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Abstract

This thesis builds upon recent developments in the areas of international eco-
nomics, econometrics and computational statistics, to provide a robust framework
for specifying, modelling and forecasting real exchange rates. The main research
topics addressed are the following. First, the impact of conditional heteroskedas-
ticity on linearity tests. Second, the parsimonious modelling and forecasting of
the dollar-sterling real exchange rate using a long span of data. Third, the re-
examination of the well-documented real exchange rate-consumption anomaly
from the viewpoint of nonlinear dynamics. Finally, the relationship between real

exchange rate persistence and time-varying trade costs.
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CHAPTER 1

Introduction

Learn from yesterday, live for today,
hope for tomorrow. The important

thing is not to stop questioning.

— Albert Einstein (1879 — 1955)

Over the last decades there has been a steadily increasing interest in the de-
velopment of nonlinear time series models, and their application in international
economics. This thesis focuses on a specific family of these models, the smooth
transition autoregressive, and their usage in explaining and forecasting the be-
haviour of real exchange rates.

A natural starting point for the analysis of real exchange rates is the Purchasing
Power Parity (PPP) theory. PPP states that the nominal exchange rate between two
currencies should be equal to the ratio of aggregate price levels between the two
countries, so that a unit of currency of one country will have the same purchasing

power in a foreign country.! The hypothesis that PPP holds in the long run is

'Excellent surveys covering the origins of PPP theory and the findings of the associated em-
pirical literature are provided in Sarno and Taylor (2002) and Taylor (2006).



a building block of many macroeconomic models. It is therefore of interest to
international economists.

However, the first empirical studies employing unit root tests in the late 1980s
were consistent in their failure to reject the unit root hypothesis for major real
exchange rates (e.g., Taylor, 1988; Mark, 1990). Subsequent studies using longer
time series data sets or panel methods suggested that the early non-rejections of
the unit root hypothesis was due to low power of the corresponding test (Lothian
and Taylor, 1996). Despite the evidence of mean reversion, the implied speeds of
adjustment of the real exchange rate in these studies was implausibly slow, typi-
cally with half-life in the range of three to five years. Rogoff (1996) summarised

this position as follows

“How can one reconcile the enormous short-term volatility of real
exchange rates with the extremely slow rate at which shocks appear

to damp out?”’

Rogoff (1996, p. 647)

After the work of Rogoff (1996), perhaps the major change in emphasis has
been the application of nonlinear rather than linear methods. These nonlinear
models are based on theoretical analyses that embody factors such as transac-
tions costs, limits to arbitrage and heterogeneity of expectations of market par-
ticipants (see, e.g., Dumas, 1992; De Grauwe et al., 1993; Shleifer and Vishny,
1997). As a consequence, the real exchange rate is described by a nonlinear data
generating process that exhibits a region of unit root (or near-unit root behaviour)
near the equilibrium real exchange rate. Nonlinear models that capture this type
of behaviour are the threshold autoregressive model of Tong (1983), and the ex-
ponential smooth transition autoregressive model of Ozaki (1978) and Terésvirta
(1994).

It follows that econometric modelling requires appropriate tests for linearity.

Typically, researchers employ tests which are based on the assumption of ho-
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moskedastic residuals. However, the fact that changes in regime (e.g., fixed to
floating, or different monetary regimes) may induce time-varying volatility raises
concerns regarding statistical inferences. A number of authors have noted that the
presence of conditional heteroskedasticity may lead to poor performance (spu-
rious inference) of linearity tests (Lundbergh and Terdsvirta, 1998). Chapter 2
examines the robustness of conventional linearity tests and tests based on Boot-
strap methods to conditional heteroskedasticity of unknown form. The impor-
tance of robust inference is highlighted through Monte Carlo simulations, as well
as, several empirical applications on economic and financial time series data. The
insights gained are, in turn, exploited in the remaining chapters.

Chapter 3 deals with modelling and forecasting the dollar-sterling real ex-
change rate using a long span of data. The motivation of the chapter is twofold.
First, the empirical literature on the out-of-sample performance of nonlinear real
exchange rate models is scarce. Second, there is a documented difficulty of non-
linear models to outperform their linear counterparts (Clements and Smith, 1999,
see, e.g.,). In order to address these issues, special attention is paid to the speci-
fication stage of the nonlinear model and the investigation of the performance of
forecast evaluation measures. The former consists of a battery of recently devel-
oped statistical tests and computationally intensive techniques. While, the exam-
ination of the small sample properties of several forecast evaluation measures is
implemented through extensive Monte Carlo simulations.

In Chapters 2 and 3, the equilibrium real exchange rate is assumed constant.
However, a variety of theoretical models, such as that of Balassa (1964) and
Samuelson (1964), imply a non-constant equilibrium in the real exchange rate
and estimates, including proxies for the equilibrium determinants, appear signif-
icant (see e.g. Lothian and Taylor, 2008; Hegwood and Papell, 2002; Paya and
Peel, 2006a). In this framework, International Real Business Cycle (IRBC) mod-
els imply a relationship between real exchange rates and consumption series (see

Backus and Smith, 1993; Kollmann, 1995). However, these models have received



little (if any) empirical support. This discouraging finding gave rise to what is
known as the “Backus and Smith puzzle” or the “consumption real exchange rate
anomaly”. Chapter 4 examines the role of nonlinear dynamics in the generation of
the puzzle and provides further evidence on this empirical regularity. Specifically,
linear cointegration methods and nonlinear models are employed on quarterly data
for several country pairs. In addition, Generalised Impulse Response Functions
are introduced so as to examine the time profile of the impact of shocks on the
deviations from the IRBC equilibrium.

Chapter 5 explores a different approach to the explanation of the behaviour
of the real exchange rate motivated by the recent gravity literature (Anderson and
van Wincoop, 2004; Jacks et al., 2008). In Jacks et al. (2008) a micro-founded
measure is derived, that enables the construction of long-span trade costs indices.
Using this measure, it is shown that trade costs have changed substantially over
time. The crucial implication of this finding is that if trade barriers change over
time then so should the “degree” of nonlinearity in real exchange rate series. To
this end, two nonlinear real exchange rate models are extended to accommodate
time-varying market frictions. Moreover, the implications of the estimated models
are discussed and compared with those of models based on constant trade costs.

The last chapter summarises the key results and discusses the contributions of

the thesis.



CHAPTER 2

Specifying Smooth Transition Regression Models
in the Presence of Conditional Heteroskedasticity

of Unknown Form!

There are considerable dangers in
overemphasising the role of signif-
icance tests in the interpretation of

the data

— Sir David Roxbee Cox (1924 — )

2.1 Introduction

Over the last decades there has been a steadily increasing interest in the devel-
opment and application of nonlinear time series models. A widely used family

of nonlinear models is the Smooth Transition Autoregression (STAR) of Ozaki

!Monte Carlo experiments for the present and the following chapters were conducted on the
Lancaster High Performance Cluster. We are grateful to the administrator, Mike Pacey, for his
assistance.



(1978), Granger and Terasvirta (1993), and Terésvirta (1994). By allowing regime
dependent behaviour, STAR models appear to parsimoniously capture the nonlin-
ear dependence (in the mean) of many economic and financial time series (see,
e.g., van Dijk et al., 2002).

Due to the fact that there are various STAR formulations researchers typically
adopt a modelling cycle, which consists of specification, estimation and evaluation
stages (Eitrheim and Terdsvirta, 1996). Testing linearity comprises the first step
of the specification procedure. Several linearity tests against smooth transition
nonlinearity have been proposed in the literature (e.g., Luukkonen et al., 1988;
Terasvirta, 1994; Escribano and Jorda, 1999; Gonzalez and Terésvirta, 2006). The
most widely used are the Lagrange Multiplier type test of Terdsvirta (1994) and
the test derived by Escribano and Jorda (1999). Despite the fact that there is a
vast empirical literature suggesting that the residuals of many regression models
in economics and finance exhibit time-varying conditional variance (Engle, 1982,
2001), the robustness of these tests to conditional heteroskedasticity has not been
thoroughly addressed.

As noted by a number of researchers neglected heteroskedasticity may result
in substantial oversizing of linearity tests. It also holds that the performance of
tests for conditional heteroskedasticity depends on the correct specification of the
conditional mean (see, e.g., Blake and Kapetanios, 2007, and references therein).
Notably, Granger and Terésvirta (1993) argue that the Autoregressive Conditional
Heteroskedastic (ARCH) model of Engle (1982) although linear in mean can com-
plicate tests for linearity. Wong and Li (1997) show through Monte Carlo simu-
lations that tests for Threshold Autoregression (TAR) assuming a constant con-
ditional variance can be heavily oversized in the presence of ARCH innovations.
A similar empirical finding is provided by Hurn and Becker (2007) for the neural
network test of Terdsvirta et al. (1993). Further, Bera and Higgins (1997) argue
that bilinear processes can be confused with ARCH processes due to the similarity

of their unconditional moment structure.



Granger and Terédsvirta (1993), based on the work of Davidson and MacK-
innon (1985), propose a robust test for linearity against STAR nonlinearity in
the presence of unknown form of heteroskedasticity. However, Lundbergh and
Terasvirta (1998) illustrate that although the above robustification significantly re-
duces oversizing it may result in a severe loss of power. To this end, they suggest
using the original test and examining the presence of neglected heteroskedasticity
in the following steps of the modelling procedure. However, such a modelling
cycle may often lead to the misspecification of the conditional mean.

In this chapter, we investigate the effect of conditional heteroskedasticity on
the linearity test of Escribano and Jorda (1999) as well as four heteroskedasticity
robust versions. The first three utilise the Heteroskedasticity Consistent Covari-
ance Matrix Estimators (HCCMESs) considered in White (1980) and MacKinnon
and White 1985, while the last one employs the Fixed Design Wild Bootstrap of
Kreiss (1997) and Gongalves and Kilian (2004). HCCME:s are typically employed
by researchers due to their asymptotic validity in the presence of heteroskedastic-
ity of unknown form, simple implementation and little computational cost (Long
and Ervin, 2000) compared to bootstrap methods. However, in finite samples
HCCMEs can be severely biased and, in many cases, they are outperformed by
bootstrap methods (Flachaire, 2005). Although we focus on the Generalised Au-
toregressive Conditional Heteroskedastic (GARCH) model of Bollerslev (1986),
we also report results for the Asymmetric GARCH model of Engle (1990), the Ex-
ponential GARCH model of Nelson (1991), the GIR GARCH model of Glosten
et al. (1993) and the stochastic volatility model advocated by Taylor (1986) and
Shephard (1996).

Our findings illustrate that conventional tests may seriously overreject the null
of linearity when the null is true and the conditional variance of the error term
is time-varying. Further, the degree of oversizing is much higher than the one
reported by Lundbergh and Terdsvirta (1998) for the Terédsvirta (1994) test and

tends to increase (in many cases rapidly) with the sample size. On the other hand,



if the true process is nonlinear in the mean, conditional heteroskedasticity can
frequently result in choosing misspecified nonlinear models. Consequently, this
can pose problems in the estimation stage of STAR models.

In general, robust tests based on HCCMEs perform poorly. These tests do not
always lead to an improvement in empirical size and, usually, result in very low
size adjusted power. The final inference technique, the Fixed Design Wild Boot-
strap, is superior with respect to all the criteria employed in this study. First, the
empirical size of the tests is very close to the nominal significance level. Second,
the empirical power is much higher than the rest of the methods. Finally, it results
in the selection of correctly specified models in the majority of cases.

The rest of the chapter is organised as follows. Section 2.2 outlines the ba-
sic STAR representation, which facilitates the analysis of testing linearity against
STAR nonlinearity in Section 2.3. Dealing with conditional heteroskedasticity of
unknown form using HCCMEs and the Fixed Design Wild Bootstrap is discussed
in Section 2.3.1. The next section investigates the finite sample performance of
the tests through Monte Carlo simulations. Section 2.5 presents an empirical ap-

plication on empirical data. Finally, the last section concludes.

2.2 Smooth Transition Regression Models

The basic STAR model representation for a univariate time series {y; } is given

by

Yi = Mo+ M1+ o+ TipYe—p + (T20 +

+721Ye-1 + - + Tapyep) F (8657, ¢) + €4, t=1,...,T,(2.1)
or equivalently

Yo = wx, + mox F(sy;77,¢) + &, t=1,...,T, 2.2)



where x; = (1, &) with &, = (y_1,...,%—p) and w; = (7m0,...,7;,), for
j = 1,2. The STAR model can be easily extended to a Smooth Transition Re-
gression (STR) model by augmenting Equation (2.2) with exogenous regressors.
Hence, our analysis can be generalised to the STR model in a straightforward
manner. Depending on the derivation of the linearity test under consideration, it
is assumed that the error term, ¢, is either an independent, identically normally
distributed random variable, ¢; ~ N(0, o), or a martingale difference sequence.
That is, E[e;|Z;—1] = 0, where Z;_; is the information set up to time ¢ — 1 consist-
ing of all lagged values of y. Note that in the latter case the variance of the error
term is not restricted to be constant. Models that capture the dependence both in
the conditional mean and the conditional variance can be found in Lundbergh and
Terasvirta (1998) and Chan and McAleer (2002).

The transition function F(-) is at least fourth-order, continuously differen-
tiable with respect to v and is bounded between 0 and 1. The selection of the
transition function specifies the two common forms of the STAR model. For the

Exponential STAR (ESTAR) the transition function is given by

F(si;y,c)=1-exp(=v(ss—¢)®), 7 >0, 23)

while for the Logistic STAR (LSTAR),
F(s;v,¢) = [1+exp (=7 (st — )], v > 0, (24)

where c is a constant and s; is the transition variable. The transition variable is
usually set equal to the lagged endogenous variable y,_4, where the delay param-
eter d is a positive integer. For s; = y;_4 and ¢ = my9 = 0 the ESTAR model
collapses to the Exponential Autoregressive (EAR) model of Haggan and Ozaki
(1981). Other choices are also possible for the transition variable, such as exoge-
nous variables, nonlinear functions of y; 4 or time trends (see, e.g., van Dijk et al.,

2002; Paya et al., 2003). The ESTAR transition function is symmetric around



(s; — ¢) and admits the limits

F() —» 1 as |s¢ — ¢| = +o0, (2.5)

F(:) — 0 as |s; —¢| — 0. (2.6)

While the logistic transition function is asymmetric around (s; — c) and admits

the limits

F() — 1 as (st — ¢) = +o0, 2.7

F() — 0 as (st —¢) = —o0. (2.8)

The smoothness parameter y € (0, 00) determines the speed of transition of F(-)
towards the inner or outer regime and, therefore, the “degree” of nonlinearity (see
Figure 2.1). As v — 0 both transition functions approach a constant and the
models become linear. For the ESTAR model the same holds when v — oo.
Therefore, STAR models nest linear AR models. Moreover, the LSTAR model
nests the Threshold Autoregressive (TAR) model with two regimes since for v —

oo the logistic transition function approaches the indicator function.

The properties of STR and STAR models are very appealing in modelling non-
linear economic and financial time series. For example, the fact that macroeco-
nomic time series as well as their relationships may be characterised by asym-
metries associated with the stages of the business cycle (see, e.g., Skalin and
Terasvirta, 1999; Sensier et al., 2002; Deschamps, 2008) makes Logistic STR
models particularly applicable. On the other hand, factors such as market fric-
tions, the sunk costs of international arbitrage as well as heterogeneous agents,
may induce nonlinear and symmetric adjustment of many macroeconomic and fi-

nancial series (e.g., real exchange rates, long gilt futures, dividend-price ratios)

10
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Figure 2.1: The Logistic and Exponential Transition Functions for v €
{0.01,...,2}, s; € {—20,...,20} and c = 0.
motivating the use of Exponential STR models (e.g., Michael et al., 1997; Gal-

lagher and Taylor, 2001; McMillan and Speight, 2002).

2.3 Testing Linearity against Smooth Transition Non-
linearity

There is usually uncertainty about the exact Data Generating Process (DGP) of a
variable. Data driven methods allow the selection between competing models and,
therefore, provide evidence on the validity of the implications of theoretical mod-
els. Several testing procedures have been proposed in the literature to examine
whether a series exhibits STAR-type nonlinearity and, in turn, if the nonlinearity
displayed is of ESTAR or LSTAR form (e.g., Luukkonen et al., 1988; Terisvirta,
1994; Escribano and Jorda, 1999; Gonzalez and Terisvirta, 2006).

Testing for the nonlinear part of Equation (2.2) gives rise to an nuisance pa-
rameter problem (Davies, 1977, 1987). The null hypothesis of linearity corre-
sponds to both Hy: wy = 0 and Hp: v = 0. In the former case the parameters
7 and c are not identified under the null. While in the latter parameters 7, and
c are not identified. Consequently, classical Lagrange Multiplier (LM) and Wald

statistics may not follow standard distributions. Luukkonen et al. (1988) sug-

11



gest replacing the transition function by a first-order Taylor-series approximation
around vy = 0.2 This re-parameterisation resolves the identification problem since

it does not involve nuisance parameters. The auxiliary regression is given by

Yt = 00Tt + 81T15; + O5Ts87 + Uy, 2.9

where u; = ¢;+R(7, s;), R(*) is the remainder term of the Taylor series. However,

if s; = y;_q and d < p then

Y = 56:l:t + 6;5&6} + 6;it6t2 + Uy, (210)

so as to avoid perfect multicollinearity among the explanatory variables. In order
to ease notation we assume p < d. The null hypothesis of linearity becomes
Hy: 87 = &, = 0. Under the null, the LM test statistic has an an asymptotic x?2
distribution with the degrees of freedom equal to the number of restrictions. A
drawback of the above auxiliary regression arises for LSTAR processes (65 = 0).
In particular, if y; is an LSTAR process and only intercept changes are significant
across regimes then the nonlinearity test will lack power (see, e.g., Escribano and
Jorda, 2001). To this end, the authors suggest using a third order Taylor series

approximation of the logistic function. This yields the auxiliary regression

Yo = 04Ty + 0TSt + OoyS2 + 64TsST + Uy (2.11)

Terdsvirta (1994) proposes a modelling procedure based on Equation (2.11)

1. Specification of a linear model. The selection of the lag order can be im-
plemented by using either a criterion such as the Akaike Information Crite-

rion (AIC) or significance tests.

2. Testing the null hypothesis of linearity, Hoo: 87 = 65 = 85 = 0. Often,

2Note that test based on Taylor-series approximations do not have direct power against a single
alternative.

12



the transition variable is set equal to the lagged endogenous variable y;_g4.
However, there may be uncertainty about the appropriate delay parameter,
d, in the STR model. In this case, we can determine the transition variable
by testing Hy for various values of d and selecting the one for which the

p-value is smallest.

3. Selecting the transition function. The choice between ESTAR and LSTAR

models can be based on the following sequence of null hypotheses:

H03zég = 0,
HOQZ(Sé = OIJQZO,

Ho: & = 0|d8,=8,=0.

If the p-value for the F'-test of Hy, is smaller than that for Hy; and Hgs then

we select the ESTAR family, otherwise we choose the LSTAR family.

Whilst, Terdsvirta (1994) uses a third-order Taylor expansion of the logistic
transition function and a first-order Taylor expansion for the exponential function,
Escribano and Jorda (1999) augment the regression equation with a second-order
expansion of the exponential function. Note that even (odd) powers of the Taylor
approximation of the logistic (exponential) function are all zero. The point of
using a second-order Taylor expansion lies in the fact that the logistic function has
one inflection point while the exponential possesses two. The auxiliary regression

is given by

Yp = Oy + 81215, + 4TSt + 84Tyss 4 8,sS) + . (2.12)

Escribano and Jorda (1999) claim that this procedure improves the power of
both the linearity test and the selection procedure test. The null hypothesis of
linearity corresponds to H} : 8] = 84 = 84 = §; = 0. Under this null the test

statistic has asymptotically a x? distribution with 4(p + 1) degrees of freedom. In

13



finite samples, however, the x? test can be oversized. To this end, the F' version
is preferred because it has better small size properties. The selection procedure

between ESTAR and LSTAR changes to
1. Test the null hypothesis HE : 8, = 8, = 0, with an F-test, (F}).
2. Test the null hypothesis HE : 87 = 8} = 0, with an F-test, (FE).

3. If the p-value of F is lower than Fg then select an ESTAR. Otherwise,

select an LSTAR.

The use of the F'-test is based on the assumption that the error term in Equation
(2.2) is independent, identically and normally distributed. However, the assump-
tion of constant conditional variance may be too strict when it comes to empirical

applications.

2.3.1 Dealing with Conditional Heteroskedasticity

Since the work of Engle (1982) and Bollerslev (1986) it has become a stylized
fact that the residuals of many dynamic regression models exhibit conditional
heteroskedasticity. The evidence of conditional heteroskedasticity becomes over-
whelming as we move from low frequencies of data (annual, quarterly) to high
frequencies (monthly,weekly, daily) and especially ultra high frequencies (five
minutes, tick-by-tick) (see, e.g., Dacorogna et al., 2001).

Applications of STAR models and, therefore, of the corresponding linearity
tests cover all possible frequencies. Notably, Skalin and Terdsvirta (1999) investi-
gate the properties of the Swedish business cycle by fitting STAR models to annual
macroeconomic time series, which cover the period 1861 to 1988. Long spans of
annual data are also employed in studies examining the presence of nonlinearities
in real exchange rates (Lothian and Taylor, 2008; Paya and Peel, 2006a). Gal-
lagher and Taylor (2001) investigate the risky arbitrage hypothesis by fitting an
ESTAR-ARCH model to quarterly data on the U.S. market log dividend-price ra-
tio. Further, Taylor et al. (2001), Kilian and Taylor (2003) and Paya et al. (2003)
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show that ESTAR models can capture the behaviour of quarterly and monthly
real exchange rates in the post-Bretton Woods era. A similar conclusion is de-
rived for the futures basis of the S&P 500 and the FTSE 100 by Monoyios and
Sarno (2002), who use daily data. A model that allows simultaneous modelling
of the first and second moments is the STAR-Smooth Transition GARCH (STAR-
STGARCH) introduced by Lundbergh and Terdsvirta (1998). The model is ap-
plied to two daily series, the Swedish OMX index and the Japanese yen U.S.
dollar exchange rate. In a related study, Chan and McAleer (2002) investigate
the statistical properties of the STAR-GARCH model and fit the model to the
S&P 500 daily returns. Taylor et al. (2000) examine arbitrage opportunities in
the FTSE 100 using 1,2 and 5 minutes frequency data. The authors adopt an Ex-
ponential Smooth Transition Error Correction model to obtain transactions costs
and trade speeds faced by arbitrageurs who exploit mispricing of FTSE 100 fu-
tures contracts relative to spot prices. Their results indicate significant ARCH
type heteroskedasticity in the estimated residuals.

Linearity tests against smooth transition nonlinearity are implemented in most
of the above studies. The question that naturally arises is whether these tests are
robust to a time-varying conditional variance and, if not, whether there are ways
of robustification.

In this study, we focus on the Escribano and Jorda (1999) test and adopt a
nonparametric approach to deal with conditional heteroskedasticity of unknown
form in Equation (2.12). The use of parametric models requires knowledge of
the type and the precise form of conditional heteroskedasticity. However, it is
unlikely that such information is available in practice. Therefore, we examine
the performance of the HCCME of White (1980), two HCCMEs examined by
MacKinnon and White (1985), and, finally, the Fixed Design Wild Bootstrap of
Kreiss (1997) and Gongalves and Kilian (2004, 2007).
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2.3.2 Hypothesis Testing

A general representation for all the linear auxiliary regressions of the previous
section is given by

Y =06z + uy. (2.13)

For the Escribano and Jorda (1999) test § = (dp, ..., 0%) and z; = (p,, - - -, C4)
with ¢;; = :z:ts{ , for j = 0,...,4. The null hypothesis of linearity, ESTAR or
LSTAR can be written as Ho: RS = 0, where R is the g x 5(p+1) selector matrix
with ¢ denoting the number of restrictions. Testing for linearity requires 4(p + 1)
restrictions while for the ESTAR and LSTAR 2(p + 1). The Wald form of the test

statistic can be written as
W= (RE)' (R\TJR')"1 (r3). 2.14)

where U = (2'Z )"1Z'QZ(Z'Z)~" denotes the covariance matrix of the esti-
mates 4. Consistency of the estimator T is required when drawing inferences.
Assuming that the residuals, u;, are independent, identically and normally dis-

tributed with variance o2 yields
LS: Q=3I (2.15)

where I is the identity matrix. In this case, W/q is F distributed under the null.
However, in the presence of heteroskedasticity the diagonal elements of Q
will not be constant. It follows that the ordinary least squares estimator of the
covariance matrix (LS) will be biased and conventional tests will generally have
non-standard distributions (e.g., Flachaire, 2005; Long and Ervin, 2000). That is,
the Wald statistic will not follow an F distribution, even asymptotically. In this

case, HCCME:s are usually employed by researchers.® Eicker (1963) and White

3 Although we focus on the presence of heteroskedastic errors, serial correlation may also be
present in real world applications. In that case, heteroskedasticity and autocorrelation covariance
estimators can be employed.
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(1980) propose the following heteroskedasticity consistent estimator
HCO : €2 = diag(?), (2.16)

which allows asymptotic inference. The idea is to use U? to estimate the variance
of the error term at time ¢{. Unfortunately, the HCO and F-tests can be heavily
biased in finite samples. To this end, MacKinnon and White (1985), based on
the work of Hinkley (1977), Horn et al. (1975) and Efron (1982), consider three

alternative HCCME:s. The two estimators employed in this study are

~ ~2
HC2: O = diag { —2 ), 2.17)
l—htt
HC3: Q = dia (—i?—> (2.18)
' g (l—h“)Z ’ '

where hy = z(2'Z)7'z} is the t™ diagonal element of the “hat” matrix. The
authors show that both HC2 and HC3 lead to a marked improvement in small
samples. Further, Long and Ervin (2000) suggest using HC3 when the sample
size is less than 250 observations. Despite the fact that the latter estimators are
superior to HCO, they too are biased.

