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ABSTRACT

The common assumption tha t a dynamical system found in nature can be considered 

as isolated and autonomous is frequently a poor approximation. In reality, there 

are always external influences, and these are often too strong to ignore. In the case 

of an interacting oscillatory systems, they may e.g. modify their natural frequencies 

or coupling amplitudes. The main objective of this thesis is to study, detect and 

understand in greater detail the effect of external dynamical influences on interacting 

self-sustained oscillators.

Theoretical framework for the analysis of synchronization between non-autonomous 

oscillating systems is discussed. Multiple-scale analysis is applied on a phase oscilla­

tors model with slowly varying frequency. This analysis revealed the analytic form of 

the synchronization state with respect to slow and fast time-variations. Limit-cycle 

oscillators are used to study amplitude dynamics and to investigate synchronization 

transitions, which occur in the bifurcation points where the equilibrium solution for 

the phase difference and amplitudes changes their stability. Bifurcation diagrams as 

functions of coupling parameters are also constructed. In a case of non-autonomous 

interacting oscillators, the phase difference varies dynamically, the external influences 

can be the cause for synchronization transitions between different synchronization 

orders, and lag synchronization is hardly achievable. It is also demonstrated tha t 

the time-variations of the form of the coupling function alone can be the cause for 

synchronization transitions.

A method is introduced for analysis of interactions between time-dependent cou­

pled oscillators, based on the signals they generate. It distinguishes unsynchronized 

dynamics from noise-induced phase slips, and enables the evolution of the coupling 

functions and other parameters to be followed. The technique is based 011 Bayesian
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inference of the time-evolving parameters, achieved by shaping the prior densities to 

incorporate knowledge of previous samples. The dynamics can be inferred from phase 

variables, in which case a finite number of Fourier base functions are used, or from 

state variables exploiting the model state base functions. The latter is used for de­

tection of generalized synchronization. The method is tested numerically and applied 

to reveal and quantify the time-varying nature of synchronization, directionality and 

coupling functions from cardiorespiratory and analogue signals. It is found that, in 

contrast to many systems with time-invariant coupling functions, the functional rela­

tions for the interactions of an open (biological) system can in itself be a time-varying 

process. The cardiorespiratory analysis demonstrated tha t not only the parameters, 

but also the functional relationships, can be time-varying, and the new technique can 

effectively follow their evolution.

The proposed theory and methods are applied for the analysis of biological os­

cillatory systems affected by external dynamical influences. The main investigation 

is performed on physiological measurements under conditions where the breathing 

frequency is varied linearly in a deterministic way, which introduces non-autonomous 

time-variability into the oscillating system. Methods able to track time-varying char­

acteristics are applied to signals from the cardiovascular, and the sympathetic neural 

systems. The time-varying breathing process significantly affected the functioning and 

regulation of several physiological mechanisms, demonstrating a clear imprint of the 

particular form of externally induced time-variation. Specifically, the low breathing 

frequencies provoked more information flow, interfering the coordination and increas­

ing the coupling strength between the oscillatory processes. Statistical analyses are 

performed to identify significant relationships. The proposed inferential method is 

applied to cardiorespiratory signals of this kind. The technique successfully identi­

fied tha t the cardiorespiratory coordination depends on, and is regulated to a great 

extent by, the respiration dynamics. The time-varying respiration acted as a cause 

for synchronization transitions between different orders. Additional complexity is 

encountered by the coupling functions which are also identified as time-varying pro­

cesses.
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A  technique based on wavelet synchrosqueezed transform shows how the instan­

taneous phase can be extracted from complex mixed-mode signals with time-varying 

characteristics. The latter is demonstrated on several physiological signals of this 

kind. The dynamical characterization for the reproducibility of blood flow is shown 

to be more appropriate than the time-averaged analysis. This also implies th a t care 

must be taken when external perturbations are made consecutively.

Finally, the study focuses on analysis of analogue simulation of two non-autonomous 

van der Pol oscillators. The oscillators are unidirectionally coupled, and the frequency 

of the first oscillator is externally and periodically perturbed. The analogue simulation 

presents another model which encounters real experimental noise. The interm ittent 

synchronization and the corresponding transitions are detected both through phase, 

and generalized synchronization, based on a common inferential basis.



1. INTRODUCTION

The only constant in life is change -  it was Heraclitus, the famous philosopher, who 

laid down this sentence tha t has a profound and universal meaning. Many of us enjoy 

eating the sweet, healthy honey, produced by hard-working bees, collecting pollen 

from flower to flower. The flowers’ seeds blown by the wind allow for the spread and 

the reproduction of the flowers. The wind itself depends on the sea and the position of 

the Moon with respect to the Earth, which in turn, rotates around the Sun. Regardless 

of how trivial it seems, the influence between these phenomena is essential, and very 

im portant in nature. If they were to be isolated, then some of their states, behavior 

or even their very existence would be questioned. External influences are what cause 

time evolutions to change, building up the diversity, synergy and complexity in nature 

-  which makes life so fascinating.

The systems found in nature are thermodynamically open -  they exchange mater 

and energy with their environment and the coexisting systems. Such systems are 

often found in biology and can be seen in many places, including cell populations 

in yeast and the processes tha t occur in animal vasculature. If one studies their 

time-evolution, they are considered to be dynamical systems [1]. Due to the time- 

dependent variations associated with the external influences, they can be also treated 

as non-autonomous dynamical systems [2]. The sources of time-dependent variations 

can influence the observed systems in various ways by altering their dynamical char­

acteristics. Qualitative transitions and bifurcations can occur, which contribute to 

a non-equilibrium state [3]. A large group of systems exist tha t tend to maintain a 

certain degree of balance between the energy inflow and energy outflow, resulting in 

a time evolution tha t is repeatable on specific time scales. These systems form the 

group of nonlinear oscillators. One particular group of these are self sustained oscil­
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lators, which in absence of external perturbations, have perfect balance between the 

dissipation and the constant energy source [4]. In nature, however, the reality is tha t 

processes are rarely found to be strictly periodic. External influences usually cause 

the oscillating processes to be quasi-periodic, or periodic with several characteristic 

frequencies.

Many biological processes are found to be oscillating. For example, it is known 

th a t six oscillatory processes exist in the human cardiovascular system [5, 6], or tha t 

the systems dynamics can be described by population and ensembles of many oscil­

lators [7, 8], If two or more oscillators coexist in the same environment, they can 

interact with each other in different directions and with different coupling strengths 

and coupling functions. When their rhythms adjust, due to these interactions, syn­

chronization occurs [8-10]. Being able to understand and study the oscillating sys­

tems, their interactions and synchronization is of great importance in science and 

medicine. In a medical context, nonlinear oscillators and synchronization have been 

used extensively in relation to the non-invasive studies of anesthesia [11], ageing [6] 

and cardiorespiratory interactions [12], to name a few.

The cardiovascular system is one of the central systems in the human body, and is 

the main focus of this study. It is a complex oscillatory system [5, 6], associated with 

six physiological processes: cardiac, respiration, myogenic, neurogenic, endothelial 

metabolic and endothelial oscillatory activity. Each of the oscillators has characteristic 

periodic behavior, where the parameters tha t define the dynamics often vary with 

time. Fig. 1.1 (a) shows the time-variation of a human blood flow signal. The main 

cardiac activity is well observed as an oscillatory component around 1 Hz. From the 

projections, one can easily see tha t both the amplitude and the frequency are varying 

with time. When two or more oscillating processes interact, synchronization can occur. 

One of the most widely used methods for qualitative measurement of cardiorespiratory 

synchronization, the synchrogram [9] is shown on Fig. 1.1 (b). The 2?r phase events 

of the heart relative to the 2tt phase events of the breathing are plotted vertically. 

If (horizontal) stripes appear, synchronization is detected at certain synchronization 

ratio (for details see Appendix C). The synchrogram shows synchronization of the
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Fig. 1.1: Time-variations present in human cardiovascular oscillations. Wavelet transform  
of a human peripheral blood flow signal, within the cardiac frequency interval (a). 
Cardiorespiratory synchrogram (b).

heart with the respiration at a ratio of 2:8 (i.e. 1:4) for the first 4.5 minutes, before 

a transition to a non-synchronized state. At 8 minutes, synchronization returns, but 

this time with a ratio of 2:9.

Although synchronization is obviously present in Fig. 1.1 (b), it is also apparent 

tha t the previous statement, tha t horizontal stripes are indicative of synchronization, 

does not always hold strictly true. The slightly curved nature of these horizontal 

lines indicates the presence of a time variability in the system. The analysis of Fig.

1.1 naturally raised several questions: why do qualitative transitions exist between 

synchronized and unsynchronized states, and why do transitions exist between dif­

ferent ratios? Could it be because the frequency and coupling of one or both of the 

oscillators is time varying? W hat can we learn about the dynamics of these time 

variations? The two figures demonstrate tha t time-variability is an inevitable part of
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cardiovascular dynamics. Open biological systems can consist of, and interact with, 

many physiological processes. It is very likely tha t the time variability of these sys­

tems arises from their influence on each other. If this time variability is not taken 

into account, and the oscillators are considered to be isolated, an incomplete and 

even spurious understanding of the underlying dynamics will result. These ideas and 

observations provided the motivation and the problem to be addressed in this work.

The aim of this thesis is to study, detect and understand in greater detail the 

effect of external influences on interacting self-sustained oscillators -  as motivated 

and applied to biological oscillators. Firstly, the underlying phenomena are analyzed 

theoretically. The primary goal is to develop methods and techniques tha t can detect 

the phenomena and to estimate the characteristic quantities, for a general case of 

interacting (non-autonomous) oscillators. Analyzing data from cardiovascular mea­

surements, under non-autonomous conditions, can then demonstrate the benefits and 

the potential of this study for biological systems.

Theoretical study is a key requirement for a thorough understanding of an underly­

ing problem and serves as functional foundation for successful and correct applications. 

Starting from the governing equations and studying the respective dynamics and 

qualitative behaviors, constitutes the direct (bottom-up) approach. Non-autonomous 

systems form an important group of dynamical systems [2, 13]. In this work, the 

attention is focused on those non-autonomous systems tha t are of importance for this 

particular study -  the self-sustained oscillators. A vast number of publications exist 

tha t deal with the phenomena of synchronization [8 , 14-17], but only in autonomous 

conditions, or they treat synchronization of non-autonomous systems [18, 19] which 

are not self-sustained oscillators -  which is beyond the scope of our interest. Synchro­

nization analysis of non-autonomous self-sustained oscillators was conducted, and the 

effect of the external force was linked with the qualitative dynamical transitions. The 

synchronization state itself is determined by the stability of the phase difference solu­

tion. In order to describe the underlying problem, various cases with different types 

of external sources and affected parameters are also investigated. This theoretical 

part broadens the perception and the understanding for general case of interacting
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non-autonomous oscillators and lies down the necessary theoretical background for 

the rest of the work.

For biological and many other experimental studies, one needs to use various 

methods and techniques in order to infer and detect the phenomenon of interest. Using 

the measured signals as a starting point, and trying to understand and estimate the 

underlying dynamics and phenomena, is said to be an inverse (top-down) problem. 

Given the phases of two oscillators, the standard approaches in evaluating the presence 

of synchronization are based on the statistical properties of only the phase difference 

[20- 22]. A vast number of work has been done regarding the possibility of detecting 

the couplings and directionality between oscillators [23-28]. However, the proposed 

techniques rely on a reasonable density of the observed phase-space, and they are easily 

challenged by the presence of time-variability and strong correlation of the two signals. 

On the other hand, recent work regarding the Bayesian inference of noisy inherent 

dynamics [29-32] opens new possibilities tha t have never been tested for the proposed 

problem. In this study, a new, self-consistent approach is proposed for detection of 

inherent phase dynamics from phase time-series of interacting noisy oscillators. It 

allows one to simultaneously estimate the synchronization, the directionality and the 

nature of coupling functions. The distinct characteristic of this approach is tha t due to 

the use of particular information propagation, one can trace the time-variability and 

the effect of the external forces on the parameters tha t drive the dynamics. It is also 

shown tha t useful inference can be conducted from the state space time-series. The 

Lyapunov asymptotic stability of the driven oscillator can then serve as an indication 

of the presence of synchronization. The developed methods and techniques, can be 

applied not only to biological signals, but to any experimental oscillatory time-series.

The proposed theory and methods are particulary suitable for the study of bi­

ological oscillating systems and their interactions. The presence of time-variability 

of characteristic parameters and the existence of external sources have already been 

identified in several publications [5, 6, 33]. In this thesis, the analyses are performed 

on data obtained from resting human subjects, whose breathing has been externally, 

and deterministically perturbed. The subjects’ breathing is paced as a ram,p i.e. the
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respiration frequency is gradually decreased/increased within a certain time interval. 

This procedure induces time-variability in the observed oscillating processes in a con­

trolled deterministic manner - thus presenting a case with true non-autonomous na­

ture. The measured signals included electrocardiogram (ECG), blood pressure (BP), 

carbon dioxide (C02) concentration and muscle sympathetic nerve activity (MSNA). 

The rare MSNA measurement has been used in the past for successful characteriza­

tion of human sympathetic activity in diverse cases [34-36]. The data analyses were 

performed with several methods tha t can deal with the time-variability present in 

the signals: wavelet transform, wavelet phase coherence and windowed wavelet phase 

coherence [37, 38]. The results, together with the respective statistical analysis, iden­

tified the relationships and the coherence between the oscillatory components and the 

effect of the non-autonomous perturbations. In addition to this, a study has been 

conducted on cardiorespiratory interactions, which have played an im portant role in 

several previous studies [6 , 11, 25]. Before starting the cardiorespiratory analysis, one 

needs to estimate the instantaneous phase from the complex ECG signal, a problem 

for which there is currently no known method tha t yields satisfactory results. There­

fore, a technique is proposed for the detection of instantaneous phase from complex 

mix-mode signals, based on wavelet synchrosqueezed decomposition. The effect of 

time-varying perturbations on cardiorespiratory directionality, synchronization and 

their respective qualitative transitions, are identified and analyzed.

Furthermore, the study also explored the reproducibility of laser Doppler flowmetry 

(LDF) blood flow measurements, and how dynamical characterization is more appro­

priate than time-averaging approaches. Signals are analyzed from both human blood 

flow, and from numerical simulations of coupled oscillators th a t have been subjected 

to non-autonomous perturbations. It is shown that the variability, as well as the mean 

value, of the flux should be considered, and when subjecting the microvasculature to 

a perturbation, care should be taken to understand the role of oscillatory processes 

and the respective transient physiological response [39].

In order to investigate non-autonomous effects on other real oscillating systems, 

signals from analogue simulation are analyzed. The analogue simulation [40] is per­
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formed in controlled experimental conditions, and a small amount of noise, which can 

be additive and/or multiplicative, is embedded in the signals, due to imperfections 

in the electronic equipment. The model consists of two unidirectionally coupled van 

der Pol oscillators, with the first one having periodic time-varying frequency. One 

of the main purposes of this study is to demonstrate how one should treat and de­

tect the underlying phenomena from experiments. Comparative analysis of phase and 

generalized synchronization are also presented, together with their implications and 

limitations resulting from the presence of time-varying sources.

The thesis is organized as follows.

In Chapter 2 the main theoretical aspects of non-autonomous systems and their inter­

actions are presented. The basic characteristics and formulations for non-autonomous 

systems and non-autonomous self-sustained oscillators are given, together with the 

generic formalism and definition of synchronization between such oscillators. Multiple- 

scale analysis is conducted on coupled non-autonomous phase oscillators revealing the 

relationship between the speed of the influence and the synchronization state. Concen­

trating on specific limit-cycle models, synchronization determination and dynamical 

characteristics for different cases of time-varying parameters are investigated. Detailed 

stability and bifurcation analysis are also demonstrated, followed by observation of the 

framework for different nature (periodic, stochastic and chaotic) of non-autonomous 

sources. The time-varying coupling function and its implications for synchroniza­

tion transitions are discussed in detail. The content from this chapter serves as a 

theoretical foundation for the subsequent chapters.

Chapter 3 presents a method for the reconstruction of time-varying dynamics. The 

technical aspects about the implementation of Bayesian inference (which is the core 

of the method) are demonstrated. The use of inferred parameters for the detection of 

synchronization, coupling nature and directionality is presented in detail, and applied 

to several types of oscillatory systems. The detection of interacting time-varying dy­

namics in state space is also discussed, together with its implications for the detection 

of generalized synchronization.
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The application of the proposed theory and methods on biological oscillatory 

processes is demonstrated in Chapter 4. The first part investigates the effect of 

time-varying breathing on the cardiovascular system and sympathetic nerve activity. 

Wavelet transform of time-varying frequency content is obtained and cardiorespira­

tory interactions are studied. A particular technique for phase detection from complex 

mix-mode signals is also presented. The second part of chapter 4 focuses on the re­

producibility of LDF blood flow, which compares the dynamical approach with the 

time-averaged measures, and provides evidence tha t care is needed when the oscilla­

tors are subject to consecutive external perturbations.

Chapter 5 outlines analogue simulation of interacting non-autonomous van der 

Pol oscillators and demonstrates how synchronization can be treated in experiments. 

Under a common inference framework, both phase and generalized synchronization 

are treated. The last Chapter 6 provides a summary of work and outlines the future 

perspectives.



2. THEORETICAL BACKGROUND: NON-AUTONOMOUS 

SYSTEMS AND SYNCHRONIZATION

Physicists usually try  to study isolated systems, free from external influences, tha t 

can be described precisely by well-defined equations. In practice, of course, this ideal 

is seldom completely realised and it is normally necessary to take account of a variety 

of external perturbations. Where the latter are parametric, i.e. tending to alter the 

parameters of the modelling equations, a wide range of often counter-intuitive effects 

can arise, e.g. the occurrence of noise-induced phase transitions [41] or spontaneous 

shifts in synchronization ratio in cardiovascular interactions [11], and particular care is 

needed in analysing the underlying physics. Such phenomena are especially important 

in relation to oscillatory systems, whose frequency or amplitude may be modified by 

external fields. One approach to the problem involves focusing on the idealised model 

system but, at the same time, accepting tha t it is non-autonomous, i.e. tha t one 

or more of its parameters may be subject to external modulation. W ithout some 

knowledge of the form of modulation, little more can be said other than admitting 

to the corresponding inherent uncertainty in the analysis. It often happens, however, 

th a t the external field responsible for the non-autonomicity may itself be deterministic, 

e.g. periodic. At the other extreme, it might be either chaotic or stochastic. In each 

of these cases, it is possible to perform a potentially useful analysis.

Oscillatory systems are widespread in nature and they are mostly, to a greater or 

lesser extent, non-autonomous. Analysis of their signals can often be used to infer 

information about them, even where very little is known a priori Where two or more 

oscillatory systems mutually interact, synchronization may occur, in which there is a 

mutual adjustment of their respective frequencies [9]. It is a widespread phenomenon 

that arises in e.g. engineering [42], biology [11, 12. 43], communications [16], ecology



2. Theoretical background: non-autonomous systems and synchronization 10

[44], meteorology [45], and deterministic chaos [15, 46, 47]. It is often useful to in­

vestigate synchronization phenomena because of the information such studies provide 

about the oscillators and, in particular, about their interactions. The situation con­

sidered is one where the non-autonomicity induces its own dynamics, superimposed 

on top of the dynamics of the synchronizing oscillatory systems. The possibility of 

understanding this higher dynamics is potentially im portant because it promises to 

allow the time series analyst to determine details of the non-autonomicity -  e.g. its 

frequency and amplitude, and which term(s) of the model equation is/are affected -  

from measured signals. Thus the following discussion serves as a theoretical base for 

the study of the synchronization phenomenon under non-autonomous conditions.

2.1 N on-autonom ous system s

Non-autonomous (Greek: auto- self’ +  nomosJ law’ ) systems are those whose law of 

behaviour is influenced by external forces. From a dynamical point of view, a set of 

differential equations are non-autonomous if they include an explicit time-dependance. 

The external influence can have different nature, for instance, it could be a periodic 

force, a quasi-periodic function or a noisy process, and it could affect the systems in 

a various ways i.e. it might be additive, could enter in the definition of a parameter, 

or might modulate the functional relationships tha t define the interactions between 

systems. When we focus our attention on only one or few components of a high 

dimensional autonomous dynamical system, we will actually be dealing with non- 

autonomous differential equations because of the time-variability embedded within 

their interactions with the rest of the system.

Often in the literature, and especially in inverse problems, the non-autonomous 

dynamics have been associated or referred to as non-stationary. The stationarity 

is a statistical property of the output signal, and as such is characterized by the 

application of tools for statistical mechanics [48]. In seeking to justify and motivate 

a different approach to the problem, first the connection between non-stationary and 

non-autonomous dynamics is outlined. The solution of an autonomous dynamical
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systems x(t) =  /(x )  depends only on the time difference (t — t0) between the current 

state x(£) and the initial condition x (t0)- It therefore follows th a t the statistical 

behaviour of a bounded-space solution, if far enough from the initial condition, must 

be time-independent. In contrast, when a process is bounded and non-stationary, then 

it is clearly impossible to represent the driving dynamics with autonomous equations. 

For this reason, non-autonomous dynamics x(£) =  / (x ,  t) must constitute the core 

mechanism underlying a non-stationary output signal. On the other hand, for an 

appropriate time-dependence of the external dynamical field, it is possible th a t a 

non-autonomous dynamics may be perfectly stationary in the statistical sense. Hence 

non-autonomous dynamics can act as a functional “generator” for both stationary 

and non-stationary dynamics.

Non-autonomous dynamical systems have attracted considerable attention from 

mathematicians, much effort being expended on the development of a solid formalism 

[2, 13]. This included mainly the process and the skew product flow formalism. For 

the two-parameter semi group or process formalism, instead of only the time difference 

t —10, both the current time t and the starting time to are im portant and play role. The 

skew product formalism includes an autonomous dynamical system as a driving mech­

anism which is responsible for the temporal and qualitative change of the vector field 

of the non-autonomous system. It has been discussed that, even though the process 

formalism is intuitive and the skew product formalism abstract, the latter contains 

more information about how the system evolves in time. The treatm ent of pullback 

attractors, with fixed target set and progressively earlier starting time t0 —> — oo (as 

opposite from forward attractors with moving target and fixed £0) gives additional 

insight for the analysis of non-autonomous attractors. The proposed theory has been 

found useful in number of applications, including switching and control systems [49] 

and complete (dissipative) synchronization [18, 19]. Being recently established and 

still evolving, this mathematical theory promises many application in more complex 

non-autonomous systems.

In the physics community, on the other hand, there seems to have been a degree 

of reluctance to address the problem as it really is and, in general, the issue has
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been sidestepped by reducing the non-autonomous equation to an autonomous one 

by addition of an extra variable to play the role of time-dependence in f  (x, t ) . It 

has been argued th a t this approach is not mathematically justified because the new 

dimension is not bounded in time (as t -* oo), and th a t attractors can not be defined 

easily. Certain transformation can be employed to bound the extra dimension, but 

this approach does not work in general case. Beside this, the procedure of reduction 

to autonomous form has been safely employed in many situation - especially in studies 

closely related with experiments, where the dynamical behaviour is observed for finite 

length of time. There are two cases, in particular, tha t recur in the literature: (i) where 

the dynamical field is a periodic function of t (i.e. x  =  f  (x, sin(t)), often referred as an 

“oscillating external perturbation”); and (ii) when the dynamical field is stochastic 

(the noise being the time-dependent part). The first case is obviously one where 

an extra variable is often substituted, and the latter case involves the application 

of the mathematical instruments of stochastic dynamics. These can be seen as the 

two limiting-cases of an external perturbation tha t comes from a system with either 

one degree of freedom, or with an infinite number of degrees of freedom. In between 

these two extremes there is a continuum of cases when the time dependence is neither 

precisely periodic, nor purely stochastic. An example of an intermediate case of this 

kind would be a dynamical system x  =  f  (x, g(t)) where git) is the n-th component of 

a chaotic (low dimensional) dynamical system.

The equations of the non-autonomous systems involve terms containing the inde­

pendent variable on the right hand side. Hence, obtaining the exact solution can be 

difficult and not a trivial task, often unavoidable ending up as unsolvable. Moreover, 

there is no general mathematical technique for evaluation of solutions, but (similarly 

to nonlinear systems) each non-autonomous equation has its own type, or belongs 

to a group of solutions. Popular techniques for treatm ent (or sidestepping) include 

perturbation methods, non-homogenous differential equation, Floquet theory or in­

stantaneous solutions.

The non-autonomous systems constitute a vast and very general class of systems. 

For the purpose of this thesis, and as motivated by the biological systems to be an­
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Fig. 2.1: Phase portrait of non-autonomous van der Pol oscillator with time-varying fre­
quency. The black line is for autonomous (A  =  0) and grey line for non-autonomous 
(A  — 0.3) portrait. The system is given as: x  — fi( 1 — x )x  + [uj +  A s\n [u t)]2x  =  0, 
where u  =  1, Co =  0.01 and p, — 0.2.

alyzed, the discussion is concentrated on non-autonomous self-sustained oscillatory 

systems. Anishchenko et al have enumerated [50] all of the common cases of non- 

autonomicity in oscillating dynamical systems, including those in which limit cycles 

are induced by external non-autonomous fields. In what follows, however, the discus­

sion is restricted to self-sustained oscillators, which are taken to be those tha t exhibit 

stable limit cycles in the absence of the non-autonomous contribution. Thus, even 

though the characteristics of the oscillator (its frequency, shape of limit cycle, etc...) 

are varying, it can still be considered as self-sustained at all times.

2.1.1 Single non-autonomous self-sustained oscillator

Before discussing the interactions and the respective states and phenomenons (like 

synchronization, directionality or stability), an outline of the general characteristics 

of a single self-sustained oscillator subject to external non-autonomous source will 

be given. Consider an oscillator d x /d t  =  f (x ( t ) )  with a stable periodic solution 

x(£) =  x ( t  +  T) in an absence of external influence, characterized by a period T. 

The field f  (x(t) , t) can be set to be an explicit function of the time. This will be the 

case, for instance, if one or more of the parameters tha t characterize f  are bounded 

(periodic or non-periodic) functions of time. The periodic solution x ( t)  is, in general,



2. Theoretical background: non-autonomous systems and synchronization 14

lost; and the definition of the period T  becomes somewhat “blurred” . An example of 

such non-autonomous oscillator is presented on Fig. 2.1. In the absence of a periodic 

solution x(£) =  x (t +  T), the definition of period could be replaced by the concept 

of “instantaneous period” (and correspondingly “instantaneous frequency”): at any 

instant of time r  the instantaneous period T (t ) of the dynamics is the period of the 

limit cycle solution of f(x (£ ),r), with r  fixed.

Following the definition of phase-function, given by Kuramoto [10], a generaliza­

tion for non-autonomous oscillators can be discussed. In an autonomous system, the 

phase over the limit cycle is defined as quantity which increases by 2tt during each 

cycle of the dynamics. A non-autonomous version of the phase-function </>(x, t ) could 

then be defined as:
# (x ,t) d0(x,t)

+ (2-1}

where tu(t) =  2ir/T(t) is the instantaneous frequency, i.e. the characteristic frequency 

of the limit cycle of the dynamics defined at a given time:

cj (t ) =  1 /T ( t)  [  V ^ (x ( t) ,  t )  • f  (x(t), r )d t ,
Jo

a natural generalization of the phase for an autonomous oscillator where d(j){x)/dt =  

27t/ T  = V a;0f(x )- The second term  in (2.1) can be present for example due to the 

non-isochronoucity of the oscillator i.e. due to the effect tha t the perturbed amplitudes 

have on the phase dynamics.

2.2 Synchronization  of non-autonom ous self-sustained

oscillators

Synchronization between coupled oscillator is a universal physical phenomenon that 

arises in many areas of science. It is defined as: mutual adjustment of rhythms due 

to weak interactions between oscillatory systems [9]. When the oscillators are weakly 

nonlinear and the couplings are weak as well, the synchronization phenomenon can 

be described qualitatively and sufficiently well by the corresponding phase dynamics.
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The latter is often referred to as phase synchronization [9, 15]. To set up a general de­

scription of synchronization between non-autonomous systems, two non-autonomous 

oscillators are set to interact through coupling function gq, g2 parameterized by the 

coupling constants el5 e2h

xi = fi(x ,£) +  e ig 1(x1,x 2) 

x 2 = f2(x ,t) +  e2g2(x i ,x 2) .

When the frequency mismatch is relatively small, one can observe for which param­

eter values the system is synchronized and does not exhibit phase-slips [9], i.e. when 

|^ (0 i>02>£)| < constant, where the phase difference is defined as2: i/;(0 i , 0 2,£) =  

02 (x2 (t) , t) — </>i(xi(t), t ) . Using Equ. (2 .1) the time derivative of the phase difference 

dip/dt can be expressed explicitly as:

# ( 01, 0 2 ,0  („  (C f ^  , Jt =  W x fo )  (f2(x2, t) +  e2 g2(xi, x 2)) +

~(S7x<t>i) (f i(x i,t)  +  ei g i(x i ,x 2))+  

d0 (x2,t)  _  d(f)(xi,t) 
dt dt

=  C2 V x  0 2  * g 2 ( X i ,  X 2 ) -  Ci Vo: 0 1  ' g l f c i ,  X 2 )

<90(x2,t)  50(xi,£) ( 2tt 27r
+  dt dt +  I ^ t )  ~~ T i(t) '

The synchronization condition |0 (0 i, 02, t) | < constant will be satisfied if there exists 

a stable solution for the dynamics d0(0 i, 02, t)/d t. Because the velocity field is a 

function of time explicitly dependant on the terms the existence of a stable

equilibrium ^eqCO satisfying d0 (0 1? 0 2, t) /d t  =  0 does not mean tha t the relative phase 

remain constant. Not even the existence of a time-dependent stable root can guarantee 

an absence of phase-slips: as Tpeq(t) changes, the instantaneous phase difference ip(t) 

may fall outside the basin of attraction, in which case a phase-slip occurs, perhaps to

1 In general, the coupling parameters and functions can also be time-dependent (as discussed 
later), but for simplicity and clarity they are considered autonomous in this notation.

2 The last statement holds also for higher frequency ratios in the form ^ =  u</>2 — mtpi where n 
and m  are integer numbers.
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another equilibrium point. But if ipeq(t) changes in time slowly enough for the solution 

to remain continuously within its attracting basin, then the phase difference will 

vary with time (as imposed by the non-autonomous source) while the system remains 

within the state of synchronization.

