows asymptotically the standard normal distribution. W hen the num ­

ber o f forecasts is relatively small, Harvey et al. (1997) illustrate that a distinctive 

improvement o f the test can be achieved by correcting for small-sample bias in 

the estimated variance o f d t + h and comparing the statistic to the Student’s t  distri­

bution with P  — h degrees o f  freedom. The corrected test statistic is obtained by

8 The use o f Heteroskedasticity and Autocorrelation-Consistent (HAC) estimators for comput­
ing the variance o f d t+ h is based on the fact that /i-steps-ahead forecast errors will be serially 
correlated o f order h -  1. The performance o f the MSE-i test using different HAC estimators is 
examined in Clark (1999).
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multiplying M SE-i by

j  P  — 2h + h(h  — 1 ) / ( P  — h + 1)

C “ V ( P - h + 1)

On the contrary, when the competing models are nested their population errors are 

identical under the null and, therefore, dt+h and its variance are equal to zero. In 

this case, the asymptotic distribution o f the statistic is non-standard and depends 

upon nuisance parameters for h >  2 (McCracken, 2004).9

The degeneracy o f the long-run variance o f dt+h motivates Clark and M c­

Cracken (2005a) to propose a variant o f the above test for nested models. Inspired 

by the in-sample F -test the author suggests replacing S lJ ^  with the variance o f 

the forecast error o f the “unrestricted” model. The new test statistic is given by

M S E - F  =  ( P - A + l ) ‘ / ^ .  ( 3 . 2 2 )

and has, asymptotically, better power properties (Clark and McCracken, 2005a). 

The limiting distribution o f the M SE -F  test statistic, like the M SE-f, is free o f 

nuisance parameters only for h — 1 and is non-standard.

The forecast accuracy tests examined so far attach equal importance to all 

forecasts irrespectively o f the available information set at time t. Hoverer, given 

the properties o f the nonlinear adjustment mechanism for the real exchange rate, 

a researcher would expect the superiority o f the ESTAR model over the RW to 

become most apparent for large deviations o f the process from its equilibrium 

value. W hile for smaller deviations the two models should perform similarly, 

van Dijk and Franses (2003) propose a forecast evaluation test that employes a 

weighted average loss differential and comprises a modification o f the MSE-f o f

9The asymptotic distributions o f all the test statistics for multi-step forecasts from nested mod­
els under parameter uncertainty are derived in Clark and McCracken (2005a). However, their 
derivation is based on the sufficient but not necessary assumptions o f stationarity and linearity o f  
the parameters, which are clearly not satisfied in our experiment.
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Diebold and Mariano (1995). The corresponding test statistic is

1w
W  -  MSE - t  = ( P - h  + 1)1/2^ - ,  (3.23)

q L / L

dwdw

where d?+h = w ( x t )  x  (e \t+h -  e \ t+h), <T =  (P  -  h +  I)"1 <+/,.

?<(•"</'■ O') = (P  -  /) + l ) _1ErOft+jO+/.drih-j fori  > 0 and =

r dwdw( ~ j ) ,  and S dwdw =  K ( j / M ) r d™dw(j)  denotes the long-run variance

o f d™+h estimated using a kernel-based estimator with function K(-) ,  bandwith 

param eter M  and maximum number o f lags j .  The weight function is given by

u>(xt) =  1  ^TTTTy (3 -24)

where /( • )  is the density function o f yt, so that more importance is attached to 

forecasts corresponding to deviations at the tails o f  the distribution, van Dijk and 

Franses (2003) show that the modified test statistic follows the same distribution 

with the MSE-L

3.4.2 Forecast Encompassing

The remaining tests concern forecast encompassing. Consider the following com­

bination o f  forecasts from the two competing models

Vc,t+h\t =  (1 -  tyyi,t+h\t +  ^V2,t+h\t, (3.25)

where A e  [0,1]. Letting ec,t+h denote the error o f the composite forecast yc,t+h\t 

and substituting y itt+h\t and y2,t+h\t yields

ei,t+h\t — K ei,t+h\t ~  Z2,t+h\t) +  ec,t+h\t- (3.26)

In this case, the null hypothesis that the forecast o f  the benchmark model incorpo­

rates all the relevant information in the forecast o f  the competing model is given by
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H q : A =  0. That is, the covariance between the forecast errors o f  the first model 

and the difference o f the forecasts errors o f the two models is equal to zero (see 

West, 2006). Under the alternative, the covariance is positive, Hi  : A >  0, indi­

cating that the second model has additional predictive power. Clearly, the forecast 

encompassing tests are also one-sided to the right. Harvey et al. (1998), based 

on the work o f o f Diebold and Mariano (1995), derive the following forecast- 

encompassing test statistic10

E N C - (  =  ( P - h  + l f ! 2— . (3.27)
S e c

Let Ct+h ^l,t+h{^l,t+h &2,t+h)> Tcc(j) (F  h +  1) Ct+frCt+h-j

for j  ^  0 and f cc(j)  =  f cc( - j ) ,  and let S cc =  K U / M )Fcc{j) denote the

long-run variance o f ct+h-

Clark and McCracken (2001) illustrate that the distribution o f the ENC-f statis­

tic converges to the same type o f distribution with the MSE-f statistic when the 

forecasts are generated from linear nested models. By employing the same rea­

soning with the one used for the E N C -F test they propose the following F-type 

test statistic

E N C - F  =  ( P - / *  +  D 1/2^ ,  (3.28)

which again has a non-standard limiting distribution and depends on nuisance 

parameters for h >  2. Similarly to forecast accuracy measures, the F-type test 

has, asymptotically, greater power than its f-type counterpart.

Due to the fact that standard distribution theory may not apply, we conduct 

statistical inference by employing a parametric bootstrap method similar to Kil- 

ian (1999) and Kilian and Taylor (2003). The simulation exercise consist o f  the 

following steps

1. Employ the original real exchange rate series and compute the above fore­

cast evaluation measures for all forecast horizons.

10The authors employ the small sample correction o f Harvey et al. (1997) for the MSE-t statistic.
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2. Estim ate the restricted m odel for the real exchange rate (the RW  or the AR 

m odel) using the w hole sam ple in order to obtain the fitted residuals and 

coefficients.

3. Set the estim ated m odel as the N ull DGP and random ly draw w ith replace­

m ent from the residuals so as to create an artificial series for the real ex­

change rate w ith the sam e length as the actual series. Initialise the process 

by em ploying the observed values o f  the series.

4. Repeat the forecasting exercise using the artificial data so as to com pute h  

bootstrap test statistics for each forecast evaluation m easure.

5. R epeat steps 3 and 4 B  times, w here B  is a large num ber, so as to obtain 

the bootstrap distributions o f  the test statistics under the null.

6. C om pute the bootstrap p -value as the percentage o f  tim es the sim ulated 

statistic is m ore extrem e than the original statistic.

7. R eject the null i f  the p -value is sm aller than the chosen significance level.

C lark and M cC racken (2005a) illustrate that w hen forecasts are generated 

from  linear nested m odels this m ethod perform s adequately in term s o f  size and 

pow er even w hen the bootstrap m odel is not properly specified. However, the 

perform ance o f  the bootstrap technique as w ell as the validity o f  the F -ty p e  tests 

has not been explored w hen one o f  the com peting m odels is nonlinear or the p ro ­

cess is nonstationary. We contribute to the literature on nonlinear real exchange 

rate forecasting by exam ining the finite properties o f  F -ty p e  tests as w ell as their 

im plications in the follow ing section.

3.5 Empirical Results

We extend the dollar-sterling real exchange rate data set o f  L othian and Taylor

(1996) by using annual data for the U.S. and U.K. consum er price indices and
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the dollar-sterling nom inal exchange rate obtained from  the International F inan­

cial S tatistics database. The updated series covers the period from  1791 to 2005 

and is illustrated in Figure 3.1. The num ber o f  in-sam ple observations, R,  is set 

equal to 183 w hich corresponds to the pre-B retton W oods era (1791-1973) and 

the rem aining 32 years, P,  com prise the out-of-sam ple period.

2.0

1.8

1.6

1 . 4

in-sam ple
out-of-sam ple

1 8 5 0 1 9 0 0 1 9 5 0 20001 8 0 0

Figure 3.1: Tim e series plo t o f  the dollar-sterling real exchange rate. The solid 
(dashed) line represents the in-sam ple (out-of-sam ple) period.

3.5.1 In-Sample Tests

Starting w ith the in-sam ple tests, we present results for both the entire sam ple 

period and the subperiod from  1791 to 1973. Table 3.1 reports the ADF, £nl and 

tests statistics as w ell as their heteroskedasticity-robust versions (A D F-HC, 

£nl-HC, ^ lS_HC) corresponding to the dem ean and detrend cases.11 Exact sam ­

ple critical values are constructed via stochastic sim ulation. For the dem eaned 

real exchange rate, the unit root hypothesis is rejected by  all tests at the 5% sig­

nificance level. The only exception is the heteroskedasticity-robust version o f  the 

K apetanios and Shin (2008) test, w hich rejects the null only at the 10% w hen data

11 The lag length for the unit root and linearity tests is set to two on the basis o f  the Akaike 
Information Criterion.
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prior to the recent floating period are used. Turning to the detrend case, the num ­

ber o f  rejection decreases w ith the £Nl-HC statistic for the subperiod 1791-1973 

and the £°lS and n̂lS_HC tests statistics for the w hole period being larger than the 

corresponding 10% critical values. The m ean reverting behaviour o f  the long-span 

real exchange rate is consistent w ith the em pirical literature on PPP (see Frankel, 

1990; L othian and Taylor, 1996). Given the stationarity o f  the series, w e follow 

the recom m endation o f  D iebold and K ilian (2000) and choose to w ork w ith levels 

rather than first differences.

Table 3.1: U nit Root Tests

Sam ple Period: 1791-1973

Case A D F AD F-H C ^NL £NL-HC /GLS
^NL f f - H C

Mean —3.082** -3.321** --3.488** -4.687** —2.211* -2.866**

Trend -4.985** -5.192** --3.707** -3 .4 6 9 —3.824** -3.648**

Sam ple Period: 1791-2005

Case ADF AD F-H C ^NL £NL-HC /GLS
NL f f - H C

Mean -3.794** -3.991** --4.522** -5.314** —2.873** -3.258**

Trend -4.327** -4.532** --4.406** -5.013** —2.293 -2 .5 9 8

NOTE: ADF, £nl and £nl are the Augmented Dickey Fuller, the Kapetanios et al. (2003) and 
the Kapetanios and Shin (2008) unit root tests statistics. HC indicates heteroskedasticity-robust 
versions. ** and * denote significance at the 5%, and 10% significance level, respectively. 
Critical values are constructed via Monte Carlo simulations.

We proceed by exam ining the presence o f  STAR-type nonlinearities by  ap­

plying the Escribano and Jorda (1999) and Harvey and Leyboum e (2007) testing 

procedures. The results are reported in Table 3.2. First, the w ild bootstrap p- 

values for the tests developed in Pavlidis et al. (2009b) (top panel) corresponding 

to the null o f  linearity is m arginally lower than the 5% significance level for the 

w hole sam ple and slightly higher than the 10% for the subsam ple. Second, the 

fact that the p-value corresponding to FL is low er than the one corresponding to 

F e  favours the use o f  the ESTAR m odel over the asym m etric LSTAR. M oreover, 

the Harvey and Leyboum e (2007) test statistic is also greater than the 10% crit­

63



ical value w hich provides further support for the sm ooth transition model. The 

m agnitudes o f  the p-values corresponding to the linearity tests indicate that the 

nonlinear m ean-reverting behaviour o f  the series is m ore evident for the w hole 

sam ple period than the pre-Bretton W oods era. This finding can be attributed to 

the higher pow er o f  the tests for larger sam ple sizes.

Table 3.2: L inearity Tests

Escribano and Jorda (1999)
Period F F l F e

1791-1973 1.192 (0.114) 0.458 (0.610) 0.368 (0.695)

1791-2005 1.582 (0.043) 1.050 (0.244) 0.886 (0.329)

H arvey and Leyboum e (2007)
Period W*

1791-1973 8.494 (0.078)

1791-2005 10.478 (0.033)

NOTE: p-values are reported in parentheses. For the Escribano and Jorda (1999) test p-values 
are obtained through the wild bootstrap procedure described in Pavlidis et al. (2009b).

Next, we follow  K ilian and Taylor (2003) and m odel the level o f  the real ex­

change rate using the ESTAR param eterisation (3 .4).12 Table 3.3 shows the esti­

m ates o f  the ESTAR m odel for the two periods examined, the standard error o f  

the regressions, the corresponding ^-statistics, the Ljung-B ox Q -statistics for se­

rial correlation in the residuals and the LM  test statistic (A RCH ) for conditional 

heteroskedasticity  up to lags 1 and 5, and the w ild bootstrap p-  value for the transi­

tion param eter 7 . The Q  and ARCH  statistics do not indicate the presence o f  serial 

correlation or A R C H  effects in the regression residuals. M oreover, the p-value is 

virtually  zero in both cases suggesting that the estim ated transition param eters are

significant at all conventional levels. In accordance w ith the linearity tests results,

12Equation (3.4) imposes that the autoregressive coefficients sum to unity so that the process has 
a unit root in the inner regime. We test this restriction by running a Wald E-test. The corresponding 
p-value is substantially larger than 1 0 % implying that the restricted version is also supported by 
the data.
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the p-value for the transition param eter is lower for the w hole sam ple illustrating 

that the degree o f  nonlinearity  is m ore pronounced w hen longer spans o f  data are 

examined.

Table 3.3: Estim ated N onlinear Real Exchange Rate M odel

Sam ple Period: 1791-1973

y t -  1.586 = (  1.122 (& _! -  1.586 ) +  (1 -  1.122 ){yt- 2 -  1.586 )) 
(63.598) (13.834) (63.598) (13.834) (63.598)

x e x p (— 2.076 (yt-1  -  1.586 )2).
V (3.508) (63.598) '

[0.005]

s =  0.067; Q i  =  0.005 [0.942]; Q b =  3.941 [0.558]; A R C H i =  0.059 [0.809]; 

A R C H 5 =  0.220 [0.953].

Sam ple Period: 1791-2005

y t -  1.590 = (  1.185 (j/t_ i -  1.590 ) + ( 1  -  1.185 )(y t_2 -  1.590 )) 
(81.518) (16.053) (81.518) (16.053) (81.518)

x e x p (— 2.504 (yt- 1 -  
(4.357)
[0.000]

s =  0.068; Q i =  0.002 [0.963]; Q 5 =  4.133 [0.530]; A R C H i =  0.079 [0.778]; 

A R C H 5 =  0.416 [0.837].

NOTE: Figures in parentheses and square brackets denote absolute t-statistics and p-values, re­

spectively. The p-value for the transition parameter 7  is obtained through a simulation exercise, 

where the bootstrap DGP is the unit root model, s  is the standard error o f  the regression. Q 1 

and Q 5 denote the Ljung-Box Q-statistic for serial correlation up to order 1 and 5, respectively. 