The fact that Wald tests do not follow F distributions, even asymptotically, as
well as the poor finite size properties of HCCMEs motivate the use of bootstrap
methods for conducting statistical inference. The rationale of bootstrap methods
is to approximate the finite sample distribution of the test statistic under the null
by simulation. In general, bootstrap tests may lead to a significant improvement in
terms of the Error in Rejection Probability (ERP) (see, e.g, Davidson and MacK-
innon, 1999). The findings of Beran (1988) indicate that the ERP of a bootstrap
test is of lower order, in general O(7T~%%), than the asymptotic tests when the test
statistic is asymptotically pivotal. Moreover, Davidson and MacKinnon (1999)
illustrate that a further refinement of the same order occurs when the test statistic
is independent of the bootstrap DGP. It follows that, in many cases, bootstrap tests

are more precise than asymptotic tests by O(T~1).
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A bootstrap technique which deals with heteroskedasticity of unknown form
is the Wild Bootstrap. The asymptotic validity of the Wild Bootstrap for linear
regressions is established in Wu (1986), Liu (1988) and Mammen (1993). Kreiss
(1997) and Gongalves and Kilian (2004) extend the analysis to stationary autore-
gressions with conditional heteroskedastic errors. As far as linearity tests are con-
cerned, Hurn and Becker (2007) illustrate that the Wild Bootstrap improves upon
the neural network test of Terdsvirta et al. (1993) when there is GARCH type
conditional heteroskedasticity in the residuals.

We now describe the Fixed Design Wild Bootstrap procedure for testing the

hypothesis of linearity, ESTAR nonlinearity or LSTAR nonlinearity
1. Estimate Equation (2.13) and compute the F-statistic, F".

2. Estimate the restricted model and obtain the estimated coefficient vector (SAT

and the restricted residuals %, ;.

3. Generate B “fake” series according to null DGP
u =8z +¢,

where the residuals c? are constructed by multiplying the estimated restricted
residuals u, ; by a random variable 7. The 7; must be mutually independent
drawings from a distribution independent of the original data with mean
0 and variance 1. Liu (1988) and Davidson and Flachaire (2001) suggest

using the Rademacher distribution

—1  with probability p = 0.5,

Nt
+1  with probability (1 — p).

The Rademacher distribution has the properties E[n,] = 0, E[n?] = 1,
E[nd] = 0, and E[n{] = 1. A consequence of these properties is that any

heteroskedasticity or symmetric non normality in the estimated residuals
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Uy 1s preserved in the newly created residuals. The Wild Bootstrap matches
the moments of the observed error distribution around the estimated regres-
sion function at each design point, 0. Liu (1988) and Mammen (1993)
show that the asymptotic distribution of the Wild Bootstrap statistics are the

same as the statistics they try to mimic.

4. Regress each “fake” series ¢ on Z and compute the F-statistic, £}, so as to

obtain the empirical distribution for the F'-statistic under the null.

5. Compute the p-value as the percentage of times the simulated statistic F} is

more extreme than the original statistic F’

1
by =

w|

B
Z I(F < F)
b=1

where [(A) is the indicator function, which takes the value of 1 if event A

occurs and O otherwise.
6. Reject the null if p, is smaller than the chosen significance level.

In the next section, we conduct Monte Carlo simulation exercises in order to
examine the accuracy of the inference procedures under different error processes

and sample sizes.

2.4 Monte Carlo Simulation

As aforementioned, the LM test of Terdsvirta (1994) performs poorly, in terms
of size, when there is conditional heteroskedasticity. On the other hand, the ro-
bust version proposed by Granger and Terdsvirta (1993) appears to lack power
(Lundbergh and Terdsvirta, 1998). In this section, we investigate whether there is
a similar effect on the Escribano and Jorda (1999) test and the performance of the

heteroskedasticity robust inference techniques.
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The simulation exercises focus on a simple STAR(1) conditional mean equa-

tion examined by Escribano and Jorda (2001)

Y = 111 + T21Ye—1F (Ye—a; 7, ¢) + &, t=1,...,T, (2.19)

where 711 = 0.3 and 713, = —0.9 and ¢ = 0. For the error term we adopt various
conditional heteroskedastic processes. The first type is the standard GARCH(1,1)

proposed by Bollerslev (1986) to capture volatility clustering,
e =ehy’?, hy=w+a |+ Bhy, e ~N(0,1) (2.20)

where h; denotes the conditional variance at time ¢. We follow Gongalves and Kil-
ian (2004) and set («, 8) € {(0,0),(0.5,0),(0.3,0.65), (0.2,0.79), (0.05, 0.94) }
and w = 1 — o — G, which implies an unconditional variance of unity. We also
consider ARCH type models which allow asymmetric effects of positive and neg-
ative shocks on volatility (see Bollerslev et al., 1993). In particular, we employ
the Exponential GARCH (EGARCH) model of Nelson (1991), the Asymmetric
GARCH (AGARCH) of Engle (1990) and the GJR GARCH model proposed by
Glosten et al. (1993).

EGARCH:

¢ = eht In(hy) = =023 +0.91n(hy_1) +0.25 (¢2 | — 0.3¢;1),

e ~ N(0,1). 2.21)

AGARCH:

¢ = ehi’? hy=0.0216 + 0.6896A,_1 + 0.3174 (¢,_ — 0.1108)%,

er ~ N(0,1). (2.22)

GJR GARCH:
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¢ = ehy’? hy=0.005+0.Th,_y +0.28 (2 — 0.23¢,1) ,

e ~ N(0,1). (2.23)

The form of the error processes and the parameter values are based on Engle and
Ng (1993). The above models are motivated by the so-called “leverage effect”

characterising stock returns. This effect was first noted by Black (1976)

“a drop in the value of the firm will cause a negative return on its
stock, and will usually increase the leverage of the stock ... That rise
in the debt-equity ratio will surely mean a rise in the volatility of the

stock.”

An alternative explanation is the asymmetric reaction of asset markets to “good”
and “bad” news. Finally, we consider a stochastic volatility model proposed by
Taylor (1986) and employed by Shephard (1996) to capture the volatility of re-
turns on the Nikkei index and the Japanese yen and Deutsch mark against the

pound sterling.

¢ = erexplh), hy=0.951hi_1 + 0.5¢,

(ct,e) ~ N(0,diag(0.18,1)). (2.24)

We restrict the experiments to sample sizes of 100, 250, 500, and 1000 obser-
vations, which cover the majority of data sets used in applied work. Larger sizes,
such as the ones available in ultra high frequency studies, are not examined due
to the computationally intensive nature of the experiment. However, our results
are indicative of the change of the performance of the tests with the sample size.
The nominal significance level is set to 5% and the number of simulated series as
well as the number of Wild Bootstrap replications per series is 1000.* The first

100 observations are discarded to avoid initialisation effects.

“In this case, the overall significance level may differ from the 5% due to multi-step testing.
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2.4.1 Empirical Size of Linearity Tests

In order to investigate the size properties of the tests, we set the smoothness pa-
rameter v equal to 0. Hence, Equation (2.19) becomes an AR(1) model with
conditional homoskedasticity (when a = G = 0) or conditional heteroskedastic-
ity. Tables 2.1 and 2.2 report results for the null hypotheses of linearity and the
percentage of times an ESTAR model is selected rather than an LSTAR. The per-
centage of LSTAR selections can be computed by subtracting the percentage of
ESTAR selections from the empirical size of the tests. Results for the tests based
on the least squares covariance matrix estimator, the three heteroskedasticity con-
sistent covariance matrix estimators and the Wild Bootstrap are presented in the
columns labelled LS, HCO, HC2 and HC3, and WB, respectively. In addition, Fig-
ure 2.2 provides a visual view of the ERP (the difference between the empirical
size and the nominal level of a test) for stationary GARCH processes.

Starting with the standard F’ version of the Escribano and Jorda test (column
LS), several interesting conclusions emerge. First, the test may exhibit serious
size distortions. The null of linearity can be rejected up to 81% of the times for
a nominal significance level of 5% when the error process is AGARCH or GJR
GARCH and T = 1000. These size distortions are much more severe than the
ones reported in Lundbergh and Terésvirta (1998) for the Terdsvirta (1994) test. It
should be noted that the two simulation experiments differ. The authors examine
an AR(4) model with a different GIR-GARCH residual process. Therefore, direct
comparisons between the two tests cannot be made. For the GARCH models
there is a positive relationship between the degree of oversizing and the value of
the ARCH parameter (see Figure 2.2). Second, the bias of the empirical size can
rapidly increase with the sample size. Hence, application of the test to large data
sets, such as the ones available for daily or intra-daily stock returns and exchange
rate returns, is most likely to result in false inference. Finally, it appears that the
test does not favour either alternative (ESTAR and LSTAR), which is also true for

the remaining inference techniques.
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LS HCO

Figure 2.2: Error in rejection probability in LS, HCO, HC2, HC3 and WB linearity
tests in the presence of conditional heteroskedasticity. The DGP is an AR(1)-
GARCH(1,1) model. The AR coefficient ¢ = 0.3, and the GARCH parameters
a € {0,0.1,...,0.8,0.9} and 5 € {0,0.1,...,0.8,0.9} satisfy a« + 3 < 1. The
unconditional variance of the error process is set to unity (w = 1 — a — f).
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Table 2.1: Empirical Size of Wald F'-tests

DGP: y; =0.3ys-1 + €, & = eth:/z,
hy = w+ au;"_l + Bhi_1, e ~ N(0,1).

Sample Size T = 100

Hy: Linearity ESTAR selection

o B LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 000005 039 021 009 006002 019 010 0.05 0.03
0.50 0.000.37 059 030 013 008|018 029 015 0.07 0.04
030 065028 055 028 012 006|014 027 013 0.04 0.03
020 0791020 050 023 009 006010 023 0.11 0.04 0.03
0.05 094|007 040 020 0.10 0.06 {004 0.19 0.09 0.04 0.03

Sample Size T = 250

Hj: Linearity ESTAR selection

o Ié] LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 000|004 032 018 0.10 005|001 0.15 0.09 0.04 0.02
0.50 0.00|0.50 060 032 013 008|025 033 0.18 0.06 0.05
0.30 0.65|0.47 058 030 0.12 008022 0.28 0.16 0.05 0.05
020 0.79]0.38 053 029 013 006|018 028 0.15 0.06 0.03
005 094010 039 021 0.11 005|005 021 0.12 0.05 0.02

Sample Size T' = 500

Hy: Linearity ESTAR selection

o g LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 0.00]|0.04 028 0.16 0.09 006001 014 0.08 0.04 0.02
0.50 0.00|064 063 035 0.16 0.08 036 038 022 0.09 0.05
030 065|062 060 034 014 0.07(033 034 020 0.08 0.04

020 079|052 051 028 011 005|026 029 0.16 0.07 0.03

Continued on Next Page. ..
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0.05 094(011 033 019 0.10 0.04]005 020 0.11 0.05 0.02
Sample Size T' = 1000
Hy: Linearity ESTAR selection
o g LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
0.00 0.00{006 024 015 0.11 0.06 {004 014 0.08 0.05 0.03
0.50 0.00|0.70 0.57 035 0.13 0.07]036 036 021 0.07 0.05
030 065|072 056 030 0.14 007039 035 020 0.08 0.04
020 079|066 050 029 0.14 006|034 0.28 0.17 0.07 0.03
0.05 094(0.18 0.34 021 0.12 006|010 021 0.12 0.06 0.03

NOTE: The table reports the empirical size of the LS, HCO, HC2, HC3 and the WB linearity tests,

as well as the percentage of times an ESTAR model is selected rather than an LSTAR (ESTAR

selection). The nominal significance level is 5%.

Turning to the heteroskedasticity robust tests, we observe a strong resemblance

between the properties of HCO and HC2. Both tests seriously overreject the null

hypothesis of linearity even when the errors are homoskedastic. Furthermore,

oversizing does not appear to decrease (or increase) as we move to larger sample

sizes. It should be noted that HC2 gives substantially better results than HC0O. A

significant reduction in size distortions is achieved by employing the third HC-

CME, HC3. The associated test leads to only moderate oversizing with the em-

pirical size reaching a maximum of 16%. However, tests based on HC3 are out-

performed by the Fixed Design Wild Bootstrap. The latter method gives almost

always the best results and its empirical size is very close to the nominal level irre-

spective of the sample size and the error process. In the case of homoskedasticity

the performance of the Wild Bootstrap is similar to the LS test.
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Table 2.2: Empirical Size of Wald F-tests

AR-EGARCH
DGP: 1y =03y + €, 6, = ethtl/z,
In(he) = —0.23 + 0.91n(he—1) + 0.25 (e7_; — 0.3e¢-1), e ~ N(0, 1).
Hy: Linearity ESTAR selection
T LS HCO HC2 HC3 WB LS HC0O HC2 HC3 WB
100 037 060 030 0.12 0.08]0.18 030 0.16 0.06 0.04
250 0.57 0.64 034 0.13 009|027 0.34 0.18 006 0.06
500 069 064 035 0.15 0.08]0.35 0.39 021 0.08 0.06
1000 0.79 063 034 0.13 0.07]041 039 020 006 0.04
AR-AGARCH
DGP: 1y =03y;_1 + €, 6 = eth,tlﬂ,
he = 0.0216 + 0.6896A;_; + 0.3174 (¢;_1 — 0.1108)%, e, ~ N(0,1).
Hy: Linearity ESTAR selection
T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
100 029 0.57 026 0.09 0.06|0.14 026 0.12 0.04 0.03
250 0.55 0.59 030 0.15 0.08)|0.26 0.29 016 0.08 0.04
500 0.71 0.57 031 0.11 0.06 035 0.34 0.17 0.06 0.03
1000 0.81 0.57 029 012 005|041 033 0.16 0.05 0.02
AR-GJR-GARCH
DGP: y; =0.3y;—1 + €, € = eth}ﬂ,
hy = 0.005 + 0.7hy_y + 0.28 (¢Z_; — 0.23¢;-1), e, ~ N(0,1).
Hy: Linearity ESTAR selection
T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
100 029 0.59 028 0.11 0.07(0.14 027 0.12 005 0.04
250 053 0.58 031 013 0.07]026 032 0.16 0.06 0.04

Continued on Next Page. ..
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Table 2.2: Empirical Size of Wald F'-tests(Cont’d.)

500 0.67 0.59 035 0.12 0.06 |0.33 0.34 0.20 0.06 0.03
1000 0.81 0.57 030 0.15 0.07(0.38 0.32 0.17 0.07 0.04
AR-Stochastic-Volatility

DGP:  y; = 0.3y4_1 + €, €1 = erexp(hy),

hy = 0.951h;_1 + 0.5ey, (€1, €;) ~ N (0, diag(0.18,1)).
Hy: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
100 0.28 0.59 0.28 0.07 0.06|0.13 027 0.13 0.04 0.03
250 045 0.59 032 011 0.07(023 028 0.16 004 0.05
500 0.59 0.59 0.30 0.11 006|030 032 0.15 0.06 0.03
1000 0.71 0.59 032 0.13 006|038 034 0.18 0.07 0.03

NOTE: See note to Table 2.1.

2.4.2 Empirical Size Adjusted Power of Linearity Tests

Clearly, LS, HCO, and HC2 based tests are seriously oversized. It follows that
their empirical power may take large values, which can, partially, be attributed
to the presence of conditional heteroskedasticity. In order to make comparisons
between alternative methods meaningful, we adjust for the bias in the empirical
size. Empirical size adjusted power is reported for all tests but the Fixed Design

Wild Bootstrap, for which no size adjustment is made. This should not have a

significant impact on inference, since the empirical size of the Wild Bootstrap is

very close to the nominal level. For the power experiments, we set the transition
variable equal to y;_; and the transition parameter equal to 1. The rest of the

details for the simulation procedure are the same as for the size experiment. Tables

27



2.3 and 2.4 report the results. We have also examined a LSTAR DGP. The results

are qualitatively similar to the ESTAR case and are omitted so as to save space.

Table 2.3: Empirical Size Adjusted Power of Wald F'-tests

DGP: y; = 0.3y;_1 — 0.9y, _1[1 —exp(—y2 |)] + &, € = e,htl/Q,
ht =w+ auf_l + ﬁht_l, ey ~ N(O, ].)

Sample Size T' = 100

Hy: Linearity ESTAR selection

o 8 LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 000023 0.07v 010 014 030(0.20 0.05 0.08 0.12 0.26
0.50 0.00|0.02 007 004 009 027002 0065 0.03 0.07 024
030 065|010 012 011 013 028]0.07 007 007 0.10 0.25
020 0.79}0.17 014 019 017 0.280.14 0.10 0.15 0.15 0.25
005 0941026 0.12 0.12 017 032023 0.08 0.09 015 0.29

Sample Size T = 250

Hy: Linearity ESTAR selection

o B LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 000|065 0.11 022 037 068|064 0.10 0.21 0.36 0.66
0.50 0.00|0.04 0.08 008 0.10 0403003 0.06 0.07 0.09 0.39
0.30 0.65|0.10 0.09 0.10 0.17 048 |0.08 0.06 0.08 0.16 0.47
020 0.79]029 013 022 029 053|027 011 020 0.29 0.51

0.05 094055 015 021 027 063|053 0.11 0.19 026 0.61

Sample Size T' = 500

Hy: Linearity ESTAR selection

o g LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

0.00 000|092 042 063 076 092091 041 062 0.76 0.91
0.50 0.00 [0.05 0.07 0.06 0.20 057|004 0.05 005 0.18 0.56
030 065012 0.06 012 0.23 056|010 0.04 010 0.21 0.54
Continued on Next Page. ..
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020 0.79,045 0.16 0.28 043 067|043 0.14 025 041 0.66
005 094,079 029 045 062 081|078 027 044 062 0.80
Sample Size 7' = 1000

Hy: Linearity ESTAR selection

a 8 LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
0.00 0.00(1.00 093 097 099 1.00(099 092 097 099 0.99
0.50 0.00{0.10 0.06 0.09 033 0.70(0.09 004 0.08 032 0.70
0.30 0.65(0.15 0.10 021 033 063|013 006 0.19 0.32 0.61
020 079|054 0.17 034 049 073|051 0.15 032 048 0.72
0.05 094|094 040 065 078 094093 038 064 0.77 0.93
NOTE: The table reports the empirical size adjusted power of the LS, HCO, HCZ, HC3 and the

WB linearity tests described in Section 2.3, as well as the percentage of times an ESTAR model is

selected rather than an LSTAR (ESTAR selection). The nominal significance level is 5%.

Table 2.4: Empirical Size Adjusted Power of Wald F'-tests

ESTAR-EGARCH

DGP: 3 = 0.3y,—1 — 0.9y;_1[1 — exp(—y2_,)] + €2, € = echi’?,

In(hy) = —0.23 + 0.91n(hs—y) + 0.25 (ef_; — 0.3¢;_1), e, ~ N(0, 1).
Hy: Linearity ESTAR selection
T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB
100 0.04 0.08 0.05 0.07 0.20{0.03 0.05 0.04 0.05 0.15
250 0.03 0.07 0.06 0.07 0.22)0.02 0.04 0.04 006 0.19
500 0.04 0.05 0.07 0.07 0.24|0.02 003 0.04 005 0.22
1000 0.04 0.05 0.05 0.07 0.26]0.02 003 003 006 0.23
ESTAR-AGARCH

DGP: 1y, = 0.3y;_1 — 0.9y,—1[1 — exp(—y2 ;)] + &1, &t = ethtl/2

Continued on Next Page. ..
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Table 2.4: Empirical Size Adjusted Power of Wald F'-tests(Cont’d.)

he = 0.0216 + 0.6896h,_1 + 0.3174 (e;_, — 0.1108), e, ~ N(0,1).

Hy: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.08 0.11 007 0.17 023|006 006 0.05 0.14 0.20
250 0.07 0.08 0.10 0.15 0.33]0.04 0.05 0.08 0.14 0.32
500 0.08 0.08 0.10 0.17 0.34|0.05 0.04 0.08 0.14 031
1000 0.0r 0.08 0.09 0.19 033|004 004 0.06 0.17 0.30

ESTAR-GJR-GARCH

DGP: y; = 0.3y,—1 — 0.9y;_1[1 — exp(—yf,)] + 1, & = ehy’?,

hy = 0.005 + 0.7hy— +0.28 (€}_; — 0.23e;_1), e, ~ N(0, 1).

Hy: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.12 0.07 011 0.10 0.20|0.09 0.04 0.08 0.08 0.17
250 0.18 0.10 0.16 023 042016 008 0.15 021 040
500 025 0.16 025 034 062|023 014 023 033 0.61

1000 0.38 0.17 029 045 0.76 (036 0.14 028 044 0.75

ESTAR-Stochastic-Volatility

DGP: y; = 0.3y;_1 — 0.9y;_1[1 — exp(—yZ ;)] + €, & = e; exp(hy),
ht = 0.951ht_1 + 0-5€ta (Et, 6t) ~ N(O, dlag(018, 1))

Hy: Linearity ESTAR selection

T LS HCO HC2 HC3 WB LS HCO HC2 HC3 WB

100 0.09 0.09 007 013 0.19|0.06 004 0.05 0.10 0.15
250 0.06 0.06 0.05 0.08 0.20]|0.03 003 0.03 0.06 0.17
500 0.07 0.06 0.06 0.07 0.16{0.04 004 004 0.05 0.13
1000 0.05 0.07 0.06 0.10 0.17]0.03 0.03 003 0.06 0.14

NOTE: See note to Table 2.3.

30



A broad tendency that emerges is that the performance of all tests depends cru-
cially on the type of conditional heteroskedasticity. Tests based on the HCCMEs
and the ordinary least squares covariance matrix, generally, perform poorly in the
presence of conditional heteroskedasticity, with none of them being superior to
the others. Furthermore, in many cases these methods have virtually no power to
discriminate between linear and nonlinear in mean processes.

The Fixed Design Wild Bootstrap is by far the best method. Its superiority
becomes evident in the presence of time-varying conditional variance. For the
majority of conditional heteroskedastic processes its power is relatively high and
increases with the sample size. While in the case of homoskedasticity its perfor-
mance is similar or better than the F'-test. Unfortunately, the ability of the Wild
Bootstrap to detect nonlinearity in the mean is not always satisfactory. For the
stochastic volatility process the power of the Fixed Design Wild Bootstrap is ex-
tremely low (less than 20%), irrespective of the sample size. Hence, there are

cases where all inference techniques perform poorly.

2.4.3 Nonlinear Model Specification

So far we have assumed that the transition variable, or equivalently the delay
parameter, is known. However, in real world application the transition variable
has to be determined from the data. The selection of a misspecified model is very
likely to pose problems in the subsequent stage of estimation. Terasvirta (1994),
inspired by the work of Tsay (1989) on TAR models, suggests choosing the delay
parameter that minimises the p-value of the linearity test. The basic idea behind
this approach is that on average the power of a correctly specified model should
be higher than the power of a misspecified one.

In the last simulation experiments we follow Terésvirta (1994) and investigate
the ability of the tests to identify the correct transition variable. The model design
is the same as before, except that we consider three delay parameters, d = 1, 2, 3.

