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Abstract

In this thesis we theoretically investigate the influence of mechanical deformations 

on the electronic transport properties of graphene structures, such as nanoribbons, 

bilayer graphene, and graphene on hexagonal boron nitrite substrates.

We find that homogeneous mechanical deformations can induce the formation 

of zero-conductance plateaus and conductance resonances in nanoribbons, and out­

line their robustness in the presence of ‘double atom’ edge disorders. Furthermore 

we emphasize that even small percentages of ‘single atom’ edge defects are strong 

enough to determine the smearing or even suppression of the observed resonant 

structure. For the case of inhomogeneous deformations we find that the inho­

mogeneity developed near the contacts aids the resonant transmission of charge 

carriers through a mode mixing mechanism or via the sublattice-polarized n = 0 

pseudo-magnetic Landau level.

We also show that in homogeneously strained bilayer graphene the linear re­

sponse conductance of an n-p-n junction has a non-monotonic dependence on 

doping and temperature, which varies in size and form as a function of the crys- 

tallographic orientation of the principal strain axis. We find that uniaxial strain 

changes the chirality of the electronic plane-wave states in the vicinity of the Lif- 

shitz transition in the low-energy electron spectrum of this crystal, which results 

in the observed non-monotonicity of the linear response conductance.

Finally, we show that mechanical deformations alter the beating of the lattice 

mismatch in graphene and hexagonal boron nitride heterostructures, which leads 

to the formation of strained moire superlattices. We observe that in some cases this 

determines the opening of minigaps in the second generation mini Dirac cones and 

finalize our study by identifying an extreme parametric regime where the moire 

patterns become quasi-ID and the dispersion acquires additional Dirac cones.
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Chapter

Introduction

Graphene is a one-atom thick crystalline membrane, formed of carbon atoms ar­

ranged in a honeycomb lattice. Even though carbon fibers have been studied and 

used since the 19th century [100], before 2004 graphene was only studied theoreti­

cally as a starting point for describing properties of various carbon based materials. 

It was only after 2004, when A. Geim and K. Novoselov from the University of 

Manchester succeeded in isolating the first 2D layer of carbon atoms, that graphene 

physics [20, 39] became an active and rapidly expanding field of research in con­

densed matter rather than simply a toy model. This is largely due to the fact that 

graphene uniquely combines a series of properties such as mechanical strength, 

high electronic and thermal conductivities and impermeability, properties which 

make this material a suitable candidate for numerous future applications [84].

The fact that controlled deformations that result in measurable effects [80, 82] 

can be produced in this material has created a wave of excitement among theo­

rists and experimentalists alike due to the peculiar way in which strain affects the 

already unusual electronic properties of graphene. Motivated by these recent dis­

coveries, the work presented in this thesis is focused on the theoretical investigation 

of the transport properties of strained graphene structures such as nanoribbons, 

bilayer graphene, and monolayer graphene on hexagonal boron nitride substrates. 

We start by giving a brief introduction in Chapter 1 to graphene physics and the 

systems that will be discussed in detail later on.
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Graphene membranes suspended over metallic contacts may undergo uninten­

tional mechanical deformations during the fabrication process. Using the recur­

sive Green’s function method for graphene ribbons, we systematically investigate 

the effect of both homogeneous and inhomogeneous deformations on the conduc­

tance of ballistic n-p-n junctions, as presented in Chapter 2. Here, we show 

that under small homogeneous strains the conductance of such devices can de­

crease, acquire a resonant structure, or be completely suppressed, depending on 

the amount of strain. Inhomogeneous deformations, on the other hand, act as 

valley-antisymmetric pseudo-magnetic fields which lead to the formation of local­

ized states at the neutrality point. The peculiar n — 0 pseudo-magnetic Landau 

level can manifest itself in the transport characteristics of such ribbons, via two 

groups of low-energy conductance resonances.

Strain qualitatively changes the low-energy band structure of bilayer graphene, 

leading to the appearance of a pair of low-energy Dirac cones near each corner 

of the Brillouin zone, and a Lifshitz transition, (a saddle point in the dispersion 

relation) at an energy proportional to the strain [76]. In Chapter 3, we show 

that in the vicinity of the Lifshitz transition the conductance of a ballistic n- 

p and n-p-n junction exhibits an anomaly: a non-monotonic temperature and 

chemical potential dependence, with the size depending on the crystallographic 

orientation of the principal axis of the strain tensor. This effect is characteristic 

for junctions between regions of different polarity (n-p and n-p-n junctions), while 

there is no anomaly in junctions between regions of the same polarity (n-n' and 

n-n'-n junctions).

Superlattices (SL) have been thought to provide the necessary means of con­

trolling graphene’s electronic spectrum. In Chapter 4 we discuss the qualitative 

changes that emerge in the dispersion of monolayer graphene under the influence of 

two distinct SL structures. First we consider a periodic modulation of the electro­

static potential profile, formed of a periodically spaced square barrier system (an 

infinite series of n-p-n junctions), and find that it generates the appearance of pairs 

of Dirac points (DPs) in the electronic spectrum. We also outline the conditions
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for the appearance of each pair, and discuss their position on the energy axes. We 

then continue our analysis and consider spatially periodic lattice potentials. Using 

a general symmetry based approach, we study the generic miniband structure for 

electrons in homogeneously strained monolayer graphene placed on a hexagonal 

boron nitride substrate. In particular we find that mechanical deformations couple 

to the misalignment angle between the two honeycomb lattices, alters the beating 

of the lattice mismatch, and leads to the formation of strained moire superlattices. 

Furthermore, we identify an extreme regime where the moire patterns become 

pseudo-ID and outline their effect on the electronic spectrum.
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1.1 M o n o lay e r  G ra p h e n e  

a)

F igu re  1.1: a) Real space hexagonal lattice and unit cell (dashed rhombus), b) the
Brillouin zone, and c) the energy dispersion for 7r bands of two-dimensional graphite 
(graphene).

G raphene is the first known tru ly  two-dimensional m aterial, which possess 

an unusual electronic band structure: its valence and conduction bands cross at 

the corners of the hexagonal Brillouin zone [100] of the honeycomb lattice see 

Fig. 1.1 (a. b). The crossing of the two bands occurs exactly at the Fermi level of 

neutral graphene, which makes this m aterial a zero-gap semiconductor.

To describe graphene, we choose vectors a i and a-2 as our in-plane prim itive 

lattice vectors and a rhombic unit cell as shown in Fig. 1.1(a). The corresponding 

reciprocal lattice vectors and the hexagonal Brillouin zone (BZ) are shown in 

Fig. 1.1(b). In the  x . y  coordinates the real space unit vectors of the hexagonal 

lattice are expressed as

where / =  1.42A is the bond length between two adjacent sites. Consequently the 

reciprocal unit vectors can be found by imposing 6,- • a,- =  27rd,,/, where i . j  — 1, 2 , 

and are

MITl H t-T
We denote the two inequivalent corners of the Brillouin zone as K  [at position 

K  =  (0 ,4tt/3n/3/)] and K '  [at the position K '  = (0, — 4 tt/3 \/3 /)] .
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The basis functions of 2D graphite are given by the Bloch functions of the 

inequivalent A and B  sites (the directions of their bonds to nearest neighbors are 

different). Then, the transfer integral matrix and the overlap integral matrix are 

given by [100]

n = ( £2p + K f ),  s =(  1 S/V /  =  7 o E ^ - ,  (1.2)
\  /* £2p +  Vg J  y sf*  1 J  i=  1

respectively, where e2p is the orbital energy of the 2p level and Vg is the on-site po­

tential energy. In /  we perform the summation over the phase factors elk'Ri where 

i = 1, • • • ,3 label the three nearest neighbor B atoms relative to an A atom, posi­

tioned at Ri. Assuming e2p = s = 0 [When the overlap integrals become zero, the 

bonding ir and anti-bonding 7r* bands become symmetrical around E  =  £2p-])̂  the 

transfer integral and overlap integral matrices in momentum space become [100]

(1.3)

Solving the secular equation det(H — ES) — 0 one finds the energy dispersion[99] 

in Fig. 1.1(c),

, + 1  valence (ir bonding) .----
E  = Vs - v \f\, r,= { I/I =  \/77*- (1-4)

-1 conduction (7r* anti-bonding),

Setting Vg = 0 and expanding f in terms of small deviations in momentum 

around the K  point, one obtains Dirac-like Hamiltonian [122] describing the low- 

energy quasiparticles in graphene

n = v | 0 Px iPy | = v u  ■ p, (i.5)
Vx + IPy 0

where p  is a two dimensional quasiparticle momentum, a  are the two-dimensional 

Pauli matrices, and v =  §701 is the Fermi velocity which plays the role of the
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n

P

F igu re  1.2: Sketch of an n-p interface in monolayer graphene (the picture is adopted
from Ref. [26]).

speed of light w ith y0 =  3eV as the hopping between adjacent sites. As it can be 

seen from Fig. 1.1(c), the  spectrum  of graphene is linear (approxim ately conical in 

shape) up to energies of about leV . The sublattice composition of the electronic 

Bloch states in graphene is fixed to  the direction of their propagation , m aking 

charge carriers in monolayer and bilayer graphene ‘chiral'. Therefore the projection 

of the  ‘isospin’ operator, cr. on the direction of motion, p. takes the values ± 1  for 

electrons in the conduction bands (E  — vp) and in the valence bands (E  =  —vp) 

respectively.

The absence of a gap enables one to vary the carrier density continuously from 

the valence to the conduction bands (from electrons to holes) by using external 

gates (or chemical doping). Two particular device designs th a t we consider in this 

thesis are a) suspended graphene controlled by suspended gates and b) graphene 

sandwiched between two hexagonal boron nitride films, w ith the layer on top used 

as a gate. Using such m ethods in different regions of the graphene flake, the 

doping in each region can be controlled independently to create n-doped or p- 

doped regions and obtain n-ri'-n. n-p-n. or p-p'-p junctions (see Fig. 1.2 for an 

example of an n-p junction). T ransport through such junctions will be discussed 

in detail throughout C hapters 2 and C hapter 3.

In contrast to conventional semiconductors, where an n-p junction is im pen­

etrable for electrons due to the large band gaps in the electronic spectrum , it 

was realized [25. 26] tha t electron transm ission through the interface between n  

and p-doped regions of graphene mimics optical refraction from m aterials w ith 

negative refractive index [91. 92]. This is because, in graphene, scattering on an 

electrostatic potential that is sm ooth on the scale of the lattice constant, preserves
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the isospin (sublattice com position of Bloch states) of electrons, and therefore 

perfect backscattering. which requires inversion of isospin. is forbidden [106]. To 

satisfy this condition and keep the sign of the carrier's group velocity fixed when 

traversing the interface, the sign of the m om entum  m ust change. Therefore in the 

n-doped region 77 =  vcr ■ p  =  v p a  ■ n. with a  • fi  = 1. and the charge carriers 

are electrons, whereas in the 71-doped region a  • f i  = — 1 and the charge carriers 

are holes. This effect, of perfect transm ission at zero angle of incidence through 

an n-p-n junctions is known as Klein tunneling [47, 115] and it reflects the  fact 

th a t a ballistic p-type region of graphene separating two n-type regions may act as 

an electrostatically controlled lens for electrons [Note th a t in monolayer graphene 

fermions exhibit chiralities th a t resemble those associated w ith spin 1/2] [73, 85].

1.2 B ilayer G ra p h e n e

■bj

F igu re  1.3: a) Schematic depiction of the bilaver graphene crystal lattice, where the
top/bottom  layer is shown in black/red. and the unit cell is the dashed blue rhombus. 
The real primitive lattice vectors are d[ and do. b) The Brillouin zone is shown as a 
dashed green hexagon with the respective high symmetry points represented by T, M .  
K  and K ' . and the reciprocal lattice vectors and /o. c) The parabolic low-energy 
dispersion of bilayer graphene (trigonal warping has been neglected).

Bilayer graphene exhibits equally unusual electronic properties. Its high energy 

band structu re  is similar to that of monolayer graphene, however its low energy 

band structu re  is parabolic with massive quasiparticles ra ther than  linear w ith 

massless quasipart ieles.

We model bilaver graphene as two weakly-coupled monolayers of graphene, 

separated by a distance o f~  3.35.1 [107], and arranged according to Bernal (A B )
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stacking [8 , 33]. We choose vectors a\ and a2 as our in-plane primitive lattice 

vectors and a rhombic unit cell as shown in Fig. 1.3(a). The corresponding re­

ciprocal lattice vectors and Brillouin zone are shown schematically in Fig. 1.3(b), 

where b\ and &2 can be found by imposing that bi- dj — 2irSij. We denote the two 

inequivalent corners of the Brillouin zone as K  [at position K  =  (47r/3\/3^ 0)] 

and K '  [at the position K ' = (—47r /3\ / 3Z, 0)].

The low-energy properties of bilayer graphene, near the K  point, are described 

by the Hamiltonian

where m e is the electron mass. This effective Hamiltonian describes the electronic

energy bands or trigonal warping [32, 112]. The resulting electronic dispersion is 

given by

in agreement with [72]. The energy dispersion shown in Fig. 1.3(c) consists of 

valley-degenerate bands which touch at the K  or K '  points. In contrast to mono­

layer graphene, where the low-energy dispersion is difficult to alter, the energy

ducing an external transverse electric field [20, 71, 74, 86], or qualitatively altered 

by means of induced mechanical deformations [76].

In contrast to monolayer graphene, where an n-p junction can act as a focusing 

lens for electrons, in bilayer graphene massive chiral fermions are always perfectly 

reflected for angles close to normal incidence [47, 115]. The perfect reflection, 

as opposed to perfect transmission, can be understood as yet another facet of 

the Klein paradox since this effect is due to the charge-conjugation symmetry (in 

bilayer graphene fermions exhibit chiralities that resemble those associated with 

spin 1) [73, 85]. In this case the charge conjugation requires that a propagating 

electron with wavevector k transforms into a hole with wavevector ik  (rather than

( 1 .6 )

dispersion for energies close to the neutrality point while neglecting the higher

(1.7)

bands in bilayer graphene (conduction and valence bands) can be split by intro-
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— k as in the case of monolayer graphene) which is an evanescent wave inside the 

electrostatic barrier. However, depending on the ratio between the electrostatic 

potential and the energy of incoming electrons, there are angles at which perfect 

transmission can indeed occur [96] due to multiple reflections between the n-p and 

p-n interfaces which lead to the formation of Fabry-Perot-like standing waves.

1.3 G raphene nanoribbons

a,
ilB l £25 ,

2 5 .3.4 '

\  /  '' LL X\  /  ' ^  ^
___________^   j..............•**—unit cell
right lead left lead ' central device

waw a \
•unit cell

^  left lead right le a d ^central device

Figure 1.4: Structure of the graphene nanoribbon junctions with a) armchair bound­
aries (A-GNR) and b) zigzag boundaries (Z-GNR). Each ribbon is comprised of two 
ideal leads (left and right), and a central conductor. The dotted rectangles denote the 
respective unit cells and Wj /̂z defines the ribbon width.

The tight-binding Hamiltonian [99, 120] of graphene nanoribbon (GNR) junc­

tions with armchair and zigzag houndaries, shown in Fig. 1.4, is given by

n  =  V i C ^  +  ( L 8 )  

i  ( i j )

where c* is a fermionic annihilation operator acting on a site i, (ij) denotes pairs 

of nearest neighbors, Vi is the on-site potential and the hopping matrix element 

is t ij =  70 =  3eV. The chemistry of the graphene strip edges (armchair (A- 

GNR) or zigzag (Z-GNR)), strongly influences the low-energy spectrum of the 

7r-electrons. Similarly to the case of carbon nanotubes, the electronic band struc­

ture of graphene ribbons with armchair edges can be determined by making the
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transverse wave num ber discrete in accordance with the boundary conditions. For 

ribbons with zigzag edges, on the other hand, the  electronic band structu re  is not 

easy to find because the transverse wave num ber depends not only on the w idth 

of the ribbon, bu t also on the longitudinal wave num ber [99]. Thus, Z-GNR are 

not analogous to carbon nanotubes. This type of ribbons also possess localized 

edge sta tes with energies close to the Fermi level, which are absent for ribbons 

w ith arm chair boundaries [120]. These properties of A-GNR and Z-GNR will be 

discussed at length in the following sections.

The model we employ to study  size and edge effects of graphene nanoribbons is 

shown in Fig. 1.4 (a-b). The w idth of the ribbons, W a and U R . are determ ined by 

the num ber of dimer (two carbon site) lines for the arm chair nanoribbons and the 

num ber of zigzag lines for zigzag nanoribbons [120]. The lengths are m easured in 

term s of transla tional unit cells (dotted rectangles) comprising the ribbons, which 

are denoted by L a and L z ■ Then the w idth and length of a ribbon in units of 

interatom ic distance is VVR =  \/31F R with C \ =  3L Al and WR =  \— — l)  I w ith

— V?>Lzl for arm chair and zigzag edges respectively. Iiere I =  1.42A is the 

interatom ic distance between neighboring sites.

1.3.1 A rm chair n an o ribbons 

B rillouin  Zone (BZ)

Figure 1.5: a) Real space hexagonal lattice and b) the Brillouin zone of armchair
graphene ribbons.
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In Fig. 1.5 we show (a) the unit cell and (b) the Brillouin zone of the A-GNR, 

where ax and a2 are unit vectors in real space and /q and b2 are reciprocal lattice 

vectors. In the cartesian coordinates, the real space unit vectors of the hexagonal 

lattice and the reciprocal unit vectors are

2tt 2
3/ ' G3I H I T )

Two inequivalent high sym m etry points are defined at the  corners of the BZ, and

3% )  “ d Kare then  located at K  =  (O, - % r ) and K '  =  fo, — respectively.

D ispersion

3 - 2 - 1  0 1 2 3
kA

- 3  - 2  - 1

• wA= XN
■ H' 4 = 3 jV + 1
* W a = S N + 2

20 25 30
(d im m er lines)

wq = s

F igu re  1.6: a-c) Dispersions and d) band gap as a function of increasing width, for the 
three types of A-GNR,s numerically obtained using the procedure outlined in Apendix A.

In this work we will only consider the tt energy bands because they are covalent 

and thus the most significant in determ ining the solid s ta te  electronic properties
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of graphene [100]. As such, considering the contribution of the three nearest 

neighbors [see Fig. 1.5(a)],

with 77 =  — (+) for the conduction (valence) bands.