2.3 P hase oscillators m odel

When limit-cycle oscillators are coupled weakly, their interactions can be studied by 

means of phase oscillators [10] -  which, by neglecting the amplitude dynamics, repre­

sent approximative notation of the oscillators’ full dynamics. The justification of the 

latter arises because the amplitudes are robustly stable, unlike the phase dynamics 

which correspond to the direction of the limit-cycle and are border-line stable. In 

terms of Lyapunov exponents this means tha t the amplitude dynamics are described 

by negative, while the phase with zero Lyapunov exponents. This sensitive stability of 

the phase dynamics can be easily affected even by weak perturbations in terms of cou­

pling interactions or other external sources. Therefore, the phase oscillators serve as 

functional models tha t can describe qualitatively the interactions, the synchronization 

phenomenon and the corresponding transitions.

A simple model of two coupled phase oscillators is used for the study of synchro­

nization phenomenon under the influence of external non-autonomous sources. This 

elementary model does not capture the whole dynamics (mostly because it omits the 

amplitude dynamics), but serves as a good starting example where the synchroniza­

tion phenomenon and the respective qualitative nature can be observed in easy and 

transparent way. The following also presents one of the most used procedures for 

treating non-autonomous problems -  which includes reductions to autonomous form 

and multiple time scale analysis [51, 52].

The model consists of two phase oscillators, where the frequency of the first oscil­
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lator is periodically perturbed:

d(f) i 7 / \ /=LJi +  ^4sin(a)t) +  ei sin(02 — 0 i)

^  +  £2 sin(0 i -  (f>2). (2 .2)

The two oscillators are synchronized if their phase difference is bounded |<j>2(t) ~  

=  \'ip(t)\ < const [9], and if the equilibrium solution remains in its attraction 

basin. Hence, for synchronization purposes the dynamics of Eqs. (2.2) can be studied 

through the phase difference ^ ( t)  dynamics.

The non-autonomous source (for different frequency and amplitude) can affect 

the dynamical behavior of the phase difference and the synchronization state itself. 

Instead of being constant, like in autonomous case, now the phase difference can vary

with time, as imposed by the non-autonomous source. If the amplitude of the non-

autonomous source is relatively large, for certain time intervals the oscillators can go 

in and out of synchrony -  which due to the periodicity of the perturbation can result 

in interm ittent synchronization. The effect of the non-autonomous sources on the 

dynamical behaviour of the interacting oscillators including amplitude dynamics, will 

be discussed in more detail in Sec. 2.4.

The equations in system (2.2) are nonlinear non-autonomous equations tha t can 

not be solved exactly. In such situation the most common approach for analytical 

treatm ent of non-autonomous equations is introducing an additional dimension for 

the independent variable. Even though mathematically not fully justified (for rea­

sons discussed above in Sec. 2 .1), this procedure often allows useful analysis to be 

conducted. If the oscillating frequency mismatch (lj =  lu2 — cji) is significantly larger 

compared to the frequency to of the non-autonomous source (uj/ lu <C 1), one can try  

to analyze the dynamics on two separate and independent time scales (slow and fast). 

When the frequency Co is smaller than the order of the other parameters -  singular 

perturbation theory can be applied.

Grouping the phases into the phase difference variable ip(t) =  <f>2(t) — <f>\(t) and
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transforming the equations to autonomous form, system (2 .2) becomes:

=uo — Asinfz) — e s in ^ )

dz
T t = £" ’ (2'3)

where Co — eio, with e being the small parameter and v = const; and the frequency 

mismatch is uo = oo2 — u)\ with group coupling e =  e\ +  e2- The variable ip(t) is fast, 

while z(t) is slow variable.

First, system (2.3) is analyzed for slow time-scale by introducing r  — et and 

rescaling accordingly to:

^  A ■ ( \ • t !\£—— —uj — Asm(z) — esm (^) 
dr
dz
Tr ^  (2^

As e —>■ 0 the trajectories of system (2.3) converge during slow epochs to solutions of

the slow subsystem (2.4) - often called the critical manifold or quasi-steady state. Sub­

stituting r  back for the z variable (z = t v  — Cot), the solution of the slow subsystem 

is expressed as:

/co — Asm(Cot)\
^(t) =  arcsm ( -------------------). (2.5)

The results, for particular parameters are presented on Fig. 2.2. The synchronized 

case on Fig. 2.2 (a) shows the phase difference variations with period T  = uofair, while 

the interm ittent synchronization and the transitions to in and out of synchrony are 

presented on Fig. 2.2 (b). Both examples demonstrate tha t for slow non-autonomous 

source, solution (2.5) resembles the dynamics in good agreement with the numerical 

simulation (compare red and grey lines).

The stability of the phase difference ip(t), and thus the synchronization state, can 

be determined by linearization about the quasi-steady equilibrium. Linearization for
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Fig. 2.2: (a)-(d) Comparison of slow time scale analytic solution (2.5)-red line and numerical 
simulation of the full system (2.2)-grey line, with A  =  0.1, Cb =  0.009, co — 0.4 and 
e =  0.55: (a) synchronization case, (b) intermittent case A  — 0.19 - horizontal red 
line indicates where solution (2.5) is not defined; (c) enlarged transitions segment 
from (b); (d) synchronous case for fast external force Co — 1. (e) The fast time
scale analytic solution (2.7) with black: dashed line for synchronization case, and
with full line unsynchronized case for e =  0.36 exhibiting phase slips.

the solution (2.5) yields:

d'lpit) I [cj — .Asin(a)t)]2
~ l T  = ~ y  7  '

The stability requirement (d'ip(t)/dt < 0) gives the synchronization condition: [u — 

Asin(u)t)\/e < 1. The latter allows the critical couplings for transitions between syn­

chronization, intermittent synchronization and non-synchronization to be determined:

f
e > uj +  A  : synchronization 

\ ( j  — A < e < uj + A  : intermittent synchronization

to — A > e : non — synchronization
V

Even though the solution for the slow time scale (2.5) qualitatively captures the 

dynamics (as shown on Fig. 2.2 (a) and (b)) it fails to describe the fast transitions, 

as pointed out on the enlarged segment on Fig. 2.2 (c). Also the dynamics perturbed 

by faster non-autonomous sources can not be described by the same solution - Fig.

2.2 (d). This is where the fast epochs of the original system play an important role.
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During the fast time-scale, as £ —>■ 0 the trajectories of system (2.3) converged to 

solutions of:

where dz( t)/dt  =  0, hence z(t) =  const =  z0 = cuto in the limit e — 0. Equation (2.6) 

describes autonomous case of two coupled phase oscillators - the solution of which 

can be express as:

appearing where the slow-time scale solution is not defined (horizontal lines Fig. 2.2

interpretation implies tha t the effect from the fast external sources on averaged is re­

duced within one cycle of oscillation, and the variations of ij){t) are hinder, converging 

to the autonomous case.

(2.3) and (2.4), respectively. The solution (2.5) of the slow subsystem described the 

time-varying dynamics and the intermittent synchronization transitions. The fast 

time-scale solution (2.7) converged to solution of autonomous synchronization case. 

The latter solution described the fast transitions and the phase slips dynamics during 

the unsynchronized states.

(2 .6)

i/j(t) =  arctan 2) V wa - e2 +  e (2.7)

where oja =  cj — Asin(d)to) for simpler notation. The latter solution Eq. (2.7) is 

responsible for the dynamics of the fast synchronization transitions. The phase slips

(b) and (c)) - are govern by dynamics described by this solution (2.7) - Fig. 2.2 (e). 

The fast initial transient dynamics are also described by Eq. (2.7). The physical

The multiple time-scale approach allowed the dynamics of the full system (2.2) to 

be described and understand by analyzing the fast and slow time-scale subsystems

2.4 L im it-cycle oscillators m odel

In this section the synchronization phenomenon is presented on a model of interacting 

limit-cycle oscillators. The effect of the non-autonomous sources on the interactions 

is studied both on phase and amplitude dynamics. Dynamical characterization is
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also shown for different types of non-autonomous sources, acting on several impor­

tan t properties of the oscillators’ interaction. The systems also serve as model for 

determination of the stability and synchronization state.

2.4.1 The model

The Poincare oscillator was chosen as an example of a non-autonomous limit-cycle 

system whose dynamical field can be made explicitly time-dependent. In polar coor­

dinates (r, <j>), it rotates at a constant-frequency, attracted with exponential velocity 

towards the radius, f  =  ar(a  — r); <j) = u.  Here (f> represents both the angle variable 

and the phase of the oscillator, making it isochronous oscillator. Another advanta­

geous property of the Poincare oscillator is tha t the signal is purely sinusoidal, without 

any high frequency harmonics, which allows better traceability of any frequency vari­

ations over time.

A model of two weakly interacting Poincare oscillators in terms of Euclidean co­

ordinates, takes the form:

xi = - q i x i  -  ui(t )yi  +  e i(t)gn (x i , x 2)
(2 .8 )

2/ i  =  —qiVi +  wi(t)xi  +  ei(t)gi2(yi, 2/2)

x 2 — ~ Q 2 X 2 — ^ 2 { t ) y 2  +  £ 2 ( f ) 9 2 \ ( x h  x 2 )
(2.9)

2/2 — Q2I/2 +  U2( t ) x2 +  2̂ {t)922 (2/1J 2/2)

9i =  a t  ( ^ J x i +  y f  -  d i

The dynamics of each subsystem is described by states ( 2 yt), where i — 1, 2 denotes 

the oscillator. Parameters and a* are constants (a* being the amplitude parameter), 

Ui are angular frequencies, are the coupling amplitudes and gn (xu x 2), &2 (2/1 >2/2) 

are the coupling functions. The frequency and coupling parameters each consist of a 

leading constant part and a small non-autonomous term: u\(t)  =  ui  +  A n  sm(uu t), 

u 2{t) = u 2 + A 21sm(u2it), e i(t) = +  A 12sm(u12t) and e2(t) = e2 +  A 22sm(u22t),

where A {1 and u {1 are small compared to u u while A,2 and u l2 are small compared
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to e*. Note that, in the absence of the non-autonomous terms ( i n  =  A 12 — A 2i =  

A.22 = 0), the oscillators generate self-sustained oscillations [4, 50]. This implies 

th a t the non-autonomicity here should be seen, not as a source of oscillations, but 

more as an external perturbation/influence on the autonomous form of the oscillators, 

which of course have their own inherent oscillatory dynamics. In this case, the non- 

autonomous terms present in the system (2.8), (2.9) obviously come from periodic 

external modulations -  some forms of non-periodic non-autonomous terms, and their 

implications for synchronization, are discussed in Sec. 2.4.6.

2.4.2 Analytic calculations

As already indicated, the phases of the oscillators in Eqs.(2.8) are given by the angular 

coordinate 0:
■ d  y i

<pi =  — arctan —,
dt Xi

where the arctan is defined as four-quadrant operation. Developing the right-hand 

term  for the derivative of the phase difference ip = 02 — 0 i, one obtains:

. . . . cos 02 / ■. , N s in 02 /,s / \
ip = -  0J2{t) + 0Ji(t) H e2 {t)g22{xu X2 ) ---------- e2(t)p2i ( x i , x 2)+

, T2 . , r2 (2.10)cos 0i / N / \ sm 0i . , , .
-----------£i(t)gi2\xiix 2j H---------- ei\ t)gw\x i'>x 2)-r i r i

The case where the coupling functions are linear and of the form: p i(x i,x 2) =  x2 -  

£1, 22(2/1, 2/2) =  2/2 -  2/i,23(^1, £2) =  £1 -  £2, 24(2/1, 2/2) =  2/i -  2/2 was considered. 

After some trivial algebra, the analytic expression for ip is obtained (details given in 

Appendix B).

Next, a change of variables was performed by substitution of 02 =  0  +  0i. Because 

0i changes much faster tha t 0 , one can average ip by integrating over 0y

(i>) =  T  j  ipdfa = - 0J2(t) +Ui ( t )  -  (e2(i)^ + ei(<)^) sim p .

Similarly, after the integration of the fast variable, one can write the mean velocity
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of the amplitudes r\ and r2 as:

1 f 2n
(ri) =  —  J  h  dcp i =  a in a i  -  r 2a x -  ex (t ) (rx -  r2 cos ip)

1 [ 2l*
(^2> =  2^  J 2 d(p2 — a2r 2a 2 -  r 22a 2 -  e2{t)(r2 -  n  cos'i/j).

To obtain an equilibrium solution for the synchronization regime requires th a t one 

solves /
ip =  wi(t) -  u 2(t) +  s im p  =  0

< f i  = diricti — r i2ai — ri€i(t) + r2ei(t) cosip = 0 (2-11)

r 2 =  a2r2a 2 -  r2 a 2 -  r2e2(t) +  rie2(£) cos^  =  0

and analyze the equilibrium of the system in respect of the three variables ip, r \ , r2. To

find the solution for the system in Eq.(2.11) a numerical multidimensional minimizer 

[53] was employed, which returns a solution {^eq, ^ieq5 r 2eq}- The equilibrium is stable 

when the eigenvalues of the Jacobian m atrix of the functions {ip, r\, r 2}, in respect of 

the three variables {ip ,r\ ,r2}, have negative real parts.

It is im portant to note tha t this approach of stability analysis through the eigen­

values for the parameters at each time i.e. through instantaneous eigenvalues, is not 

valid in general when the systems are time-varying. There are number of practical 

examples, however, where this approach has been safely used for determination of 

synchronization [54, 55], but also some counter examples were pointed out as well 

[56]. For the model under investigation and the types of non-autonomous sources 

considered, this approach was able to determine correctly the stability of system

(2.11) and the synchronization state. The last was consistent with other methods for 

synchronization detection, Lyapunov exponents evaluation and numerical bifurcation 

analysis.
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2.4.3 D y n am ica l b eh av io u r an d  sy n ch ro n iza tio n  analysis

There are many natural oscillatory systems tha t have characteristic frequencies which 

vary in time, examples being the cardiovascular system [5, 6, 26] and brain [33]. In 

order to understand them, one needs to consider the origins of this variability and 

to establish how it affects the nature of the oscillations and the mutual interactions 

between the oscillators. As a first step, synchronization between a pair of limit-cycle 

oscillators is studied, where one of the oscillators has an explicitly time dependent 

frequency. It is unidirectionally coupled to the other oscillator, which is autonomous. 

The two Poincare oscillators (2.8) and (2.9) are set up with the following parameters: 

oti = di = 1, £i =  0, e2 =  0.38, f i  — 1 Hz, / 2 =  0.95 Hz (where uji — 27t/»; i =  1, 2) and 

the coupling functions are specified as linear g2i(xi ,  x 2) = X i ~ x 2 and ^2 2 (2 /1 , 2/2 ) = Vi~  

y2. The oscillating frequency of the first oscillator is time-varying due to the presence 

of the non-autonomous term -  in respect of parameters this mean th a t A n  =  0.23 and 

f u  =  0.003 Hz, and the other parameters are A i2 =  A21 =  A 22 =  / 1 2  =  / 2 1  =  f i 2 =  0.

The model was simulated numerically by fourth-order Runge-Kutta integration; 

the same method was also used for the other simulations described below. The time

Frequency [Hz]
Frequency [Hz]

Time [s]

Fig. 2.3: Dynamical behaviour of the unidirectionally-coupled ( 1 —̂ 2) Poincare oscillators 
(2.8), (2.9), with slow periodic variations in the frequency of oscillator-1. The 
parameter values used are given in the text, (a) Signals x \ ( t )  and x 2(t) are shown 
by the full and dashed lines respectively. Parts (b) and (c) show time-frequency 
analyses of x \ ( t )  and x 2{t) respectively using the wavelet transform. The varia­
tions in frequency and amplitude can be seen from the lines of peak values, and 
their projections on the amplitude-time planes, respectively, (d) Comparison of 
analytically evaluated (r2(t), 'ipit)) and numerical ( x2(t)) analyses. The values for 
ip(t) are given in { —7r, 7r} radians.
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evolution of the signals is shown on Fig. 2.3(a). The corresponding time-frequency 

wavelet representation of the first oscillator is shown in Fig. 2.3(b); (details about 

wavelet analysis are given in chapter 4). The time-frequency variations of the peak 

value line are clearly evident. For the chosen parameters, the oscillators can synchro­

nize, even though the frequency of the first oscillator is time-varying. The second 

oscillator oscillates with a correspondingly time-varying frequency Fig. 2.3 (c), due to 

the effect of synchronization. The oscillator has turned from one whose frequency is 

constant into one whose frequency is time-varying, and in order to retain the phase 

locking its amplitude also starts to vary with time (shown in Fig. 2.3 (a) and on the 

projection in Fig. 2.3(c)). The variations of r 2 and ip are presented in Fig. 2.3(d). 

It is immediately evident tha t the phase difference is not constant (as in classical au­

tonomous synchronization) but varies with time, as imposed by the non-autonomous 

term. The evaluation of the stability condition of (rieq(t), r 2eq(t), ipeq(t)) for system

(2.11) showed tha t the two oscillators are synchronized.

Next, it was investigated what happens when the two oscillators lose synchrony. 

The coupling was set to e2 =  0.26 and the amplitude of the non-autonomous term  was 

increased to A n  =  0.25; (all the other parameters were same as in Fig. 2.3). It was 

found tha t for some intervals within the period of the non-autonomous modulation 

(the light gray regions in Fig. 2.4 (a)) the conditions for synchronization do not hold: 

{r2eq{t), ipeq{t)) is unstable or does not exist, a continuously-running phase appears 

and the two oscillators lose synchrony. More precisely, they go in and out of synchrony 

as time passes, i.e. there is intermittent synchronization.

The existence of synchronization and the corresponding transitions were investi­

gated by application of method for the detection of phase synchronization - synchro- 

gram [9] Fig. 2.4(b) and (c). (Details of the implementation are given in Appendix 

C.) The synchrogram provides a qualitative measure where (for autonomous systems) 

the appearance of horizontal lines is normally taken to correspond to the synchronous 

state. The method clearly detect synchronization consistently with our analysis. The 

synchrograms show, however, tha t now synchronization is characterized by a smooth 

curve rather than a horizontal line, owing to the continuously changing phase shift
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induced by the non-autonomous modulation.

The non-autonomous source can also induce transitions between different fre­

quency synchronization ratios. This situation is often encountered in high order 

interactions of open oscillatory systems - obvious example being the cardiorespira­

tory system (to be discuss in later chapters). Numerical example of this kind is 

presented on Fig. 2.4 (c) -  the Poincare oscillators (2.8), (2.9) now had quadratic 

coupling function g2i (x1:x 2) = (aq -  x 2)2 and P2 2 (2/1 , 2/2 ) =  (2/1 — IJ2 )2, with other 

parameters A u  =  0.4, £jn  =  0.008 Hz, uq =  2, lj2 =  3.013 and e2 =  0.8. The syn- 

chrogram shows consecutive transitions from 2:2 (or 1:1) to 2:3 frequency locking, 

with short non-synchronized epoches in between. The external influence caused not 

only the system to loose and gain synchrony, but also induced qualitative transitions 

between different synchronization states.

Another important property tha t defines the states of an interaction is the coupling
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Fig. 2.4: Intermittent synchronization transitions for unidirectionally coupled ( 1 - ^ 2 )  
Poincare oscillators (2.8), (2.9). (a) r2(t), ip(t) are obtained from analytic cal­
culations and x 2 (t) (only its envelope is resolved) from numerical simulation. The 
light gray regions indicate the non-synchronous state. The dashed lines of 
r2 (t ) within this state indicate existence of phase-slips or that an analytic solution 
does not exist, (b) 1:N synchrogram for the case under (a), (c) 2:N synchrogram  
showing synchronization transitions from 2:2 to 2:3 ratio.
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strength. Similarly, to the previously discussed case of time-varying frequency, the 

coupling parameter can also be affected by non-autonomous force, turning the syn­

chronization state time-varying. The corresponding phase difference and amplitudes 

will turn  time-varying, while the oscillating frequencies will not vary substantially. 

There can be synchronization transitions depending on the nature of the external 

force.

The definition states tha t the synchronization phenomenon is a result of the inter­

play between the frequency missmach and weak interaction between the oscillators. 

Hence, the interaction of oscillators found in nature often encounter the case where 

a non-autonomous external modulation is acting on both the frequency and the in­

teraction strength at the same time. Moreover, the time-varying interactions can 

be bidirectional, affecting both of the oscillators and the underlying synchronization 

state. Such circumstances are relatively complex, but they reflect more closely the 

time-variability present in the open complex oscillatory systems found in nature [5]. 

Therefore, the two Poincare oscillators were investigated each with non-autonomous 

time-varying frequency, interacting bidirectionally, with the coupling amplitude time- 

varying as well. This represents the full model (2.8), (2.9) i.e. where all the components 

are active and none of the parameters is zero. Furthermore, the non-autonomous pa­

rameters were considered to be unequal, so tha t the time-variability introduced is 

different in each oscillating frequency and coupling amplitude. In respect of non- 

autonomous parameters this meant that: An  =  0.3, A 2\ = 0.225, A 12 =  0.155, A 22 =

0.13, f n  = 0.005, / 2i =  0.0075, f i 2 =  0.004 and f 22 =  0.0045. The rest of the parame­

ters were set to be: =  tq =  1, £i =  0.32, e2 — 0.4, /1 =  1 Hz and f 2 = 0.95 Hz. The

results presented on Fig. 2.5 indicate tha t due to the external forces, both of the am­

plitudes and the frequencies are varying with time, while the oscillators are in a state 

of synchronization. The form of the variations is rather complex, even though the 

non-autonomous sources are simple periodic signals. It is important to note tha t this 

complex figure will cause potential difficulty to a data analyst when trying to identify 

the nature of the dynamics and the effect on synchronization. Therefore, proper tools 

are needed for inference and analyses of the underlaying dynamical characteristics.
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Fig. 2.5: Numerical simulations of bidirectionally coupled Poincare oscillators (2.8), (2.9), 
with variations in the oscillator frequencies and the strengths of the inter-oscillator 
couplings, but such that the oscillators remain in synchrony, (a) Signals x\{t) and 
X2 (t) are indicated by full blue and grey dashed line respectively. Time-frequency 
wavelet analysis is applied (b) to x \ (t) and (c) to X2 (t).

The external source can affect different properties of the systems, here only the 

cases tha t are of interest for this study were outlined. For example, the unidirection- 

ally coupling can be reverse, where the autonomous can drive the non-autonomous 

oscillator. In this case the time-variability can be reduced or totally suppressed. The 

non-autonomous source can affect not only the parameters, but also the functional 

relationship existing among the oscillators. Very important example of this kind is 

the time-variability of the coupling function - for which special attention will be given 

in the next chapter.

2.4.4 Stability and bifurcation analysis

This section presents the analysis needed to determine the stability of synchronization 

state of non-autonomous oscillators. Note that the investigating is not focused on the 

stability of the oscillators themselves, but on the stability of the composite system

(2.11), through which one can determine whether or not the two oscillators are syn­

chronized [9, 57]. One can do this by evaluation of the three eigenvalues obtained from 

the Jacobian matrix of the linearized system (2.11), Ai ,A2,A3, for given parameters 

at every instant of time. Because the oscillating systems (2.8), (2.9) have a relatively 

large number of parameters, especially those coming from the four non-autonomous 

terms, there are rich possibilities for dynamical changes in stability and bifurcations:
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e.g. changes in stability, bifurcation points, changes in the nature of stability, the 

existence or absence of a solution, etc. For the sake of clarity, the presentation is 

restricted to the case of unidirectional coupling with only one non-autonomous source 

applied to the oscillating frequency. The parameters of the model are the same as in 

the example of Fig. 2.3, except for e2 =  0.255, A u  =  0.23 and f n  =  0.0015 Hz.

Fig. 2.6 (a) shows the signal x 2{t) from the second oscillator together with the real 

and imaginary parts of the corresponding eigenvalues, from which one can observe 

the stability of system (2.11) over a long time span. The actual stability analysis for 

the transition from synchronization to non-synchronization (and vice versa) will be 

discussed in relation to the short time segment shown in Fig. 2.6 (b). The stability will 

be investigated through observation of the eigenvalues in four characteristic regions. 

In region I, the real parts of the eigenvalues are all negative and there are no imaginary 

parts (they are all equal to zero). This means tha t the equilibrium solution of (2.11) 

is a stable node and tha t the two oscillators are synchronized. On crossing into 

region II, two complex conjugate eigenvalues appear. The real parts are still negative, 

however, and so the equilibrium is still stable, but it has now turned into a stable 

spiral. When crossing from region II into region III. 1, the real parts of the complex 

eigenvalues become positive, and a Hopf bifurcation occurs. This point is denoted by 

the small circle in Fig. 2.6(b). The equilibrium has become unstable and, because 

the imaginary parts still exist, it is an unstable spiral. Starting from entry to region 

III. 1 the oscillators oscillate in synchrony, even though the equilibrium of (2.11) is 

unstable. This discrepancy can be seen as a transitional region where the synchrony 

is “fading away” . The phase difference ^(t )  grows rapidly (spiraling out) until phase 

slips appear overtly in region III.2. Here the oscillators are not in synchronization.

Similarly, one can observe a stability/synchronization analysis of the case when 

the oscillators make a transition from the non-synchronous to the synchronous state. 

The phase slips then disappear and the phase difference ip(t) decreases, spiraling 

inwards. Note tha t the bifurcation point in Fig. 2.6 (b) is presented in terms of time, 

and not in respect of parameters as normally. One may do so, because the parameters 

are explicitly time-dependent and are thus fully determined at every instant of time
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Fig. 2.6: Stability analysis of the synchronization state for unidirectionally-coupled (1 —>• 
2) Poincare oscillators (2.8), (2.9). (a) Three black lines for the real parts of
the eigenvalues of system (2.11) (with solid, dashed and dotted lines) and three 
brown lines for the imaginary part of the eigenvalues of system (2.11), together 
with signal X2 (t). Note that the lines overlap occasionally. Two different colors 
exist for the qualitatively distinct (real and imaginary) groups of lines, (b) Loss 
of synchronization and stability through a Hopf bifurcation together with other 
stability/synchronization characteristic regions: I—III.2 (separated by black vertical 
dashed lines). This panel provides enlarged time segment for one transition from 
(a); cf. the time scale on (a) compared with (b).

-  which is advantageous for this kind of non-autonomous analysis, because one can 

observe the qualitative changes through bifurcation together with the other dynamical 

properties (e.g. signals, instantaneous phase, synchronization state) throughout all 

time.

For completeness, however, an alternative representation of the bifurcation phe­

nomena, in terms of parameters is presented. The bifurcation diagram (often referred 

as an orbit diagram, since it does not present the unstable objects [58]) is constructed 

directly from the time-series of the numerical simulation of the oscillators. This
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e2 e2

Fig. 2.7: Amplitude-coupling bifurcation diagram describing synchronization of the 
Poincare oscillators (2.8), (2.9). (a) The autonomous case, illustrating stable syn­
chronization above e^. (b) The non-autonomous case with time-varying frequen­
cies, where intermittent synchronization occurs within the range 0.124 < e^A2 < 
0.221. Each numerical run has random initial conditions and the first transient 
1000 s are discarded.

classical method was used extensively in the past to study synchronization and/or 

chaotic behavior [59-61]. First, the method is presented for the classical case of 

two autonomous oscillators. The results are used later for comparison with the non- 

autonomous case. For autonomous oscillators, there are no time-variations A n  = 0, 

the two oscillators are unidirectionally coupled, the frequencies are f i  =  0.15 Hz, 

f 2 = 0.11 Hz and all the other parameters are the same as in Fig. 2.3. One can ob­

serve the time series in respect of the coupling amplitude, following a long interval for 

transient effects to die away. For fixed values of the coupling amplitude, one plots the 

points from the phase space of the second oscillator each time when the first oscillator 

passes through a perpendicular phase plane. The latter can be interpreted also as: 

points equally separated in time by the period (T: =  1 // i)  of the first oscillator. In 

practical terms, the model (2.8),(2.9) was simulated for specified coupling amplitudes 

(e.g. e2 =  0.15), and then the maxima (or zero-crossing, or other) events from the first 

oscillator were marked. From the times of these points, one then plots vertically (for 

e2 =  0.15) the points of the second oscillator. The corresponding bifurcation diagram 

is shown in Fig. 2.7 (a). One may note that, for small coupling amplitudes, the points
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of the second oscillator are spread widely and the two oscillators are not synchronized. 

The bifurcation point appears for the critical coupling amplitude eA ~  0.192, above 

which the two oscillators are synchronized; this state is characterized by all points for 

a given coupling value coinciding in a single point, and therefore forming a smooth 

curve as the coupling amplitude is varied. This result was in good agreement with 

the outcome of the analytic investigation, for which the equilibrium solution of the 

system (2.11) passed from unstable to stable synchronization at the critical coupling 

eA ~  0.192.

Next, a bifurcation diagram in much the same way was considered, but for the 

non-autonomous case. The time-varying frequency case of the two unidirectionally 

coupled oscillators was observed with A n  = 0 .1 , / n  =  0.0025 Hz and the other param­

eters as in Fig. 2.7 (a). In constructing the bifurcation diagram one cannot assume 

th a t the points from the first oscillator are equally separated in time, because the 

oscillating period is now varying due to the non-autonomous source. Instead, detec­

tion of the points as the maxima of each cycle of the first oscillator was performed. 

This makes the method adaptive, in a sense, because one can trace the variations in 

order to detect the different oscillating period in each cycle. From these time events, 

the points of the second oscillator are plotted in respect of the coupling amplitude 

e2. The corresponding bifurcation diagram is shown in Fig. 2.7 (b). For small cou­

pling amplitude (e2 ^  enai  =  0.124) the points of the second oscillator are spread 

widely, corresponding to the two oscillators not being synchronized. For increased 

values of the coupling (up to e2 < eN A 2 =  0.221) the oscillators are intermittently 

synchronized. The transitions in and out of synchrony are due to the periodicity of 

the non-autonomous term, while the total time in which the oscillators are in syn­

chrony rises as the coupling amplitude increase. For a sufficient coupling amplitude, 

above some critical value eNA2 «  0.221, the two oscillators undergo continuous syn­

chronization: they remain phase-locked even though their oscillatory frequencies vary 

with time. From Fig. 2.7 (b) one can notice tha t the synchronization state is not now 

characterized by a very dense line, but by a bounded dense region. This results from 

the existence of a small and bounded phase shift.
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2.4.5 Non-autonomous phase shift and lag synchronization

W hen two oscillators are synchronized in the classical autonomous way, the phase 

shift is constant. In synchronization of non-autonomous self-sustained oscillators, the 

phase shift is varying, because the conditions (e.g. oscillating frequencies, couplings, 

. . . )  for synchronization are varying in time. In other words, the interacting state is 

continuously changing through different synchronization states in time, with a time- 

varying phase shift and amplitudes -  but staying synchronized all the time, with a 

continuously stable solution for the phase difference (system (2.11)). The time-varying 

phase shift implies immediately that, under these conditions, lag synchronization 

[62, 63] is not possible. This was verified by the use of a similarity function S, which 

quantifies the time-averaged difference between the two state variable aq, x 2 taken 

with the time shift r ,  [62]:

o2 , , = (M *  +  r) — £i(t)]2)

By analyzing the minimum a — minr (5'(r)), one can determine whether the two 

oscillators undergo lag synchronization. It was found tha t in synchronization of non- 

autonomous oscillators, the minimum a cannot be sharp and nearly equal to zero 

(and th a t the minimum a is always larger than tha t from autonomous synchronization 

under the same conditions). This is because neither the time lag nor the amplitude is 

constant over the whole time of observation. For very large couplings the variations 

of the phase difference and the amplitudes can be suppressed. The two states then 

became identical, aq(t) = x 2 (£), and the oscillators are in complete synchronization.