ARCHi and ARCH5 denote the LM test statistic for conditional heteroskedasticity up to order 

1 and 5, respectively.

1.590 Y ) .  
(81.518)
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3.5.2 Out-of-Sample Tests

The in-sam ple test results provide strong support for a nonlinear adjustm ent m ech­

anism  o f  the real exchange rate. We now turn to the forecasting exercise. As we 

highlighted in the previous sections: (i) out-of-sam ple tests are likely to exhibit 

low er pow er than in-sam ple tests, and (ii) there is uncertainty regarding the valid­

ity o f  the F -ty p e  tests w hen one o f  the com peting m odel is nonlinear or nonsta- 

tionary. These m otivate us to exam ine the sm all sam ple properties o f  the forecast 

evaluation m easures by conducting a set o f  M onte Carlo sim ulation experim ents. 

The nom inal significance level is set equal to 5% for all experim ents, the m axi­

m um  forecast horizon equal to 4 and the num ber o f  bootstrap replication, B ,  equal 

to 1,000.

Empirical Size of Forecast Evaluation Tests

Initially, w e focus on the em pirical size o f  the tests, w hich is com puted by the 

follow ing procedure

1. F it the benchm ark m odel (the RW  or the linear AR) to the w hole sample.

2. Set the fitted m odel as the Null D GP and generate 1,000 artificial series o f  

size equal to the size o f  the actual real exchange rate series.13

3. For each series adopt the same setting as for the actual data and generate 

forecasts from  the benchm ark and the com peting m odel(s).

4. A pply the bootstrap m ethodology outlined in Section 3.4 so as to com pute 

a vector o f  bootstrap p- values.

5. The em pirical size o f  the test is defined as the percentage o f  tim es the boot­

strap p-value is sm aller than the 5 %  significance level.

13 Fake series are generated by drawing from the normal distribution with variance equal to the 
variance o f  the actual residuals. The first observations o f  the actual data are employed as initial 
values.
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The results for the case o f  the RW against the ESTAR (RW -ESTAR), the RW 

against the A R  (RW -AR) and the A R  against the ESTAR (AR-ESTAR) are pre­

sented in Table 3.4. A  broad conclusion that em erges is that the em pirical size o f  

all tests, but the W-MSE-£, is close to the nom inal level w ith no test consistently 

outperform ing the others.

Table 3.4: Em pirical Size o f  Forecast Evaluation Tests

RW-ESTAR

H orizon M SE -t W -M SE -t ENC-t M S E -F E N C -F

1 0.056 0.089 0.061 0.058 0.058

2 0.058 0.079 0.053 0.056 0.048

3 0.054 0.072 0.056 0.055 0.047

4 0.038 0.056 0.039 0.058 0.045

RW -AR

H orizon MSE-£ W-MSE-£ E N C -i M S E -F E N C -F

1 0.055 0.104 0.055 0.052 0.051

2 0.046 0.087 0.044 0.045 0.042

3 0.046 0.071 0.040 0.051 0.044

4 0.041 0.063 0.041 0.053 0.041

AR-ESTAR

H orizon MSE-£ W -M SE -t EN C-t M S E -F E N C -F

1 0.043 0.034 0.040 0.067 0.066

2 0.046 0.023 0.047 0.050 0.055

3 0.049 0.032 0.051 0.056 0.054

4 0.052 0.033 0.052 0.059 0.047
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NOTE: The table shows the empirical size o f  the MSE-t, W-MSE-t, ENC-£, M SE -F and

E NC -F test statistics for the RW-ESTAR, RW-AR and AR-ESTAR pairs. The nominal sig­

nificance level is 5% and the horizons considered are h  =  1 , . . . ,  4.

The (absolute) error in rejection probability  reaches a m axim um  o f  ju s t 1.7 

percentage points (for the M S E -F  at the one year horizon). M ost importantly, 

these results indicate that F -ty p e  tests are valid in our nonlinear context. As far as 

the W -M SE-f is concerned, the test exhibits m oderate size distortions o f  up to 5 

percentage points. Specifically, for the RW -ESTAR and the RW -AR cases the test 

is oversized at short horizons w ith the em pirical size taking values close to 1 0%. 

W hile, for the AR-ESTAR case the w eighted M SE -t statistic becom es undersized 

w ith the em pirical size reaching a m inim um  value equal to 0.023 at h — 2.

Empirical Power o f Forecast Evaluation Tests

We turn to the em pirical pow er o f  the tests. The procedure adopted is identical to 

that for the size w ith the exception that the N ull DGP is given by  the estim ated 

ESTAR m odel. Table 3.5 shows the results for the RW-ESTAR and AR-ESTAR 

cases. O verall, w e observe that despite the fact that there are m ajor differences 

across tests and pairs o f  com peting m odels, the em pirical pow er o f  all tests tends 

to decrease w ith the forecast horizon. Starting w ith the RW -ESTAR, f-type tests 

perform  substantially worse than F -ty p e  tests. Specifically, the M SE-t ranks last 

w ith the em pirical pow er ranging from  about 15% for h =  1 to about 8 % for h =

4. The VF-MSE-t and E N C -t tests follow w ith the latter being m arginally superior 

than the form er but again w ith very low em pirical pow er .14 A n increase by a factor 

o f  tw o or greater (depending on the horizon) in the frequency o f  rejecting the null 

occurs as we move to the M S E -F . The em pirical pow er o f  the test exceeds 50%. 

Finally, the E N C -F  test exhibits the highest power, w hich ranges from  6 8  to about 

75%.

14The results for the W-MSE-t test should be interpreted with caution due to the poor size 
properties o f  the test.
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Table 3.5: Em pirical Pow er o f  Forecast Evaluation Tests

RW-ESTAR

Horizon M SE-f W -M SE-f EN C-f M S E -F E N C -F

1 0.152 0.170 0.239 0.577 0.752

2 0.094 0.124 0.133 0.588 0.730

3 0.078 0.096 0 .1 1 1 0.566 0.709

4 0.079 0.095 0.114 0.528 0.680

AR-ESTAR

H orizon M SE-f W -M SE-f EN C-f M S E -F E N C -F

1 0.237 0.163 0.203 0.269 0 . 2 2 0

2 0.209 0 .1 2 1 0.170 0.176 0.124

3 0.163 0.103 0.142 0.106 0.064

4 0.137 0.071 0.108 0.060 0.025

NOTE: The table shows the empirical power o f  the MSE-t, W-MSE-t, ENC-t, M SE -F  and 

EN C -F test statistics for the RW-ESTAR and AR-ESTAR pairs. The nominal significance 

level is 5% and the horizons considered are h — 1 , . . . ,  4.

As far as the A R-ESTAR pair is concerned, the perform ance o f  the F -ty p e

tests deteriorates w hile f-type tests exhibit sim ilar em pirical pow er to the RW-

ESTAR case. The m axim um  power, which is achieved at h — 1 in all cases,

ranges from  about 16 (W -M SE-f) to about 27%  (M S E -F ). In other words, there

is a sm all likelihood o f  identifying the forecasting gains from  adopting an ESTAR

rather than a linear A R  m odel even though the true D GP process is nonlinear.

These results are qualitatively sim ilar w ith C lem ents and Sm ith (1999) for SETAR

m odels. The low pow er o f  the tests suggests that superior in-sam ple but not out-of-

sam ple perform ance o f  nonlinear m odels should not be docum ented as conclusive

evidence against nonlinearity . 15

15These results are similar to Inoue and Kilian (2005) regarding the comparison o f  linear mod-

69



Forecasting the Dollar-Sterling Real Exchange Rate

Table 3.6 presents the results regarding the com parison o f  forecasts for the actual 

real exchange rate series. The first three panels report the t-type test statistics, 

nam ely the M SE -t, W -M SE-t, and EN C -t tests. W hile the last two panels show 

the F -ty p e  tests statistics. The corresponding bootstrap p-values are reported in 

parentheses.

Table 3.6: Com paring Forecasts for the D ollar-Sterling Real 

Exchange Rate, 1974-2005

Panel A —  M SE -t test

Horizon RW -ESTAR RW -AR AR-ESTAR

1 1.827 (0.047) 1.441 (0.091) 1.702 (0.019)

2 1.790 (0.067) 1.514(0.129) 1.281 (0.048)

3 1.664 (0.114) 1.600 (0.134) 0.836 (0.098)

4 1.670 (0.118) 1.702 (0.123) 0.357 (0.203)

Panel BI —  W -M SE-t test

H orizon RW -ESTAR RW-AR AR-ESTAR

1 1.718 (0.053) 1.547 (0.066) 1.354 (0.032)

2 1.682 (0.069) 1.654 (0.083) 1.146 (0.062)

3 1.593 (0.095) 1.647 (0.099) 0 .815(0 .121)

4 1.617(0 .097) 1.695 (0.104) 0.528 (0.190)

Panel C —  E N C -t test

H orizon RW-ESTAR RW-AR AR-ESTAR

1 2.016 (0.066) 1.794 (0.105) 1.942 (0.033)

2 1.979 (0.105) 1.929 (0.134) 1.607 (0.062)

C ontinued on N ext P a g e ...

els.
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Table 3.6: Com paring Forecasts (Continued)

3 1.942 (0.143) 2.077 (0.131) 1.157 (0.146)

4 2.054 (0.145) 2.276 (0.130) 0.641 (0.295)

Panel D —  M S E -F  test

H orizon RW-ESTAR RW -AR AR-ESTAR

1 17.842 (0.000) 11.715 (0.002) 5.369 (0.046)

2 24.793 (0.000) 17.884 (0.008) 5.651 (0.108)

3 29.577 (0.002) 24.756 (0.016) 3.657 (0.181)

4 37.289 (0.007) 34.970 (0.017) 1.583 (0.254)

Panel E —  E N C -F  test

H orizon RW -ESTAR RW -AR AR-ESTAR

1 22.449 (0.001) 15.616(0.003) 6.361 (0.104)

2 30.060 (0.002) 23.754 (0.013) 6.934 (0.181)

3 36.531 (0.013) 32.791 (0.019) 4.729 (0.302)

4 47.439 (0.020) 46.750 (0.023) 2.528 (0.393)

NOTE: The table shows the MSE-t, W-MSE-t, ENC-t, M SE -F  and E N C -F evaluation mea­

sures for the comparison o f  actual real exchange rate forecasts from the ESTAR, AR and 

RW models. Bootstrap p-values are reported in parentheses. The horizons considered are 

h =  1 , . . .  ,4.

A broad conclusion that em erges is that as the forecast horizon increases the 

p-values for all tests tend to increase indicating that long-horizon predictability  

depends upon short-horizon predictability. This observation is consistent w ith 

the behaviour o f  the em pirical pow er o f  the tests reported in the Table 3.5. Fur­

therm ore, the forecasting gains from  using our nonlinear m odel specification are 

particularly  evident at short forecast horizons. To this end, w e m ainly focus on
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one step ahead forecasts.

By exam ining the RW-ESTAR pair (second colum n), we observe that all five 

forecast encom passing and forecast accuracy test statistics are statistically signif­

icant at the 10% significance level. By changing the significance level to 5%, the 

null hypothesis is rejected by the tw o F -ty p e  tests and the M SE -t test (three out o f  

the five cases). We note that for the F -ty p e  tests, p -values are close to zero for all 

forecasts horizons, w hich is not true for the f-type tests. The fact that F -ty p e  tests 

are associated w ith m uch lower p-values than their f-type counterparts w hen the 

benchm ark m odel is the RW is not surprising given the h igher em pirical pow er o f  

the former.

Turning to the RW -AR pair (third colum n), w e generally observe higher p- 

values than for the RW -ESTAR pair. The num ber o f  rejections at the 10% level 

reduces from five to four for h =  1 . W hile, at the 5% level only the two F -ty p e  

tests reject the nu ll . 16 Sum m arising the above results, both A R  and ESTAR m odels 

appear to have predictive ability regarding the behaviour o f  the dollar-sterling real 

exchange rate.

The final colum n (AR-ESTAR) o f  Table 3.6 presents the results for the com ­

parison o f  these two models. Despite the low em pirical pow er o f  the forecast 

evaluation m easures, at h =  1 all test statistics are significant at the 5% with the 

exception o f  the E N C -F , w hich has a p -value m arginally higher than 10%. The 

num ber o f  rejections substantially reduces w ith the forecast horizon and at h  — 2 

only the M SE-f test rejects the null hypothesis. This m ay be due to the fact that 

both m odels share the prediction that the series w ill eventually m ean revert to its 

equilibrium  value.

O verall, the out-of-sam ple tests results com plem ent those o f  the in-sam ple 

tests and provide strong support for the ESTAR m odel. In contrast to previous 

studies, w hich em ploy higher frequency data, our findings illustrate that nonlinear 

real exchange rate m odels are useful for forecasting the long-span real exchange

16Lothian and Taylor (1996) and Siddique and Sweeney (1998) also show that AR models 
provide superior forecasts (in terms o f  the RMSE criterion) to the RW for the recent float.
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rate.

3.6 Conclusion

This chapter utilises a long span o f  data in order to investigate the ability o f  the 

ESTAR m odel to forecast the dollar-sterling real exchange rate. We pay special 

attention to m odel specification by em ploying several recently proposed linearity 

and unit root tests as w ell as bootstrap techniques. In turn, w e investigate the small 

sam ple properties o f  a battery o f  forecast evaluation m easures. O ur results, in line 

w ith the literature on forecasting from  nonlinear m odels, illustrate the difficulty o f  

detecting the superiority o f  STAR m odels to A R  m odels. Despite the low pow er 

o f  out-of-sam ple evaluation tests, w e find that recursive ESTAR forecasts for the 

actual real exchange rate series outperform  all rival forecasts. Consequently, re ­

searchers and practitioners can extract forecasting gains regarding the behaviour 

o f  the long-span real exchange rate series by  em ploying nonlinear m odels.
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C H A P T E R  4

Further Empirical Evidence on the 

Consum ption-Real Exchange Rate Anom aly

4.1 Introduction

In the early 1990s the lack o f  evidence supporting Purchasing Pow er Parity (PPP) 

led researchers to focus on the identification o f  potential pitfalls concerning the 

em pirical approaches em ployed till then as w ell as to provide theoretical justifica­

tions for the observed behaviour o f  real exchange rates.

Three o f  the m ost im portant avenues o f  research that em erged have focused 

on: (i) the effect o f  the sam ple size, (ii) the presence o f  nonlinearities in the adjust­

m ent m echanism , and (iii) the fact that real variables m ay affect the equilibrium  

real exchange rate. As far as the latter factor is concerned International Real B usi­

ness Cycle (IRBC) m odels, w ith com plete or incom plete asset m arkets, establish 

a relationship betw een the equilibrium  real exchange rate and consum ption series 

on the basis o f  international risk sharing (e.g., Backus and Smith, 1993; K ollm ann, 

1995; Chari et al., 2002). However, the findings o f  a num ber o f  studies cast doubts
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on the em pirical validity o f  this im plication (see, e.g., Benigno and Thoenissen, 

2008). The m ain objective o f  the present chapter is to reassess the im plied rela­

tionship betw een the real exchange rate and consum ption by extending the sam ple 

used by  previous studies and by allowing the presence o f  nonlinearity  in the ad­

justm ent m echanism . The rest o f  the introductory section outlines recent advances 

in the literature that m otivate our approach.

