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Abstract

Two disjunct eddy covariance systems for the m easurem ent o f  volatile organic 

compound (VOC) fluxes were developed. The first, disjunct eddy covariance (DEC), was 

validated against the standard eddy covariance (EC) technique, in a study o f CO2 and 

EbO fluxes from a grassland field (Easter Bush, Edinburgh, Scotland). The comparison 

convincingly showed fluxes measured by the DEC technique to be comparable to those 

measured using the EC technique. A second, simplified approach, virtual disjunct eddy 

covariance (vDEC), was developed and compared against standard DEC during the 

CityFlux project, where measurements o f VOC fluxes were made from Portland Tower in 

M anchester. Averaged daily fluxes measured by the vDEC system typically ranged 

between 19 and 90 pg m '2 h '1 for individual VOC species and were comparable to those 

measured by the DEC system, but were typically 19% higher than the latter. The 

discrepancies between the two methods were thought to relate to both the reduced 

response time o f  the DEC system which attenuated higher frequency flux contributions
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and the high level o f  noise in the covariance function which may have led to a systematic 

overestimation o f  the flux. The vDEC technique was subsequently deployed on the 

Telecom Tower in central London to give very detailed flux information on seven VOC 

species. Individual average fluxes ranged between 5 and 100 jug m '2 h '1 and were well 

correlated with traffic density. Fluxes o f  benzene were extrapolated to give an annual 

emission estimate for the city, which was found to be 1.8 times lower than that suggested 

by the National Atmospheric Emission Inventory. Finally, two vDEC systems, one using 

a high sensitivity (HS) proton transfer reaction mass spectrometer (PTR-M S) and the 

other a standard model (Std), were used alongside each other to measure biogenic VOC 

fluxes from macchia vegetation at the Castelporziano nature reserve near Rome, Italy. 

The two systems compared well, although the HS system appeared to give fluxes with 

greater amplitude than the Std model. This highlighted the importance o f  the allocation o f 

correct lag times when using vDEC, particularly at night. Fluxes o f isoprene and 

monoterpenes were compared with the Guenther algorithm o f  1995 and showed excellent 

agreement between the modelled and measured values.

The results presented in this study have convincingly demonstrated the capacity o f 

the DEC and vDEC techniques to give very detailed VOC flux information over a range 

o f  non-ideal canopies, which can be used to both validate and constrain “bottom-up” style 

emission inventories.
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Chapter I

1 . Introduction

1.1 Biosphere - Atmosphere Interactions

The exchange o f trace gases between the biosphere and atmosphere directly 

influences the chemical composition o f our atmosphere and also plays an important 

role in climate, ecology and human health (Dabberdt et al., 1993). All biosphere- 

atmosphere interactions take place within the planetary boundary layer (PBL), which 

is the section o f the atmosphere most closely coupled to the Earth’s surface. Here, 

surface forcings, including land heating and wind shear, generate atmospheric 

turbulence which is a highly efficient mechanism for the transport o f trace gases 

(Stull, 1988). Consequently, compounds emitted from the surface become rapidly 

mixed throughout the PBL over a time period o f typically less than 1 hour, although 

this time scale is ultimately dependent on the depth o f the PBL, which can vary from a 

few tens o f meters when the atmosphere is stably stratified, to a few kilometres when 

convectively unstable (Lenschow, 1995). The relative ease with which trace gases are 

transported demonstrates the sensitivity of the atmosphere to changes occurring at the 

Earth’s surface, and underlines its ability to respond quickly to trace gas emissions.

Biosphere-atmosphere interactions are driven by both natural and 

anthropogenic processes and can impact upon air quality across a wide range of 

spatial scales, from the local to the global. Currently, there is widespread concern 

over the global effects o f anthropogenic emissions on the state o f our atmosphere. The 

global increase in carbon dioxide is perhaps the most well documented example, and 

since the industrial revolution, concentrations have risen from 280 ppm to > 370 ppm 

(Heath et al., 2005). Although direct emission o f carbon dioxide from the combustion
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of fossil fuels is thought to be the primary cause, some of this increase can be 

attributed to changes in land use and deforestation. There is now a growing body of 

evidence to suggest that these emissions are impacting on the global climate system 

(IPCC, 2007), and hence surface exchanges o f CO2 are o f particular interest to 

scientists and policy makers alike.

This is just one example o f the role that surface exchanges play in the major 

geochemical cycles but there are many other examples o f how biosphere-atmosphere 

interactions can affect air quality at both the local and regional scales. For instance, 

one group of compounds, volatile organics (VOCs), are known to have a profound 

impact on our atmosphere. Figure. 1.1 shows the important role their emissions play in 

generating a negative feedback loop for the global climate system (Seufert et al., 

1997). In addition to this key function, VOCs also control the formation o f 

photochemical pollutants such as tropospheric ozone and peroxyacetyl nitrate (PAN) 

(Sillman, 1999). After emission to the atmosphere VOCs react with oxides o f nitrogen 

to form secondary oxidants such as ozone. At elevated concentrations, ozone is a 

major environmental problem as it can impact upon human health (Lippman, 1993), 

crops and forest ecosystems (Sillman, 1999) and is also a precursor for the formation 

o f secondary organic aerosol (SOA). Although the ozone precursors tend to be emitted 

from localised urban environments, the resultant photochemically reactive air masses 

can be advected over the regional scale (Derwent & Jenkin, 1990). In the 1970s it was 

first observed that U.K. emissions o f VOCs were contributing to ozone episodes 

across North West Europe (Cox et al., 1970). Since then, member states o f the 

European Union have agreed to legislation laid out by the United Nations Economic 

Commission for Europe (UN ECE) which proposed to reduce the emission o f ozone
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precursors such as oxides o f nitrogen (UN ECE, 1988) and VOCs (UN ECE, 1991) 

(Derwent et al, 2003).

Figure 1.1 Diagram  re-drawn from Kulmala et a l (2004) showing the sim ple feedback loop 
between global clim ate and biosphere-atm osphere interactions involving CO z assim ilation and 
VOC em issions.

These are further examples of how the fluxes o f trace gases can directly impact 

upon air quality at both the regional and global scales, and force governments into 

introducing counteractive measures. From this it is clear that if we are to better 

understand the chemistry o f our atmosphere, and control photochemical pollutants 

such as ozone, or suppress the global increase o f CCE, we must first quantity the 

fluxes o f trace gases between the biosphere and atmosphere. In order to do this we can 

adopt one o f two approaches. The first is the “bottom up” approach, where computer 

models and algorithms are used to scale up small scale observations to give regional 

or global emission estimates. The second is the “top down” approach, where regional 

scale or global scale emissions are measured directly using micrometeorological or 

remote sensing techniques.

AerosolsAtmospheric CO

Temperature

VOC EmissionsPhotosynthesis
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1.2 Bottom up approach to quantifying trace gas emissions

Computer modelling techniques have become increasingly popular and have 

been readily adopted by the policy-making community. Not only do they help us 

understand the current state o f our atmosphere, but more importantly they enable us to 

predict how the atmosphere will respond to future perturbations brought about by 

anthropogenic activities. This makes them important tools in assessing the 

effectiveness o f potential control strategies such as the UN ECE directive (1991) to 

cut VOC emissions. In order for these models to return accurate predictions, they must 

first be supplied with accurate input variables such as information on surface 

exchange processes as well as some basic meteorological information. Currently much 

o f this information is supplied by emission inventories (many o f which are themselves 

model based), which are compiled by most national governments, although the 

method o f compilation and the pollutants included varies from country to country.

In the U.K, the National Atmospheric Emission Inventory (NAEI) is 

assembled by the National Environmental Technology Centre (NETCEN, AEAT), and 

provides gridded emission estimates for 25 atmospheric pollutants with a spatial 

resolution o f 1 km2. Data for the inventory is compiled using a “bottom up” approach, 

where a combination o f reported and estimated emission rates are scaled to give an 

overall emission estimate across a number o f source sectors. Source sectors include 

categories such as road transport, industrial combustion processes and waste disposal, 

which are all further sub-divided to help produce an accurate and detailed estimate of 

emissions from across the whole o f the U.K (King et al., 2003). Large industrial 

processes such as power stations are required to report emissions to the Environment 

Agency who are the regulators o f industrial processes in the U.K., as a commitment 

under the EU IPPC (Integrated Pollution Protection and Control) Directive
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(96/61/EC). In contrast, for area sources, estimated emissions are calculated by 

applying an emission factor, such as an emission rate to a given activity statistic, such 

as a transport statistic. For example, the emission o f benzene from the road transport 

sector may be expressed as the amount o f benzene contained in car exhaust (emission 

factor), multiplied by the number o f kilometres driven on U.K roads per year (activity 

statistic) (King et a l ,  2003). Obviously the accuracy o f the estimated emissions is 

governed by the accuracy o f the statistical information used to generate activity 

statistics. Therefore reported or point source emissions are considered more robust 

than estimated emissions as they tend to be based on large quantities o f reliable data. 

Consequently, the overall accuracy o f the emission inventory is likely to be influenced 

by the ratio o f reported emissions to estimated emissions.

Emission inventories also exist for biogenic compounds, which also play a 

hugely important role in governing the state o f the atmosphere. Isoprene is perhaps the 

most influential o f these biogenic compounds, accounting for approximately 45% 

(600 Tg C y r '1) o f the total biogenic volatile organic compounds (BVOC) emitted into 

the atmosphere (Guenther et a l ,  2006). It is a highly reactive compound and through 

its reactions with the hydroxyl radical (OH) has the potential to reduce the oxidative 

(self cleaning) capacity of the atmosphere. In addition, there is growing evidence that 

isoprene may be a precursor for biogenic secondary organic aerosol (BSOA). 

Although the aerosol yield appears to be comparably small, because o f the high 

emissions o f isoprene, its contribution to organic aerosol may nevertheless be 

significant (Zhang et al., 2007). For these reasons, much attention has been devoted to 

developing biogenic emission inventories specifically for this compound as well as 

others.
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Typically, biogenic VOC emission estimates are made at the regional scale by 

taking the product o f three parameters: (i) the quantity o f leaf biomass within the 

region; (ii) a species specific emission factor to represent the rate of emission at 

standard conditions per unit biomass; and (iii) a basic meteorological factor to adjust 

emission estimates from standard to ambient conditions (Steiner et al., 2002). The 

most comprehensive application o f this basic algorithm is the Biogenic Emissions 

Inventory System (BEIS), which is a model designed to estimate biogenic emissions 

from the Eastern United States. Since its development in the mid 1980s it has been 

replaced by both second (BEIS2; Pierce et al., 1991; Geron et al., 1994) and third 

(BEIS3) generation versions, each more sophisticated than the last. More recently, a 

new algorithm, Model o f Emissions o f Gases and Aerosols from Nature (MEGAN) 

has been developed, in which net terrestrial biosphere emissions can be modelled at 

both regional and global scales with a 1 km2 spatial resolution (Guenther et al., 2006). 

Although MEGAN is similar to BEIS in some areas, i.e. using leaf scale emission 

factors, where possible it incorporates “top down” ecosystem level measurements (e.g 

direct micrometeorological flux measurements). However its canopy level emission 

estimates are still primarily based on leaf and branch scale emission measurements.

Like the NAEI, both the BEIS and MEGAN models call for detailed and 

accurate information to supply the basic model input parameters, such as leaf area 

index and species specific emission factors. The precision and accuracy o f these input 

variables is vital for the overall performance o f the model, and is ultimately 

responsible for the accuracy o f the emission inventory.

Emission inventories are thought to be the key uncertainty in the modelling of 

tropospheric ozone concentrations which are frequently simulated to support policy 

development: poor predictions in ozone concentration are frequently attributed to
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discrepancies in the emission inventory (Placet et al., 2000). For example, when using 

anthropogenic VOC emission estimates it has become common practice to adjust the 

emissions by a factor o f between 1 and 4 in order to obtain matches between the 

observed and simulated ozone concentrations (Velasco et al., 2005). This indicates 

that the “bottom up” approach to estimating the surface exchange is prone to large 

degrees o f uncertainty; therefore, perhaps potential alternative methods should be 

explored. An obvious choice would be to adopt a “top down” approach, whereby 

emissions would be measured directly from large area sources at the local or 

ecosystem level using direct micrometeorological measurements, or even at the global 

scale, e.g. using remote sensing or inverse modelling.

1.3 Top down approach to quantifying trace gas emissions

In 1996, FLUXNET, a global network o f long term mass and energy (CO2 , 

H2O and sensible heat) flux density measurement stations, was established (Falge et 

al., 2001). The goal of this programme and its component projects, such as 

CarboEurope IP, is to increase our understanding o f the terrestrial biosphere, in 

particular the way in which it responds to a changing atmosphere and the impact this 

has on global climate. Specifically, the FLUXNET programme measures CO2 (and 

H2O) fluxes to and from the Earth’s surface using automated micrometeorological 

techniques located on towers. The programme currently operates at 512 sites world 

wide, covering a diverse set o f landscapes, including agricultural, forest and grassland. 

Data gathered from these sites is used to develop surface parameterisation and 

aggregation schemes, which, when scaled up, give regional and ultimately global scale 

flux estimates o f carbon dioxide, which can be used to elucidate processes within the
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global carbon cycle, quantify C sequestration in forests and study the role o f land use 

change.

The FLUXNET network is perhaps the best and only example o f how a 

measurement approach has been applied at a scale large enough to provide trace gas 

flux estimates on a global scale. In order for direct measurements such as these to 

accurately quantify the surface exchange o f trace gases such as CO2 , measurement 

techniques must be based on a sound understanding o f the major transport processes 

that control the surface exchange within the PBL. In the subsequent sections the major 

atmospheric transport processes will be described and a basic introduction to 

micrometeorology and some of the fundamental flux measurement techniques will be 

given.

1.4 Atmospheric transport processes

The major transport mechanism within the PBL is turbulence. Atmospheric 

eddies are generated by wind shear. These eddies vary in size, from very high 

frequency eddies, with a time period o f less than 0.1 s, to low frequency eddies, where 

the time period can often exceed 1 hour. The random motion o f these eddies controls 

the transport o f heat momentum and mass within the PBL and are ultimately 

responsible for carrying the flux o f any given compound.

Where the surface topography is uniform or level, the volume of air 

transported upwards by turbulent eddies should equal that being displaced towards the 

surface. Therefore over a given time period the mean vertical wind velocity w should 

equal zero (where up-draughts are taken as positive values and down-draughts 

negative), as should the net movement o f an atmospheric scalar. It is only when there
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is spatial variability o f  a scalar such as a concentration gradient that net transportation 

can take place through the instantaneous fluctuations o f  w about the mean. For 

instance, in Fig. 1.2 emissions o f compound (/)  from the tree canopy cause significant 

concentrations o f /  above the canopy. However at the top o f the surface layer the 

concentrations o f /  are much lower. As the air depleted in /  in the upper surface layer 

approaches and interacts with the surface it becomes infused with compound /  before 

being transported upwards in its newly enriched state. Thus there is a net movement 

o f  compound /  away from the surface. Similarly, if /  is prevalent in the upper 

boundary layer, but depleted near the surface, an inverse gradient is realised and the 

air transported by down draughts moves compound /  towards the surface, thus a net 

deposition is observed (Plantaz, 1998).

104 m

103 m

- 1 5  m

(W*0)

W ( W=  0)
( t  = 0 (constant (z)))

-  5.1 m 

5 m

I 0
Fetch (1000 m)

Figure 1.2 D iagram  illu strating  the m echanism  o f turbu lent transport w hich is the dom inant 
transp ort process w ithin the p lanetary boundary layer.

1.5 T he conservation  equation

The turbulent exchange process described above is perhaps the most apparent 

means o f transport in the PBL. but there are further chemical and atmospheric
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processes occurring within this layer which cannot be neglected. Turbulent exchange 

is a one dimensional process, occurring in the vertical, as a product o f up and down

draughts. However, lateral transport can also occur in the form of advection, a process 

that occurs when the scalar varies in concentration laterally rather than vertically. 

Micrometeorological flux measurement techniques, that derive canopy-level fluxes, 

derive the surface exchange from measurements made at a reference height well above 

the surface. There are several factors that can lead to flux divergence between the 

surface and this measurement height. The theoretical framework for each o f these is 

provided by the conservation equation which parameterises the four major transport 

processes: turbulent exchange, horizontal advection, chemical reaction (source & sink 

terms) and molecular diffusion (D ) and forms the basis for a range o f aerodynamic 

and non-aerodynamic measurement techniques. It can be expressed as:

8 y/8 t = -u 8%/8x - v 8%/dy - w 8%/dz - 8u'%'/8x - 8v '%'/8y - 8 w '%'/8z + D + S  (1.1)

v-------------- V--------------M -------------v --------------- '

Advective terms Divergence terms Source sink terms

Here the concentration o f the scalar is given as % and the values of u, v and w 

represent the velocity o f the horizontal (aligned with mean wind flow), lateral and 

vertical wind components, respectively, and the values o f x, y, z, relate to their 

Cartesian coordinates. The first three terms on the right hand side o f the equation refer 

to the advection o f a scalar in the horizontal, lateral and vertical directions due to 

gradients in concentration. This commonly occurs when air o f a differing composition 

is driven by a pressure gradient and/or diverted by some topographic obstruction and 

mixed over the area o f exchange.
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The next three terms refer to the convergence or divergence o f the flux, again 

in the horizontal, lateral and vertical (turbulent exchange) directions. These terms 

relate to chemical processes which affect the transport o f a compound and may 

represent a significant source o f error when measuring exchange processes. In most 

land-atmosphere exchanges it is assumed that the formation or removal of a 

compound occurs only at the surface, a premise that does not consider chemical 

reaction within the air column itself. Sesquiterpenes (C 15H24) for example, are a highly 

reactive group o f biogenic volatile organic compounds (BVOC). Upon emission from 

a tree canopy, they can undergo reaction with tropospheric ozone and can be removed 

from the atmosphere in a matter o f minutes, never reaching the point o f measurement 

(Bonn et al. 2006). In such situations, the measured flux only represents a local flux at 

the point o f measurement, and not of what is occurring at the surface, therefore the 

emission flux is underestimated due to divergence. Analogously, the flux may be 

overestimated due to convergence, where chemical reactions cause “in air” production 

o f a compound. It should be recognised that the chemical formation or removal of a 

compound only becomes significant if the rate o f reaction is shorter or o f a similar 

magnitude as the transport time-scale.