Fig. 1.6(a-c) shows the energy band structure of armchair ribbons for three 

different widths, with the energy E  scaled by 70. The top of the valence band and 

bottom of the conduction bands are located at k =  0. For this type of ribbons, 

the hard wall boundary conditions that must be imposed at the top and bottom 

fee edges lead to a quantization of transverse momentum. Therefore the width of 

the ribbon determines the conducting properties of the system. As such, A-GNRs 

are divided into three distinct families: if Wa =  3A” +  2 with N  £ N then the 

ribbon is metallic, where as for Wa =  3N  and Wa — 3N  +  1 it is semiconducting. 

In the case of semiconducting ribbons the band gap, Fig. 1.6(d), decreases with 

increasing width and approaches zero in the limit of large Wa [110, 120].

(1.9)

we can explicitly find that /  =  y0 (e lkxl +  2etkx'/2 cos in Eq. (1.4), andwe can

consequently, the dispersion is

E — Vg — 7770 * 1 +  4 cos +  4 cos2
\

Ham iltonian in the continuous m odel

Expanding /  in terms of small deviations in momentum around the K  point and 

making the substitution kx —> 5kx and ky —>• +  8ky [were we have assumed
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Ski < 1], we get

/ =7o L - iSk*‘ + 2e ^  cos f f  + ̂ 5kv j j

-7o ((1 -  i S k J )  +  2 ( l  +  i ^ 6 k xl ^  ( - 1  -  ^ 5 k yl \ ]

31
— -  t^7o ,

we obtain the low-energy Hamiltonian at the K  point

31 f  0 i k x +  ky | j  0 — i k x — ky
ELp — I I =  vph I | , (1.10)

y — i k x +  ky 0 J \ i k x — ky 0

where vp = is the Fermi velocity. The low energy Hamiltonian at the K '  

point is calculated in a similar fashion and is 'Hk> — —7~Lk -

Transverse-mom entum quantization and waveguide modes

For the above derived Hamiltonian, Eq. (1.10), if the ribbon is taken to be infinite 

in the x direction, translational invariance ensures that the wave function can be 

written in the form ^ ( r )  =  exkxX <fc ̂ {y), where fi = A, B  denotes the inequivalent

(  <Pa \
sites. Then writing 0  =  I and imposing ELcf) — E(p we obtain the following

W * /
set of coupled equations [16]

( ikx +  idy)(f>A =  E<f)B, f i k l  -  d$)(f)A =  E 2(f)A ,

( ~ i k x +  i d y)(f)B =  E(pA. \  (k 2x -  d 2)(j)B =  E 2(pB .

where E = E/hvp.  Next we try the ansatz (j)A = Aielky +  Bie~lky and <pB = 

A 2etky +  B2e~lky, where k =  yj'E  — k2, and impose the armchair boundary condi­

tions (f>A(y = 0) =  <f>B{y = 0) =  <j>A(y = y/3l(WA+l))  =  <f>B(y =  V3l(WA+l))  =  0. 

Finally we arrive at the quantization condition for the transverse wave number and
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mode-profile [102]

nn
s/3l(WA +  1)

W A +  1
mrm

where n = 1 .2 ,..., W \  is the  mode index. Here we have w ritten  the transverse 

coordinate, in term s of discrete steps y  =  my/31 where m  = 1, 2 ,.... W A. Note th a t 

the transverse-m odes form an orthogonal set /' =  Sm m/. where n,m.  are

integers.

1.3.2 Zigzag nanoribbons 

B rillouin  Zone (BZ)

F igu re  1.7: a) Real space hexagonal lattice and b) the Brillouin zone of zigzag graphene 
ribbons.

In Fig. 1.7 we show (c) the unit cell and (d) the BZ of the Z-GNR. where d[ 

and 0 2  are unit vectors in real space and bi and bo are reciprocal lattice vectors. 

In the cartesian coordinates, the real space and the reciprocal space unit vectors 

of the hexagonal lattice are

(1 .12 )
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respectively. Consequently, the two inequivalent high sym m etry points, a t the

corners of t he BZ. are located at K  =  ( yyrjp 0 ) and K '

D ispersion

a) W z =  4 b)

3&.<»■

IVZ

F igu re  1.8: a-b) Dispersions for two Z-GNRs of different widths.

-1-1

- 2

- 3- 3
- 3  - 2  - 1- 3  - 2  - 1

As in the case of A-GXR. the contribution of the three nearest neighbors [see 

Fig. 1.7(a)].

Si =  / (0 .1 ). 6 2  = l-  ( —>/3. — 1)  , <5 =  ^  ( A - l )  . (1.13)

gives the explicit form of f  =  y0 (e ikyl +  2e,/0y//2 cos • The dispersion for

Z-GXR is then given bv

E = Vg ~ Tj’)0
, 3 /

4 cos I —Ay cos
v/3/ A’x I A 4 cos-

with 1 j =  — (+ ) for the conduction (valence) bands.

The band structures of zigzag ribbons for two different widths are shown in 

Fig. 1.8. As can be seen the zigzag ribbon is metallic for all \ Vz- A feature specific 

for this orientation of edges is the appearance ol partially  flat bands at the Fermi 

level, where electrons are strongly localized. 4 he top ol the valence band and 

bot tom of the conduction band are always degenerate at kxl = i t . This degeneracy
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does not appear due to an intrinsic property of the band structure, but rather due 

to the boundary conditions that must be imposed at the top and bottom edges. In 

contrast to A-GNRs, where the hard wall boundary conditions were imposed on 

the wave functions on both the A and B sublattices at the two edges, in Z-GNRs 

the free edges terminate on only the A sublattice at the top edge and only the 

B  sublattice at the bottom edge or vice versa. Even though the edge states have 

a non-bonding character the overlap between the states at opposite edges form a 

bonding and anti-bonding configuration. This leads to the formation of the edge 

states, and therefore, a single transport channel for electrons [78, 119-121]. As 

such, the transport properties of zigzag graphene ribbons are strongly affected by 

the presence of these edge states.

Ham iltonian in the continuous model

Similarly to the case of A-GNR, to obtain the low energy Hamiltonian, we expand 

/  in terms of small deviations in momentum around the K  point. Making the 

substitution ky —»• 5ky and kx —>• +  6kx, where Ski <C 1, we obtain the

Hamiltonian

31 (  0 kx -t- iky \  I 0 kx iky
T-Ik  = To I J =  j | , (1-14)

kx — iky 0 I \  —kx +  iky 0

where vp = is the Fermi velocity; at the K'  point H k1 — —W-k -

Quantization of transverse m om entum

For the above derived Hamiltonian, Eq. (1.14), if the ribbon is taken to be infinite 

in the x direction, translational invariance ensures that the wave function can be 

written in the form ^ ( r )  =  eifcx;r0M(?/), where /a = A, B  denotes the sites. Then

writing 0  =  | ] and imposing H4> — E4> we obtain the following set of
0B
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coupled equations

( ~ k x +  d y )(j)A  =  E(f>B , (k%- dl)(j)A =  E 2(pA,

(-fc* -  dy)(f)B =  E(j)A . \  (hi -  <92)</>s  =

where F? =  E /h vp . Next we try the ansatz (f)A = Aielky +  B\e~lky and (f)B  — 

A2elky +  B2e~lky, where k =  yj E  — k%, and impose the zigzag boundary conditions 

<t>A(y = 0) =  4>B(y =  y/Sl(Wz +  1)) =  0 . Finally we arrive at the quantization 

condition given by the following transcendental equation

kx ~  %k =  e-2V3M{wz+i)_ 
kx +  ik

Note that the transverse momentum quantization for Z-GNR is more complex 

than for A-GNR, and depends not only on the width of the ribbon, but also on 

the longitudinal wave number, kx [16, 99].



Chapter

Strain-induced modifications of 

the transport properties of 

graphene nanoribbons

Monolayer graphene [22] is capable of sustaining reversible deformations in excess 

of 10% [49, 61. 94] and is, thus, the strongest material ever measured [54]. The fact 

that controlled deformations, which result in measurable effects [81, 83], can be 

produced in this one-atom-thick crystalline membrane [14, 17], has created a wave 

of excitement among theorists and experimentalists alike, due to the peculiar way 

in which strain affects the already unusual electronic properties of graphene. Since 

graphene is a material with degenerate valleys in the band structure [46], having 

a linear dispersion with the valence and conduction bands touching at the Dirac 

points (DPs) at the inequivalent K  and K '  corners of the hexagonal Brillouin 

zone (BZ), the effect of its lattice deformations on electrons is equivalent to that 

of an effective gauge field [40, 94, 98, 117]. Consequently, homogeneous deforma­

tions result in a small shift of the Dirac cones from the corners of the BZ [94], 

whereas inhomogeneous strain influences the electron motion similarly to a valley- 

dependent effective pseudo-magnetic field [66, 97, 111]. This new development in 

graphene research, has led to the proposal of various theoretical setups, aiming 

at inducing energy gaps [40, 64] in the dispersion by means of strain engineer­
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ing, or of controlling the electronic structure [93] by patterning the substrate on 

which the membrane rests. The study of the strain-modified electronic properties 

in graphene culminated when recent scanning-tunneling experiments on nanobub­

bles [56], found in graphene transferred onto a dielectric surface, revealed that even 

small inhomogeneous deformations can induce the formation of pseudo-magnetic 

fields that can reach values equivalent to hundreds of Tesla. Such strong fields 

result in the localization of the electronic states, and lead to the formation of a 

discrete ‘Landau level’ (LL) spectrum with the peculiar n — 0 LL state positioned 

at the DP.

Motivated by the recent developments in the production of graphene nanorib­

bons (GNRs) with high-quality armchair edges, obtained by the oriented growth on 

patterned SiC substrates [42], etching of graphene samples with catalytic nanopar­

ticles [19], or by using chemical derivation [58], we theoretically investigate the 

influence of deformations on the transport properties of such structures, an area 

which, despite the desire of developing graphene nano-sized electronic devices [84], 

has remained unexplored thus far. In this Chapter, we perform a systematic anal­

ysis, within the tight-binding model, of the conductance of armchair GNRs subject 

to both homogeneous and inhomogeneous longitudinal deformations. Our calcula­

tions show that, under small homogeneous deformations the conductance of such 

ribbons can decrease, acquire a resonant structure, or be completely suppressed, 

depending on the amount of strain. We also study the robustness of the observed 

resonances in the presence of edge disorder, and determine that they are destroyed 

by single-atom edge defects formed by the loss of single atoms at the edges. In 

contrast, double-atom edge defects, determined by the loss of dimer lines at the 

edges, do not alter the resonant structure and can even restore the ballistic proper­

ties of the ribbon, when the conductance is initially completely suppressed by the 

deformations. For inhomogeneous strain we show that pseudo-magnetic LL states 

form in the contact regions of a stretched GNR, and give rise to characteristic 

signatures in the electronic transport, such as sharp and clearly defined peaks in 

the conductance. These features can be attributed to Fabry-Perot-like standing
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waves or resonant transmission via pseudo-magnetic Landau levels. The nature of 

all the observed resonances and conductance peaks is revealed through the local 

density of states (LDOS) profiles, which we calculate at the energies where these 

features occur.

All of the above mentioned results, are described in detail in Sections 2 .2 , in the 

corresponding subsections, with their graphic representation shown in Figs. 2.2- 

2.6. The calculations are based on the Landauer-Biittiker approach [18], with the 

transmission probabilities extracted from the scattering matrix, which is obtained 

using the recursive Green’s function technique (For more details on the procedure 

see Appendix A.) [28, 99]. Section 2.1 introduces the considered model and iden­

tifies the electronic properties of homogeneously and inhomogeneously strained 

armchair GNRs.

2.1 G eneral H am iltonian  and electronic proper­

ties  o f strained  arm chair G N R s

We consider a narrow and long strained GNR, clamped to unstrained graphitic 

leads and suspended over metallic contacts. The ribbon is chosen to have free 

standing armchair edges along the transport direction y-axis, and contacts with 

bulk electrodes along the ;r-axis, as sketched in Fig. 2.1(a). Within the tight- 

binding model, the ribbon can be described by the Hamiltonian [22]

where c* is a fermionic annihilation operator acting on a site i and (ij) denote pairs 

of nearest neighbors. For strained monolayer membranes, both the on-site poten­

tial Vi as well as the hopping matrix elements 7^ are modified by the deformation 

of the lattice. In contrast to an unstrained honeycomb lattice, with carbon-carbon 

bond lengths r = 1.42A, here, the on-site potential V  =  \ r d-^-divu{ri) is modu­

lated by the displacement field u  = (ux, uy) of the membrane, where ec is the on-site

(2 .1)
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V =  —200meV V =  200m c\

w  =  0 .024w  =  0 .015w — 0
- 0 . 0 3

P x  0

K ’ K '  0 .03

0.03- 0 .0 3

Figure 2.1: Panel (a) shows a sketch of the considered device with the characteristic
distribution of the pseudo-magnetic field B(T) for electrons in the K  valley for a GNR 
with IF ~  40nni and aspect ratio L / W  = 4 with w  = 0.05 inhomogeneous tensile strain 
in its middle part. We also sketch the honeycomb lattice corresponding to the tight- 
binding model in Eq. (2.1). for the two ideal heavily doped leads (1 — 200me\ ) and
for th(' central suspended region, in which strain modulates the hopping matrix elements 

and the on-site energy \ b )  Shift of the Dirac cones from the K  and K '  corners of 
t he Brillouin zone for homogeneously strained armchaii GXRs. c) Comparison between 
Fermi surfaces in the \dcinitv of the top A point of the BZ. foi the GjNR in a) with 
llt) strain (ic 0. red circle) and artificially imposed homogeneous strain (w =  0.015. 
and 0.024. blue circle), at Er = lOOmeV from the DP. The green lines represent the 
quanti/('d momenta values til the unstrained GNR.
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energy of the electrons. Due to their dependence on the strain-modified distance 

lij between lattice sites, the hopping matrix elements 70 ~  —3eV must now be 

renormalized [94] to

change of the bond length [36], w  is the 2x2 strain tensor wap =  \{dau$ +  dpua)

along the carbon-carbon bonds in the unstrained honeycomb lattice. The strain-

to the Hamiltonian written for the states near one of the corners of the BZ, where 

£ =  ±1 for valleys K  and K ' .

Homogeneous strain - For an artificially imposed homogeneous deformation, 

where the GNR is elongated along the y-axis, the elements of the strain tensor 

are wxx =  —aw, wyy = w, and wxy - 0, where a -- 0.165 is the Poisson ratio for 

graphite [11] and w parameterizes tensile strain. In this case, both the scalar and 

vector potentials V* and A  are constant. The first one introduces merely a shift 

of the energy scale and can be ignored. The second shifts the nonequivalent Dirac 

cones from the K  and K '  corners of the BZ in opposite directions [40], as shown 

in Fig. 2.1(b). Infinitely wide samples are robust against such deformations [94] 

and their spectrum remains gapless for strains below 20%. In contrast, GNRs are 

markedly different due to quantum confinement effects, which allow for an opening 

of the gap even for small strains (w «C 20%) [59, 65, 104]. Figure 2.1(c) shows 

a comparison between the Fermi surfaces around the top K  point in the BZ, for 

unstrained (w = 0, red circles) and homogeneously strained (w =  0, 0.015 and

lij =  loem{lij/r x), 1̂  ~  r( 1 +  riij • wriij), (2 .2)

where ^0 — ~  —3 relates the change of the nearest neighbor coupling to the

with a,/3 =  x or y, and n {j =  (0,1), ( ^ , - | ) ,  are the unit vectors

induced asymmetry in the hoppings between neighboring carbon sites results in 

the addition of a valley-dependent gauge vector potential

(2.3)
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0.024, blue circles) ribbons of width W  ~  40nm at EF =  lOOmeV from the DP. 

When strain is smoothly increased from w = 0 to 0.024, the DP (black dot) crosses 

several quantized momenta lines (green lines) and the system undergoes multiple 

semiconducting-metallic-semiconducting phase transitions. Therefore, the size of 

the gap in the spectrum of armchair GNRs is controllable by the amount of defor­

mation [59, 65] within a range determined by the width of the ribbon.

Inhomogeneous strain1 - To model a more realistic deformation, we assume 

that a suspended ribbon is clamped at the leads and stretched along the 'y-axis. 

Because of the clamping, the resulting deformation is inhomogeneous. We neglect 

spontaneous wrinkling of the ribbon [24] 2 and consider this simplified problem 

within the two-dimensional linear elasticity theory [113]. With the center of coor­

dinates chosen in the center of the ribbon, the displacement is then prescribed by 

two equations [77],

Despite its simplicity, the problem of finding the displacement field satisfying 

Eqs. (2.4) and (2.5) does not have an analytic solution and we apply the finite 

element method [130] with a nine-point element to determine u(x,y).  Having 

obtained the displacement3, we calculate numerically the vector potential A(x ,  y),

xThe distribution of the pseudomagnetic fields have been obtained by Dr. Marcin Mucha- 
Kruczyhski.

2Note that we have neglected the possibility of spontaneous wrinkling [24] since strain limits 
their formation in suspended samples by increasing the transverse rigidity [21]. We have also 
applied a finite cutoff to regularize the formally divergent displacements [125] one finds using 
linear elasticity theory [113] near the corners of the clamped ends of the ribbon.

3We have applied a finite cutoff to regularize the formally divergent displacements[125] one 
finds using linear elasticity theory near the corners of the clamped ends of the ribbon.

‘̂ ‘dxx'U'X T  ( l  ( j ) d y y U X 4“ ( l  T  <j)dXy Uy  0,

2 d y y l L y  T  ( 1  ( 7 )  9 X X  ^ y  T  (  ^  4 ~  ^ ^ j ^ X y ^ X  9  5

(2.4)

accompanied by the clamped boundary condition for the left and right edges and 

free boundary condition for the top/bottom edge,

ux( x , ± L / 2) =  0 

uy(x, ±L/2 )  = ± I w L
(2.5)
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as predicted by the continuum model, Eq. (2.3), and the valley-dependent pseudo- 

magnetic field B(x,y)  =  rot*4.(.x, y), shown in Fig. 2.1(a) for the K  valley. The 

pseudo-magnetic field is largest [positive (blue) or negative (red)] near the contacts 

at the right and left ends, and is small in the middle part of the ribbon where strain 

is approximately homogeneous. Strong pseudo-magnetic fields may lead to the 

quantization of electronic states into LLs [40, 56, 77] and the appearance of gaps 

in the electronic spectrum. In order to investigate the effect of such strain-induced 

modifications of the electronic structure of armchair GNRs on their transport 

properties, we map the displacement directly onto the crystalline lattice of the 

ribbon and calculate the positions of the carbon atoms after the deformation. 