As noted by Frankel (1986), the tests typically em ployed during the 1980s to 

investigate w hether real exchange rates are stationary m ay have low pow er w hen 

applied to sm all spans o f  data during the recent floating rate period. Follow ing 

Frankel a num ber o f  researchers supported this view  by using long span o f  data 

(e.g., Lothian and Taylor, 1996) and panel unit root tests (Frankel and Rose, 1996). 

Even though these studies provided evidence that real exchange rates m ean revert 

in the long-run, the im plied h a lf life o f  deviations from  PPP ranged from  three 

to five years. The fact that real shocks cannot account for such a h igh degree o f  

persistence gave rise to R o g o ff s (1996) PPP puzzle.

Perhaps the m ost im portant explanation o f  the R ogoff puzzle is provided by 

theoretical m odels w hich dem onstrate how transactions costs or the sunk costs o f  

international arbitrage induce nonlinear but m ean reverting adjustm ent o f  the real 

exchange rate (see, e.g., Dum as, 1992; Sercu et al., 1995; O ’Connell and Wei, 

2002). W hilst globally m ean reverting, these nonlinear processes have the p rop­

erty o f  exhibiting near unit root behaviour for sm all deviations from  PPP, since 

sm all deviations are left uncorrected if  they are not large enough to cover trans­

actions costs or the sunk costs o f  international arbitrage, while large deviations 

are m uch less persistent. Hence, the low pow er o f  stationarity tests as w ell as 

the excess volatility o f  the real exchange rate m ay be attributed to the presence 

o f  nonlinearities in the data. In his sem inal paper Dum as (1992) sum m arised this 

position as follows

“L in ear equations are unlikely c lea rly  to iden tify a  p ro c e ss  such as
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the one f o r  Inp1 . . .  in which long-run beh aviou r is very  different 

fro m  short-term  behaviour, sin ce  reversion  m anifests i ts e lf  on ly  when  

devia tion s fro m  p a r ity  has becom e w ide  enough.”

D um as (1992, p. 171)

The set o f  param etric m odels that can capture the nonlinearity postulated in ­

cludes the Threshold A utoregressive (TAR) m odel o f  Tong (1983) and the Smooth 

Transition A utoregressive (STAR) m odel o f  G ranger and Terasvirta (1993) and 

Terasvirta (1994). There are two com m on forms o f  the STAR m odel. The one 

is the Exponential STAR (ESTAR) m odel in w hich transitions betw een a con­

tinuum  o f  regim es are assum ed to occur sm oothly and sym m etrically. The ap­

pealing feature o f  the ESTAR m odel is that the speed o f  m ean reversion is in­

creasing w ith the size o f  the deviation from the equilibrium , w hich im plies that 

the corresponding h a lf  life o f  a shock depends on its size. The sm ooth adjust­

m ent process is suggested in the analysis o f  D um as (1992) and dem onstrated by 

B erka (2002). Furtherm ore, Terasvirta (1994) argues that i f  an aggregated p ro­

cess is observed, regim e changes m ay be sm ooth rather than discrete as long as 

heterogeneous agents do not act sim ultaneously even i f  they individually m ake 

dichotom ous decisions, w hich favours the use o f  the ESTAR m odel over TAR 

model.

M ichael et al. (1997), Taylor et al. (2001) and K ilian and Taylor (2003) am ong 

others show that ESTAR m odels can parsim oniously fit a num ber o f  real exchange 

rates. N onlinear im pulse response functions derived from  the estim ated m odels 

suggest that large shocks m ean revert m uch faster than the ones previously re­

ported  for linear m odels, for w hich the speed o f  m ean reversion is independent 

o f  the size o f  the shock. These findings therefore seem to go som e w ay towards 

solving R o goff’s PPP puzzle. However, deviations from  PPP still d issipate very 

slowly.

1 where Inp  denotes the real exchange rate.
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A lthough the early studies o f  PPP assum ed a constant equilibrium  rate, it is 

w ell recognised that even in relatively short spans o f  data real effects on the equi­

librium  exchange rate m ay be im portant. A  variety o f  theoretical m odels, such 

as B alassa (1964) and Sam uelson (1964), Lucas (1982) and Stein et al. (1995), 

dem onstrate how real factors drive real exchange ra tes’ m ovem ents and im ply a 

non-constant equilibrium . N eglecting the influence o f  such factors m ay result in 

an om itted variable bias, w hich could account for the slow m ean reversion re­

ported in the em pirical literature. The significance o f  real factors has been docu­

m ented in panel data analysis (see, e.g., Canzoneri et al., 1996; Chinn and John­

ston, 1996), as w ell as, in studies adopting a country by  country nonlinear fram e­

w ork for long span o f  data (Lothian and Taylor, 2008; Paya and Peel, 2006a).

International Real B usiness Cycle (IRBC) m odels predict a close relation be­

tw een m ovem ents in the real exchange rate and relative consum ption levels, (e.g., 

Backus and Smith, 1993; Kollm ann, 1995). However, the evidence in favour o f  a 

link betw een real exchange rate and relative consum ption is scarce. Backus and 

Smith (1993) are the first to docum ent the lack o f  a system atic pattern govern­

ing the m ovem ents o f  real exchange rates and relative consum ption by com par­

ing the m eans, standard deviations and autocorrelations o f  the first differences o f  

the tw o series. Kollm ann (1995) em ploys the m ethods proposed by  Park (1992) 

and Phillips and O uliaris (1990) to investigate w hether consum ption and real ex­

change rates are cointegrated. By using quarterly data for the recent floating pe­

riod he concludes that the com plete m arkets m odel cannot m atch the observed 

consum ption and real exchange rate growth rates. This result also holds using 

panel data (K oedijk et al., 1996). M ore recently, Sercu and U ppal (2000) exam ine 

a different set o f  countries than the set used by Kollm ann (1995) for the post- 

B retton W oods era and find that there is a long-run relation betw een consum ption 

and real exchange rates, on the basis o f  the Johansen (1991) test. However, the 

authors do not specify i f  the cointegration equation is consistent w ith the im plica­

tions o f  IRBC m odels. Finally, Head et al. (2004) em ploy the G M M  m ethod and
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reject the hypothesis that there is a link betw een real exchange rates and relative 

consum ption levels.

As noted by O bstfeld and R ogoff (2000) the fact that real exchange rates 

and consum ption appear to be disconnected should be o f  no surprise given the 

high volatility o f  real exchange rates under floating together w ith the low volatil­

ity o f  consum ption. The discrepancy betw een theory and em pirical evidence is 

know n as the “Backus and Smith puzzle” or the “consum ption real exchange rate 

anom aly” .

We argue that the em pirical failure o f  IRBC m odels in previous studies m ay be 

due to the linear fram ew ork adopted in conjunction w ith the relatively short span 

o f  data available for the post-B retton W oods era. O ur line o f  reasoning is that 

factors such as the cost o f  arbitrage, the presence o f  heterogeneous agents (noise 

traders and rational speculators) in the m arket, and the fact that the equilibrium  

rate cannot be observed directly by the arbitrageurs m ay lead to persistent and 

inherently  nonlinear deviations from econom ic fundam entals (e.g., Frankel and 

Froot, 1990; K ilian and Taylor, 2001; De Grauwe and G rim aldi, 2006). M oreover, 

we show that the sam ple correlation betw een the real exchange rate and relative 

consum ption levels m ay be sm all or negative even though there is a w ell defined 

long-run structural relationship betw een the variables. E ssentially  the structural 

relationship is a nonlinear dynam ic one so that the sam ple contem poraneous cor­

relation m ay be m isleading as to the structural relationship .2

W hen deviations from  the equilibrium  are small, arbitrageurs, w ho m ay be un­

certain  about the exact value o f  the equilibrium  exchange rate, m ay be dom inated 

by  noise traders w ho can drive the exchange rate in the opposite direction. Hence, 

sm all m isalignm ents o f  the exchange rate w ill be left uncorrected. However, w hen 

deviations from  equilibrium  becom e large a consensus is developed that the cur­

rency is overvalued or undervalued which, eventually, w ill result in driving the

2 We are aware that real business cycle models that include incomplete asset markets , non­
traded goods or other market frictions can explain the contemporaneous correlation (see, e.g., 
Chari et al., 2002; Kehoe and Perri, 2002; Benigno and Thoenissen, 2008; Selaive and Tuesta, 
2006).
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exchange rate towards its fundam ental value. In this setting deviations from  the 

equilibrium  exhibit a high degree o f  persistence and sm ooth threshold dynam ics. 

The hypothesis o f  a nonlinear adjustm ent to the equilibrium  is also m otivated by 

the em pirical regularities noted by Backus and Smith (1993) and O bstfeld and R o­

g o ff (2 0 0 0 ), and w ith the difficulty o f  finding cointegration w hen linear m odels 

are used to analyse short spans o f  data.

The present study re-exam ines the validity o f  IRBC m odels during the re­

cent floating period. By expanding the span o f  data used by previous studies we 

attem pt to m itigate the low pow er o f  linear cointegration tests and to approxi­

m ate the long-run relationship using the Johansen (1991) method. Subsequently, 

we apply the linearity test o f  Escribano and Jorda (1999) to the deviations from 

the IRBC equilibrium . We also consider two recent m odifications o f  the linear­

ity test w hich account for conditional heteroskedasticity. O ur findings support 

the presence o f  sm ooth transition nonlinearity, w hich provides an explanation for 

the failure o f  cointegration tests based on relatively short span o f  data (e.g., Pip- 

penger and Goering, 1993). It appears that STAR m odels produce parsim onious 

fits to the deviation series. The results o f  the G eneralized Im pulse Response Func­

tion (GIRF) suggest a fast adjustm ent process w ith half-lives betw een one to three 

years.

The rest o f  the chapter is structured as follows. Section 4.2 provides a b rie f 

discussion o f  IRBC m odels based on com plete asset m arkets and ESTAR models. 

The next section describes the data, the em pirical m ethodology and the experi­

m ental results. The final section concludes.

4.2 The Equilibrium Real Exchange Rate in IRBC 

models

International Real B usiness Cycle m odels com prise an extension o f  the closed 

econom y R eal B usiness Cycle m odels to an international setting w here transac­
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tions take place both in goods as well as in financial m arkets (e.g., K ing et al., 

1988). In th is setting, as long as financial m arkets are com plete, risk sharing takes 

place across countries w ith the real exchange rate being proportional to the ra­

tio o f  m arginal utilities o f  consum ption (see, e.g., Chari et al., 2002; A pte et al., 

2004). It follows that IRBC m odels w ith com plete m arkets predict that higher real 

consum ption abroad lowers the real value o f  foreign currency.

To analyse this statem ent m ore form ally we follow  K ollm ann (1995) and as­

sum e a w orld w ith K  countries indexed by k  — 1 , , K,  each represented by  an 

infinitely lived agent. Furtherm ore, it is assum ed that the goods consum ed differ 

across countries, w hich im plies a non constant real exchange rate. Each country’s 

preferences are given by

w here, E  is the expectations operator, f3k G (0 ,1 ) is country fc’s subjective dis­

count factor, Uk,t{') is country fc’s instantaneous utility  function in period t, and 

Ck,t denotes consum ption o f  country k.  In equilibrium , the risk sharing condition 

for any country pair (i , j )  and for all periods and states is

w here Q t is the real exchange rate3 in period t, A i s  a constant, and m ktt is 

the m arginal u tility  o f  consum ption for country k  =  i , j .  The above relation 

should hold even i f  there are frictions in goods and labour m arkets, such as sticky 

prices, sticky wages, and shipping costs, because their effect is already reflected

in consum ption choices.

3The real exchange rate is defined as

where St denotes the nominal exchange rate, units o f  currency i per unit o f  currency j ,  and Pktt 
denotes consumer prices for country k.

OO

(4.1)
t —s
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Taking logs and assum ing that the utility function is iso-elastic w ith exponent 

1 — nk, w here nk denotes the coefficient o f  relative risk aversion o f  country k  — 

i , j ,  Equation (4.2) yields the m odel tested by K ollm ann (1995) and Backus and 

Sm ith (1993)4

Qt =  K , J  +  In 1 +  n i c h t  ~  n 3 C3 t  +  (4-3)

w here qu X i j , c ijt and cj:t denote the logarithm s o f  Q t , C ift and Cjjt, respec­

tively, and zt denotes the deviation from the equilibrium  im plied by the model. 

Given that the coefficient o f  risk aversion takes positive values, a country under­

going a real depreciation should experience relative consum ption growth, w ith a 

rate depending on the elasticity o f  intertem poral substitution in consum ption.

4.2.1 Nonlinear Adjustment to Equilibrium

Recently, a num ber o f  authors have provided evidence in favour o f  sm ooth nonlin­

ear transition dynam ics in the deviations o f  nom inal exchange rates from  m acroe­

conom ic fundam entals such as those suggested by the m onetary m odel and the 

PPP (see, e.g., Taylor and Peel, 2000; Taylor et al., 2001; Paya and Peel, 2006a). 

A  m odel that seems to parsim oniously capture the nonlinear m ean reversion pos­

tulated is the ESTAR. A n ESTAR m odel for the process {zt} m ay be w ritten

P

£  M z t - P  -  v )  exP ( - 7  (zt - 1  -  k ) 2) +  et , (4.4)
p =  l

w here 7  G ( 0 , 0 0 )  is the sm oothness param eter, w hich determ ines the transi­

tion speed o f  function 7 , /x) =  exp ( —7  (zt- 1 -  / i)2) towards the inner

or outer regim e. The error term , et , is assum ed to follow a w hite noise process 

w ith m ean 0 and variance a e, and /i is a constant. Equation (4.4) is a popular re ­

form ulation o f  the ESTAR m odel proposed by G ranger and Terasvirta (1993). The

4Backus and Smith (1993) derive a restricted model with identical risk aversion coefficients, 
as well as, subjective discount factors across countries. Whilst a more general model than the one 
o f  Kollmann (1995) is provided by Apte et al. (2004).
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exponential transition function, G(-),  is particularly  applicable because it im plies 

sym m etric adjustm ent for positive and negative deviations from  the equilibrium . 

