Input variable selection for time series
forecasting with artificial neural
networks — an empirical evaluation
across varying time series frequencies

Nikolaos Kourentzes

BSc Athens University of Economics and Business, MSc Lancaster University

Bsis is submitted in partial fulfilment of the requirements for the degree of Doctor of
Philosophy at the Department of Management Science, Lancaster University.

September 2009



ProQuest Number: 11003735

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 11003735

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



Declaration

| hereby declare that this thesis is my own work and that it has not been submitted for any

other degree.

Nikolaos Kourentzes

Page ii



Input variable selection for time series forecasting with artificial neural networks — an

empirical evaluation across varying time series frequencies
Nikolaos Kourentzes

BSc in Management at Athens University of Economics and Business, MSc in Operational

Research at Lancaster University

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy at the Department of Management Science, Lancaster University.

September 2009

Apstract

Over the last two decades there has been an increase in the research of artificial
neural networks (ANNs) to forecasting problems. Both in theoretical and empirical works,
ANNs have shown evidence of good performance, in many cases outperforming established
statistical benchmarks. This thesis starts by reviewing the advances in ANNs for time series
forecasting, assessing their performance in the literature, analysing the current state of the
art, the modelling issues that have been solved and which are still critical for forecasting with
ANNs, thereby indicating future research directions. The specification of the input vector is
identified as the most crucial unresolved modelling issue for ANNs’ accuracy. Notably, there
is no rigorous empirical evaluation of the multiple published input variable selection
methodologies. This problem is addressed from four different perspectives. A rigorous
evaluation of several published methodologies, along with new proposed variations, is
performed on low frequency data, exploring which input variable selection methodologies
perform best. This analysis concludes that regression based methodologies outperformed
other linear and nonlinear ones. The best way to code deterministic seasonality in the inputs
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of the ANNs is explored, a topic overlooked in the ANN literature, and a parsimonious
encoding based on seasonal indices is proposed. The effect of the frequency of the time
series on specifying the inputs for ANNs for forecasting is evaluated, revealing several
challenges in modelling high frequency time series and providing evidence that the
performance of several input variable specification methodologies is not consistent for
different data frequencies. This leads to an evaluation of methodologies to select input
variables for ANNs solely for high frequency data. Regression based methodologies are found
to perform best, in agreement with the evaiuation on low frequency dataset, while the
ranking of the remaining methodologies is found to be inconsistent for different data

frequencies.
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1 Introduction

Forecasting has made significant contributions to management science. It has been
used to address important issues such as supply chain planning, inventory management,
revenbue management, market modelling and credit risk appraisal to name a few.
Forecasting research draws upon management science problems and applications. Advances
in forecasting practice often result in substantial gains for organisations, resulting in strong
motivation for better forecasting models and methodologies (Fildes, Nikolopoulos et al.
2008). Computétional intensive (Cl) methods have recently begun to attract the attention of
researchers and practitioners in forecasting, supported by advances in statistics, machine
learning and computational power. Artificial neural networks (ANNs) is a class of C| methods
that has been applied in forecasting problems with increasing interest from researchers.
ANNs are mathematical constructs originally motivated by biological neural networks. They
are nonparametric nonlinear data driven models that exhibit the ability to learn from
available information and generalise (Church and Curram 1996). Surveys of forecasting
practice in organisations have shown that practitioners prefer to use established and easy to
undgrstand methods (Hughes 2001). ANNs are complex models that are hard to
parameterise and not yet well understood. This limits. their use in management science
applications and for thjs to change it is necessary to gain better understanding of how to
build these models and provide solid evidence of increased accuracy over traditional

forecasting methods (Bunn 1996).

ANNs are flexible nonlinear data driven self-adaptive methods with very few a priori
assumptiohs that are able to approximate any data generating process and generalise
(zhang, Patuwo et al. 1998). In theory, these properties make ANNs ideal for forecasting

applications. Indeed, previous reviews of the forecasting research portrayed ANNs to
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outperform, on average, statistical benchmarks (Adya and Collopy 1998; Zhang, Patuwo et al.
1998), however large scale forecasting competitions did not confirm this (Makridakis and
Hibon 2000; Crone 2007). Although many researchers favour complex theoretical models
(Fildes and Makridakis 1995}, evidence from large scale forecasting competitions have shown
that this is not necessarily correct and simple models often outperform more complicated
ones (Makridakis and Hibon 2000). Therefore, in forecasting research, methods have to be
empirically tested and evaluated before their performance is proven and superior theoretical
properties are not enough to prove the usefulness of a forecasting method. One other
outcome of the empirically based forecasting research is that models perform differently in
different datasets; hence it is important to assess the conditions under which a forecasting
method performs well. Empirical comparisons of forecasting a method with other leading
methods can provide evidence that this method improves the forecasting accuracy and
therefore should be preferred under given conditions. Forecasting methods should be
compared with multiple established benchmarks using multiple hypothesis testing
procedures. The hypothesis testing should also specify the conditions under which the

findings apply (Armstrong 2006). Only then a forecasting method can be regarded valuable.

ANNs have not been rigorously empirically evaluated in the forecasting literature
and this leaves their forecasting performance unproven. Large number of studies have
provided contradicting findings regarding the accuracy of ANNs; hence, they have been
criticised as being unreliable in forecasting (Armstrong 2006). However, many of these
papers did not have a valid experimental design or the networks were not implemented
validly (Adya and Collopy 1998). ANNs are complex models, with several degrees of freedom,
that require the fine tuning of several parameters, including the input vector, the number of
hidden nodes, the transfer functions, the training algorithm and its parameters,

initialisations, etc. This complexity has led most researchers to adopt trial and error

Page 2



modelling approaches, which are suggested to be the main reason for the reported
inconsistencies in their performance (Zhang, Patuwo et al. 1998). Although the ANN
literature has identified the selection of the networks’ input variables as the key determinant
of their forecasting accuracy (Darbellay and Slama 2000; Zhang 2001; Zhang, Patuwo et al.
2001), there is no widely accepted methodology how to specify the inputs, even though a
large number of alternative methodologies have been published (Zhang, Patuwo et al. 1998;
Anders and Korn 1999). Furthermore, the ability of ANNs to forecast seasonal and trended
time series is directly connected to the input vector of the networks (Nelson, Hill et al. 1999;
Crone 2005; Zhang and Qi 2005; Curry 2007). Therefore, there is an obvious need to research

how to best select the input variables for ANNs for forecasting.

Focusing on the ANN for forecasting literature, there have been several publications
that have proposed different methodologies how to select the inputs for ANNs in a time
series modelling context. However, as it is highlighted in chapter 2, there is an evident lack of
studies that compare how these methodologies perform, making it hard to select which one
should be used, adding to the confusion on how to best model ANNs. Moreover, the papers
that discuss these methodologies do not always adhere to the requirements for valid
empirical forecasting comparisons, as suggested by the forecasting literature (Collopy, Adya
et al. 1994; Adya and Collopy 1998; Tashman 2000}, resulting in unreliable comparisons with
statistical benchmark models. ANN research has focused mainly on proposing new modelling
methods and algorithmical innovations, while ignoring the need for evidence based
forecasting that is principal in the forecasting literature and is based on valid and rigorous
empirical evaluations (Armstrong 2006). Hence, to reduce the disconnect between the ANN
and the forecasting literatures, it is important that published ANN modelling methodologies

are assessed against each other and against statistical benchmarks. This will allow the
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evaluation of the conditions under which ANNs perform better and should lead to

forecasting error reductions and also formulate best practices for ANN modelling.

One other issue t>hat adds to the confusion regarding the performance of ANNs are
the conditions under which they are used. Several published papers that use ANNs to
forecast low frequency time series, i.e. monthly, quarterly or annual time series, have found
their performance similar if not worse to established benchmarks. Notably in the M3
competition, where 3003 low frequency time series were used to compare established and
novel forecasting methods, ANNs performed badly (Makridaki§ and Hibon 2000). On the
other hand ANNs have shown good performance in applications such as electricity demand
forecasting (Hippert, Bunn et al. 2005; Hahn, Meyer-Nieberg et al. 2009) that use high
frequency time series, i.e. with daily or shorter time granularities. Therefore, there is
evidence ;hat the frequency of the time series is an important factor for the accuracy of
ANNs. However, there is no empirical evaluation that investigates this. It has been shown
that conventional statistical methods, which were developed originally for low frequency
data, fail when applied to high frequency time series (Granger 1998), but they can be
modified accordingly in order to be used in high frequency time series (Taylor, de Menezes
et al. 2006). In contrast, there is no empirical or theoretical work that examines the effects of
time series frequency on the modelling methodology of ANNs and specifically on selecting

their input vector, which is evidently the key determinant of their forecasting performance.

Consequently there is a gap in research of ANNs in forecasting. There is no valid and
rigorous empirical evaluation of the proposed alternative input variable selection
methodologies for ANNs. Therefore, it is unclear how to systematically model them, making
their use in forecasting challenging and subsequently their use in real management science

applications problematic. Furthermore, the conditions under which these methodologies
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perform best have never been evaluated. The effects of the data frequency on the
forecasting performance or the modelling methodology of ANNs has not been considered or
evaluated, even though there is evidence that there is such an effect. Furthermore, due to
the lack of empirical comparative studies of ANN modelling methodologies, no modelling
best practises have been established, limiting the confidence and understanding of
researchers and practitioners alike in using ANNs for forecasting. Last but not least, in ANN
research the stochastic nature of their training has been overlooked when comparing with
other forecasting methods. This seriously weakens the contribution and the reliability of any
comparisons, therefore to validly empirically evaluate ANNs against benchmark statistical

models it is imperative that the evaluation framework is extended.

This thesis attempts to address these issues. It is a coAlIection of working papers that
explore and empirically evaluate how to specify the input vector for ANNs for forecasting
from four different angles. Chapter 2 reviews the ANN forecasting literature of the past 15
years, presenting the current state of the art, the advances that happened in the field and
remaining open research questions. Furthermore, in this review the relative accuracy of
ANNs against statistical benchmarks is investigated. A sample of 126 papers from eight major
forecasting and management science journals is collected and analysed. A key finding is that
most published studies do not have valid experimental designs or ignore the suggestions of
the forecasting literature, on how to robustly empirically evaluate the forecasting
performance of models. Furthermore, there is very limited attempt to analyse or replicate
the findings of previous studies, something necessary to identify best practises for
forecasting with ANNs. Another finding is that most published studies do not consider the
need for multiple training initialisations of the networks, which is necessary to get well
trained ANN models and be able to assess their robustness, ensuring that the results are not

by chance, due to the stochasticity of the network training algorithms. This also limits the
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amount of statistical analysis that can be done on the results. All these factors hinder the
comparison of ANNs against statistical models and illustrate methodological weakness that
must be corrected in future studies. An important finding-is that although the selection of
the input vector has been identified several times as the most important determinant of
ANN forecasting accuracy, there is no rigorous empirical evaluation of the several proposed
methodologies that exist in the ANN literature; hence, it is unclear how to select the input

variables for ANNs and which of the proposed methodologies work best.

An evaluation of several competing input variable selection methodologies is
performed in chapter 3. Several published methodologies, along with new variants and
combinations are empirically compared on two data;ets. The first one is a synthetic dataset
with known properties that allows evaluating the conditions under which ANNs and each
input Qariable selection methodology performs well, and the second one is a real dataset
that allows covering a wider range of time series types from real forecasting problems. A
novelty in the experimental design is that the ANNSs are setup in a way that allows finding the
ranking of the different methodologies with high confidence. Multiple training initialisations
are used, providing a detailed distribution of the forecasting errors due to the stochasticity
of the training, allowing to assess the robustness of each model and infer how they will fare
in different implementations, which are bound to have different training initialisations.
Furthermore, robust nonparametric statistical tests are used, to identify which accuracy
differences are not statistically significant and provide a ranking of groups of the different
models, taking into consideration the complete distribution of the results. Previous studies
have considered neither the effect of the training initialisations nor evaluated the differences
in ANN models for significance, considering the robustness of each model. Moreover, to
raise the confidence of the forecasting error estimations rolling origin evaluation, multiple

time series and appropriate error measures are used, as suggested in the forecasting
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literature (Collopy, Adya et al. 1994; Adya and Collopy 1998; Tashman 2000). This setup is
subsequently ﬁsed in all the following chapters. The findings of the evaluation are surprising
in the sense that nonlinear methods did not perform better than simpler linear methods,
even though ANNs can make use of nonlinear information. Furthermore, pre-processing the
time series for trend and seasonality is found to have a significant positive effect on the
forecasting accuracy, while ANNs that are modelled with the top performing input variable

selection methodologies routinely outperform statistical benchmarks on both datasets.

In the literature it is debatable whether the inputs to the ANNs should be pre-
processed to remove trend. and seasonality or not. While the bulk of the literature suggests
that pre-processing is beneficial (Lachtermacher and Fuller 1995; Hill, O'Connor et al. 1996;
Nelson, Hill et al. 1999; Zhang and Qi 2005; Zhang and Kline 2007; Qi and Zhang 2008) there
are studies that suggest the opposite (Balkin and Ord 2000; Crone 2005; Crone and Dhawan
2007; Curry 2007). However, one key issue that is not considered in the ANN literature is the
nature of the seasonality. Deterministic and stochastic seasonality require different
modelling approaches (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001), which is
overloéked in ANN modelling. In chapter 4 it is investigated how to best model deterministic
seasonality with ANNs. In contrast to most studies, it is found that pre-processing the inputs
to remove the trend and the seasonality is not beneficial and on the contrary harms the
accuracy of ANNs. Moreover, using only the unpre-processed time series is also not the most
accurate approach. The inclusion of additional inputs to code the seasonality is found to
benefit the forecasting accuracy of ANNs the most. Different ways to code the seasonality
are evaluated and a parsimonious coding that requires only a single additional input is
proposed. The hypothesis is explored empirically on two datasets of synthetic and real time

series.
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Chapters 3 and 4 focus on low frequency data, which are widespread in forecasting
practice. However, in the recent years the advances in computational power and IT systems
have allowed organisations to collect high frequency data, of much shorter granularities.
Modelling this type of datasets can be challenging, since conventional statistical methods
can output misleading interpretation of the time series or not work at all (Granger 1998).
Chapter 5 explores the effect of the transition from low to high frequency on ANNs, with
special interest on the effects on the input variables selection. A set of real time series is
modelled in daily, weekly and monthly time granularities with identically setup ANNs. This
allows attributing potential differences in the forecasting accuracy to the frequenéy of the
time series. Four different input variable selection methodologies are used to assess whether
they perform the same over the different data frequencies. The main finding is that the
ranking of these methodologies is inconsistent, indicating that the results for low frequency
results, which are discussed in chapter 3, are not necessarily valid for high frequency
experiments. Furthermore, ANNs’ relative performance to the statistical benchmarks
increases as the frequency of the time series increases. This raises the significance of
exploring the performance of different input variable selection methodologies for ANN

under the condition of high frequency time series forecasting.

Chapter 6 addresses the question of how do the alternative input variable selection
methodologies for ANNs compare for high frequency time series forecasting. Two different
real time series datasets are used to assess their performance in order to increase the
robustness of the findings. Although the ranking of the input variable selection
methodologies differs with the results from the low frequency time series experiments,
which are presented in chapter 3, the best performing methodology family is found to be the
regression analysis based one, which is consistent with the results for low frequency time

series. Chapters 3 and 6 replicate a large number of proposed input variable selection
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methodologies and together with new proposed variations empirically compare their
performance, assessing which of these methodologies perform well for forecasting with
ANNs. This is the first comparison that uses a wide range of input variable selection
methodologies. These have not been previously evaluated against each other and in some
cases not even against statistical benchmarks. The comparison uses multiple time series
from multiple datasets, following the forecasting literature guidelines on what constitutes a
valid empirical comparison. Furthermore, this study is the first to assess the performance of
ANNs and the methodologies to select the input variables under different time series
frequencies. In addition, this study is the first one to consider the problems caused in the
empirical ev.aluation of ANNs by the stochastic nature of their training. A new evaluation
framework is developed that allows assessing the robustness of the models to the random
training initialisation of the ANNs and ranks their performance taking this stochasticity in
consideration. Robust nonparametric multiple hypothesis statistical tests are used to
accommodate these comparisons, allowing the extraction of reliable and valid empirical
evidence on the performance of the different input variable selection methodologies and the
conditions under which these perform well. The outcome of these comparisons is a set of
best practices, some of which provide new insight and some of which dispel the confusion
from contradicting results in the literature, on how to model the input vector of ANNs for
time series forecasting. The findings and key contributions of the thesis are outlined in

chapter 7.
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2 Advances in forecasting with
artificial neural networks

Abstract

There is decades long research interest in artificial neural networks (ANNs) that has
led to several successful applications. In forecasting, both in theoretical and empirical works,
ANNs have shown evidence of good performance, in many cases outperforming established
benchmark models. However, our understanding of their inner workings is still limited, which
‘makes it difficult for academicians and practitioners alike to use them. Furthermore, while
there is a growing literature supporting their good performance in forecasting, there is also a
lot of scepticism whether ANNs are able to provide reliable and robust forecasts. This
analysis presents the advances of ANNs in the time series forecasting field, highlighting the
current state of the art, which modelling issues have been solved and which are still critical

for forecasting with ANNs, indicating future research directions.

Preface

This paper is the result of the literature review that motivated my research topic.
The review was developed and refined continuously over the duration of my doctoral
research. It was updated last time in August 2009 to include the latest relevant papers. In
this analysis | identify a set of limitations and open research questions of the current ANN
literature in forecasting that | address in the following papers that comprise of my thesis.
Parts of this review have been presented in several conferences, including the International
Symposium on Forecasting in years 2007, 2008 and 2009 (ISF 2007-2009) and the

International Joint Conference on Neural Networks in year 2009 (IJCNN 2009).
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2.1 Introduction

It has been almost half a century since the first application of artificial neural
networks (ANNs) to regression and forecasting problems. Since then, a lot of research has
been investéd to improve our knowledge of modelling and using them, which has generated
a wide variety of applications in forecasting and several other fields like control,
optimisation, classification, pattern recognition, data mining, etc (Jordan and Bishop 1996;
Zhang, Patuwo et al. 1998). ANNs are biology inspired models that mimic neural networks in
the human brain, which allows them to learn from the available information and generalise
(Church and Curram 1996; Darbellay and Slama 2000). A decade old Sumey (Zhang, Patuwo
et al. 1998) on ANNs identified the following key features that make them useful in

forecasting:

1. ANNs are data driven self-adaptive methods with very few a priori assumptions.
They learn the underlying data generating process from the training data, without
the need to input hard to infer theoretical knowledge. This makes them attractive as
it is often easier to have wealth of data for a problem than good understanding of

the laws that govern it.

2. They can generalise in the future. Once an ANN has been trained to learn the known
sample, they are able to infer the relationship between the inputs and the outputs
and simulate well future behaviours, even in the presence of noise. This is a

necessary model property for forecasting applications.

3. They are universal function approximators. It has been shown that relatively simple
structures of ANNs can approximate any function to an arbitrary degree of accuracy,
with the same model form (Hornik, Stinchcombe et al. 1989; Hornik 1991). This

inherent flexibility allows them to model observed or unobserved relationships in
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the data, without assuming a rigid functional form, which is common in statistical
models, thus allowing them to model complex real systems that are not always fully

understood.

4. They are flexible nbnlinear models. In the forecasting literature there are several
nonlinear models, however they usually assume a specific type of nonlinearity, which
may not describe well the observed data. ANNs have the advantage that there is no
need for apriory knowledge of the nature of the nonlinearity and‘ are entirely data-

driven.

The same survey concludes with four important research questions that must be answered
to improve of understanding of ANNs and make their use in forecasting accurate and
reliable. How do ANNs model time series that allows them to produce better results than
conventional methods? How to systematically build an ANN for a given forecasting problem?
What is the best training algorithm/method for time series forecasting? What is the effect of

sampling and data pre-processing for ANNs and how should they be carried out?

The aim of this study is to explore the published forecasting literature since then and
try to assess if the evidence supports the portrayed key advantages of ANN in forecasting,
investigate whether the stated key research challenges have been resolved and identify the
current important research questions in the field. Since the last extensive review in
forecasting with ANNs (Zhang, Patuwo et al. 1998) a wealth of research has been published,
but remains largely disconnected, making it difficult to extract conclusions about the
application of ANNs in forecasting as a whole. With this study | try to highlight the big picture
of ANNs in forecasting. To accomplish this, a literature review of major established
management science and forecasting journals is done in order to identify the current trends.
| show which are the current modelling methodologies for ANNs and the main application
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areas, the current advances and how ANNs fare when compared to more traditional
forecasting models. Furthermore, | investigate the validity of the published research in the
light of the criticism received by the forecasting literature. The study concludes with the

current important modelling issues for ANNs and a discussion about future research.

This study is organised as follows. Section 2.2 provides a brief overview of the
literature survey design. Section 2.3 discusses the findings of the survey while section 2.4

presents the conclusions of this study.

2.2 Research methodology

The main_ bulk of the papers analysed here was collected by performing an online
survey using the ISI Web of Knowledge database’. The search was focused on influential
journals in forecasting, operational research and management science. The journals were
selected due to their relevance with forecasting and their ranking in two different systems,
the Vienna List’ (e.V. 2008) and the impact factor as measured at the ISI Web of Knowledge
(WoK 2009). Table 2-I lists these journals with their respective scores in both ranking

systems.

Journals that mostly specialise in ANNs from an engineering perspective were not
included due to their limited relevance with economic/business forecasting. This is a limiting
factor of this survey, however the aim of this study was to explore extensively the ANN
forecasting literature with a special interest to operational research and management

science problems; therefore, | follow the criteria set by Adya and Collopy (1998) to exclude

! http://portal.isiknowledge.com/portal.cgi

2 vienna list is compiled by Wirtschafts Universitat Wien and the journals are graded from A+ to D. The
journals used in this study are graded from A+ to B.
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weather, biological processes and other non-business applications which are numerous in

those journals.

Table 2-1: Ranking of Journals in the Literature Survey

Vienna List ISI Web of Knowledge
Journal New old Impact 5-Year Impact

: list* list** Factor Factor

Computers and Operations Research (C&OR) A A 1.366 1.789
Decision Sciences (DS) A A 2.318 3.131
European Journal of Operational Research (EJOR) A A 1.627 2.084
International Journal of Forecasting (1JF) - B 1.685 1.596
Journal of Forecasting (JF) A A 0.508 1.018
Management Science (MS) A+ A+ 2.354 4.065
Naval Research Logistics (NRL) A A 0.735 0.993
Operations Research (OR) ' A+ A 1.463 2.547

*The new list contains 322 journals ranked A+ (32) and A; ** The old list ranks 1,877 journals
classified as A+ (42), A (701), B {735), C (250) and D (142). The numbers in brackets show the number
of journals in each category.

The keywords used to perform the search were relatively broad, ensuring that all the
articles of interest would be identified>. No publication year restrictions were enforced,
however most online articles date after 1995. For older papers only their abstracts were
available online. The printed articles were retrieved for the highly cited papers published
before 1995. This is not a limiting factor of this study, since the majority of older publications
are analysed in previops reviews (Zhang, Patuwo et al. 1998). The total number of relevant

papers that were used in this study is 126 and a list of them can be found in table XIIl.

To ensure a systematic analysis of the papers | follow the suggestions in the

literature on what constitutes a well implemented and valid ANN paper. Adya and Collopy

® Those were: "Neural AND Net*" and "Multilayer AND perce*". The results were manually filtered to
identify relevant papers to forecasting. These words were selected after experimentation with
different combinations to ensure a very wide range of results. "Forecasting”" and similar wordsv were
not used as keywords in order to find related papers, even if they had no such keywords associated to
them.
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(1998) stressed that several of the ANN forecasting papers do not provide reliable or valid
conclusions, because of lacking experimental design, evaluation or documentation, or the
networks were not implemented well. To measure these, they set some criteria. The ANN
models have to be compared with well-accepted benchmarks, use ex-ante comparisons, a
reasonable sample of forecasts, adequate training, stability of the performance and
generalisation capabilities. Crone and PreBmar (2006) go one step further and construct a
framework that enables a systematic evaluation to identify heuristics and sound guidelines in
ANN modelling by documenting the individual modelling decisions in each paper. They
observe that due to the vast degrees of freedom in ANN modelling it is important that all
these are analysed. This leads to an important point; it is imperative that the authors try to
make their papers as replicable as possible by documenting all modeiling decisions. This will
allow transparent analysis of their models and eventually better understanding of what
makes ANN models perform well or not. Furthermore, in the forecasting literature there are
extensive guidelines of what constitutes an effective validation and a good experimental
design (Collopy, Adya et al. 1994; Tashman 2000}, which as | will discuss in the following
sections is often overlooked in the ANN literature. Here, | create an amalgam of the
suggestioné briefly discussed above, which is implemented in practice by examining each
paper across 42 different dimensions of analysis. The main benefit is that it allows a
systematic investigation of the papers for contribution, validity of the evaluation and
implementation, assess the replicability and extract knowledge on ANN modelling practices.
The dimensions of analysis are classified in six major categories; the general information, like
year of publication and area of publication, relevant information to the dataset used in the
paper, the network architecture, the network training, the evaluation scheme and the
conclusions. A detailed breakdown of these categories into the individual dimensions of

analysis can be found in table 2-I1.
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Table 2-1i: Categories and dimensions of the literature survey

General

1 Author 3 Journal
2 Year 4  Area of application

Time Series
5  Uni/Multivariate time series 10 Pre-processing
6 Time series type 11 Scaling
7  Real/Synthetic time series 12 Train/Valid/Test set sizes
8 Sample size 13 No. of time series used
9 Time series granularity

Architecture
14 ANN type 21 Number of output nodes
15 Method to model the ANN 22 Forecat horizon
16 Number of input nodes 23 Transfer function
17 Method to identify input nodes 24 Output function
18 Number of hidden layers 25 Shortcut connections
19 Number of hidden nodes 26 Pruning
20 Method to identify hidden layer/nodes 27 Iterative/Multiple step-ahead forecast

Training
28 Training method 32 Learningrate
29 Epochs/lterations 33 Momentum rate
30 Error function 34 |Initialisations
31 Early stopping
Evaluation
35 Error Metric 39 Comparison with other models
36 In-sample evaluation 40 Which models
37 Ex-ante evaluation 41 Generalisability of the results
38 Fixed/Rolling origin evaluation
Evaluation

42 ANN found better? 43 Additional info/notes

It was impossible to fill all the dimensions of analysis for each paper, since most of

this information is either not documented or too vague. Furthermore, there is a strong lack

of standardisation

in the ANN nomenclature that makes the correct classification

challenging. Once all the articles were analysed then the collected information was grouped

to allow inference of meaningful information. The results are presented by category in the

following section.
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2.3 Surveyfindings

2.3.1 Publication trends

Initially, | explore the publication trends. Figure 2.1 presents the number of papers
per year and journal since 1992. Note that the 2009 data includes only papers published in
the first 7 months of the year. Over the years there is an increasing number of publications
that use ANNs in forecasting, demonstrating that it is an active research topic. There seems
to be a cycle of 4 to 5 years that the number of publications peaks. More than 75% of the
papers are published in three journals, the Journal of Forecasting, the International Journal
of Forecasting and the European Journal of Operational Research, in order of percentage.
Note that there are no forecasting related papers with ANNs in the Naval Research Logistic

and Operations Research journals.

C&0OR
14%

R AR AERER

Year

Fig. 2.1: Publications per year and journal. Note that the 2009 figure includes only the first 7 months.

Comparing the number of ANN forecasting related papers with the total number of
ANN papers, in the same journals, there is a similar trend. There is an increasing volume of

papers that peaks every 4-5 years. The total number of ANN papers for the same period is
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449, which makes the 126 forecasting papers account for 28% of the total published research

in the selected eight journals.

In figure 2.2 the areas of application or the broader topic of the papers are
presented. The majority of the papers discuss ANN modelling issues, followed by finance and
macroeconomic applications and electricity demand/load forecasting. Under the category
"other" all different smaller categories with only one paper are included. A few examples of
the varied applications of ANNs include crime forecasting (Corcoran, Wilson et al. 2003),
success rates of countries in the Olympic games (Condon, Golden et al. 1999), ozone
concentration forecast (Prybutok, Yi et al. 2000), television viewership (Nikolopoulos,
Goodwin et al. 2007) and call centre forecasting (Setzler, Saydam et al. 2009). More
numerous are the applications on traffic volume forecasting (Dougherty and Cobbett 1997;
Kirby, Watson et al. 1997; Dia 2001), retail demand forecasting (Kuo 2001; Thomassey,
Happiette et al. 2004; Kotsialos, Papageorgiou et al. 2005) and marketing applications where
the utility or the brand choice of consumers is forecasted (Bentz and Merunka 2000; Jiang,
Zhong et al. 2000; Curry, Morgan et al. 2002; Papatla and Zahedi 2002; Vroomen, Franses et
al. 2004; Kim, Street et al. 2005; Pantelidaki and Bunn 2005; Hruschka 2007). It is apparent

that there is awide interest in ANN applications in forecasting.

ANN Modelling 32
Electricity Demand
Finance
Macroeconomic
Marketing
Retail
Review/Survey
Traffic Volume

Other )

i=F
0 2 4 6 8 10 12 14 .16 18 20 22 24 26 28 30 32 34
Number of papers

Fig. 2.2: Areas of application / broad topics of the papers.
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2.3.2 Dataset properties

Here | explore the dimensions related to the dataset that is used in the publications.
Note that as some papers are not empirical or do not include experiments the total figures
presented hereafter maybe less than the total of 126 papers. First | investigate the form of
the dataset, i.e. if the papers use univariate data, multivariate data or both in their
experiments. The majority of the articles address multivariate problems, as can be seen in
table 2-11l. About 40% of the papers discuss univariate time series forecasting problems and
only 7 papers (6.8%) examine both possible forms. Regarding the type of time series, i.e. if it
is a real dataset or a synthetic, nearly all papers (92%) use real time series. Again 7 papers
use both real and synthetic time series in their experiments. Although real time series have
apparent practical importance, synthetic time series allows the researcher to control the
properties of the dataset and get a better understanding of the modelling process.
Therefore, the literature is lacking in that sense, since in many cases the authors of the
papers conclude that it is unclear why the ANNs forecast or fail to do so accurately, because

the true properties of the time series are unknown.

Table 2-111: Dataset form and type.

Form # of papers Type # of papers
Multivariate 60 Synthetic 8
Univariate 42 Real 92
Both* 7 Both* 7

*Included in the above forms/types

The next dimension of analysis is the sample size of the time series. Table 2-Iv
provides descriptive statistics of the different sample sizes used in the literature and figure
2.3 represents this visually with a boxplot. ANNs have been used in both short and long time
series. The effect of the sample size is systematically analysed by Markham and Rakes (1998)
who find that at large sample sizes ANNs outperform linear regression, whereas the opposite

is true for short samples. Therefore, they conclude that ANNs perform better when long
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samples are available. Hu et al. (1999) model daily exchange rate time series and conclude

that ANNs perform well with large sample sizes. Zhang (2001) and Zhang et al. (2001) find

that sample size is not an important determinant for ANN accuracy. However they note that

more data are found helpful to overcome overfitting problems.

Table 2-1V: Sample size statistics

Min 18.0
10% 68.1
20% 111.2 o Hir -
o 30% 130.0
3 40% 153.6
®  50% 234.0
o 60% 385.8
70% 720.1 10 10 10
80% 1637.8 Sample size (log scale)
90% 8866.2
Max 105024.0

Fig. 2.3: Sample size used in the ANN literature

The sample size is connected to the time series granularity. In the literature twelve

different granularities are used, the shortest being observations every 20 seconds for road

traffic data (Dia 2001) and the longest being annual time series covering a variety of different

data types. Although counting all the individual granularities has limited interest, it is

important to distinguish between low and high frequency applications. There is no formal

definition of what constitutes high frequency data, since the characterisation changes with

the available techniques, computational resources and what is the most common time series

granularity (Engle 2000). For this analysis | use the daily time series granularity as the

boundary between high and low frequency time series. Any time series of daily or shorter

intervals will be counted as high frequency. Granger (1998) has observed that conventional

statistical methods can have problems in interpreting high frequency information. Taylor et

al. (2006) suggest that conventional statistical methods need to be modified to forecast high

frequency time series. In their analysis they use a modification of the exponential smoothing
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and ARIMA models to forecast hourly electricity load data. Therefore, it is interesting to

investigate whether ANNs are able to forecast both low and high frequency time series and if

there is need for special modifications of the models. Table 2-V shows the number of papers

that use each time series granularity that is identified in the literature. The number of papers

is provided for all area of applications and separately the three major ones, as shown in

figure 2.2. Both high and low frequency problems are strongly represented in the literature.

However, if the finance and electricity demand forecasting applications, which are inherently

high frequency problems, are excluded then the majority of the applications is for low

frequency problems. It is unclear whether this preference to low frequency applications is

due to data availability or modelling problems. Figure 2.4 presents visually the number of

papers per time granularity for all areas of ANN applications.

Table 2-V: Number of papers per time granularity

Area of application

Time granularity

All areas Finance Electricity Macroeconomics
20 seconds 1
- Minute 2 1
§ 5 mins 1
o Haif-Hourly 5 4
& Hourly 8 6
ﬁo 3-Hourly 1
T Dpaily 25 11 2 5
Total 43 12 12 5
Weekly 8 1 2
S Monthly 25 4 8
% Quarterly 11 2 1 4
& Annual 3 1
§ Other* 2
Total 55 10 3 13

*In these cases the time granularity is not defined due to the dataset

characteristics
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Number of papers

Fig. 2.4: Number of papers per time series granularity

There is only one paper that uses both low and high frequency data (de Menezes and

Nikolaev 2006). In this study the authors use polynomial neural networks and common

multilayer perceptrons to forecast the monthly airline passenger time series, a daily Dow

Jones industrial index series and an hourly electricity load time series. They compare the

ANNs with statistical benchmarks in order to establish whether the network models are

better and if the proposed polynomial neural network outperforms multilayer perceptrons.

The findings are mixed and it is difficult to assess whether ANNs are applicable to several

different time series frequencies without modifications or different modelling practices.

Note that this is not the main research question of this study, so the authors have not

designed their experiment likewise. Hippert et al. (2005) and Hahn et al. (2009) discuss the

application of ANNs in electricity load forecasting, a typically high frequency problem. Both

conclude that ANNs have been successfully applied in this type of problem, outperforming

established forecasting benchmarks. The first paper concludes that large overparametrised

ANNs perform very well for electricity load forecasting problems and note that this may be

due to the dataset properties, since such networks are typically avoided in other ANN

forecasting applications. This provides some evidence that high frequency time series is a

special case for ANN models, but there is no extensive research on the effects of the data
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frequency to the performance of the networks. Therefore, it is important that more research
is invested on understanding the effects of the data frequency on ANN forecasting
performance, especially since high frequency time series are becoming more common (Engle

2000).

Another issue that is connected with the dataset is the type of pre-processing of the
data, if any, and the scaling that is applied to the inputs. 80.2% and 78.6% of the papers do
not provide these figures respectively. Regarding the pre-processing of the time series 52%
of the papers that report it (13 papers) transform the inputs by removing the trend and/or
the seasonality of the time series. This is connected to an ongoing debate on how to best
model time series with trend and season components. Hill et al. (1996) use time series from
the M1 competition and deseasonalise them. They fit ANNs models and find that they
outperform standard statistical models. Nelson et al. (1999) repeat the experiment without
deseasonalising the time series and find that the performance gets significantly worse,
concluding that deseasonalising is a necessary step in time series forecasting with ANNs.
They argue that by removing the seasonal component the network can learn better the
trend and the cyclical components in the time series. Lachtermacher and Fuller (1995)
propose first and seasonal differencing as a pre-processing step, based on the ARIMA
modelling procedure. The authors aim to model time series in their stationary form as it
would be required by the Box-Jenkins model. in addition to that they consider Box-Cox
transformation as an additional pre-processing step. When applied, the authors find
significant improvement in the training time and the forecasting accuracy, however for the
accuracy the exact magnitude of the improvement is not documented. Furthermore, it is
unclear why this transformation is beneficial for such nonlinear models. They also do not
provide evidence that using differenced inputs is better than modelling the time series in the

original domain. Conversely, Balkin and Ord (2000) quote that differencing is an unnecessary
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step, but they do not explore its effect. Zhang and Qi (2005) investigate the effect on
forecasting accuracy of different ways to remove trend and seasonality from time series for
forecasting with ANNs. They conclude that removing both trend and season is beneficial for
the accuracy of the forecasts and that the best way to do this is through 1st and seasonal
differencing. They argue that the detrended and deseasonalised time series do not contain
long dynamic autocorrelations that make it difficult to choose an appropriate input vector.
Curry (2007) address the issue from a theoretical perspective suggesting that for ANNs to
model seasonality the input vector should be long enough to adequately capture the
seasonal effects and that it is not a matter of pre-processing, implying that Zhang and Qi
results can potentially hide input misspecification errors. Crone and Dhawan (2007)
demonstrate this, by modelling monthly seasonal patterns using only an adequate number
lags of the time series and no deseasonalising. Zhang and Kline (Zhang and Kline 2007) verify
their previous findings by using quarterly time series to model ANNs. They find that
deseasonalising improves accuracy and the best results are achieved through seasonal
differencing. They argue that coding seasonality with dummy variables does not allow the
ANNs to capture the dynamic structure of the real time series, however they do not
distinguish between deterministic and stochastic seasonality in their dataset, which

conventionally requires a different modelling approach (Ghysels and Osborn 2001).

In the literature there is support that both pre-processing and no pre-processing are
necessary for ANNs in order to maximise forecasting accuracy, without specifying the
conditions that each would be preferable. This inconsistency complicates ANN modelling.
However several aspects of the issue have been overlooked by the ANN literature, like the
nature of the trend and the seasonality, i.e. if it deterministic or stochastic, what happens
when multiple overlying seasonalities are present, as is common in high frequency time

series, etc. Researching these special topics will provide additional understanding of ANNs
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and thus help to lift the current confusion. The remaining papers that use some form of pre-
processing refer to either transformation of the raw data to more useful formats'(like taking
the percentage difference of the raw time series) and is always connected to domain
knowledge or calculate the logarithms of the time series before modelling it with the ANNs.
The argument behind the use of logarithmic transformation is outlined by Balkin and Ord
(2000). During their training ANNs usually minimise some sort of squared error. Efficient
estimates result in least square optimisation when the error terms are independent and
have equal variances. The logarithm does exactly that. However, there are no comparative
studies that demonstrate a clear benefit of using the log transform of the time series with

ANNs and therefore its use is rather limited.

ANNs require the inputs to be scaled to specific bounds that are defined by the
transfer function of the hidden neurons (Lachtermacher and Fuller 1995; Zhang, Patuwo et
al. 1998). It is a necessary step to produce forecasts with ANNs and it can be safely assumed
that most researchers in their papers use some sort of scaling. However, only 21.4% of the
papers report the scaling that is used. This renders most of the published work impossible to
replicate and also does not offer any evidence on the effect of the scaling on the accuracy of
ANNs. In the literature there are no large scale studies concerning its effect on the accuracy
and most focus on the effect on the ANN training, for which it is unclear whether it is
beneficial or not and how it should be done (Zhang, Patuwo et al. 1998). Lachtermacher and
Fuller (1995) argue that scaling should be able to accommodate unobserved future values
that are out of the bounds of the historic values. Therefore, scaling should result in values
tighter than that required by the transfer function, in order to have room for values outside
the range of the original training data. Wood and Dasgupta (1996) quote that scaling is one
way of reducing the impact of noise to the ANNs, but they do not provide the evidence to

demonstrate this. Church and Curram (1996) argue that the transfer function becomes
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increasingly nonlinear at its extremes, so by scaling the input data to tighter ranges
overcomes this problem. Furthermore, they also argue that this way ANNs are robust to
future unobserved values. Torres et al. (2005) mention that scaling the inputs to tighter
ranges help_s to avoid the saturation problem of the transfer functions. In the above papers
the choice of the new tighter bounds is arbitrary, with the exception of Lachtermacher and
Fuller who suggest scaling the time series by a factor of two times the initially intended
range. However, it is not discussed why a factor of two is adequate. In the literature it is
unclear which of the available scaling methodologies is better (for a discussion of the
alternatives see Zhang et al. (1998)). Although there are arguments in favour of tighter
scaling bounds than those required by the transfer function, there is no rigorous evaluation.

Furthermore, there is an open question regarding how one should set these new bounds.

Another dimension of this study related to the dataset is how to split it into training,
validation and test sets. ANNs in order to train and avoid overfitting typically require the use
of a validation set. Part of the original time series is used during the training of the ANNs to
validate that the model has approximated the underlying data generating process and has
not been overfitted to the training set, which is used for estimate the network's weights.
Therefore, the size of the validation set limits the available sample size for the training of the
ANNs. Deciding the size of the validation set is similar to setting the size of the test, which is
used for the ex-ante evaluation, and is usually application specific. Therefore, | will not list in
detail all the different ways that the-time series are split in the literature, but | will refer only
to the special cases. Bodyanskiy and Popov (2006) use online training to fit their ANNs, which
means that the network adapts continuously as new information becomes available. This
makes the need for validation set obsolete, therefore none is used. Note that this is a
different form of training and forecasting and does not discredit the common offline training

of the ANNs that all the data are available and a validation subset can be created. Corcoran
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et al. (2003} use a special scheme to avoid using a validation set. They use the M-test, which
is essentially a gamma test applied incrementally to an increasing sample size, to identify the
number of training observation that minimises the effect of noise and therefore overfitting.
Once this value is identified the appropriate training set is used and the rest of the data is
used as test set. However, in their paper they do not provide the evidence that this gives
better forecasting accuracy compared to the common use of the validation subset. Note that
29.4% of the accessed papers in this review do not provide information on how the available
data are split in training, validation and test subsets. This limits the validity of those papers,
as it is unclear how the ANNs are build, on what sample they are trained and how their

evaluation is done. Furthermore, these experiments are not replicable.