2.4.6 Sources of non-autonomous dynamics

The external modulations acting as sources of non-autonomicity can be of widely 

differing natures, forms, intensities and speeds. In the above discussion, for the sake 

of clarity and simplicity, the non-autonomous external source was taken to be periodic 

with a simple sinusoidal form. In general, of course, the external source may be 

of a more complex form and nature, e.g. quasi-periodic, non-periodic, chaotic, or
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stochastic.

Conditions

The non-autonomous term itself should fulfil two conditions in order to affect the 

underlying onset of synchronization (or at least to do so in the manner considered in 

this study):

1. The amplitude of the external source should be relatively bounded with inten­

sity smaller then the property affected. For example the A n  in Section 2.4.3 

on Fig. 2.3 should be small compared to oq. For very large intensity the os­

cillatory dynamics may become qualitatively different (for example, exhibiting 

chaotic behavior or unstable oscillations), which would be beyond the scope 

of our interest -  which is synchronization between weakly-coupled limit-cycle 

oscillators.

2. More important, the variations should be slow compared to the oscillatory dy­

namics of the affected oscillator. In other words, if the frequency of the non- 

autonomous term is equal to, or larger than, the frequency of the oscillators, the 

variations do not affect qualitatively the onset of synchronization. This was the 

consequence of the fast-time scale solution from the coupled phase oscillators 

model in Sec. 2.3. The point is that, if the non-autonomous external source 

introduces variations tha t are faster than the period of oscillation, they can be 

averaged within one period of the oscillations, not affecting the synchronization 

state.

Stochastic external source

Interactions between oscillators in the presence of random stochastic processes have 

been studied extensively in the past [9, 64, 65] and it has been shown tha t noise 

can either induce the synchronization between the oscillators or attenuate it [65-67]. 

Recently stochastic phase reduction for limit-cycle oscillators has been achieved for



2. Theoretical background: non-autonomous systems and synchronization 35

noises of different kinds [68, 69]. Such studies are typically based on a statistical ap­

proach (e.g. Fokker-Planck analysis): it is necessary to have a long time of observation 

(t —>■ oo) and the measures are statistically averaged over time. In practice, however, 

the time of observation is often restricted to shorter intervals, or there is a need to 

identify certain states in real time, and at every point of time, e.g. in biomedical 

measurements or communications.

The main features of the earlier discussion of synchronization of non-autonomous 

oscillators are reconsidered briefly, but for the case when the non-autonomous exter­

nal sources are stochastic rather than periodic. The Ornstein-Uhlenbeck stochastic 

process was used as the non-autonomous source of modulation in the model (2.8),

(2.9):

i)(t) =  ——7j(i) +  ^ U ( t )
r  r

where r  and D  are the correlation time and noise strength respectively, and £(£) 

is Gaussian white noise. The statistical properties of the colored noise are then: 

(rj(t)) = 0 and (f](t)r](s)} — . One can consider the unidirectionally coupled

case of time-varying frequency from Sec. 2.4.3 presented on Fig. 2.3 (the same effect 

can be observed for time-varying couplings). The noisy source was added to the 

natural frequency of the first oscillator: uq(t) =  uq+?](£), but all the other parameters 

and conditions were kept the same. The correlation time and the strength of the 

colored noise were r  =  50 and D  =  25. The resultant numerical signal is presented in 

Fig. 2.8(a).

From Figs. 2.8 (b) and (c), it is clear tha t the amplitude and frequency of the sec­

ond oscillator now vary too, due to the effect of the synchronization. One can noticed 

that, in accord with the above discussion of the frequency of variation of the non- 

autonomous source, only the lower-frequency components of the Ornstein-Uhlenbeck 

process affect the variations, whereas the higher frequencies did not, because they 

were faster than a period of the first oscillator. Using the observations made in Sec.

2.4.2 one can find tha t all the eigenvalues have negative real parts, demonstrating 

tha t the two oscillators remained synchronized while their frequencies are varying,
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Fig. 2.8: Synchronization of unidirectionally-coupled (1 — 2) Poincare oscillators (2.8), 
(2.9), under conditions where there are stochastic (a)-(c) and quasi-periodic vari­
ations (d)-(e) in the frequency of oscillator-1. (a) Time evolution of the colored 
noise signal rj(t). (b) The signal X2 (t) and the numerically evaluated phase differ­
ence ^(t). (c) Contour plot of wavelet analysis of the signal X2 (t) from the second 
oscillator, (d) Time evolution of the chaotic signal z(t) and the signal X2 (t) from 
the second oscillator (seen as its envelope), (e) Wavelet analysis of X2 (t) from the 
second oscillator. The frequency variations are indicated by the black line plotting 
the locus of the peak values.

following the dynamics of the stochastic source.

Chaotic external source

The next case to be consider was when the source of non-autonomicity is a quasi- 

periodic signal generated by a chaotic deterministic system. Its worth noting en 

passant tha t chaotic systems have played an important role in synchronization the­

ory, both in studying the interactions among chaotic systems and defining new syn­

chronization concepts [15, 16, 46]. Synchronization of chaotic systems and periodic 

non-autonomous sources has been studied in [70, 71]. Here, the interest is more in 

using the non-periodic forms of signals generated by chaotic systems, rather than in 

the chaotic properties of the systems. The well-known Lorenz system [72] was used,
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in the following form:

'yx = cr(y — x)

7 y = x ( p -  z ) - y

7  z =  xy — p z  (2 .12)

where the parameters were set to be: a =  10, (3 = 8/3 and p =  28. The constant 

parameter 7  =  0.005 was introduced in order to reduce the velocity in the system, so 

tha t the frequency of the signals would be low compared to those of the oscillators.

Again the unidirectionally coupled case of synchronization was considered, with 

the frequency of the first oscillator being time-varying (Sec. 2.4.3, Fig. 2.3). The non- 

autonomous source now is taken to be z(t) from (2.12), presented in Fig. 2.8 (d). The 

time-varying frequency is defined as: =  0Ji + A(z(t) — c), where A  =  1/60, c =  23

and the other parameters are all as discussed before. Under these conditions, the two 

oscillators can synchronize. In order for the second oscillator to be synchronized and 

to stay in frequency entrainment, its amplitude and oscillating frequency start to vary, 

as imposed by the quasi-periodic non-autonomous source as shown in Fig. 2.8 (d) and 

(e).

2.4.7 Generalization of the model

It is reasonable to wonder to what extent the above results are general, rather than 

confined to the particular model (2.8),(2.9) of two Poincare oscillators. The Poincare 

oscillator as a unit, in its uncoupled form, is a radial isochronal oscillator. All trajec­

tories starting at one point of (f) go to the same asymptotic phase and, as mentioned 

above, the variable (f) represents both the phase and the angle variable {p = uj). There 

is, however, a vast group of limit-cycle oscillators where the local oscillatory frequency 

depends on the local amplitude. The terms introducing this nonisochronicity are re­

lated to the shear of the phase flow near the limit cycle. Synchronization of oscillators 

with shear terms has been studied along with the oscillation death (Bar-Eli) effect 

[57, 73]. It was reported [74, 75] that nonisochronicity can be a cause of anomalous
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phase synchronization in a population of non-identical oscillators.

The phenomenon of synchronization between non-autonomous oscillators was ob­

served in a variety of limit-cycle oscillators, including van der Pol and Stuart-Landau 

oscillators, as well as the Poincare oscillators with shear terms. It was found tha t the 

qualitative characteristic of the synchronization under such non-autonomous condi­

tions was valid for the other types of limit-cycle oscillators. The results of analogue 

experiments exploring synchronization between non-autonomous van der Pol oscilla­

tors will be presented in chapter 5.

2.5 N on-autonom ous coupling function

So far the discussion was focused on non-autonomous parameters and how they af­

fect the interactions. Another important property tha t characterizes the interactions 

among oscillators is the coupling function. Opposite to closed autonomous oscillators, 

the coupling function in open oscillatory systems can vary in time, both in intensity 

and form. In fact, a functional relationships tha t characterize the cardiorespiratory 

interactions are time-varying (as will be demonstrated in the following chapter).

But, why is coupling function important and how does it affect the interactions? 

It defines the functional law about the interactions and the law by which the inter­

action undergo transitions to synchronization i.e. transitions to equilibrium stability. 

(Qualitative description about the role of coupling function in oscillatory interaction 

is discussed in more details in chapter 3 section 3.3.2).

In order to investigate how the coupling function can affect the interacting sys­

tems and cause transitions to synchronization, a special case was considered where: 

the time-variability of the form of the coupling function alone is the cause for synchro­

nization transitions. This was accomplished by maintaining the parameters (frequen­

cies cui and coupling strengths ef) constant, while the form of the coupling function is 

varying by some predefined non-autonomous source.

A coupling function represented in the reduced phase model: ^  =  w* +  e*g(0i, <j>f), 

should be a 27r-periodic function. In his phase models Kuramoto [10] used a simple sine
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Fig. 2.9: Coupling function and synchronization transition as a result of its time-variability.
(a) Form of the coupling function Eq. (2.13) with constant fat) — 1 and b(t) =  1 . 
Phase difference (b) and coupling function qi{fa{t)) (c) for system (2.14) indicating 
the synchronization transition due to the variability of the function of interactions. 
The parameters for the coupling function are varied linearly in time: a{t) = 0 —» 1.4 
and b(t) — 1.4 —>• 0; rest of parameters are constant: e\ =  0.013, 62 = 0.01, 
(jj\ — 0.11 and U2 — 0.07 .

form function of the phase difference q(<f>i, fa) — sifafa —fa),  Winfree [7] used function 

th a t is defined by both phases rather than just the phase difference q(fa, fa) = [1 +  

cos(02)] sin(0i), while Daido and Crawford [76-78] used more general form where the 

function can be expanded in Fourier series. Here the discussion is concentrated on 

numerical simulation of two coupled phase oscillators (similar to those presented with 

Eq. 2.2), but the coupling function for the phase difference consists of four Fourier 

components up to the second order:

q(fa = fat) sin(0) +  b(t) cosfa) +  fat) sin(20) +  b(t) cos(2^), (2.13)

where the fat) and b(t) parameters are considered to be time dependent terms. The 

form of the coupling function is presented on Fig. 2.9(a). The simple model for 

investigation will then have the following form:

fa =U\ +  £iqi{fa ~  0 i)

fa =&2 +  e2f?2 (^i — fa)'  (2-14)

By changing the parameters a and b in time one can vary the form of the coupling
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function. For the case under study, the goal was to maintain the coupling strength 

constant while only the form of the function to vary. The latter means tha t besides 

the coupling parameters e*, also the norm of the coupling function should be constant 

throughout the time. Therefore the function parameters a and b were non-autonomous 

sources varying linearly (and then square rooted) in time, while the norm of the 

function was constant in every instant of the time.

Fig. 2.9(b) shows the phase difference ip(t) = <t>2 (t) — (/>i(t) which serves as in­

dicator for synchronization of systems (2.14), i.e. if the phase difference is bounded 

(ifj < const) or not. Fig. 2.9 (c) shows the dynamical time-evolution of the coupling 

function (of second to first oscillator) as a function of phase difference. The two figures 

demonstrate that: at the beginning the oscillators are not synchronized and as the 

form of the coupling function is varied, the oscillators get more coherent and around 

time =  1000s there is transition to full synchronization. The latter means tha t the 

coupling function changed qualitatively the dynamical behaviour, equilibrium solution 

appeared and synchronized stable state is reached.

The non-autonomous coupling functional relation is im portant because it resem­

bles the dynamics of many real oscillatory systems found in nature. One of the main 

systems of interest for this study, the cardiorespiratory system has coupling function 

which is evidently time-varying. The latter was discovered by the use of the method 

presented in the following chapter.



3. INFERENCE OF TIME-EVOLVING COUPLED DYNAMICAL 

SYSTEMS IN THE PRESENCE OF NOISE

Open systems are often oscillatory in nature because their dynamics are determined by 

a balance between energy inflow, outflow and usage which, in general, do not match. 

Their lack of isolation means that such systems often interact with each other. The 

strength, direction and the functional relationships can define the nature of interac­

tions, which can cause qualitative states to appear, such as synchronization between 

the oscillators. The time-variability of the dynamical behaviour tha t characterizes 

the oscillators and their interactions cause transitions between the qualitative states.

In order to investigate and study interactions, one usually obtains observable mea­

surements of the oscillating dynamics in a form of time-series. Through analysis of 

these readout signals one can detect and quantify the interacting phenomenons. In 

such an inverse approach, often the source of a time-variability can not be uniquely 

determined. Additionally, the observable time-series can involve part of a stochastic 

indeterministic dynamics, arising due to (for example) influence of the environment 

on the dynamics, or due to measurement noise.

For this reasons there is a need for technique tha t can infer parameters, functional 

relationships and transitions between states of the interactions, starting from time- 

series observations. Due to the nature of dynamics, the inference should be able to 

trace the time-variability of the intrinsic parameters, and at the same time to be 

able to deduce the effect of the noise. Offering such a complete and comprehensive 

description of the dynamics within a single formalism, the technique can be of wide 

applicability.
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3.1 P hase dynam ics d ecom p osition

This section outlines the basic theoretical background for the implementation of the 

inferential framework. At the core of the technique lies the Bayesian inferential frame­

work for stochastic dynamics, utilized to infer a time-evolution of the intrinsic param­

eters.

3.1.1 Main concept

The methodological approach proposed in this study exploits the Bayesian inferential 

technique for inference of noisy time-varying phase dynamics. The parameters, re­

constructed from the base functions, allow the interactions and the respective states 

between the oscillators to be determined. The method can be summarized as:

Phase time-series from noisy interacting oscillators 

Bayesian inferential framework 

Time-varying parameters

> /  4  \
Synchronization Directionality Coupling functions

The starting point i.e. the inputs for the inference are multivariate phase time- 

series th a t encapsulate the dynamics of an interacting oscillators. The actual ob­

servable time-series represent instantaneous phases from the measured state signals, 

pre-estimated using appropriate phase detection methods (e.g. using Hilbert trans­

form, angle variable or wavelet synchrosquueze transform).

Decomposition of the phase dynamics embedded within the Bayesian framework 

is accomplished through the use of periodic base functions -  represented in a form of
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finite Fourier series. The use of probabilistic apparatus from Bayesian theory enables 

the param eters’ distribution to be inferred. Furthermore, the Bayesian probability 

lying at the core of the method is itself time-dependent via the prior probability 

as a time-dependent informational process. The outcome of the inference i.e. the 

time-varying parameters are then employed to estimate, quantify and describe the 

underlying oscillatory interactions. By reconstructing the dynamics in terms of a set 

of base functions, we evaluate the probability tha t they are driven by a set of equa­

tions which are intrinsically synchronized, thus distinguishing phase-slips of dynamical 

origin from those attributable to noise.

Estimation of the coupling is directly linked to the parametrization of the base 

functions: for oscillators which are similar enough to share the same base functions, 

confrontation between the parameters is sufficient for evaluation of which oscillator 

drives which. The examination of the interacting base function as a group, can reveal 

the functional relationship tha t describes the interactions among the oscillators.

3.1.2 Base functions

When two noisy, TV-dimensional, self-sustained oscillators interact weakly [9], their 

motion can be described by their phase dynamics:

<fii = uji + fi(4>i) +  gi{4>ii 4>j) +  £»(£), (3.1)

leaving all other coordinates expressed as functions of the phase: iq =  iq (</>*) [10]. The 

constant terms oq represent the oscillating angular frequencies, the /*(<&) functions 

describe the inner-oscillating dynamics, while &(<&, (f)j) functions characterize the dy­

namics for the interactions between the oscillators. (The later functions &(<&, <f>j) are 

often referred to as coupling functions). £ is a two-dimensional spatially correlated 

noise, usually assumed to be Gaussian and white: (€i(t)€j(r)) = 6(t — r)Eij.  Reliable 

evaluation of the interaction phenomena must rely on precise inference of /* and g{ 

and of the noise matrix Eij. The periodic nature of the systems suggest periodic
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base-functions, hence the use of Fourier terms for the decomposition:

OO
M 'h )  =  2 2  c,,k sin(/;:<!),) +  cos(/c©,j

(3-2)

s =  —oo r =  — oo

The inference of an underlying phase model through use of Fourier series has formed 

the functional basis for several techniques to infer the nature of phase-resetting curves 

and interactions viz. the structure of networks or proposed synchronization prediction 

[27, 79-83]. However, these techniques inferred neither the noise dynamics nor the 

parameters characterising the noise.

It might seem natural at this point to consider the phase difference of the two 

oscillators, as in the case of synchronization determination. But, due to the need 

to extract as much information as possible from the whole dynamical space, the two 

dynamical fields (f>i and </>2 are modeled separately.

Assuming tha t the dynamics are adequately described by a finite number K  of 

Fourier terms, one can rewrite the phase dynamics of (3.1) as a finite sum of base 

functions:

K

< j> i= Y  + i i (i), (3.3)
k = —K

where I = 1, 2, where $ i i0 =  $ 2>o =  1, $  = and other $ [jk and c® are the K  most 

im portant Fourier components.

It is important to note tha t a use of Fourier series for the phase dynamics is a 

general and model-independent decomposition. The latter results from the fact tha t 

the inputs used are monotonically increasing with time, regarding of the dimensions 

and the complexity of the signals. The phase </>*(£) possess the sufficient information 

for the measures required to be inferred: synchronization, directionality and time- 

varying phase dynamics. If one were about to decompose the oscillatory interactions 

in state space, then the dynamics must be inferred using specific non-general and
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mo del-dependent (e.g. polynomial) base function. The use of state base functions is 

discussed in detail toward the end of this chapter in section 3.6.

cesses. An M-dimensional time-series of observational data y  —  {yn =  y(tn)}, defined 

over the time-grid tn = n h , is provided. It is assumed tha t a driving dynamic exists, 

described by an L-dimensional (L > M)  stochastic process 4>{t). The underlying 

dynamics can be described by a set of L-dimensional stochastic differential equations 

in the form:

where c is a set of parameters tha t are embedded in the dynamical field f, and z (t) 

is considered to be an L-dimensional white Gaussian noise processes. It is assumed 

th a t the measurement noise is negligible and tha t a unique relationship exists: y(t) =  

</>(£) V7, i.e. the readout data is also the dynamical variable. A Bayesian inference 

technique tha t includes inference of measurement noise and detailed derivations of 

similar inferential framework is discussed in [30-32, 84].

The fundamental question for the inference is: “given the readout data X, what 

information can one obtain about the functions f , about their parameters c and about 

the noisy processes z?”.

Due to the stochastic nature of the dynamics, the process of information extraction 

involves the building of theoretical models tha t cannot be verified directly but can 

be exploited by estimation of their probability. For these reasons, one can employ 

Bayesian probability - an approach in statistical inference where the probability is 

intended as a subjective measure of belief in an event or in the state of a variable 

[85-87]. In particular, the Bayes’ theorem states:

3.1.3 Bayesian inference

The following outlines a general inferential framework for stochastic dynamical pro-

4 > ( t )  = f(0|c) + z( t ) (3.4)

P(X |M ) Ppnor(M)
/P ( X |M ) P prior(M)dM (3.5)
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where JVC is a set of parameters on which the probabilities are assigned; X represents 

the observational data. ip ri0r(M) is the prior probability of JVC: the measure of belief 

on the particular values of JVC before the data X was observed. P(X|JVC) (also called 

the likelihood) is the conditional probability of observing X given JVC. The desired 

result PPost(̂ VC|X) is the posterior probability: the probability tha t the hypothesis 

(or parameters) are true, given the data and the previous state of belief about the 

hypothesis. Such a framework is ideal for applications with sequential data - the 

current posterior probability can act as a prior for the next sequence of data.

Thus within the Bayesian framework, the problem is reduced to the calculation of 

the likelihood function and the optimization of the posterior distribution with respect 

to JVC =  {c, E} .

In order to construct the expression for the likelihood function, an additional 

assumption is made tha t the sampling scheme {tn =  nh}  is sufficiently dense in 

respect of the dynamics tha t the time interval h is small enough for the Euler mid­

point approximation to be valid. If this is the case, Eqs. (3.4) can be approximated

where 0* is the average between two consecutive states of the dynamical variable 0:

H  is the matrix tha t satisfies H H T =  E, and £n is a zero-average (£n) =  0 and 

unitary-variance normal variable (£n £m) =  I Snm .

The main idea is to calculate the probability of 0 n+1 — 0 n — /if(0 * |c ) for each 

single n as a function of the probability of the realization of the whole process {zn}.

by:

(3.6)

In Eq. (3.6) the term zn is the stochastic integral:

(3.7)
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The probability of a single z n is:

P M =  ■ ^  e x p ( - ^ T
y  (2ir)LhL de t(E) ^

Thanks to the assumption tha t the noise under consideration is white zn and 

statistically independent of z m for n ^  m, one can write the joint probability of the 

process {zn} as a product of the probabilities of each single z n:

N —1 N —1 , s n

p ( K } ) = n p w = n ^ = Zi exp { - gLv r ^ i } - (3-s )
i=c\ i = n J ( 0 ^ r \ L h L  TPA I  Z n  )i = o 2=0 y  (27r) hL det(E)

The likelihood probability P(X |M ) over a time grid can be expressed as the 

probability density of a particular realization of the dynamical system P(X |M ) =  

P ( { 0 n}) =  po (0o) TliLoPi^i) ■ The expression of P(X|3Vt) was decomposed in this 

way because of the need for n£=o P (fa) be expressed directly in terms of {zn}.

Thanks to the change of variable from z n to 0 n+1(z„), and the introduction of 

its subsequent Jacobian term [J]̂ - =  8i j  — |  , one obtains the probability of

realization of the whole process { 0 n}:

P { - W )  =

=  f 0n+1 det (J) exp { - £  U n  -  f (0 ;|c ))T E -1 U n  -  f (C lc)) } , (3 9)
v/(2^/l)i det(E) I 2V ’  V ’ >

where the following definition was used : 0 n =  ^n+1h ^n . The determinant of the 

Jacobian can be further approximated, since the Jacobian matrix consists of all quasi­

zero elements, except in the diagonal. Obtaining the probability density function 

leads to the complete expression for the likelihood function given (for convenience in
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logarithmic form) as:

- ^ l n (P(X |M )) =  f i n  (d e t(£ )) +

(3.10)

The next task is to maximize the posterior probability i.e. to fit the likelihood Eq.

set M  given the data X.

The prior probability Pprior(M) was chosen to be a multivariate normal distribution 

in respect of the parameters c; if c is an M-dimensional vector, its prior probability 

is written as:

where cpr is a vector of a priori coefficients and £ pr is its covariance matrix. The 

latter two expressions Eq. (3.10) and (3.11) gave the required probabilities, from

Before moving forward, explicit dependence of f  in respect of parameters vector 

c needs to be defined, and the following parametrization is introduced:

where $(</>) is a L x M  matrix of Fourier base functions, as described in previous 

section (3.1.2). W ith this linear parametrization of f, one obtains a quadratic log- 

likelihood function in respect of parameters vector c . Hence, using a multivariate 

normal distribution for the prior probability immediately leads to a multivariate nor­

mal distribution for the posterior. This is highly desirable because the Gaussian 

posterior (described only by its mean and covariance) is computationally convenient 

and can be easily used again as a prior for the next sequential block.

(3.10) to Bayesian theorem, in order to find the optimal probability of the parameter

Tpirior (c) 
1

exp - l ( c - c pr)TS pr1( c - c pr) , (3.11)
V'(27r)"det(Spr)

which (using the Bayesian theorem) the posterior probability can be estimated.

f(0 |c) = & ( 4>) c, (3.12)
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Finally, taking the discussed expressions into account, the stationary point of the

where E is the inverse of the covariance matrix E =  X-1 (often called concentration 

or precision matrix).

In terms of the optimal algorithm for computational calculations, this make sense: 

starting from initial prior and cpr, the noise m atrix E can be calculated Eq.

(3.13), then given this E, using Eq. (3.14-3.16), the parameter vector c can be 

evaluated. The same procedure should be repeated recursively until c and E converge 

to stability. In absence of any prior knowledge about the system, a non-informative 

initial prior can be used: =  0 and cpr =  0.

The proposed Bayesian inferential framework can be summarized as follows. Thanks 

to the choice of the linear parametrization of the vector field f  (0|c) =  3?(0)c , a log- 

likelihood quadratic function in respect of parameters has been obtained. The choice 

of a multivariate normal distribution for the prior Ppri0r(c) leads to a posterior which 

is still a multivariate normal distribution. Therefore, given a realization of X , with 

two input quantities, cpr and Xpr, respectively the mean and the covariance of the 

prior Ppr(c), the set of parameters that best describe the system, and their correla­

tions, are described by only two other quantities: cpost and Xpost, respectively the 

mean and the covariance of the posterior Ppost(c). The posterior probability density

log-likelihood (and thus the posterior) can be calculated recursively with the following 

equations:

E
ra=0

(3.13)

(3.14)

N - l

3x(E ) (3.15)
n = 0

C S I 1(E)wx(E), (3.16)
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is thus:

^post({c})
(27r)i /2 |S post|-V2

exp " r) ( c  C pogt) C ip 0st ( c  C p o st) (3.17)

If then a new sequential data-block X (generated from the same dynamics) is given, 

we can use the posterior information from the first data-block as the prior for the 

second one. The latter procedure constitutes the information propagation process, 

the utilization of which for time-varying dynamics will be discussed in the following 

section.

3.1.4 Time-varying information propagation

The multivariate probability Eq. (3.17) described by Nx(c, E) for the given time 

series X =  {4>n =  (j>(tn)} explicitly defines the probability density of each parameter 

set of the dynamical system. When the sequential data comes from a stream of 

measurements providing multiple blocks of information, one applies (3.13-3.16) to 

each block. W ithin the Bayesian theorem, the evaluation of the current distribution 

relies on the evaluation of the previous block of data i.e. the current prior depends 

on the previous posterior. Thus the inference defined in this way is not a simple 

windowing, but each stationary posterior depends on the history of the evaluations 

from previous blocks of data.

In classical Bayesian inference, if the system is known to be non-time-varying, then 

the posterior density of each block is taken as the prior of the next one: EJJtJr =  E£ost. 

This full propagation of the covariance matrix will allow good separation of the noise 

and the uncertainties in the parameters steadily decrease with time as more data are 

included. But if time-variability exists, this propagation will act as a strong constraint 

on the inference and will fail to follow the time-variability of the parameters. This 

situation is illustrated in Fig. 3.1 (a) h

On the other hand, if the noisy dynamical system has time-variability, one can

1 Note that Fig. 3.1 shows inference of two coupled noisy Poincare oscillators with time-varying 
frequency of one oscillator -  for clarity and compactness of presentation the details are not shown 
here, but the reader can refer to the model and other details in Sec 3.4



3. Inference of time-evolving coupled dynamical systems in the presence of noise 51
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Fig. 3.1: Inference of steep time-varying frequency parameter from coupled noisy oscillators 
3.22. The gray line represents the intrinsic (as in the numerical simulation) param­
eter, while the black line is for the inferred time-varying parameter, for: (a) full 
propagation: E£iJr =  E£ost, (b) no propagation: E”tJr -  0 and (c) propagation 
for time-varying processes: E£tJr =  E£ost +  E2iff .

consider the processes between each block of data to be independent (i.e. to consider 

them  as Markovian processes). Then there can be no propagation between the blocks 

of data and each inference starts from a flat distribution: E”^  =  0. Now the inference 

will follow more closely the time-variability of parameters, but the effect from the noise 

and the uncertainty of the inference will be larger Fig. 3.1 (b).

If the system has time dependence, however, the method of propagating knowl­

edge about the state of parameters obviously has to be improved and refined. Our 

framework prescribes the prior to be multinormal, so we synthesize our knowledge 

into a squared symmetric positive definite matrix. We assume tha t the probability 

of each parameter diffuses normally with a known diffusion matrix Ediff. Thus, the 

probability density of the parameters is the convolution of two normal multivariate 

distributions, Epost and Ediff:

> 1 —
prior

The particular form of Ediff describes which part of the dynamical fields defining the 

oscillators can change, and the size of the change. In general (Sdiff)jj =  where

is the standard deviation of the diffusion of c% in the time window tW} and pij is the
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correlation between the change in the parameters C{ and c f

vin _
diff(i,j) ~

A particular example of Ediff will be considered: it is assumed th a t there is no 

change of correlation between parameters ( =  5ij) and tha t each standard deviation 

cq from the main diagonal is a known fraction of the relevant parameter, cq =  pwCi, 

where pw indicates tha t the parameter p refers to a window of length tw. It is im portant 

to note tha t this particular example is rather general because it assumes tha t all of the 

parameters (from the Ep0St diagonal) can have a time-varying nature -  which resembles 

inference of real (experimental) systems with a priori unknown time-variability. The 

resulting inference on Fig. 3.1 (c) demonstrates tha t the time-variability is captured 

correctly and tha t the uncertainty is reduced with time as more data are included.

If one knows beforehand tha t only one parameter is varying (or at most, a small 

number of parameters), then Ediff can be customized to allow tracking of time- 

variability specifically on that parameter. This selective propagation can be achieved 

if, for example, not all but only the selected correlation pa from the diagonal has non­

zero value. In the remaining presentation of the thesis, however, the general (with all 

correlations from the diagonal) propagation for time-varying processes will be used.

3.2 Synchronization d etection

After performing the inference, one can use the reconstructed parameters, given in a 

form of multivariate normal distribution Kx(c, E), to study the interactions between 

the oscillators under study. One of the major points of interest is to detect whether 

the dynamics described by the inferred parameters undergo synchronization and if 

transitions exist between the qualitative states. The particular information propaga­

tion for tracing time-varying parameters can allow the synchronization state and its 

transitions to be observed in time.