Further, the speed o f  adjustm ent is increasing w ith the sm oothness param eter 7  

and the absolute value o f  the past deviation from the equilibrium . A particularly 

interesting case is w hen Y?p= \ </>P =  1- In this case, at the equilibrium  G(-) =  1 

and zt w ill behave as a unit root process, w hile for larger deviations G(-)  E [0,1) 

and z t w ill m ean revert. Hence, although z t is a globally m ean reverting nonlinear 

process, it m ay exhibit a high degree o f  persistence, w hich provides an explana­

tion for the low pow er o f  stationarity test. K ilian and Taylor (2003) propose a 

different ESTAR param eterisation. They argue that it is m ore intuitive to allow 

the effect o f  the deviations from the equilibrium  on the nonlinear dynam ics to be 

cum ulative. To this end, the authors suggest m odifying Equation (4.4) to

sm oothness param eter, 7 ,  is significant. Then cum ulative deviations are a m ore 

inform ative indicator o f  w hether the m arket is m oving towards the equilibrium  

value rather than a single past deviation o f  the process.

4.3 Data, Empirical Methodology and Experimen­

tal Results

We use quarterly  data for private consum ption, nom inal exchange rates and con­

sum er price indices obtained from  the International Financial S tatistics database 

for Canada, Germany, France, Japan, Sweden, the U nited K ingdom  and the U nited 

States. The sam ple period is from 1973:1 to 2004:IV, except for G erm any and 

France, for w hich the sam ple period ends at 1998.TV. We set the U.S. dollar as the 

reference currency for the em pirical analysis.

^  ~  exP ! -  aO2 ) +  (4 -5)
p= 1

V

w here d  is a positive integer. Suppose that d differs from  unity  and that the
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In order to investigate w hether the consum ption real exchange rate anom aly 

is present in the exam ined data set, w e initially utilise the correlation coefficients 

betw een real exchange rates and relative consum ption. These correlations vary 

betw een —0.575 and 0 .101 ,5 indicating that the “Backus and Sm ith puzzle” re­

m ains for the extended sam ple period. However, the correlation statistic m ay be 

an inappropriate m easure for testing the validity o f  IRBC m odels due to the pres­

ence o f  tim e trends in the equilibrium  equation, different risk aversion param eters 

and nonlinear dynam ics.

4.3.1 Cointegration Analysis

IRBC m odels clearly predict that there should be a long-run relationship betw een 

real exchange rates and consum ption, or equivalently i f  the variables are integrated 

o f  order one, 7(1), they should form a cointegrating system. By the G ranger 

R epresentation Theorem  (Engle and G ranger, 1987) the above set o f  variables 

m ust posses a Vector E rror Correction M odel (VECM ) representation in w hich 

the error term , z t , in Equation (4.3) com prises the deviations from  the equilibrium .

L et y t — [qt , ci>t, c n  t] denote the 3 x 1 vector o f  the system ’s variables, the V EC M

is w ritten
p

A y t =  ^ 2  r iA Vt-i  +  u Vt -1  +  u t , (4.6)
7 = 1

w here A  is the difference operator. The rank o f  m atrix I I  determ ines the num ber 

o f  cointegrating relationships. I f  m atrix I I  is o f  full rank, r  =  3, the V ECM  

reduces to a vector autoregression (VAR) and y t is a stationary process. I f  I I  is 

the null m atrix, r  =  0 , then the system ’s variables are not cointegrated and the 

underlying process is not stationary. Finally, i f  I I  is neither o f  full rank nor the 

null m atrix, 0 <  r  <  3, then there are r  cointegrating relationships and I I  can be 

decom posed

I I  =  a n '  (4.7)

5These values are similar to the ones reported in the literature (see, e.g., Chari et al., 2002).
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where n  are the r  cointegrating vectors determ ining the long-run equilibrium , and 

ol denotes the m atrix o f  the adjustm ent coefficients.

It is w ell recognised that depending on the properties o f  the series under exam ­

ination cointegration techniques m ay have low pow er w hen applied to short spans 

o f  data. Further, due to serious small sam ple bias the coefficients obtained in 

cointegration analysis can vary w idely across country pairs m aking econom ic in­

terpretation very difficult (Froot and Rogoff, 1995). We exam ine this scenario by 

extending the data set used by previous studies and applying the Johansen (1991) 

m ethodology.

Table 4.1 reports the trace and A-max (m axim um  eigenvalue) statistics for 

cointegration, and the long-run coefficients for consum ption. O verall, the coin­

tegration results support the existence o f  a long-run relationship am ong real ex­

change rates and consum ptions. On the basis o f  both the trace and A-max statistics 

the null o f  no cointegration can be rejected for all countries but Japan at the 10 % 

significance level.6 B oth tests indicate that there is a single cointegrating relation­

ship betw een the system ’s variables. As the last two colum ns o f  Table 4.1 report, 

the long-run coefficients, n u s  and rij, are correctly signed for Canada, France, 

Sw eden and the U nited K ingdom  suggesting that higher (lower) real consum ption 

abroad lowers (increases) the real value o f  foreign currency (see Equation (4.3)). 

The im plied relative risk aversion param eters are som etim es higher than the up­

per lim it o f  ten suggested as reasonable by R ajnish et al. (1985). However, recent 

w ork by  B arro (2005) suggests that higher values m ay be realistic. It is noted that 

the correlation coefficients for these countries w ith the exception o f  France are 

negative. Therefore, the difference in the relative risk aversion coefficients and/or 

the presence o f  a tim e trend (due to different discount rates betw een countries) 

m ay result in negative contem poraneous correlations betw een the real exchange 

rate and relative consum ption.

6Japan is excluded from the remaining analysis since no cointegration was found.
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This is illustrated in Table 4.2 w hich reports correlation coefficients betw een 

the real exchange rate and consum ptions for three different cases. The first case 

(p) corresponds to the Backus and Smith (1993) m odel w here the relative risk 

aversion coefficients are assum ed to be identical and a tim e trend is not included 

in the equilibrium  value. In the second case (pra), the assum ption o f  identical risk 

aversion coefficients is relaxed by using the estim ates from Table 4.1. Finally, 

w e also consider the effect o f  different risk aversion coefficients and a tim e trend 

( P t r a ) for the cases that the latter is significant in the cointegration analysis.

Table 4.2: The Consum ption Real Exchange Rate A nom aly

C orrelation C anada France Sweden U nited K ingdom

P -0.575 0 .1 0 1 -0.553 -0.274

P r a 0.393 0.045 -0.556 0.031
P t r a — 0.255 0.149 —

NOTE: p  denotes the correlation coefficient between real exchange rate and relative consump­
tion, while p ra is the correlation coefficient adjusted for the different levels o f  relative risk 
aversion and p t r a  is the coefficient adjusted for both the different levels o f  relative risk aversion 
and a time trend.

As far as G erm any is concerned, although there is evidence o f  cointegration 

the results are not in line w ith IRBC m odels since the coefficient o f  relative risk 

aversion is negative. In summary, these findings support m ean reversion towards 

the tim e-varying equilibrium  specified by IRBC models.

4.3.2 Linearity Testing

A  com plem entary reason for the em pirical regularities reported in the IRBC liter­

ature, such as the estim ated values o f  correlation coefficients (Backus and Smith, 

1993), the difference in volatility (O bstfeld and Rogoff, 2000), and the difficulty 

o f  finding cointegration (Kollm ann, 1995), m ay be that the deviations process is 

governed by nonlinear dynam ics. N ext, we investigate w hether the deviations 

series exhibit significant STAR nonlinearity o f  the type suggested by  K ilian and 

Taylor (2003). Escribano and Jorda (1999) developed a linearity test that provides

8 6



useful insights concerning the presence o f  STAR nonlinearity, and the specifica­

tion o f  the transition variable.

In deriving an LM  test for the null o f  linearity against STAR nonlinearity 

w e adopt the typical STAR m odel (Terasvirta, 1994; Escribano and Jorda, 1999; 

van D ijk et al., 2002)

zt =  4>'xt +  0 ,x t F ( s t , 'y,c) +  u u  (4.8)

where x t =  ( 1 , z t_ u  . . . ,  z t - p)' , </> =  (<£0, . . . ,  4>p), 6 =  (0O, . . . ,  dp), s t is the 

transition variable, 7  is the transition param eter and c  is a constant. The transition 

function F(-)  for the ESTAR m odel is defined by

F { s u  7, c) =  [l — exp ( - 7 (s t -  c ) 2 ) ]  . (4.9)

In the case o f  a Logistic STAR (LSTAR) m odel

F ( s u  7 , c) =  [1 T  exp ( - 7 (s t -  c))} -1 . (4.10)

Testing linearity in this fram ew ork is not straightforw ard due to the presence o f  

unidentified-nuisance param eters (Davies, 1977). Luukkonen et al. (1988) over­

com e the identification problem  by replacing F(-)  w ith a Taylor series approx­

im ation. The resulting equation perm its the use o f  LM  tests w hich asym ptoti­

cally posses the x 2 distribution. Escribano and Jorda (1999) extended the w ork o f  

Luukkonen et al. (1988) and Terasvirta (1994) and proposed a new  specification 

strategy to choose betw een ESTAR and LSTAR m odels based on the following 

equation7

z t =  S'0x t +  S [ x ts t +  8 '2x ts 2 +  8 'zx t s zt +  8 '4x ts f  +  u t . (4 .1 1)

•  Estim ate Equation (4.11) and obtain the p -value, pi ,  for the null hypothesis

7This new procedure appears to be consistent and to generate much higher correct selection  
frequencies (see Paya and Peel, 2005).
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o f  linearity, Hi : 8[ =  5'2 =  8'3 =  £4 =  0 .

•  I f  linearity is rejected,

-  test the null : ^2 =  ^4 — 0 w ith an F -te s t and obtain the corre­

sponding p-value, p e -

-  test the null Hq : S[ — 8'3 =  0 w ith an F -te s t and obtain the corre­

sponding p -value, p L.

•  I f  p e  <  P l  select ESTAR, otherw ise select LSTAR.

The im plem entation o f  the above procedure requires the specification o f  the 

lag length p  and the transition variable s t . We follow  previous studies and set 

p — 2 for all countries but Sweden and the U nited K ingdom , for w hich w e set 

p  =  4 so as to deal w ith residual autocorrelation. K ilian and Taylor (2003) argue 

that although m ost studies em ploy a single past deviation as the transition variable, 

it is m ore intuitive to allow the effects o f  persistent deviations to be cum ulative. 

To this end, w e consider s t — E d = i  w here d  denotes the lag w ith the

m inim um  p-value for the null o f  linearity, H q, and we allow a m axim um  o f  8 lags.

A n im portant issue w hen testing the presence o f  STAR nonlinearities is the 

presence o f  conditional heteroskedasticity in the m odel’s residuals. For example, 

Lundbergh and Terasvirta (1998) examine the linearity test o f  Terasvirta (1994) 

and conclude that conditional heteroskedasticity m ay result in severe size d is­

tortions and that the robust version o f  G ranger and Terasvirta (1993) appears to 

have very low pow er.8 Pavlidis et al. (2009b) show that the Escribano and Jorda 

(1999) test exhibits sim ilar problem s as the test o f  Terasvirta (1994) and inves­

tigate the perform ance o f  possible alternatives to im prove its properties (size and 

size-adjusted power). Their findings suggest that the use o f  the H eteroskedastic­

ity C onsistent Covariance M atrix Estim ator (H CCM E) o f  M acK innon and W hite 

(1985) im proves upon the size, but results in very low size-adjusted power. O n

8 See Lundbergh and Terasvirta (1998) for the specification, estimation and evaluation o f  mod­
els with nonlinear behaviour in the mean (STAR) and in the conditional variance (STGARCH), 
the STAR-STGARCH model.



the other hand, the Fixed D esign W ild B ootstrap appears to lead to a m arked im ­

provem ent both in term s o f  size and size-adjusted pow er .9

Table 4.3: L inearity Testing

C ountry j P d P i P e P l

Canada
OLS 2 8 0 . 0 0 2 0.008 0.003
HC 2 8 0.023 0.165 0.023
W B 2 8 0.008 0.028 0 . 0 1 0

France
OLS 2 7 0.066 0.029 0.017
HC 2 7 0.051 0.030 0.017
WB 2 7 0.080 0.052 0.030

Germ any
OLS 2 3 0.298 0.133 0.118
HC 2 2 0.235 0 .1 2 2 0.109
W B 2 3 0.364 0.226 0.194

Sw eden
OLS 4 1 0.033 0.015 0.036
HC 4 6 0.308 0.692 0.753
W B 4 5 0.226 0.142 0.194

U nited K ingdom
OLS 4 2 0.006 0.014 0 .0 1 2

HC 4 2 0 .0 0 1 0.040 0.030
W B 4 2 0.036 0.044 0.040

NOTE: The length o f  the autocorrelation is denoted by p,  while d  shows the number o f  lags in­
cluded in the transition variable for which the p -value for the null o f  linearity, p i ,  is the lowest, p e  
and p l  are the p-values for the null hypotheses o f LSTAR and ESTAR nonlinearity, respectively.

The results o f  the Escribano and Jorda procedure using the Least Squares 

C ovariance M atrix (LS), the H eteroskedasticity Consistent Covariance M atrix o f  

M acK innon and W hite (1985) (HC), and the Fixed D esign W ild B ootstrap (W B) 

are presented in Table 4.3. Overall, linearity is rejected for the m ajority  o f  cases. 

For Canada, France, and the U nited K ingdom  the results are qualitatively sim ilar 

betw een the three versions o f  the LM  test. The null hypothesis, Hq,  is rejected 

at least at the 10%  significance level and the sam e transition variable is selected 

for each country by  all tests, d  =  8 ,7  and 2. The latter finding supports the use 

o f  the m odel proposed by K ilian and Taylor instead o f  the ESTAR m odel usually

9The Fixed Design Wild Bootstrap is described in detail in Chapter 2.
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adopted in the literature w ith d — 1. In the case o f  Sweden, only the original 

version o f  the Escribano and Jorda procedure rejects the null o f  linearity at the 

5% significance level, w hich im plies that d =  1. G erm any is the only country for 

w hich the deviations from  the equilibrium  do not appear to follow a STAR pro­

cess. A lthough the results suggest the selection o f  an LSTAR m odel rather than 

an ESTAR for all countries but Sweden the difference in the associated p-values 

is m arginal. Given that there is no prior reason for an asym m etric adjustm ent, the 

rem aining analysis focuses on ESTAR models.

4.3.3 Estimation of the ESTAR models and the Wild Bootstrap

We exam ine the perform ance o f  the two ESTAR m odels (4.4) and (4.5) (discussed 

in Section 4.2.1) in capturing the nonlinear dynam ics o f  the deviations series, z t . 

W hile the form er m odel is used for all countries, the m odel proposed by K ilian 

and Taylor is only em ployed for Canada, France and the U nited K ingdom . This 

is due to the linearity test results, w hich indicate that the effect o f  the deviations 

are not cum ulative, i.e. d  <  2, for Germ any and Sweden. Furtherm ore, we can­

not reject the restriction that z t follows a unit root process at the equilibrium , 

Ho : 4>p =  1- Table 4.3 shows the estim ates o f  the restricted ESTAR m odels,

the standard error o f  the regression, the corresponding ^-statistic, the Ljung-B ox 

Q -statistic for serial correlation in the residuals and the LM  test statistic (ARCH) 

for conditional heteroskedasticity up to lags 1 and 4. The Q -statistic does not indi­

cate the presence o f  serial correlation in the regression residuals. However, there 

is som e evidence o f  conditional heteroskedasticity for Sw eden and the U nited 

Kingdom .