Table 2-VI provides the descriptive statistics for the number of time series that are
used in the literature. Figure 2.5 provides a visual representation of the same information as
a boxplot. More than 70% of the papers use under 5 time series. There are 12 papers that
use from 10 to 100 time series and only 8 than use more than 100 time series, up to the
maximum of 367. In this classification the M3 competition (Makridakis and Hibon 2000),
which has an ANN model submission that was evaluated on 3003 time series, among several
other forecasting models, is not included. The relatively small number of time series that is
used in most studies implies that it is hard to generalise from their conclusions and the
statistical validity of the evaluation framework is questionable. This in conjunction with the
limited use of rolling origin evaluation scheme, which is discussed in a following section,
limits severely the papers that can be used to assess the performance of ANN models against
benchmarks. It is imperative that more large scale studies are conducted in order to provide
statistically valid evidence of the ANNs' forecasting performance and best modelling

practices.
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Table 2-VI: Number of

time series
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Max 367.0 Fig. 2.5: Number oftime series in ANN papers

2.3.3 ANN architecture

Here | discuss all the dimensions of analysis that are related with the ANNSs'
architecture that are found in the literature. The questions that are discussed here include
what are the types of ANN used, how the models are specified, the input variables and the
size of the hidden layers specifically, whether a single or multiple outputs are used, what
transfer functions are employed and other special considerations like pruning and shortcut

connections.

First | present the most common types of ANNs that are used in the forecasting
literature. Figure 2.6 shows the percentages of papers that use Multilayer Perceptrons
(MLP), Recurrent Neural Networks (RNN), Generalised Regression Neural Networks (GRNN),
Radial Basis Function networks (RBF), Probabilistic Neural Networks (PNN) and all the other

network types that are represented by only one paper in this review.

The majority of the papers (75%) use MLPs. The second most common type is the
RNNs with only 6% of the papers using it. RBF networks follow with 5%. GRNNs are used by
4% of the papers and 1% uses PNNs. The remaining 9% of the papers use different types of

ANNs that appear only once in this review and in most cases are variations of the MLP, like
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the DAN2 which captures the linear and the nonlinear part of the time series in separate

neurons (for more information refer to Ghiassi et al. (2005)). The dominance of MLPs seems

to be unaltered since the last major review of ANNs in forecasting (Zhang, Patuwo et al.

1998), however it does not mean that they are better suited for forecasting. For instance if

we consider the papers that discuss RNNs they routinely report outperforming MLPs. Note

the validity of several comparative evaluations is questionable, as is discussed in the

following sections in more detail.

PNN
RBF

GRNN
4%

Fig. 2.6: Type of ANN used

From this point on, only for the papers that use MLPs and RNNs, which are the most

common implementations, are discussed. The reason for this is the special nature of the

GRNNs, RBFs, PNNs and other types of networks that require completely different

architecture, design, modelling considerations and their use in forecasting represents less

than 19% of all papers.

Next, how many papers present a complete methodology to model the ANNs

architecture is investigated, including selection of inputs, number of hidden layers and

nodes, connections and transfer functions. Only 16 papers suggest a unified methodology to

specify systematically the inputs and the hidden layer. No papers provide guidelines for

selecting the transfer function. The same is true for shortcut connections, i.e. direct
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connections between the layers that bypass one or all the hidden layers. Both seem to be set
according to the preferences of the modeller. In addition to these 16 papers there are a
number of papers that address the selection of solely the input variables of the ANNs or the
hidden layer. These papers are discussed together with the ones that offer a complete
methodology to specify both. There are in total 25 papers that specify automatically the
input variobles of ANNs. These can be classified in seven major categories, as it can be seen
in table VII. All methodologies based on regression analysis are classified under the category
“Regression”. Methodologies that use autocorrelation analysis (ACF), partial autocorrelation
analysis (PACF), mutual information (MI) or a.ny other similar metric, individually or in
combinations, are categorised as “ACF & PACF or similar”. Any methodology that makes use
of heuristics or rule-based analysis or information criteria is under the category “Heuristic &
rule based”. All papers than use pruning algorithms to identify the input variables belong to
category “Pruning”. Methodologies that are based on genetic algorithms and other
evolutionary algorithms are under “Genetic algorithms” and finally the single paper that
identifies the input variables by means of sensitivity analysis is on a separate category named
“Sensitivity analysis”. The remaining papers, which is the majority (71.3%) do not present or
use a systematic way to choose the input variables for the ANNs they use. In most cases the
selection methodology is done using a trial and error approach or arbitrarily that limits
significantly the input search space and can easily lead to suboptimal and myopic selections.
However, there is a lot of evidence in the literature that the input variable selection is the
most important modelling variable for ANNs in forecasting. Zhang et al. (1998) observed in
their review that there are very few systematic input variable selection methodologies
available, although the inputs of the ANNs are very important for their forecasting accuracy.
Anders and Korn (1999) identify the same problem in the ANN literature and in addition they

point out that there is no widely accepted or used methodology either. Zhang (2001) and
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Zhang et al. (2001) explore the ability of ANNs to model linear and nonlinear time series
respectively and conclude that the selection of the input variables is the leading determinant
of accuracy, followed by the specification of the hidden layer. There are numerous empirical
studies that highlight the importance of the input variable selection for ANNs application (for
example Darbellay and Slama (2000} stress this issue in electricity load forecasting
problems). Since then there are several publications focused on how to specify the input

variables for ANNs for forecasting problems, as it can be seen in table 2-VII.

Table 2-VII: Papers that use input variable selection methodologies

Regression Heuristic & rule based Hypothesis testing

Balkin and Ord (2000) Corcoran et al. (2003) Anders et al. (1998)

Church and Curram (1996) Liao and Fildes (2005) Medeiros et al. (2006)

Dahl and Hylleberg (2004) Moreno and Olmeda (2007) Refenes and Zapranis (1999)
Prybutok et al. (2000) Qi and Zhang (2001)

Qi and Madalla (1999)
Swanson and White (1997)

ACF & PACF or similar Pruning Genetic algorithms
da Silva et al. (2008) Kaashoek and Van Dijk (2002)  Kim et al. (2005)

- Darbellay and S{ama (2000) Setiono and Thong (2004) Motiwalla and Wahab (2000)
Kajitani et al. (2005) Terasvirta et al. (2005) Nag and Mitra (2002)

Lachtermacher and Fuller (1995)

Moshiri and Brown (2004) sensitivity analysis

Dougherty and Cobbett {(1997)

However, the number of the different categories of methodologies that has been
published illustrates that there is still no consensus on how to specify the input variables of
ANNs. Another important observation is that most of these papers use a filter approach to
specify the inputs, with the exception of Liao and Fildes (2005) who provide a wrapper
framework that essentially iterates among a large number of possible candidates and da
Silva et al. (2008) who use as a possible input variable selection methodology a wrapper that
tries several different combinations of inputs automatically. They briefly discuss the

distinction between wrappers and filters and identify as the key distinction the higher
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computation cost of the first. To illustrate the advances in the topic, the different

methodologies are discussed by category in chronological order.

The most common specification methodology is based on variants of regression
analysis. Church and Curram (1996) compare MLPs with econometric ordinary least squares
regression models. They suggest modelling the ANN using the same inputs that they
identified through the regression analysis. This offers a systematic framework to select the
input variables for MLPs. However, the identification of the inputs for a nonlinear model, like
the MLPs, is based on linear regression; hence, there is the risk of missing useful nonlinear
information. Swanson and White (1997) simplify the procedure by using a forward stepwise
linear regression to identify the significant input variables. Regressors are added one at a
time until the Schwarz Information Criterion (SIC) cannot be improved more. Although this
methodology fails to identify nonlinear information like the previous one, it offers a more
automated approach to input variable selection, minimising the required intervention from
an expert modeller. However, the use of SIC is criticised by Qi and Zhang (2001) as
inappropriate. They evaluated its use, along with AIC, as a mean to identify the appropriate
number of lags for MLPs and concluded that there is no connection between these
information criteria and the forecasting performance of networks. Qi and Maddala (1999)
identify the inputs for their MLP model through means of linear regression. Initially they
build a linear regression and use the significant variables of the regreséion as inputs to the
ANN. These variables, like in the previous cases, can be lagged. The weaknesses of this
methodology are similar. The linear regression does not capture nonlinear information,
therefore may miss some important nonlinear inputs for the ANN. Furthermore, in this
implementation the regression modelling is not automated and a human expert is required.
Balkin and Ord (2000) propose a hybrid heuristic-regression approach. First, they consider

the problem of the maximum lag of the time series that should be evaluated with the
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regression model. To solve this, which is unanswered by the previous papers, they use a
heuristic rule. Depending on the frequency of the time series they provide a maximum
number of lags that should be evaluated; for annual time series this is 4 lags, for quarterly 6,
for monthly 15 and for any other frequency they propose 6 lags. The possible lags are then
evaluated using a forward linear regression. From all the different regressions that are built
by combining these lags, those that have an F-statistic greater than 4 are selected. From the
selected ones the least parsimonious is chosen to identify the inputs for the ANN. This
methodology is fully automatic; however it has a series of problems. First of all, it is
calibrated only for low frequency time series, since the heuristic would not be able to
provide a reasonable maximum lag for time series of higher than monthly frequency. On the
other hand, it is the only attempt to address the issue of maximum lag length in the
literature. Secondly, like the previous methodologies it is restricted to identifying linear
information. Prybutok and Mitchell (2000) chose the input in their study using stepwise
linear regression. They deal with a multivariate problem and they do not consider lagged
variables, however their methodology can be easily extended to include such. The main
weakness is that the identification of the inputs is done considering only linear information.
Dahl and Hylleberg (2004) try to overcome this by using a nonlinear regression model. They
choose to use the random field regression, proposed initially by Hamilton (2001). This model
allows identifying separately linear and nonlinear explanatory variables, thus overcoming the
main weakness of the previously mentioned methodologies. In their implementation they
use forward regression with AIC and BIC optimisation to build the nonlinear regression
model and then use the significant variables as inputs to the ANN. Although this is the only
regression based methodology that tries to capture nonlinear information in the inputs of
the ANN it can be criticised for using AIC and BIC optimisation for identifying the appropriate

number of inputs, which is discouraged in the literature (Qi and Zhang 2001). In addition, this
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methodology is very computationally expensive due to the estimation of the random field
regression models. Interestingly, in the literature only the stepwise and the forward

regression models have been considered. Backward regression has not been used.

The second most common category of methodologies is based on analysing the ACF
or PACF of the time series, or similar metrics like mutual information criterion.
Lachtermacher and Fuller (1995) propose a methodology to model ANNs similar to the
ARIMA modelling methodology. ANNs are autoregressive models and naturally make use of
the autoregressive structure of the time series, which is captured in the PACF. Therefore,
they suggest that identifying the autoregressive structure of the time series in a similar way
to what Box and Jenkins describe (Box, Jenkins et al. 1994) can help identifying the .input
variables for an ANN. They also suggest using the autocorrelation information in an attempt
to capture the additional nonlinear information that is not identified by the linear PACF.
Note, that following the ARIMA method.ology the lagged observations of the time series may
need to be differenced. This methodology fails to provide evidence why the inclusion of the
ACF is beneficial and like most of the previously mentioned methodologies, is based on linear
identification tools, which may be a limiting factor for ANNs. Darbeilay and Slama {2000) try
to overcome this by using the nonlinear autocorrelation function. This is defined as the
mutual information scaled between 0 and 1. This metric is able to capture nonlinear
dependencies and therefore provide a more complete set of inputs to the ANN.‘ The authors
identify the significant lagged inputs of the time series using a similar approach to the
normal ACF analysis, arguing that all the extra identified significant lags, compared to ACF
analysis, contain the nonlinear information. However, this is not entirely true as the ACF and
the scaled MI have different bounds and are not directly comparable. Moshiri and Brown
(2004) use only the PACF information to identify significant lags that should be included as

inputs to the ANNSs. In contrast to the previous methodology, using only PACF information
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will restrict the nature of the identified interactions to linear. Furthermore, as
Lachtermacher and Fuller (1995) quote, to correctly identify the structure of the
autoregressive information it may be necessary to include differenced observations of the
time series, which is not considered in this case. Kajitani et al. (2005) opt to use the ACF to
identify significant lags that should be used as inputs for ANNs. In theory MLPs, which are
used in their paper, are autoregressive models and therefore PACF should be preferred, in
contrast to RNNs that can capture both autoregressive and moving average processes.
Considering that in this study MLPs outperform the benchmarks, it should be explored why
this is so, which is not discussed in detail by the authors. Again, this methodology tries to
identify inputs for the nonlinear ANNs using a linear filter. Da Silva et al. (2008) consider
several alternative to specifying the ANN input variables. They consider both filters and
wrappers. As a filter they use the interdependence redundancy, which is a normalised
mutual information measure. Before applying this filter they first difference the time series
for trend and seasonality in order to achieve stationarity. They also consider a Bayesian
wrapper which essentially iterates among a large combination of alterative inputs until the
best model is identified. This is computationally expensive and the authors first preselect
heuristically a set of inputs to consider. The authors propose methodologies that can capture
the nonlinear structure of the time series, at additional computational cost, which is side-
stepped by using heuristics to preselect a set of possible inputs. The heuristics are not
described in the paper, but it is possible that restricting the search space can have negative
effects on accuracy. Furthermore, differencing of the time series is used to remove the trend
and season components. However, differencing is not established as a necessary step for
ANN modelling and furthermore it may lead to model misspecification if the trend or season

components are deterministic.
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Another set of methodologies makes use of heuristics and rules to identify the
appropriate inputs for ANNs. In this category methodologies that minimise some form of
information criteria are also included. Qi and Zhang (2001) investigate if the use of in-sample
model selection cfiteria is a reliable guide for out-of-sample performance. They use the
Akaike information criterion (AIC), the Bayesian information criterion (BIC) and their
common variants to investigate if they are useful indicators in selecting the inputs for ANNs
and the size of the hidden layer. They conclude that there is no apparent connection
between the values of the information criteria and the forecasting performance of the ANNs.
This finding has significant implications for several papers that use some variant of the either
the AIC or BIC to choose the ANN topology. A limitation of the paper is that they consider a
relatively limited number of lags and hidden nodes (up to 5 for both cases). Moreno and
Olmeda (2007) use AIC to identify the correct numbér of inputs to model MLPs and compare
them against linear models. They extend the search space to 10 lags, but fail to find MLP
models that clearly outperform the benchmarks, providing evidence in agreement with the
previous study. Corcoran et al. (2003) propose a heuristic based on the Gamma statistic. The
statistic is calculated for incremental lag lengths until the minimum Gamma statistic is
identified. All lags up to this point are used as input for ANNs. In principle, this methodology
is similar to the previous heuristic approaches. All of them force all lags up to a specific order
to be included in the input vector, in contrast to the methodologies that are based on
regression and ACF/PACF analysis tﬁat create sparse input vectors. It has not been explored
which method is more appropriate for the ANNs. Furthermore, depending on the dataset
prbperties and especially its frequency, the nonsparse specification of the inputs may lead to
very long input vectors that affect negatively the training of the ANNs. Liao and Fildes (2005)
discuss the difficulty to parameterise ANN models and propose a heuristic framework that

allows a systematic search for inputs, number of hidden nodes and learning parameters that
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will provide the best model for the dataset. Essentially, they suggest a wrapper with
heuristics that help to standardise the search. They also suggest using as an additional input
a time series constructed by the median of all the past values up to each historical
observation. This was found to provide more robust results for their dataset. The main
problem of this methodology is its computational cost and that it is time series specific, since
it is based on a wrapper (da Silva, Ferreira et al. 2008), which can make it impractical for
large scale implementations. In their study they show that their proposed methodology

worked well on a dataset of 261 telecommunication time series.

Another approach to the problem of specifying the input variables is to start with an
arbitrarily large vector of inputs and prune it to a smaller size of significant inputs. Kaashoek
and Van Dijk (2002) propose a methodology that the modeller sets the maximum number of
inputs and then calculates the incremental contribution of each input in terms of R® by
removing one input at a time. The residuals that are calculated after remdving each input are
stored as vectors which are analysed by means of principal components analysis. The
relevant components of the first principal component are used as additional indicators of the
significance of the inputs. The inputs with minimal incremental contribution and the smallest
components are pruned. The elimination continues until all insignificant inputs are removed.
The authors identify that a limitation of this methodology is how to identify what is a low or
minimal contribution and an insignificant component. Furthermore, this method is
computational intensive, since the ANN model has to be re-estimated several times. Another
weakness is that it is hard to know what is an adequate starting number of possible inputs.
This is especially important when dealing with time series of different frequencies. Setiono
and Thong (2004) use pruning to identify the inputs, however the criterion used to decide
which input to prune is the ANN accuracy. If removing an input does not harm the accuracy

of the network then that input is removed. This is again a top-down pruning approach, i.e. it
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is necessary to start with a large number of inputs, which may be difficult to specify in
advance. Terasvirta et al. (2005) uses the methodology described in Medeiros et al. (2006)
with the addition of pruning to get parsimonious networks. Note that in all these papers,
pruning is used to identify the number of hidden nodes as well. In the literature there are
arguments that pruning may not always be desirable, especially in the cases of high
frequency data (Hippert, Bunn et al. 2005) or seasonal time series (Curry 2007), where a

large network can provide the flexibility for a better fit.

In an attempt to increase our understanding of ANNs there are methodologies that
are based entirely on statistical hypothesis testing. Anders et al. (1998) propose a complete
framewdrk to specify both the number of hidden nodes and inputs. Once the number of
hidden nodes is identified the ANN is trained with all inputs. Each single input connection
(and not the whole input node) is evaluated using the Wald test. The connection with the
most insignificant p-vélue is dropped and the network is retrained. The process is repeated
until only significant connections remain. The limitations of this methodology are similar to
the pruning ones that are described before. It involves high computational cost and.it is
difficult to specify in advance the starting set of all the inputs, especially in temporal
modelling. Refenes and Zapranis (1999) propose a similar top-down approach which is based
on different statistical test. They suggest starting with a model that includes all possible
inputs and caIcuIaté the MFS value (Moody and Utans 1992) for each input. The least
significant input (below a set threshold) is dropped from the model. Another difference with
the previous methodology is that in this one the number of hidden nodes is reidentified in
each iteration and the next input is evaluated with the “best” number of hidden nodes. The
weaknesses of this methodology are similar, but with much higher computational cost, since
now the hidden layer is respecified in each iteration. Medeiros et al. (2006) try to address

the problem of high computational cost by proposing a bottom up approach. For the
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selection of the input vector a methodology proposed by Rech et al. (2001) is used. This
methodology is based on the idea of approximating a stationary nonlinear time series by a
polynomial of sufficiently high order. Combination of variables (or lags) are included in the
polynomial and a model selection criterion (AIC or BIC) is calculated. The polynomial with the
lowest selection criterion is selected and indicafes which inputs should be used in the ANN.
Once the input vector is set the methodology addresses the hidden layer. This methodology
uses indirectly AIC or BIC to specify the input variables of the ANN. It is not clear in this case
if the findings of Qi and Zhang (2001) that such criteria are inappropriate to specify the

inputs of ANNs hold and it should be evaluated if this methodology overcomes this problem.

Another group of papers propose to identify the input variables for ANNs using
genetic algorithms. Motiwalla and Wahab (2000), Nag and Mitra (2002) and Kim et al. (2005)
propose different variations of genetic algorithms to identify the best set of inputs. The
principal idea is that an initial set of networks is created, trained and evaluated. The best
performing networks are then used as "genetic material" for the next generation of
networks. The process continues until the best solution is reached. Although these
methodologies are not identical they share common points of criticism. All these methods
are very computationally intensive, as they require to train and evaluate a very large number
of ANN for each time series, which is highlighted by the authors as well. Furthermore, these

methodologies will not select every time the same inputs, due to the stochastic nature of the

genetic algorithms.

The last methodology is related to sensitivity analysis. Dougherty and Cobett (1997)
suggest training a ANN with all the inputs and then change the values of one input variable
by a small percentage at a time. By measuring the effect of these changes in the accuracy of

the ANN it is possible to identify strong positive or negative relationship of inputs to the
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output of the ANN and relatively neutral inputs. The authors suggest keeping only the inputs
that have strong effects on ANN's outputs. Although this methodology overcomes the
problem of identifying which inputs capture useful nonlinear information for ANNs, it is

limited in the sense that it cannot evaluate synergies between input variables.

A wide variety of input variable selection methodologies have been proposed in the
literature, which are classified in this study in six main categories. Methodologies under each
category share common limitations, which are usually overcome in other categories.
However, there is no identified best methodology. These alternative methodologies have not
been compared to each other, even when they belong to the same category. This increases
the confusion of what is a good way to specify the input vector. Given the significance of the
input vector for the forecasting accuracy of ANNs it is necessary to evaluate the proposed
methodologies against each other. This will provide insights why some methodologies work

or fail and how ANNs are best modelled.

The specification of the hidden layers and the number of hidden nodes is less
researched. A major influence has been the proof that single hidden layer MLPs are universal
approximators (Hornik, Stinchcombe et al. 1989; Hornik 1991). Based on this theorem most
of the literature uses a single hidden layer and the problem is reduced to identifying the
number of hidden nodes in this hidden layer. Zhang (2001) and Zhang et al. (2001) in their
study conclude that the number of hidden nodes is of lesser importance in comparison to
the input variables of the ANN and find that a small number of hidden nodes is adequate for
most cases. Hippert et al. (2005) reach a different conclusion. For electricity load forecasting
large ANNs prove to be more flexible in capturing the complex dynamics of the time series
and therefore should be preferred to small networks. Levelt (1990) observes that the

universal approximation theorem requires an infinitely large number of hidden nodes and
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does not necessarily hold for a small number of hidden nodes, suggesting that more complex
architectures might be preferable. Curry et baI. (2002) argue that with finite data points and
finite number of hidden nodes more hidden layers can produce more accurate networks in
comparison to single hidden layer ANNs. Nikolopoulos et al. (2007) suggest that two hidden
layers perform better in television viewership datasets than a single hidden layer. From the
accessed papers that use either MLPs or RNNs only 8 articles (less than 10%) use more than a
single hidden layer. None provides a systematic way to‘ identify the required number of
hidden layers and resort to using the suggestions of previous studies or iterative trial and

error approaches.

Table 2-VIII: Hidden nodes selection methodologies

Heuristic & rule based Hypothesis testing
Balkin and Ord (2000) Prybutok et al. (2000) Anders et al. (1998)
Church and Curram (1996) Refenes and Zapranis (1999) Medeiros et al. (2006)
Dahl and Hylleberg (2004) Qi and Zhang (2001) Terasvirta et al. (2005)
Lachtermacher and Fuller (1995) Sahin et al. (2004)
Leung et al. (2000) Sexton et al. (2003) .
Moshiri and Brown (2004) Swanson and White (1997) Pruning
Motiwalla and Wahab {(2000) Swanson and Zeng (2001) Kaashoek and Van Dijk (2002)
Olson and Mossman (2003) Genetic a|gorithm5 Setiono and Thong (2004)

Nag and Mitra (2002)

The number of hidden nodes in most studies is identified through a trial and error
approach or it is arbitrarily preset to a specific number. A minority of papers (24%) provide
methodologies that can be used to select the number of hidden nodes. These can be
classified in four categories, as it can be seen in table 2-VIil, those that are based on

heuristics and rule based decisions, on pruning, on hypothesis testing and those that use

genetic algorithms.

The heuristic approaches can be subdivided in three categories. The first category
sets the number of hidden nodes {(on a single hidden layer) as a function of the number of

inputs and/or outputs or training samples of the ANN. Lachtermacher and Fuller (1995)
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suggest to use a number of hidden nodes that will make the total weights of the network be
between 1.1 to 3 times more than the number of training samples divided by ten. The
rationale behind this selection is that it will offer good generalisation properties. Leung et al.
(2000) use 75% of the number of inputs as a guideline to identify the number of hidden
nodes. Prybutok et al. (2000) initially calculate the number of hidden nodes by dividing the
number of training cases by 5 times the sum of the number of inputs and outputs. Then they
evaluate neighbouring values as well and choose the one that performs best. Olson and
Mossman (2003) set the number of hidden nodes by rounding up the average number of
inputs and outputs. These approaches have been used to provide guidelines to restrict the
search space for identifying the best number of hidden nodes, rather than strict definitions

of the number of neurons.

Church and Curram (1996) argue that too few hidden nodes will not allow the
network to capture the structure of the time series, while too many will cause overfitting.
Therefore, this can be used to identify the number of hidden nodes. In the proposed
methodology the validation errér is monitored during the training of the network. If the
validation error does not get continuously worse it means that the network does not have
enough nodes to overfit the data. In this case the training is stopped and more hidden nodes
are added to the MLP, since the current number will be unable to capture fully the
underlying structure. Motiwalla and Wahab (2000) employ a heuristic called cascade
learning. In contrast to the previous papers this heuristic allows several hidden layers and
creates shortcut connections to the inputs as well as the previous hidden layers. The
principal idea of cascade learning is that the ANN starts with a small number of nodes. New
nodes are added one or more at a time until performance cannot be further improved. Sahin
et al. (2004) start with 2 hidden nodes and incrementally increase the size of the hidden

layer as long as the residuals decrease. All the last three papers use bottom-up construction
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approaches, starting from a small number of hidden nodes and increase until some error
metric cannot be improved further. It is important to note that in their description none of
these methodologies would overcome possible local minima of the performance criteria and

the search would stop there.

The remaining methodologies follow a similar bottom-up approach but instead of
the errors they employ information criteria that penalise for the number of parameters.
Swanson and White (1997) and Swanson and Zeng (2001) use BIC. Balkin and Ord (2000)
prefer to use the GCV metric, which allows parametric cost for the additional model
parameters. Dahl and Hylleberg (2004) consider both the AIC and BIC metrics. They add
hidden units in a single hidden layer until the performance criterion cannot be improved or
the number of hidden nodes has reached 5. Moshiri and Brown (2004) consider only the AIC.
Qi and Zhang (2001), similarly to their analysis for the input variable specification, investigate
the usefulness of AIC and BIC in selecting the number of hidden nodes. Their finding is that
there is no relationship between the information criteria and ANNs’ performance. They
conclude that different specification strategies are needed. Refenes and Zapranis (1999) use
the prediction risk instead. They propose an iterative heuristic that calculates the predictions
risk for different number of hidden nodes, up to a specified maximum, and select the one
that minimises it. The prediction risk essentially measures the error adjusted for the
complexity of the model. The authors note that any other similar metric could be used in the
current framework. By replacing the prediction risk with AIC or BIC the proposed heuristic

becomes very similar to the methodologies proposed by the previous authors.

The hidden layer specification methodologies that are based on hypothesis testing
follow a bottom-up approach, starting from small or linear models and testing the relevance

of the nonlinear hidden nodes. Anders and Korn (1998; 1999), Terasvirta et al. (2005) and
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Medeiros et al. (2006) employ the LM-test (White 1989; Terasvirta, Lin et al. 1991) to
compare between models with H and H+1 number of hidden nodes, until iteratively the

optimum number is identified.

Nag and Mitra (2002) employ genetic algorithms to identify the number of hidden
nodes and layers. They restrict the search space to a maximum of 16 nodes per layer and the
maximum number of layers to 2. Similarly, Kaashoek and Van Dijk (2002) and Setiono and
Thong (2004) use the same pruning methodology that they employ to select inputs in order
to choose the number of hidden nodes for a single hidden layer. The weaknesses of genetic
algorithm specification methodologies are similar to those discussed for the input variable

selection.

It is clear that there are numerous alternatives how to specify the hidden layer.
Although most authors prefer to use some heuristic or optimisation scheme based on
information criteria that penalises for complexity, their performance is not proven. Similarly
to methodologies for the selection of the input variables, there is no rigorous comparative
evaluation that demonstrates which of these methodologies, or family of methodologies, is
better. Furthermore, these methodologies have to be assessed against the simplest
approach of selecting the number of hidden nodes arbitrarily or randomly. In order to justify
the extra computational cost involved they have to be proven better. Due to our limited
understanding of the interaction of the inputs with the hidden layer most of this
methodologies resolve to iterative refinement of the hidden layer, which requires retraining
the network in each step and do not provide an explanation why the selected number of

hidden nodes is adequate.

In addition, it is unclear how the selection of the transfer function interacts with
number of hidden nodes. There is no guidance in the literature on how to choose the
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transfer function of the hidden layer. Figure 2.7 shows the types and the usage of the hidden

layer transfer functions in the literature. Logistic sigmoid is the most common type. It is

followed by the hyperbolic tangent (fonh) and lastly two papers use linear transfer function.

The transfer function defines the bounds that the inputs should be scaled to. However, in the

literature there are papers that report good results with neural networks that use different

scaling outside these bounds; for instance Wood and Dasgupta (1996) use logistic transfer

function that is bounded between 0 and 1, but scale the inputs between -0.5 and 0.5. The

interaction of the transfer function with the hidden layer, the inputs, the pre-processing and

scaling of the inputs is not adequately researched. The literature (Zhang 2001; Zhang,

Patuwo et al. 2001) suggests that the input variables and the specification of the hidden

layers are the most important determinants of ANNs accuracy, however there is no evidence

that the choice of the transfer function is of lesser importance. It is imperative that the effect

of the transfer function selection is researched more thoroughly in order to evaluate its

significance for ANN accuracy and provide guideline on how to select it.

Linear
3%

TanH

23%

Sigmoid
74%

Fig. 2.7: Percentage of hidden layer transfer functions in the literature.

Selecting the size of the output layer is connected with the forecasting application of

the ANNs. Each output node produces a forecast for a single lead time. The modeller can

produce a forecast of lead time f+n by training directly the network to output forecasts of

this lead time, or to produce forecasts with lead time t+7, which will be used to produce

Page 45



forecasts of lead time {+2 until iteratively forecasts of lead time f+n are produced. Similarly if
the modeller is interested in several lead times, the ANN can be modelled to produce these
directly through several output nodes or iteratively through single node. Similarly, an ANN
can be trained to output forecasts of several variables simultaneously through multiple

output nodes. Table 2-IX summarises the number of output nodes used in the literature.

Log

2%
Sigmoid

11%

Table 2-IX: Number of output nodes

Output nodes Number of papers

1 69

2 2 )

3 3 lezar
4 2 87%
24 1

Fig. 2.8: Output layer transfer function and
percentage of ANN papers

Most of the papers (89.6%) use a single output node and only 8 papers use multiple
nodes, while 10 papers do not record this information. There has been limited consideration
in the literature for directly forecasting simultaneously several lead times or even a single
one, but with a longer than t+7 forecast horizon, through the appropriate selection of the
output nodes, even though there is evidence of accuracy advantages (Hippert, Bunn et al.

2005).

Typically, the output node uses a linear transfer function; however this is not always
the case, as it can be seen in figure 2.8. There are 6 papers that use a logistic sigmoid
function instead of linear. A single paper uses logarithm (Amilon 2003). These papers allow
the ANN to capture additional nonlinear behaviour in the output layer. This is not equivalent
to an additional hidden layer, since the latter would still use a linear output layer for

summing and scaling the intermediate information from the hidden layers. Again, the
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relative advantage of using nonlinear transfer functions in the output node, instead of
additional hidden layers or a simple linear function is unclear and it has not been evaluated.

Note that 28 papers do not report the choice of the transfer function of the output node.

Another aspect of the network architecture is related with the connecting weights.
The modellers can use ordinary fully connected ANNs, pruned networks, which do not have
all nodes fully connected, or opt for shortcut connections, which are connections that bypass
intermediate layers, usually connecting the inputs directly to the output node. Only two
papers use input to output layer shortcut connections (Swanson and White 1997; Dahl and
Hylleberg 2004). Both these papers use linear transfer function for the output layer and
argue that this allows the ANN to model nonlinear information through the hidden layer and
linear information directly through the shortcut connections. However, linear behaviour can
be approximated by ANN without shortcut connections as it has been shown empirically
(Zhang 2001). It has not been evaluated whether the shortcut connections benefit the
forecasting accuracy or the training of the network by separating the information flow across
the network’s layers. Pruned networks, are not fully connected and the rationale behind this
decision is keeping only the important connections in order to aid the training of the ANN.
Pruned networks are typically created by starting from a fully connected network and
removing the least significant connections. This approach was described as an input and
hidden layer specification methodology. ’ The modeller can achieve a similar result by
establishing only the important connections between the neurons iteratively, instead of
starting from a fully connected network. An example of this is Swanson and White (1997)
who use BIC to decide which connections are important to add to a network. Algorithmically
these approaches are different, but the end effect of both is a partially connected network. A
critique to the partially connected networks is that in most cases (this is true for all 9 papers

identified in this review that use partially connected ANNs) the resulting ANN is constructed
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following a greedy algorithm, i.e. the decision of cutting or creating a connection is not

revaluated once more connections are altered.

The architecture of the ANNs contains some of the most important decisions that
the modeller must make in order to use them for forecasting. The different variety of
approaches to solve the modelling issues that are presented above, illustrate that there is no
generally accepted methodology how to systematically construct neural networks. In many
cases different modelling alternatives are not comparatively evaluated, making it difficult to
assess if a particular setup is beneficial to forecasting accuracy or not. The literature has
been focused in proposing several different methodologies to solve common problems, like
the selection of the input variables, and has largely ignored to reconcile the accumulated
knowledge, by assessing what works better and thereafter building on that. This has resulted
in several publications arguing that the exact opposite is good modelling practice. A good
example of this is the use of information criteria like AIC and BIC to select the appropriate
inputs and specify the hidden layer for ANNs. Another significant weakness of the literature,
which is connected to the architecture, is that important modelling decisions are
documented vaguely or not at all. Several papers do not provide a selection methodology for
input and hidden nodes and chose them either arbitrarily or by using a trial and error
approach. To their support, this is an unsolved problem and there is no best practice. On the
other hand, there are papers that do not document other important architecture
information, like the nature of the transfer functions, which makes it impossible to assess
the validity of the implementation and replicate the experiments. This calls for stricter

evaluation of the ANN literature.
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2.3.4 ANN training

Once the architecture of the ANN is established the modeller has to decide the
training algorithm and parameters. This involves a variety of decisions, some of which are
directly connected to the training algorithm, like the learning rate, and some which are
connected to the modellers approach to training, like the early stopping criterion. In this
section | will discuss the findings from the literature that are associated with the ANN

training.

Conjugate gradient descent H 5
Delta learning rule  M—m 6
Extended tabu search
Genetic algorithm = m 5
Gradient descent
Levenberg-Marquadt mmmm |
Polytope algorithm
Scatter search =
Tabu search =
Other 9

10 20 30 40 50

Number of papers
Fig. 2.9: Training algorithms employed in ANN forecasting literature

Several different training algorithms have been used in forecasting applications, as
figure 2.9 summarises. The dominant algorithm is the gradient descent backpropagation
training algorithm (52% of the papers). In figure 2.9, methods which are applied only to one
paper are classified under the category "other" and include algorithms like BFGS quasi-
Newton (Setiono and Thong 2004), Bayesian regularisation (Sexton, Dorsey et al. 1999),
simulated annealing (da Silva, Ferreira et al. 2008), etc. Furthermore, there are 14 papers
that do not record the training algorithm that was used. There are a number of papers that
compare training algorithms for forecasting applications (Sexton, Alidaee et al. 1998; Sexton,
Dorsey et al. 1999; Curry, Morgan et al. 2002; El-Fallahi, Marti et al. 2005; Torres, Hervas et

al. 2005; Curry and Morgan 2006; da Silva, Ferreira et al. 2008). Typically the gradient
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descend backpropagation algorithm is a benchmark in these studies and it is always
outperformed. However, these studies should be viewed critically, since there is a
publication bias. Gradient descent is an established algorithm so only papérs that show
improved results over it are expected to be published. Furthermore, there is an issue of
implementation validity, since the majority of these papers do not report the training
parameters that were selected and use very few training initialisations, which are inadequate
to overcome the problems caused by the stochastic nature of ANN training. The limited
number of initialisations also limits the statistical analysis that can be done, as it is discussed
in more detail below. The high percentage of papers that use gradient descent can be
explained by several factors; it has well studied and documented properties, the fact that the
superiority of other alternatives is debatable and gradient descend has shown good
performance in numerous studies and finally the limited selecti‘on of implemented

algorithms in the widespread ANN software.

There are several cost functions that can be used to train ANNs. In this review
numerous alternatives were identified, which are presented in figure 10. The measured cost
is typically associated with the one step ahead in sample error. Teixeira and Rodrigues (1997)
use the four step ahead in sample error, which matches the forecasting horizon of their
forecasting problem. This cost function is more appropriate as it minimises the error that is
related with the objective of the forecasting exercise. The use of sum of squared errors (SSE),
mean squared error and root mean sduared error provide the same training result, but the
latter two have higher computational cost, therefore there is no advantage in using them
instead of the SSE. However a penalised for complexity version of SSE is bound to give
different results. The same is true for cost functions that are based on different type of

errors, like absolute errors, which are classified in figure 2.10 under the category “other”,
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which includes all the cost functions that appear only once. The majority of the papers

(567.4%) do not report the cost function that was used to train the ANNs.

5
Mean squared error
Penalised sum of squared error
Root mean squared error 6
Sum of squared error 17
Other 6
0 5 10 15 20

Number of papers

Fig. 2.10: Cost function in ANN forecasting literature.

Parameters like the training epochs/iterations, the learning parameters, the

momentum and what stopping criterion was used, if any, are not recorded in many cases

either. Only 33% of the papers document for how many epochs the network was trained.

The learning and the momentum is not documented in 75% of the papers, while the early

stopping criterion is not discussed in 85% of the papers. For the latter, it is possible that in

those papers that it is not discussed it is not used, as it is not necessary to produce forecasts.

Il documentations of these parameters harms the validity and the replicability of these

papers (Adya and Collopy 1998; Crone and PreRmar 2006).

Another important parameter of the training of ANNs is the number of times that

the network is initialised. Every time the network is initialised its weights are randomised

and therefore produce a random starting point for the nonlinear optimisation that is

performed during training. Because the training of the ANN can get stuck in local minima it is

important that the networks are initialised several times to ensure a wide search of the error

surface. If very few initialisations are evaluated then the reliability of the results is

questionable, since they can be either good or bad due to randomness in the training and

not due to the properties of the ANNs. On the other hand, if several initialisations are

trained, the modeller can look at the distribution of the errors and evaluate if a good (or bad)
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solution is an outlier or close to the average behaviour of the model. Therefore it is
important that the ANNs in forecasting studies are initialised multiple times and this number
is reported. Table 2-X summarises the reported multiple training' initialisation in the

literature.

Table 2-X: Multiple training initialisations in the literature

Number of initialisations Number of papers
3 1
5
10
15
20
50

SRS N N

Only 10 papers have multiple initialisations and from those only one (Hu, Zhang et al.
1999) has over 30 initialisations that would typically allow statistical analysis of the results
(Kvanli, Pavur et al. 2002). This represents a very small minority of the literature (11%). Liao
and Fildes-(2005) do not initialise the training several times, but pi;k different initial weights
with values between different bounds every time. The difference is that this does not
guarantee that the ranges of the initial weights overlap, which therefore is equivalent to
building a different model setups. For this reason this paper is not included in table X. The
remaining papers do not report multiple training initialisations. It is possible that more
papers consider it, but it is not reported. This is a major problem for the literature.
Considering that ANNs are extremely difficult to replicate, since the random seed used
during training has to be identical to get the same results, it is principal that the robustness
and the distribution of the érrors of the ANNs due to training are evaluated. Results that are
extracted after a single iteration of initialisation and training cannot be used to evaluate
reliably the accuracy of the network and are impossible to replicate. On the other hand, if
the behaviour of the network is examined over sever;l initialisations, it can be expected that

the results of the network, the next time it is trained, will be within easy to define bounds
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with a given confidence. This allows to extract valid and reliable conclusions. Note that in
order to achieve full replication of ANN results several conditions must be satisfied; the
software that simulates the ANNs must be identical, the random number generator that is
used must be the same, the seed of the generator must be the same and the computer
architecture, i.e. 32 or 64 bit, should be fixed and of course all the modelling parameters
must be know. Therefore, it is unrealistic to expect replication of ANN papers results to the
exact reported figures. However, it is relatively easy to ensure that the comparisons and the
conclusions of a study hold with statistical confidence if the network is trained with multiple
initialisations and the modelling parameters are reported fully an.d in detail. Naturally, in
order to infer the level of confidence the number of initialisations must be known. Hence, to
advance our understanding of ANNs it is imperative that multiple training initialisations

become common practice.

2.3.5 ANN evaluation

The experimental design and evaluation framework of the papers that use ANN is
strongly connected with designing a valid experiment and evaluation for any forecasting
study. In forecasting literature there are several papers that discuss the design and the
selection of the error measures (Collopy, Adya et al. 1994; Armstrong and Fildes 1995; Adya
and Collopy 1998; Tashman 2000; Hyndman and Koehler 2006). What is important to
evaluate in the case of the ANN forecasting literature is how closely these guidelines are

followed and how valid are the comparisons.

One of the basic principles in forecasting evaluation is to use benchmarks to evaluate
how good a model is. The majority of papers (85%) use non-ANN benchmarks to evaluate
their models. Twelve papers do not use benchmarks. From those that use benchmarks only 5
include the random walk model. In forecasting studies it is important to ’include always a
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simple model like the random walk in order to have a desired accuracy minimum. If a model

does not outperform a simple forecasting model such as the random walk, then there is no

reason to use a more complicated model. Therefore, it is good practice to always include a

random walk model or an equally simple model. Another important dimension of the

evaluation is the error measure. Table 2-XI includes the main error measure categories that

can be found in the ANN literature. Note that most categories describe the family of the

error measure, like “absolute error measures” and not the exact error metric, like mean

absolute error, or median absolute error. This is done for economy of space, as there are 192

error measures employed in the literature. Note that under the category “other” measures

several problem or domain specific measures are included, like the annualised returns or the

Sharpe ratio.