P i j  O'j

PiiOiOi (3.18)
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It is important to notice tha t a non-zero noise can induce phase slips in a system 

th a t would be synchronized in the noiseless limit. However, the currently proposed 

methods for synchronization detection are based on the presence and statistics of 

phase-slips, rather than on the nature of the phase-slip itself [20-22]. The novelty 

embedded in this study is tha t it proposes evaluation of the probability tha t the 

equations tha t drive the dynamics are intrinsically synchronized and if the possibly 

observed phase-slips are dynamics-related or noise-induced.

Every parameter set can be distinguished depending on whether it belongs to 

the Arnold tongue region i.e. whether it belongs to the synchronization parameter 

space. For the inferred parameters one needs to find a criterium for determining if 

the dynamics governed by the base phase function are in a synchronized state. This 

binary property was called s(cj^) =  {1,0}. Thus the posterior probability of the 

system to be synchronized or not is obtained by evaluating the probability of s:

In general, the border of the Arnold tongue might not have an analytic form, and, even 

if it had, the integral has no analytic solution and must be evaluated numerically. A 

practical way to proceed is to estimate numerically psync by sampling many realizations

for every set of cm synchronization to be computed s(cm). The probability sampling 

is discussed in more detail in section (3.4.4).

But, how can one detect the binary property s(c) =  {1,0} describing if a single set 

of parameters makes the phase dynamics synchronized or not? For the simple form 

of the base function (e.g. the phase model Eq. (3.1) described in section 3.5.1) 

there might exist an analytic solution - then s(c) is explicitly defined. But in order 

to keep the generality of the method, there is a need for a technique tha t can detect 

synchronization of phase dynamics described by any number and general form of the 

base function defined.

(3.19)

from the parameters space {c^}m, where m  labels each testing parameter vector, and
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Fig. 3.2: Torus representation of the phase dynamics, given with toroidal coordinate 
C(0i(^)> 02^)) and polar coordinate (t), 02(^))• The white circle denotes the 
Poincare cross section.

3.2.1 Torus dynamics and map representation

In this section a simple technique to recognize whether a phase oscillatory system 

is synchronized or not is presented. The technique itself is a simple check through 

numerical integration of an ordinary differential equation system (defined by Eq.(3.1) 

without the inferred noise) through one cycle of the dynamics, and testing whether 

the synchronization condition |xj>(t)\ =  \(j>i(t) — <j>2 {t)\ < K  is always verified.

Let us assume we are observing the motion on the torus T2 defined by the the 

toroidal coordinate ((0 i(t), 02 W) =  (<f>i(t) +  02( t) ) /2 , and the polar coordinate ip(t). 

For determination of synchronization the phase difference ^ ( t )  will be defined as 

^ (0 i( t) , 02W) — — 02CO- Schematic representation of the phase dynamics on

torus is shown on Fig. 3.2. Let’s consider a Poincare section defined by (  =  0 and 

assume that d((t)/dt\{=o > 0 for any 0. This means tha t the direction of motion 

along the toroidal coordinate is the same for every point of the section. Ideally one 

would follow the time-evolution of every point in the section and check if there is a 

periodic orbit; if a periodic orbit exists and if its winding number is zero, then the 

system is synchronized. If such a periodic orbit exist, then there is at least another 

periodic orbit with one of them being stable and the other unstable.

The solution of the dynamical system over the torus induces a map M  : [0, 27t]

[0, 2n] tha t defines, for each 0 n on the Poincare section, the next phase ipn+1 after one 

round of the toroidal coordinate; 0n+i =  Tf(0n). The map M  is continuous, peiiodic,
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and has two fixed points (one stable and one unstable) if and only if there is a pair of 

periodic orbits for the dynamical system, i.e. synchronization is verified if ipe exists 

such tha t 0 e =  and < 1.

3.2.2 Synchronization discrimination

The procedure of synchronization detection between the two oscillators tha t generate 

the phase time-series reduces to investigation of synchronization of the synthetic phase 

model model using the parameters returned from the Bayesian machine. To calculate 

s(c) for any of the sampled parameter sets, one can proceed as follows:

i) from an arbitrary fixed (, and for an arbitrary integrate numerically (with the 

standard fourth order Runge-Kutta algorithm) the dynamical system prescribed 

by the phase base function (Eq.(3.3) without the noise) for one cycle of the 

toroidal coordinate, obtaining the mapped point 0).

ii) the same integration is repeated for multiple ^  coordinates next to the initial 

one, obtaining the map M(^*)

iii) by finite difference evaluation of dM/d'ip a modified version of the Newton’s root 

finding method is employed in respect of the function M(ip) — if). The method 

is modified by calculating M  at the next point 0 n+i such that

0n+1 = 0 n  +  O.8* \ (M{lpn) - 0 n)/(M '(0 n) -  l)) |.

Note tha t in this version, Newton’s method can only test the function by moving 

forward; in fact a) the existence of the root is not guaranteed; b) we are not 

interested in the root itself but only in its existence.

iv) If there is a root, s(c) =  1 is returned. If the root is not found, s(c) = 0 is 

returned.
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3.3 Interactions description

On of the main goals of this study is to infer and describe the interactions between 

oscillators in a dynamical environment subject to external deterministic and stochas­

tic influences. The interactions characterize the inner relationships between several 

or large population of oscillators, and represent a base tha t defines phenomenologi­

cal states (such as synchronization) and the flow of information i.e. structure of the 

connectivity.

The nature of an interaction mainly depends on the physical properties of the 

oscillating systems, their functionality and how they react to perturbations. The 

central idea is to use the inferred parameters from Nx(c, S) to describe the interacting 

properties. Because the dynamics are reconstructed separately as described by Eq. 

(3.1), usage can be made only of those inferred parameters from the base functions 

<7i(0i, 0j) which are linked to the influences between the oscillators.

One can seek to determine the properties that characterize the interaction in terms 

of a strength of coupling, predominant direction of coupling or even by inference of a 

coupling function. As to the use of information propagation allows inference of time- 

varying dynamics, the interactions’ properties can be traced in time as well. This is 

especially important for inference of open interacting oscillatory processes, which are 

often found in nature, where the time-variability interactions can lead to transitions 

between qualitative states, such as synchronization or oscillating death.

3.3.1 Directionality estimation

The interaction strength or the coupling amplitude quantifies the net information flow 

between the oscillators. It has been found useful in many investigations, including de­

termination of causality relationships [6, 88] or reconstruction of structure of networks 

[80, 83]. Several approaches have been proposed for quantification of the couplings, in­

cluding mutual theoretic information [23, 25], phase dynamics decomposition [24, 28], 

wavelet bispectrum [26] and perturbation techniques [79, 83, 89]. However, these 

techniques inferred neither the noise dynamics nor the parameters characterizing the
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noise, and not all of them were able to cope with the time-variability of the intrinsic 

parameters.

The coupling amplitude quantifies the total influence between the oscillators in 

some direction: for example how much the dynamics of the first oscillator affect the 

dynamical behavior of the second oscillator (1 —> 2). If the coupling is in only one or 

in both directions, we speak of unidirectional or bidirectional coupling, respectively. 

In the proposed inferential framework, the coupling amplitudes are evaluated as nor­

malized measures from the interacting parameters inferred from the coupling base 

functions The quantification is calculated as a Euclidian norm:

where e.g. in the proposed implementation the odd inferred parameters were assigned 

to base functions qi(<f>i, 4>2) for the coupling tha t the second oscillator imposed on the 

first (621 : 2 —>• 1), the even for the first on second oscillator (e12 : 1 —)• 2).

The direction of coupling often gives useful information about the interactions, 

and is defined as normalization about the predominant coupling amplitude:

If D G (0,1] the first oscillator drives the second (1 -* 2), or if D G [—1,0) the second 

(2 -* 1) drives the first. The quantified values of the coupling strengths e* or the 

directionality D  represent measures of combined relationships between the oscillators. 

Thus, a non-zero value can be inferred even when there is no interactions. The latter 

discrepancy can be overcome by careful surrogate testing [90, 91] -  by rejecting values 

below an acceptance surrogate threshold, which can be determined as the mean plus 

two standard deviations of many realization of the measures.

(3.20)

£12 ~  e21 
1̂2 +  e21

(3.21)
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3.3.2 Coupling function reconstruction

Beside the coupling strength and the directionality, one can also infer the function tha t 

characterize the interactions. This coupling function defines the law tha t describes 

the functional relationships between the oscillators, and its characteristic form results 

from the nature of the oscillators and how their dynamics react under perturbations. 

The inference of an underlying phase model has formed the basis for techniques to 

infer the coupling functions [28, 80-82]. However, these techniques did not inferred 

the noise dynamics nor the parameters characterising it, and they did not inferred or 

treated time-varying dynamics.

The coupling function is defined as the law through which the interactions undergo 

transitions to synchronization i.e. transitions to equilibrium stability. This physical 

meaning is illustrated schematically on Fig. 3.3 (a) for the case of simple phase oscilla­

tors with sine coupling function (following Kuramoto [10]). The black lines represent 

situations where the oscillators are not synchronized and there are no stable solutions 

for the phase difference. For certain parameters (frequency mismatch and coupling 

amplitudes) the coupling function intersect the equilibrium axis (ip =  0), and two 

solutions appear, one stable and one unstable, and the oscillators are synchronized.

o o

Fig. 3.3: Schematic representation of coupling function. The coupling as a function of the 
phase difference ip — <p2 ~ Pi and its implications for synchronization transitions
(a). The full line is for unsynchronized while the dashed for the synchronized case -  
the white circle corresponds to stable and black to unstable equilibrium solutions.
(b) The coupling as a function of both phase variables.
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To determine synchronization, it is sufficient to analyze the coupling function through 

the phase difference alone. In general, however, one can study the function with re­

spect to both the phases Fig. 3.3 (b). Winfree [7] used a function tha t is defined by 

both phases, rather than just the phase difference, while Daido and Crawford [76-78] 

used more a general form where the function was expanded in its Fourier series.

The coupling function should be 27r-periodic. In the inferential framework under 

study, the coupling functions was decomposed into finite number of Fourier com­

ponents. The function describing the interactions between the two oscillators was 

decomposed by the odd parameters qi((pi, </>2) G {ci,c3, ...}  and the corresponding 

base functions $ n[(7i(0i, </>2)] £ {sin(<^i, </>2), cos(^i, </>2)} up to order n  of the decom­

position. The reverse function #2(^1, $2) £ {c2, C4 , ...}  was similarly decomposed.

The time-variability propagation allows the coupling function to be inferred in 

time. This constitutes one of the novelties of the approach, because now one can 

trace the time-evolution of this functional relationships. From chapter 2 section 3.5.4 

it is clear tha t the latter is very important, and can act as a reason for transitions 

to synchronization. The importance for studying time-varying coupling functions is 

even greater given tha t it is a property observed in real life oscillatory systems - such 

as the cardiorespiratory system.

3.4 Technical aspects o f th e B ayesian inference

Before applying the inference method, as presented theoretically in the previous dis­

cussion, some attention is spent on the technical properties, capabilities and limita­

tions of the technique. Understanding the technical aspects is crucially im portant for 

appropriate and correct applications, especially because the final framework is a com­

bination of several concepts and their functioning together must be set up correctly.

There are number of technical aspects characterizing the technique, which include 

inference of stochastic dynamics and parameters with time-varying nature, where the 

resulting measures are probabilistic distributions. For this reasons, we considered the 

following: how the different number of base functions affects the inference, how does
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Fig. 3.4: Inference of time-varying coupling amplitude with different number of base func­
tions, applied on signal from numerical simulation of model (3.22); parameters 
are given in the text. The particular number of base functions is shown on the 
legend. The difference of precision is mostly observe around the local maxima -  
also enlarge on the inset.

the inference behave under different strengths of noise, what time-resolutions of the 

time-varying parameters can be traced and how to sample the combined measures of 

the resulting probability distributions. There exist many other technical aspects, but 

the ones presented here are considered to be sufficient for proper understanding of 

the particular (and similar) implementation of inferential technique.

3.4.1 Number of base functions

In this section, the discussion is focussed on the question of what is the optimal number 

of base functions to be used. The problem is basically an interplay between achieving 

the desired precision and computational speed. To infer the dynamics more precisely, 

we need to use larger number of base functions. This is even more pronounced when 

one tries to infer properties (like time-varying frequencies, coupling functions, . . .)  

th a t have ‘non-sine’ steep form. Then, in order to trace the higher harmonics, the 

inference needs to include expansion of the Fourier components up to higher orders. 

On the other hand, having large number of base functions for inference reduces the 

computational speed of the algorithm, and the functions that are not part of the actual 

dynamics can infer (pick up) some components from the noise. The base functions
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within the inferential framework are presented as multivariate Gaussian distribution 

in m atrix form. Thus a large number of base functions increases the parameter space 

vastly and the iterative calculations (especially the evaluation of inverse of a matrix) 

slow down the speed of processing exponentially. It is worth noting that, even though 

the Bayesian inference is popular for its real-time applications, the proposed inference 

framework for general phase dynamics does not allow (in computational speed sense) 

real-time applications.

In order to demonstrate the inference precision of time-varying parameters the 

technique was applied on a numerically simulated signal. The simulation was per­

formed on a model of two coupled Poincare oscillators subject to white noise:

^1 =  -  { y j x \ + y l -  1) X 1 -  Ui{t)yi + £2i{t)(x2 - X i )  + G 0 )

Vi =  -  ( \ J x \  +  y l -  1)2/1 + Vi{t)xi + £2i{t){y2 ~  2/ i ) + 6 W

(3.22)

X 2 =  ~  ( ^ 2 + 2 / 2  -  l ) ^ 2  -  U2{ t ) V2  +  £12 ( t ) ( X !  ~  X 2 ) +  f 2 OO

V2 = ~ [ y j x l  + vl -  1 ) 2 / 2  + u 2(t)x2 + £ -1 2 ( 0 (2 /1  -  y2) + 6(0>

where the frequency Ui(t) and the coupling amplitudes £ij{t) were allowed to be time- 

varying in some situations. The same model will be used for the remaining discussion 

of this section. The coupling function is a linear state difference (xj — Xi, yj — yt) and 

at this point is considered to have constant (non time-varying) form.

A particular case was considered, where the coupling amplitude from the first 

oscillator was periodically time-varying: £ 1 2 ( 0  =  £12 +  Asm(ujt). The parameters 

were: = cul =  27t 1.1, w2{t) = co2 = 27r2.77, £21 =  0, £12 =  1.7, u) =  27r0.0025,

A =  1.3 and noise strength E 1 = E 2 =  0.5. Evaluation of the coupling amplitude 

is done through calculation of the norm (Eq. 3.20) from the inferred coupling pa­

rameters. Results of the £i2 (t) inference from the same signal for three cases with 

different number of base functions are presented on Fig. 3.4. From the parameter 

estimations around the local maxima (also enlarged on the inset), one can notice tha t 

the inference is not following the sine form promptly. This can be due to particular
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Fig. 3.5: Statistical properties for inference of parameters for different noise intensity E. The 
dotted line shows the intrinsic values of the parameters presented with boxplots. 
The boxplots indicate: median with black tick line, the lower and the upper quartile 
are shown within the gray box, while the range (minima, maxima) is denoted with 
the vertical dashed line. Outliers are ignored.

effect of the noise, or if the two oscillators have become more coherent around these 

parameter values. The figure demonstrates tha t the three cases were different, and 

tha t the inference with larger numbers of base functions was getting closer to the 

intrinsic parameter values.

The proposed technique tries to infer dynamics of coupled oscillators subject to noise. 

One of the main functions are to decompose what is considered to be intrinsic dy­

namics from the effect of the noise. The question posed here is: how well can we infer 

the parameters when the dynamics are subject to noise of different strengths. The 

answer implicitly depends on how is the propagation of information is achieved. The 

results will be best for full propagation and constant parameters, but because the 

objective is inference of time-varying dynamics, the following investigation is done for 

propagation that can trace time-varying parameters.

The same numerical example (3.22) is considered, but for constant parameters and 

different noise strengths. The parameters were: oq =  27rl.l, uj2 =  2nl.77, e2\ =  0.05, 

e12 = 1.17 and E\ =  E 2 =  E. The main idea is to investigate how much will the

3.4.2 Effect of noise in ten s ity
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parameters deviate from their intrinsic values. The frequency oq and the coupling 

amplitude £12 were followed from the same simulation performed for each value of the 

noise intensities Ei. Fig. 3.5 shows the statistical properties in terms of boxplots for 

different noise intensities. It is easy to notice tha t the inference of the parameters 

is worse i.e. their values deviate more as the noise intensity E  is increased. Another 

feature is tha t the coupling amplitude e12 has larger deviations than the frequency 

oq parameter. This is probably because s 12 is the result of evaluation of the norm 

as a combination of several inferred parameters, and the noise effect from all of them 

contributes to the final deviation. Finally, it is worth pointing tha t in experiments 

(cardiorespiratory and analogue interactions), the noise strength inferred was not 

usually very high (0.01 < E  < 0.2).

3.4.3 Time resolution

The main objective of this study is to infer time-varying dynamics. The issue ad­

dressed here is: how fast/slow dynamics can be traced by the proposed technique 

and what precision is achieved. The problem is related to the size of the sequential 

windows i.e. the amount of information included within one block of data. The issue 

is also implicitly dependent on a time-resolution (i.e. frequencies) of dynamics of the 

interacting oscillators.

Using the numerical model (3.22), the time-resolution was investigated for case 

where the frequency <*q(t) = oq +  Ai sin(ujt) and coupling amplitude E\2(t) =  e12 +  

Ai  sin (tit) were varying periodically at the same time. The parameters were: oq =  

27T 1.1, aq =  2n2.77, e2i =  £u  =  1, a) =  27t0.002, A\ — 0.1 A 2 =  0.5 and noise 

strengths Ei  =  E 2 =  0.15. The parameters were reconstructed using four different 

lengths of the inference windows. The results presented on Fig. 3.6 demonstrate 

tha t for small windows (0.5s) the parameters are sparse and sporadic, while for very 

large windows (100s) the time-variability is faster than the size of the window and 

there is cut-off on the form of the variability. A better suited window size will be in 

between this two. Another interesting feature is tha t for the smallest window (0.5s), 

the coupling amplitude is improved with information propagation as time progresses,
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Fig. 3.6: Inference of a time-varying frequency (a) and coupling parameter (b) from model 
(3.22) for four different lengths of the inference windows. The size of the windows 
is shown on the legend.

while the frequency inferred (as a constant component without base function) is sparse 

throughout the whole time interval.

The final result of the inference is given with the set Nx(c|c, E). Every inferred 

parameter has the nature of a Gaussian distribution, and it is a part of a multivariate 

Gaussian distribution for the whole parameter space given by the mean vector c and 

the covariance matrix E . If one needs to infer a measure tha t is evaluated from the 

combination of the inferred parameters then, in theory, one needs to evaluate the 

probability of the measure from the multivariate Gaussian distribution Nx(c|c, E). 

Assume that a binary property of the measure m(c) =  {1,0} is given. For example, 

m (c) can be the synchronization index s(c) =  {1,0} presented in section 3.2.1, a 

normalized evaluation of the directionality index, or some other. Then the posterior 

probability of the measure can be evaluated as:

This integral may not have an analytic solution, and in order to keep the generality 

and practicality of the approach, one can try  to solve it by numerical evaluation.

3.4.4 P ro b a b ility  sam pling

(3.23)
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Fig. 3.7: Probability sampling for the inferred parameters of model (3.22). (a) Gaussian-like 
distribution of frequency u\. Bi-variate distribution of two inferred (b) coupling 
parameters and (c) frequency parameters. Note the high (blade-like) correlation on 
(c). There was no time-variability, and the parameters were uq =  1.27, co2 = 0.67, 
£21 = 0.05, £12 — 0.25 and the rest same as on Fig. 3.4.

Proceeding in a Monte Carlo manner, using the parameter space, one can sample many 

realizations m k, where k labels each testing parameter vector. Fig. 3.7 shows several 

examples of sampling distributions from the inference of model (3.22). Fig. 3.7 (a) 

shows the Gaussian-like distribution of single frequency parameter after the sampling 

of Kx(c|c, E), while Fig. 3.7 (b) and (c) demonstrate the distribution correlation of two 

inferred parameters. The two latter bivariate distributions only tackle the complexity 

of the full multivariate normal distribution Nx(c|c, E), which can have many more 

multivariate dimensions.

To find pm arbitrarily precisely it is enough to generate a number K  of parame­

ters Cfc, with k = 1 , . . . ,  K  sampled from Nx(c|c, E), since pm = lim/c-** -E rn(ck). 

However, this high dimensional integration quickly becomes inefficient with an increas­

ing number of Fourier components. On the other hand, if the posterior probability 

Px is sharply peaked around the mean value c, then pm will be indistinguishable from 

m(c), and evaluation of m(c) only, would suffice.
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3.5 A pplication  exam ples

After laying down the theoretical and technical aspects of the inferential framework, 

here we proceed with application of the technique on several characteristic models. 

This section demonstrates all the aspects, and shows how optimally, one can exploit 

and benefit from the method. It also reveals the novelties brought by this approach 

in respect of application of earlier known methods.

The only requirements (inputs) for the method are phase time-series of interact­

ing oscillators. As long as they are properly defined and detected, the phases are not 

model-dependent and they can come from any general form of oscillator. This con­

tributes to the generality of the method and its wide applicability. In the following, 

different types of models are used to demonstrate particular features of the method.

3.5.1 Phase oscillators model

In order to be systematic, and before going to more complicated realistic models, the 

technique is applied on a simple phase oscillators model. This will give a sufficient 

base model for synchronization description, which is analytically traceable at the 

same time. Moreover, the base functions embedded in the inferential framework are 

a perfect match for the inference of the interacting phase model.

The main objective in this section is to demonstrate how the synchronization de­

tection works, and to investigate the implications when applied to noisy time-series. 

In this sense, the detection of synchronization means if the examination of the con­

structed map (followed after Bayesian inference) can distinguish synchronized

(s(c) =  1) from unsynchronized dynamics (s(c) =  0), i.e. whether the root M(ipe) = ipe 

exists or not. It is important to notice that a non-zero noise can induce phase slips in 

a system that would be synchronized in the noiseless limit. Therefore, a genuine infer­

ence should not only detect the presence of a phase-slips, but also needs to describe 

the nature of the phase-slip itself: whether it is noise-induced or dynamic-related. 

The latter means to describe the dynamics in parameter space in relation to the in­

ferred parameters, without the contribution of the noise. The parameter space for
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Fig. 3.8: Synchronization discrimination for the coupled phase oscillators (3.24). (a)
Schematic Arnold tongue to illustrate synchronization [9]. (b) Map of M {i’) for 
ei2 =  0.25 demonstrating that the oscillators are not synchronized, (c) Map of 
M (0) for (d) demonstrating that a root of M (0) — ip exists, i.e. that the state is, 
in fact, synchronized, (d) Phase difference, exhibiting Wo phase slips.

synchronization phenomenon can effectively be described by Arnold tongues [9]. Fig.

3.8 (a) illustrates schematically a particular situation: in a noiseless case the systems 

are synchronized (black circle inside the Arnold tongue) and only because of the effect 

from the noise phase-slips occur (white circle outside the Arnold tongue). Thus the 

main goal is to detect whether the systems are intrinsically synchronized, and if the 

existence of phase slips is due to effect of the noise.

The model for generating a numerical phase signal for analysis is given by two 

coupled phase oscillators subject to white noise:

(p i  = t u i  +  621 sin(</>2 — 0i) T  Ci(^)

02 = 6̂ 2 +  6l2 sin(01 — 0 2 ) +  £2 (£)• (3.24)

The parameters were 621 =  0-1? wi — 1-2, ^2 — 0.8 and E \ = E 2 = 2. Note tha t 

there is no time-variability i.e. all of the parameters are constant in time. Thus the 

discussion shall be focus more 011 the effect of the noise, and the inference will be 

applied to a single block of data.

The dynamics of the phase difference will be described as: 0  =  Aco — esin(0) +  

£1 (t) +  £2( )̂5 where Au  = cj2 -  <̂1 is the frequency mismatch and e = e2i +  <U2 is the 

resultant coupling. In the noiseless case, the analytic condition for synchronization i.e.
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the existence of stable equilibrium solution ip  < 0 can be reduced to Ace/e < 1. Next, 

characteristic cases of numerically simulated signals from model (3.24) were analyzed. 

For coupling amplitude of ei2 =  0.25 the reconstructed map M(ip) (Fig. 3.8 (b)) 

shows th a t root M(ipe) — ipe does not exist and the oscillators are not synchronized 

s(c) — 0. To demonstrate the novelty of our method, the parameters were such that 

the oscillators were only just inside the Arnold tongue. This was achieved by enlarging 

the coupling amplitude to e12 =  0.35 -  then the analytic condition for synchronization 

A u / e  =  0.4/0.45 < 1 is fulfilled and the systems should be synchronized. However, 

due to the effect of the moderate noise phase-slips occurred, see Fig. 3.8 (d). The 

application of earlier methods based on the statistics of the phase difference [20-22] 

suggests tha t the oscillators are not synchronized. In contrast, the proposed technique 

shows tha t the oscillators are intrinsically synchronized as shown in Fig. 3.8 (c): the 

phase slips are attributable purely to noise (the intensity of which is inferred in matrix 

Ei}j), and not to deterministic interactions between the oscillators. The ability to 

identify noise-induced phase slip could be important in a number of contexts, including 

both noise-induced synchronization [65, 66, 92] and desynchronization [93].

3.5.2 Limit-cycle oscillators model

The proposed inferential framework offers a possibility of doing comprehensive analy­

sis within one sole formalism. The following discussion explores this and investigates 

how the proposed method can trace time-varying parameters, coupling functions, di­

rectionality and synchronization.

The model under consideration consisted of two coupled non-autonomous Poincare
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oscillators subject to white noise:

=  “ ( \ / x i +2/i “  l ) x i ~ u i ( t ) y i  + £ i (t)qx(xu x 2,t) +  f t (t) 

V i ~ ~  ( \ J x \ +  y\ — l^l/i +  tui{t)xi +  £i(t)qi(yi, y2, t ) +  ft(t)

(3.25)

^2 =  -  (yjxl + y l -  1)2:2 -  w2( t )2/2 +  £ 2 (0 9 2 (^ 1 ,^ 2,^) +  6 0 0

V2 = -{jjxl + yl- 1)v2 + w2(t)x2 + e2(*)g,2(yi,2/2,*) + 6(0-

All of the parameters can be time-varying, and the coupling function can have 

different forms with or without time variability.

First, we consider unidirectional coupling (1—>2), where the natural frequency of 

the first oscillator, and its coupling strength to the second one, vary periodically at 

the same time: oq(t) =  uq +  A 1 sin (oh t) and £2{t) =  e2 +  A 2 sin(<j20- The other pa­

rameters were: e2 — 0.1, ui  =  27rl, lj2 =  2tt1.14, A\  =  0.2, A 2 =  0.13, cji = 27t0.002, 

cj2 — 27r0.0014 and noise E n  =  E 22 =  0.1. The coupling function was simple lin­

ear difference in the state variables: qi(xi,Xj,t) =  X{ — Xj and qi{yi,yj,t) — Vi — Vj- 

The phases were estimated as the angle variable fa = arctan(yi/xi). W ith £\ =  0.1 

there is no synchronization and the time-varying parameters and £2(£)) are ac­

curately traced: see full lines of Fig. 3.9 (a) and (b). The form and the speed of the

inferred parameters demonstrate the precision of the method and the benefits of the

time-varying information propagation. For a coupling amplitude of £1 =  0.3 the two 

oscillators will be synchronized for part of the time, resulting in intermittent synchro­

nization. The time-variability of the parameters in the non-synchronized intervals is 

again determined correctly, while in the synchronized intervals they differ in value the 

intrinsic parameters, Fig. 3.9 (a) and (b), dashed lines. W ithin these synchronized 

intervals, all of the base functions are highly correlated, with values lying within the 

Arnold tongue. The latter was detected as synchronized (s(c) =  1) intervals, Fig. 3.9 

(a) and (b), grey shaded regions.

The reconstructed sine-like functions qi(fa,fa)  and q2(fa ,fa)  are shown in Figs.

3.9 (c) and (d) for the first and second oscillators, respectively. They describe the
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Fig. 3.9: Extraction of time-varying parameters, synchronization and coupling functions 
from numerical data created by (3.25). The frequency fi(t) (a) and coupling 
£ 2  (t) (b) are independently varied. The dotted and full lines plot the parameters 
when the two oscillators are synchronized for part of the time ( £ 1  =  0.3), and 
not synchronized at all ( £ 1  =  0.1), respectively. The regions of synchronization, 
found by calculation of the synchronization index, are indicated by the gray shaded 
regions, (c)-(f) show the coupling functions gi(0 i , 0 2 ) and ^2 (0 1 50 2 ) for time 
windows centered at different times: (c) and (d) at t — 350s; (e) and (f) at 
t = 1000s. The window length tw — 50s, and £ 1 2  = 0.1 in both cases. Note the 
similarity in forms of (c) and (e), and of (d) and (f).

functional form of the interactions between the two Poincare systems (3.25). The 

application of the proposed approach suggests that the form of the coupling functions 

does not evolve with time -  qi and q2 evaluated for later time segments are presented 

on Fig. 3.9 (e) and (f) respectively. By comparison of Fig. 3.9 (c) and (e), or of Fig.

3.9 (d) and (f), we see that the coupling functions are time invariant and they did 

not change qualitatively, even though there were time-varying parameters and weak 

effects from the noise.

Next, the method was applied to detect the predominant direction of coupling 

presented through a quantitative measure evaluated as the norm of the inferred 

coupling base parameters. To illustrate the detection and precision of direction­

ality, the frequencies now were considered to be constant, while both of the cou­

pling strengths to be discretely time-varying. The parameters were uji = 27rl.3, 

lj2 = 27r l .7 , E n  — E22 — 0-2, and the coupling function were as on the previous 

example: q^x^X j . t )  =  x { -  xj  and qi{yi,yj,t) = -  y,. Synchronization, however,

was not reached for these parameters. The couplings alternate (in time intervals as
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Fig. 3.10: Directionality of coupling for discrete time-varying coupling strengths. Different 
unidirectionally and bidirectionally cases are reached by different values of the 
coupling amplitudes E\ and £2 -  as indicated by the square insets.

depicted on Fig. 3.10) from unidirectionally (1 —>• 2), to bidirectionally (1 —)■ 2), then 

bidirectionally (2 —>• 1), so as to finish with zero bidirectional couplings (1 =  2). The 

detected directionality index was consistent with the hypothetical values. Note tha t 

the value of unidirectionally coupling has not reached 1, due to the noise disturbance.