In order to test the significance o f  the sm oothness param eter, 7 ,  in the presence 

o f  conditional heteroskedasticity or non norm ality w e em ploy the Fixed D esign 

W ild Bootstrap (see, e.g., Wu, 1986; M am m en, 1993; D avidson and Flachaire, 

2001). The asym ptotic validity o f  the Fixed D esign W ild B ootstrap for stationary 

autoregressions w ith known finite lag order when the error term  exhibits condi­
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tional heteroskedasticity o f  unknow n form  is established in G ongalves and K ilian 

(2004). Their results cover as special cases the A -G A R C H , £-GARCH and asym ­

m etric G A R C H  m odels, as w ell as, stochastic volatility m odels. The procedure 

w e follow  is to im pose the null H 0: 7  =  0 and sim ulate 1,000 series for z t , denoted 

by z \  according to
p

z t — A +  &p(z t-p ~  A) +  et ■ (4-12)
p =  1

The residuals ebt are constructed by m ultiplying the residuals obtained by the ES­

TAR m odel, et , by  a random  variable, r)t , that follows the R adem acher distribution

— 1 w ith probability  p  =  0.5 ,
m =  '

1 w ith probability (1  — p),

The r]t are m utually  independent drawings from  a distribution independent o f  the 

original data. The distribution has the properties that E(r)t ) — 0, E{rft) — 1 , 

E(rjt)  — 0, and E(r)f) — 1. A  consequence o f  these properties is that any 

heteroskedasticity  or sym m etric non-norm ality in the estim ated residuals (et ) is 

preserved in the new ly created residuals . 10

This procedure provides an em pirical distribution for 7  and the associated 

standard errors. The idea in 1 ,000 replications is to determ ine the appropriate 

t -values so w e do not reject the null o f  7  =  0. These critical values can then be 

used to determ ine w hether the estim ates o f  7  reject the null or not (see also Paya 

and Peel, 2006a). The W ild B ootstrap p -values under the null H 0: 7  =  0, are also 

reported in Table 4.4.

10The Wild Bootstrap matches the moments o f  the observed error distribution around the esti­
mated regression function at each design point (z6). Liu (1988) and Mammen (1993) show that 
the asymptotic distribution o f  the Wild Bootstrap statistics are the same as the statistics they try to 
mimic.
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Table 4.4: Estim ated ESTAR M odels

Canada

(a) Typical ESTAR M odel Param eterisation

z t =  -  0.287 +  ( 1.002 (zt_i +  0 .2 8 7 ) +  (1 -  1.002 ) U _ 2 +  0.287 ))• 
[1.913] [11.105] [1.913] [11.105] [1.913]

e x p ( -  0.069 (z t - i  +  0.287 )2) 
[3.217] [1.913]
(0 .010)

s  =  0.146, Q i =  0.784 (0.376), Q 4 =  3.803 (0.433), 

A R C H i =  0.005 (0.946), A RCH 4 =  0.579 (0.678)

(b) K ilian and Taylor Param eterisation

z t =  -  0.145 +  ( 0.893 U _ i  +  0.145 ) +  (1 -  0.893 ) ( z t_2 +  0.145 ))•
[1.783] [9.467] [1.783] [9.467] [1.783]

• e x p (— 0.032 Y,*_x(z t-d  +  0.145 )2)
[2.966] [1.783]
(0.000)

s =  0.137, Q i =  0.011 (0.917), Q 4 =  2.739 (0.602), 

A R C H i =  1.829 (0.179), A R C H 4 =  0.684 (0.605)

France

(a) Typical ESTAR M odel Param eterisation

z t =  0.040 +  ( 1.382 ( z t - i  -  0 .040) +  (1 -  1.382 ) ( z t- 2 ~  0 .040))- 
[0.900] [14.423] [0.900] [14.423] [0.900]

• e x p (— 0.643 ( z t - i  — 0.040 )2)
V [3.153] [0.900]

(0.000)

s =  0.074, Q i  =  0.242 (0.623), Q A =  3.378 (0.497),
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ARCHi =  0.087 (0.769), ARCH4 =  0.294 (0.881)

(b) K ilian and Taylor Param eterisation

i t  =  0.066 -  ( 1.310 (zt-1 -  0 .0 6 6 ) +  (1 -  1.310 ) U _ 2 
[1.403] [12.945] [1.403] [12.945]

' e x p (— 0 . 1 2 1  E ^ _ 1(zt-d  — 0.066 )2)
[2.551] d_1 [1.403]
(0.003)

s = 0.077, Qi =  0.231 (0.630), Q4 =  2.140 (0.710),

ARCHi =  0.271 (0.604), ARCH4 =  0.602 (0.662)

Germany

(a) Typical ESTAR M odel Param eterisation

z t — — 0.028 +  ( 1.190 ( z t - i  +  0.028 ) +  (1 -  1.190 ) ( z t. 
[0.774] [11.797] [0.774] [11.797]

• e x p (— 2.340 (z t- i  +  0.028 )2)
[2.508] [0.774]
(0 .000)

s = 0.066, Qi = 0.293 (0.588), QA = 2.138 (0.710),

ARCHi =  1.582 (0.211), ARCH4 =  0.751 (0.560)

Sweden

(a) Typical ESTAR M odel Param eterisation



•s -  0.159, Q 1 =  0.303 (0.582), Q4 =  0.540 (0.969), 

ARCHi =  4.046 (0.047), ARCH4 =  1.136 (0.343)

United Kingdom

(a) Typical ESTAR M odel Param eterisation

z t =  -  0.051 +  ( 1.134 (z t - 1  +  0.051 ) +  0.034 (z t_2 +  0.051 ) +  0.078 • 
[1.151] [12.547] [1.151] [0.259] [1.151] [0.590]

\ z t- 3 +  0.051 ) +  ( l -  1.134 -  0.034 -  0.078 ) U _ 4 +  0 .051))- 
[1.151] [12.547] [0.259] [0.590] [1.151]

• e x p (— 0.652 (z t- i  +  0.051 )2)
[3.276] [1.151]
(0 .000)

s =  0.075, Q i =  0.045 (0.832), Q4 =  2.379 (0.666), 

ARCHi =  5.212 (0.024), ARCH4 =  2.163 (0.078)

(b) K ilian and Taylor Param eterisation

z t =  -  0.046 +  ( 1.093 U _ i  4- 0.046 ) +  0.082 (z t_2 +  0.046 ) +  0.095 • 
[1.198] [12.233] [1.198] [0.617] [1.198] [0.725]

• U _ 3 +  0.046 ) +  ( l -  1.093 -  0.082 -  0.095 ) U _ 4 +  0.046 ))• 
[1.198] [12.233] [0.617] [0.725] [1.198]

• e x p (— 0.387 T ^ ^ z t - d  +  0.046 )2)
[3.684] [1.198]
(0.000)

s = 0.074, Q i =  0.008 (0.930), Q4 = 1.645 (0.897),

ARCHi =  4.936 (0.028), ARCH4 =  1.801 (0.133)

NOTE: Figures in square brackets denote the ratio o f  the absolute value o f  the estimated 

coefficient to the estimated standard error o f  the coefficient estimate. The Wild Bootstrap 

p —values for the 7  coefficient are reported in parentheses below the coefficient estimates, s 

is the standard error o f  the regression. Q 1 and Q 4 denote the Ljung-Box Q-statistic for serial 

correlation up to order 1 and 4, respectively. ARCHi and ARCH4 denote the LM test statistic 

for conditional heteroskedasticity up to order 1 and 4, respectively.
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The W ild Bootstrap p-values im ply that the estim ated transition param eters are 

in each case significant for all conventional levels, w hich supports the nonlinear 

nature o f  the deviation processes. Therefore, the difficulty o f  detecting cointegra­

tion in short sam ples m ay be attributed to large and persistent deviations generated 

by the ESTAR adjustm ent m echanism . Further, the high short term  volatility o f  

the real exchange rates com pared to the volatility o f  the consum ption series is, 

also, in accordance w ith the im plications o f  the ESTAR m odel. We conduct a 

M onte Carlo experim ent in the w hich illustrates the above points.

4.3.4 Generating the Puzzle

We are interested in exam ining the behaviour o f  the correlation coefficients be­

tw een the real exchange rate and relative consum ption and the properties o f  linear 

cointegration tests w hen the true DGP is nonlinear.

To this end, we calibrate nonlinear m odels by  using param eter values sim ilar 

to the estim ated ones. For sim plicity w e assum e that the two consum ption series 

follow  a driftless random  w alk

ci,t — ci,t-1 +  u i,ti u i,t ~  N (0 , 0 .02),

cj,t — cj,t- 1 +  uj,t; uj,t ~  A^(0,0.02),

w hile, the DGP for the real exchange rate is given by

qt = — 0.07£ +  6ciyt — 9Cjtt +  (l-2((fr_i +  0.07(£ — 1) — 6 c ^ _  1 4- 9cJ;t_ i)  —

—0.1 (<7f—2 +  0.07(£ — 2) — 6 cm _ 2 +  9cj^-2)  +  0 .2 (^_3  -I- 0.07(£ — 3) — 

—6 c ^ _ 3 +  9cjtt s )  +  0 .1 (^ -4  +  0.07(£ — 4) — 6 c^ _ 4 +  9cJit_4)) •

• exp  ( —0.3(gt_i -F 0.07(£ — 1) — +  9 * C j j -1)2) +  tt,

w here et ~  N ( 0 ,0 .1 5 ). We set the sam ple size equal to 128 observations and gen­
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erate 1,000 series for each variable. In turn, we obtain the correlation coefficients 

betw een the “fake” real exchange rate series and the “fake” relative consum p­

tion. The percentage o f  negative correlation coefficients is 46.4, im plying that the 

likelihood o f  observing a sm all or negative correlation is large.

Further, we exam ine the pow er o f  the Johansen (1991) test to detect cointegra­

tion betw een the “fake” qt , Cf)t and Cjtt. The null hypothesis o f  no cointegration 

can be rejected in 43.1 percent o f  the cases w hen the nom inal significance level 

is 10 percent. However, if  we change the sam ple size to 70 observations, w hich 

is about the sam ple size used by Kollm ann (1995), the pow er deteriorates to only

15.7 percent, indicating the im portance o f  the sam ple length.

4.3.5 Generalized Impulse Response Functions

In this context, it is also o f  im portance to investigate w hether the estim ated nonlin­

ear m odels, as w ell as, the inclusion o f the equilibrium  determ inants can explain 

the PPP puzzle regarding the slow rate at w hich shocks appear to dam p out. Im ­

pulse response analysis addresses this issue by focusing on the effect o f  a shock on 

the behaviour o f  the deviation process. However, a num ber o f  studies have shown 

that im pulse response analysis is considerably m ore com plex for nonlinear m od­

els w hen com pared to linear m odels (see G allant et al., 1993; Koop et al., 1996; 

Potter, 2000; van D ijk et al., 2007). In particular, im pulse responses produced by 

nonlinear m odels are history dependent, so they depend on initial conditions; they 

are dependent on the size and sign o f  the current shock; and they depend on the 

shocks that occur in future periods. Koop et al. (1996) propose a m easure, the 

G eneralized Im pulse R esponse Function (GIRF), w hich deals w ith the com plica­

tions entailed in im pulse response analysis for nonlinear m odels. The G IRF is 

defined as the average difference between two realizations o f  the stochastic p ro ­

cess, z t+h, w hich start w ith identical histories up to tim e t — 1, but only the first
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realization is hit by a shock o f  m agnitude 6t at period t.

G IR F(/i, St , cdt-i) — E[zt+h\et  — 6t ,ui t- i \  — E  [zt+h \ ^ t - i ] , (4.13)

w here h — 1 , 2 . . .  denotes horizon, et — St is an arbitrary shock occurring at tim e 

t, and ujt_i  is the history set o f  z t . G iven that the G IR F(/i, 8, u t- i )  is a function 

o f  8t and w hich are realizations o f  random  variables, the G IR F(/t, 8,cut_i )  

itse lf is a realization o f  a random  variable. It follows that various conditional 

versions o f  the GIRF can be defined. For example, w e can condition on the shock 

and treat the variables generating the history as random . A lternatively, we can 

consider a specific history and treat the GIRF as a random  variable in term s o f  the 

shock. In general, we can condition on a subset o f  shocks and a subset o f  histories, 

depending on the specific application. In this w ork we choose to condition upon 

‘all past h istories’ so as to  exam ine the tim e profile o f  the effects o f  shocks o f  

different m agnitudes on the future patterns o f  the series variable.

Due to the fact that analytic expressions for the conditional expectations in­

volved in (4.13) are usually not available for h > 1, w e use bootstrap integration 

m ethods (see Koop et al., 1996, for a detailed description) to overcom e the issue 

o f  future shocks intrinsically incorporated in the m odel.11 In particular, for each 

available history 200 repetitions are im plem ented to average out future shocks, 

w here future shocks are drawn with replacem ent from  the m odels residuals, and 

then the results across all histories are averaged. The m axim um  im pulse response 

horizon is set to 48 quarters and we consider shocks o f  m agnitude 5t =  'ipd’e, 

w here <re is the residual standard deviation and ijj =  1, 3, 5.

In order to m easure the rate at w hich the final effect o f  an im pulse, 8t , is 

attained we com pute the 7r-life or 7r-absorption tim e (see van D ijk et al., 2007)

oo /  oo \

yV(7r, 8t , tot-i) =  ( 1 ”  n  j  , (4.14)
m = 0  \  h = m  J

11 An analytical expression o f  the “impulse response function” for the deterministic skeleton o f  
a restricted ESTAR model is provided by Venetis et al. (2007).
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Table 4.5: Estim ated 7r-lives o f  Shocks

Shock A bsorption

Country st 0.25 0.50 0.80

1 X <7e 6 (4 ) 14(10) 34 (22)
C a n a d a 3 x a e 5 (4 ) 11 (8 ) 3 0 (1 8 )

5 x  a e 3 (3 ) 9 (6 ) 2 5 (1 3 )
1 X J f 7 (7 ) 1 0 (9 ) 17(15)

F ra n c e 3 x a e 7 (6 ) 1 0(9 ) 17(15)
5 X <7C 5 (5 ) 8 (8 ) 15(13)
1 X <Je 4 ( - ) 7 (-) 13 (-)

G e rm a n y 3 X <7e 3 0 5 (-) 12  (-)
5 X <Te 2 (-) 3 (-) 9 (-)
1 X (Je 7 (-) 9 ( - ) 12  (-)

Sw eden 3 X <7e 6  (-) 8 (-) l l ( - )
5 x a t 4 (-) 6  (-) 9 (-)
1 x  a e 7 (9 ) 9 (1 1 ) 11(14)

U n ited  K in g d o m 3 x  <t£ 5 (7) 7 (9 ) 10(13)
5 x  <t£ 4 (5 ) 5 (7) 8 ( 11 )

NOTE: The table reports the absorption time for the typical ESTAR parameterisation and the 
Kilian and Taylor parameterisation. Figures in parentheses correspond to the latter. In the cases o f  
Germany and Sweden only the typical ESTAR parameterisation is employed.

w here 0 <  7r <  1 and I ( n ,  h , 6t ,w t - i )  is the indicator function w hich takes the 

value o f  1 i f  at least a fraction 1 — n  o f  the difference betw een the initial and 

u ltim ate effects o f  St has been absorbed after h  periods and 0 o therw ise.12 The 

7r-life corresponds to the m inim um  horizon beyond w hich the difference betw een 

the im pulse responses at all longer horizons and the ultim ate response is less than 

or equal to the fraction 7r o f  the difference betw een the initial im pact and the u lti­

m ate response. N ote that the above definition o f  7r-life differs from the definition 

usually  adopted in the literature, w hich is the shortest horizon at w hich at least 

a fraction 1 -  7r o f  the initial effect, 5t , has been absorbed. This is an appealing 

feature since m onotonicity is not granted. That is, I(ir,  h, 5t,cut- 1) =  1 does not 

necessarily  im ply I ( n ,  h  +  j ,  St , u t - i) =  1> Vj >  0.

