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Abstract
Over the last two decades there has been an increase in the research of artificial 

neural networks (ANNs) to forecasting problems. Both in theoretical and empirical works, 

ANNs have shown evidence of good performance, in many cases outperforming established 

statistical benchmarks. This thesis starts by reviewing the advances in ANNs for time series 

forecasting, assessing their performance in the literature, analysing the current state of the 

art, the modelling issues that have been solved and which are still critical for forecasting with 

ANNs, thereby indicating future research directions. The specification of the input vector is 

identified as the most crucial unresolved modelling issue for ANNs' accuracy. Notably, there 

is no rigorous empirical evaluation of the multiple published input variable selection 

methodologies. This problem is addressed from four different perspectives. A rigorous 

evaluation of several published methodologies, along with new proposed variations, is 

performed on low frequency data, exploring which input variable selection methodologies 

perform best. This analysis concludes that regression based methodologies outperformed 

other linear and nonlinear ones. The best way to code deterministic seasonality in the inputs

Page iii



of the ANNs is explored, a topic overlooked in the ANN literature, and a parsimonious 

encoding based on seasonal indices is proposed. The effect o f the frequency of the time 

series on specifying the inputs for ANNs for forecasting is evaluated, revealing several 

challenges in modelling high frequency time series and providing evidence that the 

performance of several input variable specification methodologies is not consistent for 

different data frequencies. This leads to an evaluation of methodologies to select input 

variables for ANNs solely for high frequency data. Regression based methodologies are found 

to perform best, in agreement with the evaluation on low frequency dataset, while the 

ranking of the remaining methodologies is found to be inconsistent for different data 

frequencies.
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1 Introduction
Forecasting has made significant contributions to management science. It has been 

used to address important issues such as supply chain planning, inventory management, 

revenue management, market modelling and credit risk appraisal to name a few. 

Forecasting research draws upon management science problems and applications. Advances 

in forecasting practice often result in substantial gains for organisations, resulting in strong 

motivation for better forecasting models and methodologies (Fildes, Nikolopoulos et al. 

2008). Computational intensive (Cl) methods have recently begun to attract the attention of 

researchers and practitioners in forecasting, supported by advances in statistics, machine 

learning and computational power. Artificial neural networks (ANNs) is a class of Cl methods 

that has been applied in forecasting problems with increasing interest from researchers. 

ANNs are mathematical constructs originally motivated by biological neural networks. They 

are nonparametric nonlinear data driven models that exhibit the ability to learn from 

available information and generalise (Church and Curram 1996). Surveys of forecasting 

practice in organisations have shown that practitioners prefer to use established and easy to 

understand methods (Hughes 2001). ANNs are complex models that are hard to 

parameterise and not yet well understood. This limits their use in management science 

applications and for this to change it is necessary to gain better understanding of how to 

build these models and provide solid evidence of increased accuracy over traditional 

forecasting methods (Bunn 1996).

ANNs are flexible nonlinear data driven self-adaptive methods with very few a priori

assumptions that are able to approximate any data generating process and generalise

(Zhang, Patuwo et al. 1998). In theory, these properties make ANNs ideal for forecasting

applications. Indeed, previous reviews of the forecasting research portrayed ANNs to
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outperform, on average, statistical benchmarks (Adya and Collopy 1998; Zhang, Patuwo et al. 

1998), however large scale forecasting competitions did not confirm this (Makridakis and 

Hibon 2000; Crone 2007). Although many researchers favour complex theoretical models 

(Fildes and Makridakis 1995), evidence from large scale forecasting competitions have shown 

that this is not necessarily correct and simple models often outperform more complicated 

ones (Makridakis and Hibon 2000). Therefore, in forecasting research, methods have to be 

empirically tested and evaluated before their performance is proven and superior theoretical 

properties are not enough to prove the usefulness of a forecasting method. One other 

outcome of the empirically based forecasting research is that models perform differently in 

different datasets; hence it is important to assess the conditions under which a forecasting 

method performs well. Empirical comparisons of forecasting a method with other leading 

methods can provide evidence that this method improves the forecasting accuracy and 

therefore should be preferred under given conditions. Forecasting methods should be 

compared with multiple established benchmarks using multiple hypothesis testing 

procedures. The hypothesis testing should also specify the conditions under which the 

findings apply (Armstrong 2006). Only then a forecasting method can be regarded valuable.

ANNs have not been rigorously empirically evaluated in the forecasting literature

and this leaves their forecasting performance unproven. Large number of studies have

provided contradicting findings regarding the accuracy of ANNs; hence, they have been

criticised as being unreliable in forecasting (Armstrong 2006). However, many of these

papers did not have a valid experimental design or the networks were not implemented

validly (Adya and Collopy 1998). ANNs are complex models, with several degrees of freedom,

that require the fine tuning of several parameters, including the input vector, the number of

hidden nodes, the transfer functions, the training algorithm and its parameters,

initialisations, etc. This complexity has led most researchers to adopt trial and error
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modelling approaches, which are suggested to be the main reason for the reported 

inconsistencies in their performance (Zhang, Patuwo et al. 1998). Although the ANN 

literature has identified the selection of the networks' input variables as the key determinant 

of their forecasting accuracy (Darbellay and Slama 2000; Zhang 2001; Zhang, Patuwo et al. 

2001), there is no widely accepted methodology how to specify the inputs, even though a 

large number of alternative methodologies have been published (Zhang, Patuwo et al. 1998; 

Anders and Korn 1999). Furthermore, the ability o f ANNs to forecast seasonal and trended 

time series is directly connected to the input vector of the networks (Nelson, Hill et al. 1999; 

Crone 2005; Zhang and Qi 2005; Curry 2007). Therefore, there is an obvious need to research 

how to best select the input variables for ANNs for forecasting.

Focusing on the ANN for forecasting literature, there have been several publications 

that have proposed different methodologies how to select the inputs for ANNs in a time 

series modelling context. However, as it is highlighted in chapter 2, there is an evident lack of 

studies that compare how these methodologies perform, making it hard to select which one 

should be used, adding to the confusion on how to best model ANNs. Moreover, the papers 

that discuss these methodologies do not always adhere to the requirements for valid 

empirical forecasting comparisons, as suggested by the forecasting literature (Collopy, Adya 

et al. 1994; Adya and Collopy 1998; Tashman 2000), resulting in unreliable comparisons with 

statistical benchmark models. ANN research has focused mainly on proposing new modelling 

methods and algorithmical innovations, while ignoring the need for evidence based 

forecasting that is principal in the forecasting literature and is based on valid and rigorous 

empirical evaluations (Armstrong 2006). Hence, to reduce the disconnect between the ANN 

and the forecasting literatures, it is important that published ANN modelling methodologies 

are assessed against each other and against statistical benchmarks. This will allow the
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evaluation of the conditions under which ANNs perform better and should lead to 

forecasting error reductions and also formulate best practices for ANN modelling.

One other issue that adds to the confusion regarding the performance of ANNs are 

the conditions under which they are used. Several published papers that use ANNs to 

forecast low frequency time series, i.e. monthly, quarterly or annual time series, have found 

their performance similar if not worse to established benchmarks. Notably in the M3 

competition, where 3003 low frequency time series were used to compare established and 

novel forecasting methods, ANNs performed badly (Makridakis and Hibon 2000). On the 

other hand ANNs have shown good performance in applications such as electricity demand 

forecasting (Hippert, Bunn et al. 2005; Hahn, Meyer-Nieberg et al. 2009) that use high 

frequency time series, i.e. with daily or shorter time granularities. Therefore, there is 

evidence that the frequency of the time series is an important factor for the accuracy of 

ANNs. However, there is no empirical evaluation that investigates this. It has been shown 

that conventional statistical methods, which were developed originally for low frequency 

data, fail when applied to high frequency time series (Granger 1998), but they can be 

modified accordingly in order to be used in high frequency time series (Taylor, de Menezes 

et al. 2006). In contrast, there is no empirical or theoretical work that examines the effects of 

time series frequency on the modelling methodology of ANNs and specifically on selecting 

their input vector, which is evidently the key determinant o f their forecasting performance.

Consequently there is a gap in research of ANNs in forecasting. There is no valid and 

rigorous empirical evaluation of the proposed alternative input variable selection 

methodologies for ANNs. Therefore, it is unclear how to systematically model them, making 

their use in forecasting challenging and subsequently their use in real management science 

applications problematic. Furthermore, the conditions under which these methodologies
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perform best have never been evaluated. The effects of the data frequency on the 

forecasting performance or the modelling methodology of ANNs has not been considered or 

evaluated, even though there is evidence that there is such an effect. Furthermore, due to 

the lack of empirical comparative studies of ANN modelling methodologies, no modelling 

best practises have been established, limiting the confidence and understanding of 

researchers and practitioners alike in using ANNs for forecasting. Last but not least, in ANN 

research the stochastic nature of their training has been overlooked when comparing with 

other forecasting methods. This seriously weakens the contribution and the reliability of any 

comparisons, therefore to validly empirically evaluate ANNs against benchmark statistical 

models it is imperative that the evaluation framework is extended.

This thesis attempts to address these issues. It is a collection of working papers that

explore and empirically evaluate how to specify the input vector for ANNs for forecasting

from four different angles. Chapter 2 reviews the ANN forecasting literature of the past 15

years, presenting the current state of the art, the advances that happened in the field and

remaining open research questions. Furthermore, in this review the relative accuracy of

ANNs against statistical benchmarks is investigated. A sample of 126 papers from eight major

forecasting and management science journals is collected and analysed. A key finding is that

most published studies do not have valid experimental designs or ignore the suggestions of

the forecasting literature, on how to robustly empirically evaluate the forecasting

performance of models. Furthermore, there is very limited attempt to analyse or replicate

the findings of previous studies, something necessary to identify best practises for

forecasting with ANNs. Another finding is that most published studies do not consider the

need for multiple training initialisations of the networks, which is necessary to get well

trained ANN models and be able to assess their robustness, ensuring that the results are not

by chance, due to the stochasticity o f the network training algorithms. This also limits the
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amount o f statistical analysis that can be done on the results. All these factors hinder the 

comparison of ANNs against statistical models and illustrate methodological weakness that 

must be corrected in future studies. An important finding is that although the selection of 

the input vector has been identified several times as the most important determinant of 

ANN forecasting accuracy, there is no rigorous empirical evaluation of the several proposed 

methodologies that exist in the ANN literature; hence, it is unclear how to select the input 

variables for ANNs and which of the proposed methodologies work best.

An evaluation of several competing input variable selection methodologies is

performed in chapter 3. Several published methodologies, along with new variants and

combinations are empirically compared on two datasets. The first one is a synthetic dataset

with known properties that allows evaluating the conditions under which ANNs and each

input variable selection methodology performs well, and the second one is a real dataset

that allows covering a wider range of time series types from real forecasting problems. A

novelty in the experimental design is that the ANNs are setup in a way that allows finding the

ranking of the different methodologies with high confidence. Multiple training initialisations

are used, providing a detailed distribution of the forecasting errors due to the stochasticity

of the training, allowing to assess the robustness of each model and infer how they will fare

in different implementations, which are bound to have different training initialisations.

Furthermore, robust nonparametric statistical tests are used, to identify which accuracy

differences are not statistically significant and provide a ranking of groups of the different

models, taking into consideration the complete distribution of the results. Previous studies

have considered neither the effect of the training initialisations nor evaluated the differences

in ANN models for significance, considering the robustness of each model. Moreover, to

raise the confidence of the forecasting error estimations rolling origin evaluation, multiple

time series and appropriate error measures are used, as suggested in the forecasting
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literature (Collopy, Adya et al. 1994; Adya and Collopy 1998; Tashman 2000). This setup is 

subsequently used in all the following chapters. The findings of the evaluation are surprising 

in the sense that nonlinear methods did not perform better than simpler linear methods, 

even though ANNs can make use of nonlinear information. Furthermore, pre-processing the 

time series for trend and seasonality is found to have a significant positive effect on the 

forecasting accuracy, while ANNs that are modelled with the top performing input variable 

selection methodologies routinely outperform statistical benchmarks on both datasets.

In the literature it is debatable whether the inputs to the ANNs should be pre- 

processed to remove trend and seasonality or not. While the bulk of the literature suggests 

that pre-processing is beneficial (Lachtermacher and Fuller 1995; Hill, O'Connor et al. 1996; 

Nelson, Hill et al. 1999; Zhang and Qi 2005; Zhang and Kline 2007; Qi and Zhang 2008) there 

are studies tbat suggest the opposite (Balkin and Ord 2000; Crone 2005; Crone and Dhawan 

2007; Curry 2007). However, one key issue that is not considered in the ANN literature is the 

nature of the seasonality. Deterministic and stochastic seasonality require different 

modelling approaches (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001), which is 

overlooked in ANN modelling. In chapter 4 it is investigated how to best model deterministic 

seasonality with ANNs. In contrast to most studies, it is found that pre-processing the inputs 

to remove the trend and the seasonality is not beneficial and on the contrary harms the 

accuracy of ANNs. Moreover, using only the unpre-processed time series is also not the most 

accurate approach. The inclusion of additional inputs to code the seasonality is found to 

benefit the forecasting accuracy of ANNs the most. Different ways to code the seasonality 

are evaluated and a parsimonious coding that requires only a single additional input is 

proposed. The hypothesis is explored empirically on two datasets of synthetic and real time 

series.
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Chapters 3 and 4 focus on low frequency data, which are widespread in forecasting 

practice. However, in the recent years the advances in computational power and IT systems 

have allowed organisations to collect high frequency data, of much shorter granularities. 

Modelling this type of datasets can be challenging, since conventional statistical methods 

can output misleading interpretation of the time series or not work at all (Granger 1998). 

Chapter 5 explores the effect of the transition from low to high frequency on ANNs, with 

special interest on the effects on the input variables selection. A set of real time series is 

modelled in daily, weekly and monthly time granularities with identically setup ANNs. This 

allows attributing potential differences in the forecasting accuracy to the frequency of the 

time series. Four different input variable selection methodologies are used to assess whether 

they perform the same over the different data frequencies. The main finding is that the 

ranking of these methodologies is inconsistent, indicating that the results for low frequency 

results, which are discussed in chapter 3, are not necessarily valid for high frequency 

experiments. Furthermore, ANNs' relative performance to the statistical benchmarks 

increases as the frequency of the time series increases. This raises the significance of 

exploring the performance of different input variable selection methodologies for ANN 

under the condition of high frequency time series forecasting.

Chapter 6 addresses the question of how do the alternative input variable selection

methodologies for ANNs compare for high frequency time series forecasting. Two different

real time series datasets are used to assess their performance in order to increase the

robustness of the findings. Although the ranking of the input variable selection

methodologies differs with the results from the low frequency time series experiments,

which are presented in chapter 3, the best performing methodology family is found to be the

regression analysis based one, which is consistent with the results for low frequency time

series. Chapters 3 and 6 replicate a large number of proposed input variable selection
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methodologies and together with new proposed variations empirically compare their 

performance, assessing which of these methodologies perform well for forecasting with 

ANNs. This is the first comparison that uses a wide range of input variable selection 

methodologies. These have not been previously evaluated against each other and in some 

cases not even against statistical benchmarks. The comparison uses multiple time series 

from multiple datasets, following the forecasting literature guidelines on what constitutes a 

valid empirical comparison. Furthermore, this study is the first to assess the performance of 

ANNs and the methodologies to select the input variables under different time series 

frequencies. In addition, this study is the first one to consider the problems caused in the 

empirical evaluation of ANNs by the stochastic nature of their training. A new evaluation 

framework is developed that allows assessing the robustness of the models to the random 

training initialisation of the ANNs and ranks their performance taking this stochasticity in 

consideration. Robust nonparametric multiple hypothesis statistical tests are used to 

accommodate these comparisons, allowing the extraction of reliable and valid empirical 

evidence on the performance of the different input variable selection methodologies and the 

conditions under which these perform well. The outcome of these comparisons is a set of 

best practices, some of which provide new insight and some of which dispel the confusion 

from contradicting results in the literature, on how to model the input vector o f ANNs for 

time series forecasting. The findings and key contributions of the thesis are outlined in 

chapter 7.

Page 9



2 Advances in forecasting w ith  
artific ia l neural networks

Abstract

There is decades long research interest in artificial neural networks (ANNs) that has 

led to several successful applications. In forecasting, both in theoretical and empirical works, 

ANNs have shown evidence of good performance, in many cases outperforming established 

benchmark models. However, our understanding of their inner workings is still limited, which 

makes it difficult for academicians and practitioners alike to use them. Furthermore,, while 

there is a growing literature supporting their good performance in forecasting, there is also a 

lot of scepticism whether ANNs are able to provide reliable and robust forecasts. This 

analysis presents the advances of ANNs in the time series forecasting field, highlighting the 

current state of the art, which modelling issues have been solved and which are still critical 

for forecasting with ANNs, indicating future research directions.

Preface

This paper is the result of the literature review that motivated my research topic. 

The review was developed and refined continuously over the duration of my doctoral 

research. It was updated last time in August 2009 to include the latest relevant papers. In 

this analysis I identify a set of limitations and open research questions of the current ANN 

literature in forecasting that I address in the following papers that comprise of my thesis. 

Parts of this review have been presented in several conferences, including the International 

Symposium on Forecasting in years 2007, 2008 and 2009 (ISF 2007-2009) and the 

International Joint Conference on Neural Networks in year 2009 (IJCNN 2009).
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2.1 Introduction

It has been almost half a century since the first application of artificial neural 

networks (ANNs) to regression and forecasting problems. Since then, a lot of research has 

been invested to improve our knowledge of modelling and using them, which has generated 

a wide variety of applications in forecasting and several other fields like control, 

optimisation, classification, pattern recognition, data mining, etc (Jordan and Bishop 1996; 

Zhang, Patuwo et al. 1998). ANNs are biology inspired models that mimic neural networks in 

the human brain, which allows them to learn from the available information and generalise 

(Church and Curram 1996; Darbellay and Slama 2000). A decade old survey (Zhang, Patuwo 

et al. 1998) on ANNs identified the following key features that make them useful in 

forecasting:

1. ANNs are data driven self-adaptive methods with very few a priori assumptions. 

They learn the underlying data generating process from the training data, without 

the need to input hard to infer theoretical knowledge. This makes them attractive as 

it is often easier to have wealth of data for a problem than good understanding of 

the laws that govern it.

2. They can generalise in the future. Once an ANN has been trained to learn the known 

sample, they are able to infer the relationship between the inputs and the outputs 

and simulate well future behaviours, even in the presence of noise. This is a 

necessary model property for forecasting applications.

3. They are universal function approximators. It has been shown that relatively simple

structures of ANNs can approximate any function to an arbitrary degree of accuracy,

with the same model form (Hornik, Stinchcombe et al. 1989; Hornik 1991). This

inherent flexibility allows them to model observed or unobserved relationships in
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the data, w ithout assuming a rigid functional form, which is common in statistical 

models, thus allowing them to model complex real systems that are not always fully 

understood.

4. They are flexible nonlinear models. In the forecasting literature there are several 

nonlinear models, however they usually assume a specific type of nonlinearity, which 

may not describe well the observed data. ANNs have the advantage that there is no 

need for apriory knowledge of the nature of the nonlinearity and are entirely data- 

driven.

The same survey concludes with four important research questions that must be answered 

to improve of understanding of ANNs and make their use in forecasting accurate and 

reliable. How do ANNs model time series that allows them to produce better results than 

conventional methods? How to systematically build an ANN for a given forecasting problem? 

What is the best training algorithm/method for time series forecasting? What is the effect of 

sampling and data pre-processing for ANNs and how should they be carried out?

The aim of this study is to explore the published forecasting literature since then and 

try to assess if the evidence supports the portrayed key advantages of ANN in forecasting, 

investigate whether the stated key research challenges have been resolved and identify the 

current important research questions in the field. Since the last extensive review in 

forecasting with ANNs (Zhang, Patuwo et al. 1998) a wealth o f research has been published, 

but remains largely disconnected, making it difficult to extract conclusions about the 

application of ANNs in forecasting as a whole. With this study I try to highlight the big picture 

of ANNs in forecasting. To accomplish this, a literature review of major established 

management science and forecasting journals is done in order to identify the current trends. 

I show which are the current modelling methodologies for ANNs and the main application
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areas, the current advances and how ANNs fare when compared to more traditional 

forecasting models. Furthermore, I investigate the validity of the published research in the 

light of the criticism received by the forecasting literature. The study concludes with the 

current important modelling issues for ANNs and a discussion about future research.

This study is organised as follows. Section 2.2 provides a brief overview of the 

literature survey design. Section 2.3 discusses the findings of the survey while section 2.4 

presents the conclusions of this study.

2.2 Research methodology

The main bulk of the papers analysed here was collected by performing an online 

survey using the ISI Web of Knowledge database1. The search was focused on influential 

journals in forecasting, operational research and management science. The journals were 

selected due to their relevance with forecasting and their ranking in two different systems, 

the Vienna List2 (e.V. 2008) and the impact factor as measured at the ISI Web of Knowledge 

(WoK 2009). Table 2-1 lists these journals with their respective scores in both ranking 

systems.

Journals that mostly specialise in ANNs from an engineering perspective were not 

included due to their limited relevance with economic/business forecasting. This is a limiting 

factor of this survey, however the aim of this study was to explore extensively the ANN 

forecasting literature with a special interest to operational research and management 

science problems; therefore, I follow the criteria set by Adya and Collopy (1998) to exclude

1 http://portal.is iknow ledee.com /portal.cg i

2 Vienna list is compiled by Wirtschafts Universitat W ien and the journals are graded from  A+ to D. The 

journals used in this study are graded from  A+ to  B.
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weather, biological processes and other non-business applications which are numerous in 

those journals.

Table 2-1: Ranking of Journals in the Literature Survey

Vienna List ISI W eb of Knowledge
Journal New Old Impact 5-Year Impact

list* lis t** Factor Factor

Computers and Operations Research (C&OR) A A 1.366 1.789
Decision Sciences (DS) A A 2.318 3.131
European Journal of Operational Research (EJOR) A A 1.627 2.084
International Journal of Forecasting (IJF) - B 1.685 1.596
Journal o f Forecasting (JF) A A 0.508 1.018
M anagem ent Science (MS) A+ A+ 2.354 4.065
Naval Research Logistics (NRL) A A 0.735 0.993
Operations Research (OR) A+ A 1.463 2.547

*The new list contains 322 journals ranked A+ (32) and A; * *  The old list ranks 1,877 journals 

classified as A+ (42), A (701), B (735), C (250) and D (142). The numbers in brackets show the num ber 

of journals in each category.

The keywords used to perform the search were relatively broad, ensuring that all the 

articles of interest would be identified3. No publication year restrictions were enforced, 

however most online articles date after 1995. For older papers only their abstracts were 

available online. The printed articles were retrieved for the highly cited papers published 

before 1995. This is not a limiting factor of this study, since the majority of older publications 

are analysed in previous reviews (Zhang, Patuwo et al. 1998). The total number of relevant 

papers that were used in this study is 126 and a list of them can be found in table XIII.

To ensure a systematic analysis of the papers I follow the suggestions in the 

literature on what constitutes a well implemented and valid ANN paper. Adya and Collopy

3 Those w ere: "Neural AND N e t*"  and "M ultilayer AND perce*". The results w ere manually filtered to  

identify relevant papers to forecasting. These words w ere selected after experim entation with  

different combinations to ensure a very w ide range of results. "Forecasting" and similar words w ere  

not used as keywords in order to find related papers, even if they had no such keywords associated to 

them .
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(1998) stressed that several of the ANN forecasting papers do not provide reliable or valid 

conclusions, because of lacking experimental design, evaluation or documentation, or the 

networks were not implemented well. To measure these, they set some criteria. The ANN 

models have to be compared with well-accepted benchmarks, use ex-ante comparisons, a 

reasonable sample of forecasts, adequate training, stability of the performance and 

generalisation capabilities. Crone and PrePmar (2006) go one step further and construct a 

framework that enables a systematic evaluation to identify heuristics and sound guidelines in 

ANN modelling by documenting the individual modelling decisions in each paper. They 

observe that due to the vast degrees of freedom in ANN modelling it is important that all 

these are analysed. This leads to an important point; it is imperative that the authors try to 

make their papers as replicable as possible by documenting all modelling decisions. This will 

allow transparent analysis of their models and eventually better understanding of what 

makes ANN models perform well or not. Furthermore, in the forecasting literature there are 

extensive guidelines of what constitutes an effective validation and a good experimental 

design (Collopy, Adya et al. 1994; Tashman 2000), which as I will discuss in the following 

sections is often overlooked in the ANN literature. Here, I create an amalgam of the 

suggestions briefly discussed above, which is implemented in practice by examining each 

paper across 42 different dimensions of analysis. The main benefit is that it allows a 

systematic investigation of the papers for contribution, validity of the evaluation and 

implementation, assess the replicability and extract knowledge on ANN modelling practices. 

The dimensions of analysis are classified in six major categories; the general information, like 

year of publication and area of publication, relevant information to the dataset used in the 

paper, the network architecture, the network training, the evaluation scheme and the 

conclusions. A detailed breakdown of these categories into the individual dimensions of 

analysis can be found in table 2-11.
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Table 2-11: Categories and dimensions of the literature survey
General

1 Author 3 Journal
2 Year 4 Area of application

Time Series
5 U n i/M u ltivaria te  tim e series 10 Pre-processing
6 Tim e series type 11 Scaling
7 Real/Synthetic tim e series 12 Train /V alid /Test set sizes
8 Sample size 13 No. of tim e series used
9 Time series granularity

Architecture
14 ANN type 21 Num ber of output nodes
15 M ethod to  model the ANN 22 Forecat horizon
16 Num ber o f input nodes 23 Transfer function
17 M ethod  to  identify input nodes 24 Output function
18 Num ber o f hidden layers 25 Shortcut connections
19 Num ber of hidden nodes 26 Pruning
20 M ethod  to  identify hidden layer/nodes 27 Itera tive /M u ltip le  step-ahead forecast

Training

28 Training method 32 Learning rate
29 Epochs/Iterations 33 M om entum  rate
30 Error function 34 Initialisations
31 Early stopping

Evaluation
35 Error M etric 39 Comparison with o ther models
36 In-sample evaluation 40 Which models
37 Ex-ante evaluation 41 Generalisability o f the results
38 Fixed/Rolling origin evaluation

Evaluation

42 ANN found better? 4 3  Additional info/notes

It was impossible to fill all the dimensions of analysis for each paper, since most of 

this information is either not documented or too vague. Furthermore, there is a strong lack 

of standardisation in the ANN nomenclature that makes the correct classification 

challenging. Once all the articles were analysed then the collected information was grouped 

to allow inference of meaningful information. The results are presented by category in the 

following section.
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2.3 Survey findings

2.3.1 Publication trends

In itia lly , I explore the  publica tion  trends. Figure 2.1 presents the  num ber o f papers 

per year and jou rna l since 1992. Note th a t the  2009 data includes on ly papers published in 

the  firs t 7 m onths o f the  year. Over the  years the re  is an increasing num ber o f pub lications 

th a t use ANNs in forecasting, dem onstra ting  th a t it is an active research top ic . There seems 

to  be a cycle o f 4 to  5 years th a t the  num ber o f publications peaks. M ore  than 75% o f the  

papers are published in th ree  journa ls, the  Journal o f Forecasting, the  In te rna tiona l Journal 

o f Forecasting and the  European Journal o f O perational Research, in o rd e r o f percentage. 

Note th a t the re  are no forecasting related papers w ith  ANNs in the  Naval Research Logistic 

and O perations Research journa ls.

C&OR
14%

rNim«j-Lnix>r'-.oocriO'!-irsjro,‘3'Lni£>r-"Oocr>cncncricricnc'icr' iG'iOOOOOOOOOOc ' i c n c ' i c j ' i c ' i c ' i c r i o ' i o o o o o o o o o oH H H H HH Hr t lN lNM r 'J INN fM r ' l iN IN

Year

Fig. 2.1: Publications per year and journal. Note that the 2009 figure includes only the first 7 months.

Comparing the  num ber o f ANN forecasting related papers w ith  the  to ta l num ber o f 

ANN papers, in the  same journa ls, the re  is a s im ila r trend . There is an increasing vo lum e o f 

papers th a t peaks every 4-5 years. The to ta l num ber o f ANN papers fo r the  same period is
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449, which makes the  126 forecasting papers account fo r  28% o f the  to ta l published research 

in the  selected e ight journa ls.

In figure  2.2 the  areas o f app lication o r the  broader top ic  o f the  papers are 

presented. The m a jo rity  o f the  papers discuss ANN m odelling issues, fo llow ed  by finance and 

m acroeconom ic applications and e lec tric ity  dem and/load  forecasting. Under the  category 

"o th e r"  all d iffe re n t sm aller categories w ith  on ly one paper are included. A fe w  examples o f 

the  varied applications o f ANNs include crim e forecasting (Corcoran, W ilson e t al. 2003), 

success rates o f countries in the  O lym pic games (Condon, Golden e t al. 1999), ozone 

concen tra tion  fo recast (P rybutok, Yi e t al. 2000), te lev is ion  v iew ersh ip  (N iko lopoulos, 

G oodw in e t al. 2007) and call centre fo recasting (Setzler, Saydam et al. 2009). M ore 

num erous are the  applications on tra ff ic  vo lum e fo recasting (D ougherty and C obbett 1997; 

Kirby, W atson e t al. 1997; Dia 2001), re ta il dem and forecasting (Kuo 2001; Thomassey, 

H app ie tte  e t al. 2004; Kotsialos, Papageorgiou e t al. 2005) and m arketing app lications w here 

the  u tility  o r the  brand choice o f consum ers is forecasted (Bentz and M erunka 2000; Jiang, 

Zhong e t al. 2000; Curry, M organ e t al. 2002; Papatla and Zahedi 2002; V room en, Franses et 

al. 2004; Kim, S treet et al. 2005; Pantelidaki and Bunn 2005; Hruschka 2007). It is apparent 

th a t the re  is a w ide  in te rest in ANN app lications in forecasting.

ANN Modelling 
Electricity Demand 

Finance 
Macroeconomic 

Marketing 
Retail 

Review/Survey 
Traffic Volume 

Other

0 2 4 6 8 10 12 14 .16 18 20 22 24 26 28 30 32 34 
N um ber of papers

Fig. 2.2: Areas o f application / broad topics o f the papers.
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2.3.2 Dataset properties

Here I explore the dimensions related to the dataset that is used in the publications. 

Note that as some papers are not empirical or do not include experiments the total figures 

presented hereafter maybe less than the total o f 126 papers. First I investigate the form of 

the dataset, i.e. if the papers use univariate data, multivariate data or both in their 

experiments. The majority of the articles address multivariate problems, as can be seen in 

table 2-111. About 40% of the papers discuss univariate time series forecasting problems and 

only 7 papers (6.8%) examine both possible forms. Regarding the type of time series, i.e. if it 

is a real dataset or a synthetic, nearly all papers (92%) use real time series. Again 7 papers 

use both real and synthetic time series in their experiments. Although real time series have 

apparent practical importance, synthetic time series allows the researcher to control the 

properties of the dataset and get a better understanding of the modelling process. 

Therefore, the literature is lacking in that sense, since in many cases the authors of the 

papers conclude that it is unclear why the ANNs forecast or fail to do so accurately, because 

the true properties of the time series are unknown.

Table 2-111: Dataset form  and type.

Form # o f papers Type # of papers
M ultivariate 60 Synthetic 8
Univariate 42 Real 92
Both* 7 Both* 7

in c lu d e d  in the above form s/types

The next dimension of analysis is the sample size of the time series. Table 2-IV 

provides descriptive statistics of the different sample sizes used in the literature and figure 

2.3 represents this visually with a boxplot. ANNs have been used in both short and long time 

series. The effect of the sample size is systematically analysed by Markham and Rakes (1998) 

who find that at large sample sizes ANNs outperform linear regression, whereas the opposite 

is true for short samples. Therefore, they conclude that ANNs perform better when long
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samples are available. Hu e t al. (1999) model daily exchange rate tim e  series and conclude 

th a t ANNs pe rfo rm  w e ll w ith  large sample sizes. Zhang (2001) and Zhang e t al. (2001) find 

th a t sample size is no t an im p o rta n t de te rm inan t fo r ANN accuracy. H ow ever they  note th a t 

m ore data are found help fu l to  overcom e o ve rfittin g  problem s.

Table 2-1V: Sample size statistics

Min 18.0
10% 68.1
20% 1 1 1 . 2

_CD
30% 130.0

+3 40% 153.6
c
CD
u 50% 234.0
CDn 60% 385.8

70% 720.1
80% 1637.8
90% 8866.2
Max 105024.0

-t- Hir "irHr

10 10 10 
Sample size (log scale)

Fig. 2.3: Sample size used in the ANN literature

The sample size is connected to  the  tim e  series g ranu larity . In the  lite ra tu re  tw e lve  

d iffe re n t granu larities are used, the  shortest being observations every 20 seconds fo r  road 

tra ff ic  data (Dia 2001) and the  longest being annual tim e  series covering a va rie ty  o f d iffe re n t 

data types. A lthough counting all the  ind iv idua l granu larities has lim ited  in te rest, it is 

im p o rta n t to  distinguish betw een low  and high frequency applications. There is no fo rm a l 

d e fin ition  o f w ha t constitu tes high frequency data, since the  characterisation  changes w ith  

the  available techniques, com puta tiona l resources and w ha t is the  m ost com m on tim e  series 

g ranu la rity  (Engle 2000). For th is analysis I use the  daily tim e  series g ranu la rity  as the  

boundary betw een high and low  frequency tim e  series. Any tim e  series o f daily o r shorte r 

in terva ls w ill be counted as high frequency. Granger (1998) has observed th a t conventiona l 

s ta tistica l m ethods can have problem s in in te rp re ting  high frequency in fo rm a tio n . Taylor et 

al. (2006) suggest th a t conventiona l sta tistica l m ethods need to  be m od ified  to  fo recast high 

frequency tim e series. In th e ir analysis they use a m od ifica tion  o f the  exponentia l sm ooth ing
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and ARIMA models to forecast hourly electricity load data. Therefore, it is interesting to 

investigate whether ANNs are able to forecast both low and high frequency time series and if 

there is need for special modifications of the models. Table 2-V shows the number of papers 

that use each time series granularity that is identified in the literature. The number of papers 

is provided for all area of applications and separately the three major ones, as shown in 

figure 2.2. Both high and low frequency problems are strongly represented in the literature. 

However, if the finance and electricity demand forecasting applications, which are inherently 

high frequency problems, are excluded then the majority of the applications is for low 

frequency problems. It is unclear whether this preference to low frequency applications is 

due to data availability or modelling problems. Figure 2.4 presents visually the number of 

papers per time granularity for all areas of ANN applications.

Table 2-V: Num ber of papers per tim e granularity

Time granularity
Area of application

All areas Finance Electricity Macroeconomics
20 seconds 1

> M inute 2 1
C0) 5 mins 1
3
CT Half-Hourly 5 4

Hourly 8 6
o p 3-Hourly 1

Daily 25 11 2 5

Total 43 12 12 5

W eekly 8 1 2
O
c M onthly 25 4 8
3CT Quarterly 11 2 1 4
w

H— Annual 9 3 1
£o O ther* 2

Total 55 10 3 13

*ln these cases the tim e granularity is not defined due to the dataset
characteristics
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Fig. 2.4: Number o f papers per time series granularity

There is on ly one paper th a t uses both low  and high frequency data (de Menezes and 

N ikolaev 2006). In th is  study the  authors use po lynom ia l neural ne tw orks and com m on 

m u ltila ye r perceptrons to  forecast the  m on th ly  a irline passenger tim e  series, a daily Dow 

Jones industria l index series and an hourly  e lec tric ity  load tim e  series. They com pare the 

ANNs w ith  sta tis tica l benchm arks in o rde r to  establish w h e th e r the  ne tw o rk  m odels are 

b e tte r and if the  proposed po lynom ia l neural ne tw ork  o u tpe rfo rm s m u ltila ye r perceptrons. 

The find ings are mixed and it is d iff ic u lt to  assess w h e th e r ANNs are applicable to  several 

d iffe re n t tim e  series frequencies w ith o u t m od ifica tions o r d iffe re n t m ode lling  practices. 

N ote th a t th is  is no t the  main research question  o f th is study, so the  authors have not 

designed th e ir  expe rim en t likew ise. H ippert e t al. (2005) and Hahn e t al. (2009) discuss the 

app lica tion  o f ANNs in e lec tric ity  load forecasting, a typ ica lly  high frequency prob lem . Both 

conclude th a t ANNs have been successfully applied in th is type o f p rob lem , ou tp e rfo rm in g  

established forecasting benchm arks. The firs t paper concludes th a t large overparam etrised 

ANNs pe rfo rm  very w e ll fo r e lec tric ity  load forecasting prob lem s and note th a t th is  may be 

due to  the  dataset p roperties, since such netw orks are typ ica lly  avoided in o th e r ANN 

forecasting applications. This provides some evidence th a t high frequency tim e  series is a 

special case fo r  ANN models, bu t the re  is no extensive research on the  e ffects o f the  data
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frequency to the performance of the networks. Therefore, it is important that more research 

is invested on understanding the effects of the data frequency on ANN forecasting 

performance, especially since high frequency time series are becoming more common (Engle 

2000).

Another issue that is connected with the dataset is the type of pre-processing of the

data, if any, and the scaling that is applied to the inputs. 80.2% and 78.6% of the papers do

not provide these figures respectively. Regarding the pre-processing of the time series 52%

of the papers that report it (13 papers) transform the inputs by removing the trend and/or

the seasonality o f the time series. This is connected to an ongoing debate on how to best

model time series with trend and season components. Hill et al. (1996) use time series from

the M l competition and deseasonalise them. They fit ANNs models and find that they

outperform standard statistical models. Nelson et al. (1999) repeat the experiment without

deseasonalising the time series and find that the performance gets significantly worse,

concluding that deseasonalising is a necessary step in time series forecasting with ANNs.

They argue that by removing the seasonal component the network can learn better the

trend and the cyclical components in the time series. Lachtermacher and Fuller (1995)

propose first and seasonal differencing as a pre-processing step, based on the ARIMA

modelling procedure. The authors aim to model time series in their stationary form as it

would be required by the Box-Jenkins model. In addition to that they consider Box-Cox

transformation as an additional pre-processing step. When applied, the authors find

significant improvement in the training time and the forecasting accuracy, however for the

accuracy the exact magnitude of the improvement is not documented. Furthermore, it is

unclear why this transformation is beneficial for such nonlinear models. They also do not

provide evidence that using differenced inputs is better than modelling the time series in the

original domain. Conversely, Balkin and Ord (2000) quote that differencing is an unnecessary
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step, but they do not explore its effect. Zhang and Qi (2005) investigate the effect on 

forecasting accuracy of different ways to remove trend and seasonality from time series for 

forecasting with ANNs. They conclude that removing both trend and season is beneficial for 

the accuracy of the forecasts and that the best way to do this is through 1st and seasonal 

differencing. They argue that the detrended and deseasonalised time series do not contain 

long dynamic autocorrelations that make it difficult to choose an appropriate input vector. 

Curry (2007) address the issue from a theoretical perspective suggesting that for ANNs to 

model seasonality the input vector should be long enough to adequately capture the 

seasonal effects and that it is not a matter of pre-processing, implying that Zhang and Qi 

results can potentially hide input misspecification errors. Crone and Dhawan (2007) 

demonstrate this, by modelling monthly seasonal patterns using only an adequate number 

lags of the time series and no deseasonalising. Zhang and Kline (Zhang and Kline 2007) verify 

their previous findings by using quarterly time series to model ANNs. They find that 

deseasonalising improves accuracy and the best results are achieved through seasonal 

differencing. They argue that coding seasonality with dummy variables does not allow the 

ANNs to capture the dynamic structure of the real time series, however they do not 

distinguish between deterministic and stochastic seasonality in their dataset, which 

conventionally requires a different modelling approach (Ghysels and Osborn 2001).

In the literature there is support that both pre-processing and no pre-processing are

necessary for ANNs in order to maximise forecasting accuracy, w ithout specifying the

conditions that each would be preferable. This inconsistency complicates ANN modelling.

However several aspects of the issue have been overlooked by the ANN literature, like the

nature of the trend and the seasonality, i.e. if it deterministic or stochastic, what happens

when multiple overlying seasonalities are present, as is common in high frequency time

series, etc. Researching these special topics will provide additional understanding of ANNs
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and thus help to lift the current confusion. The remaining papers that use some form of pre

processing refer to either transformation of the raw data to more useful formats (like taking 

the percentage difference of the raw time series) and is always connected to domain 

knowledge or calculate the logarithms of the time series before modelling it with the ANNs. 

The argument behind the use of logarithmic transformation is outlined by Balkin and Ord 

(2000). During their training ANNs usually minimise some sort of squared error. Efficient 

estimates result in least square optimisation when the error terms are independent and 

have equal variances. The logarithm does exactly that. However, there are no comparative 

studies that demonstrate a clear benefit of using the log transform of the time series with 

ANNs and therefore its use is rather limited.

ANNs require the inputs to be scaled to specific bounds that are defined by the

transfer function of the hidden neurons (Lachtermacher and Fuller 1995; Zhang, Patuwo et

al. 1998). It is a necessary step to produce forecasts with ANNs and it can be safely assumed

that most researchers in their papers use some sort of scaling. However, only 21.4% of the

papers report the scaling that is used. This renders most of the published work impossible to

replicate and also does not offer any evidence on the effect of the scaling on the accuracy of

ANNs. In the literature there are no large scale studies concerning its effect on the accuracy

and most focus on the effect on the ANN training, for which it is unclear whether it is

beneficial or not and how it should be done (Zhang, Patuwo et al. 1998). Lachtermacher and

Fuller (1995) argue that scaling should be able to accommodate unobserved future values

that are out of the bounds of the historic values. Therefore, scaling should result in values

tighter than that required by the transfer function, in order to have room for values outside

the range of the original training data. Wood and Dasgupta (1996) quote that scaling is one

way of reducing the impact of noise to the ANNs, but they do not provide the evidence to

demonstrate this. Church and Curram (1996) argue that the transfer function becomes
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increasingly nonlinear at its extremes, so by scaling the input data to tighter ranges 

overcomes this problem. Furthermore, they also argue that this way ANNs are robust to 

future unobserved values. Torres et al. (2005) mention that scaling the inputs to tighter 

ranges helps to avoid the saturation problem of the transfer functions. In the above papers 

the choice of the new tighter bounds is arbitrary, with the exception of Lachtermacher and 

Fuller who suggest scaling the time series by a factor of two times the initially intended 

range. However, it is not discussed why a factor of two is adequate. In the literature it is 

unclear which of the available scaling methodologies is better (for a discussion of the 

alternatives see Zhang et al. (1998)). Although there are arguments in favour of tighter 

scaling bounds than those required by the transfer function, there is no rigorous evaluation. 

Furthermore, there is an open question regarding how one should set these new bounds.

Another dimension of this study related to the dataset is how to split it into training,

validation and test sets. ANNs in order to train and avoid overfitting typically require the use

of a validation set. Part of the original time series is used during the training of the ANNs to

validate that the model has approximated the underlying data generating process and has

not been overfitted to the training set, which is used for estimate the network's weights.

Therefore, the size of the validation set limits the available sample size for the training of the

ANNs. Deciding the size of the validation set is similar to setting the size of the test, which is

used for the ex-ante evaluation, and is usually application specific. Therefore, I will not list in

detail all the different ways that the time series are split in the literature, but I will refer only

to the special cases. Bodyanskiy and Popov (2006) use online training to f it their ANNs, which

means that the network adapts continuously as new information becomes available. This

makes the need for validation set obsolete, therefore none is used. Note that this is a

different form of training and forecasting and does not discredit the common offline training

of the ANNs that all the data are available and a validation subset can be created. Corcoran
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et al. (2003) use a special scheme to avoid using a validation set. They use the M-test, which 

is essentially a gamma test applied incrementally to an increasing sample size, to identify the 

number of training observation that minimises the effect of noise and therefore overfitting. 

Once this value is identified the appropriate training set is used and the rest of the data is 

used as test set. However, in their paper they do not provide the evidence that this gives 

better forecasting accuracy compared to the common use of the validation subset. Note that 

29.4% of the accessed papers in this review do not provide information on how the available 

data are split in training, validation and test subsets. This limits the validity of those papers, 

as it is unclear how the ANNs are build, on what sample they are trained and how their 

evaluation is done. Furthermore, these experiments are not replicable.

Table 2-VI provides the descriptive statistics for the number of time series that are 

used in the literature. Figure 2.5 provides a visual representation of the same information as 

a boxplot. More than 70% of the papers use under 5 time series. There are 12 papers that 

use from 10 to 100 time series and only 8 than use more than 100 time series, up to the 

maximum of 367. In this classification the M3 competition (Makridakis and Hibon 2000), 

which has an ANN model submission that was evaluated on 3003 time series, among several 

other forecasting models, is not included. The relatively small number o f time series that is 

used in most studies implies that it is hard to generalise from their conclusions and the 

statistical validity of the evaluation framework is questionable. This in conjunction with the 

limited use of rolling origin evaluation scheme, which is discussed in a following section, 

limits severely the papers that can be used to assess the performance of ANN models against 

benchmarks. It is imperative that more large scale studies are conducted in order to provide 

statistically valid evidence of the ANNs' forecasting performance and best modelling 

practices.
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Table 2-VI: Number of 
time series

Min 1.0
10% 1.0
20% 1.0
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Fig. 2.5: Number o f time series in ANN papers

2.3.3 ANN architecture

Here I discuss all the  d im ensions o f analysis th a t are re lated w ith  the  ANNs' 

a rch itec tu re  th a t are found in the  lite ra tu re . The questions th a t are discussed here include 

w ha t are the  types o f ANN used, how  the  m odels are specified, the  inpu t variables and the 

size o f the  hidden layers specifically, w h e th e r a single o r m u ltip le  ou tpu ts  are used, w ha t 

trans fe r func tions  are em ployed and o th e r special considerations like prun ing and sho rtcu t 

connections.