The oscillatory models used for studying interactions and synchronization, usually 

are considered to have time-invariant coupling functions (for example the coupling 

function on Fig. 3.9 (c)-(f)). However, when the oscillators are open by nature, the 

functions defining their interactions can also be time-varying processes by themselves. 

Moreover, as discussed in the previous chapter, the variations of the form of a coupling 

functions can be the reason alone for which synchronization transitions can occur.

To investigate the issue of time-varying coupling functions and the implications 

when the inferential technique is applied, the same model (3.25) was used but now 

the coupling functions were absolute values of the state difference on power of time- 

varying parameter:

qi(xh Xj,t) = | (xj - X i Y {t) |; qi(yi,yj,t) =  -  y iY {t) |, (3.26)

where i = j  = {1,2} and i Y  3- The exponent parameter varied linearly with time 

v(t) =  {1 —»• 3}, and the rest of the parameters were constant: lji = 2tt1, cj2 =  27r2.14, 

£1 -  0.2, £2 =  0.3 and E n  = E 22 = 0.05.
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Following the Bayesian inference, the phase coupling functions #i(</>i, <̂2) were cal­

culated from the base parameters for the interacting terms. The results for four 

consecutive windows are presented on Fig. 3.11. Observing the inferred coupling 

functions, it can be easily noticed tha t their complex form now is not constant, but 

varies with time. Comparing them in neighboring (consecutive) pairs: (a) and (b), 

then (b) and (c), then (c) and (d), one can actually follow the time-evolution of the 

functions’ form. Even though we can follow the time-variability between them, the 

two most distant functions Fig. 3.11 (a) and (d) have substantially different forms. It 

can also be noticed tha t beside the form, the functions’ norm i.e. coupling strength 

varies too (compare e.g. the scale of maxima on Fig. 3.11 (a) and (d)). This probably 

happens because the coupling functions were varied in state space, and the way that 

the oscillators react on this perturbation affects the coupling strength. The latter can 

be even more significant for inducing synchronization transition.

Fig. 3.11: Time-evolution of coupling function from model (3.25) with exponentially vary­
ing (3.26). (a)-(d) coupling function 9 2 (^1 , 0 2 ) from second oscillator for four
consecutive time windows (the window length was tw = 50s). For simplicity and 
clarity only function ^2 (^1 , 0 2 ) is shown (the behavior of <71 (0 i, 0 2 ) from the first 
oscillator was similar).

The proposed method for inference of phase dynamics enables the evolution of the 

system under study to be tracked continuously. Unlike earlier methods tha t only de­

tect the occurrence of transitions to/from  synchronization, the method reveals details 

of the phase dynamics, thus describing the inherent nature of the transitions, and at 

the same time deducing the characteristics of the noise responsible for stimulating 

them. It can identify the time-varying nature of the functions tha t characterize inter­

actions between open oscillatory systems. It was shown that not only the parameters,
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Fig. 3.12: Analysis of signals from analogue simulation of system (5.1). (a) Phase portrait 
from the oscilloscope; (b) frequency cui(t) from the external signal generator; 
(c) detected frequency u>2 (t) of the second driven oscillator; (d) Fast Fourier 
Transform (FFT) of the detected frequency ^(O -

but also the functional relationships, can be time-varying, and the new technique can 

effectively follow their evolution.

3.5.3 A nalogue sim u la tions

In the previous sections the method was applied on signals generated by synthetic 

numerical models. In the following, the attention will be concentrated more on ap­

plications on signals emanating from real oscillatory systems. In this way the noise 

embedded in the signals has more realistic meaning, and usually it is attributed to 

environmental disturbances or imperfections of some properties of the systems. Ad­

ditionally, during the process of data acquisition and discretization, some amount of 

measurement noise can be introduced -  a noise which has no links with the actual 

dynamics of the interacting oscillators.

The following example analyzes data from experimental analogue simulation of 

two coupled van der Pol oscillators. Details about the electronic implementation and 

further analysis are presented in chapter 5. The noise here is emanating from the 

imperfections of the electronic elements (determined by their tolerance), from their 

thermal heating due to inner-dissipation and partly due of measurement noise.

The phase portrait from the first oscillator, whose frequency is time-varying is 

shown on Fig. 3.12 (a). The first oscillator with time-varying frequency, is driving the
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second oscillator:

^ x i  -  \ii(l -  x \ ) \x i  + [uq + u i(t)]2Xi = 0,

4^2 -  /X2(l -  x 22) \ x 2 +  u \ x 2 +  e{xi -  x 2) = 0, (3.27)

where the periodic time-variability t i ^ t )  =  A 1 sm(cdt) (Fig. 3.12 (b)) comes from an 

external signal generator. The parameters were £ =  0.7, uq =  27t15.9, cu2 = 27t17.5, 

A\  =  0.03, Co — 2tt0.2 and c is constant resulting from the analogue integration. The 

phases were estimated as & =  arctan(fy/aq).

For the given parameters the oscillators were synchronized. Due to the effect of 

synchronization, the second driven oscillator changed its frequency from constant into 

time-varying (as discussed in chapter 2). Applying the inferential technique and inves­

tigating the detected synchronization showed that the oscillators were synchronized 

(s(c) =  1) throughout the whole time period. The frequency of the second driven 

oscillator was inferred as time-varying Fig. 3.12 (c). Performing simple FFT (Fig. 

3.12 (d)) showed that co2(t) is periodic with period 0.2H z  (exactly as set on the signal 

generator). Therefore, the technique revealed information regarding the nature and 

the dynamics of the time-variability of the parameters.

3.5.4 Cardiorespiratory interactions

Another example worth analyzing, given its real-life nature, is the cardiorespiratory 

interaction. The analysis of physiological signals to detect and quantify cardiorespi­

ratory interactions have already been found to be useful in relation to several diseases 

and physiological states(see [6] and references therein). Additionally, the transitions 

in cardiorespiratory synchronization have been studied in relation to anaesthesia [11] 

and sleep cycles [94].

It is well known that modulations and time-varying sources are present and can 

affect the synchronization between biological oscillators [6, 95, 96]. For comprehensive 

and genuine analysis there is a need for technique tha t can not only identify the time- 

varying information, but will allow the evaluation of the interacting measures (like
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synchronization and directionality) to be based solely on such inferred information.

To demonstrate the method on real biological data, cardiorespiratory measure­

ments from human subject under anaesthesia were analyzed. During the experiment, 

the breathing rate was paced constantly. In such systems the analytic model is not 

known (in contrast to analogue and numerical examples), but the oscillatory nature 

of the signal is easily observed. The instantaneous cardiac phase was estimated by 

wavelet synchrosqueezed decomposition [97] of the ECG signal. Details about instan­

taneous phase detection and the respective problems and advantages are discussed in 

chapter 4. Similarly, the respiratory phase was extracted from the respiration signal. 

The final phase time-series were reached after protophase-phase transformation [27].

Applying the inferential technique reconstructs the phase parameters tha t govern 

the interacting dynamics. Fig. 3.13 (c) shows the time-evolution of the cardiac and 

respiration frequencies. It is easy to notice that the (approximately) constant pacing of 

the breathing is well inferred, and that the cardiac frequency i.e. heart rate variability 

is increasing with time. The set of inferred parameters and how they are correlated 

can be used to determine whether cardiorespiratory synchronization exists and, if

0 400 800 1200
Time [s]

Fig. 3.13: Synchronization and time-varying parameters in the cardiorespiratory interaction.
(a) Standard 2:N  synchrogram. (b) Synchronization index for ratios 2:8 and 2:9 as 
indicated, (c) Time-evolution of the cardiac fh( t )  and respiratory f r (t) frequency. 
Note the detected constant pacing of the breathing frequency.
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Fig. 3.14: Coupling functions in the cardiorespiratory interaction calculated at different 
times, (a)-(c) coupling function 9i(0 i , 02) from first oscillator, and (d)-(f) 
92(01,02) from second oscillator. The window time intervals were calculated 
at: t =  725s for (a) and (d); t — 1200s for (b) and (e); and at t = 1250s for (c) 
and (f). The window length was tw — 50s.

so, in what ratio. The synchronization evaluation Isync = s(c) G {0,1}, shown on 

Fig. 3.13 (b) reveals tha t several transitions exist between synchronized and non­

synchronized states, and transitions between different ratios: from 2:8 (i.e. 1:4) at the 

beginning to 2:9 synchronization in the later intervals. Because the evaluation of the 

synchronization state is based on all of the given details about the phase dynamics, 

the proposed method not only detects the occurrence of transitions, but also describes 

their inherent nature. The synchronization detection (Isync) was in good agreement 

with the corresponding synchrogram2 shown on Fig. 3.13 (a).

The cardiorespiratory coupling functions, evaluated for three different time win­

dows, are presented on Fig. 3.14. The upper figures (a)-(c) show the coupling function 

9i (0 i>02) from the first oscillator, and the lower figures (d)-(f) show 92(01, 02) from 

the second oscillator. Note that the interactions are now described by complex func­

tions whose form changes qualitatively over time -  compare for example Fig. 3.14 

(a) with (b) and (c), or (d) with (e) and (f). This implies that, in contrast to many

2 Note that the cardiorespiratory example shown on Fig. 3.13 and Fig. 3.14 is the same used for 
the motivation part in the introductory chapter 1.
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systems with time-invariant coupling functions, the functional relationships for the 

interactions of an open (biological) system can in itself be a time-varying process. 

By analyzing consecutive time windows, we can even follow the time-evolution of the 

coupling functions -  compare the similarities i.e. evolution of Figs. 3.14 (b) and (c), 

or (e) and (f).

Thus the proposed method identified the time-varying nature of the functions 

tha t characterize interactions between open oscillatory systems. The cardiorespira­

tory analysis demonstrated tha t not only the parameters, but also the functional 

relationships, can be time-varying, and the new technique can effectively follow their 

evolution. This discovery immediately invites many new questions and points out 

tha t in future studies and modeling of such open systems, the time-varying coupling 

functions should be taken into account.

3.6 S tate space inference

In previous sections of this chapter, an inferential technique for reconstructions of 

phase dynamics was presented. Starting from the phase time-series and using phase 

base functions, the method tried to infer and describe the interactions between the 

oscillators. This section, on the other hand, presents the case of inference in the state 

space, where the starting point are the state time-series and the base functions are 

also in state domain. The objective is to describe the interacting oscillatory dynamics 

by the inference of the state variables.

3.6.1 Main concept

Given the state time-series £*(£), the estimation of instantaneous phases 0*(£) is not 

often a trivial task. Many procedures for phase extraction are problematic when the 

state signals come from complex mixed-mode dynamics, or some information from 

the measurements is not used (or is interpolated). When inferring from the state 

signals, the technique exploits all of the measurement information. Moreover, if one 

can effectively use the state variables, then there is no need for the phase extraction
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and one step (subprocedure) of the inferential framework can be avoided.

The construction of the Bayesian technique now encloses a set of base functions 

tha t describe the state dynamics $  =  {x^}. For example, the base functions can be 

a finite number of polynomial functions. In general, the choice of the functions is 

not unique, and usually is mo del-dependent. The biggest disadvantage comes from 

not knowing the right number of dimensions, because often the only available input 

is a one dimensional readout signal. One can choose, for example, a large set of 

many combinations of base functions, but this will incorporate a lot of noise from the 

base functions which are not present in the actual dynamics, and the computational 

expenses and parameter space will be unnecessarily increased.

On the other hand, if the model is known a priori, then fewer base functions will 

be needed, the processing will be faster and more efficient, and the separation of the 

noise will be more effective. The latter make sense because many of the processes in 

nature can be described by models -  examples include models in biology, chemistry 

or climate science. Additionally, a lot of situations exist when the model is known 

and the objective is to determine the dynamical states at any point in time. For 

example, in interacting technical systems and communications [16], or in chemical 

Belousov-Zhabotinsky oscillators [81].

The previously proposed Bayesian technique is one of the first to infer phase 

oscillatory dynamics, while most of the known Bayesian techniques actually infer 

in state space [30, 31, 84]. Especially relevant is the work by Smelyanskiy et al. [29] 

where the authors have used Bayesian inference to reconstruct the cardiorespiratory 

interactions in the state space. However, their analysis was performed on a single 

stationary (non time-varying) block of data and synchronization was not studied.

The main idea for the following discussion is: starting from the state time-series 

as inputs and given the model’s state base functions, to use the same concepts for 

the Bayesian framework as discussed in section 3.1.3 to infer the multivariate state 

dynamics about the interactions of the oscillators. The use of the particular infor­

mation propagation (section 3.1.4) can allow time-varying dynamics to be followed 

again. Defined in such a way and assuming that the model is known, the technique
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will give explicit inference information about the coupling strength and coupling func­

tions. However, the synchronization in the state domain, also known as generalized 

synchronization, has not been studied in this manner and in the following section 

special attention will be given to this issue.

3.6.2 Detection of generalized synchronization

When two oscillators synchronize, their behaviour can be easily explain in terms of 

phase relationships: synchronization occurs if there exists a bounded phase shift i.e. 

if the equilibrium solutions of the phase difference are stable [9]. But how is synchro­

nization reflected in the state dynamics of oscillators? Basically, when synchronization 

is reached, the state trajectories become dependent on each other as a result of the 

interactions. Thus by investigating the stability of individual oscillators in respect of 

the interactions, one can effectively determine the synchronization entrainment.

At the beginning of the chaos synchronization era, the concept of identical syn­

chronization was one of the first established forms of state space synchronization. It 

defines the two oscillators to be synchronized if certain states reach unity i.e. if the Lis- 

sajou curves are a diagonal line [46]. Not long afterwards, a more general description 

was given for the cases of state synchronization, called generalized synchronization, 

where the trajectories do not necessarily reach unity [98]. A more specific definition of 

generalized synchronization, in terms of asymptotic stability, was also proposed [47].

Directional coupling has been studied in depth and can be viewed as a general­

ization of periodic or quasiperiodic driving which have been used in physics, mathe­

matics, and engineering for a long time. The unidirectionally coupled systems can be 

represented with a skew product structure:

x = f(x)
(3.28)

y = g(y,u) =g(y,h(x)),

where x G Rn, y G Rm, a subset B = Bx x By C Rn x Rm is given and the state 

coupling functions are u(t) = (ui(t), . . . ,  uk(t)) with uj(t) -  hj(x(t, x0)). The first 

and second systems in 3.28 are referred to as a drive and driven oscillator, respectively.
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The question of under what conditions does generalized synchronization occur for a 

unidirectionally coupled system 3.28, is addressed in the following theorem (see [47] 

for proof):

Theorem: Generalized synchronization occurs in system 3.28, if given for all (x0, yo) G B 

the driven system y =  g(y, u) =  g(y, h(x)) is asymptotically stable [i.e. Vyi0, y 20 £ By : 

limt->oo ||y(t,xo,yi0) -  y (t,x0,y 2o)|| = 0].
The physical meaning of the theorem indicates tha t due to interactions the driven 

oscillator changes its independent stability, for example, from marginally stable to 

asymptotically stable, because of the entrainment to the drive oscillator. In fact, the 

vector field y = g(y, h(x)) is non-autonomous in respect of x(t) to which is entrained.

One of the basic techniques for proving asymptotic stability is through numerical 

evaluation of conditional Lyapunov exponents of the driven oscillator. In this case, 

generalized synchronization occurs if all of the Lyapunov exponents from the driven 

oscillator are negative.

Several techniques have been proposed for detection of generalized synchronization 

from time-series. The most popular are based on mutual false nearest neighbors [98], 

mutual information [99, 100] or generalized angle [101]. These methods, however, 

are based on statistics and information flows and they do not take into account the 

intrinsic dynamics of the systems, nor do they consider the noise embedded in the 

interacting dynamics.

In the following the discussion is focussed on generalized synchronization detection 

technique tha t uses the Bayesian framework to infer the interacting state dynamics 

and the noise, and determines the existence of synchronization if the driven oscillator 

is asymptotically stable i.e. if its largest Lyapunov exponent is negative.
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Application example

To demonstrate the main concept about the detection of generalized synchronization, 

a model of two coupled van der Pol oscillators subject to weak noise is considered:

x — fj,i( I — x 2)x +  uj\ x +  £\{t)y +  fi(£) =  0 

y -  jU2(l -  y ^ y  +  u \y  +  e2(t)x + f 2(i) =  0,
(3.29)

where the noise is assumed to be white Gaussian: (^i(t)^j(r)} =  5(t — r)Eij.

In order to apply the inferential technique, first one needs to prescribe appropriate 

base functions. Each oscillator can be described in two dimensions by a simple variable 

change: X\ =  x, x 2 =  x and y\ = y, y2 =  y. Assuming the models are known 

beforehand, the following base functions were chosen for reconstruction of system

(3.29):
/

£2
.2,

(3.30)
x u x 2, x \ x 2, y 1 

2/2

2/i, 2/2, 2/?2/2, xi
a

where each row corresponds to the respective dimension of system (3.29).

The coupled system (3.29) was simulated numerically for a specific case -  the 

coupling was considered to be unidirectional (1 —>■ 2) i.e. £\{t) =  0 and the rest of 

the parameters were set to: uji = 1.1, cu2 = 0.9, fi 1 =  1, /i2 =  0.7 and the noise 

strength Ei = E 2 =  0.2. To demonstrate the properties and precision of the inference 

in state space, first the coupling was set to a constant value e2(t) =  0.15 (for which 

the oscillators were not synchronized). The Bayesian inferential technique (section 

3.1.3) exploiting the state base functions (3.30) was applied on the time-series of the 

two noisy oscillators. The inferred parameters acting as coefficients of appropriate 

base functions, are summarized together with the intrinsic parameters in Table 3.6.2. 

Comparing the last two columns, one observes the validity and precision with which 

the intrinsic parameters were inferred. The full and the inferred dynamics can be 

visualized and compared on Fig. 3.15 (a) and (b). Fig. 3.14 (a) shows the phase
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Parameter Base function Intrinsic values Inferred mean values

d x X 2 1 1.0051
1 12 uq X i -1.21 -1.2099
Ml X 2 1 1.0110
Mi x \ x 2 -1 -0.9925
£ i Mi 0 -0.0116
d y 2/2 1 1.0036
/ I2cu2 Mi -0.81 -0.8144
M2 M2 0.7 0.7104
M2 Mi2M2 -0.7 -0.6971
£2 X i -0.15 -0.1563

Tab. 3.1: Results from the inference of numerically simulated system (3.29). The first col­
umn describes the physical meaning of the parameters, the second column shows 
the base functions used within the Bayesian inference, and the last two columns 
show the values of the intrinsic parameters and the their inferred mean values, 
respectively.

portrait of the first oscillator from the numerical simulation of (3.29) affected by 

noise, while Fig. 3.14 (b) shows the phase portrait of the same system simulated with 

the inferred parameters without the effect of noise.

But how one can use the inferred parameters to determined if the two oscillators 

are synchronized? Namely, the second driven oscillator y(t), when not synchronized, 

has limit-cycle dynamics with marginal stability i.e. its largest Lyapunov exponent is 

zero. According to the theorem for generalized synchronization, when synchroniza­

tion occurs the driven oscillator becomes asymptotically stable with negative largest 

Lyapunov exponent. Thus by following the Lyapunov exponents of the inferred driven 

oscillator one can detect if synchronization exists. Moreover, using the discussed in­

formation propagation within the Bayesian framework, one can follow the generalized

synchronization in time.

To demonstrate the latter, system (3.29) was simulated for unidirectionally in­

teracting case where the coupling was non-autonomous function varying discretely 

between two predefined values e2(t) = £ = {0,0.4} for which the two oscillators were 

intermittently synchronized. The application of the technique and the detection of 

generalized synchronization are presented on Fig. 3.14 (c). It can be noticed that,
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Fig. 3.15: Inferred state dynamics and detection of intermittent generalized synchronization.
(a) phase portrait from numerically simulated noisy van der Pol oscillator x(t).
(b) phase portrait of van der Pol oscillator numerically simulated with the inferred 
parameters, (c) Largest Lyapunov exponent A indication non-synchronized inter­
vals for zero values and synchronized for negative. The coupling amplitude £ was 
discretely varying on intermittent intervals as indicated on the top of the figure.

when the oscillators are not synchronized, the largest Lyapunov exponent [102] A is 

zero, and when synchronization occurs (for £ =  0.4) the driven oscillator becomes 

asymptotically stable and A becomes negative. Thus the largest Lyapunov exponent 

A can act as synchronization index for detection of generalized synchronization in 

time.

Many of the concepts discussed broadly for the detection of phase synchronization 

are valid and can be applied for the detection of state synchronization. The identifi­

cation of synchronization from the inferred dynamics through Lyapunov exponent A 

can be seen as equivalent to the map reconstruction of torus phase dynamics. Using 

the information propagation procedure, the generalized synchronization and the re­

spective transitions can be traced in time too. As the noise is decomposed separately, 

if there exist noise-induced phase slips i.e. noise-induced transitions to generalized 

non-synchronized states, the proposed method will be able to detect it. Having said 

this, the inferential technique looks to be a useful tool in describing the time-varying 

nature and transitions of state synchronization in the presence of noise.
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3.7 G eneralization  to  networks o f oscillators

A network of many complex dynamical systems can describe a large number of pro­

cesses and system in the nature -  examples including chemical reactions, ecological 

systems, electrical power grid, populations of synchronized crickets, the internet, and 

many others [103]. Especially important and relevant to this study are networks of 

complex oscillatory systems. This type of networks often require reconstruction of 

the coupling links i.e. structure of the network, or detection and study of qualitative 

phenomena such as synchronization [104].

In the previous presentation, for simplicity and clarity all of applications and 

demonstration were conducted on systems of two interacting oscillatory processes. It 

is important to note tha t in fact, the whole inferential framework is designed for a 

general number of interacting oscillators. Thus, the proposed inferential framework 

can be applied in a most strait-forward manner to a network of interacting oscillators. 

The only requirement is tha t now there will be an increased number of base function 

for a greater number of dimensions, and the computational procedures will take more 

time. This implies that the technique could be applied to networks of biological, 

ecological and chemical oscillators [7, 80, 81]. The novelty and advantages tha t this 

technique might bring is tha t it can decompose the effect from the noise and it can 

trace the time-varying dynamics and the transitions associated with it.



4. APPLICATION TO LIFE SCIENCES

Life is when structure acts as a function - is one of the many answers given to the 

everlasting question “W hat is life?” .

The evolution of such functions of living beings in nature constitutes a vast group 

of complex dynamical systems. In order to maintain their functioning and activity, 

many of the processes tend to reach a balance between energy inflow and dissipated 

energy -  forming a periodic i.e. oscillatory process.

But how well is the balance maintained throughout the system’s evolution? In 

general, the biological systems are not isolated and often they are thermodynamically 

open. This causes a different type of energy exchange, in addition to the dissipated 

energy needed to maintained the basic functioning of the system. In other words, 

the system dynamics are no longer autonomic, and other processes contribute to its 

time-evolution. W ithin the same environment (for example -  the human body) the 

sources of external influence are often known and closely related processes -  which 

can be regarded as deterministic. The effect of the external dynamics can cause the 

intrinsic parameters, the interactions, or even functional dependencies to vary with 

time.

The following chapter focuses on the discussion on effects from external influences 

on human physiology. The underlying physiological systems are considered to be os­

cillatory processes and their dynamical characterization is studied. One of the main 

objectives was to investigate some of the physiological mechanisms with respect to 

deterministic non-autonomous perturbations. The latter involved physiological mea­

surements while the respiration frequency was varied in time. Another issue discussed 

is the dynamical characterization of blood flow oscillations and their transient effect 

when subject to external perturbations. Several methodological issues regarding the
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time-varying analysis and estimates are also discussed. By exploiting the measured 

time-series, the analysis (i.e. the inverse problem approach) employs many of the 

theoretical and methodological concepts discussed in the previous chapters.

4.1 A  short physiological background

This section lays down the necessary human physiological background tha t any non- 

biological scientist can find useful for the remaining of the chapter. For a more 

comprehensive physiological background one can refer to [5, 6, 105, 106].

4.1.1 Cardiovascular system

The cardiovascular system forms a blood distribution network for transport of nutri­

ents, gases and wastes to and from cells. It consists of three principle components: the 

heart, blood vessels and blood. According to cardiovascular functioning the system 

can be divided into pulmonary and systemic (peripheral) circulation. The pulmonary 

circulation connects the lungs where the blood is oxygenated, while the systemic 

supplies the rest of the body with the oxygenated blood.

The heart is a muscular organ, which forms two separate (right and left) pumps, 

each composed of atrium and ventricle chambers. The function of the right side is to 

collect the de-oxygenated blood in the right atrium and to pump it through the right 

ventricle to the lungs where it is oxygenated. The oxygenated blood is collected in 

the left atrium and pumped through the left ventricle to the rest of the body. The 

pumping action of the heart is based on a rhythmic oscillatory sequence of relaxation 

(diastole) and contraction (systole) procedures. The heartbeat coordination is tightly 

controlled by the sinoatrial node which acts as a pacemaker tha t determines the hear 

rate. The cardiac output i.e. the amount of blood pumped for a resting human subject, 

is about 5 liters in 1 minute.

Depending on the blood flow direction, two types of vessels exist: arteries and 

veins. The arteries take the blood away from the heart, and veins bring the blood 

back to the heart. Due to the high pressure, the arteries have strong vascular walls
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and blood flows rapidly to the tissues. At the endings of the arterial system are 

arterioles tha t act as control valves through which blood is released to the capillaries. 

The capillaries then allow the actual exchange substances between the blood and the 

surrounding tissue. The walls of both arteries and capillaries is lined by a thin layer of 

endothelia cells which cause the smooth muscles to constrict or relax, contributing to 

the regulation of the vascular tone. The veins transport the blood from the capillaries 

(through venules) to the heart, and serve as a reservoir of blood. Due to the low 

pressure, the venous walls are thin.

The blood is a special fluid with the main function of conveying substances within 

the body, such as gases (oxygen, carbon-dioxide), hormones, vitamins and enzymes. 

It is composed of a liquid, called blood plasma, and blood cells suspended within the 

plasma. An average human subject has around 5 liters of blood, which accounts for 

about 6 -  8% of their body weight.

4.1.2 Respiratory system

The respiratory system introduces respiratory gases to the interior of the body and 

performs gas exchange. It includes the airways, lungs, and the respiratory muscles. 

Molecules of oxygen and carbon dioxide are passively exchanged by diffusion between 

the gaseous external environment and the blood. This exchange process occurs in the 

alveolar region of the lungs. The respiration process is an oscillatory cycle composed 

of two sub-processes: inspiration and expiration. Expiration is the movement of air 

out of the bronchial tubes, through the airways to the external environment during 

breathing, while inspiration is the movement of air from the external environment 

through the air ways, and into the alveoli. The way in which the respiratory system 

works closely in concert with a circulatory system to carry gases to and from the 

tissues -  means it is often considered to be part of the cardiovascular system.

4.1.3 Sympathetic nervous system

The sympathetic nervous system is a part of autonomic nervous system (along with 

enteric and parasympathetic) which mainly controls involuntary internal processes.
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The sympathetic nervous system prepares the body for responses to stressful chal­

lenges, allowing sudden strenuous exercise and increased vigilance. Stress is thought 

to counteract the parasympathetic system, which generally works to promote main­

tenance of the body at rest.

The sympathetic nervous system is responsible for up- and down-regulating many 

homeostatic mechanisms in living organisms. Fibers from the sympathetic system 

innervate tissues in almost every organ system, providing at least some regulatory 

function to things as diverse as blood flow control, thermoregulation, gut motility, 

and urinary output. It is perhaps best known for mediating the neuronal and hor­

monal stress response, commonly known as the fight-or-flight response. This acts 

primarily on the cardiovascular system and is mediated directly via impulses trans­

m itted through the sympathetic nervous system and indirectly via catecholamines 

secreted from the adrenal medulla.

Messages travel through the sympathetic nervous system in a bidirectional flow. 

Efferent messages can trigger changes in different parts of the body simultaneously, 

such as the acceleration of the heart rate; widening of the bronchial passages; reducing 

the motility (movement) of the large intestine or the constriction of blood vessels. 

Afferent messages carry sensations such as heat, cold, or pain.

4.1.4 Oscillatory processes in the cardiovascular system

The functioning of cardiovascular system is characterized by several oscillatory pro­

cesses [5, 6, 37]. They are responsible for many of the modulations observed (by 

means of wavelet transform) in the blood flow and the heart rate variability signals. 

Each of the oscillating processes has a characteristic period and is well defined in a 

certain frequency interval (summarized in table 4.1.4). Each also has a physiological 

interpretation, which is described in the following:

I The frequency interval around 1 Hz corresponds to cardiac oscillatory activity.

It describes the periodicity for the functioning (pumping) of the heart.

II The oscillatory component around 0.2 Hz describes the respiratory activity and
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Interval Frequency (Hz) Physiological origin
I 0.6-2 cardiac
II 0.145-0.6 respiratory
III 0.052-0.145 myogenic
IV 0.021-0.052 neurogenic
V 0.0095-0.021 endothelial metabolic
VI 0.005-0.0095 endothelial

Tab. 4.1: The frequency intervals for the distinctive oscillatory processes determined from 
human blood flow, and their physiological origin.

the periodicity associated with the breathing process tha t supplies the body 

with oxygenated blood.

III Around 0.1 Hz, corresponds to myogenic activity. The vessels are able to help 

control blood flow via a mechanism known as myogenic autoregulation. The 

vascular smooth muscles contract in response to an increase of intravascular 

pressure, and relax in response to a decrease of pressure.

IV  The periodicity around 0.04 Hz originates from the activity of the autonomic 

nervous system on the heart, lungs and vessels. The nerves cause the release 

of substances tha t affect the activities of smooth muscles, leading in turn to 

changes in the vessels’ radii and resistance, which allows vasoconstriction to 

take place.

V The oscillations around 0.01 Hz, correspond to nitric oxide (NO)-related en­

dothelial activity. The layer of endothelial cells serves as a barrier between the 

blood and the tissues of vessels, allowing metabolic regulation and the control 

of contraction and relaxation of smooth muscle through the release of various 

substances.

VI The oscillations around 0.01 Hz, apparently corresponds to NO-independent 

(probably prostaglandin-dependent) endothelial activity.