Table 2-XI: Error types in ANN literature

Error type Number of Table 2-XII: Number of error measures used
papers

Absolute error measures 27 Number of error Number of

Absolute percentage error 30 measures papers

measures 1 40

AIC, BIC and variants 9

Correlation, R?and similar 12 2 23

Direction errors 8 3 7

Mean error 5 4 8

Relative absolute  error 3 5 5

measures

Squared error measures 53 6 1

Squared percentage error 1 10 1

measures 11 1

Theil-U 3

Other 36

The most common error measures are based on some form of squared error.

Forecasting literature has suggested using alternative measures (Armstrong and Fildes 1995;

Tashman 2000), since this family of errors is scale dependent, making them inappropriate for

comparisons with several time series, and tends to overweight outliers due to the squaring.
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Absolute errors, which are the fourth most common family of errors, do not overemphasise
outliers, but they still do not allow comparing across different time series. The most common
error measure family to compare across different time series in the ANN literature is based
on absolute percentage error metrics. Although these metrics are scale independent, and
usually easy to interpret, they have been criticised for being biased (Tashman 2000;
Hyndman and Koehler 2006). The forecasting literature in order to remedy this has
suggested a set of different error measures that are scale independent and less biased, like
corrections on the common mean absolute percentage error (Makridakis and Hibon 2000),
the absolute scaled errors (Hyndman and Koehler 2006) and the geometric root mean
squared error (Fildes 1992; Syntetos and Boylan 2005). Such advances in error measures are
not adopted in the ANN forecasting literature. On the other hand, there is a limited use of
relativé errors, which to some extent addresses the criticism to the other error measures
(Tashman 2000). One other positive of the evaluation metrics used in the ANN literature is
that a lot of domain specific measures are used, which allow to make use of the dataset
properties in order to get meaningful performance measures. Table 2-XIl summarises the
number of error measures used in the ANN papers. About half of the papers (47%) use a
single error measure, while a smaller portion uses several error measures, identifying that

different accuracy calculations can provide different ranking of the models (Makridakis and

Hibon 2000).

Adya and Collopy (1998) investigated the validity of a number of ANN papers and
suggested that it is important to provide both the in-sample and out-of-sample errors, since
this way it can be assessed whether the ANN model has captured the structure of the time
series and generalises well. In ANN literature only 32% of the papers report the errors in
both subsets. The majority (64%) of the paper do not report the in-sample errors and a small

part of papers (7%) do not provide out-of-sample errors.
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Forecasting literature has stressed the importance of having a large sample of errors
through multiple time series or rolling origin evaluation (Tashman 2000). Both allow having
more errors to construct the error summary statistics and therefore, better confidence in the
results. Table 2-VI and figure 2.5 illustrate the number of time series in the ANN literature
and as discussed before the majority of papers use a single time series and only 12 papers
consider 10 or more time series. Therefore one would expect the authors to use rolling origin
evaluation in order to increase the sample of errors. However, only three papers state clearly
that such an evaluation scheme was used. This limits considerably the confidence of the

results of most ANN papers.

The ANN literature seems to be lagging in following the recommendations of the
literature for designing an adequate experimental design for empirical evaluations (Collopy,
Adya et al. 1994; Armstrong and Fildes 1995; Adya and Collopy 1998; Tashman 2000;
Hyndman and Koehler 2006). This in conjunction with the problems discussed in the previous
section regarding the reliability, robustness and replicability of the results limits the number

of papers from which safe conclusions can be drawn, something that was also identified by

Adya and Collopy (1998).

2.3.6 Fihdings regarding ANN forecasting performance

Adya and Collopy (1998) found that ANNs outperform benchmarks 73% of the time,
if only the papers that meet the criteria for valid evaluation are considered. In the M3
competition, which used 3003 time series, ANNs did not perform well and failed to
outperform simpler models (Makridakis and Hibon 2000). Armstrong (2006) argues that too
much research effort is devoted on ANNs, taking into consideration the modelling difficulties
and their unproven performance. However he points out that there are studies that
demonstrate good performance, referring to Liao and Fildes (2005), and we need to identify
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' the conditions under which ANNs are useful. Callen (1996) advises caution on reading the
positive results of ANN, warning of a possible publication bias, that usually the successful
applications are published. Bunn (1996} argues that even if there is empirical evidence in
favour of ANNs, it will require advances in their explainability and robustness diagnostics

before forecasters use them with confidence.

In this survey if the limitations stressed in the previous sections are not considered,
ANNs outperform benchmarks in 70% of the papers. However, under stricter evaluation only
a handful of papers can be considered and this percentage changes. By restricting the results
to papers that use either reported rolling origin evaluation or more than 10 time series and
follow a valid evaluation scheme only 14 papers can be considered, from which 64% report
that ANNs outperform the benchmarks that were used in these studies. Callen et al. (1996)
forecast quarterly firm earnings and find ANNs unable to outperform linear models. Cao et
al. (2005) find that bofh the univariate and the multivariate ANNs perform better than linear
models in forecasting daily stock returns from the Shanghai stock market. Heravi et al. (2004)
try to model the European industrial production and find that linear models perform better
than ANN, but the latter can pick up directional changes more accurate. Hill et al. (1996) use
data from the M1 competition and find that ANN perform better for all time series apart
from the annual data, for which the ANN we‘re not significantly different, indicating an effect
of the time series frequency on the ANN performance. Kotsialos et al. (2005) find ANNs to
perform marginally better, but due to their complexity they advise the use of exponential
smoothing models instead. Liao and Fildes (2005) use a large telecommunication time series
dataset and find that overall robust trend model is better, but ANNs have very similar
accuracy outperforming all other benchmarks. Motiwalla and Wahab (2000) find that ANN
have better investment performance than linear regression models and a passive buy and

hold strategy. Nelson et al. (1999) revisit the M1 dataset and provide evidence that
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deseasonalising the time series helps to improve the forecasting performance of ANNs,
validating the results of Hill et al. (1996). Terasvirta et al. (2005) find that ANN models are
better than the benchmarks at long forecasting horizons, but overall are worse, in
forecasting monthly macroeconomic variables. Thomassey et al. (2004) find that ANNs are
better at predicting weekly textile sales than linear benchmarks. Zhang and Qi (2005)
evaluate the effect of detrending and deseasonlising time series for forecasting with ANN
and find that this step helps and that ANN are able to outperform ARIMA models. Zhang et
al. (2004) find that ANN perform better than univariate and multivariate linear models at
predicting the quarterly earnings per share. Jursa and Rohrig (2008) find that ANNs are
better than a nearest neighbourhood search forecasting model at predicting short term wind
farm production. Moreno and Olmeda (2007) do not find any clear advantage of ANNs
against AR and ARX models in forecasting Morgan Stanley capital international indices. Note
that the above papers do not consider the problem of multiple initialisations that was

discussed before, with the exception of Liao and Fildes (2005).

Overall, ANNs show evidence of good performance, repeating the findings of
previous reviews (Adya and Collopy 1998; Zhang, Patuwo et al. 1998) that reported ANNs
being able to surpass in performance established benchmarks. However, an important
finding is that the majority of ANN papers cannot be used in this meta-evaluation of ANNs
due to several limitations in their experimental design. Addressing these limitations and

raising the degree of replicability of the ANN studies should be important targets for ANN

research.

2.4 Conclusions

This study aims to provide a critical overview of the advances in forecasting with
ANNs. The contribution of the research is analysed in seven main axes and the current state-
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of-the-art in forecasting with ANN models is presented, along with the pressing research
questions. More than a decade ago Zhang et al. (1998) set a number of future research
questions for the field of ANNs in forecasting. This study tries to see how these have been
addressed since then. A key question set then was how do ANNs model time series that
allows them to outperform conventional methods. Uhfortunately our understanding of the
inner workings of ANNs is still incomplete and limited research effort has been put towards
that target (Setiono and Thong 2004). Another key question that was set was how to
systematically build an ANN for a given problem. On this front there have been substantial
advances. We know now that the input vector is the key determinant of ANN accuracy,
followed by the specification of the hidden layer. There have been several papers that try to
address these issues, yet no consensus on what is the best way has been reached. Other
modelling decisions, like the choice of the transfer functions, have been less researched.
There have been several papers that try to systematically build ANN models with relatively
few arbitrary modelling choices; however there is still no fully systematic or automated
modelling methodology. Furthermore, the majority of ANN papers do not address these
modelling issues in a methodical way, resolving to trial and error approaches that do not
advance our understanding of ANNs. Another question that was set was related to
identifying the best training algorithm or method for time series forecasting. Although the
standard gradient descent backpropagation is still the most widely applied training
algorithm, different alternatives have been developed. There is some evidence that these
algorithms perform better, but rigorous comparative evaluations that adhere to the criteria
set by the established forecasting research do not exist. The last question posed was related
to data pre-processing and sampling. The literature agrees that ANNs perform better when
large samples are available, but the best way to pre-process the input data, if needed at all,

is still debatable. The debate is mainly focused on the issue of how to best model trend and
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seasonality with ANNs. There is evidence that removing those as a pre-processing step,
through first and seasonal differences, is beneficial to the accuracy of ANNs. However, there
is also evidence that ANNs can forecast these time series at least as good as benchmarks
without the nged to pre-process the inputs. Other pre-processing methodologies, like using
the logarithm of the time series to aid the training of the models or the Box-Cox

transformation, have been proposed, but they have not been widely used.
This study identifies a set of problems in the ANN literature, which are outlined here.

1. Key modelling issues are overlooked. Very few papers were found to address the
issue of initialising multiple times the networks weights during initialisation. Multiple
initialisations are necessary in order to evaluate the robustness and the reliability of
the ANN model, due to the stochastic nature of the training and the problem of local
minima. In addition to that, multiple initialisations provide a better search for
parameters. Furthermore, several parameters of the ANN models are set either
arbitrarily or following a trial and error approach that does not advance out

knowledge of ANNs and makes questionable the implementation validity of several

papers.

2. A principal problem is that several modelling decisions are not properly documented
in the papers. This harms the reliability of the results, limits the contribution to our
understanding of ANNs and makes the replication of experiments impossible.

Furthermore, it hinders further meta-analysis of the results.

3. The ANN literature is lagging behind in implementing the suggestions of the
forecasting literature on what constitutes a valid experimental design for empirical
evaluation. Selecting a large number of time series, using rolling origin evaluation

and selecting appropriate benchmarks and error measures is important in order to
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be able to provide valid and reliable conclusions. These decisions, like the ANN
modelling decisions, must be clearly documented, to raise transparency in the
literature and allow meta-analysis of the results in order to advance our
understanding of ANNs. Once the experimental design allows producing detailed
error data it is then possible to perform valid statistical analysis of the results, which
will result in more reliable findings and evaluation of the conditions under which this

results are valid.

Several open research questions are identified. There is evidence in the literature
that the frequency of the time series is related to the performance of ANNs (Hill, O'Connor et
al. 1996; Markham and Rakes 1998; Hippert, Bunn et al. 2005). Furthermore, it has been long
established that time series of different frequencies require different forecasting
methodologies and exploration tools (Granger 1998; Taylor, de Menezes et al. 2006).
Therefore, we need to explore whether ANNs are able to forecast both low and high
frequency data, and what the required changes are in the modelling methodology, if any.
This becomes espécially important as there are more high frequency datasets available and
the constant increase of computational resources allows us to use them (Engle 2000).
Another key issue is the reconciliation of the literature that is addressing the issue of
specifying the input variables and the hidden layers for ANNs. Several different
methodologies have been proposed, most of which outperform all benchmarks in the limited
number of studies that they have been applied. However, there is no direct comparison
between them. It is necessary to rigorously evaluate the competing ANN modelling
methodologies. This will reveal best practices and also allow us to better understand why
some methods work better than others. Keeping in mind the current findings of the
literature that the most important determinant of ANN performance is the input vector, the

specification of the ANNs’ input variables should be addressed first, before other ANN
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modelling variables such as the hidden layers and nodes. Furthermore, one issue related to
the time series frequency is whether these methodologies are equally applicable to different
frequencies or not, and which are better suited for each problem. The issue of selecting the
transfer functions has not been adequately researched either, leading most researchers to
arbitrarily choose between the most common types. Their impact in forecasting is not well
understood and should be explored further. The scaling of the inputs is also inadequately
researched. In the literature there is no large scale empirical evaluation or a theoretical
proof that answers how this problem should be tackled. There are several alternatives on
how to scale the inputs of an ANN and also there is the option of restricting the bounds of
the scaling more than what is required by the transfer functions. The effects of these choices
are unclear, as is the magnitude of their impact in ANNs’ forecasting accuracy. Finally, it is
important to invest more research in the meta-analysis of the results in the literature in
order to understand better how ANNs work and explain the evidence of superior
performance over established benchmarks. This is a key step for making the use of ANNs

more widespread and accepted.

Page 62



Table 2-XIil: List of journal papers retrieved for the survey

Computers and Operations
Research

Desilets et al. (1992)

Markham and Rakes (1998)

Condon et al. (1999)

Leung et al. (2000)

Lind and Sulek (2000)

Motiwalla and Wahab (2000)

Zhang (2001)

Zhang et al. (2001)

Curry et al. (2002)

Chen et al. (2003)

Chen and Leung (2004)

Marti and El-Fallahi (2004)

Cao et al. (2005)

Gupta and Singh (2005)

Liao and Fildes (2005)

Torres et al. (2005)

Yu et al. (2008)

Setzler et al. (2009)
Decision Sciences

Vroomen et al. (2004)

El-Fallahi (2005)

Zhang and Qi (2005)
Bodyanskiy and Popov (2006)
Casqueiro and Rodrigues (2006)
Curry and Morgan (2006)
Freitas and Rodrigues (2006)
Lin and Chen (2006)

Curry (2007)

Landajo et al. (2007)

Moreno and Olmeda (2007)
Nikolopoulos et al. (2007)
Andreou et al. (2008)
Carbonneau et al. (2008)
Hahn et al. (2009)

International Journal of Forecasting

Amaral et al. (2008)

Cancelo et al. (2008)

Jursa and Rohrig (2008)

Soares and Medeiros (2008)
Journal of Forecasting

Jain and Nag (1995)

Swanson and White (1997)

Desai and Bharati (1998)

Hu et al. (1999)

Jiang et al. (2000)

Papatla and Zahedi (2002)

Sexton et al. (2003)

Zhang et al. (2004)

European Journal of

Operational Research

Hruschka (1993)

Bunn (1996)

Wang (1996)

Wittkemper and Steiner (1996)
Wood and Dasgupta (1996)
Teixeira and Rodrigues (1997)
Badiru and Sieger (1998)
Sexton et al. (1998)

Sexton et al. (1999)

Prybutok et al. (2000)

Dia (2001)

Kuo (2001)

Qi and Zhang (2001)

Sahin et al. (2004)

Setiono and Thong (2004)
Thomassey et al. (2004)

Gorr et al. (1994)

Hill et al. (1994)

Callen et al. (1996)

Church and Curran (1996)
Dougherty and Cobbett (1997)
Kirby et al. (1997)

Kim and Chun (1998)
Zhang et al. (1998)

Balkin and Ord (2000)
Darbellay and Slama (2000)
Leung et al. (2000)
Thomas (2000)

Gencay and Selcuk (2001)

Qi (2001)

Tkacz (2001)

Corcoran et al. (2003)
Olson and Mossman (2003)
Heravi et al. (2004)

Conejo et al. (2005)

Ghiassi et al. (2005)

Hippert et al. (2005)
Novales (2005)

Terasvirta et al. (2005)
Terasvirta et al. (2005)
Armstrong (2006)

de Menezes and Nikolaev (2006)
Taylor et al. (2006)
Preminger and Frank (2007)
da Silva et al. (2008)

Lachtermacher and Fuller (1995)
Connor (1996)

Donaldson and Kamstra (1996)
Haefke and Helmenstein (1996)
Adya and Collopy (1998)
Anders et al. (1998)

Cottrell et al. (1998)

Li et al. (1999)

Nelson et al. (1999)

Qi and Maddala (1999)
Refenes and Zapranis (1999)
Venkatachalam and Sohl (1999)
Bentz and Merunka (2000)

Lam and Lam (2000)

Moshiri and Cameron (2000)
Schittenkopf et al. (2000)
Taylor (2000)

Swanson and Zeng (2001)
Dunis and Huang (2002)
Kaashoek and Dijk (2002)

Nag and Mitra (2002)

Amilon (2003)

Kanas (2003)

Dahl and Hylleberg (2004)

Lindemann et al. (2004)
Moshiri and Brown (2004)
Chen and Leung (2005)
Kajitani et al. (2005)
Kotsialos et al. {2005)
Pantelidaki (2005)
Gradojevic and Yang (2006)
Medeiros et al. (2006)
Hruschka (2007)
Bekiros and Georgoutsos (2008)
Management Science

Hill et al. (1996)
Kim et al. (2005)
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3 An evaluation of input variable
selection methodologies for
forecasting low frequency time
series with artificial neural
networks

Abstract

Prior research in time series forecasting with neural networks (ANNs) suggests that
the choice of which time-lagged input variabies to include in the network has the highest
impact on forecasting accuracy. However the current state of the art ANN research has failed
to propose a universally accepted methodology to specify the input vector. Several
competing methodologies have appeared in the literature, motivated by autocorrelation
analysis, hypothesis testing, regression analysis and simple or complicated heuristics.
Although many of these methodologies demonstrate promising results, up to date there has
been no comparative evaluation that adheres to established standards of systematic and
valid empirical evaluation. This research assesses a wide range of input vector selection
methodologies that have appeared in literature and proposes some new variations, revealing
the strengths and weaknesses of each one and ultimately providing suggestions how to
model the input vector for autoregressive ANNs. These are tested using a synthetic dataset
that simulates monthly retail data and a subset of the M1 competition time series. The
results are compared against the random walk and exponential smoothing family models
that are established benchmarks. This study concludes the that identification of the input

vector based on regression variants performs the best.
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Preface

Preliminary results of this analysis have been presented in the International
Symposium on Forecasting in 2007 (ISF 2007), under the support of the International
Institute of Forecasters travel award grant scheme. Further results were presented in the

International Symposium on Forecasting in 2008 (ISF 2008).

3.1 Introduction

Artificial neural networks (ANNs) have found increasing consideration in forecasting
research and practice, leading to successful applications in time series prediction and
explanatory forecasting (Zhang, Patuwo et al. 1998). However, despite their theoretical
capabilities for non-parametric, data driven approximation of any linear or nonlinear
function directly from the dataset (Hornik 1991), ANNs have not been able to confirm their
potential in forecasting competitions against established statistical methods, such as ARIMA
or Exponential Smoothing (Makridakis and Hibon 2000; Armstrong 2006). As ANNs offer
many degrees of freedom in the modelling process, from the selection of activation
functions, adequate network topologies of input, hidden and output nodes, to learning
algorithms and parameters and data pre-processing in interaction with the data, their valid
and reliable use is often considered as much an art as a science. Previous research indicates
that the parsimonious identification of input variables to forecast an unknown data
generating process poses one of the key problems in model specification of ANNs (Hill,
O'Connor et al. 1996). While literature provides some guidance in selecting the number of
hidden layers of an ANN using wrapper approaches (Hornik, Stinchcombe et al. 1989; Hornik
1991), selecting the correct lagged realisations of the time series, and/or multiple

explanatory variables, remains a challenge (Curry and Morgan 2006).
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The issue of input variable and lag selection becomes particularly important, as the
input vector needs to capture all the characteristics of complex time series, including the
components of deterministic or stochastic trends, cycles and seasonality, interacting in a
linear or nonlinear model with pulses, level shifts, structural breaks and different
distributions of noise. An extensive review of ANNs (Zhang, Patuwo et al. 1998) concluded
that the selection of input variables is the most important determinant of ANNs’ forecasting
accuracy. In two subsequent papers (Zhang 2001; Zhang, Patuwo et al. 2001), where the
ability of MLP to model linear and nonlinear time series was investigated, the authors
concluded that the choice of the correct input variables is the most important step in the
modelling process and has a significant effect on accuracy. Darbellay and Slama (2000) also
pointed out the importance of the input variable selection with an empirical investigation on
electricity load forecasting. They suggested that the input vector is one of the driving forces
in modelling an ANN and furthermore that ANNs should be employed only if there are

nonlinearities in the inputs.

To the knowledge of the author, no paper argues against the importance of the input
vector for ANNs; however it is debatable which variable selection methodology is better.
Although it is apparent that different input vectors can result in different conclusions
regarding the accuracy and applicability of neural networks, there seems to be no rigorous
empirical evaluation of the several competing methodologies proposed in the literature. This
modelling uncertainty, which can lead many times to unreliable forecasts, is a strong point of
criticism against ANNs (Armstrong 2006) and makes their application problematic. This
problem has been identified in the literature several times, through investigations of
previous reviews (Zhang, Patuwo et al. 1998), theoretical works (Curry 2007) and empirical

applications (Hippert, Bunn et al. 2005).
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The aim of this research is to address this uncertainty; how to identify the input
vector of ANNs. In this study the most frequently used input variable selection
methodologies found in the literature are compared with a rigorous evaluation experiment.
It is investigated if there are any statistically significant differences among the competing
methodologies and a ranking of groups that behave similarly is provided. In section 3.2 the
theoretical background is presented, where all the competing methodologies are discussed.
The experimental design is presented in section 3.3 and the results in the next section. In
section 3.4 the findings of this study are summarised, while the limitations of this study and

implications for future research are outlined.

3.2 Methods

3.2.1 Artificial Neural Networks

For this analysis standard multilayer perceptrons (MLP) are used, which is the most
commonly employed form of ANNs (Zhang, Patuwo et al. 1998). One advantage of neural
networks is that they can flexibly model nonlinear relationships without any prior
assumptions about the underlying data generation process (Qi and Zhang 2001). In
univariate forecasting MLPs are used as a regression model, capable of using as inputs a set
of lagged observations of the time series to predict its next value. Data are presented to the
network as a sliding window over the time series history. The network tries to learn the
underlying data generation process during training so that forecasts are made when new
input values are provided (Lachtermacher and Fuller 1995). In this analysis single hidden
layer neural networks are used, based on the proof of universal approximation (Hornik

1991). The general function of these networks is given in (3.1).

f(X’w)=ﬁ0+ZlBhg(701+Z}/h/x1J' (31)
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X = [Xo, X4, .., Xn] is the vector of the lagged observations (inp‘uts) of the time series and w =
(B, v) are the network weights with B = [B,, B,..., Bx] and v = [y4, Va..., Yni]- The biases for each
node in the hidden layer are y, and in the single output node B,. | and H are the number of
input and hidden nodes in the network and g(-) is a non-linear transfer function (Anders,
Korn et al. 1998). For computational reasons this can be approximated as in (3.2), which is

frequently used for ANNs (Vogl, Mangis et al. 1988) and is also employed here.

2

How to select the input vector of a MLP and the number of hidden nodes in the
hidden layer remains a debatable question (Zhang, Patuwo et al. 1998). Various
methodologies for selecting the input vector are described in the next section. To select the
correct number of hidden nodes the most widely used approach is to find the best number
through simulations (Zhang, Patuwo et al. 1998). MLPs are trained using different number of
hidden nodes and the most accurate MLP indicates the correct number. This is applied in this
analysis through a grid search. The output layer usually has a single node, providing a single
one step ahead forecast. This can be easily generalised to provide multiple step ahead
forecasts, simultaneously, with the addition of further output nodes (Hippert, Bunn et al.

2005), but this is not explored in this analysis since it is not required to produce the

forecasts.

An ANN needs to be trained to find the weights w that provide accurate forecasts.
The training algorithm used here is the Levenberg-Marquardt algorithm, which avoids
computing the Hessian matrix required in the typical backpropagation algorithm, resulting in
significantly faster training (Hagan, Demuth et al. 1996). This comes at the cost that the

training cost function has to be in some form of sum of squares (Hagan and Menhaj 1994)
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and for this reason the cost function used to train the MLP in this analysis is the mean
squared error (MSE) of the one step ahead forecast. ANNs are prone to overfitting (Zhang,
Patuwo et al. 2001), which can reduce their generalisation and harm their forecasting
accuracy. A standard approach, which is employed in this analysis, is to use an early stopping
criterion. Lastly, because the training of the ANNs is a complex nonlinear optimisation
problem, training often stops at local minima. To ensure a wide search of the training error
surface multiple random weight initialisations of the ANN weights should be used (Hu, Zhang
et al. 1999). Different initialisations result in different trained networks, due to the
stochasticity of the training algorithms. Therefore, a large number of initialisations are

required in order to find a good solution.

3.2.2 Input vector selection methodologies

Several competing methodologies to select the input vector have been suggested in
the literature. A survey of eight forecasting and management science journals® was
performed to identify the proposed alternatives for forecasting applications. This survey
revealed the most frequently used methodologies, which are presented and used in this
study. A noticeable lack of a rigorous evaluation of these methodologies was identified,
which this study aims to answer. These methodologies are organised in three main
categories, simple heuristics, those based on autocorrelation analysis and those based on
regression analysis. Before going in the details of each methodology it is noteworthy to

mention that more than 70% (out of 87 papers investigated) do not use a consistent input

* These are, in alphabetical order, Computers and Operations Research, Decision Sciences, European
Journal of Operational Research, International Journal of Forecasting, Journal of Forecasting,
Management Science, Naval Research Logistics and Operations Research. These journals have high
ratings according to both the Vienna list ranking and the IS| Web of Science impact factor.
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vector selection methodology, instead adopting trial and error approaches, which restrict the
generalisation and the validity of the results, a problem that was also identified in a previous

study by Adya and Collopy (1998).

3.2.2.1 Simple Heuristics

After the trial and error approaches the most commonly applied methodology is to
model the input vector of ANNs using simple heuristics. An example is given by Balkin and
Ord (2000). In order to find the relevant maximum lag length the seasonality is taken into
account with the addition of a few extra lags, resulting in input vectors that can contain all
lags up until slightly more than the seasonal length. The exact number of extra lags depends
on the seasonal length. The need to have input vectors that will contain information at least
as old as the seasonal lag is also supported by Curry (2007). These heuristics are used in this
analysis as benchmarks being relatively easy to model. The names of the methodologies as

presented in the result tables are given in brackets.

e Naive vector (ANN_naive): Use only the previous (t-1) lag. This is the ANN analogue
of the naive model.

e Full season (ANN_fs): This heuristic looks at the frequency of the data and selects all
the lags up to the seasonal length, i.e. for monthly data the first twelve lags are
selected (t-1 to t-12). Note that the data frequency (quarterly, monthly, etc) defines
the length and not the presence of seasonality, as in Balkin and Ord (2000).

e Full season+1 (ANN_fs+1): This is nearly identical to the previous heuristic with the
difference that one additional lag is included, i.e. t-1 to t-13 for monthly data.

e  Multiple full seasons (ANN_mfs): This heuristic makes use of all the lags up until a set
multiple of the seasonal length, which is set similarly to the previous methods. This

heuristic results in rather long and overspecified input vectors, as it is discussed in
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the presentation of the results. Hippert, Bunn and Souza (2005) discuss the
application of overspecified ANNs in electricity load forecasting and argue that such

input vectors can perform well. For this analysis three full seasons are used.

3.2.2.2 Autocorrelation analysis based methodologies

Another widely used category of methodologies for identifying the input vector for
ANN models are based on autocorrelation and partial autocorrelation analysis.
Lachtermacher and Fuller (1995) suggest using an analogous to Box-Jenkins ARIMA modelling
(Box, Jenkins et al. 1994) to identify an adequate input vector for MLP models. They use both
the autocorrelation (ACF) and the partial autocorrelation (PACF) functions to identify
important lags that should be included to the input vector. They also suggest that optimal
differencing should be applied to the time series, based on the need to remove trend and
seasonality to make stationary time series, as used in the original ARIMA modelling
methodology. This methodology makes use of linear correlations, as identified by the ACF
and PACF, which may be inadequate to capture the nonlinearities that can be modelled by
ANN in contrast to ARIMA models. Although MLPs are autoregressive in nature thus making
use only of PACF information, the authors argue that ACF should be used as well. The
argument is based on the inversion of the moving average terms to infinite autoregressive

terms suggesting that including the moving average terms may capture more information.

Darbellay and Slama (2000) argue that the input vector should capture any existing
nonlinearities in the time series. Therefore, PACF is not sufficient to model the input vector
of MLP. To overcome this they use a version of a nonlinear autocorrelation function, which is

essentially a scaled Mutual Information (MI) criterion. The mutual information criterion

between two random variables Y and X is defined as
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(X.7) jjp(x,y)ln—u(x)v(y)dxdy. (3.3)

In (3.3) u(x) and v(y) are the marginal density functions of X and Y and p(x,y) is their joint
probability density function. The Ml can take values from O to oo, but can be scaled between

0 and 1, so that it becomes more useful for identifying inputs,

P(X,Y) =120 (3.4)

which is an invertible transformation. The nonlinear autocorrelation is defined as p(X,Y) and
if it is equal to O it implies that the two variables X and Y are not correlated, whereas the
closer it becomes to 1 the stronger is the measured correlation. This methodology uses this
transformed MI criterion to capture potential nonlinearities in the time series. Some caution
may be neccessary in using this methodology, since the way that the significant nonlinear
lags are identified is based on its linear counterpart and that may not be fully applicable, if at

all.

Moshiri and Brown (2004} prefer to use a simpler methodology. They make use only
of the autoregressive information of a time series; therefore, only the PACF is used to chose
significant lags that should be included in the input vector. Kajitani et al. {(2005) use a simple
methodology as well. They make use of the autocorrelation information to find an adequate
input vector for MLP. It is interesting to note that although MLP are autoregressive model,

implying the need to use PACF information, the authors prefer to use ACF instead. This

decision is not discussed in their paper.

McCullough (1998) observes that although there are different alternatives for
calculating the ACF for a time series X for the K™ lag, for large sample sizes the differences

are minor. In this study ACF is calculated as
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Cov(X (1), X(t-k))

~ Y ,X —-k) = )
PX(0), X(t—k)) \/Var(X(l‘))\/Va”(X(t‘k))

(3.5)

However, as McCullough discusses, this is not true for the PACF. He evaluates three
alternative methods to estimate the PACF for ARMA models, and concludes that they
identify different significant lags which obviously affects accuracy. This is overlooked in the
ANN literature. These three methods are evaluated in this analysis. The first method to
estimate the PACF is the well known Yule-Walker estimation (YWE). Under this approach the
PACF is derived from the ACF. The partial autocorrelation , for the k™ lag is calculated by

using the recursive calculation in (3.6) and (3.7),

sty = T ™ Tt ot ok sl + =1,k (3.6)

frm,jpkﬂ—j
! (3.7)
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that essentially minimises the forward error in the least squares sense. The next approach is
the Least Squares (LS} method. The partial autocorrelation m, between X, and X is the OLS
regression coefficient of X, holding X..,... X« fixed. McCullough mentions that this method
is more robust than YWE, but it can produce PACF greater than unity. Also note that this
method is calculated directly from the time series, without needing prior calculation of the
ACF. The third option is the Burg algorithm, which minimises both the forward and backward
error, providing a more accurate estimation of the autoregressive structure of the time
series. To express this algorithm it is .necessary to define some operators first. For a given
vector V = [Vy, Vy, ..., Va1, Val, With n elements, a circular shift operator LV and a subvector

operator M,V are defined in (3.8) and (3.9) respectively,
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LV, =[v,,v;,Vs5e ¥, ] (3.8)

M, V=,V vd. (3.9)

Define two vectors of length n = m + p, where €7(0) = [xy, X,..., Xa, O,..., 0] and €®(0) = L €"(0) =
[0, X3, X2,..., Xn, O,..., 0], with the p and the p-1 rightmost elements being zero respectively.

The partial autocorrelation m, for k = 1,..., p can be computed recursively using (3.10)

2<M
| M

k+l,neF(k_1)aMk eB(k_1)>
" k=1)|* +[| M, " k=D’

+1,n

7= (3.10)

k+l,n

where <Vy,V,> is the inner product of two vectors and ||V||? is the squared norm of a

vector. To find ef(k) and e®(k) equations (3.11) and (3.12) are used.
e/:(k)ze"(k—l)—nkeB(k—l), (3.11)

e’ (ky=Lle’ (k-1 —-r " (k-1)]. (3.12)

More details can be found in McCullough (1998), who concludes that the Burg estimation is

more stable and produced more accurate ARMA models compared to YWE and LS.

One other aspect of ACF that has not been considered in the management science
and forecasting ANN literature is the apparent connection between the autocorrelation
structure of a time series and the spectral density of the time series. These are
mathematically equivalent, but reveal information about the time series differently, as is

discussed in detail by Box et. al (1994). For this reason spectral analysis (SA) will be used as

an alternative to ACF in this analysis.

The autocorrelation analysis based methods that are employed in this analysis are

listed here for convenience. For all the methods a maximum of three seasons is used to

Page 74



identify the significant lags which are then used as the input vector of the ANN. Three
seasons are used to provide comparable results with the simple heuristics and the regression

based approaches that are discussed next.

e PACF Yule-Walker (ANN_ywe) estimation.

e PACF Least Squares (ANN_Is) estimation.

e PACF Burg (ANN_burg) estimation.

e Spectral Analysis (ANN_sa). The lags that are included in the input vector are derived
from the first six periodicities with the largest amplitude found by performing a
spectral analysis of the time series.

e ACF (ANN_acf) as defined in (5).

e Nonlinear ACF (ANN_nlacf) estimation.

Combinations of the above methods are also evaluated. To construct the combined vector all
the lags that the two combined methods would indicate as significant are included. The
combinations evaluated are the following: ACF + YWE (ANN_acf+ywe), ACF + LS
(ANN_acf+ls), ACF + Burg (ANN_acf+burg), NLACF + YWE (ANN_nlacf+ywe), NLACF + LS
(ANN_nlacf+ls), NLACF + Burg (ANN_nlacf+burg), SA + YWE (ANN_satywe), SA + LS
(ANN_sa+ls) and SA + Burg (ANN_sa+burg). This way the methods that are found in the
literature which use only PACF or ACF or both are tested. Furthermore, the methods are
extended to evaluate different estimations of PACF, combine the NLACF, which is essentially

the Mutual Information, with PACF and lastly evaluate SA as a method to produce the input

vector for ANN.

3.2.2.3 Regression analysis based methodologies
Regression based methodologies are also quite widely used in selecting the input

vector for ANNs. Church and Curram (1996) compare four traditional econometric models
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with a MLP approach to model the consumers expenditure in the late 1980s. MLP are found
to perform at least as well as other models. The input vector is modelled by firstly identifying
the necessary lags through an OLS regression model based on econometric theory. Standard
linear regression methodology is used to find the significant lags and validate the model. This
methodology méy not be optimal for MLP, since it provides only inputs identified through
linear tests, therefore restricting potential nonlinearities. Swanson and White (1997) tried to
forecast nine macroeconomic variables. To model the MLP’s input vector they use a forward
stepwise linear regression. Regressors are added one at a time until the Schwarz Information
Criterion (SIC) cannot be further improved. Again the MLP may be restricted by providing
inputs identified only through linear diagnostics. Furthermore, Qi and Zhang (2001) argue
that SIC and similar criteria are improper for modelling MLP. Qi and Maddala (1999) explore
if the application of MLP models can improve the results obtained by linear models in
predicting stock returns. They show that MLP can be more accurate than linear models, and
both outperform the random walk. Linear regression is employed to identify the input vector
for the MLP models. Balkin and Ord (2000) discuss an approach to automatic input lag
selection for univariate forecasting using MLP. Their method is a hybrid between a simple
heuristic for specifying the maximum lag, which we already discussed, and forward stepwise
regression. Different regression models are fitted to the data and from all the models which
satisfy an F-statistic criterion the one with the greatest number of lags is selected. It is
interesting to note that under this methodology the least parsimonious input vector is
preferred. Prybutok and Mitchell (2000) compare the accuracy of MLP with regression and
ARIMA models for predicting daily maximum ozone concentration in Houston. MLP are
found superior to the standard statistical methods. To model the input vector of the MLPs

stepwise regression is used. All the methodologies mentioned above make use of some form
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of stepwise or forward linear regression, which may be limiting to model ANNs, since linear

regression is unable to capture nonlinearities in the data.

Dahl and Hylleberg (2004) identify this problem and make use of a nonlinear
regression model that should improve the specification of the MLP input vector. The
nonlinear regression model that they use is Hamilton’s random field regression (Hamilton
2001) in a forward regression setup. The best regression model is identified through AIC or
BIC minimisation and the linear and nonlinear lags are used as the input vector for the MLP.
This methodology is very computationally intensive and is based on AIC, BIC, which literature
suggests to avoid for ANN modelling, since there seems to be no connection between the
information criteria and the performance of ANNs (Qi and Zhang 2001). However, it is the
only study that we found that makes use of some form of nonlinear regression to model the
input vector for MLP. This method should overcome the limitations of the models that are
identified through linear regression and therefore it is important to evaluate it against the
linear alternative. Since this is not a widely known method we will provide a brief description
of Hamilton’s random field regression. Under this regression model, instead of viewing only
the endogenous variable as a realisation of a stochastic process, the functional form of the
conditional mean is the outcome of a random process (Dahl and Hylleberg 2004). The

functional form of the conditional mean p(x) for k explanatory variables is given in (3.13).
H(x) =y +ax+Am(g e x), (3.13)

where a, and A are scalar and a, g are (k x 1) vectors of coefficients. The realisation of the
random field is m(-) and * is defined here as element by element multiplication. A A=0 would
imply that the model is a linear regression and an i"™ element of g = 0 would mean that the

conditional mean is linearly depended to x;. The nonlinear regression is
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Y, = px,) +¢g, (3.14)

where x; and errors g are independent of the random field realisation m(-) and the errors are
independent of x, with a zero mean. A more detailed description and the mathematical
proofs can be found in Hamilton (2001). The first implementation of this model to identify
the input vector of neural networks is done in (Dah! and Hylleberg 2004) who employ
parsimony criteria like BIC to find the optimum number of lagged realisation of y, for

univariate forecasting.

In addition to these input variable selection methodologies the backward linear
regression is also evaluated. Its application is similar to the forward or stepwise regression.
For convenience of the competing regression models are listed here. Again, the names of the

methodologies as presented in the result tables are given in brackets.

e Linear forward regression models. Lagged variables are added one at a time based
on their statistical significance. Relevant lags are checked for significance up to one
season (forw_fs) in the past, one season plus one additional lag (forw_fs+1} and
three seasons (forw_mfs), resulting in three different results. The inclusion of
different lag search spaces is done under the suggestions of Baklin and Ord (2000)
and Curry (2007). Also it helps in having a balanced experiment with the simple
heuristic models, as discussed previously. The lags that are found significant are then
used as inputs for the ANN.

e Linear backward regression models. Initially all lagged variables - up to one full
season (ANN_back_fs), one full season plus one extra lag (ANN_back_fs+1) and three
full seasons (ANN_back_mfs) - are included in the model and those that are found
statistically insignificant are dropped out of the model one at a time. The remaining

identified lags from the linear regression model are used as inputs for the ANN. The
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use of backward linear regression to identify the input vector for ANN is absent in
the literature.

Linear stepwise regression models. Lagged variables are added one at a time, but
can also be removed if they become insignificant. The models are fitted for the three
time spans - one full season (ANN_auto_fs), one full season and one additional lag
(ANN_auto_fs+1) and three full seasons (ANN_auto_mfs) - as in the previous
regression models and the identified lags are used as inputs for the ANN.

Random field regression optimised by BIC (ANN_nireg). All possible models including
up to three seasons in the past are identified and the one with the best BIC is
selected. Following Dalh's and Hylleberg’s (2004) suggestion first the linear part of
the regression is identified and then the nonlinear. Both the linear and nonlinear lags

that optimise the BIC are used as inputs for the ANN.

Table 3-1: ANN paper and proposed input variable selection methodology

Author Year Time Series Methodology
. M3 competition quarterly Forward Regression with heuristic to

Balkin & Ord 2000 data restrict search space
Church & Curram 1996  Quarterly macroeconomic  Regression modelling

i i S . .
Dahl & Hylleberg 2004 US industrial growth, U Random field regression

unemployment

Darbellay & Slama 2000  Hourly electricity load Nonlinear ACF (Mutual Information)

Kajitani, Hipel & McLeod 2005  (Annual) Lynx time series ACF

Annual river flow data,

Lachtermacher & Fuller 1996 annual electricity ACF & PACF
consumption
Moshiri & Brown 2004  Quarterly unemployment PACF
Prybutok & Mitchell 2000 Daily ozone concentration  Stepwise regression
Qi & Maddala 1999  Stock index Regression modelling
Swanson & White 1997  Quarterly macroeconomic  Forward Regression with SIC

This brings the total number of the models evaluated to 29, including 4 heuristics, 10

regression based methodologies and 15 autocorrelation based methodologies, making this

analysis

the first to evaluate a wide selection of input vector specification methodologies for

Page 79



ANN. The ANNs papers that this analysis is based on to collect the 29 competing

methodologies are summarised in table 3-1 and all make use of MLP models.

3.2.3 Data pre-processing

Inputs for ANN must be scaled for the models to be able to calculate forecasts. An
overview of the common scaling schemes is given by Zhang et al. (1998). For this analysis
linear scaling is used. To scale an observation x; from a time series X to x,; between [a,b]

equation (3.15) is used,

— (b—a)(xi —'xmin) +a

(3.15)
(xmax - xmin

si

This scaling is necessary to avoid saturating the transfer function of the ANN (Wood and

Dasgupta 1996).