The same delay parameters specify the candidate transition variables in the linear-
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ity tests. We restrict our attention to the GARCH(1,1) process with o = 0.3 and
8 = 0.65. This choice is motivated by the severe oversizing of the LS and HC
tests. Table 2.5 shows the selection frequencies of the transition variables. Note
that these are based on the fraction of cases where linearity is rejected. Hence,
the results show the probability of choosing the correct delay parameter given

linearity is rejected.

Table 2.5: Selection Frequencies of the Delay Parameter, d

DGP: ye = 0.3y;—1 — 0.9y 1[1 — exp(—y2_ )] + ue,us = zthtlﬂ,
he = 0.05 + 0.3u2_, + 0.65hs_y, 2 ~ N(0, 1).

True Delay Parameter: d = 1

T delay LS HCO HC2 HC3 WB
100 d=1 0.50 0.21 0.31 0.46 0.72
d=2 0.30 0.43 0.35 0.30 0.16
d=3 0.20 0.36 0.34 0.24 0.12
250 d=1 0.57 0.28 0.39 0.56 0.83
d=2 0.24 0.39 0.34 0.26 0.09
d=3 0.19 0.32 0.28 0.18 0.07
500 d=1 0.57 0.31 0.42 0.59 0.82
d=2 0.24 0.39 0.28 0.22 0.10
d=3 0.20 0.30 0.30 0.19 0.08
1000 d=1 0.60 0.36 0.43 0.57 0.80
d=2 0.25 0.36 0.31 0.23 0.11
d=3 0.15 0.28 0.26 0.21 0.08

True Delay Parameter: d = 2

T delay LS HCO HC2 HC3 WB
100 d=1 0.16 0.12 0.15 0.18 0.19
d=2 0.67 0.54 0.52 0.56 0.70

Continued on Next Page. ..
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d=3 0.17 0.33 0.34 0.26 0.10
250 d=1 0.11 0.17 0.17 0.18 0.14
d=2 0.75 0.56 0.59 0.65 0.78
d=3 0.14 0.27 0.24 0.17 0.08
500 =1 0.15 0.26 0.24 0.23 0.22
d=2 0.76 0.50 0.57 0.63 0.74
d=3 0.09 0.24 0.20 0.14 0.04
1000 d=1 0.27 0.29 0.26 0.25 0.29
d=2 0.70 0.51 0.56 0.63 0.69
d=3 0.04 0.20 0.18 0.12 0.02
True Delay Parameter: d = 3
T delay LS HCO HC2 HC3 WB
100 d= 0.18 0.12 0.18 0.19 0.17
d= 0.23 0.41 0.33 0.25 0.12
d= 0.59 0.47 0.49 0.56 0.71
250 d= 0.12 0.17 0.15 0.16 0.12
d=2 0.15 0.38 0.27 0.20 0.06
d=3 0.73 0.45 0.58 0.64 0.82
500 d= 0.12 0.23 0.20 0.20 0.14
d=2 0.11 0.31 0.22 0.15 0.06
d=3 0.77 0.47 0.58 0.65 0.80
1000 d= 0.19 0.23 0.19 0.19 0.15
d=2 0.12 0.32 0.24 0.15 0.07
d=3 0.69 0.45 0.57 0.67 0.78

NOTE: The table reports selection frequencies of the transition variable y;_4, with d €
{1, 2,3}, when the error term exhibits conditional heteroskedasticity. The chosen delay
parameter corresponds to the minimum p-value of the linearity test. True delay parameters

are in bold.
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Obviously, the use of HCO and HC2 leads frequently to the selection of mis-
specified models with HC2 giving again better results. The probability of choos-
ing the wrong transition variable is substantially lower than half when the value
of the true delay parameter is one and slightly exceeds half for values two and
three. On the contrary, HC3, LS and the Fixed Design Wild Bootstrap appear
to perform reasonably well. Overall, the HC3 is outperformed by the ordinary
least squares covariance matrix, which is in turn outperformed by the Fixed De-
sign Wild Bootstrap. The difference between the first two methods and the Wild
Bootstrap is particularly apparent when the true d = 1. The correct selection fre-
quencies for the LS and the HC3 tests vary between 46% and 60%, which implies
a high probability of choosing a misspecified model. Whilst for the Wild Boot-
strap the corresponding bounds are 73% and 83%. The behaviour of the Wild
Bootstrapping is stable across sample sizes and model specifications.

Clearly, the Wild Bootstrap is a valuable technique for testing linearity and,
subsequently, specifying STAR models irrespective of the conditional heteroskedas-
ticity of the error process. In the majority of cases it results in valid inferences for
the mean equation of a series. To this end, it allows modelling STAR processes
when the errors are homoskedastic as well as models which STAR nonlinearity
in the mean and conditional heteroskedasticity in the disturbances, such as the
STAR-GARCH and the STAR-STGARCH models of Chan and McAleer (2002)

and Lundbergh and Terasvirta (1998), respectively.

2.5 Empirical Applications

The simulation experiments illustrate the likelihood of finding spurious nonlinear-
ity in the mean of economic and financial series when commonly used F'-tests are
employed and volatility changes occur across time. Since this problem becomes
apparent for large sample sizes it would be interesting to apply the linearity tests
to empirical data sampled at relatively high frequencies. Therefore, we employ

financial time series for which volatility clustering is a well-known fact and high

34



frequency data are available. The presence of time-varying volatility in financial
markets has been documented in numerous studies, going back to Mandelbrot

(1963) and Fama (1965). Notably, Mandelbrot wrote for stock market returns

“...large changes tend to be followed by large changes -of either

sign- and small changes tend to be followed by small changes. .. ”.

Mandelbrot (1963, p. 418)

A similar phenomenon is observed for other asset returns, such as exchange
rates (Baillie and Bollerslev, 1991, 2002).

However, time-varying volatility is not constrained to high frequency data.
The findings of several empirical studies suggest that the volatility of the real ex-
change rate tends to vary across nominal exchange rate regimes (see, e.g., Mussa,
1986). As a consequence empirical models employing long spans of data typically
assume a non constant conditional variance of the error term (see, e.g., Engel and
Kim, 1999; Lothian and Taylor, 2008; Paya and Peel, 2006a). To this end, we
employ the Lothian and Taylor (1996) two century data set for the dollar-sterling
real exchange rate.

A number of theoretical and empirical studies suggest that exchange rate tar-
get zones and exchange rate policies, such as “leaning against the wind”, may
lead to threshold type nonlinearity in the mean of the exchange rate (see, e.g.,
Krugman, 1991; Lundbergh and Terasvirta, 2006; Hsieh, 1992). Similarly, factors
such as agent heterogeneity, transactions costs or the sunk costs of international
arbitrage can induce smooth transition nonlinearity in the the deviation process of
asset prices from their fundamental value (Dumas, 1992; Berka, 2002; Kilian and
Taylor, 2001). Michael et al. (1997), Taylor et al. (2001) and Kilian and Taylor
(2003) among others show that ESTAR models can parsimoniously fit a number
of real exchange rates. In the context of stock index futures markets, the findings
of Yadav et al. (1994), Dwyer et al. (1996) and Monoyios and Sarno (2002) sug-

gest that TAR and STAR models are capable of explaining the behaviour of the
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futures basis of major stock indices.

The data set consists of daily closing prices of two stock market indices,
namely the Dow Jones and the S&P 500, two nominal exchange rates, the yen-
dollar and dollar-sterling, and daily spot and futures prices of the FTSE 100. All
series but the last two cover the period from January 1%, 1991 to the December
31%, 2002, which gives a total of 3,131 observations. The data for the spot and
future prices of the FTSE 100 span the period January 1%, 1988 to December 31%,
1998, resulting in 2,780 observations. The data were obtained from Datastream.
We calculate returns on the Dow Jones, the S&P 500, the dollar-sterling and yen-
dollar nominal exchange rates as logarithmic differences of daily closing prices
scaled by a factor of 100. Further, we compute the logarithmic FTSE 100 basis b,

according to

F
by = 1001n (P%") , (2.25)

t

where F} ;. denotes the future price for delivery of the stock at time £ > ¢ and P,
is the the spot price at time ¢. Finally, we extend the dollar-sterling real exchange
rate (RER) data set of Lothian and Taylor (1996) by using annual data for the
U.S. and U.K. consumer price indices and the dollar-sterling nominal exchange
rate obtained from the International Financial Statistics database. The extended
data set covers the period from 1791 to 2005.

As a preliminary exercise we examine if the series exhibit conditional het-
eroskedasticity by employing the ARCH LM test derived by Engle (1982). The

test is based on the regression equation

q
G=pu+) af +u, (2.26)

i=1

where €, are the estimated residuals of AR models fitted to the series and y and
a;,1 = 1,...,q, are the regression parameters. The lag length of the AR models
is determined by using the AIC information criterion for all series but the FTSE

100 basis. For the latter series, we follow Monoyios and Sarno (2002) and set
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Figure 2.3: Time series plots of empirical data. Daily returns on the Dow Jones
and the S&P 500 indices, and the yen-dollar and dollar-sterling nominal exchange
rates cover the period January 2md 1991 to December 31%, 2002. The basis of the
FTSE 100 spans the period January 2™, 1988 to December 31%, 1998, and the
dollar-sterling real exchange rate (RER) the period 1791 to 2005.
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the lag length to five. This choice is supported by visual inspection of the partial
autocorrelation function. The null hypothesis of no ARCH effects is Hy: a; =0V
i. Let T denote the sample size, the test statistic given by T’ x R? is asymptotically

distributed as x? with q degrees of freedom.

Table 2.6: Results for ARCH LM Tests

Series %3 p-value % p-value
DOW JONES 8241 0.00 231.61 0.00
S&P 500 134.90 0.00 26.00 0.00
USD STERLING 53.45 0.00 136.00 0.00
YEN USD 39.29 0.00 44,42 0.00
FTSE 100 Basis 28.58 0.00 122.26 0.00
RER 0.03 0.86 0.95 0.92

NOTE: The table reports the x? statistics and the corresponding p-values for ARCH type
heteroskedasticity up to orders 1 and 4.

Not surprisingly, Table 2.6 shows that the null hypothesis of no ARCH effects
can be rejected at all conventional levels of significance for the high frequency
series. Note that at these stage, the rejection of the null hypothesis may be at-
tributed to the presence of STAR type nonlinearity, conditional heteroskedasticity
or both. This is due to the fact that like nonlinear in mean tests tend to reject the
null in the presence of ARCH effects, ARCH tests also tend to reject the null due
to nonlinearities in mean (Blake and Kapetanios, 2007).

Next, we apply the linearity test of Escribano and Jorda (1999) as well as the
four robust versions. The choice of the lag order is the same with the one used for
the ARCH LM test and the delay parameter is d = 1, ..., 4. Table 2.7 reports the

p-values for the null of linearity corresponding to each transition variable and the

selected model.
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Table 2.7: Application of Linearity Tests on Empirical Data

Hpy: Linearity

Series Test d=1 d=2 d=3 d=4 Model
DOW JONES LS 0.000 0.000 0.000 0.006 LSTAR
HCO  0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.063 0.000 0.478 ESTAR

HC3 0321 0988  0.000 0.995 LSTAR
WB 0.317 0.800 0.720 0990 LINEAR

S&P 500 LS 0.000 0.000 0.000 0.006 ESTAR
HCO 0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.053 0.000 0.089 ESTAR

HC3 0.018 0693 0332 0987 ESTAR
WB 0.756  0.539 0237 0968 LINEAR

USD LS 0.000 0.000 0.000 0.004 LSTAR
STERLING HCO 0.000 0.000 0.000  0.000 ESTAR
HC2 0.000 0.000 0.000 0.000 LSTAR

HC3 0.000 0330 0.000 0.451 LSTAR

WB 0.086 0.487 0.013  0.728 LSTAR

YENUSD LS 0.000 0.000 0.000 0.004 LSTAR
HCO 0.000 0.000 0.000 0.000 LSTAR

HC2 0.000 0.000 0.000 0.000 LSTAR

HC3 0993 0585 0.006 0.783 LSTAR
WB 0961 0.628 0.136 0.710 LINEAR

FTSE 100 LS 0.000 0.010 0.071 0.524 LSTAR
BASIS HCO 0.000 0003 0.000 0.156 LSTAR
HC2 0.000 0.022 0030 0314 LSTAR

Continued on Next Page. ..
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Table 2.7: Application of Linearity Tests on Empirical Data(Cont’d.)

HC3  0.001 0.127 0322  0.548 LSTAR
WB 0.000 0410 0491 0.656 LSTAR
RER LS 0.132 0.782 0326 0904 LINEAR
HCO 0319 0.870 0.028  0.997 ESTAR
HC2 0.083 0303 0.749 0.074 LSTAR
HC3  0.228 1.000 0239 0.904 LINEAR
WB 0.043 0616 0462 0948 ESTAR

NOTE: The table reports p-values of the LS, HCO, HC2, HC3 and WB linearity tests (Ho:
Linearity) and the type of STAR nonlinearity selected. Figures in bold denote the selected

delay parameter. The nominal significance level is 10%.

Overall, the results are in line with the findings of the simulation experiments.
Starting with the returns on the the Dow Jones, the S&P 500 the dollar-sterling
and the yen-dollar exchange rate, the Escribano and Jorda (1999) test as well as
the HCO robustification reject the null of linearity for all transition variables. The
corresponding marginal significance level is less than 1% in all cases, indicating
that the series are characterised by STAR nonlinearity. However, the use of the
HC2, HC3 and WB tests results in a substantial decrease in the number of rejec-
tions. At the 5% significance level linearity cannot be rejected in 25%, 62.5% and
93.75% of the cases, respectively. Further, there is a wide disparity between the
magnitudes of the tests’ p-values. An illustrative example is the returns on the
yen-dollar exchange rate. Ford = 1 the p-values of the LS, HCO and HC2 tests
are virtually zero, while the corresponding p-values of the HC3 and WB tests are
close to one. The only series for which all methods produce qualitatively similar

results with respect to the linearity test is the returns on the dollar-sterling nominal

exchange rate.
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Turning to the basis of the FTSE 100 there is strong evidence of nonlinearity in
mean. At the 5% significance level, the Escribano and Jorda (1999) test indicates
nonlinearity for d = 1, 2, the HCO and HC2 based tests for d = 1, 2, 3 and the last
two tests only for d = 1. Overall, the results support setting d = 1 since linearity is
rejected at all conventional levels of significance irrespective of the test employed.
These findings are in line with the theoretical and empirical analysis of Monoyios
and Sarno (2002).

As far as the real exchange rate (RER) series is concerned, the HCO and the
Wild Bootstrap tests can reject the null hypothesis of linearity at the 5% signif-
icance level. Both tests support the exponential transition function and, hence,
symmetric adjustment of the real exchange rate series. For the LS and HC2 tests
the smallest p-values are close to the 10% significance, while for HC3 it is sub-
stantially larger. Given the results of the ARCH LM test for the dollar-sterling
real exchange rate and the superior performance of the Wild Bootstrap, even in
the case of homoskedasticity, these findings may be due to the low power of tests
based on the HCCMEs when applied to relatively small samples. In addition,
nonlinearity tests generally tend not to reject linearity when applied to temporally
aggregated nonlinear processes (see, €.g., Granger and Lee, 1999; Paya and Peel,
2006b). Therefore, our findings provide evidence of nonlinearity in the mean of
the real exchange rate data.

Overall, the above empirical applications together with the Monte Carlo ex-

periments illustrate the discrepancy between the conclusions drawn using different

inference techniques.

2.6 Conclusion

The specification stage of STR models consists of a sequence of tests, which are
typically based on the assumption of independent and identically distributed er-
rors. In this chapter, we relaxed this assumption and examined the impact of

conditional heteroskedasticity on the tests’ performance. We also considered four
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heteroskedasticity robust versions based on HCCMEs and the Fixed Design Wild
Bootstrap.

The findings of the chapter illustrate the dangers of using conventional tests
and tests based on HCCMEs. In particular, these tests can exhibit severe size dis-
tortions, which increase with the sample size and/or have very low size adjusted
power. Further, they frequently lead to the selection of misspecified nonlinear
models. Among these methods a HCCME considered by MacKinnon and White
(1985) appears to have the best performance. On the other hand, the Fixed Design
Wild Bootstrap remedies, at least to a large extend, the deficiencies outlined, al-
lowing inference for both conditional heteroskedastic and homoskedastic errors.
Consequently, the application of the Wild Bootstrap provides a valuable alterna-

tive to conventional tests.
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CHAPTER 3

Forecasting the Behaviour of the Real Exchange

Rate using a Long Span of Data

Predictions are hard to make, especially

about the future.

Niels Henrik David Bohr (1885 — 1962)

3.1 Introduction

The inception of floating exchange rates in mid-March 1973 was followed by
a boom in the interest in explaining the movements of real exchange rates. The
observed near unit-root behaviour of the series, however, casted doubts on the pre-
dictive ability of the models typically employed until the early 1990s (see, e.g.,
Taylor and Taylor, 2004, and the references therein). Subsequently, a vast litera-
ture, motivated by the presence of frictions in commodity markets, has emerged
supporting the existence of a nonlinear adjustment mechanism of the real ex-
change rate. In accordance with the implications of theoretical models, the find-

ings of numerous empirical studies illustrate that nonlinear models, such as the

43



Smooth Transition Autoregressive (STAR), provide parsimonious fits to a number
of real exchange rates over different time frequencies (e.g., Taylor et al., 2001;
Pavlidis et al., 2009a).

Despite the overwhelming evidence supporting the presence of nonlinearites
in real exchange rates, the empirical literature on the out-of-sample performance
of STAR models is scarce and the question of whether nonlinear models outper-
form their linear counterparts and the random walk benchmark remains open. One
of the few studies on nonlinear real exchange rate forecasting is that of Sarantis
(1999). By employing monthly real effective exchange rates for the G-10 coun-
tries from 1980 to 1996, the author provides evidence in favour of the presence of
significant smooth-transition nonlinear dynamics for the majority of the processes.
Moreover, the estimated STAR models provide more accurate forecasts, in terms
of the Root Mean Square Error (RMSE) criterion, against the Random Walk (RW)
and the Markov Switching model but not the linear autoregressive (AR) model.

A recent study that utilises more sophisticated forecast evaluation techniques
and a longer data set for the post-Bretton Wood era is provided by Rapach and
Wohar (2006). The authors replicate the results of the seminal papers of Obst-
feld and Taylor (1997) and Taylor et al. (2001) by fitting Threshold Autoregres-
sive (TAR) and Exponential STAR (ESTAR) models to four monthly U.S. dollar
real exchange rates. Subsequently, they adopt a fixed estimation scheme in order
to generate predictions for the following eight years of data. On the basis of point,

interval and density forecasts comparisons Rapach and Wohar conclude:

“any nonlinearities in monthly real exchange rate data from the post-
Bretton Woods period are quite “subtle” for Band-TAR and exponen-

tial smooth autoregressive model specifications”.

Rapach and Wohar (2006, p. 341)

These discouraging findings may but do not necessarily imply that the non-

linearity documented in the literature is a spurious artifact. Inoue and Kilian
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(2005) illustrate that for linear models in-sample tests tend to have, and in many
cases substantially, higher power than out-of-sample tests, which contradicts the
conventional view that forecasting comprises the ultimate test of an econometric
model. Rossi (2005) also raises concerns regarding the power of out-of-sample
predictability tests. Clark and McCracken (2001, 2005a,b) show that commonly
used {-type tests, such as that proposed by Diebold and Mariano (1995) and Har-
vey et al. (1998), may exhibit low power. To this end, Clark and McCracken
(2005a) build upon the work of Clark and McCracken (2001) and McCracken
(2004) and derive the asymptotic distribution of two F-type tests for the com-
parison of multi-step forecasts from nested linear models. The tests account for
parameter uncertainty and exhibit better power properties than their ¢-type coun-
terparts. Although their application in this context is appealing, it is not straight-
forward due to the fact that their derivation s based on the assumption that the
regression models are linear in parameters and the processes are stationary. To
this end, we relax these assumptions and examine the finite properties of the tests
in Section 3.5.

Regarding the comparison of nonlinear with linear AR models, numerous
studies suggest that in many cases the in-sample superiority of the former is not ac-
companied by better predictive ability (see, e.g., Lundbergh and Terésvirta, 2002;
Stock and Watson, 1999). In this framework, power issues turn out to be even

more serious.!

“Many papers exist in which a few series are modeled using a single
nonlinear form or class, and usually a good fit is obtained, but often

with very little or no improvement in forecasting abiliry.”
Sir Clive William John Granger (1934-2009)

A possible explanation is that nonlinear models perform better only in specific

I'The related literature has focused mainly on the comparison of Self-Exciting TAR (SETAR)
and AR models. The results presented in Section 3.5 illustrate that this is also the case for STAR

models.
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states (regime dependent) so that there are windows of opportunity for substan-
tial reduction in prediction errors (Clements, 2005; Boero and Marrocu, 2004). If
these occasions are relatively infrequent, then AR models would provide robust
forecasts even if the series under consideration is nonlinear (for simulation evi-
dence regarding SETAR models see Clements and Smith, 1999). Put it differently,
it would be difficult to identify the gains of forecasting macroeconomic series with
nonlinear models, which is especially true when interval and density evaluation
methods are applied (van Dijk et al., 2003). Hence, the results of Sarantis and
Rapach and Wohar may well be attributed to the low power of out-of-sample pre-
dictability tests.

In this chapter, we attempt to shed light on the forecast performance of non-
linear real exchange rate models with respect to the linear AR and the RW bench-
marks. We depart from the approach of previous studies and employ long spans of
annual data for the dollar-sterling real exchange rate. By doing so, we extend the
out-of-sample period to the entire post-Bretton Woods era. To our knowledge the
forecasting performance of nonlinear real exchange rate models using long spans
of data has not been examined so far.

Our modelling cycle consists of a battery of recently developed unit root tests,
linearity tests, as well as bootstrap methods, which enable us to obtain a parsimo-
nious specification of the nonlinear real exchange rate model. Subsequently, we
employ the chosen specification and use Monte Carlo simulation techniques so as
examine the empirical size and power properties of several forecast accuracy and
encompassing tests.

Namely, we employ the ¢-type tests of Diebold and Mariano (1995), van Dijk
and Franses (2003) and Harvey et al. (1998) as well as the F'-type tests of Clark
and McCracken (2005a). Our results indicate that all tests, with the exception
of the test proposed by van Dijk and Franses (2003), have good size properties.
This is a particularly important finding given the fact that the properties of F-type

tests have not been examined when one of the competing models is nonlinear or
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nonstationary. Furthermore, we show that F-type tests have similar or substan-
tially better power properties than their ¢-type counterparts. Unfortunately, both
appear to exhibit low power for the comparison of nonlinear with linear AR mod-
els. Notwithstanding the above, our findings suggest that for the actual data the
ESTAR model outperforms both the RW and AR benchmarks at short horizons
for the majority of tests.

The rest of the chapter is structured as follows. Section 3.2 sets forth the
STAR model and provides a description of the specification strategy adopted. The
next section deals with generating forecasts from nonlinear models. Section 3.4
describes the forecast evaluation measures employed as well as the parametric
bootstrap methodology for conducting statistical inference. Section 3.5 describes
the empirical results for the actual real exchange rate data and the simulation

exercise. The final section concludes.

3.2 Smooth Transition Models

The basic STAR model representation for a univariate time series {y; } is given by

Y = M0+ TaYe-1+ o+ TipYe—p + (20 +

+721Yt-1 + -+ TopYt—p)F(Ye-1;7,¢) + &, t=1,....T,(3.1)

or equivalently
Y = “11% + ﬂ'éth(yt—l; Y C) + €t t= 17 s vTv (3'2)
where x, = (1,&,) with & = (Ys-1,. -, Yt—p)’> and m; = (mjp, ..., m;,)" for

j =1, 2. It is assumed that the error term, ¢;, is a martingale difference sequence.
That is, E[e;|Z;—1] = 0, where Z;  is the information set up to time ¢ — 1 con-
sisting of all lagged values of y. The transition variable is given by the lagged

endogenous variable y;_1 and c is a constant. The function F(-) is at least fourth-
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order, continuously differentiable with respect to the transition (or smoothness)
parameter .

There are two common forms of the STAR model. The one we will discuss
here in detail is the Exponential STAR (ESTAR) model of Terdsvirta (1994), in
which transitions between a continuum of regimes are assumed to occur smoothly

and symmetrically. The transition function F'(-) of the ESTAR model is

F(y:—1;7,¢) = [1 — exp(=v(ye1 — ¢)%)]. (3:3)
This transition function is symmetric around (y;-; — ¢) and admits the limits,

F(v,¢) — 1las [y,—1 —c| — +oo,

F(5v,¢) — 0as|y1—cl—0.