12The indicator function is defined as

J ( 7 r , M t ,w t_ i )  =  / [ | G I R F ( M t , w t - i )  - G I R F ° ° ( ( 5 t ,w t _ i ) |  <  ^ \8 t  -  GIRF°°((5t,u;t _ 1)|]
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Table 4.5 displays the 7r-lives o f  shocks for the estim ated ESTAR m odels o f  

the deviation series (see Table 4.4). The results reported further illustrate the non­

linear nature o f  the real exchange rate w ith tim e-varying equilibrium  m odels, w ith 

the absorption tim e decreasing w ith the size o f  the shock. M oreover, the reduction 

in the tim e needed to absorb fraction (1 — n)  o f  different size shocks depends on 

the proportion (1 —7r). In other words, i f  the shock increases from  1<t£ to 5a e the 

reduction in the tim e needed to absorb 25%  o f  both shocks is not generally the 

sam e as the reduction in tim e needed to absorb 50% o f  the shocks. The half-lives 

corresponding to the sm allest shocks range betw een 7 and 14 quarters, w hile for 

the largest shocks the half-lives range betw een 3 and 9 quarters. The absorption 

tim e also depends on the specific ESTAR form ulation. For C anada and France 

the absorption tim e is m uch sm aller w hen the K ilian and Taylor ESTAR m odel 

is adopted, but not for the U nited Kingdom . However, the results are qualita­

tively similar. Given that consensus estim ates o f  linear m odels suggest a half-life 

betw een 3 and 5 years (see Rogoff, 1996), these results, in accordance w ith the 

results o f  other studies adopting a nonlinear fram ework, seem  to go som e way 

tow ards solving the PPP puzzle.

4.4 Conclusion

The present study adopts an IRBC framework, w here the equilibrium  real ex­

change rate is determ ined by consum ption series. By focusing on the recent float, 

we find evidence in favour o f  a long-run relationship in line w ith the risk sharing 

condition im plied by IRBC m odels w ith com plete m arkets for m ost o f  the coun­

tries under exam ination. The results o f  linearity tests indicate that the deviations 

from  the equilibrium , as estim ated by the Johansen (1991) m ethod, exhibit STAR 

nonlinearity. We fit ESTAR m odels and employ the Fixed D esign W ild B ootstrap 

so as to draw  inferences in the presence o f  conditional heteroskedasticity. The 

estim ated m odels appear to parsim oniously fit the deviation processes. The non­

linear nature o f  the series provides an explanation for the em pirical regularities
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noted in literature, as w ell as, the discouraging results reported for shorter spans 

o f  data. Finally, w e address the PPP puzzle regarding the slow absorption rate o f  

shocks by em ploying GIRFs. O ur findings suggest that shocks to the deviations 

from  the IRBC equilibrium  have short half-lives.

1 0 0



C H A P T E R  5

Real Exchange Rates and Tim e-Varying Trade

Costs

The difficulty lies no t so  much in d eve l­

op in g  new  ideas as in escap in g  fro m  o ld  

ones.

John M ayn ard  K eynes (1883  - 1 9 4 6 )

5.1 Introduction

Trade costs can exhibit significant econom ic m agnitudes and can play an essen­

tial role in addressing several m ajor puzzles in international econom ics (O bstfeld 

and Rogoff, 2000; A nderson and van W incoop, 2004). In the Purchasing Pow er 

Parity (PPP) fram ework, equilibrium  m odels o f  real exchange rate determ ination 

dem onstrate how trade costs induce nonlinear but m ean reverting adjustm ent to ­

w ard PPP and, hence, provide a possible explanation for the w ell-docum ented 

persistence in the real exchange rate (Dum as, 1992; O ’C onnell and Wei, 2002; 

Taylor and Taylor, 2004). For example, O ’Connell and Wei (2002) extend the
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iceberg m odel o f  trade to allow for fixed as well as proportional costs o f  arbitrage. 

As a consequence, the tendency o f  the real exchange rate to return to the equilib­

rium  rate w ill becom e apparent only for m isalignm ents w hich cover the level o f  

transactions costs and im ply arbitrage opportunities. Sm all m isalignm ents, close 

to equilibrium  and w ithin the transactions band, w ill be left uncorrected so that 

the real exchange rate w ill exhibit near unit root behaviour.

In a num ber o f  em pirical contributions trade costs are assum ed constant and 

the im plied type o f  nonlinear behaviour o f  the real exchange rate is m odeled by 

the Exponential Sm ooth Transition Autoregressive (ESTAR) m odel (see, e.g., 

M ichael et al., 1997; K ilian and Taylor, 2003; Taylor, Peel and Sam o, 2001). 

However, it can be argued that this assum ption is too restrictive over long tim e 

periods . 1 In a recent study, inspired by the gravity literature, Jacks et al. (2008) 

present an aggregate m icro-founded m odel w hich allows the construction o f  long 

span trade costs series. The authors illustrate that trade costs related to the ex­

change o f  goods across countries, far from been constant, have exhibited sub­

stantial and nonm onotonic changes from  1870 to 2000 .2 This finding has po­

tentially  im portant im plications concerning the behaviour o f  the real exchange 

rate. Because trade costs vary in tim e so does the speed o f  m ean reversion for 

a given PPP deviation (see, e.g., Dum as, 1992; Sercu et al., 1995). Intuitively, 

w hen trade costs increase (decrease) the trade costs b an d -in  w hich no trade takes 

p lace - w idens (narrow s) and the real exchange rate process becom es m ore (less) 

persistent. Hence, the persistence o f  the real exchange rate does not only depend 

on the size o f  the deviation but also on the level o f  trade costs at each particular 

point in time. N eglecting significant changes in trade costs leads to underestim at­

ing/overestim ating the degree o f  persistence and the tim e required for the process

to absorb shocks at specific periods.

'Clem ens and Williamson (2001) and Mohammed and Williamson (2004) among others illus­
trate that tariffs and global freight rates have fluctuated substantially in the last century. These 
studies focus on specific impediments o f  trade costs and, therefore, provide indirect evidence o f  
time-varying trade costs. A survey on recent developments in the measurement o f  total trade costs 
and their components is provided by Anderson and van Wincoop (2004).

2 Consequently, the effect o f  trade costs cannot be approximated by deterministic trends.

1 0 2



The contribution o f  this chapter is to report estim ates and the properties o f  two 

sm ooth transition regression m odels o f  the real exchange rate w hich incorporate 

tim e-varying trade costs. The m odels are fitted to a long span o f  data (1830- 

2005) for the dollar-sterling real exchange rate and the trade costs index for the 

U nited K ingdom -U nited States country pair. O ur choice is based on the fact that 

the relationship betw een trade frictions and the persistence o f  the real exchange 

rate should becom e apparent over long tim e periods in w hich large fluctuations o f  

trade costs occur.

The rest o f  the chapter is structured as follows. In Section 5.2, we present 

the trade costs m easure o f  Jacks et al. (2008). Section 5.3 outlines our nonlinear 

m odels o f  the real exchange rate. Section 4 deals w ith the description o f  the data 

and the em pirical results. A  sum m ary and concluding com m ents are offered in 

the last section.

5.2 Trade Costs

“Trade costs, broad ly  defined, include a ll costs  in cu rred  in g e ttin g  

a  g o o d  to a  f in a l user o ther than the m arginal co s t o f  p ro d u cin g  the 

g o o d  i t s e l f ”

A nderson and van W incoop (2004, p. 691).

Obviously, trade costs break down into a vast num ber o f  com ponents such as 

transportation costs (freight rates and tim e costs), policy barriers (tariffs and non­

tariff barriers), inform ational costs and costs associated w ith the use o f  different 

currencies. The fact that several o f  these com ponents are unobservable and data 

lim itations pose serious problem s in obtaining accurate estim ates o f  the m agnitude 

o f  total trade costs by direct atheoretical m easures. The gravity literature circum ­

vents this obstacle on the basis o f  theoretical m odels which enable m easuring the 

degree o f  trade restrictiveness by extracting inform ation from trade flows.
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In this fram ework, Jacks et al. (2008) present a m icro-founded m easure o f  

aggregate bilateral trade costs that captures trade frictions. The key idea in the 

derivation o f  their m easure is that changes in trade barriers have an effect on both 

international and intranational trade. By establishing a relationship betw een coun­

tries’ average international trade barriers and intranational trade, trade costs can be 

obtained directly from  observable trade data w ithout im posing a particular trade 

cost function (Novy, 2008).

C onsider a w orld consisting o f  N  countries and a continuum  o f  differentiated 

goods. A nderson and van W incoop (2003) derive the following gravity equation 

o f  international trade

w here Xi j  are nom inal exports from  country i to j .  Incom e levels o f  country i, 

country j  and w orld incom e are denoted by y if y3 and yw, respectively. The elas­

ticity  o f  substitution, a,  is assum ed to be constant and greater than unity. The 

cost o f  im porting a good or, equivalently, the trade cost barrier (one plus the ta riff 

equivalent) is t^j  >  1. Finally, the price indices (or outw ard and inw ard m ulti­

lateral resistance variables) II* and P3 for countries i and j  represent the average 

trade restrictiveness o f  the countries. Novy (2008) uses Equation (5.1) to obtain 

a bidirectional gravity equation, w hich includes inward and outw ard m ultilateral 

resistance variables for both countries,

In turn, the author m akes use o f  the fact that intranational trade, like international 

trade, depends on the m agnitude o f  trade barriers, x iA =  ( ( y i y i ) / y w){ti,i) /  (U.iPi) 1~a, 

so as to control for m ultilateral resistance. Substituting into the bidirectional grav­

ity equation yields

(5.1)

(5.2)

(5.3)
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The geom etric average o f  the tariff equivalent can now be obtained by

T  = -  1 = -  1 . (5.4)

The above equation states that a drop in trade flows betw een countries w ith respect 

to trade flows w ithin countries is associated w ith higher trade costs. N ote that the 

m icro-founded m easure evaluates bilateral trade costs against the dom estic trade 

cost benchm ark. Further, it enables the construction o f  long-span trade costs series 

since its estim ation only requires data for b ilateral exports and intranational trade. 

The latter variable can be approxim ated by subtracting aggregate exports from  a 

country’s G ross D om estic Product (GDP) (Jacks et al., 2008).

5.3 Nonlinear Adjustment & Time-Varying Trade

Let us define the log real exchange rate as qt — s t — p t +  p*t , w here s t is the 

logarithm  o f  the spot exchange rate (the dom estic price o f  foreign currency), p t is 

the logarithm  o f  the dom estic price level and p*t the logarithm  o f  the foreign price 

level.

A  w idely em ployed nonlinear econom etric m odel that can capture the behaviour 

o f  the real exchange rate in the presence o f  constant trade costs is the Exponential 

STAR (ESTAR) m odel advocated by Terasvirta (1994). The appealing feature o f  

the ESTAR m odel is that it allows transitions betw een a continuum  o f  regim es to 

occur sm oothly and symmetrically. In this setting, the speed o f  m ean reversion 

is an increasing function o f  the size o f  the absolute deviation from  equilibrium . 

This property is suggested by the analysis o f  Dum as (1992) and dem onstrated by 

B erka (2005). In addition, Terasvirta (1994) argues that if  an aggregated process

Costs

5.3.1 The ESTAR Model
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is observed, regim e changes m ay be sm ooth rather than discrete as long as hetero­

geneous agents do not act sim ultaneously even i f  they individually m ake dichoto- 

m ous decisions. A ll the above favour the use o f  ESTAR m odels over Threshold 

A utoregressive (TAR) m odels, in w hich changes o f  persistence occur abruptly .3

A STAR m odel for the process {qt } m ay be w ritten as

w here /i is a constant representing the long run equilibrium , et is a w hite noise 

process w ith m ean 0 and variance <re, and Gj(-) is the transition function. For a 

given A R  structure, J2p= 1 0p> the transition function, G3(-), specifies the degree 

o f  persistence o f  the real exchange rate at each point in time. In the presence o f  

constant trade costs, the transition function for the ESTAR m odel is given by

w here qt-d  is the transition variable and 7  >  0  is the sm oothness (or transition) 

param eter. The exponential transition function G \  is particularly  applicable be­

cause it im plies sym m etric adjustm ent for positive and negative deviations from  

the equilibrium . Furtherm ore, the speed o f  adjustm ent is increasing w ith the 

sm oothness param eter 7  and the absolute value o f  the past deviation from  the 

equilibrium . For expositional reasons, we assum e that J2p= 1 ~  1 throughout

this section. In this case, at the equilibrium  G i(-) =  1 and the real exchange 

rate behaves as a unit root process, Qt =  E p =  1 <f>p{Qt-P ~  I*) +  £t- W hilst, for 

nonzero deviations G i(-) €  [0,1) and the process becom es m ean reverting. F i­

nally, i f  \qt~d — //-| —> 00  the function value approaches zero and the process is 

white noise, qt — et . The speed o f  transition between regim es is specified by the 

sm oothness param eter 7 . I f  7  is equal to zero the real exchange rate behaves as a 

linear unit root process irrespectively o f  the regime. W hilst, i f  7  —► 0 0  the process

3Note also that the incorporation o f  trade costs in TAR models is not straightforward.

p
(5.5)

Gi(qt -d)  =  exp ( —7 2 (qt_d -  / i )2) (5.6)
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becom es white noise. Interm ediate values o f  7  im ply sm ooth adjustm ent o f  the 

real exchange rate.