Furthermore, there are papers that suggest additional pre-processing, which is
related to removing trend and seasonality from the time series. According to the universal
approximation capabilities of MLP with one hidden layer (Hornik, Stinchcombe et al. 1989)
these models should be able to model any data generating process. However there are
objections against this, based on the practical limitations of the MLP applications and the
sample size availability (Levelt 1990). This has led to a debate whether the time series should
be pre-processed to remove trend and season or not. Hill et al. (1996) show that ANN using
deseasonalised time series from the M1 competition outperformed standard statistical
models, suggesting improvements in performance. Nelson et al. (1999) verifies that
deseasonalising the M1 time series provided the ANN with the performance edge. They
repeat the experiment without deseasonalising the time series and prove that it is a
necessary step. They argue that this way the ANN can focus on learning the trend and the

cyclical components. To learn seasonality on top would require larger networks, resulting in
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a larger input vector, which may lead to over-fitting. Zhang and Qi (2005) reach the same
conclusion. They argue that deseasonalised time series do not contain long dynamic
autocorrelation structures that would make the choice of the input vector more difficult,
thus leading to smaller more parsimonious models. Zhang and Kline (2007) explore the
ability of ANNs to forecast quarterly time series. They find that deseasonalising helps,
however this time they also evaluated a large variety of models, including models with
deterministic dummy variables. They argue that such additional variables do not help
because they do not capture the dynamic and complex seasonal structures.‘ On the other
hand, Curry (2007) builds on that argument and suggests that results favouring
deseasonalising can hide an input misspecification error. It is also argued that, in theory, the
ill selection of input vector can make the model unable to forecast seasonality, in agreement
with Crone and Dhawan (2007) who demonstrate that MLPs are able to model robustly

monthly seasonal patterns using only an adequate number lags of the time series.

Lachtermacher and Fuller (1995) give a different perspective to removing trend and
seasonality. They argue that data should be trend and season stationary before modelling,
following the ARIMA methodology, which requires stationary time series to identify the
autoregressive and moving average components. The difference here is that stationarity is
needed to identify the correct input vector and they do not discuss whether the ANNs are
able to handle seasonal time series or not. The stationarity is achieved through 1* order and
seasonal differences, just like in the ARIMA methodology. A similar approach is used in other
papers (Ghiassi, Saidane et al. 2005; Bodyanskiy and Popov 2006), where differences are

used to create stationary time series in order to identify the relevant input vector for the

ANN.
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In this analysis detrending and deseasonalising is used as suggested by the bulk of
literature. Furthermore, most methodologies evaluated here require stationary time series
to identify correctly the input vector (Hamilton 1994). This is achieved through first and
seasonal differences. To make sure that this pre-processing would not unfairly harm any of
the methodologies, all alternatives were evaluated. Each time series is modelled in its
original domain, detrended, deseasonalised and both detrended and deseasonalised. One
other alternative that was considered was to use optimal differences to identify the input
vector, as required by the identification methodologies, but train the ANNs on the
undifferenced time series. As it is discussed in the results section, our findings are that both
trend and season should be removed, in agreement with most of the literature; hence, in

this analysis we pre-process the time series accordingly.

3.3 Experimental Setup

3.3.1 Data

In this analysis two dataset are used, a synthetic one and a subset of the M1
competition dataset. Forty eight synthetic time series are constructed to evaluate the
competing input vector selection methodologies. These time series simulate monthly retail
data and follow the time series classification proposed by Pegels (1969) as extended by
Gardner (1985). There are four types of trend (none, linear, exponential, damped), three
type of seasonality (none, additive, multiplicative) and four levels of noise. The noise follows
a N(0,0), where g;is 0, 1, 5 and 10 for no, low, medium and high level of noise respectively.
These individual time series components can be seen in figure 3.1.a. - 3.1.c., and their
combination produces all the 48 time series. Note that there are 12 time series with no
noise, which are used to test the ability of the models to capture the real data generating

process. As the noise level increases, it is explored how performance is affected.
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Furthermore, the inclusion of several types of trend and seasonality allows testing the
competing methodologies for a variety of different cases. All time series have 480
observations. This is done to provide enough training samples to the MLP models, so that
accuracy is not impaired according to the suggestions of literature (Markham and Rakes
1998; Hu, Zhang et al. 1999). Each time series is split in a training set of 288 observations and
validation and tests sets of 96 observations each. This is necessary for the training of the
ANN and the early stopping to avoid over-fitting as discussed in section 2. These subsets are
noted in figure 3.1. A long test set was selected to get a better estimation of the out of

sample errors, as suggested in literature (Tashman 2000).

This dataset is derived by decomposing monthly retail sales that were used by Zhang
and Qi (2005) to explore the ability of ANNs to forecast seasonal times series. Furthermore, a
shorter but identical dataset has been used in previous studies (Crone and Dhawan 2007).
Although this dataset has several limitations, it has the advantage that the true properties of

the time series are know and therefore allows better analysis of the results.

Fig. 3.1.a Trend types Fig. 3.1.b. Seasonality types Fig 3.l.e. Noise levels
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Fig. 3.1: Synthetic time series components
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A second real dataset is used to overcome the limitations of the synthetic dataset.
This dataset is a subset of the original widely used M1 competition data’. All monthly time
series longer than 125 observations were selected, in order to have enough training sample
to evaluate all different input variable selection methodologies. The 49 selected time series
are listed in table 3-1I, while table 3-lIl lists the number of each type of time series. The
validation and test sets contain 24 observations each. This dataset has been used in the past
in ANNs studies (Hill, O'Connor et al. 1996; Nelson, Hill et al. 1999) and it was shown that
deseasonalising the time series improves the accuracy of the ANNs, therefore in this study

the time series are pre-processed accordingly.

Table 3-II: M1 dataset selected time series Table 3-Ill: M1

MRM2 MNM37  MRI8 MRG1 MRC6  MRC34 MRC42 dataset time series
MRM5 MNM38  MRI9 MRG3  MRC26 MRC35 MNG33 Level 2
MRM10 MNM58 MRI1I0 MRG4  MRC28 MRC37 MNC31 Trend 13
MRM11  MRI1 MNI1l6  MRC2  MRC29 MRC38 MNC33 Season 1
MNM9  MRIS MNI21  MRC3  MRC30 MRC39 MNC42 Trend- 33
MNM10  MRI6 MNI29  MRC4 MRC31 MRC40 MNC44 Season

MNM27  MRI7 MNI168 MRC5  MRC32 MRC41 MNC48 Total 49

3.3.2 Methods

3.3.2.1 Benchmarks

In order to perform a valid evaluation of ANN models it is important to compare
them against established benchmarks (Adya and Collopy 1998). Two benchmark models are
used in this study, the random walk or naive model and exponential smoothing models
(EXSM). EXSM has been shown to perform well on both retail data, that the synthetic time

series simulated and the M1 dataset (Gardner 2006).

> A description of the full database and data can be downloaded at

http://www.forecastingprinciples.com.
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The naive model is a standard benchmark in forecasting studies and assumes that
the next forecast is equal to the last observed value (Makridakis, Wheelwright et al. 1998).
For a time series X = [xy X,,..., X,] at time t a forecast f, with the naive model can be realised

asin (3.16),
fi=x. (3.16)

Details about the EXSM models can be found in an extensive review by Gardner
(2006). EXSM models are able to capture all types of trend and seasonality in this study
(Gardner 1985) and given the large fitting sample they should be robust to noise and
initialisation parameters. The smoothing parameters of the models are identified by
minimising the one step ahead in-sample MSE, after selecting the appropriate type of trend
and seasonality components, as suggested in literature (Gardner 2006). Note that the
parameters of both the ANN models and the EXSM are optimised using the same cost
function, the one step ahead in sample mean squared error. Both the naive and the EXSM

models are modelled in MatLab.

3.3.2.2 Multilayer Perceptrons

The ANNs are realised using MLP madels. The input vector of the MLPs is identified
using the 29 methodologies outlined in section 3.2. One hidden layer is used and the number
of hidden nodes is found through a grid search from 1 to 12 hidden nodes, with a step of 1.
Five and one hidden nodes were chosen were chosen for the synthetic and the M1 dataset
respectively, which were found to give low error among several time series and different
input vectors. The Levenberg-Marquardt training algorithm needs the modeller to set the
value of pand its increase and decrease steps. Here p = 10, with an increase step of p,c= 10
and a decrease step of Pyec= 10, For a detailed description of the parameters see Hagan and

Menhaj (1994). The maximum number of training epochs is set to 1000. The training can

Page 85



stbp earlier if u becomes equal of greater than p,,, = 10% or the validation error increases
for more than 50 epochs. This is done to avoid over-fitting. When training is stopped the
network weights that give the lowest error on validation set are selected. Each MLP is
initialised 40 times, which is done to mitigate the problem of local minima during training, as
discussed in section 3.2. Lastly, data are scaled between [-0.6, 0.4]. The scaling bounds were
selected so as to allow ANNs to model trended time series with no need for pre-processing

of the data.

Note that the same MLP setup is used for a wide variety of time series and different
input vectors. The complex interaction of the hidden layer and the input layer requires the
fine tuning of the number of hidden nodes for each different input vector, even for the same
time series, as literature suggests (Liao and Fildes 2005; Medeiros, Terasvirta et al. 2006).
This is not done here, which can lead to suboptimal results. There are two main reasons for
this. Firstly, the aim is to isolate the effect of the different input vectors and to do this all the
other parameters of the MLP have to be constant, or else it would be hard to distinguish if an
effect is due to the input vector or not. Secondly, it is suggested that the effect of the hidden
layer is of lesser importance compared to the input vector in terms of accuracy (Zhang,
Patuwo et al. 1998; Zhang 2001; Zhang, Patuwo et al. 2001), therefore a suboptimal, but
adequate, hidden layer should not penalise the accuracy of the MLP significantly as long as
the input vector is able to capture the time series structure. However, note that the
benchmarks are optimally modelled for each time series. All MLP models are implemented in

MatLab using the neural networks toolbox version 5.1.

3.3.3 Experimental Design
The details of the experimental design used to evaluate the different input vector
selection methodologies are discussed here. Competing models are evaluated by forecasting
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1 to 12 steps into the future for the synthetic dataset. For the M1 dataset 1 to 18 steps are
computed, as in the original competition. A rolling origin evaluation scheme is used to
provide a better estimation of the forecast error and to avoid the shortcomings of fixed
origin evaluation (Tashman 2000). Rolling origin evaluation is performed for all the training,
validation and test subsets. Two different error measures are used in this study. MAE and
MAPE are selected for a number of reasons. The time series are synthetic and the noise in
each time series is known, therefore MAE can be used to measure the error due to noise or
due to misidentification of the time series structure for each model. Ideally forecasting
errors should be equal to the noise, which would mean that there is no over or under-fitting
of the models to the time series. MAE is a scale depended error, consequently it cannot be
used to evaluate errors across time series. For this reason MAPE, which is scale independent
is preferred. Note that no time series have values close to zero, which would create
problems for MAPE. For the M1 dataset only MAPE is used, since the noise level is unknown
and no similar analysis can be performed. The preference for absolute instead of squared
error measures is done on the grounds of robustness. For a detailed discussion on selecting

error measures see Tashman (2000) and Hyndman and Koehler (2006).

It is important to examine whether the differences in accuracy between the
competing input vector selection methodologies are significant or not. Following the
recommendations of the literature (Demsar 2006) robust non-parametric statistical tests are
used. Initially, a Friedman test is performed and if significant differences are found among
the competing models then a Nemenyi post-hoc test is performed to pinpoint the
differences. The Friedman test compares the average ranks of the different models. Under
the null-hypothesis all models are equivalent (their ranks are equal), while the alternative is
that at least one model is different. Under the Nemenyi test the performance of two models

is significantly different if the corresponding average ranks differ by at least a critical
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distance, which is based on the studentised range statistic for infinite degrees of freedom,

the number of different models and the sample size.

These tests are used to compare the error distributions of the ANNs using all
different random weight initialisations. This is done so that the robustness of the competing
input vectors to the stochasticity of the network training is considered. As it is shown in the
results, there are input vectors that produce very accurate and robust models with low
variability of performance among different initialisations, while others have a larger
variability. This is important considering that ANNs have to be initialised randomly in any
application. A robust model will perform similarly for different random initialisations, making
it more reliable in real applications, providing similar results in different studies and
overcoming a main criticism against ANNs that they do not produce consistent solutions
(Armstrong 2006). Furthermore, by considering the performance of the networks over a
wide range of initialisations the issue of replicability and reliability of the results is
addressed. The confidence of the ranking of the models is related to the number of times the
ANNs are initialised. Large number of initialisations increases the confidence of the findings
and future evaluations can be expected to have similar results. On the other hand, if a small
number or a single initialisation were to be used, the ranking of the results would be driven
by the stochasticity of ANN training and the findings would not be reliable, as they would
vary significantly for different sets of randomly initialised network weights. Lastly, note that

both tests are designed to handle multiple comparisons, which is the case here. Tests are

performed at 5% significance level.

To compare the ANNs with the benchmarks these tests are not applicable. Each
benchmark is a single optimally parameterised model, whereas there are several

initialisations for each ANN. The standard methodology to identify the best ANN for each
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input vector over different initialisations is to find the ANN with the minimum error in the
validation set and select it as the best (Zhang, Patuwo et al. 1998). This ANN is the compared
with the benchmarks. One has to keep in mind that the ANN with the minimum validation

set error is not guaranteed to have minimum test set error.

3.4 Results

The total number of models estimated for this study is 278,400 ANNs® and 96
benchmarks for the synthetic time series and 54,880 ANNs and 98 benchmarks for the M1
dataset, therefore a detailed presentation of the results is impossible. For this reason the
results will be presented in a aggregated form. MAE will be used only for the comparisons
between the models and the synthetic noise, since MAE figures cannot be aggregated across
time series. Furthermore, computational time for the experiments is not provided as it was
very hard to track. The main reason for this is that the ANNs were calculated using several
different computers, with different processing and memory specifications. However in order
to put the computational requirements in perspective, several months of pure

computational time were required to run all the ANNs.

Note that the M1 dataset experiments were run after the synthetic time series and
based on the findings of the latter the ANN_nIreg model is not simulated for the M1 dataset.
As will be discussed in the presentation of the model rankings the ANN_nireg performed
poorly and given the very high computational requirements to parameterise the random

field regression model (Hamilton 2001; Dahl and Hylleberg 2004) it was decided not to use it

for the M1 dataset.

® The total number of ANNs for each case is the product of the number of time series, the number of
alternative input variable selection methodologies, the number of different pre-processing strategies

and the number of training initialisations
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3.4.1 Effects of pre-processing

Here the results from different pre-processing strategies are briefly presented. As
discussed in section 2 the bulk of the literature suggests removing both trend and
seasonality when present. Furthermore, most of the methodologies used in this analysis to
identify the input vector require stationary time series to work. However, it is important to
provide the experimental evidence that this is true. For the synthetic time series the
experiments were repeated with no pre-processing (no diff), after removing the trend (trend
diff), after removing seasonality (season diff) and modelling the time series in the original
domain while identifying the input vector on the optimally differences time series (input
diff). Table 3-1V presents the aggregate MAPE across all models and time series together with

the mean rank and the results from Friedman and Nemenyi tests.

Table 3-1V: Test MAPE and nonparametric comparisons between different levels of differencing

Friedman test p-value 0.000
Differencing MAPE Ranking Mean Rank* Ranking*
No diff 4.389% 4 130.08 5
Trend diff 2.713% 2 100.18 3
Season diff 3.500% 3 77.48 2
Both diff 2.089% 1 64.78 1
Input diff 4.658% 5 129.98 4

* In each column MLP with no statistically significant differences under the Nemenyi test at 5%
significance are underlined; the critical distance for the Nemenyi test at 1% significance level is 0.20, at
5% significance level is 0.16 and at 10% significance level is 0.15.

The findings are in agreement with the discussion in section 2. The best performance
is achieved when both trend and seasonality are removed from the time series (Both diff).
The difference in accuracy is statistically significant at 1%, 5% or 10% significance level. Note
that the discrepancy in ranking between the MAPE and the mean rank for the No diff, Trend
diff, Season Diff and Input diff models that is observed is caused by the differences in
calculating the average MAPE and the mean rank. For the average MAPE of each model the
best ANN on the validation set is selected among the 40 weight initialisations of each model|,
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whereas for the mean rank all initialisations are used, because with the nonparametric tests
the behaviour of the competing ANNs is compared regardless of the random initialisation of

the weights.

Based on the findings in table 3-IV all the following results will refer only to the case
where both trend and seasonality are removed from the time series. Note that the same

conclusion was reached for the M1 dataset by Nelson et al. (1999).

3.4.2 Comparison of model accuracy with noise level

Given that the noise of each synthetic series is known it is possible to measure when
a model has overfitted, underfitted or found the true data generating process (DGP) of a
time series, as discussed in section 3.3. When a model has MAE equal to the noise then all
the error can be attributed to noise, therefore implying that the DGP is captured. However, if
the model error is lower than the noise, then this implies that the model has overfitted to
the training set of the time series. Table 3-V provides a summarised count of such
occurrences for ANN and benchmark models. Since the generalisation ability of the models is
assessed only the test subset errors are investigated. All MLPs are selected based on

minimum validation subset error.

Table 3-V: Number of overfitted and underfitted time series and when the true DGP is captured

# of overfitted time  # of time series error  # of underfitted
Model

series* only due to noise* time series*
ANN Best 0 7 40
ANN Worst 1 4 43
ANN Mean 0.7 5.7 41.7
ANN Median 1 5 42
NAIVE 0 1 47
EXSM 0 2 46

Examining the results one can see that on average, ANNs overfit to 0.69 time series,
with the best ANNs never overfitting (9 ANN models). The benchmarks NAIVE and EXSM
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never overfit. Looking at the number of time series that the true DGP is captured ANN
perform quite well. On average ANNs perform better than all the benchmarks, capturing the
true DGP 5.7 times, with the best ANNs (7 models) capturing the true GDP in 7 time series.
The flexible nature of ANN is evident, being able to capture more DGP than the benchmarks
with no intervention from the modeller. The minimum number of underfitted time series is
40, achieved by ANN_Is and ANN_back_mfs. On average ANN models underfit 41.7 time
series with the best benchmark scoring 42 time series. Note that this is not directly related to
accuracy, since the level of underfitting is not measured here. This will be investigated in the
following sections. Also, note that normally overfitting would be measured by investigating
the error between the training, validation and test subsets. This is done subsequently in this
analysis and the focus is only on comparing the models accuracy with the known synthetic

noise.

3.4.3 Comparison of input vector selection methodologies

To compare the different methodologies the complete error distributions across the
different weight initialisations of the competing input vector selection methodologies are
used. This is done to overcome the random initialisation uncertainty and access at the same
time the robustness of the methodologies, i.e. how sensitive are they to the effect of the
values of the initial weights. Here only statistical differences across the different MLP models
are investigated. Again the Friedman and the Nemenyi tests are used to identify statistical
differences and the ranking among the models. Tables 3-VI and 3-VII contains the results of
the tests and the mean rank of all models for the synthetic dataset and the M1 dataset
respectively. FiguresA3.2 and 3.3 represent visually the significant differences between
models. Note that for the benchmark models there are no multiple initialisations and no

distributions of errors in that sense, therefore they are not included in this comparison.
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In tables 3-VI and 3-VII the input vectors are separated into three categories
depending on their average length. If on average a model has an input vector equal to or less
than 12 lags then it is a short input vector. If it is between 13 and up to 24 then it is a
medium vector and everything containing on average more than 24 lags is a long vector.
Tests for statistical differences among the different average input vector lengths and
different input vector methodology types, as shown in tables 3-Vi and 3-VII, can be
performed. The results of these tests are presented in tables 3-VIIl and 3-IX for the

respectively.

Table 3-VI: Friedman and Nemenyi tests for MLP models for the synthetic dataset

Friedman p-value 0.000
Group Rank Model Name Mean Rank Average Input Length Methodology type
1 ANN_back_mfs 380.03 27.23 Long Regression
2 ANN_forw_mfs 474.85 11.40 Short Regression
2 ANN_mfs 478.72 36.00 Long Heuristic
2 ANN_auto_mfs 480.71 11.15 Short Regression
3 ANN_nlacf+ls 495.70 25.02 Long Combination ACF/PACF
3 ANN_acf+ls 497.68 20.83 Medium Combination ACF/PACF
4,5 ANN_sa+ls 511.57 17.56 Medium Combination ACF/PACF
4,5,6 ANN_nlacf+ywe 517.33 23.08 Medium Combination ACF/PACF
56,7 ANN_acf+ywe 522.55 18.44 Medium Combination ACF/PACF
6,7, 8 ANN_back_fs 526.91 9.25 Short Regression
7,8 ANN_back_fs+1 529.16 9.79 Short Regression
9 ANN_Is 537.55 17.00 Medium  ACF/PACF
10 ANN_sa+ywe 562.55 13.94 Medium  Combination ACF/PACF
11 ANN_fs+1 569.97 13.00 Medium Heuristic
12 ANN_nlacf+burg 579.13 17.02 Medium Combination ACF/PACF
12 ANN_sa+burg 585.24 7.83 Short Combination ACF/PACF
13,14 ANN_fs 598.64 12.00 Short Heuristic
13, 14,15 ANN_auto_fs+1 603.81 7.38 Short Regression
13, 14,15 ANN_forw_fs+1 604.38 7.50 Short Regression
13,14, 15 ANN_auto_fs 604.85 6.85 Short Regression
14,15, 16 ANN_forw_fs 607.80 6.94 Short Regression
15, 16, 17 ANN_ywe 613.91 13.13  Medium  ACF/PACF
16, 17 ANN_acf+burg 617.10 12.23  Medium  Combination ACF/PACF
16, 17 ANN_nlreg 619.84 17.60  Medium Regression
18 ANN_burg 638.83 5.88 Short ACF/PACF
19 ANN_acf 657.27 10.83 Short ACF/PACF
20 ANN_nlacf 673.37 15.81 Medium  ACF/PACF
21 ANN_naive 853.86 1.00 Short Heuristic
22 ANN_sa 891.18 3.52 Short ACF/PACF

* MLPs with no statistically significant differences under the Nemenyi test at 5% significance are assigned
to the same groups; the critical distance for the Nemenyi test at 1% significance level is 7.24, at 5%
significance level is 6.49 and at 10% significance level is 6.11
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Table 3-VII: Friedman and Nemenyi tests for MLP models for the M1 dataset

Friedman p-value 0.000
Group
Rank* Model Name Mean Rank  Average Input Length Methodology type
1 ANN_auto_fs 494.02 294 Short Regression
1 ANN_forw_fs 494.07 2.96 Short Regression
2 ANN_auto_fs+1 501.44 3.24 Short Regression
2 ANN_forw_fs+1 501.44 3.24 Short Regression
2 ANN_auto_mfs 506.77 3.71 Short Regression
2 ANN_forw_mfs 506.77 3.71 Short Regression
3,4 ANN_back_mfs 525.24 7.98 Short Regression
3,4,5 ANN_fs 528.17 12.00 Short Heuristic
3,4,5 ANN_fs+1 529.05 13.00 Medium Heuristic
3,4,5 ANN_back_fs+1 529.45 463 Short Regression
3,4,5 ANN_ywe 530.39 5.61 Short ACF/PACF
4,5 ANN_back_fs 533.86 4.45 Short Regression
6 ANN_acf+ywe 541.15 9.94 Short Combination ACF/PACF
7 ANN_sa+ywe 547.85 11.06 Short Combination ACF/PACF
8 ANN_sa+burg 560.52 8.55 Short Combination ACF/PACF
9 ANN_burg 570.00 1.41 Short ACF/PACF
9 ANN_nlacf+ywe 572.18 13.27 Medium Combination ACF/PACF
9 ANN_nlacf+burg 574.03  10.37 Short Combination ACF/PACF
9 ANN_Is 574.26 11.43 Short ACF/PACF
10 ANN_acf 580.98 6.86 Short ACF/PACF
10 ANN_nlacf 584.24 9.80 Short ACF/PACF
10 ANN_acf+burg 585.99 7.00 Short Combination ACF/PACF
11 ANN_acf+ls 59430 14.67 Medium  Combination ACF/PACF
11 ANN_naive 598.11 1.00 Short Heuristic
12 ANN_sa+ls 609.15 16.63 Medium Combination ACF/PACF
13 ANN_nlacf+ls 619.23 17.12 Medium Combination ACF/PACF
14 ANN_sa 690.82 7.31 Short ACF/PACF
15 ANN_mfs 710.56  36.00 Long Heuristic

*MLPs with no statistically significant differences under the Nemenyi test at 5% significance are
assigned to the same groups; the critical distance for the Nemenyi test at 1% significance level is 6.89,

at 5% significance level is 6.17 and at 10% significance level is 5.81

Comparing tables 3-Vt and 3-VIl it is obvious that the different ANN models perform

differently in each dataset and there is no consistent ranking of the individual models.

However, there are some commonalities in both tables. The most striking outcome of the

ranking is the low ranking of the nonlinear input variable selection methods. Considering the

pure nonlinear ANN_nlacf it ranks in groups 20 and 10 in the synthetic and M1 datasets

respectively, outperformed significantly by 26 and 19 models in each case. The other purely

nonlinear methodology, the ANN_nlreg that is only simulated for the synthetic dataset,

performs poor ranking in the 16" and 17" groups, significantly worse than 20 competing
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models. This might explain why Dahl and Hylleberg (2004) in their study did not find the MLP
models to perform well. A possible explanation to this result is that the forms of the
nonlinearity that is captured by the random field regression and the ANNs are different,
having different functional forms, therefore the additional lags hinder the training of the
MLP models instead of providing additional useful information. The methodologies that
combine nonlinear autocorrelation with linear partial autocorrelation methods perform
better in most cases. However, their respective ranking seems to be driven by the PACF part,
rather than the nonlinear ACF part, as the ranking of the methods that use only the PACF or
the combination of the PACF and the nonlinear ACF'is analogous in both datasets. Another
common finding in both tables is that the ANN_sa performs very poorly, being in second to
the worst in the synthetic dataset and the worst performing model in the M1 dataset. Also,
in both tables the linear regression models rank on average very high. This becomes clearer
by consulting table 3-IX, which ranks the models by input variable selection methodology

families.

Table 3-VIII: Friedman and Nemenyi tests for input vector lengths

Synthetic dataset M1 dataset
Friedman p-value 0.000 Friedman p-value 0.000
Average Input Length Mean Rank* Average Input Length Mean Rank**
Long 44.15 Short 54.08
Medium 64.19 Medium 60.41
Short 73.15 Long 67.01

* The critical distance for the Nemenyi test at 1% significance level is 0.59, at 5% significance level is 0.48
and at 10% significance level is 0.42; **The critical distance for the Nemenyi test at 1% significance level
is 0.59, at 5% significance level is 0.47 and at 10% significance level is 0.41.

Table 3-IX: Friedman and Nemenyi tests for methodology type

Synthetic dataset M1 dataset
Friedman p-value 0.000 Friedman p-value 0.000
Average Input Length Mean Rank* Average Input Length Mean Rank**
Regression 61.10 Regression 61.01
Combination ACF/PACF 62.65 ACF/PACF 84.98
Heuristic 97.27 Combination of ACF/PACF 87.04
ACF/PACF 100.97 Heuristic 88.97

* The critical distance for the Nemenyi test at 1% significance level is 0.82, at 5% significance level is 0.68
and at 10% significance level is 0.60; **The critical distance for the Nemenyi test at 1% significance level is
0.81, at 5% significance level is 0.67 and at 10% significance level is 0.60.
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Fig. 3.3: Results ofthe Nemenyi test for the M | dataset. Black squares represent insignificant
differences between models.
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In table 3-IX regression based methodologies outperform all others consistently in
both datasets. For the synthetic dataset the combination of ACF (linear or nonlinear) and
PACF methodologies ranks second with small but significant difference from the regression
methodologies. Heuristic and ACF or PACF based methodologies follow with an overall much
poorer performance. The M1 dataset exhibits a different picture. After the regression based
methodologies the ACF or PACF methodologies follow, then their combination and last are
the heuristics. All these have small but statistically significant differences in their ranking. As
seen in tables 3-VI and 3-VIl the perforrhance of the heuristics is associated to the number of
lags used. However, as it seen in table 3-VIil, there is no consistency in the behaviour of
different input vector lengths in the two datasets. Therefore, it is advised to avoid using
these type of heuristics to select input variables for ANNs and prefer some other
methodologies that do not indiscriminately include all lags in the input vector and provide

data driven sparse input vectors.

Considering only the regression based input variable selection methodologies, there
is no regression type (stepwise, forward, backward) that should be clearly preferred as the
ranking between the two datasets is not consistent. However, the stepwise and the forward
regression models, in both datasets, do not show statistically significant differences, given
the maximum lag that is considered in each ANN model. On the other hand, the backward

regression performs overall better in the synthetic dataset, while the opposite is true for the

M1 dataset.

Another finding based on the results of both datasets individual combinations of ACF
and PACF performed well. This is counterintuitive, given that ANNs are autoregressive
models and one would expect that PACF information should be adequate. The explanation to

this effect draws from the arguments of Lachtermacher and Fuller (1995), that the ACF
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information can be inverted to an infinite autoregressive form, suggesting additional lag
components. However, regression based methodologies that directly model autoregressive

information perform statistically better.

When considering methodologies that use solely the ACF or the PACF results are
inconclusive. Consulting tables 3-VI and 3-Vil the ANN_acf ranks significantly lower than any
PACF methodology (ANN_burg, ANN_Is and ANN_ywe), indicating that PACF information is
more useful for ANNs as expected. When only the PACF based methodologies are
considered, there is no consistent ranking among the models. The different PACF
methodologies rank significantly different in both datasets, in agreement with the findings of
McCullough (1998). However, the burg estimation algorithm methodology (ANN_burg) does
not provide the best results in any of the two datasets, when compared to other PACF

estimation methodologies, in contrast to the suggestions of McCullough.

Table 3-VIIl evaluates whether parsimonious input vectors are necessary for ANNs to
perform well. The two dataset provide opposite results. In the synthetic dataset longer input
vector perform significantly better, whereas in the M1 dataset shorter input vector perform
significantly better. The connection of the input vector sizes with the performance of the

different ANN models is revisited later.

The gist of the statistical comparisons among the MLP models is summarised in
tables 3-VII and 3-IX. Regression based techniques perform best, while the ranking
thereafteris inconclusive. The performance of the heuristic approaches is connected with
the input vector length and overall is poor; hence they should be avoided. Furthermore,

there is no conclusive evidence whether parsimonious input vectors for ANNs perform better

or not.
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3.4.4 Comparison of MLPs against benchmarks

In order to compare the MLP results against the benchmarks MAPE is used to find
the average accuracy across all time series. The accuracy by time series component, i.e. by
trend type, seasonality type and noise level is evaluated. This multifactorial analysis allows to
examine how MLPs fare against benchmarks under different conditions. The results for the
training, validation and test sets for the synthetic dataset are provided in tables 3-XI, 3-XIl
and 3-XIIl respectively, while table 3-XIV contains the results for the M1 dataset. The MLP
errors provided here are based on choosing the best MLP initialisation, for each
methodology family, on minimum validation set error. As discussed in section 3 each model
is initialised 40 times, providing a large search for good parameters. However, a different
number of initialisations, a different initialisation seed or a different random number
generator will provide different errors; hence, it is advisable to compare between different
MLP models using the statistics in tables 3-VI to 3-IX instead. These make use of the
complete distribution of the initialisations and therefore are less sensitive to different

starting parameters.

For each methodology family only the best ANN results are provided keeping the
readability of the tables in mind. In each table the mean, median and minimum error of the
different MLP models are provided. All models that are at least as good as the benchmarks
are marked using bold underlined numbers. In all three tables it can be seen that the mean
performance of the ANNs is affected by the bad performing ANN models, which ranked
poorly in the previous comparison tables between the MLP models as well. This is also
reflected in the differences between the mean and the median accuracy of ANNs. Measuring

the overall accuracy of all the input variable selection methodologies all outperform EXSM,

which is the best benchmark.

Page 99



Table 3-X: MAPE for MLPs and Benchmarks for the synthetic dataset: Training Set

Trend Season Noise
Model Overall - -
Linear Expon. Damp No  Additive Multipl. None Low Medium High
Heuristics 0.018 0.023 0.013 0025 0.010 0.025 0.014 0.014 0.000 0.005 0.022 0.043
ACF/PACF 0.020 0.025 0.016 0.027 0.012 0.027 0.016 0.018 0.000 0.005 0.025 0.050
g;’:‘;';’::g: 0.020 0.024 0.016 0027 0012 0.026 0016 0.017 0.000 0.005 0.025 0.050
Regression 0.018 0.025 0.014 0.025 0010 0.025 0.014 0.016 0.000 0.005 0.023 0.045
ANN Mean 0.026 0.043 0.018 0.030 0.014 0.028 0.018 0.032 0018 0.007 0026 0.054
ANN Median 0.022 0.025 0.018 0.031 0.013 0.028 0.018 0.019 0.000 0.007 0.026 0.054
ANN Min. 0.018 0.023 0.013 0025 0.010 0.025 0.014 0.014 0.000 0.005 0.022 0.043
NAIVE 0.101 0.130 0.091 0.096 0.089 0.041 0.098 0.166 0.088 0.090 0.102 0.126
EXSM 0.023 0.026 0.022 0.024 0.020 0.031 0.018 0.020 0.004 0.008 0.025 0.055
MLP models that outperform the best benchmark in each case (each column) are marked in underlined bold numbers.
Table 3-XI: MAPE for MLPs and Benchmarks for the synthetic dataset: Validation Set
Trend Season Noise
Model Overall Linear Expon. Damp. No  Additive Multipl. None Low Medium High
Heuristics 0.015 0.023 0.010 0.018 0.009 0.018 0.013 0.014 0.000 0.004 0.019 0.037
ACF/PACF 0.015 0.023 0.011 0.019 0.010 0.018 0.013 0.015 0.000 0.004 0.021 0.037
Combination
of ACF/PACF 0.015 0.023 0.011 0.019 0.009 0.018 0.013  0.015 0.000 0.004 0.020 0.037
Regression 0.015 0.022 0.010 0.017 0.009 0.018 0012 0.014 0.000 0.004 0019 0.035
ANN Mean 0.020 0.041 0.011 0.020 0.010 0.019 0.014 0.029 0018 0.005 0.021 0.038
ANN Median  0.016 0.023 0.011 0.019 0.010 0.018 0.014  0.015 0.000 0.005 0.021 0.038
ANN Min. 0.015 0.022 0.010 0.017 0.009 0.018 0.012  0.014 0.000 0.004 0.019 0.035
NAIVE 0.110 0.178 0.085 0.094 0.083 0.030 0.083 0.216 0.102 0.103 0.113 0.123
EXSM 0.017 0.024 0.011 0.024 0.010 0.024 0.013 0.015 0.002 0.007 0.022 0.040
MLP models that outperform the best benchmark in each case (each column) are marked in underlined bold numbers.
Table 3-XII: MAPE for MLPs and Benchmarks for the synthetic dataset: Test Set
Trend Season Noise
Model Overall No Linear Expon. Damp. No Additive Multipl. None Low Medium High
Heuristics 0.015 0023 0.009 0.019 0008 0.018 0.012 0.014 0.000 0.005 0.018 0.034
ACF/PACF 0015 0023 0009 0019 0.009 0018 0.012 0015 0000 0.006 0.018 0.035
Combination
of ACF/PACF 0.015 0.023 0.009 0.019 0.008 0.018 0.011 0.015 0.000 0.006 0.018 0.035
Regression 0.015 0.023 0.009 0.018 0.008 0.018 0.011  0.014 0.000 0.005 0.017 0.035
ANN Mean 0.021 0.042 0.009 0.024 0.009 0.019 0.012 0.032 0.019 0.010 0.019 0.036
ANN Median 0.015 0.023 0.009 0.020 0.009 0.019 0.012 0.015 0.000 0.007 0.019 0.035
ANN Min. 0015 0023 0.009 0018 0008 0018 0011 0014 0000 0.005 0017 0.034
NAIVE 0.117 0.205 0.084 0.098 0.082 . 0.030 0.076 0.246 0.110 0.111 0.118 0.129
EXSM 0.018 0.022 0.009 0.034 0.009 0.026 0.013 0.016 0.002 0.008 0.020 0.044

MLP models that outperform the best benchmark in each case (each column) are marked in underlined bold numbers.
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Table 3-XIli: MAPE for MLPs and benchmarks for the M1 dataset

Model Training Validation Test
Heuristics 0.114 0.070 0.168
ACF/PACF 0.116 0.071 0.168
Combination of ACF/PACF 0.114 0.069 0.167
Regression 0.114 0.065 0.164
ANN Mean 0.129 0.073 0.178
ANN Median 0.124 0.071 0.176
ANN Minimum 0.114 0.065 0.164
NAIVE 0.167 0.152 0.209
EXSM 0.117 0.106 0.175

MLP models that outperform the best benchmark in each case (each column) are marked
in underlined bold numbers.

Examining the accuracy by factor in the synthetic dataset provides a more detailed
view of how the ANN models perform against the benchmarks. It is interesting that in the
training set no ANN models are able to outperform the EXSM when considering only
exponential trends. The best performing MLP models are worse by a marginal 0.1% MAPE.
This is not repeated in the validation and the test sets, where several MLP models
oﬁtperform the EXSM. The reason behind this becomes clearer when figure 3.1.a is
consulted. Most of the exponential trend change takes place in the training set. The EXSM
models and the DGP of the synthetic time series have identical functional forms. On the
other hand the ANNs try to approximate the exponential trend while having a different
functional form, see (3.1). As discussed in section 3 a fixed number of hidden nodes are used
for all time series and input vectors, in order to allow direct investigation of the effect of the
different input vectors. However, this limits the flexibility of the ANN models to approximate
any DGP (Hornik 1991) and in this case they are unable to capture the rapid nonlinear trend
as well as the EXSM. In table 3-Xlll, where the errors in the test set are listed, there is a
different picture. The EXSM has the best performance on the time series with no trend, again

with a marginal difference of 0.1% MAPE from the MLP models.
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When examining the different noise levels, the expected performance degradation
as the noise level increases is apparent in all models. The unexpectedly high mean error in
the "no noise" case is caused by the ANN_naive and ANN_nlireg, which perform badly. There
are 12 time series with no noise in the dataset. Both models perform very badly on a single
time series, which is a stationary time series with multiplicative seasonality and no noise.
The error affects the average and is also reflected in the multiplicative seasonality accuracy.
Furthermore both models, in contrast to the other ANNs, do not capture perfectly the data
generating process of several other “no noise” time series, resulting in small errors, which
are masked by this outlier. All other ANN models have managed to capture with zero error
(rounded to the third decimal) the “no noise” time series, demonstrating the flexibility of the
ANNs. On the other hand, both benchmarks have nonzero error for the same set of time
series. Considering that the ANN models achieve to capture several DGP with the same
functional form is a very significant advantage, which seems to be retained even when the
input vector is suboptimal. Furthermore, as the noise level increases ANNs show an

increasingly better accuracy compared to the benchmarks.

From tables 3-X to 3-Xlll it is apparent that several of the ANNs perform at least as
well as the benchmarks; hence it can be concluded that ANNs are able to compete with the
benchmarks even with suboptimal input vector specification. However, when they are
properly modelled, as ranked in tables 3-VI, 3-VIl and 3-IX, the accuracy becomes even
higher, as reflected in the MAPE figures of the regression family methodologies. Table3- XIV,
which contains the MAPE for the M1 dataset, reveals a similar picture. When the best

representative of any input variable selection methodology is considered the ANNs routinely

outperform the benchmarks.
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Finally, the ANN_naive model was found to perform overall better than the NAIVE
benchmark in both datasets, thus constituting a good nonlinear benchmark for future ANNs
studies, due to its simplicity. More complicated implementations of ANNs should outperform

this simplistic model in order to justify the need for the extra modelling effort.

3.4.5 Comparison of the input vectors sizes

It is interesting to explore how long the input vectors of the identified MLP models
are. This will demonstrate whether longer input vectors are preferable to parsimonious ones,
as suggested by part of the literature (Balkin and Ord 2000; Hippert, Bunn et al. 2005). In
table 3-VIII it was already shown that there is no consistent behaviour among the two
datasets, although there are significant differences in the performance of the methods based
on the input vector size. Figures 3.4 and 3.5 provide boxplots of the input vector lengths for
the competing ANN models across all time series for the two datasets separately. The
different input variable selection methodologies are ranked according to performance, as in

tables 3-VI and 3-VII for the synthetic and the M1 dataset respectively.

Eyeballing both figures 3.4 and 3.5 hints the same findings as table VIII, that the size
of the input vector is related to the performance of the different ANN models, however an
opposite relation is identified in each dataset. A significant negative correlation coefficient
between both the mean and median input vector and the model ranking of -0.65 and -0.66
respectively is found for the synthetic dataset. For the M1 dataset the opposite is true with
significant positive correlation coefficients of 0.56 for the mean and 0.55 for the median.
Figure 3.6 provides the scétterplots for both the mean and median input vector size against

the ranking of the models for both datasets, along with the correlation and the coefficient of

determination for each pair.
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Fig. 3.4: Boxplot of input vector sizes of the different input vector selection methodologies for the
synthetic dataset, ranked by methodology performance.

M1 dataset
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Fig. 3.5: Boxplot of input vector sizes of the different input vector selection methodologies for the M 1
dataset, ranked by methodology performance.

When both datasets are considered together there is no significant correlation for

either the mean or the median and therefore it cannot be concluded that there is a clear

connection between the input vector size and the performance of the ANN models.
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Input vector ranking

Mean vector size Median NActor size
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Fig. 3.6: Scatterplots ofthe mean and median input variable selection methodologies against the ANN model
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3.5 Conclusions

The objective of this study was to evaluate competing input vector specification

methodologies for ANNs and identify which perform best and how do they compare against

established benchmarks. A rigorous empirical evaluation using two datasets of 97 time series

in total was performed. The first dataset consisted of synthetic time series with known

properties and the second one was a subset of the M | competition dataset, including real

monthly time series. There are several outcomes from this analysis:

1)

2)

Regression based input vector specification methodologies outperformed simple

heuristics, ACF or PACF methodologies and those based on their combinations.

Moreover, the stepwise and forward linear regression did not have statistically

significant differences, while the backward regression, although significantly

different, did not rank consistently against the other regression types.

Nonlinear input vector specification methodologies did not perform better than

more widespread methodologies that are based on linear tools and there is no

evidence that they should be preferred. In the result from both datasets linear
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methods significantly outperformed the nonlinear input variable selection

methodologies.