The atmospheric transport processes described above form the basic principles 

o f any direct measurement. The subsequent sections illustrate how these concepts are 

used within a range o f flux measurement techniques.

1.6 Enclosure techniques (non-aerodynamic)

The enclosure approach is a non-aerodynamic flux measurement technique, 

which has become a popular method for the measurement o f VOC emissions from 

vegetation, under both laboratory and field conditions (Cao & Hewitt, 1999).
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Enclosures usually take the form of a leaf, branch or plant cuvette, and can either be 

static or dynamic in their operation. With static cuvettes, emission rates are derived 

from the rate o f change in species concentration within the cuvette headspace, 

whereas, with dynamic cuvettes, air is continuously pumped through and a 

concentration difference is realised between the incoming and outgoing air (Rinne, 

2001). Obviously, the measured emission or assimilation is only representative o f that 

section o f leaf tissue /  branch within the cuvette; therefore up-scaling is required to 

give flux estimates on larger length scales.

The relative simplicity, low cost and physical robustness o f enclosures make 

them very appealing, and given their capacity for slow responding chemical sensors, 

they seem an appropriate choice for the measurement o f VOCs. While enclosures 

have intrinsic worth, some obvious shortcomings arise through their use. By erecting 

physical boundaries around the domain o f interest, the natural biological function o f 

the vegetation within is perturbed, often yielding unrepresentative results. Changes in 

temperature, radiation balance, pressure and turbulence (wind speed and vertical 

profile) are often apparent when compared to conditions prior to the placement o f the 

enclosure (Fowler, 2001). In addition the use o f enclosures places a limit on the 

number o f  leaves or branches that can be encompassed within a wider spatial context 

such as a forest canopy. Thus, given that inter-leaf variability exists within the tree 

canopy, due in part to strong vertical gradients in photosynthetic capacity, sampling 

with any statistical confidence becomes difficult (Baldocchi, 2003). Similarly, 

enclosure techniques are unsuitable for very ‘sticky’ compounds that interact with the 

cuvette walls. Nevertheless, the concentration differences that need to be quantified by 

the chemical sensors in the enclosure technique are significantly larger than those in
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the micrometeorological approaches, making the enclosure technique the method of 

choice when fluxes are small and low flux detection limits are required.

1.7 Micrometeorological techniques (aerodynamic)

Another option is to adopt a micrometeorological approach using the 

conservation equation (Equation 1.1) and the concept o f a control volume mass 

balance. As we have seen, this volume can be defined implicitly through the use of a 

physical enclosure, but instead, here, a Cartesian coordinate frame is used to define a 

rectangular prism in the open air (Finnigan et al., 2002). Within this coordinate system 

the streamwise wind components u, v, and w correspond to the Cartesian coordinates 

x, y  and z respectively, and define the boundaries o f the prism over the exchange area. 

Accurately measuring fluctuations across each plane o f the control volume to separate 

the true turbulent exchange in the vertical, from the effects o f advection in the 

horizontal, would require a number of multidimensional (x, y, z) measurements at 

differing locations. Where the control volume has been defined physically through the 

use o f a cuvette or branch enclosure this task is simplified, as the air entering and 

leaving the enclosure headspace can be measured directly, but when a single, tower 

mounted, aerodynamic technique is deployed the complexity o f the task remains.

Fortunately, under certain “ideal” conditions, where the upwind area (fetch) of 

the measurement point is spatially uniform or level, an equilibrium boundary layer 

(EBL) may develop, in which the horizontal variability o f fluxes (advection) is 

negligible (Fowler, 2001). Hence, where chemically inert compounds are to be 

measured and storage terms are equal to zero, the conservation equation may be 

reduced to include only the effect o f turbulent exchange, allowing a greatly simplified, 

one dimensional (vertical) flux measurement to be made (Equation 2) (Denmead, 

1993).
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Fx = w'x' (1-2)

Within this thin surface layer the profiles o f gas concentration are at equilibrium with 

the local rate o f exchange occurring at the surface (Denmead, 1993), so effectively a 

layer o f constant flux (Prandtl-Layer) is formed in which micrometeorological 

measurements can be made at any height, yet still be representative o f the exchange 

occurring at the surface below. Elevating the point o f  measurement allows these 

techniques to operate on much larger length scales ( 1 0 0  m2 -  1 0 6 m2) compared to the 

enclosure method (0 . 1  m2- 1 0  m2), but stringent height restrictions demand that sensor 

height does not exceed the depth o f the EBL. Outside o f this region, the influence of 

horizontal advection can no longer be neglected, and fluxes may vary by more than 

10% compared to the true exchange occurring at the Earth’s surface.

A new EBL forms over each new surface the wind moves across, characterised 

by differences in roughness height, heat flux and emissions. The depth o f the EBL 

over a given surface is dependent upon the length o f fetch in the upwind direction (i.e. 

the distance to the next surface heterogeneity upwind) as well as the atmospheric 

conditions at that time (Fig 1.3). A general rule o f thumb is that the ratio of fetch to 

EBL depth is roughly 100:1 (McMillen, 1988), but when the atmosphere is stably 

stratified, the requirement for fetch may increase due to memory effects of distant 

upwind obstructions (Businger, 1986). More exact predictions o f the fetch 

requirement have been made using theoretical footprint models in a number o f studies 

(Leclerc & Thurtell, 1990 ; Scheupp et al., 1990 ; Horst & Weil, 1992) (Dabberdt et 

a l,  1993). Therefore under neutral or unstable atmospheric conditions, an upwind 

fetch o f 200 m, the height o f instrumentation should not exceed 2 m. When measuring 

over aerodynamically rough surfaces such as tree canopies or cities, wake turbulence 

is generated as the air flow interacts with the tree crowns or building tops, causing a



Chapter I 15

disruption to the constant flux layer and making measurements close to the tree tops 

unreliable (Baldocchi, 1988). Wind tunnel experiments have suggested this roughness 

layer to be approximately h + 1.5 L, for tree canopy m easurements, where h is the 

average height o f  the tree canopy and L, the approxim ate width o f the tree crown. 

Therefore the workable m easurem ent height must be above h+  1.5 L, (Raupach,

Stably Stratified Atm osphere

Roughness-Layer (Rz = h + Lt)

Neutral or Unstable AtmosphereW ind (u)

Figure 1.3 D iagram s illu strating  the effect o f a tm ospheric  stab ility  on the form ation o f an 
equilibrium  boundary layer.

1980). Over cities, the situation is more complicated as the surface is highly irregular 

and often roads, buildings, urban parkland and construction sites are found in close 

proximity. Nemitz et al. (2002) and Dorsey et al. (2002) where able to demonstrate 

fluxes could still be reliably measured over an urban environment provided the 

measurement height exceeded at least 3 times the average building height. In these 

studies, where CO: and aerosol fluxes were measured above the city o f Edinburgh, 

the chosen measurement site was Nelson monument, a 32 m tall stone tower located 

on Calton Hill (45 m tall), which gave them an effective elevation o f 67 m above
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street level. At this height it was shown that the wake turbulence, generated by the 

roughness elements below, blended into a homogenous net flux, therefore allowing 

them to make direct city scale flux measurements.

Although the previous sections have given a basic introduction to 

micrometeorology, briefly touching on some of the fundamental concepts o f turbulent 

transport and some of the theoretical requirements, it is apparent that 

micrometeorological techniques offer two distinct advantages over enclosure 

techniques. Firstly, they can integrate the measured flux over a much wider source 

area than enclosure techniques (Guenther, 2002), making them ideal for regional scale 

surface exchange measurements occurring above fields, tree canopies or cities, and 

secondly, as the instrumentation is tower mounted, downwind o f the source area, they 

are non-intrusive, do not alter the local environment and leave the exchange processes 

free from bias. We have seen how these techniques can be applied over a wide range 

o f environments, including both homogenous, and non-homogenous landscapes, and 

the theoretical concepts that allow us to do so have been outlined. The subsequent 

sections will now focus on some of the more common micrometeorological methods 

used for the measurement o f surface layer fluxes.

1.8 Eddy Covariance (EC)

At present the eddy covariance technique (EC) is the most direct approach 

available for the measurement o f turbulent exchange, and where field sites have 

sufficient fetch and are free from upwind obstructions it may be applied in its simplest 

form. As discussed above, the advective and source-sink terms o f the conservation 

equation can be neglected when measuring non reactive species within the EBL, 

through careful field site selection. Thus in EC, only the fluctuations o f the vertical
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wind component (w) and scalar concentration (y) are recorded over a time period (t). 

Measurements are direct and rapid, using fast responding analytical sensors to resolve 

high frequency flux contributions, which are responsible for the transport of a 

substantial share o f surface-layer fluxes (Rinne, 2001). Eddies by nature are irregular 

and random, therefore, micrometeorological techniques tend to quantify their 

behaviour through the use o f statistical averages, hence in the case o f EC, time t, is an 

averaging period o f typically 30 minutes. Using a time series o f this length not only 

ensures the calculated averages o f w and % are statistically well behaved (e.g. w = 0 ) 

(Lenschow, 1995), but also ensures the flux contributions from larger eddies are 

resolved within the flux calculation.

The flux o f a compound, Fx, is given as the time averaged covariance between w and 

X-

Fz = w z  + w 'z '  (1.3)

The first term o f equation (3) refers to the mean vertical transport o f air during the 

averaging period (denoted by over bars), which should equal zero provided fetch 

requirements have been fulfilled ( w = 0). Therefore the equation can be reduced to:

Fx = V t f  (1.4)

Here the flux is calculated from the transport resulting from instantaneous fluctuations 

o f both wind and scalar values about there respective means (w '= w -w )  (Plantaz, 

1998). In the convention adopted here, the flux (Fx) and vertical wind component (w)
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are taken as positive where there is net movement away from the surface, and 

negative, when movement is towards the surface (Nemitz, 1998).

1.8.1 Theoretical requirements - Stationarity

As mentioned above, flux measurements tend to be calculated as statistical 

averages and are therefore integrated over long time periods. Extending the averaging 

period can be desirable as it increases the statistical robustness o f the measurement but 

this can conflict with the requirement for stationarity. A measurement may be 

considered stationary when its statistical properties represent those o f the process 

being measured and not those o f the averaging period, i.e. the measured process is 

independent o f time (Dabberdt et al., 1993). At the local scale meteorological 

conditions often change rapidly, therefore averaging periods are usually limited to less 

than 1 hour. Eliminating periods o f non-stationarity is difficult but a number have 

tests have been developed which allow these periods to be filtered and removed from 

data sets. These tests will be outlined in more detail in the methods section.

1.8.2 Coordinate rotation

It is readily assumed that within the constant flux layer vertical wind velocity 

is equal to zero over time, but under field conditions a non-zero value is often 

observed, not due to degradation o f the constant flux layer, but due to misalignment or 

tilt o f instrumentation. Tilting o f the anemometer and consequently the coordinate 

frame causes the w wind component to become non zero due to contamination from 

the u and v components (Fig. 1.4).
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a.) x-y y-z plane = u *—* Horizontal

x-z plane = v Lateraly-z

x-y plane = w Vertical

b.)

Figure 1.4 Diagram (a) shows the Cartesian coordinate system used in m icrom eteorology. Small 
tilt errors in the m ounting o f the sonic anem om eter along either th e y  or x  axis as seen in (b) and 
(c) respectively can result in the contam ination o f the w wind vector. Appling two coordinate  
rotations, the first to align u into the x  direction and the second to align w into the z direction, 
effectively setting w =  0 and v = 0.

To correct for these tilt errors it has now become conventional to rotate the coordinate 

frame, first around the (z) axis to align the (x) axis with the mean horizontal wind 

direction U, thus setting (v = 0 ) (Stull, 1988), and secondly rotating around the (x) 

axis to align w with the (z) axis, thus setting ( w = 0 ) (Baldocchi, 1993).

1.8.3 Sensor requirements

Successful application o f the EC technique is dependent upon the response 

times o f the analytical instrumentation employed. Sensors for vertical wind speed and 

concentration must respond concurrently, at a rate sufficient to resolve the turbulence 

scales contributing to the flux (McMillen, 1988) and since the mean wind speed (and 

thus eddy size) varies with the logarithm of height, response times must increase as 

the measurement height is closer to the ground (Kanemasu, 1979). Field experiments
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conducted by Deacon (1959) suggest the frequency response times o f instrumentation 

should be at least 2 Ulz, where U is the highest expected wind speed, and z the 

measurement height. Therefore, a 10 Hz frequency would be required when 

measuring over a grassland field at a height o f 2 m ( U -  10 m s '1), whereas measuring 

above a 10 m tree canopy, at a height o f 15 m, response times could be relaxed to 

around 1.3 Hz.

For the measurement o f vertical wind speeds, the ultrasonic anemometer has 

become the instrument o f choice amongst the micrometeorological community. This 

well established field sensor measures wind speeds in three vectors, the vertical w, the 

horizontal (longitudinal mean surface flow) u and the lateral v, at a high frequency and 

with good sensitivity. Sonic signals are transmitted along the fixed orthogonal 

directions, and the wind speed is calculated by a microprocessor, as well as virtual 

temperature, which is calculated from a measurement of the speed o f sound. The sonic 

anemometer has a typical measurement resolution o f between 10 and 20 Hz, which 

makes it ideally suited to the monitoring of small scale fluctuations in both wind speed 

and temperature. This makes it an ideal instrument for the measurement of sensible 

heat fluxes, but if the eddy covariance technique is to be applied to the fluxes o f mass, 

analytical sensors with similar response times are required. As described earlier in the 

FLUXNET programme, these criteria can be met for some compounds such as CO2, 

heat and H2O, but for many others, they cannot, and hence the eddy covariance 

technique is unsuitable, and will remain so until future technological advances 

improve sensor response times.

Although it is encouraging to have a network o f monitoring stations measuring 

exchanges o f important greenhouse gases such as CO2 and H2O, there are many other 

trace gas exchanges which we currently cannot measure directly, or for which
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chemical sensors are too costly and labour intensive to run to make a large-scale flux 

monitoring network a viable option. O f particular concern are reactive trace gases 

such as VOCs, which as mentioned earlier can have a profound influence on our 

atmosphere. Quantifying their emission could help to elucidate factors controlling 

photochemical pollution episodes and aid policy makers in developing suitable 

amelioration strategies. Unfortunately, at present, with the exception o f the relatively 

new analytical technique proton transfer reaction mass spectrometry (PTR-MS) 

(Chapter 2), there are few VOC sensors available with fast enough response times for 

the EC technique to be applied. Consequently much attention has been devoted to 

developing alternative flux methodologies where the sampling rate can be reduced and 

hence the measurement response time of the sensor no longer becomes the limiting 

factor o f the flux measurement. In the following section some of the more notable 

VOC flux measurement techniques are described and a short discussion o f their 

respective merits and drawbacks is given.

1.9 Eddy Accumulation (EA)

Sampling fluxes at reduced rates was first suggested by Desjardins (1972). The 

conditional sampling method he proposed, now termed Eddy Accumulation (EA), 

involved the partitioning o f air samples into either an up-draught or down-draught 

storage reservoir depending upon the sign of the vertical wind velocity. Air samples 

were directed into the appropriate reservoir at a flow rate proportional to the vertical 

wind velocity at the moment o f sampling using a complex set o f valves and mass flow 

controllers. As with the EC method, measurements are integrated over a long time 

period t (5-30 mins), resulting in a concentration differences between the up sampled 

eddies and the down, hence the flux o f a compound (Fx) is simply given as the
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concentration difference between the up and down reservoirs over time /, multiplied 

by a pumping coefficient which describes the relationship between w and sample flow 

rate. This method is numerically identical to standard eddy covariance, but avoids the 

need for fast-response analysers as only the integrated reservoirs need to be analysed 

after each averaging period. The directness o f this approach makes it appealing, 

particularly for those compounds where poor sensor response times restrict the use of 

EC. However, there are a number o f drawbacks to be considered. Storage reservoirs, 

in the majority o f cases need to be analysed offline, which can be a hindrance for 

long-term studies. Furthermore, the use of the reservoir itself may lead to losses o f the 

compound(s) o f interest to reservoir walls, or in the case o f highly reactive chemical 

species, to the reaction with other compounds present in the reservoir, resulting in an 

underestimation of the flux. The method of sample capture is very demanding, and 

hence there is an overt need for technical precision and accuracy as even small 

discrepancies between the magnitude o f w and the magnitude at which air is actually 

sampled can have a large erroneous effect on the total flux estimation (Hicks, 1984).

1.10 Relaxed Eddy Accumulation (REA)

In 1990 the operation o f the eddy accumulation system was greatly simplified, 

when it was suggested by Businger & Oncley (1990) that the speed at which air was 

sampled could be made constant by introducing an empirical proportionality 

coefficient p. This greatly relaxed the technical demands associated with this method 

and hence the revised technique became known as Relaxed Eddy Accumulation 

(REA). The flux (F*) o f a compound (%) is now calculated as:

^ x = P °  w (Cup ” Cdown) (1.5)
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where P is the empirical proportionality constant and aw is the standard deviation of 

the vertical wind velocity. The value o f p can be verified by deriving it from 

independent flux calculations of other scalars who are subject to atmospheric transport 

by the same mechanism as mass, i.e heat (Oloffsen et a l., 2003). These measurements 

are usually made using the eddy covariance technique, since most commercially 

available sonic anemometers measure wind speed and temperature concurrently.