Parameter ~ can be seen as the transition speed of the function /() towards 1
(0) as the deviation grows larger (smaller). We are particularly interested in the
special case that there is a unit root in the linear polynomial, Zf=1 T =1,7g; =
—m; Vi > 1,mp = 0and ¢c = mpp. Under these restrictions, Equation (3.1)

becomes

Yy¢ = Moo+ [Wl,l(yt—l - 71’2,0) +-oet Wl,p(yt-p - Wz,o)]

x exp(—y(yt-1 — m20)%) + €. 3.9)

The above formulation is very appealing for modelling real exchange rates (see,
e.g, Kilian and Taylor, 2003; Paya et al., 2003). Unlike in a linear model, the
process moves between a white noise and a unit root depending on the size of
the deviation from PPP, |y;—; — ma0|. This type of adjustment is in accordance
with the implications of theoretical models, which demonstate how frictions in
international trade can induce nonlinear but mean reverting adjustment of the real

exchange rate (see, e.g., Dumas, 1992; Berka, 2005). The rational is that small
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deviations are left uncorrected since they do not to cover transactions costs or
the sunk costs of international arbitrage. On the other hand, large deviations are
much less persistent. Therefore, the process exhibits strong persistence and near
unit root behaviour.

Although ESTAR models can parsimoniously capture the adjustment mech-
anism proposed by theoretical models, their superiority in forecasting over rival
models, like the RW and the AR, is clearly regime dependent. For instance, at the
equilibrium, the process behaves similar to the RW, which implies that one cannot
extract forecasting gains from using ESTAR models. On the other hand, substan-
tially better forecasts can be obtained when large absolute deviations occur and
the process is mean reverting fast. For AR models the speed of mean reversion
is independent from the size of PPP deviations which results in substantial un-
derestimation (overestimation) of the speed of mean reversion only for relatively
large (small) deviations. The other common form of STAR models is the Logistic

STAR (LSTAR), where the transition function F'(-) is given by

F(-;’Y,C) = [1 + exp(—fy(yt_l _ c))]'l,

The logistic transition function is asymmetric about (y;-1 — c) and admits the

limits,

F(3v,¢) — las(ye —c)— +oo,

F(sv,c) — 0Oas (Ys-1 — ¢) — —oo.

LSTAR models have also been fitted to real exchange rates (see Sarantis, 1999).
Even though the theoretical argument is not as strongly supported as with the case
of the ESTAR, there are some attempts to rationalise the asymmetric adjustment
in the real exchange rate (see Campa and Goldberg, 2002).

We point out that as v — 0 the exponential and logistic transition functions

approach a constant and both models collapse to a linear AR model. For the ES-
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TAR model the same also holds when v — 00.2 The fact that STAR models
nest linear AR models has important implications regarding the asymptotic dis-

tribution of commonly used forecast accuracy and encompassing tests (see, e.g.,

Clements and Galvéo, 2004).

3.2.1 Linearity and Unit Root Tests

The fact that there is uncertainty about the exact DGP of real exchange rates mo-
tivates the use of data driven methods for the specification of parsimonious em-
pirical models. In this study, we employ several testing procedures so as to exam-
ine whether the long-span real exchange rate series exhibits mean reversion and
smooth transition dynamics. The rest of this section describes the linearity tests of
Escribano and Jorda (1999) and Harvey and Leybourne (2007), and the unit root
tests of Kapetanios et al. (2003) and Kapetanios and Shin (2008).?

Testing for the nonlinear part of Equation (2.2) gives rise to a nuisance param-
eter problem (Davies, 1977). Consequently, classical Lagrange Multiplier (LM)
and Wald statistics may not follow standard distributions. In order to circumvent
this problem, Luukkonen et al. (1988) suggest replacing the transition function by
a Taylor series approximation around v = 0. Escribano and Jorda (1999) build
upon the work of Luukkonen et al. (1988) and propose the following auxiliary

regression
Y = 04Ty + 81 Tyye_1 + Oy + O3Tey; ) + OpTeyy + us (3.5)

for testing linearity and distinguishing between ESTAR and LSTAR processes.
The null hypothesis of linearity corresponds to Hy : 8] = 05 = 85 = 8, = 0 and

the selection procedure between ESTAR and LSTAR is

1. Test the null of LSTAR nonlinearity, H¥ : 8, = 8; = 0, with an F test,

ZMoreover, the LSTAR model nests the TAR model since for y — oo the logistic transition

function approaches the indicator function. -
3For a more detailed discussion of linearity and unit root tests see (Pavlidis et al., 2009a) and

Chapter 2.
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(FL).

2. Test the null of ESTAR nonlinearity, H¥ : §; = 84 = 0, with an I test,
(Fg).

3. If the p-value of F7, is lower than Ff then select an ESTAR. Otherwise,

select an LSTAR.

The use of the F-test is based on the assumptions that the process under ex-
amination is stationary and the error term in Equation (3.2) is i.i.d. However, a
major concern in the PPP literature is that real exchange rates exhibits a unit root
in which case the asymptotic distribution of linearity tests changes (Kilig, 2004).
Therefore, in order to avoid false inference one should first test for a unit root
in the real exchange rate series. If the unit root hypothesis is rejected, the i.i.d.
assumption can be relaxed by employing the wild bootstrap method (see Pavlidis
et al., 2009b).

Harvey and Leybourne (2007) derive a more general linearity test statistic
which has the same critical values under the null hypotheses of a linear 1(0) and a
linear I(1) processes. Rejection of the null therefore is indicative of nonlinearity
and cannot be attributed to a linear I(1) DGP.

The Harvey and Leybourne test procedure consists of two steps. First is the
test of linearity. Second, the order of integration of the linear or nonlinear process
is determined. Consider the case of an I(0) process. By setting p = 1 and taking a

second-order Taylor series expansion of Equation (3.1) around v = 0 we obtain
ys = Bo + Bive—1 + Boyi_1 + Bayi_y + . (3.6)
Whilst, in the case of an I(1) variable, the Taylor expansion yields
Aye = 0olyi-1 + p1(Aye1)’ + e1(Dyeo1)’ + €4

In order to combine both possibilities, I(0) and I(1), Harvey and Leybourne (2007)
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propose the following regression model

Yo = o+ oaye-1+ ooy g + sy g + auAy g + as(Aya)? +

+ag(Ay—1)® + m. 3.7

In the presence of serial correlation, Equation (3.7) is augmented with lags of the
first difference of the dependent variable. The null hypothesis of linearity is H :
g = a3 = a5 = ag = 0 against the alternative hypothesis (nonlinearity) H, : at
least one of vz, a3, as, ag is different from zero. The corresponding Wald statistic
is

Wy = RSS, — RSSo,

RSS,/T

where the restricted residual sum of squares (RSS;) comes from an OLS regres-
sion of y; on a constant, y;_1, and Ay;_;. As Harvey and Leybourne point out,
the distribution of Wy under the null differs depending on whether the process
followed by y; is I(0) or I(1). In order to make the limiting distribution of Wy
homogeneous under the null, they multiply it with a correction that is the ex-

ponential of a weighted inverse of the absolute value of the Augmented Dickey

Fuller (ADF) statistic,*
W = exp(—b|ADFr|™)Wr. (3.8)

An expression for the value of b is provided such that, for a given significance
level, the critical value of W coincides with that from a x?(4). They also prove
that, under H;, W is consistent at the rate O,(T'). The second step is to test
whether the series is an I(0) or an I(1) process.

We note that pretesting for a unit root is also important in selecting forecasting
models. Diebold and Kilian (2000) illustrate that the conventional view of em-
ploying models in first-differences when the series under examination is highly

persistent can lead to less accurate forecasts. To this end, the authors advocate the

4This approach is suggested by Vogelsang (1998).
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application of unit root tests for choosing between levels and differences.
Kapetanios et al. (2003) develop a test of a unit root null against the alternative

of a globally stationary ESTAR. Their test is also based on a Taylor approximation

of the nonlinear autoregressive model. For simplicity, assuming p = 1,, m; = 1,

a1 = —711, and ¢ = 0, then (3.1) becomes
Yo =ye-1 + [1—exp (—v9i-1)] (—yem1) + we. (3.9)
Using the first-order Taylor expansion and rearranging yields
Ayy = 8y _y + ue. (3.10)

Hence, the null and alternative hypotheses are Hy : d = 0 and H; : § < O,

respectively. The corresponding ¢-statistic is given by

InL = , (3.11)
where s.e.(S) denotes the standard error of §. The asymptotic distribution of ¢y
converges weakly to a functional of Brownian motions.

The issue of possible residual autocorrelation can be addressed by augmenting
Equation (3.10) with lags of the dependent variable. Further, in the presence of
deterministic components, the authors suggest replacing y; in Equation (3.10) with
the residuals from the regression of y on an intercept (demean case) or an intercept
and a time trend (detrend case).

Kapetanios and Shin (2008) proceed in the spirit of Elliott et al. (1996) by
employing a GLS procedure in order to increase the power of the nonlinear unit
root test. In the case of a mean and a time trend in the data, the first step of the

testing procedure includes computing the GLS estimate of 8 in

Yo =0z + 0, (3.12)
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by regressing y; = (y1, y2—py1, - .., yr—pyr-1)' on 25 = (z1,22—pz1,. .., 27—
pzr-1)' where z, = (1,t)' and p = 1 — &/T so as to obtain the estimated resid-
uals, §;.° For the demean case z; is replaced by z, = 1. Subsequently, Equation
(3.10) is fitted to the GLS demeaned or detrended series and the ¢-statistic, t3-S,
corresponding to Hj : 6 = 0 is obtained. Kapetanios and Shin (2008) illustrate
that the tSLS statistic, like the tx., has a non-standard distribution.

Researchers typically employ Heteroskedasticity Consistent Covariance Ma-
trix Estimators in order to robustify unit root tests against heteroskedasticity of
unknown form. Cook (2006) illustrates that in small samples this practice can
lead to moderate oversizing of the ADF and the Kapetanios et al. (2003) tests.
Pavlidis et al. (2007) draw a similar conclusion for the test of Kapetanios and Shin
(2008). In order to address this issue we construct exact sample critical values for

the heteroskedasticity-robust test statistics via stochastic simulation.

3.3 Forecasting with Nonlinear Models

A general dynamic model for the process {y;} can be written as

Y = g(xs; @) + €, (3.13)

where x; = (1,y;_1,...,Y-p)> ¢ is a parameter vector and ¢, ~ iid(0, 0?). By
assuming a quadratic loss function the optimal h-step ahead forecast is ;) =
E [ys+n | ], where Z; denotes the information set at time ¢ (Clements, 2005).
The complexity of generating forecasts from the above model depends crucially
on function g(-). When g(-) is a linear operator so that Equation (3.13) specifies
an AR(p), a closed-form solution always exist. In this context, one- and multi-
step ahead forecasts can be easily obtained through recursion (see, e.g., Hamilton,

1994, ch. 4). On the other hand, when g(-) is a nonlinear function closed-form

5Kapetanios and Shin (2008) set ¢ equal to -17.5 so that the asymptotic power of the test under
the local alternative is 0.5.
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solutions for multi-step forecasts are not generally available. In this case, the

one-step ahead forecast is given by

Ger1it = Elysr | Te] = Elg(er1; @) + eer1] = 9(Te415 @) (3.14)

and, therefore, {j;41; can be computed in a analogous way to the linear AR(p)

model. For larger forecast horizons, say h = 2, however,

Girot = Elysee | L] = B [g(®r42; @) + €142 | T (3.15)
= Elg(xi12;0) | Ie] + Elers] (3.16)
= Elg(xii2;0) | L] .- (3.17)

Because the expected value of a nonlinear function is not necessarily equal to the

function value calculated at the expectation of its argument, E [g(-)] # g (E[]),

Graop = Elg(weyn; @) | Te) = B [g(esap + €2;0) | Te) #  (3.18)

# g(Elze2 | T + Elessz | Til; @) = g(Zevoe; @) (3.19)

It follows that a recursive relationship between forecasts at different horizons can-
not be established.
A widely used method to approximate E [ys1n | Z;] when g(-) is nonlinear is

bootstrap integration.® The procedure of generating the h-step ahead forecast is
1. Use Equation (3.14) and Z; to compute §¢10.”

2. Randomly draw with replacement h — 1 values from the estimated residuals

¢ of the nonlinear time series model (3.13).

% Alternative methods proposed in the literature for constructing multi-step forecasts for non-
linear models are the Naive or Skeleton method, the Exact method and Monte Carlo simula-
tion (e.g., Terdsvirta, 2006). The former method is based on recursive substitution by setting
E[g(-)] = g(E[]) and, therefore, produces biased results. The Exact method employs numerical
integration, which requires assumptions regarding the error distribution and is computationally
intensive for large forecast horizons. The final method, Monte Carlo simulation, is similar to the
bootstrap but again requires distributional assumptions.

"Note that in practice there is parameter uncertainty since ¢ is not known and has to be esti-

mated.
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3. Use the bootstrap innovations, Z;, and U¢+1)¢ obtained in the first step, and

iterate on the nonlinear model so as to compute a forecast ¢, p¢.

4. Repeat Steps 2 and 3 B times, where B is large number, so as to get gjg Fhlt

wherei=1,...,B.

5. The h-step ahead boostrap forecast is given by
1B
ggj—hh = B Z ?J;+h|t- (3:20)
i=1

An attractive feature of the bootstrap method is that it does not require distribu-
tional assumption. The errors, however, are presumed to be iid. The results of
Clements and Smith (1997) support the use of bootstrap methods in forecasting
from nonlinear autoregressive models. For a survey on forecasting with STAR

models see Lundbergh and Terasvirta (2002).

3.4 [Evaluating Forecasts

Forecast evaluation provides an alternative way of model selection. We restrict
our attention to the comparison of point forecasts on the basis of forecast ac-
curacy and forecast encompassing measures. The former measures include the
MSE-t of Diebold and Mariano (1995), the MSE-F test of Clark and McCracken
(2005a) and the Weighted MSE-¢t (W-MSE-t) proposed by van Dijk and Franses
(2003). The latter are the Harvey et al. (1998) ENC-t¢ and the ENC-F of Clark
and McCracken (2005a).

Our setting is similar to the one adopted by Clark and McCracken (2005a).
The number of in-sample and out-of-sample observations is denoted as R and P,
respectively, so that the total number of observations is T" = R + P. We adopt
a recursive scheme for forecasting, where as ¢ increases from R to T — h the
parameters of the models are re-estimated by employing data up to time ¢ so as

to generate forecast for the following A horizons. In accordance with the notation
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used in the previous section, y;,, denotes the variable to be predicted at time
t = R,...,T — h with the number of forecasts corresponding to horizon h being
equal to P — h + 1. The forecast errors are defined as €1,t+h = Ye+h — Y1,t4n|e fOI

the benchmark model and €341, = ysyn — G2,¢41y: fOr the competing model.

3.4.1 Tests of Forecast Accuracy

The first three tests examine forecast accuracy by setting the Mean Square Error
(MSE) as the measure of predictive ability. In this setting, the null hypothesis
is that the MSEs of the two competing models are equal against the one-sided
alternative that the MSE for the second model is smaller. Diebold and Mariano

(1995) develop the following widely used ¢-type test

MSE —t=(P—-h+1)"2— (3.21)

31/2°
dd

where iy = €2,y — By d = (P — h+ 1) ST " dy, = MSE; — MSE,,
fdd(]) (P h+ 1) Zt —R+j dt+hdt+h —3 fOI‘] Oand Fdd( ) fdd(_j), and

§dd = K({G/M )I‘dd( ) denotes the long-run variance of d;, ), estimated

.7_—.7
using a kernel-based estimator with function K(-), bandwith parameter M and
maximum number of lags 7.2

For non-nested models the long-run variance of cZHh is positive and the MSE-¢
statistic follows asymptotically the standard normal distribution. When the num-
ber of forecasts is relatively small, Harvey et al. (1997) illustrate that a distinctive
improvement of the test can be achieved by correcting for small-sample bias in

the estimated variance of d; and comparing the statistic to the Student’s ¢ distri-

bution with P — h degrees of freedom. The corrected test statistic is obtained by

8The use of Heteroskedasticity and Autocorrelation-Consistent (HAC) estimators for comput-
ing the variance of d;p, is based on the fact that h-steps-ahead forecast errors will be serially
correlated of order h — 1. The performance of the MSE-¢ test using different HAC estimators is

examined in Clark (1999).
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multiplying MSE-{ by

_ \/P—2h+h(h—1)/(P—h+1)
(P-h+1) ’

On the contrary, when the competing models are nested their population errors are
identical under the null and, therefore, d;, , and its variance are equal to zero. In
this case, the asymptotic distribution of the statistic is non-standard and depends
upon nuisance parameters for h > 2 (McCracken, 2004).°

The degeneracy of the long-run variance of d;,; motivates Clark and Mc-
Cracken (2005a) to propose a variant of the above test for nested models. Inspired
by the in-sample F'-test the author suggests replacing §;ﬁz with the variance of
the forecast error of the “unrestricted” model. The new test statistic is given by

(Z

MSE—-F=(P-h+ 1)1/2WE2. (3.22)

and has, asymptotically, better power properties (Clark and McCracken, 2005a).
The limiting distribution of the MSE-F test statistic, like the MSE-¢, is free of
nuisance parameters only for A = 1 and is non-standard.

The forecast accuracy tests examined so far attach equal importance to all
forecasts irrespectively of the available information set at time ¢. Hoverer, given
the properties of the nonlinear adjustment mechanism for the real exchange rate,
a researcher would expect the superiority of the ESTAR model over the RW to
become most apparent for large deviations of the process from its equilibrium
value. While for smaller deviations the two models should perform similarly.
van Dijk and Franses (2003) propose a forecast evaluation test that employes a

weighted average loss differential and comprises a modification of the MSE-¢ of

9The asymptotic distributions of all the test statistics for multi-step forecasts from nested mod-
els under parameter uncertainty are derived in Clark and McCracken (2005a). However, their
derivation is based on the sufficient but not necessary assumptions of stationarity and linearity of
the parameters, which are clearly not satisfied in our experiment.
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Diebold and Mariano (1995). The corresponding test statistic is

Jv
— 1/2
W—MSE —t = (P~ h+1)" =, (3.23)
dwdvw
where dA;D+h = w(®x;) X (éiwh - é%,H—h)’ & = (P-h+ 1)-! Tz_}? (iﬂh,

Fd‘”d“’(j) = (P et h + 1)_1 ;r:_];l_‘_] d\;u-f-hd\;u—i—h—j fOI'j 2 0 and dedW(j) =
Tgugu(—7), and Sgugw = Zgz_j K(j/M)Tquau(j) denotes the long-run variance

of d,, estimated using a kernel-based estimator with function K (-), bandwith

parameter M/ and maximum number of lags j. The weight function is given by

w(xzy) =1— _ ) 3.24)

max(f(y))’

where f(-) is the density function of y;, so that more importance is attached to
forecasts corresponding to deviations at the tails of the distribution. van Dijk and
Franses (2003) show that the modified test statistic follows the same distribution

with the MSE-¢.

3.4.2 Forecast Encompassing

The remaining tests concern forecast encompassing. Consider the following com-

bination of forecasts from the two competing models
Yet+hjt = (1 - )‘)yl,t+h|t + /\y2,t+h|ta (3.25)

where A € [0, 1]. Letting e. ¢+ denote the error of the composite forecast ycs ¢

and substituting y; ¢4x; and yo 14 nj¢ yields
e1t+hjt = Me1,4hlt — €2,t+hjt) T Ectthlt- (3.26)

In this case, the null hypothesis that the forecast of the benchmark model incorpo-

rates all the relevant information in the forecast of the competing model is given by
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Hpy : A = 0. That is, the covariance between the forecast errors of the first model
and the difference of the forecasts errors of the two models is equal to zero (see
West, 2006). Under the alternative, the covariance is positive, H; : A > 0, indi-
cating that the second model has additional predictive power. Clearly, the forecast
encompassing tests are also one-sided to the right. Harvey et al. (1998), based
on the work of of Diebold and Mariano (1995), derive the following forecast-
encompassing test statistic'?

ENC —t = (P — h+1)/2-C (327)

&1z

Let Coon = €ren(€1,e4h — €2840)s fcc( ) =(P—-h+1)" Zt Rtj CihCth—j
for 7 > 0 and I‘CC(]) =Tee(—7), and let S, = Zj:—; K (j/M)Te(j) denote the
long-run variance of ¢; 4.

Clark and McCracken (2001} illustrate that the distribution of the ENC-¢ statis-
tic converges to the same type of distribution with the MSE-¢ statistic when the
forecasts are generated from linear nested models. By employing the same rea-
soning with the one used for the ENC-F" test they propose the following F-type
test statistic

ENC-F=(P—-h+1)"?*——— (3.28)

MSE

which again has a non-standard limiting distribution and depends on nuisance
parameters for h > 2. Similarly to forecast accuracy measures, the F'-type test
has, asymptotically, greater power than its ¢-type counterpart.

Due to the fact that standard distribution theory may not apply, we conduct
statistical inference by employing a parametric bootstrap method similar to Kil-

ian (1999) and Kilian and Taylor (2003). The simulation exercise consist of the

following steps

1. Employ the original real exchange rate series and compute the above fore-

cast evaluation measures for all forecast horizons.

19The authors employ the small sample correction of Harvey et al. (1997) for the MSE-¢ statistic.
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. Estimate the restricted model for the real exchange rate (the RW or the AR
model) using the whole sample in order to obtain the fitted residuals and

coeflicients.

. Set the estimated model as the Null DGP and randomly draw with replace-
ment from the residuals so as to create an artificial series for the real ex-
change rate with the same length as the actual series. Initialise the process

by employing the observed values of the series.

. Repeat the forecasting exercise using the artificial data so as to compute h

bootstrap test statistics for each forecast evaluation measure.

. Repeat steps 3 and 4 B times, where B is a large number, so as to obtain

the bootstrap distributions of the test statistics under the null.

. Compute the bootstrap p-value as the percentage of times the simulated

statistic is more extreme than the original statistic.
. Reject the null if the p-value is smaller than the chosen significance level.

Clark and McCracken (2005a) illustrate that when forecasts are generated

from linear nested models this method performs adequately in terms of size and

power even when the bootstrap model is not properly specified. However, the

performance of the bootstrap technique as well as the validity of the F'-type tests

has not been explored when one of the competing models is nonlinear or the pro-

cess is nonstationary. We contribute to the literature on nonlinear real exchange

rate forecasting by examining the finite properties of F-type tests as well as their

implications in the following section.

3.5 Empirical Results

We extend the dollar-sterling real exchange rate data set of Lothian and Taylor

(1996) by using annual data for the U.S. and U.K. consumer price indices and
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the dollar-sterling nominal exchange rate obtained from the International Finan-
cial Statistics database. The updated series covers the period from 1791 to 2005
and is illustrated in Figure 3.1. The number of in-sample observations, R, is set
equal to 183 which corresponds to the pre-Bretton Woods era (1791-1973) and

the remaining 32 years, P, comprise the out-of-sample period.
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Figure 3.1: Time series plot of the dollar-sterling real exchange rate. The solid
(dashed) line represents the in-sample (out-of-sample) period.

3.5.1 In-Sample Tests

Starting with the in-sample tests, we present results for both the entire sample
period and the subperiod from 1791 to 1973. Table 3.1 reports the ADF, ¢y and
tOLS tests statistics as well as their heteroskedasticity-robust versions (ADF-HC,
tnL-HC, tSES-HC) corresponding to the demean and detrend cases.!! Exact sam-
ple critical values are constructed via stochastic simulation. For the demeaned
real exchange rate, the unit root hypothesis is rejected by all tests at the 5% sig-
nificance level. The only exception is the heteroskedasticity-robust version of the

Kapetanios and Shin (2008) test, which rejects the null only at the 10% when data

! The lag length for the unit root and linearity tests is set to two on the basis of the Akaike
Information Criterion.
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prior to the recent floating period are used. Turning to the detrend case, the num-
ber of rejection decreases with the ¢y -HC statistic for the subperiod 1791-1973
and the ¢g1S and t3-S-HC tests statistics for the whole period being larger than the
corresponding 10% critical values. The mean reverting behaviour of the long-span
real exchange rate is consistent with the empirical literature on PPP (see Frankel,
1990; Lothian and Taylor, 1996). Given the stationarity of the series, we follow
the recommendation of Diebold and Kilian (2000) and choose to work with levels

rather than first differences.