3) Itis inconclusive whether parsimonious input vectors should be preferred for ANNs
or not. However significant evidence was found that sparse input vectors performed
better than full vectors, which contain continuous lags, like the heuristics in this

study.

4) ANN models were able to capture the true DGP of all time series patterns in this
study with a single architecture. The flexibility of ANNs was not very sensitive to the

input vector, although the relative accuracy to the benchmarks was.

5) Additional evidence was provided that ANNs were able to perform at least as good
as established benchmarks on both linear and nonlinear time series. Furthermore, it
was shown that even suboptimally modelled ANNs performed comparable if not

better than the benchmarks.

6) A new nonlinear benchmark for ANNs studies, based on a single t-1 input MLP
model, was proposed. ANN_naive was found to outperform the random walk and
since this model is very simple and parsimonious, any more complex ANN should be

able to outperform this benchmark in order to be preferred and justify the additional

modelling complexity.

7) Further evidence was provided that deseasonlising and detrending the time series

improves the accuracy of ANNs.

A novelty of this analysis was that the ANNs were compared in a way that the results
are not sensitive to the random initialisation of the network weights. Since the accuracy of

ANNSs is dependent on the software and the computer that is used to model them, the
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random number generator and the number of initialisations it is unlikely to fully replicate the
same forecasts in a different implementation. However, in this study, the results from a large
distribution of several initialisations were considered, therefore ensuring that the
conclusions of this study are reproducible and another implementation will provide the same
ranking of models. On the other hand, using only the best initialisation, which is the usual
practice in the literature (Kourentzes and Crone 2009), the ranking of the models could vary

greatly from study to study, limiting the reliability of the findings.

Callen, Kwan, Yip and Yuan (1996) advised caution when reading the positive results
of ANNs publications, warning of a possible bias, that usually only the successful ANNs
applications are submitted and published. Adya and Collopy (1998) went one step further, by
examining the validity of the published ANNs papers, to conclude that most of them cannot
be considered valid and are impossible to replicate. Therefore, they advised caution and
critical stance when studying the ANN literature. Based on the results of this analysis on the
evaluation of the input vector specification methodologies and the papers that motivated
the selection of the evaluated methodologies (table 1), a negative bias against the
performance of ANNs can be identified. The implementation of ANNs in studies that found
their performance lacking against benchmarks, did not perform well in this analysis either,
consequently a different modelling approach might provide superior performance. This only
makes it more difficult to draw conclusions from the ANN literature. It is imperative to
carefully build the MLP models, and to use multiple initialisations. Only then can safe
conclusions be drawn. Furthermore the experimental design must be such that will allow

reaching reproducible findings, given the nature of ANNs, which makes them inherently

difficult to replicate.
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A limitation of this study is that it did not consider the differences between
stochastic and deterministic time series components. Although in normal statistical
modelling these differences can lead to entirely different modelling practices (Osborn, Heravi
et al. 1999; Ghysels and Osborn 2001), their effect is not explored in the ANN literature
(Kourentzes and Crone 2009). In this analysis the state-of-art suggestions of the ANN
forecasting literature were followed on how to model seasonality and trend (Zhang and Kline
2007). However, deterministic and stochastic time series components are expected to affect
both the optimal time series pre-processing and the inclusion of additional inputs, like

seasonal dummy variables. This will be investigated in future research.

This study used a synthetic dataset that simulated monthly data and a real dataset of
monthly time series. As discussed in previous sections, these dataset were selected to cover
most of the archetypes of economic time series. However, this is only true for monthly data
frequency. For different frequencies the time series behave differently. As the frequency
decreases, towards annual data, seasonality vanishes. On the other hand as the frequency
increases, multiple overlaying seasonalities may appear, like intra-day and intra-week
seasonalities, which usually occur simultaneously. These time series have different behaviour
and pose different challenges for the input vector selection methodologies, which may prove
to be problematic to use, due to the data properties. Therefore, it is imperative to evaluate
in a future study how ANNs and the different input vector specification methodologies
perform on datasets of different frequencies, especially for higher ones that have started to

become more common and important in business practice.
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4 Modelling Deterministic
Seasonality with Artificial Neural
Networks for Time Series
Forecasting

Abstract

This study explores both from a theoretical and empirical perspective how to model
deterministic seasonality with neural networks (ANN) to achieve the best forecasting
accuracy. The aim of is study is to maximise the available seasonal information to the ANN
while identifying the most economic form to code it; hence reducing the modelling degrees
of freedom and simplifying the network’s training. An empirical evaluation on simulated and
real data is performed and in agreement with the theoretical analysis no deseasonalising is
required. A parsimonious coding based on seasonal indices is proposed that showed the best

forecasting accuracy.

Preface

A working version of this paper has been presented in the International Conference
on Data Mining 2009 (DMIN 2009). The submissions in this conference are peer reviewed
with up to two rounds of feedback. The conference version of this study presents only the
results for the synthetic dataset and can be found in the proceedings with the title
“Modelling Deterministic Seasonality with Neural Networks for Time Series Forecasting”. The

paper in this chapter is extended to include results from a real dataset from the T-

competition.
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4.1 Introduction

Artificial neural networks (ANNs) are nowadays widely recognised as a potent
forecasting tool with several research and practical applications (Zhang, Patuwo et al. 1998;
Hippert, Bunn et al. 2005). Theoretically ANNs are universal approximators, which is
desirable in forecasting (Hornik, Stinchcombe et al. 1989). They have been shown to be able
to forecast linear and nonlinear synthetic series and real time series at least as well as
established benchmarks, like exponential smoothing and ARIMA models (Hill, O'Connor et al.
1996; Zhang 2001; Zhang, Patuwo et al. 2001). Furthermore, ANNs are able to forecast
across a wide range of data frequencies, when the appropriate input variables are provided
(Kourentzes and Crone 2008) making them a potent and flexible forecasting tool. However,
they are criticised to have inconsistent performance across different applications and in
empirical evaluations (Callen, Kwan et al. 1996; Makridakis and Hibon 2000; Armstrong
2006). The ANN literature suggests that the observed inconsistency is a product of bad
modelling practices or limited understanding of the modelling process. For instance there is
no consensus on how to select a relevant set of input variables and lags (Zhang, Patuwo et
al. 1998; Anders and Korn 1999). A recent literature survey identified that 71% (out of 105)
published papers model ANNs based on trial and error approaches. This has a significant
impact on the consistency of their performance and also hinders our understanding of how
to model them (Adya and Collopy 1998). It is therefore important to rigorously evaluate

competing ANN modelling strategies in order to gain insight on best practices.

The ANN literature has identified a set of open questions in modelling neural
networks that need to be solved before their application can become more consistent and
potentially perform better (Zhang, Patuwo et al. 1998; Curry 2007). One such open research

question is whether ANNs are able to model seasonal time series or if the time series need to
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be deseasonalised first. A standard way of performing this is through seasonal integration of
the time series, which follows the same ideas of ARIMA modelling (Zhang and Kline 2007).
Hill et al. (1996) show that ANN using deseasonalised time series from the M1 competition
outperformed standard statistical models, suggesting significant improvements in ANNs
performance. Nelson et al. (1999) verifies that deseasonalising the M1 time series provided
ANNs with the performance edge. They repeated the experiment without deseasonalising
the time series and the forecasting performance got significantly worse, therefore arguing
that deseasonalising was a necessary step. They argued that this way ANNs can focus on
learning the trend and the cyclical components. To learn seasonality in addition would
require larger networks, meaning a larger input vector, which may lead to overfitting. Zhang
and Qi (2005) reached the same conclusion that deseasonalising helps. They suggest that
deseasonalised time series do not contain long dynamic autocorrelation structures that
would make the choice of the input vector more difficult, thus leading to smaller more
parsimonious models. Curry (2007) examines the ability of ANN to model seasonality from a
theoretical perspective. He suggests that for ANN to model seasonality they should have
adequately long input vector to capture the seasonal effects. Il selected input vector can
make the ANN unable to forecast seasonality, implying that Zhang and Qi results can
potentially hide input misspecification errors.vCrone and Dhawan (2007) demonstrate that
ANNs are able to model robustly monthly seasonal patterns using only an adequate number
lags of the time series. Zhang and Kline (2007) explore the ability of ANNs to forecast
quarterly time series. They again find that deseasonalising helps, however this time they also
evaluated a large variety of models, including models with deterministic dummy variables.

They argue that such additional variables do not help because they do not capture dynamic

and complex seasonal structures.
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The above papers do not distinguish between different forms of seasonality.
Deterministic seasonality and seasonal unit root theoretically require a different modelling
approach (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001; Matas-Mir and Osborn
2004), which has been largely ignored in the ANN literature and the respective debate on
how to model seasonality. In this analysis, it will be shown that this distinction implies a
different modelling procedure from a theoretical perspective. Modelling deterministic
seasonality is impaired by deseasonalising the time series and different modelling practises
should be followed. An empirical evaluation of competing methods to model seasonality is
performed on simulated and real time series. It is found that using a set of dummy variables
can improve forecasting accuracy over the standard ANN modelling practise. Removing
seasonality does not perform well for the case of deterministic seasonality. Finally, a
parsimonious coding based on seasonal indices is proposed, which outperforms other

candidate models while keeping the modelling degrees of freedom to a minimum.

The paper is organised as follows: section 4.2 discusses the different types of
seasonality from a theoretical perspective. Section 4.3 introduces the methods that will be
used to model deterministic seasonality. Section 4.4 provides information on the
experimental design for the empirical evaluation on synthetic data, followed by section 4.5
where the results are discussed. In section 4.6 the empirical evaluation on real time series
from the T-competition is presented and analysed. Conclusions and limitations of this study

are discussed together with further research objectives in section 4.7.
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4.2 Seasonal Time Series

4.2.1 Deterministic Seasonality

A time series is said to have deterministic seasonality when its unconditional mean
varies with the season and can be represented using seasonal dummy variables,

N
Y =:u+zm.\-5.vt +z, (4'1)

s=]

where y, is the value of the time series at time t, p is the level of the time series, m; is the
seasonal level shift due to the deterministic seasonality for season s, & is the seasonal
dummy variable for season s at time t, z, is a weak stationary stochastic process with zero
mean and S is the length of the seasonality. Furthermore, the level of the time series p can
be géneralised to include trend. Note that the seasonality is defined as a series of seasonal
level shifts m,, which describe the seasonal profile and are constant across time, i.e. my=m,.
Also note that the m, = O over a full season. This implies that with the appropriate
transformations of u and m a set of S-1 or S seasonal dummies can be used to code
seasonality. Furthermore, due to z, each value of the time series deviates over its respective
seasonal mean with a constant variance over both s and t, which means that the
deterministic seasonal process forces the observations to remain close to their underlying
mean (Ghysels and Osborn 2001). Modelling (4.1) with S seasonal dummies and p # O using a
linear model, like linear regression, introduces the problem of multicollinearity, therefore S-1

dummies should be used in this case (Kvanli, Pavur et al. 2002).

An alternative way to code deterministic seasonality is through its trigonometric

representation. In respect to (4.1) seasonality can be expressed as
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S/2
e S 22 2], o

k=1

where a, and By create linear combinations of S/2 sines and cosines of different frequencies
following the idea of spectral analysis of seasonality. Equations (4.1) and (4.2) have p and z,
expressed as separate components in both cases, allowing separate modelling of seasonality
and the remaining time series components (Ghysels and Osborn 2001). Note that if less than
S/2 linear combinations of sines and cosines are used the representation of seasonality is
imperfect and it is approximated with some error, the size of which is related to the number

of combinations used.

4.2.2 Seasonal Unit Root

Seasonality can also be the result of an autoregressive integrated moving average

(ARIMA) process,
#L)Ay, =y +6(L)e., (4.3)

where L is the lag operator, As is the seasonal difference operator, ¢ and 0@ are the
coefficients of the autoregressive and moving average process respectively, y is a drift, and ¢,
i.i.d. N(0,0%). The variance of y; under the case of deterministic seasonality is constant over t
and the seasonal period s, which is not true here. This stochastic seasonal process can be
viewed as a seasonal unit root process, i.e. for each s there is a unit root, which in turn
requires seasonal differencing. More details about the seasonal unit root process can be

found in (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001; Matas-Mir and Osborn 2004).

It is interesting to examine what happens if deterministic seasonality is misspecified

as a seasonal unit root process. Considering seasonal differences (4.1) becomes
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Agy, =Agz,. (4.4)

Essentially in (4.4) seasonality has been removed, i.e. a deseasonalised form of v, is
modelled. Comparing (4.1) and (4.4) it can be deduced that it is now impossible to estimate
ms and furthermore Asz, is overdifferenced (Ghysels and Osborn 2001). Therefore, it is

preferable to keep deterministic seasonality and model it appropriately.

4.3 Forecasting with artificial neural networks

4.3.1 Multilayer Perceptrons for Time Series Prediction

The evaluation is limited to the common multilayer perceptron (MLP), which
represents the most widely employed ANN architecture (Zhang, Patuwo et al. 1998). MLPs
are well researched and have proven abilities in time series prediction to approximate and
generalise any linear or nonlinear functional relationship to any degree of accuracy (Hornik
1991) without any prior assumptions about the underlying data generating process (Qi and
Zhang 2001), providing a potentially powerful forecasting method for linear or non-linear,
non-parametric, data driven modelling. In univariate forecasting MLP is used similarly to an
autoregressivé model, capable of using as inputs a set of lagged observations of the time
series and explanatory variables to predict its next value (Kourentzes and Crone 2008). Data
are presented to the network as a sliding window over the time series history. The ANN tries
to learn the underlying data generation process during training so that valid forecasts are
made when new input values are provided (Lachtermacher and Fuller 1995). In this analysis
single hidden layer ANN are used, based on the proof of universal approximation (Hornik

1991). The general function of these networks is

H [
f(X3w):ﬂ0+Zﬂhg(701+zyhlxl)' (45)
h=1 i=0
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X = [xg, X, -, %] is the vector of the lagged observations (inputs) of the time series. X can also
contain observations of explanatory variables. The network weights are w = (B, y), B = [B1,
B2..,Br] and y = [y11, V12..., vnil. The By and yy; are the biases of each respective neuron. ! and H
are the number of input and hidden units in the network and g(-) is a non-linear transfer
function (Anders, Korn et al. 1998). In this analysis the hyperbolic tangent transfer function is

used. For computational reasons this can be approximated as

2
tanh(x) = (W)—_l ) (4.6)

which is frequently used for modelling ANNs (Vogl, Mangis et al. 1988).

4.3.2 Coding Deterministic Seasonality

It is easy to include seasonal information in ANNs. Seasonal dummy variables can be
included as explanatory variables. As noted in section 4.2 if S dummy variables are included
in linear models the problem of multicollinearity appears, so only S-1 dummies should be
used. For ANNs this is more complicated. Assuming only linear transfer functions and H>1
multicollinearity can exist even for S-1 dummies, since they are inputted in several hidden
nodes. This hinders inference from a ANN, but does not necessarily harm its predictive
power, which is true also for the nonlinear transfer function case (Zhang, Patuwo et al. 1998;
Kvanli, Pavur et al. 2002). Based on this observation both S-1 and S number of seasonal
dummies make sense for ANN models. Deterministic seasonality as expressed in (4.2) can be
modelled easily through the use of dummy variables. Note that an alternative is to
approximate (4.2) using fewer frequencies by increasing the number of hidden nodes H in a
network (Hornik, Stinchcombe et al. 1989). Following the same procedure, based on the
increase of H, ANN are able to approximate seasonal patterns by combining seasonal
dummies in a single integer dummy defined as & = [1, 2...S] (Crone and Kourentzes 2007).
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Alternatively m, can be combined to form a series of seasonal indices that can be used as an
explanatory variable for the ANN. The problem that arises in this alternative is how to
estimate the unknown m,. It is also possible to model seasonality as a misspecified stochastic
seasonal unit root process, with the problems discussed in section 4.2. One alternative is to
use seasonal integration to remove seasonality and another alternative would be to use an
adequate AR structure to model the seasonality as discussed in (Curry 2007). Note that much
of the debate in literature, as mentioned in section 4.1, regarding deseasonalising time series
or not falls in the latter two alternatives which in theory are not advisable for deterministic
seasonality. However, for practical applications with small samples it can be shown that it is
difficult to distinguish between deterministic and stochastic seasonality (Ghysels and Osborn

2001), therefore these alternatives are still viable options.

4.4 Synthetic Data Simulations Setup

4.4.1 Time Series Data

Eight synthetic time series are used to evaluate the competing ways discussed in
section 3 to model deterministic seasonality using ANN. The time series are constructed
using as a data generating process the dummy variable representation of deterministic
seasonality (4.1). Two different sets of m, are modelled, reflecting two different seasonal
‘patterns (A & B). The first seasonal pattern resembles retail data that peak during Christmas
sales, whereas pattern B approximates sales of products that sell more during the summer
months. The parameter p is set to 240 units and z, ~ i.i.d. N(O, ojz). Four different levels of
noise are simulated through of. For no noise ¢ = 0, reflecting a zero error for all t. For low,
medium and high noise levels o is 1, 5 and 10 respectively. Note that these synthetic time
series are constructed in a stricter way than that required by {4.1). This is done in order to

create time series in which only the effect of the deterministic seasonal pattern needs to be
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modelled, simplifying the modelling of the input vector of the ANN and allowing to focus

solely on the effects of the different seasonal coding schemes. All time series have S=12, i.e.

simulate monthly data, and are 480 observations long. For the purpose of this experiment

the time series is divided in three equal training, validation and test subsets, to train the ANN

models. The first 72 observations of each time series are plotted in figure 4.1 to provide a

visual representation of the two seasonal patterns and the different noise levels.
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Fig. 4.1: Plot of the first 72 observations of each synthetic time series..

4.4.2 Experimental setup

The forecast horizon for all competing models is 12 months. Rolling origin evaluation

is used to assess the error 1to 12 months in the future. This evaluation scheme is preferred

because it provides a reliable estimation of the out of sample error (Tashman 2000). Two

error measures are used. Firstly the mean absolute error (MAE) that allows a direct

comparison of the predictive accuracy and the known noise level. For given actuals Xt and

forecasts Ftfor all periods t in the sample
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1 n
MAE == "|X, - F). (4.7)

noo

The symmetric mean absolute percent error (SMAPE) is also used to measure accuracy. This
measure is scale independent and allows comparing accuracy across time series. It can be

calculated as

sMAPE = lz[_lf_{_‘i} | (a.5)
nig (|X,|+|F,|)/2
Note that the formula is the corrected form of SMAPE as in (Chen and Yang 2004). Both the
validation and test datasets contain 160 observations (1/3 of the total sample each). The
accuracy of the competing ANN models is evaluated for statistically significant differences
using the nonparametric Friedman test and the Nemenyi test, to facilitate an evaluation of
nonparametric models without the need to relax assumptions of ANOVA or similar
parametric tests (Demsar 2006). To compare the models against the benchmark the best

ANN initialisation is selected by minimum validation set error.

4.4.3 Neural Network Models

MLP models that code the deterministic seasonality with the seven alternative ways
described in section 4.3 are compared. To model seasonality as stochastic, an adequate
univariate MLP model which employs lags t-1 and t-12 is used, which is named AR. To model
seasonality as a seasonal unit root process the time series is used after seasonal differencing.
No lags are used and the correct level is estimated by the MLP by assigning the correct
weights to the bias terms in the different nodes. This is the SRoot model and essentially
covers the case where seasonality is removed before inputting the time series to the MLP.
The common deterministic seasonality coding through seasonal dummy variables is

implemented in models Bin11 and Bin12 which use 11 and 12 seasonal binary dummy
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variables respectively to model each month. No past lags of the time series are used for
these models. The integer dummy variable representation uses only an integer dummy that
repeats values from 1 to 12, which is implemented in model Int. The trigonometric
representation is modelled through the use of two additional variables, one for sin(2nt/12)
and one for cos(2nt/12) and is named SinCos. Finally, seasonal indices for the time series are
identified by calculating the average value for each period of the season in the training set.
This is an adequate estimation since the time series exhibit no trend or irregularities. The
seasonal indices are repeated to create an explanatory variable which is then used as the

only input to the MLP modetl Sindex. An overview of the inputs for each model is provided in

table 4-I.
Table 4-1: Summary of MLP Inputs
Model Lags* Explanatory variables** No of inputs
AR 1,12 - 2
Bin11 - 11 Seasonal Dummies 11
Bin12 - 12 Seasonal Dummies 12
Int - Integer Dummy [1,2...12] 1
SinCos - sin(2mt/12), cos(2nt/12) 2
Sindex - Seasonal Indices 1
SRoot SRR - 0

"The Lags specify the time lagged realisations t-n used as inputs; " For all explanatory
variables only the contemporary lag is used;  Time series is modelled after seasonal

integration, i.e. Agy,.

The remaining parameters of the MLP are constant for all models. This allows
attributing any differences in the performance of the models solely to the differences in
modelling seasonality. All use a single hidden layer with six hidden nodes. The topology of
the AR model can be seen in figure 4.2. The networks are trained using the Levenberg-
Marquardt algorithm, which requires setting the pu and its increase and decrease steps.
Here uLM=10'3, with an increase step of =10 and a decrease step of pe.=10". For a
detailed description of the algorithm and the parameters see (Hagan, Demuth et al. 1996).
The maximum training epochs are set to 1000. The training can stop earlier if p, becomes

equal of greater than Hma=10" or the validation error increases for more than 50 epochs.
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This is done to avoid over-fitting. When the training is stopped the network weights that give
the lowest validation error are used. Each MLP is initialised 50 times with randomised
stafting weights to accommodate the nonlinear optimisation and to provide an adequate
sample to estimate the distribution of the forecast errors in order to conduct the statistical
tests. The MLP initialisation with the lowest error for each time series on the validation
dataset is selected to predict all values of the test set. Lastly, the time series and all

explanatory variables that are not binary are linearly scaled between [-0.5, 0.5].

AR neural network topology

f TanH / Linear

Fig. 4.2: Plot of the AR neural network model, showing the transfer functions of each layer. All other
ANN models have similar topology other than the different number of inputs.

4.4.4 Statistical Benchmark

Any empirical evaluation of time series methods requires the comparison of their
accuracy with established statistical benchmark methods, in order to assess the increase in
accuracy and its contribution to forecasting research. This is often overlooked in ANN
experiments (Adya and Collopy 1998). In this analysis seasonal exponential smoothing
models (EXSM) are used. The seasonality is coded as additive seasonality, which is
appropriate for deterministic seasonality. The smoothing parameters are identified by
optimising the one step ahead in-sample mean squared error. This model is selected as a

benchmark due to its proven track record in univariate time series forecasting (Makridakis
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and Hibon 2000). For more details on exponential smoothing models and the guidelines that

were used to implement them in this analysis see (Gardner 2006).

4.5 Simulation Results

4.5.1 Nonparametric MLP Comparisons

The competing MLP are tested for statistically significant differences using the
Friedman and the post-hoc Nemenyi tests. Both use the mean rank of the errors. In this
analysis MAE and sMAPE provided the same ranking, so there is no difference which error is

used for these tests. The results of the MLP comparisons are provided in table 4-Il.

The Friedman test indicates that across all time series, across different noise levels
and for all time series separately there are statistically significant differences among the MLP
models. Inspecting the results of the Nemenyi tests in table 4-11 a more detailed view on the
ranking of each individual model is revealed, along with statistically significant differences
among them. It can be observed that across all different noise levels and across all time
series at 5% significance level the Sindex outperforms all other models with a statistically
significant difference from the second best model. Bin11 and Bin12 perform equally with no
statistically significant differences both ranking second after Sindex in all cases apart from
the high noise case. At 1% significance level BIn11 and Bin12 have no significant differences
in all cases. This means that for ANN models there is no essential difference between using S-
1 or S binary dummies. When only the no, low and medium noise time series are considered,
the SinCos has no statistically significant differences with the seasonal binary dummies Bin11
and Bin12 models. For the case of high noise time series the SinCos ranks third after the
Sindex and seasonal binary dummy variables models. This demonstrates that although the

SinCos model is not equivalent to the trigonometrical representation of deterministic
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seasonality as expressed in (4.2} it is able to approximate it and in many cases with no
statistically significant differences from the equivalent seasonal dummy coding.
Furthermore, this representation is S/4 times more economical in inputs compared to (4.2).
Compared to (4.1) or Bin11 and Bin12 this coding is S-2 and S-1 inputs more economical
respectively. For the low, medium and high noise the Int mode! follows in ranking. Although
this model performs worse than the previous seasonality encodings it still outperforms the
misspecified seasonal models AR and SRoot. This is not true for the no noise time series,
which also affects the overall ranking across time series as well. The AR model follows

second to the last in all cases.

Table 4-11: Summary of MLP nonparametric comparisons

Time series All No noise  Low noise ~ Medium noise  High noise
Friedman p-value 0.000 0.000 0.000 0.000 0.000
Mean Model Rank
AR 240.59 165.25 260.01 261.01 276.10
Binl1 140.38 165.25 140.43 129.43 126.41
Bin12 142.08 165.25 136.90 132.96 133.20
Int 201.85 237.00 212.43 198.76 159.21
SinCos 146.22 165.25 139.22 137.40 143.03
Sindex 85.01 165.25 42.53 57.45 74.81
SRoot 272.38 165.25 297.00 311.50 315.75
Ranking
AR ) 1 4 4 6
Binl1 2 1 2 2 2
Binl2 2 1 2 2 3
Int 4 2 3 3 5
SinCos 3 1 2 2 4
Sindex 1 1 1 1 1
SRoot 6 1 5 5 7

"In each column MLP with no statistically significant differences under the Nemenyi test at 5%
significance are underlined; Athe critical distance for the Nemenyi test for all time series at 1%
significance level is 3.73, at 5% significance level is 3.18 and at 10% significance level is 2.91. The
critical distance for any noise category at 1% significance level is 7.46, at 5% significance level is 6.37

and at 10% significance level is 5.82.

This demonstrates that it is better to code the deterministic seasonality through explanatory
dummy variables, than as an autoregressive process, as it would be fitting for stochastic
seasonality. Furthermore, in agreement to the discussion in section 4.2, removing the

seasonality through seasonal integration, as in SRoot, performs poorly and ranks last in most
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cases. The reason for this is that the ANNs are not able to estimate directly the m, and Agy, is
overdifferenced. Note that in the case of no noise all models with the exception of Int are

able to capture the seasonality perfectly with no error.

It is apparent that the best method to model the deterministic seasonality is to use
the seasonal indices as an explanatory input variable for the MLP. Not only does this method
perform best, but also it is very parsimonious, requiring a single input to model the

deterministic seasonality, as shown in table 4-I.

4.5.2 Comparisons against Benchmarks and Noise Level

Taking advantage of the synthetic nature of the time series the error of each
forecasting model with the artificially introduced error level can be compared directly and
derive how close each model is to an ideal accuracy. The ideal accuracy is when the model’s
error is exactly equal to the noise, since that would mean that the model has captured
perfectly the data generating process and ignores completely the randomness. On the other
hand, a lower error than the noise level would imply possible overfitting to randomness. The
comparison is done in MAE for each time series individually. The results are presented in

figure 4.3. Moreover the benchmark accuracy in MAE for each time series is provided in the

same figure.

In figure 4.3 it is clear than when there is no noise, for both seasonal patterns, all
MLP models and the benchmark forecast the time series perfectly with zero error.
Comparing the MLP models to the benchmark the misspecified AR and SRoot models
perform worse than EXSM, with the SRoot model ranking consistently last. This
demonstrates that for the case of deterministic seasonality deseasonalising the time series,
here through seasonal integration, hinders the ANN to forecast the time series accurately.

For both seasonal patterns for the low noise time series 2 and 6 all MLP perform worse than
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the benchmark. The opposite is true for the Bin11, Bin12, int, SinCos and Sindex MLP models
for the higher noise level time series. This implies that ANN perform better than the
statistical benchmark in high noise time series, being able to capture the true data

generating process better.

When comparing the models’ accuracy with the known error due to noise all the
MLP models, with the exception of the misspecified AR and SRoot, for all time series are very
close to the ideal accuracy, i.e. having error only due to randomness. Note that for the
validation set, on which the best performing initialisation for each of the ANN models was
chosen, their error is practically only due to noise. The benchmark error consistently
increases as the noise level increases. For the case of low noise time series EXSM manages to
forecast the time series with the error being solely due to randomness, implying a very good
fit to the data generating process, however this is not true for higher noise levels. The results

are consistent across both seasonal patterns.

Evaluating the performance of all models across the three training, validation and
test subsets the models perform consistently, with no evidence of overfitting to the training

set and all models are able to generalise well on the test set.

Table 4-1l: Summary sMAPE across all synthetic time series

Model Training subset Validation subset Test subset
AR 1.90% 1.94% 1.72%
Binll 1.60% 1.59% 1.45%
Bin12 1.58% 1.58% 1.46%
Int 1.62% 1.61% 1.49%
SinCos 1.59% 1.59% 1.47%
Sindex 1.60% 1.58% 1.44%
SRoot 2.36% 2.21% 1.91%
EXSM 1.86% 1.68% 1.52%

The best performing model in each set is marked with bold numbers. The models that are
outperformed by the EXSM benchmark are underlined
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Time Series 8 - MAE - High Noise - Seasonal Pattern B

Traininc Validation set Te t set

. 11.42 AR 10.52 AR 9.31
Bin11 8.51 Bin11 8.02 Bin11 7.18
B n12 8.64 Bin12 7.86 Bin12 741

. 8.87 Int 8.07 Int 09
SinCos 8.57 SinCos 791 SinCos 7.52
Sindex 8.56 Sindex 7.82 Sindex 7.29
SRoot 11271 SRoot 11.19  SRoot 9.62
EXSM 10.20 EXSM 8.53 EXSM 7.99

15 15

Fig. 4.3: MAE for each time series for each subset for all models. The noise level is marked by a thick
black vertical line. Light coloured bars are models which are better than the benchmark (EXSM). The
value of each error is provided at the right side

Due to the fact that it is impossible to aggregate results across different time series
using MAE, only figures for sMAPE are reported, which is scale independent. Summary

accuracy sMAPE figures for all time series are provided in table 4-Ill.

The results are in accordance with figure 4.3. The AR and SRoot models are
outperformed by the benchmark, which is turn is outperformed by all other MLP models. In
agreement with the results in table Il the SIndex model is overall the most accurate, followed
by the Binl2 and Binll. Note that the small sMAPE figures imply that all the models
managed to capture the seasonal profile in all the time series and a visual inspection of the
forecasts would reveal very small if no differences at all. Finally, the overall error level seems
to be different between the three subsets. This is due to the random noise. Although each
set contains 160 observations, which simulates in total 40 years of data, longer sample was

required to ensure equal noise distribution across all subsets.

4.6 Transportation Data Experiments

4.6.1 The Dataset

A dataset of 60 time series from the T-competition (Hibon, Young et al. 2007) was
selected to evaluate the ANN models on real time series. The T-competition dataset contains
transportation time series of different frequencies. From the complete dataset of 161

monthly time series a subset that was tested for deterministic seasonality was selected.
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Initially the presence of seasonality is verified. To accomplish this, a series of steps
was performed. Firstly, for each time series a moving average filter of 12 periods was used to
remove the trend from the time series. Following that, for each time series, all the seasonal
indices were calculated and compared for statistically significant differences using the
Friedman test. The time series that did not present significant differences were concluded to
be not seasonal, i.e. all m; for s = 1...12 were equal, and therefore were dropped from the

final dataset.

Furthermore, not all seasonal time series are deterministic. Two different statistical
tests were used to test for presence of deterministic seasonality. The first test is the Canova-
Hansen test for seasonal stability (Canova and Hansen 1995; Ghysels and Osborn 2001). The
null hypothesis is that the seasonal pattern is deterministic. Assuming a stochastic seasonal
process for.each m; there is an associated residual term n, ~ i.i.d. N(O,o,‘sz). If for any sin S
the ons2 is greater than zero the process is stochastic. The Canova-Hansen test corresponds
to jointly testing for all s in S if cx,]s2 = 0. The second test is based on the definition of
deterministic seasonality (4.1). After the low pass filter is applied to the time series, so that
the seasonal component is separated, a regression model with S-1 binary dummies is fitted.
The residuals are calculated and tested if they follow the assumptions of (4.1). This is done
by an Augmented Dickey-Fuller (ADF) test. If the null is rejected then the residuals are
stationary, i.e. (4.1) describes the data generating process of the time series. The order of
the ADF test is selected automatically using the Bayesian Information Criterion (BIC) (Cheung
and Lai 1998). The time series that pass both tests at a 5% significance level constitute the
sample that is used for this empirical evaluation. The shortest selected time series is 87
months and the longest is 228 months long. Figure 4.4 provides a histogram of the length of
the time series in the final sample, showing the distribution of short and long time series.

The exact time series that were selecting can be found in table VI. For all the time series, the
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last 38 observations are split equally to validation and test sets, leaving all the remaining

observations for the training set.

Histogram of time series length
40

80 100 120 140 160 180 200 220 240

Fig. 4.4: The histogram reveals that most time series are between 120 and 140 months long and there
are a few below 100 and above 160 months.

4.6.2 The Experimental Setup

The experimental design is similar to the one presented in section IV, with some
differences in the model setup, which are discussed here. The ANN models have differences
in the input vectors. In order to capture the trend and irregular components of the time
series some additional non-seasonal time series lags are used for each model. These lags are
identified using backward stepwise regression (Kourentzes and Crone 2008). The regression
model is fitted to the time series and the significant lags are used as inputs to the ANNs. Only
lags from t-1 up to t-11 are evaluated, therefore no seasonal lags are included. The resulting
additional inputs are used together with the different approaches to model seasonality, as
presented before in section 4.4. Note that for the SRoot model the identification of the

additional inputs is done on the seasonally integrated time series.

Exponential smoothing family of models is used as a benchmark. The only difference
in comparison to the previous experiment is that both seasonal and trend-seasonal

exponential smoothing models are considered, according to the suggestions of Gardner

(2006).
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4.6.3 Results

The competing MLP are tested for statistically significant differences using the
Friedman test. At least one model is found to be different with a p-value = 0, so the post-hoc
Nemenyi test is used to identify significant differences between the models and their

ranking, as before in section 4.5. The results are provided in table 4-IV.

Table 4-1V: Summary of MLP nonparametric comparisons

Friedman p-value 0.000

Models Mean Rank* Ranking

AR 166.81 2

Bin1l 177.09 5

Bin12 172.44 4

Int 191.54 6

SinCos 170.53 3

Sindex 139.77 1

SRoot 210.33 7

All MLP have statistically significant differences under the Nemenyi test at 5%
significance level; *the critical distance for the Nemenyi test at 1% significance
level is 1.36, at 5% significance level is 1.16 and at 10% significance level is 1.06.

The results differ from the simulated time series presented before. Sindex is still
ranked first with statistically significant better performance than the second best candidate.
AR model follows, which outperforms SinCos, Bin12 and Bin11 in order of performance. This
is in contrast to the results from table 4-l, where the AR model ranked 5. This can be
attributed to the limited sample size as discussed in section 4.3. Note that the margin of
difference between the SinCos, Bin12 and Bin11is much smaller relatively to the difference of
Sindex to AR or the difference of SRoot to the previous best model. Int and SRoot models
perform as observed before, with the SRoot ranking last. This means that although the
limited sample size affected the ranking between the AR model and the seasonal dummy

models, deseasonalising for the case of deterministic seasonality still harms the performance

significantly.
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Using both MAE and sMAPE the ANN models are compared against the benchmarks.

Table 4-V presents the aggregate accuracy across all time series measured in SMAPE.

Table 4-V: Summary sMAPE across all time series

Model Training Validation Test
AR 16.30% 13.08% 20.10%
Binll 15.80% 12.53% 17.51%
Bin12 13.87% 12.49% 16.85%
Int 14.92% 12.47% 17.85%
SinCos 14.40% 12.07% 17.53%
Sindex 14.61% 11.92% 16.70%
SRoot 19.44% 15.49% 20.69%
EXSM 14.80% 17.58% 17.64%

The best performing model in each set is marked with bold numbers. The
models that are outperformed by the EXSM benchmark are underlined

The Sindex model performs best, in agreement with table Il for the simulated time
series. On the test set the AR, Int and SRoot models fail to outperform the benchmarks. This
shows that although the best trained AR model is less accurate than the Bin11, Bin12 and
SinCos in all training validation and test sets, its error has less extreme values, resulting in the
lower mean rank observed in table 4-1V. The SRoot model is consistently worse than all other
ANN models providing more evidence that seasonal differences for the case of deterministic
seasonality has a negative effect on accuracy. Table 4-VI provides the detailed errors
measured in MAE for each time series. Overall, the results of the evaluation of the real time

series dataset agree with the synthetic data evaluation.

4.7 Conclusions

Different methodologies to model time series with deterministic seasonality were
evaluated. By exploring the theoretical properties of deterministic seasonality it was shown
that the current debate in the literature, on how to model seasonality with ANN, does not
address the problem correctly for this type of seasonality. Seven competing approaches to

model the seasonality were evaluated and compared against exponential smoothing model
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on two datasets, a set of synthetic time series with known properties and a subset of the T-

competition that has real transportation time series.

i)

i)

The findings of this study can be summarised as follows:

For deterministic seasonality it is not advisable to deseasonalise the time series.
Deseasonalising (through seasonal differences) hindered the model to accurately
estimate the m, and therefore affected forecasting accuracy negatively. The SRoot model
performed consistently worse compared to all other ANN models and several times failed

to outperform the exponential smoothing benchmarks.

Using S-1 or S dummy variables to code the seasonality did not have important
differences for ANN models. For the synthetic time series, where the properties of the
time series were controlled, the differences proved to be insignificant, while for the real

time series using S dummy variables proved marginally better.

iii) A sine-cosine encoding of the time series seemed to perform more robustly than binary

seasonal dummy variables, resulting in significantly lower mean rank for the
transportation dataset and minimal differences in the synthetic dataset. The sine-cosine
encoding that was used here is not the equivalent to the trigonometric representation of
seasonality, which uses sine and cosine waves of several frequencies. The degrees of
freedom of the model were reduced by using a pair of sine and cosine of fixed frequency,
making use of the approximation capabilities of MLPs, through the use of several hidden
nodes. Note that the same did not seem to work when a single integer dummy variable

was used to code the seasonality. This seems to be the case due to the monotonic coding

of each season.
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iv) A coding that is based on seasonal indices was proposed. This approach used as a single
explanatory variable a series of seasonal indices. This model outperformed significantly all
competing ANN and the benchmarks for both datasets. Furthermore, this mode! was the
most parsimonious, requiring a single additional input to model the deterministic
seasonality. This can have significant implications for high frequency data that have long
seasonal periods and the dimensionality of the input vector can become a problem for

the training of the ANN models.

This study does not address thoroughly the issue of how to best estimate the seasonal
indices. In the literature several methods have been suggested on how to estimate the
seasonal indices of a time series. Here a very simple approach is employed that is found to
be adequate. Under the assumption of deterministic seasonality the seasonal indices remain
constant thus making the estimation easier. However, in real time series sample size and
irregularities can possibly affect adversely their estimation, evidence of which was not found
in this analysis, but has not been examined in detail. Similar difficulties would arise in the
presence of multiple overlaying seasonalities. It is important to evaluate the robustness of

the findings with different approaches to estimate the seasonal indices.

