Header Compression and Signal Processing for Wideband Communication Systems.

Shan, Rafi-Us (2012) Header Compression and Signal Processing for Wideband Communication Systems. PhD thesis, UNSPECIFIED.

[thumbnail of 11003749.pdf]
PDF (11003749.pdf)
11003749.pdf - Published Version
Available under License Creative Commons Attribution-NoDerivs.

Download (9MB)

Abstract

This thesis is dedicated to the investigation, development and practical verification of header compression and signal processing techniques over TErrestrial Trunked RAdio (TETRA), TETRA Enhanced Data Services (TEDS) and Power Line Communication (PLC). TETRA release I is a narrowband private mobile radio technology used by safety and security organizations, while TEDS is a widebandsystem. With the introduction of IP support, TEDS enables multimedia based applications and services to communicate across communication systems. However the IP extension for TEDS comes at a cost of significant header contributions with the payload. With small application payloads and fast rate application traffic profiles, the header contribution in the total size of the packet is considerably more than the actual application payload. This overhead constitutes the considerable slot capacity at the physical layer of TEDS and PLC. Advanced header compression techniques such as Robust Header Compression (RoHC) compress the huge header sizes and offer significant compression gain without compromising quality of service (QoS). Systems can utilize this bandwidth to transmit more information payload than control information. In this study, the objective is to investigate the integration of RoHC in TEDS and design a novel IPv6 enabled protocol stack for PLC with integrated RoHC. The purpose of the study is also to investigate the throughput optimization technique such as RoHC over TEDS and PLC by simulating different traffic profile classes and to illustrate the benefit of using RoHC over TEDS and PLC. The thesis also aims to design and simulate the TEDS physical layer for the purpose of investigating the performance of higher order modulation schemes. Current TEDS, standards are based on the transmission frequencies above 400MHz range, however with delays in the standardization of broadband TETRA, it is important to explore all possible avenues to extend the capacity of the system. The research concludes the finding of the application of RoHC for TEDS and PLC, against different traffic classes and propagation channels. The benefit of using RoHC in terms of saving bandwidth, slot capacity and other QoS parameters is presented along with integration aspects into TEDS and PLC communication stacks. The study also presents the TEDS physical layer simulation results for modulation schemes and transmission frequency other than specified in the standard. The research results presented in this thesis have been published in international symposiums and professional journals. The application of the benefits of using RoHC for TEDS has been proposed to the ETSI TETRA for contribution to the TETRA standard under STF 378. Simulation results for the investigation of characteristics of ?/4 DQPSK performance below 200 MHz have also been also presented to ETSI TETRA as a contribution to the existing TEDS standard. The Results presented for the design of IPv6 enabled stacked with integrated RoHC have been submitted as deliverable under the FP-7 project DLC+VIT4IP. All the results, simulations and investigations presented in the thesis have been carried out through the platform provided by HW Communication Ltd.

Item Type:
Thesis (PhD)
Additional Information:
Thesis (Ph.D.)--Lancaster University (United Kingdom), 2012.
Subjects:
?? MIAAPQCOMMUNICATION.COMPUTER SCIENCE. ??
ID Code:
133579
Deposited By:
Deposited On:
02 May 2019 16:36
Refereed?:
No
Published?:
Unpublished
Last Modified:
12 Sep 2023 00:36