Although the original REA theory suggested that air be sampled into the 

appropriate reservoirs when w is either w > 0  or w < 0 , it has become common 

practice to introduce a “dead band” to further increase the concentration gradient 

between the up and down reservoirs and to avoid ambiguity when \w\ is small. For 

example, Olofsson et al. (2003) found it suitable to establish a dead band between 

+0.5ow and -0.5ow in their study o f VOC fluxes from a Swedish golf course. They 

demonstrated that by increasing the concentration gradient between the up and down 

sampled reservoirs, the demand on the detection limit o f  their system could be 

lowered. The REA technique has been used in many other studies for the 

measurement o f VOC fluxes and a lot of these have focused on measuring fluxes at 

ecosystem level above tree canopies (e.g. Greenberg et a l., 2003; Valentini et al., 

1997; Ciccioli et al., 2003). Other notable work has included validation studies (e.g. 

Komori et al., 2004; Gallagher et al., 2000) where REA fluxes have been compared 

with those measured by EC and a good agreement between data sets has been found. 

Studies such as these suggest the REA technique to be a good alternative to the EC 

technique, however there are some draw backs which need to be mentioned. Firstly, 

some problems associated with EA, such as offline analysis o f samples, and possible 

compound losses to chamber walls still remain. Secondly, by sampling the air at a
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constant rate and introducing a proportionality constant, the method can no longer be 

considered a direct measure o f the flux, but it relies on the parameter p. Finally, as air 

samples are taken online, in accordance with the “live” wind velocity measurements, 

there is no scope for the post processing o f data, therefore procedures such as the 

coordinate rotation need to be implemented during sampling and cannot be improved 

afterwards.

1.11 Disjunct Eddy Covariance (DEC)

Although the eddy covariance technique is the most direct technique available 

for the measurement o f surface layer fluxes, it has two significant drawbacks. The first 

is the need for fast measurement response times which has already been touched upon 

in Section 1.8.3, and therefore will not be discussed further here. The second, which 

involves the volume o f data generated, arises as a direct consequence of the response 

time. The typical response time for EC measurements is often o f several Hertz and 

consequently large volumes o f data are generated over short periods o f time. During 

the 1970s, both the EC technique and computers were in their infancy. Serious 

problems ensued due to the large quantities o f data which needed to be stored for post 

processing. Consequently a new method for calculating fluxes, disjunct eddy 

covariance, was proposed by Haugen (1978) as a way o f reducing the amount o f data 

needed to calculate the flux. Rather than sampling at fast rates to generate a quasi- 

continuous data set, it was proposed that the flux could be calculated using a subset of 

the continuous time series, i.e. the time series could be made discontinuous, while 

each data point remains a fast-response measurement. This concept is demonstrated in 

Figure 1.4. Since its initial concept, it has been demonstrated that, provided samples
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are acquired at a rate fast enough to resolve the flux contributions from high frequency 

eddies, the flux can be adequately resolved using a temporally discontinuous data set 

(Lenschow et al., 1994). This makes the disjunct technique an ideal tool for reducing 

the volume o f existing EC data sets. However, over the last 30 years computer 

technology has advanced rapidly, and consequently data storage is no longer the 

problem it once was, therefore the concept o f DEC was never readily adopted by the 

scientific community.

Vertical Wind Velocity

! ; 
•

! 1 J ;T' ; v i ‘ it,’ i

»y,
' 1 ii* (

.1 ■tw i, i'1! ! •%' 1 !i ' I 'j J li r  I 1, 1 ) i, i ■ I'l i . 9 i ,'i f  Vi! 
i } );i; f: '!i ™9• 

-
- - ; p  

! t |
Jjl'J! ^  

•

0  (i ijn1
■ iMi’o ■' i ki ;

Temperature •  Disjunct Grab Sample

27

25

23 r-,
o
tL_.
<Di—
3

21 TOi_0)Q.
£a)

19 H

17

15

50 100 150

Time [s]

Figure 1.4 Plot o f vertical wind velocity (w) and temperature (T)- Closed circles represent the 
disjunct sam pling protocol.

This technique still has relevance today as it can be adapted for the 

measurement o f compounds such as VOCs where the lack o f fast responding sensors 

restricts the use o f EC. Although it is still crucial for samples to be acquired at fast
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rates, they do not necessarily need to be measured directly by the senor as is the case 

with EC. Instead a sampling system where a grab sample o f air is rapidly aspirated 

into a canister can be used to allow slower sensors to draw upon air from the canister 

over a time period o f a few seconds. When analysis has been completed, the chamber 

can be evacuated, and a new sample taken. The more samples acquired over the 

averaging period the more statistically robust the flux measurement becomes, 

therefore, two storage reservoirs may be used in parallel, thus, when one reservoir is 

being evacuated the other can be analysed, hence maximising the volume of data 

collected.

The disjunct data collected can then be combined with the corresponding 

vertical wind velocities to calculate the flux in the same direct way as in eddy 

covariance, but from a discrete rather than quasi continuous time series:

F x =  - Z ( w »- “ ~ X ) -  0  -6 )
r i  i=n

To date, the disjunct eddy covariance technique has rarely been applied in the 

field, as many scientists have opted in favour o f the REA method. This is somewhat 

surprising considering the fact that unlike REA, DEC remains a direct measure o f the 

flux, and also allows rotation o f the coordinate frame to correct for tilt errors. The 

REA method produces fewer samples that need to be analysed and remains the single

height technique o f choice where samples need to be processed manually. By contrast, 

DEC is becoming the method o f choice for compounds for which analysers o f 

intermediate response time 3 -  30 s are available. One emergent family o f analysers 

that fulfil this requirement are quadrupole based mass spectrometers, which are fast, 

but usually need to cycle through a range of m/z. O f the few field applications that
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have taken place, the results have been encouraging. The first studies focused on VOC 

from Alfalfa fields, coupling the disjunct sampling system with the proton transfer 

reaction mass spectrometer (PTR-MS). The objective of these studies was to establish 

the effect o f cutting on the emission o f leaf injury compounds such as Ce aldehydes, 

alcohols and ester derivatives (Rinne & Guenther, 2001; Warneke et a l,  2002). More 

recently, Grabmer et al. (2005) deployed the technique at canopy level, measuring the 

flux o f various VOCs from a Norway Spruce forest. The results they obtained 

compared well with data collected by an REA system and enclosure techniques and 

clearly demonstrate the potential o f the DEC technique.

1.12 Aims and objectives

In view o f the important roles played by both anthropogenic and biogenic 

volatile organic compounds in regional and global scale atmospheric chemistry, a 

better understanding o f the processes controlling their emission is o f paramount 

importance. Bottom-up style emission models such as MEGAN for biogenic 

emissions and the NAEI for anthropogenic emissions represent the most effective 

means o f generating emission estimates at the desired length scales, but their accuracy 

is highly dependent on inputted variables such as basal emission rates or activity 

factors. In contrast direct measurement approaches such as eddy covariance flux 

measurements can integrate emissions over a significant source area thus removing 

the need to characterise emission sources and strengths. To this end, the work 

presented in this thesis is focused on developing new “top down” techniques for the 

measurement o f volatile organic compound fluxes which will have the potential to 

work with and alongside the existing “bottom-up” modelling approaches. The specific 

aims o f the work are threefold:
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(i) To develop and validate a DEC system for the measurement o f volatile organic 

compound fluxes.

(ii) To deploy the system over a range o f canopy types, including both urban and 

rural locations.

(iii) To compare the “top-down” flux measurements with “bottom-up” modelling 

approaches.
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Chapter II
2 . M ethodology

In this chapter a description of the main methods used throughout this thesis

will be given. The first section will describe in detail the proton transfer reaction mass

spectrometer (PTR-MS) which is the analytical instrumentation used throughout this 

study for the measurement o f volatile organic compound mixing ratios. The next 

section will elaborate on the disjunct eddy covariance technique, focusing on its 

design and testing as well as reporting on results from both theoretical and practical 

validation tests. After this, the virtual disjunct eddy covariance technique will be 

introduced, and its implementation outlined. Finally, the methods o f data analysis and 

quality checks will be described.

2.1 The proton transfer reaction -  mass spectrometer

During this work, VOC measurements were made using a proton transfer 

reaction mass spectrometer (Ionicon GmbH, Innsbruck, Austria). This instrument was 

chosen as it is the only commercially available VOC sensor that allows for the online 

measurement o f a wide range of compounds with both a high sensitivity and fast 

response times. These characteristics set the PTR-MS apart from other techniques 

such as gas chromatography mass spectrometry (GC-MS) and make the instrument 

ideally suited for micrometeorological flux measurements. Unlike most conventional 

mass spectrometers, the PTR-MS does not directly ionise the compound(s) o f interest 

using electrons or radiation; instead it uses a softer ionisation o f the VOC, based on 

the low energy proton transfer reactions (Ammann et al., 2004). The protonated VOC 

are then separated according to their mass charge ratio (m/z) and are subsequently
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detected downstream (Hewitt et al., 2002). A detailed description o f the PTR-MS can 

be found elsewhere (Lindinger et al., 1996; Hansel et al., 1995; de Gouw & Warneke, 

2006), therefore only a brief description will be given here.

The PTR-MS instrument is comprised o f four key elements which are shown 

in Figure 2.1; a primary ion source, a drift tube, a quadrupole mass spectrometer and a 

mass detection system (Hewitt et al., 2002). The ion source consists o f a high voltage 

hollow cathode which is continually flushed with pure water vapour to provide a 

stable source o f primary (H3CF) reagent ions. The number o f reagent ions produced is 

typically in the range o f (2.5 -  10) x 106 ICPs (ion counts per second), but this number 

can be varied by altering the flow of water vapour to the cathode and also by varying 

the voltages o f the two elements that make up the ion source. An increased primary 

ion count is desirable as the sensitivity o f the instrument may be increased but this 

may come at the cost o f producing a higher fraction o f NO+ and C>2+ impurity ions. 

These impurities are unwanted as they can undergo charge-transfer reactions with 

most VOC which competes with the proton transfer reaction and are harsher forms of 

ionisation than the desired proton transfer reactions and may thus lead to increased 

fragmentation o f analytes (de Gouw & Warneke, 2006).

Once the primary ion count has been optimised, the HsO+ ions are passed 

through a Venturi type inlet and accelerated into the low pressure region (~2 mbar) of 

the drift tube (reaction chamber). The drift tube is comprised of a number o f stainless 

steel rings which are separated by a series of insulating Teflon rings. A series of 

voltages is applied across the rings to create a homogenous electric field E  (E ~ 62.5 

V cm ' 1 under normal operating conditions). The electric field is used to dissociate the 

H3 0 +(H2 0 )n cluster ions which form when HsO+ ions become hydrated. The 

abundance o f cluster ions within the reaction chamber is dependent on the humidity of
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the sample air and typically cluster ions make up < 5% of the total reagent ion count 

and are dominated by the first cluster (n = 1; m/z = 37). Suppressing the reagent 

clusters is important as they can react with VOC which can complicate the 

interpretation of the instrument spectrum (Hewitt et al., 2002).

pump pump
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inlet pump

ion source drift tube ion detection s y s t e m

Figure 2.1 Schem atic o f the PTR-M S instrum ent showing the three m ajor com ponent parts, ion 
source, drift tube and detection chamber.

Once the H30 + ions are in the drift tube, they react with any constituent of air 

with a higher proton affinity than that of water. Given that the major components of 

air such as N 2 , O2, CO2 and CO all have proton affinities less than that o f water and 

will therefore only undergo non reactive collisions with the primary ions, air for 

analysis by PTR-MS can be flushed directly into the drift tube without the need for 

prior conditioning or pre-concentration. At typical ambient concentrations the number 

o f primary ions should be in great excess of that o f the VOC thus in the case of most 

analytes the following proton transfer reaction will occur:
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H 30 + +VOC—k—^ H 70  + V 0 C H +
2 (2 .1)

Provided the VOC remain at a typical, stable, ambient concentration (< 1 

ppm), the concentration o f HsO+ ions will not be diminished significantly by Reaction 

(1), unless the initial supply from the hollow cathode is reduced. Such a scenario 

allows for the reaction kinetics to be linearised, thus the VOC concentration may be 

calculated from the ratio of protonated VOC to the primary ion (Ammann et al., 

2004).

VOC * (2.2)
kt H  0 +

3

where k  is the reaction rate coefficient and t is the reaction time corresponding to the 

transit time o f primary ions through the drift tube.

Following the proton transfer reaction, newly protonated VOCs are passed 

through a quadrupole mass filter which can either be set to scan the entire mass 

spectrum or run in a selective ion mode, where the mass filter steps between a suite of 

pre-determined m/z. The primary and selected product ions are subsequently detected 

as ion counts per second or “hits” by a secondary electron multiplier (SEM) (Tani et 

al., 2002).

2.1.1 Mass Detection System

The low energy chemical ionisation used in PTR-MS means that many o f the 

reactions in the drift tube are non-dissociative, that is to say that the protonated ions 

do not fragment. For example, the Ce compound Benzene has a molecular mass of

78.1 therefore once protonated it can be detected at m/z 79. However, this may not 

always be the case as higher energy reactions occurring with cluster ions can often 

lead to the fragmentation o f VOC, which means the parent VOC may be detected at a
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number o f different masses. Examples o f this are the monoterpenes which are known 

to dissociate in the PTR-MS and can be detected as fragment ions at m/z 81 and m/z 

137.

As the quadrupole mass spectrometer has a unity resolution, i.e. compounds 

with a similar molecular weight are detected at the same integer amu, it can be 

difficult to attribute ion counts to specific VOC without the aid o f ancillary 

measurements. Examples of this include isoprene and furan which have protonated 

molecular weights o f 69.117 and 69.074 respectively. Measurement o f either one of 

these compounds by PTR-MS alone may result in the over estimation o f the VOC 

present.

2,1.2 Instrument Background

The PTR-MS can be subject to high background counts o f VOC; therefore it is 

important to monitor these counts and subtract them from measured concentration. In 

order to accurately quantify contributions from the instrument background it is 

necessary to sample from a zero air source which is free from all VOC. Previous 

studies have shown that the instrument background is not always constant and is likely 

to fluctuate with changes in sample air humidity as the VOC have a tendency to 

desorb from tube walls when the air is hydrated. This means that wherever possible 

the instrument background should be monitored at regular intervals.

In order to generate a zero air source for the PTR-MS instrument, a number of 

scrubbing agents were compared in order to find the most effective VOC scrubber. 

Filters containing each scrubbing agent were fitted in front o f the PTR-MS inlet which 

continually sampled laboratory air. A monitoring sequence was programmed to 

control a small 1/8” 3-way Teflon headed solenoid valve which switched continually
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between ambient air and the scrubber every 25 measurement cycles. The scrubbing 

agents tested included, activated charcoal, silica gel, molecular sieve, and drierite. The 

results for these filters are shown in Figures 2.2, 2.3, 2.4 and 2.5 respectively.

O f the four filters tested, the molecular sieve was the most effective in actively 

removing methanol, acetaldehyde and acetone from the sample air to give background 

concentrations o f 1.7 ppb, 0.5 ppb and 0.3 ppb. Although the drierite filter also 

actively removed these compounds, the recorded backgrounds were higher than that of 

the molecular sieve. The fact that the isoprene concentration (m/z 69) remained 

unaltered with all tested filters suggests that either these filters cannot remove this 

compound or that the concentrations present within the laboratory were less than that 

o f the instrument background.
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Figure 2.2 VOC concentrations measured with and without a charcoal filter placed inline.
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Figure 2.3 VOC concentrations measured with and without a silica gel filter placed inline.
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Figure 2.5 VO C concentrations measured with and without a m olecular sieve filter placed inline

The charcoal filter performed less well and only removed acetaldehyde and 

methanol and worryingly increased the concentrations o f acetone and water vapour. 

The silica gel also showed signs of contamination as concentrations of methanol and 

acetone measured through the filter exceeded that o f the laboratory air.

Each o f the filters tested affected the concentration o f m/z 39, the EbCf water 

cluster, by either stripping the water vapour or in the case o f the charcoal filter, adding 

humidity. It is important that the humidity of the zero air be the same as the sample air 

as large variations can lead to an erroneous measure o f the instrument background. On 

this basis an alternative method was tested. A glass tube packed with platinum powder 

catalyst was heated to 200°C and sample air was pushed through at a flow rate o f 600 

ml m in'1 by a small pump. As the catalyst reaches the set temperature VOCs become 

oxidised by the powder and are removed from the air stream. Air for analysis by the
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PTR-MS was cooled using a peltier system and then sub-sampled from the outflow at 

a flow rate o f 300 ml m in'1. Unlike the previous filters, the platinum catalyst does not 

affect the humidity o f the sample air; therefore it was chosen as a suitable zero air 

source in this work. The performance of the platinum catalyst is shown in Fig. 2.6, 

where acetone, methanol and water vapour [m/z 37) concentrations were measured.
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Figure 2.6 VO C concentrations measured with and without a platinum catalyst placed inline.

2.1.3 Th e P TR -M S control software

The Quadstar control software (Balzers GmbH) that shipped with the PTR-MS 

used during this study allows the user to operate the instrument in a number of 

different modes. VOC can either be measured in a selective ion mode, were a 

measurement file (mip) can be created to measure a predetermined suite o f masses, or 

in a mass scan mode, were the entire mass range will be measured sequentially. In 

each mode data is outputted in an ASCII format and VOC are recorded as ion counts
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per second (CPS). In order to convert the data into meaningful concentrations, data 

must be further manipulated outside the Quadstar software in what can be a time 

consuming process. In order to avoid this and also to allow the simultaneous data 

acquisition o f both the PTR-MS data and wind speed data to a single file, an 

alternative approach was developed. Within the Quadstar software exists a function 

that enables the user to write text based command sequences (Appendix I). Sequence 

files can contain instructions such as the activation o f a mip file or the switching of a 

sample valve and allow the PTR-MS to become fully automated. A sequence file was 

written that enabled the PTR-MS data to be exported to the data acquisition software 

Lab VIEW using the “dynamic data exchange” (DDE) protocol. DDE is a Microsoft 

Windows based technology which allows data to be passed between applications on a 

client -  server basis, where the client (LabVIEW) continually requests data from the 

server (Quadstar) who subsequently sends or “pokes” new data to the client at the end 

o f each measurement cycle. This allows the PTR-MS data to be exported to a logging 

programme written in LabVIEW in real time, where it can be converted from ICPS to 

ppb and stored together with the wind data.