We recalculate the nearest-neighbor couplings according to Eq. (2.2) and use this 

information as input for the transport calculations. We ignore the on-site scalar 

potential K as it has been shown before that it is screened by electrons in the flake

which we evaluate using the recursive Green’s function technique[28, 99] applied 

to the tight-binding model in Eq. (2.1). Here, t, t! (r, r') are the transmission (re­

flection) amplitudes of charge carriers incident from the source or the drain leads 

respectively. Using the Landauer-Biittiker formalism[18] we calculate the device 

conductance, in the middle part of the GNR,

[77].

2.2 C onductance o f G N R s

The phase-coherent transport properties of such two-terminal devices are encoded 

in the scattering matrix[7, 12, 102]

(2 .6)

G(EF) = ^-Tr:{th) (2.7)
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as a function of the Fermi level Ep, where Tr(tH) is the transmission coefficient, 

or

as a function of chemical potential p and temperature T. In the latter we have 

integrated over the electron energy as determined by the Fermi-Dirac distribution 

fpD with finite temperature.

For a given height (V — — 200meV) of the gate controlled potential energy 

step between the doped graphene leads and the suspended part, the resulting 

device is a p-p'-p (Ep < — 200meV), n-p-n (—200 < Ep < OmeV), or n-n'-n 

(Ep > OmeV) graphene junction. In such systems most of the conductance features 

are determined by scattering from the strain-modified p-p', n-p, or n-rt! interfaces, 

a behavior which can be revealed by analyzing the spatial distribution of the 

electronic states. Within the used formalism, the LDOS profiles at fixed energy 

can be obtained from [38]

which gives the response of the scattering amplitudes to a small local perturbation 

SV added to the Hamiltonian in Eq. (2.1). The scattering matrix is in general a 

function of the incident energy of the carriers and a functional of the potential V. 

To linear order in p e r t u r b a t i o n , t h e  density response of the scattering problem 

can be expressed through Eq. (2.9).

2 .2 .1  T ransp ort across h o m o g en eo u sly  stra in ed  arm chair

By evaluating Eq. (2.8) numerically for a GNR with W  ~  40nm and aspect ra­

tio L / W  = 3 for various artificially imposed homogeneous strains, we obtain the 

linear response conductance, as a function of chemical potential and temperature,

dfpp^Ep — p)
(2 .8)

LDOS (2.9)

G N R s
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shown in the panels of Fig. 2.2. For the unstrained GNR [Fig. 2.2(a)], which is 

semiconducting with a gap of ~  30meV as determined by the momentum quan­

tization, the conductance exhibits two minima at /i =  -200meV and OmeV and 

a local maximum at — lOOmeV. The conductance oscillations away from the two 

DPs are due to the Fabry-Perot-like standing wave resonances in the electron 

transmission across the potential barrier geometry [47, 93, 115]. This can be seen 

in the LDOS profile shown in the insert, which we calculated using Eq. (2.9) 

at energy Ep — — 129.2meV. For homogeneously strained GNRs in Figs. 2.2(b)- 

(i) the results show that the conductance continues to exhibit the minima at 

H =  —200meV and OmeV, however, depending on the strength of the deforma­

tion, G(-200meV< n < OmeV) can decrease, acquire a resonant structure, or 

become completely suppressed.

For deformations w < 0.018 [Figs. 2.2(b)-(c)] the conductance G{—200meV< 

11 < OmeV) is decreased. The strain-induced shift of the DP, as illustrated by 

the example in Fig. 2.1(c), determines a misalignment between Fermi surfaces 

in the unstrained leads and the suspended strained region. Only the quantized 

momenta that cross the overlapping area of the two Fermi surfaces correspond to 

propagating modes in the leads that couple to propagating modes in the suspended 

region and therefore contribute towards transport. With increasing strain, the area 

of the overlap decreases and the conductance is reduced as an increasing number 

of conducting channels become blocked.

For strains 0.018 < w < 0.024 [Figs. 2.2(d)-(h)] the conductance exhibits a 

series of well defined resonances. In this range of strains, the area of the overlap 

between Fermi surfaces is narrower than the separation between neighboring quan­

tized momenta lines. For a fixed strain w, the width of the overlap remains constant 

with varying energy, in an n-p-n junction, but the overlap itself is shifted in the 

momentum plane along the kx-axis. Therefore, the zero-conductance plateaus ap­

pear periodically in the range of energies where there is no quantized momenta line 

crossing the area of the overlap. In this case, the propagating modes in the central 

device only couple to evanescent modes in the leads, leading to the formation of
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F ig u re  2.2: Linear response conductance, as a function of chemical potential fi at
several fixed temperatures T . of the suspended GNR with W — 40nm and aspect ratio 
L/ W — 3, for various values of artificially imposed homogeneous strain shown in each 
panel respectively. Panels a), e) and h) also show the spatial structure of electron wave 
amplitudes at energy Ey  =  — 129.2meV. evaluated using Eq. (2.9).

tran sp o rt gaps in the system. The finite-conductance resonances are entirely due 

to  Fabry-Perot-like standing wave patterns, as illustrated by the LDOS profiles in 

Fig. 2.2(e. h).

For strains w > 0.024 [Fig. 2.2(i)] the conductance G ( —200meV< /i <  OmeV) 

is suppressed. Such strong deformations determ ine a complete misalignment be­

tween the Fermi surfaces in the two regions, resulting in a suppression of the 

conductance in the ballistic regime [93]. This threshold for the insulating behavior 

is controlled by the param eters used in Fig. 2.2 and can be lowered (raised) by 

reducing (increasing) the height of the potential step between the central part of 

t he ribbon and the contacts.

The finit('-conductance resonances are characteristic for junctions between re­
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gions of different polarity (n-p-n junctions) and are absent in junctions between 

regions of the same polarity (n-n'-n, and p-p'-p junctions). This is because for 

pi < — 200meV and pi > OmeV the overlap of the Fermi surfaces increases with 

increasing energy, and is crossed by an increasing number of quantized momenta 

lines. Therefore, the conditions for the appearance of the resonances will never be 

fulfilled. With larger strains (w > 0.03) the two Fermi surfaces will start overlap­

ping at energies further from the DPs (EF < -200meV or EF > OmeV), which will 

determine a widening of the transport gap in Fig. 2.2(i). For example, at w =  0.05 

the conductance G —> 0 in the entire energy range \EF\ < lOOmeV around the DP 

of the suspended region.

Ideal ribbons, with perfectly cut edges are not realistic, as most of such experi­

mentally realized structures present a certain degree of roughness at the edges [41, 

58]. Therefore, in the next subsection we discuss the effect of edge disorder on the 

transport properties of homogeneously strained GNRs.

Influence of edge disorder in GNRs

In this section we establish the robustness of the strain-induced conductance res­

onances against edge defects, for the GNRs discussed above. We introduce edge 

disorder in our system by randomly removing a fraction /  of either the atoms 

within a strip of width 2r, where r — 1.42.4, from the edges, [34, 57, 75, 99] or the 

dimer lines (pairs of C-C atoms) in the outer-most rows of the edges, [3, 57] in 

the suspended region. The missing atoms are modeled by setting all the nearest 

neighbor hopping elements to zero. Figures 2.3(a)-(c) show the numerically cal­

culated conductance, at fixed temperature T  = 20K, of a homogeneously strained 

GNR of width W  ~  40nm and aspect ratio L / W  =  3 for several strains w and 

in the presence of various percentages /  of ‘single-atom’ and ‘double-atom’ edge 

defects, as shown for each panel respectively.

Our results in Fig. 2.3(a) show that single-atom edges defects induce the smear­

ing or even the suppression of the finite-conductance resonances. As compared to 

the results for a defect-free system, Fig. 2.2(d)-(h), the conductance is greatly
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F igu re  2.3: Linear response conductance as a function of chemical potential at fixed
temperature T =  20K. for GNRs with: /  =  17c and 5% a) •single-atom' and b) ‘double­
atom' edge defects for w =  0.02. 0.021. 0.022. and 0.023 artificially imposed homogeneous 
strain, c) with w = 0.024 artificially imposed homogeneous strain and various percent­
ages of 'double-atom' edge defects as shown in the insert.

reduced in the presence of f  =  1% edge disorder, and the  resonances become 

barely visible when ./' =  o%. Previous studies have shown th a t in the absence 

of strain , such edge disorders determ ine drastic changes in the transport proper­

ties of arm chair GNRs. bv inducing large fluctuations m the conductance e\en  

for small percentages of defects. By breaking the sublattice sym m etiy [5/] and 

acting as short-range scatterers [34. to], such edge defects induce backscatteiing. 

A nderson-type localization, and even the formation of conduction gaps. Similarly, 

our calculations also show that the conductance rapidly degiades w ith increasing 

edge disorder, as an increasing number of conductive paths become blocked, and 

therefore the observed resonances become washed out.
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Double-atom edge defects, on the other hand, keep the sublattice symmetry 

intact and therefore only induce small changes in the conductance [57], as it can be 

seen in Fig. 2.3(b). As compared to the results for a defect-free ribbon, Fig. 2.2(d)- 

(h), the conductance for /  =  1% and /  =  5% disorder show remarkably little 

changes. Even at higher degrees of disorder, the resonances are still visible. The 

most significant result was obtained for w — 0.024 strain, depicted in Fig. 2.3(c) 

where we show the conductance calculated for various percentages of edge disorder. 

It can be seen that, in this case, the ballistic properties of the device are restored 

by such edge disorders. This behavior can be understood by comparing the two 

disorder extremes: /  — 0% and /  =  100%. At /  =  0% (no edge disorder), the 

central device and leads are perfectly matched, both having a width W  and the 

same transverse momentum quantization. The requirement for conservation of 

transverse momenta leads to a complete suppression of the conductance, since the 

Fermi surfaces in the leads and the strained suspended region do not overlap. At 

/  =  100% edge ’’disorder” the outermost rows of dimer lines at the top and bottom 

edges of the suspended region are completely removed. Therefore this region has 

a smaller width and correspondingly different quantized transverse momenta than 

the leads. In this case the conservation of momentum requirement is lifted and the 

mismatch induces a mode mixing mechanism at the interfaces between the three 

regions of the GNR, leading to the appearance of finite-conductance resonances 

even if the Fermi surfaces do not overlap. Other degrees of edge disorder will induce 

a random mixture of local boundary conditions [3] at the edges, and therefore yield 

intermediate conductance results.

To summarize, in the last two subsections we have established that the ballistic 

transport of GNRs, in the energy range around the DP of the suspended region at 

Ef = OmeV, is destroyed by homogeneous strains w > 0.024. Furthermore, this 

trend is not affected by reasonable amounts /  < 5% of single-atom or double-atom 

edge defects which at these concentrations can only induce weak modifications in 

the conductance profiles.
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Figure 2.4: Left: Zero-temperature conductance, as a function of Fermi energy, of
suspended GNRs with W  ~  40nm and aspect ratios L j W  =  2, 3, and 4 (blue, red. 
green), and w = 0.05 inhomogeneous strain, which are clamped at the highly-doped 
contacts. Right: High accuracy conductance results obtained for two groups of peaks 
identified in the panels on the left.

2.2.2 T ran sp o rt across inhom ogeneously s tra ined  arm chair  

G N R s

In contrast to perfect and disordered homogeneously strained GNRs, where G —> 0 

around the neutrality  point of the suspended part, we find th a t G ( E F) features 

several peculiar resonances in inhomogeneously strained ribbons, due to pseudo- 

m agnetic fields which develop near the left and right edges. Since previous woiks 

have predicted t he form ation ol pseudo m agnetic LLs in such systems [40, 56, 77], 

we aim a t finding whether any of the observed new featuies in the conductance 

reflect this quantization of the electronic states. We focused our study on the 

energy range \Er \ < lOOineV, around the DP of the suspended region, where, if
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present, the first few LLs are well resolved. Outside of this energy range, the states 

are likely to be broadened and smeared [40].

We consider three inhomogeneously strained ribbons, of width W  ~  40nm and 

aspect ratios L / W  =  2, 3 and 4 with w — 0.05 in their middle parts and pseudo- 

magnetic field distributions shown in Fig. 2.5(a). Using Eq. (2.7) we calculate 

their zero-temperature conductance and arrive at the results on the left hand side 

of Fig. 2.4. In contrast to the results obtained in the previous subsections, where 

the conductance was completely suppressed for homogeneous strains w > 0.024, 

here, we find four groups of sharp and clearly defined resonance conductance peaks 

for each considered aspect ratio. The two groups positioned far from the DP, at 

Ep — — 70meV and ~  40meV, contain several resonances with their number being 

proportional to the aspect ratio of the respective ribbons. For the other two 

groups, positioned in the energy rage —25meV< EF < OmeV just below the DP, 

the high accuracy conductance results, on the right hand side of Fig. 2.4, reveal 

that these resonances always occur in pairs of two. Furthermore, the splitting of 

the two peaks in each group decreases with increasing aspect ratio. To uncover 

the character of each group of peaks, we analyze the spatial distribution of the 

corresponding electronic states using Eq. (2.9), and arrive at the LDOS profiles 

shown in Fig. 2.5(b).

As illustrated in the top two rows, the states away from the DP correspond to 

Fabry-Perot-like standing waves. Similarly to the LDOS profiles in Fig. 2.2, such 

states are confined in the central part of the structure, where the strain distribution 

is approximately homogeneous, due to multiple electron reflections from the left 

and right interfaces. Here, the inhomogeneity mixes the transverse quantized 

states at the n-p and n-n' interfaces, allows for the charge carriers to overcome 

the misalignment of the Fermi surfaces, described in Sec. 2.1, and therefore leads 

to the formation of these resonances. For the two groups in the energy range 

-25m eV< EF < OmeV, where the resonances occur in almost degenerate pairs, 

the LDOS profiles shown in the bottom four rows of Fig. 2.5(b) do however point 

towards a very different behavior. Unlike any of the resonances we found up to
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Figure 2.5: We consider transport through suspended GNRs with W  ~  40nm and
aspect ratios L / W  =  2. 3. and 4. and w =  0.05 inhomogeneous strain, which are clamped 
at the highly-doped contacts. Panel (a) shows the distribution of pseudo-magnetic fields 
B{T ) for electrons in the K  valley. Panel (b) shows the spatial structure of electron 
wave amplitudes corresponding to several resonances identified in Fig. 2.4.

now. the spatial structu re  for these states clearly resembles the pseudo-magnetic 

field distributions, which is an indicator for the form ation of LLs. We believe 

th a t this quadruplet of resonances (two groups each containing two conductance 

peaks) can be a ttribu ted  to  the n = 0 pseudo-magnetic Landau level induced by 

the inhomogeneity at the interfaces, and a ttem p t to dem onstrate this below.

O ur m ain piece of evidence is a unique feature of this LL in graphene, namely 

th a t the electron am plitude resides either on the A  or B  sublattice. This can be 

seen from

0
(2 .10)

where by acting with the low-energy [22] Ham iltonian on the n  — 0 sta te  with
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F igu re  2.6: Sublattice-resolved electron amplitude for one of the resonances in
Fig. 2.4 [ L f W  =  2, E  =  -5.84meV), obtained by placing the probing perturbation 
on the A  (left panel) or B  (right panel) sites.

non-zero am plitude |0) on the A  sublattice, we obtain the Ep  =  0 eigenvalue. 

This is not the case for the sta te  with finite am plitude on the B  sublattice. Here 

Vp is the Fermi velocity, ft =  where p  =  Px + ipy param eterizes the in-plane

m om entum  relative to the K  or K '  point. A  is the vector potential in Eq. (2.3), 

and ft |0) =  0. The selected sublattice depends on the sign of B  bu t is independent 

of the valley [40]. In contrast, higher order LLs and Fabry-Perot-like resonances 

occupy both  sublattices equally [129]. By placing the probing pertu rbation  SV  in 

Eq. (2.9) on either the A  or on the B  sites, we find, as illustrated for one example 

in Fig. 2.6, th a t the low-energy resonances are localized and have high am plitude 

only on the .4-sites near the left interface (where B < 0), and only on the B-sites 

near the right interface (where B  > 0). This is in agreement w ith the unique 

feature of the n  =  0 LL described above.

A nother fact th a t supports our in terpretation of the origin of these states, is 

th a t we find four such low-energy resonances, with the separation between each 

pair inversely proportional to the aspect ratio of the ribbon. The y  —> —y  reflection 

sym m etry of the system  maps the K  and K '  valleys onto each other, which results 

in the form ation of a sym m etric and an anti-sym m etric superposition of the two 

valley m anifestations of the n =  0 LL. This leads to a splitting of the n = 0 LL 

into two branches, corresponding to each of the two groups of resonances. The 

low-energy branch, located at E f  ~  — 24meV, is valley-symmetric and displays a 

maximum  on the sym m etry axis, and the high-energy branch at Ep  ~  —/meV is 

valley-antisym m etric and displays a nodal line on the sym m etry axis. The tunnel 

coupling of the states T / and near the left and right ends of the  ribbon, 

leads to I lie' mixing and splitting ol these pairs ol states into even and odd linear
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combinations ^ ( v̂ l  ±  ^°r )i which results in the formation of two weakly split 

resonances. This is provided by the evanescent tails of the electronic wave functions 

in the middle part, where B is small. Naturally, since the overlap of the evanescent 

tails of and T °R decreases with increasing aspect ratio, the splitting in each of 

these pairs is smaller in a longer ribbon, thus explaining the trend we highlighted 

in our discussion of the high accuracy conductance result on the right hand side 

of Fig. 2.4.