This study has focused on monthly time series. In future research, this study will be
extended to a wider range of seasonal frequencies to validate the findings and provide a

reliable solution for a range of practical applications.
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Table 4-VI: MAE for all time series

Time Series Set AR Bin11 Bin12 Int SinCos Sindex SRoot EXSM Best
Trn 850475 658622  71631.8  86289.8 585943 977733  108128.8 10692.3 EXSM
M001 val 283122 260001 24318 215063 224704 191245 28398.5 60509.7 Sindex
Tst  55496.2  18923.9  24085.3  25524.9 148272 330549  100972.6 24589.1 SinCos
Tm 4471 57803 37243 4848 35925 6204.2 87293 6524.3 SinCos
M004 val 56111 4616.6 4475.1 5753 5968 4038.1 15539.9 . 9744.6 Sindex
Tst  7477.4 6618.6 7662.2 7153.1 5530.3 8948.8 6490.3 12117.7 SinCos
Tin  9806.7 8584.3 73982 16010.1 7222 17696.2 15079.5 121825 SinCos
M00S5 val 8611 7370 71167 106255 7942 6854.1 28859.8 18798.9 Sindex
Tst  15057.4 8693 130188 118172 13529.3 127105 10231.7 22942.6 Bin11
Trn 8353 7185 752.7 8617 853 10316 1412.9 1074.2 Binll
M006 val 11713 746.3 700.1 763.9 774.9 697.1 1953.4 1099.7 Sindex
Tst  805.3 985.9 692.6 1147.8 1192 662 1100.6 1014.5 sindex
Trn 90393 461112 377365 757943 431219 669903 3377182 877733 Bin12
MO13 val 529112 534477 453131 549457 514332 569343  334221.8  446987.1  Binl2
Tst  61264.6 814745 723882 701737 1939703 62310 405843 317956.5 AR
Trn 1033 89.6 105 93.4 9.5 83.9 220.2 1831 Sindex
MO014 val 1422 143 127.8 1288 139.2 133.5 192 2013 Binl12
Tst 1114 139 138.7 131.1 108.9 114.2 260.6 266.6 SinCos
Trn 998 823 88.1 137.9 94.1 376.9 1926 158.2 Bin1l
Mo15 val 1251 111 1188 984 97.8 1011 1786 1757 SinCos
Tst 1427 91.8 105.3 106.6 140.6 89.3 250.3 234.4 Sindex
Trn 121913 33597.1 84337 5506.3 134554 10396.3 18857.4 6453.8 Int
MO17 val 73424 5768.3 6058.5 7204.9 6961.9 6137.6 7977.4 14099.6 Bin11
Tst 66433  19433.8 41194 113685 14402.2 5730.9 229111 6261.4 Bin12
Tm 779 518 54.9 835 911 56.2 1729 109.4 Bin1l
M020 val 732 83 77.5 921 811 6.9 9.4 109.9 AR
Tst 246.1 218 204 178.6 198.7 214 212.2 177.6 EXSM
T 1428 119.4 1325 134.8 3632 126.6 3938 216.0 Binll
Mo21 val 1725 1567 1637 1801 162 1695 204.9 219 Bl
Tt 459.4 3917 372.4 363.4 516.6 490 398.4 343.9 EXSM
Trn 41019 4903.8 4312 5590.3 3635 37926 4816.8 2570.0 EXSM
M022 val 2650 1929.2 31358 2195.2 2987 2034.1 2727.6 2848.4 Binll
Tst 3610 4384.6 4560.9 7089.6 5136.4 3028.1 4695.9 4292.1 Sindex
Trn 47 45 4 47 338 36 5.9 33 EXSM
Mo28 val 33 32 32 33 37 36 43 6.4 Bin11
Tst 43 4.2 2.7 3 31 2.9 4.9 3.0 Bin12
Trn 818 422 110.4 497 52 55.5 615 714 Bin1l
M034 Vval 50.6 493 514 53.8 53.4 44.5 49.7 48.5 Sindex
Tt 118.3 76.8 76.9 110.3 124.8 100.3 122.1 120.9 Bin11
Tm 233 321 347 19 171 194 21 210 SinCos
MO035 val 29 266 273 19.5 22.5 23 36.3 328 Int
Tst 411 32.4 30.9 39.4 32.2 32.3 71.9 427 Bin12
T 490.8 4434 519.6 507 459.1 460.6 5754 4115 EXSM
M040 val 3563 3762 349 3376 3816 3743 586.2 609.4 int
Tst 4185 532.5 473.8 444.5 597.9 620.9 354.1 348.3 SRoot
T 1262 816 68.1 79.1 895 120 3165 166.7 Bin12
M041 val 290.4 217.1 205 203.3 195.6 179.5 287.2 300.6 Sindex
Tst 1734 154.8 172.3 167.5 180 148.8 271.4 196.3 Sindex
Trn 152 206.3 2089 239.1 254.9 205 3134 274.9 AR
M042 val 5562 2871 2586 1644 2197 2223 825.8 1086.0 int
Tst 4459 398.7 382.8 385 379.7 370.8 254.4 474.4 SRoot
Tm 8549 1196.8 1688.1 5783 539.8 689.2 21426 19382 SinCos
M045 Val 317.3 2426 330 256.5 311.9 279 4146 783.0 8in11
Tst 252 415.9 454.1 4133 393.5 356.1 370.9 786.2 AR
T 41728 3737.4 4585.2 6250 3179.2 4794.9 47726 4653.6 SinCos
Mo4g val  1245.8 1554.6 1434 1729.6 1132 16716 1300.6 2463.3 SinCos
Tst 28311 3013.5 2872.2 3195.1 1730.9 2609 3739.9 1991.3 SinCos
Tm 6138 409.1 447.9 458.1 354.6 621.8 6117 630.0 SinCos
MOos1 val 4266 3103 2795 3372 3051 4465 604.7 4896 Bin12
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Time Series Set AR Binl11 Bin12 Int SinCos Sindex SRoot EXSM Best
Tst 612.2 483.9 406.2 461.9 286.4 572.6 504.5 369.5 SinCos
T 2319.4 1387.4 1090.6 796.8 637.2 1000.8 1596 769.6 SinCos
M054 Val 2659 509 208.9 474.4 424.8 443.6 1116.9 1338.8 SinCos
Tst  1964.3 1767.9 1425.4 1388.4 1149.6 1398.2 2190.4 1932.5 SinCos
Trn 665.2 662.4 483.6 773.4 570.7 893.3 1609.7 571.1 Bin12
M058 val 630.5 524.9 499.7 636.1 540.8 426.7 557 667.7 Sindex
Tst 563.9 977.8 11324 919.6 831.1 804.2 1134.8 873.3 AR
Trn 76.8 59.8 69.3 913 61.7 70.6 121.2 90.3 Bin1l
M062 val 50 433 45.6 50.2 417 43.2 57.5 59.3 SinCos
Tst 167 140.1 133.5 162.9 134.8 135.9 298.9 155.8 Bin12
Trn 4715 365.8 389.8 461.4 393.9 427.7 528.6 387.6 Bin1l
Mo063 val 3146 279.7 254.3 297.1 272.8 298.6 2416 303.2 SRoot
Tst 576 560.9 501.1 465.3 583.3 524 702.6 541.4 Int
Trn 78.2 113.9 74.4 69.6 77.8 75.6 109.8 86.1 Int
MO66 val 48 55.1 47 48.6 44.6 43.6 59 713 Sindex
Tst 121.7 171 109 115.5 107.1 1119 155.9 97.8 EXSM
Trn 113.9 105.5 79.2 103.1 85.4 58.8 138.8 103.7 Sindex
Mo67 Vval 70.2 89.8 87.4 73.9 75.8 65.8 176.6 206.9 Sindex
Tst 69.7 83 138.2 85.3 77.6 66.3 109.8 67.3 Sindex
Trn 610 632.8 629.9 562.8 490.2 4425 886.6 599.5 Sindex
MO070 val 373 3025 309 310.2 345.5 3485 409.8 856.5 Binli
Tst 955.6 819.1 806.7 906.8 1051 1111 705.1 803.7 SRoot
Trn 1316.6 8335 1826.1 1461.6 785.7 1847.7 1443.3 1161.3 SinCos
M072 val  2042.8 1923 2113.6 2176.5 1925.2 1734.3 2177.5 2584.9 Sindex
Tst 26123 1876.6 1817.9 2896.9 1781.9 1971.4 2205.4 2897.4 SinCos
Trn 77.3 724 78.1 89.7 75.6 70.8 1121 67.8 EXSM
M074 Val 373 36.1 33.8 29.6 28.1 319 62.5 545 SinCos
Tst 64.8 65.1 62.6 81.1 84.2 64.8 97.6 61.3 EXSM
Trn 31702.2 24671.3 28044.5 33824 35201.8 33485 39997 32272.7 Bin11
MO076 val 363721 42174.4 37533.6 43600.2 37842.8 29061.4 29453.5 35162.6 Sindex
Tst  63507.7 38233.5 43900.3 79848.1 60449.3 50417.3 74391.2 53361.0 Bin11
Trn 6452 6002.5 7897.4 7004.8 6067.2 6727.1 5316.5 9602.2 SRoot
MO077 val  3651.2 4056.5 4039.6 33224 4020.2 3302.9 5310.1 5993.5 Sindex
Tst  6996.4 5133.5 5213.7 6461 5145.1 5098.2 15485.1 4961.5 EXSM
Trn 1168.6 789.8 805.7 969 10115 1570.9 1699.6 1328.4 Bin11
MO080 val 74737 794.9 754.7 764.2 6434 716.8 690.6 865.4 SinCos
Tst  1119.2 882.8 913.9 896.4 778.6 933.2 1954.9 953.2 SinCos
Trn 94.3 911 63.2 76.8 89.3 100.4 139.6 1225 Bin12
Mo82 Val 79.2 733 79 63.1 n3 3 110.3 1105 Int
Tst 143.7 103.5 101.4 134.7 174.3 100.2 108.9 118.5 Sindex
Trn 79 1116 26.8 111.7 143.8 36.7 127.6 103.2 Bin12
M083 val 76.1 86.3 87.1 83.2 99.2 92.5 1104 129.6 AR
Tst 1755 146.5 146.3 1227 145.4 255.5 144.6 141.6 int
Trn 407.1 496.1 132.8 513.7 198.5 229.8 571.5 540.5 Bin12
MO084 val 334 2574 3126 384.2 3257 3331 3138 383.0 Bin1l
Tst 746.7 928.6 1007.9 827.5 945.8 996.7 971.1 884.7 AR
Trn 58.9 68.2 105.6 276.6 815 76.8 100.8 132.2 AR
M085 val 76.8 707 76.2 715 68.2 71.6 588 87.2 SRoot
Tst 82.9 92.1 83.7 66.5 62.7 67.9 127.2 67.2 SinCos
Trn 160.7 128.2 133.3 1211 126.7 126 153 140.1 Int
M088 val 99 101 95 811 80.6 82.5 1215 108.1 SinCos
Tst 102.2 94.5 139.2 153.6 122.4 129.8 155.4 113.3 Bin11
Trn 442.1 216.4 512.4 350.7 371.2 363.4 435.7 401.7 Bin11
MO030 val 2124 229.8 250.1 184.7 239.2 194.4 205.8 2415 Int
Tst 397.9 2783 413.5 227 185.6 369.6 631.4 297.6 SinCos
Trn 1799.7 1845.4 1933.8 1538.6 1749 1958.1 2123.4 2300.1 Int
M092 Val 11175 1087.7 1034.8 1163.9 957.4 1349.9 944 1456.9 SRoot
Tst 1439 1046.7 12513 1755.8 1232.1 2184.8 1073.7 1339.3 Bin11
Trn 41.8 325 35.5 45.1 49.4 43.8 69.6 67.7 Bin11l
Mos4 val 49 361 365 493 376 365 269 443 Bin11
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Time Series Set AR Bin11 Bin12 Int SinCos Sindex SRoot EXSM Best
Tst 1234 118.3 111.7 116.4 108.8 110.1 115.8 95.1 EXSM

Trn 146 90.7 1214 111 3453 181.2 185.7 1789 Binll
Mogs val 828 198 1134 862 786 803 99.4 1226 SinCos
Tst 1844 1443 75.1 2013 118.1 73.1 230.5 93.7 Sindex
Tm 1312 156.7 188.9 1713 2473 106.7 1721 1629 Sindex
M096 val 1753 2232 2181 2411 205.4 1931 1748 242.8 SRoot
Tst 1842 215.2 238 216.6 309.2 131.6 242.8 2137 Sindex
Trn 50 973 196 63.6 60.9 58 95.6 1424 Bin12
M098 val 656 59.4 70.9 74 64.9 56 66.3 75.7 Sindex
Tst  364.5 2435 406.8 246.1 330 467.1 4413 476.1 Bin11
T 5889.6 5258 5337 7237.9 57623 52635 8180 6556.6 Bin1l
M100 val  4599.7 31305 3399 36716 3366.1 3103 7189.8 5835.0 Slndex
Tst  4069.8 4818.9 3749.2 4578.2 4484.9 3993.7 3309.6 4311.8 SRoot
T 12507 764.8 2316.7 1088.8 15736 930.4 1455.6 11223 Binll
M102 val 18563 18615 2104.7 1961.4 1605.8 1309.1 2166.1 2765.5 Sindex
Tst  1324.8 1067.1 1893.7 1699.1 1362.9 1315.3 2047.8 1539.1 Bin11
T 6466 592.8 560.5 569 529.4 682.5 11838 815.9 SinCos

M105 Vval 4513 644.2 488.9 3385 386.3 355.5 682.9 1214.8 Int
Tst 8442 11395 558.1 506.7 664.6 492.6 818.1 790.6 Sindex
Tm 1107 82.8 104.6 82.8 84.2 95.6 2576 2013 Bin11
M107 va 124 745 792 8LS 764 768 2015 1257 gini
Tst 1776 163.9 136.2 144.1 123.7 142.1 109.6 1135 SRoot
Trn 5845.8 5395.9 5719.6 5079.9 50254 4502.7 77433 6020.7 Sindex
M110 val 64726 4789.7 5774.6 4974.2 3894.1 4409.1 83926 10400.2 SinCos
Tst  3484.6 3273.6 3894.4 7578.4 6546.4 5851.6 4658.5 42817 Bin11
Tm 3509 307.9 2231 278.4 2418 329.9 468.2 4173 Bin12
Mi111 va 1191 967 781 1465 137 908 98.1 1902 Bin12
Tst 3307 201.2 205.6 489.3 319.4 262.3 234.9 243.7 Bin11
T 119.8 742 265.2 108.1 1313 132.1 1305 1135 Bin1l

M112 va 591 876 1059 857 857 6L5 8L7 1208 AR
Tst 901 132.4 76.3 1771 116.7 53.2 97 63.6 Sindex
Tm 12184 2795.8 582.6 1976.8 1275.2 1780.7 16085 2178.9 Bin12
M113 Val 809.6 722.9 698.4 837.9 874.1 553.2 641.7 1019.3 Sindex
Tst  1350.1 1330.2 1468.2 1525.3 1678.2 979.6 978.6 1233.8 SRoot
Trn  1619.3 989.9 730.7 879.8 1279.9 884.3 1381 757.5 Bin12
M124 val 8842 6107 509 7617 6709 7746 8228 11939 B2
Tst  1757.3 878.4 556.8 1130.7 1032.8 972.7 764.1 832.5 Bin12
T 4719 265 312.8 304.2 3108 305 440.9 a718 Bin1l
M125 va 2243 1645 1367 2564 1992 1928 1935 2486 Bin12
Tst 3734 3774 385.1 365.8 433.2 3315 4726 347.4 Sindex
Tm 779 496 45.9 108.8 95.4 71 216.7 103.4 Bin12
M130 val 693 566 555 563 55.9 563 803 1313 gin12
Tst 4s 55.8 55.4 63.4 47.8 39.7 74.6 43.9 Sindex
Trn 309 2446 2519 4275 2113 368.2 3636 3975 SinCos
M138 Vval 189.8 192 145.8 2204 174.2 170.4 1975 237.2 Bin12
Tt 699.3 456.6 592.2 698.5 698.2 780.1 712.5 613.4 Bin11

Tm 1254 1093 975 74 78.8 105.4 1226 1023 nt
M140 val 76.2 65.4 62 5.2 67.4 714 687 708 Bin12
Tst  170.8 151 1311 200.6 1815 127.4 122.9 128.4 SRoot
Tm 2055 156 1523 230.7 6217 636.2 5163 3559 Bin1l
M141 val 293.1 236.5 2318 224.5 292.8 2554 2234 324.6 SRoot
Tt 563 831.8 894.6 676.5 599.6 659 517.5 673.1 SRoot
Tm 5099 396.5 807.3 414 363.9 475.7 10741 535.9 SinCos
M142 va 3524 2689 3222 3337 2624 3037 2756 3366  SinCos
Tst  790.1 825.4 743 676.1 551.9 804.7 1061.8 859.0 SinCos
Trn 1452 1249 1182 130.1 1126 1258 140 144.1 SinCos
M151 val 95.7 77.3 786 93.7 93.1 67.1 103.2 110.6 Sindex
Tt 2249 106.6 143.2 295.5 165.7 148.9 163.6 156.9 Bin11

M152 Tm 1163 1419 187.6 1311 1202 137.4 1439 1366 AR

Page 136



Time Series Set AR Bin1l Bin12 Int SinCos Sindex SRoot EXSM Best
Val 924 82 81.6 97.5 87.9 65.9 108.1 96.4 Sindex
Tst 501.9 121.5 168.9 179.9 132.5 130.4 155.3 134.0 Binl1l

Validation errors are underlined and test errors are marked in bold. For each time series the best model for
the training, validation, test set is identified.
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5 Forecasting with Neural Networks:
from low to high frequency time
series

Abstract

Prior research in forecasting time series with Artificial Neural Networks (ANN) has provided
inconsistent evidence on their predictive accuracy. ANNs have shown only inferior performance on
well established benchmark time series of monthly, quarterly or annual frequency. In contrast, ANN
have shown good accuracy in electrical load forecasting on daily or hourly time series, leading to
successful applications. While this inconsistency has been traditionally attributed to the lack of a
reliable methodology to model ANNs, the particular data properties of high frequency time series
may be equally important. High frequency time series of daily, hourly or even shorter time intervals
pose additional modelling challenges in the length and structure of the time series that need the use
of novel methods. This analysis aims to identify and contrast the challenges in modelling ANN for
low and high frequency data in order to develop a unifying forecasting methodology tailored to the
properties of the dataset. A set of experiments in three different frequency domains of daily, weekly
and monthly data of one empirical time series of cash machine withdrawals is conducted, using a
consistent modelling procedure. While this analysis provides evidence that ANN are suitable to
predict high frequency data, it also identifies a set of challenges in modelling ANN that arise from
high frequency data, in particular in specifying the input vector, that will require specific modelling

approaches for high frequency data.
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Preface

This paper explores the modelling challenges that appear in forecasting higﬁ frequency time
series. Based on the results of this paper, the paper in the following chapter, which explores the
specification of the input vector for ANNs in high frequency forecasting problems, was motivated. A
preliminary version of this paper, with reduced dataset, was presented in the peer-reviewed
conference International Joint Conference on Neural Networks 2009 (IJCNN 2009) and can be found
in the proceedings under the title “Input-variable Specification for Neural Networks - an Analysis of
Forecasting low and high Time Series Frequency”. Furthermore, parts of the preliminary work for
this study were presented in the peer reviewed conference European Symposium on Time Series
Prediction 2008 (ESTSP 2008) and are included in the proceedings under the title “Automatic
modelling of neural networks for time series prediction — in search of a uniform methodology across
" varying time frequencies”, which was developed in a separate paper named “Automatic modelling of
neural networks for time series prediction across varying time frequencies”, addressing the issue of
automatic ANN modelling across different time series frequencies. This is submitted to the

Neurocomputing journal.

5.1 Introduction

Artificial Neural Networks (ANN) have been widely applied in forecasting research and
practice (Zhang, Patuwo et al. 1998). A recent literature survey reveals several publications on ANNs
in time series prediction, with successful applications across various forecasting domains
(see e.g. (Hill, O'Connor et al. 1996; Adya and Collopy 1998)), in academic research (Zhang 2001;
Zhang, Patuwo et al. 2001) and in practice (Hippert, Bunn et al. 2005). In management research, the

majority of publications have limited their evaluation of ANN to predicting low frequency data. A
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literature review’ identified that 68.8%° of the published ANN papers analysed the performance of
ANN on low frequency time series, i.e. time series of annual, quarterly, monthly or weekly
observation intervals. In contrast, the evaluation of ANN in predicting time series of higher
frequency has received lesser attention, despite the widespread existence of high-frequency data in
electrical load forecasting (Cottrell, Girard et al. 1998; Darbellay and Slama 2000; Taylor, de Menezes
et al. 2006), traffic predictions (Dougherty and Cobbett 1997; Dia 2001), finance (Lam and Lam 2000;
Amilon 2003; Cao, Leggio et al. 2005) and macroeconomics (Gradojevic and Yang 2006) and evidence

of promising results (Hippert, Bunn et al. 2005).

Forecasting high frequency time series is usually regarded as a different type of forecasting
problem compared to low frequency forecasting (Taylor, de Menezes et al. 2006). In statistics, time
series of daily or shorter time intervals are generally characterised as high frequency data, however
there is no strict or fixed definition (Engle 2000). High frequency data pose a new set of forecasting
problems, that make conventional methods inappropriate (Granger 1998). They exhibit high
sampling rate that reveals additional information and patterns in time series, which require new
methodologies to explore and forecast (Taylor, de Menezes et al. 2006). Research in econometrics

and finance by Markham and Rakes and Hu et al. (Markham and Rakes 1998; Hu, Zhang et al. 1999)

” The review was carried on eight well established management science and forecasting journals. In
alphabetical order these are: Computers and Operations Research, Decision Sciences, European Journal of
Operational Research, International Journal of Forecasting, Journal of Forecasting, Management Science, Naval
Research Logistics and Operations Research. These journals have high ratings according to both in the Vienna
list ranking and the 1Sl Web of Science impact factor.

¥ In this calculation applications that are traditionally use only high frequency datasets, like electricity load
forecasting were excluded.
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suggests that ANN can perform particularly well on high frequency data due to the specific data
properties, which has been supported by some empirical evidence in electrical load forecasting
(Hippert, Bunn et al. 2005). However, ANN have not been analysed regarding their adequacy and
challenges in predicting data of different time frequencies, leaving both fields of low-frequency and

high-frequency time series disconnected with inconsistent findings.

The aim of this study is to explore the accuracy and modelling challenges for ANN that arise
from different levels of time series frequency. A set of experiments to predict 11 empirical time
series of daily cash withdrawals taken from the NN5 competition® is conducted. These time series
are aggregated to weekly and monthly levels of time frequency. This aggregation enables an analysis
of the changes in the performance of ANNs and test for the appearance of new challenges in the
modelling process during the transition from low to high frequency data. Data properties have a
direct impact on the specification and length of the input vector for ANN (Balkin and Ord 2000; Curry
2007). Consequently, a set of alternative methodologies for selecting the time-lagged input variables
and their impact on forecasting accuracy is evaluated. Simultaneously, it is investigated whether the
changes in the frequency affect the performance of the input vector specification methodologies,
which is overlooked in the literature. The accuracy of the ANN is compared to statistical benchmark
methods in each of the frequen.cy domains. This allows testing whether the difference between the
accuracy of the ANN and the benchmarks, if any, is consistent for different frequencies. Lastly, top-
down and bottom-up time aggregation accuracy comparisons are done, in order to evaluate

potential increases in accuracy in lower time frequency from predictions using high-frequency data

9 . aat
www.neural-forecasting-competition.com

Page 141


http://www.neural-forecasting-competition.com

and vice-versa. This way it is explored if there any gains from using data of higher frequency in

forecasting with ANN.

The paper is organised in six sections. Section 5.2 briefly introduces the methods and
different methodologies of input-vector specification for ANN, followed by information on the time
series and the experimental design in section 5.3. Section 5.4 discusses the results for each
frequency domain and across frequency domains using a bottom-up comparison. In section 5.5
characteristic modelling challenges of ANN on different time frequencies are discussed, followed by

conclusions and further research in section 5.6.

5.2 Forecasting with Neural Networks

5.2.1 Multilayer Perceptrons for Time Series Prediction

The most common ANN model is the Multilayer Perceptron (MLP) (Zhang, Patuwo et al.
1998), which is the type of ANN is used in this study. The advantage of MLPs is that they are well
researched regarding their properties and their proven abilities in time series prediction to
approximate and generalise any linear or nonlinear functional relationship to any degree of accuracy
(Hornik 1991; Zhang 2001; Zhang, Patuwo et al. 2001) without any prior assumptions about the
underlying data generating process (Qi and Zhang 2001), providing a powerful forecasting method
for linear or non-linear, non-parametric, data driven modelling. In univariate forecasting feed-
forward architectures of MLPs are used to model nonlinear autoregressive NAR(p)-processes, using
only time lagged observations of the time series as input variables to predict future values (Crone
and Kourentzes 2007), or intervention modelling of NARX(p)-processes using binary dummy

variables to code exogenous events as explanatory intervention variables. Data are presented to the
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network as vectors of a sliding window over the time series history. The neural network learns the
underlying data generating process by adjusting the connection weights w = (B, y) to minimise an
objective function on the training data to make valid forecasts on unseen future data

(Lachtermacher and Fuller 1995). A single hidden layer MLP is employed, which is expressed as:
H !

Af(‘X’W):ﬂO+Zﬁhg(701+zy/ﬂxl)' (51)
h=1 i=0

X = [Xo, X1, ..., Xa] is the vector of the lagged observations (inputs) of the time series and w = (B, y) are
the network weights with B = [By, B2..., Br] and y = [y, V2..., Yuil. The biases for each node in the
hidden layer are yg and in the single output node B,. | and H are the number of input and hidden
nodes in the network and g(-) is a non-linear transfer function (Anders, Korn et al. 1998). Common
transfer functions for ANN are the sigmoid (logistic) and the hyperbolic tangent (Zhang, Patuwo et al.
1998) and for this analysis the later is used. Modelling a ANN for time series data requires decisions
on a number of architectural parameters, including the number of input nodes, hidden layers, nodes
per hidden layers, training parameters of learning algorithm, learning rates, early stopping criteria
etc. An adequate ANN architecture is routinely determined by using simulations on the time series; a
set of candidate MLPs is trained using different architectural parameters and the architecture which

shows the lowest in sample error is selected.

5.2.2 Input Variable Selection for Time Series Prediction

While the specification of ANN architectures is still under discussion in research (Zhang,
Patuwo et al. 1998; Anders and Korn 1999) multiple publications have identified the selection of the
input vector as one of the most important modeling decision for the accuracy of ANNs (Zhang 2001;

Zhang, Patuwo et al. 2001). As time series of different frequency may display varying time series
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patterns, including the appearance of multiple levels and forms of seasonality, changes in the
magnitude of seasonality, trend and randomness, a suitable input vector must be identified for each
time series frequency. Consequently, multiple different approaches of input variable selection are

evaluated for each time series of a specific time frequency.

Several alternative input variable specification methodologies to model the ANNs are used
for each time series. Different methodologies to specify the input vector of a MLP have been
suggested and explored for low frequency data, but without adequate evaluation on high-frequency
data. In this study, four different methodologies are used, aiming to reflect possible interactions of
the time series frequency with the input-vector methodology and also to evaluate how the time
series frequency affects the performance of the different methodologies. The most common
approach of input variable selection for ANN applies a stepwise linear regression model with
hypothesis testing to identify significant time lags and use those to specify the input vector for the
ANN (Swanson and White 1997; Qi and Maddala 1999; Dahl and Hylleberg 2004), despite evidence in
econometrics and time series modelling that this may lead to suboptimal and misspecified input
variables. Following the findings of Kou?entzes and Crone (2008) backward regression is used in a
similar fashion to stepwise. As an alternative, the input vector is specified following the popular
statistical Box-Jenkins methodology of ARIMA modelling as adapted for ANNs (Lachtermacher and
Fuller 1995; Ghiassi, Saidane et al. 2005). The autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of the time series is analysed in order to identify and select
significant time-lagged realisations. Significant lags of both ACF and PACF are used as inputs for the
ANN. Feed-forward MLP model autoregressive NAR(p)-processes (without explicit MA(q)
components of a moving average process), the inputs can be limited to the significant lags of the

PACF (Moshiri and Brown 2004). The conventional algorithm to calculate the PACF utilises the Yule-
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Walker equations, but different ways to approximate the true PACF exist (McCullough 1998).
Kourentzes and Crone (Kourentzes and Crone 2007) demonstrated that the least squares estimation

of the PACF (Makridakis, Wheelwright et al. 1998) performs better than the Yule-Walker algorithm.

If seasonal information is identified in the time series special attention is required to obtain
good performance with ANNs (Nelson, Hill et al. 1999; Zhang and Kline 2007). Depending on the
nature of the seasonality, deterministic or stochastic, different type of modelling should be done. If
the seasonality is stochastic then the literature suggests deseasonalising the time series, using
seasonal differences (Zhang and Kline 2007), whereas if it is of deterministic nature coding using

seasonal dummy variables is to be preferred (Crone and Kourentzes 2009).

5.3 Experimental Design

5.3.1 Time Series Data

The experiments evaluate the effect of increasing time frequency on a set of 11 time series
of daily cash withdrawals from cash machines in the UK, taken from the NN5 competition dataset.
These 11 time series are the reduced competition subset, which was defined by the organisers (ID#
NN5-101 to NN5-111). The daily time series consists of two years of data, beginning March 18" 1996
and ending May 17" 1998. In order to avoid the creation of inconsistencies from the aggregation of
the data, the first incomplete month that cannot be aggregated is trimmed from the time series and
from the new starting date of April 1% 1996 two complete years are used. The new dataset has time
series of 24 months or 728 days. The trimmed time series contain missing values, which are imputed
by the average of the neighbouring observations. To run experiments on weekly and monthly data of

lower frequency the adjusted daily time series is aggregated by summing cash withdrawals over
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weeks and calendar months respectively. A plot of the first two daily time series and the series

aggregated to weekly data and monthly data is provided in figure 5.1.

I.a. NN5-101 Daily I.d. NN5-102 Daily
200 400 600 200 400 600
Days Days
I.b. NN5-101 Weekly l.e. NN5-102 Weekly
300
150 -
200
100
100
20 40 60 80 100 20 40 60 80 100
Weeks Weeks
l.e. NN5-101 Monthly I.f. NN5-102 Monthly
1000
700
600 800
500
600
5 10 15 20 5 10 15 20
Months Months

Fig. 5.1: Time series NN5-101 and NN5-102 in daily (a, c), weekly (b, d) and monthly (c, e) frequencies

A visual analysis of the time series reveals various seasonal patterns. In order to identify

single or multiple seasonalities of different length on the time series of different frequency, an

analysis of ACF/PACF-plots, periodograms and visual inspections of seasonal year-on-year diagrams

were used, of which figure 5.2 shows the seasonal plot for the daily time series NN5-001.

The seasonal plot indicates a strong day-of-the-week seasonal pattern, plus some slight

instationarity of the level of the stacked weekly lines, which can be attributed to a second annual

pattern. Both periodogram and analysis of the ACF/PACF confirm these patterns, with the day-of-

the-week pattern obviously missing in the data with lower frequencies of weekly and monthly
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observations. The yearly season provides some challenges in identification from the truncated time

series, as there are only two years available, from which a large part is used for validation and test

set, therefore it will be difficult for the models to capture the double seasonal effect.

Using the

Canova-Hansen test (Canova and Hansen 1995) all the seasonalities are identified as deterministic.

Mon Tue

Fig. 5.2: Seasonal week-on-week diagram for the daily time series NN5-101.

Table 5-I: UK bank holidays for each time series

Bank Holiday 101 102
New Year Day

Good Friday Yes
Easter Monday

May Day

May Bank Holiday

August Bank Holiday

Christmas Holiday Yes  Yes
Boxing Day

Wed

103
Yes
Yes
Yes

Yes

Yes

Thu
Day ofthe week

104

Yes

NN5-101 Daily

Fri

Time Series
105 106 107

Yes Yes
Yes Yes Yes

Sun

108

Yes

Yes

109

Yes

110
Yes
Yes
Yes

Yes

Yes

111

Yes

The dataset originates from the United Kingdom and the effect of bank holidays is apparent,

especially during Christmas. The eight UK bank holidays are coded using daily binary dummy

variables and are aggregated in weeks and months for the lower frequency time series. For each

time series, which originate from different geographic locations, the relevant bank holidays are

identified through means of regression analysis. The results are summarised in table 5-I, where it
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becomes obvious that Christmas affects the cash withdrawals for all time series, but the behaviour

of the remaining bank holidays is not homogeneous across all time series.

5.3.2 Experimental setup

The setup of the forecasting horizon, error metrics, and test dataset is guided by the design
of the original NN5 competition. The forecasting horizon is h=1, 2, ..., 56 days into the future, or the
equivalent of 1 to 8 weeks and 1 to 2 months for the lower time frequencies respectively in order to
allow top-down and bottom-up comparisons of the accuracy across a homogeneous test set despite

different time frequencies.

The symmetric mean absolute percent error (SMAPE) is used to evaluate and compare the
competing modelling approaches, as in the NN5. It computes the absolute error in percent between

the actuals X; and the forecast F, for all periods t of the test set of size n=h for each time origin:

SMAPE =+ X~ F| (52)
“n g\ (x|+E])2) '

Note that way sMAPE is calculated in this study is different from the widespread sMAPE
formula (Makridakis and Hibon 2000) that was also used in the NN5 competition. It is corrected to
eliminate the possibility of negative errors that the widespread form of sMAPE can produce (Chen
and Yang 2004; Hyndman and Koehler 2006). In addition to sSMAPE the symmetric median absolute
percent error (SMdAPE) is considered, which instead of the mean uses a median to summarise the

errors, as:

B X, - F] 3
SMMPE_#IQ{W . ( . )
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Both the validation and test datasets contain 56 days each (or the equivalent of 8 weeks or 2
months for different time frequency). The size of the test set is again set to match the NN5
competition setup. The accuracy of the competing ANN models is evaluated for statistically
significant differences (at 5%) using the nonparametric Friedman test and the Nemenyi test. These
test are selected to facilitate an evaluation of nonparametric models without the need to relax the

assumptions of ANOVA or similar parametric tests (Demsar 2006).

5.3.3 Neural Network Architectures

The evaluation encompasses MLP models using different input-vector specifications and
statistical benchmarks to compare the predictive accuracy of different approaches. All MLP models
use identical setup, with the exception of varying the number of inputs and hidden nodes. The input

lags are identified with the four different alternatives outlined in section 5.2,
1. Stepwise regression analysis, named ANN-Reg(Step).
2. Backward regression analysis, named ANN-Step(Back).
3. ACF and PACF information, named ANN-ACF&PACF.
4. PACF information, named ANN-PACF.

In addition to the lags identified by the four methodologies, additional binary variables for
the identified bank holidays are provided to the ANN. Furthermore, since the identified seasonality is
deterministic, pairs of sine-cosine dummy variables are used to code it. These dummies are

constructed as:

78 H= Sm(?ﬂ) , (5.4)
S
' Page 149



2m
w,(t) = cos[?), (5.5)

with S being equal to the seasonal length that is coded and t = 1, ..., n with n being the length of the

time series.

To identify the number of hidden nodes for each frequency a grid search from 1 to 16
hidden nodes with a step of 1 is performed. The resulting number of hidden nodes and the average
number of the identified lags are provided in table 5-Il. All hidden nodes use hyperbolic tangent

activation function.

Table 5-11: ANN average number of lags and number of hidden nodes

ANN-

Frequency ANN-Reg(Step) ANN-Reg(Back) ANN-ACF& PACF PACF # Hidden nodes
Daily 9.55 1091 26.18 14.36 3
Weekly 1* 1.64* 4.27* 1.91* 3
Monthly 0.27* 0.73* 0.73* 0.64* 14

* There are inputs that no lags were identified and only the dummy variables are used.

All MLPs have a single output node with a linear activation function. The topology of the

networks for each frequency is provided in figure 5.3.

3.a. Daily Frequency 3.b. Weekly Frequency 3.c Monthly frequency

ARRY
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Fig. 5.3: MLP topologies with variable number of inputs for daily (a), weekly (b) and monthly (c) frequencies.
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All the networks are trained using the Levenberg-Marquardt algorithm, which requires setting the
Hm and its increase and decrease steps. Here p=107, with an increase step of pi=10 and a
decrease step of udec=10'1. The maximum training epochs are set to 1000. The training can stop
earlier if p v becomes equal of greater than um..,x=1010 or the validation error increases for more than
50 epochs. This is done to avoid over-fitting. When the training is stopped the network weights that
give the lowest validation error are used. Each MLP is initialised 40 times with randomised starting
weights to counter the stochasticity of the optimisation and to provide an adequate sample to
estimate the distribution of the forecast errors in order to conduct the statistical tests. The MLP
initialisation with the lowest error for each time series on the validation dataset is selected to
predict all values of the test set. Lastly, the time series are linearly scaled between [-0.5, 0.5]. Note
that the dummy variables are not scaled, since by construction they are within the bounds of the
hyperbolic tangent function of the hidden nodes. The scaling is set like that to allow the ANN models

to capture weak trends that may exist in the data (Kourentzes and Crone 2007).

5.3.4 Statistical Benchmark Methods

Any empirical evaluation of time series methods requires the comparison of their
performance with established benchmarks. This is very important for ANN studies, since it is crucial
to justify the need for the extra modelling complexity that the MLPs require, which is often
overlooked in the ANN literature (Adya and Collopy 1998). The accuracy of the MLPs across all
frequencies is compared against a set of statistical benchmark models. Nonseasonal and seasonal
versions of the naive and exponential smoothing family models are used. The nonseasonal naive
model is the random walk model and is named in this analysis as Naive. The seasonal naive model

uses a seasonal lagged observation, instead of used the previous x..; observation as a forecast. For a
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time series X = [xo, Xy, .., X,] with a seasonality S and forecast horizon h the seasonal naive forecast is

calculated as:

X =X, ps - ' (5.6)

t+A

Two seasonal patterns were identified, a day of the week and an annual, which means two different
seasonal models can be modelled. Naive S1 will model the day of the week seasonality that can only

be modelled for the daily time series and Naive S2 will model the annual season.

Exponential smoothing models are fitted according to the suggestions of the literature
(Gardner 2006) with the only difference that in this study a nonseasonal exponential smoothing
model is used as well. Again, two different seasonalities are modelled, one for the day of the week
season and one for the annual season. Note that the annual seasonality includes the day of the week
season. All the time series are tested for presence of trend using the Cox-Stuart test™ (Cox and
Stuart 1955) and the appropriate exponential smoothing model is fitted. The three models are
named: EXSM for the nonseasonal exponential smoothing model, EXSM S1 for the day of the week
seasonal model that is only fitted to the daily time series and EXSM S2 for the annual seasonality. In

total six statistical benchmark models are used.

% The Cox-Stuart test is an extension to the sign test and tests if the level of later observations of a vector tend
to be different than the earlier ones. A vector is split iﬁ the middle forming two new vectors. Pairwise
comparisons between the vectors provide the total number of increases and decreases in the values of each
pair. A sufficiently large number of increases or decreases indicates the presence of trend. The null hypothesis
is that there is no trend in the level.
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5.4 Results

5.4.1 Comparisons between ANN models

The stochastic nature of the training of ANNs makes it problematic to compare the accuracy
of ANN directly or even replicate the observed accuracy of an analysis, since different training
initialisations will produce different results. One way to overcome this problem is to use all the
different training initialisations, instead of only the best, and perform statistical tests on the
complete distribution of the errors (Dem$ar 2006). In order to do this, first the Friedman
nonparametric test is used and if at least one model is found significantly different from the others,
then the Nemenyi test is employed to get the detailed ranking of the different models. The results of
the Friedman test are provided in table 5-1ll, where one can observe that only for the daily frequency
there is at least one ANN model that is significantly different from the rest. Note that the p-values of
the Friedman test are identical for both SMAPE and sMdAPE for the monthly time series. This
happens because both error measures give exactly the same figures, since the test set is only two

months long.

Table 5-11I: Friedman test p-value

Time Series SMAPE sSMdAPE
Daily 0.000 0.000
Weekly 0.054 0.060
Monthly 0.620 0.620

The boldface p-values highlight the cases that the models
are significantly different at 5% level.

in the light of these results the Nemenyi test is used. The results are provided in table 5-IV.
Note that the Nemenyi test does not output a p-value; therefore the ranking of the models at 5%
significance level are provided, with rank 1 being the best. The models that are found with no

significant differences are given the same rank. The ranking of the models is not constant across the
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different frequencies, but they show consistent ranking between the sMAPE and the sMdAPE. The
regression based methodologies are not significantly different and perform best for the daily time
series, followed by the ANN-PACF. The performance of the ANN-ACF&PACF is significantly worse
and ranks last. For the weekly and the monthly time series the Friedman and Nemenyi tests do not
agree. In this case the results of the Friedman test should be preferred (Demsar 2006) and the
models should be considered to perform similarly with no statistically significant differences. From
this comparison it becomes clear that time series frequency is a significant factor for the

performance of the input variable selection methodologies and should be explored in more detail.

Table 5-1V: Nemenyi test results - rank of ANN models
Test set SMAPE

Model Daily Weekly* Monthly*
ANN-Reg(Step) 1 2 1
ANN-Reg(Back) 1 2 2
ANN-PACF&ACF 3 3 2
ANN-PACF 2 1 2
Test set SMAAPE
Model Daily Weekly* Monthly*
ANN-Reg(Step) 1 2 1
ANN-Reg(Back) 1 2 . 2
ANN-PACF&ACF 3 3 2
ANN-PACF 2 1 2

In each column, models that are highlighted with boldface have no statistically
significant differences at 5%; *Friedman test indicates that there are no statistically
significant differences among the models at 5% for monthly time series

5.4.2 Comparisons against statistical benchmarks

The performance of the ANN is evaluated against six statistical benchmark models across all

frequencies for both error measures. The results of this comparison are summarised in tables 5-V

and 5-VI for sMAPE and sMdAPE respectively.
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Table 5-V: SMAPE results for all ANN and benchmark models

Daily Weekly Monthly

Model Train Valid. Test Train Valid. Test Train Valid. Test
ANN-Reg(Step) 0.204 0.286 0.211 0.125 0.088 0.123 0.070 0.014 0.120
ANN-Reg(Back) 0.217 0.293 0.209 0.109 0.087 0.103 0.093 0.012 0.096
ANN-PACF&ACF 0.236 0.301 0.233 0.125 0.085 0.115 0.105 0.020 0.139
ANN-PACF 0.225 0.299 0.229 0.114 0.083 0.108 0.125 0.021 0.137
Naive 0.474 0.454 0.402 0.177 0.208 0.152 0.142 0.155 0.111
Naive S 0.316 0.415 0.226 .- - - - - -

Naive S2 0.265 0.286 0.290 0.137 0.138 0.146 0.097 0.093 0.104
EXSM 0.362 0.432 0.369 0.153 0.182 0.117 0.127 0.143 0.133
EXSM S1 0.262 0.369 0.221 - - - - - -

EXSM S2 0.105* 0.323 0.273 0.050* 0.217 0.128 0.031* 0.076  0.095

* The observed training error is misleading and is due to the lack of the training data and the model initialisation.

Table 5-VI: SMdAPE results for all ANN and benchmark models

Daily Weekly Monthly

Model Train Vvalid. Test Train Valid.  Test Train Valid.**  Test**
ANN-Reg(Step) 0.127 0.175 0.149 0.082 0.061 0.092 0.056 0.014 0.120
ANN-Reg(Back) 0.147 0.186 0.149 0.078 0.060 0.092 0.082 0.012 0.096
ANN-PACF&ACF 0.150 0.194 0.159 0.081 0.054 0.146 0.091 0.020 0.139
ANN-PACF 0.137 0.185 0.151 0.081 0.056 0.086 0.111 0.021 0.137
Naive 0.395 0.408 0.324 0.135 0.218 0.136 0.121 0.155 0.111
Naive S 0.202 0.305 0.174 - - - - - -

Naive S2 0.162 0.167 0.179 0.114 0.115 0.115 0.091 0.093 0.104
EXSM 0.303 0.374 0.318 0.117 0.175 0.098 0.114 0.143 0.133
EXSM S1 0.176 0.291 0.172 - - - - - -

EXSM S2 0.000** 0.207 0.169 0.000** 0.185 0.091 0.000** 0.076 0.095

* The observed training error is misleading and it is due to the lack of the training data and the model initialisation; **
Both validation and training set are two months long which explains why the mean and the median are equal.