First I present the  m ost com m on types o f ANNs th a t are used in the  fo recasting  

lite ra tu re . Figure 2.6 shows the  percentages o f papers th a t use M u ltila ye r Perceptrons 

(MLP), R ecurrent Neural N etw orks (RNN), Generalised Regression Neural N etw orks (GRNN), 

Radial Basis Function ne tw orks (RBF), Probabilistic Neural N etw orks (PNN) and all the  o th e r 

ne tw o rk  types th a t are represented by on ly one paper in th is  review.

The m a jo rity  o f the  papers (75%) use MLPs. The second m ost com m on type is the 

RNNs w ith  on ly 6% o f the  papers using it. RBF ne tw orks fo llo w  w ith  5%. GRNNs are used by 

4% o f the  papers and 1% uses PNNs. The rem ain ing 9% o f the  papers use d iffe re n t types o f 

ANNs th a t appear on ly  once in th is  rev iew  and in m ost cases are varia tions o f the  MLP, like
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the  DAN2 which captures the  linear and the  non linear part o f the  tim e  series in separate 

neurons (fo r m ore in fo rm a tion  re fe r to  Ghiassi e t al. (2005)). The dom inance o f MLPs seems 

to  be unaltered since the  last m ajor review  o f ANNs in fo recasting (Zhang, Patuwo et al. 

1998), how ever it does not mean th a t they are b e tte r suited fo r  forecasting. For instance if 

we consider the  papers th a t discuss RNNs they rou tine ly  repo rt ou tp e rfo rm in g  MLPs. Note 

the  va lid ity  o f several com parative eva luations is questionable , as is discussed in the 

fo llo w in g  sections in m ore deta il.

From th is  po in t on, on ly fo r the  papers th a t use MLPs and RNNs, w hich are the  m ost 

com m on im p lem enta tions, are discussed. The reason fo r  th is  is the  special na ture  o f the  

GRNNs, RBFs, PNNs and o th e r types o f ne tw orks th a t requ ire  com p le te ly  d iffe re n t 

a rch itectu re , design, m odelling considerations and th e ir use in forecasting  represents less 

than 19% o f all papers.

Next, how  many papers present a com ple te  m ethodo logy to  m odel the  ANNs 

a rch itec tu re  is investigated, including selection o f inputs, num ber o f h idden layers and 

nodes, connections and trans fe r functions. Only 16 papers suggest a un ified m ethodo logy to  

specify system atica lly the  inputs and the  hidden layer. No papers provide guidelines fo r 

selecting the  trans fe r func tion . The same is true  fo r  sho rtcu t connections, i.e. d irec t

RBF
PN N

G R N N

4%

Fig. 2.6: Type o f ANN used
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connections between the layers that bypass one or all the hidden layers. Both seem to be set 

according to the preferences of the modeller. In addition to these 16 papers there are a 

number of papers that address the selection of solely the input variables of the ANNs or the 

hidden layer. These papers are discussed together with the ones that offer a complete 

methodology to specify both. There are in total 25 papers that specify automatically the 

input variables of ANNs. These can be classified in seven major categories, as it can be seen 

in table VII. All methodologies based on regression analysis are classified under the category 

“Regression". Methodologies that use autocorrelation analysis (ACF), partial autocorrelation 

analysis (PACF), mutual information (Ml) or any other similar metric, individually or in 

combinations, are categorised as "ACF & PACF or sim ilar". Any methodology that makes use 

of heuristics or rule-based analysis or information criteria is under the category “Heuristic & 

rule based". All papers than use pruning algorithms to identify the input variables belong to 

category “Pruning". Methodologies that are based on genetic algorithms and other 

evolutionary algorithms are under “Genetic algorithm s" and finally the single paper that 

identifies the input variables by means of sensitivity analysis is on a separate category named 

"Sensitivity analysis". The remaining papers, which is the majority (71.3%) do not present or 

use a systematic way to choose the input variables for the ANNs they use. In most cases the 

selection methodology is done using a trial and error approach or arbitrarily that limits 

significantly the input search space and can easily lead to suboptimal and myopic selections. 

However, there is a lot of evidence in the literature that the input variable selection is the 

most important modelling variable for ANNs in forecasting. Zhang et al. (1998) observed in 

their review that there are very few systematic input variable selection methodologies 

available, although the inputs of the ANNs are very important for their forecasting accuracy. 

Anders and Korn (1999) identify the same problem in the ANN literature and in addition they 

point out that there is no widely accepted or used methodology either. Zhang (2001) and



Zhang et al. (2001) explore the ability of ANNs to model linear and nonlinear time series 

respectively and conclude that the selection of the input variables is the leading determinant 

of accuracy, followed by the specification of the hidden layer. There are numerous empirical 

studies that highlight the importance of the input variable selection for ANNs application (for 

example Darbellay and Slama (2000) stress this issue in electricity load forecasting 

problems). Since then there are several publications focused on how to specify the input 

variables for ANNs for forecasting problems, as it can be seen in table 2-VII.

Table 2-VII: Papers that use input variable selection methodologies

Regression Heuristic &  rule based Hypothesis testing
Balkin and Ord (2000) 
Church and Curram (1996) 
Dahl and Hylleberg (2004) 
Prybutok et al. (2000)
Qi and Madalla (1999) 
Swanson and W hite  (1997)

Corcoran et al. (2003)
Liao and Fildes (2005) 
M oreno and Olmeda (2007) 
Qi and Zhang (2001)

Anders et al. (1998) 
M edeiros et al. (2006) 
Refenes and Zapranis (1999)

ACF & PACF or similar Pruning Genetic algorithms

da Silva et al. (2008) Kaashoek and Van Dijk (2002) Kim et al. (2005)
Darbellay and Slama (2000) Setiono and Thong (2004) M otiw alla  and W ahab (2000)
Kajitani et al. (2005) Terasvirta et al. (2005) Nag and M itra  (2002)
Lachtermacher and Fuller (1995) “  T-  ----------- ;— :---------------------
Moshiri and Brown (2004) Sensitivity analyse--------------------

_______________________________________________________ Dougherty and Cobbett (1997)

However, the number of the different categories of methodologies that has been 

published illustrates that there is still no consensus on how to specify the input variables of 

ANNs. Another important observation is that most of these papers use a filter approach to 

specify the inputs, with the exception of Liao and Fildes (2005) who provide a wrapper 

framework that essentially iterates among a large number of possible candidates and da 

Silva et al. (2008) who use as a possible input variable selection methodology a wrapper that 

tries several different combinations of inputs automatically. They briefly discuss the 

distinction between wrappers and filters and identify as the key distinction the higher

Page 31



computation cost of the first. To illustrate the advances in the topic, the different 

methodologies are discussed by category in chronological order.

The most common specification methodology is based on variants of regression

analysis. Church and Curram (1996) compare MLPs with econometric ordinary least squares

regression models. They suggest modelling the ANN using the same inputs that they

identified through the regression analysis. This offers a systematic framework to select the

input variables for MLPs. However, the identification of the inputs for a nonlinear model, like

the MLPs, is based on linear regression; hence, there is the risk of missing useful nonlinear

information. Swanson and White (1997) simplify the procedure by using a forward stepwise

linear regression to identify the significant input variables. Regressors are added one at a

time until the Schwarz Information Criterion (SIC) cannot be improved more. Although this

methodology fails to identify nonlinear information like the previous one, it offers a more

automated approach to input variable selection, minimising the required intervention from

an expert modeller. However, the use of SIC is criticised by Qi and Zhang (2001) as

inappropriate. They evaluated its use, along with AlC, as a mean to identify the appropriate

number of lags for MLPs and concluded that there is no connection between these

information criteria and the forecasting performance of networks. Qi and Maddala (1999)

identify the inputs for their MLP model through means of linear regression. Initially they

build a linear regression and use the significant variables of the regression as inputs to the

ANN. These variables, like in the previous cases, can be lagged. The weaknesses of this

methodology are similar. The linear regression does not capture nonlinear information,

therefore may miss some important nonlinear inputs for the ANN. Furthermore, in this

implementation the regression modelling is not automated and a human expert is required.

Balkin and Ord (2000) propose a hybrid heuristic-regression approach. First, they consider

the problem of the maximum lag of the time series that should be evaluated with the
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regression model. To solve this, which is unanswered by the previous papers, they use a 

heuristic rule. Depending on the frequency of the time series they provide a maximum 

number of lags that should be evaluated; for annual time series this is 4 lags, for quarterly 6, 

for monthly 15 and for any other frequency they propose 6 lags. The possible lags are then 

evaluated using a forward linear regression. From all the different regressions that are built 

by combining these lags, those that have an F-statistic greater than 4 are selected. From the 

selected ones the least parsimonious is chosen to identify the inputs for the ANN. This 

methodology is fully automatic; however it has a series of problems. First of all, it is 

calibrated only for low frequency time series, since the heuristic would not be able to 

provide a reasonable maximum lag for time series of higher than monthly frequency. On the 

other hand, it is the only attempt to address the issue of maximum lag length in the 

literature. Secondly, like the previous methodologies it is restricted to identifying linear 

information. Prybutok and Mitchell (2000) chose the input in their study using stepwise 

linear regression. They deal with a multivariate problem and they do not consider lagged 

variables, however their methodology can be easily extended to include such. The main 

weakness is that the identification of the inputs is done considering only linear information. 

Dahl and Hylleberg (2004) try to overcome this by using a nonlinear regression model. They 

choose to use the random field regression, proposed initially by Hamilton (2001). This model 

allows identifying separately linear and nonlinear explanatory variables, thus overcoming the 

main weakness of the previously mentioned methodologies. In their implementation they 

use forward regression with AIC and BIC optimisation to build the nonlinear regression 

model and then use the significant variables as inputs to the ANN. Although this is the only 

regression based methodology that tries to capture nonlinear information in the inputs of 

the ANN it can be criticised for using AIC and BIC optimisation for identifying the appropriate 

number of inputs, which is discouraged in the literature (Qi and Zhang 2001). In addition, this



methodology is very computationally expensive due to the estimation of the random field 

regression models. Interestingly, in the literature only the stepwise and the forward 

regression models have been considered. Backward regression has not been used.

The second most common category of methodologies is based on analysing the ACF

or PACF of the time series, or similar metrics like mutual information criterion.

Lachtermacher and Fuller (1995) propose a methodology to model ANNs similar to the

ARIMA modelling methodology. ANNs are autoregressive models and naturally make use of

the autoregressive structure of the time series, which is captured in the PACF. Therefore,

they suggest that identifying the autoregressive structure of the time series in a similar way

to what Box and Jenkins describe (Box, Jenkins et al. 1994) can help identifying the input

variables for an ANN. They also suggest using the autocorrelation information in an attempt

to capture the additional nonlinear information that is not identified by the linear PACF.

Note, that following the ARIMA methodology the lagged observations of the time series may

need to be differenced. This methodology fails to provide evidence why the inclusion of the

ACF is beneficial and like most of the previously mentioned methodologies, is based on linear

identification tools, which may be a limiting factor for ANNs. Darbellay and Slama (2000) try

to overcome this by using the nonlinear autocorrelation function. This is defined as the

mutual information scaled between 0 and 1. This metric is able to capture nonlinear

dependencies and therefore provide a more complete set of inputs to the ANN. The authors

identify the significant lagged inputs of the time series using a similar approach to the

normal ACF analysis, arguing that all the extra identified significant lags, compared to ACF

analysis, contain the nonlinear information. However, this is not entirely true as the ACF and

the scaled Ml have different bounds and are not directly comparable. Moshiri and Brown

(2004) use only the PACF information to identify significant lags that should be included as

inputs to the ANNs. In contrast to the previous methodology, using only PACF information
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will restrict the nature of the identified interactions to linear. Furthermore, as 

Lachtermacher and Fuller (1995) quote, to correctly identify the structure of the 

autoregressive information it may be necessary to include differenced observations of the 

time series, which is not considered in this case. Kajitani et al. (2005) opt to use the ACF to 

identify significant lags that should be used as inputs for ANNs. In theory MLPs, which are 

used in their paper, are autoregressive models and therefore PACF should be preferred, in 

contrast to RNNs that can capture both autoregressive and moving average processes. 

Considering that in this study MLPs outperform the benchmarks, it should be explored why 

this is so, which is not discussed in detail by the authors. Again, this methodology tries to 

identify inputs for the nonlinear ANNs using a linear filter. Da Silva et al. (2008) consider 

several alternative to specifying the ANN input variables. They consider both filters and 

wrappers. As a filter they use the interdependence redundancy, which is a normalised 

mutual information measure. Before applying this filter they first difference the time series 

for trend and seasonality in order to achieve stationarity. They also consider a Bayesian 

wrapper which essentially iterates among a large combination of alterative inputs until the 

best model is identified. This is computationally expensive and the authors first preselect 

heuristically a set o f inputs to consider. The authors propose methodologies that can capture 

the nonlinear structure of the time series, at additional computational cost, which is side

stepped by using heuristics to preselect a set of possible inputs. The heuristics are not 

described in the paper, but it is possible that restricting the search space can have negative 

effects on accuracy. Furthermore, differencing of the time series is used to remove the trend 

and season components. However, differencing is not established as a necessary step for 

ANN modelling and furthermore it may lead to model misspecification if the trend or season 

components are deterministic.
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Another set of methodologies makes use of heuristics and rules to identify the 

appropriate inputs for ANNs. In this category methodologies that minimise some form of 

information criteria are also included. Qi and Zhang (2001) investigate if the use of in-sample 

model selection criteria is a reliable guide for out-of-sample performance. They use the 

Akaike information criterion (AIC), the Bayesian information criterion (BIC) and their 

common variants to investigate if they are useful indicators in selecting the inputs for ANNs 

and the size of the hidden layer. They conclude that there is no apparent connection 

between the values of the information criteria and the forecasting performance of the ANNs. 

This finding has significant implications for several papers that use some variant of the either 

the AIC or BIC to choose the ANN topology. A limitation of the paper is that they consider a 

relatively limited number of lags and hidden nodes (up to 5 for both cases). Moreno and 

Olmeda (2007) use AIC to identify the correct number of inputs to model MLPs and compare 

them against linear models. They extend the search space to 10 lags, but fail to find MLP 

models that clearly outperform the benchmarks, providing evidence in agreement with the 

previous study. Corcoran et al. (2003) propose a heuristic based on the Gamma statistic. The 

statistic is calculated for incremental lag lengths until the minimum Gamma statistic is 

identified. All lags up to this point are used as input for ANNs. In principle, this methodology 

is similar to the previous heuristic approaches. All o f them force all lags up to a specific order 

to be included in the input vector, in contrast to the methodologies that are based on 

regression and ACF/PACF analysis that create sparse input vectors. It has not been explored 

which method is more appropriate for the ANNs. Furthermore, depending on the dataset 

properties and especially its frequency, the nonsparse specification of the inputs may lead to 

very long input vectors that affect negatively the training of the ANNs. Liao and Fildes (2005) 

discuss the difficulty to parameterise ANN models and propose a heuristic framework that 

allows a systematic search for inputs, number of hidden nodes and learning parameters that



will provide the best model for the dataset. Essentially, they suggest a wrapper with 

heuristics that help to standardise the search. They also suggest using as an additional input 

a time series constructed by the median of all the past values up to each historical 

observation. This was found to provide more robust results for their dataset. The main 

problem of this methodology is its computational cost and that it is time series specific, since 

it is based on a wrapper (da Silva, Ferreira et al. 2008), which can make it impractical for 

large scale implementations. In their study they show that their proposed methodology 

worked well on a dataset of 261 telecommunication time series.

Another approach to the problem of specifying the input variables is to start with an

arbitrarily large vector of inputs and prune it to a smaller size of significant inputs. Kaashoek

and Van Dijk (2002) propose a methodology that the modeller sets the maximum number of

inputs and then calculates the incremental contribution of each input in terms of R2 by

removing one input at a time. The residuals that are calculated after removing each input are

stored as vectors which are analysed by means of principal components analysis. The

relevant components of the first principal component are used as additional indicators of the

significance of the inputs. The inputs with minimal incremental contribution and the smallest

components are pruned. The elimination continues until all insignificant inputs are removed.

The authors identify that a limitation of this methodology is how to identify what is a low or

minimal contribution and an insignificant component. Furthermore, this method is

computational intensive, since the ANN model has to be re-estimated several times. Another

weakness is that it is hard to know what is an adequate starting number of possible inputs.

This is especially important when dealing with time series of different frequencies. Setiono

and Thong (2004) use pruning to identify the inputs, however the criterion used to decide

which input to prune is the ANN accuracy. If removing an input does not harm the accuracy

of the network then that input is removed. This is again a top-down pruning approach, i.e. it
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is necessary to start with a large number of inputs, which may be difficult to specify in 

advance. Terasvirta et al. (2005) uses the methodology described in Medeiros et al. (2006) 

with the addition of pruning to get parsimonious networks. Note that in all these papers, 

pruning js used to identify the number of hidden nodes as well. In the literature there are 

arguments that pruning may not always be desirable, especially in the cases of high 

frequency data (Hippert, Bunn et al. 2005) or seasonal time series (Curry 2007), where a 

large network can provide the flexibility for a better fit.

In an attempt to increase our understanding of ANNs there are methodologies that

are based entirely on statistical hypothesis testing. Anders et al. (1998) propose a complete

framework to specify both the number of hidden nodes and inputs. Once the number of

hidden nodes is identified the ANN is trained with all inputs. Each single input connection

(and not the whole input node) is evaluated using the Wald test. The connection with the

most insignificant p-value is dropped and the network is retrained. The process is repeated

until only significant connections remain. The limitations of this methodology are similar to

the pruning ones that are described before. It involves high computational cost and it is

difficult to specify in advance the starting set of all the inputs, especially in temporal

modelling. Refenes and Zapranis (1999) propose a similar top-down approach which is based

on different statistical test. They suggest starting with a model that includes all possible

inputs and calculate the MFS value (Moody and Utans 1992) for each input. The least

significant input (below a set threshold) is dropped from the model. Another difference with

the previous methodology is that in this one the number of hidden nodes is reidentified in

each iteration and the next input is evaluated with the "best" number of hidden nodes. The

weaknesses of this methodology are similar, but with much higher computational cost, since

now the hidden layer is respecified in each iteration. Medeiros et al. (2006) try to address

the problem of high computational cost by proposing a bottom up approach. For the
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selection of the input vector a methodology proposed by Rech et al. (2001) is used. This 

methodology is based on the idea of approximating a stationary nonlinear time series by a 

polynomial of sufficiently high order. Combination of variables (or lags) are included in the 

polynomial and a model selection criterion (AIC or BIC) is calculated. The polynomial with the 

lowest selection criterion is selected and indicates which inputs should be used in the ANN. 

Once the input vector is set the methodology addresses the hidden layer. This methodology 

uses indirectly AIC or BIC to specify the input variables of the ANN. It is not clear in this case 

if the findings of Qi and Zhang (2001) that such criteria are inappropriate to specify the 

inputs of ANNs hold and it should be evaluated if this methodology overcomes this problem.

Another group of papers propose to identify the input variables for ANNs using 

genetic algorithms. Motiwalla and Wahab (2000), Nag and Mitra (2002) and Kim et al. (2005) 

propose different variations of genetic algorithms to identify the best set of inputs. The 

principal idea is that an initial set of networks is created, trained and evaluated. The best 

performing networks are then used as "genetic material" for the next generation of 

networks. The process continues until the best solution is reached. Although these 

methodologies are not identical they share common points o f criticism. All these methods 

are very computationally intensive, as they require to train and evaluate a very large number 

of ANN for each time series, which is highlighted by the authors as well. Furthermore, these 

methodologies will not select every time the same inputs, due to the stochastic nature of the 

genetic algorithms.

The last methodology is related to sensitivity analysis. Dougherty and Cobett (1997) 

suggest training a ANN with all the inputs and then change the values of one input variable 

by a small percentage at a time. By measuring the effect of these changes in the accuracy of 

the ANN it is possible to identify strong positive or negative relationship of inputs to the
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output of the ANN and relatively neutral inputs. The authors suggest keeping only the inputs 

that have strong effects on ANN's outputs. Although this methodology overcomes the 

problem of identifying which inputs capture useful nonlinear information for ANNs, it is 

limited in the sense that it cannot evaluate synergies between input variables.

A wide variety of input variable selection methodologies have been proposed in the 

literature, which are classified in this study in six main categories. Methodologies under each 

category share common limitations, which are usually overcome in other categories. 

However, there is no identified best methodology. These alternative methodologies have not 

been compared to each other, even when they belong to the same category. This increases 

the confusion of what is a good way to specify the input vector. Given the significance of the 

input vector for the forecasting accuracy of ANNs it is necessary to evaluate the proposed 

methodologies against each other. This will provide insights why some methodologies work 

or fail and how ANNs are best modelled.

The specification of the hidden layers and the number of hidden nodes is less 

researched. A major influence has been the proof that single hidden layer MLPs are universal 

approximators (Hornik, Stinchcombe et al. 1989; Hornik 1991). Based on this theorem most 

of the literature uses a single hidden layer and the problem is reduced to identifying the 

number of hidden nodes in this hidden layer. Zhang (2001) and Zhang et al. (2001) in their 

study conclude that the number of hidden nodes is of lesser importance in comparison to 

the input variables of the ANN and find that a small number of hidden nodes is adequate for 

most cases. Hippert et al. (2005) reach a different conclusion. For electricity load forecasting 

large ANNs prove to be more flexible in capturing the complex dynamics of the time series 

and therefore should be preferred to small networks. Levelt (1990) observes that the 

universal approximation theorem requires an infinitely large number of hidden nodes and
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does not necessarily hold for a small number of hidden nodes, suggesting that more complex 

architectures might be preferable. Curry et al. (2002) argue that with finite data points and 

finite number of hidden nodes more hidden layers can produce more accurate networks in 

comparison to single hidden layer ANNs. Nikolopoulos et al. (2007) suggest that two hidden 

layers perform better in television viewership datasets than a single hidden layer. From the 

accessed papers that use either MLPs or RNNs only 8 articles (less than 10%) use more than a 

single hidden layer. None provides a systematic way to identify the required number of 

hidden layers and resort to using the suggestions of previous studies or iterative trial and 

error approaches.

Table 2-VIII: Hidden nodes selection methodologies

Heuristic & rule based Hypothesis testing

Balkin and Ord (2000) Prybutok et al. (2000) Anders et al. (1998)
Church and Curram (1996) Refenes and Zapranis (1999) M edeiros et al. (2006)
Dahl and Hylleberg (2004) Qi and Zhang (2001) Terasvirta et al. (2005)
Lachtermacher and Fuller (1995) Sahin et al. (2004)
Leung et al. (2000) Sexton et al. (2003)

Moshiri and Brown (2004) Swanson and W hite  (1997) Pruning

M otiw alla  and W ahab (2000) Swanson and Zeng (2001) Kaashoek and Van Dijk (2002)

Olson and Mossman (2003) Genetic algorithms Setiono and Thong (2004)

Nag and M itra  (2002)

The number of hidden nodes in most studies is identified through a trial and error 

approach or it is arbitrarily preset to a specific number. A minority of papers (24%) provide 

methodologies that can be used to select the number of hidden nodes. These can be 

classified in four categories, as it can be seen in table 2-VIII, those that are based on 

heuristics and rule based decisions, on pruning, on hypothesis testing and those that use 

genetic algorithms.

The heuristic approaches can be subdivided in three categories. The first category

sets the number of hidden nodes (on a single hidden layer) as a function of the number of

inputs and/or outputs or training samples of the ANN. Lachtermacher and Fuller (1995)
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suggest to use a number of hidden nodes that will make the total weights of the network be 

between 1.1 to 3 times more than the number of training samples divided by ten. The 

rationale behind this selection is that it will offer good generalisation properties. Leung et al. 

(2000) use 75% of the number of inputs as a guideline to identify the number of hidden 

nodes. Prybutok et al. (2000) initially calculate the number of hidden nodes by dividing the 

number of training cases by 5 times the sum of the number of inputs and outputs. Then they 

evaluate neighbouring values as well and choose the one that performs best. Olson and 

Mossman (2003) set the number of hidden nodes by rounding up the average number of 

inputs and outputs. These approaches have been used to provide guidelines to restrict the 

search space for identifying the best number of hidden nodes, rather than strict definitions 

of the number of neurons.

Church and Curram (1996) argue that too few hidden nodes will not allow the

network to capture the structure of the time series, while too many will cause overfitting.

Therefore, this can be used to identify the number of hidden nodes. In the proposed

methodology the validation error is monitored during the training of the network. If the

validation error does not get continuously worse it means that the network does not have

enough nodes to overfit the data. In this case the training is stopped and more hidden nodes

are added to the MLP, since the current number will be unable to capture fully the

underlying structure. Motiwalla and Wahab (2000) employ a heuristic called cascade

learning. In contrast to the previous papers this heuristic allows several hidden layers and

creates shortcut connections to the inputs as well as the previous hidden layers. The

principal idea of cascade learning is that the ANN starts with a small number of nodes. New

nodes are added one or more at a time until performance cannot be further improved. Sahin

et al. (2004) start with 2 hidden nodes and incrementally increase the size of the hidden

layer as long as the residuals decrease. All the last three papers use bottom-up construction
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approaches, starting from a small number of hidden nodes and increase until some error 

metric cannot be improved further. It is important to note that in their description none of 

these methodologies would overcome possible local minima of the performance criteria and 

the search would stop there.

The remaining methodologies follow a similar bottom-up approach but instead of 

the errors they employ information criteria that penalise for the number of parameters. 

Swanson and White (1997) and Swanson and Zeng (2001) use BIC. Balkin and Ord (2000) 

prefer to use the GCV metric, which allows parametric cost for the additional model 

parameters. Dahl and Hylleberg (2004) consider both the AIC and BIC metrics. They add 

hidden units in a single hidden layer until the performance criterion cannot be improved or 

the number of hidden nodes has reached 5. Moshiri and Brown (2004) consider only the AIC. 

Qi and Zhang (2001), similarly to their analysis for the input variable specification, investigate 

the usefulness of AIC and BIC in selecting the number of hidden nodes. Their finding is that 

there is no relationship between the information criteria and ANNs' performance. They 

conclude that different specification strategies are needed. Refenes and Zapranis (1999) use 

the prediction risk instead. They propose an iterative heuristic that calculates the predictions 

risk for different number of hidden nodes, up to a specified maximum, and select the one 

that minimises it. The prediction risk essentially measures the error adjusted for the 

complexity o f the model. The authors note that any other similar metric could be used in the 

current framework. By replacing the prediction risk with AIC or BIC the proposed heuristic 

becomes very similar to the methodologies proposed by the previous authors.

The hidden layer specification methodologies that are based on hypothesis testing 

follow a bottom-up approach, starting from small or linear models and testing the relevance 

of the nonlinear hidden nodes. Anders and Korn (1998; 1999), Terasvirta et al. (2005) and
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Medeiros et al. (2006) employ the LM-test (White 1989; Terasvirta, Lin et al. 1991) to 

compare between models with H and H+l number of hidden nodes, until iteratively the 

optimum number is identified.

Nag and Mitra (2002) employ genetic algorithms to identify the number of hidden 

nodes and layers. They restrict the search space to a maximum of 16 nodes per layer and the 

maximum number of layers to 2. Similarly, Kaashoek and Van Dijk (2002) and Setiono and 

Thong (2004) use the same pruning methodology that they employ to select inputs in order 

to choose the number of hidden nodes for a single hidden layer. The weaknesses of genetic 

algorithm specification methodologies are similar to those discussed for the input variable 

selection.

It is clear that there are numerous alternatives how to specify the hidden layer. 

Although most authors prefer to use some heuristic or optimisation scheme based on 

information criteria that penalises for complexity, their performance is not proven. Similarly 

to methodologies for the selection of the input variables, there is no rigorous comparative 

evaluation that demonstrates which of these methodologies, or family of methodologies, is 

better. Furthermore, these methodologies have to be assessed against the simplest 

approach of selecting the number of hidden nodes arbitrarily or randomly. In order to justify 

the extra computational cost involved they have to be proven better. Due to our limited 

understanding of the interaction of the inputs with the hidden layer most of this 

methodologies resolve to iterative refinement of the hidden layer, which requires retraining 

the network in each step and do not provide an explanation why the selected number of 

hidden nodes is adequate.

In addition, it is unclear how the selection of the transfer function interacts with 

number of hidden nodes. There is no guidance in the literature on how to choose the
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trans fe r func tion  o f the  hidden layer. Figure 2.7 shows the  types and the  usage o f the  hidden 

layer trans fe r functions in the  lite ra tu re . Logistic sigm oid is the  m ost com m on type. It is 

fo llow ed  by the  hyperbolic tangen t (tonh) and lastly tw o  papers use linear trans fe r func tion . 

The trans fe r func tion  defines the  bounds th a t the  inputs should be scaled to . However, in the  

lite ra tu re  the re  are papers th a t re p o rt good results w ith  neural ne tw orks th a t use d iffe re n t 

scaling outside these bounds; fo r  instance W ood and Dasgupta (1996) use logistic trans fe r 

func tion  th a t is bounded betw een 0 and 1, bu t scale the  inputs betw een -0.5 and 0.5. The 

in te rac tion  o f the  trans fe r func tion  w ith  the  hidden layer, the  inputs, the  pre-processing and 

scaling o f the  inputs is no t adequate ly researched. The lite ra tu re  (Zhang 2001; Zhang, 

Patuwo et al. 2001) suggests th a t the  inpu t variables and the  specifica tion o f the  hidden 

layers are the  m ost im p o rta n t de te rm inan ts  o f ANNs accuracy, how ever the re  is no evidence 

th a t the  choice o f the transfe r func tion  is o f lesser im portance. It is im pera tive  th a t the  e ffec t 

o f the  trans fe r func tion  selection is researched m ore tho rough ly  in o rde r to  eva luate  its 

significance fo r  ANN accuracy and provide gu ideline on how  to  select it.

Linear
3 %

TanH
23%

Sigmoid
74%

Fig. 2.7: Percentage o f hidden layer transfer functions in the literature.

Selecting the  size o f the  o u tp u t layer is connected w ith  the  fo recasting app lica tion  o f

the  ANNs. Each o u tp u t node produces a forecast fo r a single lead tim e . The m ode lle r can

produce a forecast o f lead tim e  t+n by tra in ing  d irec tly  the  ne tw o rk  to  o u tp u t forecasts o f

th is  lead tim e, o r to  produce forecasts w ith  lead tim e  t+1, w hich w ill be used to  produce
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forecasts o f lead tim e  t+2 un til ite ra tive ly  forecasts o f lead tim e  t+n are produced. S im ilarly if 

the  m ode lle r is in terested in several lead tim es, the  ANN can be m odelled to  produce these 

d irec tly  th rough  several o u tp u t nodes o r ite ra tive ly  th rough  single node. S im ilarly, an ANN 

can be tra ined  to  o u tp u t forecasts o f several variables s im u ltaneously th rough  m u ltip le  

o u tp u t nodes. Table 2-IX summarises the  num ber o f o u tp u t nodes used in the  lite ra tu re .

Log
2%

Table 2-IX: Number of output nodes

Output nodes Number of papers
1 69
2 2
3 3
4 2
24 1

Fig. 2.8: Output layer transfer function and 
percentage o f ANN papers

M ost o f the  papers (89.6%) use a single o u tp u t node and on ly  8 papers use m u ltip le  

nodes, w h ile  10 papers do not record th is in fo rm a tion . There has been lim ited  consideration 

in the  lite ra tu re  fo r  d irectly  forecasting s im u ltaneously several lead tim es o r even a single 

one, bu t w ith  a longer than t+1 fo recast horizon, th rough  the  app rop ria te  selection o f the 

o u tp u t nodes, even though the re  is evidence o f accuracy advantages (H ippert, Bunn e t al. 

2005).

Typically, the  o u tp u t node uses a linear trans fe r func tion ; how ever th is  is no t always 

the  case, as it can be seen in figu re  2.8. There are 6 papers th a t use a logistic sigmoid 

fu n c tio n  instead o f linear. A single paper uses logarithm  (Am ilon 2003). These papers a llow  

the  ANN to  capture add itiona l non linear behaviour in the  o u tp u t layer. This is no t equ iva len t 

to  an add itiona l h idden layer, since the  la tte r w ould  still use a linear o u tp u t layer fo r 

sum m ing and scaling the  in te rm ed ia te  in fo rm a tion  from  the  hidden layers. Again, the
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relative advantage of using nonlinear transfer functions in the output node, instead of 

additional hidden layers or a simple linear function is unclear and it has not been evaluated. 

Note that 28 papers do not report the choice of the transfer function of the output node.

Another aspect of the network architecture is related with the connecting weights.

The modellers can use ordinary fully connected ANNs, pruned networks, which do not have

all nodes fully connected, or opt for shortcut connections, which are connections that bypass

intermediate layers, usually connecting the inputs directly to the output node. Only two

papers use input to output layer shortcut connections (Swanson and White 1997; Dahl and

Hylleberg 2004). Both these papers use linear transfer function for the output layer and

argue that this allows the ANN to model nonlinear information through the hidden layer and

linear information directly through the shortcut connections. However, linear behaviour can

be approximated by ANN without shortcut connections as it has been shown empirically

(Zhang 2001). It has not been evaluated whether the shortcut connections benefit the

forecasting accuracy or the training of the network by separating the information flow across

the network's layers. Pruned networks, are not fully connected and the rationale behind this

decision is keeping only the important connections in order to aid the training of the ANN.

Pruned networks are typically created by starting from a fully connected network and

removing the least significant connections. This approach was described as an input and

hidden layer specification methodology. The modeller can achieve a similar result by

establishing only the important connections between the neurons iteratively, instead of

starting from a fully connected network. An example of this is Swanson and White (1997)

who use BIC to decide which connections are important to add to a network. Algorithmically

these approaches are different, but the end effect of both is a partially connected network. A

critique to the partially connected networks is that in most cases (this is true for all 9 papers

identified in this review that use partially connected ANNs) the resulting ANN is constructed
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following a greedy algorithm, i.e. the decision of cutting or creating a connection is not 

revaluated once more connections are altered.

The architecture of the ANNs contains some of the most important decisions that 

the modeller must make in order to use them for forecasting. The different variety of 

approaches to solve the modelling issues that are presented above, illustrate that there is no 

generally accepted methodology how to systematically construct neural networks. In many 

cases different modelling alternatives are not comparatively evaluated, making it difficult to 

assess if a particular setup is beneficial to forecasting accuracy or not. The literature has 

been focused in proposing several different methodologies to solve common problems, like 

the selection of the input variables, and has largely ignored to reconcile the accumulated 

knowledge, by assessing what works better and thereafter building on that. This has resulted 

in several publications arguing that the exact opposite is good modelling practice. A good 

example of this is the use of information criteria like AIC and BIC to select the appropriate 

inputs and specify the hidden layer for ANNs. Another significant weakness of the literature, 

which is connected to the architecture, is that important modelling decisions are 

documented vaguely or not at all. Several papers do not provide a selection methodology for 

input and hidden nodes and chose them either arbitrarily or by using a trial and error 

approach. To their support, this is an unsolved problem and there is no best practice. On the 

other hand, there are papers that do not document other important architecture 

information, like the nature of the transfer functions, which makes it impossible to assess 

the validity of the implementation and replicate the experiments. This calls for stricter 

evaluation of the ANN literature.
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2.3.4 ANN training

Once the  arch itecture  o f the  ANN is established the  m ode lle r has to  decide the  

tra in ing  a lgorithm  and param eters. This involves a va rie ty  o f decisions, some o f w hich are 

d irec tly  connected to  the  tra in ing  a lgorithm , like the  learning rate, and some w hich are 

connected to  the  m odellers approach to  tra in ing , like the  early s topping c rite rion . In th is  

section I w ill discuss the  findings from  the  lite ra tu re  th a t are associated w ith  the  ANN 

tra in ing .

Conjugate gradient descent 
Delta learning rule 

Extended tabu search 
Genetic algorithm 
Gradient descent 

Levenberg-Marquadt 
Polytope algorithm 

Scatter search 
Tabu search 

Other
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N um ber of papers
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Fig. 2.9: Training algorithms employed in ANN forecasting literature

Several d iffe re n t tra in ing  a lgorithm s have been used in fo recasting  applications, as 

figure  2.9 summarises. The dom inan t a lgorithm  is the  g rad ien t descent backpropagation 

tra in ing  a lgo rithm  (52% o f the  papers). In figure  2.9, m ethods which are applied on ly to  one 

paper are classified under the  category "o th e r"  and include a lgorithm s like BFGS quasi- 

N ew ton (Setiono and Thong 2004), Bayesian regularisation (Sexton, Dorsey et al. 1999), 

s im ula ted annealing (da Silva, Ferreira et al. 2008), etc. Furtherm ore, the re  are 14 papers 

th a t do no t record the  tra in ing  a lgorithm  th a t was used. There are a num ber o f papers th a t 

com pare tra in ing  a lgorithm s fo r forecasting applications (Sexton, Alidaee e t al. 1998; Sexton, 

Dorsey e t al. 1999; Curry, M organ e t al. 2002; El-Fallahi, M a rti e t al. 2005; Torres, Hervas et 

al. 2005; Curry and M organ 2006; da Silva, Ferreira e t al. 2008). Typically the  g rad ien t
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descend backpropagation algorithm  is a benchmark in these studies and it is always 

outperform ed. However, these studies should be viewed critically, since there is a 

publication bias. Gradient descent is an established algorithm  so only papers tha t show 

improved results over it are expected to  be published. Furthermore, there is an issue o f 

im plem entation valid ity, since the m ajority o f these papers do not report the training 

parameters tha t were selected and use very few  training initialisations, which are inadequate 

to  overcome the problems caused by the stochastic nature o f ANN training. The lim ited 

num ber o f initialisations also lim its the statistical analysis tha t can be done, as it is discussed 

in more detail below. The high percentage o f papers tha t use gradient descent can be 

explained by several factors; it has well studied and documented properties, the fact tha t the 

superiority o f o ther alternatives is debatable and gradient descend has shown good 

perform ance in numerous studies and finally the lim ited selection o f implemented 

algorithm s in the widespread ANN software.

There are several cost functions tha t can be used to  tra in ANNs. In this review 

numerous alternatives were identified, which are presented in figure 10. The measured cost 

is typ ically associated w ith  the one step ahead in sample error. Teixeira and Rodrigues (1997) 

use the fou r step ahead in sample error, which matches the forecasting horizon o f the ir 

forecasting problem. This cost function is more appropriate as it minimises the error tha t is 

related w ith  the objective o f the forecasting exercise. The use o f sum o f squared errors (SSE), 

mean squared e rro r and root mean squared error provide the same tra ining result, but the 

la tte r tw o  have higher com putational cost, therefore there is no advantage in using them 

instead o f the SSE. However a penalised fo r complexity version o f SSE is bound to  give 

d iffe ren t results. The same is true fo r cost functions tha t are based on d iffe ren t type o f 

errors, like absolute errors, which are classified in figure 2.10 under the category "other" ,
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w hich includes all the  cost functions th a t appear only once. The m a jo rity  o f the  papers 

(57.4%) do no t repo rt the  cost function  th a t was used to  tra in  the  ANNs.

Mean squared error 
Penalised sum of squared error

Root mean squared error 6
Sum of squared error

Other 6
17

0 5 10 15 20

N um ber of papers

Fig. 2.10: Cost function in ANN forecasting literature.

Parameters like the  tra in ing  epochs/ite ra tions, the  learning param eters, the  

m om entum  and w ha t stopping c rite rion  was used, if  any, are no t recorded in many cases 

e ithe r. Only 33% o f the  papers docum ent fo r  how  many epochs the  ne tw ork  was tra ined . 

The learning and the  m om entum  is no t docum ented in 75% o f the  papers, w h ile  the  early 

s topp ing c rite rion  is no t discussed in 85% o f the  papers. For the  la tte r, it is possible th a t in 

those papers th a t it is not discussed it is not used, as it is no t necessary to  produce forecasts. 

Ill docum enta tions o f these param eters harms the  va lid ity  and the  rep licab ility  o f these 

papers (Adya and Collopy 1998; Crone and PreRmar 2006).

A no the r im p o rtan t param eter o f the  tra in ing  o f ANNs is the  num ber o f tim es th a t 

the  ne tw ork  is in itia lised. Every tim e  the  ne tw ork  is in itia lised its w eights are random ised 

and th e re fo re  produce a random  starting po in t fo r the  non linear op tim isa tion  th a t is 

perfo rm ed during tra in ing . Because the  tra in ing  o f the  ANN can get stuck in local m in im a it is 

im p o rta n t th a t the  netw orks are in itia lised several tim es to  ensure a w ide  search o f the  e rro r 

surface. If very few  in itia lisa tions are evaluated then the  re lia b ility  o f the  results is 

questionable , since they can be e ithe r good o r bad due to  random ness in the  tra in ing  and 

no t due to  the  properties o f the  ANNs. On the  o th e r hand, if several in itia lisa tions are 

tra ined , the  m ode lle r can look at the  d is tr ib u tio n  o f the  errors and evaluate if a good (or bad)
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solution is an outlier or close to the average behaviour of the model. Therefore it is 

important that the ANNs in forecasting studies are initialised multiple times and this number 

is reported. Table 2-X summarises the reported multiple training initialisation in the 

literature.

Table 2-X: Multiple training initialisations in the literature

Number of initialisations Number of papers
3 1
5 2
10 4
15 1
20 1
50 1

Only 10 papers have multiple initialisations and from those only one (Hu, Zhang et al.

1999) has over 30 initialisations that would typically allow statistical analysis of the results

(Kvanli, Pavur et al. 2002). This represents a very small minority of the literature (11%). Liao

and Fildes (2005) do not initialise the training several times, but pick different initial weights

with values between different bounds every time. The difference is that this does not

guarantee that the ranges of the initial weights overlap, which therefore is equivalent to

building a different model setups. For this reason this paper is not included in table X. The

remaining papers do not report multiple training initialisations. It is possible that more

papers consider it, but it is not reported. This is a major problem for the literature.

Considering that ANNs are extremely difficult to replicate, since the random seed used

during training has to be identical to get the same results, it is principal that the robustness

and the distribution of the errors of the ANNs due to training are evaluated. Results that are

extracted after a single iteration of initialisation and training cannot be used to evaluate

reliably the accuracy of the network and are impossible to replicate. On the other hand, if

the behaviour of the network is examined over several initialisations, it can be expected that

the results of the network, the next time it is trained, will be within easy to define bounds
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with a given confidence. This allows to extract valid and reliable conclusions. Note that in 

order to achieve full replication of ANN results several conditions must be satisfied; the 

software that simulates the ANNs must be identical, the random number generator that is 

used must be the same, the seed of the generator must be the same and the computer 

architecture, i.e. 32 or 64 bit, should be fixed and of course all the modelling parameters 

must be know. Therefore, it is unrealistic to expect replication of ANN papers results to the 

exact reported figures. However, it is relatively easy to ensure that the comparisons and the 

conclusions of a study hold with statistical confidence if the network is trained with multiple 

initialisations and the modelling parameters are reported fully and in detail. Naturally, in 

order to infer the level of confidence the number of initialisations must be known. Hence, to 

advance our understanding of ANNs it is imperative that multiple training initialisations 

become common practice.

2.3.5 ANN evaluation

The experimental design and evaluation framework of the papers that use ANN is 

strongly connected with designing a valid experiment and evaluation for any forecasting 

study. In forecasting literature there are several papers that discuss the design and the 

selection of the error measures (Collopy, Adya et al. 1994; Armstrong and Fildes 1995; Adya 

and Collopy 1998; Tashman 2000; Hyndman and Koehler 2006). What is important to 

evaluate in the case of the ANN forecasting literature is how closely these guidelines are 

followed and how valid are the comparisons.

One of the basic principles in forecasting evaluation is to use benchmarks to evaluate 

how good a model is. The majority of papers (85%) use non-ANN benchmarks to evaluate 

their models. Twelve papers do not use benchmarks. From those that use benchmarks only 5 

include the random walk model. In forecasting studies it is important to include always a
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simple model like the random walk in order to have a desired accuracy minimum. If a model 

does not outperform a simple forecasting model such as the random walk, then there is no 

reason to use a more complicated model. Therefore, it is good practice to always include a 

random walk model or an equally simple model. Another important dimension of the 

evaluation is the error measure. Table 2-XI includes the main error measure categories that 

can be found in the ANN literature. Note that most categories describe the family of the 

error measure, like "absolute error measures" and not the exact error metric, like mean 

absolute error, or median absolute error. This is done for economy of space, as there are 192 

error measures employed in the literature. Note that under the category "other"  measures 

several problem or domain specific measures are included, like the annualised returns or the 

Sharpe ratio.

Table 2-XI: Error types in ANN literature

Error type
Num ber of 

papers
Table 2-XI 1: Num ber of error measures used

Absolute error measures 27 N u m b e r o f  e rro r N u m b e r o f
Absolute percentage error

30

9

m easu res papers
measures
AIC, BIC and variants

1 4 0

23
Correlation, R2and similar 12 z

Direction errors 8 3 7

M ean error 5 4 8
Relative absolute error 3 5 5
measures

1Squared error measures 53 6

Squared percentage error 1
10 1

measures 11 1
Theil-U 3

O ther 36

The most common error measures are based on some form of squared error. 