2.3 C onclusion

In conclusion, we performed a systematic study of the transport characteristics 

of homogeneously and inhomogeneously strained suspended armchair graphene 

nanoribbons. Our analysis revealed that the strain-induced shift of the Dirac 

point in the momentum plane, due to artificially imposed homogeneous deforma­

tions, coupled to the size confinement effects, leading to significant modifications 

in the transport properties of such systems. Namely, depending on the strength 

of the deformation, the conductance can decrease, acquire a resonant structure, 

or be completely suppressed. We have also established that the resonant struc­

ture is sensitive to ‘single atom’ edge defects and is destroyed by this type of 

edge disorder. However, it is robust against ‘double atom’ edge defects which 

have the ability to restore the ballistic transport in the case of a completely sup­

pressed conductance. For the case of inhomogeneous deformations, we have found 

that the inhomogeneity developed near the contacts, aids the resonant transmis­

sion of charge carriers, either through a mode mixing mechanism, or through the 

sublattice-polarized n =  0 pseudo-magnetic Landau level. The former leads to 

the formation of Fabry-Perot-like standing waves, in the central homogeneously 

strained part of the ribbon, which result in the formation of conductance peaks far 

from the Dirac point. For the latter case, the states form near the contact regions 

and give rise to two groups of resonances near the Dirac point, each containing a 

pair of conductance peaks.



Chapter

Conductance anomaly near the 

Lifshitz transition in strained 

bilayer graphene

3.1 In troduction

Bilayer graphene (BLG) [74, 85], a crystal consisting of two graphene monolayers 

arranged according to Bernal stacking [8], is a material with versatile properties. 

In contrast to monolayer graphene, where the linear dispersion (Dirac cones) near 

each corner of the Brillouin zone (K and K7 points) is very difficult to alter, the 

low-energy band structure of BLG can be qualitatively modified by relatively weak 

external perturbations. For example, a transverse electric field opens a mini-gap 

in the BLG spectrum [20, 71, 74, 86, 87, 128]. Also, it has been shown that a 

relatively small uniaxial strain (of only a few percent) leads to a change in the 

topology of the low-energy dispersion, which then exhibits two Dirac mini-cones 

near each corner of the Brillouin zone (see Fig. 3.1) [55, 67, 76, 109]. Both in 

the conduction and valence bands, these cones are connected by a saddle point 

at which the Fermi lines reconnect, a configuration which is known as a Lifshitz 

transition (LiTV) [1, 60]. (In contrast, in a monolayer, homogeneous strain only 

results in a small shift of the Dirac cones away from the corners of the Brillouin
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zone, without any qualitative change of the linear dispersion or the chiral properties 

of the electrons [23]).

In this Chapter, we study the transport characteristics of an ideally clean 

homogeneously strained BLG crystal, aiming to find features in the temperature 

and chemical potential dependence of its two-terminal conductance that would 

reflect the presence of the saddle point in the dispersion relation. We consider a 

short and infinitely wide strained BLG strip (the only geometry where strain in a 

two-terminal device would be homogeneous 1), adjacent to BLG regions suspended 

over metallic contacts. The information encoded in the two-terminal conductance 

of such a device of finite length is complementary to what is manifested by the 

sheet conductivity of an infinite flake discussed in Ref. [27, 29]. Since contacts 

with metals heavily dope graphene, we model the BLG terminals with a high 

(e.g., n-type) density of carriers, whereas the strip in the middle is considered to 

be at a low density of carriers (either of n- or p-type, which can be controlled by 

an external gate). We choose the amount of strain in the structure such that it 

induces a LiTr at the energy of about ±5 meV, measured from the charge neutrality 

point. According to Ref. [76], such an effect on the bands can be generated by 

about ~  1% of uniaxial strain. Note that in suspended graphene structures [35, 

37, 68 , 69, 116, 124] strain of such size may be inflicted involuntarily, either by 

processing and annealing of the flake, or by displacements of contacts due to the 

different contractions upon cooling of the substrate and of the supporting metallic 

electrodes.

Our findings show that the dependence of the conductance G(p,T) on the 

chemical potential and temperature does indeed reflect the spectral reconstruction 

by strain, in the form of a conductance anomaly: a non-monotonic dependence 

of G(fj., T) on both parameters, p and T. This behavior is characteristic for the 

regime where the chemical potential is close to the saddle point in the electron/hole 

spectrum on one of the sides of an n-p junction, or in the middle of an n-p-n 

device. The conductance anomaly is sensitive to the crystallographs orientation

1M. Mucha-Kruczyriski and V.I. Fal’ko, (unpublished).
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unstrainec

strained

Figure 3.1: Left: Top view of an unperturbed (top panel) and a strained (bottom 
panel) bilayer graphene (BLG) crystal. The top and bottom layers are shown in yellow 
and red. respectively. Strain modifies the intra-layer nearest neighbors coupling po- 
as well as the inter-layer coupling 73 between atoms at the center of the other layer’s 
hexagons. Right: Electronic band structure in the vicinity of the Brillouin zone corners 
K  and Kb with focus on the low-energy dispersion near the K  point for unperturbed 
and strained BLG.

of the sample geometry, which determines the principal axis of the strain tensor. 

Similar results in strained bilayer graphene have been obtained by Ref. [90]. Our 

above outlined results are described in detail in Sections 3.3 and 3.4. with their 

graphic representation shown in Figs. 3.3 and 3.4. The calculations are based on 

the Landauer-Biittiker approach [18]. with transmission probabilities obtained in 

the transfer matrix method [5. 79. 101, 103]. Section 3.2 introduces the model for 

a strained bilayer graphene device and identifies the propagating and evanescent 

modes required for these calculations.

3.2 E le c t ro n  d ispers ion  a n d  p ro p a g a t in g  m o d es  

in s t r a in e d  B L G

In this section, we identify the energy dispersion and transport modes in homoge­

neously strained BLG regions. These results are used in the subsequent sections 

to study the' transport in devices made out of several such regions (n-p and 11-ri
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junctions in Sec. 3.3, n-p-n and n-n'-n junctions in Sec. 3 .4).

The lattice structure and parametrization of the minimal relevant tight-binding 

model for electrons in strained BLG [74, 76] are illustrated in the left panel of 

Fig. 3.1. The stacked layers have every A site within each layer surrounded by 

three B  sites and vice versa, with intralayer coupling y0 ~  3eV; A 2 sites are on top 

of B 1 sites, with interlayer coupling 71 ~  0.4eV, while A 1/ B 2 sites sit over/under 

the hexagons in the other layer and are coupled by the ‘skew’ hopping energy 

73 ~  0.3eV. The low-energy electronic states reside on the sites A 1 and B 2: while 

the sites A 2 and Bi support states in split bands which do not contribute to low- 

energy transport. For unstrained BLG, the low-energy states near each corner of 

the Brillouin zone form two approximately parabolic bands, a valence band and a 

conductance band, which touch each other at the K or K ' point, as shown in the 

top right panel of Fig. 3.1.

Uniaxial strain changes the intralayer and interlayer hopping integrals 70 and 

73 by making them direction dependent, as shown in the bottom left panel of 

Fig. 3.1. Neglecting trigonal warping for large enough strain, the corresponding 

low-energy dispersion near a given corner of the Brillouin zone is described by the 

effective Hamiltonian [67, 76, 109]

v (x ) + we~2i*

+ V{x)

Here m  «  0.035me is the effective mass, tt =  px +  ipy parametrizes the in-plane 

momentum relative to the K or K7 point, and we~21̂  accounts for the change of 

the couplings due to the strain, where <p is the angle between the principal axis of 

the strain tensor and the crystallographic direction of the crystal. Using the tight 

binding model for BLG, one finds [67, 76, 109] that w = (3/4)(773 — 770)73(5 — 5'), 

with 770,3 =  din 70,3/d  In tab where tab is the distance between carbon sites, while 

S and 5' are the two principal values of the strain tensor.

Near each corner of the Brillouin zone, the low-energy dispersion relation ob­

tained from Eq. (3.1) exhibits two Dirac mini-cones, which are separated from the

(3.1)
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Figure 3.2: Schematic representation of a suspended BLG device with strain axis
oriented along the x-direction (as defined in Fig. 3.1). The sketch illustrates the example 
of an n-p-n configuration of such a device (p, < 0). In the highly doped contact regions 
the Fermi level (dotted line) lies high up in the conduction band (yellow), where the 
dispersion is parabolic. In the central region the Fermi level lies in the valence band 
(red), and is close to the charge neutrality point, where the dispersion is modified due 
to the two Dirac mini-cones and the saddle point associated with the Lifshitz transition. 
Shading indicates occupied states.

parabolic spectrum  at high energies (w <C |e| <  7 i / 2) by a saddle point at e =  ± w  

(see bottom  right panel of Fig. 3.1). For energies |e| <  w between the saddle points, 

each mini-cone results in a disconnected, approxim ately circular Fermi line. At 

the saddle point, the lines connect pairwise in a LiTr. and beyond the LiTr there 

is only a single Fermi line encircling the K  or K '  point. Relative to these corner 

points, the strain-induced Dirac points are positioned in the m om entum  plane at

Po =  Po (cos o, sin (?). Po =  ± v 2 mw.  (3.2)

After expanding Pi in Eq. (3.1) in m omentum  p  — po around these Dirac points 

(and keeping only linear term s), we find th a t each one is characterized by a Dirac 

velocity v* =  po/( 2 m).

In the following, we study how this strain-induced change in the topology of the 

electronic bands affects the transport properties of a device made of a strained flake 

of BLG. where a short and wide strip  of width L y »  Lx sits between two highly 

doped BLG regions suspended over two metallic contacts. The band alignment in 

such a device is sketched in Fig. 3.2. Metallic electrodes heavily dope BLG in the 

vicinity of the contacts, thus determ ining two leads (regions I and III) w ith a high 

carrier density. An external electrostatic gate controls the doping, and, thus, the
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chemical potential p of the electrons in the middle part of the flake (region II), 

which we consider to be close to the neutrality point. In our model this doping 

profile is taken into account by potential steps at the sample edges

, 0  if 0 < x < Lx, -y.V{x) = { ~ ~ f » V 0 » w ,  p.
-Vq otherwise,

In the remainder of this section, we identify the transport modes in the various 

regions of the system.

The stated conditions make the energy dispersion in the leads approximately 

parabolic, e ~  p2 /{ 2 m) — Vo, and the plane-wave states the same as chiral states 

in unstrained BLG[74], with a very little effect of the strain. For a given inci­

dence angle 6  of an incoming electron in the contact, we parametrize its transverse

momentum along the step as py =  \ j2 m |Vo +  e| sin(0), and use the longitudinal 

component

plZ = 1 ^2nm \V 0 + e [-p 2 , I =  ± , (3.3)

to characterize propagating modes (n =  +, real momentum) and evanescent 

modes (n =  —, complex momentum). For propagating modes in the conduc­

tion band of the leads, as considered here, the group velocity is directed parallel 

to the momentum, and thus the index I coincides with the propagation direction 

along the x axis, i.e., I =  +  denotes a state propagating to the right.

We now turn to the modes in the weakly doped region II. The left panels 

in Fig. 3.3 show the isoenergetic lines for electrons in the valence band at low 

energies for unperturbed [Fig. 3.3(a)] as well as strained BLG [Figs. 3.3(b)-3.3(d)], 

with w — 5 meV and for several orientations of the strain principal axis. States 

corresponding to plane waves moving to the right are indicated by red and green, 

and to the left by purple and blue. (Note that for some of these modes, the group 

velocity is directed opposite to their momentum.) These isoenergetic lines reflect 

that the low-energy dispersion relation in strained graphene is determined by the
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modified condition

 2wpxpy sin(2(p) +  w2 (3.4)

(here and in the following, an overscript tilde denotes quantities specific for region 

II; energy e and transverse momentum py are conserved for elastic scattering at 

a straight interface). For given values of energy and transverse momentum, this 

equation may have four, two, or no real solutions px, where the latter situation 

arises at any given fixed energy beyond a critical value \py\ =  py^  which depends 

on the orientation of the applied strain. We denote the corresponding propagation 

direction in region I by 6 C, pVjC =  y/2m\Vo +  e \ sin(0c), which signifies the critical 

angle beyond which electrons from the lead only couple into evanescent modes, 

which do not contribute toward transport. As such, restricting the analysis to the 

range of angles (—0C, 9C) is enough to capture all the essential transport features. 

Below the critical value and for large values of |e|, there are always two real and 

two complex solutions, while for small |e|, there are two or four real solutions, 

which depend on the propagation direction and on the orientation of the applied 

strain, as we now discuss in detail.

For the unstrained case [neglecting w in Eq. (3.4)], the parameters in region II 

are given [in analogy to Eq. (3.3)] by

Here, p++ (p~+) is real and corresponds to right-moving (left-moving) plane waves, 

while p~~ (pt~) corresponds to evanescent waves decaying to the right (left). [The 

factor sign(e) accounts for the fact that in the valence band, the group velocity is 

directed opposite to the momentum.]

For strained BLG with strain orientation <f> = 0, we find from Eq. (3.4) that

(3.5)

>2 +  2 mw (3.6)
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where n, I =  =L The left panel of Fig. 3.3(b) shows examples of several isoen­

ergetic lines, with strain-induced Dirac points on the axis px in the momentum 

space. By inspecting Eq. (3.6), one notices that for \e\ < w and py < me2 /(2w )

[angles where sin(9) < v/e2/(4iy|Vr0 +  e|)], all four momenta are real [p++ (red), 

p~~ (green), p+~ (purple), p~+ (blue)] and the Fermi line is split into two pock­

ets. When e is slightly below (above) the LiTr in the valence (conduction) band, 

|e| > w, the Fermi line is continuous but deformed. For small values of |py|, 

Eq. (3.4) then gives two real solutions (p j+, p~+) and two imaginary solutions 

(Px~, Px ~)i while for larger values of \py\ (just below the critical value pVjC)  there 

are four real solutions.

Figure 3.3(c) illustrates the propagating modes for strain with orientation <fi — 

7r /4 , where the momenta were found numerically from Eq. (3.4). The four colors 

distinguish right-moving plane waves (p++ red, p~~ green) and left-moving plane 

waves (Px~ purple, p~+ blue). We now find at most two real solutions for fixed 

energy and transverse momentum. Above the LiTr in the valence band, there is a 

range of transverse momenta around py =  0 (normal incidence from the leads) in 

which there are no propagating modes in region II.

For the strain axis oriented at 4> =  ?r/2 [Fig. 3.3(d)], the four solutions of 

Eq. (3.4) are

=  I sign(e) 4m2e2 +  8 mwpy — p^ — 2mw, (3.7)

where, as before, n =  ±  and / =  ± . By inspecting Eq. (3.7), we find that for 

all energies and angles below 6 C, only the momenta p1̂  are real. In Fig. 3.3(d), 

the corresponding propagating waves are marked red (p++, right-moving) and blue 

(p~+, left-moving). Above the LiTr in the valence band, there is again a range of 

transverse momenta around py =  0 in which no propagating modes exist in region 

II.
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3.3 Transport across n-p and n-nr junctions

In this section, we study how the presence of strain affects the electron transmission 

across a single potential step, from a heavily doped region I to the low-density 

region II. Depending on the sign of the doping, this can be an n-p {/i < 0) or 

n-n' {pi > 0) junction. In the Landauer-Biittiker approach [5, 18, 79, 101, 103], 

the conductance G of such a junction is determined by the energy and angular 

dependence of the transmission probability T(e, 0 ) of an electron in the conduction 

band incident from the left to emerge in the valence (or conduction) band at the 

right of the interface.

3 .3 .1  C a lcu la tio n  o f  tran sm iss ion  p rob ab ility

To calculate the transmission probability T(e, (9), we employ the transfer matrix 

method [79]. Using separation of variables (allowed for a straight interface), the 

spinor eigenstates of Eq. (3.1) can be written as $ 1,11(0;, y) =  $i,n (0;) eiPyV, where

Here, as before, indices I and II label regions to the left and right of the potential 

step, l ,n  = ±  discriminate the branches of longitudinal momentum, aln, bin are 

the wave amplitudes, and vin =  \de/dpl™\, vin = |5e/5p^n | are the longitudinal 

components of the group velocity. [Note that in the conduction band (e > 0) and 

in the valence band (e < 0), the group velocities for fixed electron momentum are 

oppositely directed.]

The transfer matrix M\ relates the amplitudes and b[n on the two sides of

(3.8)

(%" +  'Py)2 +  w^
PinAn —
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K'n ieV)

M tivVi

P y / P o

Figure 3.3: Left: isoenergetic lines at e =  -2 , -5 , -6 . and - 8  meV for strained bi-
laver graphene, with w  = 5 meV. Center: transmission probability T(e. 6)  across a single 
potential step (n-p or n-n' junction), from a highly doped region to a barely doped re­
gion, as a function of energy and incidence angle of incoming electrons. Right: linear 
response conductance of the junction as a function of chemical potential p and temper­
ature T. Results are shown for unstrained bilayer graphene (a), as well as uniaxially 
strained bilayer graphene for various orientations of the strain axis with respect to the 
cr y sta.llograi)hic axis x  in Fig. 3.1: O = 0 (b). <p =  7t / 4  ( c )  and <fi =  7r/2 (d).
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the interface according to

b - +  

6__ 

\ b + -  )

=  Mi
a_+ 

a_

\ a+- J

(3-9)

To build this matrix, we employ the continuity of the electron wave function 

(0) =  ^ ii (0) and its derivative ^  (0) =  (0) at the potential step. In this

way, we find that the transfer matrix takes the form

A =

(3.10)

1 1 1 1

a++ o>__(. a _ Q+_

p i+ Px + Px~ Pt~

a++pt+ a - + P x  +

i1 HSi.11e a+-Pt

X

B = P++
:++P.

\  P++Px 

(

'+ +

'V+ + 

0

0

0

i
v^++

0 0 0

0 1
Vv-+

0 0

0 0 1 0

0 0 0 1

1 1 1

P -+
Px + 

P - + P x +

0

1
y/v-+

0

0

P -
Px~

P — Px
0

0

1

0

1

p + -

p t ~

p + - p t ~

\0

0

0 

1
fV+- )

In what follows, we characterize waves by their corresponding momentum and
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amplitude. In the contact, we assume that there are right-moving propagating 

waves (p^+, u++ = 1) which can be transmitted into region II or reflected by 

the potential step Vq back into region I. Reflected waves become left-moving 

propagating waves (p~+, a_+ ^  0) and evanescent waves decaying to the left 

(p~- , a ±  0)- From this, Eq. (3.9) becomes

° + +

b-+

6__

\  b+~ )

= M 1
a - +  

a_

0 /

(3.11)

and the transmission coefficient can be found using

T  =  1 — |a |_| (3.12)

This definition is the most convenient for the problem studied here since there is 

only one left-propagating mode in region I, whereas there are parametric regimes 

in which two different right-propagating waves exist in region II. In the following, 

we discuss how this scheme is applied in the four characteristic cases illustrated in 

Fig. 3.3: (a) unstrained BLG, and (b)-(d) BLG with various angles between the 

principal axis of uniaxial strain and the crystallographic direction x in Fig. 3.1.