The differentiation of the oscillatory processes (as described above) will be exploited

greatly in the following discussion. For visual representation of the intervals, one can
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refer to the analysis of blood flow signal presented on Fig. 4.14 and Fig. 4.12 (a).

4.2 T he effect o f tim e-varying respiration  on  

cardiovascular system  and sym path etic  nerve activ ity

4.2.1 Introduction

Time-variability and modulations are inherent part of the physiological oscillatory 

dynamics. One of the most pronounced and early discovered modulation is the res­

piration sinus arrhythmia, which describes how the breathing patterns modulate the 

heart rate [107, 108]. Modulations and time-variabilities investigated in different con­

texts [35, 36, 95], have also shown that their study can be useful in understanding of 

many physiological processes, their functioning and their existing relationships.

The objective of this study is to analyze the effect of a deterministically varied 

respiration frequency on human oscillatory processes. The analysis will attem pt to 

uncover how these processes are coordinated and how they influence each other. The 

time-variability of the respiration frequency is introduced externally, in a predefined 

procedure known to the investigator -  thus in this way deterministic non-autonomous 

influences are introduced to the oscillatory dynamics. The controlled variability of 

the respiration is performed in order to study specifically how the varying respira­

tion affects other processes, but also to use the perturbation for identifying existing 

relations and physiological mechanisms.

W ith its main function to provide oxygen, the respiration is one of the central pro­

cesses in the human body. As such, it has attracted a lot of attention from physiologic 

science [34]. The relationship of respiration to heart rate variability has been iden­

tified as respiration sinus arrythmia [107]. Several studies have investigated how the 

sympathetic nerve activity is affected by different modes of breathing [36, 109, 110]. 

Of special interest is the study of low frequency components and sympathetic nerve 

activity [111], which also has been analyzed previously in conjunction with blood 

flow measurements [112]. Saul et al. have studied sympathetic nerve activity and 

haemodynamic signals under randomly varied breathing processes [113]. However,
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their analysis has not taken into account the time-variability, the low frequency com­

ponents are also not well localized, and the sympathetic nerve activity is not acquired 

by direct measurements of the nerve activity.

The following reports wavelet phase coherence analysis and information-theoretic 

approach for the detection of coupling between muscle sympathetic nerve activity and 

haemodynamic signals under deterministic time-varying perturbation of the respira­

tion frequency. Wavelet phase coherence allows high resolution characterization of 

coherence i.e. coordination of the oscillatory dynamics at both high and low frequen­

cies. The information-theoretic method quantifies the inter-oscillatory influences and 

reveals existence of causal relationships. All of the proposed techniques were able to 

trace (and to quantify statistically) the dynamical behavior and the time-variability, 

and to assess the time-domain information in accordance with the time-varying ramp 

perturbation. The main task was to investigate how the deterministic time-varying 

respiration regulates the neural and haemodynamic processes, and how this is affecting 

the causal inter-oscillatory relationships.

4.2.2 Measurements, subjects and signals

The total number of subjects analyzed was thirteen, and none of which smoked, had 

evidence of heart disease or took medication. The length of the recordings had mean 

of 72.3 minutes and standard deviation of 11.5 minutes. The minimum length was

53.4 minutes. There were two types of ramped paced breathing - first with gradually 

decreasing frequency (fast-to-slow) and second with gradually increasing frequency 

(slow-to-fast). Each recording contained several segments, with spontaneous breath­

ing and then followed by several ramp breathing segments -  the order and duration 

of all ramps is presented in Appendix D. The segments between the ramps were not 

analyzed because of the transient effect of the previous perturbation [39]. The mean 

length of spontaneous breathing segments was 7.9 minutes, with standard deviation 

of 2.6 minutes and a minimum of 6 minutes (which allowed the wavelet analysis to 

trace low frequencies down to 0.021 Hz). The ramps had lengths of approximately 9 

minutes, with mean 9.05 and standard deviation of only 0.14 minutes.
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The subjects were asked to breath voluntarily in accordance to a sine wave signal 

with time-varying frequency, which was shown on visual screen in front of them. In 

this way, the frequency of their respiration was varied with time.

The recordings included: electrocardiogram (ECG), blood pressure (BP) and car­

bon dioxide (CO2) concentration signals. From the ECG signal a heart rate variability 

(HRV) signal was derived through marking of the R-peaks and linear interpolation 

between the consecutive time differences (for details see e.g. [6]). Similarly, the dias­

tolic and systolic blood pressures were derived from the blood pressure signal. The 

recording also included the relatively rare and delicate measurement of muscle sympa­

thetic nerve activity (MSNA). A multifiber sympathetic efferent traffic was measured 

invasively from the peroneal nerve muscle using microelectrodes with uninsulated tip 

diameters of about 2/am. The sampling frequency of the recordings was 500 Hz.

4.2.3 Methods

This section briefly outlines the methods used for the analysis of the recordings to 

find the effects of the time-varied respiration. Tools tha t are needed for the group 

statistical analysis are presented as well.

Wavelet transform

The nature of the perturbation, where the frequency of the respiration was varied with 

time, means tha t the wavelet transform and its ability to trace the time-frequency 

dynamics was the optimal choice for analysis of the underlying oscillatory processes 

[37]. The method based on the continuous wavelet transform projects the signal from 

time- to time-frequency domain with logarithmic frequency resolution [114]. Due 

to the adjustable length of the mother wavelet, the wavelet transform offers better 

localization and resolution for low frequency components when compared with the 

Fourier transform, which was of great importance for this study.

The wavelet transform enables one to derive the frequency content continuously in 

time by use of wavelets windows with variable length. A wavelet is shifted along the 

signal and a coefficient is calculated representing the strength of correlation between
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the signal and the wavelet. For the following analysis a Morlet mother wavelet was 

used:

v(u) = ~  e - i2lTfou ■ e““2/2,
V7T

where the central frequency was set to be f 0 = 1Hz. To create various scales of 

the wavelet comparable to the original signal, the mother wavelet is stretched and 

compressed by scaling factor s:

» S|t(u) =  |s |“1/2 - V (4-l)

In order to reach logarithmic resolution for the frequency, the scale factor s is increased 

exponentially. The transform itself is then a convolution of the wavelet and the original 

signal:

/
O O

i ,t(w ) ' g(u)du (4.2)
-oo

where the ^  represents the complex conjugate of 4/. Thus any specific scale is avoided 

and the analysis becomes scale-independent in terms of frequency. The energy density 

in the time-scale domain is evaluated from the wavelet transform, and the the wavelet 

power within the fl : f2 frequency range can be calculated as:

/*!//l 1
e (/i : f i )  =  /  — \W(s ,t) \2ds.

Ji/f2 s

For the calculation of the transform the signals were re-sampled to 10Hz, and their 

spectra below the lowest frequency analyzed (0.021 Hz for the segment and 0.0095 

Hz for the whole signals) were removed by moving average technique. Use of longer 

wavelets for low frequency components, resulted in having higher wavelet amplitudes 

for the low compared with high frequencies. Due to this effect the low frequency 

oscillatory components are easily identified and traced. When one needs to detect the 

actual strength of particular frequency component, the wavelet spectral power can be 

calculated.
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Wavelet phase coherence and windowed wavelet phase coherence

By investigating the phase relationships, the wavelet phase coherence can determine 

the causality relations between two signals. When inferring the relationships between 

signals with different or very low powers, a big advantage of the wavelet phase coher­

ence is tha t it can detect significant coherence. This is particularly meaningful for 

low-frequency components, which make important, but not necessarily large contri­

butions to total power.

The wavelet transform using Morlet wavelet is described as a complex function. 

This allows for the instantaneous phases of the signals to be analyzed directly from the 

transform. The latter was used for calculation of the respective phase difference and 

thus for evaluation of the phase coherence.lt gives normalized measure of coherence 

ranging between 0 and 1.

Due to the complex nature of the Morlet wavelet, the wavelet transform for each 

time tn and scale sk, consists also of complex values:

I T (S k i  t n )  =  =  &k,n T  ibk,n-

From here the instantaneous phase can be determined as the angle variable >̂k,n =  

arctan(bk,n/0’k,n)- To evaluate the wavelet phase coherence, the respective phase differ­

ence A (f)k,n = 4>2k,n — 4>ik,n is calculated [38]. To get normalized measure of coherence 

between 0 and 1, the sine and cosine of the phase difference are averaged in time, 

yielding the phase coherence function:

C ^ f k )  =  \ J (cos(A(pk ,n ) )2 +  (sin(A0*;in))2 .

In order to follow how the phase coherence is varying with time, a windowed 

wavelet phase coherence can be calculated. A window is slide along the data in 

time domain and the phase coherence is evaluated and plotted as function of both 

frequency and time: Cw<t>{fk, tk) - with window of given size centered on a particular 

time tk. The window size is varied for low to high frequencies in the same manner as 

the wavelet transform was calculated. In this way the same logarithmic scale for the
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frequency is preserved. On the end, each windowing is normalized by the particular 

window size, so tha t the measure returns normalized phase coherence between 0 and 

1. Due to the finite length of the windows on the end of the sliding - there is a cut-off 

of information, and the corresponding plot has goblet-like shape. Detailed description 

of the method and its significance for adaptive windows is discussed in [115].

Coupling between interacting oscillators: an information-theoretic 

approach

An information-theoretic method proposed by Palus & Stefanovska [23] was used for 

analysis of directionality of couplings and influences between weakly coupled oscil­

latory processes. The method has been proven useful in number of technical and 

physiological studies [88, 116, 117].

For inferring causality relationships i.e. directionality between two oscillatory 

processes, it estimates the ’net’ information about certain time units in the future 

of the first process contained in the second process itself, by using an information- 

theoretic tool known as conditional mutual information. The two resultant conditional 

mutual information quantify the significant influence from the first to the second, and 

from the second to the first oscillatory signal. The influence tha t has the larger 

strength determines the predominant direction of coupling.

The information-theoretic method for quantification of couplings is based on con­

ditional mutual information between the first X\(t )  and the second X 2{t) signal. The 

conditional mutual information is estimated as net information about the r  time units 

in future of the first signal Ad(t) contained in the second signal X 2(t) itself. First the 

r  increments are defined:

&rX 1 = X 1(t + r ) - X 1{t).

Then the conditional mutual information i.e. the coupling of the first to second 

signal is defined as:

I2l =  /(X 2, AtAxIAx) =  H ( X 2\X i ) +  H ( X tX i \X i ) -  H ( X 2, A ^ A h ) ,
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where H(x\y)  and H(x, y\z) are the conditional entropies defined in usual Shannonian 

sense. Similarly the coupling J i2 from the first to the second signal is defined. The 

conditional mutual information / 12 and / 21 can be easily calculated by simple box- 

counting algorithm based on equiquantal marginal bins.

By applying the method one can infer the causality relationships between the sig­

nals, quantifying both the total influences and their time-variability by windowing the 

measure. Thermodynamically open systems and interacting physiological processes 

often can be mutually (bi-directionally) coupled, therefore it made sense to analyze 

not only the dominant direction, but also the two separate influences and their time- 

variations. The number of equiquantal bins used was N=4, time shifts were taken 

from 5:50 and re-sampled signals to 10 Hz in normalized state space were used.

Statistical analysis

Many data sets were not distributed normally (Kolmogorov-Smirnov test), so only 

medians, individual values and ranges were analyzed. A non-parametric statistical test 

was used, together with these quantities, to identify significant coherence, couplings 

and changes due to the time-varying ramped breathing.

The evaluation of the wavelet transform using different window lengths decom­

posed the signal into independent observations of particular frequency oscillations. 

The logarithmic scale for the spontaneous and ramped breathing segments (0.021-2 

Hz) was divided into 95 independent segments for statistical analysis. For the statisti­

cal investigation of changes in the wavelet power introduced by the ramped breathing, 

a non-parametric rank sum test on the individual wavelet powers was conducted. The 

significant segments were denoted as red vertical lines plotted between the two medi­

ans. Wherever a contiguous range of frequencies show a significant effect these lines 

are confluent, forming red areas. Additionally, the fixed frequency ranges for the os­

cillatory intervals (as described in section 4.1.4) were tested for significance. Their 

significance was plotted with red asterisks.

When analyzing relationships between oscillatory processes in terms of wavelet 

phase coherence and coupling directionality, special care is needed. Namely, there can
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exist small non-zero values of the measures, even when in reality there are no relations. 

To overcome this discrepancy and to determine the statistical significance, a surrogate 

statistical analysis was performed. Amplitude-Adjusted Fourier transform (AAFT) 

surrogate signals were generated by shuffling the phases of the original time series 

to create new time series with the same means, variances, autocorrelation functions 

(and therefore, the same power spectra) as the original sequences, but without their 

phase relations [90]. The average was calculated for 100 measures (phase coherence 

or couplings) calculated from 100 surrogate realizations of the signals. The phase 

coherence and coupling direction were considered to be statistically significant if their 

values were above the surrogate threshold, which was determined as the mean plus 

two standard deviations of the surrogate realizations.

When evaluating the wavelet phase coherence, the low-frequencies are represented 

with fewer periods than the high-frequency components. Consequentially, less vari­

ation of phase differences occurs at low-frequencies, and this is reflected in higher 

coherence values for low than high frequencies. The significant coherence of separate 

frequency segment was denoted with red area, and the significant ranges with red 

asterisks. A paired signed rank test was used for comparison of the measures with the 

surrogate threshold values. For visual inspection of the time-varying couplings only 

the values above the surrogate threshold were considered as significant. For quantifi­

cation, the paired signed rank test was performed on the whole segment (spontaneous 

and ramp breathing) length. In all statistical tests, P < 0.05 was considered signifi­

cant.

4.2.4 Results: wavelet and information-theoretic based analysis

The main results of the individual and group analysis are presented in this section. 

Three subsections encapsulate the results in conceptual groups.

Oscillatory dynamic analysis

Fig. 4.1 shows recordings made from one subject during spontaneous breathing at 

the beginning and the following ramp breathing. The carbon dioxide concentration
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Recording from Subject 9
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Fig. 4.1: Recording during spontaneous and first ramped breathing from Subject 9. During 
the first 6 minutes the subject breathed spontaneously, while in the following 9 
minutes the breathing was gradually decreasing from fast to slow.

recording reveals the gradual frequency decrease of the breathing oscillatory process. 

The respiratory imprints are easily noticeable on the R-R interval and the diastolic 

pressure signal. Low frequency oscillations are also present in these signals (see R-R 

interval signal during ramp breathing). Muscle sympathetic nerve activity occur as 

groups of narrow bursts, which seem to appear in coordination with carbon dioxide 

cycles and are the most conspicuous for the slow breaths within the ramp segment. 

The enlarged time segments within one cycle of the carbon dioxide are presented on

the right of the figure.

Fig. 4.2 shows a wavelet transform of carbon dioxide concentration signal from 

Subject 4. W ith the ability to trace the time-frequency domain, the wavelet trans­

form clearly demonstrates the time-varying nature of the ramp perturbation (note 

th a t the lines parallel to the ramped breathing are only their higher harmonics). 

During spontaneous segments the subject breathed freely and the wavelet amplitude

497776
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Wavelet transform of carbon dioxide 
during an entire experiment from Subject 4
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Fig. 4.2: Wavelet transform of carbon dioxide from Subject 4. The contour plot shows the 
wavelet transform for the whole duration of measurements. It is easy to notice the 
spontaneous breathing and the four (9 minutes) epochs of ramp breathing, which 
intermittently change from slow-to-fast to fast-to-slow. The wavelet amplitude 
during the spontaneous breathing is spread across various frequency bands, while 
during the ramped breathing the amplitudes are more concentrated around the 
ramping frequency.

is represented over a wide range of frequencies. The controlled ramp breathing con­

centrated the wavelet amplitude, making it sharply confined around the time-varying 

frequency bands introduced deterministically by the perturbation.

The wavelet transform of muscle sympathetic nerve activity and its corresponding 

wavelet power from one subject are shown on Fig. 4.3. The influence of the respiration 

on the muscle sympathetic nerve activity is revealed by the presence of the ramp fre­

quency content (compare the frequency components and the time-variability during 

spontaneous and ramp segments). The wavelet power demonstrates tha t the predom­

inant periodic oscillations are around 1 Hz, while the lower frequency components 

tha t have less power are spread around the ramp breathing fiequencies.

Fig. 4.4 compares the median wavelet powers for all subjects and segments during 

spontaneous (black lines) and ramped (grey lines) breathing. Red shaded areas indi-
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Wavelet transform of muscle sympathetic 
nerve activity from Subject 5

 ̂ Spontaneous breathing  ̂ Slow-to-fast ramp breathing
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Fig. 4.3: Wavelet transform for muscle sympathetic nerve activity from Subject 5. The 
left contour plot shows the wavelet transform for the spontaneous breathing (8.5 
minutes) and the slow-to-fast ramped breathing (9 minutes). The wavelet am­
plitudes on lower frequency (around and below 0.1 Hz) during the spontaneous 
breathing are changed due to the ramped breathing, making them dense around 
the controlled breathing frequency. The time-averaged wavelet power, plotted on 
the right, demonstrates that the strength of the higher frequency (around 1Hz) is 
the highest, while the low frequencies are spread over the ramping bands.

cate specific frequencies at which the effect from the ramped breathing is significant 

(as indicated, a non-parametric rank sum test was applied to wavelet powers at each 

of the 95 frequencies). The red asterisks indicate the significance of the ramp effect 

within frequency ranges. The large significant difference in wavelet poweis of sponta­

neous and ramped carbon dioxide shown on Fig. 4.4 A demonstrates the nature and 

the effect of the ramp perturbation. The wavelet powers for R-R interval (Fig. 4.4 

B) and diastolic pressure (Fig. 4.4 D), show that besides the significant effect on the 

ramp frequencies (around intervals If and III), there is also a significant difference on 

the lower frequency bands (interval IV), which are outside the initial frequency range 

from the ramp perturbation. The ramp breathing had little effect on the wavelet 

power of muscle sympathetic nerve activity (Fig. 4.4 C), which was significant only
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within the ramp frequencies.
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Fig. 4.4: Median wavelet power spectra of spontaneous (black) and ramped (grey) breathing 
segments. The figure shows how the time-varying breathing affected the wavelet 
power spectra of carbon dioxide A, R-R interval B, muscle sympathetic nerve 
activity C and diastolic pressure D. The red areas indicate significant change of 
individual wavelet powers, while the red asterisks show the significant range change. 
The perturbation that changed significantly the carbon dioxide, also significantly 
affected the R-R interval and the diastolic pressure at ramp and lower than ramp 
frequencies. The muscle sympathetic nerve activity power was not affected greatly.

C o o rd in a tio n  an d  phase  coherence

Wavelet phase coherence was used to identify and quantify how the oscillatory signals 

interact i.e. if they are coordinated on some frequency ranges. Fig. 4.5 A-D shows 

the coherence for spontaneous breathing while Fig. 4.5 FL shows ramped breathing 

coherence. The red shaded area represents statistically significant phase coherence. 

Due to the time-varying nature of the ramp perturbation, windowed wavelet phase 

coherence was used to trace the time-variability of the coherence among ramp frequen­

cies - Fig. 4.5 E-H. The phase coherence shown on Fig. 4.5 A, E and I, indicates that 

carbon dioxide and systolic pressure are highly and significantly coherent on breathing 

frequencies. The coherence was varying during the ramp breathing, following the fre­

quencies introduced by the deterministic perturbation. Fig. 4.5 B, F and J represent 

the coherence between carbon dioxide and electrocardiogram (ECG) signal. The ECG 

signal was analyzed because it contains the 1 Hz oscillatory component of the heait
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Fig. 4.5: Wavelet phase coherence and windowed wavelet phase coherence from Subject 9.
The four contour (goblet-like) plots E-H show the windowed phase coherence for 
the first 15 (spontaneous 6  + ramp 9) minutes. One can easily notice the time- 
variability of the coherence from spontaneous to gradually changing during the 
ramp breathing. The plots A-D are for spontaneous, while I-L are for ramped 
breathing. The red shaded area represents the significant coherence above the 
surrogate threshold (mean plus two standard deviations), which is indicated by 
the gray dashed line. The implications of the coherence between the signals (as 
given on the left vertical axis-label) are discussed in more detail in the main text.

Wavelet phase coherence and windowed wavelet 
phase coherence from Subject 9

Spontaneous breathing Ramp breathing---------------------------------------

1 0.5 0 0 3 6 9 12 15 0 0.5 1
Phase coherence Time (min) Phase coherence
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activity. The relationship showed significant coherence only on the breathing fre­

quencies, which were affected during the ramp segment. The windowed wavelet phase 

coherence between muscle sympathetic nerve activity and carbon dioxide (shown on 

Fig. 4.5 G) was not very high, and mostly it was concentrated around the breathing 

frequencies. During the ramp segment, this phase coherence was affected and spread 

across the ramp breathing frequencies. The latter resulted in lower and insignificant

Spontaneous breathing
C02 - Systolic pressure

1 - i

Ramped breathing
C02 - Systolic pressure

1 1 111— 1— i— i— i 1 1 1 1 11
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Fig. 4.6: Median phase coherence and the effect from the ramped breathing. The same 
coherence combinations are shown as on Fig. 4.5, presenting now the medians for all 
the segments. The left plots (A, C, E and G) show the coherence for spontaneous, 
and the four plots (B, D, F and H) are for the coherence of the ramp breathing. 
The red area presents the significant coherence for the separate frequencies, while 
the red asterisks indicate the statistical significance of the corresponding frequency 
ranges.
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time-averaged coherence (Fig. 4.5 K) - as opposed to the significant coherence during 

spontaneous breathing shown on Fig. 4.5 C. Unlike the previous three relationships, 

the phase coherence between muscle sympathetic nerve activity and diastolic pressure 

was not qualitatively affected by the ramped breathing, and was relatively high at 

low frequencies. This was evident both from the windowed phase coherence Fig. 4.5 

H, and from the comparison of significant phase coherences in Fig. 4.5 D cf. Fig. 4.5 

L.

Fig. 4.6 represents the same coherence relationships as Fig. 4.5, but now showing 

the medians for all subjects - the individual results were consistent with the medians. 

The significant coherence within the frequency ranges was indicated with red asterisks. 

The significant coherences between carbon dioxide and systolic pressure Fig. 4.6 A 

and B, and between carbon dioxide and the electrocardiogram signal Fig. 4.6 C and D, 

were affected and spread toward the ramp frequencies. The carbon dioxide and muscle 

sympathetic nerve activity coherence was weak, and during the ramp breathing the 

coherence was spread over the ramp frequencies, making it not significant overall - 

Fig. 4.6 E cf. Fig. 4.6 F. Muscle sympathetic nerve activity and diastolic pressure 

coherence was high for low frequencies and was not affected qualitatively by the ramp 

breathing.

Couplings and causal relationships

Fig. 4.7 shows the time evolution of carbon dioxide (grey) and muscle sympathetic 

nerve activity (black), and their respective coupling intensities (in both directions) 

from Subject 13. The red shaded areas indicate significant coupling above the surro­

gates threshold. The coupling intensities are an information-theoretic measure that 

quantifies the inter-oscillatory influences between carbon dioxide and muscle sym­

pathetic nerve activity. The time-evolution of the signals during a ramp breathing 

shown on Fig. 4.7 A-C demonstrate that muscle sympathetic nerve activity occurs as 

valleys of bursts appearing mostly during the inspiration cycle. As the ramp breath­

ing progressed, the bursts appeared more frequently and in good coordination with 

the carbon dioxide cycles. The cause of the latter phenomenon is due to the coupling
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Fig. 4.7: Carbon dioxide and muscle sympathetic nerve activity, and their coupling during 
one fast-to-slow ramp from Subject 13. The three plots A-C show the time evolu­
tion of CO2 (gray) and MSNA (black) -  B continues after A, and C after B. The 
nerve bursts appear more coordinated with the high value of CO2 as the ramp 
progress. D shows the CCVto-MSNA coupling (thick black) and MSNA-to-CC>2 
coupling (thick gray), and their surrogate thresholds with dashed black and grey 
lines, respectively. The red shaded areas represent the significant influences of the 
two directions. One can notice that the CO2 influenced the MSNA more strongly 
and this coupling is increased as the ramped breathing progresses.

from carbon dioxide to muscle sympathetic nerve activity - as indicated on Fig. 4.7 D. 

Namely, the intensities of the inter-oscillatory influences (shown on Fig. 4.7 D) suggest 

tha t C 0 2 to MSNA is the dominant direction, and its intensity becomes significant 

and increased as the ramp breathing progresses. The specific time-variability verifies 

the tight relationship between the influence of C 0 2 on MSNA and the deterministic 

ramp perturbation.

Fig. 4.8 presents the median and individual couplings between carbon dioxide 

and R-R interval, including the spontaneous (A and B), fast-to-slow (C and D) and 

slow-to-fast (E and F) ramp breathing segments. On the left plots (A, C and E) are 

the C 0 2 to R-R interval, while on the right (B, D and F) the R-R interval to C 0 2



4. Application to life sciences 106

C02 R-R interval R-R interval C02
O)

0.4- P=0.0442 0.4- P=0.0004

- O

S 0.2- g  0.2-

Q .
"T
62 4 2 4 6

R-R interval R-R interval 

D

P=0.0000 P=0.0000

^  0 .2 -

6 9

R-R interval

0 3 6

R-R interval 

F
P=0.0129 0.0002

i  0 . 2 -

3 6
Time (min)

3 6
Time (min)

Fig. 4.8: Median (red) and individual (grey) couplings between carbon dioxide and R-R 
interval. On A, C and E the CO2 to R-R interval couplings are presented, while B, 
D and F are showing the R-R interval to CO2 couplings. The other notations are 
the same as on Fig. 8. During spontaneous breathing the couplings have almost 
constant values. The ramped breathing introduced time-variability and increased 
the influences towards low-frequencies. Overall the CO2 to R-R interval couplings 
were more dominant.

couplings. The dashed black lines denote the surrogates’ threshold. The P-value on 

each plot is evaluated within the whole segment between individuals, and indicates if 

the coupling is significantly higher than the surrogates’ threshold. During spontaneous 

breathing the couplings had almost constant values. The influence from C 0 2 to R-R 

interval was the dominant direction. The ramped breathing enhanced the intensities 

of the couplings, and this effect was larger for low frequencies. The latter resulted in 

very clear time-varying imprint of the ramp perturbation (see e.g. Fig. 4.8 C). These
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Fig. 4.9: Schematic diagram for the couplings among oscillatory processes and the effect 
from the ramp breathing. The top diagram presents the couplings during sponta­
neous and the bottom during the ramped breathing. The influences are presented 
as directed links between the oscillatory processes. Only the significant (P<0.05) 
couplings are presented. The strength of each coupling is presented with four types 
of thickness of the links (as indicated on the bottom right). The red links denote 
the dominant (by strength) couplings i.e. the directions of coupling.

couplings had relatively large intensities, where CO2 to R-R interval coupling had 

greater intensity and was the predominant direction.

Fig. 4.9 summarizes the inter-oscillatory influences and how they are affected by 

the ramp breathing. The directed links on the schematic diagram represent the cou­

plings between the two corresponding oscillatory signals. The different thickness of 

the links indicates the intensity of the coupling (only the significant couplings are 

presented). The dominant directions of influence between two signals are presented 

with red links. During spontaneous breathing the respiration oscillating activity ex­

erts dominant influence on the other (excluding MSNA) oscillatory systems. Diastolic 

and systolic blood pressure influenced the ECG signal that holds the 1 Hz cardiac 

activity - which in its own terms coupled dominantly the MSNA. The couplings were 

weaker and their direction was reversed for MSNA and ECG, and R-R interval and
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respiration. The ramped breathing increased the intensities and enhanced other links 

between the oscillators. In the case where respiration was gradually varied towards 

lower frequencies there was more influence and a greater flow of information among 

the oscillatory processes. The weaker reverse directions (grey links) became more sig­

nificant. New couplings between respiration and MSNA, and R-R interval and MSNA 

became significant due to the effect of the ramp breathing.

4.2.5 Discussion

Simultaneous recordings from muscle sympathetic nerve activity, carbon dioxide con­

centration and haemodynamic signals were analyzed. The primary goal was to investi­

gate how a deterministic time-varying respiration regulates and affects the oscillatory 

processes in cardiovascular and sympathetic neural system. Because their dynamics 

usually involve influence from several processes with diverse time-scales, which can 

be also time-varying, the time domain methods (such as time averages) are not ap­

propriate for their analysis. Dynamical characterization (e.g. through wavelet based 

methods) on the other hand, offered better insight into the dynamics of the oscillators 

and the existing phenomena.

The advantage of measuring human subjects who can regulate the speed of their 

breathing voluntarily was used to introduce linearly increasing (decreasing) time- 

variability in the oscillators’ dynamic. The wavelet analysis from C 0 2 concentration 

(Fig. 4.2) showed how the perturbation confined the originally wide frequency range 

around the ramp frequency, and tha t the averaged wavelet power was significantly 

altered on all frequency intervals (Fig. 4.4 A). The time-frequency representation 

demonstrated tha t at any frequency and time, the ramp perturbation can be deter­

mined consistently with the externally predefined variations.

The strong relationships between the respiration and heart activity, was observed 

in almost all of the performed analysis. The ramp breathing significantly altered not 

only the wavelet power at frequencies corresponding to the perturbation, but also at 

the low frequencies [108] below them (Fig. 4.4 B). The reduced wavelet power indi­

cates tha t low frequency oscillatory processes (around neurogenic frequency interval)
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are dependent on the dynamical variations of the respiration. Fig. 4.5 reveals that 

C 0 2 and ECG are significantly coherent at breathing frequencies, probably due to 

the respiration sinus arrythmia modulation [107]. This coherence was following the 

specific time-varying breathing, and it was enhanced for the lower frequencies of the 

ramping. The high intensities of inter-oscillatory couplings (Fig. 4.8) imply tha t there 

is high information flow between C 0 2 and RR-interval signals. The results (Fig. 4.8, 

Fig. 4.9) confirm and support the notion that respiration has a greater influence on 

the heart [12, 23, 25]. The ramp time-variability of the inter-oscillatory couplings 

pointed out tha t these causal relationships are more pronounced on lower breathing 

frequencies (see e.g. Fig. 4.8 C and E).

The analysis of MSNA oscillatory [118] time-frequency content (Fig. 4.3) showed 

traces of the specific ramp breathing pattern, which at the same time did not ex­

ert a large effect on the averaged wavelet power (Fig. 4.4 C). The phase coherence 

between MSNA and C 0 2 was mostly concentrated around the breathing frequencies 

and during the ramp intervention it was significantly affected and spread around the 

ramp breathing frequencies Fig. 4.5. A simple time-domain observation (Fig. 4.7 A-C) 

also suggests tha t MSNA appears as volleys of bursts within the C 0 2 cycles [34, 36]. 