Table 3.1: Unit Root Tests

Sample Period: 1791-1973
Case ADF  ADF-HC tNL tn-HC tSES t3S-HC
Mean —3.082** —-3.321** —-3.488"* —4.687* -—-2.211* —2.866**

Trend —4.985"* -—5.192** -3.707* —-3.469 —-3.824™ —3.648"

Sample Period: 1791-2005
Case ADF ADF-HC tNL tNL-HC tglis tSkS-HC
Mean —3.794** —-3.991** —4.522** -—5.314" -—-2.873" -3.258"

Trend —4.327** —4.532** —-4.406" -5.013" —2.293 —2.598

NOTE: ADF, tyi. and ty are the Augmented Dickey Fuller, the Kapetanios et al. (2003) and
the Kapetanios and Shin (2008) unit root tests statistics. HC indicates heteroskedasticity-robust
versions. *x and = denote significance at the 5%, and 10% significance level, respectively.
Critical values are constructed via Monte Carlo simulations.

We proceed by examining the presence of STAR-type nonlinearities by ap-
plying the Escribano and Jorda (1999) and Harvey and Leybourne (2007) testing
procedures. The results are reported in Table 3.2. First, the wild bootstrap p-
values for the tests developed in Pavlidis et al. (2009b) (top panel) corresponding
to the null of linearity is marginally lower than the 5% significance level for the
whole sample and slightly higher than the 10% for the subsample. Second, the
fact that the p-value corresponding to F7, is lower than the one corresponding to
Fg, favours the use of the ESTAR model over the asymmetric LSTAR. Moreover,

the Harvey and Leybourne (2007) test statistic is also greater than the 10% crit-

63



ical value which provides further support for the smooth transition model. The
magnitudes of the p-values corresponding to the linearity tests indicate that the
nonlinear mean-reverting behaviour of the series is more evident for the whole
sample period than the pre-Bretton Woods era. This finding can be attributed to

the higher power of the tests for larger sample sizes.

Table 3.2: Linearity Tests

Escribano and Jorda (1999)
Period F F L F E

1791-1973 1.192 (0.114) 0458 (0.610)  0.368 (0.695)

1791-2005 1.582 (0.043) 1.050 (0.244) 0.886 (0.329)

Harvey and Leybourne (2007)

Period Wr
1791-1973 8.494 (0.078)
1791-2005 10.478 (0.033)

NOTE: p-values are reported in parentheses. For the Escribano and Jorda (1999) test p-values
are obtained through the wild bootstrap procedure described in Pavlidis et al. (2009b).

Next, we follow Kilian and Taylor (2003) and model the level of the real ex-
change rate using the ESTAR parameterisation (3.4).!2 Table 3.3 shows the esti-
mates of the ESTAR model for the two periods examined, the standard error of
the regressions, the corresponding ¢-statistics, the Ljung-Box Q-statistics for se-
rial correlation in the residuals and the LM test statistic (ARCH) for conditional
heteroskedasticity up to lags 1 and S, and the wild bootstrap p-value for the transi-
tion parameter 5. The Q and ARCH statistics do not indicate the presence of serial
correlation or ARCH effects in the regression residuals. Moreover, the p-value is
virtually zero in both cases suggesting that the estimated transition parameters are

significant at all conventional levels. In accordance with the linearity tests results,

12Equation (3.4) imposes that the autoregressive coefficients sum to unity so that the process has
aunit root in the inner regime. We test this restriction by running a Wald F-test. The corresponding
p-value is substantially larger than 10% implying that the restricted version is also supported by
the data.
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the p-value for the transition parameter is lower for the whole sample illustrating
that the degree of nonlinearity is more pronounced when longer spans of data are

examined.

Table 3.3: Estimated Nonlinear Real Exchange Rate Model

Sample Period: 1791-1973

G — 1586 = ( 1122 (o1 — 1586 )4 (1 — 1122 )(yep — 1.586
Yt 63598 ((13.834)(% ! (63.598)) ( (13.834))(% 2 (63.598)))
x exp(— 2.076 (y,_1 — 1.586 )2).
exp( (3.508)(% ! (63.598)))
[0.005]

s = 0.067; Q; = 0.005 [0.942]; Q5 = 3.941 [0.558]; ARCH; = 0.059 [0.809];
ARCH; = 0.220 [0.953].

Sample Period: 1791-2005

G, — 1.590 = ( 1.185 (ys_q — 1.590 )+ (1 — 1.185 )(ys_o — 1.590
YT 8i518) ((16.053)(% ! (81.518)) ( (16.053))( 2 (81.518)))
x exp(— 2.504 (y,_1 — 1.590 )?).
exp( (4.357)(% ! (81.518)) )
[0.000]

s = 0.068; Q; = 0.002 [0.963]; Qs = 4.133 [0.530); ARCH; = 0.079 [0.778];
ARCH; = 0.416 [0.837).

NOTE: Figures in parentheses and square brackets denote absolute ¢-statistics and p-values, re-
spectively. The p-value for the transition parameter 4 is obtained through a simulation exercise,
where the bootstrap DGP is the unit root model. s is the standard error of the regression. Q)
and Q5 denote the Ljung-Box Q-statistic for serial correlation up to order 1 and 5, respectively.
ARCH; and ARCHj denote the LM test statistic for conditional heteroskedasticity up to order

I and 5, respectively.
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3.5.2 Out-of-Sample Tests

The in-sample test results provide strong support for a nonlinear adjustment mech-
anism of the real exchange rate. We now turn to the forecasting exercise. As we
highlighted in the previous sections: (i) out-of-sample tests are likely to exhibit
lower power than in-sample tests, and (ii) there is uncertainty regarding the valid-
ity of the F'-type tests when one of the competing model is nonlinear or nonsta-
tionary. These motivate us to examine the small sample properties of the forecast
evaluation measures by conducting a set of Monte Carlo simulation experiments.
The nominal significance level is set equal to 5% for all experiments, the maxi-
mum forecast horizon equal to 4 and the number of bootstrap replication, B, equal

to 1,000.

Empirical Size of Forecast Evaluation Tests

Initially, we focus on the empirical size of the tests, which is computed by the

following procedure
1. Fit the benchmark model (the RW or the linear AR) to the whole sample.

2. Set the fitted model as the Null DGP and generate 1,000 artificial series of

size equal to the size of the actual real exchange rate series.'?

3. For each series adopt the same setting as for the actual data and generate

forecasts from the benchmark and the competing model(s).

4. Apply the bootstrap methodology outlined in Section 3.4 so as to compute

a vector of bootstrap p-values.

5. The empirical size of the test is defined as the percentage of times the boot-

strap p-value is smaller than the 5 % significance level.

I3Fake series are generated by drawing from the normal distribution with variance equal to the
variance of the actual residuals. The first observations of the actual data are employed as initial
values.
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The results for the case of the RW against the ESTAR (RW-ESTAR), the RW
against the AR (RW-AR) and the AR against the ESTAR (AR-ESTAR) are pre-
sented in Table 3.4. A broad conclusion that emerges is that the empirical size of
all tests, but the W-MSE-¢, is close to the nominal level with no test consistently

outperforming the others.

Table 3.4: Empirical Size of Forecast Evaluation Tests

RW-ESTAR

Horizon MSE-¢ W-MSE-¢ ENC-t MSE-F ENC-F

1 0.056 0.089 0.061 0.058 0.058

2 0.058 0.079 0.053 0.056 0.048

3 0.054 0.072 0.056 0.055 0.047

4 0.038 0.056 0.039 0.058 0.045
RW-AR

Horizon MSE-t W-MSE-¢ ENC-t MSE-F ENC-F

1 0.055 0.104 0.055 0.052 0.051

2 0.046 0.087 0.044 0.045 0.042

3 0.046 0.071 0.040 0.051 0.044

4 0.041 0.063 0.041 0.053 0.041
AR-ESTAR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.043 0.034 0.040 0.067 0.066
2 0.046 0.023 0.047 0.050 0.055
3 0.049 0.032 0.051 0.056 0.054
4 0.052 0.033 0.052 0.059 0.047
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NOTE: The table shows the empirical size of the MSE-t, W-MSE-t, ENC-t, MSE-F and
ENC-F test statistics for the RW-ESTAR, RW-AR and AR-ESTAR pairs. The nominal sig-

nificance level is 5% and the horizons considered are h = 1, ..., 4.

The (absolute) error in rejection probability reaches a maximum of just 1.7
percentage points (for the MSE-F" at the one year horizon). Most importantly,
these results indicate that F'-type tests are valid in our nonlinear context. As far as
the W-MSE-t is concerned, the test exhibits moderate size distortions of up to 5
percentage points. Specifically, for the RW-ESTAR and the RW-AR cases the test
is oversized at short horizons with the empirical size taking values close to 10%.
While, for the AR-ESTAR case the weighted MSE-¢ statistic becomes undersized

with the empirical size reaching a minimum value equal to 0.023 at h = 2.

Empirical Power of Forecast Evaluation Tests

We turn to the empirical power of the tests. The procedure adopted is identical to
that for the size with the exception that the Null DGP is given by the estimated
ESTAR model. Table 3.5 shows the results for the RW-ESTAR and AR-ESTAR
cases. Overall, we observe that despite the fact that there are major differences
across tests and pairs of competing models, the empirical power of all tests tends
to decrease with the forecast horizon. Starting with the RW-ESTAR, ¢-type tests
perform substantially worse than F'-type tests. Specifically, the MSE-# ranks last
with the empirical power ranging from about 15% for h = 1 to about 8% for h =
4. The W-MSE-t and ENC-t tests follow with the latter being marginally superior
than the former but again with very low empirical power.'* An increase by a factor
of two or greater (depending on the horizon) in the frequency of rejecting the null
occurs as we move to the MSE-F'. The empirical power of the test exceeds 50%.
Finally, the ENC-F test exhibits the highest power, which ranges from 68 to about

75%.

4The results for the W-MSE-¢ test should be interpreted with caution due to the poor size
properties of the test.
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Table 3.5: Empirical Power of Forecast Evaluation Tests

RW-ESTAR

Horizon MSE-¢ W-MSE-¢ ENC-t MSE-F ENC-F

1 0.152 0.170 0.239 0.577 0.752

2 0.094 0.124 0.133 0.588 0.730

3 0.078 0.096 0.111 0.566 0.709

4 0.079 0.095 0.114 0.528 0.680
AR-ESTAR

Horizon MSE-¢ W-MSE-t ENC-t MSE-F ENC-F'

1 0.237 0.163 0.203 0.269 0.220
2 0.209 0.121 0.170 0.176 0.124
3 0.163 0.103 0.142 0.106 0.064
4 0.137 0.071 0.108 0.060 0.025

NOTE: The table shows the empirical power of the MSE-t, W-MSE-t, ENC-t, MSE-F" and
ENC-F test statistics for the RW-ESTAR and AR-ESTAR pairs. The nominal significance

level is 5% and the horizons considered are h = 1,. .., 4.

As far as the AR-ESTAR pair is concerned, the performance of the F'-type
tests deteriorates while t-type tests exhibit similar empirical power to the RW-
ESTAR case. The maximum power, which is achieved at h = 1 in all cases,
ranges from about 16 (W-MSE-t) to about 27% (MSE-F’). In other words, there
is a small likelihood of identifying the forecasting gains from adopting an ESTAR
rather than a linear AR model even though the true DGP process is nonlinear.
These results are qualitatively similar with Clements and Smith (1999) for SETAR
models. The low power of the tests suggests that superior in-sample but not out-of-
sample performance of nonlinear models should not be documented as conclusive

evidence against nonlinearity.'®

15These results are similar to Inoue and Kilian (2005) regarding the comparison of linear mod-
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Forecasting the Dollar-Sterling Real Exchange Rate

Table 3.6 presents the results regarding the comparison of forecasts for the actual
real exchange rate series. The first three panels report the t-type test statistics,
namely the MSE-t, W-MSE-t, and ENC-¢ tests. While the last two panels show

the F'-type tests statistics. The corresponding bootstrap p-values are reported in

parentheses.

Table 3.6: Comparing Forecasts for the Dollar-Sterling Real

Exchange Rate, 1974-2005

Panel A — MSE-{ test

Horizon RW-ESTAR

RW-AR

AR-ESTAR

1 1.827 (0.047) 1.441 (0.091) 1.702 (0.019)
2 1.790 (0.067) 1.514 (0.129) 1.281 (0.048)
3 1.664 (0.114) 1.600 (0.134) 0.836 (0.098)
4 1.670 (0.118) 1.702 (0.123) 0.357 (0.203)
Panel B — W-MSE-{ test
Horizon = RW-ESTAR RW-AR AR-ESTAR

1 1.718 (0.053) 1.547 (0.066) 1.354 (0.032)
2 1.682 (0.069) 1.654 (0.083) 1.146 (0.062)
3 1.593 (0.095) 1.647 (0.099) 0.815 (0.121)
4 1.617 (0.097) 1.695 (0.104) 0.528 (0.190)

Panel C — ENC-¢ test

Horizon RW-ESTAR

RW-AR

AR-ESTAR

1 2.016 (0.066)
2 1.979 (0.105)

Continued on Next Page. ..

els.

1.794 (0.105)
1.929 (0.134)
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Table 3.6: Comparing Forecasts (Continued)

3 1.942 (0.143) 2.077 (0.131) 1.157 (0.146)
4 2.054 (0.145) 2.276 (0.130) 0.641 (0.295)
Panel D — MSE-F test
Horizon RW-ESTAR RW-AR AR-ESTAR
1 17.842 (0.000) 11.715 (0.002) 5.369 (0.046)
2 24.793 (0.000) 17.884 (0.008) 5.651 (0.108)
3 29.577 (0.002) 24.756 (0.016) 3.657 (0.181)
4 37.289 (0.007) 34.970 (0.017) 1.583 (0.254)
Panel E — ENC-F' test
Horizon = RW-ESTAR RW-AR AR-ESTAR
1 22.449 (0.001) 15.616 (0.003) 6.361 (0.104)
2 30.060 (0.002) 23.754 (0.013) 6.934 (0.181)
3 36.531 (0.013) 32.791 (0.019) 4.729 (0.302)
4 47.439 (0.020) 46.750 (0.023) 2.528 (0.393)

NOTE: The table shows the MSE-t, W-MSE-t, ENC-t, MSE-F and ENC-F" evaluation mea-
sures for the comparison of actual real exchange rate forecasts from the ESTAR, AR and
RW models. Bootstrap p-values are reported in parentheses. The horizons considered are

h=1,...,4.

A broad conclusion that emerges is that as the forecast horizon increases the
p-values for all tests tend to increase indicating that long-horizon predictability
depends upon short-horizon predictability. This observation is consistent with
the behaviour of the empirical power of the tests reported in the Table 3.5. Fur-
thermore, the forecasting gains from using our nonlinear model specification are

particularly evident at short forecast horizons. To this end, we mainly focus on
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one step ahead forecasts.

By examining the RW-ESTAR pair (second column), we observe that all five
forecast encompassing and forecast accuracy test statistics are statistically signif-
icant at the 10% significance level. By changing the significance level to 5%, the
null hypothesis is rejected by the two F-type tests and the MSE-¢ test (three out of
the five cases). We note that for the F'-type tests, p-values are close to zero for all
forecasts horizons, which is not true for the ¢-type tests. The fact that F'-type tests
are associated with much lower p-values than their ¢-type counterparts when the
benchmark model is the RW is not surprising given the higher empirical power of
the former.

Turning to the RW-AR pair (third column), we generally observe higher p-
values than for the RW-ESTAR pair. The number of rejections at the 10% level
reduces from five to four for A = 1. While, at the 5% level only the two F-type
tests reject the null.'® Summarising the above results, both AR and ESTAR models
appear to have predictive ability regarding the behaviour of the dollar-sterling real
exchange rate.

The final column (AR-ESTAR) of Table 3.6 presents the results for the com-
parison of these two models. Despite the low empirical power of the forecast
evaluation measures, at h = 1 all test statistics are significant at the 5% with the
exception of the ENC-F, which has a p-value marginally higher than 10%. The
number of rejections substantially reduces with the forecast horizon and at A = 2
only the MSE-¢ test rejects the null hypothesis. This may be due to the fact that
both models share the prediction that the series will eventually mean revert to its
equilibrium value.

Overall, the out-of-sample tests results complement those of the in-sample
tests and provide strong support for the ESTAR model. In contrast to previous
studies, which employ higher frequency data, our findings illustrate that nonlinear

real exchange rate models are useful for forecasting the long-span real exchange

18] othian and Taylor (1996) and Siddique and Sweeney (1998) also show that AR models
provide superior forecasts (in terms of the RMSE criterion) to the RW for the recent float.
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rate.

3.6 Conclusion

This chapter utilises a long span of data in order to investigate the ability of the
ESTAR model to forecast the dollar-sterling real exchange rate. We pay special
attention to model specification by employing several recently proposed linearity
and unit root tests as well as bootstrap techniques. In turn, we investigate the small
sample properties of a battery of forecast evaluation measures. Our results, in line
with the literature on forecasting from nonlinear models, illustrate the difficulty of
detecting the superiority of STAR models to AR models. Despite the low power
of out-of-sample evaluation tests, we find that recursive ESTAR forecasts for the
actual real exchange rate series outperform all rival forecasts. Consequently, re-
searchers and practitioners can extract forecasting gains regarding the behaviour

of the long-span real exchange rate series by employing nonlinear models.
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CHAPTER 4

Further Empirical Evidence on the

Consumption-Real Exchange Rate Anomaly

4.1 Introduction

In the early 1990s the lack of evidence supporting Purchasing Power Parity (PPP)
led researchers to focus on the identification of potential pitfalls concerning the
empirical approaches employed till then as well as to provide theoretical justifica-
tions for the observed behaviour of real exchange rates.

Three of the most important avenues of research that emerged have focused
on: (i) the effect of the sample size, (ii) the presence of nonlinearities in the adjust-
ment mechanism, and (iii) the fact that real variables may affect the equilibrium
real exchange rate. As far as the latter factor is concerned International Real Busi-
ness Cycle (IRBC) models, with complete or incomplete asset markets, establish
a relationship between the equilibrium real exchange rate and consumption series
on the basis of international risk sharing (e.g., Backus and Smith, 1993; Kollmann,

1995; Chari et al., 2002). However, the findings of a number of studies cast doubts
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on the empirical validity of this implication (see, e.g., Benigno and Thoenissen,
2008). The main objective of the present chapter is to reassess the implied rela-
tionship between the real exchange rate and consumption by extending the sample
used by previous studies and by allowing the presence of nonlinearity in the ad-
justment mechanism. The rest of the introductory section outlines recent advances
in the literature that motivate our approach.

As noted by Frankel (1986), the tests typically employed during the 1980s to
investigate whether real exchange rates are stationary may have low power when
applied to small spans of data during the recent floating rate period. Following
Frankel a number of researchers supported this view by using long span of data
(e.g., Lothian and Taylor, 1996) and panel unit root tests (Frankel and Rose, 1996).
Even though these studies provided evidence that real exchange rates mean revert
in the long-run, the implied half life of deviations from PPP ranged from three
to five years. The fact that real shocks cannot account for such a high degree of
persistence gave rise to Rogoff’s (1996) PPP puzzle.

Perhaps the most important explanation of the Rogoff puzzle is provided by
theoretical models which demonstrate how transactions costs or the sunk costs of
international arbitrage induce nonlinear but mean reverting adjustment of the real
exchange rate (see, e.g., Dumas, 1992; Sercu et al., 1995; O’Connell and Wei,
2002). Whilst globally mean reverting, these nonlinear processes have the prop-
erty of exhibiting near unit root behaviour for small deviations from PPP, since
small deviations are left uncorrected if they are not large enough to cover trans-
actions costs or the sunk costs of international arbitrage, while large deviations
are much less persistent. Hence, the low power of stationarity tests as well as
the excess volatility of the real exchange rate may be attributed to the presence
of nonlinearities in the data. In his seminal paper Dumas (1992) summarised this

position as follows

“Linear equations are unlikely clearly to identify a process such as
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the one for Inp' ... in which long-run behaviour is very different
from short-term behaviour, since reversion manifests itself only when

deviations from parity has become wide enough.”

Dumas (1992, p. 171)

The set of parametric models that can capture the nonlinearity postulated in-
cludes the Threshold Autoregressive (TAR) model of Tong (1983) and the Smooth
Transition Autoregressive (STAR) model of Granger and Terdsvirta (1993) and
Terdsvirta (1994). There are two common forms of the STAR model. The one
is the Exponential STAR (ESTAR) model in which transitions between a con-
tinuum of regimes are assumed to occur smoothly and symmetrically. The ap-
pealing feature of the ESTAR model is that the speed of mean reversion is in-
creasing with the size of the deviation from the equilibrium, which implies that
the corresponding half life of a shock depends on its size. The smooth adjust-
ment process is suggested in the analysis of Dumas (1992) and demonstrated by
Berka (2002). Furthermore, Terdsvirta (1994) argues that if an aggregated pro-
cess is observed, regime changes may be smooth rather than discrete as long as
heterogeneous agents do not act simultaneously even if they individually make
dichotomous decisions, which favours the use of the ESTAR model over TAR
model.

Michael et al. (1997), Taylor et al. (2001) and Kilian and Taylor (2003) among
others show that ESTAR models can parsimoniously fit a number of real exchange
rates. Nonlinear impulse response functions derived from the estimated models
suggest that large shocks mean revert much faster than the ones previously re-
ported for linear models, for which the speed of mean reversion is independent
of the size of the shock. These findings therefore seem to go some way towards
solving Rogoff’s PPP puzzle. However, deviations from PPP still dissipate very

slowly.

'where Inp denotes the real exchange rate.
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Although the early studies of PPP assumed a constant equilibrium rate, it is
well recognised that even in relatively short spans of data real effects on the equi-
librium exchange rate may be important. A variety of theoretical models, such
as Balassa (1964) and Samuelson (1964), Lucas (1982) and Stein et al. (1995),
demonstrate how real factors drive real exchange rates’ movements and imply a
non-constant equilibrium. Neglecting the influence of such factors may result in
an omitted variable bias, which could account for the slow mean reversion re-
ported in the empirical literature. The significance of real factors has been docu-
mented in panel data analysis (see, e.g., Canzoneri et al., 1996; Chinn and John-
ston, 1996), as well as, in studies adopting a country by country nonlinear frame-
work for long span of data (Lothian and Taylor, 2008; Paya and Peel, 2006a).

International Real Business Cycle (IRBC) models predict a close relation be-
tween movements in the real exchange rate and relative consumption levels. (e.g.,
Backus and Smith, 1993; Kollmann, 1995). However, the evidence in favour of a
link between real exchange rate and relative consumption is scarce. Backus and
Smith (1993) are the first to document the lack of a systematic pattern govern-
ing the movements of real exchange rates and relative consumption by compar-
ing the means, standard deviations and autocorrelations of the first differences of
the two series. Kollmann (1995) employs the methods proposed by Park (1992)
and Phillips and Ouliaris (1990) to investigate whether consumption and real ex-
change rates are cointegrated. By using quarterly data for the recent floating pe-
riod he concludes that the complete markets model cannot match the observed
consumption and real exchange rate growth rates. This result also holds using
panel data (Koedijk et al., 1996). More recently, Sercu and Uppal (2000) examine
a different set of countries than the set used by Kollmann (1995) for the post-
Bretton Woods era and find that there is a long-run relation between consumption
and real exchange rates, on the basis of the Johansen (1991) test. However, the
authors do not specify if the cointegration equation is consistent with the implica-

tions of IRBC models. Finally, Head et al. (2004) employ the GMM method and
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reject the hypothesis that there is a link between real exchange rates and relative
consumption levels.

As noted by Obstfeld and Rogoff (2000) the fact that real exchange rates
and consumption appear to be disconnected should be of no surprise given the
high volatility of real exchange rates under floating together with the low volatil-
ity of consumption. The discrepancy between theory and empirical evidence is
known as the “Backus and Smith puzzle” or the “consumption real exchange rate
anomaly”.

We argue that the empirical failure of IRBC models in previous studies may be
due to the linear framework adopted in conjunction with the relatively short span
of data available for the post-Bretton Woods era. Our line of reasoning is that
factors such as the cost of arbitrage, the presence of heterogeneous agents (noise
traders and rational speculators) in the market, and the fact that the equilibrium
rate cannot be observed directly by the arbitrageurs may lead to persistent and
inherently nonlinear deviations from economic fundamentals (e.g., Frankel and
Froot, 1990; Kilian and Taylor, 2001; De Grauwe and Grimaldi, 2006). Moreover,
we show that the sample correlation between the real exchange rate and relative
consumption levels may be small or negative even though there is a well defined
long-run structural relationship between the variables. Essentially the structural
relationship is a nonlinear dynamic one so that the sample contemporaneous cor-
relation may be misleading as to the structural relationship.?