For the unstrained case, using the plane-wave parameters determined in Eq. (3.5), 

Eq. (3.11) becomes

1  b++

0 

0
-  Mi

\ b +-  /

a_+

a _ _

0

(3.13)

/
Solving for the wave amplitude a |_ numerically and then using Eq. (3.12), we

obtain the transmission probability shown in the middle panel of Fig. 3.3(a). This 

reproduces the e ->• - e  asymmetry for transmission of normally incident electrons 

(0 = 0), with vanishing T(e, 0) =  0 for e < 0 but finite T(e, 0) for e > 0, found in
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earlier studies of BLG junctions and the Klein paradox [47, 96, 115] (as opposed 

to the perfect transmission for 0  =  0 in monolayer graphene junctions [47, 115]). 

This asymmetry can be attributed to the different chirality of charge carriers in 

the conduction and valence bands.

For the strain axis oriented at 0 =  0, using the plane-wave parameters deter­

mined in Eq. (3.6) and solving for the amplitude a_+ in the set of linear equations 

in Eq. (3.11), we numerically obtain the transmission result plotted in the middle 

panel of Fig. 3.3(b). Our result shows T(e, 9 =  0) ^  0 at any |e| < w, as opposed 

to the unstrained case in Fig. 3.3(a). The difference between the transmission at 

9 — 0 for unstrained and strained BLG can be explained as follows. Expanding 

the Hamiltonian (3.1) in the momentum space around the Dirac points ±po of the 

strain-induced mini-cones [Eq. (3.2)], and keeping only linear terms, we find two 

Hamiltonians valid at |e| <C w:

the effective Dirac velocity, and e*̂  is a phase factor which determines the position 

of the Dirac points in the momentum plane. By solving the Schrodinger equation 

for each of these Hamiltonians and then employing Eq. (3.11), we can compute 

the transmission probability due to the states in each cone separately. The small 

insert in the middle panel of Fig. 3.3(b) shows T{9) at e =  —0.2 meV for the left 

and the right Dirac mini-cones in red and green, respectively. Transmission to the 

left mini-cone is zero at 6  = 0 and increases away from normal incidence, similar 

to the case of parabolic dispersion. Transmission to the right mini-cone, on the 

other hand, exhibits a maximum at 6  = 0 and slowly decreases for angles away 

from 9 = 0, which resembles the situation for monolayer graphene. [25] Therefore, 

the strain-induced mini-cones modify the chirality of the low-energy states.

For the strain axis oriented at (f) =  7r /4 , we first verify numerically for every 

angle of incidence and energy which momenta correspond to plane waves moving

(3.14)

where Jp is a small deviation of the electron momentum from ±po, v* = p0 / ( 2 m) is
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to the right (left) and evanescent waves decaying to the right (left), respectively. 

Then, we use Eqs. (3.10) and (3.11) and solve for the amplitude a_+ of the wave 

reflected back into the lead I, taking into account all physically allowed evanes­

cent and propagating modes in region II. The transmission shown in the middle 

panel of Fig. 3.3(c) exhibits two distinct peaks, as long as the Fermi line is split 

into two pockets. For a small energy range below the LiTr in the valence band, 

T  (e, 9 = 0) 7  ̂0 , which again can be attributed to the strain-induced modification 

of chirality of the low-energy states. Beyond the LiTr, where the effect of strain 

becomes weaker and the Fermi line becomes circular, we find that T  (e,0 = 0) —>■ 0.

For the strain axis oriented at <fi — 7r/2  [with plane-wave parameters determined 

in Eq. (3.7)], for all transverse momenta and energies allowing for propagating 

states in region II the corresponding linear system of equations is again the same as 

in Eq. (3.13). By solving these equations numerically, we obtain the transmission 

probability shown in Fig. 3.3(d). As a function of the incidence angle 0, the 

transmission now exhibits two distinct peaks for all energies in the considered 

range. As in the non-strained case [Fig. 3.3(a)], this orientation of the strain 

delivers T(e < 0 , 6  =  0) =  0 .

Irrespective of the modifications of chirality, in all four cases there is a marked 

difference in the transmission strength for e > 0 and e < 0. For e < 0, the interface 

is an n-p junction and an electron incoming from the conduction band of the lead 

(region I) emerges in the valence band at the right of the interface (region II). For 

e > 0 , the electron stays in the conduction band both at the left and right of the 

interface, which is a better transmitting n-n' junction.

3 .3 .2  C on d u ctan ce  o f an n-p ju n ctio n

Based on the above results for the transmission probability, we employ the Landauer- 

Biittiker formalism [18] to calculate the conductance of the n-p or n-n' junction. 

Taking into account two valleys and two spins, as well as integrating over the an­

gle of incidence and electron energy (as determined by the Fermi distribution with
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finite temperature T), we arrive at the junction conductance,

(3.15)

I 1_
27T 4 k sT

Here, Af  ~  27rfty/l/2 m V0 is the Fermi wavelength in lead I, /c# is the Boltzmann 

constant, and T (e ,6 ) is the transmission at fixed energy and angle of incidence, 

determined above. By performing the integration numerically, we obtain the con­

ductance as a function of chemical potential and temperature, which is shown in 

the right panels of Fig. 3.3.

For unstrained BLG [Fig. 3.3(a)], where the dispersion is parabolic, the con­

ductance exhibits a minimum at fi =  0 and has an asymmetric but monotonic 

behavior for both fi < 0 (n-p junction) and p > 0 (n-n' junction). Furthermore, 

for p =  0, the conductance increases monotonously with temperature. In the 

strained cases [Figs. 3.3(b)-3.3(d)], the increase in conductance with temperature 

is still seen. However, depending on the strain orientation 0, G (p, T) can be 

monotonic or non-monotonic. For 0 =  0 [Fig. 3.3(b)], the conductance at low 

temperatures exhibits an anomaly: in the region p < 0 , there is an additional 

local minimum, as well as a local maximum. The local maximum is located at 

p «  — w (p «  —5 meV for parameters used in the figure), which corresponds to 

the LiTr energy. For 0 =  7r/4  [Fig. 3.3(c)], the conductance at low temperatures 

exhibits a protrusion and a shift in slope, which again occur near the LiTr in the 

valence band. For <p =  tt/2  [Fig. 3.3(d)], the conductance G (p,T) is monotonic 

and quite similar to that calculated for BLG with a parabolic spectrum.

All conductance plots show an asymmetry about the minimum at p =  0. As 

discussed for the transmission probability, this difference is determined by the 

chiral sublattice structure of the plane waves, which in BLG suppresses the trans­

mission at a potential step between regions of opposite polarity. Note that the 

anomalous behavior at fi =  — w is specific for the n-p junction regime of the sys­
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tem, and does not occur in the n-n' junction regime, which does not exhibit an 

anomaly at fi =  w. These features allow one to single out the anomalous T  and 

fi dependence of the conductance for junctions with different orientation of the 

strain.

3.4  Transport across n-p-n and n-n'-n junctions

All the features found in the parametric dependencies of the transmission across 

a single potential step appear also in the transport properties of the two-terminal 

ballistic device (with two steps) sketched in Fig. 3.2. In particular, the e —> —e, and 

fi —>■ —fi asymmetry and the anomalous temperature dependence at fi =  — w (in 

the vicinity of the saddle point in the valence band) also persist in this “potential 

barrier” geometry, and indeed are further enhanced. In addition to those, the 

energy and angle dependence of the transmission coefficient acquires a resonance 

structure due to the interference between multiply reflected waves (Fabry-Perot 

resonances). To take this into account, we compute the transmission of the device 

sketched in Fig. 3.2 considering both interfaces, as well as the ballistic electron 

propagation between the interfaces.

The transfer matrix Mi = B~lA of the first interface is given by Eq. (3.10). Due 

to symmetry, the transfer matrix of the second interface is M2 =  Mx 1 =  A - 1B. 

The transfer matrix of the whole system (n-p-n or n-n'-n junction) is then given 

by

S =  M2 SM! =  M i 1SM 1 , (3.16)

where /

S  =

3iPx La 0

-pApx Lx

\

V /

(3.17)
0

0 0 e ^ ~ Lx

0 0 0 e*** Lx

describes the ballistic electron propagation inside the “barrier” region II. Note 

that the factors in the matrices A and B  that normalize the plane-wave states in
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dm eV )

dmeV

F igu re  3.4: Transmission coefficient and conductance of n-p-n and n-n'-n junctions
with non-strained bilayer graphene (a), as well as strained bilayer graphene with the 
uniaxial strain axis at an angle <p = 0 (b), <p =  tt/4 ( c )  and <p =  w/2 (d) from the crystal- 
lographic axis x. Left: transmission probability T(e. 9) obtained in an exact calculation. 
Center: transmission probability obtained by averaging over fast oscillations after the 
contribution of evanescent waves is neglected. Right: linear response conductance as 
a function of chemical potential and temperature. All calculations are performed for 
experimentally accessible values w =  5 meV, Vq =  50 meV, and Lx = 1 /mi.
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region II to normal flux cancel out in the matrix H. From this, we can relate the 

amplitudes ciin of the wave function in the source lead, Eq. (3.8), to the amplitudes 

cin of the wave function in the drain lead,

Qn

by
\ (  \

C++ a++

C-+ _  r - , <*>-+

c__ a_

c + -  J l a+-  )
To determine the transmission coefficient

t m ) = ic++r (3.18)

we take boundary conditions c _ +  =  c  =  a + _  =  0, a + +  =  1, and find C ++ by

solving the equation
(  \ I  1 \C++ 1

0 _ a_+

0 a_

\ C+- / I  0 )

The numerically evaluated transmission probability T  is plotted in the left 

panels of Fig. 3.4, for the same range of angles and energies (-10  meV< e < 10 

meV, Vo =  50 meV and w = 5 meV) as in Fig. 3.3. As in Refs. [47, 108, 115], 

the presence of two reflective interfaces in a BLG device causes the appearance of 

resonances with high transmission. In the figure, these are seen as bright strips. 

The scale of the oscillations becomes finer for a longer sample length.

The right column in Fig. 3.4 shows the finite-temperature conductance in a long 

sample. The interference fringes are washed out by the smearing of the Fermi step 

[at kBT  »  h2 / (m L 2x)\ and by the integration over the angle. To obtain this finite-
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temperature conductance, one can use the exactly calculated T(e,9) and insert 

this into Eq. (3.15). Here, we describe an accurate approximation of these results, 

which allows one to relate the pronounced anomalies of the finite-temperature 

conductance to angularly smoothed transmission probabilities (T) (smeared over 

a small angle range 56 covering many oscillations), shown in the middle column in 

Fig. 3.4. Conveniently, in the limit of Lx ->■ oo but still within y* >  1, evanescentLy

modes die off before reaching the second interface, so that in region II only plane 

waves (with real px) contribute toward transmission. To eliminate the negligible 

contribution of evanescent waves, we first restrict the analysis to the range of 

angles A 6  = 26C where plane waves exist inside the barrier; 6 C is energy dependent 

and different for each orientation of applied strain. Then, we group the exponents 

which emerge from Eq. (3.17) into propagating and decaying waves (where the 

latter have complex px), and for decaying waves approximate tanh(|Im[px]|Lx) —)• 1 

and cosh-1 (2|Im[pcc] 1̂ /̂ ) —y 0. The conductance then follows from

Since the details of the analysis of (T) depend on the electron energy and on the 

orientation of the strain axis, we sketch the derivation separately for the corre­

sponding characteristic parametric regimes.

Firstly, for the range of parameters for which Eq. (3.4) has only two real solu­

tions, the described procedure leads to an expression of the form

Here, X { are non-oscillating functions of p*xn, py, e, V0, w, and 0, which are 

not given explicitly due to their complexity. To average 7"(e,9), we first expand 

the real momenta in terms of small deviations 59 in the angle, 9 = 9q +  56, about

h A p
(3.19)

/— OO

■oo

de x
rJ-e«

(T  (e, 9q)) cos(#o)d#0.

T M )  = X 2 +  X 3 cos (2px+LX) +  X^ sin (2px+LX)
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some —0c < 9 o < 9 c, such that

As such,

T  (e, 90) = Xi
X 2 4- X 3 cos ($ +  AS6) +  X 4 sin ($ +  AS9)

where $  =  2Lx p+Jr\e=eQ and A =  2LX {dpx +/d9)\e=0o. Imposing AAS9 — 2 t t , the 

average transmission over one period is

Secondly, for the range of parameters where Eq. (3.4) has four real solutions, 

p~+ =  — p++ and p^~ = —p~~ [such as encountered in Fig. 3.3(b)], fast oscillations 

in the transmission coefficient are due to combinations of sin(px nLx), sin(2p+nLx), 

cos(p+nLx), and cos(2p+nLx). Expanding in terms of small deviations in angle,

and denoting =  Lx p+n\e=gQ and A n = Lx {dp$n/dO)\e=Qo, we find that the 

interference fringes are encoded in the factors sin($n +  ./4n£0) and cos($n -\-AnS9). 

Inspection of the constant pre-factors reveals that A+ ~  A - . Neglecting the phase 

and imposing A+AS9 = 2ir, the averaged transmission over one period can then 

be written as

1_ f 2* _________X xdz
Jo X 2 +  X 3 cos(z) +  X 4 sin(z)

(3.20)

z -  AS9.

(3.21)

X(z) =(Xi cos(z) +  X 2 sin(z))2,

y ( z ) = X 3 +  X 4 cos(2z) +  X 5 sin(2z) +  X 6 cos(4z) +  X 7 sin(4z)

and z =  A+59; here Xi are non-oscillating functions of the same parameters as
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in the previous cases. The specific expressions are again omitted because of their 

complexity.

In the analytical part of the studies of the transmission problem, all functions

and Xi have been found using the symbolic mathematical software Wolfram 

Mathematica. The results of the integrals in Eqs. (3.20) and (3.21) are shown in 

the central column in Fig. 3.4. The doping (chemical potential p) and temperature 

dependence of the two-terminal conductance of the device follows from Eq. (3.19), 

and coincides with a high accuracy with the one calculated using Eq. (3.15) to­

gether with the exact values T(e,6).

The behavior of G (//, T ) in the right column of Fig. 3.4 displays all the fea­

tures of the conductance of a single step in enhanced form. In particular, the 

conductance for 0 =  0 [Fig. 3.4(b)] exhibits a local maximum and a second local 

minimum positioned at the same chemical potentials as for a single junction. For 

0 =  7t/2  [Fig. 3.4(d)] the conductance is monotonic. For 0 =  7r/4  [Fig. 3.4(c)] the 

protrusion in the conductance of a single junction (at the LiTr) has developed into 

a clear local maximum.

3.5 C onclusion

In this Chapter we have shown that the linear response conductance G(p, T ) of an 

n-p-n junction in strained bilayer graphene has a non-monotonic dependence on 

doping and temperature, which varies in size and form as a function of the crys- 

tallographic orientation of the principal strain axis. To understand this behavior 

we studied the transmission and conductance for a single interface (n-p junction), 

and used the obtained results to conclude that the non-monotonic behavior is due 

to the modification of chirality (thus, the feature responsible for the occurrence 

of the Klein paradox in graphene). Uniaxial strain changes the chirality (sublat­

tice composition) of the electronic plane-wave states in the vicinity of the saddle 

point (Lifshitz transition) in the low-energy electron spectrum of strained bilayer 

graphene, which results in the observed non-monotonicity of the linear response 

conductance.



Chapter

Electronic properties of 

monolayer graphene superlattices

4.1 In troduction

Motivated by the unusual electronic properties of monolayer graphene (i.e. in 

some cases this material allows for the mimicking of QED phenomena under con­

ditions that cannot be achieved in particle physics experiments) condensed matter 

physicists started extending the known properties of a two-dimensional electron 

gas (2DEG) in semiconductor materials to the relativistic 2D fermions (Dirac elec­

trons) in graphene. One such system is represented by superlattice (SL) structures 

of periodically modulated potentials applied to graphene flakes. In this Chapter, 

we perform a comparison between the qualitative changes that emerge in the elec­

tronic spectrum of monolayer graphene systems due to such SL structures. First 

we consider a periodic modulation of the electrostatic potential profile [4, 6 , 13, 43] 

after which we focus on spatially periodic lattice potentials [30, 53, 95, 123]. The 

former case can be analyzed by considering a periodically spaced square barrier 

system (an infinite scries of n-p-n junctions) which can be achieved with the use of 

external gates, a construction theoretically developed by Kronig and Penney [52], 

The latter scenario is obtained by placing graphene on an atomically flat crystal 

surface such as hexagonal boron nitride (hBN) [15, 30, 31, 48, 70, 118, 126]. The
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incommensurability between graphene and the substrate, generated by the differ­

ence between their lattice constants and crystallographic misalignment, determines 

the formation of a hexagonal periodic structure known as a moire pattern.

4.2 P eriod ic poten tia ls in m onolayer graphene

In the following, we study how a periodic modulation of the potential profile affects 

the electronic band structure of a device made of a wide strip of an ideally clean 

monolayer graphene flake. This structure, realized by a periodic array of gate 

electrodes that control the doping, and, thus, the Fermi energy of the electrons in 

each region of the flake, can be modeled as a one-dimensional square-wave potential 

perturbation V{oc), as shown in Fig. 4.1. We, therefore, consider a SL formed of 

an infinite number of periodically spaced barriers with unit cell length Lx with 

barrier and well widths aLx and (1 — a)Lx, where a £ (0,1). The low-energy 

electronic dispersion of such a system, within the nearest-neighbor tight-binding 

model, is described by the effective Hamiltonian

where v = 106 m /s is the Fermi velocity, p  parameterizes the in-plane momentum 

relative to the K  corner of the Brillouin zone, <r is the vector of Pauli matrices, I  

is the 2 x 2 unit, matrix, V0 is the height of the potential barrier, and

is a stepwise function.