The ANN errors that are presented in these tables are from the MLP initialisations with the
lowest error on the validation set. The comparison between the different ANN models is presented
in the previous section in more detail. There are some small deviations in the results of tables 5-V
and 5-VI from the ranking presented in table 5-IV and are due to the effect of the random training
initialisation. When comparing against the benchmarks only the best fitted ANN is used and not the

complete error distribution of the ANN initialisations, as this would be similar to comparing
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suboptimal statistical models. The multiple initialisations ensure a wide search for good weights for

the MLP models and the best model is evaluated against the benchmarks.

It is clear by looking at the benchmark models that those that capture the seasonality
perform best. Furthermore the forecasts produced by the EXSM S1 and EXSM S2 models across all
frequencies outperform the Naive S1 and the Naive S2 models in the test set. For the case of the
weekly time series for the SMAPE this does not seem to be the case and the nonseasonal EXSM is
the most accurate benchmark. This can be attributed to the limited in-sample data to correctly
model the annual seasonality. The best performing ANN is compared against the most accurate
benchmark models across frequencies to investigate which performs best and whether the ranking is
consistent across frequencies. For both the daily and weekly time series case the ANN models
outperform the benchmarks, but the difference between them becomes smaller as the frequency
decreases, to the point that for the monthly time series the best benchmark is more accurate than

the best ANN model. The differences between the best models are illustrated in table 5-VII.

Table 5-VII: Differences between best ANN and best benchmark

Test set SMAPE
Time Series Best ANN Best Benchmark Difference
Daily 0.209 0.221 -0.012
Weekly 0.103 0.117 -0.014
Monthly 0.096 0.095 0.001
Test set SMdAPE
Time Series Best ANN Best Benchmark Difference
Daily 0.149 0.172 -0.023
Weekly 0.086 0.091 -0.005
Monthly 0.096 0.095 0.001

The time series frequency seems to be important in determining the performance of ANN in
forecasting. Consulting table 5-Il one can see that for higher frequencies more autoregressive

information is captured in the longer input vectors, which as expected helps the networks to
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approximate better the underlying data generatihg process of the time series and achieve higher
accuracy. Note that for the monthly frequency case the average input vector length is below 1 (table
1), indicating that several models had no autoregressive information available. This result can help to
explain the evidence of good results in high frequency electricity load forecasting (Hippert, Bunn et
al. 2005) and the bad performance of ANN in the low frequency data M3 competition (Makridakis
and Hibon 2000). Furthermore, it demonstrates motivates further more systematic research of ANN

applications in high frequency time series problems.

5.4.3 Top-down and bottom-up comparisons

With this experiment the accuracy gains (or losses) in using high frequency data against the
more common low frequency data are evaluated. The forecasts created at different frequencies are
compared, measuring the errors in all three daily, weekly and monthly time granularities. This way it
is possible to measure directly at which frequency the forecasts are more accurate. To achieve this,
the daily forecasts are aggregated to weekly and monthly and similarly the weekly and monthly
forecasts are broken down to daily and weekly buckets respectively. Afterwards, the errors in all
different frequencies are measured, essentially performing a time-wise top-down and bottom-up
comparison. The results across all time series are consistent so here a summarised version of the
average sMAPE and sMdAPE across all time series for all the ANN models is presented in table 5-VIil.
For both sSMAPE and sMdAPE we can see that when we measure at daily time frequency the
forecasts created on daily data are the most accurate. The reason behind this is that only the models
that have used daily data are able to capture the day of the week‘pattern that is present in all the
time series. However, for both weekly and >monthly data the most accurate forecasts are created by

using weekly data, followed by daily data and last monthly data. This is partially explained by two
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different reasons, the effect of the outlier coding and the applicability of the input vector selection

methodologies. Both will be discussed in detail in the following section.

Higher frequency data can provide extra detail which may be lost in the lower frequencies,
that aids in the creation of better forecasts, as the comparison in table 5-VIIl indicates. As a
consequence, one may consider forecasting on higher frequency data even if the decision domain is
on a lower time series frequency. This further raises the importance of robust modelling of MLPs on

high frequency data, in particular when calendar effects are present in the time series.

Table 5-VIII: Average test set SMAPE

Model used to create forecast

Frequency Daily Weekly Monthly

Daily 0.220 0.363 0.400
Measured at  Weekly 0.137 0.112 0.156

Monthly 0.120 0.091 0.123

Average test set SMdAPE
Model used to create forecast

Frequency Daily Weekly Monthly

Daily 0.159 0.305 0.360
Measured at  Weekly 0.113 0.086 0.141

Monthly 0.120 0.091 0.123

Each row shows the errors at the measured frequency and each column
shows the errors at the frequency that the forecasts were calculated

5.5 Discussion

5.5.1 OQutlier coding

In the previous section it was argued that part of the reason that the weekly frequency
forecasts performed better than the daily ones was due to how the outliers, and more specifically
the calendar effects, are coded. Going from monthly to daily frequency the time series has much
more detail that allows the observation of how certain irregularities, like the calendar effects,

happen. For the NN5 dataset there is a significant effect of the Christmas bank holiday for all time
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series. What one would expect is that this bank holiday would have a spill-over effect to the

neighbouring days, which is obviously not observed in the weekly or monthly data. This spill-over

effect was not captured by the binary dummies that were used to code the outliers as it is seen in

figure 4. In this figure the forecasts and the time series for the validation set of NN5-103 are plotted.

The validation set is provided since Christmas occurs then. Figures 5.4.a - 5.4.c have daily, weekly

and monthly data respectively. In each figure the actual data are plotted together with the forecasts

created in each frequency. These forecasts were obtained by following the top-down bottom-up

approach that was discussed in the previous section. To keep the figure easy to interpret only the

forecasts only from the ANN-Reg(Back) model are provided.

Figure 4.a. Daily Data Figure 4.b. Weekly Data Figure 4.c. Monthly Data
300 1000
uS— Weekly uS— Weekly -B— Weekly
-V— Monthly uV— Monthly Monthly
Data Data Data
800
200
700
150 600
10 20 30 40 50 1 2 3 4 5 6 7 8
Months

Fig. 5.4: Forecasts forNN5-103 ofthe ANN-Reg(Back) model across different frequencies.

It can be easily seen in figures 5.4.b - 5.4.c that the outliers are more accurately coded when

the forecasts are created in the same frequency, since a single value in the binary dummy is enough

to cover its whole duration. The same is not true for the forecasts created in the daily frequency.

There is a very strong lead-in effect which is not captured by the binary dummy variable that

worsens the accuracy of the model before the outlier. Notice that the forecast based on daily data

captures adequately the day of the week pattern away from the outlier, but is not able to fit the data

during the effect of the outlier. The problem is that the effect of Christmas in this case lasts much
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longer than what was coded, therefore in high frequency data dynamic effects due to outliers are
observed, which require a different dummy variable coding. Therefore, it is important to research
alternative coding schemes for outliers that will have to incorporate duration or dynamic

information.

For these experiments the inadequate modelling of the outliers introduced errors and also

made the training of the ANNs harder, thus harming their accuracy.

5.5.2 Input vector identification and the effect of sample size

High frequency data implies large sample size. Daily time series are 30 times longer than
monthly and 7 times longer than weekly for the same time span. The increased length of the time
series impacts the validity of many of the statistical methods that have been developed for exploring
and modelling the time series (Granger 1998). Evidence is provided that ANNs are able to cope with
high frequency data; however their accuracy is harmed by the tools used to construct them. A major
issue for ANN modelling is the identification of a good input vector, as discussed before. There are
several input variable selection methodologies on how to select the correct time lags to build ANNs
and some of these were used in this experiment. However, the statistical tests on which these
methodologies are based fail when dealing with high frequency datasets. For instance for the ACF or
PACF identification, to find which lags are important for the ANN, one needs to identify all the lags
with significant (partial) autocorrelation. A problem that makes this methodology collapse for high
frequency data is that the confidence intervals of the ACF/PACF are connected to the sample size

(Makridakis, Wheelwright et al. 1998), as it can be seen in figure 5.5.
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Fig. 5.5: Effect of sample size on confidence intervals.

As the individual autocorrelations and partial autocorrelations of a time series exhibit a

constant magnitude for a given time series, more lags of the ACF and PACF becoming statistically

significant. Eventually, the confidence intervals become so tight that nearly every lag becomes

significant, an effect that would equally hold for the test of statistical significance used in stepwise

regression. As a result, the length of the input vector would rise drastically with the magnitude of

the dataset. In practice this can be seen in frequencies higher than daily, which makes their

modelling problematic.

To exemplify the effect of sample size while controlling for effects of the information

content, synthetic time series of 120 and 1200 observations are used, the later being ten replications

of the first sample. The results for the PACFs calculated for these two time series are provided in

figure 5.6. It is evident that the ACF of the shorter, low-frequency time series using only 120

observations has far less significant lags than the ACF of the second sample, which uses 10 times

more observations to represent the increased data of a high-frequency time series with similar

information content. This effect can also be observed in the specified input vectors lengths of table

511
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Fig. 5.6: PACF plots of a short (a) and a long sample of an artificial time series (b).

As a result, the methodologies based upon statistical test would construct non-parsimonious
models that depend not on the structure of the data generating process, but merely the sample size.
In addition, the impact of sample size on confidence limits may void best-practice methodologies
developed for low-frequency data for high-frequency time series despite similar time series
patterns. Effects of this are reflected both in the top-down, bottom-up comparisons and in the
different performance between the alternative methodologies to specify the input vector, as
summarised in table 5-1V. Additional research is needed to explore corrections to conventional
methodologies or inventing new ones, in order to extend the use of statistical test as filters in

modelling high frequency data.

5.5.3 Calendar problems

In high frequency data the calendar effects start gaining more importance in contrast to low
frequency forecasting applications. The different behaviour of the calendar effects, like bank
holidays, across different frequencies is already discussed. There are additional issues that arise in
high frequency time series. For the case of weekly data, time series can have irregular seasonal

lengths, sometimes having 52 weeks in a year and sometimes 53 weeks in a year. The same is true

Page 162



for daily data, where every four years there is a leap year with one additional day, potentially
shifting the seasonal pattern by one day. In the experiments in this analysis we had only two years of
data, part of which was not used for fitting the models, so it was impossible to evaluate these
effects. In the literature usually the time series are cleaned free of these effects as a pre-processing
stage (Taylor, de Menezes et al. 2006) before the forecasts are created. However, it is unclear if this
affects accuracy. Also this practice does not provide a solution when cleaning the data is either not
possible or unclear how to do. Therefore, it is important that more research is done on the calendar

effects on high frequency time series, and how these should be modelled.

5.5.4 Computational resources

In modelling high-frequency time series there are particular challenges that warrant
discussion to facilitate further research. A fundamental characteristic of high frequency data — for a
given time span of history — are large datasets. In the preceding experiments, the daily time series is

700% longer than the weekly time series and 3033% longer than the monthly time series.

Due to the increased size of the datasets, modelling MLPs for high frequency data require
additional computational resources. In the experiments an identical methodology was used to
forecast the 11 time series with ANN across the three frequency domains, so that all differences in
processing time were solely caused by the amount of data resulting from the different time
frequencies. The processing times for training the MLPs, with all 40 training initialisations, and
producing the forecasts is provided in table 5-IX. All experiments were run on the same computer
using Matlab and its neural network toolbox v6. The results indicate that the daily time series
experiments required 3524% more time than the monthly equivalent experiments. Even for the

weekly time series the required increase in computational time was of the magnitude of 898%.
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Table 5-1X: Total computational time comparisons

Time Series Seconds* % difference**

Daily 8401 3524%
Weekly 2314 898%
Monthly 232 -

*experiments were run on a tri-core Phenom 8650 @ 2.3 GHz;
**base for % difference is the monthly frequency time

Valid and reliable experiments with ANNs require large scale simulations. Simulations on
high-frequency data will require substantial computational resources. This calls for more efficient
algorithms and the development of robust methodologies to specify the input variables and the
other parameters of the ANNs. Current practice is to run lengthy simulations, following the wrapper
approach, i.e. evaluate several different settings and choose the best. This approach is very hard to
implement in high frequency data for any practical application, since the computational time
involved would make the endeavour impossible. Therefore, it is important that methodologies that
guide the modelling process through data driven analysis are developed, which will be valid for high

frequency datasets.

5.6 Conclusions

The effect of increasing frequency was evaluated on forecasting the NN5 reduced dataset
with ANNs. The experiments indicated that MLPs are well suited to predict high-frequency data of
weekly and daily observations and outperform established statistical benchmark methods, while
they fail to outperform them on low-frequency data of monthly observations. Focusing only on the

ANN modelling related issues there are several findings:

1. The input variable specifications methodologies that were employed in this study did not
perform consistently in the three different frequency domains. This study was limited to four

alternative methodologies, which faced a series of problems in modelling high frequency
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data. This study provides evidence that most methodologies will face similar problems
provided that they are based on conventional statistical tools. This means that there is need
for more research effort on how to specify the input variables for ANN for high frequency

time series.

ANNs seemed to perform better in the presence of more detailed time series that are
available in high frequency datasets in comparison to lower frequency time series. Evidence
was provided that ANN may be better suited to forecast high frequency data rather than the
low frequency data stemming from the popular M3 or the newer NN3 forecasting
competitions on which they are routinely evaluated in the academic forecasting domains.
This may provide an initial explanation of the apparent gap between their limited merit in
empirical evaluations and academic competitions using low frequency data, and their
corporate success in applications of electrical load forecasting which routinely employs high-
frequency data. In this study the same 11 time series were used across three different
frequencies, making direct accuracy comparisons possible, thus providing a balanced and
valid evaluation. On the other hand, although ANNs seemed to be able to cope well with this
type of data, they were restricted by the statistical exploration and analytical tools that are
used, which were originally developed for low frequency applications. Therefore, there is a
need to create new tools or apply corrections to existing ones to be applicable to high
frequency data forecasting. This is also directly related to the identification of the input

vector for the ANNs.

One important new element of the high frequency time series is the long duration of

outliers. In this analysis significant lead-in effects were identified that were not captured by
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the common binary dummy variable encoding and it was stressed that there is need to
develop a method that will allow the coding of outliers with long duration or capture the

dynamic effects caused by these outliers.

The calendar information gains more importance in high frequency time series. This is due to
the special calendar effects, but also to leap years and other similar effects, which can shift
seasonal patterns and impair the use of traditional statistical analysis. Researching whether
these affect the forecasting accuracy and how they should be modelled is important for high

frequency forecasting problems.

It was demonstrated that high frequency forecasting with ANNs is very demanding on
computational resources. In order to have practical large scale applications it is necessary to
improve the performance of algorithms and devise smart ways that will eliminate the need

for lengthy simulations to parameterise the ANNs.

This analysis — despite its limitations stemming from a small dataset of time series — may

facilitate revisions of existing modelling approaches employed for low frequency data in

management science, and also to serve as a starting point for the development of a unified

methodology to accurately forecast high as well as low frequency data with ANNs. In the future, the

analysis must be extended to additional datasets, with time series of different patterns, and to

additional methodologies of input variable selection to provide a coherent, valid and reliable picture

of the relative performance of ANN on high and low frequency data. Future work will include the

evaluation of existing input variable selection methodologies for applicability and performance in

high frequency time series, since the input vector is one of the defining elements of ANN accuracy
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and up until now this topic has been widely overlooked, although these datasets are becoming more

and more common.
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6 Input specification for high frequency
time series forecasting with artificial
neural networks. An empirical
evaluation

Abstract

Artificial Neural Networks (ANNs) have been successfully applied in several time series
forecasting applications. Past forecasting competitions have shown that as the data frequency
increases, the relative accuracy of ANN against benchmarks increases too. However, our knowledge
of how to model ANNs for high frequency time series is limited and most of the published literature
refers to low frequency problems. The problem is more apparent in selecting the input variables for
the ANN models, since there is no widely accepted best practice. This analysis explores the
applicability of existing and new input variable specification methodologies for ANNs for the case of
high frequency data. Several ACF and PACF, regression and heuristic based approaches are evaluated

using two real datasets. Regression based methodologies are found to perform overall the best.

Preface

This paper evaluates the modelling the different input variable specification methodologies
that are published in the ANN forecasting literature, when applied to high frequency data
forecasting problems. Preliminary results of this study have been presented in the International
Symposium on Forecasting in 2009 (ISF 2009), while an extended version was presented in the 2009

Annual Conference of the Operational Research Society of South Africa (ORSSA 2009).
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6.1 Introduction

Artificial Neural Networks (ANNs) have shown great potential both in forecasting research
and applications (Hill, O'Connor et al. 1996; Adya and Collopy 1998; Zhang, Patuwo et al. 1998;
Hippert, Bunn et al. 2005). ANNs in theory are universal approximators that are able to model any
linear or nonlinear function (Hornik 1991) and generalise well, able to produce accurate ex-ante
forecasts (Zhang 2001; Zhang, Patuwo et al. 2001). However, in the M3 competition, ANNs
performed worse than established statistical models, like the exponential smoothing family models
that are much simpler (Makridakis and Hibon 2000). Despite the extensive research effort invested
on them, there is no generally accepted modelling methodology. This can make their use difficult
and unreliable (Anders and Korn 1999; Armstrong 2006). The lack of understanding of the inner
workings of ANNs for forecasting problems, can explain the rise of the criticism and the small
acceptance by practitioners (Bunn 1996; Armstrong 2006). In a recent literature survey (Kourentzes
and Crone 2009) it was found that most of the ANN forecasting papers use trial and error
approaches or select arbitrarily the model parameters, like the inputs, the number of hidden nodes,
learning parameters, etc, yet the performance of ANNs is greatly affected by these, leading to
questions of validity of implementation for several studies in the literature {(Adya and Collopy 1998).
The most important determinant of accuracy for forecasting applications with ANNs is the selection
of the input variables (Zhang 2001; Zhang, Patuwo et al. 2001). In the literature there are several
alternatives that try to address this issue, but there is still no widely accepted methodology for input
variables selection (Anders and Korn 1999). One of the reasons for this is that there is no extensive
evaluation of the published methodologies or any meta-analysis that will allow to answer which
methodologies work well with ANNs and why (Kourentzes and Crone 2009). The aim of this analysis

is to address this problem for the case of the high frequency time series.
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The distinction between low and high frequency time series in forecasting is important.
There is no strict definition of what constitutes high frequency time series, but usually it is flexibly
defined according to the available techniques, what is common practice and the advances in
computational power (Engle 2000). High frequency time series are in practice time series with time
granularity of daily observations or shorter, while low frequency data are usually monthly, quarterly,
etc. Such high frequency data have different properties, like multiple overlaying seasonalities,
increased levels of noise and vast amounts of data, which may lead to modelling challenges. The
literature argues that the conventional models and time series exploration tools may not always
work well in high frequency applications (Granger 1998), requiring them to be sufficiently modified
to tackle the new properties, or requiring the invention of new methods altogether (Taylor, de
Menezes et al. 2006). On the other hand, there is increasing evidence that ANNs have advantages in
modelling high frequency time series. High frequency data are associated with large sample sizes
that are positively linked with the performance of ANNs (Markham and Rakes 1998; Hu, Zhang et al.
1999). Furthermore, there are ANNs’ high frequency forecasting applications that show good
performance. For instance, ANNs are widely regarded as a potent tool in electricity load forecasting,
which is a typical high frequency application (Hippert, Bunn et al. 2005; Hahn, Meyer-Nieberg et al.
2009). In studies that use a consistent modelling methodology for forecasting time series of different
frequencies with ANNSs, it was found that the forecasting accuracy improved in high frequency time
series (Kourentzes and Crone 2008; Crone and Kourentzes 2009). However, it is unknown whether
ANNs are readily applicable to high frequency applications or if they require different modelling
methodologies. Answering this would clarify the reason behind the reported inconsistencies in the
performance of ANNs in the literature in such applications (Dahl and Hylleberg 2004; Taylor, de

Menezes et al. 2006). This question becomes particularly important for selecting the input variables
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of the ANNs, as they are the most important factor for ANNs forecasting accuracy (Zhang 2001;
Zhang, Patuwo et al. 2001). Most of the available input variable selection methodologies are
calibrated for low frequency time series and make use of tools that are bound to break down when
applied to high frequency data (Granger 1998; Crone and Kourentzes 2009). Therefore, it is
imperative to identify which input variable selection methodologies are fitting for high frequency

data and which perform best.

This study evaluates several published input variable selection methodologies for ANNs.
These methodologies cover three major families of approaches, those that are based on heuristics,
those that make use of autocorrelation and/or partial autocorrelation analysis or similar approaches
and those that are based on regression based analysis. Additionally, new variants and combinations
of the published methodologies are explored. The evaluation is done using two separate high
frequency time series datasets, one from the NN5 competition dataset'’ and the other containing
electricity load time series in the UK. The use of multiple datasets increases the generalisability of
the findings. The evaluation follows the literature’s guidelines for valid and rigorous experimental
design that leads to reliable conclusions (Collopy, Adya et al. 1994; Adya and Collopy 1998).
Moreover, special care is taken to address the issue of the replicability of the ANN results and
provide robust findings. The main finding is that regression based methodologies for specifying the
input variables for ANNs perform best in both datasets. The conclusion is in agreement with previous

studies done for lower frequency datasets (Kourentzes and Crone 2008; Kourentzes and Crone

2009).

11 . i
www.neural-forecasting-competition.com
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Section 5.2 presents the methods that are used in this study, while section 5.3 discusses the
experimental design. Section 5.4 the results of the experiments are analysed and in the following

section conclusions are drawn and future research is briefly discussed.

6.2 Methods

6.2.1 Multilayer Perceptrons for Time Series Prediction

This study uses multilayer perceptrons (MLP), which are the most common ANN model
(Zhang, Patuwo et al. 1998). MLPs are universal approximators, and they are able to model and
generalise well linear and nonlinear functional relationships between the inputs and the outputs
(Hornik, Stinchcombe et al. 1989; Zhang 2001; Zhang, Patuwo et al. 2001), without any prior
assumptions about the underlying data generating process (Qi and Zhang 2001}. In univariate
forecasting feed-forward architectures of MLPs are used to model nonlinear autoregressive NAR(p)-
processes, using only time lagged observations of the time series as input variables to predict future
values (Crone and Kourentzes 2007). MLPs can also use explanatory or dummy variables with no
changes to the model form. Data are presented to the network as vectors of inputs that are mapped
to the respective outputs over the time series history. MLPs learn the underlying data generating
process by adjusting the connection weights w = (B, y) so that an objective function is minimized on
the training data, ensuring a good fit in the past and the ability to make valid forecasts on unseen
future data (Lachtermacher and Fuller 1995). A single hidden layer MLP is employed, based on the
proof that single layer MLPs can approximate any data generating process {(Hornik 1991), which is

expressed as:

H / '
f(X’W)=ﬂO+Zﬂhg(}’OI+Z}//llle' (61)
h=1 i=0 .
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X = [Xo, X1, ..., Xn] is the vector of the lagged observations (inputs) of the time series and w = (B, y) are
the network weights with B = [B;, B,.., Bn] and y = [y1, V2., vni] being the individual weights
connecting the input and the hidden layer, and the hidden to the output layer respectively. The
biases for each node in the hidden layer are yy and in the single output node Bo. | and H are the
number of input and hidden nodes in the network and g(-) is a non-linear transfer function (Anders,
Korn et al. 1998). Common transfer functions for ANN are the sigmoid (logistic) and the hyperbolic
tangent (Zhang, Patuwo et al. 1998) and for this analysis the latter is used. MLPs require the
calibration of several modelling variables, like the number an nodes in the hidden layer, the training
algorithm and its parameters, the use and the parameters of early stopping, etc. These variables are
typically set by simulations on the target time series; different alternatives are modelled and trained

and the one that provides the lowest error in the validation set is then selected.

ANNs need to be trained in order to be able to forecast time series. This essentially means
that the weights w that provide the best fit to the data must be identified. The training algorithm
incrementally alters the weights minimising a preset cost function, in order to find the best fit to the
data. The training algorithm that is used in this study is the Levenberg-Marquardt algorithm, which
avoids computing the Hessian matrix required in the typical backpropagation algorithm, resulting in
significantly faster training (Hagan, Demuth et al. 1996). In this analysis the mean squared error
(MSE) of the one step ahead forecast is used as a cost function. ANNs are prone to overfitting
(zhang, Patuwo et al. 2001), which can harm their forecasting accuracy. One common way to avoid
this problem is to use an early stopping criterion. The time series needs to be split in three sets, a
training set that is used to fit the network, a validation set that is used to measure when the network
has overfitted to the data and a test set that is used for out-of-sample evaluations. Both training and

validation sets are used during the training of the network; while the test subset is kept separate.
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During training the error on the validation subset is measured. If the validation error keeps
increasing, while the training error decreases, the training stop as the network has started to overfit.
Furthermore, ANN training is a complex nonlinear optimisation problem that does guarantee that an
optimal solution will be reached, as the training algorithm may get stuck in a local minimum of the
error surface. To ensure a wide search and increase the possibility of finding a good minimum,
multiple training initialisation with random starting weights are used (Hu, Zhang et al. 1999). This
practice also aids in the construction of a valid experimental design, as is discussed in following

section.

6.2.2 Input variable selection methodologies

How to specify the inputs for forecasting with ANNs is still debatable. Although there are
several published methodologies in the literature, none is widely accepted or used (Anders and Korn
1999). A survey of forecasting and management science journals*> was conducted and the most
frequently used methodologies were identified (Kourentzes and Crone 2009). These will be
presented in this section and used to evaluate which is better suited for high frequency data
forecasting problems. A noticeable lack of a rigorous evaluation of these methodologies was also
found. The methodologies are organised in three categories, simple heuristics, those based on
autocorrelation analysis (or similar) and those based on regression analysis and will be presented in

this order. Noticeably, more than 70% (out of 87 papers) use trial and error approaches or specify

2 These are, in alphabetical order, Computers and Operations Research, Decision Sciences, European Journal
of Operational Research, International Journal of Forecasting, Journal of Forecasting, Management Science,
Naval Research Logistics and Operations Research. These journals have high ratings according to both the
Vienna list ranking and the IS Web of Science impact factor.
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the inputs arbitrarily. This practice harms the validity of implementation of the ANNs (Adya and

Collopy 1998).

The most commonly used methodology to model the input vector of ANNs is to use simple
heuristics. Simple heuristics are used to construct sets of input variables for the networks. Note that
the variables can be lagged realisations of the time series to be forecasted. An example of such
heuristic is given by Balkin and Ord (2000). In order to find the relevant maximum lag length the
seasonality is taken into account with the addition of a few extra lags, resulting in input vectors that
can contain all lags up until slightly more than the seasonal length. The exact number of extra lags
depends on the seasonal length. Note that the methodology they propose has a second part, which
is discussed below under the regression based models. The need to have input vectors that will

contain information at least as old as the seasonal lag is also supported by Curry (2007).

Another widely used category of methodologies is based on autocorrelation and partial
autocorrelation analysis, or similar techniques. One of the first papers that employees this approach
is by Lachtermacher and Fuller (1995), who use an analogous to Box-Jenkins ARIMA modelling (Box,
Jenkins et al. 1994) to identify the inputs for MLP models. They identify the important lags from both
the autocorrelation (ACF) and the partial autocorrelation (PACF) functions and use them as inputs to
the networks. They argue that optimal differencing of the time series is necessary, in order to
achieve stationarity, as in the original ARIMA modelling methodology. The authors use ACF
information, although MLPs are autoregressive in nature and should make use of only the PACF.
They suggest that including the moving average terms may capture additional information from the
time series. Moshiri and Brown (2004) use only the autoregressive information of a time series;

therefore, only the PACF is used to identify significant lags that should be included in the input
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vector. Kajitani et al. (2005) use the ACF to find an adequate input vector for MLP. Note that
although MLP are autoregressive models, the authors prefer to use the ACF instead. This decision is
not discussed in their paper. All these methodologies make use of linear identification tools, which
may be inadequate to capture the nonlinearities that can be modelled by ANNs. Darbellay and Slama
(2000) try to address this problem. They use a version of a nonlinear autocorrelation function, which
is essentially a scaled mutual information criterion {MI). After the scaling the MI takes values
between 0 and 1, instead of the normal 0 to +°°, and is named nonlinear autocorrelation. The scaling
is done in order to make the Ml comparable to the normal ACF and PACF and therefore to identify
the significant lags using the normal approach. If it equal to 0 it means that the two variables are not
correlated, whereas the closer it becomes to 1 the stronger the measured relationship is. This way
the methodology uses scaled MI to capture potential nonlinearities in the time series; however the
significant nonlinear lags are identified is based on the same approach as the linear ACF that may not
be fully applicable. A variation of this approach is used by da Silva et al. (2008), who use the
normalised Ml instead. Finally, McCullough (1998) observes different ways to calculate the PACF can
lead to significantly different results. He evaluates three alternative methods to estimate the PACF
for ARMA models, and concludes that they identify different significant lags in a time series. This
obviously affects the specification of the ARMA models and their accuracy. The same is true when
such methodologies are used to model ANNs, yet this is overlooked in the ANN literature. The
alternatives he considers are the common Yule-Walker estimation (YWE), the Least Squares (LS)
method and the Burg algorithm (Burg). He concludes that the most accurate is the Burg algorithm,

while the widely implemented YWE is the worst.

A related methodology to the ACF and PACF identification is to use the spectral density of

the time series. These are mathematically equivalent, but reveal information about the time series
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differently, as is discussed in detail by Box et. al (1994). Spectral analysis (SA) has not been
considered in the management science and forecasting ANN literature and therefore it has not been
evaluated against the similar ACF and PACF based methodologies. In this study SA will be used in the
following way. All peaks in the spectrum of the time series are identified and translated into
periodicities. All periodicities within a pre-specified maximum bound define the lags that are used as

inputs to the ANNs.

Regression based methodologies are also widely used in selecting the input vector for ANN.
Church and Curram (1996) finds that ANNs using linear regression for identifying the relevant inputs
perform at least as good as benchmarks. In their study the regression analysis is not automated and
largely depends on the modeller’s expertise. Swanson and Wh.ite (1997) automate the process by
using a forward regression with BIC (Bayesian Information Criterion) optimisation. Although this is a
significant step in automating the ANN modelling process, Qi and Zhang (2001) show that BIC and
similar criteria are improper for modelling ANNs. Qi and Maddala (1999) show that by using linear
regression to identify the ANN’s inputs the networks outperform linear benchmarks and the random
walk for their dataset. Balkin and Ord (2000) discuss an approach to automatic input lag selection for
univariate forecasting using MLP. Their method is a hybrid between a simple heuristic for specifying
the maximum lag, which is already discussed, and forward stepwise regression. Different regression
models are fitted to the time series and from all these that satisfy an F-statistic criterion the least
parsimonious input vector is used. Prybutok and Mitchell (2000) use stepwise regression to select
the input variables of the ANNs and find the atcuracy of MLPs superior to linear regression and
ARIMA models for predicting daily maximum ozone concentration in Houston. All the methodologies
mentioned here make use of some form of manual, stepwise or forward linear regression, which

may be limiting to model ANNSs, since linear regression is unable to capture nonlinearities in the
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data. Dahl and Hylleberg (2004) try to overcome this problem and make use of Hamilton’s random
field regression, a flexible nonlinear regression model, to identify the ANNs’ input vector. For more
information about this model see (Hamilton 2001). The nonlinear regression model is used in a
forward regression setup, using AIC or BIC optimisation to identify the linear and the nonlinear part
of the time series. All significant linear and nonlinear lags are used by the ANN. This methodology
has several shortcomings. It is a greedy algorithm, in the sense that it does not provide sparse input
vectors, thus hindering the training of the networks. It is very computationally intensive, as noted by
the authors. Furthermore, it is based on AIC and BIC, which literature suggests to avoid for ANN
modelling (Qi and Zhang 2001) and was shown to perform worse than linear regression variants for
selecting the input variables for ANNs (Kourentzes and Crone 2009). For the above reasons, this
methodology is not used in the current study. Notably, backward variants of regression are not
present in the literature. In order to provide a complete picture of the input specification

alternatives, these will be evaluated here.

The ANNs papers that this analysis is based on to collect all the competing methodologies

are summarised in table 6-I.

Table 6-1: ANN paper and proposed input variable selection methodology

Author Year Time Series Methodology

Forward regression with heuristic to
restrict search space

Regression modelling

Normalised Mutual Information
Nonlinear ACF (Mutual Information)

Balkin & Ord 2000 M3 competition quarterly data

Church & Curram
da Silva, Ferreira and Velasquez
Darbellay & Slama

1996
2009
2000

Quarterly macroeconomic
Hourly and daily electricity load
Hourly electricity load

Kajitani, Hipel & McLeod 2005 (Annual) Lynx time series ACF
Annual river flow data, annual
! ACF & PACF
Lachtermacher & Fuller 1996 electricity consumption C
Moshiri & Brown 2004 Quarterly unemployment PACF

2000
1999
1997

Prybutok & Mitchell
Qi & Maddala
Swanson & White

Daily ozone concentration
Stock index
Quarterly macroeconomic

Stepwise regression
Regression modelling
Forward Regression with SIC
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There are families of input variable specification methodologies which are not considered in
this study, based on genetic algorithms, pruning and wrappers (Kourentzes and Crone 2009). The
main reason for not considering this is the associated computational cost that makes their use

impractical for large datasets (Crone and Kourentzes 2009; Kourentzes and Crone 2009).

6.2.3 Data pre-processing

For all MLP forecasting applications the scaling of the input variables is necessary in order to
avoid saturating the transfer function of the network (Wood and Dasgupta 1996). In this analysis the
inputs are linearly scaled between two arbitrarily selected bounds. An observation x; from a time

series X is scaled to x,; between [a, b] using

_ b-a)x, —x.,)

(xmax _xmin)

+a. (6.2)

si

There are no guidelines how to select the bounds, as long as they do not exceed the minimum and
the maximum of the transfer function used by the MLP. Literature suggests that constraining the
bounds [a, b] tighter than what is required by the transfer function makes the ANNs robust to

unseen future observations (Lachtermacher and Fuller 1995; Church and Curram 1996).

Furthermore, there are papers that suggest additional pre-processing, which is related to
removing trend and seasonality from the time series. Hill et al. (1996) and Nelson et al. (1999) show
that ANNs using deseasonalised time series from the M1 competition outperformed standard
statistical models. Zhang and Qi (2005) reach the same conclusion, arguing that deseasonalised time
series lead to smaller and more parsimonious models as there is less information to capture in the
time series. Zhang and Kline (2007) evaluated a large variety of setups for ANNs to forecast seasonal

time series and conclude that seasonal differencing is optimal. On the other hand, Curry (2007)
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suggests that results favouring deseasonalising can hide an input misspecification error, arguing that
an inadequate input vector will not capture the seasonal information, therefore artificially showing
deseasonalising as being the best option. Crone and Dhawan (2007) demonstrate that MLPs are
able to model robustly monthly seasonal patterns using only an adequate number lags of the time

series, with no need for deseasonalising.

Lachtermacher and Fuller (1995) argue in favour of seasonal and first differences, removing
seasonality and trend respectively, in order to achieve stationarity of the time series, so as to use
validly the ACF and PACF analysis the identify the inputs. A similar approach is used in other papers
(Ghiassi, Saidane et al. 2005; Bodyanskiy and Popov 2006), where differences are used to create
stationary time series in order to identify the relevant input vector for the ANN. Most of the
methodologies evaluated in this study (table 1) require stationary time series to identify correctly the

input vector (Hamilton 1994).

Note that the nature of the seasonality and trend is largely ignored in the ANN literature. In
theory, for the case of deterministic seasonality using dummy variables to capture the seasonal
information is preferred to removing it (Ghysels and Osborn 2001). This was shown to be true for
ANNs and in the case of deterministic seasonality deseasonalising through differencing harmed the

ANNs’ accuracy (Crone and Kourentzes 2009).

In this study the time series are first tested for deterministic seasonality and if such is
identified, then dummy variables are used to code it. Additionally, seasonal differencing of the time
series is also evaluated. This is done to ensure that the pre-processing will not unfairly harm any of
the input variable selection methodologies. Furthermore an additional type of pre-processing is

explored. Stemming from the arguments of Lachtermacher and Fuller (1995), one can use
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differencing to identify the significant input variables, but model the time series in the original
undifferenced domain. This would ensure that the assumptions of the methodologies that are used

to identify the inputs are not violated.

6.3 Experimental Design

6.3.1 Datasets

Two different high frequency datasets are used in this study. This is done to strengthen the
generalisability of the findings. The first dataset comes from the NN5 forecasting competition

(www.neural-forecasting-competition.com). The original dataset contains 111 daily time series of

cash withdrawals from automated teller machines in the UK. All time series have 791 observations.
The time series were grouped using k-means clustering to filter very heterogeneous time series.
Once the most populous groups of time series were identified, the remaining ones were removed
from the dataset. This was done to raise the homogeneity of the dataset, which allows for better
exploitation of the dataset properties for model building and interpreting the results (Fildes and Ord
2002), and reduce the number of simulations for computational reasons. Following that, the time
series were tested for trend, using separately linear regression and the Cox-Stuart test (Cox and
Stuart 1955). The few strongly trended time series were discarded for the same reasons. The
remaining 42 time series were tested for seasonality. All time series were found to be double-
seasonal, with a day of week and an annual pattern, however after the test set is removed there was
not enough data to model the annual seasonality, since there were less than two years of data
available. The nature of the day of the week seasonality is tested using the Canova-Hansen test
(Canova and Hansen 1995). The seasonality in all time series was found to be deterministic. Prior

studies that used time series from the same dataset had identified the effect of strong calendar
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events associated with bank holidays (Crone and Kourentzes 2009). Using regression analysis Good

Friday and Christmas bank holidays were found significant for all the time series. These were coded

using binary dummy variables. Finally, several time series had missing values. These were replaced

by the mean value of their neighbouring observations. Figure 6.1 provides a visual representation of

the first three time series, while table 611 lists the names of the selected time series from the

complete NN5 dataset.
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Fig. 6.1: The first three time series of the selected subset ofthe NN5 dataset.

NN5-004
NN5-005
NN 5-006
NN5-007
NN5-012
NN5-015
NN5-016
NN5-019

Table 6-11: List of selected NN5 time series

NN5-020
NN5-021
NN5-024
NN5-028
NN5-038
NN5-041
NN5-043
NN 5-044

NN5-045
NN5-046
NN5-051
NN5-052
NN5-053
NN5-057
NN5-058
NN5-059

NN5-060
NN5-061
NN5-062
NN5-063
NN5-065
NN5-066
NN5-069
NN5-071

NN5-072
NN5-079
NN5-082
NN5-087
NN5-090
NN5-091
NN5-092
NN5-094

NN5-096
NN5-098
NN5-100
NN5-102
NN5-104
NN5-107
NN5-108
NN5-111
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The second dataset contains 5 time series measuring electricity demand data from the UK.
The data are available at the National Grid website (http://www .nationalgrid.com). The time series
contain 2,557 daily observations from 01-Jan-2002 until 31-Dec-2008. The code naming of each time

series and a description of what they record can be found in table 6-111.

Table 6-111: Electricity dataset description

Index Name Description

E-001 GB InitiaI.Demand Outturn based on National Grid operational generation
metering
E-002 E&W As above, but only for England and Wales
E-003 1014_DEM Elexon SOJ014 generation data
E-004 1014 TGSD EIexor? SOJ014 generation data including Station Load, Pump Storage
- Pumping and Interconnector Exports
France

E-005 Imports and exports between UK and France

Import(+)/Export(-)

50 100 150 200 250 300 350
5
0
5

50 100 150 200 250 300 350

Fig. 6.2: Plots of the first year of E-001 and E-005 time series.

The same tests that were used for the NN5 dataset were applied to the electricity dataset
and the time series were found to be strongly double-seasonal with no trend. The Canova-Hansen

test indicated that all the time series have a day of the week and an annual deterministic
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seasonality. The first four time series (E-001, E-002, E-003 and E-004) behave similarly, whereas the
last time series (E-005) is completely different. The first year of data from E-001 and E-005 time
series are provided in figure 6.2. Note that E-005 has several negative values, in contrast to the other

time series which are always positive.

6.3.2 Methods

6.3.2.1 Benchmarks

in order to perform a valid evaluation of ANN models it is important to compare them
against established benchmarks (Adya and Collopy 1998). Although the aim of the study is not to
compare the ANN models with statistical models, it is imperative to use benchmarks in order to
demonstrate that the findings of this study have value for the forecasting research. Two families of
benchmark models are used in this study. The first family includes the random walk and the seasonal
random walk models. The second family of models are seasonal exponential smoothing models
(EXSM). The random walk or naive models are chosen due to their simplicity. Any more complicated
forecasting model should outperform the random walk in order to justify the additional complexity.
On the other haﬁd, the EXSM has shown good performance in numerous competitions and studies
over a wide variety of datasets (Makridakis and Hibon 2000; Hyndman, Koehler et al. 2002; Gardner

2006; Taylor, de Menezes et al. 2006) and therefore it is a good benchmark.

The random walk is used in its normal form, as in (6.3), and in its seasonal form, as in (6.4),

taking advantage of the seasonal information contained in the time series.

f;+h = xl—l ’ (63)

]rl+h = x1+h—,\*' (64)
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where s indicates the seasonal length and h the forecast horizon. Since both datasets are double
seasonal two different seasonal lengths are used, one for the day of the week pattern and one for
the annual pattern. This results in three random walk models for each time series, named Naive,
Naive S1 and Naive S2 for the non-seasonal, day of the week seasonal and annual seasonal model

respectively.

The seasonal exponential smoothing models are fitted to each time series by minimising the
one step ahead in-sample mean squared error (MSE), as suggested in the literature (Gardner 2006).
Similarly to the random walk models, two different seasonal lengths can be used, for the two
different seasonal periods. The resulting models are named EXSM S1 and EXSM S2, for the day of the
week and the annual seasonality respectively. For the NN5 dataset, due to the limited sample it is
not possible to use the EXSM S2, and therefore only results for the EXSM S1 are provided. Both

families of benchmark models are implemented in MatLab.