In the past attempts have been made to transfer signals from the PTR-MS to 

the operating system using either optical interface cables (very costly), by wiring the 

output into the A/O of the sonic anemometer (technically demanding and introducing 

additional uncertainty due to digital-analogue conversions), or where PTR-MS and 

wind data were recorded on different PCs with different clocks. The DDE approach 

utilises existing software, so its application comes at no added cost, and no external 

hardware or wiring is required, making it simple to setup and use and an ideal choice 

for this study.
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2.1.4 Maintaining optimum secondary electron multiplier operating voltage

Protonated VOCs and their fragment ions are detected as ion counts by a 

secondary electron multiplier. During the measurement process the surface o f the 

SEM gradually degrades and thus the sensitivity of the instrument is reduced. To 

compensate for this drop in sensitivity, the voltage supplied to the secondary electron 

multiplier (SEM) may be periodically increased to maintain optimum instrument 

sensitivity. Should the voltage supplied to the SEM be set too low then the ratio of 

V 0 C:H3 0 + will change and result in a large underestimation o f the true ion count. 

Conversely, if  the operating voltage is set too high both the signal to noise ratio and 

the operating life o f the SEM will be reduced (Wilkinson, 2006). Therefore it is 

necessary to ascertain and maintain the correct operating voltage throughout any 

measurement campaign.

The operating voltage of the SEM was tested routinely during each 

measurement campaign using a programme developed in LabVIEW and Quadstar. 

Firstly a sequence file written in Quadstar was used to activate a 3-way solenoid valve 

which flicked between the VOC sampling line and a 5 litre Tedlar bag filled with 

breath isoprene. Next, the sequence set the SEM voltage to 2000 V before measuring 

the primary ion (m/z 21) and isoprene (m/z 69) counts for a period o f 10 cycles. Upon 

completion o f the cycles, the sequence file increased the SEM voltage by 50 V and the 

measurement process was repeated. The SEM voltage continued to be ramped up in 

50 V increments until the maximum operating voltage o f 3500 V had been reached 

(NB -  the 2000-3500 V range was applied for the Pfeiffer SEM and a 1400 -  2500 V 

range was applied for the Mascom SEM). Measured ion counts were transferred to a 

LabVIEW logging programme using the DDE application described above. Here, m/z 

69 counts were converted to mixing ratio o f isoprene in ppb and the average ratio of
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the signals at m/z 69 and m/z 21 over the I 0 cycles measured at each operating voltage 

was calculated. The results were then plotted on screen in “real tim e5' which allowed 

the user to quickly ascertain the optimum operating voltage with a minimal disruption 

to the flux m easurem ent process as shown in Fig. 2.7.

F igure 2.7 Screen-sh ot from  the LabVIEW  logging softw are show ing the result from  an SEM  test 
o f a relatively new  SEM . T he point at w hich the ratio o f  m /z 69 to m /z 21 begins to plateau is 
considered  to be the optim um  operating voltage. T herefore in this case the SEM  voltage was 
adjusted  to 2500 V.

2.2 D isjunct eddy covariance -  concept and  design

The flux o f VOC between the land surface and atmosphere is carried by the 

motion o f turbulent eddies. These eddies span a wide frequency spectrum, with both 

large and small fluctuations contributing to the transport, thus the total flux is spread 

across this spectrum. In order to accurately quantify the VOC flux it is therefore 

necessary to resolve the entire spectrum of frequencies that contribute to the vertical 

flux within the llux calculation. In practice this may not be possible for two reasons:

3TRMS Group ute.vi

Window

I PTR-MS S etup  SEM TEST P re ssu re s  VOC C oncentra tions [ppb]

SEM TEST - 69:21 v Voltage

File Name
h|c rt0607

Pfieffer

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
Voltage

LabVIEW



Chapter II 41

firstly even the fastest responding analytical sensors are restricted to measurement 

speeds o f several Hertz and, secondly, contributions from lower frequency eddies may 

be o f the order o f hours, which can results in the inclusion of non-stationarities. 

Therefore all flux measurement systems are in effect bandwidth limited and thus for 

accurate flux estimates to be made it must be ensured that the section o f the turbulence 

spectrum being measured is responsible for carrying the majority o f the flux. This 

“flux carrying” bandwidth is not fixed and tends to vary as a function o f measurement 

height, wind speed and atmospheric stability with high frequency flux contributions 

becoming more important as the measurement height approaches the surface, wind 

speed increases and during increasingly stable conditions. Currently the eddy 

covariance method is the technique that offers the widest flux bandwidth due to the 

high frequency sampling rates used. However, the disjunct eddy covariance method 

can match this provided a good approximation o f the frequency spectrum is obtained. 

In order to do this sample air must be acquired at the same rate as in eddy covariance, 

thereby resolving high frequency flux contributions. This can be achieved in one of 

two ways, either by measuring it directly at a fast rate (i.e. EC) or by rapidly capturing 

a grab sample o f air which can be analysed offline. Repeating this process at regular 

intervals throughout the averaging period results in a statistically robust 

approximation o f the frequency spectrum from which a flux may be calculated.

2.2.1 Theoretical testing o f the DEC concept

The disjunct eddy covariance technique can be tested theoretically using a 

subset o f a quasi-continuous eddy covariance time series. Extracting data points at 

regular intervals from the EC data file can simulate a disjunct time series and by 

increasing or decreasing the number of data points used in the flux calculation it is
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possible to assess the statistical error introduced through the use o f a discrete time 

series.

A programme was written in LabVIEW to read in 30 minute quasi-continuous 

EC data files and calculate the flux o f sensible heat. The programme then recalculated 

the flux extracting single data points every 1 s (20 data points at 20 Hz or 10 data 

points at 10 Hz), 3 s, 5 s, 10 s, ... 55 s and 60 s. The results are summarised in Fig. 2.8 

as a scatter plot and detailed in full in Table 2.1. It becomes apparent that as the 

disjunct sampling intervals are increased and the number o f data points used in the 

flux calculation becomes fewer, the uncertainty in the individual measurement is 

increased. However, despite the wider spread o f the data, the mean remains 

unchanged as errors either side of the mean cancel, hence comparison o f the sum of 

the fluxes measured by EC with those measured by DEC results in a bias o f typically 

less than 2%, even at intervals as long as 60 s.

Table 2.1 Analysis o f the effect of using the disjunct eddy covariance sam pling protocol. Here it is 
shown that although the correlation coefficient becomes reduced as the disjunct sampling 
intervals (DSI) are extended, no systematic bias is introduced to the flux, as shown by the 
gradient o f the line (m) which was obtained from scatter plots o f EC and DEC flux measurements 
and com pared to the assumed 1:1 relationship.

DSI

f sI
1 5 10 15 20 25 30 35 40 45 50 55 60

R 1.00 0.97 0.93 0.90 0.85 0.81 0.79 0.80 0.71 0.71 0.69 0.63 0.63

m 1.00 0.99 1.00 1.04 0.98 1.05 1.00 1.02 0.96 1.09 1.11 1.00 1.01
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Figure 2.8 The relationship between a set of eddy covariance sensible heat fluxes and disjunct 
eddy covariance sensible heat fluxes with differing disjunct sam pling intervals.

Figure 2.9 illustrates the linearity of the relationship between the statistical 

uncertainty o f the flux measurement, in this case shown as standard deviation, and 

increasing disjunct sampling intervals. This relationship has been tested at a number 

of different measurement heights and the results always yield a linear regression line.
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Figure 2.9 Evaluation of disjunct sampling intervals shows an increase in standard deviation (SD) 
of the calculated heat fluxes [W m'2| measured at heights of 5 and 95 m as the disjunct sampling 
interval is increased. A linear relationship holds for a range o f m easurem ent heights (z).
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Further theoretical tests were applied to each data set to investigate the effect 

o f decreasing the speed at which a grab sample o f air is collected (i.e. decreasing the 

grab sample time from 0.05 s, to 0.1 s, 0.2 s or 0.5 s etc). In practice this is simulated 

by simply averaging the EC temperature data over 2, 4 or 10 data points, rather than 

picking out individual data points as was the case in the previous example. In theory 

the flux will be reduced as the effective flux measurement bandwidth is shortened, 

therefore higher frequency flux contributions are lost. This process can be clearly seen 

occurring in Fig. 2.10 which plots the gradient of the line (m) applied to scatter plots 

between EC fluxes and simulated DEC fluxes measured at a height o f 5 m. Here, m, 

which should be equal to one if there is no flux loss, is systematically reduced as the 

grab sample time increases and at longer integration times the error becomes larger 

than the random statistical error introduced by the DEC sampling protocol.

Applying this procedure to a second set of EC data recorded at a height of 95 

m (Fig. 2.11) demonstrates how the bias scales inversely with height. This is because 

the mean eddy size increases as you move away from the Earth’s surface, which 

means higher frequency eddies carry less o f the flux. Therefore, at higher 

measurement locations, longer sampling times may be used without a significant 

underestimation o f the flux. At this site the statistical error introduced by the DEC 

approach was larger than in the previous example, as the absolute value o f the fluxes 

was smaller.

These numerical experiments show how the DEC concept can be used to give 

a good approximation o f surface layer fluxes. The increased statistical uncertainty in 

the individual flux measurements, which is associated with disjunct sampling intervals 

o f a few seconds or more, suggest the technique to be less suitable for measuring 

accurate individual 30-minute fluxes than EC. However, in situations where an
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Figure 2.10 The relationship between eddy covariance and disjunct eddy covariance fluxes 
measured at a height o f 5 m (Castelporziano, Italy). DEC fluxes were calculated using different 
grab sam pling times (0.05, 0.1, 0.2, 0.5 and 1 s). DEC fluxes are system atically biased towards 
lower values at longer sam pling times as higher frequency flux contributions are attenuated and 
lost.

estimate of the net exchange occurring over a day, week, month etc. is required (i.e. an 

inventory approach) the uncertainty associated with individual measurements is 

averaged out, and an approximation of the flux can be given to within a few percent of 

the “true” (EC) value. It should be noted, however, that typical difference between 

fluxes measured with two collocated EC systems already tends to differ by typically 

15-25%, due to statistical horizontal variability of turbulence (Wilson & Myers, 

2001 ).

The study has also demonstrated that the effective response time (i.e. 

grab sample time) o f the sampling system is likely to be a larger source o f bias than 

the use o f a discrete time series for the flux calculation at lower measurement heights.
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Figure 2.11 The relationship between the sum of eddy covariance and disjunct eddy covariance 
fluxes m easured at a height o f 95 m. DEC fluxes were calculated using different grab sampling 
times (0.05, 0.1, 0.2, 0.5 and 1 s). DEC fluxes are system atically biased towards lower values at 
longer sam pling tim es as higher frequency flux contributions are attenuated and lost.

Therefore, steps should be taken to minimise the time taken to acquire a grab sample

o f air and thus maximise the flux bandwidth o f the technique.

2.3 The d isjunct flux sam pler

In order to measure VOC fluxes using the PTR-MS, a disjunct flux sampling 

system (DFS) was constructed following the design outlined by Rinne et al (2001). 

The DFS comprised two stainless steel canisters which acted as intermediate storage 

reservoirs (ISR) for sampled air. The canisters were cylindrical in shape in order to 

reduce surface area and limit losses of VOC to chamber walls. Furthermore heater 

cable was applied to each canister to maintain a temperature o f 40 °C which prevented 

condensation forming within the sampling system. In order to rapidly capture grab 

samples o f air, ISRs were first evacuated to a low pressure (150 -  300 mbar). The
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solenoid valve fitted to each ISR was then activated for a fraction o f second to allow 

the canister to pressurise. As illustrated previously, the time taken for the ISR to reach 

ambient pressure is an important consideration as in effect it determines the lower 

limit o f the flux bandwidth. Therefore fast switching high conductance valves 

(Lucifer, E121K45, Parker-Hannifin Corporation) were fitted to each canister, as their 

11 mm orifice decreased sample times from 0.8 s when using standard valves 

(Lucifer, Hycontrol Ltd) to 0.5 s. The design schematic o f the DFS is shown in Fig. 

2.12. The DFS has two independent sampling channels to optimise the number of 

samples that can be taken throughout the averaging period. Thus as one channel is 

being evacuated the other can be analysed by the PTR-MS and vice versa. This 

approach helps to reduce the statistical uncertainty in the measurement.

Before the system was deployed in the field it was first optimised in a series of 

laboratory tests.

2.4 Laboratory Testing

The disjunct eddy sampler (DFS) is a passive air sampler designed to take 

almost instantaneous (0.1 - 0.5 s) grab samples o f air at regular intervals. As 

mentioned previously, sample air is taken on two separate channels in order to 

maximise the number o f samples taken during a set averaging period. While one 

channel is sampling the other is being evacuated and vice versa. This multiple channel 

setup, although beneficial to the statistical robustness o f recorded data, has the 

potential to introduce mixing and dilution errors between samples in those areas where 

valves and pipe work interconnect the two channels. Such mixing effects are already 

present within the system due to the -10%  carryover between samples which occurs 

due to the incomplete evacuation o f the intermediate storage reservoirs (ISRs). This
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memory effect between samples has been shown to result in a ~ 4% underestimation 

o f the flux (Rinne et al, 2001). Mixing, or the dilution o f samples between the two 

channels, should not occur in an air tight system, with this in mind a simple 

experiment was designed to test the independence of the two channels and the validity 

o f the system as a whole.

The DFS was setup under “normal” operating conditions; intake valve 

switching set for 0.5 s opening (the minimum time required for an evacuated ISR to be 

pressurised to ambient level), and sample analysis time (disjunct interval) set to 12-15 

s. The latter parameter being variable depending upon the number o f masses under 

analysis and the dwell (analytical time) set for each mass.

A Tedlar® bag filled with breath isoprene was attached to the intake valve of 

one channel, the other left open to ambient air. A short length o f 'A” PTFE tubing 

connected the bag to a manually operated 2-way solenoid valve (Swagelok, 

Manchester Fluid Systems), with a further inlet line connected directly to the DFS and 

the other line to the PTR-MS instrument. Such a setup allows the PTR-MS to freely 

switch between analysing the air within the Tedlar® bag and the air from the DFS.

T e f l o n  B a g ISR 1

To PTR-MS
Pump2  w a y  

v a l v e
ISR 2

P T R - M S

Figure 2.12 Schem atic o f the disjunct eddy sampler and experim ental setup. Crossed circles 
represent com puter autom ated sw itching valves and red circles areas o f the system where the two 
independent channels converge.
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The results o f the experiment are shown in full in Appendix III and are briefly 

summarised here. Figure 2.13 shows the testing of the disjunct flux sampler (channel 

2) after optimisation. Mixing ratios of isoprene measured from the bag and DFS are 

similar, indicating the system to be well sealed. Surprisingly, isoprene concentrations 

measured from the DFS are slightly elevated over concentrations measured directly 

from the bag. This is thought to relate to changes in drift tube pressure and is 

discussed further in section 2.4.1.

BAG DFSDFS
60 -

-Q
Cl
Cl

(D
C<D
CL O (n

20  -

10 20 30 40 50 60 70 80 90 100 110 1200
Measurement Cycle

Figure 2.13. Results from a leak test carried out on Channel 2 after the reorientation o f valves 3 
and 6. Concentrations now being representative o f that of the bag indicate an air tight system.

2.4.1 Effects o f changing drift tube pressure

Under normal operating conditions the PTR-MS is set to a specific Townsend

(Td = Townsend; 1 Td = 10'17 V cm2 mol"1). The Townsend is a measure of E/N

(where E is a measure of the electric field strength and N  the number density o f the

buffer gas) within the drift tube (Tani et al., 2003). The Townsend is controlled by a

number o f parameters such as drift tube temperature, drift tube electric field and drift

tube pressure, thus any changes in these parameters will result in a changing E/N  ratio.

The E/N  ratio o f the PTR-MS has been shown to be an important factor in the

fragmentation o f monoterpenes such as a- and p-pinene under certain humidity
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conditions and water vapour pressures and controls the dissociation o f the water 

clusters (Tani, et al., 2003). It therefore becomes an important consideration to 

monitor the E/N  ratio when such monoterpenes are under investigation.
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Figure 2.14 The effect that the disjunct flux sampling system (DFS) has on the PTR-M S drift tube 
pressure (crosses) is clearly illustrated, which in turn impacts upon m easurem ents o f m/z 21 
(closed circles), m /z 39 (closed triangles) and m/z 69 (open circles).

During sampling with the DFS system, a slight back pressure is created as the 

PTR-MS draws air from the intermediate storage reservoir for analysis, as shown in 

Fig. 2.14. The volume of air taken from the canister during the analysis period is small 

but sufficient to see fluctuations in drift tube pressure which coincide with the channel 

valve switching, which in turn cause fluctuations in the E/N  ratio to as much as 4-5 Td 

as shown in Fig. 2.15. It is clear that as the drift tube pressure increases, the E/N ratio 

decreases, which reduces cluster dissociation in the drift tube and explains the 

increased concentrations of m/z 39 ( H 3 O  (H20)n) measured by the DFS relative to that 

observed in the bag. In order to curtail this problem, two steps were adopted during
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field operation to minimise the volume of air that needed to be taken from the ISRs 

during analysis. Firstly the length o f tubing linking the PTR-MS to DFS was kept as 

short as possible and the diameter of the tube reduced to 1/8”. Secondly the flow rate 

o f the PTR-MS was reduced from 300 ml min’1 to 150 ml min’1 which effectively 

reduced the observed backpressure by 50%.
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Figure 2.15. Fluctuations o f the E /N  ratio as a result of changing drift tube pressure due to the 
operation o f the DFS system . Initial operating conditions were set at 125 Td but rose to an 
average o f 129 Td.