To find the electronic dispersion, we employ the transfer matrix method [79]. 

Using separation of variables (allowed for a straight interface) the spinor eigen-

(4.1)

(4.2)
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F ig u re  4.1: Diagram of periodic potential V(x)  =  Vo/(cos ^ q x j)  tdvei1 by Eq. 4.2.
The potential steps have height Vq and width oL x and are separated by potential wells 
of width (1 — a)Lx, where a E (0,1). The different regions where the wave matching 
mechanism will be used are indicated bv numbers.

sta tes of Eq. 4.1 at x  =  — can be w ritten as 4>is i x . y )  — ^ 1,2(rc)ezA:j/?y, where

\
vj\ — a 1

'02 — 1̂

1 '  e.M x+f  M  +  fl2 ( 1

a22 /

e *fc;(a:+f Lx) _|_ ^  I 1 | e - tfc i(x + f  Lx)

boo
(4.3)

Here indices 1.2 indicate the first two regions of the periodic potential, and cq, 

b7 where i =  1.2 are the wave amplitudes. [Note th a t primed term s are used to 

denote quantities inside the barrier.] The pseudospin elements and m om enta are 

shown in Table 4.1. where for convenience we have introduced the dimensionless 

param eters

7 _  7 ' _  ijr b. —
~ T r : ~~ L r  ' _  L ,  ’

E =  E wq, Vo — Vo no,

where u0 = h v / L x . Since we assume an infinitely wide (in the transverse direction) 

graphene flake, the transverse' m om enta can be defined as ky =  kpsinO  (where kp  

is the Fermi m omentum  and 0 is the angle of incidence of incoming electrons from
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Elements Momenta

a n  =  B « v S ~ ~ kx ~ ik^  kx = ^ /~ 'ky +  +

“22 =  ~rdavSkx ~ i 'kV> k* =  ~y/~H  +  I ^ 1 "  “ ) "

f>!2 =  I ky = 'kF sin e
622 =  E -(l-a)Vb “  ifc») =  V fcl  +

Table 4.1: Pseudospin elements and momenta for an n-p-n junction, 

the source lead).

The transfer matrix Tx = B~XA, obtained using the wave matching method, 

relates the amplitudes at and 6* on the two sides of the interface between regions 

one and two according to

A =

where
1 1

^12 a22

The same procedure can be applied at the second interface at x =  to obtain

t 2 = a ~1b ,
Cl

c2

where we have assumed that the Fermi energy for x < — Lx is the same as when x > 

|  Lx (the potential steps are symmetric) and therefore the pseudospin amplitudes 

are the same in the two regions. Then the transfer matrix of a single symmetric 

n-p-n junction, as sketched in Fig. 4.2, is given by

T  = T2ST1 = T ^ S T i ,

where
ik'x a L x 0 . ,

5 = 1  I . (4 4 )
n  „ —i k ' a L x
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A

a l  =  1 »  - A l _____ ^  Cl >

0 * 2

E 1 =  0 v

Figure 4.2: Schematics of an n-p-n junction in monolayer graphene with interfaces
at x = — %LX and x — ^Lx respectively. The amplitudes of the incoming and outgoing 
plane waves, in the three regions of the junction, are also indicated.

describes the ballistic electron propagation inside the barrier region. Using T  we

can now relate the amplitudes a* of the wave function in the source lead, Eq. 4.3,

to the amplitudes of the wave functions in the drain lead, q, by

To derive the transfer matrix for quasiparticles traveling from region one to 

region five (across a total length Lx), ip5(2 ) =  Eipi(x) we make the following 

remark: since, in an infinite array of potential barriers, regions one and five are 

identical due to symmetry, the spinor eigenstates in these two regions should be 

related by a Bloch phase 0, such that ip$(x) =  e^ipi- These two equations then 

give the final transfer matrix

is introduced to describe the electron propagation from region four to region five.

H -  ei4>I\ = 0, E = S'A~l B SB ~ lA (4.5)

where
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Figure 4.3: Energy dispersion surfaces with energy E  plotted as a function of phase (p 
and momentum ky for a Kronig-Penney system in monolayer graphene where the height 
of the potential step and its width are a) Vo =  IOtt and a  =  0.5, b) Vo =  4tt and a  =  0.5, 
c)Vo = 67t and a  =  0.4. and d) Vo =  67T and a = 0.6. These parameters were used to 
match the results of Ref. [4].

From Eqs. (4.5) we obtain the transcendental equation

cos(c6) — cosfoTq] cos[(a — 1 )kx\ 

k l - [ V 0 ( a - l )  + E}(V0a  + E)
sin[(a — l ) k x] sin[afcy =  0. (4.6)

th a t relates the  energy E  to the m omentum  ky and phase angle (p. Given specific 

values for param eters Vo and a . we solved Eq. 4.6 numerically and obtained the 

energy surface pots shown in Fig. 4.3.

As can be seen in Fig. 4.3 (a-d), the periodic m odulation of the potential profile 

generates the appearance of additional Dirac points (DPs) in the dispersion. Using 

several values for the height VQ and w idth ocLx of the potential barriers, we observe 

th a t the num ber of extra DPs varies with the potential height and tha t the energy 

a t which they form depends on the barrier to well w idth ratio. For equal barrier 

and well w idths, o =  0.5, as shown in Fig. 4.3(a,b), the spectrum  is symmetric 

about the Fermi level, E  =  0, with the dispersion exhibiting two or four extra 

DPs about the main Dirac point. It has been shown by M. Barbier et. al [4, 6] 

th a t for such a SL the number of DPs in the dispersion is given by the equation 

2 x (V0  mod 47t). Each time V0 becomes a m ultiple of 4n a new pair of DPs is
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generated for ky — 0. This also gives the threshold of Vo =  47r as the height of the 

potential barrier for which the first pair is generated. For unequal barrier and well 

widths, Fig. 4.3 (c,d), the spectrum is no longer symmetric about the Fermi level.

In these cases, the extra DPs are shifted downward (upward) in energy relative to 

the main Dirac point as aLx increases (decreases). In all these cases the velocities 

of the new Dirac points are renormalized [4, 6]. Note that close to the main DP 

the electronic properties of graphene are still very well described by the 2D Dirac 

equation. Also, in the long wavelength limit, a Taylor expansion around Vq = 0 

restores the dispersion E  =  ± +  02 of a single Dirac cone.

4.3 M oire patterns in strained m onolayer graphene1

Recent studies on monolayer graphene placed on hexagonal boron nitride (hBN), 

a material isostructural to graphene but with a 1.8% larger lattice constant [15,

30, 31, 48, 118, 126], showed that the crystallographic mismatch between the two 

lattices generates a periodic structure known as a moire pattern [31, 50, 53, 88, 95,

123, 126, 127]. When the two honeycomb lattices are accurately aligned along their 

crystallographic directions, the beating of the lattice mismatch leads to the for­

mation of a hexagonal moire superlattice (SL) with wavelength much larger that 

the lattice constant [127]. The substrate-induced moire potential [31, 126, 127] 

induces profound changes in the electronic spectrum of graphene, such as the ap­

pearance of second generation Dirac points (DPs) [30, 50, 51, 88, 89], observed 

experimentally in the tunneling density of states [127] and magnetotransport char­

acteristics [45, 95], which are accompanied by the change of the effective sign of 

the charge carriers withm graphene’s conduction and valence bands [53, 95, 123]. 

Furthermore, the long wavelength periodicity of the moire pattern provides an 

ideal-sized periodic modulation enabling experimental access to the rich physics 

expected in incommensurate quantum systems. When placing monolayer graphene 

hBN heterostructures in a magnetic field the spectrum develops a fractal structure 

known as the Hofstadter butterfly [44]. This effect is due to the interplay between

^ o te  that this section only contains preliminary results.
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the characteristic lengths associated with the two quantizing fields: the magnetic 

field and the periodic electrostatic potential.

Such heterostructures have been created recently by transferring graphene onto 

hBN [45, 95, 126, 127], a process where mechanical deformations can be inflicted in­

voluntarily. Therefore, in this Section we study the qualitative changes that can be 

induced in the electronic miniband spectrum of graphene on hBN by homogeneous 

strain. Our results show that strain couples to the misalignment angle resulting in 

distortions of the real space moire pattern which amplify with increasing strain.

We also identify an extreme case, where the moire pattern becomes quasi-one- 

dimensional, and outline the condition for its occurrence. The considered model 

and all of the above mentioned results, are described in detail in Sec. 4.3.1 and in 

the corresponding subsections, with their graphic representations in Figs. 4.4 and 

4.5.

4 .3 .1  H a m ilto n ia n  for a m oire su p e r la ttice  in  stra in ed  grap h en e  

on  an  a lm ost com m en su ra te  h exagon a l su b stra te

As previously described in Refs. [53, 123] in the case of graphene placed on hBN, 

the effect of the substrate perturbation on the Dirac electrons can be described 

phenomenologically in terms of the harmonic functions corresponding to the six 

smallest reciprocal lattice vectors of the moire superlattice. At a distance d much 

larger than the spacing a between carbon atoms in graphene, the lateral variation 

of the wave function of the Pz carbon orbitals is smooth on the scale of a [10,

50, 62, 63, 127]. This observation permits an elegant continuum-model description 

of the interlayer coupling in structures such as graphene on hBN [53, 123] or in 

twisted bilayers [10, 88, 127, 127].

Here we consider a homogeneously strained graphene flake subjected to a hBN 

substrate with a slightly different lattice constant (1+ 5)\/r3a, where |£| <C 1, as 

compared to that of unstrained graphene y/3a, and a small misalignment angle 

1°. In contrast to an unstrained honeycomb lattice, with carbon-carbon bond 

length r = 1.42A, here the interatomic distances are modulated by the displacement
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of the membrane and become

lij ~  r ( l  +  n i:j ■ wriij), (4.7)

where i j  denote pairs of nearest neighbors, =  (0,1), ( ^ ,  — |) ,  (~ ^ >  — f ) are the 

unit vectors along the carbon-carbon bonds in the unstrained honeycomb lattice 

and
/ cos2 ip — a sin2 tp (1 +  a) cost/? sin ip \ 

w = w j I (4.8)
\ (1 +  cr) cos if sin <p sin2 p — a cos2 ip I

is the strain tensor [94], In the latter w parameterizes tensile strain, a = 0.165 is 

the Poisson ratio for graphite [11] and <p is the angle between the principal axes 

of the strain tensor and the crystallographic direction of the crystal [ip = 0 ( f ) for 

strain along the zigzag (armchair) direction]. The modification of the graphene 

nearest neighbor bond lengths, and the fact that they become direction dependent, 

alters the real space moire SL, as seen in Fig. 4.4 (Left column), and in turn, its 

reciprocal lattice vectors, shown in Fig. 4.4 (Central column). Then the moire 

pattern harmonics are described by

bm(w,9)=  (I + ih ) x- ( l + 5 )  l Re R^m  I I , (4.9)
6 \ 47T

3 a

where m  = 0,- - -,5 labels the reciprocal lattice vectors, I is the unit matrix and R  

represent anticlockwise rotations by 9 and respectively..

When the strain is w = 0, the lengths of the harmonics |6m| =  ĝ \/<52 +  92 

are equal and they can be obtained from each other by the anticlockwise rota­

tion l?27rm/6 && discussed in Ref. [123]. In contrast, when the graphene lattice is 

strained, w i=- 0 , the lengths of the reciprocal lattice vectors are no longer equal, 

see Fig. 4.4 (Center column). Furthermore, as the strain tensor w  and the an­

ticlockwise rotations R^xm do not commute, it is no longer true that the moire
6

harmonics can be obtained from each other by simple transformations. In this 

case Eq. (4.9) must be used to generate each harmonic individually. [Note that
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the coupling between strain and rotations enhances the resulting deformation of

the moire superlattice.]

Even though on a substrate such as hBN. in which one of the atoms affects 

the graphene electrons more strongly than the other, the moire potential can be 

modeled as a combination of a dominant inversion-symmetric part plus a small 

inversion-asymmetric perturbation. As the second term only brings small changes 

to the electronic spectrum, it can be neglected. Using a microscopic model [see 

Appendix B for a complete derivation] that is compatible with the symmetries of 

the system [9, 114, 123], and modeling the hBN substrate as a lattice of positively 

charged nitrogen nuclei in a homogeneous background of electron P z orbitals, we 

arrive at the Hamiltonian

( ^ a m , ^ b k , ^ b k ' , — ̂ a k ' ) t , which describe the electron amplitudes on the graphene 

A  and B  sublattices in the two valleys K  and K ' . Here we have used the direct 

products <j{Tj of Pauli matrices where Oi and Tj act on the sublattice and valley

is the momentum relative to one of the corners of the moire Brillouin zone (BZ). 

The term with f i ( r ,w ,9 )  = X )m = aPbm ŵ,d)A describes a simple potential mod­

ulation. The third term, with f 2 (r.w,9) =  i l )T7V bm(w’6,)"r , accounts for

the A — B  sublattice asymmetry locally imposed by the substrate. The last el­

ement, containing the vector f 3 (r.w,9) = r where

combination of two terms: one of which has zero rotor and can be gauged away and 

a second, with nonzero rotor, which describes the influence of the substrate on the 

A — B  hopping. The latter term can not be gauged away and can be interpreted as

(4.10)

The Hamiltonian H  acts on the four-component wave functions,

indices respectively. The first term in H is the Dirac Hamiltonian, where p  =  — iV

6m(0,0) are the reciprocal lattice unit vectors with w =  0 and 9 = 0, is a complex

a pseudomagnetic field which has opposite signs in the two valleys K  and K '.  The
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coefficient ^0=  1/15 in Eq. (4.10) is a dimensionless phenomenological parameter 

which was used in numerical calculations to set the strength of the perturbation.

4 .3 .2  G en eric  m in ib an d  sp ec tra

To calculate the spectrum of Dirac electrons, as described by we perform zone 

folding (in the graphene K  valley) by bringing the states with momenta related 

by the reciprocal lattice vectors of the moire pattern, n ib l +  n 2 b2  (where n\ 

and n2 are integers) to the same point of the superlattice BZ, as shown in the 

panels of Fig. 4.4 (Center column). We then calculate the matrix elements of H  

between those states for each considered set of parameters (w ,6 ) and diagonalize 

the corresponding Heisenberg matrix numerically. The size of the matrix is chosen 

to ensure the convergence of the calculated energies for the three lowest conduction 

and valence minibands. Below we discuss the general features of the numerically 

calculated moire miniband spectra obtained for the set of parameters (w, 6 ) = 

(0%,0°), (0.5%, 0.23°), (1%, 0.46°), (1.5%, 0.69°), and (2%, 0.92°) respectively.

For the zero-energy Dirac point in graphene, only the p  = 0 states in each 

valley appear at E = 0 upon zone folding. As can be seen in all panels of Fig. 4.4 

(Right column), for all considered parametric combinations (w ,8 ), the inversion- 

symmetric moire perturbations does not open a gap in the Dirac spectrum at low 

energies, at the edge between the valence and conduction bands. [Note that the 

inversion-asymmetric perturbation can open a minigap [123] in the spectrum even 

in the absence of strain]. In a suspended monolayer graphene sheet, homogeneous 

strain only results in a small shift of the Dirac cones from the corners of the 

hexagonal Brillouin zone, without any qualitative change of the linear dispersion 

or the chiral properties of the electrons [23]. In the case of a graphene sheet on a 

hBN substrate a consequence of homogeneous deformations is also to slightly shift 

the main Dirac cone in the moire miniband spectra. For the considered system, 

the shift of the otherwise unaltered main Dirac cone is directly proportional to the 

strength of the deformation and occurs along the kx-axis.

The first considered parametric regime (w,9) = (0%,0°), shown in the top
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Figure 4.4: Left column: Real space moire pattern for combinations of strain and 
misalignment angle: {w,6) =  (0%,0°), (0.5%. 0.23°), (1%,0.46°), (1.5%, 0.69°). and 
(2%, 0.92°) respectively. Center column: The corresponding reciprocal lattice vectors 
and the moire superlattice BZ. Right column: The corresponding dispersions within the 
first BZ.
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row of Fig. 4.4, describes a heterostructure with no misalignment angle and in the 

absence of strain. The spectrum of such a system exhibits several second generation 

DPs in the valence bands, at the edge of the first BZ. In contrast, in the conduction 

bands similar features are obscured by overlapping spectral branches. All other 

considered parametric regimes, (w ^  0%, 6 ^ 0 °). display strained real space moire 

patterns (Left column) and BZs (Central column), which translate into deformed 

dispersions, as shown in Fig. 4.4 (Right column). We observe that in almost all of 

the above plots, with the exception being the last case with (w =  2%, 9 =  0.92°), 

mechanical deformations of the graphene lattice do not interfere with the formation 

of anisotropic mini Dirac cones in the valence bands, however, they do lead to the 

opening of minigaps. For the parametric regime with (w = 2%, 9 = 0.92°), the 

spectral minibands become clearly separated and curved, obscuring the presence 

of any secondary Dirac point. In all considered cases, the Dirac spectrum is not 

symmetric between the valence and conduction bands and, if present, the mini 

Dirac cones in the conduction bands are always concealed.

Notice that for the parameters used in Fig. 4.4 the superlattice BZ becomes 

narrower as the strain and misalignment angle are increased, however, this trend 

is non-monotonic. For specific values of 9 the superlattice BZ becomes completely 

flat (with Sbz =  0 area) and the real space moire pattern becomes quasi-ID 

periodic. Any further increase in the value of 9 would start restoring the 2D 

character of the superlattice and increase the BZ size.

4 .3 .3  S tra in -in d u ced  crossover from  2D  to  a q u a si-ID  m oire  

p a ttern

As described above, the main consequence of homogeneous deformations in a 

graphene layer on a hBN substrate is that the real space moire pattern and im­

plicitly the superlattice BZ become strained. In the remainder of this chapter 

we explore an extreme scenario, where the superlattice BZ exhibits a singular be­

havior (by becoming completely flat), and describe its consequences on the moire 

spectral minibands.
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F igu re  4.5: Left column: Real space quasi-one-dimensional moire pattern lor com­
binations of strain and misalignment angle: (wc,6) = (1.8%. 0°), (1.82%. 0.12°) and 
(1.88%, 0.23°) respectively. Center column: The corresponding reciprocal lattice vectors 
brn with m  — 0. • • • .5 (red. blue, green, magenta, purple, black) and the flatten moire 
superlattice BZ. Right column: The corresponding dispersions.