Let us consider two deviations from  PPP w hich have the sam e size but occur 

at different tim e periods, \qt l~d — lA =  \qt2-d ~  lA 7̂  0  w ith  t \  < t2. The fact 

that 7  is constant in the typical ESTAR m odel im plies that the real exchange rate 

w ill exhibit the sam e degree o f  persistence at tim e t.\ and t 2. Conditional on the 

assum ption o f  constant trade costs this is an attractive property. However, i f  trade 

costs vary in tim e so will the speed o f  adjustm ent. A n increase (decline) in trade 

costs, r ,  during the two tim e periods, r t l_d ^  r t2_d, w ill induce h igher (lower) 

persistence o f  the real exchange rate and, therefore, a decrease (increase) o f  the 

7  param eter. H ence, tim e varying trade costs can be incorporated into Equation

(5.6) by  allowing 7  to change over tim e depending on Tt-d- By assum ing a linear 

relationship betw een the value o f  the sm oothness param eter and trade costs, the 

transition function for the Time Varying Trade Costs ESTAR (TV TC-ESTA R) is 

given by

G 2(qt~d, n - d )  =  exp ( - ( 7  -  7 Trt- d )2 (qt-d ~  v f )  , (5-7)

w here the coefficient, 7 r , on trade costs is greater than zero and 7  >  7 Tr t-d  V 

t. The above equation allows both the degree o f  trade restrictiveness and the size 

o f  the deviation from  the equilibrium  to determ ine the speed o f  adjustm ent o f  the 

real exchange rate at a particular point in tim e (see Figure 5.1).

5.3.2 The QLSTAR Model

A n alternative m odel to the ESTAR that captures the theoretical insights o f  the au­

thors above and allows us to parsim oniously encom pass the influence o f  fixed and 

proportional tim e-varying trade costs is the Q uadratic Logistic Sm ooth Transition 

Autoregressive (QLSTAR) m odel o f  Jansen and Terasvirta (1996). The transition 

function o f  the QLSTAR m odel is given by

Gl{qt-d)  =  1 -  ( 1  +  exp ( - 7 2{qt-d +  ci)(<ft_d +  c2) ) ) _ 1 , (5.8)
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1.0 1.0

Figure 5.1: The exponential transition function (left) for 0.75 <  7  — 7 Trt-d  <  3, 
qt-d E { —1 , . . . ,  1}, and fi =  0. The quadratic logistic transition function (right) 
for 7  =  2.146, qt-d  G { — 1 , . . . ,  1}, 0.17 <  c  +  cTrt -d  <  0.52, and fi —  0.

w here c\ =  — /i — c and C2 =  —fi +  c w ith  c >  0 are the band coefficients. The 

quadratic logistic transition function G^(-) is particularly  applicable because it, as 

the exponential function, im plies sym m etric adjustm ent for positive and negative 

deviations from  the equilibrium . Further, the QLSTAR m odel specified by E qua­

tion (5.8) can approxim ate ESTAR m odels but also nests three regim e Threshold 

Autoregressive (TAR) m odels and linear A R  m odels. In contrast to TAR and ES­

TAR m odels, the QLSTAR allows the type o f  adjustm ent (sm ooth or discrete) 

betw een regim es to be specified by the data and, at the sam e time, can approxi­

m ate narrow  and w ide “bands o f  inaction” . Hence, the m odel allows for both fixed 

and proportional costs. Overall, the m odel is particularly  applicable w hen one is 

agnostic about the range o f  the “band o f  inaction” and the type o f  transition.

Suppose that regim e changes occur abruptly rather than gradually (see Sercu 

et al., 1995), w hich favours the use o f  TAR over ESTAR m odels. I f  7  —> 0 0  and 

qt-d <  ci or qt-d >  C2 the transition function value equals zero and qt becom es 

w hite noise. W hilst, inside the “band o f  inaction” , c i  <  qt-d  <  c 2 , G%(-) equals 

one and qt behaves as a unit root process. N ote that an increase in trade costs 

w ill w iden the “band o f  inaction” and, therefore, result in higher absolute values 

o f  the band coefficients, c x and c 2 . A t the other extrem e, w hen 7  =  0 the m odel 

becom es linear. For m oderate values o f  7 ,  the QLSTAR m odel can approxim ate
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both ESTAR and TAR models. The speed o f  m ean reversion increases w ith the 

absolute deviation from  the equilibrium . I f  \q t-d~ p\ oo the process approaches

the w hite noise regim e (outer regim e). W hilst, in the inner regim e, qt-d — H — 0, 

the degree o f  persistence is given by the m axim um  value o f  the transition function

G l

G t M  =  1 -  (1 +  exp (7 2c2) ) - 1  , (5.9)

w hich is determ ined by the transition param eter 7  and the coefficient c. C onse­

quently, changes in 7  or c  lead to different degrees o f  persistence at the equilib­

rium. D ue to the fact that there is no a pr ior i  reason w hy changes in trade costs 

should alter the degree o f  persistence in the inner regim e, we m odify Equation 

(5.8) as follows

Gz(qt-d) — 1 — ( 1 +  e x P ( ~ 2  (.Qt—d +  C1 ){Qt-d +  c 2 ) ) } • (5.10)

The m axim um  value o f  G 3(-)» w hich again occurs at the equilibrium  rate, is

G 3{p) =  1 -  ( l  +  e x p ( 7 2 ) ) - 1 , (5.11)

and is independent o f  the value o f  the band coefficient. The above m odification 

enables the incorporation o f  tim e-varying trade costs in the QLSTAR m odel in a 

straightforw ard manner. The transition function for the Tim e-Varying Trade Costs 

QLSTAR (TV TC-QLSTAR) is given by

^4  (qt—diTt—d)

1 — ( 1  +  exp ( - - — —   — (qt_d +  Cs)(qt-d +  q )
\  V (C +  CrTt-dV

(5-12)

w here c 3 =  —p  — c — cTrt-d  and c 4 =  — p  +  c  +  c Tr t _ d w ith c 3 <  c 4 are the 

tim e-varying band coefficients, c is a positive constant, cT >  0  is the coefficient 

on trade costs r . 4 C ontrolling for 7 ,  the speed o f  m ean reversion decreases w ith

4We have scaled the trade costs index so as to have a minimum value o f  zero. Consequently, c
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the absolute value o f  the band coefficients c\ and c2, and increases w ith the past 

deviation from  the equilibrium  rate (see Figure 5 .1) . 5 We exam ine the im pact o f  

trade costs on the speed o f  m ean reversion o f  the real exchange rate in the next 

section.

5.4 Empirical Results

O ur data set consists o f  annual observations for the dollar-sterling real exchange 

rate and the corresponding trade costs index from  1830 to 2005. For the construc­

tion o f  the real exchange rate we use the International Financial Statistics database 

to update the nom inal exchange rate and the price indexes analysed in Lothian and 

Taylor (1996). International trade data are obtained by M itchell (2008b,a) and 

G D P series for the U nited States and the U nited K ingdom  are taken from Officer 

(2008) and Johnston and W illiam son (2008), respectively.

F igure 5.2 shows the dem eaned real exchange rate and the trade costs series. In 

line w ith Jacks et al. (2008), the latter exhibits significant fluctuations throughtout 

the period. Specifically, until the beginning o f  the 20 t h  century trade costs w ere 

relatively low. Subsequently, the w ar and interw ar periods w ere associated w ith a 

rem arkable increase o f  bilateral trade costs w ith respect to intranational dom estic 

costs. D uring this tim e interval the series displays two peaks, the first in 1935 

follow ing the G reat Depression, and the second in 1946 at the end o f  the second 

W orld W ar and the establishm ent o f  the Bretton W oods system . A  gradual decline 

has occurred since then.

A fter running a battery o f  linearity tests on the real exchange rate series, w hich 

indicate the presence o f  sm ooth transition nonlinearity, w e exam ine w hether trade 

costs are an im portant constituent o f  the nonlinear adjustm ent m echanism  o f  the

reflects the lowest level o f  trade costs in time.
5Note that dividing the smoothness parameter j 2 by (c +  c T Tt - d ) 2 also implies that changes 

in the persistence o f the process become more abrupt as Tt - d  decreases. This behaviour is in line 
with the presence o f  both fixed and proportional costs which move together in time (O ’Connell 
and Wei, 2002).
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Figure 5.2: Tim e series plots o f  the dem eaned dollar-sterling real exchange rate 
(left) and the U nited States-U nited K ingdom  trade costs index (right).

real exchange ra te .6 The results for the nonlinear m odels w ith constant and tim e- 

varying trade costs are reported in Table 5 .1 .7 Overall, all m odels provide a parsi­

m onious fit to the real exchange rate. However, the incorporation o f  tim e-varying 

trade costs leads to a radically different adjustm ent process. The statistical signif­

icance o f  the coefficient 7 r and the band coefficient c T o f  the TVTC-ESTA R and 

TV TC-Q LSTA R m odels, respectively, indicates that m ovem ents in trade costs can 

help explain changes in the level o f  persistence o f  the real exchange ra te .8 A n in-

6 Specifically, we employ the testing procedures proposed by Terasvirta (1994), Harvey and 
Leybourne (2007), and Kapetanios et al. (2003). The first two are general procedures for testing 
linearity against smooth transition nonlinearity. The main difference between them lies in the fact 
that the null critical values for the test o f Terasvirta (1994) are based on the assumption o f  an 7(0) 
process, whilst, the test o f  Harvey and Leybourne (2007) allows for both 7(0) and 7(1) processes. 
We find that the hypothesis o f  linearity can be rejected at the 5 and 10 percent significance levels, 
respectively. Finally, the test o f  Kapetanios et al. (2003) shows that the null hypothesis o f  a unit 
root in the real exchange rate against the alternative hypothesis o f a globally stationary exponential 
smooth transition autoregressive process can be rejected at all conventional levels o f  significance. 
See also the results presented in Chapter 3.

7The models are fitted to the demeaned real exchange rate. The lag length o f  the autoregressive 
part and the variables which enter the transition function are specified on the basis o f  residual 
diagnostics and, subsequently, the statistical significance o f  the coefficients o f  the models. In the 
estimation procedure we impose the restriction (j)i =  1. This choice is based on the fact that 
the AR coefficient is not statistically different from unity in the estimated ESTAR models with 
constant and time-varying trade costs and in the TVTC-QLSTAR model. Further, the results for 
the unrestricted models are qualitatively the same. For the standard QLSTAR model imposing 
the restriction <pi =  1 allows convergence o f  the nonlinear least squares algorithm. Note that 
this restriction does not necessarily imply a unit root behaviour o f  {<7t}  in the inner regime when 
QLSTAR models are applied since the maximum value o f  the transition function may differ from 
unity.

8 Pay a and Peel (2006a) emphasise that the high degree o f  persistence o f  both the dependent 
and explanatory variables (such as the trade costs series) that enter the transition function may 
give rise to a spurious regression problem. To this end, we report the bootstrap p-values for the 
coefficients on trade costs. The null Data Generating Process (DGP) in the simulation experiment 
is given by the fitted ESTAR and QLSTAR models.
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crease in trade costs w idens the “band o f  inaction” and reduces the speed o f  m ean 

reversion for a given PPP deviation.

Table 5.1: Estim ated N onlinear Real Exchange Rate M odels

Panel A, ESTAR

q t +  0.016 =  (qt_i  +  0.016 ) exp( —1.5052(<^_i +  0.016 )2). 
(0.690) (0.690) (7.102) (0.690)

s =  0.064; Q i =  0.140 [0.062]; Q 5 =  -0 .1 2 7  [0.227]; A R C H i =  0.557 [0.456]; 

A R C H 5 =  0.802 [0.550].

Panel B, TVTC-ESTA R

qt — 0.066 0.066 ) ex p (—( 3.552 — 5.324 r t- 2)2{qt-2 — 0.066 )2).
(3.262) (3.262) (5.130) (3.145) (3.262)

[0.037]

s =  0.063; Q i  =  0.035 [0.642]; Q 5 =  -0 .1 6 1  [0.374]; A R C H i =  1.538 [0.217]; 

A R C H 5 =  0.538 [0.747].

Panel C, QLSTAR

qt +  0.014 =  (f t_ 1 +  0 .0 1 4 ) 1 -  (1 +  e x p (—1.8292/0 .4 0 2 2(f t_ i -  0.387)
(0.656) (0.656)

x (</,_! + 0 .416)))

(6.700) (5.853)

- l

s =  0.064; Q i  =  0.141 [0.061]; Q 5 =  -0 .1 2 6  [0.219]; A R C H i =  0.535 [0.465]; 

A R C H 5 =  0.786 [0.561].

Panel D, TVTC-Q LSTA R
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(7.811) (6.929) (4.488)
[0.008]

x (<7t - 2 — 0.231 — 0.587 r f_ 2) ( ^ _ 2 + 0.1128 +  0.587 r ^ ) ) ) ' 1 .
(4.488)
[0.008]

(4.488)
[0.008]

s =  0.063; Q i =  0.020 [0.787]; Q 5 =  -0 .1 5 4  [0.426]; A R C H i =  0.667 [0.411]; 

A R C H 5 =  0.344 [0.886].

Notes: Figures in parentheses and square brackets denote absolute t-statistics and p-values, 

respectively. The p-values for the coefficients on trade costs +  and cT are obtained through 

a simulation exercise, where the bootstrap DGPs are the fitted ESTAR and QLSTAR models, 

respectively. For illustration purposes, w e report the summation o f  the long run equilibrium 

estimate and the constant part o f  the band coefficients ft ±  c. s  is the standard error o f  the 

regression. Q \  and Q 5 denote the Ljung-Box Q-statistic for serial correlation up to order 1 and 

5, respectively. ARCHi and ARCH5 denote the LM test statistic for conditional heteroskedas­

ticity up to order 1 and 5, respectively.

Figure 5.3 displays the transition functions o f  the tim e-varying trade costs 

m odels for three representative tim e periods, nam ely 1900,1950 and 2000, w hich 

correspond to relatively low, large and m oderate levels o f  trade costs, respectively. 

A t those tim e periods, for the TVTC-ESTAR m odel, a PPP deviation o f  0.4, w hich 

is roughly the m axim um  realized deviation, w ould suggest that the real exchange 

rate behaves sim ilar to an A R  process w ith coefficient around 0.3, a near un it root 

and an A R  process with coefficient around 0.5. For the TV TC-Q LSTA R  m odel, 

the sam e PPP deviation w ould suggest that the real exchange rate behaves sim ilar 

to a w hite noise, a near unit root and an A R  process w ith coefficient around 0.2. 

On the other hand, according to the estim ated ESTAR and QLSTAR m odels w ith 

constant trade costs the real exchange rate w ould behave as an A R  process w ith 

coefficient o f  about 0.7 and 0.5, respectively, at all points in time. It appears that 

the inability o f  ESTAR m odels to approxim ate a w ide “band o f  inaction” results 

in finding substantially higher persistence for large deviations than that im plied
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by the QLSTAR.
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Figure 5.3: The exponential (left) and quadratic logistic (right) functions corre­
sponding to 1900, 1950 and 2000 trade costs levels.