Forecasting literature has suggested using alternative measures (Armstrong and Fildes 1995; 

Tashman 2000), since this family of errors is scale dependent, making them inappropriate for 

comparisons with several time series, and tends to overweight outliers due to the squaring.
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Absolute errors, which are the fourth most common family of errors, do not overemphasise 

outliers, but they still do not allow comparing across different time series. The most common 

error measure family to compare across different time series in the ANN literature is based 

on absolute percentage error metrics. Although these metrics are scale independent, and 

usually easy to interpret, they have been criticised for being biased (Tashman 2000; 

Hyndman and Koehler 2006). The forecasting literature in order to remedy this has 

suggested a set of different error measures that are scale independent and less biased, like 

corrections on the common mean absolute percentage error (Makridakis and Hibon 2000), 

the absolute scaled errors (Hyndman and Koehler 2006) and the geometric root mean 

squared error (Fildes 1992; Syntetos and Boylan 2005). Such advances in error measures are 

not adopted in the ANN forecasting literature. On the other hand, there is a limited use of 

relative errors, which to some extent addresses the criticism to the other error measures 

(Tashman 2000). One other positive of the evaluation metrics used in the ANN literature is 

that a lot of domain specific measures are used, which allow to make use of the dataset 

properties in order to get meaningful performance measures. Table 2-XII summarises the 

number of error measures used in the ANN papers. About half of the papers (47%) use a 

single error measure, while a smaller portion uses several error measures, identifying that 

different accuracy calculations can provide different ranking of the models (Makridakis and 

Hibon 2000).

Adya and Collopy (1998) investigated the validity of a number of ANN papers and 

suggested that it is important to provide both the in-sample and out-of-sample errors, since 

this way it can be assessed whether the ANN model has captured the structure of the time 

series and generalises well. In ANN literature only 32% of the papers report the errors in 

both subsets. The majority (64%) of the paper do not report the in-sample errors and a small 

part of papers (7%) do not provide out-of-sample errors.
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Forecasting literature has stressed the importance of having a large sample of errors 

through multiple time series or rolling origin evaluation (Tashman 2000). Both allow having 

more errors to construct the error summary statistics and therefore, better confidence in the 

results. Table 2-VI and figure 2.5 illustrate the number of time series in the ANN literature 

and as discussed before the majority of papers use a single time series and only 12 papers 

consider 10 or more time series. Therefore one would expect the authors to use rolling origin 

evaluation in order to increase the sample of errors. However, only three papers state clearly 

that such an evaluation scheme was used. This limits considerably the confidence of the 

results of most ANN papers.

The ANN literature seems to be lagging in following the recommendations of the 

literature for designing an adequate experimental design for empirical evaluations (Collopy, 

Adya et al. 1994; Armstrong and Fildes 1995; Adya and Collopy 1998; Tashman 2000; 

Hyndman and Koehler 2006). This in conjunction with the problems discussed in the previous 

section regarding the reliability, robustness and replicability of the results limits the number 

of papers from which safe conclusions can be drawn, something that was also identified by 

Adya and Collopy (1998).

2.3.6 Findings regarding ANN forecasting performance

Adya and Collopy (1998) found that ANNs outperform benchmarks 73% of the time, 

if only the papers that meet the criteria for valid evaluation are considered. In the M3 

competition, which used 3003 time series, ANNs did not perform well and failed to 

outperform simpler models (Makridakis and Hibon 2000). Armstrong (2006) argues that too 

much research effort is devoted on ANNs, taking into consideration the modelling difficulties 

and their unproven performance. However he points out that there are studies that 

demonstrate good performance, referring to Liao and Fildes (2005), and we need to identify
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the conditions under which ANNs are useful. Callen (1996) advises caution on reading the 

positive results of ANN, warning of a possible publication bias, that usually the successful 

applications are published. Bunn (1996) argues that even if there is empirical evidence in 

favour of ANNs, it will require advances in their explainability and robustness diagnostics 

before forecasters use them with confidence.

In this survey if the limitations stressed in the previous sections are not considered,

ANNs outperform benchmarks in 70% of the papers. However, under stricter evaluation only

a handful of papers can be considered and this percentage changes. By restricting the results

to papers that use either reported rolling origin evaluation or more than 10 time series and

follow a valid evaluation scheme only 14 papers can be considered, from which 64% report

that ANNs outperform the benchmarks that were used in these studies. Callen et al. (1996)

forecast quarterly firm earnings and find ANNs unable to outperform linear models. Cao et

al. (2005) find that both the univariate and the multivariate ANNs perform better than linear

models in forecasting daily stock returns from the Shanghai stock market. Heravi et al. (2004)

try to model the European industrial production and find that linear models perform better

than ANN, but the latter can pick up directional changes more accurate. Hill et al. (1996) use

data from the M l competition and find that ANN perform better for all time series apart

from the annual data, for which the ANN were not significantly different, indicating an effect

of the time series frequency on the ANN performance. Kotsialos et al. (2005) find ANNs to

perform marginally better, but due to their complexity they advise the use of exponential

smoothing models instead. Liao and Fildes (2005) use a large telecommunication time series

dataset and find that overall robust trend model is better, but ANNs have very similar

accuracy outperforming all other benchmarks. Motiwalla and Wahab (2000) find that ANN

have better investment performance than linear regression models and a passive buy and

hold strategy. Nelson et al. (1999) revisit the M l dataset and provide evidence that
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deseasonalising the time series helps to improve the forecasting performance of ANNs, 

validating the results of Hill et al. (1996). Terasvirta et al. (2005) find that ANN models are 

better than the benchmarks at long forecasting horizons, but overall are worse, in 

forecasting monthly macroeconomic variables. Thomassey et al. (2004) find that ANNs are 

better at predicting weekly textile sales than linear benchmarks. Zhang and Qi (2005) 

evaluate the effect of detrending and deseasonlising time series for forecasting with ANN 

and find that this step helps and that ANN are able to outperform ARIMA models. Zhang et 

al. (2004) find that ANN perform better than univariate and multivariate linear models at 

predicting the quarterly earnings per share. Jursa and Rohrig (2008) find that ANNs are 

better than a nearest neighbourhood search forecasting model at predicting short term wind 

farm production. Moreno and Olmeda (2007) do not find any clear advantage of ANNs 

against AR and ARX models in forecasting Morgan Stanley capital international indices. Note 

that the above papers do not consider the problem of multiple initialisations that was 

discussed before, with the exception of Liao and Fildes (2005).

Overall, ANNs show evidence of good performance, repeating the findings of 

previous reviews (Adya and Collopy 1998; Zhang, Patuwo et al. 1998) that reported ANNs 

being able to surpass in performance established benchmarks. However, an important 

finding is that the majority of ANN papers cannot be used in this meta-evaluation of ANNs 

due to several limitations in their experimental design. Addressing these limitations and 

raising the degree of replicability of the ANN studies should be important targets for ANN 

research.

2.4 Conclusions

This study aims to provide a critical overview of the advances in forecasting with 

ANNs. The contribution of the research is analysed in seven main axes and the current state-
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of-the-art in forecasting with ANN models is presented, along with the pressing research 

questions. More than a decade ago Zhang et al. (1998) set a number of future research 

questions for the field of ANNs in forecasting. This study tries to see how these have been 

addressed since then. A key question set then was how do ANNs model time series that 

allows them to outperform conventional methods. Unfortunately our understanding of the 

inner workings of ANNs is still incomplete and limited research effort has been put towards 

that target (Setiono and Thong 2004). Another key question that was set was how to 

systematically build an ANN for a given problem. On this front there have been substantial 

advances. We know now that the input vector is the key determinant of ANN accuracy, 

followed by the specification of the hidden layer. There have been several papers that try to 

address these issues, yet no consensus on what is the best way has been reached. Other 

modelling decisions, like the choice of the transfer functions, have been less researched. 

There have been several papers that try to systematically build ANN models with relatively 

few arbitrary modelling choices; however there is still no fully systematic or automated 

modelling methodology. Furthermore, the majority of ANN papers do not address these 

modelling issues in a methodical way, resolving to trial and error approaches that do not 

advance our understanding of ANNs. Another question that was set was related to 

identifying the best training algorithm or method for time series forecasting. Although the 

standard gradient descent backpropagation is still the most widely applied training 

algorithm, different alternatives have been developed. There is some evidence that these 

algorithms perform better, but rigorous comparative evaluations that adhere to the criteria 

set by the established forecasting research do not exist. The last question posed was related 

to data pre-processing and sampling. The literature agrees that ANNs perform better when 

large samples are available, but the best way to pre-process the input data, if needed at all, 

is still debatable. The debate is mainly focused on the issue of how to best model trend and



seasonality with ANNs. There is evidence that removing those as a pre-processing step, 

through first and seasonal differences, is beneficial to the accuracy of ANNs. However, there 

is also evidence that ANNs can forecast these time series at least as good as benchmarks 

w ithout the need to pre-process the inputs. Other pre-processing methodologies, like using 

the logarithm of the time series to aid the training of the models or the Box-Cox 

transformation, have been proposed, but they have not been widely used.

This study identifies a set of problems in the ANN literature, which are outlined here.

1. Key modelling issues are overlooked. Very few papers were found to address the 

issue of initialising multiple times the networks weights during initialisation. Multiple 

initialisations are necessary in order to evaluate the robustness and the reliability of 

the ANN model, due to the stochastic nature of the training and the problem of local 

minima. In addition to that, multiple initialisations provide a better search for 

parameters. Furthermore, several parameters of the ANN models are set either 

arbitrarily or following a trial and error approach that does not advance out 

knowledge of ANNs and makes questionable the implementation validity of several 

papers.

2. A principal problem is that several modelling decisions are not properly documented 

in the papers. This harms the reliability of the results, limits the contribution to our 

understanding of ANNs and makes the replication of experiments impossible. 

Furthermore, it hinders further meta-analysis of the results.

3. The ANN literature is lagging behind in implementing the suggestions of the

forecasting literature on what constitutes a valid experimental design for empirical

evaluation. Selecting a large number of time series, using rolling origin evaluation

and selecting appropriate benchmarks and error measures is important in order to
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be able to provide valid and reliable conclusions. These decisions, like the ANN 

modelling decisions, must be clearly documented, to raise transparency in the 

literature and allow meta-analysis o f the results in order to advance our 

understanding of ANNs. Once the experimental design allows producing detailed 

error data it is then possible to perform valid statistical analysis of the results, which 

will result in more reliable findings and evaluation of the conditions under which this 

results are valid.

Several open research questions are identified. There is evidence in the literature

that the frequency of the time series is related to the performance of ANNs (Hill, O'Connor et

al. 1996; Markham and Rakes 1998; Hippert, Bunn et al. 2005). Furthermore, it has been long

established that time series of different frequencies require different forecasting

methodologies and exploration tools (Granger 1998; Taylor, de Menezes et al. 2006).

Therefore, we need to explore whether ANNs are able to forecast both low and high

frequency data, and what the required changes are in the modelling methodology, if any.

This becomes especially important as there are more high frequency datasets available and

the constant increase of computational resources allows us to use them (Engle 2000).

Another key issue is the reconciliation of the literature that is addressing the issue of

specifying the input variables and the hidden layers for ANNs. Several different

methodologies have been proposed, most of which outperform all benchmarks in the limited

number of studies that they have been applied. However, there is no direct comparison

between them. It is necessary to rigorously evaluate the competing ANN modelling

methodologies. This will reveal best practices and also allow us to better understand why

some methods work better than others. Keeping in mind the current findings of the

literature that the most important determinant of ANN performance is the input vector, the

specification o f the ANNs7 input variables should be addressed first, before other ANN
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modelling variables such as the hidden layers and nodes. Furthermore, one issue related to 

the time series frequency is whether these methodologies are equally applicable to different 

frequencies or not, and which are better suited for each problem. The issue of selecting the 

transfer functions has not been adequately researched either, leading most researchers to 

arbitrarily choose between the most common types. Their impact in forecasting is not well 

understood and should be explored further. The scaling of the inputs is also inadequately 

researched. In the literature there is no large scale empirical evaluation or a theoretical 

proof that answers how this problem should be tackled. There are several alternatives on 

how to scale the inputs of an ANN and also there is the option of restricting the bounds of 

the scaling more than what is required by the transfer functions. The effects of these choices 

are unclear, as is the magnitude of their impact in ANNs' forecasting accuracy. Finally, it is 

important to invest more research in the meta-analysis of the results in the literature in 

order to understand better how ANNs work and explain the evidence of superior 

performance over established benchmarks. This is a key step for making the use of ANNs 

more widespread and accepted.
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Table 2-XIII: List of journal papers retrieved for the survey

Computers and Operations 
___________Research________
Desilets et al. (1992)
Markham and Rakes (1998) 
Condon et al. (1999)
Leung et al. (2000)
Lind and Sulek (2000) 
Motiwalla and Wahab (2000) 
Zhang (2001)
Zhang et al. (2001)
Curry et al. (2002)
Chen et al. (2003)
Chen and Leung (2004)
Marti and El-Fallahi (2004)
Cao et al. (2005)
Gupta and Singh (2005)
Liao and Fildes (2005)
Torres et al. (2005)
Yu et al. (2008)
Setzler et al. (2009)

_______Decision Sciences
Jain and Nag (1995)
Swanson and White (1997) 
Desai and Bharati (1998)
Hu et al. (1999)
Jiang et al. (2000)
Papatla and Zahedi (2002) 
Sexton et al. (2003)
Zhang et al. (2004)

European Journal of 
Operational Research 

Hruschka(1993)
Bunn (1996)
Wang (1996)
W ittkemper and Steiner (1996) 
Wood and Dasgupta (1996) 
Teixeira and Rodrigues (1997) 
Badiru and Sieger (1998)
Sexton et al. (1998)
Sexton et al. (1999)
Prybutok et al. (2000)
Dia (2001)
Kuo (2001)
Qi and Zhang (2001)
Sahin et al. (2004)
Setiono and Thong (2004) 
Thomassey et al. (2004)______

Vroomen et al. (2004)

El-Fallahi (2005)
Zhang and Qi (2005)
Bodyanskiy and Popov (2006) 
Casqueiro and Rodrigues (2006)
Curry and Morgan (2006)
Freitas and Rodrigues (2006)
Lin and Chen (2006)
Curry (2007)
Landajo et al. (2007)
Moreno and Olmeda (2007) 
Nikolopoulos et al. (2007)
Andreou et al. (2008)
Carbonneau et al. (2008)
Hahn et al. (2009)
International Journal of Forecasting

Gorr et al. (1994)
Hill et al. (1994)
Callen et al. (1996)
Church and Curran (1996)
Dougherty and Cobbett (1997)
Kirby et al. (1997)
Kim and Chun (1998)
Zhang et al. (1998)
Balkin and Ord (2000)
Darbellay and Slama (2000)
Leung et al. (2000)
Thomas (2000)

Gencay and Selcuk (2001)

Qi (2001)
Tkacz (2001)
Corcoran et al. (2003)
Olson and Mossman (2003)
Heravi et al. (2004)
Conejo et al. (2005)
Ghiassi et al. (2005)
Hippert et al. (2005)
Novales (2005)
Terasvirta et al. (2005)
Terasvirta et al. (2005)
Armstrong (2006)
de Menezes and Nikolaev (2006)
Taylor et al. (2006)
Preminger and Frank (2007) 
da Silva et al. (2008)_______________

Amaral et al. (2008)

Cancelo et al. (2008)
Jursa and Rohrig (2008)
Soares and Medeiros (2008)

 Journal of Forecasting
Lachtermacher and Fuller (1995) 
Connor(1996)
Donaldson and Kamstra (1996) 
Haefke and Helmenstein (1996) 
Adya and Collopy (1998)
Anders et al. (1998)
Cottrell et al. (1998)
Li et al. (1999)
Nelson et al. (1999)
Qi and Maddala (1999)
Refenes and Zapranis (1999) 
Venkatachalam and Sohl (1999) 
Bentz and Merunka (2000)
Lam and Lam (2000)
Moshiri and Cameron (2000) 
Schittenkopf et al. (2000)
Taylor (2000)
Swanson and Zeng (2001)
Dunis and Huang (2002) 
Kaashoek and Dijk (2002)
Nag and Mitra (2002)
Amilon (2003)
Kanas(2003)

Dahl and Hylleberg (2004)

Lindemann et al. (2004)
Moshiri and Brown (2004)
Chen and Leung (2005)
Kajitani et al. (2005)
Kotsialos et al. (2005) 
Pantelidaki (2005)
Gradojevic and Yang (2006) 
Medeiros et al. (2006)
Hruschka(2007)
Bekiros and Georgoutsos (2008)
 Management Science
Hill et al. (1996)
Kim et al. (2005)
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3 An evaluation of input variable 
selection methodologies for 
forecasting low frequency time 
series w ith  artificial neural 
networks

Abstract

Prior research in time series forecasting with neural networks (ANNs) suggests that 

the choice of which time-lagged input variables to include in the network has the highest 

impact on forecasting accuracy. However the current state of the art ANN research has failed 

to propose a universally accepted methodology to specify the input vector. Several 

competing methodologies have appeared in the literature, motivated by autocorrelation 

analysis, hypothesis testing, regression analysis and simple or complicated heuristics. 

Although many of these methodologies demonstrate promising results, up to date there has 

been no comparative evaluation that adheres to established standards of systematic and 

valid empirical evaluation. This research assesses a wide range of input vector selection 

methodologies that have appeared in literature and proposes some new variations, revealing 

the strengths and weaknesses of each one and ultimately providing suggestions how to 

model the input vector for autoregressive ANNs. These are tested using a synthetic dataset 

that simulates monthly retail data and a subset of the M l competition time series. The 

results are compared against the random walk and exponential smoothing family models 

that are established benchmarks. This study concludes the that identification of the input 

vector based on regression variants performs the best.
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Preface

Preliminary results of this analysis have been presented in the International 

Symposium on Forecasting in 2007 (ISF 2007), under the support of the International 

Institute of Forecasters travel award grant scheme. Further results were presented in the 

International Symposium on Forecasting in 2008 (ISF 2008).

3.1 Introduction

Artificial neural networks (ANNs) have found increasing consideration in forecasting 

research and practice, leading to successful applications in time series prediction and 

explanatory forecasting (Zhang, Patuwo et al. 1998). However, despite their theoretical 

capabilities for non-parametric, data driven approximation of any linear or nonlinear 

function directly from the dataset (Hornik 1991), ANNs have not been able to confirm their 

potential in forecasting competitions against established statistical methods, such as ARIMA 

or Exponential Smoothing (Makridakis and Hibon 2000; Armstrong 2006). As ANNs offer 

many degrees of freedom in the modelling process, from the selection of activation 

functions, adequate network topologies of input, hidden and output nodes, to learning 

algorithms and parameters and data pre-processing in interaction with the data, their valid 

and reliable use is often considered as much an art as a science. Previous research indicates 

that the parsimonious identification of input variables to forecast an unknown data 

generating process poses one of the key problems in model specification of ANNs (Hill, 

O'Connor et al. 1996). While literature provides some guidance in selecting the number of 

hidden layers of an ANN using wrapper approaches (Hornik, Stinchcombe et al. 1989; Hornik 

1991), selecting the correct lagged realisations of the time series, and/or multiple 

explanatory variables, remains a challenge (Curry and Morgan 2006).
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The issue of input variable and lag selection becomes particularly important, as the 

input vector needs to capture all the characteristics of complex time series, including the 

components of deterministic or stochastic trends, cycles and seasonality, interacting in a 

linear or nonlinear model with pulses, level shifts, structural breaks and different 

distributions of noise. An extensive review of ANNs (Zhang, Patuwo et al. 1998) concluded 

that the selection of input variables is the most important determinant of ANNs' forecasting 

accuracy. In two subsequent papers (Zhang 2001; Zhang, Patuwo et al. 2001), where the 

ability of MLP to model linear and nonlinear time series was investigated, the authors 

concluded that the choice of the correct input variables is the most important step in the 

modelling process and has a significant effect on accuracy. Darbellay and Slama (2000) also 

pointed out the importance of the input variable selection with an empirical investigation on 

electricity load forecasting. They suggested that the input vector is one of the driving forces 

in modelling an ANN and furthermore that ANNs should be employed only if there are 

nonlinearities in the inputs.

To the knowledge of the author, no paper argues against the importance of the input 

vector for ANNs; however it is debatable which variable selection methodology is better. 

Although it is apparent that different input vectors can result in different conclusions 

regarding the accuracy and applicability of neural networks, there seems to be no rigorous 

empirical evaluation of the several competing methodologies proposed in the literature. This 

modelling uncertainty, which can lead many times to unreliable forecasts, is a strong point of 

criticism against ANNs (Armstrong 2006) and makes their application problematic. This 

problem has been identified in the literature several times, through investigations of 

previous reviews (Zhang, Patuwo et al. 1998), theoretical works (Curry 2007) and empirical 

applications (Hippert, Bunn et al. 2005).

Page 66



The aim of this research is to address this uncertainty; how to identify the input 

vector of ANNs. In this study the most frequently used input variable selection 

methodologies found in the literature are compared with a rigorous evaluation experiment. 

It is investigated if there are any statistically significant differences among the competing 

methodologies and a ranking of groups that behave similarly is provided. In section 3.2 the 

theoretical background is presented, where all the competing methodologies are discussed. 

The experimental design is presented in section 3.3 and the results in the next section. In 

section 3.4 the findings of this study are summarised, while the limitations of this study and 

implications for future research are outlined.

3.2 Methods

3.2.1 Artificial Neural Networks

For this analysis standard multilayer perceptrons (MLP) are used, which is the most 

commonly employed form of ANNs (Zhang, Patuwo et al. 1998). One advantage of neural 

networks is that they can flexibly model nonlinear relationships without any prior 

assumptions about the underlying data generation process (Qi and Zhang 2001). In 

univariate forecasting MLPs are used as a regression model, capable of using as inputs a set 

of lagged observations of the time series to predict its next value. Data are presented to the 

network as a sliding window over the time series history. The network tries to learn the 

underlying data generation process during training so that forecasts are made when new 

input values are provided (Lachtermacher and Fuller 1995). In this analysis single hidden 

layer neural networks are used, based on the proof of universal approximation (Hornik 

1991). The general function of these networks is given in (3.1).

(3.1)
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X =  [X o , xx xn] is the vector of the lagged observations (inputs) of the time series and w = 

(P, Y) are the network weights with P = [p2, p2..., Ph] and y = [yi, y2.../ yhJ. The biases for each 

node in the hidden layer are y0i and in the single output node p0. I and H are the number of 

input and hidden nodes in the network and g( ) is a non-linear transfer function (Anders, 

Korn et al. 1998). For computational reasons this can be approximated as in (3.2), which is 

frequently used for ANNs (Vogl, Mangis et al. 1988) and is also employed here.

How to select the input vector of a MLP and the number of hidden nodes in the 

hidden layer remains a debatable question (Zhang, Patuwo et al. 1998). Various 

methodologies for selecting the input vector are described in the next section. To select the

through simulations (Zhang, Patuwo et al. 1998). MLPs are trained using different number of 

hidden nodes and the most accurate MLP indicates the correct number. This is applied in this 

analysis through a grid search. The output layer usually has a single node, providing a single 

one step ahead forecast. This can be easily generalised to provide multiple step ahead 

forecasts, simultaneously, with the addition of further output nodes (Hippert, Bunn et al. 

2005), but this is not explored in this analysis since it is not required to produce the 

forecasts.

An ANN needs to be trained to find the weights w that provide accurate forecasts. 

The training algorithm used here is the Levenberg-Marquardt algorithm, which avoids 

computing the Hessian matrix required in the typical backpropagation algorithm, resulting in 

significantly faster training (Hagan, Demuth et al. 1996). This comes at the cost that the 

training cost function has to be in some form of sum of squares (Hagan and Menhaj 1994)

tanh(x)
2

(3.2)

correct number of hidden nodes the most widely used approach is to find the best number
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and for this reason the cost function used to train the MLP in this analysis is the mean 

squared error (MSE) of the one step ahead forecast. ANNs are prone to overfitting (Zhang, 

Patuwo et al. 2001), which can reduce their generalisation and harm their forecasting 

accuracy. A standard approach, which is employed in this analysis, is to use an early stopping 

criterion. Lastly, because the training of the ANNs is a complex nonlinear optimisation 

problem, training often stops at local minima. To ensure a wide search of the training error 

surface multiple random weight initialisations of the ANN weights should be used (Hu, Zhang 

et al. 1999). Different initialisations result in different trained networks, due to the 

stochasticity of the training algorithms. Therefore, a large number of initialisations are 

required in order to find a good solution.

3.2.2 Input vector selection methodologies

Several competing methodologies to select the input vector have been suggested in 

the literature. A survey of eight forecasting and management science journals4 was 

performed to identify the proposed alternatives for forecasting applications. This survey 

revealed the most frequently used methodologies, which are presented and used in this 

study. A noticeable lack of a rigorous evaluation of these methodologies was identified, 

which this study aims to answer. These methodologies are organised in three main 

categories, simple heuristics, those based on autocorrelation analysis and those based on 

regression analysis. Before going in the details of each methodology it is noteworthy to 

mention that more than 70% (out of 87 papers investigated) do not use a consistent input

4 These are, in alphabetical order, Computers and Operations Research, Decision Sciences, European 

Journal of Operational Research, International Journal of Forecasting, Journal of Forecasting, 

Management Science, Naval Research Logistics and Operations Research. These journals have high 

ratings according to both the Vienna list ranking and the ISI Web of Science impact factor.
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vector selection methodology, instead adopting trial and error approaches, which restrict the 

generalisation and the validity of the results, a problem that was also identified in a previous 

study by Adya and Collopy (1998).

3.2.2.1 Simple Heuristics

After the trial and error approaches the most commonly applied methodology is to 

model the input vector of ANNs using simple heuristics. An example is given by Balkin and

Ord (2000). In order to find the relevant maximum lag length the seasonality is taken into 

account with the addition of a few extra lags, resulting in input vectors that can contain all 

lags up until slightly more than the seasonal length. The exact number of extra lags depends 

on the seasonal length. The need to have input vectors that will contain information at least 

as old as the seasonal lag is also supported by Curry (2007). These heuristics are used in this 

analysis as benchmarks being relatively easy to model. The names of the methodologies as 

presented in the result tables are given in brackets.

• Naive vector (ANN_naive): Use only the previous (t-1) lag. This is the ANN analogue 

of the naive model.

•  Full season (ANN_fs): This heuristic looks at the frequency of the data and selects all 

the lags up to the seasonal length, i.e. for monthly data the first twelve lags are 

selected (t-1 to t-12). Note that the data frequency (quarterly, monthly, etc) defines 

the length and not the presence of seasonality, as in Balkin and Ord (2000).

• Full season+1 (ANN_fs+l): This is nearly identical to the previous heuristic with the 

difference that one additional lag is included, i.e. t-1 to t-13 for monthly data.

• Multiple full seasons (ANN_mfs): This heuristic makes use of all the lags up until a set 

multiple of the seasonal length, which is set similarly to the previous methods. This 

heuristic results in rather long and overspecified input vectors, as it is discussed in
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the presentation of the results. Hippert, Bunn and Souza (2005) discuss the 

application of overspecified ANNs in electricity load forecasting and argue that such 

input vectors can perform well. For this analysis three full seasons are used.

3.2.2.2 Autocorrelation analysis based methodologies

Another widely used category of methodologies for identifying the input vector for 

ANN models are based on autocorrelation and partial autocorrelation analysis. 

Lachtermacher and Fuller (1995) suggest using an analogous to Box-Jenkins ARIMA modelling 

(Box, Jenkins et al. 1994) to identify an adequate input vector for MLP models. They use both 

the autocorrelation (ACF) and the partial autocorrelation (PACF) functions to identify 

important lags that should be included to the input vector. They also suggest that optimal 

differencing should be applied to the time series, based on the need to remove trend and 

seasonality to make stationary time series, as used in the original ARIMA modelling 

methodology. This methodology makes use of linear correlations, as identified by the ACF 

and PACF, which may be inadequate to capture the nonlinearities that can be modelled by 

ANN in contrast to ARIMA models. Although MLPs are autoregressive in nature thus making 

use only of PACF information, the authors argue that ACF should be used as well. The 

argument is based on the inversion of the moving average terms to infinite autoregressive 

terms suggesting that including the moving average terms may capture more information.

Darbellay and Slama (2000) argue that the input vector should capture any existing 

nonlinearities in the time series. Therefore, PACF is not sufficient to model the input vector 

of MLP. To overcome this they use a version of a nonlinear autocorrelation function, which is 

essentially a scaled Mutual Information (Ml) criterion. The mutual information criterion 

between two random variables Y and X is defined as
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I ( X ,Y )  = j j p ( x , y )  In
u(x)v{y)

(3.3)

In (3.3) u(x) and v(y) are the marginal density functions of X and Y and p(x,y) is their joint 

probability density function. The Ml can take values from 0 to °°, but can be scaled between 

0 and 1, so that it becomes more useful for identifying inputs,

which is an invertible transformation. The nonlinear autocorrelation is defined as p(X,Y) and 

if it is equal to 0 it implies that the two variables X and Y are not correlated, whereas the 

closer it becomes to 1 the stronger is the measured correlation. This methodology uses this 

transformed Ml criterion to capture potential nonlinearities in the time series. Some caution 

may be neccessary in using this methodology, since the way that the significant nonlinear 

lags are identified is based on its linear counterpart and that may not be fully applicable, if at 

all.

Moshiri and Brown (2004) prefer to use a simpler methodology. They make use only 

of the autoregressive information of a time series; therefore, only the PACF is used to chose 

significant lags that should be included in the input vector. Kajitani et al. (2005) use a simple 

methodology as well. They make use of the autocorrelation information to find an adequate 

input vector for MLP. It is interesting to note that although MLP are autoregressive model, 

implying the need to use PACF information, the authors prefer to use ACF instead. This 

decision is not discussed in their paper.

McCullough (1998) observes that although there are different alternatives for 

calculating the ACF for a time series X for the kth lag, for large sample sizes the differences 

are minor. In this study ACF is calculated as

p(X,Y)  =  V l - e - 2' <A'n  , (3.4)
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p (X { t ) ,X ( t - k ) )  = Cov(X (t),X(t — k))
(3.5)

4Var(X{t))4Var{X(t-k))  '

However, as McCullough discusses, this is not true for the PACF. He evaluates three 

alternative methods to estimate the PACF for ARMA models, and concludes that they 

identify different significant lags which obviously affects accuracy. This is overlooked in the 

ANN literature. These three methods are evaluated in this analysis. The first method to 

estimate the PACF is the well known Yule-Walker estimation (YWE). Under this approach the 

PACF is derived from the ACF. The partial autocorrelation n k for the kth lag is calculated by 

using the recursive calculation in (3.6) and (3.7),

that essentially minimises the forward error in the least squares sense. The next approach is 

the Least Squares (LS) method. The partial autocorrelation 7ik between Xt and Xt.k is the OLS 

regression coefficient of Xt.k holding Xt_i,...Xt.k+1 fixed. McCullough mentions that this method 

is more robust than YWE, but it can produce PACF greater than unity. Also note that this 

method is calculated directly from the time series, without needing prior calculation of the 

ACF. The third option is the Burg algorithm, which minimises both the forward and backward 

error, providing a more accurate estimation of the autoregressive structure of the time 

series. To express this algorithm it is necessary to define some operators first. For a given 

vector V = [vi, v2, ..., vn], with n elements, a circular shift operator LV and a subvector 

operator Mj kV are defined in (3.8) and (3.9) respectively,

j= l,...k (3.6)

k

71 k +1 — 7 r k + l,k +1 — (3.7)
k
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L V i =  [v „ , V,, v2 , v ^ , ] ,  (3.8)

M ./ ,kV  =  [ V r V /+l , . . . ,vk_l , v k ] .  (3.9)

Define two vectors of length n = m + p, where eF(0) = [x1; x2,..., xn, 0,..., 0] and eB(0) = L eF(0) =

[0, Xi, x2,..., xn, 0,..., 0], with the p and the p-1 rightmost elements being zero respectively.

The partial autocorrelation 7ik for k = 1,..., p can be computed recursively using (3.10)

where <Vi,V2> is the inner product of two vectors and 11V112 is the squared norm of a 

vector. To find eF(k) and eB(k) equations (3.11) and (3.12) are used.

e F ( k )  =  e F ( k  - 1) -  n ke B ( k - 1), (3.11)

eyi (k ) =  L [ e B ( k - 1) -  n Ke F ( k  - 1)]. (3.12)

More details can be found in McCullough (1998), who concludes that the Burg estimation is 

more stable and produced more accurate ARMA models compared to YWE and LS.

One other aspect of ACF that has not been considered in the management science 

and forecasting ANN literature is the apparent connection between the autocorrelation 

structure of a time series and the spectral density of the time series. These are 

mathematically equivalent, but reveal information about the time series differently, as is 

discussed in detail by Box et. al (1994). For this reason spectral analysis (SA) will be used as 

an alternative to ACF in this analysis.

The autocorrelation analysis based methods that are employed in this analysis are 

listed here for convenience. For all the methods a maximum of three seasons is used to
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identify the significant lags which are then used as the input vector of the ANN. Three 

seasons are used to provide comparable results with the simple heuristics and the regression 

based approaches that are discussed next.

• PACF Yule-Walker (ANN_ywe) estimation.

• PACF Least Squares (ANNJs) estimation.

• PACF Burg (ANN_burg) estimation.

• Spectral Analysis (ANN_sa). The lags that are included in the input vector are derived 

from the first six periodicities with the largest amplitude found by performing a 

spectral analysis of the time series.

• ACF (ANN_acf) as defined in (5).

• Nonlinear ACF (ANN_nlacf) estimation.

Combinations of the above methods are also evaluated. To construct the combined vector all 

the lags that the two combined methods would indicate as significant are included. The 

combinations evaluated are the following: ACF + YWE (ANN_acf+ywe), ACF + LS 

(ANN_acf+ls), ACF + Burg (ANN_acf+burg), NLACF + YWE (ANN_nlacf+ywe), NLACF + LS 

(ANN_nlacf+ls), NLACF + Burg (ANN_nlacf+burg), SA + YWE (ANN_sa+ywe), SA + LS 

(ANN_sa+ls) and SA + Burg (ANN_sa+burg). This way the methods that are found in the 

literature which use only PACF or ACF or both are tested. Furthermore, the methods are 

extended to evaluate different estimations of PACF, combine the NLACF, which is essentially 

the Mutual Information, with PACF and lastly evaluate SA as a method to produce the input 

vector for ANN.

3.2.2.3 Regression analysis based methodologies

Regression based m eth o d o lo g ie s  are  also q u ite  w id e ly  used in se lec ting  th e  inp u t

vector for ANNs. Church and Curram (1996) compare four traditional econometric models
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with a MLP approach to model the consumers expenditure in the late 1980s. MLP are found 

to perform at least as well as other models. The input vector is modelled by firstly identifying 

the necessary lags through an OLS regression model based on econometric theory. Standard 

linear regression methodology is used to find the significant lags and validate the model. This 

methodology may not be optimal for MLP, since it provides only inputs identified through 

linear tests, therefore restricting potential nonlinearities. Swanson and White (1997) tried to 

forecast nine macroeconomic variables. To model the MLP's input vector they use a forward 

stepwise linear regression. Regressors are added one at a time until the Schwarz Information 

Criterion (SIC) cannot be further improved. Again the MLP may be restricted by providing 

inputs identified only through linear diagnostics. Furthermore, Qi and Zhang (2001) argue 

that SIC and similar criteria are improper for modelling MLP. Qi and Maddala (1999) explore 

if the application of MLP models can improve the results obtained by linear models in 

predicting stock returns. They show that MLP can be more accurate than linear models, and 

both outperform the random walk. Linear regression is employed to identify the input vector 

for the MLP models. Balkin and Ord (2000) discuss an approach to automatic input lag 

selection for univariate forecasting using MLP. Their method is a hybrid between a simple 

heuristic for specifying the maximum lag, which we already discussed, and forward stepwise 

regression. Different regression models are fitted to the data and from all the models which 

satisfy an F-statistic criterion the one with the greatest number of lags is selected. It is 

interesting to note that under this methodology the least parsimonious input vector is 

preferred. Prybutok and Mitchell (2000) compare the accuracy of MLP with regression and 

ARIMA models for predicting daily maximum ozone concentration in Houston. MLP are 

found superior to the standard statistical methods. To model the input vector of the MLPs 

stepwise regression is used. All the methodologies mentioned above make use of some form
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of stepwise or forward linear regression, which may be limiting to model ANNs, since linear 

regression is unable to capture nonlinearities in the data.

Dahl and Hylleberg (2004) identify this problem and make use of a nonlinear 

regression model that should improve the specification of the MLP input vector. The 

nonlinear regression model that they use is Hamilton's random field regression (Hamilton 

2001) in a forward regression setup. The best regression model is identified through AIC or 

BIC minimisation and the linear and nonlinear lags are used as the input vector for the MLP. 

This methodology is very computationally intensive and is based on AIC, BIC, which literature 

suggests to avoid for ANN modelling, since there seems to be no connection between the 

information criteria and the performance of ANNs (Qi and Zhang 2001). However, it is the 

only study that we found that makes use of some form of nonlinear regression to model the 

input vector for MLP. This method should overcome the limitations of the models that are 

identified through linear regression and therefore it is important to evaluate it against the 

linear alternative. Since this is not a widely known method we will provide a brief description 

of Hamilton's random field regression. Under this regression model, instead of viewing only 

the endogenous variable as a realisation of a stochastic process, the functional form of the 

conditional mean is the outcome of a random process (Dahl and Hylleberg 2004). The 

functional form of the conditional mean p(x) for k explanatory variables is given in (3.13).

/z(x) =  ocQ +  a x  +  Am(g •  x ) , (3.13)

where a0 and X are scalar and a, g are (k x 1) vectors of coefficients. The realisation of the 

random field is m () and • is defined here as element by element multiplication. A X=0 would 

imply that the model is a linear regression and an ith element o f g = 0 would mean that the 

conditional mean is linearly depended to Xi. The nonlinear regression is
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y , = M ( x t ) +  £ tt (3.14)

where xt and errors et are independent of the random field realisation m( ) and the errors are 

independent of xt with a zero mean. A more detailed description and the mathematical 

proofs can be found in Hamilton (2001). The first implementation of this model to identify 

the input vector of neural networks is done in (Dahl and Hylleberg 2004) who employ 

parsimony criteria like BIC to find the optimum number of lagged realisation of yt for 

univariate forecasting.

In addition to these input variable selection methodologies the backward linear 

regression is also evaluated. Its application is similar to the forward or stepwise regression. 

For convenience of the competing regression models are listed here. Again, the names of the 

methodologies as presented in the result tables are given in brackets.

• Linear forward regression models. Lagged variables are added one at a time based 

on their statistical significance. Relevant lags are checked for significance up to one 

season (forw_fs) in the past, one season plus one additional lag (forw_fs+l) and 

three seasons (forw_mfs), resulting in three different results. The inclusion of 

different lag search spaces is done under the suggestions of Baklin and Ord (2000) 

and Curry (2007). Also it helps in having a balanced experiment with the simple 

heuristic models, as discussed previously. The lags that are found significant are then 

used as inputs for the ANN.

• Linear backward regression models. Initially all lagged variables - up to one full

season (ANN_back_fs), one full season plus one extra lag (ANN_back_fs+l) and three

full seasons (ANN_back_mfs) - are included in the model and those that are found

statistically insignificant are dropped out of the model one at a time. The remaining

identified lags from the linear regression model are used as inputs for the ANN. The
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use o f backward linear regression to identify the input vector for ANN is absent in 

the literature.

• Linear stepwise regression models. Lagged variables are added one at a time, but 

can also be removed if they become insignificant. The models are fitted for the three 

time spans - one full season (ANN_auto_fs), one full season and one additional lag 

(ANN_auto_fs+l) and three full seasons (ANN_auto_mfs) - as in the previous 

regression models and the identified lags are used as inputs for the ANN.

• Random field regression optimised by BIC (ANN_nlreg). All possible models including 

up to three seasons in the past are identified and the one with the best BIC is 

selected. Following Dalh's and Hylleberg's (2004) suggestion first the linear part of 

the regression is identified and then the nonlinear. Both the linear and nonlinear lags 

that optimise the BIC are used as inputs for the ANN.

Table 3-1: ANN paper and proposed input variable selection methodology

Author Year Time Series M ethodology

Balkin & Ord 2000
M 3 com petition quarterly  

data
Forward Regression with heuristic to  
restrict search space

Church & Curram 1996 Quarterly macroeconomic Regression modelling

Dahl &  Hylleberg 2004
US industrial growth, US 
unem ploym ent

Random field regression

Darbellay & Slama 2000 Hourly electricity load Nonlinear ACF (M utual Inform ation)
Kajitani, Hipel &  McLeod 2005 (Annual) Lynx tim e series 

Annual river flow  data,
ACF

Lachtermacher & Fuller 1996 annual electricity 

consumption
ACF & PACF

Moshiri & Brown 2004 Quarterly unem ploym ent PACF

Prybutok & M itchell 2000 Daily ozone concentration Stepwise regression

Qi & M addala 1999 Stock index Regression modelling

Swanson & W hite 1997 Quarterly macroeconomic Forward Regression w ith  SIC

This brings the total number of the models evaluated to 29, including 4 heuristics, 10 

regression based methodologies and 15 autocorrelation based methodologies, making this 

analysis the first to evaluate a wide selection of input vector specification methodologies for
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ANN. The ANNs papers that this analysis is based on to collect the 29 competing 

methodologies are summarised in table 3-1 and all make use of MLP models.

3.2.3 Data pre-processing

Inputs for ANN must be scaled for the models to be able to calculate forecasts. An 

overview of the common scaling schemes is given by Zhang et al. (1998). For this analysis 

linear scaling is used. To scale an observation x, from a time series X to xsj between [a,b] 

equation (3.15) is used,

(b  -  a)(x. -  x -  )
*„■=■ -  J  f A +  a .  (3.15)

V-^max -*m in /

This scaling is necessary to avoid saturating the transfer function of the ANN (Wood and 

Dasgupta 1996).

Furthermore, there are papers that suggest additional pre-processing, which is

related to removing trend and seasonality from the time series. According to the universal

approximation capabilities of MLP with one hidden layer (Hornik, Stinchcombe et al. 1989)

these models should be able to model any data generating process. However there are

objections against this, based on the practical limitations of the MLP applications and the

sample size availability (Levelt 1990). This has led to a debate whether the time series should

be pre-processed to remove trend and season or not. Hill et al. (1996) show that ANN using

deseasonalised time series from the M l competition outperformed standard statistical

models, suggesting improvements in performance. Nelson et al. (1999) verifies that

deseasonalising the M l time series provided the ANN with the performance edge. They

repeat the experiment without deseasonalising the time series and prove that it is a

necessary step. They argue that this way the ANN can focus on learning the trend and the

cyclical components. To learn seasonality on top would require larger networks, resulting in
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a larger input vector, which may lead to over-fitting. Zhang and Qi (2005) reach the same 

conclusion. They argue that deseasonalised time series do not contain long dynamic 

autocorrelation structures that would make the choice of the input vector more difficult, 

thus leading to smaller more parsimonious models. Zhang and Kline (2007) explore the 

ability of ANNs to forecast quarterly time series. They find that deseasonalising helps, 

however this time they also evaluated a large variety of models, including models with 

deterministic dummy variables. They argue that such additional variables do not help 

because they do not capture the dynamic and complex seasonal structures. On the other 

hand, Curry (2007) builds on that argument and suggests that results favouring 

deseasonalising can hide an input misspecification error. It is also argued that, in theory, the 

ill selection of input vector can make the model unable to forecast seasonality, in agreement 

with Crone and Dhawan (2007) who demonstrate that MLPs are able to model robustly 

monthly seasonal patterns using only an adequate number lags of the time series.

Lachtermacher and Fuller (1995) give a different perspective to removing trend and 

seasonality. They argue that data should be trend and season stationary before modelling, 

following the ARIMA methodology, which requires stationary time series to identify the 

autoregressive and moving average components. The difference here is that stationarity is 

needed to identify the correct input vector and they do not discuss whether the ANNs are 

able to handle seasonal time series or not. The stationarity is achieved through 1st order and 

seasonal differences, just like in the ARIMA methodology. A similar approach is used in other 

papers (Ghiassi, Saidane et al. 2005; Bodyanskiy and Popov 2006), where differences are 

used to create stationary time series in order to identify the relevant input vector for the 

ANN.
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In this analysis detrending and deseasonalising is used as suggested by the bulk of 

literature. Furthermore, most methodologies evaluated here require stationary time series 

to identify correctly the input vector (Hamilton 1994). This is achieved through first and 

seasonal differences. To make sure that this pre-processing would not unfairly harm any of 

the methodologies, all alternatives were evaluated. Each time series is modelled in its 

original domain, detrended, deseasonalised and both detrended and deseasonalised. One 

other alternative that was considered was to use optimal differences to identify the input 

vector, as required by the identification methodologies, but train the ANNs on the 

undifferenced time series. As it is discussed in the results section, our findings are that both 

trend and season should be removed, in agreement with most of the literature; hence, in 

this analysis we pre-process the time series accordingly.

3.3 Experimental Setup

3.3.1 Data

In this analysis two dataset are used, a synthetic one and a subset of the M l 

competition dataset. Forty eight synthetic time series are constructed to evaluate the 

competing input vector selection methodologies. These time series simulate monthly retail 

data and follow the time series classification proposed by Pegels (1969) as extended by 

Gardner (1985). There are four types of trend (none, linear, exponential, damped), three 

type of seasonality (none, additive, multiplicative) and four levels of noise. The noise follows 

a N(0,Oi), where o, is 0, 1, 5 and 10 for no, low, medium and high level of noise respectively. 