The complete flattening of the superlattice BZ implies th a t all the reciprocal 

lattice vectors brn become parallel (aligned along the same line). By imposing 

this condition on the six smallest moire harmonics, we arrive at the following 

requirem ent for the critical value of homogeneous strain,

M S )  =  T [ (1 - i t ) [ 1 - ( 1 + < S ) COs0]

+  y/( 1 - rr)“[1 — (1 +  S) cos 0\~ +  4(j[1 — (1+  S)~ — 2(1+  5) cos $] , (4.11)

which is independent of the orientation of applied strain  <p. The above equation
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implies that for each value of the misalignment angle 9, there is a value of strain 

for which the moire superlattice BZ becomes a line.

Using parametric regimes (wc, 6 ) that satisfy the condition in Eq. 4.11 we obtain 

the results shown in Fig. 4.5. The first consequence of the complete flattening of the 

superlattice BZ, is that the real space moire pattern undergoes a transition from 2D 

to quasi-ID, as seen in Fig. 4.5 (Left column). For the first considered parametric 

regime (wc = 1.8%, 9 =  0°), which is also the first pair of parameters that satisfy 

Eq 4.11, the graphene sheet is stretched along the x-axis to exactly compensate 

the lattice mismatch with the hBN substrate. In this scenario the moire pattern is 

infinitely periodic in the direction perpendicular to the harmonics and has a vary 

large periodicity in the direction along the harmonics. In contrast, for all other 

parametric regimes [(1.82%, 0.12°) and (1.88%, 0.23°) respectively], the periodicity 

of the moire pattern in the direction along the reciprocal lattice vectors decreases 

with increasing misalignment angle and strain. Another observable difference, seen 

in Fig. 4.5 (Center column), is that the reciprocal lattice vectors are commensurate 

only for the first parametric regime, with 60 and 63 being twice the size of b\ — 

6 5  and 62 — 6 4  respectively. In all other cases the usual relationships among 

harmonics remain unchanged (for example bo =  6 1 + 65) however they are not 

commensurate.

As the moire BZ becomes flat, the coupling between states in the first BZ and 

in the higher order BZs increases. As such, to calculate the dispersion of the quasi- 

ID moire patterns we must consider an increased number of states and therefore 

a larger size for the Heisenberg matrix when performing zone folding, to ensure 

convergence for the three lowest valence and conduction bands. The results of our 

numerical calculation for the miniband spectra are shown in Fig. 4.5 (Right col­

umn). As it can be seen in all figures, the effect of homogeneous deformations has 

a much greater impact in this case and results in qualitative changes of the moire 

miniband spectra as opposed to simple shifts of the main Dirac cone in the momen­

tum plane. The first and the last considered set of parameters (wc, 9) =  (1.8%, 0°) 

and (1.88%. 0.23°) reveal strongly altered dispersions, where the three lowest va­
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lence and conduction bands are closely packed. More interestingly, for the second 

set of parameters (1.82%, 0 .12°), the complexity of the moire spectra increases and 

the three valence and conduction bands become slightly separated. The observed 

difference is due to the incommensurability of the reciprocal lattice vectors in the 

second case, where the various beatings lead to the formation of additional Dirac 

cones in the first BZ. [Note that in the last case (wc, 9) = (1.88%, 0.23°) the recip­

rocal lattice vectors are almost commensurate. Therefore, the dispersion resembles 

the one obtained for (wc, 9) =  (1.8%, 0°).]

4.4  C onclusion

Using a general symmetry based approach, we study the generic miniband struc­

ture for electrons in homogeneously strained monolayer graphene placed on a 

hexagonal boron nitride substrate. In particular we find that mechanical defor­

mations couple to the misalignment angle between the two honeycomb lattices, 

alters the beating of the lattice mismatch, and leads to the formation of strained 

moire superlattices. We also observe that in some cases, this leads to the open­

ing of minigaps in the anisotropic mini Dirac cones in the valence bands at the 

edge of the first Brillouin zone of the superlattice. Furthermore, we identify an 

extreme parametric regime where the moire patterns become quasi-ID, and em­

phasize that in this case homogeneous deformations lead to qualitative changes in 

the moire miniband spectrum.



Chapter

General Conclusions

Since graphene uniquely combines a series of properties like mechanical strength, 

high electronic and thermal conductivities and impermeability, this material is a 

suitable candidate for numerous future applications such as, for example, flexi­

ble and/or transparent electronics, fast photo-detectors, effective photocells, and 

chemical sensors, to name just a few. Recent works on the effect of lattice defor­

mations in graphene, revealed that this crystal behaves like an elastic membrane 

that is capable of withstanding reversible deformations of up to 10%. The peculiar 

way in which strain affects the already unusual electronic properties of this mate­

rial stimulated the proposal of various setups aiming at controlling the electronic 

structure of graphene by means of strain engineering. Prompted by the constant 

need for the miniaturization of electronic devices as well as the desire of devel­

oping graphene nano-sized electronics, in this thesis we theoretically investigated 

the influence of mechanical deformations on the electronic transport properties of 

graphene structures, an area which remained unexplored thus far.

Our results show that artificially imposed homogeneous deformations coupled 

to the size confinement effects, in graphene nanoibbons, lead to the appearance 

of transport gaps and resonances in the conductance of such systems. We also 

outline that the observed resonances are robust in the presence of ‘double atom’ 

edge defects, but are destroyed by ‘single atom’ edge defects. For the case of 

inhomogeneous mechanical deformations, we have found that the inhomogeneity
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developed near the contacts aids the resonant transmission of charge carriers either 

through a mode mixing mechanism or through the sublattice-polarized n = 0 

pseudo-magnetic Landau level. The former leads to the formation of Fabry-Perot- 

like standing waves, in the central homogeneously strained part of the ribbon, 

which result in the formation of conductance peaks far from the Dirac point. For 

the latter case, the states form near the contact regions and give rise to two groups 

of resonances near the Dirac point, each containing a pair of conductance peaks.

In the case of homogeneously strained bilayer graphene we have shown that the 

linear response conductance of an n-p-n junction has a non-monotonic dependence 

on doping and temperature, which varies in size and form as a function of the 

crystallographic orientation of the principal strain axis. We began our analysis 

by studying the transport properties of a single interface (n-p junction), and used 

the obtained results on transmission and conductance to conclude that the non­

monotonic behavior is due to the modification of the chirality of the low-energy 

electronic states. Therefore, uniaxial strain changes the sublattice composition of 

the electronic plane-wave states in the vicinity of the Lifshitz transition in the low- 

energy electron spectrum of strained bilayer graphene, which leads to the observed 

non-monotonicity of the linear response conductance.

We finalize this work with a study of the generic miniband structure for elec­

trons in homogeneously strained monolayer graphene placed on a hexagonal boron 

nitride substrate. In this work we found that mechanical deformations alter the 

beating of the lattice mismatch between the two lattices, and lead to the formation 

of strained moire superlattices. We also observe that in some cases, this determines 

the opening of minigaps in the mini Dirac cones in the valence bands at the edge 

of the first Brillouin zone of the superlattice. Furthermore, we identify an extreme 

parametric regime where the moire patterns become quasi-ID, and emphasize that 

in this case homogeneous deformations lead to the appearance of additional Dirac 

cones in the spectrum.



Appendix

Recursive Green’s functions 

m ethod

A .l  Introduction

In the following notes we will describe a general mechanism that makes use of 

the recursive Green’s function method to find the transport properties of nanos­

tructures. We will describe, in detail, the general method, in Sec. A.2, without 

referencing to a particular shape or orientation of the lattice structure of either the 

leads nor the scattering region. Our only assumption is that the semi-infinite leads 

are described by a periodically repeated unit block chosen such that only interac­

tions between adjacent cells exist. In Chapter 2 we make use of this mechanism 

to study the transport properties of armchair graphene nanoribbons.

A .2 R ecursive G reen’s function  m ethod

A .2.1 M o d e l for th e  leads  

Eigenfunctions and eigenvalues

The semi-infinite leads are composed of a periodically repeated unit cell, chosen 

large enough such that all couplings are only between adjacent cells. The Hamil-
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tonian and eigenfunctions of the leads are

U L =

nR =

#0 Vi 0

u i #0 Ur

0 v£ Ho
0 0 Vl

H0 0 0

Vl 0

0 U*

0 0 Ho
¥ r —

^Lrn^Lm

V ^Lm

^  iJRm ^
^Rm^Rrn 

^Rm^Rm

(A.l)

/  ̂ R̂rn̂ Rm j

(A.2)

where we enumerate the blocks by an index n > 0, so that the first block in both 

the left and right lead is n = 0. Then the wave function in the nth block is 

Bloch’s theorem guarantees that we can find solutions of the form 

★ Right Lead:

^ rI  =  AJLtfS. =  (A-3)

where ijjRm is the solution in the n = 0 block [Note n increases in the positive x 

direction]. Then, omitting the subscript m, one obtains

+  (H0 -  E)(\ni>R) +  VR(Xn+V fi) =  0 

=> (E -  H0)i>R -  V^(A-Vr) =  VR(Xil>R). (A.4)

Using the substitution (j) = A V ’/? we convert this into a generalized eigenvalue 

problem

VI E-Hn
= X (A.5)
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★ Left Lead:

(A.6)

where is the solution in the n = 0 block [Note n increases in the negative x  

direction]. Then, omitting the subscript to, one obtains

Using, again, the substitution — A l we convert this into a generalized eigen­

value problem

If the leads are identical, with Vf, = V r , the generalized eigenvalue problems are 

identical as well. It is then enough to solve for the eigenvalues and eigenvectors in 

the right lead, for example, and use them to build the wave functions for the left 

lead.

Characterization of modes

To discriminate between right and left propagating or decaying modes we use the 

suggestion of Ref. [28] and incorporate the boundary conditions into the eigenvalue 

problem itself. This amounts to adding a small imaginary part rj to the energy. 

If r\ > 0 then the wavenumber acquires a positive imaginary component, which 

makes the Advanced Green’s function (incoming mode) grow indefinitely as we 

move deeper into the leads. Because a correct solution must be bounded, only the 

Retarded Green’s function (outgoing mode)is acceptable as a solution. Oppositely 

if rj < 0 only the Advanced Green’s function is bounded, and thus the acceptable 

solution, where as the Retarded Green’s function grows indefinitely. For evanescent 

modes, the addition of a small imaginary part to the energy makes virtually no 

difference.

V l ( \ - n- ^ L) + (Ho -  £)(A -”i /n  +  VL( \ - n+1ipL) = 0 

= * •(£ -  -  V ^A -V l) =  VL(Xi)!L). (A.7)

(A.8)
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Therefore we solve the eigenvalue problem for the right lead and group the re­

sulting eigenvectors into rectangular matrices of column vectors according to the 

following selection rules:

• : all solutions 'ipRrn with 0 < \ \ Rrn(E  +  i0+)| < 1. These are outgo­

ing (right-going) propagating modes or evanescent modes that decay for n —>■ oo.

• T ''R: all solutions ifjRm with 0 < \\Rm(E — i0+)\ < 1. These are incoming (left- 

going) propagating modes or evanescent modes that decay for n —> oo.

• all s o l u t i o n s w i t h  |A^m(T’-|-zO+)| > 1. These are either incoming (left- 

going) propagating modes or the unphysical evanescent modes that increase for

n —> oo.

We also define diagonal matrices A r , A !r , and Ar , comprised of the correspond­

ing eigenvalues ARm of each respective set.

Because the eigenvalue problems, in the two leads, are identical we define T t =  

^ R, T 'l  =  Al  =  AR, k'L =  A'R: and ~AL =  A R. Note that if the form

of their corresponding Hamiltonians is kept as above and V r  =  V r , then the two 

leads would match commensurably if connected directly to each other (They would 

form a continuous ribbon). Then, using the interface connecting the leads as a 

reference, right-propagating modes in the right/left lead are outgoing/incoming.

Since we did not specify anything concrete about the lattice structure we must 

mention that for some structures, bound states might appear. They can span 

several unit cells and still couple to the system. In the generalized eigenvalue 

problem they are singular and appear at certain fixed energies, however they have 

undetermined eigenvalues Am, which is why the sets of Bloch states described 

above are not always complete. When these bound states couple to the scatterer 

they become relevant for all energies. We will however, only use this mechanism 

for armchair graphene nanoribbons. For zigzag edge ribbons such bound states do 

not appear, however for the armchair edge they might appear at certain widths.

In Chapter 2 we will consider such configurations of the lattice, such that bound 

states do not couple to the system and thus neglect them in our calculations.
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Orthogonality of Bloch modes w ith indices n ^  m

From the Schrodinger’s equation, Eq. A.5, and using Bloch’s theorem, 

obtained for the right lead (omitting the subscript R)

(E -  H0)ipm = yVm A ”1 +

(E -  H0)fn =  KVnA;1 +  v^n\ n,

for states with different indices m ^  n. Then

1pl{E -  Hotym - A"1 +

But because Ho is Hermitian

1pl(E -  H0)lpm = \{E -  ffo)V’n]tV’m

=  [ v ^ n K 1 +  Vi,nXn\ ^ m 

=  [a; 'V i 1/ +

Thus we obtain the equality

K 1 + ^  ̂ n Y  ̂ rn +  K ^ v Y ^ m ,

which gives

A-1 -  K ’ ^ n V ^ m  = 0.

Eq. A.4, we

(A.9)

(A.10)

(A .ll)

(A. 12)

(A-13)

(A. 14)
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From the above results we can write

I -  K ' ^ n V ' K  = 0

=> 0 =  ( ' IpiV^mA-1 +  IplnVtynX'1) ~  (^ F ^ n A " 1 +  V'n^VmA"1)1 

=> 2iIm ('0iFt'</;mA~1 +  V -^l^nA "1) =  0

=* | l m( ^ i ^ tV,mA~1 +  V'm^VnA^1) =  0. (A.15)

Eq. A.15 gives the orthogonality relation for two Bloch states with different indices. 

From this we can also write

^ b^ bA*1 = A ^ V ^ s ,  (A-16)

^ 4 ' LA l1 = A i '1» i U # £ ^ A i * i y tt ®i =  ®iVLWtAt , (A.17)

for the two leads. These formulae are necessary in the proof of unitarity of the 

scattering matrix.

Calculation of Currents

From the Schrodinger equation ( i h ^  = V.'ijj) we can obtain the continuity equation

— \ ^ n ) \ 2 = / ( " -M  -  /(«."+1)j (A. 18)
dt

for both the left and right leads, which gives the probability conservation locally[105], 

at position n, as the ”in flow“ minus the ’’out flow “.[Note that n < 0 in the left 

lead.] The probability current (the rate at which probability is ’’flowing") is given 

by

jin.n+1) = |  imW,«»+iVty,M). (A.19)
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Imposing current conservation (J^h /^ l2 =  0) and using the orthogonality of Bloch 

modes we obtain the identities

V I vI V lAZ1 -  h i ' ^ LVL^ L = A l ^ l V ^ L  -  tfLVLy LAL =  id ,  (A.20)

-  A y  = id ,  (A.21)

for the left and right lead respectively. Here c is a constant. We outline the proof

below, for the left lead. For the right lead the procedure is identical.

Proof: The Schrodinger equation gives

= k  +  ffo C " ) + ^ < r +i)} , 

= k  W , ~ n~1) v + ^ - n)H0 + ^ - n+1)v } ,

where we have used that the Hamiltonian is Hermitian [III ~  Ho\- The equations 

above can then be used to find the probability

) *lr". ( A . * )

Expanding the terms in parenthesis,

§-t \ ^ n ) \2 = jz  + ^ - n)H o ^ - n)+ ^ J r n)v ^ - n+1)

= -  W ■ n,^ y ‘^n- 1)) , +  {^J,-n+1)v V - n)y

-  ^ - n+iv y < r ”)}

=  I  {2i Im V ^ - » ]  -  2i Im }

=  | i m  ty « -’* v ty y n- 1)] -  | l m  y*<-"+1v y < r > ]

we obtain the continuity equation

_ ^ _ | ^ ( - n ) | 2  _  j ( —n—l,—n) _  j ( - n , - n + l )
I
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The probability current is

,(-» ,-,+  !) =  2 ]m ^K -n+ D ^t^-n )] _

and can be obtained from Eq. (A. 19) by replacing n —)• —n.

Using the orthogonality of the Bloch modes, Eq. (A. 17), together with the 

probability conservation, Eq. (A. 18), we can flux-normalize all propagating modes 

without worrying about interferences. Furthermore, the continuity relation guar­

antees that the flux of evanescent modes and bound states vanishes.

A .2 .2  E va lu a tion  o f  th e  S ca tter in g  M a tr ix

A nalytical calculation

The Hamiltonian and eigenfunction of the entire system are:

\
Ho Vl 0 0 0 0 0 0 0

v t Ho UL 0 0 0 0 0 0

0 v i Ho VL 0 0 0 0 0

0 0 V l Ho WL 0 0 0 0

0 0 0 w l Hs w R 0 0 0

0 0 0 0 K Ho v R 0 0

0 0 0 0 0 v i Ho VR 0

0 0 0 0 0 0 v i Ho v R

0 0 0 0 0 0 0 v i Ho

' •  ;  :  :  :  :  ;  ;  :  ■ ■■ J
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\

^ L K nain +  ^ L ^ a o u t  

^ L ^ O i n  +  ^ A Z X<W

^ L^in “I- ^L^out

Xs

* Rbout +  ^Rbin 

^R^RbouL +  ^R^R.bin

^RKbout +  ^ RXRbin

\ /

(A.23)

The leads are identical, with V r  = V r . and would form a continuous nano­

ribbon in the absence of the conductor. Here we ave also taken into account that 

even though r  =  they correspond to right-propagating modes which are 

outgoing for the right lead but incoming for the left lead. The reverse is applicable 

to ^ r  = ^ l -  Then the Scgrodinger equation gives:

• In the Leads

Left: V L ( t y L-kL1 a in  d" L^-l1 a o u t )  +  (Ho — E ) ( ^ L & i n  +  ^ L & o u t )

+  Vl ( ^  L^L^in +  ^L^L^in) =  0,

Right: Rhftbaut +  ^  Rh^bin) +  (Ho — E)('^Rb0Ut +  ^Rbin)

+  Vr ( ^  R^Rbout +  ^R^Rbin) — 0.