When deviations from the equilibrium are small, arbitrageurs, who may be un-
certain about the exact value of the equilibrium exchange rate, may be dominated
by noise traders who can drive the exchange rate in the opposite direction. Hence,
small misalignments of the exchange rate will be left uncorrected. However, when
deviations from equilibrium become large a consensus is developed that the cur-

rency is overvalued or undervalued which, eventually, will result in driving the

2We are aware that real business cycle models that include incomplete asset markets , non-
traded goods or other market frictions can explain the contemporaneous correlation (see, e.g.,
Chari et al., 2002; Kehoe and Perri, 2002; Benigno and Thoenissen, 2008; Selaive and Tuesta,

2006).
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exchange rate towards its fundamental value. In this setting deviations from the
equilibrium exhibit a high degree of persistence and smooth threshold dynamics.
The hypothesis of a nonlinear adjustment to the equilibrium is also motivated by
the empirical regularities noted by Backus and Smith (1993) and Obstfeld and Ro-
goff (2000), and with the difficulty of finding cointegration when linear models
are used to analyse short spans of data.

The present study re-examines the validity of IRBC models during the re-
cent floating period. By expanding the span of data used by previous studies we
attempt to mitigate the low power of linear cointegration tests and to approxi-
mate the long-run relationship using the Johansen (1991) method. Subsequently,
we apply the linearity test of Escribano and Jorda (1999) to the deviations from
the IRBC equilibrium. We also consider two recent modifications of the linear-
ity test which account for conditional heteroskedasticity. Our findings support
the presence of smooth transition nonlinearity, which provides an explanation for
the failure of cointegration tests based on relatively short span of data (e.g., Pip-
penger and Goering, 1993). It appears that STAR models produce parsimonious
fits to the deviation series. The results of the Generalized Impulse Response Func-
tion (GIRF) suggest a fast adjustment process with half-lives between one to three
years.

The rest of the chapter is structured as follows. Section 4.2 provides a brief
discussion of IRBC models based on complete asset markets and ESTAR models.
The next section describes the data, the empirical methodology and the experi-

mental results. The final section concludes.

4.2 The Equilibrium Real Exchange Rate in IRBC

models

International Real Business Cycle models comprise an extension of the closed

economy Real Business Cycle models to an international setting where transac-
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tions take place both in goods as well as in financial markets (e.g., King et al.,
1988). In this setting, as long as financial markets are complete, risk sharing takes
place across countries with the real exchange rate being proportional to the ra-
tio of marginal utilities of consumption (see, e.g., Chari et al., 2002; Apte et al.,
2004). It follows that IRBC models with complete markets predict that higher real
consumption abroad lowers the real value of foreign currency.

To analyse this statement more formally we follow Kollmann (1995) and as-
sume a world with K countries indexed by k = 1, ..., K, each represented by an
infinitely lived agent. Furthermore, it is assumed that the goods consumed differ
across countries, which implies a non constant real exchange rate. Each country’s

preferences are given by

Uy = E, . k=1,... K, 4.1)

Z 5Z_suk,t(ck,t)
t=s

where, E is the expectations operator, 0, € (0, 1) is country k’s subjective dis-
count factor, uk.(-) is country k’s instantaneous utility function in period ¢, and
Cy,+ denotes consumption of country k. In equilibrium, the risk sharing condition

for any country pair (, j) and for all periods and states is

N @t m;y
2,
g ﬁ;mj,t ’

Qe =A

(4.2)

where Q; is the real exchange rate® in period ¢, A;; is a constant, and my; is
the marginal utility of consumption for country & = ¢,j. The above relation
should hold even if there are frictions in goods and labour markets, such as sticky
prices, sticky wages, and shipping costs, because their effect is already reflected

in consumption choices.

3The real exchange rate is defined as
Pis
=S 2>
Q: P

where S, denotes the nominal exchange rate, units of currency ¢ per unit of currency j, and Py ;
denotes consumer prices for country k.
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Taking logs and assuming that the utility function is iso-elastic with exponent
1 — ng, where n; denotes the coefficient of relative risk aversion of country k =
i, J, Equation (4.2) yields the model tested by Kollmann (1995) and Backus and
Smith (1993)*

gy = /\i,j +1n (%) t+mnicip — njci + 2z, 4.3)

]

where g4, \; j, ¢i s and c;; denote the logarithms of Q¢, A; ;, Ci; and Cj;, respec-
tively, and 2, denotes the deviation from the equilibrium implied by the model.
Given that the coefficient of risk aversion takes positive values, a country under-
going a real depreciation should experience relative consumption growth, with a

rate depending on the elasticity of intertemporal substitution in consumption.

4.2.1 Nonlinear Adjustment to Equilibrium

Recently, a number of authors have provided evidence in favour of smooth nonlin-
ear transition dynamics in the deviations of nominal exchange rates from macroe-
conomic fundamentals such as those suggested by the monetary model and the
PPP (see, e.g., Taylor and Peel, 2000; Taylor et al., 2001; Paya and Peel, 2006a).
A model that seems to parsimoniously capture the nonlinear mean reversion pos-

tulated is the ESTAR. An ESTAR model for the process {z:} may be written

p
2
2—p= p(z-p—p)exp (=7 (21— p)°) +e (4.4)
p=1
where v € (0,00) is the smoothness parameter, which determines the transi-
tion speed of function G(z;_1;7, ) = exp (—’y (ze-1 — ,u)z) towards the inner
or outer regime. The error term, ¢, is assumed to follow a white noise process

with mean 0 and variance o., and p is a constant. Equation (4.4) is a popular re-

formulation of the ESTAR model proposed by Granger and Terdsvirta (1993). The

“Backus and Smith (1993) derive a restricted model with identical risk aversion coefficients,
as well as, subjective discount factors across countries. Whilst a more general model than the one

of Kollmann (1995) is provided by Apte et al. (2004).
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exponential transition function, (), is particularly applicable because it implies
symmetric adjustment for positive and negative deviations from the equilibrium.
Further, the speed of adjustment is increasing with the smoothness parameter v
and the absolute value of the past deviation from the equilibrium. A particularly
interesting case is when 3?_ ¢, = 1. In this case, at the equilibrium G() = 1
and z; will behave as a unit root process, while for larger deviations G(-) € [0, 1)
and z; will mean revert. Hence, although 2, is a globally mean reverting nonlinear
process, it may exhibit a high degree of persistence, which provides an explana-
tion for the low power of stationarity test. Kilian and Taylor (2003) propose a
different ESTAR parameterisation. They argue that it is more intuitive to allow
the effect of the deviations from the equilibrium on the nonlinear dynamics to be

cumulative. To this end, the authors suggest modifying Equation (4.4) to

p d
2 — = Z Gp(2t—p — I1) €XD (—’yz (2t—a — u)2> + €, (4.5)
p=1 d=1

where d is a positive integer. Suppose that d differs from unity and that the
smoothness parameter, -, is significant. Then cumulative deviations are a more
informative indicator of whether the market is moving towards the equilibrium

value rather than a single past deviation of the process.

4.3 Data, Empirical Methodology and Experimen-

tal Results

We use quarterly data for private consumption, nominal exchange rates and con-
sumer price indices obtained from the International Financial Statistics database
for Canada, Germany, France, Japan, Sweden, the United Kingdom and the United
States. The sample period is from 1973:I to 2004:1V, except for Germany and
France, for which the sample period ends at 1998:1V. We set the U.S. dollar as the

reference currency for the empirical analysis.
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In order to investigate whether the consumption real exchange rate anomaly
is present in the examined data set, we initially utilise the correlation coefficients
between real exchange rates and relative consumption. These correlations vary
between —0.575 and 0.101,° indicating that the “Backus and Smith puzzle” re-
mains for the extended sample period. However, the correlation statistic may be
an inappropriate measure for testing the validity of IRBC models due to the pres-
ence of time trends in the equilibrium equation, different risk aversion parameters

and nonlinear dynamics.

4.3.1 Cointegration Analysis

IRBC models clearly predict that there should be a long-run relationship between
real exchange rates and consumption, or equivalently if the variables are integrated
of order one, /(1), they should form a cointegrating system. By the Granger
Representation Theorem (Engle and Granger, 1987) the above set of variables
must posses a Vector Error Correction Model (VECM) representation in which
the error term, z;, in Equation (4.3) comprises the deviations from the equilibrium.
Let y; = [qt, ¢it, Cnt) denote the 3 x 1 vector of the system’s variables, the VECM
is written

Y4
Ay =Y Tilye; + Tyey + wy, (4.6)

i=1
where A is the difference operator. The rank of matrix IT determines the number
of cointegrating relationships. If matrix II is of full rank, r = 3, the VECM
reduces to a vector autoregression (VAR) and y; is a stationary process. If IT is
the null matrix, 7 = 0, then the system’s variables are not cointegrated and the
underlying process is not stationary. Finally, if II is neither of full rank nor the
null matrix, 0 < r < 3, then there are r cointegrating relationships and IT can be

decomposed

II=an’ 4.7

5These values are similar to the ones reported in the literature (see, e.g., Chari et al., 2002).
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where n are the  cointegrating vectors determining the long-run equilibrium, and
o denotes the matrix of the adjustment coefficients.

It is well recognised that depending on the properties of the series under exam-
ination cointegration techniques may have low power when applied to short spans
of data. Further, due to serious small sample bias the coefficients obtained in
cointegration analysis can vary widely across country pairs making economic in-
terpretation very difficult (Froot and Rogoff, 1995). We examine this scenario by
extending the data set used by previous studies and applying the Johansen (1991)

methodology.

Table 4.1 reports the trace and A-max (maximum eigenvalue) statistics for
cointegration, and the long-run coefficients for consumption. Overall, the coin-
tegration results support the existence of a long-run relationship among real ex-
change rates and consumptions. On the basis of both the trace and A-max statistics
the null of no cointegration can be rejected for all countries but Japan at the 10 %
significance level.5 Both tests indicate that there is a single cointegrating relation-
ship between the system’s variables. As the last two columns of Table 4.1 report,
the long-run coefficients, nys and n;, are correctly signed for Canada, France,
Sweden and the United Kingdom suggesting that higher (lower) real consumption
abroad lowers (increases) the real value of foreign currency (see Equation (4.3)).
The implied relative risk aversion parameters are sometimes higher than the up-
per limit of ten suggested as reasonable by Rajnish et al. (1985). However, recent
work by Barro (2005) suggests that higher values may be realistic. It is noted that
the correlation coefficients for these countries with the exception of France are
negative. Therefore, the difference in the relative risk aversion coefficients and/or
the presence of a time trend (due to different discount rates between countries)
may result in negative contemporaneous correlations between the real exchange

rate and relative consumption.

6Japan is excluded from the remaining analysis since no cointegration was found.

84



‘A[oA10adsal JaAs] souedoyIugis
%01 PUB ‘04G ‘9] Y} I 9dUBOYIUTIS JJOUIP , ‘44 ‘x5 PISEAIOUI SEM YI3US] Fe] oY) § I19pI0 0) dn UONEB[ALIOD [BLISS PIJIQIYXD
s[enpisal DA Y} Jey) paredipur 1s3) AT Y3 Jey) 9sed oY) Ul ‘19Aomol sSe] g Jo Fus] wnwxew ¢ 10 Juimojre (DIS) UOLINLI)
UONRULIOJU] ZLBMIIS S JO SIS 3} UO PIUTULIIOP Sem (VA ) UoIssaIdaroiny 10309/ Y3 Jo YiSuo| Se| sy, 'SIOLIS pIepue)s dj0uUsp
sosoyjualed ut saindiy -9e1 23uRyOXd [l oY) 03 103dSaI YJim PISIEULIOU UI3q SeY J0)0oA Suneidajuiod oyl Lt = y Anunoo
10 7 sw je uondumnsuod [eas oY) ST ¥4 pue ajes dFueyoxs [eax oy s1 *b atoym (£ 2% “b) are sojqenea wdsAs Sy ‘HLON

@wrnp acn

65t  SO'S  «xx990€ 8011 100 #*xxSL 1Y 6011 100 ¢ wop3ury pajup
891) (60
V6 LSIT  sxx0S'SY  96°01 8TL x#abL'€9 T8I gcL /N8 uapamg
)
— — 88°LT 6611 W6V 6LYE 1691 w6y N L uede(
(czo) (L90)
I 9Ty #xbT9T  ISTI €Sy +8TTY 4091 ey ML Aueurien
860) (S1°D
10T SLL «L1'ST  SLTI LL'S  %69Tv  TS91 e N souel]
(L6 (157
1091  S8TI #xxCTTE  OF'8 YT0 xxxL8°0F  $98 vT'0 L epeue)
‘u SNy 0= I=>d4 g=>4 0=4d I1=>u4 g=>4 puann d { Anuno)

Xew-y

Qoe1]

S}[NSaY uoneidauIo) 14 dqel,

85



This is illustrated in Table 4.2 which reports correlation coefficients between
the real exchange rate and consumptions for three different cases. The first case
(p) corresponds to the Backus and Smith (1993) model where the relative risk
aversion coefficients are assumed to be identical and a time trend is not included
in the equilibrium value. In the second case (p,,), the assumption of identical risk
aversion coefficients is relaxed by using the estimates from Table 4.1. Finally,
we also consider the effect of different risk aversion coefficients and a time trend

(pirq) for the cases that the latter is significant in the cointegration analysis.

Table 4.2: The Consumption Real Exchange Rate Anomaly

Correlation  Canada France Sweden United Kingdom
p -0.575 0.101 -0.553 -0.274
Pra 0.393 0.045 -0.556 0.031
Ptra — 0.255 0.149 —

NOTE: p denotes the correlation coefficient between real exchange rate and relative consump-
tion, while p., is the correlation coefficient adjusted for the different levels of relative risk
aversion and p;, is the coefficient adjusted for both the different levels of relative risk aversion
and a time trend.

As far as Germany is concerned, although there is evidence of cointegration
the results are not in line with IRBC models since the coefficient of relative risk
aversion is negative. In summary, these findings support mean reversion towards

the time-varying equilibrium specified by IRBC models.

4.3.2 Linearity Testing

A complementary reason for the empirical regularities reported in the IRBC liter-
ature, such as the estimated values of correlation coefficients (Backus and Smith,
1993), the difference in volatility (Obstfeld and Rogoff, 2000), and the difficulty
of finding cointegration (Kollmann, 1995), may be that the deviations process is
governed by nonlinear dynamics. Next, we investigate whether the deviations
series exhibit significant STAR nonlinearity of the type suggested by Kilian and
Taylor (2003). Escribano and Jorda (1999) developed a linearity test that provides
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useful insights concerning the presence of STAR nonlinearity, and the specifica-
tion of the transition variable.

In deriving an LM test for the null of linearity against STAR nonlinearity
we adopt the typical STAR model (Terdsvirta, 1994; Escribano and Jorda, 1999;
van Dijk et al., 2002)

2= @'z + 0"z F (s, 7, ¢) + ug, (4.8)

where ; = (1,2-1,...,2p) , @ = (do,...,0p), @ = (bp,...,0,), s; is the
transition variable, + is the transition parameter and c is a constant. The transition

function F'(-) for the ESTAR model is defined by

F(s1,7,¢) = [1 —exp (—y(s: — ¢)%)] . (4.9)
In the case of a Logistic STAR (LSTAR) model
F(st,v,c) =[1+exp(—7v(st — c))]—1 ) (4.10)

Testing linearity in this framework is not straightforward due to the presence of
unidentified-nuisance parameters (Davies, 1977). Luukkonen et al. (1988) over-
come the identification problem by replacing F(-) with a Taylor series approx-
imation. The resulting equation permits the use of LM tests which asymptoti-
cally posses the x? distribution. Escribano and Jorda (1999) extended the work of
Luukkonen et al. (1988) and Terasvirta (1994) and proposed a new specification
strategy to choose between ESTAR and LSTAR models based on the following

equation’
20 = 00y + O, @y5; + OpsSE + O5TyS] + O4TS; + s (4.11)

e Estimate Equation (4.11) and obtain the p-value, p;, for the null hypothesis

"This new procedure appears to be consistent and to generate much higher correct selection
frequencies (see Paya and Peel, 2005).
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of linearity, Hj : ) = 85 = 85 = 6, = 0.
o If linearity is rejected,

— test the null Hf : 8, = 84 = 0 with an F-test and obtain the corre-

sponding p-value, pg.

— test the null H{ : 8] = 84 = 0 with an F-test and obtain the corre-

sponding p-value, p;.
o If pr < py select ESTAR, otherwise select LSTAR.

The implementation of the above procedure requires the specification of the
lag length p and the transition variable s;. We follow previous studies and set
p = 2 for all countries but Sweden and the United Kingdom, for which we set
p = 4 so as to deal with residual autocorrelation. Kilian and Taylor (2003) argue
that although most studies employ a single past deviation as the transition variable,
it is more intuitive to allow the effects of persistent deviations to be cumulative.
To this end, we consider s; = (Zgzl z2 )2, where d denotes the lag with the
minimum p-value for the null of linearity, H&, and we allow a maximum of 8 lags.

An important issue when testing the presence of STAR nonlinearities is the
presence of conditional heteroskedasticity in the model’s residuals. For example,
Lundbergh and Terasvirta (1998) examine the linearity test of Terdsvirta (1994)
and conclude that conditional heteroskedasticity may result in severe size dis-
tortions and that the robust version of Granger and Terasvirta (1993) appears to
have very low power.® Pavlidis et al. (2009b) show that the Escribano and Jorda
(1999) test exhibits similar problems as the test of Terdsvirta (1994) and inves-
tigate the performance of possible alternatives to improve its properties (size and
size-adjusted power). Their findings suggest that the use of the Heteroskedastic-
ity Consistent Covariance Matrix Estimator (HCCME) of MacKinnon and White

(1985) improves upon the size, but results in very low size-adjusted power. On

8See Lundbergh and Terdsvirta (1998) for the specification, estimation and evaluation of mod-
els with nontinear behaviour in the mean (STAR) and in the conditional variance (STGARCH),

the STAR-STGARCH model.
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the other hand, the Fixed Design Wild Bootstrap appears to lead to a marked im-

provement both in terms of size and size-adjusted power.’

Table 4.3: Linearity Testing

Country j P d D1 PE pL

Canada

OLS 2 8 0.002 0.008 0.003

HC 2 8 0.023 0.165 0.023

WB 2 8 0.008 0.028 0.010
France

OLS 2 7 0.066 0.029 0.017

HC 2 7 0.051 0.030 0.017

WB 2 7 0.080 0.052 0.030
Germany

OLS 2 3 0.298 0.133 0.118

HC 2 2 0.235 0.122 0.109

WB 2 3 0.364 0.226 0.194
Sweden

OLS 4 1 0.033 0.015 0.036

HC 4 6 0.308 0.692 0.753

WB 4 5 0.226 0.142 0.194
United Kingdom

OLS 4 2 0.006 0.014 0.012

HC 4 2 0.001 0.040 0.030

WB 4 2 0.036 0.044 0.040
NOTE: The length of the autocorrelation is denoted by p, while d shows the number of lags in-

cluded in the transition variable for which the p-value for the null of linearity, p;, is the lowest. pg
and py, are the p-values for the null hypotheses of LSTAR and ESTAR nonlinearity, respectively.

The results of the Escribano and Jorda procedure using the Least Squares
Covariance Matrix (LS), the Heteroskedasticity Consistent Covariance Matrix of
MacKinnon and White (1985) (HC), and the Fixed Design Wild Bootstrap (WB)
are presented in Table 4.3. Overall, linearity is rejected for the majority of cases.
For Canada, France, and the United Kingdom the results are qualitatively similar
between the three versions of the LM test. The null hypothesis, H}, is rejected
at least at the 10% significance level and the same transition variable is selected
for each country by all tests, d = 8,7 and 2. The latter finding supports the use

of the model proposed by Kilian and Taylor instead of the ESTAR model usually

9The Fixed Design Wild Bootstrap is described in detail in Chapter 2.
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adopted in the literature with d = 1. In the case of Sweden, only the original
version of the Escribano and Jorda procedure rejects the null of linearity at the
5% significance level, which implies that d = 1. Germany is the only country for
which the deviations from the equilibrium do not appear to follow a STAR pro-
cess. Although the results suggest the selection of an LSTAR model rather than
an ESTAR for all countries but Sweden the difference in the associated p-values
is marginal. Given that there is no prior reason for an asymmetric adjustment, the

remaining analysis focuses on ESTAR models.

4.3.3 Estimation of the ESTAR models and the Wild Bootstrap

We examine the performance of the two ESTAR models (4.4) and (4.5) (discussed
in Section 4.2.1) in capturing the nonlinear dynamics of the deviations series, z;.
While the former model is used for all countries, the model proposed by Kilian
and Taylor is only employed for Canada, France and the United Kingdom. This
is due to the linearity test results, which indicate that the effect of the deviations
are not cumulative, i.e. d < 2, for Germany and Sweden. Furthermore, we can-
not reject the restriction that z; follows a unit root process at the equilibrium,
Hy : >~ ¢, = 1. Table 4.3 shows the estimates of the restricted ESTAR models,
the standard error of the regression, the corresponding ¢-statistic, the Ljung-Box
(Q-statistic for serial correlation in the residuals and the LM test statistic (ARCH)
for conditional heteroskedasticity up to lags 1 and 4. The -statistic does not indi-
cate the presence of serial correlation in the regression residuals. However, there
is some evidence of conditional heteroskedasticity for Sweden and the United
Kingdom.

In order to test the significance of the smoothness parameter, +, in the presence
of conditional heteroskedasticity or non normality we employ the Fixed Design
Wild Bootstrap (see, e.g., Wu, 1986; Mammen, 1993; Davidson and Flachaire,
2001). The asymptotic validity of the Fixed Design Wild Bootstrap for stationary

autoregressions with known finite lag order when the error term exhibits condi-
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tional heteroskedasticity of unknown form is established in Gongalves and Kilian
(2004). Their results cover as special cases the N-GARCH, t-GARCH and asym-
metric GARCH models, as well as, stochastic volatility models. The procedure
we follow is to impose the null Hy: v = 0 and simulate 1,000 series for z;, denoted
by z? according to

p
L=i+ Z Op(2t—p — 1) + €. (4.12)

p=1
The residuals ¢® are constructed by multiplying the residuals obtained by the ES-

TAR model, é;, by a random variable, 7, that follows the Rademacher distribution

—1  with probability p = 0.5,

Uz
1 with probability (1 — p),

The 7, are mutually independent drawings from a distribution independent of the
original data. The distribution has the properties that E(n,) = 0, E(n?) = 1,
E(n?) = 0, and E(n}) = 1. A consequence of these properties is that any
heteroskedasticity or symmetric non-normality in the estimated residuals (¢;) is
preserved in the newly created residuals. '

This procedure provides an empirical distribution for 4 and the associated
standard errors. The idea in 1,000 replications is to determine the appropriate
t-values so we do not reject the null of 4 = 0. These critical values can then be
used to determine whether the estimates of 4 reject the null or not (see also Paya
and Peel, 2006a). The Wild Bootstrap p-values under the null Hy: v = 0, are also

reported in Table 4.4.

10The Wild Bootstrap matches the moments of the observed error distribution around the esti-
mated regression function at each design point (2%). Liu (1988) and Mammen (1993) show that
the asymptotic distribution of the Wild Bootstrap statistics are the same as the statistics they try to

mimic.
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Table 4.4: Estimated ESTAR Models

Canada

(a) Typical ESTAR Model Parameterisation

3, = —0.287 + (_1.002 (2_1 + 0.287) + (1 — 1.002 )(z_o + 0.287))-
tT 913 ([11.105]( -l [1.913]) ( [11.105])( 2 [1.913]))

-exp(— 0.069 (21 + 0.287 )2
exp( [3.217]( i +[1.913]) )
(0.010)

s = 0.146, Q; = 0.784 (0.376), Q4 = 3.803 (0.433),
ARCH; = 0.005 (0.946), ARCH, = 0.579 (0.678)

(b) Kilian and Taylor Parameterisation

3= —0.145 + (0.893 (z_1 + 0.145) + (1 — 0.893 )(z_2 + 0.145))-

[1783]  [9.467] [1.783] [9.467] [1.783]
-exp(— 0.032 38_, (z,_q + 0.145 )2
exp( [(%8262]2 -1z d+[1.783]) )

(0.000)

s = 0.137, Q; = 0.011 (0.917), Q4 = 2.739 (0.602),
ARCH, = 1.829 (0.179), ARCH, = 0.684 (0.605)

France

(a) Typical ESTAR Model Parameterisation

3, = 0.040 + ( 1.382 (z-1 — 0.040) + (1 — 1.382 )(z,_5 — 0.040))-

[0.900]  [14.423] [0.900] [14:423) [0.900]
-exp(— 0. L — 0.040)?
exp( [g.?glg’](zt ! [0.900]))

(0.000)

s = 0.074, Q, = 0.242 (0.623), Q4 = 3.378 (0.497),
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ARCH, = 0.087 (0.769), ARCH, = 0.294 (0.881)

(b) Kilian and Taylor Parameterisation

2= 0.066 — ( 1.310 (21 — 0.066 )+ (1 — 1.310 )(z_ — 0.066))-

[1.403] [i2.945] [1.403] [12.945] [1.403]
: —0.12137_ (z_q — 0.066 )2
exp( [2.551] a=1(%t-d [1.43?]))