These individual time series components can be seen in figure 3.1.a. - 3.I.e., and their 

combination produces all the 48 time series. Note that there are 12 time series with no 

noise, which are used to test the ability of the models to capture the real data generating

process. As the noise level increases, it is explored how performance is affected.
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Furtherm ore , the  inclusion o f several types o f trend and seasonality allows testing  the 

com peting  m ethodolog ies fo r a varie ty o f d iffe re n t cases. All tim e  series have 480 

observations. This is done to  provide enough tra in ing  samples to  the  MLP models, so tha t 

accuracy is no t im paired according to  the suggestions o f lite ra tu re  (M arkham  and Rakes 

1998; Hu, Zhang e t al. 1999). Each tim e  series is sp lit in a tra in ing  set o f 288 observations and 

va lida tion  and tests sets o f 96 observations each. This is necessary fo r  the  tra in ing  o f the 

ANN and the  early stopping to  avoid ove r-fitting  as discussed in section 2. These subsets are 

no ted in figu re  3.1. A long tes t set was selected to  get a b e tte r es tim ation  o f the  o u t o f 

sam ple errors, as suggested in lite ra tu re  (Tashman 2000).

This dataset is derived by decomposing m on th ly  re ta il sales th a t w ere used by Zhang 

and Qi (2005) to  explore the ab ility  o f ANNs to  forecast seasonal tim es series. Furtherm ore , a 

sho rte r bu t identica l dataset has been used in previous studies (Crone and Dhawan 2007). 

A lthough  th is  dataset has several lim ita tions, it has the advantage th a t the  tru e  p roperties  o f 

the  tim e  series are know and the re fo re  allows b e tte r analysis o f the  results.

Fig. 3.1.a Trend types
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Fig. 3.1: Synthetic time series components
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A second real dataset is used to overcome the limitations of the synthetic dataset. 

This dataset is a subset of the original widely used M l competition data5. All monthly time 

series longer than 125 observations were selected, in order to have enough training sample 

to evaluate all different input variable selection methodologies. The 49 selected time series 

are listed in table 3-11, while table 3-111 lists the number of each type of time series. The 

validation and test sets contain 24 observations each. This dataset has been used in the past 

in ANNs studies (Hill, O'Connor et al. 1996; Nelson, Hill et al. 1999) and it was shown that 

deseasonalising the time series improves the accuracy of the ANNs, therefore in this study 

the time series are pre-processed accordingly.

Table 3-11: M l  dataset selected tim e series Table 3-111: M l

M R M 2 M N M 3 7 MRI8 MRG1 MRC6 MRC34 MRC42 dataset tim e series

M R M 5 M N M 3 8 MRI9 MRG3 MRC26 MRC35 M N G 33 Level 2
M R M 10 M N M 5 8 M RI10 MRG4 MRC28 MRC37 M NC31 Trend 13
M R M 11 MRI1 M N I16 MRC2 MRC29 MRC38 MNC33 Season 1
M N M 9 MRI5 M N I21 MRC3 MRC30 MRC39 MNC42 Trend-

33
M N M 1 0 MRI6 M N I29 MRC4 MRC31 MRC40 MNC44 Season
M N M 2 7 M RI7 M N I168 MRC5 MRC32 MRC41 M NC48 Total 49

3.3.2 Methods

3.3.2.1 Benchmarks

In order to perform a valid evaluation of ANN models it is important to compare 

them against established benchmarks (Adya and Collopy 1998). Two benchmark models are 

used in this study, the random walk or naive model and exponential smoothing models 

(EXSM). EXSM has been shown to perform well on both retail data, that the synthetic time 

series simulated and the M l dataset (Gardner 2006).

5 A description of the full database and data can be downloaded at 

http://w w w .forecastingprincip les.com .
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The naive model is a standard benchmark in forecasting studies and assumes that 

the next forecast is equal to the last observed value (Makridakis, Wheelwright et al. 1998). 

For a time series X = [x ix 2,..., xn] at time t a forecast ft with the naive model can be realised 

as in (3.16),

f ,  =  x ,-i ■ (3.16)

Details about the EXSM models can be found in an extensive review by Gardner 

(2006). EXSM models are able to capture all types of trend and seasonality in this study 

(Gardner 1985) and given the large fitting sample they should be robust to noise and 

initialisation parameters. The smoothing parameters of the models are identified by 

minimising the one step ahead in-sample MSE, after selecting the appropriate type of trend 

and seasonality components, as suggested in literature (Gardner 2006). Note that the 

parameters of both the ANN models and the EXSM are optimised using the same cost 

function, the one step ahead in sample mean squared error. Both the naive and the EXSM 

models are modelled in MatLab.

3.3.2.2 Multilayer Perceptrons

The ANNs are realised using MLP models. The input vector of the MLPs is identified

using the 29 methodologies outlined in section 3.2. One hidden layer is used and the number

of hidden nodes is found through a grid search from 1 to 12 hidden nodes, with a step of 1.

Five and one hidden nodes were chosen were chosen for the synthetic and the M l dataset

respectively, which were found to give low error among several time series and different

input vectors. The Levenberg-Marquardt training algorithm needs the modeller to set the

value of p and its increase and decrease steps. Here p = 10'3, with an increase step of pinc = 10

and a decrease step of pdec= 10'1. For a detailed description of the parameters see Hagan and

Menhaj (1994). The maximum number of training epochs is set to 1000. The training can
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stop earlier if p becomes equal of greater than pmax = 1010 or the validation error increases 

for more than 50 epochs. This is done to avoid over-fitting. When training is stopped the 

network weights that give the lowest error on validation set are selected. Each MLP is 

initialised 40 times, which is done to mitigate the problem of local minima during training, as 

discussed in section 3.2. Lastly, data are scaled between [-0.6, 0.4]. The scaling bounds were 

selected so as to allow ANNs to model trended time series with no need for pre-processing 

of the data.

Note that the same MLP setup is used for a wide variety of time series and different 

input vectors. The complex interaction of the hidden layer and the input layer requires the 

fine tuning of the number of hidden nodes for each different input vector, even for the same 

time series, as literature suggests (Liao and Fildes 2005; Medeiros, Terasvirta et al. 2006). 

This is not done here, which can lead to suboptimal results. There are two main reasons for 

this. Firstly, the aim is to isolate the effect of the different input vectors and to do this all the 

other parameters of the MLP have to be constant, or else it would be hard to distinguish if an 

effect is due to the input vector or not. Secondly, it is suggested that the effect of the hidden 

layer is of lesser importance compared to the input vector in terms of accuracy (Zhang, 

Patuwo et al. 1998; Zhang 2001; Zhang, Patuwo et al. 2001), therefore a suboptimal, but 

adequate, hidden layer should not penalise the accuracy of the MLP significantly as long as 

the input vector is able to capture the time series structure. However, note that the 

benchmarks are optimally modelled for each time series. All MLP models are implemented in 

MatLab using the neural networks toolbox version 5.1.

3.3.3 Experimental Design

The details of the experimental design used to evaluate the different input vector 

selection methodologies are discussed here. Competing models are evaluated by forecasting
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1 to 12 steps into the future for the synthetic dataset. For the M l dataset 1 to 18 steps are 

computed, as in the original competition. A rolling origin evaluation scheme is used to 

provide a better estimation of the forecast error and to avoid the shortcomings of fixed 

origin evaluation (Tashman 2000). Rolling origin evaluation is performed for all the training, 

validation and test subsets. Two different error measures are used in this study. MAE and 

MAPE are selected for a number of reasons. The time series are synthetic and the noise in 

each time series is known, therefore MAE can be used to measure the error due to noise or 

due to misidentification of the time series structure for each model. Ideally forecasting 

errors should be equal to the noise, which would mean that there is no over or under-fitting 

of the models to the time series. MAE is a scale depended error, consequently it cannot be 

used to evaluate errors across time series. For this reason MAPE, which is scale independent 

is preferred. Note that no time series have values close to zero, which would create 

problems for MAPE. For the M l dataset only MAPE is used, since the noise level is unknown 

and no similar analysis can be performed. The preference for absolute instead of squared 

error measures is done on the grounds of robustness. For a detailed discussion on selecting 

error measures see Tashman (2000) and Hyndman and Koehler (2006).

It is important to examine whether the differences in accuracy between the

competing input vector selection methodologies are significant or not. Following the

recommendations of the literature (Demsar 2006) robust non-parametric statistical tests are

used. Initially, a Friedman test is performed and if significant differences are found among

the competing models then a Nemenyi post-hoc test is performed to pinpoint the

differences. The Friedman test compares the average ranks of the different models. Under

the null-hypothesis all models are equivalent (their ranks are equal), while the alternative is

that at least one model is different. Under the Nemenyi test the performance of two models

is significantly different if the corresponding average ranks differ by at least a critical
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distance, which is based on the studentised range statistic for infinite degrees of freedom, 

the number of different models and the sample size.

These tests are used to compare the error distributions of the ANNs using all 

different random weight initialisations. This is done so that the robustness of the competing 

input vectors to the stochasticity of the network training is considered. As it is shown in the 

results, there are input vectors that produce very accurate and robust models with low 

variability of performance among different initialisations, while others have a larger 

variability. This is important considering that ANNs have to be initialised randomly in any 

application. A robust model will perform similarly for different random initialisations, making 

it more reliable in real applications, providing similar results in different studies and 

overcoming a main criticism against ANNs that they do not produce consistent solutions 

(Armstrong 2006). Furthermore, by considering the performance of the networks over a 

wide range of initialisations the issue of replicability and reliability of the results is 

addressed. The confidence of the ranking of the models is related to the number of times the 

ANNs are initialised. Large number of initialisations increases the confidence of the findings 

and future evaluations can be expected to have similar results. On the other hand, if a small 

number or a single initialisation were to be used, the ranking of the results would be driven 

by the stochasticity of ANN training and the findings would not be reliable, as they would 

vary significantly for different sets of randomly initialised network weights. Lastly, note that 

both tests are designed to handle multiple comparisons, which is the case here. Tests are 

performed at 5% significance level.

To compare the ANNs with the benchmarks these tests are not applicable. Each 

benchmark is a single optimally parameterised model, whereas there are several 

initialisations for each ANN. The standard methodology to identify the best ANN for each
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input vector over different initialisations is to find the ANN with the minimum error in the 

validation set and select it as the best (Zhang, Patuwo et al. 1998). This ANN is the compared 

with the benchmarks. One has to keep in mind that the ANN with the minimum validation 

set error is not guaranteed to have minimum test set error.

3.4 Results

The total number of models estimated for this study is 278,400 ANNs6 and 96 

benchmarks for the synthetic time series and 54,880 ANNs and 98 benchmarks for the M l 

dataset, therefore a detailed presentation of the results is impossible. For this reason the 

results will be presented in a aggregated form. MAE will be used only for the comparisons 

between the models and the synthetic noise, since MAE figures cannot be aggregated across 

time series. Furthermore, computational time for the experiments is not provided as it was 

very hard to track. The main reason for this is that the ANNs were calculated using several 

different computers, with different processing and memory specifications. However in order 

to put the computational requirements in perspective, several months of pure 

computational time were required to run all the ANNs.

Note that the M l dataset experiments were run after the synthetic time series and 

based on the findings of the latter the ANN_nlreg model is not simulated for the M l dataset. 

As will be discussed in the presentation of the model rankings the ANN_nlreg performed 

poorly and given the very high computational requirements to parameterise the random 

field regression model (Hamilton 2001; Dahl and Hylleberg 2004) it was decided not to use it 

for the M l dataset.

6 The total num ber o f ANNs for each case is the product o f the num ber o f tim e series, the num ber of 

alternative input variable selection methodologies, the num ber o f d ifferent pre-processing strategies 

and the num ber o f training initialisations
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3.4.1 Effects of pre-processing

Here the results from different pre-processing strategies are briefly presented. As 

discussed in section 2 the bulk of the literature suggests removing both trend and 

seasonality when present. Furthermore, most of the methodologies used in this analysis to 

identify the input vector require stationary time series to work. However, it is important to 

provide the experimental evidence that this is true. For the synthetic time series the 

experiments were repeated with no pre-processing (no diff), after removing the trend (trend  

diff), after removing seasonality (season diff) and modelling the time series in the original 

domain while identifying the input vector on the optimally differences time series (input 

diff). Table 3-IV presents the aggregate MAPE across all models and time series together with 

the mean rank and the results from Friedman and Nemenyi tests.

Table 3-IV: Test MAPE and nonparametric comparisons betw een d ifferent levels of differencing
Friedman test p-value________________________________________________________________ 0.000

Differencing MAPE Ranking M ean Rank* Ranking*
No diff 4.389% 4 130.08 5
Trend d iff 2.713% 2 100.18 3
Season diff 3.500% 3 77.48 2
Both diff 2.089% 1 64.78 1
Input diff 4.658% 5 129.98 4
* In each column MLP with no statistically significant differences under the Nem enyi test at 5% 

significance are underlined; the critical distance for the Nemenyi test at 1% significance level is 0.20, at 
5% significance level is 0 .16 and at 10% significance level is 0.15.

The findings are in agreement with the discussion in section 2. The best performance 

is achieved when both trend and seasonality are removed from the time series (Both diff). 

The difference in accuracy is statistically significant at 1%, 5% or 10% significance level. Note 

that the discrepancy in ranking between the MAPE and the mean rank for the No diff, Trend 

diff, Season D iff and Input d iff models that is observed is caused by the differences in 

calculating the average MAPE and the mean rank. For the average MAPE of each model the 

best ANN on the validation set is selected among the 40 weight initialisations of each model,
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whereas for the mean rank all initialisations are used, because with the nonparametric tests 

the behaviour o f the competing ANNs is compared regardless of the random initialisation of 

the weights.

Based on the findings in table 3-IV all the following results will refer only to the case 

where both trend and seasonality are removed from the time series. Note that the same 

conclusion was reached for the M l dataset by Nelson et al. (1999).

3.4.2 Comparison of model accuracy with noise level

Given that the noise of each synthetic series is known it is possible to measure when 

a model has overfitted, underfitted or found the true data generating process (DGP) of a 

time series, as discussed in section 3.3. When a model has MAE equal to the noise then all 

the error can be attributed to noise, therefore implying that the DGP is captured. However, if 

the model error is lower than the noise, then this implies that the model has overfitted to 

the training set of the time series. Table 3-V provides a summarised count of such 

occurrences for ANN and benchmark models. Since the generalisation ability of the models is 

assessed only the test subset errors are investigated. All MLPs are selected based on 

minimum validation subset error.

Table 3-V: Num ber of overfitted and underfitted tim e series and when the true DGP is captured

Model
# of overfitted tim e  

series*
# of tim e series error 

only due to noise*
# of underfitted  

tim e series*

ANN Best 0 7 40
ANN W orst 1 4 43
ANN M ean 0.7 5.7 41.7
ANN Median 1 5 42
NAIVE 0 1 47
EXSM 0 2 46

Examining the results one can see that on average, ANNs overfit to 0.69 time series, 

with the best ANNs never overfitting (9 ANN models). The benchmarks NAIVE and EXSM
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never overfit. Looking at the number of time series that the true DGP is captured ANN 

perform quite well. On average ANNs perform better than all the benchmarks, capturing the 

true DGP 5.7 times, with the best ANNs (7 models) capturing the true GDP in 7 time series. 

The flexible nature of ANN is evident, being able to capture more DGP than the benchmarks 

with no intervention from the modeller. The minimum number of underfitted time series is 

40, achieved by ANNJs and ANN_back_mfs. On average ANN models underfit 41.7 time 

series with the best benchmark scoring 42 time series. Note that this is not directly related to 

accuracy, since the level of underfitting is not measured here. This will be investigated in the 

following sections. Also, note that normally overfitting would be measured by investigating 

the error between the training, validation and test subsets. This is done subsequently in this 

analysis and the focus is only on comparing the models accuracy with the known synthetic 

noise.

3.4.3 Comparison of input vector selection methodologies

To compare the different methodologies the complete error distributions across the 

different weight initialisations of the competing input vector selection methodologies are 

used. This is done to overcome the random initialisation uncertainty and access at the same 

time the robustness of the methodologies, i.e. how sensitive are they to the effect of the 

values of the initial weights. Here only statistical differences across the different MLP models 

are investigated. Again the Friedman and the Nemenyi tests are used to identify statistical 

differences and the ranking among the models. Tables 3-VI and 3-VII contains the results of 

the tests and the mean rank of all models for the synthetic dataset and the M l dataset 

respectively. Figures 3.2 and 3.3 represent visually the significant differences between 

models. Note that for the benchmark models there are no multiple initialisations and no 

distributions of errors in that sense, therefore they are not included in this comparison.
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In tables 3-VI and 3-VII the input vectors are separated into three categories 

depending on their average length. If on average a model has an input vector equal to or less 

than 12 lags then it is a short input vector. If it is between 13 and up to 24 then it is a 

medium vector and everything containing on average more than 24 lags is a long vector. 

Tests for statistical differences among the different average input vector lengths and 

different input vector methodology types, as shown in tables 3-VI and 3-VII, can be 

performed. The results of these tests are presented in tables 3-VIII and 3-IX for the 

respectively.

Table 3-VI: Friedman and Nemenyi tests for MLP models for the  synthetic dataset

Friedman p-value 0.000
Group Rank M odel Name M ean Rank Average Input Length M ethodology type

1 ANN_back_mfs 380.03 27.23 Long Regression
2 ANN_forw_m fs 474.85 11.40 Short Regression
2 ANN_mfs 478.72 36.00 Long Heuristic
2 ANN_auto_m fs 480.71 11.15 Short Regression
3 ANN_nlacf+ls 495.70 25.02 Long Combination ACF/PACF
3 ANN_acf+ls 497.68 20.83 M edium Combination ACF/PACF

4, 5 ANN_sa+ls 511.57 17.56 M edium Combination ACF/PACF
4, 5, 6 ANN_nlacf+ywe 517.33 23.08 M edium Combination ACF/PACF

5, 6, 7 ANN_acf+ywe 522.55 18.44 M edium Combination ACF/PACF
6, 7, 8 ANN_back_fs 526.91 9.25 Short Regression

7, 8 ANN_back_fs+l 529.16 9.79 Short Regression

9 A N N Js 537.55 17.00 M edium ACF/PACF

10 ANN_sa+ywe 562.55 13.94 M edium Combination ACF/PACF

11 A N N _fs+l 569.97 13.00 M edium Heuristic

12 ANN_nlacf+burg 579.13 17.02 M edium Combination ACF/PACF

12 ANN_sa+burg 585.24 7.83 Short Combination ACF/PACF

13, 14 A N N Js 598.64 12.00 Short Heuristic

13, 14, 15 A N N _ a u to J s + l 603.81 7.38 Short Regression

13, 14, 15 A N N J o rw J s + 1 604.38 7.50 Short Regression

13, 14, 15 A N N _autoJs 604.85 6.85 Short Regression

14, 15, 16 A N N J o rw J s 607.80 6.94 Short Regression

15, 16, 17 ANN_ywe 613.91 13.13 M edium ACF/PACF

16, 17 ANN_acf+burg 617.10 12.23 M edium Combination ACF/PACF

16, 17 A N N jilre g 619.84 17.60 M edium Regression

18 ANN_burg 638.83 5.88 Short ACF/PACF

19 ANN_acf 657.27 10.83 Short ACF/PACF

20 ANN_nlacf 673.37 15.81 M edium ACF/PACF

21 ANN_naive 853.86 1.00 Short Heuristic

22 ANN sa 891.18 3.52 Short ACF/PACF

* MLPs w ith  no statistically significant differences under the Nemenyi test at 5% significance are assigned 

to the  same groups; the critical distance for the Nemenyi test at 1% significance level is 7.24, at 5% 

significance level is 6.49 and at 10% significance level is 6.11
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Table 3-VII: Friedman and Nemenyi tests for MLP models for the M l dataset
Friedman p-value 0.000

Group
Rank*

M odel Name M ean Rank Average Input Length M ethodology type

1 ANN_auto_fs 494.02 2.94 Short Regression
1 ANN_forw_fs 494.07 2.96 Short Regression
2 A N N _auto_fs+ l 501.44 3.24 Short Regression
2 A N N _forw _fs+ l 501.44 3.24 Short Regression
2 ANN_auto_m fs 506.77 3.71 Short Regression
2 ANN_forw_m fs 506.77 3.71 Short Regression

3 ,4 ANN_back_mfs 525.24 7.98 Short Regression

3, 4, 5 A N N Js 528.17 12.00 Short Heuristic

3, 4, 5 A N N js + 1 529.05 13.00 M edium Heuristic

3, 4, 5 ANN J a c k  J s + 1 529.45 4.63 Short Regression

3, 4, 5 ANN_ywe 530.39 5.61 Short ACF/PACF

4, 5 ANN J a c k  J s 533.86 4.45 Short Regression

6 ANN_acf+ywe 541.15 9.94 Short Combination ACF/PACF

7 ANN_sa+ywe 547.85 11.06 Short Combination ACF/PACF

8 ANN_sa+burg 560.52 8.55 Short Combination ACF/PACF

9 ANN J u r g 570.00 1.41 Short ACF/PACF

9 ANN_nlacf+ywe 572.18 13.27 M edium Combination ACF/PACF

9 ANN_nlacf+burg 574.03 10.37 Short Combination ACF/PACF

9 A N N Js 574.26 11.43 Short ACF/PACF

10 ANN_acf 580.98 6.86 Short ACF/PACF

10 ANN_nlacf 584.24 9.80 Short ACF/PACF

10 ANN_acf+burg 585.99 7.00 Short Combination ACF/PACF

11 ANN_acf+ls 594.30 14.67 M edium Combination ACF/PACF

11 ANN_naive 598.11 1.00 Short Heuristic

12 ANN_sa+ls 609.15 16.63 M edium Combination ACF/PACF

13 ANN_nlacf+ls 619.23 17.12 M edium Combination ACF/PACF

14 ANN_sa 690.82 7.31 Short ACF/PACF

15 ANN mfs 710.56 36.00 Long Heuristic

*MLPs w ith  no statistically significant differences under the Nemenyi test at 5% significance are  

assigned to the same groups; the critical distance for the Nemenyi test at 1% significance level is 6.89, 

at 5% significance level is 6.17 and at 10% significance level is 5.81

Comparing tables 3-VI and 3-VII it is obvious that the different ANN models perform

differently in each dataset and there is no consistent ranking of the individual models.

However, there are some commonalities in both tables. The most striking outcome of the

ranking is the low ranking of the nonlinear input variable selection methods. Considering the

pure nonlinear ANN_nlacf it ranks in groups 20 and 10 in the synthetic and M l datasets

respectively, outperformed significantly by 26 and 19 models in each case. The other purely

nonlinear methodology, the ANN_nlreg that is only simulated for the synthetic dataset,

performs poor ranking in the 16th and 17th groups, significantly worse than 20 competing
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models. This might explain why Dahl and Hylleberg (2004) in their study did not find the MLP 

models to perform well. A possible explanation to this result is that the forms of the 

nonlinearity that is captured by the random field regression and the ANNs are different, 

having different functional forms, therefore the additional lags hinder the training of the 

MLP models instead of providing additional useful information. The methodologies that 

combine nonlinear autocorrelation with linear partial autocorrelation methods perform 

better in most cases. However, their respective ranking seems to be driven by the PACF part, 

rather than the nonlinear ACF part, as the ranking of the methods that use only the PACF or 

the combination of the PACF and the nonlinear ACF is analogous in both datasets. Another 

common finding in both tables is that the ANN_sa performs very poorly, being in second to 

the worst in the synthetic dataset and the worst performing model in the M l dataset. Also, 

in both tables the linear regression models rank on average very high. This becomes clearer 

by consulting table 3-IX, which ranks the models by input variable selection methodology 

families.

Table 3-VIII: Friedman and Nemenyi tests for input vector lengths

Synthetic dataset_________________   M l  dataset

Friedman p-value 0.000 Friedman p-value 0.000
Average Input Length Mean Rank* Average Input Length M ean R ank**
Long 44.15 Short 54.08
M edium 64.19 M edium 60.41
Short 73.15 Long 67.01

* The critical distance for the Nemenyi test at 1% significance level is 0 .59, at 5% significance level is 0.48  

and at 10% significance level is 0.42; **T h e  critical distance for the Nemenyi test at 1% significance level 
is 0 .59, at 5% significance level is 0.47 and at 10% significance level is 0.41.

Table 3-IX: Friedman and Nemenyi tests for m ethodology type

Synthetic dataset M l  dataset

Friedman p-value 0.000 Friedman p-value 0.000

Average Input Length M ean Rank* Average Input Length M ean R ank**

Regression 61.10 Regression 61.01
Combination ACF/PACF 62.65 ACF/PACF 84.98
Heuristic 97.27 Combination of ACF/PACF 87.04

ACF/PACF 100.97 Heuristic 88.97

* The critical distance for the Nemenyi test at 1% significance level is 0.82, at 5% significance level is 0.68  

and at 10% significance level is 0.60; **T h e  critical distance for the Nem enyi test at 1% significance level is 

0.81, at 5% significance level is 0.67 and at 10% significance level is 0.60.
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Fig. 3.2: Results o f the Nemenyi test for the synthetic dataset. Black squares represent insignificant
differences between models.
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In table 3-IX regression based methodologies outperform all others consistently in 

both datasets. For the synthetic dataset the combination of ACF (linear or nonlinear) and 

PACF methodologies ranks second with small but significant difference from the regression 

methodologies. Heuristic and ACF or PACF based methodologies follow with an overall much 

poorer performance. The M l dataset exhibits a different picture. After the regression based 

methodologies the ACF or PACF methodologies follow, then their combination and last are 

the heuristics. All these have small but statistically significant differences in their ranking. As 

seen in tables 3-VI and 3-VII the performance of the heuristics is associated to the number of 

lags used. However, as it seen in table 3-VIII, there is no consistency in the behaviour of 

different input vector lengths in the two datasets. Therefore, it is advised to avoid using 

these type of heuristics to select input variables for ANNs and prefer some other 

methodologies that do not indiscriminately include all lags in the input vector and provide 

data driven sparse input vectors.

Considering only the regression based input variable selection methodologies, there 

is no regression type (stepwise, forward, backward) that should be clearly preferred as the 

ranking between the two datasets is not consistent. However, the stepwise and the forward 

regression models, in both datasets, do not show statistically significant differences, given 

the maximum lag that is considered in each ANN model. On the other hand, the backward 

regression performs overall better in the synthetic dataset, while the opposite is true for the 

M l dataset.

Another finding based on the results of both datasets individual combinations of ACF 

and PACF performed well. This is counterintuitive, given that ANNs are autoregressive 

models and one would expect that PACF information should be adequate. The explanation to 

this effect draws from the arguments of Lachtermacher and Fuller (1995), that the ACF
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information can be inverted to an infinite autoregressive form, suggesting additional lag 

components. However, regression based methodologies that directly model autoregressive 

information perform statistically better.

When considering methodologies that use solely the ACF or the PACF results are 

inconclusive. Consulting tables 3-VI and 3-VII the ANN_acf ranks significantly lower than any 

PACF methodology (ANN_burg, ANNJs and ANN_ywe), indicating that PACF information is 

more useful for ANNs as expected. When only the PACF based methodologies are 

considered, there is no consistent ranking among the models. The different PACF 

methodologies rank significantly different in both datasets, in agreement with the findings of 

McCullough (1998). However, the burg estimation algorithm methodology (ANN_burg) does 

not provide the best results in any of the two datasets, when compared to other PACF 

estimation methodologies, in contrast to the suggestions of McCullough.

Table 3-VIII evaluates whether parsimonious input vectors are necessary for ANNs to 

perform well. The two dataset provide opposite results. In the synthetic dataset longer input 

vector perform significantly better, whereas in the M l dataset shorter input vector perform 

significantly better. The connection of the input vector sizes with the performance of the 

different ANN models is revisited later.

The gist of the statistical comparisons among the MLP models is summarised in 

tables 3-VIII and 3-IX. Regression based techniques perform best, while the ranking 

thereafter is inconclusive. The performance of the heuristic approaches is connected with 

the input vector length and overall is poor; hence they should be avoided. Furthermore, 

there is no conclusive evidence whether parsimonious input vectors for ANNs perform better 

or not.
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3.4.4 Comparison of MLPs against benchmarks

In order to compare the MLP results against the benchmarks MAPE is used to find 

the average accuracy across all time series. The accuracy by time series component, i.e. by 

trend type, seasonality type and noise level is evaluated. This multifactorial analysis allows to 

examine how MLPs fare against benchmarks under different conditions. The results for the 

training, validation and test sets for the synthetic dataset are provided in tables 3-XI, 3-XII 

and 3-XII I respectively, while table 3-XIV contains the results for the M l dataset. The MLP 

errors provided here are based on choosing the best MLP initialisation, for each 

methodology family, on minimum validation set error. As discussed in section 3 each model 

is initialised 40 times, providing a large search for good parameters. However, a different 

number of initialisations, a different initialisation seed or a different random number 

generator will provide different errors; hence, it is advisable to compare between different 

MLP models using the statistics in tables 3-VI to 3-IX instead. These make use of the 

complete distribution of the initialisations and therefore are less sensitive to different 

starting parameters.

For each methodology family only the best ANN results are provided keeping the 

readability of the tables in mind. In each table the mean, median and minimum error of the 

different MLP models are provided. All models that are at least as good as the benchmarks 

are marked using bold underlined numbers. In all three tables it can be seen that the mean 

performance of the ANNs is affected by the bad performing ANN models, which ranked 

poorly in the previous comparison tables between the MLP models as well. This is also 

reflected in the differences between the mean and the median accuracy of ANNs. Measuring 

the overall accuracy of all the input variable selection methodologies all outperform EXSM, 

which is the best benchmark.
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Table 3-X: MAPE for MLPs and Benchmarks for the synthetic dataset: Training Set

Model Overall
Trend Season Noise

No Linear Expon. Damp. No Additive Multi pi. None Low Medium High
Heuristics 0.018 0.023 0.013 0.025 0.010 0.025 0.014 0.014 0.000 0.005 0.022 0.043
ACF/PACF 0.020 0.025 0.016 0.027 0.012 0.027 0.016 0.018 0.000 0.005 0.025 0.050
Combination 
of ACF/PACF

0.020 0.024 0.016 0.027 0.012 0.026 0.016 0.017 0.000 0.005 0.025 0.050

Regression 0.018 0.025 0.014 0.025 0.010 0.025 0.014 0.016 0.000 0.005 0.023 0.045
ANN Mean 0.026 0.043 0.018 0.030 0.014 0.028 0.018 0.032 0.018 0.007 0.026 0.054
ANN Median 0.022 0.025 0.018 0.031 0.013 0.028 0.018 0.019 0.000 0.007 0.026 0.054
ANN Min. 0.018 0.023 0.013 0.025 0.010 0.025 0.014 0.014 0.000 0.005 0.022 0.043
NAIVE 0.101 0.130 0.091 0.096 0.089 0.041 0.098 0.166 0.088 0.090 0.102 0.126
EXSM 0.023 0.026 0.022 0.024 0.020 0.031 0.018 0.020 0.004 0.008 0.025 0.055

MLP models that outperform the best benchmark in each case (each column) are marked in underlined bold numbers.

Table 3-XI: MAPE for MLPs and Benchmarks for the synthetic dataset: Validation Set

Model
Trend Season Noise

Overall
No Linear Expon. Damp. No Additive Multipl. None Low Medium High

Heuristics 0.015 0.023 0.010 0.018 0.009 0.018 0.013 0.014 0.000 0.004 0.019 0.037
ACF/PACF 0.015 0.023 0.011 0.019 0.010 0.018 0.013 0.015 0.000 0.004 0.021 0.037
Combination 
of ACF/PACF

0.015 0.023 0.011 0.019 0.009 0.018 0.013 0.015 0.000 0.004 0.020 0.037

Regression 0.015 0.022 0.010 0.017 0.009 0.018 0.012 0.014 0.000 0.004 0.019 0.035
ANN Mean 0.020 0.041 0.011 0.020 0.010 0.019 0.014 0.029 0.018 0.005 0.021 0.038
ANN Median 0.016 0.023 0.011 0.019 0.010 0.018 0.014 0.015 0.000 0.005 0.021 0.038
ANN Min. 0.015 0.022 0.010 0.017 0.009 0.018 0.012 0.014 0.000 0.004 0.019 0.035
NAIVE 0.110 0.178 0.085 0.094 0.083 0.030 0.083 0.216 0.102 0.103 0.113 0.123
EXSM 0.017 0.024 0.011 0.024 0.010 0.024 0.013 0.015 0.002 0.007 0.022 0.040

MLP models that outperform  the best benchmark in each case (each column) are marked in underlined bold numbers.

Table 3-XII: MAPE for MLPs and Benchmarks for the synthetic dataset: Test Set

Model Overall
Trend Season Noise

No Linear Expon. Damp. No Additive Multipl. None Low Medium High
Heuristics 0.015 0.023 0.009 0.019 0.008 0.018 0.012 0.014 0.000 0.005 0.018 0.034
ACF/PACF 0.015 0.023 0.009 0.019 0.009 0.018 0.012 0.015 0.000 0.006 0.018 0.035
Combination 
of ACF/PACF

0.015 0.023 0.009 0.019 0.008 0.018 0.011 0.015 0.000 0.006 0.018 0.035

Regression 0.015 0.023 0.009 0.018 0.008 0.018 0.011 0.014 0.000 0.005 0.017 0.035
ANN Mean 0.021 0.042 0.009 0.024 0.009 0.019 0.012 0.032 0.019 0.010 0.019 0.036
ANN Median 0.015 0.023 0.009 0.020 0.009 0.019 0.012 0.015 0.000 0.007 0.019 0.035
ANN Min. 0.015 0.023 0.009 0.018 0.008 0.018 0.011 0.014 0.000 0.005 0.017 0.034
NAIVE 0.117 0.205 0.084 0.098 0.082 0.030 0.076 0.246 0.110 0.111 0.118 0.129
EXSM 0.018 0.022 0.009 0.034 0.009 0.026 0.013 0.016 0.002 0.008 0.020 0.044

MLP models that outperform the best benchmark in each case (each column) are marked in underlined bold numbers.
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Table 3-XIII: MAPE for MLPs and benchmarks for the M l dataset

Model Training Validation Test
Heuristics 0.114 0.070 0.168
ACF/PACF 0.116 0.071 0.168
Combination of ACF/PACF 0.114 0.069 0.167
Regression 0.114 0.065 0.164
ANN Mean 0.129 0.073 0.178
ANN Median 0.124 0.071 0.176
ANN Minimum 0.114 0.065 0.164
NAIVE 0.167 0.152 0.209
EXSM 0.117 0.106 0.175

MLP models that outperform the best benchmark in each case (each column) are marked
in underlined bold numbers.

Examining the accuracy by factor in the synthetic dataset provides a more detailed 

view of how the ANN models perform against the benchmarks. It is interesting that in the 

training set no ANN models are able to outperform the EXSM  when considering only 

exponential trends. The best performing MLP models are worse by a marginal 0.1% MAPE. 

This is not repeated in the validation and the test sets, where several MLP models 

outperform the EXSM. The reason behind this becomes clearer when figure 3.1.a is 

consulted. Most of the exponential trend change takes place in the training set. The EXSM 

models and the DGP of the synthetic time series have identical functional forms. On the 

other hand the ANNs try to approximate the exponential trend while having a different 

functional form, see (3.1). As discussed in section 3 a fixed number of hidden nodes are used 

for all time series and input vectors, in order to allow direct investigation of the effect of the 

different input vectors. However, this limits the flexibility of the ANN models to approximate 

any DGP (Hornik 1991) and in this case they are unable to capture the rapid nonlinear trend 

as well as the EXSM. In table 3-XIII, where the errors in the test set are listed, there is a 

different picture. The EXSM  has the best performance on the time series with no trend, again 

with a marginal difference of 0.1% MAPE from the MLP models.
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When examining the different noise levels, the expected performance degradation 

as the noise level increases is apparent in all models. The unexpectedly high mean error in 

the "no noise" case is caused by the A NN_naive and AN N_nlreg, which perform badly. There 

are 12 time series with no noise in the dataset. Both models perform very badly on a single 

time series, which is a stationary time series with multiplicative seasonality and no noise. 

The error affects the average and is also reflected in the multiplicative seasonality accuracy. 

Furthermore both models, in contrast to the other ANNs, do not capture perfectly the data 

generating process of several other "no noise" time series, resulting in small errors, which 

are masked by this outlier. All other ANN models have managed to capture with zero error 

(rounded to the third decimal) the "no noise" time series, demonstrating the flexibility of the 

ANNs. On the other hand, both benchmarks have nonzero error for the same set of time 

series. Considering that the ANN models achieve to capture several DGP with the same 

functional form is a very significant advantage, which seems to be retained even when the 

input vector is suboptimal. Furthermore, as the noise level increases ANNs show an 

increasingly better accuracy compared to the benchmarks.

From tables 3-X to 3-XIII it is apparent that several of the ANNs perform at least as 

well as the benchmarks; hence it can be concluded that ANNs are able to compete with the 

benchmarks even with suboptimal input vector specification. However, when they are 

properly modelled, as ranked in tables 3-VI, 3-VII and 3-IX, the accuracy becomes even 

higher, as reflected in the MAPE figures of the regression family methodologies. Table3- XIV, 

which contains the MAPE for the M l dataset, reveals a similar picture. When the best 

representative of any input variable selection methodology is considered the ANNs routinely 

outperform the benchmarks.
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Finally, the A N N_naive  model was found to perform overall better than the NAIVE  

benchmark in both datasets, thus constituting a good nonlinear benchmark for future ANNs 

studies, due to its simplicity. More complicated implementations of ANNs should outperform 

this simplistic model in order to justify the need for the extra modelling effort.

3.4.5 Comparison of the input vectors sizes

It is interesting to explore how long the input vectors of the identified MLP models 

are. This will demonstrate whether longer input vectors are preferable to parsimonious ones, 

as suggested by part of the literature (Balkin and Ord 2000; Hippert, Bunn et al. 2005). In 

table 3-VIII it was already shown that there is no consistent behaviour among the two 

datasets, although there are significant differences in the performance of the methods based 

on the input vector size. Figures 3.4 and 3.5 provide boxplots of the input vector lengths for 

the competing ANN models across all time series for the two datasets separately. The 

different input variable selection methodologies are ranked according to performance, as in 

tables 3-VI and 3-VII for the synthetic and the M l dataset respectively.

Eyeballing both figures 3.4 and 3.5 hints the same findings as table VIII, that the size 

of the input vector is related to the performance of the different ANN models, however an 

opposite relation is identified in each dataset. A significant negative correlation coefficient 

between both the mean and median input vector and the model ranking of -0.65 and -0.66 

respectively is found for the synthetic dataset. For the M l dataset the opposite is true with 

significant positive correlation coefficients of 0.56 for the mean and 0.55 for the median. 

Figure 3.6 provides the scatterplots for both the mean and median input vector size against 

the ranking of the models for both datasets, along with the correlation and the coefficient of 

determination for each pair.
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Fig. 3.4: Boxplot o f input vector sizes o f the different input vector selection methodologies for the 
synthetic dataset, ranked by methodology performance.

M1 dataset
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Fig. 3.5: Boxplot o f input vector sizes o f the different input vector selection methodologies for the M 1 
dataset, ranked by methodology performance.

W hen both datasets are considered to g e the r the re  is no sign ifican t co rre la tion  fo r 

e ith e r the  mean o r the  median and the re fo re  it cannot be concluded th a t the re  is a clear 

connection  betw een the inpu t vec to r size and the  perform ance o f the  ANN models.
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Fig. 3.6: Scatterplots o f the mean and median input variable selection methodologies against the ANN model
ranking

3.5 Conclusions

The ob jective o f th is study was to  evaluate com peting inpu t vec to r specifica tion 

m ethodo log ies fo r ANNs and iden tify  w hich perfo rm  best and how  do they com pare against 

established benchmarks. A rigorous em pirica l evaluation using tw o  datasets o f 97 tim e  series 

in to ta l was perfo rm ed. The firs t dataset consisted o f syn the tic  tim e  series w ith  know n 

p roperties  and the  second one was a subset o f the  M l  com pe tition  dataset, including real 

m on th ly  tim e  series. There are several outcom es from  th is analysis:

1) Regression based inpu t vec to r specification m ethodolog ies o u tpe rfo rm ed  simple 

heuristics, ACF o r PACF m ethodolog ies and those based on th e ir com binations. 

M oreover, the  stepw ise and fo rw ard  linear regression did no t have sta tis tica lly  

s ign ificant d ifferences, w hile  the  backward regression, a lthough sign ifican tly  

d iffe re n t, did no t rank consistently against the  o th e r regression types.

2) N onlinear inpu t vec to r specification m ethodolog ies did no t pe rfo rm  b e tte r than 

m ore w idespread m ethodolog ies th a t are based on linear too ls  and the re  is no 

evidence th a t they should be pre ferred . In the result fro m  both datasets linear
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methods significantly outperformed the nonlinear input variable selection 

methodologies.

3) It is inconclusive whether parsimonious input vectors should be preferred for ANNs 

or not. However significant evidence was found that sparse input vectors performed 

better than full vectors, which contain continuous lags, like the heuristics in this 

study.

4) ANN models were able to capture the true DGP of all time series patterns in this 

study with a single architecture. The flexibility of ANNs was not very sensitive to the 

input vector, although the relative accuracy to the benchmarks was.

5) Additional evidence was provided that ANNs were able to perform at least as good 

as established benchmarks on both linear and nonlinear time series. Furthermore, it 

was shown that even suboptimally modelled ANNs performed comparable if not 

better than the benchmarks.

6) A new nonlinear benchmark for ANNs studies, based on a single t-1 input MLP 

model, was proposed. ANN_naive was found to outperform the random walk and 

since this model is very simple and parsimonious, any more complex ANN should be 

able to outperform this benchmark in order to be preferred and justify the additional 

modelling complexity.

7) Further evidence was provided that deseasonlising and detrending the time series 

improves the accuracy of ANNs.

A novelty of this analysis was that the ANNs were compared in a way that the results

are not sensitive to the random initialisation of the network weights. Since the accuracy of

ANNs is dependent on the software and the computer that is used to model them, the
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random number generator and the number of initialisations it is unlikely to fully replicate the 

same forecasts in a different implementation. However, in this study, the results from a large 

distribution of several initialisations were considered, therefore ensuring that the 

conclusions of this study are reproducible and another implementation will provide the same 

ranking of models. On the other hand, using only the best initialisation, which is the usual 

practice in the literature (Kourentzes and Crone 2009), the ranking of the models could vary 

greatly from study to study, limiting the reliability of the findings.

Callen, Kwan, Yip and Yuan (1996) advised caution when reading the positive results 

of ANNs publications, warning of a possible bias, that usually only the successful ANNs 

applications are submitted and published. Adya and Collopy (1998) went one step further, by 

examining the validity of the published ANNs papers, to conclude that most of them cannot 

be considered valid and are impossible to replicate. Therefore, they advised caution and 

critical stance when studying the ANN literature. Based on the results of this analysis on the 

evaluation of the input vector specification methodologies and the papers that motivated 

the selection of the evaluated methodologies (table I), a negative bias against the 

performance of ANNs can be identified. The implementation of ANNs in studies that found 

their performance lacking against benchmarks, did not perform well in this analysis either, 

consequently a different modelling approach might provide superior performance. This only 

makes it more difficult to draw conclusions from the ANN literature. It is imperative to 

carefully build the MLP models, and to use multiple initialisations. Only then can safe 

conclusions be drawn. Furthermore the experimental design must be such that will allow 

reaching reproducible findings, given the nature of ANNs, which makes them inherently 

difficult to replicate.
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A limitation of this study is that it did not consider the differences between 

stochastic and deterministic time series components. Although in normal statistical 

modelling these differences can lead to entirely different modelling practices (Osborn, Heravi 

et al. 1999; Ghysels and Osborn 2001), their effect is not explored in the ANN literature 

(Kourentzes and Crone 2009). In this analysis the state-of-art suggestions of the ANN 

forecasting literature were followed on how to model seasonality and trend (Zhang and Kline 

2007). However, deterministic and stochastic time series components are expected to affect 

both the optimal time series pre-processing and the inclusion of additional inputs, like 

seasonal dummy variables. This will be investigated in future research.

This study used a synthetic dataset that simulated monthly data and a real dataset of 

monthly time series. As discussed in previous sections, these dataset were selected to cover 

most of the archetypes of economic time series. However, this is only true for monthly data 

frequency. For different frequencies the time series behave differently. As the frequency 

decreases, towards annual data, seasonality vanishes. On the other hand as the frequency 

increases, multiple overlaying seasonalities may appear, like intra-day and intra-week 

seasonalities, which usually occur simultaneously. These time series have different behaviour 

and pose different challenges for the input vector selection methodologies, which may prove 

to be problematic to use, due to the data properties. Therefore, it is imperative to evaluate 

in a future study how ANNs and the different input vector specification methodologies 

perform on datasets of different frequencies, especially for higher ones that have started to 

become more common and important in business practice.
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4 Modelling Deterministic 
Seasonality w ith  Artific ia l Neural 
Networks for Time Series 
Forecasting

Abstract

This study explores both from a theoretical and empirical perspective how to model 

deterministic seasonality with neural networks (ANN) to achieve the best forecasting 

accuracy. The aim of is study is to maximise the available seasonal information to the ANN 

while identifying the most economic form to code it; hence reducing the modelling degrees 

of freedom and simplifying the network's training. An empirical evaluation on simulated and 

real data is performed and in agreement with the theoretical analysis no deseasonalising is 

required. A parsimonious coding based on seasonal indices is proposed that showed the best 

forecasting accuracy.

Preface

A working version of this paper has been presented in the International Conference 

on Data Mining 2009 (DMIN 2009). The submissions in this conference are peer reviewed 

with up to two rounds of feedback. The conference version of this study presents only the 

results for the synthetic dataset and can be found in the proceedings with the title 

"Modelling Deterministic Seasonality with Neural Networks for Time Series Forecasting". The 

paper in this chapter is extended to include results from a real dataset from the T- 

competition.
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4.1 Introduction

Artificial neural networks (ANNs) are nowadays widely recognised as a potent 

forecasting tool with several research and practical applications (Zhang, Patuwo et al. 1998; 

Hippert, Bunn et al. 2005). Theoretically ANNs are universal approximators, which is 

desirable in forecasting (Hornik, Stinchcombe et al. 1989). They have been shown to be able 

to forecast linear and nonlinear synthetic series and real time series at least as well as 

established benchmarks, like exponential smoothing and ARIMA models (Hill, O'Connor et al. 