6.3.2.2 Multilayer Perceptrons

A fixed MLP architecture is used to create the forecasts for all the time series, with the
exception of the input vector. In order to evaluate which input variable selection methodology
performs best on the high frequency data, the input vector is specified, for each time series, using 21
alternative methodologies. Furthermore, the number of hidden nodes in the MLP models is specified
separately for each dataset, but kept fixed for all the time series in each dataset. Keeping all the
remaining parameters, like the learning algorithm and parameters, transfer functions, etc, allows
attributing any observed accuracy differences of the MLPs solely to the effects of the different input

vectors.
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The different input variable selection methodologies are described in the previous section
and are listed in table 6-IV, together with the name assigned to each. Note that all these are fully
automatic and the input vector is identified separately for each time series and each methodology. A
question that is usually overlooked in the literature is associated with the maximum lag that should
be evaluated as a potential input. Only one paper addresses this quesﬁon in the literature, providing
a heuristic to select the number of lags based on the time series frequency (Balkin and Ord 2000). In
this study, the maximum lag is set to double period of the day of the week seasonality. This allows
the input vectors to include possible seasonal information (Curry 2007) while keeping an abundance

of data for the training of the networks.

Table 6-1V: Input variable selection methodologies for the MLP models

Index Name Description

Heuristics
1 ANN_naive Use only lag t-1
2 ANN_all Use all lags from t-1 to t-14
3 ANN_fs Use one full season (t-1 to t-7)

ACF or PACF (or similar)

4 ANN_ywe Identify inputs using the YWE PACF estimation, evaluating up to lag t-14
5 ANN_Is Identify inputs using the LS PACF estimation, evaluating up to lag t-14
6 ANN_burg Identify inputs using the Burg PACF estimation, evaluating up to lag t-14
7 ANN_acf Identify inputs using the ACF, evaluating up to lag t-14
8 ANN_nlacf Identify inputs using the nonlinear ACF (scaled Ml), evaluating up to lag t-14
9 ANN_sa Identify inputs using spectral analysis (SA), evaluating up to lag t-14

ACF and PACF (or similar)
10  ANN_acf+ywe Use all lags identified by ANN_acf and ANN_ywe
11  ANN_acf+ls Use all lags identified by ANN_acf and ANN_Is
12 ANN_acf+burg Use all lags identified by ANN_acf and ANN_burg
13 ANN_nlacf+tywe Use all lags identified by ANN_nlacf and ANN_ywe
14  ANN_nlacf+ls Use all lags identified by ANN_nlacf and ANN_Is
15  ANN_nlacf+burg Use all lags identified by ANN_nlacf and ANN_burg
16  ANN_sa+ywe Use all lags identified by ANN_sa and ANN_ywe

17  ANN_sa+ls Use all lags identified by ANN_sa and ANN_Is
18  ANN_sa+burg Use all lags identified by ANN_sa and ANN_burg
Regression

19  ANN_reg_auto Identify inputs using linear stepwise regression, evaluating up to lag t-14
20  ANN_reg_forw Identify inputs using linear forward regression, evaluating up to lag t-14
21 ANN_reg_back Identify inputs using linear backward regression, evaluating up to lag t-14
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It is debatable how to best pre-process the time series for forecasting with ANNs. In this
study we consider several different options, as discussed in the previous section, these are
summarised in table 6-V. The identified inputs are linearly scaled, as in (6.2), between [-0.5, 0.5]. A
tighter scaling interval, than what is required by the hidden layer transfer function, is used in order
to make the networks robust to unobserved future variables. In addition to the lagged inputs that
are identified with the above methodologies, all MLPs use a set of dummy variables to code the
deterministic seasonality found in the time series. Two pairs of sine-cosine waves are used to model
each identified seasonality separately, with their respective frequencies. This coding has been shown
to be at least as good as the binary dummy variable encoding for ANNs, while being more
parsimonious (Crone and Kourentzes 2009). Furthermore, for the NN5 dataset the identified bank
holidays are coded using binary dummy variables. Note that these additional variables are not

scaled, as they are by construction within the bounds of the hidden layer transfer function.

Table 6-V: Data pre-processing

Name Inputs identified on Networks trained on
No-Diff Original time series Original time series
Season-Diff Seasonal differenced time series  Seasonal differenced time series
Input-Diff Seasonal differenced time series Original time series

Single layer MLPs are used. The hyperbolic tangent (TanH) is selected as the transfer
function for the hidden nodes, while all other layers use linear functions. The number of hidden
nodes is identified through a grid search from 1 to 12 hidden nodes. This search is done for each
dataset separately. The number that minimises the average error for all the time series in each
dataset is selected. Five and nine hidden nodes are selected for the NN5 and the electricity datasets

respectively. The resulting architectures are shown in figure 6.3.
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NNS dataset Electricity dataset

j{ TanH

Fig. 6.3: MLP architectures for the NN5 and the electricity datasets shown with a variable number of inputs.

To find the network’s weights w that provide the best fit, it is necessary to train the ANNSs. In
this study the Levenberg-Marquardt algorithm is used. The modeller is required to set the value of p
and its increase and decrease steps. Here p = 10, with an increase step of pi, = 10 and a decrease
step of Hgec = 10, For a detailed description of the parameters and the algorithm see Hagan and
Menhaj (1994). MLPs are allowed to train for a maximum of 1000 training epochs. The training can
stop earlier if 4 becomes equal of greater than [y = 10" or the validation error increases for more
than 50 epochs. This is done to avoid over-fitting and is standard practice in ANN training (Zhang,
Patuwo et al. 1998). When training is stopped the network weights that give the lowest error on
validation set are selected. Each network is trained 40 times. In each training cycle different random
initial weights are used. This has several advantages for ANN modelling. First of all it aids the training
of the networks. The training of MLPs is a complex nonlinear optimisation that can be stuck in local
minima. Several random initialisations ensure a wider search for good network weights. Secondly, by
retraining each MLP several times it is possible to assess how robustly this network performs by
considering the complete distribution of errors over the different training cycles. Networks that

perform similarly over several training cycles are robust to the stochasticity of the training algorithm.
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This allows the extraction of reliable conclusions for the performance of ANNs, since the
randomness due to training is controlled, which is often overlooked in the ANN literature
(Kourentzes and Crone 2009). Finally, this procedure produces more detailed error distributions that

allow for valid statistical testing.

Note that the same MLP setup is used for several time series, which is not advised in the
literature (Liao and Fildes 2005; Medeiros, Terasvirta et al. 2006). The yet not well understood and
complex interactions between the number of inputs, hidden nodes, the training algorithm and its
parameters and the data pre-processing require fine tuning of the networks (Zhang, Patuwo et al.
1998). This is not done in this study, since it is necessary to isolate the effects of the different input
variable specification methodologies. Although, the input vector, which is set for each time series
individually, is the most significant determinant of ANNs performance (Zhang 2001; Zhang, Patuwo
et al. 2001) this practice leads to suboptimal results, as no other parameters are set individually for
each time series. This is an important limitation in the comparison of the ANNs with the benchmarks,
which are optimally modelled for each time series separately. Finally, all MLP models are

implemented in MatLab using the neural networks toolbox version 6.

6.3.3 Experimental Design

For both datasets a similar experimental design is used. This helps in the analysis of the
results and the extraction of the conclusions. For both datasets trace forecasts from t+1 to t+7 are
calculated. The forecasting horizon is long enough to test whether the models have captured the
seasonal behaviour of the time series, while being short enough to allow the implementation of a
rolling origin evaluation scheme. Furthermore, similar forecasting horizons have been used before in

the electricity load forecasting literature due to the relevance with the decision lead time (Cancelo,
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Espasa et al. 2008; Soares and Medeiros 2008). For the case of the ATM transactions the decision
lead time is harder to identify, since it is strongly related to the location of each individual ATM. This

information was not available for the NN5 dataset.

When forecasting with ANNs it is necessary to create a validation set from the time series, in
addition to the test set that is used for the ordinary out-of-sample forecasting evaluation. The
validation set is used to identify whether the network has overfitted to the training set. Although
there are no strict guidelines on how to select the validation set, it should be constructed
considering the forecast horizon and the available data, similarly to the test set. For the NN5 dataset
the size of the test set is identical to the competition’s guidelines, which is 56 days. An equally sized
validation test is used. For the electricity dataset a complete year is used for the validation set and
another year for the test set, which are 365 and 366 days long respectively, once the leap year in the
data is considered. The sizes of the sets allows producing for both datasets an abundance of rolling
origin forecasts, providing a good sample of the distribution of the forecasting errors. The rolling
origin evaluation scheme is used to provide a better estimation of the forecast error and to avoid the

shortcomings of fixed origin evaluation (Tashman 2000).

The symmetric mean absolute percent error (SMAPE) is used to measure accuracy for both
datasets. This measure is scale independent and allows comparing accuracy across time series. It is

calculated as

SMAPE ==

(6.5)
n S\ (X, |+|F]/2

1 X —F) ]
Note that the formula used here is different than the widespread sMAPE formula

(Makridakis and Hibon 2000) and is corrected to eliminate the possibility of negative errors that the
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widespread form of sSMAPE can produce (Chen and Yang 2004; Hyndman and Koehler 2006). This

error measure is robust to zero or very close to zero values that exist in the NN5 dataset.

The accuracy of the competing ANN models is evaluated for statistically significant
differences (at 5%) using the nonparametric Friedman and Nemenyi tests. These are robust
nonparametric tests that are selected to facilitate an evaluation of network models without the
need to relax the assumptions of ANOVA or similar parametric tests (Dems3ar 2006). Furthermore,
taking advantage of the multiple training initialisations the robustness of the different input variable
selection methodologies can be assessed. A robust model will perform similarly for different
initialisations, making it more reliable in real applications, providing more consistent results and
overcoming a main criticism against ANNs that they do not produce consistent solutions (Armstrong
2006). Lastly, note that both tests are designed to handle multiple comparisons, which is the case in
this study. On the other hand, these tests are not applicable to compare the performance of the
ANNSs with the benchmark models. The ANN models are initialised 40 times and therefore for each
network setup there are 40 different candidates that only have different weights w but perform
differently. This is due to the stochasticity of the training algorithm and the random initialisations. in
contrast, the benchmarks are single optimally parameterised models. Therefore, in order to
compare them, from all this alternative sets of network weights only the one that performs best
should be chosen. The ANN initialisation that gives the minimum error in the validation set is

selected and is compared with the benchmarks.

6.4 Results

First, the effect of the time series pre-processing is evaluated. Table 6-VI presents the mean

SMAPE across all time series for the two datasets. Furthermore, the p-values of the Friedman test
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and the mean ranks of the Nemeneyi test are provided. The mean sMAPE and rank are calculated
considering all different ANN models, initialisations and time series. Once the Friedman test shows
that at least one type of data pre-processing is significantly different from the others, the post-hoc
‘Nemeneyi test can reveal which are statistically different and provide a ranking for all different types
of pre-processing. Note that if there is no evidence Qf statistically significant differences among the
different types, then these are assigned in the same group, which is not the case here. Also note that

the critical distances among the two datasets are different, due to the number of time series.

Table 6-VI: Effect of data pre-processing

Data preparation mean sMAPE Nemeneyi test
Train Vaildation Test Mean Rank Group**
NN5 dataset - Friedman test p-value: 0.000
Input-Diff 0.202 0.188 0.230 42.96* 1
No-Diff 0.202 0.190 0.233 47.74* 2
Season-Diff 0.238 0.204 0.274 90.80* 3
Electricity dataset - Friedman test p-value: 0.000
Input-Diff 0.145 0.182 0.128 50.33** 1
No-Diff 0.138 0.170 0.120 52.35** 2
Season-Diff 0.140 0.172 0.122 78.82** 3

*The critical distance for the Nemenyi test at 1% significance level is 0.13, at 5% significance level it is
0.11 and at 10% significance level it is 0.09; **The critical distance for the Nemenyi test at 1%
significance level is 0.40, at 5% significance level it is 0.32 'and at 10% significance level it is 0.28;
***Mean ranks that have no statistically significant differences at 5% significance are assigned to the
same group

Although the mean errors are indicative of the performance, it is advisable to compare the
models using the statistical tests. If different random weight initialisations are used for the training
of the ANNs, then the errors are bound to be different. However, the statistical tests consider the
complete distribution of the errors, i.e. the results of several initialisations, so given an adequate
sample they can provide a more reliable answer. Furthermore, the mean error is affected by
deviations from normality of the error distribution, whereas the statistical tests are nonparametric.

Considering the results of the Nemenyi test, both datasets have identical ranking. The Input-Diff pre-
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processing is the most accurate, followed by the No-Diff, while the Season-Diff that uses the
differenced time series ranks last, as expected, since the time series have deterministic seasonality.
However, identifying the input vector for the ANNs using the differenced time series is significantly
better than using the undifferenced time series. To understand why this is so, it is necessary to
discuss what happens when a deterministic seasonal time series is differenced. A simple time series
with deterministic seasonality is defined as in (6.6),

S
y! =H +st5xt +Z! ’ (66)

s=1

where vy, is the value of the time series at time t, u is the level of the time series, m; is the seasonal
level shift due to the deterministic seasonality for season s, 8, is the seasonal binary dummy variable
for season s at time t, z; is a weak stationary stochastic process with zero mean and S is the length of
the seasonality (Ghysels and Osborn 2001). This time series after calculating the seasonal differences

becomes
Agy, =04z, (6.7)

Comparing (6.6) and (6.7) it can be deduced that it is now impossible to estimate m,, therefore the
deterministic seasonality is lost. By inputting to the ANN the lags that were identified on the
differenced time series the ANN does not get any seasonal information. The seasonal information is
coded solely by the deterministic dummies and the lagged inputs code only other aspects of the
time series. Remove the seasonal information from the lagged inputs makes the training of the
network easier (Zhang and Qi 2005). This allows interpreting the observed superiority of Input-Diff to

No-Diff. From this point on, only the results for Input-Diff will be presented.
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The results for all different methodologies that are used to identify the input vector for the
ANNs are explored in the same fashion. First the ranking of the models is discussed using the results
of the statistical tests and afterwards the ANN models are compared with the benchmarks-using the
SMAPE. For both datasets the Friedman tests reveals that at least one model is statistically different
(p-value is 0.000 for both datasets). The detailed results of the Nemenyi tests are presented in table
6-VIl. The models are listed according to their mean rank. Figure 6.4 presents visually the significant

»

differences between the competing ANN models.

Table 6-VII: Nemenyi mean rank for different ANN models (Input-Diff)

NN5 dataset Electricity dataset
Model Mean Rank*  Group*** Model Mean Rank** Group***
ANN_burg 347.7 1 ANN_burg 333.8 1
ANN_naive 352.9 2 ANN_acf+ywe 361.8 2
ANN_reg_auto 382.2 3 ANN_fs 363.9 2
ANN_reg_forw 382.2 3 ANN_reg_back 385.4 3,4,5
ANN_fs 384.5 3 ANN_ywe 3934 3,4,5,6
ANN_nlacf 389.9 4 ANN_acf+ls 3934 3,4,5,6
ANN_acf 398.1 5 ANN_reg_auto 393.5 3,4,5,6
ANN_nlacf+burg 402.8 6 ANN_reg_forw 393.5 3,4,56
ANN_ywe 408.9 7 ANN_acf 397.4 3,4,5,6,7
ANN_Is 409.0 7 ANN_nlacf 402.2 4,5,6,7,8
ANN_reg_back 409.3 7 ANN_sa+ywe 402.2 4,5,6,7,8
ANN_acf+burg 419.0 8 ANN_all 411.3 56,7, 8
ANN_acf+ywe 440.9 9 ANN_nlacf+ywe 4135 6,7,8
ANN_acf+ls 440.9 9 ANN_nlacf+ls 413.5 6,7,8
ANN_sa+burg 440.9 9 ANN_nlacf+burg 413.5 6,7,8
ANN_nlacf+ls 442.9 9 ANN_sa+ls 414.7 6,7,8
ANN_nlacf+ywe 4435 9 ANN_sa+burg 414.7 6,7,8
ANN_sa+ywe 471.2 10 ANN_Is 414.7 6,7,8
ANN_sa+ls 471.9 10 ANN_acf+burg 414.7 6,78
ANN_sa 473.0 10 ANN_naive 489.7 9
ANN_all 518.7 11 ANN_sa 809.9 10

*The critical distance for the Nemenyi test at 1% significance level is 5.09, at 5% significance level it is 4.52
and at 10% significance level it is 4.24; **The critical distance for the Nemenyi test at 1% significance level
is 15.76, at 5% significance level it is 14.01 and at 10% significance level it is 13.13; ***Mean ranks that
have no statistically significant differences at 5% significance are assigned to the same group
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Fig. 6.4: Nemenyi test results. Black squares represent insignificant differences between models
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It is obvious that the models perform differently in each dataset, with very few
commonalities. Notably, the ANN_burg performs significantly better than all other models in both
datasets. Furthermore, methodologies from different families are found to belong to the same
groups, for instance for the NN5 dataset group 3 is consisted by ANN_reg_auto and ANN_reg_forw,
which belong to the regression family, and the ANN_fs, which is a heuristic. Within each family of
methodologies the ranking of the models is not consistent among the two datasets, which
complicates the analysis of the results. However, in both datasets there are some common findings.
First of all, the estimation algorithm of the PACF has significant impact on the accuracy of the ANNs.
In this study the commonly used Yule-Walker estimation does not perform well. This is in agreement
with previous studies (McCullough 1998; Kourentzes and Crone 2009). Therefore, it is necessary to
consider less widespread PACF estimation algorithms as the Yule-Walker estimation is found
inadequate. In both datasets the ANN_acf performs better than several input vectors based on
combinations of ACF and PACF or just PACF. This is counterintuitive, as one would expect PACF
methodologies to perform better. However, given the different estimation algorithms of PACF and
the different performances, it seems to be a matter of estimating correctly the autoregressive
information in the time series. If only the best PACF estimation is used, the ANN_burg, then ANN_acf
is always significantly outperformed. The nonlinear ACF does not outperform linear methodologies,
as one would expect, since it captures inonlinear information that ANNs should be able to use.
Considering the SA and its combinations, in both datasets, they perform badly, ranking in the lower
groups of models. Note that the small number of time series used in the electricity dataset results in
wide critical distances for the Nemenyi test, resulting in relatively few statistically significant

differences among the different input variable selection methodologies in comparison to the NN5

dataset.
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If only methodology families are considered, the picture becomes clearer. Table 6-VIII
presents the results aggregated in this way. For both datasets the regression based models
performed significantly better than all other contestants. Considering both datasets it is unclear
whether the combining ACF and PACF information or not is better. The heuristic models, for both
datasets, perform poorly, ranking third. All heuristics used in this study provide non-sparse input
vectors, i.e. a series of continuous lags are used as inputs. There is significant evidence that a data
driven selection of sparse input vectors is preferable in ANN modelling, like the regression based
methodologies. This is in agreement with the conclusions of Kourentzes and Crone (2009), who also

find that non-sparse input vectors perform poorly.

Table 6-VIlI: Nemenyi mean rank for different ANN model groups (Input-Diff)

NNS dataset Electricity dataset
Model Mean Rank* Group*** Model Mean Rank** Group***
Regression 70.72 1 Regression 61.5 1
ACF or PACF 78.52 2 ACF and PACF 64.8 2
Heuristic 82.63 3 Heuristic 77.1 3
ACF and PACF 90.13 4 ACF or PACF 118.6 4

*The critical distance for the Nemenyi test at 1% significance level is 0.82, at 5% significance level it is
0.68 and at 10% significance level it is 0.60; **The critical distance for the Nemenyi test at 1% significance
level is 2.54, at 5% significance level it is 2.10 and at 10% significance level it is 1.87; ***Mean ranks that
have no statistically significant differences at 5% significance are assigned to the same group

Table 6-IX provides the sMAPE of the best initialisation of each ANN model for both'
datasets. Due to the significant differences in accuracy between time series E-001 to E-004 and E-
005, which has a different behaviour, the forecasting errors are provided separately. The errors for
the benchmark models are provided as well. Errors for all training, validation and test sets are
provided. It is important to access whether the ANNs have generalised well, which is indicated by
similar performance in the three subsets (Adya and Collopy 1998). In this study, the error ranges

between the three subsets are comparable, indicating that the ANNs have fitted well to the time
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series. Note that the validation error is most of the times lower than the training set error, which is
to be expected since the selection of the best ANN initialisation was done on minimum validation set

error.

For the NN5 dataset several ANN models are more accurate than the best benchmark (EXSM
S1) in the test set. These models, not surprisingly, rank high in table 6-VII. For the electricity dataset
all the ANN models, but the ANN_sa and ANN_naive, are more accurate than the best benchmark
model (ESXM S1). Therefore, it is apparent that only ANNs with correctly specified input vectors are

able to match, if not outperform established benchmarks.

Note that the ranking of the models between tables 6-Vil and 6-1X is not consistent. This is
explained by the effect of the training initialisation, as discussed before. For a different set of initial
random weights, the SMAPE of the best initialisation would be different, potentially altering the
ranking. On the other hand, the statistical tests consider the whole set of initialisations and not just a
single one and are able to provide reliable conclusions, given enough sample of initialisations. It is
noteworthy that if all the initialisations for the regression based models are considered they are
ranked in different groups of models (table 6-VIl), but if only the best initialisation is used they are

seem to perform identically (table 6-IX), which is misleading.

Comparing the ANN_naive with the random walk (Naive), the first performs always better.
Furthermore, it is equally straightforward to implement, since only a single input is used in the ANN
(table 6-1V). For this reason, any input variable selection methodology should be able to outperform
the ANN_naive model, in order to justify the extra complexity and computational time associated. In
this study the ANN_naive, in both datasets, performs better than several methodologies,

demonstrating that none of these should be used.
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In analogy to table 6-VIIl, Table 6-X provides the mean sMAPE of the ANN models

aggregated by model family. The average forecasting error of all families of models of ANNs is lower

than the benchmark models’ errors.

Table 6-1X: SMAPE for Input-Diff

NN5 dataset

Electricity dataset

Model Time Series E-001 - E-004 Time Series E-005
Training® Validation* Test* Training* Validation* Test* Training* Validation* Test*
ANN_naive 0.219 0.169 0.219 0.021 0.019 0.024 0.661 0.770 0.535
ANN_all 0.207 0.171 0.228 0.020 0.019 0.023 0.604 0.725 0.471
ANN_fs 0.201 0.171 0.224 0.020 0.018 0.023 0.593 0.710 0.463
ANN_ywe 0.205 0.169 0.222 0.019 0.018 0.024 0.601 0.727 0.475
ANN_Is 0.205 0.170 0.222 0.020 0.019 0.024 0.601 0.727 0.475
ANN_burg 0.206 0.168 0.220 0.020 0.018 0.023 0.580 0.741 0.483
ANN_acf 0.202 0.169 0.221 0.020 0.019 0.023 0.582 0.723 0.483
ANN_nlacf 0.205 0.169 0.225 0.020 0.019 0.023 0.588 0.716 0.490
ANN_sa 0.209 0.175 0.231 0.029 0.023 0.030 0.666 0.859 0.681
ANN_acf+ywe 0.205 0.169 0.224 0.020 0.018 0.023 0.602 0.717 0.492
ANN_acf+ls 0.205 0.169 0.224 0.019 0.018 0.024 0.601 0.727 0.475
ANN_acf+burg 0.204 0.169 0.224 0.020 0.019 0.024 0.601 0.727 0.475
ANN_nlacf+ywe 0.203 0.169 0.234 0.020 0.019 0.023 0.585 0.702 0.490
ANN_nlacf+ls 0.203 0.170 0.234 0.020 0.019 0.023 0.585 0.702 0.490
ANN_nlacf+burg 0.204 0.168 0.225 0.020 0.019 0.023 0.585 0.702 0.490
ANN_sa+ywe 0.203 0.169 0.228 0.020 0.019 0.023 0.588 0.716 0.490
ANN_sa+ls 0.203 0.169 0.228 0.020 0.019 0.023 0.583 0.734 0.473
ANN_sa+burg 0.205 0.169 0.224 0.020 0.019 0.023 0.583 0.734 0.473
ANN_reg_auto 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
ANN_reg_forw 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
ANN_reg_back 0.206 0.169 0.220 0.021 0.018 0.023 0.607 0.719 0.476
Naive 0.450 0.466 0.489 0.081 0.076 0.073 0.814 0.871 0.579
Naive S1 0.275 0.241 0.303 0.036 0.034 0.032 0.663 0.793 0.541
Naive S2 0.274 0.264 0.293 0.044 0.038 0.039 0.948 0.998 0.854
EXSM S1 0.213 0.196 0.228 0.032 0.029 0.028 0.642 0.765 0.502
EXSM S2 0.028 0.041 0.036 0.590 0.881 0.559
*Boldface values are better than best benchmark
Table 6-X: Mean sMAPE for Input-Diff by model group for Input-Diff
Electricity dataset
Model NN5 dataset Time Series E-001 - £-004 Time Series E-005

Training  Validation  Test Training Validation  Test Training  Validation  Test

Heuristic 0.209 0.170 0.224 0.020 0.019 0.024 0.620 0.735 0.490

ACF or PACF 0.205 0.170 0.223 0.021 0.019 0.024 0.603 0.749 0.514

ACF & PACF 0.204 0.169 0.227 0.020 0.019 0.023 0.590 0.718 0.483

Regression 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
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Finally, the size of the resulting input vectors is explored. Each methodology identified a

different number of inputs for each time series. Overall, some methodologies tended to output very

parsimonious input vectors, while others provided much longer vectors. Figure 6.5 provides the

boxplots of the input vector sizes per input variable selection methodology per dataset. The

methodologies are ranked by performance, as in table 6-VII.
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Fig. 6.5: Boxplots ofthe input vector sizes for the two datasets.

In figure 6.5, for the NN5 dataset, there seems to be a clear connection between the ranking

of the model and the size of the input vector, favouring shorter input vectors. There is some

evidence of similar behaviour for the electricity dataset, though the connection is weaker. The mean

Page 200



and median input vector sizes, for both datasets, against their respective performance are provided

in figure 6.6, along with the linear correlation coefficient. The p-values can be found in brackets.

Both the mean and median size of the resulting input vector of the different methodologies are

linearly correlated with their ranking according to forecasting accuracy.
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Fig. 6.6: Scatter plots of mean and median input vector size and performance.

6.5 Conclusions

The objective of this study was to evaluate different input vector specification

methodologies for ANNs on high frequency data. Two different datasets, including in total 47 time

series, were used to model 21 different ANN models, belonging to four families of input vector

specification methodologies. From the empirical evaluation there is a series of findings:

1) Regression based input vector specification methodologies outperformed simple heuristics,
ACF or PACF methodologies and those based on their combinations. This is in agreement

with the results of a similar analysis for low frequency time series, where it was also shown
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2)

3)

4)

5)

6)

7)

that regression based input variable selection methodologies performed best (Kourentzes

and Crone 2009).

The pre-processing of the time series is important for the specification of the input vector
and the performance of ANNs. The correct form of pre-processing depends on the
properties of the time series. Poor pre-processing can result in misspecified input vectors

which harm the forecasting accuracy.

Sparse input vectors, that involve data driven analysis of the time series, outperform long

continuous vectors that are typically provided by heuristics.

Nonlinear input vector specification methodologies did not perform better than more

widespread linear methodologies.

Different PACF estimation algorithms have significant effect on the specification of the input
vector of the ANNs and their performance. The commonly used Yule-Walker estimation is

found to be inadequate for ANNSs. In this study the Burg estimation performed best.

A benchmark ANN model is suggested. This model is the MLP analogue of the random walk.
Only a single t-1 input is used. In this study, this model outperformed several statistical
benchmarks, including the random walk, and ANN models. Since this model is very simple
and parsimonious, any more complex ANN should outperform it in order to justify the

additional modelling complexity.

Evidence is provided that the size of the input vector is correlated with the performance of

the ANNs. Models with parsimonious input vectors perform better for both datasets.
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8) Additional evidence that ANNs are able to perform at least as good as established
benchmarks is provided for the case of high frequency data. Note that most of the ANNs

were suboptimally modelled, yet they performed better or similar to the benchmarks.

In this study the results from a large distribution of several initialisations and not only from
the best initialisation, as is common in the ANN literature, are considered. This strengthens the
validity of the findings. Although ANN studies are very difficult to replicate, due to the stochastic
nature of the training algorithms, in this study, through the use of carefully designed experimental
setup, statistically significant conclusions are drawn, with confidence relative to the number of
training initialisations. Therefore, similar studies or attempts to replicate this one should reach the

same conclusions, even though different SMAPE figures may be found.

An important outcome of this study is that several of the published methodologies to specify
the input variables of ANNs do not perform as expected. Sometimes they perform worse than simple
statistical benchmarks, weakening the validity of implementation of the ANNs in papers that have
used them. This only makes it more difficult to draw conclusions from the ANN literature and
requires assessing critically both good and bad ANN results. It is important to carefully model
network models and use for multiple training initialisations. Evaluating the performance of ANNs
over several initialisations allows evaluating the robustness of the results and only then can safe

conclusions be drawn.

In this study the ANN topology is kept fixed for each dataset and the interaction of the
number of hidden nodes with the different input vector specification methodologies is not
investigated. The literature suggests that the most important determinant of ANNs accuracy is the

selection of the input vector (Zhang 2001; Zhang, Patuwo et al. 2001). This analysis provides
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guidelines how to best choose inputs for ANN models for high frequency data. However, the
sensitivity of the different methodologies to the number of hidden nodes, or the number of hidden

layers is not assessed. Future research will try to address this limitation.
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7 Concluding remarks

This thesis aimed to address the problem of input variable selection for ANNs in forecasting.
The main topics that were discussed in this context were (i) an extensive review of advances in the
application of ANNs in forecasting and the identification of key unresolved issues, (ii) the input
variable selection for forecasting low frequency time series with ANNs, (iii) modelling time series
with deterministic seasonality with ANNs and the implications for the input vector of the networks,
(iv) the effects of high frequency data on the forecasting performance of ANNs and more specifically
the implications for the construction of their input vector and (v) selecting the input variables for
ANNs for high frequency time series forecasting applications. The outcome of this research is a set of
best practises in specifying the input vector for ANNs that improve their forecasting accuracy. These
were derived from a rigorous empirical evaluation of ANN candidate models on multiple datasets,

exploring multiple conditions of time series frequencies and components.

Summarising the major findings of this thesis, chapter 2 presents a thorough literature
review in the context of forecasting and management science literature. This review consolidated
research designs presented in previous reviews of ANNs and forecasting methods in a unified
framework that allowed assessing the contribution, validity and replicability of previous work. This
facilitated a meta-analysis of the literature investigating for evidence of ANNs’ performance,
methodological advances in forecasting with ANNs, gaps in research and weakness of previous
research. A key finding was that the ANN literature has focused more on proposing novel algorithms,
rather than providing empirical evidence of their performance. Most of the ANN literature fails to
follow the suggestions of the forecasting literature on how to perform valid and robust empirical
evaluations or use appropriate statistical tests to assign confidence in their findings. Furthermore,
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the stochasticity in ANNs’ training is ignored and no provisions are made in most papers to account
for this. These, consecutively weaken the findings of several papers and also prohibit the extraction
of best practices on how to model ANNs for forecasting. This problem becomes particularly
important for the specification of the input vector of the ANNs, since this is evidently identified
multiple times in the literature as the key factor in the networks’ forecasting accuracy. Several
alternative methodologies have been proposed in the literature, however there is no extensive
empirical evaluation that would provide evidence on which is the best methodology and under
which conditions. In addition, no effort to replicate and assess the performance of previously
published methodologies was identified. The review concluded that it is imperative (i) to rigorously
evaluate the proposed ANN modelling methodologies in the literature, especially those related to
the input vector and (ii) to construct an evaluation framework that will provide valid and reliable

evidence on ANNs’ performance, taking into account their stochastic nature.

Chapter 3 addressed this problem by conducting a large scale rigorous empirical evaluation
of several proposed input variable selection methodologies for ANNs and new variations of them on
low frequency time series. The setup of the experiments allowed the production of a ranking of the
competing methodologies that is on one hand robust to the stochastic nature of ANNs and on the
other hand is valid, having used multiple time series, robust and appropriate error measures, rolling
origin evaluation, statistical testing of the significance of the ranking and statistical benchmark
forecasting models. The statistical tests employed in this study were robust non-parametric multiple
hypothesis tests that have not been used before in evaluations of ANNs forecasting performance
and provided higher confidence in the findings, setting the foundations for a valid evaluation
framework for ANNs in forecasting. These experiments assessed the performance of the different

input vector specification methodologies for types of trend, seasonality and noise levels, using a
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synthetic dataset with known properties. The findings also were verified on real time series. This
analysis focused on low frequency time series. The conclusions of these comparisons was that linear
regression based input variable selection methodologies performed most accurately over both
datasets, outperforming other linear and nonlinear methodologies based on autocorrelation and
partial autocorrelation analysis, spectral analysis, mutual information, random field regression and
heuristics. Notably the nonlinear methodologies did not exhibit any advantages, as it is suggested in
the literature, however without evidence. Furthermore, correctly modelled ANNs outperformed
statistical benchmarks under all conditions, in contrast to ill specified ANN models. This provided
insight on the contradictory findings of the literature, where ANNs on similar datasets are found to
perform both worse and better than benchmarks. A very simple ANN analogous to the random walk,
which uses only the past lag as input, was identified to be on average more accurate than the
random walk and hence it was identified as a valuable benchmark for future ANN studies due to its
simplicity. Any more complicated ANNs should be able to outperform this simple ANN benchmark in
order to justify the extra complexity. Finally, additional evidence that ANNs require special modelling

of trend and seasonality was presented.

In chapter 4 the special case of time series with deterministic seasonality was considered.
The ANN literature has overlooked the distinction between stochastic and deterministic seasonality.
These two types of seasonality require different modelling practices. This explains why in the ANN
literature both pre-processing and not of the inputs are advised. For the case of deterministic
seasonality it was shown that deseasonalisation through means of seasonal differences, which is the
suggestion of the ANN literature, not only did not help, but on the contrary harmed the forecasting
accuracy of ANNs. Instead, coding the seasonality by means of dummy variables was found to be

beneficial. Several alternatives were empirically evaluated. These included variations of binary
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dummy variable coding, integer dummy variable coding, sine-cosine wave coding, autoregressive
modelling, seasonal differencing and a proposed coding based on seasonal indices. The proposed
methodology was found to be the most accurate and the most parsimonious. Furthermore, evidence
was provided that there are no statistically significant differences in the accuracy of ANNs when
alternative binary dummy variable coding is used. Also, a single pair of sine-cosine was found to be
adequate to model the seasonality accurately, capitalising on ANNs’ approximation capabilities, in

contrast to conventional econometric modelling.

Chapters 3 and 4 explored the specification of the input vector for ANNs for low frequency
time series. Although these time series are widespread, nowadays advances in information
technologies and computers allows the collection and use of high frequency time series. In
conventional statistical modelling high frequency data require special modelling, since many of the
statistical techniques were originally developed for low frequency time series and fail when applied
to such data. There is evidence that ANNs perform well in high frequency forecasting problems, but
the effect of the change in frequency on their accuracy has not been researched. Chapter 5
investigated the effect of time series frequency on the accuracy and the modelling methodologies of
ANNs. A dataset of daily time series was aggregated in weekly and monthly time series, ensuring
that time series with the same properties are modelled across different time frequencies. An
empirical evaluation of the performance of the ANNs across time series of the same frequency and a
top-down/bottom-up comparison across frequencies revealed that ANNs performed better in high
frequency rather than low frequency time series forecasting. The increase in frequency affected the
specification of the input vector and several new modelling challenges emerged. The input variable
selection methodologies were found to perform inconsistently among different frequencies.

Furthermore, outliers and calendar effects gained more importance. It was found that this
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information needs to be inputted in the ANNs differently to the widespread encoding of such effects
with binary dummy variables. This encoding was found to be inadequate to capture their emerging

dynamic behaviour and different approaches should be researched.

Chapter 6 built on these finding and evaluated the performance of input variable selection
methodologies specifically on high frequency time series. Two real datasets were used to evaluate
different input variable selection methodologies, similarly to chapter 3. Linear regression based
methodologies were found to perform best, in agreement with the findings for low frequency time
series. However, the ranking of the remaining methodologies was not found to be consistent across
frequencies, with the exception of the bad performance of heuristic based methodologies. Evidence
that ANNs performed better than statistical benchmarks was provided. In agreement with chapters 3
and 4, it was shown that seasonal time series require special modelling for the ANNs to perform
well. Considering both the low and the high frequency evaluations, a novelty of this thesis is that it
explored the performance and the applicability of ANNs and methodologies to specify their inputs
under the condition of different time series frequencies. This illustrated that ANNs are flexible
models that can model both cases with minimal intervention from the modeller and it was shown
how to best select the inputs in both settings. This is a significant finding, indicating that a uniform
automatic modelling methodology for datasets of different frequencies is possible with ANNs.
Furthermore, it was investigated whether ANNs require parsimonious input vectors or not. The
results were inconclusive. If single datasets were considered then there was a significant positive or
negative correlation between the size of the input vector and the performance of the ANNs,

however once all the datasets were considered there was no apparent connection.
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In the ANN literature there is no widely accepted methodology for modelling ANNs for
forecasting. This makes their use difficult for researchers and practitioners alike. This thesis provides
best practices on how to select objectively the input variables for ANNs. Moreover, best practices on
data pre-processing and modelling time series seasonality, which are connected to the input vector
of ANNs, are provided. Hence, the outcome of this research helps to systematically model the input
vector that is the most important factor for the accuracy of ANNs for forecasting. The systematic
modelling can lead to automated ANN forecasting methodologies, which will capitalise on their
flexibility to forecast accurately time series of different frequencies and types, which was evident
from the empirical evaluations performed in this thesis. However, additional research is required
before fully automated ANN forecasting is possible, since there are no clear guidelines on how to

select the remaining parameters of ANNs.

There is a conscious effort in this study to design the experiments in such way that the
findings are valid and robust. ANNs studies are very hard to replicate and validate because of the
large number of parameters that need to be set and the stocasticity of the training of the ANNs. The
later r'nakes it almost impossible to replicate an ANN study. Most studies either do not report all the
parameters or do not address the stochasticity of the results, harming severely the validity of their
findings. However, through the use of multiple training initialisations for each ANN model this
problem can be mitigated. In the experiments conducted in this study the entire distribution of the
results for each ANN model was considered. This allowed assessing the robustness of each ANN
model to the stochasticity of the training and the ANNs were ranked according to their performance
over the complete distribution. Given the large number of times that each ANN was initialised and
trained it was possible to use statistical hypothesis testing to confidently identify the models that

significantly performed better. The statistical tests were non-parametric multiple hypothesis tests
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and facilitated better the comparisons between ANN models. Although perfect replication of the
forecasting errors of ANNs is not possible, unless the same random number generator and random
number generator seed are used, the conclusions of this study are robust to the random
initialisations and the ranking of the models is reproducible. It is important that future ANN research
builds on such ideas that will produce valid and reliable findings, which is the major weakness of the

current ANN literature.

This study addressed a wide variety of issues connected to the specification of the input
vector for ANNs; however it has a series of limitations. The interaction of the input vector with the
hidden layer is not explored. Although there is evidence in the literature that the hidden layer has
limited impact on the accuracy of ANNs compared to the input vector, how these two interact and
what are the implications for the specification of the input vector has not been researched in detail.
Another limitation of this study is that only the univariate forecasting case was considered. Most of
the methodologies evaluated here are readily applicable or easily extendable to multivariate
forecasting problems, but this was not considered in these experiments. Furthermore, this study
focused on the most widely used input variable selection methodologies, their variations and those
that can be economically implemented in high frequency time series, therefore methodologies

based on wrappers and pruning of the inputs were not considered.

These limitation need to be addressed in future research. There are also a wide range of
research questions can be that derived from this study. It was shown that for high frequency time
series the binary dummy variable encoding for outliers, calendar events and other time series
irregularities is not adequate. How to best code this information remains an open question.

Furthermore, in high frequency time series new problems emerge, like the presence of leap years,
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etc. The effect of these to forecasting accuracy of ANNs has not been researched. This thesis was
unable to provide a definite answer whether ANNs require parsimonious input vectors or not.
Experiments that will address this issue specifically need to be designed. Another question that is
apparent from this research is how to specify the maximum lag length that should be evaluated to
identify the inputs for ANNs. This issue seems to be connected with the parsimony of the input
vector, however if one considers the difference between sparse and non-sparse input vectors the
question becomes more complicated. This is an important open question for future research. Last
but not least, the findings of this study show that automation of ANNs for forecasting is possible.
However, in order to achieve this there are several questions that need to be addressed. These are
connected with the rest of the ANNs parameters and also with the exploration and identification of
the time series properties. This study provided evidence that low and high frequency time series
require adaptations of the ANN modelling methodology, but it did not provide a way to identify the
frequency of the time series in an entirely data driven way that is necessary for full automation of

ANNs. This needs to be researched further.

This thesis aimed to addressed an important research gap in ANN modelling methodology
and empirical evaluation. The findings of this research can be used to aid in the building of more
systematically modelled ANNs, which will reduce the inconsistencies due to trial and error modelling
approaches observed in the literature. Moreover, the factors under which ANNs and the input
specification methodologies perform best were investigated. Evidence was provided that ANNs
perform better in high frequency in comparison to low frequency time series, which can partially
explain the contradicting findings in the literature. Future studies should assess the conditions under
which ANNs perform best, thus defining the applications that these models should be applied.

Furthermore, this study proposed an evaluation framework for ANNs that allows to robustly and
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reliably extract conclusions with confidence from ANN simulations. Future research could benefit by
building on this framework to improve the quality of the conclusions of the ANN literature. Lastly,
this study is the first large scale empirical evaluation of ANN modelling methodologies. The outcome
helps to dispel some of the confusion in the literature on how to model ANNs. This could act as a
starting point for future ANNs studies to validly evaluate proposed innovations, assess the conditions

under which they perform better and ultimately aid to our understanding of ANNs.
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