The cause of this phenomenon might be due to the coupling from C 0 2 to MSNA, 

which was present throughout the ramp breathing and was significantly increased at 

low frequencies (in the same way as the bursts Fig. 4.7 D). The influences between 

MSNA and C 0 2 concentration changed from non-significant to significant because of 

the effect from the time-varying ramp breathing (Fig. 4.9).

The time-varying breathing also affected the diastolic and systolic blood pressure. 

The low frequency wavelet power of diastolic pressure was reduced outside the ramped 

frequencies (Fig. 4.4 D). The high phase coherence followed the respiration variations 

(Fig. 4.5, Fig. 4.6), which could be a consequence of the high inter-oscillatory influ­

ences Fig. 4.9. Interestingly, the coherence between the diastolic pressure and muscle 

sympathetic nerve activity was high before and during the time-varying breathing 

(Fig. 4.5, Fig. 4.6), with no observable difference seen between the two cases.

In summary, the time-varying breathing process significantly affected the function­
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ing and regulation of several mechanisms in cardiovascular and sympathetic neural 

systems. In general, the gradually slower breathing provoked more ’information’ flow, 

altering the coordination and increasing the influences between the oscillatory pro­

cesses. Probably the most-important finding was tha t the manifestations and effects 

on this multi-coupled oscillatory system had the imprint of the particular form of the 

externally induced deterministic time-variation. The proposed analysis was able to 

detect, follow and statistically to quantify these features and phenomena.

4.3 C ardiorespiratory interactions and effects from

tim e-varying respiration

In the previous section the effects from time-varying respiration were analyzed and 

statistically quantified on the whole group of the measurements. The following dis­

cussion, however, investigates more closely how the respiration with deterministic 

varying frequencies can affect the cardiorespiratory interactions i.e. how the ramped 

breathing affects the inherent dynamics and transitions between oscillatory processes 

of the heart and respiration. The Bayesian inferential technique (discussed previously 

in chapter 3) is employed for the reconstruction of the interacting phase dynamics, 

and for evaluation of the qualitative states and transitions.

Before presenting the actual analysis, an important technical preprocessing issue 

is addressed. Namely, in order to infer the phase dynamics, one needs to have good 

estimate of the phases from the observable time-series. This is even more important 

when the oscillatory dynamics are time-varying and the analysis requires instanta­

neous phases. Potential difficulties for the phase estimation occur when the signals 

emanate from complex and/or mixed-mode oscillatory dynamics. Therefore, atten­

tion will first be spent on addressing some of the known methods for phase detection 

and the problems they hold, and an alternative approach for overcoming these issues 

will be proposed.
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4.3.1 Instantaneous phase detection: methods and problems

The problem faced is to detect the phase at every moment in time from time-series 

containing oscillatory characteristics 1. There exist two widely accepted methods for 

phase detection, which are used differently depending on the form of the signal.

The first method considers the interval between two well-defined events as a cycle, 

and tha t the phase increment between the events is exactly 2n. The procedure is 

similar to having a Poincare cross section on the phase portrait of the attractor [9], 

A cycle is described by only one information point while the intermediate points are 

linearly interpolated i.e. assigning the values of phase (f){tk) =  2nk to the times tk, 

and for arbitrary instant of time tk < t  < tk+1 the phase is defined as:

<f>m(t) =  2irk + 2 n - t — . (4.3)
tk+i ~  tk

A detection of phase from an ECG signal (which has complex form), was used to 

present how the methods work. Fig. 4.10 (a) shows the ECG signal and the marked 

maxima tk events. From the marked points and using (4.3) the instantaneous phase 

was estimated Fig. 4.10 (b).

The second method involves construction of the complex analytic signal ((t)  [119] 

from a scalar experimental time series s(t) via the Hilbert transform:

/
+ ° °  c('r')

  dr, (4.4)
- o o  t ~ T

where is the Hilbert transform of signal s(t). Hence, the angle variable </>//(£)

from the complex signal ((t) describes the required instantaneous phase. This ap­

proach is parameter free, very convenient for implementation, and if the signal is well 

defined and has narrow band spectra it gives phase information in every point of the 

time. However, if the two-dimensional embedding possesses loops or intersections this 

method will fail. In fact, due to its complex form with (P and Q) minor peaks between 

the maxima R-peak, the ECG signal is one such example. This is illustrated on Fig.

1 Note that instantaneous or ‘every instant of time’ in this context is finite and defined by the 
sampling frequency of the time-series.
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Fig. 4.10: Phase detection with marked-events and Hilbert transform methods, (a) ECG 
signal and marked maxima R-peaks. The phase estimated as (4.3) using the 
peaks from (a), (c) The two-dimensional embedding using Hilbert transform (of 
the same signal as (a)), (d) The spuriously detected phase using Hilbert transform 
(4.4).

4.10 (c) where the Hilbert transform embedding show clear folding and intersection. 

Thus the detected instantaneousness phase will be spurious Fig. 4.10 (d).

In studies of cardiorespiratory interactions, the phases from the respiration sig­

nal usually are estimated with Hilbert transform, while the ECG phase is detected 

through the marked events technique [6 , 120]. This approach works well enough for 

observing dynamical behaviour which is longer than several oscillatory cycles, and 

where having only few phase information is enough (for example phase synchroniza­

tion with synchrograms). But if one tries to infer the inherent oscillatory dynamics 

from complex signals, such as the coupling function and intrinsic time-varying pa­

rameters, then there is a need for instantaneous phase that contains all of the cycle 

information. For example, for cardiorespiratory interactions the ECG phase from the 

marked-events method contains only one genuine piece of information per cycle, while 

the rest is simple interpolation. Alternatively, the Hilbert phase is not correctly de­

tected either. Hence, there is a need for a phase estimate from complex signals that 

describes the phase (time-variability) at every instant in time.

Additionally, care must be taken when the signals contain parts and modulations
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from other (oscillatory) processes. In such cases, a preprocessing in terms of de­

trending, filtering or decomposing is required. This will allow for interactions to be 

studied on self-sustained oscillatory processes with their own fundamental frequency. 

For example, the respiration signal might contain components from the heart activity, 

and if they are not taken into account, one might end up investigating synchronization 

between the heart and the influence from the heart on respiration [121, 122]. This is 

clearly wrong since the components are artifacts from the measuring procedure rather 

than the oscillatory dynamics of respiration, and the dynamics are coming from the 

same (cardiac) oscillator.

4.3.2 Instantaneous phase detection from complex mixed-mode signals

Recent development of techniques for decomposition of mix-mode signals has lead 

to the synchrosqueezed wavelet transform [97]. This method aims to decompose the 

signal into intrinsic mode components which can have time-varying spectrum. The 

transform is a combination of the wavelet transform and a special case of reallocation 

method which tries to “sharpen” R(t, u)  by allocating its value to a different point 

(t!, a/) in the time-frequency plane, determined by the local behavior of R(t, cu) around 

It is based on wavelet transform VF(s,£), as described previously by equation 

(4 .1) and (4 .2), which gives a time-scale representation of the frequency content that 

is spread out in s, but its oscillatory behavior in t are located around the original 

frequency u,  regardless of the value of s.

The synchrosqueezed transform aims to ’squeeze’ the wavelet around the intrinsic 

frequency in order to provide better frequency localization. For any (s, t) for which 

W (s , t )  7  ̂ 0, a candidate instantaneous frequency for the signal g can be calculated 

as:

=  T T ^ r -  ( « )Wg( S, t )  ■

The information from the time-scale plane is transferred to the time-frequency plane, 

according to a map (s, t) (cj9(s, t ) , t ) ,  in an operation called synchrosqueezing. The
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synchrosqueezed wavelet transform is then expressed as:

Tg(w,t) = /  Wg(s,t)s  3/26(uj(s,t) — (j)ds,
JA{ t )

(4.6)

where A(t) — {a; Wg(s,t) 7̂  0}, and o;(s,£) is as defined in (4.5) above, for (s,t) such 

tha t s G A(t). Defined in this way, the transform is invertible and the signal can be 

reconstructed after the synchrosqueezing:

g{t) = sfte c * Wg(s,t)s  3̂ 2ds (4.7)

where has a constant value which is calculated from the mother wavelet C7.1 =ip
|  J0°° 4/(£ )^ . For practical reasons, when dealing with time series the frequency vari­

able u  and the scale variable s can be “binned” , i.e. Wg(s,t) can be computed 

only at discrete values sk, with sk — sk_ 1 =  (As)a,, and the synchrosqueezed trans­

form Tg(uj,t) can be likewise determined only at the centers cJi of the successive bins 

[ui — |Acj,o;/ +  |Ao;], with uji — uji-  1 =  Acu. The integral is written in this discrete 

form as the summation of different contributions, and equation (4.7) becomes:

g{t) = C ^ T ,Ŵ t K 3/2( As), Acj) (4.8)

Due to the good frequency localizations and invertibility, the synchrosqueezed wavelet 

transform can be used as an appropriate tool for identification and extraction of 

intrinsic oscillatory modes in time domain [97]. Moreover, the complex (as with real 

and imaginary values) nature of the synchrosqueezed transform allows one to extract 

the phase of non-harmonic signals, or of some of their modes. The instantaneous 

phase can be calculated as the angle of the synchrosqueezed wavelet transform:

U t )  = (4.9)

The transform’s great potential lies in its ability to determine instantaneous char­

acteristics from complex signals with non-harmonic waveform [123]. The robust im-
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Fig. 4.11: Instantaneous phase detection from ECG signal, using the synchrosqueezed 
wavelet transform. The ECG signal is shown with grey line, and the phase 
with black.

plementation and the visual time-frequency representation offer a convenient way for 

identification and analysis of mixed-mode oscillator}^ dynamics [124].

Fig. 4.11 presents a specific application of the technique as a response to the 

originally posed question of how to detect reliably the instantaneous phase from ECG 

signal. One can notice tha t the phase was detected correctly in respect of the 2n 

cycles defined by the R-peaks, and that time-variability within the cycle is traced 

appropriately. Therefore, the ECG phase detected in this way (with instantaneous 

values) can be used properly by the Bayesian inferential technique.

Exploiting the decomposition property of the transform, the phase can be detected 

only for certain specific oscillatory modes. For example the cardiac phase can be 

detected only from the intrinsic mode within the cardiac interval (table 4.1.4), thus 

at the same time, a preprocessing procedure for removal of undesired modulations 

will be performed.

However, there exist cases where the modulations and external oscillatory premises 

can actually be used for further analysis. The latter can be even more important if 

the oscillatory mode is not directly measurable. For example, the blood flow signal 

measured with laser Doppler flowmetry (LDF), contains information about the blood 

propagations which are modulated by several oscillatory components. The activity 

within these frequency intervals, as elaborated in table 4.1.4, can be decomposed and
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Fig. 4.12: Synchrosqueezed wavelet transform (a) from human blood flow signal. The oscil­
latory components as explained by table 4.1.4 are separated by black dashed lines. 
The decomposed time-evolution (b)-(g) and their instantaneous phases (h)-(m), 
of the respective oscillatory component as shown on the left in (a). For example 
(d) shows the myogenic signals and (j) its phase.

used for other analysis. Fig. 4.12 (a) shows the synchrosqueezed wavelet transform 

from human blood flow signal (also given by the wavelet transform and time-averaged 

wavelet power on Fig. 4.14). It is easy to notice the oscillatory modes in the corre­

sponding frequency intervals (separated by dashed lines). This subject had very low 

respiratory influence on the blood flow processes. By applying the proposed technique, 

the oscillating processes were decomposed Fig. 4.12 (b)-(g) and their instantaneous 

phases were detected directly Fig. 4.12 (h)-(m). Within each interval, the modes were 

selected as the maximal energy components, preserving their frequency and ampli­

tude time-variations. This novel facility gives the opportunity for further analysis to 

be performed -  including, for example, inter-oscillatory interactions in terms of syn­

chronization and directionality. These results will be even more important because 

not all of the underlaying oscillatory processes can be measured directly. The inter- 

oscillatory analysis can give deeper insight into the cardiovascular mechanisms and 

causal relationships, and are certainly worth pursuing in the future.
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4.3.3 Cardiorespiratory synchronization and directionality

The cardiac and respiratory activity can be seen as two self-sustained oscillatory pro­

cesses tha t interact with each other. This sections investigates the cardiorespiratory 

interactions under conditions when the breathing pace is perturbed deterministically 

in a linear (ramp) manner -  as explained in section 4.2. The instantaneous cardiac 

phase was estimated from the ECG signal by synchrosqueezed wavelet transform de­

scribed in equation (4.9). Similarly the respiratory phase was extracted from the C 0 2 

concentration signal. In order to avoid the potential phase disturbances introduced by 

the synchrosqueezed transform, the two phases were processed in a protophase-phase 

transformation [27].

The Bayesian framework for inference of phase dynamics (chapter 3) was applied 

on a segment with fast-to-slow ramp breathing. The results are summarized in Fig. 

4.13. The inferred respiratory frequency shown on Fig. 4.13 (c) demonstrates the 

ramped breathing variability. The secondary purpose for presenting the ramp is for 

following the changes of other measures with respect to the perturbation applied. By 

normalizing the inferred coupling parameters, one can determine the net directionality 

of the interactions. Fig. 4.13 (d) suggests that the degree of directionality is time- 

varying, but confirms tha t respiration-to-heart is dominant [6, 24-26]. To determine 

whether cardiorespiratory synchronization exists in certain ratios, the set of inferred 

coupling parameters (and how they are correlated) was used to reconstruct the torus 

map and for investigating whether the root M(ipe) =  'ipe exists or not. Fig. 4.13(b) 

shows the detection of transitions from the non-synchronized to the synchronized 

state, which in turn change in different ratios: 1:4 to 1:5 to 1:6, as the ramp progressed. 

The synchronization detection and the respective transitions were consistent with 

the respective synchrogram Fig. 4.13 (a). The surrogate testing on (b) and (d) was 

performed in order to refute the hypothesis that the measures happen by chance, and 

to determine the significance threshold.

The cardiorespiratory coupling function, evaluated for three different time win­

dows indicated by the arrows, is presented on Fig. 4.13 (e)-(g). For simplicity and 

clarity only q\ is shown (the behavior of #2 was similar). The interactions are de­
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scribed by complex functions whose form changes qualitatively over time -  cf. Fig. 

4.13 (e) with (f) and (g). The latter implies that the functional relation for the 

cardiorespiratory interactions is not a time-invariant function, but is in fact a time- 

varying process for itself. The time-evolution of the coupling functions is evident by 

analyzing consecutive time windows- cf. the similarities i.e. evolution of Figs. 4.13 

(f) and (g). It is important to note that this variability is not caused by the ramp 

time-varying respiration frequency (which is decomposed separately), and tha t the

Fig. 4.13: Synchronization, directionality and coupling functions in the cardiorespiratory 
interaction, (a) Standard 1 :N synchrogram. (b) Synchronization index for ratios 
1:4, 1:5 and 1:6, as indicated. The dashed line represents the mean (dotted) +2 SD 
of synchronization indices from 100 surrogate [90] realizations, (c) The time- 
varying respiration frequency (note the downward ramp due to pacing). The gray 
areas on (c) represent ±2 SD from the mean value, (d) Directionality index: the 
dashed lines represent the mean (dotted) + 2  SD of directionality indices from 100 
surrogate realizations, (e)-(g) coupling functions <71 (0 i, <̂2 ) calculated at different 
times, as indicated by the grey arrows.



4. Application to life sciences 119

phenomenon of time-evolving coupling functions was observed also on spontaneously 

breathing subjects.

The ramped breathing showed that the cardiorespiratory coordination depends 

and is regulated to a great extent by the respiration dynamics. The analysis in­

dicated tha t the Bayesian technique detected the occurrence of transitions to/from  

synchronization and revealed details of the phase dynamics, thus describing the in­

herent nature of this transitions. It was found that the externally induced varying 

respiration acts as a cause for these qualitative transitions. Additional complexity 

for the interactions and their analysis was encountered by the interacting functions 

which were also time-varying processes.

4.4 R eproducib ility  of LDF blood flow m easurem ents: 

dynam ical characterization versus averaging

In experimental analysis it is crucially important to have precise and reliable measure­

ments. One of the tests for precision is reproducibility, which is the degree of agree­

ment between measurements conducted on replicate conditions in different locations 

by different people. Recently, a question about the reproducibility of Laser Doppler 

Flowmetry (LDF) measure of blood flow was raised [125]. By means of determining 

cutaneous vascular conductance (CVC), the authors seek to evaluate reproducibil­

ity by averaging relatively short time segments of data during or immediately after 

some perturbation. They concluded that the reproducibility of measurements on the 

forearm is limited by spatial variability in the microvasculature.

This naturally raised the discussion if the analyzing methods used were appro­

priate for analysis of LDF blood flow signals, which have a mixed mode oscillatory 

nature. Another important issue raised was how to assess external (non-autonomous) 

perturbations, the kind of discrepancy that can occur and how to analyze them prop­

erly. These two issues (discussed in [39]) are presented in more detail bellow.
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4.4.1 B lood  flow analysis

The reproducibility of forearm LDF measurements was investigated in earlier work 

[126], by means of dynamical characterization of the oscillatory signals. It was estab­

lished tha t the issue of spatial variability could be mitigated by careful placement of 

the sensors: good reproducibility was obtained by avoiding proximity to the larger 

vessels, hairs, and blemishes. It was found that this is true both for spatial repro­

ducibility, with simultaneous measurements at different positions on the same arm, 

and for temporal reproducibility, with sequential measurements at the same position.

Time-averages measures are a standard tool for analysis in physiology. But the 

question raised is whether time-averaging provides a satisfactory method for charac­

terising blood flow, developing LDF criteria, or testing LDF reproducibility. Since
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Fig. 4.14: Wavelet transform of LDF variability (top left), plotted above the raw signal 
in standard perfusion units (bottom) and the averaged wavelet power spectrum 
(right). The six frequency intervals as presented in table 4.1.4 are indicated by 
horizontal lines and correspond (from the top) to: cardiac activity; respiration; 
myogenic oscillations; neurogenic; NO-related endothelial processes; and non-NO- 
related endothelial processes.
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blood flow is inherently oscillatory in nature ([5]), averaging will inevitably produce 

variable results depending on how the window is positioned relative to the phase of 

an oscillation unless, of course, the window is very much longer than the oscillation 

period. In reality, the situation is even more complex because there is not just one 

oscillatory process in blood flow, but at least six ([127]). Fig. 4.14 shows a wavelet 

transform of typical LDF blood flow data. The slower of the two endothelial-related 

oscillations has a period of about 0.007 Hz, so that the averaging window would need 

to be much longer than 2.4 min in order to avoid irreproducibility from this source. 

One can in principle always achieve reproducibility of an LDF average by using a long 

enough averaging interval, or by averaging over a large enough spatial area but, in 

doing so, one inevitably throws away a lot of potentially useful information.

The dynamical characterization, on the other hand, prescribes tha t it is better 

to accept tha t blood flow is inherently oscillatory, and to frame the criteria for LDF 

reproducibility on that basis. Thus, rather than asking whether the average blood
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Fig. 4.15: The raw LDF blood flow signal from Fig. 4.14 averaged over successively larger 
window sizes, as indicated by the numbers in each box.
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flow has changed over time or in spatial position, it will be better and more reward­

ing to ask whether the characteristics of the oscillations have changed, for example: 

their amplitudes and frequencies, which are already known to be reproducible in time 

and space; or the extent to which the different oscillations mutually interact and 

perhaps synchronize with each other. Changes in these quantities have been related 

successfully to several different pathological conditions e.g. congestive heart failure, 

hypertension and diabetes as well as to other states of the body like e.g. exercise 

and anaesthesia [127]. Even if averages could be measured reproducibly, they would 

do little to characterize or help diagnose these conditions.

To illustrate these points, Fig. 4.15 shows the same LDF segment as Fig. 4.14 and 

a series of time-averaged flux values made with different window sizes. If a short time 

is taken to “read” the value, the difference between readings can be as high as 60% 

of the baseline value. The longer the window is, the less variable the average value 

becomes. However, as shown in Fig. 4.14 there are distinct patterns in the variability 

tha t are missed if only the average is taken into account. Moreover, the patterns 

are visible on several different time-scales so tha t a relatively long recording time is 

needed to capture the dynamical properties of the blood perfusion signal. Thus, for 

analysis of LDF measurements, the dynamical description in terms of the parameter 

values characterizing the oscillations, can be more appropriate. In their response 

[128], the authors also add that both approaches: the time-averaging and dynamical 

characterizations are of interest, being different but complementary.

4.4.2 Numerical study of transient effect on interacting oscillators 

subject to non-autonomous perturbations

In physiology, one of the standard procedures for investigating the mechanisms and 

existing relationships is when the systems under study are subject to external pertur­

bations. In this way the examiners can follow how the system reacts to this influence, 

and also they can trace if there are some interactions with other systems which are 

affected by this perturbation. Obvious examples include the ramp breathing discussed 

in section 4.2, local heating or post-occlusive reactive hyperaemia. Often several per­
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turbations are performed consecutively, and in this particular case special care must 

be taken. When the systems are oscillatory processes, the transient response from 

the perturbations (if not treated well) can have an effect on the analysis and their 

reproducibility.

In a complex dynamical system such as the skin microvasculature, any perturba­

tion is likely to involve nonlinear hysteresis effects. Fig. 4.16 shows the results of a 

numerical simulation of just two coupled oscillatory processes subjected to repeated 

external perturbation. The model consists of bi-directionally-coupled limit-cycle os­

cillators (based on Poincare oscillators), subject to external perturbations and weak 

noise:

xi = - a i ( n  -  a{)xi -  u)i(yi -  +  exx 2 +  £ i(t)
(4.10)

yi = - a x(rx -  ax)yx +  u x(xx -  (3xrx) +  exy2 +  £ i(t) -  sx(t) -  s2(t), 

x 2 = -a t2(r2 -  a2)x2 -  u 2(y2 -  fi2r2) +  e2x x +  i 2{t)

2/2 — —ot2{r2 — a2)y2 +  to2(x2 — (32r2) +  e2yx +  £2(t) — s2(t), (4-H)

n  =  y j t f  + y?; i =  {1,2}.

The parameters were set to values mimicking the frequency spectra: cycle radii 

al = a2 = 1; frequencies ujx = 27r0.1, uj2 = 27r0.011; couplings ex =  0.01, ex =  0.001; 

parameters for speed of convergence a x = 0.001, a 2 =  0.1 and parameters for the 

center of rotation (3X = 0.4 and (32 — 0.01. The noise is white Gaussian, with zero 

mean (&(£)) -  0 and correlation (€i(t)£i(s)) =  D8(t — s), where D is the noise strength 

(D1 =  D2 - 0.003). A long initial transient time (1000 s) was discarded and the 

stationary state was analyzed. The non-autonomous perturbations sx(t), s2(t) are 

simple step signals, each with length t=200 s and amplitudes sXh = s2H =  0.2, as 

presented on Fig. 4.16 (a).

For the first 200 s the first oscillator is unperturbed and its time-averages are 

around the baseline (except for small deviations due to weak noise and coupling). 

During the high value of sx(t) (t=200-400 s) the first oscillator is perturbed and its 

time-averages are affected accordingly. It is evident that x x is then subject to the
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gradually decreasing after- effect of the perturbation. This transient period (t=400- 

700 s) appears because the oscillator needs a certain time to converge to its limit 

cycle. The length of the transient depends on the characteristics and the parameters 

of the oscillator. The associated time-averages are affected and the values are far 

from the baseline. A second perturbation (t=700-900 s) involves perturbing both of 

the oscillators by s2(t). Note that, during this period, the first oscillator is subject 

to the additional and indirect influence of the second oscillator, resulting in higher 

time-averages. After the second perturbation s2(t) finishes, the first oscillator is again 

left in perturbed state and only gradually returns towards its baseline value.

It is evident tha t transients in the oscillatory behaviour may persist for much 

longer than the timescale of the perturbation itself. Due to the coupled nature of the
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Fig. 4.16: The effect of repeated perturbations on the two-oscillator model described by 
Eqs. (1) and (2), showing the resultant changes in the mean value and transient 
effects as they are observed using different window sizes.
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oscillatory processes, perturbing either oscillator results in the transient behaviour of 

both oscillators, leading to changes in the time-averaged values (which obscure the 

oscillations themselves). Repeated perturbations result in overlapping transient re­

sponses. Hence, when subjecting the microvasculature to a perturbation, care should 

be taken to understand the role of oscillatory processes: short-time average values 

may capture only a part of the transient physiological response.



5. ANALOGUE SIMULATION AND SYNCHRONIZATION 

ANALYSIS OF NON-AUTONOMOUS OSCILLATORS

Synchronization is the ‘language’ used to describe the interactions among oscillatory 

processes or in some cases (like in networks of oscillators) the reason for the emergence 

of spontaneous order [8]. It is defined as an adjustment of frequencies due to weak 

interactions between oscillatory processes [9]. Very often in nature, the oscillatory 

systems (when not coupled) have basic frequencies that vary with time. Such systems 

with time-varying frequencies are usually observed in biology, some examples being 

the cardiorespiratory system [5] and the brain [33]. In general, not only the oscillating 

frequencies but also other interacting parameters and functional relationships can be 

time-varying.

Whilst the previous discussion outlined the theoretical background and proposed 

methods for treatment of synchronization between oscillators that are subject to ex­

ternal influences, this section concentrates on the application and analysis of signals 

obtained from experimental oscillatory systems. To observe the behaviour of these 

systems, an analogue simulation of two coupled non-autonomous oscillators was per­

formed.

Analogue experiments have been used widely for studying the dynamics of non­

linear systems [40, 129-132]. They provide a convenient way to study the continuous 

dynamics and interactions between oscillatory systems and stochastic processes in real 

time. The electronic implementation and the real experimental environment, allow 

us to simulate the synchronization phenomenon in a way that is closer to the real­

ity present in the nature. The uncertainty in the system, arising due to the noise 

embedded in the signals, has more realistic meaning, usually being attributed to envi­

ronmental disturbances or imperfections of some electronic properties of the systems.
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During the process of data acquisition and discretization, some additional amount of 

measurement noise is introduced, which has no links with the actual dynamics of the 

oscillators. In analogue simulation the dynamics of the systems are truly continuous, 

unlike numerical simulation where the continuous dynamics are only approximate due 

to finite integration step.

The synchronization phenomenon can be studied, among other methods, through 

phase and generalized synchronization analysis. The former studies the behavior of 

the phase difference of the oscillatory systems [15]. The generalized synchronization 

analyzes the stability of the response system with regard to the coupling amplitude 

in the state space [47]. Both of the definitions are widely used for chaotic systems, 

but they are equally applicable to the class of limit-cycle oscillators. The comparison 

and connection between phase and generalized synchronization has been discussed 

in [133]. The central issue to be addressed here is how to treat the synchronization 

phenomenon of time-varying oscillators, both from phase and state variables, in ex­

perimental conditions. This leads to a common framework within which both types 

of synchronization can be detected.

5.1 T he m odel

The specific model under investigation includes oscillators whose basic frequencies, 

as their most essential characteristic, are not constant but time-varying. The mo­

tivation for studying this case is the presence of various modulations in biological 

oscillators, which can qualitatively affect their interactions. The dynamics of such 

non-autonomous oscillators are explicit functions of time: dx/dt  =  /(x ( t) ,t) ,  and the 

synchronization phenomenon is implicitly dependent on the time-varying sources.

Under these constrains, the system to be investigated consists of two coupled van 

der Pol oscillators, in the following form:

1 1—Xi -  /ii( l -  x \ ) - x i  +  [uji + A s m i t i t ^ X i  =  0,
c2 c

\ x 2 -  ^ 2(1 -  x l ) - x 2 +  u \ x 2 +  e(xi -  x 2) =  0. (5.1)
n *  C.
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where Xi,i = 1,2 are the state variables that describe the dynamics of each subsystem, 

fii are the shape parameters tha t define the relaxation of each of the oscillator, and 

e is the coupling amplitude. When the shape parameters are small (/i —> 0), Ui are 

the oscillating frequencies parameters. The constant parameter c appears from each 

integration procedure and is introduced for electrical stability. The first oscillator 

has a non-autonomous term (defined with A  and qj) in its frequency, tha t forces it to 

oscillate with time-varying frequency. The two oscillators are unidirectionally coupled, 

where the first is driving the second oscillator.

The motivation for using van der Pol oscillators is due to the fact that, when they 

have curtain relaxation (for jx > 0) the limit cycle is not perfectly circular, as is the case 

with most of the limit cycle oscillatory processes in nature. In the frequency domain 

this corresponds to the case when the oscillators have high harmonics. Although the 

van der Pol oscillator is frequently used and is a popular limit cycle oscillator, it 

is still not explicitly analytically solvable for the coupled dynamics. Therefore one 

way of analyzing and studying the two interacting van der Pol oscillators is through 

numerical and analogue simulation.

5.2 A nalogue sim ulation

By conducting analogue simulation one can investigate the nonlinear dynamical be­

havior of real experimental systems which can also encounter weak noise, possibly 

both additive and multiplicative, arising from the imperfection of the electronic com­

ponents. The conceptual and technical aspects of the implementation followed the 

discussion in [40].

The block-diagram of the analogue electronic implementation of the system under 

investigation (5.1), is given in Fig. 5.1. All the operational amplifiers are MC1458N 

type, while the four-quadrant analogue multipliers are of AD534LD type. The output 

of each multiplier is divided by a factor of 10, thus after each multiplier there is 

amplifier with magnification Am = 10 - not shown on the block diagram for compact 

and clear presentation. From the specific construction on Fig. 5.1 one can determine
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Fig. 5.1: A schematic block diagram of the analogue electronic circuit implementation of 
two unidirectionally coupled van der Pol non-autonomous oscillators. The stan­
dard notations are used: triangles correspond to amplifiers, while the rectangles 
correspond to the multipliers. For the resistors R — l k f l ,  C — 1 (jlF  and the resistor 
potentiometer Rp — 1 —>• lOkfl.

the values of the parameters of the system (5.1). The shape parameters are both 

set to unity fi\ =  ^ 2  — 1 a^d the basic frequencies are cq =  1 and uj2 =  1-1- The 

non-autonomoucity is introduced additively in the frequency of the first oscillator 

through sine wave signal from an analogue signal generator. The control parameters 

of the non-autonomous term are set to be A  =  0.03 and Cj =  0.2. The constant c = 

100 is introduced in the circuit integrators for electronic stability. Thus, the true 

oscillating frequencies are f i  =  cql00/27r =  15.92H z  and f 2 — cu2100/27r =  17.51 Hz.  