• At the contacts

Left: Vi(ty L X L l CLin +  ^  L ^ L 1(1o u t )  +  (Ho — E)(ty L & in  +  ^  L & o u t )  +  W lX r  =  0;

Right: WrX s +  (Ho — E)('&Rbout +  ^Rbin) +  Vh(^i?A^60Uf +  =  0.

Combining the above equations we obtain the continuity conditions at the two
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interfaces:

Left: WlXs — Vl {^ L^Lain +  ^ lA lc ^ ) , (A.24)

Right: W rXs — V r(^  R-h-R1boui +  ^hA ^1̂ ) .  (A.25)

• In the conductor

W l ( t y L ^ i n  +  ^ L ^ o u t )  +  ( H s  ~  E ) X r  +  W r ( ^ R bo u t  +  ^ H & in )  —  0?

=> (Hs — E) Lain +  ^L^out) +  %s +  (# s  — E ^ W Rbout +  ^  Rbin) = 0.

(A.26)

Multiplying Eq. (A.26) to the left by Wl and WR and using the continuity Eqs. (A.24) 

and (A.25) we obtain

V l(^  lElcHti +  ^LA La0Ut) +  Wl(Hs — E) Lain +  ^L^out)

+  Wl (Hs -  E ^ W R ^ R b ^ t  +  i fRbin) =  0,

Vjii'&RAftbout +  ^RAj^bin) +  Wr {Hs — E) L,ain +  ^ Laout)

+  W ^ H s  -  E)~1WR( ^ Rbout +  ^ Rbin) -  0.

Grouping the in  and out amplitudes and multiplying the first equation by and 

the second by 4/^ (since 4/ and ^  are in general rectangular matrices we have to 

perform this multiplication so that we can invert the resulting matrices) we obtain



A .2 98

a relation between the in and out amplitudes

¥ l vl v l Rl - v l w l (e  -  Hs Y ' w I v l

- ¥ l Wl (E -  Hs)~1WiS!r

- & RW)l( E - H s ) - 1WyS!L 

'S 'M S 'rA * 1 -  ^ r W*r (E -  H s ^ W ^ n  

'H U ’ftA t, -  Vl Wl (E -  Hs )~1w l ' i L 

- $ [  W Y E - H s Y 'W i S I r

- ^ W k E - H s Y ' w y S L  

^ M ^ A * 1 -  V ^ W ^ E  -  Hs Y ' W ^ r

(A.27)

This delivers

= S

p m p m

(A.28)

where pm  indicates restriction to propagating modes. [Note the restriction to 

propagating modes must be done after the matrix inversion. This is because even 

though evanescent modes do not contribute towards transport, they are important 

in establishing continuity of the waves at the interfaces.] Next we employ the 

important identities — A a n d  =  A^ 1 i&]1VrS&r
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and obtain the scattering matrix 

S = - (  -  «s)~1Wl^L
V -¥RW{(E-HS)-^W^L

- ¥ lWl( E -  Hs) - l w Ry R 

-  ¥ r w U E - H s ) - 'W r <Zr

l 'L¥ Lv t* L  -  V lWl (E -  Hs ^ ' w I V l 

- ¥ r w'r ( e  -  Hs) - ' w l v L

- ¥ lwl{e -  Hs)~lwR̂ R
-  y ^ W ^ E  -  Hs ) - 'W rV r

X

p m

(A.29)

Eliminating the conductor (which is equivalent to setting W L  =  W R  = 0) the 

system will be comprised of two decoupled semi-infinite leads. The hard wall 

boundary conditions at the finite edges ensure only elastic scattering occurs in each 

lead. Because of that the scattering matrix must be unitary to ensure conservation 

of probability:

Proof:

® out So> i n

I ̂ o u t  | | ̂ in  |

f   f
Q'outa ou t — a i n a in

{a\n ^ ){ S ain) — a\nain 

— O’inP'in

=► S*S =  I

Furthermore, unitarity of the scattering matrix for W L  =  W r  = 0 guarantees that 

U L  andLm =u  \p m  u

ces.
p m

=  U r , where U l  and U r  are unitary matri-
p m
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Proof: If W l  = W r  — 0 then the S matrix is

S = -
¥ l v lv la l (  \  '  \T/T 1 / 1 \T /. Q

V 0

P=
( o  ̂P l  0

0  P R

Q =
/ ?1

0 qR pm

Denoting the two matrices with P  and Q then S  = —P  1Q, S ' = — Q '(P  1)t , 

S~x= —Q~l P  and we must show that S~1= S

S - 1 = S ' => QQ' =  P P '
QLql 0 

0 qRqR

P l P l  0 

0 P r P r

However, from the current conservation we know that

q { - q L=icl--
q \q{-qLq{=  icq]L

qJql-qU L=m{
q[QL=<}Lq{

A i V f e  L¥ LVLq  L= a t  i n .  iT /t (A.30)

100

This means =  which is only true if = § lUl and UL is a unitary

matrix that can be absorbed into the definition of incoming modes. Applying the
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same procedure to the right lead we find that T# — ^  r U r . Then the S  matrix is 

S - - \  -  H s ) - l W l $ ! L

- ^ RW l { E - H s ) - l W l ^ L

- ¥ lWl (E -  Hs ) - l w Ry R

-  V r K ( E  -  H S ) - 1 W R ’H R  

A’L¥ Lv l * L - * Lw L( E - H s ) - 1w l v L

- t f RW'R( E - H s ) - l W l y L

- ¥ l Wl (E -  Hs)~1Wr '$r

-  ^ r W 1r (E -  Hs)~1Wr 'Sr

(A.31)

-  _  I +  I ~ ^ l W l {E -  L

■ t f x W k E - H s y ' W l * ! ,

- i [ W L(E -  HsR ' W rV k

-  ^ r W ^ E  -  Hs Y 'W r Vr

^ l vJ / lKl - K ' l¥ l v1 ^ l o

'T , R v R * R ^ R  ~ I VR  V r V R V R  , p m

(A.32)

pm

X
o v l v t e  . a ; 1 -  A trV „vRi'

Using the orthogonality of Bloch modes and current conservation, one can prove 

the S matrix is indeed unitary.

Proof of unitarity: Let us write the S  matrix in Eq. (A.31) as

I  P l  ~  (111 - Q l r  j  ^  /  p \  ~  <Il l  ~ Q l r  

\  - Q r l  PR -  Qr r  /  \  -q R L  p̂R -  qRR

= K ~ lK \

101

where q[L = qLL, qfRR =  qRR, qfLR =  Qrl, and =  Qlr- We will also use 

P lp\ = p \p l  and PrP^r = P^rPr which we have shown using flux-normalization 

in Eq. (A.30). Next, we must show that — S _ 1  =$■ A (A ~1)t =  ( K ^ ^ K  =>
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K ^K  = KKK  This implies that

| (Pl ~ Qll){pl ~ (1 1 1 ) +  qlrQrl _ (;Pl — Qll^Qlr ~ Qlr{pr ~ Qrr) 

~Q rl(pl ~ Qll) — (Pr ~ Qrr)qrl QrlQlr +  (Pr ~ Qrr)(pr — QrR)

{PL -  QLl)(Pl -  qLL) +  qLRqRL ~{PL ~  qLL^LR ~  9L/?(Pr ~ qRR.)

— QRl (Pl  ~  qLL ) — (p r  — qRRjqRL qRLqLR  +  (p r  — qRR.)(PR — q R R )

=  K K l  (A.33)

1° .

(Pl ~ qLL){PL — qLL) +  qLRqRL = (Pl — (7Ll)(p1 — qLL) +  qLRqRL 

- p \ q L L  -  qLLPL  =  - p L q L L  -  qLLPL  

(pl -  p [ ) q L L  = qLL {pl -  Pl )

(ic)qLL = qLL{ic) S

2° .

-qRL(PL -  qLL) -  (Pr ~  qRR.)qRL =  ~ 9/2l ( P l  ~  qLL) ~  (PR ~  qRRjqRL 

-qRLPL -  PRqRL = —QRLPl -  PRqRL 

(PR -  p\i)qRL = qRL(jpR -  Pr )

{icl)qRL =  qRL(icl) /

3°.

~ ( P l  “  q L L ) q L R  -  q L R ( P R  -  q R R )  =  — ( p l -  q L L ) q L R  -  q L R ( P R  -  q R R )

-P lQLR -  qLRPR = -PLqLRP^R 

{pl -  p\)qLR = qLR^PL -  Pl)

{icl)qLR = qLR{icI) /
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4°.

qRLqLR +  (Pr  -  qRR.)(PR -  qRR) =  qRiqLR +  (PR -  qR.R)(qp -  qRR)

—phqRR — qRRPR = —PRqRR — qRRPR 

( P R  — P r ) Q R R  =  q R R  ( P R  -  P r )  S

Therefore the S  matrix in the form of both Eq. (A.31) and Eq. (A.32) is indeed 

unitary.

Numerical calculation

Before performing numerical calculations, we can simplify the above S  matrix to 

make it more transparent. Let q^ 1 = lA l  and q^ 1 = Then

S =  - I +

=  - I +

qL ~\w
qR ~ m

*'r Wr

qL - m

VlWl(E- Hs)~1w1^l ¥lWl(E- Hs^ W rVr 
&r W'r { E -  H s ) - 1w I * l  &r W'r ( E -  H s)~ 1Wr V r

p m

(E- Hs)-1

pm

- I  +[q-1-V(E-Hs)-1V̂\ \ q - g T 1 

- 1 +  [q+ qV(E— Hs-V'qV)-lVfq\(q-91)" 1
p m

(A M )

where we have used the substitution q = ( 9o q̂ )  and V = ( ) •  Note that
R  R

both matrices q and V  are invertible even though the matrices q/L and are not 

quadratic but rectangular.

This S  matrix gives the amplitudes of the modes between the two leads. The 

Green’s function term G = (E -  Hs -  V^qV)~l describes the propagation of
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electrons between two points within the conductor, while taking into account the 

effect of the leads through the term E = V^qV [28]. This is the so called self 

energy of the leads, and can be understood as an effective Hamiltonian describing 

the interaction between the leads and the scatterer.

A .3 Transport properties

The purpose of these calculations is to find and use an effective method of studying 

transport properties of a two-terminal graphitic device, with detailed properties 

described above. At low bias (when the phase coherence length is larger than the 

system size), the phase-coherent properties of a two terminal mesoscopic device 

are encoded in the scattering matrix[7, 12]

where t , r, and r' are transmission and reflection amplitudes of charge carriers

that originate in the source or drain leads respectively. To characterize transport 

properties we start by finding this S  matrix from which the transmission ma­

trix (containing the transmission amplitudes of the waves traveling from source to 

drain leads or vice versa) can be extracted. Further, the Landauer conductance 

or shot-noise Fano factor[108] can be found directly from the above equation as

Based on the above results for the transmission probability, in Chapter 2 we 

employ the Landauer-Biittiker formalism [18] to calculate the conductance of an 

n-p-n junction. Taking into account two valleys, as well as integrating over the 

electron energy (as determined by the Fermi distribution with finite temperature

(A.35)

G(E) = ^ - T r ( th ) ,  F(E) =  1 —
Tr(tUtH)

T r(th )
(A.36)
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T), we arrive at the junction conductance,

g { ^ t ) = 24 - — I— v E i f»i2-
h J -cc ^ c o s t f ^ )  V

Here, ks  is the Boltzmann constant, and ]Pn \tn \2 =  Tr(tH ) is the transmission 

over all modes at fixed energy. By performing the integration numerically, we 

obtain the conductance as a function of chemical potential and temperature.



Appendix

Microscopic model

B .l  In troduction

In the following we will describe the mechanism used to derive the Hamiltonian for 

a monolayer graphene flake subject to a hBN substrate. Here we use a microscopic 

model that is compatible with the symmetries of the system [123] and model the 

hBN substrate as a lattice of positively charged nitrogen nuclei in a homogeneous 

background of electron P z orbitals. These results are used in Chapter 4.

B .2  D irac H am iltonian

We start with the Dirac Hamiltonian

H = vp ■ c t tq  +  5H (B.l)

which is perturbed with 5H by the hBN substrate. Here p  = —iV is the mo­

mentum relative to one of the corners of the moire Brillouin zone (BZ), and a  is 

the vector of Pauli matrices. Here we have used the direct products <T;Tj of Pauli 

matrices where crl and tj act on the sublattice and valley indices respectively. The
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eigenfunctions of the Hamiltonian are

K C + k (r)

 ̂^Kc+k(r) ^

'lJJKC+kir)

'^KC+k(r )

\  'lpK<:+k(r) J

V 2 L

*c,i
s5ct^eldk

*C.-i
y  s8(>̂ 1ei6k J

Akr (B.2)

where K± denote the two valleys, k  is a small step in the momentum space, L is 

the length of the system used for normalization, s =  ±1 for the conduction or the 

valence bands, and Ok is the direction angle for k. is the envelope function at 

valley K (.

B .3  B loch  wave functions

The Bloch wave functions with the k.p approximation[2] are

$ /iKC+fc =  ~  - R o - tj)
Ro

~  ~ e ikT Y  eijr-(Ro+T'V l (r -  Ro -  n ). (B.3)
V ^  Ro

Here N  is the number of unit cells, the vector R  = Rq — 77 represents the position 

of the atom where Ro =  n \ti +  77.2̂ 2 is the translation vector of the origin of the 

system and 77 with I — A, B is the vector from the center of the hexagon to the A 

or B  sites. Note that ^  is determined by the atomic wave function in the p  atomic 

orbital, which brings in the 2 dependence. Then we can see that in real space the 

Dirac eigenfunctions (the electronic states) are written as a product between Bloch 

functions and the envelope functions:

$K<+k{r, z) =  LipK<;+k(r)®A,Kdri z) +  LiJKC+k(r)^B>Kdr  ̂z)• (B -4)

The electronic states in the K± valleys do not interact (no intervalley scattering 

takes place) however in the case where interactions do occur, the summation of
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the two must considered in both valleys. The length L must be included to ensure

the proper normalization ( T ^ +fc|tyK(;+k) — 1. In the above analysis we have

assumed that ^ k{r) varies slowly over the unit cell, but (r, z) varies rapidly 

and is periodic over the unit cell. Using Fourier transformations, the Bloch wave 

functions can be written as

-  g)eik-T'e i<-k- M r- T‘\  (B.5)
9 g

where Ag is the area of the unit cell of graphene, and Tz(fc — g) is the in-plane 

Fourier transform of the Pz orbital.

B .4  P erturbation  H am iltonian

The potential from the hBN substrate is

u(r, z) = Y ,  V (r - R s, z) = ^ Y .  ^  ZY 9''^  (B-6)
R s  S 9 s

where R s are vectors to the center of the hexagons in the lattice of hBN, As is the 

area of the unit cell of the substrate and g s =  m ib is -1- m2b2s are the reciprocal 

lattice vectors of the substrate. Then the matrix elements can be written as

{^K c+ kiH r, z ) \q KC+k2) = L2 j  &K<+kl(r, z )u (r , z)V K<+k2 (r, z)drdz

= J  e«k2 - kl>r ¥ K(+klS M K(+k2dr

(B.7)



B.4 109

where

A or B. (B.8)

Evaluating the terms in Eq. (B.8) we obtain the perturbation Hamiltonian,

Q . Q ' z K l  K ^ K s

9S = 9 s\i =  1---5

where (pz is the in-plane Fourier transform of the P z orbital, u is the Fourier

we made the substitutions Q = K X + g and Q' =  K \  + g ! where K  1: K 2 and K :i 

are the corners of the graphene BZ. [Also note that g =>■ g -)- K i]  In the above 

equation, bm =  — Q  +  Q' +  gs are the moire reciprocal lattice vectors which we 

will be using from now on.

We assume that the integral is a rapidly decaying function of its arguments g , 

g1, g s, which allow us to truncate the summation. In particular gs is restricted to 

the first set of vectors, and g. g' must take values to maintain K  + g and K  +  g' 

within the first BZ (the conditions fix g , g' for a particular value of g s). Upon 

evaluation of the integral one finds that is one of the arguments increases, the 

function will decay rapidly.

Performing the calculations we obtain the following Hamiltonian written in

- (2 n f L2 

ij ~  A*As N
] T  d z ^ ( K  + g)u(gs, z ) ^ ( K  + g'),

{2 *Y  L2 j  
A2gAs N

transform of the potential perturbation due to the substrate. In the second line
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terms of the Pauli matrices

$Hab \  5 H b b \ -a (  $HaB +  &&BA

oHba oHbb 2
a.

. ( SHab — $Hb a \  , ( 8Haa — &Hbb
°y +   =--------  (TZ.

(B.10)

Using the moire reciprocal lattice vectors

bm ~  1 ( T T 5) )  R2T  ( ° ’ f ^ )  ’ (R 11)

and grouping the terms we obtain

sit - (2w)3121 
s h — % a . n i

1 / iM I  +  ^rh{r)<Ti + 7T~y[t x V /2(r)] ■ aZl £ I I
(B.12)

In the above equation the term with fi(r )  — elbm(w,6')"r describes a simple

potential modulation. The second term, with / 2M  =  i \ ) rnexhm̂w'6̂ T’,

accounts for the A — B  sublattice asymmetry locally imposed by the substrate, and 

finally, the last term with lz describes the influence of the substrate on the A — B  

hopping and can be interpreted as a pseudomagnetic field which has opposite signs 

in the two valleys K  and K '.

In the above derivation we have only accounted for the lattice mismatch be­

tween the graphene flake and the hBN substrate and therefore assumed the mis­

alignment angle 6  = 0. The derivation up to Eq. (B.10) is general and can be used 

to consider more complicated scenarios, however, the reciprocal lattices vectors 

in Eq. (B .ll) and implicitly Eq. (B.12) will change depending on the number of 

free parameters in the system (e.g. a missalignment angle, strength of mechanical 

deformations, or orientation of applied strain). Such a scenario is discussed in 

Chapter 4.
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