2.4.2 Correction for sample carry-over

The carryover of sample air between one ISR grab sample and the next is a 

potential source o f error within the DEC measurements and therefore a correction 

factor is necessary. The volume of residual air in each ISR is dependent on both the 

strength o f the pump used to evacuate the ISR and the time available for evacuation 

and is typically in the region of 150 -  300 mbar. The effective carryover is also 

influenced by the volume of air in the ISR when full, which under certain conditions 

may not always equate to the 1000 mbar ISR volume. Such scenarios present 

themselves when an inadequate sampling time is used (< 0.5 s) or when it is not
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possible to mount the DFS on a mast, therefore valves are teed directly into a sample 

line which may be subject to a large pressure drop (-200 mbar). In order to express 

the carryover between one ISR sample and the next in terms o f a percentage, it is first 

necessary to calculate the amount o f air contained within the ISR when both full and 

empty. In order to do this the ideal gas law was rearranged to give:

where P  is the pressure inside the ISR [Pa], V, is the volume o f the ISR [m3], R is the 

ideal gas constant [8.314 m3 P a K '1 m o f1] and T  is the temperature [K]. Typically the 

percentage carryover varied between 15 % and 35 % depending on the system setup 

used. In order to correct for this the following equation was applied to all measured 

concentrations.

where % is the concentration within the ISR, x  old is the previous concentration o f the 

same ISR, q i is the amount of air within the ISR when full and q 2 is the amount of air 

within the ISR when evacuated.

2.5 Field testing -  evaluation against EC

In order to evaluate the performance o f the newly developed disjunct flux 

sampling system, it was tested under field conditions against an existing eddy 

covariance setup. Although the DFS is a system designed to measure the fluxes of 

VOC, for a direct comparison to be made with the EC technique, test compounds

q = P x V /R  x T (2.3)

X c o r r = ( X  X m  ~ X o l d x  T \2 ) /  & [ l ~ r \ 2 ) (2.4)
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which are measurable by both techniques must be used. For this reason the DFS was 

setup to measure the fluxes of both carbon dioxide and water vapour, and the results 

were compared with those measured from an eddy covariance system which operated 

close by.

2.5.1 Field experiment and setup

During October 2005, CO2 , H2O and sensible heat fluxes were measured 

from the Easter Bush field site near Penicuik, Edinburgh (3° 12’ W, 55 0 52’ N). The 

site is situated on the boundary line (running NW to SE) between two intensively- 

managed grasslands and has a fetch o f approximately 200 m in the main SW and NE 

wind directions (Fig. 2.16). Both fields are grassland and are predominately composed 

o f Ryegrass (Lolium perenne) which accounts for over 90% o f the species present. 

Due to the nature o f the surrounding topography, with the Pentland Hills to the 

northwest, the wind is predominantly channelled in either a south westerly (27.1 %) or 

north easterly (69.4 %) direction, allowing micrometeorological flux measurements to 

be made in one field or the other for 96.5 % of the time, as the boundary line 

separating the two fields is orientated in a NE-SW direction. The history and 

management o f both fields is very similar. More details have been provided by Marco 

et al. (2004).

An ultrasonic anemometer (Solent Research R3, Gill Instruments Ltd, Lymington, 

Hants, U.K.) and the disjunct flux sampler were mounted at a height o f 2.1 m above 

ground level (Tower [A]), 3 m from an existing eddy covariance system which 

operated at a similar height (Tower [B]). Concentrations o f CO2 and H2O were 

measured by a closed path infrared gas analyser (IRGA, Model 7000, Li-Cor). The
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IRGA has a response time o f >10 Hz making it suitable for both the eddy correlation

and the disjunct eddy correlation method, allowing a direct comparison to be made.

Easter Bush Field 
Site, Scotland.

Y /J \ Woodland

Grassland Field 

|  Measurement hut 

O EC Setup 

•  DEC Setup

CN

100 m

Figure 2.16 Diagram of the Easter Bush Field site adapted from M arco et al (2004). A fetch o f 200 
m exists in the north east and south westerly directions which are also the predom inant wind 
sectors.

2.5.2 Disjunct Flux Sampler - setup

The sampler was mounted vertically below the ultrasonic anemometer at a 

measurement height o f 180 cm, with a 30 cm separation between inlet valves and 

anemometer. This location was chosen as vertical displacement o f the chemical sensor 

or air intake to the bottom leads to the smallest flux loss (Kristensen et al., 1997). 

Solenoid valves and pipe work were mounted on a perforated metal sheet minimising 

the disruption o f airflow around the sampler. Two rain shields protected the inlets 

from precipitation, while a fine wire mesh stopped foreign bodies entering the valves.

As one ISR was evacuated the other was analysed by the IRGA. As air is 

drawn from the ISR, a pressure drop is created which can affect the sensitivity of the 

IRGA despite the built-in pressure correction. With this in mind the IRGA was placed
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Figure 2.17. Schem atic o f the disjunct flux sampler setup at the Easter Bush field site in Scotland.

directly below the DFS and connected using a short length of 1/8” PTFE tubing, 

minimising the volume. Furthermore, the internal pump of the IRGA was run at a 

relatively low flow rate and plumbed to be upstream of the measurement cell, which 

therefore was kept at ambient pressure, thus reducing the effect of the canister 

vacuum. The DFS was set-up in such a way that the sample line to the IRGA 

alternately sampled from the two ISRs. To ensure the independence of each grab 

sample, an average of only the last 50 data points (the last 5 s) was used. This way the 

effect of inter-channel mixing within the sample line was minimised.

The solenoid valves used to initiate the sampling and analysis phases of the 

disjunct sampler were controlled by a programme written in LabVIEW™ (version 6.1,
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National Instruments). Although the inlet valves had a response time of 10 ms, the 

sampling time was limited by the time taken for the canister to fully pressurise, 

therefore the sampling and analysis times were set to 0.5 s and 15 s respectively. Two 

small silicon pressure sensors (OMEGA®, PX137-015DV) were fitted in-line, one 

behind each ISR, and ensured canisters were consistently evacuated to a minimum of 

0.15 bar. The raw data from the sonic anemometer, IRGA and pressure sensors were 

logged for post-processing and filtering. Preliminary online fluxes o f sensible heat, 

CO2 and H2 O were calculated for the purposes o f quality control, allowing potential 

system errors to be spotted during the initial stages of the study. Other meteorological 

data such as wind speed and direction were also recorded.

As the inlet valves were activated, and the grab sample taken, the values of 

wind vectors u, v, w and potential temperature (T) were recorded for the flux 

calculation (Eq. 1.6) The filling of the ISRs was considered to be instantaneous and 

concentrations were combined with the wind data at the time the valves were 

activated, resulting in a zero time lag.

2.5.3 Eddy covariance - setup

Eddy-covariance measurements were performed on a second, independent 

tower and combined measurements with a sonic anemometer (USA-1, Metek GmbH) 

and a second IRGA (also LiCor 7000). Flux calculations were performed according to 

the CarboEurope IP methodology (Aubinet et al., 2000). The measurements have been 

described in more detail by Campbell et al. (2006).

2.5.4 Results and Discussion

2.5.5 Concentrations
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Figure 2.18 shows the concentrations of CO2 and H2O, measured by the two 

infrared gas analysers. During the experiment technical difficulties with both the EC 

IRGA and the DFS, meant the overlap of the two data sets was restricted to just 3 

days. During this time there appeared to be no significant or prolonged drift in the 

CO2 analysers and concentrations were in good agreement, with an R2 value of 0.72. 

On the 15th, between 13.00 hrs and 14.30 hrs CO2 concentrations measured by the 

DFS IRGA were significantly higher than those measured by the EC IRGA which can 

explain the reduced R2 value. The cause of this deviation is unclear, one possible 

explanation might be the fluctuation of air pressure in the IRGA sampling line which 

is caused due to the incomplete pressurisation of ISRs, this is however unlikely, as the 

H2 O concentration remained unaffected. During the 3 days CO2 concentrations were 

typically around 380 ppm, but dropped to a minimum of 369 ppm during the day time 

when photosynthetic activity removed CO2 near the surface and a maximum of 402 

ppm at night, when night-time respiration accumulates in the shallow nocturnal 

boundary layer.

The EC IRGA had not been recently calibrated for H2O. The lack of 

calibration meant there was a systematic offset in H2O concentrations, however, the 

range o f the data was very similar to that measured by the calibrated DEC IRGA, 

therefore after mean removal for the flux calculation, the two data sets compared very 

well, with an R2 value o f 0.92, indicating that the difference in the calibration was due 

to different zero calibrations and that the span calibration agreed well. Clear diurnal 

trends were apparent in both data sets with a typical midday maximum of around 1.2 

kPa, an average concentration o f 0.9 kPa and a night time low of 0.5 kPa.

2.5.6 Comparison o f  EC sensible heat fluxes
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Figure 2.18 C 0 2 and H20  concentrations measured using an IRGA for both the eddy covariance 
and disjunct eddy covariance flux measurement techniques at the Easter Bush field site.

In a well adjusted surface layer, over a horizontal patch of surface, an

equilibrium boundary layer may form in which the flux above the surface remains 

constant with height (Fowler et al., 2001). However, due to the spatial variation of 

turbulence, the flux may vary considerably in the horizontal (Wilson & Meyers., 

2001). Therefore it is important to assess how spatial variability may impact on the 

comparison o f the two systems. In order to do this sensible heat fluxes, which were 

measured using the direct EC technique at both tower [A] and [B], were compared. 

During the experiment, the trend of measured fluxes were in reasonable agreement, 

and had an R2 value o f 0.65, however the average o f fluxes measured at tower [A] 

underestimated those measured at tower [B] by approximately 32%. Some of this 

underestimation may be attributed to the different measurement resolutions of the two 

systems. The sonic anemometer mounted on tower [B] operated at 20 Hz, twice the 

rate o f the sonic anemometer at tower [A], allowing flux contributions from very high 

frequency eddies to be resolved which may have been missed by the slower resolution
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anemometer. However, the percentage contribution of the flux carried in this range is 

unlikely to exceed more than 5%. Thus the remaining difference between the two 

systems is most likely related to the statistical horizontal variation o f the turbulence. 

Importantly, this simple comparison provides an estimate of the uncertainty which can 

be expected in comparisons of fluxes of C 0 2 and H20  measured by the EC and DEC 

systems.

The EC sensible heat fluxes measured at tower [A] were also compared against 

simulated DEC fluxes o f sensible heat. The simulated fluxes were calculated 

according to the methodology outlined in the previous section. Comparing the flux 

calculated from the original time series with the new disjunct time series can be 

useful, as it gives an indication of the systematic error introduced by the sampling 

intervals. It cannot however, offer any information on the systematic and random

errors introduced by the sampler itself, such as losses of compounds to walls, or

carryover effects from one grab sample to the next.

Data points for the simulated DEC heat flux were picked out from the EC time

series to correspond exactly with the moment grab samples o f air were taken,

approximately every 15 s. This was made possible due to the LabVIEW logging 

programme which placed a flag next to the data the moment inlet valves were 

activated. A linear regression of the two data sets showed a good agreement, with an 

R2 value o f 0.78, yet the cumulative flux measured by the DEC underestimated those 

measured by EC by about 11%. In Section 2.2.1 it was shown that the use o f a 

discontinuous data set can cause considerable uncertainty in the flux measurement, 

however, over a sufficient length of time this error cancels and the cumulative flux 

gives a very good approximation of the “true” flux. Given the discrepancy between 

the DEC and EC data sets, it is apparent that the 3 days o f measurements presented
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here may not have been sufficient to get a good approximation o f the cumulative flux. 

On this basis, DEC fluxes of CO2 and H2O could be expected to differ from those 

measured by EC by a similar magnitude.

2.5.7 Comparison o f  CO 2 & H 2 O fluxes

Figure 2.19 shows the average diurnal fluxes of CO2 and H2O measured by 

both the eddy covariance and disjunct eddy covariance techniques. During the early 

hours o f the morning, fluxes of both CO2 and H2O measured by the disjunct method 

follow closely with those measured by EC. For CO2 , the disjunct method appears to 

significantly underestimate the flux between the hours o f 08:00 and 13:00 hrs. In 

contrast, fluxes o f H2O remain closely correlated with those measured by EC 

throughout the day with only minor deviations occurring in the late afternoon between 

16:00 and 18:00 hrs.

A correlation between the EC and DEC techniques yielded R2 values of 0.72 

for 0.69 for EEO and CCE respectively. As expected, the correlation between these two 

spatially separated data sets is reduced when compared with the co-located theoretical 

comparison o f DEC to EC heat fluxes which yielded an R2 o f 0.78. Comparing the 

sum of the fluxes measured by the EC technique with those measured by the DEC 

technique and expressing the error as a percentage, shows the DEC to underestimate 

the flux by less than 1% for measurements of H20 , but by 29% in measurements of 

C 0 2. These values are both within the 32% uncertainty calculated from the sensible 

heat flux comparison o f EC systems which suggest there to be no major systematic or 

random errors linked to the disjunct sampling device.

The largest source o f error associated with the DFS measurements would most 

likely have been linked to the method of sample collection. The time taken to “grab” a
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Figure 2.19. Average diurnal profiles of C 0 2 and H20  fluxes measured by the eddy covariance 
(closed circles) and disjunct eddy covariance (open circles) flux techniques at the Easter Bush 
field site. Greyed area represents ± 1 a  of the eddy covariance flux measurements.

sample of air was effectively controlled by (i) the pressure o f the evacuated ISR and 

(ii) the diameter o f the inlet orifice. During this experiment this time was limited to 

0.5 s, giving an effective measurement frequency of 2 Hz, approximately 10 times 

slower than that o f the EC system. This meant the EC system was able to resolve the 

portion o f the flux carried in the range between 10 Hz and 1 Hz, which would have 

been missed by the DFS. These errors however, are small in comparison with those 

that arise due to the spatial separation of the two independent flux systems.

2.5.8 Potential experimental improvements

While this experiment persuasively demonstrates that the error between the EC 

and DEC setup lay within the uncertainty typically found between two independent 

EC systems, the experiment could have been improved in a number o f ways. Firstly,
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the duration o f the experiment, as demonstrated by the theoretical comparison of heat 

fluxes, could not establish the long term performance or durability o f the DFS. 

Unfortunately, failure of both the analytical instrumentation and the DFS combined 

with time restrictions meant this study could not be extended beyond 3 days, leaving 

only a limited data set from which to make the comparison. Secondly, the comparison 

would have been even more direct if it had been possible to mount both the DFS and 

EC systems on the same tower, using data from a single sonic anemometer.

2.5.9 Conclusions

During this experiment the disjunct eddy covariance technique has shown a 

great deal o f promise. Although the fluxes o f CO2 and to some extent H2O were 

underestimated, they remained within the calculated uncertainty. The general trends 

between the two data sets were very encouraging, and may have been improved 

further had it been possible to implement the changes stated in Section 2.5.8. 

Although these initial results are very encouraging, much has also been learnt about 

the practical problems of operating this system in the field. The weight and awkward 

shape o f the DFS make it difficult to mount on a mast. Over a grassland field, at a 

height o f 2 m, such difficulties can be overcome, but for future studies where large 

masts (2 0 - 3 0  m) are to be used further problems present themselves. Firstly, the inlet 

valves o f the DFS require 240 V of mains electricity, which means long lengths of 

expensive, and more importantly heavy, armoured cable would be required. Secondly, 

with a large distance between the DFS and gas analyser, sample air must be drawn 

along a long sample line, which would mean a large volume of air would be drawn 

from the ISR creating a substantial back pressure which would affect the sensitivity of 

the gas analyser. Finally, should a technical fault occur with the system, at heights of
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20 -  30 m, there would be no opportunity to provide a quick fix, which would mean 

taking the mast down and subsequently a disruption to ancillary measurements.

2.6 Virtual Disjunct Eddy Covariance (vDEC)

Although field testing of the DFS system proved partially successful, the 

experiment also highlighted some of the practical difficulties o f implementing the 

technique. Whilst these could be overcome at this low measurement height, it was felt 

that for future campaigns deployment of the DFS may be problematic. Therefore a 

second technique, virtual disjunct eddy covariance was investigated as a more 

practical alternative.

The PTR-MS is capable of returning concentration information on individual 

VOCs at fast rates, in theory making it ideally suited to the eddy covariance flux 

measurement approach. In reality, the quadrapole can only filter one m/z at a time; 

therefore the temporal resolution of the data is governed by the total number of 

compounds measured. Consequently, rather than outputting a quasi-continuous high 

frequency data set, an array o f measurements is returned as each measurement cycle is 

completed, in effect creating a disjunct time series of fast (-0 .2  s) measurements, 

which are made every few seconds. This process was first adopted by Karl et al 

(2002) who termed it virtual disjunct eddy covariance (vDEC). During their study of 

VOC emissions from a sub-alpine forest, Karl and co-workers demonstrated that a 

flux could be calculated using this reduced data-set, provided that the averaging time 

of each individual measurement was kept sufficiently short (typically 0.2 s). 

Subsequently this technique has been successfully applied above a range of vegetation 

types, including grassland fields and forest canopies (Spirig et al., 2005; Lee et al.,
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2005; Brunner et al., 2007), but it has very rarely been applied to the urban 

environment.

The setup and operation o f the vDEC technique is very simple and 

consequently vDEC is not logistically limited in the same way as in DEC. Typically 

sample air is pumped at a high turbulent flow rate (60 1 m in'1) through a 3/8” OD 

Teflon line which is mounted directly below the sonic anemometer. Air for analysis 

by PTR-MS is then sub-sampled from the Teflon line via a 3/8” to 1/8” reducing 

union tee at a flow rate o f approximately 300 ml min'1. The length o f 1/8” OD tubing 

into the PTR-MS is kept to a minimum to reduce the dead volume of air. Operating 

the system in such a configuration helps to ensure the air in the sampling tube is kept 

turbulent, which is an important consideration as laminar flow can dampen the VOC 

signal which will result in the underestimation o f the flux. The power consumption of 

this system ranges between 0.9 and 1.3 kW and is largely determined by the draw 

from the PTR-MS (0.75 kW) and the type of pump used for the main inlet line which 

can vary from between 0.19 and 0.56 kW.