By varying the resistor value on the potentiometer Rp one can change the coupling 

strength £ =  0 —)• 1 - resulting in a change from not coupled to moderate coupling 

interaction between the two oscillators. In this way, the investigator is able to observe 

the dynamics and the synchronization transitions in real time, and to follow the time 

evolution, which is especially convenient for studying the observed system.

First the oscillator with the non-autonomous term in its frequency was analyzed. 

Its dynamics are such that it oscillates with constant amplitude (the envelope of 

x\  (£)), while its frequency is varying with time. The phase portrait from the oscil­

loscope is shown on Fig. 5.2 (a). The constant amplitude and the signal form in 

the time domain are presented in Fig. 5.2 (b). The time variability of the frequency,
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Frequency [Hz] 10

Fig. 5.2: The phase portrait (a), the signal (b), and the time-frequency wavelet analysis 
(c) from the first (aq(t)) van der Pol oscillator, (b) and (c) are calculated after 
analogue-to-digital conversion with 1000Hz  sampling frequency.

as the most significant characteristic of this oscillator, can be studied by the means 

of wavelet transform analysis. The specific implementation with the use of Morlet 

mother wavelet is as discussed in chapter 4. From the time-frequency representation 

of the signal X \ ( t )  in Fig.5.2(c) one can clearly see that the frequency of the first 

oscillator is varying over time, and that the form of the variation is as imposed by the 

non-autonomous sine term.

While the amplitude of the signal xi(t)  is constant over time, the amplitude of 

the first derivative iq ( t )  is varying, due to the variations of the oscillating frequency. 

Therefore, the phase portrait (Fig.5.2(a)) shows that the limit cycle is varying slowly 

in time, in a bounded region around the mean limit cycle curve. The numerical 

analysis of the Lyapunov exponents [102] shows that the non-autonomous van der 

Pol oscillator has negative-close to zero largest Lyapunov exponent, pointing out 

that the oscillator is still in its quasiperiodic state and that its attractivity did not 

change qualitatively. If the non-autonomous perturbations, imposed by A, are much 

larger than those used in this study, then the oscillator can turn from quasiperiodic 

into chaotic with positive largest Lyapunov exponent, its stability can be lost, or its
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Fig. 5.3: Lissajous curves and wavelet transform of synchronization in autonomous case
(a), (b) and in non-autonomous (c), (d) case. Lissajous curves of synchroniza­
tion for both autonomous oscillators (when .4 = 0) (a). Time-frequency wavelet 
representation of x^(t) for autonomous synchronization (b). Lissajous curve for 
non-autonomous case of synchronization (c) and the corresponding wavelet repre­
sentation of X2 (t) during this case (d). Compare differences on (a) with (c), and
(b) with (d).

oscillations can reduce to zero (oscillation death). These outcomes are not relevant 

to this study.

The second oscillator is autonomous by itself and its frequency is constant over 

time, as shown on the time-frequency representation on Fig. 5.3 (b). If the non- 

autonomous term is very small i.e. ideally zero (A =  0), then the frequencies of both 

the oscillators are constant over time (like the one shown in Fig. 5.3 (b)). For suffi­

ciently large coupling e.g. £ =  0.4 the two oscillators can synchronize. The Lissajous 

curve of this classical case of synchronization is presented in Fig.5.3 (a). The curve is 

stable without phase slips and has constant form over time. Next the oscillators are 

kept synchronized and non-autonomoucity is introduced by increasing the amplitude 

to A = 0.03. The Lissajous curve will again be stable without phase slips, but its form 

will slowly vary with time Fig. 5.3 (c), in a bounded region around the autonomous 

Lissajous curve (compare Fig. 5.3 (a) and Fig. 5.3 (c)). Observing the wavelet analysis 

of the second van der Pol oscillator Fig. 5.3 (d), a variation in frequency can be seen 

due to synchronization with the first non-autonomous oscillator. The time variability
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of the frequency is also followed by amplitude time variations of the second oscillator, 

in order for it to stay in the entrainment and to follow the frequency variations of the 

first oscillator.

5.3 D etectin g  synchronization from experim ents—

com parative analysis

Detection in this sense means to investigate if synchronization exists between the two 

oscillators, by analyzing the dynamics described by time-series, measured as electronic 

voltage signals for the states of the oscillators. As with other experimental measure­

ments, the detections should be able to confirm the underlying synchronization even 

though the signals can have a harmful amount of noise. Of special interest for this 

study is the ability to follow the detection in time, because the non-autonomous 

influences can introduce time-variability and intermittent transitions of the synchro­

nization state.

The time series to be analyzed can represent the state variables {x\(t) and x 2(t)) 

or the phases extracted from the same signals. In doing so, one will be detecting 

generalized or phase synchronization, respectively. In the following discussion, the 

proposed method, based on Bayesian inference, will be employed for the detection 

of both phase and generalized synchronization (discussed in more detail in chapter 

3). Thus, even though the two types of synchronization are defined differently, the 

methods for detection will have the same inferential base, uniting them together to 

detect what constitutes the same phenomenon -  synchronization. Due to the partic­

ular information propagation, the methods will be able to follow the time-variation 

of the frequencies. The evaluation of the synchronization state will be based on the 

inferred intrinsic parameters, and the separate inference of the noise, will allow the 

synchronization state to be determined without the effect from the noise.
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Fig. 5.4: The signal from the second driven oscillator and the phase synchronization de­
tection. The signal from the second response oscillator shows amplitude (see the 
envelope) variations in periodic intervals as imposed by the external source (a). 
The inset presents enlarged section of the signal. The synchronization index from 
the detection (b). Note the detected intermittent synchronization transitions.

5.3.1 P h ase  synch ro n iza tio n  d e tec tio n

The goal is not only to detect the existence of synchronization state, but also to detect 

the time-variability and the transitions due to the effect of the external influences. 

For this reason the parameters for the non-autonomous periodic force were changed 

i.e. the amplitude was increased to A = 0.06, for which synchronization transitions 

appeared. Due to the periodicity of the external signal, the synchronized and non­

synchronized intervals appeared intermittently. On the oscilloscope, it was possible 

to observe this dynamical behaviour in real time, through Lissajous curves. After 

digitalizing, the state time-series were obtained. The amplitude of the second driven 

oscillator was affected due to the synchronization and the non-autonomous influences 

- Fig. 5.4 (a). During the synchronization intervals the amplitude varies in accordance 

with the periodic force, while for the non-synchronized interval the envelope returns 

to its free oscillation modes. The inset shows the specific form of the signal.

Before the synchronization detections, the phases needed to be estimated from 

the digitalized signals. Because the form of the signals was not complex, the Hilbert 

transform was appropriate for estimating the phase variables. Details of the Hilbert 

transform based phase extractions were discussed in chapter 4.



5. Analogue simulation and synchronization analysis of non-autonomous oscillators 134

The method based on the Bayesian inference is applied on the phase signals. After 

the reconstruction of the phase dynamics through the Fourier base functions, the 

intrinsic parameters and the noise are acquired. Due to the relatively high frequency 

of the oscillators, small windows tw =  0.5s were used for the inference. The inferred 

parameters were used for reconstruction of the phase torus and the corresponding 

map from which the synchronization can be determined. The intervals where

the root M(V>) =  V'e existed were judged as synchronized, while the absence of the 

root indicated non-synchronized dynamics. Fig. 5.4 (b) shows the resultant detected 

synchronization. It can be seen clearly that the synchronization and the corresponding 

intermittent transitions were detected successfully. The detection was accurate and 

in agreement with the amplitude variations imposed by the non-autonomous source.

5.3.2 Generalized synchronization detection

For determination of the generalized synchronization the states of the interacting sys­

tem are required. In this case, the digitalized voltages of the two oscillators represent 

the state variables. The two van der Pol oscillators are unidirectionally coupled, where 

the first has an external source acting on its frequency. The definition of generalized 

synchronization prescribes that the oscillators are synchronized if the response oscil­

lator is asymptomatically stable. By evaluating the largest Lyapunov exponents, one 

can determine if the response oscillator is asymptomatically stable and if synchroniza­

tion exists (detailed discussion can be found in chapter 3).

The signals from the model 5.1 (using direct coupling) are processed through the 

Bayesian inferential technique. The inference relies on the state base functions for this 

particular model which were already described in chapter 3. The inference returns 

the intrinsic parameters about the bi-variate dynamics and the noise. The numerical 

evaluation of the largest Lyapunov exponents A can reveal the synchronization state. 

If A is zero, there is no synchronization and the response oscillates with its own 

dynamics. Synchronization occurs if A has negative values, and the response oscillators

are asymptomatically stable.

In order to take advantage of the time-varying propagation process, the analysis
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Fig. 5.5: Detected generalized synchronization from system 5.1, expressed through the 
largest Lyapunov exponent A. Negative values indicate asymptomatic stability 
of the response oscillator, and occurrence of synchronization. Note the detected 
intermittent periodic transitions from in and out of synchronization.

is performed on intermittent case of synchronization. Similarly as in the previous 

section, the variations introduced in the frequency of the first oscillator are relatively 

high (A = 0.06) and synchronization transitions occur in periodic order. Fig. 5.5 

illustrates the evaluated largest Lyapunov exponent A i.e. the detected generalized 

synchronization. The proposed method determined the qualitative state of synchro­

nization successfully, which appears as negative Lyapunov exponent A. Around the 

transitions the exponent is positive, which indicates that the response oscillator goes 

through marginally stable into unstable transition, before it reaches the synchronized 

stable state. Also it can be noticed that the Lyapunov exponent is not very precise 

and has large variations.

5.4 D iscussion

Starting from different variables (phase and states), the two types of phase and gen­

eralized synchronization, exploit different characteristics in order to determined the 

synchronization state. Although defined in different ways, both of the approaches in­

herently describe phenomenon with same nature. This was demonstrated with the use
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of the proposed detection methods, based on the same fundamental concept, which 

detected the synchronized dynamics emanating from the same system, both through 

phase and generalized synchronization.

The two methods detected synchronization phenomenon successfully and were able 

to followed the intermittent transitions. The generalized synchronization approach 

was more convenient in the respect that it was applied directly on the signals, and did 

not require the prior phase extractions. But the generalized method relies on inference 

represented with base functions of specific model. The phase synchronization was 

more resistant to noise, having less variations, and was able to follow the transition 

more precisely.



6. CONCLUSION

6.1 Sum m ary

This thesis studies the effect of external dynamical sources on interacting self-sustained 

oscillators. It outlines the theoretical constraints needed for appropriate under­

standing of the dynamics and the phenomena that occur as a consequence of non- 

autonomous influences. An inference technique is proposed for detection of time- 

evolving dynamics in interacting oscillatory systems in the presence of noise. The 

method enables synchronization and the respective transitions to be detected and 

the interactions to be described in terms of time-varying coupling function and di­

rectionality. The entire study is motivated by interacting biological oscillators. Of 

main concern were the oscillatory processes from the cardiovascular system and sym­

pathetic nerve activity, which were analyzed under conditions where the breathing 

frequency was externally varied in a predefined deterministic way. Several oscillatory 

models (Poincare, van der Pol, phase) were used for theoretical, numerical and ana­

logue analysis. However, these models were not intended to model all aspects of fully 

functioning complex biological systems (e.g. like the heart), but only to capture suf­

ficient dynamical characteristics which effectively describe the interacting oscillatory 

nature. This indirectly implies that the developed detection techniques need to be 

equally applicable to time-series obtained from biological systems and from the model 

oscillators.

As theoretical background, a framework for analysis of interactions between non- 

autonomous oscillating systems was presented. Multiple-scale analysis was applied 

on a phase oscillators model with slowly varying frequency. It revealed the analytic 

form of the synchronization behaviour with respect to slow and fast time-variations.
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The investigation of limit-cycle oscillators showed that synchronous transition oc­

curs when the equilibrium solution for the phase difference and amplitudes {ipeq) r\eq, 

^ 2e q )  loses its stability through a Hopf bifurcation. Bifurcation diagrams as func­

tions of coupling parameters were constructed for identification of parameter ranges 

of synchronization, intermittent synchronization and non-synchronization. From the 

viewpoint of the time series analyst, synchronization between non-autonomous oscil­

lators appears substantially different from the classical autonomous case and several 

distinct characteristics exist. The phase difference is dynamically varying, the lag syn­

chronization is not possible because of the non-const ant time-varying phase shift and 

the external source can be the cause for synchronization transitions between different 

synchronization orders. The time-variation of the form of the coupling function, even 

when the parameters (frequency, coupling amplitude) are constant, can act as a cause 

for synchronization transitions.

Many practical situations exist where the investigator needs to determine and 

quantify the interacting dynamics, and if (and how) they are time-varying. For these 

reasons, a technique was introduced for analysis of the interactions between time- 

dependent coupled oscillators, based on the signals they generate. At the core of the 

method lies the Bayesian inference, which relies on either phase or state base functions. 

Arguably, the representation of the phase dynamics with finite Fourier base functions 

offers more general applicability than the state dynamics reconstruction, which is 

model-dependent. The sequential information propagation was customized in order 

to follow the time-variability of the oscillatory dynamics. Because synchronization 

was evaluated from the inferred parameters separated from the noise, the method was 

able to distinguish unsynchronized dynamics from noise-induced phase slips, which 

could be important in a number of contexts, including both noise-induced synchro­

nization and desynchronization. Several important technical aspects were elaborated 

on, and the method was applied to reveal and quantify the time-varying nature of 

numerical, analogue and cardiorespiratory oscillatory systems.

It was demonstrated that the inference enables the evolution of the system under 

study to be tracked continuously. Unlike earlier methods that only detect the occur­
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rence of transitions to/from  synchronization, the new method reveals details of the 

dynamics, thus describing the inherent nature of the transitions, and at the same 

time deducing the characteristics of the noise responsible for stimulating them. The 

time-varying nature of the functions that characterize interactions between open os­

cillatory systems was identified. The cardiorespiratory analysis demonstrated that 

not only the parameters, but also the functional relationships, can be time-varying, 

and the new technique can effectively follow their evolution. The variability of the 

function has an important impact on the nature of the interactions, and can lead to 

qualitative synchronization transitions. Because the only requirements are the time 

series, the technique promises wide and general applicability.

The proposed theory and methods were applied for the analysis of biological os­

cillatory systems affected by external dynamical fields. The analyses were performed 

on measurements taken under conditions where the respiration was varied linearly in 

a deterministic way, which introduced non-autonomous time-variability into the os­

cillating system. The measurements of ECG, C 0 2 concentration, blood pressure and 

muscle sympathetic nerve activity, were analyzed by methods that were able to track 

their time-variability. Statistical analyses were performed in order to identify signifi­

cant relationships. It was found that the time-varying breathing process significantly 

affects the functioning and regulation of several mechanisms in cardiovascular and 

sympathetic neural systems. In general, the low breathing frequencies provoked more 

information flow, altering the coordination and increasing the coupling influences be­

tween the oscillatory processes. The manifestations and effects on this multi-coupled 

oscillatory system had the imprint of the particular form of the externally induced 

deterministic time-variation.

The benefits of using the proposed inferential method were demonstrated on the ramp 

cardiorespiratory analysis. The technique successfully identified that the cardiorespi­

ratory coordination depends on, and is regulated to a great extent by, the respiration 

dynamics. The synchronization analysis showed occurrence of consecutive transitions 

between different orders. It was found that the externally induced varying respira­

tion acts as a cause for these qualitative transitions. The cardiorespiratory coupling
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function was found again to be a time-varying process, which introduced additional 

complexity for the interactions and their analysis.

An alternative method for phase detection, based on wavelet synchrosqueezed trans­

form, showed how the instantaneous phase can be extracted from complex time- 

varying signals, such as the ECG signal. It was demonstrated that this approach 

can be very useful in phase extraction from signals with mixed-mode oscillatory com­

ponents. This opened the door for future in depth analysis of the inter-oscillatory 

interactions in blood flow signals.

The dynamical characterization for the reproducibility of LDF blood flow was shown 

to be more appropriate than the time-averaged analysis, and that care must be taken 

when non-autonomous perturbations are made consecutively.

The analogue simulation presented another model of interacting non-autonomous 

oscillators which encountered real experimental noise. Two van der Pol oscillators 

were unidirection ally coupled, where the frequency of the first oscillator was exter­

nally and periodically perturbed. The intermittent synchronization was detected both 

through phase and generalized synchronization, based on common inferential basis.

In summary, this thesis demonstrates how one can study and detect the effect from 

external fields on interacting oscillators. It lays down the theoretical background and 

inference tools that can serve as a conceptual basis for appropriate analysis of such 

oscillatory systems, particularly of those which are biological in nature.

6.2 Future perspectives

During the discovery and development of these methods, theories and their applica­

tions, several new perspectives emerged. Some of them could lead to new insights into 

oscillatory interactions, and deserve to be addressed in the near future. The following 

outlines some of the aspects that could define the future directions and development 

of the work proposed in this thesis:

The phase dynamics inferential technique can be applied on oscillatory interac­

tions of different origins. Thus its exploitation for electro-chemical, mechanical and
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meteorological oscillatory systems could be potentially useful. The cardiorespiratory 

application can be further investigated, including more subjects and different states or 

diseases. In fact, there is an ongoing study about human ageing where the inferential 

method is already proving to be useful for the characterization of synchronization, 

directionality and coupling functions with respect to the age of the subjects. This 

study differs from the ramp breathing case, because in the ageing study, the subjects 

breathe freely, at rest, with no external perturbations.

The detection of generalized synchronization can be further investigated for its 

applicability and technical aspects. One direction could be to study the detection 

of time-varying generalized synchronization between chaotic oscillators. The deter­

mination of the asymptotic stability implies that in this case the largest Lyapunov 

exponents would change from positive to negative due to synchronization. Thus, a 

better discrimination could be achieved.

The instantaneous phase detection based on wavelet synchrosqueeze transform 

offers the possibility for the phases to be decomposed from mixed-mode signals. This 

procedure was demonstrated for one human blood flow signal in this thesis. In future, 

a more in depth investigation can be conducted, analyzing more subjects in order to 

infer the inner-interactions between the six oscillatory processes. The application of 

the inferential method in this way will be generalized for a network of six oscillators, 

which could analyze the time-evolving synchronization, directionality and coupling 

functions.

The application of the inferential method identified the time-varying nature of 

coupling functions. The current literature has not paid much attention to this issue 

and it requires further exploration. The presence of time-varying coupling functions 

in open cardiorespiratory systems provides strong evidence that this study is very 

important. This thesis shows that the time-variability of the form of the functions 

can cause synchronization transitions. Therefore, a more detailed analytic analysis 

could reveal additional details and mechanisms of the interactions of open oscillatory 

systems.



APPENDIX



A. GLOSSARY

Anaesthesia: is a pharmacologically induced and reversible condition of having sen­

sation (including the feeling of pain) blocked or temporarily taken away.

Arnold tongue: in general, is defined as a resonance zone emanating out from 

rational numbers in a two-dimensional parameter space of variables. For synchroniza­

tion it defines the entrainment region in coupling and frequency mismatch parameter 

space.

Blood flow (BF): is the continuous running of blood in the cardiovascular sys­

tem.

Blood pressure (BP): is the pressure exerted by circulating blood upon the walls 

of blood vessels.

Cardiovascular system (CVS): consists of the heart and blood vessels, and is 

responsible for circulation of the blood.

Diastolic blood pressure (DIA): the minimum level of blood pressure measured 

during the relaxation phase of the cardiac cycle when the heart dilates and its cham­

bers fill with blood.

Dynamical system: a mathematical means of describing how one state develops 

into another state over the course of time.
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Electrocardiogram (ECG): a noninvasive measurement of the electrical activity 

of the heart using electrodes placed on the body.

Endothelium: the thin layer of cells lining the interior surfaces of all blood ves­

sels. It forms an interface between the circulating blood and the rest of the vessel 

wall.

Generalized synchronization: occurs in unidirectionally coupled systems, if the 

driven system is asymptotically stable.

Heart rate variability (HRV): is the continuous variations with time in the heart 

rate of a healthy human, even in repose.

Lag synchronization: is synchronous regime where the states of two oscillators 

are nearly identical, but one system lags in time to the other.

Laser Doppler flowmetry (LDF): is a noninvasive method for measuring the con­

tinuous circulation of blood flow on a microscopic level.

Lyapunov exponent (LE): of a dynamical system is a quantity that character­

izes the rate of separation of infinitesimally close trajectories.

Multiple scale analysis: comprises techniques used to construct uniformly valid 

approximations to the solutions of perturbation problems, both for small as well as 

large values of the independent variables.

Muscle sympathetic nervous activity (MSNA): is the activity of SNS (q.v.), 

often measured invasively from the efferent traffic of the peroneal muscle nerve.

Myogenic: contraction is an inherent property of smooth muscle. It occurs rhytli-
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mically with a period of around 10 s, without any external stimulus.

Non-autonomous system: is a system of ordinary differential equations which 

explicitly depends on the independent variable. From dynamical point of view, non- 

autonomous system includes an explicit time-dependance.

Non-isochronous oscillator is one which rotation frequency is amplitude depen­

dent. Its definition includes amplitude terms that reflect the non-isochronicity or 

shear of phase flow around the limit cycle.

Phase oscillator: is an approximative notation of phase dynamics of weakly in­

teracting oscillators.

Phase synchronization: is an adjustment of rhythms of oscillating objects due 

to their weak interaction.

Respiration: is defined as the transport of oxygen from the outside air to the cells 

within tissues, and the transport of carbon dioxide in the opposite direction.

Respiratory sinus arrhythmia (RSA): is a natural variation in the heart rate 

tha t occurs during breathing. Heart rate increases during inspiration and decreases 

during expiration.

Self-sustained oscillator: is the oscillator that exhibits stable limit cycles in the 

absence of external contribution.

Sinus node: is the impulse-generating (pacemaker) tissue located in the right atrium 

of the heart, and thus the generator of the sinus rhythm.

Sympathetic nervous system (SNS): is a part of autonomic nervous system which
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mainly controls involuntary internal processes. It prepares the body for responses to 

stressful challenges, allowing sudden strenuous exercise and increased vigilance.

Systolic blood pressure (SYS): is the maximum level of blood pressure mea­

sured during the contraction phase of the cardiac cycle when blood is driven into the 

aorta and pulmonary artery.



B. DETAILED ANALYTIC MANIPULATIONS FOR THE 

COUPLED LIMIT-CYCLE OSCILLATORS MODEL

This appendix shows the relatively straight forward algebraic steps through which the 

main analytical results were derived.

The Poincare oscillator can be written as follows in either cylindrical

r  =  ar(a  — r) 

6 =  —u ;

or Euclidean coordinates

x — u y  — x a  ( a/ x 2 +  y2 — aj 

y — — o j x  — y a  ^ y /x 2 +  y2 — a jy

Now consider a pair of such coupled oscillators:

±i =  - q xx i -  u\{t)yi +  €\(t)gn(xi, x 2) 

yi =  -QiVi + + ei{t)gi2{yi, 2/2)
x 2 = - q ^ i  ~  ^2{t)y2 +  e2(t)g2i(x!, x 2) 

2/2 = —̂22/2 + W2(t)x2 + 62(4)̂ 22(2/1, 2/2)

qi = a i[  \ l x 2 + y 2 - a i  I .

(B.l)

(B.2)

Writing explicitly the velocities of the phases & =  f t arctan g- and of the amplitudes
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^  =  i V W + W )  one obtains:

• „ cos „ s in 0 x ,
0 1  =  - M l  -\--------------- e l 9 2 \ x h x 2 ) ----------------- e i 9 i ( x u x 2 )r i Ti
■ „ cos 0 2 ~ , N sin 02 „ , .

02 =  -U J 2 H------------ ^ ( ^ l , ^ ) -------------- e2p3 ( ^ l , ^ 2 )
f' 2 r 2

ri =  a ir i(a i  - r i )  +  cos0 1e1£1(z1, a;2) +  s in0 1e1̂ 2(x1, x2) 

r 2 =  a 2r 2(a2 - r 2) +  cos02e2p3(xi, x2) +  s in 026204(2;!, x 2)

For convenience the time-variability has been denoted with a tilde (~) overscript: for 

example w\ = W\{t).

The coupling function is general, and an explicit form must be chosen. If

(B.3)
gi(xi ,x2) = x 2 -  xu  g2(yu 2 /2) =  2/2 -  2/ iJ  

9s(xu X2) = x \ ~  %2', £ 4 ( 2 / 1 , 2 / 2 )  =  2/1 -  2/2;

the derivative of the phase difference is expressed as:

T\
lb = 02 01 — — U)2 +  e2— COS 02 sin 01 +

r2
7*1

— e2 cos 02 sin 02 — e2 — sin 02 cos 0i — e2 sin 02 cos 02+  
r2

r2
+  o)i — ei — cos 0i sin 02 +  61 cos 0i sin 01+

T\
f 2

+  ei — sin 0i cos 02 — ei sin 0i cos 0i 
n

If the dynamics of the variables 0 , ri and r 2 is slow relative to the fast variables 0?, 

one can consider the velocity of the phase difference as being averaged over a period 

of (let us say) 0i by integrating over one period. Thus, 02 was substituted with 0  +  0i 

and next integral was evaluated :

(B.4)
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I f 2* -  • 1
- j o =  -

n

— U)2 + Cb\

+  6 2—(cos ip cos (pi — sin ip sin (pi) sin <pi+
T2

— e2 (cos ip cos (pi — sin ip sin (pi) (sin ip cos (pi+
7~1

+  co s^ s in ^ i) — e2—(sin ip cos <j>i +  co s^ s in ^ i)  cos</>i+ 
r2

— e2 (sin ip cos (pi +  cos ip sin <pi) (cos ip cos (pi+
T2

— sin ip sin cpi) — <i\ — cos (pi (sin ip cos (pi +  cos sin </>!)+

(B.5)

T2
+  ei — sin (pi (cos ip cos (pi — sin ip sin (pi) 

n
d(pi

which yields the result:

r i r2
ip =  o)i — o)2 — e2 — sin ip — ii — sin ip.

r2 r i

Integrating also r$ over (pi gives:

1 /*2vr
(ri) =  —  /  h d ( p i =  a i r i c t i  -  r x2a i  -  e i(r i  -  r 2 cos ip)

A n  J o
1 f 27T

( r 2) =  —  r 2 d ( p i =  a 2r 2a 2 -  r 2 a 2 - ~ e 2 { r 2 +  n  cost/0 - 
Jo

Then the resulting system is expressed as:

iP =  0 =  wi -  cj2 +  ( - ^  -  sin?/;

=  0 =  a i n a i  -  r i 2a i  -  r x l i  +  r 2ei cos ip (B -6 )

r 2 =  0 =  a 2r 2ol2 — t 22ol2 — r 2e2 +  rie2 cos ip

Eq.(B.6) might or might not admit a solution, depending on the numerical values of

the parameters.



C. SYNCHROGRAM

Synchrograms can be used to obtain visual and qualitative measures of synchroniza­

tion at different frequency ratios [9]. They are constructed by plotting the normalized 

relative phase of one oscillator within m  cycles of the other oscillator, according to

1
^ m { t k ) =  T T ^ k )  m o d  27T7TI 

Z7T

where is the time of the k-th  marked event of the first oscillator, 4>{tk) is the 

instantaneous phase of the second oscillator at time t*, and mod is the modulo oper­

ation function. In the case of autonomous oscillators, perfect synchronization corre­

sponds to horizontal stripes on the synchrogram. When studying synchronization of 

non-autonomous oscillators, synchrograms enable one to follow qualitatively the time 

variations of the relative phase difference.



D. ORDER, TYPE AND DURATION OF THE RAMP 

BREATHING SEGMENTS FOR EACH SUBJECT

Each of the subjects was measured having paced respiration intervals with linear 

“ramp” variations. In respect of the change of the breathing frequency, there were 

two types of ramps: fast-to-slow and slow-to-fast. The order of the ramps was not 

strictly defined, and in some subjects there was only one type of ramp breathing, while 

in other the two types were changing intermittently. However, the length of the ramps 

and the frequency band within which the respiration was varied, were (approximately: 

mean 9.05 and standard deviation of 0.14 minutes) constant for all of the subjects 

and segments. The following table (D.l) summarizes the order and the duration of 

the ramp breathing segments and the respective spontaneous segments in between, 

for each subject. For example, subject 4 had four ramp segments, two fast-to-slow 

and two slow to fast, which changed intermittently. Compared this notation and the 

respective wavelet transform illustration on Fig. 4.2 for the same subject 4.
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Fie;. D .l:  Order and duration of segments for each subject. The segments can be: sponta­
neous breathing denoted as and two types of ramps fast-to-slow denoted as 
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E. LIST OF PUBLICATIONS

The following publications were produced:

T Stankovski, A Duggento, A Stefanovska and P V E McClintock, “Inference of 

time-evolving coupled dynamical systems in the presence of noise” Physical Review 

Letters, in submission.

A Stefanovska, L W Sheppard, T Stankovski and P V E McClintock, “Reproducibil­

ity of LDF blood flow measurements: Dynamical characterization versus averaging” , 

Microvascular Research 82(3), 274-6 (2011).

T Stankovski, W H Cooke, L Rudas, A Stefanovska, D L Eckberg, “Voluntary ramped- 

frequency breathing: a powerful experimental tool to modulate and explore human 

autonomic mechanisms", Journal of Physiology, in preparation for submission.

T Stankovski, “Phase detection from the respiration signal” , Section 4.5 of Nonlinear 

Dynamics of Anesthesia: from Theory to Clinical Application, editors A Stefanovska, 

P V E McClintock, J Raeder and A F Smith, to be published by Springer.

The following presentations were made:

“Synchronization and stability analysis of interacting non-autonomous self-sustained 

oscillators” , in Non-autonomous and Random Dynamical Systems in the Life Sciences, 

Inzell, Germany, 1-5 August 2011 (oral presentation).
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“Detection of synchronization, directionality and time-varying dynamics of coupled 

oscillatory processes” , in Fluctuations and Coherence: from Superjiuids to Living Sys­

tems, Lancaster, UK, 13-16 July 2011 (oral presentation).

“Synchronization of interacting oscillators subject to external non-autonomous influ­

ences” , 8th International Summer School and Conference Let’s Face Chaos Through 

Nonlinear Dynamics, Maribor, Slovenia, 26 June - 10 July 2011 (poster presentation).

“Phase detection from the respiration signal” , ESGCO 2010: 6th Conference of the 

European Study Group on Cardiovascular Oscillations, Berlin, Germany, 12-14 April 

2010 (poster presentation).
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