1996; Zhang 2001; Zhang, Patuwo et al. 2001). Furthermore, ANNs are able to forecast 

across a wide range of data frequencies, when the appropriate input variables are provided 

(Kourentzes and Crone 2008) making them a potent and flexible forecasting tool. However, 

they are criticised to have inconsistent performance across different applications and in 

empirical evaluations (Callen, Kwan et al. 1996; Makridakis and Hibon 2000; Armstrong 

2006). The ANN literature suggests that the observed inconsistency is a product of bad 

modelling practices or limited understanding of the modelling process. For instance there is 

no consensus on how to select a relevant set of input variables and lags (Zhang, Patuwo et 

al. 1998; Anders and Korn 1999). A recent literature survey identified that 71% (out of 105) 

published papers model ANNs based on trial and error approaches. This has a significant 

impact on the consistency of their performance and also hinders our understanding of how 

to model them (Adya and Collopy 1998). It is therefore important to rigorously evaluate 

competing ANN modelling strategies in order to gain insight on best practices.

The ANN literature has identified a set of open questions in modelling neural 

networks that need to be solved before their application can become more consistent and 

potentially perform better (Zhang, Patuwo et al. 1998; Curry 2007). One such open research 

question is whether ANNs are able to model seasonal time series or if the time series need to
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be deseasonalised first. A standard way of performing this is through seasonal integration of 

the time series, which follows the same ideas of ARIMA modelling (Zhang and Kline 2007). 

Hill et al. (1996) show that ANN using deseasonalised time series from the M l competition 

outperformed standard statistical models, suggesting significant improvements in ANNs 

performance. Nelson et al. (1999) verifies that deseasonalising the M l time series provided 

ANNs with the performance edge. They repeated the experiment w ithout deseasonalising 

the time series and the forecasting performance got significantly worse, therefore arguing 

that deseasonalising was a necessary step. They argued that this way ANNs can focus on 

learning the trend and the cyclical components. To learn seasonality in addition would 

require larger networks, meaning a larger input vector, which may lead to overfitting. Zhang 

and Qi (2005) reached the same conclusion that deseasonalising helps. They suggest that 

deseasonalised time series do not contain long dynamic autocorrelation structures that 

would make the choice of the input vector more difficult, thus leading to smaller more 

parsimonious models. Curry (2007) examines the ability o f ANN to model seasonality from a 

theoretical perspective. He suggests that for ANN to model seasonality they should have 

adequately long input vector to capture the seasonal effects. Ill selected input vector can 

make the ANN unable to forecast seasonality, implying that Zhang and Qi results can 

potentially hide input misspecification errors. Crone and Dhawan (2007) demonstrate that 

ANNs are able to model robustly monthly seasonal patterns using only an adequate number 

lags of the time series. Zhang and Kline (2007) explore the ability of ANNs to forecast 

quarterly time series. They again find that deseasonalising helps, however this time they also 

evaluated a large variety of models, including models with deterministic dummy variables. 

They argue that such additional variables do not help because they do not capture dynamic 

and complex seasonal structures.
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The above papers do not distinguish between different forms of seasonality. 

Deterministic seasonality and seasonal unit root theoretically require a different modelling 

approach (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001; Matas-Mir and Osborn 

2004), which has been largely ignored in the ANN literature and the respective debate on 

how to model seasonality. In this analysis, it will be shown that this distinction implies a 

different modelling procedure from a theoretical perspective. Modelling deterministic 

seasonality is impaired by deseasonalising the time series and different modelling practises 

should be followed. An empirical evaluation of competing methods to model seasonality is 

performed on simulated and real time series. It is found that using a set of dummy variables 

can improve forecasting accuracy over the standard ANN modelling practise. Removing 

seasonality does not perform well for the case of deterministic seasonality. Finally, a 

parsimonious coding based on seasonal indices is proposed, which outperforms other 

candidate models while keeping the modelling degrees of freedom to a minimum.

The paper is organised as follows: section 4.2 discusses the different types of 

seasonality from a theoretical perspective. Section 4.3 introduces the methods that will be 

used to model deterministic seasonality. Section 4.4 provides information on the 

experimental design for the empirical evaluation on synthetic data, followed by section 4.5 

where the results are discussed. In section 4.6 the empirical evaluation on real time series 

from the T-competition is presented and analysed. Conclusions and limitations of this study 

are discussed together with further research objectives in section 4.7.
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4.2 Seasonal Time Series

4.2.1 Deterministic Seasonality

A time series is said to have deterministic seasonality when its unconditional mean 

varies with the season and can be represented using seasonal dummy variables,

where yt is the value of the time series at time t, p is the level of the time series, ms is the 

seasonal level shift due to the deterministic seasonality for season s, 6st is the seasonal 

dummy variable for season s at time t, zt is a weak stationary stochastic process with zero 

mean and S is the length of the seasonality. Furthermore, the level of the time series p can 

be generalised to include trend. Note that the seasonality is defined as a series of seasonal 

level shifts ms, which describe the seasonal profile and are constant across time, i.e. ms= mst. 

Also note that the £ms = 0 over a full season. This implies that with the appropriate 

transformations of p and ms a set of S-l or S seasonal dummies can be used to code 

seasonality. Furthermore, due to zt each value of the time series deviates over its respective 

seasonal mean with a constant variance over both s and t, which means that the 

deterministic seasonal process forces the observations to remain close to their underlying 

mean (Ghysels and Osborn 2001). Modelling (4.1) with S seasonal dummies and p * 0 using a 

linear model, like linear regression, introduces the problem of multicollinearity, therefore S-l 

dummies should be used in this case (Kvanli, Pavur et al. 2002).

An alternative way to code deterministic seasonality is through its trigonometric 

representation. In respect to (4.1) seasonality can be expressed as

(4.1)
.v=l
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+  Z, (4.2)

where ak and pk create linear combinations of S/2 sines and cosines of different frequencies 

following the idea of spectral analysis of seasonality. Equations (4.1) and (4.2) have p and zt 

expressed as separate components in both cases, allowing separate modelling of seasonality 

and the remaining time series components (Ghysels and Osborn 2001). Note that if less than 

S/2 linear combinations of sines and cosines are used the representation of seasonality is 

imperfect and it is approximated with some error, the size of which is related to the number 

of combinations used.

4.2.2 Seasonal Unit Root

Seasonality can also be the result of an autoregressive integrated moving average 

(ARIMA) process,

where L is the lag operator, As is the seasonal difference operator, 4> and 0 are the 

coefficients of the autoregressive and moving average process respectively, y is a drift, and Et 

i.i.d. N(0,o2). The variance of yt under the case of deterministic seasonality is constant over t 

and the seasonal period s, which is not true here. This stochastic seasonal process can be 

viewed as a seasonal unit root process, i.e. for each s there is a unit root, which in turn 

requires seasonal differencing. More details about the seasonal unit root process can be 

found in (Osborn, Heravi et al. 1999; Ghysels and Osborn 2001; Matas-Mir and Osborn 2004).

It is interesting to examine what happens if deterministic seasonality is misspecified 

as a seasonal unit root process. Considering seasonal differences (4.1) becomes

(4.3)
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A S y ,  =  A S ; Z ,  ■ (4.4)

Essentially in (4.4) seasonality has been removed, i.e. a deseasonalised form of yt is 

modelled. Comparing (4.1) and (4.4) it can be deduced that it is now impossible to estimate 

ms and furthermore Aszt is overdifferenced (Ghysels and Osborn 2001). Therefore, it is 

preferable to keep deterministic seasonality and model it appropriately.

4.3 Forecasting with artificial neural networks

4.3.1 Multilayer Perceptrons for Time Series Prediction

The evaluation is limited to the common multilayer perceptron (MLP), which 

represents the most widely employed ANN architecture (Zhang, Patuwo et al. 1998). MLPs 

are well researched and have proven abilities in time series prediction to approximate and 

generalise any linear or nonlinear functional relationship to any degree of accuracy (Hornik 

1991) w ithout any prior assumptions about the underlying data generating process (Qi and 

Zhang 2001), providing a potentially powerful forecasting method for linear or non-linear, 

non-parametric, data driven modelling. In univariate forecasting MLP is used similarly to an 

autoregressive model, capable of using as inputs a set of lagged observations of the time 

series and explanatory variables to predict its next value (Kourentzes and Crone 2008). Data 

are presented to the network as a sliding window over the time series history. The ANN tries 

to learn the underlying data generation process during training so that valid forecasts are 

made when new input values are provided (Lachtermacher and Fuller 1995). In this analysis 

single hidden layer ANN are used, based on the proof of universal approximation (Hornik 

1991). The general function of these networks is

(4.5)
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X = [Xo, x1#..., xn] is the vector of the lagged observations (inputs) of the time series. X can also 

contain observations of explanatory variables. The network weights are w  = (3 , y ), P = [P i, 

3 2 - , Ph] and y = [yn , y12..., VhiJ- The p0 and y0i are the biases of each respective neuron. I and H 

are the number of input and hidden units in the network and g( ) is a non-linear transfer 

function (Anders, Korn et al. 1998). In this analysis the hyperbolic tangent transfer function is 

used. For computational reasons this can be approximated as

which is frequently used for modelling ANNs (Vogl, Mangis et al. 1988).

4.3.2 Coding Deterministic Seasonality

It is easy to include seasonal information in ANNs. Seasonal dummy variables can be 

included as explanatory variables. As noted in section 4.2 if S dummy variables are included 

in linear models the problem of multicollinearity appears, so only S-l dummies should be 

used. For ANNs this is more complicated. Assuming only linear transfer functions and H>1 

multicollinearity can exist even for S-l dummies, since they are inputted in several hidden 

nodes. This hinders inference from a ANN, but does not necessarily harm its predictive 

power, which is true also for the nonlinear transfer function case (Zhang, Patuwo et al. 1998; 

Kvanli, Pavur et al. 2002). Based on this observation both S-l and S number of seasonal 

dummies make sense for ANN models. Deterministic seasonality as expressed in (4.2) can be 

modelled easily through the use of dummy variables. Note that an alternative is to 

approximate (4.2) using fewer frequencies by increasing the number of hidden nodes H in a 

network (Hornik, Stinchcombe et al. 1989). Following the same procedure, based on the 

increase of H, ANN are able to approximate seasonal patterns by combining seasonal 

dummies in a single integer dummy defined as 6 = [1, 2...S] (Crone and Kourentzes 2007).

tanh(x) (4.6)
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Alternatively ms can be combined to form a series of seasonal indices that can be used as an 

explanatory variable for the ANN. The problem that arises in this alternative is how to 

estimate the unknown ms. It is also possible to model seasonality as a misspecified stochastic 

seasonal unit root process, with the problems discussed in section 4.2. One alternative is to 

use seasonal integration to remove seasonality and another alternative would be to use an 

adequate AR structure to model the seasonality as discussed in (Curry 2007). Note that much 

of the debate in literature, as mentioned in section 4.1, regarding deseasonalising time series 

or not falls in the latter two alternatives which in theory are not advisable for deterministic 

seasonality. However, for practical applications with small samples it can be shown that it is 

difficult to distinguish between deterministic and stochastic seasonality (Ghysels and Osborn 

2001), therefore these alternatives are still viable options.

4.4 Synthetic Data Simulations Setup

4.4.1 Time Series Data

Eight synthetic time series are used to evaluate the competing ways discussed in

section 3 to model deterministic seasonality using ANN. The time series are constructed

using as a data generating process the dummy variable representation of deterministic

seasonality (4.1). Two different sets of ms are modelled, reflecting two different seasonal

patterns (A & B). The first seasonal pattern resembles retail data that peak during Christmas

sales, whereas pattern B approximates sales of products that sell more during the summer

months. The parameter p is set to 240 units and zt ~ i.i.d. N(0, a,2). Four different levels of

noise are simulated through a,2. For no noise o = 0, reflecting a zero error for all t. For low,

medium and high noise levels a is 1, 5 and 10 respectively. Note that these synthetic time

series are constructed in a stricter way than that required by (4.1). This is done in order to

create time series in which only the effect of the deterministic seasonal pattern needs to be
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m odelled, s im p lify ing  the  m odelling o f the input vecto r o f the  ANN and a llow ing to  focus 

solely on the  effects o f the  d iffe re n t seasonal coding schemes. All tim e  series have S=12, i.e. 

s im u la te  m on th ly  data, and are 480 observations long. For the  purpose o f th is experim ent 

the  tim e  series is divided in th ree  equal tra in ing, va lida tion  and test subsets, to  tra in  the  ANN 

models. The firs t 72 observations o f each tim e  series are p lo tted  in figure  4.1 to  provide a 

visual representa tion  o f the  tw o  seasonal patterns and the  d iffe re n t noise levels.

Seasonal Pattern A

No noise Low noise Medium noise High noise

Seasonal Pattern B

No noise Low noise Medium noise High noise
300 300300300

250
250250250

200

200200200
150

150 100150150
50

Fig. 4.1: Plot o f the first 72 observations o f each synthetic time series..

4.4.2 Experimental setup

The forecast horizon fo r all com peting models is 12 m onths. Rolling orig in  eva luation 

is used to  assess the  e rro r 1 to  12 m onths in the  fu tu re . This eva luation scheme is p re fe rred  

because it provides a reliable estim ation  o f the  o u t o f sample e rro r (Tashman 2000). Two 

e rro r measures are used. Firstly the mean absolute e rro r (MAE) th a t a llows a d irect 

com parison o f the  pred ictive accuracy and the  known noise level. For given actuals Xt and 

forecasts Ft fo r  all periods t  in the  sample
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The symmetric mean absolute percent error (sMAPE) is also used to measure accuracy. This 

measure is scale independent and allows comparing accuracy across time series. It can be 

calculated as

Note that the formula is the corrected form of sMAPE as in (Chen and Yang 2004). Both the 

validation and test datasets contain 160 observations (1/3 of the total sample each). The 

accuracy of the competing ANN models is evaluated for statistically significant differences 

using the nonparametric Friedman test and the Nemenyi test, to facilitate an evaluation of 

nonparametric models without the need to relax assumptions of ANOVA or similar 

parametric tests (Demsar 2006). To compare the models against the benchmark the best 

ANN initialisation is selected by minimum validation set error.

4.4.3 Neural Network Models

MLP models that code the deterministic seasonality with the seven alternative ways 

described in section 4.3 are compared. To model seasonality as stochastic, an adequate 

univariate MLP model which employs lags t-1 and t-12 is used, which is named AR. To model 

seasonality as a seasonal unit root process the time series is used after seasonal differencing. 

No lags are used and the correct level is estimated by the MLP by assigning the correct 

weights to the bias terms in the different nodes. This is the SRoot model and essentially 

covers the case where seasonality is removed before inputting the time series to the MLP. 

The common deterministic seasonality coding through seasonal dummy variables is 

implemented in models B in ll  and B in l2  which use 11 and 12 seasonal binary dummy

sMAPE =  - £
l i f  \ X , - F ,  | ^

(4.8)
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variables respectively to model each month. No past lags of the time series are used for 

these models. The integer dummy variable representation uses only an integer dummy that 

repeats values from 1 to 12, which is implemented in model Int. The trigonometric 

representation is modelled through the use of two additional variables, one for sin(2nt/12) 

and one for cos(2ni/12) and is named SinCos. Finally, seasonal indices for the time series are 

identified by calculating the average value for each period of the season in the training set. 

This is an adequate estimation since the time series exhibit no trend or irregularities. The 

seasonal indices are repeated to create an explanatory variable which is then used as the 

only input to the MLP model Slndex. An overview of the inputs for each model is provided in 

table 4-1.

Table 4-1: Summary of MLP Inputs

M odel Lags* Explanatory variables** No of inputs

AR 1 ,1 2 - 2
B in ll - 11 Seasonal Dummies 11
B in l2 - 12 Seasonal Dummies 12
Int - Integer Dummy [1,2...12] 1
SinCos - sin(27it/12), cos(2nt/12) 2
Sindex - Seasonal Indices 1

SRoot _ ** * - 0
----------an*---------^ 5̂ = ^ = = = ^ = =

The Lags specify the tim e lagged realisations t-n used as inputs; For all explanatory  

variables only the contem porary lag is used; Time series is modelled after seasonal 
integration, i.e. Asyt-

The remaining parameters of the MLP are constant for all models. This allows

attributing any differences in the performance of the models solely to the differences in

modelling seasonality. All use a single hidden layer with six hidden nodes. The topology of

the AR model can be seen in figure 4.2. The networks are trained using the Levenberg-

Marquardt algorithm, which requires setting the pLM and its increase and decrease steps.

Here |iLM=10'3, with an increase step of pinc=10 and a decrease step of pdec=10'1. For a

detailed description of the algorithm and the parameters see (Hagan, Demuth et al. 1996).

The maximum training epochs are set to 1000. The training can stop earlier if pLM becomes

equal o f greater than pmax=1010 or the validation error increases for more than 50 epochs.
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This is done to avoid over-fitting. When the training is stopped the network weights that give 

the lowest validation error are used. Each MLP is initialised 50 times with randomised 

starting weights to accommodate the nonlinear optimisation and to provide an adequate 

sample to estimate the distribution of the forecast errors in order to conduct the statistical 

tests. The MLP initialisation with the lowest error for each time series on the validation 

dataset is selected to predict all values of the test set. Lastly, the time series and all 

explanatory variables that are not binary are linearly scaled between [-0.5, 0.5].

AR neural network topology

TanH /  Linear

Fig. 4.2: Plot o f the AR neural network model, showing the transfer functions o f each layer. All other 
ANN models have similar topology other than the different number of inputs.

4.4.4 Statistical Benchmark

Any empirical evaluation of time series methods requires the comparison of their 

accuracy with established statistical benchmark methods, in order to assess the increase in 

accuracy and its contribution to forecasting research. This is often overlooked in ANN 

experiments (Adya and Collopy 1998). In this analysis seasonal exponential smoothing 

models (EXSM) are used. The seasonality is coded as additive seasonality, which is 

appropriate for deterministic seasonality. The smoothing parameters are identified by 

optimising the one step ahead in-sample mean squared error. This model is selected as a 

benchmark due to its proven track record in univariate time series forecasting (Makridakis
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and Hibon 2000). For more details on exponential smoothing models and the guidelines that 

were used to implement them in this analysis see (Gardner 2006).

4.5 Simulation Results

4.5.1 Nonparametric MLP Comparisons

The competing MLP are tested for statistically significant differences using the 

Friedman and the post-hoc Nemenyi tests. Both use the mean rank of the errors. In this 

analysis MAE and sMAPE provided the same ranking, so there is no difference which error is 

used for these tests. The results of the MLP comparisons are provided in table 4-11.

The Friedman test indicates that across all time series, across different noise levels 

and for all time series separately there are statistically significant differences among the MLP 

models. Inspecting the results of the Nemenyi tests in table 4-11 a more detailed view on the 

ranking of each individual model is revealed, along with statistically significant differences 

among them. It can be observed that across all different noise levels and across all time 

series at 5% significance level the Slndex outperforms all other models with a statistically 

significant difference from the second best model. B in ll  and B in l2  perform equally with no 

statistically significant differences both ranking second after Slndex in all cases apart from 

the high noise case. At 1% significance level B ln l l  and B in l2  have no significant differences 

in all cases. This means that for ANN models there is no essential difference between using S- 

1 or S binary dummies. When only the no, low and medium noise time series are considered, 

the SinCos has no statistically significant differences with the seasonal binary dummies B in ll  

and Bin 12  models. For the case of high noise time series the SinCos ranks third after the 

Slndex and seasonal binary dummy variables models. This demonstrates that although the 

SinCos model is not equivalent to the trigonometrical representation of deterministic
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seasonality as expressed in (4.2) it is able to approximate it and in many cases with no 

statistically significant differences from the equivalent seasonal dummy coding. 

Furthermore, this representation is S/4 times more economical in inputs compared to (4.2). 

Compared to (4.1) or B in ll  and B in l2  this coding is S-2 and S-l inputs more economical 

respectively. For the low, medium and high noise the In t model follows in ranking. Although 

this model performs worse than the previous seasonality encodings it still outperforms the 

misspecified seasonal models AR and SRoot. This is not true for the no noise time series, 

which also affects the overall ranking across time series as well. The AR model follows 

second to the last in all cases.

Table 4-11: Summary of MLP nonparam etric comparisons

Time series All No noise Low noise M edium  noise High noise
Friedman p-value 0.000 0.000 0.000 0.000 0.000

M ean M odel Rank

AR 240.59 165.25 260.01 261.01 276.10
B in ll 140.38 165.25 140.43 129.43 126.41
B in l2 142.08 165.25 136.90 132.96 133.20

Int 201.85 237.00 212.43 198.76 159.21
SinCos 146.22 165.25 139.22 137.40 143.03
Sindex 85.01 165.25 42.53 57.45 74.81
SRoot 272.38 165.25 297.00 311.50 315.75

Ranking

AR 5 1 4 4 6
B in ll 2 1 2 2 2
B in l2 2 1 2 2 3

Int 4 2 3 3 5
SinCos 3 1 2 2 4
Sindex 1 1 1 1 1

SRoot 6 1 5 5 7

*In each column MLP with no statistically significant differences under the Nemenyi test at 5% 
significance are underlined; ^ th e  critical distance for the Nemenyi test for all time series at 1% 
significance level is 3.73, at 5% significance level is 3.18 and at 10% significance level is 2.91. The 
critical distance for any noise category at 1% significance level is 7.46, at 5% significance level is 6.37 
and at 10% significance level is 5.82.

This demonstrates that it is better to code the deterministic seasonality through explanatory

dummy variables, than as an autoregressive process, as it would be fitting for stochastic

seasonality. Furthermore, in agreement to the discussion in section 4.2, removing the

seasonality through seasonal integration, as in SRoot, performs poorly and ranks last in most
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cases. The reason fo r this is that the AIMNs are not able to estimate directly the ms and Asyt is 

overdifferenced. Note that in the case of no noise all models with the exception of In t are 

able to capture the seasonality perfectly with no error.

It is apparent that the best method to model the deterministic seasonality is to use 

the seasonal indices as an explanatory input variable for the MLP. Not only does this method 

perform best, but also it is very parsimonious, requiring a single input to model the 

deterministic seasonality, as shown in table 4-1.

4.5.2 Comparisons against Benchmarks and Noise Level

Taking advantage of the synthetic nature of the time series the error o f each 

forecasting model with the artificially introduced error level can be compared directly and 

derive how close each model is to an ideal accuracy. The ideal accuracy is when the model's 

error is exactly equal to the noise, since that would mean that the model has captured 

perfectly the data generating process and ignores completely the randomness. On the other 

hand, a lower error than the noise level would imply possible overfitting to randomness. The 

comparison is done in MAE for each time series individually. The results are presented in 

figure 4.3. Moreover the benchmark accuracy in MAE for each time series is provided in the 

same figure.

In figure 4.3 it is clear than when there is no noise, for both seasonal patterns, all

MLP models and the benchmark forecast the time series perfectly with zero error.

Comparing the MLP models to the benchmark the misspecified AR and SRoot models

perform worse than EXSM, with the SRoot model ranking consistently last. This

demonstrates that for the case of deterministic seasonality deseasonalising the time series,

here through seasonal integration, hinders the ANN to forecast the time series accurately.

For both seasonal patterns for the low noise time series 2 and 6 all MLP perform worse than
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the benchmark. The opposite is true for the B in ll ,  B in l2 , Int, SinCos and Slndex MLP models 

for the higher noise level time series. This implies that ANN perform better than the 

statistical benchmark in high noise time series, being able to capture the true data 

generating process better.

When comparing the models' accuracy with the known error due to noise all the 

MLP models, with the exception of the misspecified AR and SRoot, for all time series are very 

close to the ideal accuracy, i.e. having error only due to randomness. Note that for the 

validation set, on which the best performing initialisation for each of the ANN models was 

chosen, their error is practically only due to noise. The benchmark error consistently 

increases as the noise level increases. For the case of low noise time series EXSM  manages to 

forecast the time series with the error being solely due to randomness, implying a very good 

fit to the data generating process, however this is not true for higher noise levels. The results 

are consistent across both seasonal patterns.

Evaluating the performance of all models across the three training, validation and 

test subsets the models perform consistently, with no evidence of overfitting to the training 

set and all models are able to generalise well on the test set.

Table 4-111: Summary sMAPE across all synthetic tim e series

M odel Training subset Validation subset Test subset
AR 1.90% 1.94% 1.72%
B in ll 1.60% 1.59% 1.45%
B in l2 1.58% 1.58% 1.46%
Int 1.62% 1.61% 1.49%
SinCos 1.59% 1.59% 1.47%
Sindex 1.60% 1.58% 1.44%
SRoot 2.36% 2.21% 1.91%
EXSM 1.86% 1.68% 1.52%

The best perform ing model in each set is marked with bold numbers. The models that are 

outperform ed by the EXSM benchmark are underlined
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Training set
Time Series 1 -  MAE -  No Noise -  Seasonal Pattern A

AR 0.00 AR
Bin11 0.00 Bin11
Bin12 0.00 Bin12

Int 0.00 Int
SinCos 0.00 SinCos
Slndex 0.00 Slndex
SRoot 0.00 SRoot
EXSM 0.00 EXSM

* 5 10 15

Validation set

10

Test set
0.00 AR 0.00
0.00 Bin11 0.00
0.00 Bin12 0.00
0.00 Int 0.00
0.00 SinCos 0.00
0.00 Slndex 0.00
0.00 SRoot 0.00
0.00 EXSM 0.00

15 5 10 15

Bin11
Bin12

SinCos
Slndex
SRoot
EXSM

Time Series 2 -  MAE -  Low Noise -  Seasonal Pattern A
Training set

1.01
0.76
0.81
0.79
0.83
0.75
1.11
0.83

AR 
Bin11 
Bin12 

Int
SinCos fe 
Slndex 
SRoot 
EXSM

Validation set

10 15 10

Bin11
Bin12

SinCos
Slndex
SRoot
EXSM

Test set
1.02
0.86
0.86
0.84
0.95
0.87
1.05
0.83

10 15

Time Series 3 -  MAE -  Medium Noise -  Seasonal Pattern A

Bin11
Bin12

SinCos
Slndex
SRoot
EXSM

Training set

10

Validation set Test set
4.64 AR I  4.98 AR ■ 4.49
3.64 Bin11 ~ 4.26 Bin11 3.76
3.68 Bin12 4.21 Bin12 3.82
3.71 Int 4.36 Int I 3.84
3.67 SinCos 4.35 SinCos 3.75
3.85 Slndex 4.23 Slndex 3.66
5.56 SRoot ■i 5.88 SRoot ■  5.14
4.32 EXSM I 4.44 EXSM 3.83

15 5 10 15 0 5 10 15

Time Series 4 -  MAE -  High Noise -  Seasonal Pattern A
Traininc

Bin11
B n12

SinCos
Slndex
SRoot
EXSM

8.95 AR
8.90 Bin11
8.47 Bin12
8.64 Int
8.57 SinCos
8.57 Slndex

(12.71 SRoot
10.20 EXSM

15

Validation set
9.25 AR
7.88 Bin11
7.99 Bin12
7.94 Int
7.98 SinCos
7.94 Slndex

11.19 SRoot
8.53 EXSM

15

Te t set
8.77
7.44
7.36
7.26
7.40
7.39
9.62
7.99

AR 
Bin11 
Bin12 

Int
SinCos
Slndex
SRoot
EXSM

Time Series 5 -  MAE -  No Noise -  Seasonal Pattern B 
Validation setII dll III iy Owl

0.00 AR 0.00 AR 0.00
0.00 Bin11 0.00 Bin11 0.00
0.00 Bin12 0.00 Bin12 0.00
0.00 Int 0.00 Int 0.00
0.00 SinCos 0.00 SinCos 0.00
0.00 Slndex 0.00 Slndex 0.00
0 00 SRoot 0.00 SRoot 0.00
0.00 EXSM 0.00 EXSM 0.00

5 10 15 5 10 15 t 5 10 15

Test set

Bin11
Bin12

SinCos
Slndex
SRoot
EXSM

AR 
Bin11 
Bin12 

Int
SinCos
Slndex
SRoot
EXSM

Time Series 6 -  MAE -  Low Noise -  Seasonal Pattern B
Training set

0.88
0.83
0.74
0.73
0.73
0.83
1.11
0.83

AR
Bin11
Bin12

Int
SinCos
Slndex
SRoot
EXSM

Validation set
0.94
0.87
0.88
0.89
0.89
0.85
1.11
0.91

AR 
Bin11 
Bin12 

Int
SinCos
Slndex
SRoot
EXSM

10 15 10 15

Test set

10

Time Series 7 -  MAE -  Medium Noise -  Seasonal Pattern B
Training set

10

4.35
3.62
3.66
3.70 
3.79
3.70 
5.56 
4.32

15

AR 
Bin11 
Bin12 

Int
SinCos
Slndex
SRoot
EXSM

Validation set Test set

0.97
0.84
0.87
0.91
0.89
0.85
1.05
0.83

15

10

5.32 AR ■ 4.25
4.26 Bin11 3.81
4.30 Bin12 I 3.91
4.34 Int 3.81
4.18 SinCos 3.80
4.29 Slndex 3.73
5.88 SRoot ■ I 5.14
4.44 EXSM 3.83

15 5 10 15
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Traininc

Bin11
B n12

SinCos
Slndex
SRoot
EXSM

Time Series 8 -  MAE -  High Noise -  Seasonal Pattern B
Validation set

11.42 AR
8.51 Bin11 
8.64 Bin12 
8.87 Int
8.57 SinCos 
8.56 Slndex 

112.71 SRoot 
10.20 EXSM

15

Te t set
10.52 AR
8.02 Bin11 
7.86 Bin12 
8.07 Int
7.91 SinCos 
7.82 Slndex 

11.19 SRoot 
8.53 EXSM

15

9.31
7.18
7.41

09
7.52
7.29
9.62
7.99

Fig. 4.3: MAE for each time series for each subset for all models. The noise level is marked by a thick 
black vertical line. Light coloured bars are models which are better than the benchmark (EXSM). The 

value o f each error is provided at the right side

Due to  the fact th a t it is impossible to  aggregate results across d iffe re n t tim e  series 

using MAE, only figures fo r sMAPE are reported, which is scale independent. Sum m ary 

accuracy sMAPE figures fo r all tim e  series are provided in tab le  4-III.

The results are in accordance w ith  figure 4.3. The AR and SRoot m odels are 

ou tp e rfo rm e d  by the  benchmark, which is tu rn  is ou tpe rfo rm ed  by all o th e r MLP models. In 

agreem ent w ith  the  results in tab le  II the  Slndex m odel is overall the  m ost accurate, fo llow ed  

by the  Binl2  and B in ll.  Note th a t the  small sMAPE figures im ply th a t all the  models 

managed to  capture the  seasonal p ro file  in all the tim e  series and a visual inspection o f the 

forecasts w ou ld  reveal very small if  no differences at all. Finally, the  overall e rro r level seems 

to  be d iffe re n t betw een the  th ree  subsets. This is due to  the  random  noise. A lthough each 

set conta ins 160 observations, which sim ulates in to ta l 40 years o f data, longer sample was 

required to  ensure equal noise d is tribu tion  across all subsets.

4.6 Transportation Data Experiments

4.6.1 The Dataset

A dataset o f 60 tim e  series from  the  T -com petition  (H ibon, Young e t al. 2007) was

selected to  evaluate the  ANN models on real tim e  series. The T -com pe tition  dataset contains

tra n sp o rta tio n  tim e  series o f d iffe re n t frequencies. From the  com ple te  dataset o f 161

m on th ly  tim e  series a subset th a t was tested fo r de te rm in is tic  seasonality was selected.
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Initially the presence of seasonality is verified. To accomplish this, a series of steps 

was performed. Firstly, for each time series a moving average filter of 12 periods was used to 

remove the trend from the time series. Following that, for each time series, all the seasonal 

indices were calculated and compared for statistically significant differences using the 

Friedman test. The time series that did not present significant differences were concluded to 

be not seasonal, i.e. all ms for s = 1...12 were equal, and therefore were dropped from the 

final dataset.

Furthermore, not all seasonal time series are deterministic. Two different statistical

tests were used to test for presence of deterministic seasonality. The first test is the Canova-

Hansen test for seasonal stability (Canova and Hansen 1995; Ghysels and Osborn 2001). The

null hypothesis is that the seasonal pattern is deterministic. Assuming a stochastic seasonal

process for each ms there is an associated residual term ns ~ ' i d. N(0,ons2). If for any s in S

the ons2 is greater than zero the process is stochastic. The Canova-Hansen test corresponds

to jointly testing for all s in S if ans2 = 0. The second test is based on the definition of

deterministic seasonality (4.1). After the low pass filter is applied to the time series, so that

the seasonal component is separated, a regression model with S-l binary dummies is fitted.

The residuals are calculated and tested if they follow the assumptions of (4.1). This is done

by an Augmented Dickey-Fuller (ADF) test. If the null is rejected then the residuals are

stationary, i.e. (4.1) describes the data generating process of the time series. The order of

the ADF test is selected automatically using the Bayesian Information Criterion (BIC) (Cheung

and Lai 1998). The time series that pass both tests at a 5% significance level constitute the

sample that is used for this empirical evaluation. The shortest selected time series is 87

months and the longest is 228 months long. Figure 4.4 provides a histogram of the length of

the time series in the final sample, showing the distribution of short and long time series.

The exact time series that were selecting can be found in table VI. For all the time series, the
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last 38 observations are split equally to  va lidation and test sets, leaving all the  rem ain ing 

observations fo r the  tra in ing  set.

Histogram of time series length
40

80 100 120 140 160 180 200 220 240

Fig. 4.4: The histogram reveals that most time series are between 120 and 140 months long and there 
are a few below 100 and above 160 months.

4.6.2 The Experimental Setup

The experim enta l design is s im ilar to  the one presented in section IV, w ith  some 

d ifferences in the  m odel setup, which are discussed here. The ANN models have d ifferences 

in the  inpu t vectors. In o rder to  capture the  trend and irregu lar com ponents o f the  tim e  

series some add itiona l non-seasonal tim e  series lags are used fo r  each m odel. These lags are 

iden tified  using backward stepw ise regression (Kourentzes and Crone 2008). The regression 

m odel is f itte d  to  the  tim e  series and the significant lags are used as inputs to  the  ANNs. Only 

lags from  t-1  up to  t-11 are evaluated, the re fo re  no seasonal lags are included. The resu lting 

add itiona l inputs are used toge the r w ith  the  d iffe re n t approaches to  m odel seasonality, as 

presented before in section 4.4. Note th a t fo r the  SRoot m odel the  iden tifica tion  o f the 

add itiona l inputs is done on the  seasonally in tegrated tim e  series.

Exponential sm ooth ing fam ily  o f models is used as a benchm ark. The on ly d iffe rence 

in com parison to  the  previous experim ent is th a t both  seasonal and trend-seasonal 

exponentia l sm ooth ing models are considered, according to  the  suggestions o f G ardner 

(2006).
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4.6.3 Results

The competing MLP are tested for statistically significant differences using the 

Friedman test. At least one model is found to be different with a p-value = 0, so the post-hoc 

Nemenyi test is used to identify significant differences between the models and their 

ranking, as before in section 4.5. The results are provided in table 4-IV.

Table 4-IV: Summary of MLP nonparametric comparisons

Friedman p-value 0.000
Models Mean Rank* Ranking

AR 166.81 2
B in ll 177.09 5
Binl2 172.44 4

Int 191.54 6
SinCos 170.53 3
Sindex 139.77 1
SRoot 210.33 7

All MLP have statistically significant differences under the Nemenyi test at 5% 
significance level; *the critical distance for the Nemenyi test at 1% significance 
level is 1.36, at 5% significance level is 1.16 and at 10% significance level is 1.06.

The results differ from the simulated time series presented before. Slndex is still 

ranked first with statistically significant better performance than the second best candidate. 

AR model follows, which outperforms SinCos, B in l2  and B in l l  in order of performance. This 

is in contrast to the results from table 4-11, where the AR model ranked 5th. This can be 

attributed to the limited sample size as discussed in section 4.3. Note that the margin of 

difference between the SinCos, B in l2  and B in llis  much smaller relatively to the difference of 

Slndex to AR or the difference of SRoot to the previous best model. In t and SRoot models 

perform as observed before, with the SRoot ranking last. This means that although the 

limited sample size affected the ranking between the AR model and the seasonal dummy 

models, deseasonalising for the case of deterministic seasonality still harms the performance 

significantly.
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Using both MAE and sMAPE the ANN models are compared against the benchmarks. 

Table 4-V presents the aggregate accuracy across all time series measured in sMAPE.

Table 4-V: Summary sMAPE across all time series

Model Training Validation Test
AR 16.30% 13.08% 20.10%
B in l l 15.80% 12.53% 17.51%
Binl2 13.87% 12.49% 16.85%
Int 14.92% 12.47% 17.85%
SinCos 14.40% 12.07% 17.53%
Sindex 14.61% 11.92% 16.70%
SRoot 19.44% 15.49% 20.69%
EXSM 14.80% 17.58% 17.64%

The best performing model in each set is marked with bold numbers. The
models that are outperformed by the EXSM benchmark are u nderlined 

The Slndex model performs best, in agreement with table III for the simulated time 

series. On the test set the AR, In t and SRoot models fail to outperform the benchmarks. This 

shows that although the best trained AR model is less accurate than the B in ll ,  B in l2  and 

SinCos in all training validation and test sets, its error has less extreme values, resulting in the 

lower mean rank observed in table 4-IV. The SRoot model is consistently worse than all other 

ANN models providing more evidence that seasonal differences for the case of deterministic 

seasonality has a negative effect on accuracy. Table 4-VI provides the detailed errors 

measured in MAE for each time series. Overall, the results of the evaluation of the real time 

series dataset agree with the synthetic data evaluation.

4.7 Conclusions

Different methodologies to model time series with deterministic seasonality were 

evaluated. By exploring the theoretical properties of deterministic seasonality it was shown 

that the current debate in the literature, on how to model seasonality with ANN, does not 

address the problem correctly for this type of seasonality. Seven competing approaches to 

model the seasonality were evaluated and compared against exponential smoothing model
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on two datasets, a set of synthetic time series with known properties and a subset of the T- 

competition that has real transportation time series.

The findings of this study can be summarised as follows:

i) For deterministic seasonality it is not advisable to deseasonalise the time series. 

Deseasonalising (through seasonal differences) hindered the model to accurately 

estimate the ms and therefore affected forecasting accuracy negatively. The SRoot model 

performed consistently worse compared to all other ANN models and several times failed 

to outperform the exponential smoothing benchmarks.

ii) Using S-l or S dummy variables to code the seasonality did not have important 

differences for ANN models. For the synthetic time series, where the properties of the 

time series were controlled, the differences proved to be insignificant, while for the real 

time series using S dummy variables proved marginally better.

iii) A sine-cosine encoding of the time series seemed to perform more robustly than binary 

seasonal dummy variables, resulting in significantly lower mean rank for the 

transportation dataset and minimal differences in the synthetic dataset. The sine-cosine 

encoding that was used here is not the equivalent to the trigonometric representation of 

seasonality, which uses sine and cosine waves of several frequencies. The degrees of 

freedom of the model were reduced by using a pair of sine and cosine of fixed frequency, 

making use of the approximation capabilities of MLPs, through the use of several hidden 

nodes. Note that the same did not seem to work when a single integer dummy variable 

was used to code the seasonality. This seems to be the case due to the monotonic coding 

of each season.
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iv) A coding that is based on seasonal indices was proposed. This approach used as a single 

explanatory variable a series of seasonal indices. This model outperformed significantly all 

competing ANN and the benchmarks for both datasets. Furthermore, this model was the 

most parsimonious, requiring a single additional input to model the deterministic 

seasonality. This can have significant implications for high frequency data that have long 

seasonal periods and the dimensionality of the input vector can become a problem for 

the training of the ANN models.

This study does not address thoroughly the issue of how to best estimate the seasonal 

indices. In the literature several methods have been suggested on how to estimate the 

seasonal indices of a time series. Here a very simple approach is employed that is found to 

be adequate. Under the assumption of deterministic seasonality the seasonal indices remain 

constant thus making the estimation easier. However, in real time series sample size and 

irregularities can possibly affect adversely their estimation, evidence of which was not found 

in this analysis, but has not been examined in detail. Similar difficulties would arise in the 

presence of multiple overlaying seasonalities. It is important to evaluate the robustness of 

the findings with different approaches to estimate the seasonal indices.