During the application of this technique it is not uncommon for there to be a 

large distance separating the sonic anemometer and the PTR-MS and therefore a 

significant lag time may exist between the measurements o f the vertical wind speed 

and the acquisition o f the corresponding VOC concentrations. In order to correct for 

this temporal shift, a cross correlation function was developed in LabVIEW which 

looked for the maximum correlation (R2 value or product o f the covariance) between 

the vertical wind velocity and the PTR-MS measurements, as in theory a maximum 

should exist at the moment of zero time lag. This concept is demonstrated in Fig. 2.20 

where the results of a cross-correlation function applied to data collected at the 

Telecom Tower by a PTR-MS and IRGA gas analyser are shown.



Chapter II 65

In this example, both gas analysers sub-sampled from the same 45 m long inlet 

line. The disjunct PTR-MS data is noisier than the IRGA data due to fewer data points 

and lower atmospheric concentrations, but the lag is still clearly identifiable. The
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Figure 2.20 Cross correlation analysis applied to data collected at the Telecom Tower by a PTR- 
MS and IRGA. The disjunct PTR-M S data is noisier than the IRGA data due to fewer data 
points and lower atm ospheric concentrations, but the lag is still clearly identifiable. The IRGA 
sub-sam pled directly after the PTR-M S therefore the lag times agreed very closely.

peak in the covariance function occurs at around seven seconds for both VOCs and

CO2 , but for H2 O the peak is broader with a maximum occurring at eight seconds.

This delay is typical in water vapour measurements and occurs due to the “stickiness”

o f the water molecules which adsorb onto the walls o f the sample line. Similar

behaviour should be expected for some of the more “sticky” VOCs such as methanol
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and therefore the vDEC technique may be prone to underestimate the flux for certain 

compounds.

2.7 Post processing of data

All measured fluxes in this thesis were calculated and filtered to meet stringent 

quality controls using a programme written in LabVIEW. In brief, this programme, 

which developed further between each measurement campaign, read in flux data files, 

applying the standard rotations (Baldocchi, 1993) to the coordinate frame using the 

following procedure:

Uhcr = < ( V 2+ U 2)  (2.5)

£/,„= ^ ( W 2+ U hJ )  (2.6)

Cos n = UI  U,„  (2.7)

Sin r\ =  V I  Uhor ( 2 . 8 )

Coj O = [/*„ ,/t/,„, (2.9)

Sin 6 =W/  Ul0f (2.10)

Ucorr = -u x Sin q + v x  Cos q (2.11)

VCorr= u x Cos 0 x Cos q + v x Cos 0 x Sin q + w x Sin 0 (2.12)

W Corr =  -u  x  Sin 0 x Cos q -v  x Sin 0 x Sin q + w x  Cos 0 (2.13)

where, U, V and W represent the average 3D wind components averaged over a given 

flux averaging period (typically 30 minutes) and u, v, w are their instantaneous values. 

This sets the averages o f the vertical and cross-wind components (v and w) to equal 

zero and therefore ensured errors introduced by tilting of the sonic anemometer were
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corrected. Once rotated, data from the sonic anemometer was used to calculate fluxes 

o f sensible heat:

H  = WT'pCp (2.14)

momentum:

t  =  w 'u '  (2.15)

and frictional velocity:

( \  T
U.

\  p J

(2.16)

as well as the Monin-Obukov length which is a measure o f the height at which 

mechanical turbulence (wind shear) gives way to buoyant production of turbulence 

(Stull, 1988). Here K  is the von Karman’s constant (0.41) and g  is the acceleration due 

to gravity (9.8 m s '1)

L = - o C v u*3 T  (2.17)
K g H

The average wind speed (WS) was calculated using Eq. (2.18) and averaging periods 

where the mean wind speed dropped below 1 m s '1 were rejected and not included in 

the final data analysis.

t2 , t / 2  , r jr2WS = 'l(U 2 + r  + W )  (2.18)

Concentration measurements o f VOC in ion counts per second (ICPS) were converted 

to volume mixing ratios using the following equation (Wilkinson, 2006):
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v o c  iR H , x 1 x 1 ° 9 x Pstu x 224Q0x { L , j  + L ) x  T r a n s )  (219)
PPB ( k x t x M  21X M31 x p d x 6.022 x 1023 x Tsld x TransRH ,)

where ft/7, and TransRH,, were the ion count and transmission o f the target VOC, Ts,d 

and Pstd standard temperature (273.15 K) and pressure (1013 mbar), Td and Pd, the 

drift tube temperature and pressure, M21 and Trans, the primary ion count and 

transmission number, M37, the ion count of the reagent water cluster and k  and t, the

9 3 1reaction rate constant and reaction time which had values o f 2 x 10' cm s' and 1.05 x 

1 O'4 s respectively.

PPB values were then converted into fig VOC m'3 using the relationship:

XvoclMgm
Xvoc [ppb]x lE ^  x IE* x Mr 
f  1013x22.4x(273 + r„,n,t.)
(  273 x p

(2 .20)

where M r was the molecular weight of the target VOC, P was the ambient pressure in 

mbar and Tsonic was the temperature o f sampled air as measured by the sonic 

anemometer. These values were then paired with the associated vertical wind velocity 

and the flux was calculated using Eq. (1.6). The resultant flux was then multiplied by 

3600 s h '1 to give a measurement of the VOC flux in units of fig m 2 h ’.

Finally calculated fluxes were subjected to a data quality test whereby each 

averaging period was tested for non-stationarities. The stationarity test followed the 

theory outlined by Foken & Whichura (1996), which states that a time series % is 

stationary, when the flux (Fx) is equal to the mean average flux o f its components {Fxj, 

Fx2, Fx3...). Here we took Fx to be the flux over the averaging periods, and the 

components Fx, to Fx6 to be the flux calculated from individual 5 minute blocks of the 

original time series. Following criteria specified by Velasco et al (2005), if the mean
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of Fxi -  Fyfi differed by more than 60% of the value o f Fx the time series was 

considered non stationary and the data were discarded. Time series where the fluxes 

differed between 30% and 60% were considered stationary, but to be of a lower 

quality. High quality stationary data was taken to be any time series where the fluxes 

differed by less than 30%.
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Chapter III
3. Mixing ratios and eddy covariance flux 

measurements of volatile organic compounds from an 
urban canopy (Manchester, U.K.)

This chapter details the deployment of the disjunct eddy covariance sampling 

system, developed in chapter 2, for the measurement o f VOC above the city of 

Manchester. The sampler was located on the roof o f Portland Tower, an 80 m office 

block located in the city centre, and sampled for a period o f three weeks between the 

5th and 21st o f June 2006. In addition to the disjunct eddy covariance flux 

measurements, a secondary sampling technique, virtual disjunct eddy covariance was 

also deployed, tested and compared to results from the DEC system. As each system 

relied on the PTR-MS for VOC concentration measurements, the two systems 

operated in alternate half hours allowing an indirect comparison o f the two techniques 

to be made.

The following work was submitted to the journal o f Atmospheric Chemistry 

and Physics on the 4th of December 2007 and accepted for publication in ACPD on 

January the 8th, 2008. The manuscript is currently under review. The authors and their 

contributions are listed below.

Ben Langford (Lancaster University & CEH): Developed the disjunct eddy 
covariance system and software, developed the virtual disjunct eddy covariance 
software, operated the instruments during the field campaign, post processed the raw 
data and wrote the manuscript.

Brian Davison (Lancaster University): Helped compile the hardware for the disjunct 
eddy sampler, helped with the installation o f the systems and with the compilation o f 
the manuscript.

Eiko Nemitz: (CEH) Co-wrote the software for the virtual disjunct eddy covariance 
system, helped with the installation of the systems and the compilation of the 
manuscript.
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Nick Hewitt (Lancaster University): Helped with interpretation o f results and the 
compiling o f the manuscript.
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Abstract

Concentrations and fluxes o f six volatile organic compounds (VOC) were 

measured above the city of Manchester (U.K.) during the summer o f 2006. A proton 

transfer reaction-mass spectrometer was used for the measurement o f concentrations, 

and fluxes were calculated using both the disjunct and the virtual disjunct eddy 

covariance techniques. The two flux systems, which operated in alternate half hours, 

showed reasonable agreement, with R2 values ranging between 0.2 and 0.8 for the 

individual analytes. On average, fluxes measured in the disjunct mode were lower 

than those measured in the virtual mode by approximately 19%, o f which at least 8% 

can be attributed to the differing measurement frequencies o f the two systems and the 

subsequent attenuation o f high frequency flux contributions. Observed fluxes are 

thought to be largely controlled by anthropogenic sources, with vehicle emissions the 

major contributor. However both evaporative and biogenic emissions may account for

mailto:n.hewitt@lancaster.ac.uk
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a fraction o f the isoprene present. Fluxes of the oxygenated compounds were highest 

on average, ranging between 60 -  89 pg m'2 h’1, whereas the fluxes of aromatic 

compounds were lower, between 19 -  42 pg m'2 h '1. The observed fluxes of benzene 

were up-scaled to give a city wide emission estimate which was found to be 

significantly lower than that of the National Atmospheric Emissions Inventory 

(NAEI).

3.1 Introduction

The compilation o f spatially and temporally detailed inventories for the 

emission o f anthropogenic volatile organic compounds (VOCs) from urban areas is a 

necessary requirement for air quality regulatory purposes, effects assessment and 

research. Current emission estimates are associated with large degrees of uncertainty 

(Friedrich & Obermeier, 1999) which may limit their usefulness. Much of this 

uncertainty can be attributed to the large variety of different source categories which 

contribute to urban VOC emissions, which can be difficult to characterise and 

validate. Rather than taking a “bottom-up” inventory approach, an alternative is to 

make direct micrometeorologically based measurements which can integrate 

observations o f wind speed and scalar concentrations to give a city-wide flux estimate 

of pollutant emissions (Nemitz et al., 2002; Dorsey et al., 2002; Velasco et al, 2005). 

Currently, the eddy covariance (EC) technique is considered the most direct 

micrometeorological method available for estimating surface / atmosphere exchange 

fluxes, as it measures the turbulent flux directly, without reliance on any empirical 

parameterisations. This approach requires high frequency measurements (typically in 

the order o f 5 - 20 Flz) o f both vertical wind speed and concentration to resolve all
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eddies that contribute to vertical transport (Lenschow, 1995). Although this technique 

is now well established for the measurement o f some trace gases, such as CO2 and 

H2O (Aubinet et al., 2001), its application to VOC fluxes has been restricted because 

o f the slow response times o f most VOC sensors.

A number o f alternative micrometeorological approaches have been developed 

which relax the demands placed upon instrument response times. The technique most 

commonly applied to VOCs is the relaxed eddy accumulation method (REA), a 

conditional sampling technique where samples of air are directed into an up or down 

draught reservoir according to the sign of the vertical wind velocity at the time of 

sampling (Businger & Oncley, 1990). Air from each reservoir is subsequently 

analysed off-line and a flux is calculated from the difference in concentration 

generated between the two reservoirs. Unlike the eddy covariance method, REA is not 

a direct measure o f the flux as it relies on empirical parameterisation. Furthermore, 

there is no scope for retrospective corrections to the coordinate frame (Bowling et al., 

1998). Despite these drawbacks, the REA method has been successfully applied to a 

range o f vegetation types including grass land (Olofsson et al., 2003) and forests 

(Greenberg et al., 2003; Ciccioli et al., 2003; Friedrichs et al., 1999).

More recently a second technique, disjunct eddy covariance (DEC), has been 

developed for “relaxed” flux measurement. Rather than measuring at high frequencies 

as in EC, in DEC the flux is calculated using a sub-set o f a quasi-continuous time 

series. In order to retain the flux contributions carried by small scale eddies, DEC 

utilises near instantaneous grab samples of air which are aspirated into a storage 

reservoir at regular intervals. The “dead” time between the sampling periods is then 

used to analyse the air at a rate suitable for the gas analyser. Provided the interval 

between samples is kept to less than the integral time scale, then the discontinuous
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dataset can be used to give high precision flux information, which is numerically 

similar to the EC approach, but with reduced statistics (Grabmer et al., 2006). The 

DEC approach is particularly useful for sensors with a response time o f 1 to 20 s.

With the advent of quadrupole mass spectrometers (QMS) for the use of 

atmospheric composition measurements, a range of analysers is now becoming 

available that can provide fast measurements (as determined by the dwell time on a 

given m/z), which is nevertheless discontinuous (as the QMS scans through a range of 

m/z's). One such instrument is the proton transfer reaction-mass spectrometer (PTR- 

MS) which allows for the measurement of most VOCs with good sensitivity (10 ppt) 

and fast response times (10 Hz).

The quadrupole mass spectrometer in the PTR-MS can be programmed to scan 

over a small suite of masses in what is termed a duty cycle. Although in theory the 

instrument has a sufficient response time to be compatible with the eddy covariance 

method, in reality the quadrapole can only scan one mass at a time; therefore the data 

set returned on completion of each duty cycle is in effect disjunct.

To optimise flux measurement approaches for these kind o f data, the DEC 

concept has been developed further to calculate fluxes from the discontinuous time- 

series at each m/z by pairing up each concentration measurement with the associated 

wind measurement in software, a process known as virtual disjunct eddy covariance 

(vDEC) (Karl et al., 2001; Karl et al., 2002; Spirig et al., 2005; Lee et al., 2006; 

Ammann et al., 2006; Brunner et al., 2007). The advantage o f this technique is that air 

can be sampled directly into the instrument, as individual masses are measured at a 

sufficiently fast rate, therefore no additional sampling system is required. 

Furthermore, analysis times are shorter than in DEC, allowing more data to be
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collected during each averaging period; consequently the resultant flux estimates are 

statistically more robust.

The vDEC method has been successfully applied to give VOC flux estimates 

over vegetation canopies, including grassland (Karl et al., 2001; Ammann et al., 2006; 

Brunner et al., 2007), forests (Karl et al., 2002; Spirig et al., 2005; Lee et al., 2006), 

and over an urban environment (Velasco et al., 2005).

In the current study we deployed both the DEC and vDEC techniques for the 

measurement o f a range of VOCs above the city o f Manchester (U.K). The recorded 

data were then used to calculate a city-wide emission flux, and in the case o f benzene 

this was compared to the UK National Atmospheric Emission Inventory (NAEI) for 

Manchester (http://www.naei.org.uk/datachunk.php?f_datachunk_id=174).

The NAEI is compiled using a bottom-up approach, where combinations of 

reported and estimated emissions across numerous source sectors are used to provide a 

spatially disaggregated (1><1 km) emission inventory. The uncertainty associated 

with these estimates is dependant on the ratio of reported to estimated (modelled) data 

and hence for compounds such as VOCs, where reported emissions are limited and 

uncertainty levels are high, micrometeorological methods offer a useful alternative.

3.2 Methods

3.2.1 Measurement site and general setup

The work presented here formed part of the UK CityFlux project, which aimed 

to (i) directly measure pollutant emissions from urban areas, (ii) investigate controls 

o f these emissions, (iii) derive emission factors relative to CO2 and CO and (iv) study 

pollutant transformation by comparing fluxes at the plume, street canyon and urban 

canopy scale. During the summer of 2006, micrometeorological measurements of

http://www.naei.org.uk/datachunk.php?f_datachunk_id=174
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VOC emissions were made over the city of Manchester, together with measurements 

o f fluxes and concentrations of VOCs, aerosols, 0 3, C 0 2 and H20 , as well as mobile 

measurements with a mobile laboratory, measurements in a street canyon, tracer 

releases and aircraft-borne measurements. The VOC flux measurements were taken 

from the roof o f Portland Tower (53°28’41 ” N; 2°14’18” W), an 80 m tall office block, 

which is located in central Manchester. The building is situated on Portland Street, 

which is approximately 600 m distance from the Arndale centre, (the city’s principal 

shopping district) 475 m from Piccadilly railway station, (the north-west’s busiest 

station), and 100 m from China Town (a concentrated area o f restaurants). The 

building is surrounded by trafficked streets on three sides and a multi-storey car park 

on the other.

The roof o f Portland Tower is not uniformly flat but has three levels. On the 

lowest level a small shed was erected which housed the PTR-MS. The second level, 2 

m above, contained a utility substation which was used to house the sonic anemometer 

signal box. The roof of the substation was used as the foundation for a 15 m mast 

which was fitted with a sonic anemometer (Solent Research R3, Gill Instruments Ltd, 

Lymington, Hants, U.K.) and Teflon gas inlet line (1/2”  OD). The mast was erected 

to get above the wake effects generated from both the edges o f the building and the 

inhomogeneous roof surface and increased the effective measurement height to 95 m 

above street level.

Fluxes were measured between the 5th and 20th o f June 2006. During the first 

few days o f measurements (5th-l 0th) a high pressure system was centred over Northern 

Ireland which dominated the weather during this period, with mostly dry conditions, 

clear skies and temperatures between 1 6 - 3 0  °C. Between the 13th — 16th a cold front
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slowly moved across southern England and during this time temperatures at the 

measurement tower dropped to a maximum of 24 °C and a minimum o f 14 °C on the 

16th. For the later part of the campaign, temperatures slowly increased as a high 

pressure ridge moved in behind the cold front, increasing the average temperature to 

21 °C. Throughout the campaign the wind direction shifted between SW and NNE, but 

also came from the SEE at certain times. The wind speed ranged between 0.4 and 11.2 

m s '1, with an average of 3.3 m s '1

3.2.2 The proton transfer reaction mass spectrometer (PTR-MS)

A standard PTR-MS instrument (Ionicon Analytik, Austria) was used for the 

measurement o f VOC concentrations as it offered the desired sensitivity and response 

times required for both flux systems. Detailed descriptions of this instrument can be 

found elsewhere (Lindinger et al., 1998; Hayward et al., 2003; de Gouw & Warneke., 

2007), therefore only a brief account of the instrument setup will be given here.