(0.003)

s = 0.077, Q, = 0.231 (0.630), Q4 = 2.140 (0.710),
ARCH; = 0.271 (0.604), ARCH, = 0.602 (0.662)

Germany

(a) Typical ESTAR Model Parameterisation

3, = —0.028 + ( 1.190 (zo—1 + 0.028) + (1 — 1.190 )(z_s + 0.028))-
" [0774) ([11.797]( -t [0.774]) ( [11.797]) (22 [0.774]))

-exp(— 2. L+ 0.028)?
exp( [%ggg](zt ! +[0.774]) )
(0.000)

s = 0.066, Q, = 0.293 (0.588), Q4 = 2.138 (0.710),
ARCH; = 1.582 (0.211), ARCH; = 0.751 (0.560)

Sweden

(a) Typical ESTAR Model Parameterisation

3 = 0.010 + ( 1.180 (z_1 — 0.010) — 0.093 (z_5 — 0.010) + 0.200 -

[0.152] ' [13.342] [0.152] [0.709] [0.152] ' [1.536]
(2ze_3 — 0. — 1180 + 0.093 — 0.200)(2:—4 — 0.010))-
(2t-3 [%.?%Q]H(l [13.3%2]+[0.152] [1.536])(Zt ‘ [0.152]))
- exp(— 0. 1 - 0.010)2
exp( [g.g%)](zt ' [%.152]) )

(0.000)
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s = 0.159, Q; = 0.303 (0.582), Q4 = 0.540 (0.969),
ARCH; = 4.046 (0.047), ARCH; = 1.136 (0.343)

United Kingdom

(a) Typical ESTAR Model Parameterisation

2 = —0.051 + ( 1134 (z_1 + 0.051) + 0.034 (2_5 + 0.051) + 0.078 -

[1151] | [12.547] [1151]  [0.259] [1.151]  [0.590]
(ze_3 4+ 0.051) +(1— 1.134 — 0.034 — 0. 440 :
(23 [1.151]) ( [12.547] [0.259] [%.(s]gg])(zt 4+[9.(1)§11]))
-exp(— 0.652 (2s_1 + 0.051)2
exp [3.276](Zt 1+[?.(1)§)11]) )

(0.000)

s = 0.075, Q1 = 0.045 (0.832), Q4 = 2.379 (0.666),
ARCH; = 5.212 (0.024), ARCH, = 2.163 (0.078)

(b) Kilian and Taylor Parameterisation

2= —0.046 + ( 1.093 (z—1 + 0.046) + 0.082 (z;_2 + 0.046 ) + 0.095 -

[1.198] = \[12.233] [1.198] ' [0.617] [1.198] ' [0.725]
(zp_3+ 0.046) + (1 — 1.093 — 0.082 — 0.095)(z_s + 0.046))-
(a1 3+[1.198])+( [12.233] [0.617] [0.725])(2‘ 4+[1.l98]))
-exp(— 0.387 22_ (2,_q + 0.046 )2
exp( [3%%4] a=1(% d+[1.198]))

(0.000)

s = 0.074, Q, = 0.008 (0.930), Q4 = 1.645 (0.897),
ARCH, = 4.936 (0.028), ARCH, = 1.801 (0.133)

NOTE: Figures in square brackets denote the ratio of the absolute value of the estimated
coefficient to the estimated standard error of the coefficient estimate. The Wild Bootstrap
p—values for the v coefficient are reported in parentheses below the coefficient estimates. s
is the standard error of the regression. Q; and Q4 denote the Ljung-Box Q-statistic for serial
correlation up to order 1 and 4, respectively. ARCH; and ARCH, denote the LM test statistic

for conditional heteroskedasticity up to order 1 and 4, respectively.

94



The Wild Bootstrap p-values imply that the estimated transition parameters are
in each case significant for all conventional levels, which supports the nonlinear
nature of the deviation processes. Therefore, the difficulty of detecting cointegra-
tion in short samples may be attributed to large and persistent deviations generated
by the ESTAR adjustment mechanism. Further, the high short term volatility of
the real exchange rates compared to the volatility of the consumption series is,
also, in accordance with the implications of the ESTAR model. We conduct a

Monte Carlo experiment in the which illustrates the above points.

4.3.4 Generating the Puzzle

We are interested in examining the behaviour of the correlation coefficients be-
tween the real exchange rate and relative consumption and the properties of linear
cointegration tests when the true DGP is nonlinear.

To this end, we calibrate nonlinear models by using parameter values similar
to the estimated ones. For simplicity we assume that the two consumption series

follow a driftless random walk

Cit = Cig—1 + Ui, u;t ~ N(0,0.02),

Cjit = Cjt—1 + Ujts u; ~ N(0,0.02),
while, the DGP for the real exchange rate is given by

QG = —0.07t + 60“ - QCj,t + (1.2(qt_1 + 007(t - 1) - 6Ci,t—1 + 90j’t_1) —
—0.1(qe—z + 0.07(t — 2) — 612 + 9¢js-2) + 0.2(ge—s + 0.07(t — 3) —
—6¢c;¢-3+ QCj,t_3) + 0.1(qt_4 + 0.07(t - 4) —6cis_q4 + QCj,t_4)) .

-exp (—0.3(ge-1 +0.07(t — 1) — 6cip—1 + 9 % Cj,t-1)2) te,

where ¢, ~ N(0,0.15). We set the sample size equal to 128 observations and gen-
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erate 1,000 series for each variable. In turn, we obtain the correlation coefficients
between the “fake” real exchange rate series and the “fake” relative consump-
tion. The percentage of negative correlation coefficients is 46.4, implying that the
likelihood of observing a small or negative correlation is large.

Further, we examine the power of the Johansen (1991) test to detect cointegra-
tion between the “fake” ¢, ¢;; and c¢;;. The null hypothesis of no cointegration
can be rejected in 43.1 percent of the cases when the nominal significance level
is 10 percent. However, if we change the sample size to 70 observations, which
is about the sample size used by Kollmann (1995), the power deteriorates to only

15.7 percent, indicating the importance of the sample length.

4.3.5 Generalized Impulse Response Functions

In this context, it is also of importance to investigate whether the estimated nonlin-
ear models, as well as, the inclusion of the equilibrium determinants can explain
the PPP puzzle regarding the slow rate at which shocks appear to damp out. Im-
pulse response analysis addresses this issue by focusing on the effect of a shock on
the behaviour of the deviation process. However, a number of studies have shown
that impulse response analysis is considerably more complex for nonlinear mod-
els when compared to linear models (see Gallant et al., 1993; Koop et al., 1996;
Potter, 2000; van Dijk et al., 2007). In particular, impulse responses produced by
nonlinear models are history dependent, so they depend on initial conditions; they
are dependent on the size and sign of the current shock; and they depend on the
shocks that occur in future periods. Koop et al. (1996) propose a measure, the
Generalized Impulse Response Function (GIRF), which deals with the complica-
tions entailed in impulse response analysis for nonlinear models. The GIRF is
defined as the average difference between two realizations of the stochastic pro-

cess, zi4n, which start with identical histories up to time ¢ — 1, but only the first
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realization is hit by a shock of magnitude &, at period ¢.
GIRF(h, 5t,wt—1) =F [Zt+h|€t = 5t,wt—1] -FE [Zt+h|wt—1] > (4-13)

where h = 1,2. .. denotes horizon, ¢; = §; is an arbitrary shock occurring at time
t, and w;_ is the history set of z;. Given that the GIRF(h, §,w;_1) is a function
of é; and w;_,, which are realizations of random variables, the GIRF(h, 6, w;_,)
itself is a realization of a random variable. It follows that various conditional
versions of the GIRF can be defined. For example, we can condition on the shock
and treat the variables generating the history as random. Alternatively, we can
consider a specific history and treat the GIRF as a random variable in terms of the
shock. In general, we can condition on a subset of shocks and a subset of histories,
depending on the specific application. In this work we choose to condition upon
‘all past histories’ so as to examine the time profile of the effects of shocks of
different magnitudes on the future patterns of the series variable.

Due to the fact that analytic expressions for the conditional expectations in-
volved in (4.13) are usually not available for 4 > 1, we use bootstrap integration
methods (see Koop et al., 1996, for a detailed description) to overcome the issue
of future shocks intrinsically incorporated in the model.!! In particular, for each
available history 200 repetitions are implemented to average out future shocks,
where future shocks are drawn with replacement from the models residuals, and
then the results across all histories are averaged. The maximum impulse response
horizon is set to 48 quarters and we consider shocks of magnitude 6, = ¥,
where &, is the residual standard deviationand ¢ = 1, 3, 5.

In order to measure the rate at which the final effect of an impulse, J;, is

attained we compute the 7-life or -absorption time (see van Dijk et al., 2007)

N(m, 0 wem1) = Y (1 = | R 5t,wt_1)> , (4.14)

m=0 h=m

'l An analytical expression of the “impulse response function” for the deterministic skeleton of
a restricted ESTAR model is provided by Venetis et al. (2007).
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Table 4.5: Estimated w-lives of Shocks

Shock Absorption
Country 0y 0.25 0.50 0.80
1 X &, 64 14 (10) 34 (22)
Canada 3 x &, 54) 11 (8) 30 (18)
5 X &, 3(3) 9 (6) 25(13)
1 x &, 7(7) 10 (9) 17 (15)
France 3 X g, 7(6) 10 (9) 17 (15)
5 X &, 5(5) 8 (8) 15 (13)
1 % 6. 4() 7() 13 (-)
Germany 3 X &, 3() 5(0) 12 (-)
5 X &, 2(-) 30) 90)
1 x 6. 7() 9() 12 (-)
Sweden 3 X a, 6(-) 8 () 11 (-)
5 X 0 40) 6() 90)
1x &, 709) 9(11) 11 (14)
United Kingdom R 5@ 709 10 (13)
5 X b, 4 (5) 5@ 8 (11)

NOTE: The table reports the absorption time for the typical ESTAR parameterisation and the
Kilian and Taylor parameterisation. Figures in parentheses correspond to the latter. In the cases of
Germany and Sweden only the typical ESTAR parameterisation is employed.

where 0 < 7 < 1 and I(m,h,d;,w—1) is the indicator function which takes the
value of 1 if at least a fraction 1 — 7 of the difference between the initial and
ultimate effects of &, has been absorbed after h periods and 0 otherwise.'> The
n-life corresponds to the minimum horizon beyond which the difference between
the impulse responses at all longer horizons and the ultimate response is less than
or equal to the fraction 7 of the difference between the initial impact and the ulti-
mate response. Note that the above definition of 7-life differs from the definition
usually adopted in the literature, which is the shortest horizon at which at least
a fraction 1 — 7 of the initial effect, J;, has been absorbed. This is an appealing
feature since monotonicity is not granted. That is, /{7, h, ;,w;—1) = 1 does not

necessarily imply I(7, h + j, 0, wi—1) = 1,Vj > 0.

12The indicator function is defined as

I(m, h,8;,w;_1) = I [|GIRF(h, b;,ws_1) — GIRF™(ds, we—1)| < |6 — GIRF™ (8, we—1)]]
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Table 4.5 displays the 7-lives of shocks for the estimated ESTAR models of
the deviation series (see Table 4.4). The results reported further illustrate the non-
linear nature of the real exchange rate with time-varying equilibrium models, with
the absorption time decreasing with the size of the shock. Moreover, the reduction
in the time needed to absorb fraction (1 — ) of different size shocks depends on
the proportion (1 — 7). In other words, if the shock increases from 16, to 54, the
reduction in the time needed to absorb 25% of both shocks is not generally the
same as the reduction in time needed to absorb 50% of the shocks. The half-lives
corresponding to the smallest shocks range between 7 and 14 quarters, while for
the largest shocks the half-lives range between 3 and 9 quarters. The absorption
time also depends on the specific ESTAR formulation. For Canada and France
the absorption time is much smaller when the Kilian and Taylor ESTAR model
is adopted, but not for the United Kingdom. However, the results are qualita-
tively similar. Given that consensus estimates of linear models suggest a half-life
between 3 and 5 years (see Rogoff, 1996), these results, in accordance with the
results of other studies adopting a nonlinear framework, seem to go some way

towards solving the PPP puzzle.

4.4 Conclusion

The present study adopts an IRBC framework, where the equilibrium real ex-
change rate is determined by consumption series. By focusing on the recent float,
we find evidence in favour of a long-run relationship in line with the risk sharing
condition implied by IRBC models with complete markets for most of the coun-
tries under examination. The results of linearity tests indicate that the deviations
from the equilibrium, as estimated by the Johansen (1991) method, exhibit STAR
nonlinearity. We fit ESTAR models and employ the Fixed Design Wild Bootstrap
so as to draw inferences in the presence of conditional heteroskedasticity. The
estimated models appear to parsimoniously fit the deviation processes. The non-

linear nature of the series provides an explanation for the empirical regularities
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noted in literature, as well as, the discouraging results reported for shorter spans
of data. Finally, we address the PPP puzzle regarding the slow absorption rate of
shocks by employing GIRFs. Our findings suggest that shocks to the deviations

from the IRBC equilibrium have short half-lives.
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CHAPTER 5

Real Exchange Rates and Time-Varying Trade

Costs

The difficulty lies not so much in devel-
oping new ideas as in escaping from old

ones.

John Maynard Keynes (1883 — 1946)

5.1 Introduction

Trade costs can exhibit significant economic magnitudes and can play an essen-
tial role in addressing several major puzzles in international economics (Obstfeld
and Rogoff, 2000; Anderson and van Wincoop, 2004). In the Purchasing Power
Parity (PPP) framework, equilibrium models of real exchange rate determination
demonstrate how trade costs induce nonlinear but mean reverting adjustment to-
ward PPP and, hence, provide a possible explanation for the well-documented
persistence in the real exchange rate (Dumas, 1992; O’Connell and Wei, 2002;

Taylor and Taylor, 2004). For example, O’Connell and Wei (2002) extend the
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iceberg model of trade to allow for fixed as well as proportional costs of arbitrage.
As a consequence, the tendency of the real exchange rate to return to the equilib-
rium rate will become apparent only for misalignments which cover the level of
transactions costs and imply arbitrage opportunities. Small misalignments, close
to equilibrium and within the transactions band, will be left uncorrected so that
the real exchange rate will exhibit near unit root behaviour.

In a number of empirical contributions trade costs are assumed constant and
the implied type of nonlinear behaviour of the real exchange rate is modeled by
the Exponential Smooth Transition Autoregressive (ESTAR) model (see, e.g.,
Michael et al., 1997; Kilian and Taylor, 2003; Taylor, Peel and Sarno, 2001).
However, it can be argued that this assumption is too restrictive over long time
periods.! In a recent study, inspired by the gravity literature, Jacks et al. (2008)
present an aggregate micro-founded model which allows the construction of long
span trade costs series. The authors illustrate that trade costs related to the ex-
change of goods across countries, far from been constant, have exhibited sub-
stantial and nonmonotonic changes from 1870 to 2000.2 This finding has po-
tentially important implications concerning the behaviour of the real exchange
rate. Because trade costs vary in time so does the speed of mean reversion for
a given PPP deviation (see, e.g., Dumas, 1992; Sercu et al., 1995). Intuitively,
when trade costs increase (decrease) the trade costs band—in which no trade takes
place— widens (narrows) and the real exchange rate process becomes more (less)
persistent. Hence, the persistence of the real exchange rate does not only depend
on the size of the deviation but also on the level of trade costs at each particular
point in time. Neglecting significant changes in trade costs leads to underestimat-
ing/overestimating the degree of persistence and the time required for the process

to absorb shocks at specific periods.

'Clemens and Williamson (2001) and Mohammed and Williamson (2004) among others illus-
trate that tariffs and global freight rates have fluctuated substantially in the last century. These
studies focus on specific impediments of trade costs and, therefore, provide indirect evidence of
time-varying trade costs. A survey on recent developments in the measurement of total trade costs
and their components is provided by Anderson and van Wincoop (2004).

2Consequently, the effect of trade costs cannot be approximated by deterministic trends.
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The contribution of this chapter is to report estimates and the properties of two
smooth transition regression models of the real exchange rate which incorporate
time-varying trade costs. The models are fitted to a long span of data (1830-
2005) for the dollar-sterling real exchange rate and the trade costs index for the
United Kingdom-United States country pair. Our choice is based on the fact that
the relationship between trade frictions and the persistence of the real exchange
rate should become apparent over long time periods in which large fluctuations of
trade costs occur.

The rest of the chapter is structured as follows. In Section 5.2, we present
the trade costs measure of Jacks et al. (2008). Section 5.3 outlines our nonlinear
models of the real exchange rate. Section 4 deals with the description of the data
and the empirical results. A summary and concluding comments are offered in

the last section.

5.2 Trade Costs

“Trade costs, broadly defined, include all costs incurred in getting
a good to a final user other than the marginal cost of producing the

good itself”
Anderson and van Wincoop (2004, p. 691).

Obviously, trade costs break down into a vast number of components such as
transportation costs (freight rates and time costs), policy barriers (tariffs and non-
tariff barriers), informational costs and costs associated with the use of different
currencies. The fact that several of these components are unobservable and data
limitations pose serious problems in obtaining accurate estimates of the magnitude
of total trade costs by direct atheoretical measures. The gravity literature circum-
vents this obstacle on the basis of theoretical models which enable measuring the

degree of trade restrictiveness by extracting information from trade flows.
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In this framework, Jacks et al. (2008) present a micro-founded measure of
aggregate bilateral trade costs that captures trade frictions. The key idea in the
derivation of their measure is that changes in trade barriers have an effect on both
international and intranational trade. By establishing a relationship between coun-
tries’ average international trade barriers and intranational trade, trade costs can be
obtained directly from observable trade data without imposing a particular trade
cost function (Novy, 2008).

Consider a world consisting of N countries and a continuum of differentiated
goods. Anderson and van Wincoop (2003) derive the following gravity equation

of international trade 1
e tii i

zij = % (H—;)) , (5.1)
where z; ; are nominal exports from country ¢ to j. Income levels of country ¢,
country j and world income are denoted by y;, y; and y,,, respectively. The elas-
ticity of substitution, o, is assumed to be constant and greater than unity. The
cost of importing a good or, equivalently, the trade cost barrier (one plus the tariff
equivalent) is ¢; ; > 1. Finally, the price indices (or outward and inward multi-
lateral resistance variables) II; and P; for countries 7 and j represent the average
trade restrictiveness of the countries. Novy (2008) uses Equation (5.1) to obtain

a bidirectional gravity equation, which includes inward and outward multilateral

resistance variables for both countries,

giimy = | 22 LTI (5.2)
Ty ) \ILAILP ) '

In turn, the author makes use of the fact that intranational trade, like international

trade, depends on the magnitude of trade barriers, z;; = ((¥i¥:)/Yw) (ti:)/(ILP;)
so as to control for multilateral resistance. Substituting into the bidirectional grav-
ity equation yields

£t

l-o

4 g

TijTji = Ti;ilyj (t—t_> : (53)
iilj,j
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The geometric average of the tariff equivalent can now be obtained by

TE(M)%—I*—‘(M)ﬁ—l. (5.4)
tiitig Ti T

The above equation states that a drop in trade flows between countries with respect
to trade flows within countries is associated with higher trade costs. Note that the
micro-founded measure evaluates bilateral trade costs against the domestic trade
cost benchmark. Further, it enables the construction of long-span trade costs series
since its estimation only requires data for bilateral exports and intranational trade.

The latter variable can be approximated by subtracting aggregate exports from a

country’s Gross Domestic Product (GDP) (Jacks et al., 2008).

5.3 Nonlinear Adjustment & Time-Varying Trade

Costs

Let us define the log real exchange rate as ¢; = s; — p: + p;, where s, 1s the
logarithm of the spot exchange rate (the domestic price of foreign currency), p; is
the logarithm of the domestic price level and p; the logarithm of the foreign price

level.

5.3.1 The ESTAR Model

A widely employed nonlinear econometric model that can capture the behaviour
of the real exchange rate in the presence of constant trade costs is the Exponential
STAR (ESTAR) model advocated by Terdsvirta (1994). The appealing feature of
the ESTAR model is that it allows transitions between a continuum of regimes to
occur smoothly and symmetrically. In this setting, the speed of mean reversion
is an increasing function of the size of the absolute deviation from equilibrium.
This property is suggested by the analysis of Dumas (1992) and demonstrated by

Berka (2005). In addition, Terdsvirta (1994) argues that if an aggregated process
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is observed, regime changes may be smooth rather than discrete as long as hetero-
geneous agents do not act simultaneously even if they individually make dichoto-
mous decisions. All the above favour the use of ESTAR models over Threshold
Autoregressive (TAR) models, in which changes of persistence occur abruptly.?

A STAR model for the process {g; } may be written as

P
G — 1= ¢p(q—p— w)G;(") + &, (5.5)
p=1

where p is a constant representing the long run equilibrium, ¢; is a white noise
process with mean 0 and variance o, and G,(+) is the transition function. For a
given AR structure, §=1 ®p, the transition function, G,(-), specifies the degree
of persistence of the real exchange rate at each point in time. In the presence of

constant trade costs, the transition function for the ESTAR model is given by

G1(gi—a) = exp (—7* (g—a — 1)?) (5.6)

where ¢;_g4 is the transition variable and v > 0 is the smoothness (or transition)
parameter. The exponential transition function G, is particularly applicable be-
cause it implies symmetric adjustment for positive and negative deviations from
the equilibrium. Furthermore, the speed of adjustment is increasing with the
smoothness parameter y and the absolute value of the past deviation from the
equilibrium. For expositional reasons, we assume that Eﬁ _, ¢p = 1 throughout
this section. In this case, at the equilibrium G;(-) = 1 and the real exchange
rate behaves as a unit root process, g; = EZ:I ®p(q—p — 1) + €. Whilst, for
nonzero deviations G1(-) € [0,1) and the process becomes mean reverting. Fi-
nally, if |¢;_q — pt| — oo the function value approaches zero and the process is
white noise, q; = ¢;. The speed of transition between regimes is specified by the
smoothness parameter . If «y is equal to zero the real exchange rate behaves as a

linear unit root process irrespectively of the regime. Whilst, if v — oo the process

3Note also that the incorporation of trade costs in TAR models is not straightforward.
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becomes white noise. Intermediate values of v imply smooth adjustment of the
real exchange rate.

Let us consider two deviations from PPP which have the same size but occur
at different time periods, |g;,—a — 1| = |gi,—a — p| # 0 with {; < t,. The fact
that -y 1s constant in the typical ESTAR model implies that the real exchange rate
will exhibit the same degree of persistence at time ¢; and ¢,. Conditional on the
assumption of constant trade costs this is an attractive property. However, if trade
costs vary in time so will the speed of adjustment. An increase (decline) in trade
costs, 7, during the two time periods, 73, -4 # T;,—4, Will induce higher (lower)
persistence of the real exchange rate and, therefore, a decrease (increase) of the
« parameter. Hence, time varying trade costs can be incorporated into Equation
(5.6) by allowing ~ to change over time depending on 7;_,4. By assuming a linear
relationship between the value of the smoothness parameter and trade costs, the
transition function for the Time Varying Trade Costs ESTAR (TVTC-ESTAR) is
given by

G2(Qt—d7 Tt—d) = exXp ("(7 - ’YTTt—d)2 (Qt—d - #)2) ) (5.7)

where the coefficient, +,, on trade costs is greater than zero and v > 7,744 V
t. The above equation allows both the degree of trade restrictiveness and the size
of the deviation from the equilibrium to determine the speed of adjustment of the

real exchange rate at a particular point in time (see Figure 5.1).