This study has focused on monthly time series. In future research, this study will be 

extended to a wider range of seasonal frequencies to validate the findings and provide a 

reliable solution for a range of practical applications.
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Table 4-VI: MAE for all time series
Time Series Set AR B in ll Binl2 Int SinCos Slndex SRoot EXSM Best

Trn 85047.5 65862.2 71631.8 86289.8 58594.3 97773.3 108128.8 10692.3 EXSM
M001 VaJ 28312.2 26900.1 24318 21506.3 22470.4 19124.5 28398.5 60509.7 Slndex

Tst 55496.2 18923.9 24085.3 25524.9 14827.2 33054.9 100972.6 24589.1 SinCos
Trn 4471 5780.3 3724.3 4848 3592.5 6204.2 8729.3 6524.3 SinCos

M004 Val 5611.1 4616.6 4475.1 5753 5968 4038.1 15539.9 9744.6 Slndex
Tst 7477.4 6618.6 7662.2 7153.1 5530.3 8948.8 6490.3 12117.7 SinCos
Trn 9806.7 8584.3 7398.2 16010.1 7222 17696.2 15079.5 12182.5 SinCos

M005 Val 8611 7370 7116.7 10625.5 7942 6854.1 28859.8 18798.9 Slndex
Tst 15057.4 8693 13018.8 11817.2 13529.3 12710.5 10231.7 22942.6 B in ll
Trn 835.3 718.5 752.7 861.7 853 1031.6 1412.9 1074.2 B in ll

M006 Val 1171.3 746.3 700.1 763.9 774.9 697.1 1953.4 1099.7 Slndex
Tst 805.3 985.9 692.6 1147.8 1192 662 1100.6 1014.5 Slndex
Trn 90393 46111.2 37736.5 75794.3 43121.9 66990.3 337718.2 87773.3 Binl2

M013 Va] 52911.2 53447.7 45313.1 54945.7 51433.2 56934.3 334221.8 446987.1 Binl2
Tst 61264.6 81474.5 72388.2 70173.7 193970.3 62310 405843 317956.5 AR
Trn 103.3 89.6 105 93.4 96.5 83.9 2 2 0 . 2 183.1 Slndex

M014 Val 142.2 143 127.8 128.8 139.2 133.5 192 201.3 Binl2
Tst 111.4 139 138.7 131.1 108.9 114.2 260.6 266.6 SinCos
Trn 99.8 82.3 8 8 . 1 137.9 94.1 376.9 192.6 158.2 B in ll

M015 Val 125.1 1 1 1 118.8 98.4 97.8 1 0 1 . 1 178.6 175.7 SinCos
Tst 142.7 91.8 105.3 106.6 140.6 89.3 250.3 234.4 Slndex
Trn 12191.3 33597.1 8433.7 5506.3 13455.4 10396.3 18857.4 6453.8 Int

M017 Val 7342.4 5768.3 6058.5 7204.9 6961.9 6137.6 7977.4 14099.6 B in ll
Tst 6643.3 19433.8 4119.4 11368.5 14402.2 5730.9 22911.1 6261.4 Binl2
Trn 77.9 51.8 54.9 83.5 91.1 56.2 172.9 109.4 B in ll

M020 Val 73.2 83 77.5 92.1 81.1 76.9 95.4 109.9 AR
Tst 246.1 218 204 178.6 198.7 214 212.2 177.6 EXSM
Trn 142.8 119.4 132.5 134.8 363.2 126.6 393.8 216.0 B in ll

M021 Val 172.5 156.7 163.7 180.1 162 169.5 204.9 221.9 B in ll
Tst 459.4 391.7 372.4 363.4 516.6 490 398.4 343.9 EXSM
Trn 4101.9 4903.8 4312 5590.3 3635 3792.6 4816.8 2570.0 EXSM

M022 Val 2650 1929.2 3135.8 2195.2 2987 2034.1 2727.6 2848.4 B in ll

Tst 3610 4384.6 4560.9 7089.6 5136.4 3028.1 4695.9 4292.1 Slndex
Trn 4.7 4.5 4 4.7 3.8 3.6 5.9 3.3 EXSM

M028 Val 3.3 3.2 M 3 J 1Z 3Jj £ 3 6A B in ll
Tst 4.3 4.2 2.7 3 3.1 2.9 4.9 3.0 Binl2
Trn 81.8 42.2 110.4 49.7 52 55.5 61.5 71.4 B in ll

M034 Val 50.6 49.3 51.4 53.8 53.4 44.5 49.7 48.5 Slndex

Tst 118.3 76.8 76.9 110.3 124.8 100.3 122.1 120.9 B in ll
Trn 23.3 32.1 34.7 19 17.1 19.4 2 1 2 1 . 0 SinCos

M035 Val 29 26.6 27.3 19.5 22.5 23 36.3 32.8 Int

Tst 41.1 32.4 30.9 39.4 32.2 32.3 71.9 42.7 Binl2
Trn 490.8 443.4 519.6 507 459.1 460.6 575.4 411.5 EXSM

M040 Val 356.3 376.2 344.9 337.6 381.6 374.3 586.2 609.4 Int

Tst 418.5 532.5 473.8 444.5 597.9 620.9 354.1 848.3 SRoot
Trn 126.2 81.6 6 8 . 1 79.1 89.5 1 2 0 316.5 166.7 Binl2

M041 Val 290.4 217.1 205 203.3 195.6 179.5 287.2 300.6 Slndex

Tst 173.4 154.8 172.3 167.5 180 148.8 271.4 196.3 Slndex
Trn 152 206.3 208.9 239.1 254.9 205 313.4 274.9 AR

M042 Val 556.2 287.1 258.6 164.4 219.7 222.3 825.8 1086.0 Int

Tst 445.9 398.7 382.8 385 379.7 370.8 254.4 474.4 SRoot

Trn 854.9 1196.8 1688.1 578.3 539.8 689.2 2142.6 1938.2 SinCos

M045 Val 317.3 242.6 330 256.5 311.9 279 414.6 783.0 B in ll

Tst 252 415.9 454.1 413.3 393.5 356.1 370.9 786.2 AR

Trn 4172.8 3737.4 4585.2 6250 3179.2 4794.9 4772.6 4653.6 SinCos

M049 Val 1245.8 1554.6 1434 1729.6 1132 1671.6 1300.6 2463.3 SinCos

Tst 2831.1 3013.5 2872.2 3195.1 1730.9 2609 3739.9 1991.3 SinCos

M051
Trn 613.8 409.1 447.9 458.1 354.6 621.8 611.7 630.0 SinCos

Val 426.6 310.3 279.5 337.2 305.1 446.5 604.7 489.6 Binl2
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Time Series Set AR B in ll Binl2 Int SinCos Slndex SRoot EXSM Best
Tst 612.2 483.9 406.2 461.9 286.4 572.6 504.5 369.5 SinCos
Trn 2319.4 1387.4 1090.6 796.8 637.2 1 0 0 0 . 8 1596 769.6 SinCos

M054 Val 965.9 509 508.9 474.4 424.8 443.6 1116.9 1338.8 SinCos
Tst 1964.3 1767.9 1425.4 1388.4 1149.6 1398.2 2190.4 1932.5 SinCos
Trn 665.2 662.4 483.6 773.4 570.7 893.3 1609.7 571.1 Binl2

M058 Val 630.5 524.9 499.7 636.1 540.8 426.7 557 667.7 Slndex
Tst 563.9 977.8 1132.4 919.6 831.1 804.2 1134.8 873.3 AR
Trn 76.8 59.8 69.3 91.3 61.7 70.6 1 2 1 . 2 90.3 B in ll

M062 Val 50 43.3 45.6 50.2 41.7 43.2 57.5 59.3 SinCos
Tst 167 140.1 133.5 162.9 134.8 135.9 298.9 155.8 Binl2
Trn 471.5 365.8 389.8 461.4 393.9 427.7 528.6 387.6 B in ll

M063 Val 314.6 279.7 254.3 297.1 272.8 298.6 241.6 303.2 SRoot
Tst 576 560.9 501.1 465.3 583.3 524 702.6 541.4 Int
Trn 78.2 113.9 74.4 69.6 77.8 75.6 109.8 8 6 . 1 Int

M066 Val 48 55.1 47 48.6 44.6 43.6 59 71.3 Slndex
Tst 121.7 171 109 115.5 107.1 111.9 155.9 97.8 EXSM
Trn 113.9 105.5 79.2 103.1 85.4 58.8 138.8 103.7 Slndex

M067 Val 70.2 89.8 87.4 73.9 75.8 65.8 176.6 206.9 Slndex
Tst 69.7 83 138.2 85.3 77.6 66.3 109.8 67.3 Slndex
Trn 610 632.8 629.9 562.8 490.2 442.5 8 8 6 . 6 599.5 Slndex

M070 Val 373 302.5 309 310.2 345.5 348.5 409.8 856.5 B in ll
Tst 955.6 819.1 806.7 906.8 1051 1111 705.1 803.7 SRoot
Trn 1316.6 833.5 1826.1 1461.6 785.7 1847.7 1443.3 1161.3 SinCos

M072 Val 2042.8 1923 2113.6 2176.5 1925.2 1734.3 2177.5 2584.9 Slndex
Tst 2612.3 1876.6 1817.9 2896.9 1781.9 1971.4 2205.4 2897.4 SinCos
Trn 77.3 72.4 78.1 89.7 75.6 70.8 1 1 2 . 1 67.8 EXSM

M074 Val 37.3 36.1 33.8 29.6 28.1 31.9 62.5 54.5 SinCos
Tst 64.8 65.1 62.6 81.1 84.2 64.8 97.6 61.3 EXSM
Trn 31702.2 24671.3 28044.5 33824 35201.8 33485 39997 32272.7 B in ll

M076 Val 36372.1 42174.4 37533.6 43600.2 37842.8 29061.4 29453.5 35162.6 Slndex
Tst 63507.7 38233.5 43900.3 79848.1 60449.3 50417.3 74391.2 53361.0 B in ll
Trn 6452 6002.5 7897.4 7004.8 6067.2 6727.1 5316.5 9602.2 SRoot

M077 Val 3651.2 4056.5 4039.6 3322.4 4020.2 3302.9 5310.1 5993.5 Slndex

Tst 6996.4 5133.5 5213.7 6461 5145.1 5098.2 15485.1 4961.5 EXSM
Trn 1168.6 789.8 805.7 969 1011.5 1570.9 1699.6 1328.4 B in ll

M080 Val 747.7 794.9 754.7 764.2 643.4 716.8 690.6 865.4 SinCos

Tst 1119.2 882.8 913.9 896.4 778.6 933.2 1954.9 953.2 SinCos
Trn 94.3 91.1 63.2 76.8 89.3 100.4 139.6 122.5 Binl2

M082 Val 79.2 73.3 79 63.1 71.3 73 110.3 110.5 Int

Tst 143.7 103.5 101.4 134.7 174.3 100.2 108.9 118.5 Slndex
Trn 79 1 1 1 . 6 26.8 111.7 143.8 36.7 127.6 103.2 Binl2

M083 Val 76.1 86.3 87.1 83.2 99.2 92.5 110.4 129.6 AR

Tst 175.5 146.5 146.3 122.7 145.4 255.5 144.6 141.6 Int
Trn 407.1 496.1 132.8 513.7 198.5 229.8 571.5 540.5 Binl2

M084 Val 334 257.4 312.6 384.2 325.7 333.1 313.8 383.0 B in ll

Tst 746.7 928.6 1007.9 827.5 945.8 996.7 971.1 884.7 AR
Trn 58.9 6 8 . 2 105.6 276.6 81.5 76.8 1 0 0 . 8 132.2 AR

M085 Val 76.8 70.7 76.2 77.5 6 8 . 2 71.6 58.8 87.2 SRoot

Tst 82.9 92.1 83.7 66.5 62.7 67.9 127.2 67.2 SinCos
Trn 160.7 128.2 133.3 1 2 1 . 1 126.7 126 153 140.1 Int

M088 Val 99 1 0 1 95 81.1 80.6 82.5 121.5 108.1 SinCos

Tst 102.2 94.5 139.2 153.6 122.4 129.8 155.4 113.3 B in ll

Trn 442.1 216.4 512.4 350.7 371.2 363.4 435.7 401.7 B in ll

M090 Val 212.4 229.8 250.1 184.7 239.2 194.4 205.8 241.5 Int

Tst 397.9 278.3 413.5 227 185.6 369.6 631.4 297.6 SinCos

Trn 1799.7 1845.4 1933.8 1538.6 1749 1958.1 2123.4 2300.1 Int

M092 Val 1117.5 1087.7 1034.8 1163.9 957.4 1349.9 944 1456.9 SRoot

Tst 1439 1046.7 1251.3 1755.8 1232.1 2184.8 1073.7 1339.3 B in ll

M094 41.8 32.5 35.5 45.1 49.4 43.8 69.6 67.7 B in ll

Val 49 36.1 36.5 49.3 37.6 36.5 46.9 44.3 B in ll
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Time Series Set AR B in ll Binl2 Int SinCos Slndex SRoot EXSM Best
Tst 123.4 118.3 111.7 116.4 108.8 110.1 115.8 95.1 EXSM
Trn 146 90.7 121.4 111 345.3 181.2 185.7 178.9 B in ll

M095 Val 82.5 119.8 113.4 86.2 78.6 80.3 99.4 122.6 SinCos
Tst 184.4 144.3 75.1 201.3 118.1 73.1 230.5 93.7 Slndex
Trn 131.2 156.7 188.9 171.3 247.3 106.7 172.1 162.9 Slndex

M096 Val 175.3 223.2 218.1 241.1 205.4 193.1 174.8 242.8 SRoot
Tst 184.2 215.2 238 216.6 309.2 131.6 242.8 213.7 Slndex
Trn 50 97.3 19.6 63.6 60.9 58 95.6 142.4 Binl2

M098 Val 65.6 59.4 70.9 74 64.9 56 66.3 75.7 Slndex
Tst 364.5 243.5 406.8 246.1 330 467.1 441.3 476.1 B in ll
Trn 5889.6 5258 5337 7237.9 5762.3 5263.5 8180 6556.6 B in ll

M100 Val 4599.7 3130.5 3399 3671.6 3366.1 3103 7189.8 5835.0 Slndex
Tst 4069.8 4818.9 3749.2 4578.2 4484.9 3993.7 3309.6 4311.8 SRoot
Trn 1250.7 764.8 2316.7 1088.8 1573.6 930.4 1455.6 1122.3 B in ll

M102 Val 1856.3 1861.5 2104.7 1961.4 1605.8 1309.1 2166.1 2765.5 Slndex
Tst 1324.8 1067.1 1893.7 1699.1 1362.9 1315.3 2047.8 1539.1 B in ll
Trn 646.6 592.8 560.5 569 529.4 682.5 1183.8 815.9 SinCos

M105 Val 451.3 644.2 488.9 338.5 386.3 355.5 682.9 1214.8 Jnt
Tst 844.2 1139.5 558.1 506.7 664.6 492.6 818.1 790.6 Slndex
Trn 110.7 82.8 104.6 82.8 84.2 95.6 257.6 201.3 B in ll

M107 Val 124 74.5 79.2 81.5 76.4 76.8 201.5 125.7 B in ll
Tst 177.6 163.9 136.2 144.1 123.7 142.1 109.6 113.5 SRoot
Trn 5845.8 5395.9 5719.6 5079.9 5025.4 4502.7 7743.3 6020.7 Slndex

M H O Val 6472.6 4789.7 5774.6 4974.2 3894.1 4409.1 8392.6 10400.2 SinCos
Tst 3484.6 3273.6 3894.4 7578.4 6546.4 5851.6 4658.5 4281.7 B in ll
Trn 350.9 307.9 223.1 278.4 241.8 329.9 468.2 417.3 Binl2

M i l l Val 119.1 96.7 74.1 146.5 113.7 90.8 98.1 190.2 Binl2
Tst 330.7 201.2 205.6 489.3 319.4 262.3 234.9 243.7 B in ll
Trn 119.8 74.2 265.2 108.1 131.3 132.1 130.5 113.5 B in ll

M112 Val 59.1 87.6 105.9 85.7 85.7 61.5 81.7 120.8 AR
Tst 90.1 132.4 76.3 177.1 116.7 53.2 97 63.6 Slndex
Trn 1218.4 2795.8 582.6 1976.8 1275.2 1780.7 1608.5 2178.9 Binl2

M113 Val 809.6 722.9 698.4 837.9 874.1 553.2 641.7 1019.3 Slndex

Tst 1350.1 1330.2 1468.2 1525.3 1678.2 979.6 978.6 1233.8 SRoot
Trn 1619.3 989.9 730.7 879.8 1279.9 884.3 1381 757.5 Binl2

M124 Val 884.2 610.7 509 761.7 670.9 774.6 822.8 1193.9 Binl2

Tst 1757.3 878.4 556.8 1130.7 1032.8 972.7 764.1 832.5 Binl2
Trn 471.9 265 312.8 304.2 310.8 305 440.9 471.8 B in ll

M125 Val 224.3 164.5 136.7 256.4 199.2 192.8 193.5 248.6 Binl2

Tst 373.4 377.4 385.1 365.8 433.2 331.5 472.6 347.4 Slndex
Trn 77.9 49.6 45.9 108.8 95.4 71 216.7 103.4 Binl2

M130 Val 69.3 56.6 55.5 56.3 55.9 56.3 80.3 131.3 Binl2

Tst 45 55.8 55.4 63.4 47.8 39.7 74.6 43.9 Slndex
Trn 309 244.6 251.9 427.5 211.3 368.2 363.6 397.5 SinCos

M138 Val 189.8 192 145.8 220.4 174.2 170.4 197.5 237.2 Binl2

Tst 699.3 456.6 592.2 698.5 698.2 780.1 712.5 613.4 B in ll

Trn 125.4 109.3 97.5 74 78.8 105.4 122.6 102.3 Int

M140 Val 76.2 65.4 62 75.2 67.4 71.4 68.7 70.8 Binl2

Tst 170.8 151 131.1 200.6 181.5 127.4 122.9 128.4 SRoot

Trn 205.5 15.6 152.3 230.7 621.7 636.2 516.3 355.9 B in ll

M141 Val 293.1 236.5 231.8 224.5 292.8 255.4 223.4 324.6 SRoot

Tst 563 831.8 894.6 676.5 599.6 659 517.5 673.1 SRoot
Trn 509.9 396.5 807.3 414 363.9 475.7 1074.1 535.9 SinCos

M142 Val 352.4 268.9 322.2 333.7 262.4 303.7 275.6 336.6 SinCos

Tst 790.1 825.4 743 676.1 551.9 804.7 1061.8 859.0 SinCos

Trn 145.2 124.9 118.2 130.1 112.6 125.8 140 144.1 SinCos

M151 Val 95.7 77.3 78.6 93.7 93.1 67.1 103.2 110.6 Slndex

Tst 224.9 106.6 143.2 295.5 165.7 148.9 163.6 156.9 B in ll

M152 Trn 116.3 141.9 187.6 131.1 120.2 137.4 143.9 136.6 AR
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Time Series Set AR B inll Binl2 Int SinCos Slndex SRoot EXSM Best
Val 92.4 82 81.6 97.5 87.9 65.9 108.1 96.4 Slndex

Tst 501.9 121.5 168.9 179.9 132.5 130.4 155.3 134.0 B in ll

Validation errors are underlined and test errors are marked in bold. For each tim e series the best model for 

the training, validation, test set is identified.
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5 Forecasting w ith  Neural Networks: 
from  low to high frequency tim e 
series

Abstract

Prior research in forecasting time series w ith Artificial Neural Networks (ANN) has provided 

inconsistent evidence on their predictive accuracy. ANNs have shown only inferior performance on 

well established benchmark time series of monthly, quarterly or annual frequency. In contrast, ANN 

have shown good accuracy in electrical load forecasting on daily or hourly tim e series, leading to 

successful applications. While this inconsistency has been traditionally attributed to  the lack of a 

reliable methodology to model ANNs, the particular data properties o f high frequency time series 

may be equally important. High frequency time series of daily, hourly or even shorter tim e intervals 

pose additional modelling challenges in the length and structure of the time series that need the use 

of novel methods. This analysis aims to identify and contrast the challenges in modelling ANN for 

low and high frequency data in order to develop a unifying forecasting methodology tailored to the 

properties o f the dataset. A set o f experiments in three different frequency domains o f daily, weekly 

and monthly data o f one empirical time series o f cash machine withdrawals is conducted, using a 

consistent modelling procedure. While this analysis provides evidence tha t ANN are suitable to 

predict high frequency data, it also identifies a set o f challenges in modelling ANN that arise from 

high frequency data, in particular in specifying the input vector, that w ill require specific modelling 

approaches for high frequency data.
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Preface

This paper explores the modelling challenges that appear in forecasting high frequency time 

series. Based on the results o f this paper, the paper in the following chapter, which explores the 

specification o f the input vector fo r ANNs in high frequency forecasting problems, was motivated. A 

preliminary version o f this paper, w ith reduced dataset, was presented in the peer-reviewed 

conference International Joint Conference on Neural Networks 2009 (IJCNN 2009) and can be found 

in the proceedings under the title  "Input-variable Specification fo r Neural Networks - an Analysis of 

Forecasting low and high Time Series Frequency". Furthermore, parts o f the prelim inary work for 

this study were presented in the peer reviewed conference European Symposium on Time Series 

Prediction 2008 (ESTSP 2008) and are included in the proceedings under the title  "Automatic 

modelling o f neural networks fo r time series prediction -  in search o f a uniform methodology across 

varying time frequencies", which was developed in a separate paper named "Automatic modelling of 

neural networks for tim e series prediction across varying time frequencies", addressing the issue of 

automatic ANN modelling across different time series frequencies. This is submitted to the 

Neurocomputing journal.

5.1 Introduction

Artificial Neural Networks (ANN) have been widely applied in forecasting research and 

practice (Zhang, Patuwo et al. 1998). A recent literature survey reveals several publications on ANNs 

in tim e series prediction, w ith successful applications across various forecasting domains 

(see e.g. (Hill, O'Connor et al. 1996; Adya and Collopy 1998)), in academic research (Zhang 2001; 

Zhang, Patuwo et al. 2001) and in practice (Hippert, Bunn et al. 2005). In management research, the 

majority o f publications have lim ited their evaluation of ANN to predicting low frequency data. A
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literature review7 identified that 68.8%8 o f the published ANN papers analysed the performance of 

ANN on low frequency time series, i.e. time series of annual, quarterly, monthly or weekly 

observation intervals. In contrast, the evaluation o f ANN in predicting time series of higher 

frequency has received lesser attention, despite the widespread existence o f high-frequency data in 

electrical load forecasting (Cottrell, Girard et al. 1998; Darbellay and Slama 2000; Taylor, de Menezes 

et al. 2006), traffic predictions (Dougherty and Cobbett 1997; Dia 2001), finance (Lam and Lam 2000; 

Amilon 2003; Cao, Leggio et al. 2005) and macroeconomics (Gradojevic and Yang 2006) and evidence 

of promising results (Hippert, Bunn et al. 2005).

Forecasting high frequency time series is usually regarded as a d ifferent type o f forecasting 

problem compared to low frequency forecasting (Taylor, de Menezes et al. 2006). In statistics, time 

series o f daily or shorter time intervals are generally characterised as high frequency data, however 

there is no strict or fixed definition (Engle 2000). High frequency data pose a new set o f forecasting 

problems, that make conventional methods inappropriate (Granger 1998). They exhibit high 

sampling rate that reveals additional information and patterns in tim e series, which require new 

methodologies to explore and forecast (Taylor, de Menezes et al. 2006). Research in econometrics 

and finance by Markham and Rakes and Hu et al. (Markham and Rakes 1998; Hu, Zhang et al. 1999)

7 The rev iew  was carried on eight w ell established m anagem ent science and forecasting  journals. In 

alphabetical o rder these are: Com puters and O perations Research, Decision Sciences, European Journal of 

O perational Research, In ternational Journal o f Forecasting, Journal o f Forecasting, M an a g e m e n t Science, Naval 

Research Logistics and O perations Research. These journals have high ratings according to  both  in th e  Vienna  

list ranking and th e  ISI W eb  o f Science im pact factor.

8 In this calculation applications th a t are trad itionally  use only high frequency datasets, like electricity load 

forecasting w e re  excluded.
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suggests that ANN can perform particularly well on high frequency data due to the specific data 

properties, which has been supported by some empirical evidence in electrical load forecasting 

(Hippert, Bunn et al. 2005). However, ANN have not been analysed regarding the ir adequacy and 

challenges in predicting data of different time frequencies, leaving both fields of low-frequency and 

high-frequency tim e series disconnected with inconsistent findings.

The aim o f this study is to explore the accuracy and modelling challenges fo r ANN that arise 

from different levels o f time series frequency. A set o f experiments to predict 11 empirical time 

series o f daily cash withdrawals taken from the NN5 competition9 is conducted. These tim e series 

are aggregated to weekly and monthly levels o f time frequency. This aggregation enables an analysis 

of the changes in the performance of ANNs and test fo r the appearance o f new challenges in the 

modelling process during the transition from low to high frequency data. Data properties have a 

direct impact on the specification and length o f the input vector fo r ANN (Balkin and Ord 2000; Curry 

2007). Consequently, a set o f alternative methodologies for selecting the time-lagged input variables 

and the ir impact on forecasting accuracy is evaluated. Simultaneously, it is investigated whether the 

changes in the frequency affect the performance o f the input vector specification methodologies, 

which is overlooked in the literature. The accuracy o f the ANN is compared to statistical benchmark 

methods in each o f the frequency domains. This allows testing whether the difference between the 

accuracy o f the ANN and the benchmarks, if any, is consistent fo r d ifferent frequencies. Lastly, top- 

down and bottom-up time aggregation accuracy comparisons are done, in order to evaluate 

potential increases in accuracy in lower time frequency from predictions using high-frequency data

9 w w w .neura l-fo recasting -com petition .com
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and vice-versa. This way it is explored if there any gains from using data of higher frequency in 

forecasting w ith ANN.

The paper is organised in six sections. Section 5.2 briefly introduces the methods and 

different methodologies of input-vector specification fo r ANN, followed by inform ation on the time 

series and the experimental design in section 5.3. Section 5.4 discusses the results for each 

frequency domain and across frequency domains using a bottom -up comparison. In section 5.5 

characteristic modelling challenges of ANN on different time frequencies are discussed, followed by 

conclusions and further research in section 5.6.

5.2 Forecasting with Neural Networks

5.2.1 M ultilayer Perceptrons for Time Series Prediction

The most common ANN model is the Multilayer Perceptron (MLP) (Zhang, Patuwo et al. 

1998), which is the type of ANN is used in this study. The advantage o f MLPs is tha t they are well 

researched regarding the ir properties and their proven abilities in tim e series prediction to 

approximate and generalise any linear or nonlinear functional relationship to any degree o f accuracy 

(Hornik 1991; Zhang 2001; Zhang, Patuwo et al. 2001) w ithout any prior assumptions about the 

underlying data generating process (Qi and Zhang 2001), providing a powerful forecasting method 

for linear or non-linear, non-parametric, data driven modelling. In univariate forecasting feed

forward architectures of MLPs are used to model nonlinear autoregressive NAR(p)-processes, using 

only time lagged observations o f the time series as input variables to  predict future values (Crone 

and Kourentzes 2007), or intervention modelling of NARX(p)-processes using binary dummy 

variables to code exogenous events as explanatory intervention variables. Data are presented to the
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network as vectors of a sliding window over the time series history. The neural network learns the

underlying data generating process by adjusting the connection weights w =  (3, y) t °  minimise an 

objective function on the training data to make valid forecasts on unseen future data 

(Lachtermacher and Fuller 1995). A single hidden layer MLP is employed, which is expressed as:

X = [x0, X i, ..., xn] is the vector o f the lagged observations (inputs) o f the time series and w = (3, y) are 

the network weights w ith 3 = [Pi, P2- ,  3h] and y = [Yi, V2- ,  Yhi]- The biases fo r each node in the 

hidden layer are y0, and in the single output node p0. I and H are the number o f input and hidden 

nodes in the network and g( ) is a non-linear transfer function (Anders, Korn et al. 1998). Common 

transfer functions for ANN are the sigmoid (logistic) and the hyperbolic tangent (Zhang, Patuwo et al. 

1998) and fo r this analysis the later is used. Modelling a ANN fo r tim e series data requires decisions 

on a number o f architectural parameters, including the number o f input nodes, hidden layers, nodes 

per hidden layers, training parameters o f learning algorithm, learning rates, early stopping criteria 

etc. An adequate ANN architecture is routinely determined by using simulations on the tim e series; a 

set o f candidate MLPs is trained using different architectural parameters and the architecture which 

shows the lowest in sample error is selected.

5.2.2 Input Variable Selection for Tim e Series Prediction

While the specification o f ANN architectures is still under discussion in research (Zhang, 

Patuwo et al. 1998; Anders and Korn 1999) multiple publications have identified the selection o f the 

input vector as one o f the most important modeling decision for the accuracy o f ANNs (Zhang 2001; 

Zhang, Patuwo et al. 2001). As time series o f different frequency may display varying time series

(5.1)
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patterns, including the appearance o f multiple levels and forms o f seasonality, changes in the 

magnitude of seasonality, trend and randomness, a suitable input vector must be identified for each 

time series frequency. Consequently, multiple different approaches o f input variable selection are 

evaluated fo r each time series of a specific time frequency.

Several alternative input variable specification methodologies to model the ANNs are used

for each time series. Different methodologies to specify the input vector o f a MLP have been

suggested and explored for low frequency data, but w ithout adequate evaluation on high-frequency

data. In this study, four different methodologies are used, aiming to reflect possible interactions of

the tim e series frequency w ith the input-vector methodology and also to evaluate how the time

series frequency affects the performance o f the different methodologies. The most common

approach o f input variable selection fo r ANN applies a stepwise linear regression model w ith

hypothesis testing to identify significant time lags and use those to specify the input vector fo r the

ANN (Swanson and W hite 1997; Qi and Maddala 1999; Dahl and Hylleberg 2004), despite evidence in

econometrics and tim e series modelling that this may lead to suboptimal and misspecified input

variables. Following the findings of Kourentzes and Crone (2008) backward regression is used in a

similar fashion to stepwise. As an alternative, the input vector is specified follow ing the popular

statistical Box-Jenkins methodology o f ARIMA modelling as adapted fo r ANNs (Lachtermacher and

Fuller 1995; Ghiassi, Saidane et al. 2005). The autocorrelation function (ACF) and the partial

autocorrelation function (PACF) o f the time series is analysed in order to identify and select

significant time-lagged realisations. Significant lags of both ACF and PACF are used as inputs fo r the

ANN. Feed-forward MLP model autoregressive NAR(p)-processes (w ithout explicit MA {q)

components o f a moving average process), the inputs can be lim ited to the significant lags o f the

PACF (Moshiri and Brown 2004). The conventional algorithm to calculate the PACF utilises the Yule-
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Walker equations, but different ways to approximate the true PACF exist (McCullough 1998). 

Kourentzes and Crone (Kourentzes and Crone 2007) demonstrated that the least squares estimation 

of the PACF (Makridakis, Wheelwright et al. 1998) performs better than the Yule-Walker algorithm.

If seasonal information is identified in the time series special attention is required to obtain 

good performance w ith ANNs (Nelson, Hill et al. 1999; Zhang and Kline 2007). Depending on the 

nature of the seasonality, deterministic or stochastic, different type o f modelling should be done. If 

the seasonality is stochastic then the literature suggests deseasonalising the time series, using 

seasonal differences (Zhang and Kline 2007), whereas if it is o f determ inistic nature coding using 

seasonal dummy variables is to be preferred (Crone and Kourentzes 2009).

5.3 Experimental Design

5.3.1 Tim e Series Data

The experiments evaluate the effect o f increasing time frequency on a set o f 11 tim e series 

o f daily cash withdrawals from  cash machines in the UK, taken from  the NN5 competition dataset. 

These 11 time series are the reduced competition subset, which was defined by the organisers (ID# 

NN5-101 to NN5-111). The daily time series consists o f two years o f data, beginning March 18th 1996 

and ending May 17th 1998. In order to avoid the creation o f inconsistencies from the aggregation of 

the data, the first incomplete month that cannot be aggregated is trim m ed from  the tim e series and 

from the new starting date of April 1st 1996 two complete years are used. The new dataset has time 

series o f 24 months or 728 days. The trimmed time series contain missing values, which are imputed 

by the average o f the neighbouring observations. To run experiments on weekly and monthly data of 

lower frequency the adjusted daily time series is aggregated by summing cash withdrawals over
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w eeks and ca lenda r m on ths  respective ly . A p lo t o f  th e  f irs t tw o  da ily  tim e  series and th e  series 

aggregated to  w e e k ly  data and m o n th ly  data  is p rov ided  in fig u re  5.1.

l.a . NN5-101 Daily l.d . NN5-102 Daily
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l.b . NN5-101 Weekly
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Fig. 5.1: Time series NN5-101 and NN5-102 in daily (a, c), weekly (b, d) and m onthly (c, e) frequencies

A visual analysis o f  th e  tim e  series reveals va rious seasonal pa tte rns . In o rd e r to  id e n tify  

single o r m u ltip le  seasona lities o f d iffe re n t leng th  on th e  t im e  series o f d iffe re n t fre q u e n cy , an 

analysis o f  ACF/PACF-plots, pe riodog ram s and visual inspections o f seasonal ye a r-o n -ye a r d iagram s 

w ere  used, o f  w h ich  fig u re  5.2 show s th e  seasonal p lo t fo r  th e  da ily  tim e  series N N 5-001.

The seasonal p lo t ind ica tes a s trong  d a y -o f-th e -w e e k  seasonal p a tte rn , p lus som e s ligh t

in s ta tio n a r ity  o f  th e  level o f  th e  stacked w eek ly  lines, w h ich  can be a ttr ib u te d  to  a second annua l

p a tte rn . Both pe rio d o g ra m  and analysis o f  th e  ACF/PACF co n firm  these  p a tte rns , w ith  th e  day -o f-

th e -w e e k  p a tte rn  obv ious ly  m issing in th e  data w ith  lo w e r frequenc ies  o f  w e e k ly  and m o n th ly
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obse rva tions . The yea rly  season p rov ides som e challenges in id e n tif ic a tio n  fro m  th e  tru n ca te d  tim e  

series, as th e re  are on ly  tw o  years ava ilab le , fro m  w h ich  a large p a rt is used fo r  va lid a tio n  and te s t 

set, th e re fo re  it w ill be d if f ic u lt  fo r  th e  m ode ls to  cap tu re  th e  dou b le  seasonal e ffe c t. Using the  

Canova-Hansen te s t (Canova and Hansen 1995) all th e  seasona lities are id e n tifie d  as d e te rm in is tic .

NN5-101 Daily

Mon Tue Wed Thu Fri Sat Sun 
Day of the week

Fig. 5.2: Seasonal week-on-week diagram fo r the daily time series N N 5-101.

Table 5-I: UK bank holidays fo r each tim e series

Bank Holiday 101 102 103
Time Series 

104 105 106 107 108 109 110 111
New Year Day Yes Yes
Good Friday Yes Yes Yes Yes Yes Yes
Easter Monday Yes Yes
May Day
May Bank Holiday Yes Yes
August Bank Holiday
Christmas Holiday Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Boxing Day

The da tase t o rig ina tes  fro m  th e  U n ited  K ingdom  and th e  e ffe c t o f  bank ho lidays is a p p a ren t, 

espec ia lly  du rin g  C hristm as. The e igh t UK bank ho lidays are coded using da ily  b ina ry  d u m m y 

variab les and are aggregated in w eeks and m o n th s  fo r  th e  lo w e r fre q u e n cy  t im e  series. For each 

t im e  series, w h ich  o rig in a te  fro m  d iffe re n t geograph ic  loca tions, th e  re le va n t bank ho lidays are 

id e n tif ie d  th ro u g h  m eans o f regression analysis. The resu lts  are sum m arised  in ta b le  5-I, w h e re  it
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becomes obvious that Christmas affects the cash withdrawals fo r all time series, but the behaviour 

of the remaining bank holidays is not homogeneous across all tim e series.

5.3.2 Experimental setup

The setup o f the forecasting horizon, error metrics, and test dataset is guided by the design 

of the original NN5 competition. The forecasting horizon is h = 1, 2,..., 56 days into the future, or the 

equivalent o f 1 to 8 weeks and 1 to 2 months for the lower time frequencies respectively in order to 

allow top-down and bottom-up comparisons o f the accuracy across a homogeneous test set despite 

d ifferent time frequencies.

The symmetric mean absolute percent error (sMAPE) is used to evaluate and compare the 

competing modelling approaches, as in the NN5. It computes the absolute error in percent between 

the actuals X t and the forecast Ft fo r all periods t  o f the test set o f size n=h  fo r each time origin:

Note tha t way sMAPE is calculated in this study is different from the widespread sMAPE 

formula (Makridakis and Hibon 2000) that was also used in the NN5 competition. It is corrected to 

eliminate the possibility o f negative errors that the widespread form  o f sMAPE can produce (Chen 

and Yang 2004; Hyndman and Koehler 2006). In addition to sMAPE the symmetric median absolute 

percent error (sMdAPE) is considered, which instead o f the mean uses a median to summarise the 

errors, as:

sMAPE = - £
\ X , - F \  }

(5.2)

sMdAPE = fdx (5.3)
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Both the validation and test datasets contain 56 days each (or the equivalent o f 8 weeks or 2 

months fo r d ifferent time frequency). The size o f the test set is again set to match the NN5 

competition setup. The accuracy o f the competing ANN models is evaluated fo r statistically 

significant differences (at 5%) using the nonparametric Friedman test and the Nemenyi test. These 

test are selected to facilitate an evaluation o f nonparametric models w ithout the need to relax the 

assumptions o f ANOVA or similar parametric tests (Demsar 2006).

5.3.3 Neural Netw ork Architectures

The evaluation encompasses MLP models using d ifferent input-vector specifications and 

statistical benchmarks to compare the predictive accuracy o f d ifferent approaches. All MLP models 

use identical setup, w ith the exception o f varying the number o f inputs and hidden nodes. The input 

lags are identified w ith the four different alternatives outlined in section 5.2,

1. Stepwise regression analysis, named ANN-Reg(Step).

2. Backward regression analysis, named ANN-Step(Back).

3. ACF and PACF information, named ANN-ACF&PACF.

4. PACF information, named ANN-PACF.

In addition to the lags identified by the four methodologies, additional binary variables for 

the identified bank holidays are provided to the ANN. Furthermore, since the identified seasonality is 

deterministic, pairs o f sine-cosine dummy variables are used to code it. These dummies are 

constructed as:

(5.4)
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with S being equal to the seasonal length that is coded and t = 1,..., n w ith n being the length of the 

time series.

To identify the number of hidden nodes fo r each frequency a grid search from 1 to 16 

hidden nodes w ith a step o f 1 is performed. The resulting number of hidden nodes and the average 

number o f the identified lags are provided in table 5-11. All hidden nodes use hyperbolic tangent 

activation function.

Table 5-11: ANN average number o f lags and number o f hidden nodes

Frequency
ANN-Reg(Step) ANN-Reg(Back) ANN-ACF& PACF

ANN-
PACF

# Hidden nodes

Daily 9.55 10.91 26.18 14.36 3
Weekly 1* 1.64* 4.27* 1.91* 3
Monthly 0.27* 0.73* 0.73* 0.64* 14

* There are inputs tha t no lags were identified and only the dummy variables are used.

All MLPs have a single output node w ith a linear activation function. The topology o f the 

networks for each frequency is provided in figure 5.3.

3.a. Daily Frequency 3.b. Weekly Frequency 3.c M onth ly frequency

7^  TanH /  Linear

Fig. 5.3: M LP topologies with variable num ber o f inputs for daily (a), weekly (b) and m onthly (c) frequencies.



All the networks are trained using the Levenberg-Marquardt algorithm, which requires setting the 

pLM and its increase and decrease steps. Here pLM=10'3, w ith an increase step o f Pinc=10 and a 

decrease step of |idec=10 \  The maximum training epochs are set to 1000. The training can stop 

earlier if pLM becomes equal o f greater than pmax=1010 or the validation error increases fo r more than 

50 epochs. This is done to avoid over-fitting. When the training is stopped the network weights that 

give the lowest validation error are used. Each MLP is initialised 40 times w ith randomised starting 

weights to counter the stochasticity o f the optim isation and to provide an adequate sample to 

estimate the distribution of the forecast errors in order to conduct the statistical tests. The MLP 

initialisation w ith the lowest error for each time series on the validation dataset is selected to 

predict all values o f the test set. Lastly, the time series are linearly scaled between [-0.5, 0.5]. Note 

that the dummy variables are not scaled, since by construction they are w ithin the bounds of the 

hyperbolic tangent function o f the hidden nodes. The scaling is set like that to allow the ANN models 

to capture weak trends that may exist in the data (Kourentzes and Crone 2007).

5.3.4 Statistical Benchmark Methods

Any empirical evaluation of time series methods requires the comparison o f their 

performance w ith established benchmarks. This is very im portant fo r ANN studies, since it is crucial 

to justify the need fo r the extra modelling complexity that the MLPs require, which is often 

overlooked in the ANN literature (Adya and Collopy 1998). The accuracy o f the MLPs across all 

frequencies is compared against a set o f statistical benchmark models. Nonseasonal and seasonal 

versions o f the naive and exponential smoothing family models are used. The nonseasonal naive 

model is the random walk model and is named in this analysis as N aive . The seasonal naive model 

uses a seasonal lagged observation, instead o f used the previous xM observation as a forecast. For a
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time series X = [x0, xlt ..., xn] w ith a seasonality 5 and forecast horizon h the seasonal naive forecast is 

calculated as:

Xt+h\i =  Xr+h-S • (5-6)

Two seasonal patterns were identified, a day o f the week and an annual, which means two different 

seasonal models can be modelled. N aive  S I w ill model the day of the week seasonality that can only 

be modelled fo r the daily time series and N aive  S2 w ill model the annual season.

Exponential smoothing models are fitted according to the suggestions of the literature 

(Gardner 2006) w ith the only difference that in this study a nonseasonal exponential smoothing 

model is used as well. Again, two different seasonalities are modelled, one for the day of the week 

season and one fo r the annual season. Note that the annual seasonality includes the day o f the week 

season. All the tim e series are tested fo r presence of trend using the Cox-Stuart test10 (Cox and 

Stuart 1955) and the appropriate exponential smoothing model is fitted. The three models are 

named: EXSM  fo r the nonseasonal exponential smoothing model, EXSM  S I  fo r the day of the week 

seasonal model that is only fitted  to the daily time series and EXSM S2 fo r the annual seasonality. In 

total six statistical benchmark models are used.

10 The Cox-Stuart test is an extension to the sign test and tests if the level of later observations of a vector tend 

to be different than the earlier ones. A vector is split in the middle forming two new vectors. Pairwise 

comparisons between the vectors provide the total number of increases and decreases in the values of each 

pair. A sufficiently large number of increases or decreases indicates the presence of trend. The null hypothesis 

is that there is no trend in the level.
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5.4 Results

5.4.1 Comparisons between ANN models

The stochastic nature of the training of ANNs makes it problematic to compare the accuracy 

of ANN directly or even replicate the observed accuracy of an analysis, since different training 

initialisations w ill produce different results. One way to overcome this problem is to use all the 

different training initialisations, instead of only the best, and perform statistical tests on the 

complete distribution of the errors (Demsar 2006). In order to  do this, first the Friedman 

nonparametric test is used and if at least one model is found significantly different from the others, 

then the Nemenyi test is employed to get the detailed ranking of the different models. The results of 

the Friedman test are provided in table 5-111, where one can observe that only fo r the daily frequency 

there is at least one ANN model that is significantly different from the rest. Note that the p-values of 

the Friedman test are identical fo r both sMAPE and sMdAPE for the monthly tim e series. This 

happens because both error measures give exactly the same figures, since the test set is only two 

months long.

Table 5-111: Friedman test p-value
Time Series sMAPE sMdAPE
Daily 0.000 0.000
Weekly 0.054 0.060
Monthly 0.620 0.620
The boldface p-values highlight the cases that the models 
are significantly different at 5% level.

In the light o f these results the Nemenyi test is used. The results are provided in table 5-IV. 

Note that the Nemenyi test does not output a p-value; therefore the ranking o f the models at 5% 

significance level are provided, with rank 1 being the best. The models that are found w ith no 

significant differences are given the same rank. The ranking o f the models is not constant across the
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different frequencies, but they show consistent ranking between the sMAPE and the sMdAPE. The 

regression based methodologies are not significantly d ifferent and perform best fo r the daily time 

series, followed by the ANN-PACF. The performance o f the AN N -A C F& PA C F  is significantly worse 

and ranks last. For the weekly and the monthly time series the Friedman and Nemenyi tests do not 

agree. In this case the results o f the Friedman test should be preferred (Demsar 2006) and the 

models should be considered to perform similarly w ith no statistically significant differences. From 

this comparison it becomes clear that time series frequency is a significant factor fo r the 

performance o f the input variable selection methodologies and should be explored in more detail.

Table 5-IV: Nemenyi test results - rank of ANN models

Model
Test set sMAPE 

Daily Weekly* Monthly*
ANN-Reg(Step) 1 2 1
ANN-Reg(Back) 1 2 2
ANN-PACF&ACF 3 3 2
ANN-PACF 2 1 2

Test set sMdAPE
Model Daily Weekly* Monthly*
ANN-Reg(Step) 1 2 1
ANN-Reg(Back) 1 2 2
ANN-PACF&ACF 3 3 2
ANN-PACF 2 1 2
In each column, models that are highlighted with boldface have no statistically 
significant differences at 5%; *Friedman test indicates that there are no statistically 
significant differences among the models at 5% for monthly time series

5.4.2 Comparisons against statistical benchmarks

The performance o f the ANN is evaluated against six statistical benchmark models across all 

frequencies fo r both error measures. The results o f this comparison are summarised in tables 5-V 

and 5-VI fo r sMAPE and sMdAPE respectively.
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Table 5-V: sMAPE results for all ANN and benchmark models

Model
Daily Weekly M onthly

Train Valid. Test Train Valid. Test Train Valid. Test
ANN-Reg(Step) 0.204 0.286 0.211 0.125 0.088 0.123 0.070 0.014 0.120
ANN-Reg(Back) 0.217 0.293 0.209 0.109 0.087 0.103 0.093 0.012 0.096
ANN-PACF&ACF 0.236 0.301 0.233 0.125 0.085 0.115 0.105 0.020 0.139
ANN-PACF 0.225 0.299 0.229 0.114 0.083 0.108 0.125 0.021 0.137
Naive 0.474 0.454 0.402 0.177 0.208 0.152 0.142 0.155 0.111
Naive S 0.316 0.415 0.226 - - - - - -
Naive S2 0.265 0.286 0.290 0.137 0.138 0.146 0.097 0.093 0.104
EXSM 0.362 0.432 0.369 0.153 0.182 0.117 0.127 0.143 0.133
EXSM SI 0.262 0.369 0.221 - - - - - -
EXSM S2 0.105* 0.323 0.273 0.050* 0.217 0.128 0.031* 0.076 0.095

* The observed tra ining error is misleading and is due to the lack o f the tra in ing data and the model initialisation.

Table 5-VI: sMdAPE results fo r all ANN and benchmark models

Model
Daily Weekly M onthly

Train Valid. Test Train Valid. Test Train Valid.** Test**

ANN-Reg(Step) 0.127 0.175 0.149 0.082 0.061 0.092 0.056 0.014 0.120
ANN-Reg(Back) 0.147 0.186 0.149 0.078 0.060 0.092 0.082 0.012 0.096
ANN-PACF&ACF 0.150 0.194 0.159 0.081 0.054 0.146 0.091 0.020 0.139
ANN-PACF 0.137 0.185 0.151 0.081 0.056 0.086 0.111 0.021 0.137
Naive 0.395 0.408 0.324 0.135 0.218 0.136 0.121 0.155 0.111
Naive S 0.202 0.305 0.174 - - - - - -
Naive S2 0.162 0.167 0.179 0.114 0.115 0.115 0.091 0.093 0.104
EXSM 0.303 0.374 0.318 0.117 0.175 0.098 0.114 0.143 0.133
EXSM SI 0.176 0.291 0.172 - - - - - -
EXSM S2 0.000** 0.207 0.169 0.000** 0.185 0.091 0.000** 0.076 0.095

* The observed tra in ing error is misleading and it is due to  the lack o f the training data and the model initialisation; * *  
Both validation and tra in ing set are tw o  months long which explains why the mean and the median are equal.

The ANN errors that are presented in these tables are from  the MLP initialisations w ith the 

lowest error on the validation set. The comparison between the d ifferent ANN models is presented 

in the previous section in more detail. There are some small deviations in the results o f tables 5-V 

and 5-VI from  the ranking presented in table 5-IV and are due to the effect o f the random training 

initialisation. When comparing against the benchmarks only the best fitted  ANN is used and not the 

complete error distribution o f the ANN initialisations, as this would be similar to comparing
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suboptimal statistical models. The multiple initialisations ensure a wide search fo r good weights for 

the MLP models and the best model is evaluated against the benchmarks.

It is clear by looking at the benchmark models that those that capture the seasonality 

perform best. Furthermore the forecasts produced by the EXSM  S I and EXSM  S2 models across all 

frequencies outperform  the N aive  S I and the N aive  S2 models in the test set. For the case of the 

weekly tim e series for the sMAPE this does not seem to be the case and the nonseasonal EXSM  is 

the most accurate benchmark. This can be attributed to the lim ited in-sample data to correctly 

model the annual seasonality. The best performing ANN is compared against the most accurate 

benchmark models across frequencies to investigate which performs best and whether the ranking is 

consistent across frequencies. For both the daily and weekly time series case the ANN models 

outperform  the benchmarks, but the difference between them becomes smaller as the frequency 

decreases, to the point that fo r the monthly time series the best benchmark is more accurate than 

the best ANN model. The differences between the best models are illustrated in table 5-VII.

Table 5-VII: Differences between best ANN and best benchmark

Test set sMAPE
Time Series Best ANN Best Benchmark Difference

Daily 0.209 0.221 -0.012
Weekly 0.103 0.117 -0.014
M onthly 0.096 0.095 0.001

Test set sMdAPE
Time Series Best ANN Best Benchmark Difference

Daily 0.149 0.172 -0.023
Weekly 0.086 0.091 -0.005
M onthly 0.096 0.095 0.001

The time series frequency seems to be im portant in determining the performance o f ANN in

forecasting. Consulting table 5-11 one can see that fo r higher frequencies more autoregressive

information is captured in the longer input vectors, which as expected helps the networks to
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approximate better the underlying data generating process of the time series and achieve higher 

accuracy. Note that fo r the monthly frequency case the average input vector length is below 1 (table 

II), indicating that several models had no autoregressive information available. This result can help to 

explain the evidence o f good results in high frequency electricity load forecasting (Hippert, Bunn et 

al. 2005) and the bad performance of ANN in the low frequency data M3 competition (Makridakis 

and Hibon 2000). Furthermore, it demonstrates motivates further more systematic research o f ANN 

applications in high frequency time series problems.