The PTR-MS was optimised to an E/N  ratio of 125 Td and programmed to 

sequentially scan a suite of six protonated target compounds: methanol (m/z 33), 

acetaldehyde (m/z 45), acetone (m/z 59), isoprene/furan (m/z 69), benzene (m/z 79) 

and toluene (m/z 93). In addition to these compounds, the H30 + primary ion count and 

two reagent cluster ions were also recorded at m/z 21, m/z 39 and m/z 55 respectively. 

A further mass, m/z 25, was used at the start o f each measurement cycle as a spacer to 

ensure the monitored air did not contain residues from the previous sample.

The mass detection system of the PTR-MS can only record VOC (ion counts 

per second) in atomic mass units (amu); therefore it is difficult to attribute ion counts 

to individual VOC species. Interference from other ions at amu 33, 45, 79 and 93 has 

been shown to be insignificant in previous studies (de Gouw et al., 2007), but both
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acetone and propanal have been detected at amu 59. Although this can generate some 

uncertainty in the measurement of acetone, the signal of acetone is always dominant in 

ambient air (Kato et al., 2004), therefore ion counts recorded at m/z 59 were ascribed 

solely to acetone in the present study. Similarly m/z 69 may be isoprene and/or furan, 

although the latter is normally present at very low concentrations in ambient air 

(Christian et al., 2004). Mass m/z 69 was therefore solely attributed to isoprene.

The VOC concentrations were calculated using reaction rate constants (k) from 

Zaho and Zhang (2004) and transmission numbers (the time taken for each mass to 

traverse the drift tube) calculated using t = L/vj, where L is the length o f the drift tube 

and Vd is the drift velocity (Lindinger et al., 1998).

3.2.3 Flux measurements

During the campaign, two flux measurement techniques (DEC and vDEC) 

were employed to measure surface layer fluxes of VOCs from the urban canopy. As 

both techniques utilised a single PTR-MS instrument to give VOC concentrations, it 

was not possible to operate the systems simultaneously, and therefore fluxes were 

measured by the two methods in alternate half hours. A Teflon 3-way solenoid valve 

(001-0017-900, Parker Hannifin) sat in line and enabled the PTR-MS to switch freely 

between the two systems. Flux measurements in each mode were averaged over a 25 

minute period and the remaining 5 minutes of each half hour were used to scan the 

entire mass spectrum (m/z 21 -  146) to give basic ambient concentration information 

on a wide range o f VOCs. Figure 3.1 shows a typical PTR-MS operating sequence 

during 1 hour o f measurements and includes the PTR-MS duty cycles for each flux 

mode.
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Flux measurement sequence
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Figure 3.1. Representation of the PTR-MS measurement sequence used at Portland Tower. When  
operating in vDEC mode the duty cycle lasted for a total of  200 ms, whereas in DEC mode dwell 
times were increased and a 12 s duty cycle was used.

3.2.3.1 Virtual disjunct eddy covariance sampling system (vDEC)

During the first period of each hour, the 3-way solenoid valve was triggered to 

enable the PTR-MS to sub-sample directly from the main sample line in a virtual 

disjunct eddy covariance mode. The quadrapole was set to scan each mass at a rate of 

20 ms, allowing sample air to be purged directly into the instrument without the use of 

an additional sampling system. The inlet for the sample line was mounted a short 

distance below the sonic anemometer, as vertical displacement has been shown to 

result in the smallest flux losses (Kristensen et al., 1997). In order to maintain a 

turbulent flow through the sample line, and thus avoid dampening of the VOC signal, 

a flow rate o f 60 1 m in'1 was used. Upon the completion o f each PTR-MS duty cycle, 

data were exported to a LabVIEW logging programme using the Microsoft Windows 

“dynamic data exchange” (DDE) protocol, which stored the data alongside those from 

the sonic anemometer.
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3.2.3.2 Disjunct flux sampling system (DFS)

A disjunct flux sampling system was deployed on the roof of the building to 

monitor the VOC fluxes for the second period of each hour. The schematic and 

operating sequence of the DFS are depicted in Fig. 3.2. The sampler comprised two 

one litre stainless steel canisters, which act as intermediate storage reservoirs (ISR) for 

sampled air. Fast switching high flow conductance valves (Lucifer E121K45) were 

mounted to the inlet o f each canister, enabling the ISR to take a fast grab sample once 

activated. Each ISR was coiled with heater cable and insulated with aluminium foil to 

maintain an internal temperature of 40 °C. This, combined with the cylindrical shape 

o f the canisters which reduced surface area, helped to minimise losses o f VOC to 

walls, and minimised condensation and the formation of liquid water, which can 

remove soluble compounds such as methanol.

Before grab samples of air were taken, each ISR was first evacuated to a 

pressure o f 250 mbar. The time taken to evacuate the canister, 12 s, was the limiting 

factor in determining the length of time between sampling. By contrast, the time taken 

to fully pressurise the ISRs, 0.5 s, proved to be the limiting factor in determining 

sampling times. Therefore the overall effective response time of the DFS setup is 

about 0.5 s, which is sufficient to resolve turbulent fluctuations o f up to 2 FIz.

Grab samples o f air acquired by the DFS were analysed for VOCs using the 

PTR-MS, which was connected to the DFS via a 4 m length o f 1/8” PFA tubing. The 

rate at which the PTR-MS draws air from the ISR is important as a vacuum is 

gradually generated as air is sampled. This back-pressure can affect the pressure in the 

drift tube, which can lead to small changes in the E/N  ratio of the instrument. In order
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to prevent this problem, the flow rate o f the PTR-MS was reduced from 300 ml m in'1 

to 150 ml m in'1.

To Sonic 
Anemometer

1/ 2” PFA

0.5 s

A

DFS Operating Sequence
0  Valve Closed  

0  Valve Open

12 s 0.5 s

A  A

•  •

C/3 7J 
N>

-

-o

1/8” PFA

Pump

PTR-MS

12s

A  A

T  T

Pump

Figure 3.2. Schematic of  the experimental setup used at Portland tower. The inset diagram shows 
the operating sequence of solenoid valves which controlled the sample and analysis phase of the 
disjunct flux sampler (DFS). ISR = Intermediate storage reservoir.

The PTR-MS was housed some distance from the sonic anemometer. Thus the 

sampling line between ISRs and PTR-MS would have been too long for the DFS to be 

mounted on the anemometer mast. Instead it was located at the base of the tower, with 

each sample valve connected via a ‘T-piece’ into the 'A” OD sampling line. As a 

drawback o f this setup, the sample line is subject to a pressure drop o f approximately 

200 mbar, caused by the high flow rates used. Consequently, upon activation of 

sample valves each ISR could only pressurise to 800 mbar, increasing their effective 

carryover between samples from 25% under normal operating conditions (at 1000 

mbar) to ~ 31%. The carryover was corrected using the following equation:
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Xcor = (x x TV ~ % o l d x TYt)/(m-T\l) (3.1)

where x  is the VOC concentration within the ISR, Xoiu is the previous concentration of 

the same ISR, Pi is the ISR pressure when full and P2  is the ISR pressure after 

evacuation.

The sequence o f valve switching used to control both the sample and analysis 

phases o f the DFS, which combined with valve switching, pressure recording, sonic 

anemometer and PTR-MS data recording, were all coordinated using LabVIEW 

software (National Instruments -  v 6.1). The valves were controlled through a 

multifunction IO card (607IE, National Instruments), which also recorded the 

analogue signals from the pressure sensors o f the ISR (OMEGA, Stamford, 

Connecticut, PX137-015DV).

3 .2 .3.3 Flux calculations

In the eddy covariance technique, the flux o f an atmospheric scalar is 

calculated using the covariance between continuous time series o f vertical wind speed 

and scalar concentration at a fixed point in space over a statistically representative 

time period. Since the data generated by the disjunct flux systems are simply a sub-set 

o f the continuous time series, the flux may be calculated in the same way; thus 

observations o f vertical wind velocity (w) were paired with the corresponding PTR- 

MS data (x) to give a flux as follows:

FX,ag = W'Z' (3.2)
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where primes indicate instantaneous fluctuations about the mean and over-bars denote 

time averaging (i.e.w '= w - w ) .  The only difference between this and direct eddy 

covariance measurements is the reduced number o f data points used for the flux 

calculation, which results in an increase in the statistical uncertainty of the 

measurement.

Before the flux can be calculated it is first necessary to correct for the time lag 

that exists between the two data sets, which occurs because o f the -25  m separation 

between the sonic anemometer and the PTR-MS. This time lag was calculated from 

the maximum value in a cross correlation function between w and % within a 5 second 

time window. This value was then used to realign the time series o f w ’ and yj and 

calculate the flux. Typically the peak in the cross correlation was noted between 3 and 

5 s, which compared closely with the theoretically calculated lag time o f -3  seconds.

Standard rotations of the coordinate frame were applied to correct for tilting of 

the sonic anemometer. The vertical rotation angle showed a clear relationship with 

wind direction, with maximum values of up to 15°. This is similar to other flux 

measurements in the urban environment (e.g. Nemitz et al., 2002) and suggests that, 

although the mean airflow at the anemometer is affected by the building, the influence 

can be compensated by standard rotational corrections.

Calculated fluxes were subject to a post-processing algorithm which filtered 

and removed data that failed to meet specified quality controls. These included 

removal o f large spikes in vertical wind speed or VOC concentration and the omission 

o f data where the average wind speed dropped below 1 m s 1. This latter QA 

procedure resulted in the loss of 7% of the flux data.

In addition, during post-processing of the data, it was found that the inlet pump 

was occasionally shut down by its thermal trip. The affected time periods were filtered
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and the spikes removed, affected averaging periods were not included in the final flux 

analysis. This meant approximately 31% of measured flux data was deemed unusable 

and are not shown here.
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3.3 Results & Discussion

3.3.1 VOC concentrations

Concentrations of VOCs are summarised in Table 1 and the 25 minute average 

values are plotted alongside temperature and wind direction in Fig. 3.3. The 

oxygenated compounds, methanol, acetone and acetaldehyde, were the most abundant 

(methanol 1 . 3 - 8  ppbv; acetone 0.3 -  4.4 ppbv; acetaldehyde 0.44 -  3.2 ppbv). The 

larger concentrations o f methanol compared with the other analytes are typical for 

urban VOC measurements and can be attributed to its relatively low photochemical 

reactivity (Atkinson, 2000) and the numerous anthropogenic/biogenic sources which 

contribute to its emissions both in and outside of the city (de Gouw et al., 2003). 

Comparisons o f methanol concentrations with previous studies shows the values 

observed here to be within the lower range o f concentrations measured in Barcelona 

(Filella and Penuelas, 2006) and within the range of values recorded in Innsbruck 

(Holzinger et al., 2001). The concentrations of the other two oxygenated compounds, 

acetone and acetaldehyde, both lie within the range of data reported from other major 

conurbations such as Rome (Possanzini et al., 1996), Los Angeles (Grosjean et al., 

1996) and Rio de Janiero (Grosjean et al., 2002).

Concentrations of isoprene ranged between 0.07 - 0.75 ppbv, which is 

consistent with values obtained from the national air quality monitoring network 

(http://www.airquality.co.uk/archive/reports/catl3/0602011042_q3_2005_rat_rep_iss 

uel_v5.pdf) for other U.K. cities, including Bristol and London. The aromatic 

compounds, benzene and toluene, were the least abundant o f the VOCs measured, 

ranging between 0.02 -  0.2 and 0.03 -  0.73 ppbv respectively. These values also 

compared well with data obtained from the National network (www.airquaIity.co.uk)

http://www.airquality.co.uk/archive/reports/catl3/0602011042_q3_2005_rat_rep_iss
http://www.airquaIity.co.uk
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Table 3.1. Summary of VOC concentration and flux measurements between the 5 lh and 20th of  
June 2006, in Manchester (U.K)

Concentrations

IPPb]

Methanol 
(m/z 33)

Acetaldehyde 
(m/z 45)

Acetone 
(m/z 59)

Isoprene 
(m/z 69)

Benzene 

(m/z 79)
Toluene 
(m/z 93)

Mean 3.10 1.20 1.10 0.30 0.10 0.20

Median 2.92 1.14 1.00 0.29 0.08 0.14

Range

- 5th 1.77 0.63 0.52 0.13 0.03 0.06

- 95th 5.25 1.83 1.94 0.50 0.14 0.35

SD 1.15 0.41 0.48 0.12 0.04 0.10

Geo SD 1.40 1.40 1.50 1.60 - 1.70

N 354 354 354 353 353 354

Fluxes 

fpg m 2 h '\

Mean 78.8 59.6 87.8 - 18.9 42.4

Median 80.3 49.5 63.1 - 16.3 39.2

Range 

- 5th -143.6 -85.1 -111.7

-

-47.0 -67.3

- 95th 327.8 241.3 356.5 89.3 160.6

SD 159.8 105.6 152.1 - 42.8 67.8

N 200 200 195 - 186 200

automatic monitoring station on Marylebone Road, London, although, on average, 

concentrations from the London site were higher, presumably due to the kerbside 

location o f the sampler, compared with a sampling height of 95 m for the 

concentrations reported here.

Strong linear relationships were observed between the concentrations of each 

o f the measured VOCs, with R2 values ranging between 0.24 and 0.85, suggesting 

some commonality between the sources of emission for each o f the compounds.

Clear day-night trends in inixing-ratios were not apparent, with maxima occasionally 

observed at night time (Thurs 8th, Sat 11th), whereas on other days (Sat 17th — Tue
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Figure 3.3. Plot showing 30 minute average wind direction and the 25 minute average 
concentrations of VOCs measured by the PTR-MS between the 5th and 20th of June 2006. Shaded 
areas represent the 30 minute average temperature as recorded by the sonic anemometer.

20th) they tended to peak during the late afternoon. Spikes were frequently observed in 

the concentration of methanol during the early morning. This often corresponded to 

low temperatures and low wind speed in the early morning and is consistent with 

previous urban VOC studies which have attributed this increase to condensation 

processes (Fiella & Penuelas, 2006). The nocturnal increase in concentrations for the 

other compounds is unclear, but is likely a combination of small night-time emissions 

accumulating in the shallow nocturnal boundary layer, the dynamics of which differed 

between the different nights. These emissions may include combustion and fugitive
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emissions from industrial activity outside the flux footprint, on the outskirts o f the 

city.

Additional spikes in VOC concentrations can be observed in Fig. 3.3. While 

some of these can be ascribed to changes in wind direction, such as those observed in 

acetone on the 14th, others, as seen in toluene on the 16th cannot.

Figure 3.4 shows scatter plots of VOC mixing ratios measured during the 

vDEC mode between the 5th and 20th of June. These plots are useful for the 

interpretation and source apportionment of data. For example, strong linear 

relationships, as seen in panel (I), may suggest a similar source contributing to the 

emission o f the two compounds, whereas in panel (K), where a bimodal distribution is 

evident, it is possible that there are two separate sources contributing to the observed 

VOC concentrations. Further information can be obtained from these plots by 

differentiating data points by a z axis, in this case temperature, which in some 

instances (panel (E)) can reveal what appears to be a temperature dependency in the 

measured concentration o f the VOC. To help with the further interpretation of the data 

shown in Fig. 3.4, Table 3.2 lists some of the known anthropogenic, biogenic and 

chemical sources of the measured compounds and also includes atmospheric lifetimes 

with respect to OH, NO3, O3 and photolysis.

Figure 3.4, panel (A), shows the correlation between isoprene (m/z 69) and 

benzene (m/z 79). Both these compounds are known constituents o f petrol fuel 

(Borbon et al., 2001), and consequently they are emitted to the atmosphere by the 

same two anthropogenic sources: direct emissions from vehicle exhausts and 

evaporative emissions from petroleum products, hence the strong linear relationship 

(R2 =0.87 (p<0.0001)) observed between the two compounds during this study.
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Figure 3.4. Scatter plots o f  V O C  concentrations measured at Portland Tower, Manchester.  
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Despite the apparent clarity of this relationship, more detailed analysis of the data with 

respect to temperature, as shown in Fig. 3.5, indicates the observed isoprene 

concentrations to be partially influenced by the ambient air temperature, with higher 

concentrations relative to those of benzene observed during warmer conditions. It is 

reasonable to presume that the composition of vehicle exhaust is unlikely to vary 

significantly with changes in the observed ambient air temperature (16-30°C), 

therefore it must be assumed that this increase occurs either due to increased 

evaporative emissions, as isoprene is more volatile than benzene, or that there are 

emissions o f isoprene from a third source, independent of that o f benzene. Biogenic 

emissions o f isoprene are an obvious candidate, as isoprene emission rates from plants 

have been shown to be both temperature and light dependent (Guenther et al., 1995).

0.8

0.6

>
_Q
Cl
Q-

£ 0.4 
<D
Q_OC/3

0.2

0.0
0.0 0.1 0.2 0.3

B e n z e n e  [ppbv]

Figure 3.5. Isoprene concentrations (m/z 69) against benzene (m/z 79) measured at Portland 
Tower, Manchester during June 2006. Open diamonds correspond to data points above 21 C, 
closed triangles correspond to data in the range of 16 — 21 °C and open circles represent data 
below 16 °C.