5.3.2 The QLSTAR Model

An alternative model to the ESTAR that captures the theoretical insights of the au-
thors above and allows us to parsimoniously encompass the influence of fixed and
proportional time-varying trade costs is the Quadratic Logistic Smooth Transition
Autoregressive (QLSTAR) model of Jansen and Terésvirta (1996). The transition
function of the QLSTAR model is given by

Gi(qr-a) = 1 — (1 + exp (—7*(gt—a + c1)(gt-a + @), (5.8)
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Figure 5.1: The exponential transition function (left) for 0.75 < v — y,74_q4 < 3,
¢t-a € {—1,...,1}, and p = 0. The quadratic logistic transition function (right)
fory=2.146,q-q € {-1,...,1},0.17 < c+ ¢;74—¢ < 0.52,and u = 0.
where ¢c; = —p — cand ¢; = —u + ¢ with ¢ > 0 are the band coefficients. The
quadratic logistic transition function G3(-) is particularly applicable because it, as
the exponential function, implies symmetric adjustment for positive and negative
deviations from the equilibrium. Further, the QLSTAR model specified by Equa-
tion (5.8) can approximate ESTAR models but also nests three regime Threshold
Autoregressive (TAR) models and linear AR models. In contrast to TAR and ES-
TAR models, the QLSTAR allows the type of adjustment (smooth or discrete)
between regimes to be specified by the data and, at the same time, can approxi-
mate narrow and wide “bands of inaction”. Hence, the model allows for both fixed
and proportional costs. Overall, the model is particularly applicable when one is
agnostic about the range of the “band of inaction” and the type of transition.
Suppose that regime changes occur abruptly rather than gradually (see Sercu
et al., 1995), which favours the use of TAR over ESTAR models. If v — oo and
Gi—q < C1 OF g;_q > Co the transition function value equals zero and g; becomes
white noise. Whilst, inside the “band of inaction”, ¢; < qi—q < c2, G%(-) equals
one and ¢; behaves as a unit root process. Note that an increase in trade costs
will widen the “band of inaction” and, therefore, result in higher absolute values
of the band coefficients, c; and c,. At the other extreme, when v = 0 the model

becomes linear. For moderate values of v, the QLSTAR model can approximate
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both ESTAR and TAR models. The speed of mean reversion increases with the
absolute deviation from the equilibrium. If |¢;_q—u| — oo the process approaches
the white noise regime (outer regime). Whilst, in the inner regime, ¢;—4 — p = 0,
the degree of persistence is given by the maximum value of the transition function

G3

Gi(w) =1 (L+exp(v’c?)) ", (5.9)

which is determined by the transition parameter vy and the coefficient c. Conse-
quently, changes in y or c lead to different degrees of persistence at the equilib-
rium. Due to the fact that there is no a priori reason why changes in trade costs
should alter the degree of persistence in the inner regime, we modify Equation

(5.8) as follows

2

-1
G3(gr-a) =1 - (1 + exp (‘%j(%-d + c1)(gt-a + C2))> : (5.10)

The maximum value of G3(-), which again occurs at the equilibrium rate, is

Gy(u) =1— (1+exp(r?) ", (5.11)

and is independent of the value of the band coefficient. The above modification
enables the incorporation of time-varying trade costs in the QLSTAR model in a
straightforward manner. The transition function for the Time-Varying Trade Costs

QLSTAR (TVTC-QLSTAR) is given by

G4(Qt—da Tt—d) =
2 -1
[1 - (1 + exp (“z‘c_*_—zz_r)z(qt—d + ¢3)(ge—q + 04))) }(5-12)

where cg = —p4 — c— ¢;Ti—gand ¢4 = —p + ¢ + ¢, Ty_q With c3 < ¢4 are the
time-varying band coefficients, c is a positive constant, ¢, > 0 is the coefficient

on trade costs 7.* Controlling for +, the speed of mean reversion decreases with

4We have scaled the trade costs index so as to have a minimum value of zero. Consequently, ¢
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the absolute value of the band coefficients ¢; and c¢,, and increases with the past
deviation from the equilibrium rate (see Figure 5.1).> We examine the impact of
trade costs on the speed of mean reversion of the real exchange rate in the next

section.

5.4 Empirical Results

Our data set consists of annual observations for the dollar-sterling real exchange
rate and the corresponding trade costs index from 1830 to 2005. For the construc-
tion of the real exchange rate we use the International Financial Statistics database
to update the nominal exchange rate and the price indexes analysed in Lothian and
Taylor (1996). International trade data are obtained by Mitchell (2008b,a) and
GDP series for the United States and the United Kingdom are taken from Officer
(2008) and Johnston and Williamson (2008), respectively.

Figure 5.2 shows the demeaned real exchange rate and the trade costs series. In
line with Jacks et al. (2008), the latter exhibits significant fluctuations throughtout
the period. Specifically, until the beginning of the 20th century trade costs were
relatively low. Subsequently, the war and interwar periods were associated with a
remarkable increase of bilateral trade costs with respect to intranational domestic
costs. During this time interval the series displays two peaks, the first in 1935
following the Great Depression, and the second in 1946 at the end of the second
World War and the establishment of the Bretton Woods system. A gradual decline
has occurred since then.

After running a battery of linearity tests on the real exchange rate series, which
indicate the presence of smooth transition nonlinearity, we examine whether trade

costs are an important constituent of the nonlinear adjustment mechanism of the

reflects the lowest level of trade costs in time.

SNote that dividing the smoothness parameter v2 by (¢ + ¢;74—q)? also implies that changes
in the persistence of the process become more abrupt as 7;—g decreases. This behaviour is in line
with the presence of both fixed and proportional costs which move together in time (O’Connell
and Wei, 2002).
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Figure 5.2: Time series plots of the demeaned dollar-sterling real exchange rate
(left) and the United States-United Kingdom trade costs index (right).

real exchange rate.® The results for the nonlinear models with constant and time-
varying trade costs are reported in Table 5.1.7 Overall, all models provide a parsi-
monious fit to the real exchange rate. However, the incorporation of time-varying
trade costs leads to a radically different adjustment process. The statistical signif-
icance of the coefficient -y, and the band coefficient ¢, of the TVTC-ESTAR and
TVTC-QLSTAR models, respectively, indicates that movements in trade costs can

help explain changes in the level of persistence of the real exchange rate.® An in-

6Specifically, we employ the testing procedures proposed by Terisvirta (1994), Harvey and
Leybourne (2007), and Kapetanios et al. (2003). The first two are general procedures for testing
linearity against smooth transition nonlinearity. The main difference between them lies in the fact
that the null critical values for the test of Terdsvirta (1994) are based on the assumption of an I(0)
process, whilst, the test of Harvey and Leybourne (2007) allows for both I(0) and I(1) processes.
We find that the hypothesis of linearity can be rejected at the 5 and 10 percent significance levels,
respectively. Finally, the test of Kapetanios et al. (2003) shows that the null hypothesis of a unit
root in the real exchange rate against the alternative hypothesis of a globally stationary exponential
smooth transition autoregressive process can be rejected at all conventional levels of significance.
See also the results presented in Chapter 3.

"The models are fitted to the demeaned real exchange rate. The lag length of the autoregressive
part and the variables which enter the transition function are specified on the basis of residual
diagnostics and, subsequently, the statistical significance of the coefficients of the models. In the
estimation procedure we impose the restriction ¢; = 1. This choice is based on the fact that
the AR coefficient is not statistically different from unity in the estimated ESTAR models with
constant and time-varying trade costs and in the TVTC-QLSTAR model. Further, the results for
the unrestricted models are qualitatively the same. For the standard QLSTAR model imposing
the restriction ¢; = 1 allows convergence of the nonlinear least squares algorithm. Note that
this restriction does not necessarily imply a unit root behaviour of {g;} in the inner regime when
QLSTAR models are applied since the maximum value of the transition function may differ from
unity.

8yPaya and Peel (2006a) emphasise that the high degree of persistence of both the dependent
and explanatory variables (such as the trade costs series) that enter the transition function may
give rise to a spurious regression problem. To this end, we report the bootstrap p-values for the
coefficients on trade costs. The null Data Generating Process (DGP) in the simulation experiment
is given by the fitted ESTAR and QLSTAR models.
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crease in trade costs widens the “band of inaction” and reduces the speed of mean

reversion for a given PPP deviation.

Table 5.1: Estimated Nonlinear Real Exchange Rate Models

Panel A, ESTAR
3+ 0.016 = (g;—1 + 0.016 ) exp(—1.505%(g;—1 + 0.016 )?).
“T 0:690) (gt-1 (0.690)) ( (7.102)(% ' (0.690)) )

s = 0.064; Q; = 0.140 [0.062; Qs = —0.127 [0.227]; ARCH; = 0.557 [0.456];
ARCH; = 0.802 [0.550).

Panel B, TVTC-ESTAR

i — 0.066 = (g1 — 0.066 ) exp(—(3.552 — 5.324 7;_5)%(qe_a — 0.066)2).
* T 3262) (-1 (3.262)) xP( ((5.130) %(3).1§§]%t 2) (-2 (3.262)) )
0

s = 0.063; Q, = 0.035 [0.642]; Qs = —0.161 [0.374]; ARCH; = 1.538 [0.217];
ARCHj = 0.538 [0.747).

Panel C, QLSTAR

b+ 0.014 = (go_y + 0.014)[1 — (1 + exp(—1.8292/0.402%(g;_; — 0.387
“ 0636) (91 (0.656))[ ( p( (6.700)/ (5.853)(Qt1 )

*(Gor + 0.416)))‘1].

s = 0.064; Q; = 0.141 [0.061]; Qs = —0.126 [0.219]; ARCH; = 0.535 [0.465];

ARCH; = 0.786 [0.561].

Panel D, TVTC-QLSTAR
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G — 0.059 = (gor — 0.059)[1 — (1 + exp(—2.1462/( 0.172 + 0.587 7,_p)?

(4.064) (4.064) Gi811) '(6929) ' (4.488)
[0.008]
-1
* (Ge_s — 0.231 — 2:23'87)7}—2)(%—2 +0.1128 + (g..ggg)n_z))) }
[0.008] [0.008]

s = 0.063; Q; = 0.020 [0.787]; Qs = —0.154 [0.426]; ARCH; = 0.667 [0.411];
ARCH; = 0.344 [0.886].

Notes: Figures in parentheses and square brackets denote absolute t-statistics and p-values,
respectively. The p-values for the coefficients on trade costs 4, and ¢, are obtained through
a simulation exercise, where the bootstrap DGPs are the fitted ESTAR and QLSTAR models,
respectively. For illustration purposes, we report the summation of the long run equilibrium
estimate and the constant part of the band coefficients i + ¢é. s is the standard error of the
regression. (J1 and Q5 denote the Ljung-Box Q-statistic for serial correlation up to order 1 and
5, respectively. ARCH; and ARCHj5 denote the LM test statistic for conditional heteroskedas-

ticity up to order 1 and 5, respectively.

Figure 5.3 displays the transition functions of the time-varying trade costs
models for three representative time periods, namely 1900,1950 and 2000, which
correspond to relatively low, large and moderate levels of trade costs, respectively.
At those time periods, for the TVTC-ESTAR model, a PPP deviation of 0.4, which
is roughly the maximum realized deviation, would suggest that the real exchange
rate behaves similar to an AR process with coefficient around 0.3, a near unit root
and an AR process with coefficient around 0.5. For the TVTC-QLSTAR model,
the same PPP deviation would suggest that the real exchange rate behaves similar
to a white noise, a near unit root and an AR process with coefficient around 0.2.
On the other hand, according to the estimated ESTAR and QLSTAR models with
constant trade costs the real exchange rate would behave as an AR process with
coefficient of about 0.7 and 0.5, respectively, at all points in time. It appears that
the inability of ESTAR models to approximate a wide “band of inaction” results

in finding substantially higher persistence for large deviations than that implied
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by the QLSTAR.

00

-04 0.2 00 02 04

Figure 5.3: The exponential (left) and quadratic logistic (right) functions corre-
sponding to 1900, 1950 and 2000 trade costs levels.

Clearly, the assumption of constant trade costs can result in severe overes-
timation / underestimation of persistence. The difference between the degrees
of persistence (as measured by the value of the transition function of the corre-
sponding model) estimated by the time-varying and constant trade costs models
are illustrated in Figure 5.4. Starting with the ESTAR model, overestimation due
to the the exclusion of time-varying trade costs occurs with almost the same like-
lihood as underestimation (55 percent versus 45 percent of the times). On the
contrary, the QLSTAR model with constant trade costs appears to underestimate
the degree of persistence with respect to the TVTC-QLSTAR in most periods (85
percent of the cases). Overestimation occurs on rare occasions (15 percent of the
time) which are usually associated with substantial differences in the speed of
mean reversion.’

A natural question that arises in the nonlinear framework is how fast does
the process adjust to deviations from the equilibrium under different trade costs
levels. In order to examine the time profile of the impact of a shock on the fu-

ture behaviour of the series we adopt the Generalised Impulse Response Func-

9We note that the mean underestimation—the mean of the positive differences between the val-
ues of the transition function of the TVTC-ESTAR and the ESTAR- is 0.04 and the maximum
value 0.24. While the mean overestimation—the mean of the negative differences between the
values of the transition function of the TVTC-ESTAR and the ESTAR- is -0.07 and the mini-
mum value is equal to -0.35. For the QLSTAR models, the mean underestimation is 0.04 and the
maximum value 0.28. While the mean overestimation is -0.1 and the minimum value -0.48.
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Figure 5.4: Differences in the degree of persistence between the TVTC-ESTAR
and ESTAR models (left) and the degree of persistence between the TVTC-
QLSTAR and QLSTAR models (right).

tions (GIRF) proposed by Koop et al. (1996).!° The GIRF is defined as the av-
erage difference between two realizations of the stochastic process, g;41, which
start with identical histories up to time ¢ — 1, but only the first realization is hit by

a shock of magnitude 4, at period ¢.

GIRF(h, 8¢, wi—1) = E [ge4nler = 0ty wim1] — E [qenlwi—1] , (5.13)

where h = 1,2. .. denotes horizon, ¢; = ¢; is an arbitrary shock occurring at time
{, and w;_ is the history set of ¢;. Given that the GIRF(h, §, w;_;) is a function of
d; and w;_,, which are realizations of random variables, the GIRF (h, §, w;_; ) itself
is a realization of a random variable. It follows that various conditional versions
of the GIRF can be defined. In this work we set w;_; = p, so that the process is
initially at its equilibrium value, and we consider shocks of magnitude ¢ equal to
the maximum absolute PPP deviation and half the maximum PPP deviation. Due
to the fact that analytic expressions for the conditional expectations involved in
(5.13) are usually not available for A > 1, we use bootstrap integration methods
(see Koop et al., 1996, for a detailed description) to overcome the issue of future
shocks intrinsically incorporated in the model. In particular, 1000 repetitions are

implemented to average out future shocks, where future shocks are drawn with

10A more detailed description of the GIRF is provided in Chapter 4.
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Figure 5.5: GIRFs for the TVTC-ESTAR (left) and TVTC-QLSTAR (right) mod-
els. Top (bottom) graphs correspond to shocks equal to the maximum absolute
PPP deviation (half the maximum absolute PPP deviation).

replacement from the models residuals, and then the results are averaged.

Figure 5.5 illustrates the GIRFs for all levels of trade costs and for a maximum
impulse response horizon of 20 years. Overall, low levels of trade costs are asso-
ciated with fast shock absorption for all cases. The absorption time increases with
the level of trade costs. For large shocks (maximum PPP deviation), the increase
for the TVTC-ESTAR is substantially greater than for the TVTC-QLSTAR model
and becomes apparent at a much lower level of trade costs. On the other hand, for
moderate shocks (half the maximum PPP deviation), the absorption time for the
TVTC-QLSTAR model initially grows faster as the degree of trade restrictiveness
increases. However, this situation is reversed for high levels of trade costs. Gener-
ally, when the level of trade costs is high shocks fade out extremely slowly for the
TVTC-ESTAR model. Put it differently, the transition parameter in the TVTC-
ESTAR model approaches zero (infinite band width) falsely suggesting that the
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real exchange rate series is a unit root process.

To further illustrate this point as well as to make comparisons with the stan-
dard STAR models, we compute the half-lives corresponding to the maximum
PPP deviation.!! The results are presented in Table 5.2. Starting with the standard
ESTAR and QLSTAR models, the real exchange rate process would absorb half
of the shock in four years. Turning to the time-varying trade costs models, we
consider three scenarios. Again, we set trade costs equal to their 1900, 1950 and
2000 levels. In the former and latter cases, both the TVTC-ESTAR and TVTC-
QLSTAR models suggest that the time required for the process to absorb half of
the maximum PPP deviation is only two years, which is half of that correspond-
ing to constant trade costs. Obviously, large deviations of the real exchange rate
appear to mean revert much faster (than that implied by the ESTAR and QLSTAR
models) during the beginning of the 20th century and the recent floating period.
On the contrary, the high level of trade costs around the middle of the 20th century
leads to an increase in the half-life of the shock with respect to the constant trade
costs benchmark. In particular, the TVTC-QLSTAR and TVTC-ESTAR models
imply a half-life of 5 and 20 years, respectively. As above, the large discrepancy
between the results of the two models can be attributed to the inability of the

ESTAR model to capture the effect of wide “bands of inaction”.'?

Table 5.2: Half-Lives of the Nonlinear Real Exchange Rate Models

Trade Costs Level ESTAR QLSTAR TVTC-ESTAR TVTC-QLSTAR

1900 4 4 2 2
1950 4 4 12 5
2000 4 4 2 2

Notes: The size of the shock is set equal to the maximum PPP deviation. Half-
lives are measured in years.

UThe half-life is defined as to the minimum horizon beyond which the difference between the
impulse responses at all longer horizons and the ultimate response is less than or equal to half of
the difference between the initial impact and the ultimate response (van Dijk et al., 2007).

12We note that when trade costs reach a maximum, which occurs in 1946, the corresponding
half-lives are 12 and 57 years for the TVTC-QLSTAR and TVTC-ESTAR models, respectively.
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In order to examine which model is superior in terms of capturing the effect
of time-varying trade costs, we conduct two bootstrap experiments. For each ex-
periment, we employ either the estimated TVTC-QLSTAR or the TVTC-ESTAR
model (reported in Table 5.1), the original trade costs series and the corresponding
estimated residuals so as to generate B artificial samples of size 176.'3 In turn,
we fit the alternative model to each artificial sample and compute the ¢-statistic for
the coefficient on trade costs, ;. This provides the empirical distributions for the
t-statistics for 4, and ¢, under the null that the true DGP is given by the alternative

model. The probability of obtaining a ¢-statistic as extreme as the original is

where /(A) is the indicator function, which takes the value of 1 if event A occurs
and 0 otherwise, and ¢ is the original t-statistic. When the DGP is the TVTC-
ESTAR model, the probability of the t-statistic for ¢, exceeding 4.488 is only
13.8 percent. Whilst, when the DGP is given by the fitted TVTC-QLSTAR, there
is a 52.1 percent probability that the value of the ¢-statistic for 4. is greater than
3.145. Hence, it is very likely to obtain a ¢-statistic for the coefficient on trade
costs in the TVTC-ESTAR model as extreme as the original when the DGP is

given by the estimated TVTC-QLSTAR model. However, the opposite is not true.

5.5 Conclusion

In empirical work on the dynamic behaviour of the real exchange rates trade costs
have typically been assumed constant. Essentially, arbitrage will commence, ce-
teris paribus, when it is profitable and PPP deviations are outside the transac-
tions band. Motivated by the recent gravity literature we construct a long-span

trade costs index. Further, we develop and estimate two nonlinear models for

13We set the number of generated samples B equal to 1000 and initialise the bootstrap DGP by
using the first observations of the original real exchange rate series.
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the real exchange rate which incorporate time-varying trade costs. Our empiri-
cal approach is supported by a battery of statistical tests and simulation methods.
Our results provide strong evidence in favour of a time-varying “band of inac-
tion”, which widens with the level of trade costs. The persistence of the real
exchange rate is found to depend on both the magnitude of trade frictions and the
size of the deviation from PPP. For instance, a given shock to the real exchange
rate would be absorbed at significantly different speeds in 1950 and 2000 due to
the existence of different trade costs levels. Although trade costs appear to have
declined substantially since the second World War, their magnitude is still signifi-
cant. Consequently, our empirical results are also consistent with the documented

high persistence of real exchange rates in the post-Bretton Woods era.

119



CHAPTER ©

Concluding Remarks

This thesis deals with the parsimonious modelling and forecasting of the real ex-
change rate using nonlinear econometric methods. In this context, the main re-
search topics examined are: (i) robust linearity and unit root testing under the al-
ternative of smooth transition nonlinearity, (i1) nonlinear real exchange rate model
specification and forecasting, (iii) modelling the deviations of the real exchange
rate from its fundamental value, and (iv) extending existing nonlinear real ex-
change rate models to accommodate for time-varying trade costs.

The first topic is addressed in Chapters 2 and 3. Chapter 2 deals with the spec-
ification stage of nonlinear models in the presence of conditional heteroskedas-
ticity of unknown form. In particular, it investigates the impact of conditional
heteroskedasticity on the performance of a conventional linearity test as well as
several heteroskedasticity-robust versions. The key finding is that conventional
tests can frequently result in the detection of spurious nonlinearity. The degree
of oversizing depends on the type of time-varying volatility and tends to increase
with the sample size. Consequently, spurious inference is most likely in high

frequency data, such as daily and intra-daily financial time series. Conversely,
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when the true Data Generating Process is nonlinear in mean and the error is con-
ditionally heteroskedastic, the tests may have very low size-adjusted power and
can frequently lead to the selection of misspecified models. In most cases, the
above deficiencies also hold for tests based on Heteroskedasticity Consistent Co-
variance Matrix Estimators. Overall, the Fixed Design Wild Bootstrap appears
to be the most reliable method in terms of size, power and choosing the correct
model specification. The importance of robust inference is highlighted through
an empirical application to returns on major stock market indices and exchange
rates, the future basis of the FTSE 100 and the dollar-sterling real exchange rate.
The following chapter extends the analysis to the nonlinear modelling and
forecasting of the dollar-sterling real exchange rate using long spans of data. The
contribution to the literature is threefold. First, we provide significant evidence
of smooth transition dynamics in the series by employing a battery of recently
developed in-sample statistical tests and bootstrap techniques. Second, we in-
vestigate through Monte Carlo simulations the small sample properties of several
evaluation measures for comparing recursive forecasts when one of the compet-
ing models is nonlinear. Our results indicate that all tests exhibit low power in
detecting the superiority of smooth transition over linear autoregressive models.
Finally, notwithstanding the above, the nonlinear real exchange rate model out-
performs both the random walk and the linear autoregressive model in forecasting
the behaviour of the series during the post-Bretton Woods era. Consequently, re-
searchers and practitioners can obtain forecasting gains regarding the behaviour
of the long-span real exchange rate series by employing nonlinear models.
Chapter 4 adopts a more general framework, where the equilibrium real ex-
change rate is allowed to depend on the fundamentals implied by International
Real Business Cycle models with complete asset markets. By focusing on the
post-Bretton Woods era, we find that in several cases there is a long-run rela-
tionship between real exchange rates and consumption series in line with inter-

national risk sharing. Further, linearity tests indicate that the majority of the de-
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viation processes exhibit significant smooth transition nonlinearity. Exponential
Smooth Transition Autoregressive models parsimoniously capture the nonlinear
adjustment mechanism. These findings provide an explanation for the empiri-
cal regularities noted in the literature on the relation between the real exchange
rate and consumption, such as the “Backus and Smith (1993) puzzle”. This point
is illustrated further by generating the puzzle through Monte Carlo simulations.
Finally, the results for Generalised Impulse Response functions show that shock
absorption is significantly faster than suggested in the Purchasing Power Parity
puzzle.

Chapter 5 takes a different approach from previous work on Purchasing Power
Parity by explicitly accounting for time-varying trade costs. The motivation be-
hind this approach is based on recent advances in the gravity literature which allow
the construction of long-span trade costs indices. Our contribution is the develop-
ment and estimation of two nonlinear models for the dollar-sterling real exchange
rate which incorporate trade costs. The key finding is that both the magnitude of
trade frictions and the size of the deviation from Purchasing Power Parity have a
significant effect on the persistence of the real exchange rate. As a consequence,
changes in trade costs imply that a given shock to the real exchange rate would
be absorbed at substantially different speeds at different time periods. We provide
evidence that the period after the Second World War was characterised by a sub-
stantial decline in the degree of trade restrictiveness. However, the magnitude of
trade costs is still significant. Consequently, our empirical results are consistent
with the documented high persistence of real exchange rates in the post-Bretton

Woods era.
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