5.4.3 Top-down and bottom-up comparisons

W ith this experiment the accuracy gains (or losses) in using high frequency data against the 

more common low frequency data are evaluated. The forecasts created at d ifferent frequencies are 

compared, measuring the errors in all three daily, weekly and monthly time granularities. This way it 

is possible to measure directly at which frequency the forecasts are more accurate. To achieve this, 

the daily forecasts are aggregated to weekly and monthly and similarly the weekly and monthly 

forecasts are broken down to daily and weekly buckets respectively. Afterwards, the errors in all 

different frequencies are measured, essentially performing a time-wise top-down and bottom-up 

comparison. The results across all time series are consistent so here a summarised version o f the 

average sMAPE and sMdAPE across all time series for all the ANN models is presented in table 5-VIII. 

For both sMAPE and sMdAPE we can see that when we measure at daily tim e frequency the 

forecasts created on daily data are the most accurate. The reason behind this is that only the models 

that have used daily data are able to capture the day o f the week pattern that is present in all the 

tim e series. However, fo r both weekly and monthly data the most accurate forecasts are created by 

using weekly data, followed by daily data and last monthly data. This is partially explained by two
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different reasons, the effect o f the outlier coding and the applicability o f the input vector selection

methodologies. Both w ill be discussed in detail in the following section.

Higher frequency data can provide extra detail which may be lost in the lower frequencies, 

that aids in the creation o f better forecasts, as the comparison in table 5-VIII indicates. As a 

consequence, one may consider forecasting on higher frequency data even if the decision domain is 

on a lower tim e series frequency. This fu rther raises the importance o f robust modelling of MLPs on 

high frequency data, in particular when calendar effects are present in the time series.

Table 5-VIII: Average test set sMAPE

Model used to  create forecast
Frequency Daily Weekly M onthly
Daily 0.220 0.363 0.400

Measured at Weekly 0.137 0.112 0.156
M onthly 0.120 0.091 0.123

Average test set sMdAPE

Model used to  create forecast
Frequency Daily Weekly M onthly
Daily 0.159 0.305 0.360

Measured at Weekly 0.113 0.086 0.141

M onthly 0.120 0.091 0.123

Each row shows the errors at the measured frequency and each column 
shows the errors at the frequency that the forecasts were calculated

5.5 Discussion

5.5.1 O utlier coding

In the previous section it was argued that part o f the reason that the weekly frequency 

forecasts performed better than the daily ones was due to how the outliers, and more specifically 

the calendar effects, are coded. Going from monthly to  daily frequency the time series has much 

more detail that allows the observation o f how certain irregularities, like the calendar effects, 

happen. For the NN5 dataset there is a significant effect o f the Christmas bank holiday fo r all time
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series. W h a t one w o u ld  expect is th a t th is  bank ho liday  w o u ld  have a sp ill-o ve r e ffe c t to  the  

ne ig hb o u rin g  days, w h ich  is obv ious ly  n o t observed in th e  w e e k ly  o r m o n th ly  da ta . This sp ill-o ve r 

e ffe c t was n o t cap tu red  by th e  b ina ry  dum m ies  th a t w e re  used to  code th e  o u tlie rs  as it is seen in 

fig u re  4. In th is  fig u re  th e  fo recasts  and th e  tim e  series fo r  th e  v a lid a tio n  set o f  N N5-103 are p lo tte d . 

The v a lid a tio n  set is p rov ided  since C hristm as occurs th e n . Figures 5 .4 .a -  5 .4 .c have da ily , w eek ly  

and m o n th ly  data  respective ly . In each fig u re  th e  actua l data  are p lo tte d  to g e th e r w ith  th e  fo recasts  

crea ted  in each frequency. These fo recasts  w e re  o b ta ined  by fo llo w in g  th e  to p -d o w n  b o tto m -u p  

approach  th a t w as discussed in th e  p rev ious  section . To keep th e  fig u re  easy to  in te rp re t o n ly  the  

fo recasts  o n ly  fro m  th e  ANN-Reg(Back) m ode l are p rov ided .

Figure 4.a. Daily Data Figure 4.b. Weekly Data Figure 4.c. M onth ly Data
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Fig. 5.4: Forecasts fo rN N 5-103 o f the ANN-Reg(Back) model across different frequencies.

It can be easily seen in figu res  5 .4 .b -  5.4.c th a t th e  o u tlie rs  are m ore  accu ra te ly  coded w hen  

th e  fo recas ts  are crea ted  in th e  same frequency , since a single va lue  in th e  b ina ry  d u m m y  is enough  

to  cove r its w h o le  d u ra tio n . The same is no t tru e  fo r  th e  fo recas ts  crea ted  in th e  da ily  fre q u e n cy . 

T here  is a ve ry  s trong  lead-in  e ffe c t w h ich  is n o t cap tu red  by th e  b ina ry  d u m m y  va ria b le  th a t 

w orsens th e  accuracy o f th e  m ode l be fo re  th e  o u tlie r. N otice  th a t th e  fo re ca s t based on da ily  data  

cap tu res  a d e q u a te ly  th e  day o f th e  w eek p a tte rn  aw ay fro m  th e  o u tlie r , b u t is n o t ab le  to  f i t  th e  data 

du rin g  th e  e ffe c t o f  th e  o u tlie r. The p rob lem  is th a t th e  e ffe c t o f  C hris tm as in th is  case lasts m uch
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longer than what was coded, therefore in high frequency data dynamic effects due to outliers are 

observed, which require a d ifferent dummy variable coding. Therefore, it is important to research 

alternative coding schemes for outliers that w ill have to incorporate duration or dynamic 

information.

For these experiments the inadequate modelling o f the outliers introduced errors and also 

made the training o f the ANNs harder, thus harming their accuracy.

5.5.2 Input vector identification and the effect of sample size

High frequency data implies large sample size. Daily time series are 30 times longer than 

monthly and 7 times longer than weekly for the same time span. The increased length o f the time 

series impacts the validity o f many of the statistical methods that have been developed for exploring 

and modelling the time series (Granger 1998). Evidence is provided that ANNs are able to cope with 

high frequency data; however their accuracy is harmed by the tools used to construct them. A major 

issue fo r ANN modelling is the identification o f a good input vector, as discussed before. There are 

several input variable selection methodologies on how to select the correct time lags to build ANNs 

and some o f these were used in this experiment. However, the statistical tests on which these 

methodologies are based fail when dealing w ith high frequency datasets. For instance fo r the ACF or 

PACF identification, to find which lags are important fo r the ANN, one needs to identify all the lags 

w ith significant (partial) autocorrelation. A problem that makes this methodology collapse fo r high 

frequency data is that the confidence intervals o f the ACF/PACF are connected to the sample size 

(Makridakis, W heelwright et al. 1998), as it can be seen in figure 5.5.
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Fig. 5.5: Effect o f  sample size on confidence intervals.

As th e  ind iv idua l a u to co rre la tio n s  and p a rtia l a u to co rre la tio n s  o f a tim e  series e x h ib it a 

co n s ta n t m agn itu d e  fo r  a g iven tim e  series, m ore  lags o f  th e  ACF and PACF becom ing  s ta tis tica lly  

s ign ifican t. E ventua lly , th e  con fidence  in te rva ls  becom e so t ig h t th a t nearly  eve ry  lag becom es 

s ign ifican t, an e ffe c t th a t w o u ld  equa lly  ho ld  fo r  th e  te s t o f  s ta tis tica l s ign ificance used in s tepw ise  

regression. As a resu lt, th e  leng th  o f th e  in p u t v e c to r w o u ld  rise d ras tica lly  w ith  th e  m a g n itu d e  o f 

th e  da tase t. In p rac tice  th is  can be seen in frequenc ies  h igher than  da ily , w h ich  m akes th e ir  

m o d e llin g  p ro b le m a tic .

To e xe m p lify  th e  e ffe c t o f sam ple size w h ile  co n tro llin g  fo r  e ffec ts  o f  th e  in fo rm a tio n  

co n te n t, s yn th e tic  tim e  series o f 120 and 1200 obse rva tions  are used, th e  la te r being te n  re p lica tio n s  

o f th e  f irs t sam ple. The resu lts  fo r  th e  PACFs ca lcu la ted  fo r  these tw o  tim e  series are p ro v id e d  in 

fig u re  5.6. It is e v id e n t th a t th e  ACF o f th e  sho rte r, lo w -fre q u e n cy  tim e  series using o n ly  120 

obse rva tions  has fa r less s ign ifican t lags th a n  th e  ACF o f  th e  second sam ple, w h ich  uses 10 tim e s  

m ore  o b se rva tions  to  re p re se n t th e  increased data o f a h ig h -fre qu e n cy  tim e  series w ith  s im ila r 

in fo rm a tio n  co n te n t. This e ffe c t can also be observed in th e  spec ified  in p u t vec to rs  leng ths o f  ta b le  

5-11.
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Fig. 5.6: PACF plots o f  a short (a) and a long sample o f  an artific ia l time series (b).

As a resu lt, th e  m e th odo log ies  based upon s ta tis tica l te s t w o u ld  co n s tru c t n o n -pa rs im on ious  

m ode ls  th a t depend  n o t on th e  s tru c tu re  o f th e  data g e n e ra ting  process, b u t m ere ly  th e  sam ple size. 

In a d d itio n , th e  im p a c t o f  sam ple size on con fidence  lim its  m ay vo id  bes t-p rac tice  m e th odo log ies  

deve loped  fo r  lo w -fre q u e n cy  data fo r  h ig h -frequency  tim e  series desp ite  s im ila r tim e  series 

p a tte rn s . E ffects o f  th is  are re fle c te d  b o th  in th e  to p -d o w n , b o tto m -u p  com parisons and in th e  

d iffe re n t pe rfo rm a n ce  be tw een  th e  a lte rn a tive  m e th o d o lo g ie s  to  spec ify  th e  in p u t ve c to r, as 

sum m arised  in ta b le  5-IV. A d d itio n a l research is needed to  exp lo re  co rre c tio n s  to  co n ve n tio n a l 

m e th o d o lo g ie s  o r in ve n ting  new  ones, in o rd e r to  ex tend  th e  use o f s ta tis tica l te s t as f i lte rs  in 

m o d e llin g  high fre q u e n cy  data.

5.5.3 Calendar problems

In high fre q u e n cy  data th e  ca lendar e ffec ts  s ta rt ga in ing  m o re  im p o rta n ce  in co n tra s t to  lo w  

fre q u e n cy  fo recas ting  app lica tions . The d iffe re n t b e h a v io u r o f  th e  ca lendar e ffec ts , like bank 

ho lidays, across d iffe re n t frequenc ies  is a lready d iscussed. There  are a d d itio n a l issues th a t a rise in 

high fre q u e n cy  tim e  series. For th e  case o f  w e e k ly  da ta , tim e  series can have irre g u la r seasonal 

lengths, som e tim es  having 52 w eeks in a yea r and som e tim es  53 w eeks in a year. The same is tru e
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for daily data, where every four years there is a leap year w ith one additional day, potentially 

shifting the seasonal pattern by one day. In the experiments in this analysis we had only two years of 

data, part o f which was not used fo r fitting the models, so it was impossible to  evaluate these 

effects. In the literature usually the time series are cleaned free o f these effects as a pre-processing 

stage (Taylor, de Menezes et al. 2006) before the forecasts are created. However, it is unclear if this 

affects accuracy. Also this practice does not provide a solution when cleaning the data is either not 

possible or unclear how to do. Therefore, it is im portant that more research is done on the calendar 

effects on high frequency time series, and how these should be modelled.

5.5.4 Computational resources

In modelling high-frequency time series there are particular challenges that warrant 

discussion to facilitate further research. A fundamental characteristic o f high frequency data -  fo r a 

given time span o f history -  are large datasets. In the preceding experiments, the daily tim e series is 

700% longer than the weekly time series and 3033% longer than the monthly time series.

Due to the increased size o f the datasets, modelling MLPs for high frequency data require 

additional computational resources. In the experiments an identical methodology was used to 

forecast the 11 time series w ith ANN across the three frequency domains, so that all differences in 

processing time were solely caused by the amount o f data resulting from  the different time 

frequencies. The processing times for training the MLPs, w ith all 40 training initialisations, and 

producing the forecasts is provided in table 5-IX. All experiments were run on the same computer 

using Matlab and its neural network toolbox v6. The results indicate that the daily time series 

experiments required 3524% more time than the monthly equivalent experiments. Even for the 

weekly time series the required increase in computational time was of the magnitude o f 898%.
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Table 5-IX: Total computational time comparisons

Time Series Seconds* % difference**
Daily 8401 3524%
Weekly 2314 898%
Monthly 232 -
*experiments were run on a tri-core Phenom 8650 @ 2.3 GHz; 
**base for % difference is the monthly frequency time

Valid and reliable experiments w ith ANNs require large scale simulations. Simulations on 

high-frequency data will require substantial computational resources. This calls fo r more efficient 

algorithms and the development of robust methodologies to specify the input variables and the 

other parameters o f the ANNs. Current practice is to run lengthy simulations, follow ing the wrapper 

approach, i.e. evaluate several d ifferent settings and choose the best. This approach is very hard to 

implement in high frequency data for any practical application, since the computational time 

involved would make the endeavour impossible. Therefore, it is important tha t methodologies that 

guide the modelling process through data driven analysis are developed, which will be valid for high 

frequency datasets.

5.6 Conclusions

The effect o f increasing frequency was evaluated on forecasting the NN5 reduced dataset 

w ith ANNs. The experiments indicated that MLPs are well suited to predict high-frequency data of 

weekly and daily observations and outperform  established statistical benchmark methods, while 

they fail to outperform  them on low-frequency data o f monthly observations. Focusing only on the 

ANN modelling related issues there are several findings:

1. The input variable specifications methodologies that were employed in this study did not

perform consistently in the three different frequency domains. This study was lim ited to  four

alternative methodologies, which faced a series o f problems in modelling high frequency
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data. This study provides evidence that most methodologies w ill face similar problems 

provided that they are based on conventional statistical tools. This means that there is need 

fo r more research e ffort on how to specify the input variables fo r ANN fo r high frequency 

tim e series.

2. ANNs seemed to perform better in the presence of more detailed time series that are 

available in high frequency datasets in comparison to lower frequency time series. Evidence 

was provided that ANN may be better suited to forecast high frequency data rather than the 

low frequency data stemming from the popular M3 or the newer NN3 forecasting 

competitions on which they are routinely evaluated in the academic forecasting domains. 

This may provide an initial explanation of the apparent gap between the ir limited merit in 

empirical evaluations and academic competitions using low frequency data, and their 

corporate success in applications o f electrical load forecasting which routinely employs high- 

frequency data. In this study the same 11 time series were used across three different 

frequencies, making direct accuracy comparisons possible, thus providing a balanced and 

valid evaluation. On the other hand, although ANNs seemed to  be able to cope well w ith this 

type o f data, they were restricted by the statistical exploration and analytical tools that are 

used, which were originally developed for low frequency applications. Therefore, there is a 

need to create new tools or apply corrections to existing ones to be applicable to high 

frequency data forecasting. This is also directly related to  the identification o f the input 

vector fo r the ANNs.

3. One im portant new element o f the high frequency time series is the long duration of 

outliers. In this analysis significant lead-in effects were identified that were not captured by
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the common binary dummy variable encoding and it was stressed that there is need to 

develop a method that will allow the coding o f outliers w ith long duration or capture the 

dynamic effects caused by these outliers.

4. The calendar information gains more importance in high frequency time series. This is due to 

the special calendar effects, but also to leap years and other similar effects, which can shift 

seasonal patterns and impair the use of traditional statistical analysis. Researching whether 

these affect the forecasting accuracy and how they should be modelled is im portant fo r high 

frequency forecasting problems.

5. It was demonstrated that high frequency forecasting w ith ANNs is very demanding on 

computational resources. In order to have practical large scale applications it is necessary to 

improve the performance of algorithms and devise smart ways that w ill elim inate the need 

fo r lengthy simulations to parameterise the ANNs.

This analysis -  despite its lim itations stemming from a small dataset o f tim e series -  may 

facilitate revisions o f existing modelling approaches employed fo r low frequency data in 

management science, and also to serve as a starting point fo r the development o f a unified 

methodology to accurately forecast high as well as low frequency data w ith ANNs. In the future, the 

analysis must be extended to additional datasets, w ith tim e series of d ifferent patterns, and to 

additional methodologies o f input variable selection to provide a coherent, valid and reliable picture 

of the relative performance of ANN on high and low frequency data. Future work w ill include the 

evaluation o f existing input variable selection methodologies fo r applicability and performance in 

high frequency time series, since the input vector is one of the defining elements o f ANN accuracy
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and up until now this topic has been widely overlooked, although these datasets are becoming more 

and more common.

Page 167



6 Inpu t specification fo r high frequency 
time series forecasting w ith  a rtific ia l 
neural networks. An em pirical 
evaluation

Abstract

Artificial Neural Networks (ANNs) have been successfully applied in several time series 

forecasting applications. Past forecasting competitions have shown that as the data frequency 

increases, the relative accuracy of ANN against benchmarks increases too. However, our knowledge 

o f how to model ANNs for high frequency time series is lim ited and most o f the published literature 

refers to low frequency problems. The problem is more apparent in selecting the input variables for 

the ANN models, since there is no widely accepted best practice. This analysis explores the 

applicability o f existing and new input variable specification methodologies fo r ANNs fo r the case of 

high frequency data. Several ACF and PACF, regression and heuristic based approaches are evaluated 

using tw o real datasets. Regression based methodologies are found to perform overall the best.

Preface

This paper evaluates the modelling the different input variable specification methodologies 

that are published in the ANN forecasting literature, when applied to high frequency data 

forecasting problems. Preliminary results o f this study have been presented in the International 

Symposium on Forecasting in 2009 (ISF 2009), while an extended version was presented in the 2009 

Annual Conference o f the Operational Research Society o f South Africa (ORSSA 2009).
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6.1 Introduction

Artificial Neural Networks (ANNs) have shown great potential both in forecasting research 

and applications (Hill, O'Connor et al. 1996; Adya and Collopy 1998; Zhang, Patuwo et al. 1998; 

Hippert, Bunn et al. 2005). ANNs in theory are universal approximators that are able to model any 

linear or nonlinear function (Hornik 1991) and generalise well, able to produce accurate ex-ante 

forecasts (Zhang 2001; Zhang, Patuwo et al. 2001). However, in the M3 competition, ANNs 

performed worse than established statistical models, like the exponential smoothing fam ily models 

that are much simpler (Makridakis and Hibon 2000). Despite the extensive research effort invested 

on them, there is no generally accepted modelling methodology. This can make the ir use d ifficult 

and unreliable (Anders and Korn 1999; Armstrong 2006). The lack of understanding of the inner 

workings of ANNs for forecasting problems, can explain the rise o f the criticism and the small 

acceptance by practitioners (Bunn 1996; Armstrong 2006). In a recent literature survey (Kourentzes 

and Crone 2009) it was found that most o f the ANN forecasting papers use tria l and error 

approaches or select arbitrarily the model parameters, like the inputs, the number of hidden nodes, 

learning parameters, etc, yet the performance o f ANNs is greatly affected by these, leading to 

questions o f validity o f implementation fo r several studies in the literature (Adya and Collopy 1998). 

The most im portant determ inant o f accuracy for forecasting applications w ith ANNs is the selection 

o f the input variables (Zhang 2001; Zhang, Patuwo et al. 2001). In the literature there are several 

alternatives that try  to address this issue, but there is still no widely accepted methodology for input 

variables selection (Anders and Korn 1999). One o f the reasons fo r this is tha t there is no extensive 

evaluation o f the published methodologies or any meta-analysis that w ill allow to  answer which 

methodologies work well w ith ANNs and why (Kourentzes and Crone 2009). The aim o f this analysis 

is to address this problem fo r the case o f the high frequency time series.
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The distinction between low and high frequency time series in forecasting is important. 

There is no strict definition of what constitutes high frequency tim e series, but usually it is flexibly 

defined according to the available techniques, what is common practice and the advances in 

computational power (Engle 2000). High frequency time series are in practice time series w ith time 

granularity o f daily observations or shorter, while low frequency data are usually monthly, quarterly, 

etc. Such high frequency data have different properties, like multiple overlaying seasonalities, 

increased levels o f noise and vast amounts o f data, which may lead to modelling challenges. The 

literature argues that the conventional models and time series exploration tools may not always 

work well in high frequency applications (Granger 1998), requiring them to be sufficiently modified 

to tackle the new properties, or requiring the invention o f new methods altogether (Taylor, de 

Menezes et al. 2006). On the other hand, there is increasing evidence that ANNs have advantages in 

modelling high frequency time series. High frequency data are associated w ith large sample sizes 

that are positively linked w ith the performance o f ANNs (Markham and Rakes 1998; Hu, Zhang et al. 

1999). Furthermore, there are ANNs' high frequency forecasting applications that show good 

performance. For instance, ANNs are widely regarded as a potent tool in electricity load forecasting, 

which is a typical high frequency application (Hippert, Bunn et al. 2005; Hahn, Meyer-Nieberg et al. 

2009). In studies that use a consistent modelling methodology fo r forecasting time series o f d ifferent 

frequencies w ith ANNs, it was found that the forecasting accuracy improved in high frequency time 

series (Kourentzes and Crone 2008; Crone and Kourentzes 2009). However, it is unknown whether 

ANNs are readily applicable to high frequency applications or if they require different modelling 

methodologies. Answering this would clarify the reason behind the reported inconsistencies in the 

performance o f ANNs in the literature in such applications (Dahl and Hylleberg 2004; Taylor, de 

Menezes et al. 2006). This question becomes particularly im portant fo r selecting the input variables
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of the ANNs, as they are the most im portant factor fo r ANNs forecasting accuracy (Zhang 2001; 

Zhang, Patuwo et al. 2001). Most o f the available input variable selection methodologies are 

calibrated fo r low frequency time series and make use o f tools that are bound to break down when 

applied to high frequency data (Granger 1998; Crone and Kourentzes 2009). Therefore, it is 

imperative to identify which input variable selection methodologies are fitting  fo r high frequency 

data and which perform best.

This study evaluates several published input variable selection methodologies for ANNs. 

These methodologies cover three major families o f approaches, those that are based on heuristics, 

those that make use o f autocorrelation and/or partial autocorrelation analysis or similar approaches 

and those that are based on regression based analysis. Additionally, new variants and combinations 

o f the published methodologies are explored. The evaluation is done using tw o separate high 

frequency tim e series datasets, one from the NN5 competition dataset11 and the other containing 

electricity load time series in the UK. The use o f multiple datasets increases the generalisability of 

the findings. The evaluation follows the literature's guidelines fo r valid and rigorous experimental 

design that leads to reliable conclusions (Collopy, Adya et al. 1994; Adya and Collopy 1998). 

Moreover, special care is taken to address the issue o f the replicability o f the ANN results and 

provide robust findings. The main finding is that regression based methodologies fo r specifying the 

input variables fo r ANNs perform best in both datasets. The conclusion is in agreement w ith previous 

studies done fo r lower frequency datasets (Kourentzes and Crone 2008; Kourentzes and Crone 

2009).

11 www.neural-forecasting-competition.com
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Section 5.2 presents the methods that are used in this study, while section 5.3 discusses the 

experimental design. Section 5.4 the results o f the experiments are analysed and in the following 

section conclusions are drawn and future research is briefly discussed.

6.2 Methods

6.2.1 M ultilayer Perceptrons for Tim e Series Prediction

This study uses multilayer perceptrons (MLP), which are the most common ANN model 

(Zhang, Patuwo et al. 1998). MLPs are universal approximators, and they are able to  model and 

generalise well linear and nonlinear functional relationships between the inputs and the outputs 

(Hornik, Stinchcombe et al. 1989; Zhang 2001; Zhang, Patuwo et al. 2001), w ithout any prior 

assumptions about the underlying data generating process (Qi and Zhang 2001). In univariate 

forecasting feed-forward architectures of MLPs are used to model nonlinear autoregressive NAR(p)- 

processes, using only tim e lagged observations of the time series as input variables to  predict future 

values (Crone and Kourentzes 2007). MLPs can also use explanatory or dummy variables w ith no 

changes to  the model form. Data are presented to the network as vectors o f inputs that are mapped 

to the respective outputs over the time series history. MLPs learn the underlying data generating 

process by adjusting the connection weights w = (P, y) so that an objective function is minimized on 

the training data, ensuring a good fit in the past and the ability to make valid forecasts on unseen 

future data (Lachtermacher and Fuller 1995). A single hidden layer MLP is employed, based on the 

proof that single layer MLPs can approximate any data generating process (Hornik 1991), which is 

expressed as:

(6.1)
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X = [x„, X1 ; xn] is the vector o f the lagged observations (inputs) o f the time series and w = (p, y) are 

the network weights w ith p = [px, p2..., Ph] and y = [y1# y2..., y hi] being the individual weights 

connecting the input and the hidden layer, and the hidden to  the output layer respectively. The 

biases fo r each node in the hidden layer are v0i and in the single output node p0. I and H are the 

number o f input and hidden nodes in the network and g(-) is a non-linear transfer function (Anders, 

Korn et al. 1998). Common transfer functions fo r ANN are the sigmoid (logistic) and the hyperbolic 

tangent (Zhang, Patuwo et al. 1998) and fo r this analysis the la tter is used. MLPs require the 

calibration o f several modelling variables, like the number an nodes in the hidden layer, the training 

algorithm and its parameters, the use and the parameters o f early stopping, etc. These variables are 

typically set by simulations on the target time series; different alternatives are modelled and trained 

and the one that provides the lowest error in the validation set is then selected.

ANNs need to be trained in order to be able to forecast tim e series. This essentially means 

that the weights w that provide the best f it  to the data must be identified. The training algorithm 

incrementally alters the weights minimising a preset cost function, in order to find the best f it to the 

data. The training algorithm that is used in this study is the Levenberg-Marquardt algorithm, which 

avoids computing the Hessian matrix required in the typical backpropagation algorithm, resulting in 

significantly faster training (Hagan, Demuth et al. 1996). In this analysis the mean squared error 

(MSE) o f the one step ahead forecast is used as a cost function. ANNs are prone to overfitting 

(Zhang, Patuwo et al. 2001), which can harm their forecasting accuracy. One common way to avoid 

this problem is to use an early stopping criterion. The time series needs to be split in three sets, a 

training set that is used to f it the network, a validation set that is used to  measure when the network 

has overfitted to the data and a test set that is used for out-of-sample evaluations. Both training and

validation sets are used during the training o f the network; while the test subset is kept separate.
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During training the error on the validation subset is measured. If the validation error keeps 

increasing, while the training error decreases, the training stop as the network has started to overfit. 

Furthermore, ANN training is a complex nonlinear optim isation problem that does guarantee that an 

optimal solution w ill be reached, as the training algorithm may get stuck in a local minimum of the 

error surface. To ensure a wide search and increase the possibility o f finding a good minimum, 

multiple training initialisation with random starting weights are used (Hu, Zhang et al. 1999). This 

practice also aids in the construction of a valid experimental design, as is discussed in following 

section.

6.2.2 Input variable selection methodologies

How to specify the inputs for forecasting w ith ANNs is still debatable. Although there are 

several published methodologies in the literature, none is widely accepted or used (Anders and Korn 

1999). A survey o f forecasting and management science journals12 was conducted and the most 

frequently used methodologies were identified (Kourentzes and Crone 2009). These will be 

presented in this section and used to evaluate which is better suited fo r high frequency data 

forecasting problems. A noticeable lack o f a rigorous evaluation o f these methodologies was also 

found. The methodologies are organised in three categories, simple heuristics, those based on 

autocorrelation analysis (or similar) and those based on regression analysis and will be presented in 

this order. Noticeably, more than 70% (out o f 87 papers) use tria l and error approaches or specify

12 These are, in alphabetical order, Computers and Operations Research, Decision Sciences, European Journal 

of Operational Research, International Journal of Forecasting, Journal of Forecasting, Management Science, 

Naval Research Logistics and Operations Research. These journals have high ratings according to both the 

Vienna list ranking and the ISI Web of Science impact factor.
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the inputs arbitrarily. This practice harms the validity o f implementation o f the ANNs (Adya and 

Collopy 1998).

The most commonly used methodology to model the input vector o f ANNs is to use simple 

heuristics. Simple heuristics are used to construct sets of input variables fo r the networks. Note that 

the variables can be lagged realisations of the time series to be forecasted. An example o f such 

heuristic is given by Balkin and Ord (2000). In order to  find the relevant maximum lag length the 

seasonality is taken into account w ith the addition o f a few extra lags, resulting in input vectors that 

can contain all lags up until slightly more than the seasonal length. The exact number of extra lags 

depends on the seasonal length. Note that the methodology they propose has a second part, which 

is discussed below under the regression based models. The need to  have input vectors that will 

contain information at least as old as the seasonal lag is also supported by Curry (2007).

Another widely used category of methodologies is based on autocorrelation and partial 

autocorrelation analysis, or similar techniques. One o f the first papers that employees this approach 

is by Lachtermacher and Fuller (1995), who use an analogous to  Box-Jenkins ARIMA modelling (Box, 

Jenkins et al. 1994) to identify the inputs fo r MLP models. They identify the im portant lags from  both 

the autocorrelation (ACF) and the partial autocorrelation (PACF) functions and use them as inputs to 

the networks. They argue that optimal differencing o f the time series is necessary, in order to 

achieve stationarity, as in the original ARIMA modelling methodology. The authors use ACF 

information, although MLPs are autoregressive in nature and should make use o f only the PACF. 

They suggest that including the moving average terms may capture additional information from the 

time series. Moshiri and Brown (2004) use only the autoregressive information o f a time series; 

therefore, only the PACF is used to identify significant lags that should be included in the input

Page 175



vector. Kajitani et al. (2005) use the ACF to find an adequate input vector fo r MLP. Note that 

although MLP are autoregressive models, the authors prefer to  use the ACF instead. This decision is 

not discussed in their paper. All these methodologies make use o f linear identification tools, which 

may be inadequate to capture the nonlinearities that can be modelled by ANNs. Darbellay and Slama 

(2000) try  to address this problem. They use a version o f a nonlinear autocorrelation function, which 

is essentially a scaled mutual information criterion (Ml). A fter the scaling the Ml takes values 

between 0 and 1, instead of the normal 0 to +°°, and is named nonlinear autocorrelation. The scaling 

is done in order to make the Ml comparable to the normal ACF and PACF and therefore to identify 

the significant lags using the normal approach. If it equal to 0 it means that the tw o variables are not 

correlated, whereas the closer it becomes to 1 the stronger the measured relationship is. This way 

the methodology uses scaled Ml to capture potential nonlinearities in the tim e series; however the 

significant nonlinear lags are identified is based on the same approach as the linear ACF that may not 

be fully applicable. A variation of this approach is used by da Silva et al. (2008), who use the 

normalised Ml instead. Finally, McCullough (1998) observes different ways to calculate the PACF can 

lead to significantly different results. He evaluates three alternative methods to  estimate the PACF 

for ARMA models, and concludes that they identify different significant lags in a time series. This 

obviously affects the specification of the ARMA models and the ir accuracy. The same is true when 

such methodologies are used to model ANNs, yet this is overlooked in the ANN literature. The 

alternatives he considers are the common Yule-Walker estimation (YWE), the Least Squares (LS) 

method and the Burg algorithm (Burg). He concludes that the most accurate is the Burg algorithm, 

while the widely implemented YWE is the worst.

A related methodology to the ACF and PACF identification is to  use the spectral density o f

the time series. These are mathematically equivalent, but reveal inform ation about the tim e series
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differently, as is discussed in detail by Box et. al (1994). Spectral analysis (SA) has not been 

considered in the management science and forecasting ANN literature and therefore it has not been 

evaluated against the similar ACF and PACF based methodologies. In this study SA will be used in the 

following way. All peaks in the spectrum o f the time series are identified and translated into 

periodicities. All periodicities w ithin a pre-specified maximum bound define the lags that are used as 

inputs to the ANNs.

Regression based methodologies are also widely used in selecting the input vector fo r ANN.

Church and Curram (1996) finds that ANNs using linear regression fo r identifying the relevant inputs

perform at least as good as benchmarks. In their study the regression analysis is not automated and

largely depends on the modeller's expertise. Swanson and White (1997) automate the process by

using a forward regression w ith BIC (Bayesian Information Criterion) optim isation. Although this is a

significant step in automating the ANN modelling process, Qi and Zhang (2001) show that BIC and

similar criteria are improper for modelling ANNs. Qi and Maddala (1999) show that by using linear

regression to identify the ANN's inputs the networks outperform  linear benchmarks and the random

walk fo r the ir dataset. Balkin and Ord (2000) discuss an approach to  automatic input lag selection for

univariate forecasting using MLP. Their method is a hybrid between a simple heuristic fo r specifying

the maximum lag, which is already discussed, and forward stepwise regression. D ifferent regression

models are fitted  to the time series and from  all these that satisfy an F-statistic criterion the least

parsimonious input vector is used. Prybutok and Mitchell (2000) use stepwise regression to select

the input variables o f the ANNs and find the accuracy o f MLPs superior to  linear regression and

ARIMA models fo r predicting daily maximum ozone concentration in Houston. All the methodologies

mentioned here make use o f some form o f manual, stepwise or forward linear regression, which

may be lim iting to model ANNs, since linear regression is unable to  capture nonlinearities in the
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data. Dahl and Hylleberg (2004) try to overcome this problem and make use o f Hamilton's random 

field regression, a flexible nonlinear regression model, to identify the ANNs' input vector. For more 

information about this model see (Hamilton 2001). The nonlinear regression model is used in a 

forward regression setup, using AIC or BIC optim isation to  identify the linear and the nonlinear part 

o f the time series. All significant linear and nonlinear lags are used by the ANN. This methodology 

has several shortcomings. It is a greedy algorithm, in the sense that it does not provide sparse input 

vectors, thus hindering the training o f the networks. It is very computationally intensive, as noted by 

the authors. Furthermore, it is based on AIC and BIC, which literature suggests to avoid for ANN 

modelling (Qi and Zhang 2001) and was shown to perform worse than linear regression variants for 

selecting the input variables fo r ANNs (Kourentzes and Crone 2009). For the above reasons, this 

methodology is not used in the current study. Notably, backward variants o f regression are not 

present in the literature. In order to provide a complete picture o f the input specification 

alternatives, these will be evaluated here.

The ANNs papers that this analysis is based on to collect all the competing methodologies 

are summarised in table 6-1.

Table 6-1: ANN paper and proposed input variable selection methodology

Author Year Time Series Methodology

Balkin & Ord 2000 M3 com petition quarterly data
Forward regression w ith  heuristic to 
restrict search space

Church & Curram 1996 Quarterly macroeconomic Regression modelling
da Silva, Ferreira and Velasquez 2009 Hourly and daily electricity load Normalised Mutual Inform ation
Darbellay & Slama 2000 Hourly electricity load Nonlinear ACF (M utual Inform ation)
Kajitani, Hipel & McLeod 2005 (Annual) Lynx tim e series ACF

Lachtermacher & Fuller 1996
Annual river flow  data, annual 
electricity consumption

ACF & PACF

Moshiri & Brown 2004 Quarterly unemployment PACF
Prybutok & M itchell 2000 Daily ozone concentration Stepwise regression
Qi & Maddala 1999 Stock index Regression modelling
Swanson & W hite 1997 Quarterly macroeconomic Forward Regression w ith  SIC
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There are families o f input variable specification methodologies which are not considered in 

this study, based on genetic algorithms, pruning and wrappers (Kourentzes and Crone 2009). The 

main reason fo r not considering this is the associated computational cost that makes their use 

impractical fo r large datasets (Crone and Kourentzes 2009; Kourentzes and Crone 2009).

6.2.3 Data pre-processing

For all MLP forecasting applications the scaling of the input variables is necessary in order to 

avoid saturating the transfer function of the network (Wood and Dasgupta 1996). In this analysis the 

inputs are linearly scaled between two arbitrarily selected bounds. An observation x, from  a time 

series X is scaled to  xsi between [a, b] using

(b  -  a ) ( x i -  X  - )
x si =   --------—  —  +  a  . (6.2)

( ^ r n a x  ■^'rrrin )

There are no guidelines how to select the bounds, as long as they do not exceed the minimum and 

the maximum o f the transfer function used by the MLP. Literature suggests that constraining the 

bounds [a, b] tighter than what is required by the transfer function makes the ANNs robust to 

unseen future observations (Lachtermacher and Fuller 1995; Church and Curram 1996).

Furthermore, there are papers that suggest additional pre-processing, which is related to

removing trend and seasonality from the time series. Hill et al. (1996) and Nelson et al. (1999) show

that ANNs using deseasonalised time series from the M l competition outperformed standard

statistical models. Zhang and Qi (2005) reach the same conclusion, arguing that deseasonalised time

series lead to  smaller and more parsimonious models as there is less information to  capture in the

tim e series. Zhang and Kline (2007) evaluated a large variety o f setups fo r ANNs to forecast seasonal

tim e series and conclude that seasonal differencing is optimal. On the other hand, Curry (2007)

Page 179



suggests that results favouring deseasonalising can hide an input misspecification error, arguing that 

an inadequate input vector will not capture the seasonal information, therefore artificially showing 

deseasonalising as being the best option. Crone and Dhawan (2007) demonstrate that MLPs are 

able to model robustly monthly seasonal patterns using only an adequate number lags of the time 

series, w ith no need for deseasonalising.

Lachtermacher and Fuller (1995) argue in favour of seasonal and first differences, removing 

seasonality and trend respectively, in order to achieve stationarity o f the tim e series, so as to use 

validly the ACF and PACF analysis the identify the inputs. A similar approach is used in other papers 

(Ghiassi, Saidane et al. 2005; Bodyanskiy and Popov 2006), where differences are used to create 

stationary time series in order to identify the relevant input vector fo r the ANN. Most o f the 

methodologies evaluated in this study (table I) require stationary time series to identify correctly the 

input vector (Hamilton 1994).

Note that the nature o f the seasonality and trend is largely ignored in the ANN literature. In 

theory, fo r the case o f deterministic seasonality using dummy variables to capture the seasonal 

information is preferred to removing it (Ghysels and Osborn 2001). This was shown to be true for 

ANNs and in the case o f deterministic seasonality deseasonalising through differencing harmed the 

ANNs' accuracy (Crone and Kourentzes 2009).

In this study the time series are first tested fo r determ inistic seasonality and if such is 

identified, then dummy variables are used to code it. Additionally, seasonal differencing o f the time 

series is also evaluated. This is done to ensure that the pre-processing w ill not unfairly harm any of 

the input variable selection methodologies. Furthermore an additional type o f pre-processing is 

explored. Stemming from the arguments o f Lachtermacher and Fuller (1995), one can use
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differencing to identify the significant input variables, but model the time series in the original 

undifferenced domain. This would ensure that the assumptions o f the methodologies that are used 

to identify the inputs are not violated.

6.3 Experimental Design

6.3.1 Datasets

Two different high frequency datasets are used in this study. This is done to strengthen the

generalisability o f the findings. The first dataset comes from the NN5 forecasting competition

(www.neural-forecastinR-competition.com). The original dataset contains 111 daily time series of

cash withdrawals from automated teller machines in the UK. All time series have 791 observations.

The time series were grouped using k-means clustering to filte r very heterogeneous time series.

Once the most populous groups of time series were identified, the remaining ones were removed

from the dataset. This was done to raise the homogeneity o f the dataset, which allows for better

exploitation o f the dataset properties fo r model building and interpreting the results (Fildes and Ord

2002), and reduce the number of simulations fo r computational reasons. Following that, the time

series were tested for trend, using separately linear regression and the Cox-Stuart test (Cox and

Stuart 1955). The few strongly trended time series were discarded fo r the same reasons. The

remaining 42 tim e series were tested for seasonality. All time series were found to be double-

seasonal, w ith a day o f week and an annual pattern, however after the test set is removed there was

not enough data to model the annual seasonality, since there were less than tw o years of data

available. The nature of the day of the week seasonality is tested using the Canova-Hansen test

(Canova and Hansen 1995). The seasonality in all time series was found to be deterministic. Prior

studies that used time series from the same dataset had identified the effect o f strong calendar
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even ts  associated w ith  bank ho lidays (Crone and K ourentzes 2009). Using regression analysis Good 

Friday and C hristm as bank ho lidays w e re  fo u n d  s ig n ifica n t fo r  all th e  tim e  series. These w e re  coded 

using b ina ry  d u m m y variab les. Finally, several t im e  series had m issing values. These w e re  rep laced 

by th e  m ean va lue  o f th e ir  n e ighbou ring  obse rva tions . Figure 6.1 p rov ides a visual re p re se n ta tio n  o f 

th e  f irs t th re e  tim e  series, w h ile  ta b le  6-11 lists th e  nam es o f th e  se lected  tim e  series fro m  the  

co m p le te  NN5 dataset.

NN5-004

50

0
100 200 300 400 500 600 700

NN5-005

50

0
300100 200 400 500 600 700

NN5-015

100 200 300 400 500 600 700

Fig. 6.1: The first three time series o f the selected subset o f  the NN5 dataset.

Table 6-11: List o f selected NN5 tim e series

NN5-004 NN5-020 NN5-045 NN5-060 NN5-072 NN5-096
NN5-005 NN5-021 NN5-046 NN5-061 NN5-079 NN5-098
NN 5-006 NN5-024 NN5-051 NN5-062 NN5-082 NN5-100
NN5-007 NN5-028 NN5-052 NN5-063 NN5-087 NN5-102
NN5-012 NN5-038 NN5-053 NN5-065 NN5-090 NN5-104
NN5-015 NN5-041 NN5-057 NN5-066 NN5-091 NN5-107
NN5-016 NN5-043 NN5-058 NN5-069 NN5-092 NN5-108

NN5-019 NN 5-044 NN5-059 NN5-071 NN5-094 NN5-111
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The second da tase t con ta ins 5 tim e  series m easuring  e le c tr ic ity  dem and data fro m  th e  UK. 

The data are ava ilab le  a t the  N a tiona l Grid w e b s ite  (h t tp : / /w w w .n a t io n a lg r id .c o m ). The tim e  series 

co n ta in  2,557 da ily  obse rva tions  fro m  01-Jan-2002 u n til 31-D ec-2008. The code nam ing o f each tim e  

series and a d e scrip tio n  o f w h a t th e y  record can be fo u n d  in ta b le  6-111.

Table 6-111: Electricity dataset description

Index Name Description

E-001 GB
Initial Demand Outturn based on National Grid operational generation 
metering

E-002 E&W As above, but only fo r England and Wales
E-003 I014_DEM Elexon SO J014 generation data

E-004 I014_TGSD
Elexon SO J014 generation data including Station Load, Pump Storage 
Pumping and Interconnector Exports

E-005
France
lmport(+)/Export(-)

Imports and exports between UK and France

50 100 150 200 250 300 350

5

0

-5
200 250 300 35015010050

Fig. 6.2: Plots o f  the first year o f  E-001 and E-005 time series.

The same tests  th a t w e re  used fo r  th e  NN5 da tase t w e re  app lied  to  th e  e le c tr ic ity  da tase t 

and th e  t im e  series w e re  fo u n d  to  be s tro n g ly  doub le -seasona l w ith  no tre n d . The Canova-Hansen 

te s t ind ica ted  th a t all the  tim e  series have a day o f  th e  w eek and an annua l d e te rm in is tic
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seasonality. The first four time series (E-001, E-002, E-003 and E-004) behave similarly, whereas the 

last time series (E-005) is completely different. The first year o f data from E-001 and E-005 time 

series are provided in figure 6.2. Note that E-005 has several negative values, in contrast to the other 

time series which are always positive.

6.3.2 Methods

6.3.2.1 Benchmarks

In order to perform a valid evaluation o f ANN models it is im portant to  compare them 

against established benchmarks (Adya and Collopy 1998). Although the aim o f the study is not to 

compare the ANN models w ith statistical models, it is imperative to  use benchmarks in order to 

demonstrate that the findings of this study have value fo r the forecasting research. Two families of 

benchmark models are used in this study. The first family includes the random walk and the seasonal 

random walk models. The second family o f models are seasonal exponential smoothing models 

(EXSM). The random walk or naive models are chosen due to the ir simplicity. Any more complicated 

forecasting model should outperform  the random walk in order to  justify the additional complexity. 

On the other hand, the EXSM has shown good performance in numerous competitions and studies 

over a wide variety o f datasets (Makridakis and Hibon 2000; Hyndman, Koehler et al. 2002; Gardner 

2006; Taylor, de Menezes et al. 2006) and therefore it is a good benchmark.

The random walk is used in its normal form , as in (6.3), and in its seasonal form , as in (6.4), 

taking advantage o f the seasonal information contained in the time series.

f , + h = x t - f  <6 -3 )

(6-4) 
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where s indicates the seasonal length and h the forecast horizon. Since both datasets are double 

seasonal two different seasonal lengths are used, one fo r the day o f the week pattern and one for 

the annual pattern. This results in three random walk models fo r each time series, named Naive, 

N aive  S I  and N aive  S2 fo r the non-seasonal, day o f the week seasonal and annual seasonal model 

respectively.

The seasonal exponential smoothing models are fitted to each time series by minimising the 

one step ahead in-sample mean squared error (MSE), as suggested in the literature (Gardner 2006). 

Similarly to the random walk models, two different seasonal lengths can be used, fo r the two 

different seasonal periods. The resulting models are named EXSM  S I  and EXSM  S2, fo r  the day o f the 

week and the annual seasonality respectively. For the NN5 dataset, due to the lim ited sample it is 

not possible to use the EXSM S2, and therefore only results fo r the EXSM  S I  are provided. Both 

families o f benchmark models are implemented in MatLab.