Clearly, the assum ption o f  constant trade costs can result in severe overes­

tim ation / underestim ation o f  persistence. The difference betw een the degrees 

o f  persistence (as m easured by the value o f  the transition function o f  the corre­

sponding m odel) estim ated by the tim e-varying and constant trade costs m odels 

are illustrated in Figure 5.4. Starting w ith the ESTAR m odel, overestim ation due 

to the the exclusion o f  tim e-varying trade costs occurs w ith alm ost the sam e like­

lihood as underestim ation (55 percent versus 45 percent o f  the tim es). O n the 

contrary, the QLSTAR m odel w ith constant trade costs appears to underestim ate 

the degree o f  persistence w ith respect to the TVTC-Q LSTA R in m ost periods (85 

percent o f  the cases). Overestim ation occurs on rare occasions (15 percent o f  the 

tim e) w hich are usually associated w ith substantial differences in the speed o f  

m ean reversion .9

A natural question that arises in the nonlinear fram ew ork is how fast does 

the process adjust to deviations from the equilibrium  under different trade costs 

levels. In order to exam ine the tim e profile o f  the im pact o f  a shock on the fu­

ture behaviour o f  the series w e adopt the G eneralised Im pulse R esponse Func-

9We note that the mean underestimation-the mean o f  the positive differences between the val­
ues o f  the transition function o f  the TVTC-ESTAR and the ESTAR- is 0.04 and the maximum  
value 0.24. While the mean overestimation-the mean o f  the negative differences between the 
values o f  the transition function o f the TVTC-ESTAR and the ESTAR- is -0.07 and the mini­
mum value is equal to -0.35. For the QLSTAR models, the mean underestimation is 0.04 and the 
maximum value 0.28. While the mean overestimation is -0.1 and the minimum value -0.48.
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Figure 5.4: D ifferences in the degree o f  persistence betw een the TV TC-ESTAR 
and ESTAR m odels (left) and the degree o f  persistence betw een the TVTC- 
QLSTAR and QLSTAR m odels (right).

tions (G IRF) proposed by Koop et al. (1996).10 The GIRF is defined as the av­

erage difference betw een two realizations o f  the stochastic process, qt+h, w hich 

start w ith identical histories up to tim e t — 1 , but only the first realization is hit by 

a shock o f  m agnitude St at period t.

G I R F ( M t ,^ t - i )  =  E [ q t+h\et =  6t , u t -i]  -  E  [qt+h \ut-i]  , (5.13)

where h =  1 , 2 . . .  denotes horizon, et =  5t is an arbitrary shock occurring at tim e 

t, and ojt- 1  is the history set o f  qt . Given that the G IR F(/i, 6, cjt - 1) is a function o f  

8t and w hich are realizations o f  random  variables, the G IR F(/i, <5, u t- i )  itse lf 

is a realization o f  a random  variable. It follows that various conditional versions 

o f  the G IRF can be defined. In this w ork we set ujt- i  =  so that the process is 

initially at its equilibrium  value, and w e consider shocks o f  m agnitude 6 equal to 

the m axim um  absolute PPP deviation and h a lf the m axim um  PPP deviation. Due 

to the fact that analytic expressions for the conditional expectations involved in 

(5.13) are usually not available for h > 1 , w e use bootstrap integration m ethods 

(see Koop et al., 1996, for a detailed description) to overcom e the issue o f  future 

shocks intrinsically incorporated in the m odel. In particular, 1000 repetitions are 

im plem ented to average out future shocks, w here future shocks are draw n w ith

10A more detailed description o f  the GIRF is provided in Chapter 4.
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Figure 5.5: G IRFs for the TVTC-ESTAR (left) and TVTC-Q LSTA R (right) m od­
els. Top (bottom ) graphs correspond to shocks equal to the m axim um  absolute 
PPP deviation (ha lf the m axim um  absolute PPP deviation).

replacem ent from  the m odels residuals, and then the results are averaged.

Figure 5.5 illustrates the GIRFs for all levels o f  trade costs and for a m axim um  

im pulse response horizon o f  20 years. Overall, low levels o f  trade costs are asso­

ciated w ith fast shock absorption for all cases. The absorption tim e increases w ith 

the level o f  trade costs. For large shocks (m axim um  PPP deviation), the increase 

for the TV TC-ESTAR is substantially greater than for the TV TC-Q LSTA R  m odel 

and becom es apparent at a m uch lower level o f  trade costs. O n the o ther hand, for 

m oderate shocks (ha lf the m axim um  PPP deviation), the absorption tim e for the 

TV TC-Q LSTA R m odel initially grows faster as the degree o f  trade restrictiveness 

increases. However, this situation is reversed for high levels o f  trade costs. G ener­

ally, w hen the level o f  trade costs is high shocks fade out extrem ely slow ly for the 

TV TC-ESTA R model. Put it differently, the transition param eter in the TV TC- 

ESTA R m odel approaches zero (infinite band w idth) falsely suggesting that the
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real exchange rate series is a unit root process.

To further illustrate this point as well as to m ake com parisons w ith the stan­

dard STAR m odels, we com pute the half-lives corresponding to the m axim um  

PPP deviation . 11 The results are presented in Table 5.2. S tarting w ith the standard 

ESTAR and QLSTAR m odels, the real exchange rate process w ould absorb h a lf 

o f  the shock in four years. Turning to the tim e-varying trade costs m odels, we 

consider three scenarios. Again, we set trade costs equal to their 1900, 1950 and 

2000 levels. In the form er and latter cases, both the TV TC-ESTA R and TVTC- 

QLSTAR m odels suggest that the tim e required for the process to absorb h a lf  o f  

the m axim um  PPP deviation is only two years, w hich is h a lf o f  that correspond­

ing to constant trade costs. Obviously, large deviations o f  the real exchange rate 

appear to m ean revert m uch faster (than that im plied by  the ESTAR and QLSTAR 

m odels) during the beginning o f  the 2 0 t h  century and the recent floating period. 

O n the contrary, the high level o f  trade costs around the m iddle o f  the 20 th  century 

leads to an increase in the half-life o f  the shock w ith respect to the constant trade 

costs benchm ark. In particular, the TVTC-Q LSTA R and TV TC-ESTA R m odels 

im ply a half-life o f  5 and 20 years, respectively. As above, the large discrepancy 

betw een the results o f  the two m odels can be attributed to the inability o f  the 

ESTAR m odel to capture the effect o f  w ide “bands o f  inaction” . 12

Table 5.2: Half-Lives o f  the N onlinear Real Exchange R ate M odels

Trade Costs Level ESTAR QLSTAR TVTC-ESTAR TV TC-Q LSTA R

1900 4 4 2 2

1950 4 4 12 5
2 0 0 0 4 4 2 2

Notes: The size o f  the shock is set equal to the m axim um  PPP deviation. Half- 
lives are m easured in years.

11 The half-life is defined as to the minimum horizon beyond which the difference between the 
impulse responses at all longer horizons and the ultimate response is less than or equal to half o f  
the difference between the initial impact and the ultimate response (van Dijk et al., 2007).

12We note that when trade costs reach a maximum, which occurs in 1946, the corresponding 
half-lives are 12 and 57 years for the TVTC-QLSTAR and TVTC-ESTAR models, respectively.
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In order to exam ine w hich m odel is superior in term s o f  capturing the effect 

o f  tim e-varying trade costs, we conduct two bootstrap experim ents. For each ex­

perim ent, w e em ploy either the estim ated TV TC-Q LSTA R or the TV TC-ESTAR 

m odel (reported in Table 5.1), the original trade costs series and the corresponding 

estim ated residuals so as to generate B  artificial sam ples o f  size 176.13 In turn, 

we fit the alternative m odel to  each artificial sam ple and com pute the f-statistic for 

the coefficient on trade costs, This provides the em pirical distributions for the 

^-statistics for %  and cr  under the null that the true DG P is given by  the alternative 

m odel. The probability  o f  obtaining a f-statistic as extrem e as the original is

w here 1(A)  is the indicator function, which takes the value o f  1 i f  event A  occurs 

and 0 otherw ise, and f is the original f-statistic. W hen the D GP is the TV TC- 

ESTAR m odel, the probability o f  the f-statistic for cT exceeding 4.488 is only

13.8 percent. W hilst, w hen the DG P is given by the fitted TVTC-Q LSTA R, there 

is a 52.1 percent probability that the value o f  the f-statistic for %  is greater than 

3.145. H ence, it is very likely to obtain a f-statistic for the coefficient on trade 

costs in the TVTC-ESTAR m odel as extrem e as the original w hen the D G P is 

given by the estim ated TV TC-Q LSTA R model. However, the opposite is not true.

5.5 Conclusion

In em pirical w ork on the dynam ic behaviour o f  the real exchange rates trade costs 

have typically been assum ed constant. Essentially, arbitrage w ill com m ence, ce­

teris par ibus , w hen it is profitable and PPP deviations are outside the transac­

tions band. M otivated by the recent gravity literature we construct a long-span 

trade costs index. Further, we develop and estim ate two nonlinear m odels for

13 We set the number o f  generated samples B  equal to 1000 and initialise the bootstrap DGP by 
using the first observations o f  the original real exchange rate series.

6= 1
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the real exchange rate which incorporate tim e-varying trade costs. O ur em piri­

cal approach is supported by a battery o f  statistical tests and sim ulation methods. 

O ur results provide strong evidence in favour o f  a tim e-varying “band o f  inac­

tion” , w hich w idens w ith the level o f  trade costs. The persistence o f  the real 

exchange rate is found to depend on both the m agnitude o f  trade frictions and the 

size o f  the deviation from  PPP. For instance, a given shock to the real exchange 

rate would be absorbed at significantly different speeds in 1950 and 2000 due to 

the existence o f  different trade costs levels. A lthough trade costs appear to have 

declined substantially since the second W orld War, their m agnitude is still signifi­

cant. Consequently, our em pirical results are also consistent w ith the docum ented 

high persistence o f  real exchange rates in the post-B retton W oods era.
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C H A P T E R  6

Concluding Rem arks

This thesis deals w ith the parsim onious m odelling and forecasting o f  the real ex­

change rate using nonlinear econom etric methods. In this context, the m ain re­

search topics exam ined are: (i) robust linearity and unit root testing under the al­

ternative o f  sm ooth transition nonlinearity, (ii) nonlinear real exchange rate m odel 

specification and forecasting, (iii) m odelling the deviations o f  the real exchange 

rate from its fundam ental value, and (iv) extending existing nonlinear real ex­

change rate m odels to accom m odate for tim e-varying trade costs.

The first topic is addressed in Chapters 2 and 3. C hapter 2 deals w ith the spec­

ification stage o f  nonlinear m odels in the presence o f  conditional heteroskedas- 

ticity o f  unknow n form. In particular, it investigates the im pact o f  conditional 

heteroskedasticity on the perform ance o f  a conventional linearity test as w ell as 

several heteroskedasticity-robust versions. The key finding is that conventional 

tests can frequently result in the detection o f  spurious nonlinearity. The degree 

o f  oversizing depends on the type o f  tim e-varying volatility  and tends to increase 

w ith the sam ple size. Consequently, spurious inference is m ost likely in high 

frequency data, such as daily and intra-daily financial tim e series. Conversely,
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w hen the true D ata G enerating Process is nonlinear in m ean and the error is con­

ditionally heteroskedastic, the tests m ay have very low size-adjusted pow er and 

can frequently lead to the selection o f  m isspecified m odels. In m ost cases, the 

above deficiencies also hold for tests based on H eteroskedasticity C onsistent Co- 

variance M atrix Estim ators. Overall, the Fixed D esign W ild B ootstrap appears 

to be the m ost reliable m ethod in term s o f  size, pow er and choosing the correct 

m odel specification. The im portance o f  robust inference is highlighted through 

an em pirical application to returns on m ajor stock m arket indices and exchange 

rates, the future basis o f  the FTSE 100 and the dollar-sterling real exchange rate.

The follow ing chapter extends the analysis to the nonlinear m odelling and 

forecasting o f  the dollar-sterling real exchange rate using long spans o f  data. The 

contribution to the literature is threefold. First, we provide significant evidence 

o f  sm ooth transition dynam ics in the series by em ploying a battery o f  recently 

developed in-sam ple statistical tests and bootstrap techniques. Second, w e in­

vestigate through M onte Carlo sim ulations the sm all sam ple properties o f  several 

evaluation m easures for com paring recursive forecasts w hen one o f  the com pet­

ing m odels is nonlinear. O ur results indicate that all tests exhibit low pow er in 

detecting the superiority o f  sm ooth transition over linear autoregressive m odels. 

Finally, notw ithstanding the above, the nonlinear real exchange rate m odel out­

perform s both the random  w alk and the linear autoregressive m odel in forecasting 

the behaviour o f  the series during the post-B retton W oods era. Consequently, re ­

searchers and practitioners can obtain forecasting gains regarding the behaviour 

o f  the long-span real exchange rate series by em ploying nonlinear m odels.

C hapter 4 adopts a m ore general fram ew ork, w here the equilibrium  real ex­

change rate is allowed to depend on the fundam entals im plied by International 

R eal Business Cycle m odels w ith com plete asset m arkets. By focusing on the 

post-B retton Woods era, we find that in several cases there is a long-run re la­

tionship betw een real exchange rates and consum ption series in line w ith inter­

national risk sharing. Further, linearity tests indicate that the m ajority  o f  the de-
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viation processes exhibit significant sm ooth transition nonlinearity. Exponential 

Sm ooth Transition A utoregressive m odels parsim oniously capture the nonlinear 

adjustm ent m echanism . These findings provide an explanation for the em piri­

cal regularities noted in the literature on the relation betw een the real exchange 

rate and consum ption, such as the “Backus and Smith (1993) puzzle” . This point 

is illustrated further by generating the puzzle through M onte Carlo sim ulations. 

Finally, the results for G eneralised Im pulse Response functions show that shock 

absorption is significantly faster than suggested in the Purchasing Pow er Parity 

puzzle.

C hapter 5 takes a different approach from  previous w ork on Purchasing Power 

Parity by explicitly accounting for tim e-varying trade costs. The m otivation b e ­

h ind this approach is based on recent advances in the gravity literature w hich allow 

the construction o f  long-span trade costs indices. O ur contribution is the develop­

m ent and estim ation o f  two nonlinear m odels for the dollar-sterling real exchange 

rate w hich incorporate trade costs. The key finding is that both the m agnitude o f  

trade frictions and the size o f  the deviation from  Purchasing Pow er Parity have a 

significant effect on the persistence o f  the real exchange rate. As a consequence, 

changes in trade costs im ply that a given shock to the real exchange rate w ould 

be absorbed at substantially different speeds at different tim e periods. We provide 

evidence that the period after the Second W orld W ar was characterised by a sub­

stantial decline in the degree o f  trade restrictiveness. However, the m agnitude o f  

trade costs is still significant. Consequently, our em pirical results are consistent 

w ith the docum ented high persistence o f  real exchange rates in the post-B retton 

W oods era.
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