6.3.2.2 Multilayer Perceptrons

A fixed MLP architecture is used to create the forecasts fo r all the time series, w ith the 

exception o f the input vector. In order to evaluate which input variable selection methodology 

performs best on the high frequency data, the input vector is specified, fo r each tim e series, using 21 

alternative methodologies. Furthermore, the number o f hidden nodes in the MLP models is specified 

separately fo r each dataset, but kept fixed fo r all the time series in each dataset. Keeping all the 

remaining parameters, like the learning algorithm and parameters, transfer functions, etc, allows 

attributing any observed accuracy differences o f the MLPs solely to the effects o f the d ifferent input 

vectors.
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The different input variable selection methodologies are described in the previous section 

and are listed in table 6-IV, together w ith the name assigned to each. Note that all these are fully 

automatic and the input vector is identified separately fo r each tim e series and each methodology. A 

question that is usually overlooked in the literature is associated w ith the maximum lag that should 

be evaluated as a potential input. Only one paper addresses this question in the literature, providing 

a heuristic to select the number of lags based on the time series frequency (Balkin and Ord 2000). In 

this study, the maximum lag is set to double period of the day o f the week seasonality. This allows 

the input vectors to include possible seasonal information (Curry 2007) while keeping an abundance 

o f data fo r the training o f the networks.

Table 6-IV: Input variable selection methodologies for the MLP models

Index Name Description
Heuristics

1 ANN_naive Use only lag t-1
2 ANN all Use all lags from t-1 to t-14
3 ANN fs Use one full season (t-1 to t-7)

ACF or PACF (or similar)
4 ANN_ywe Identify inputs using the YWE PACF estimation, evaluating up to lag t-14
5 ANNJs Identify inputs using the LS PACF estimation, evaluating up to lag t-14
6 ANNburg Identify inputs using the Burg PACF estimation, evaluating up to lag t-14
7 ANN_acf Identify inputs using the ACF, evaluating up to lag t-14
8 ANN_nlacf Identify inputs using the nonlinear ACF (scaled Ml), evaluating up to lag t-14
9 ANN sa Identify inputs using spectral analysis (SA), evaluating up to lag t-14

ACF and PACF (or similar)
10 ANN_acf+ywe Use all lags ident fied by ANN_acf and ANN_ywe
11 ANN acf+ls Use all lags ident fied by ANN_acf and ANNJs
12 ANN_acf+burg Use all lags ident fied by ANN_acf and ANN_burg
13 ANN_nlacf+ywe Use all lags ident fied by ANN_nlacf and ANN_ywe
14 ANN nlacf+ls Use all lags ident fied by ANN_nlacf and ANNJs
15 ANN_nlacf+burg Use all lags ident fied by ANN_nlacf and ANN_burg
16 ANN_sa+ywe Use all lags ident fied by ANN_sa and ANN_ywe
17 ANN sa+ls Use all lags ident fied by ANN_sa and ANNJs
18 ANN sa+burg Use all lags ident fied by ANN_sa and ANN_burg

Regression
19 ANN_reg_auto Identify inputs using linear stepwise regression, evaluating up to lag t-14
20 ANN_reg_forw Identify inputs using linear forward regression, evaluating up to lag t-14
21 ANN_reg_back Identify inputs using linear backward regression, evaluating up to lag t-14
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It is debatable how to best pre-process the time series fo r forecasting w ith ANNs. In this 

study we consider several d ifferent options, as discussed in the previous section, these are 

summarised in table 6-V. The identified inputs are linearly scaled, as in (6.2), between [-0.5, 0.5]. A 

tighter scaling interval, than what is required by the hidden layer transfer function, is used in order 

to make the networks robust to unobserved future variables. In addition to  the lagged inputs that 

are identified w ith the above methodologies, all MLPs use a set o f dummy variables to  code the 

determ inistic seasonality found in the time series. Two pairs o f sine-cosine waves are used to model 

each identified seasonality separately, w ith their respective frequencies. This coding has been shown 

to be at least as good as the binary dummy variable encoding fo r ANNs, while being more 

parsimonious (Crone and Kourentzes 2009). Furthermore, fo r the NN5 dataset the identified bank 

holidays are coded using binary dummy variables. Note that these additional variables are not 

scaled, as they are by construction w ithin the bounds o f the hidden layer transfer function.

Table 6-V: Data pre-processing

Name Inputs identified on Networks trained on

No-Diff Original time series Original time series
Season-Diff Seasonal differenced time series Seasonal differenced time series
Input-Diff Seasonal differenced time series Original time series

Single layer MLPs are used. The hyperbolic tangent (TanH) is selected as the transfer 

function fo r the hidden nodes, while all other layers use linear functions. The number o f hidden 

nodes is identified through a grid search from 1 to  12 hidden nodes. This search is done fo r each 

dataset separately. The number that minimises the average error fo r all the tim e series in each 

dataset is selected. Five and nine hidden nodes are selected for the NN5 and the electricity datasets 

respectively. The resulting architectures are shown in figure 6.3.
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NN5 dataset Electricity dataset

^  TanH /  Linear

Fig. 6.3: MLP architectures for the NN5 and the electricity datasets show n with a variable num ber o f  inputs.

To find the network's weights w that provide the best fit, it is necessary to  train the ANNs. In 

this study the Levenberg-Marquardt algorithm is used. The modeller is required to set the value o f p 

and its increase and decrease steps. Here p = 10'3, w ith an increase step o f pjnc= 10 and a decrease 

step o f pdec = 10'1. For a detailed description o f the parameters and the algorithm see Hagan and 

Menhaj (1994). MLPs are allowed to train fo r a maximum o f 1000 training epochs. The training can 

stop earlier if p becomes equal o f greater than pmax = 1010 or the validation error increases fo r more 

than 50 epochs. This is done to avoid over-fitting and is standard practice in ANN training (Zhang, 

Patuwo et al. 1998). When training is stopped the network weights that give the lowest error on 

validation set are selected. Each network is trained 40 times. In each training cycle different random 

initial weights are used. This has several advantages fo r ANN modelling. First o f all it aids the training 

o f the networks. The training o f MLPs is a complex nonlinear optim isation that can be stuck in local 

minima. Several random initialisations ensure a wider search fo r good network weights. Secondly, by 

retraining each MLP several times it is possible to assess how robustly this network performs by 

considering the complete distribution o f errors over the different training cycles. Networks that 

perform similarly over several training cycles are robust to the stochasticity o f the training algorithm.
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This allows the extraction of reliable conclusions fo r the performance o f ANNs, since the 

randomness due to training is controlled, which is often overlooked in the ANN literature 

(Kourentzes and Crone 2009). Finally, this procedure produces more detailed error distributions that 

allow for valid statistical testing.

Note that the same MLP setup is used fo r several time series, which is not advised in the 

literature (Liao and Fildes 2005; Medeiros, Terasvirta et al. 2006). The yet not well understood and 

complex interactions between the number of inputs, hidden nodes, the training algorithm and its 

parameters and the data pre-processing require fine tuning o f the networks (Zhang, Patuwo et al. 

1998). This is not done in this study, since it is necessary to isolate the effects o f the d ifferent input 

variable specification methodologies. Although, the input vector, which is set fo r each time series 

individually, is the most significant determ inant o f ANNs performance (Zhang 2001; Zhang, Patuwo 

et al. 2001) this practice leads to suboptimal results, as no other parameters are set individually fo r 

each tim e series. This is an im portant lim itation in the comparison o f the ANNs w ith the benchmarks, 

which are optimally modelled fo r each time series separately. Finally, all MLP models are 

implemented in MatLab using the neural networks toolbox version 6.

6.3.3 Experimental Design

For both datasets a similar experimental design is used. This helps in the analysis o f the 

results and the extraction of the conclusions. For both datasets trace forecasts from  t+1 to t+7 are 

calculated. The forecasting horizon is long enough to test whether the models have captured the 

seasonal behaviour o f the time series, while being short enough to allow the implementation o f a 

rolling origin evaluation scheme. Furthermore, similar forecasting horizons have been used before in 

the electricity load forecasting literature due to  the relevance w ith the decision lead tim e (Cancelo,
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Espasa et al. 2008; Soares and Medeiros 2008). For the case o f the ATM transactions the decision 

lead time is harder to identify, since it is strongly related to  the location o f each individual ATM. This 

information was not available fo r the NN5 dataset.

When forecasting w ith ANNs it is necessary to create a validation set from the time series, in 

addition to  the test set that is used fo r the ordinary out-of-sample forecasting evaluation. The 

validation set is used to identify whether the network has overfitted to the training set. Although 

there are no strict guidelines on how to select the validation set, it should be constructed 

considering the forecast horizon and the available data, similarly to  the test set. For the NN5 dataset 

the size o f the test set is identical to the competition's guidelines, which is 56 days. An equally sized 

validation test is used. For the electricity dataset a complete year is used fo r the validation set and 

another year fo r the test set, which are 365 and 366 days long respectively, once the leap year in the 

data is considered. The sizes o f the sets allows producing fo r both datasets an abundance o f rolling 

origin forecasts, providing a good sample of the distribution o f the forecasting errors. The rolling 

origin evaluation scheme is used to provide a better estimation o f the forecast error and to avoid the 

shortcomings o f fixed origin evaluation (Tashman 2000).

The symmetric mean absolute percent error (sMAPE) is used to measure accuracy for both 

datasets. This measure is scale independent and allows comparing accuracy across time series. It is 

calculated as

Note that the formula used here is d ifferent than the widespread sMAPE formula

(Makridakis and Hibon 2000) and is corrected to  eliminate the possibility o f negative errors that the
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widespread form of sMAPE can produce (Chen and Yang 2004; Hyndman and Koehler 2006). This 

error measure is robust to zero or very close to zero values that exist in the NN5 dataset.

The accuracy of the competing ANN models is evaluated fo r statistically significant 

differences (at 5%) using the nonparametric Friedman and Nemenyi tests. These are robust 

nonparametric tests that are selected to facilitate an evaluation o f network models w ithout the 

need to  relax the assumptions o f ANOVA or similar parametric tests (Demsar 2006). Furthermore, 

taking advantage of the multiple training initialisations the robustness o f the d ifferent input variable 

selection methodologies can be assessed. A robust model will perform similarly for different 

initialisations, making it more reliable in real applications, providing more consistent results and 

overcoming a main criticism against ANNs that they do not produce consistent solutions (Armstrong 

2006). Lastly, note that both tests are designed to handle multiple comparisons, which is the case in 

this study. On the other hand, these tests are not applicable to  compare the performance o f the 

ANNs w ith the benchmark models. The ANN models are initialised 40 times and therefore fo r each 

network setup there are 40 different candidates that only have different weights w  but perform 

differently. This is due to the stochasticity o f the training algorithm and the random initialisations. In 

contrast, the benchmarks are single optimally parameterised models. Therefore, in order to 

compare them, from all this alternative sets o f network weights only the one that performs best 

should be chosen. The ANN initialisation tha t gives the minimum error in the validation set is 

selected and is compared w ith the benchmarks.

6.4 Results

First, the effect o f the time series pre-processing is evaluated. Table 6-VI presents the mean 

sMAPE across all time series for the two datasets. Furthermore, the p-values o f the Friedman test
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and the mean ranks of the Nemeneyi test are provided. The mean sMAPE and rank are calculated 

considering all different ANN models, initialisations and time series. Once the Friedman test shows 

that at least one type of data pre-processing is significantly different from the others, the post-hoc 

Nemeneyi test can reveal which are statistically different and provide a ranking fo r all d ifferent types 

o f pre-processing. Note that if there is no evidence o f statistically significant differences among the 

d ifferent types, then these are assigned in the same group, which is not the case here. Also note that 

the critical distances among the two datasets are different, due to  the number o f tim e series.

Table 6-VI: Effect of data pre-processing

Data preparation
mean sMAPE Nemeneyi test

Train Validation Test Mean Rank Group**
NN5 dataset - Friedman test p-value: 0.000

Input-Diff 0.202 0.188 0.230 42.96* 1
No-Diff 0.202 0.190 0.233 47.74* 2
Season-Diff 0.238 0.204 0.274 90.80* 3

Electricity dataset - Friedman test p-value: 0.000
Input-Diff 0.145 0.182 0.128 50.33** 1
No-Diff 0.138 0.170 0.120 52.35** 2
Season-Diff 0.140 0.172 0.122 78.82** 3
*The critical distance for the Nemenyi test at 1% significance level is 0.13, at 5% significance level it is 
0.11 and at 10% significance level it is 0.09; **The critical distance for the Nemenyi test at 1% 
significance level is 0.40, at 5% significance level it is 0.32 and at 10% significance level it is 0.28; 
***Mean ranks that have no statistically significant differences at 5% significance are assigned to the 
same group

Although the mean errors are indicative o f the performance, it is advisable to  compare the 

models using the statistical tests. If d ifferent random weight initialisations are used fo r the training 

o f the ANNs, then the errors are bound to be different. However, the statistical tests consider the 

complete distribution of the errors, i.e. the results o f several initialisations, so given an adequate 

sample they can provide a more reliable answer. Furthermore, the mean error is affected by 

deviations from normality o f the error distribution, whereas the statistical tests are nonparametric. 

Considering the results o f the Nemenyi test, both datasets have identical ranking. The In p u t-D iff  pre
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processing is the most accurate, followed by the N o -D iff, while the S easo n -D iff that uses the 

differenced tim e series ranks last, as expected, since the tim e series have determ inistic seasonality. 

However, identifying the input vector fo r the ANNs using the differenced time series is significantly 

better than using the undifferenced time series. To understand why this is so, it is necessary to 

discuss what happens when a deterministic seasonal tim e series is differenced. A simple time series 

w ith deterministic seasonality is defined as in (6.6),

where yt is the value o f the time series at time t, n is the level o f the time series, ms is the seasonal 

level shift due to the deterministic seasonality fo r season s, 6st is the seasonal binary dummy variable 

fo r season s at time t, zt is a weak stationary stochastic process w ith zero mean and S is the length of 

the seasonality (Ghysels and Osborn 2001). This time series after calculating the seasonal differences 

becomes

Comparing (6.6) and (6.7) it can be deduced that it is now impossible to estimate ms, therefore the 

determ inistic seasonality is lost. By inputting to the ANN the lags that were identified on the 

differenced tim e series the ANN does not get any seasonal information. The seasonal information is 

coded solely by the deterministic dummies and the lagged inputs code only o ther aspects o f the 

tim e series. Remove the seasonal information from the lagged inputs makes the training o f the 

network easier (Zhang and Qi 2005). This allows interpreting the observed superiority o f In p u t-D iff to 

N o-D iff. From this point on, only the results fo r In p u t-D iff  w ill be presented.

s
(6 .6 )

A sy , =  A sz , . (6.7)
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The results fo r all d ifferent methodologies that are used to identify the input vector for the 

ANNs are explored in the same fashion. First the ranking o f the models is discussed using the results 

of the statistical tests and afterwards the ANN models are compared w ith the benchmarks using the 

sMAPE. For both datasets the Friedman tests reveals that at least one model is statistically different 

(p-value is 0.000 for both datasets). The detailed results o f the Nemenyi tests are presented in table 

6-VII. The models are listed according to their mean rank. Figure 6.4 presents visually the significant 

differences between the competing ANN models.

Table 6-VII: Nemenyi mean rank for different ANN models (Input-Diff)

NN5 dataset Electricity dataset
Model Mean Rank* Group*** Model Mean Rank** Group***
ANN_burg 347.7 1 ANN_burg 333.8 1
ANN_naive 352.9 2 ANN_acf+ywe 361.8 2
ANN_reg_auto 382.2 3 ANNJs 363.9 2
ANN_reg_forw 382.2 3 ANN_reg_back 385.4 3, 4,5
ANNJs 384.5 3 ANN_ywe 393.4 3, 4, 5, 6
ANN_nlacf 389.9 4 ANN_acf+ls 393.4 3, 4, 5, 6
ANNacf 398.1 5 ANN_reg_auto 393.5 3, 4, 5, 6
ANN_nlacf+burg 402.8 6 ANN_regJorw 393.5 3, 4, 5, 6
ANNywe 408.9 7 ANN_acf 397.4 3, 4, 5, 6, 7
ANNJs 409.0 7 ANN_nlacf 402.2 4, 5, 6, 7, 8
ANN_reg_back 409.3 7 ANN_sa+ywe 402.2 4, 5, 6, 7, 8
ANN_acf+burg 419.0 8 ANN_all 411.3 5, 6, 7, 8
ANN_acf+ywe 440.9 9 ANN_nlacf+ywe 413.5 6, 7,8
ANN_acf+ls 440.9 9 ANN_nlacf+ls 413.5 6, 7,8
ANN_sa+burg 440.9 9 ANN_nlacf+burg 413.5 6, 7,8
ANN_nlacf+ls 442.9 9 ANN_sa+ls 414.7 6, 7,8
ANN_nlacf+ywe 443.5 9 ANN_sa+burg 414.7 6, 7,8
ANN_sa+ywe 471.2 10 ANNJs 414.7 6, 7, 8
ANN_sa+ls 471.9 10 ANN_acf+burg 414.7 6, 7, 8
ANN_sa 473.0 10 ANN_naive 489.7 9
ANN_all 518.7 11 ANN_sa 809.9 10
*The critical distance for the Nemenyi test at 1% significance level is 5.09, at 5% significance level it is 4.52 
and at 10% significance level it is 4.24; **The critical distance for the Nemenyi test at 1% significance level 
is 15.76, at 5% significance level it is 14.01 and at 10% significance level it is 13.13; ***Mean ranks that 
have no statistically significant differences at 5% significance are assigned to the same group
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Fig. 6.4: Nem enyi test results. Black squares represent insignificant differences between models
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It is obvious that the models perform differently in each dataset, w ith very few 

commonalities. Notably, the A N N _b u rg  performs significantly better than all other models in both 

datasets. Furthermore, methodologies from different families are found to belong to the same 

groups, fo r instance for the NN5 dataset group 3 is consisted by A N N _ re g _ a u to  and A N N _reg _ fo rw , 

which belong to the regression family, and the A N N _fs , which is a heuristic. W ithin each family of 

methodologies the ranking o f the models is not consistent among the two datasets, which 

complicates the analysis o f the results. However, in both datasets there are some common findings. 

First o f all, the estimation algorithm of the PACF has significant impact on the accuracy of the ANNs. 

In this study the commonly used Yule-Walker estimation does not perform well. This is in agreement 

w ith previous studies (McCullough 1998; Kourentzes and Crone 2009). Therefore, it is necessary to 

consider less widespread PACF estimation algorithms as the Yule-Walker estimation is found 

inadequate. In both datasets the A N N _ a c f performs better than several input vectors based on 

combinations o f ACF and PACF or just PACF. This is counterintuitive, as one would expect PACF 

methodologies to  perform better. However, given the different estimation algorithms o f PACF and 

the d ifferent performances, it seems to be a m atter o f estimating correctly the autoregressive 

information in the time series. If only the best PACF estimation is used, the A N N _b u rg , then A N N _ a c f  

is always significantly outperformed. The nonlinear ACF does not outperform  linear methodologies, 

as one would expect, since it captures nonlinear information that ANNs should be able to use. 

Considering the SA and its combinations, in both datasets, they perform badly, ranking in the lower 

groups o f models. Note that the small number o f time series used in the electricity dataset results in 

wide critical distances fo r the Nemenyi test, resulting in relatively few statistically significant 

differences among the d ifferent input variable selection methodologies in comparison to  the NN5 

dataset.
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If only methodology families are considered, the picture becomes clearer. Table 6-VIII 

presents the results aggregated in this way. For both datasets the regression based models 

performed significantly better than all other contestants. Considering both datasets it is unclear 

whether the combining ACF and PACF information or not is better. The heuristic models, fo r both 

datasets, perform poorly, ranking third. All heuristics used in this study provide non-sparse input 

vectors, i.e. a series o f continuous lags are used as inputs. There is significant evidence that a data 

driven selection o f sparse input vectors is preferable in ANN modelling, like the regression based 

methodologies. This is in agreement w ith the conclusions o f Kourentzes and Crone (2009), who also 

find that non-sparse input vectors perform poorly.

Table 6-VIII: Nemenyi mean rank fo r d ifferent ANN model groups (Input-D iff)

Model
NN5 dataset 

Mean Rank* G roup*** Model
Electricity dataset 

Mean Rank** G roup***
Regression 70.72 1 Regression 61.5 1
ACF or PACF 78.52 2 ACF and PACF 64.8 2
Heuristic 82.63 3 Heuristic 77.1 3
ACF and PACF 90.13 4 ACF or PACF 118.6 4

*The critical distance fo r the Nemenyi test at 1% significance level is 0.82, at 5% significance level it is 
0.68 and at 10% significance level it is 0.60; **The critical distance fo r the Nemenyi test at 1% significance 
level is 2.54, at 5% significance level it is 2.10 and at 10% significance level it is 1.87; ***M e a n  ranks that 
have no statistically significant differences at 5% significance are assigned to  the same group

Table 6-IX provides the sMAPE o f the best initialisation o f each ANN model fo r both 

datasets. Due to the significant differences in accuracy between time series E-001 to E-004 and E- 

005, which has a d ifferent behaviour, the forecasting errors are provided separately. The errors for 

the benchmark models are provided as well. Errors fo r all training, validation and test sets are 

provided. It is important to access whether the ANNs have generalised well, which is indicated by 

similar performance in the three subsets (Adya and Collopy 1998). In this study, the error ranges 

between the three subsets are comparable, indicating that the ANNs have fitted  well to the time
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series. Note that the validation error is most o f the times lower than the training set error, which is 

to be expected since the selection o f the best ANN initialisation was done on minimum validation set 

error.

For the NN5 dataset several ANN models are more accurate than the best benchmark ( EXSM  

S I)  in the test set. These models, not surprisingly, rank high in table 6-VII. For the electricity dataset 

all the ANN models, but the A N N _s a  and A N N _n a iv e , are more accurate than the best benchmark 

model (ESXM  S I) .  Therefore, it is apparent that only ANNs w ith correctly specified input vectors are 

able to match, if not outperform  established benchmarks.

Note that the ranking of the models between tables 6-VII and 6-IX is not consistent. This is 

explained by the effect o f the training initialisation, as discussed before. For a different set o f initial 

random weights, the sMAPE of the best initialisation would be different, potentia lly altering the 

ranking. On the other hand, the statistical tests consider the whole set o f initialisations and not just a 

single one and are able to provide reliable conclusions, given enough sample o f initialisations. It is 

noteworthy that if all the initialisations fo r the regression based models are considered they are 

ranked in d ifferent groups o f models (table 6-VII), but if only the best initialisation is used they are 

seem to perform identically (table 6-IX), which is misleading.

Comparing the A N N _n a iv e  w ith the random walk {N aive), the first performs always better. 

Furthermore, it is equally straightforward to implement, since only a single input is used in the ANN 

(table 6-IV). For this reason, any input variable selection methodology should be able to outperform  

the A N N _ n a iv e  model, in order to  justify the extra complexity and computational tim e associated. In 

this study the A N N _n a ive , in both datasets, performs better than several methodologies, 

demonstrating that none of these should be used.
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In analogy to table 6-VIII, Table 6-X provides the mean sMAPE o f the ANN models 

aggregated by model family. The average forecasting error o f all families of models o f ANNs is lower 

than the benchmark models' errors.

Table 6-IX: sMAPE fo r Input-D iff

Model
Training*

NN5 dataset 

Validation* Test*

Electricity dataset
Time Series E-001 - E-004 Time Series E-005

Training * Validation* Test* Training* Validation* Test*
ANN_naive 0.219 0.169 0.219 0.021 0.019 0.024 0.661 0.770 0.535
ANN_all 0.207 0.171 0.228 0.020 0.019 0.023 0.604 0.725 0.471
ANNJs 0.201 0.171 0.224 0.020 0.018 0.023 0.593 0.710 0.463
ANN_ywe 0.205 0.169 0.222 0.019 0.018 0.024 0.601 0.727 0.475
ANNJs 0.205 0.170 0.222 0.020 0.019 0.024 0.601 0.727 0.475
ANN_burg 0.206 0.168 0.220 0.020 0.018 0.023 0.580 0.741 0.483
ANN_acf 0.202 0.169 0.221 0.020 0.019 0.023 0.582 0.723 0.483
ANN_nlacf 0.205 0.169 0.225 0.020 0.019 0.023 0.588 0.716 0.490
ANN_sa 0.209 0.175 0.231 0.029 0.023 0.030 0.666 0.859 0.681
ANN_acf+ywe 0.205 0.169 0.224 0.020 0.018 0.023 0.602 0.717 0.492
ANN_acf+ls 0.205 0.169 0.224 0.019 0.018 0.024 0.601 0.727 0.475
ANN_acf+burg 0.204 0.169 0.224 0.020 0.019 0.024 0.601 0.727 0.475
ANN_nlacf+ywe 0.203 0.169 0.234 0.020 0.019 0.023 0.585 0.702 0.490
ANN_nlacf+ls 0.203 0.170 0.234 0.020 0.019 0.023 0.585 0.702 0.490
ANN_nlacf+burg 0.204 0.168 0.225 0.020 0.019 0.023 0.585 0.702 0.490
ANN_sa+ywe 0.203 0.169 0.228 0.020 0.019 0.023 0.588 0.716 0.490
ANN_sa+ls 0.203 0.169 0.228 0.020 0.019 0.023 0.583 0.734 0.473
ANN_sa+burg 0.205 0.169 0.224 0.020 0.019 0.023 0.583 0.734 0.473
ANN_reg_auto 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
ANN_regJorw 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
ANN_reg_back 0.206 0.169 0.220 0.021 0.018 0.023 0.607 0.719 0.476
Naive 0.450 0.466 0.489 0.081 0.076 0.073 0.814 0.871 0.579
Naive SI 0.275 0.241 0.303 0.036 0.034 0.032 0.663 0.793 0.541
Naive S2 0.274 0.264 0.293 0.044 0.038 0.039 0.948 0.998 0.854
EXSM SI 0.213 0.196 0.228 0.032 0.029 0.028 0.642 0.765 0.502
EXSM S2 0.028 0.041 0.036 0.590 0.881 0.559

^Boldface values are better than best benchmark

Table 6-X: Mean sMAPE fo r Input-D iff by model group fo r Input-D iff

NN5 dataset
Electricity dataset

Model Time Series E-001 - E-004 Time Series E-005
Training Validation Test Training Validation Test Training Validation Test

Heuristic 0.209 0.170 0.224 0.020 0.019 0.024 0.620 0.735 0.490
ACF or PACF 0.205 0.170 0.223 0.021 0.019 0.024 0.603 0.749 0.514
ACF & PACF 0.204 0.169 0.227 0.020 0.019 0.023 0.590 0.718 0.483
Regression 0.205 0.168 0.220 0.021 0.018 0.023 0.607 0.719 0.476
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Finally, the size of the resulting input vectors is explored. Each methodology identified a

d iffe re n t n u m b e r o f inpu ts  fo r  each tim e  series. O vera ll, som e m e thodo log ies  te n d e d  to  o u tp u t very 

p a rs im on ious  in p u t vecto rs , w h ile  o th e rs  p rov ided  m uch longer vecto rs . Figure 6.5 p rov ides the  

b oxp lo ts  o f  th e  in p u t v e c to r sizes per in p u t va riab le  se lec tion  m e th o d o lo g y  pe r da tase t. The 

m e th o d o lo g ie s  are ranked by pe rfo rm ance , as in ta b le  6-VII.
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Fig. 6.5: Boxplots o f  the input vector sizes fo r the two datasets.

In fig u re  6.5, fo r  th e  NN5 datase t, th e re  seem s to  be a c lea r co n n e c tio n  be tw e e n  th e  rank ing

o f th e  m ode l and th e  size o f th e  in p u t ve c to r, fa vo u r in g  s h o rte r in p u t vec to rs . There  is som e

evidence  o f  s im ila r behav iou r fo r  th e  e le c tr ic ity  da tase t, th o u g h  th e  co n n e c tio n  is w eaker. The m ean
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and m ed ian  in p u t v e c to r sizes, fo r  b o th  da tasets, aga inst th e ir  respective  pe rfo rm a n ce  are p rov ided  

in fig u re  6.6, a long w ith  th e  linea r co rre la tio n  co e ffic ie n t. The p-va lues can be fo u n d  in brackets. 

Both th e  m ean and m edian size o f  th e  resu lting  in p u t v e c to r o f  th e  d iffe re n t m e th o d o lo g ie s  are 

lin e a rly  co rre la te d  w ith  th e ir  rank ing  accord ing  to  fo re ca s tin g  accuracy.
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Fig. 6.6: Scatter plots o f  mean and median input vector size and performance.

6.5 Conclusions

The o b je c tive  o f th is  s tudy  was to  eva luate  d if fe re n t in p u t v e c to r spec ifica tion  

m e th o d o lo g ie s  fo r  ANNs on high fre q u e n cy  data . Tw o d iffe re n t datasets, inc lud ing  in to ta l 47 tim e  

series, w e re  used to  m ode l 21 d iffe re n t ANN m odels, be long ing  to  fo u r  fa m ilie s  o f in p u t v e c to r 

sp e c ifica tion  m e thodo log ies . From th e  e m p irica l e va lu a tio n  th e re  is a series o f  find ings :

1) Regression based in p u t v e c to r spec ifica tion  m e th o d o lo g ie s  o u tp e rfo rm e d  s im p le  heuris tics , 

ACF o r PACF m e thodo log ies  and those  based on th e ir  co m b in a tio n s . This is in ag re e m en t 

w ith  th e  resu lts  o f  a s im ila r analysis fo r  lo w  fre q u e n cy  t im e  series, w h e re  it was also show n
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that regression based input variable selection methodologies performed best (Kourentzes 

and Crone 2009).

2) The pre-processing o f the time series is im portant fo r the specification o f the input vector 

and the performance of ANNs. The correct form  o f pre-processing depends on the 

properties o f the time series. Poor pre-processing can result in misspecified input vectors 

which harm the forecasting accuracy.

3) Sparse input vectors, that involve data driven analysis o f the tim e series, outperform  long 

continuous vectors that are typically provided by heuristics.

4) Nonlinear input vector specification methodologies did not perform better than more 

widespread linear methodologies.

5) Different PACF estimation algorithms have significant effect on the specification o f the input 

vector o f the ANNs and their performance. The commonly used Yule-Walker estimation is 

found to  be inadequate for ANNs. In this study the Burg estimation performed best.

6) A benchmark ANN model is suggested. This model is the MLP analogue o f the random walk. 

Only a single t-1 input is used. In this study, this model outperformed several statistical 

benchmarks, including the random walk, and ANN models. Since this model is very simple 

and parsimonious, any more complex ANN should outperform  it in order to justify the 

additional modelling complexity.

7) Evidence is provided that the size o f the input vector is correlated w ith the performance of 

the ANNs. Models w ith parsimonious input vectors perform better fo r both datasets.
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8) Additional evidence that ANNs are able to perform at least as good as established 

benchmarks is provided for the case o f high frequency data. Note that most o f the ANNs 

were suboptimally modelled, yet they performed better or similar to the benchmarks.

In this study the results from a large distribution o f several initialisations and not only from 

the best initialisation, as is common in the ANN literature, are considered. This strengthens the 

validity o f the findings. Although ANN studies are very d ifficu lt to replicate, due to the stochastic 

nature o f the training algorithms, in this study, through the use o f carefully designed experimental 

setup, statistically significant conclusions are drawn, w ith confidence relative to the number of 

training initialisations. Therefore, similar studies or attempts to replicate this one should reach the 

same conclusions, even though different sMAPE figures may be found.

An im portant outcome o f this study is that several o f the published methodologies to  specify 

the input variables o f ANNs do not perform as expected. Sometimes they perform worse than simple 

statistical benchmarks, weakening the validity o f implementation o f the ANNs in papers that have 

used them. This only makes it more d ifficu lt to draw conclusions from  the ANN literature and 

requires assessing critically both good and bad ANN results. It is im portant to  carefully model 

network models and use fo r multiple training initialisations. Evaluating the performance of ANNs 

over several initialisations allows evaluating the robustness o f the results and only then can safe 

conclusions be drawn.

In this study the ANN topology is kept fixed fo r each dataset and the interaction o f the 

number o f hidden nodes w ith the different input vector specification methodologies is not 

investigated. The literature suggests that the most important determ inant o f ANNs accuracy is the 

selection o f the input vector (Zhang 2001; Zhang, Patuwo et al. 2001). This analysis provides
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guidelines how to best choose inputs fo r ANN models fo r high frequency data. However, the 

sensitivity o f the different methodologies to the number o f hidden nodes, or the number o f hidden 

layers is not assessed. Future research will try to address this lim itation.
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7 Concluding remarks
This thesis aimed to address the problem o f input variable selection for ANNs in forecasting. 

The main topics that were discussed in this context were (i) an extensive review o f advances in the 

application o f ANNs in forecasting and the identification o f key unresolved issues, (ii) the input 

variable selection for forecasting low frequency time series w ith ANNs, (iii) modelling time series 

w ith deterministic seasonality w ith ANNs and the implications fo r the input vector o f the networks, 

(iv) the effects o f high frequency data on the forecasting performance o f ANNs and more specifically 

the implications fo r the construction o f the ir input vector and (v) selecting the input variables for 

ANNs for high frequency time series forecasting applications. The outcome o f this research is a set o f 

best practises in specifying the input vector fo r ANNs that improve the ir forecasting accuracy. These 

were derived from a rigorous empirical evaluation of ANN candidate models on multiple datasets, 

exploring multiple conditions o f time series frequencies and components.

Summarising the major findings o f this thesis, chapter 2 presents a thorough literature 

review in the context o f forecasting and management science literature. This review consolidated 

research designs presented in previous reviews o f ANNs and forecasting methods in a unified 

framework that allowed assessing the contribution, validity and replicability o f previous work. This 

facilitated a meta-analysis o f the literature investigating fo r evidence o f ANNs' performance, 

methodological advances in forecasting w ith ANNs, gaps in research and weakness o f previous 

research. A key finding was that the ANN literature has focused more on proposing novel algorithms, 

rather than providing empirical evidence o f their performance. Most o f the ANN literature fails to 

fo llow  the suggestions o f the forecasting literature on how to perform valid and robust empirical 

evaluations or use appropriate statistical tests to assign confidence in the ir findings. Furthermore,
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the stochasticity in ANNs' training is ignored and no provisions are made in most papers to account 

fo r this. These, consecutively weaken the findings o f several papers and also prohibit the extraction 

o f best practices on how to  model ANNs fo r forecasting. This problem becomes particularly 

im portant fo r the specification o f the input vector o f the ANNs, since this is evidently identified 

multiple times in the literature as the key factor in the networks' forecasting accuracy. Several 

alternative methodologies have been proposed in the literature, however there is no extensive 

empirical evaluation that would provide evidence on which is the best methodology and under 

which conditions. In addition, no e ffort to replicate and assess the performance o f previously 

published methodologies was identified. The review concluded that it is imperative (i) to rigorously 

evaluate the proposed ANN modelling methodologies in the literature, especially those related to 

the input vector and (ii) to construct an evaluation framework that will provide valid and reliable 

evidence on ANNs' performance, taking into account the ir stochastic nature.

Chapter 3 addressed this problem by conducting a large scale rigorous empirical evaluation

o f several proposed input variable selection methodologies fo r ANNs and new variations of them on

low frequency time series. The setup o f the experiments allowed the production o f a ranking of the

competing methodologies that is on one hand robust to the stochastic nature o f ANNs and on the

other hand is valid, having used multiple time series, robust and appropriate error measures, rolling

origin evaluation, statistical testing of the significance o f the ranking and statistical benchmark

forecasting models. The statistical tests employed in this study were robust non-parametric multiple

hypothesis tests that have not been used before in evaluations o f ANNs forecasting performance

and provided higher confidence in the findings, setting the foundations fo r a valid evaluation

framework for ANNs in forecasting. These experiments assessed the performance o f the different

input vector specification methodologies fo r types of trend, seasonality and noise levels, using a
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synthetic dataset w ith known properties. The findings also were verified on real tim e series. This 

analysis focused on low frequency time series. The conclusions o f these comparisons was that linear 

regression based input variable selection methodologies performed most accurately over both 

datasets, outperform ing other linear and nonlinear methodologies based on autocorrelation and 

partial autocorrelation analysis, spectral analysis, mutual information, random field regression and 

heuristics. Notably the nonlinear methodologies did not exhibit any advantages, as it is suggested in 

the literature, however w ithout evidence. Furthermore, correctly modelled ANNs outperformed 

statistical benchmarks under all conditions, in contrast to ill specified ANN models. This provided 

insight on the contradictory findings o f the literature, where ANNs on similar datasets are found to 

perform both worse and better than benchmarks. A very simple ANN analogous to the random walk, 

which uses only the past lag as input, was identified to be on average more accurate than the 

random walk and hence it was identified as a valuable benchmark fo r fu ture ANN studies due to its 

simplicity. Any more complicated ANNs should be able to outperform  this simple ANN benchmark in 

order to justify the extra complexity. Finally, additional evidence that ANNs require special modelling 

of trend and seasonality was presented.

In chapter 4 the special case o f time series w ith determ inistic seasonality was considered.

The ANN literature has overlooked the distinction between stochastic and determ inistic seasonality.

These tw o types o f seasonality require different modelling practices. This explains why in the ANN

literature both pre-processing and not o f the inputs are advised. For the case o f deterministic

seasonality it was shown that deseasonalisation through means o f seasonal differences, which is the

suggestion o f the ANN literature, not only did not help, but on the contrary harmed the forecasting

accuracy o f ANNs. Instead, coding the seasonality by means o f dummy variables was found to be

beneficial. Several alternatives were empirically evaluated. These included variations of binary
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dummy variable coding, integer dummy variable coding, sine-cosine wave coding, autoregressive 

modelling, seasonal differencing and a proposed coding based on seasonal indices. The proposed 

methodology was found to be the most accurate and the most parsimonious. Furthermore, evidence 

was provided that there are no statistically significant differences in the accuracy o f ANNs when 

alternative binary dummy variable coding is used. Also, a single pair o f sine-cosine was found to be 

adequate to model the seasonality accurately, capitalising on ANNs' approximation capabilities, in 

contrast to conventional econometric modelling.

Chapters 3 and 4 explored the specification o f the input vector fo r ANNs fo r low frequency

tim e series. Although these time series are widespread, nowadays advances in information

technologies and computers allows the collection and use o f high frequency time series. In

conventional statistical modelling high frequency data require special modelling, since many o f the

statistical techniques were originally developed fo r low frequency time series and fail when applied

to such data. There is evidence that ANNs perform well in high frequency forecasting problems, but

the effect o f the change in frequency on the ir accuracy has not been researched. Chapter 5

investigated the effect o f tim e series frequency on the accuracy and the modelling methodologies of

ANNs. A dataset o f daily time series was aggregated in weekly and monthly time series, ensuring

that time series w ith the same properties are modelled across d ifferent tim e frequencies. An

empirical evaluation o f the performance o f the ANNs across time series o f the same frequency and a

top-down/bottom -up comparison across frequencies revealed that ANNs performed better in high

frequency rather than low frequency time series forecasting. The increase in frequency affected the

specification o f the input vector and several new modelling challenges emerged. The input variable

selection methodologies were found to  perform inconsistently among different frequencies.

Furthermore, outliers and calendar effects gained more importance. It was found that this
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information needs to be inputted in the ANNs differently to the widespread encoding o f such effects 

w ith binary dummy variables. This encoding was found to be inadequate to capture the ir emerging 

dynamic behaviour and different approaches should be researched.

Chapter 6 built on these finding and evaluated the performance o f input variable selection 

methodologies specifically on high frequency time series. Two real datasets were used to evaluate 

d ifferent input variable selection methodologies, similarly to chapter 3. Linear regression based 

methodologies were found to perform best, in agreement w ith the findings fo r low frequency time 

series. However, the ranking o f the remaining methodologies was not found to be consistent across 

frequencies, w ith the exception of the bad performance o f heuristic based methodologies. Evidence 

that ANNs performed better than statistical benchmarks was provided. In agreement w ith chapters 3 

and 4, it was shown that seasonal time series require special modelling fo r the ANNs to perform 

well. Considering both the low and the high frequency evaluations, a novelty o f this thesis is that it 

explored the performance and the applicability o f ANNs and methodologies to specify the ir inputs 

under the condition o f d ifferent time series frequencies. This illustrated tha t ANNs are flexible 

models that can model both cases w ith minimal intervention from the modeller and it was shown 

how to best select the inputs in both settings. This is a significant finding, indicating that a uniform 

automatic modelling methodology for datasets o f different frequencies is possible w ith ANNs. 

Furthermore, it was investigated whether ANNs require parsimonious input vectors or not. The 

results were inconclusive. If single datasets were considered then there was a significant positive or 

negative correlation between the size o f the input vector and the performance of the ANNs, 

however once all the datasets were considered there was no apparent connection.
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In the ANN literature there is no widely accepted methodology fo r modelling ANNs for 

forecasting. This makes the ir use d ifficu lt fo r researchers and practitioners alike. This thesis provides 

best practices on how to select objectively the input variables for ANNs. Moreover, best practices on 

data pre-processing and modelling time series seasonality, which are connected to the input vector 

o f ANNs, are provided. Hence, the outcome o f this research helps to systematically model the input 

vector that is the most im portant factor fo r the accuracy o f ANNs fo r forecasting. The systematic 

modelling can lead to automated ANN forecasting methodologies, which w ill capitalise on their 

flexibility to forecast accurately time series o f d ifferent frequencies and types, which was evident 

from  the empirical evaluations performed in this thesis. However, additional research is required 

before fully automated ANN forecasting is possible, since there are no clear guidelines on how to 

select the remaining parameters o f ANNs.

There is a conscious effort in this study to  design the experiments in such way that the

findings are valid and robust. ANNs studies are very hard to replicate and validate because o f the

large number of parameters that need to be set and the stocasticity o f the training o f the ANNs. The

later makes it almost impossible to replicate an ANN study. Most studies either do not report all the

parameters or do not address the stochasticity o f the results, harming severely the validity o f their

findings. However, through the use o f multiple training initialisations fo r each ANN model this

problem can be mitigated. In the experiments conducted in this study the entire distribution o f the

results fo r each ANN model was considered. This allowed assessing the robustness o f each ANN

model to the stochasticity o f the training and the ANNs were ranked according to the ir performance

over the complete distribution. Given the large number o f times tha t each ANN was initialised and

trained it was possible to use statistical hypothesis testing to confidently identify the models that

significantly performed better. The statistical tests were non-parametric m ultiple hypothesis tests
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and facilitated better the comparisons between ANN models. Although perfect replication of the 

forecasting errors o f ANNs is not possible, unless the same random number generator and random 

number generator seed are used, the conclusions o f this study are robust to the random 

initialisations and the ranking o f the models is reproducible. It is im portant that future ANN research 

builds on such ideas that will produce valid and reliable findings, which is the major weakness o f the 

current ANN literature.

This study addressed a wide variety o f issues connected to  the specification o f the input 

vector fo r ANNs; however it has a series o f limitations. The interaction o f the input vector w ith the 

hidden layer is not explored. Although there is evidence in the literature that the hidden layer has 

lim ited impact on the accuracy o f ANNs compared to the input vector, how these two interact and 

what are the implications fo r the specification o f the input vector has not been researched in detail. 

Another lim itation o f this study is that only the univariate forecasting case was considered. Most of 

the methodologies evaluated here are readily applicable or easily extendable to multivariate 

forecasting problems, but this was not considered in these experiments. Furthermore, this study 

focused on the most widely used input variable selection methodologies, the ir variations and those 

that can be economically implemented in high frequency tim e series, therefore methodologies 

based on wrappers and pruning of the inputs were not considered.

These lim itation need to be addressed in future research. There are also a wide range of 

research questions can be that derived from this study. It was shown that fo r high frequency time 

series the binary dummy variable encoding fo r outliers, calendar events and other time series 

irregularities is not adequate. How to best code this information remains an open question. 

Furthermore, in high frequency time series new problems emerge, like the presence o f leap years,
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etc. The effect o f these to forecasting accuracy of ANNs has not been researched. This thesis was 

unable to provide a definite answer whether ANNs require parsimonious input vectors or not. 

Experiments that w ill address this issue specifically need to be designed. Another question that is 

apparent from  this research is how to specify the maximum lag length that should be evaluated to 

identify the inputs fo r ANNs. This issue seems to be connected w ith the parsimony o f the input 

vector, however if one considers the difference between sparse and non-sparse input vectors the 

question becomes more complicated. This is an important open question fo r future research. Last 

but not least, the findings of this study show that automation o f ANNs fo r forecasting is possible. 

However, in order to achieve this there are several questions that need to  be addressed. These are 

connected w ith the rest o f the ANNs parameters and also w ith the exploration and identification of 

the time series properties. This study provided evidence that low and high frequency time series 

require adaptations o f the ANN modelling methodology, but it did not provide a way to identify the 

frequency of the time series in an entirely data driven way that is necessary fo r full automation of 

ANNs. This needs to be researched further.

This thesis aimed to addressed an im portant research gap in ANN modelling methodology

and empirical evaluation. The findings of this research can be used to  aid in the building of more

systematically modelled ANNs, which w ill reduce the inconsistencies due to  tria l and error modelling

approaches observed in the literature. Moreover, the factors under which ANNs and the input

specification methodologies perform best were investigated. Evidence was provided that ANNs

perform better in high frequency in comparison to low frequency tim e series, which can partially

explain the contradicting findings in the literature. Future studies should assess the conditions under

which ANNs perform best, thus defining the applications that these models should be applied.

Furthermore, this study proposed an evaluation framework fo r ANNs that allows to  robustly and
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reliably extract conclusions w ith confidence from ANN simulations. Future research could benefit by 

building on this framework to improve the quality o f the conclusions o f the ANN literature. Lastly, 

this study is the first large scale empirical evaluation o f ANN modelling methodologies. The outcome 

helps to dispel some of the confusion in the literature on how to model ANNs. This could act as a 

starting point fo r future ANNs studies to validly evaluate proposed innovations, assess the conditions 

under which they perform better and ultimately aid to our understanding o f ANNs.
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