>̂ >Jq  y = 3.1089 x + 0.0196 ±0.0063 
r2 = 0.8969

y = 3.0079 x + 0.0671 ± 0.0117 
r2 = 0.8703

y = 2.8255 x + 0.0986 ± 0.0277 
r2 = 0.6174
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Yet, analysis o f an isoprene inventory for Great Britain (Stewart et al., 2003) shows 

few biogenic sources o f isoprene within the city centre. Analysis of the meteorology 

during the period, when the ambient air temperature was at its highest, shows the 

average wind speed to be approximately 8 m s '1. Although isoprene has a short 

atmospheric lifetime in the daytime, typically on the order of 1 hour (Atkinson, 2000), 

due to reactions with the OH radical, at such wind speeds, air masses containing 

isoprene emitted from rural areas, outside of the city could have reached the tower 

before removal by OH. Consequently it is assumed that the temperature-dependent 

fraction o f isoprene observed during this study was a combination o f both evaporative 

and biogenic emissions. The percentage contribution of temperature-dependent 

isoprene is shown in Fig. 3.6. This plot suggests that at 30 °C as much as 32% of the 

observed isoprene within the city centre could be due to a combination o f evaporative 

and biogenic emissions. Separation of these two sources to obtain the biogenic 

fraction is not possible.
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Figure 3.6. The percentage contribution of temperature controlled isoprene at 18, 22 and 26 °C. 
Dashed line indicates the percentage of temperature controlled isoprene that might be expected at 
30 “C. Error bars represent 1 standard deviation at the 95% confidence interval and the greyed 
area represents the 95% confidence band of the fit.
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Toluene was the least volatile of the compounds measured during this study 

and the ratios of its concentration against those of benzene, isoprene, acetone, 

acetaldehyde and methanol did not vary with temperature (Fig. 3.4: panels (B), (C), 

(E), (H) and (K) respectively). However, in each of these plots, bimodal distributions 

were observed and each of the aforementioned compounds appeared to demonstrate 

some degree o f temperature dependency with respect to toluene, although this varied 

between compounds. Acetone appearing to be highly temperature dependent, whereas 

benzene showed only a slight variation with temperature. In the case o f benzene, the 

observed temperature dependence may be coincidental and due to the prevailing wind 

direction and increased wind speeds which accompanied the elevated temperatures. 

This point can be highlighted by investigation of the ratio of benzene to toluene 

concentrations in Fig. 3.7. As both of these compounds are known to be present in 

primary vehicle exhaust emissions (Jobson et al., 2005), and have differing 

atmospheric lifetimes with respect to the OH radical, analysis o f the benzene to 

toluene ratio (B/T) can be used to gauge the age of an air mass (Warneke et al., 2001). 

Previous studies have shown the B/T ratio in primary exhaust emissions to typically 

lie in the range o f 0.41 -  0.83 (Heeb et al., 2000), but this ratio increases as toluene 

reacts with the OH radical faster than benzene and is preferentially removed over time 

in the atmosphere. In the present study the average B/T ratio was approximately 0.55 

(Fig. 3.7), suggesting the observed concentrations were typically originating from 

sources close to the measurement site. However, during the period of elevated 

temperatures (9th - 12th o f June), the ratio increased to approximately 0.67, which 

suggests slightly older, photochemically processed, air was being advected from 

outside o f the city. In the days before this period (6th - 9* June), the wind direction 

was from the SW. As the temperatures increased between the 9th and 12th, the wind
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direction rotated 180° and the air that had left the city in the days previously was 

transported back across Manchester. The atmospheric lifetime of toluene with respect 

to OH is approximately 2 days (Atkinson, 2000), which corresponds to an advection 

distance o f -1300 km under the prevailing average wind speed. Taking this into 

account, the returning air mass would be depleted in toluene and therefore the ratio of 

benzene to toluene in the air mass would increase, which can be seen occurring in Fig. 

3.7.
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Figure 3.7. G raph  o f  the ratio o f  benzene to toluene (solid line) and average wind speed (greyed  
area).

In addition, the removal rate of toluene may have been increased due to higher 

concentrations of the OH radical corresponding to the increase in temperature. 

Therefore it can be concluded that, although some temperature dependency may be 

observed due to increased evaporative emissions and OH concentrations, the bimodal 

distributions observed in Fig. 3.4 panels (B), (C), (E), (H) and (K) are, in part, a result 

of an older air mass being advected back across the city, in which the toluene has been 

removed through reaction with the OH radical. Fig. 3.7 also demonstrates the diurnal 

cycle in the B/T ratio due to changes of OH concentrations over the day.
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Acetone (m/z 59) appeared to show the greatest degree o f temperature 

dependence out of all the measured VOCs. Like acetaldehyde, acetone can be formed 

in the atmosphere as a product of the photooxidation of hydrocarbons, including 

propane, isobutene and isopentane (Singh et al., 1992). These are primary vehicle 

exhaust pollutants (Hwa, 2002; Chiang et al., 2007); however, the atmospheric 

lifetime o f each is typically on the order of tens of days, therefore temperature- 

dependant photooxidation is unlikely to be a major source of acetone within the city. 

Both acetone and acetaldehyde are themselves found in vehicle exhaust emissions 

(Sigsby et al., 1987; Caplain et al., 2006), which accounts for the close relationship 

observed with benzene concentrations. Again, the apparent temperature dependency 

o f these compounds, seen in Fig. 3.4 panels (D) and (G), could be related to the high 

volatilities o f these compounds, leading to fugitive evaporative emissions at higher 

temperatures. Although acetaldehyde is more volatile than acetone, and therefore 

should demonstrate the greatest tendency to evaporate at higher temperatures, acetone 

has a wider distribution o f potential sources as it is not only found in petrol but also in 

a wide range o f solvents and cleaning fluids (Table 3.2).

3.3.2 VOC fluxes

Averaged diurnal fluxes for the period 5-20th June 2006, as measured by both 

the DEC and vDEC techniques, are shown in Fig. 3.8. Despite some variability 

between the two systems, both techniques show VOC fluxes to have a clear diurnal 

trend, with fluxes at their largest in the mid to late afternoon and lowest in the early
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Figure 3.8. Panel A shows the effect of the reduced measurement resolution on simulated disjunct 
eddy covariance sensible heat fluxes. Panels B — F show the averaged daily fluxes of methanol, 
acetaldehyde, acetone, benzene and toluene respectively between the 5 and 20 of June 2006. 
Black circles represent m easurements from the vDEC system, white circles show DEC 
measurem ents, greyed areas represent 1 standard error for the EC fluxes and error bars denoted 
1 standard error for DEC fluxes.
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hours o f  the morning. On average, fluxes were positive for most o f the day, indicating 

the city to be acting as a net source of VOC to the atmosphere, although deposition 

was observed for short periods in the night. Typically, emissions rose sharply just 

after sunrise between 06.00 and 10.00 hrs, peaking at around midday for most 

compounds. This morning rise coincided with the peak in traffic counts which were 

taken on Oxford Road, a busy street adjacent to Portland Street, which provides a 

good proxy o f the relative change of the diurnal traffic pattern in the area.

On average, fluxes of acetone were the largest (88 pg m"2 If1) followed by 

methanol, (79 pg m'2 h’1) and acetaldehyde, (60 pg m'2 h '1), whereas fluxes o f the 

aromatic compounds benzene and toluene were lower (19 pg m'2 h '1 and 42 pg n f2 h '1 

respectively). Isoprene fluxes were omitted from the final analysis, as significant 

differences were observed between the two techniques, indicating a possible source of 

contamination in one or other of the systems.

Panel B, Fig. 3.9, shows the average daily flux of methanol. Typically, fluxes 

o f methanol started to increase at around 08.00, rising steadily until an early evening 

maximum between 17.00 and 19.00 hrs. At this time fluxes dropped off sharply before 

levelling and reaching a minimum during the early morning.

Panel C shows the flux of acetaldehyde, which tended to have two afternoon 

maxima, the first and largest at around 13.00 hrs, and the second coinciding with that 

o f methanol at 19.00 hrs. Similarly, both benzene (panel E) and toluene (panel F) 

demonstrated a two peak trend. In the case of benzene, the first peak, which occurred 

typically around 13.00 hrs was higher than the second, which occurred at 19.00 hrs. 

For toluene the reverse was true, with the second peak, again occurring at 19.00 hrs, 

being larger than the first at 11.00 hrs. Acetone (panel D) did not follow the same 

pattern o f emission; instead, it demonstrated a clear single peak (13.00 hrs) which was
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not dissimilar to that of the sensible heat flux shown in panel A. Unlike the other 

compounds, acetone had no peak at around 19:00 hrs, which may suggest a shift in 

emission sources at this time.

These diurnal trends suggest that toluene, benzene and acetaldehyde are 

primarily derived from direct traffic emissions as they follow the traffic pattern most 

closely. Acetone shows a different pattern which may be due to emission from other 

anthropogenic activities such as solvent use. Methanol emissions are broader over the 

day, consistent with a large contribution from fugitive sources that are coupled to a 

combination o f temperature and anthropogenic activity.

Despite the indirect nature of this comparison, the two flux measurement 

systems showed reasonable agreement, with measured fluxes falling within the range 

o f the calculated uncertainty (standard error of hourly fluxes). The highest observed 

correlations between the DEC and vDEC techniques were observed in the fluxes of 

toluene and acetone, which had R2 values of 0.79 (p < 0.0001; N = 48) and 0.72 (p < 

0.0001) respectively. Methanol (R2= 0.2 p  < 0.0288) and acetaldehyde (R2 = 0.45 p  < 

0.0003) compared less well, as did benzene (R2 0.36 p  < 0.0001), which, during the 

mid to late afternoon showed discrepancies between the two techniques. During this 

time the DEC system underestimated fluxes measured by the vDEC technique in a 

trend that was noticeable in all measured fluxes with the exception o f methanol.

On average fluxes recorded by the vDEC system were 19% (absolute error) 

larger than those measured by the DEC system, although this value varied 

significantly between the individual masses, with no observed underestimation for 

methanol and approximately 40% underestimation for benzene. The most likely cause 

o f this discrepancy is the difference in the effective response times o f the two systems, 

as the vDEC system was able to resolve turbulent fluctuations o f up to 10 EIz as
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opposed to 1 Hz for the DEC system. The slower sampling resolution o f the DEC 

system meant high frequency flux contributions may have been attenuated and lost 

and therefore the total flux was underestimated.

The portion o f the flux attenuated by the slower measurement resolution can 

be estimated theoretically using wind and temperature data [20 Hz] to calculate the 

sensible heat flux. Extracting data points to correspond with the activation of DEC 

sampling valves generates a disjunct time series which can be compared to the 

original EC sensible heat flux. Reducing the effective sampling times of the data from 

0.05 s to 0.5 s is achieved by simply extracting ten temperature measurements instead 

o f one and using the average value for the flux calculation. When this technique was 

applied to the sensible heat data (Figure 3.9, panel A), the simulated DEC fluxes 

typically underestimated the EC fluxes by approximately 8 %. This suggests that some 

of the underestimation observed between the two systems is caused by the slower 

resolution o f the DEC system but not all; therefore there are other sources of error 

which have yet to be quantified. One possible explanation is that the sampling 

response o f the DFS is < 2 Hz, possibly because of adsorption / desorption effects in 

the ISRs for more “sticky” compounds. In addition, the differences between the two 

techniques seemed to be inversely proportional to VOC concentrations, hence 

benzene, which was the least abundant compound measured, demonstrated the largest 

deviation between the two data sets. This suggests the measurements o f benzene were 

close to the detection limit of the instrument. In future this could be improved by 

increasing the integration time of the vDEC measurement from a dwell time of 20 ms 

to 0.1 or 0.2 s
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3.3.3 Comparison of measured benzene fluxes with NAEI estimates

Measured fluxes o f benzene were up-scaled and compared against the most 

recent (2005) emission estimate for Manchester taken from the National Atmospheric 

Emission Inventory (http://www.naei.org.uk/datachunk.php?f_datachunk_id=l 74). 

The flux estimates from the vDEC system were used for the comparison as they did 

not suffer from the attenuation of high frequency flux contributions. In order to 

compare the up-scaled fluxes with the inventory it was first necessary to calculate the 

flux foot print (surface area contributing to the flux) so that the appropriate NAEI 

grid(s) could be selected for comparison.

Footprints were calculated using a simple parameterisation model developed 

by Kljun et al (2004) which was run using typical urban meteorology to give 

footprints under stable, neutral and convectively unstable atmospheric conditions. 

This model is designed for dynamically homogenous terrain, therefore its application 

to the urban environment is not ideal; however there are few if any operational 

footprint models designed for this type of environment. Therefore the flux footprints 

obtained are treated as a first-order estimate only. The following parameters were used 

in the model: standard deviation of vertical wind velocities measured at Portland 

tower aw = 0.3 m s '1; friction velocity m* = 0.3 m s '1 (average for measurement 

period); measurement height zm -  95 m; roughness length zo -  1.5 m (estimated as 

1/10th o f the average building height (15 m)); and boundary layer height h = 2000 m. 

The results are shown in Fig. 3.9 and list the distance at which the maximum 

contribution to the flux can be expected (Xmax) and the distance at which 80% of the 

flux is contained (Xr). The results show the footprint size to scale with increasing 

turbulence, ranging from 1 km at low u* values (0.2 m s *) to over 3.3 km at higher 

values (0.75 m s’1) with an average size of approximately 1.5 km.

http://www.naei.org.uk/datachunk.php?f_datachunk_id=l
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In order to calculate an emission estimate for the city using these data, it was 

assumed that the observed average fluxes were representative of the benzene emission 

rates occurring throughout the year (although the emission rates of benzene are likely
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Figure 3.9. Predicted one-dimensional flux footprint from Portland Tower, M anchester, where 
the solid, dashed and dotted lines represent the predicted footprint for u. values of 0.2 (minimum  
observed), 0.35 (average for campaign) and 0.75 m s'1 (maximum observed).

to show some seasonal variation, with increased vehicle use during the winter months 

causing higher direct emissions, this may be balanced by the increased fugitive 

emissions in the summer months). In addition, it was assumed that benzene fluxes 

were relatively consistent throughout the flux footprint. Figure 3.10 shows an analysis 

of the wind sector dependence of benzene concentrations and fluxes measured 

between the 5th and 20th of June. Benzene concentrations are skewed, with higher 

concentrations observed during south westerly wind directions and lower 

concentrations during south easterlies. In contrast, benzene fluxes are fairly well
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distributed across each wind sector. The difference between the concentrations and 

fluxes occurs because concentration measurements are influenced by both local and 

distant point/diffuse sources, whereas fluxes are only controlled by emissions from 

sources within the footprint.

B e n z e n e  C on cen tra tion  [ppbv]

N
B e n z e n e  F lux [ug m'2 h"1]

N

Figure 3.10 Analysis o f the wind sector dependence of benzene concentrations and flux 
measurements m ade from Portland Tower, M anchester, in June 2006.

Therefore the measured average total daily flux of benzene (454 pg m'2 d '1) 

was extrapolated to give an annual emission estimate of 0.17 (± 0.12) t km'2 y r'1. This 

value was six times lower than that predicted (average of NAEI grid squares contained 

within the predicted flux footprint) by the NAEI (0.98 t km'" y r '1) for Manchester city 

centre in 2005.

Since the implementation of both the Geneva VOC (UN ECE, 1991) and the 

Gothenburg multi-pollutant Protocols (UN ECE, 1999) annual average mean benzene 

concentrations have declined in the U.K at a rate of approximately -20% per year 

(Dollard et al., 2007). This decrease has been brought about largely through the 

implementation o f three way catalysts to control vehicle emissions and the use of
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canisters to control the evaporative emissions. Taking this decline into consideration 

and readjusting the 2005 NAEI emission estimate accordingly, a revised emission 

estimate o f 0.78 t km’2 yr"1 for 2006 is realised. However this figure is still 

significantly higher than the measured fluxes. Reasons for this large discrepancy are 

uncertain, but are likely to involve either poorly characterised VOC sources and/or 

activity statistics within the NAEI, or, a statistically unrepresentative measurement of 

benzene fluxes by the vDEC technique, or a combination of both.

Measured flux estimates for the remaining five compounds are shown in Table 

3.3, but the NAEI does not explicitly estimate their emission rates, so further 

comparisons were not possible. Published VOC fluxes from the urban environment 

are limited, but fluxes have been measured above Mexico City using a vDEC 

approach as part o f the Mexico City Metropolitan Area 2003 field campaign. Average 

fluxes o f methanol (1044 pg m'2 h’1), toluene (828 pg m’2 h '1) and acetone (396 pg m"2 

h’1) were found between four and nineteen times higher than those observed in

Table 3.3. VOC emission estimates for Manchester city centre based on micrometeorological flux 
measurements from Portland Tower. ___________________________________________________

Methanol Acetaldehyde Acetone Benzene Toluene

Emission 
Estimate 

[t km'2 y r 1]

0.69 (± 0.44) 0.52 (±0.29) 0.77 (± 0.41) 0.17 (± 0 .12 ) 0.37 (±0.18)

NAEI 
Emission 
Estimate 

(2005) [t km'2 
y r 1]

0.98 (±0.02)

Manchester. This is unsurprising given the much older vehicle fleet, less dominance of 

catalytic converters and poorer fuel quality in Mexico City, where vehicle emissions 

are not regulated by the aforementioned protocols.
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3.4 Conclusions

In the past the virtual and disjunct eddy covariance techniques have been 

successfully applied to give flux information from a range o f vegetation canopies. In 

the present study we have shown that these techniques can be extended to the urban 

environment provided a measurement site with suitable elevation above street level 

can be found. We have also demonstrated the effectiveness and limitations of each 

approach. The vDEC technique is thought to be more suited for urban flux work due 

to its relative simplicity and fast response time. However, the DEC technique has also 

been shown to be effective and, with improvements to the system design, such as 

increased measurement frequency and tower mounting capabilities, could become an 

important tool in increasing our understanding of both anthropogenic and biogenic 

VOC emissions.

Emission estimates derived using flux data from the vDEC technique 

demonstrate the potential of using VOC flux measurements in determining emission 

estimates on a city wide scale. Although emission estimates obtained in this study are 

based on a “snap shot” of the total yearly emission, they demonstrate the potential of 

the technique, which, if deployed on a longer time scale such as a year could give very 

detailed information on urban-scale emissions, including both spatial and, more 

importantly, temporal trends, which are currently not accounted for in the NAEI 

emission estimates.

Finally, we have demonstrated that ambient air temperature plays an important 

role in the relative concentrations of VOCs in urban air. While some compounds are 

solely governed by their volatility and increased evaporation rates at higher 

temperatures, others such as isoprene, can also be influenced by increased biogenic 

emissions occurring both in, and outside of the city.
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Chapter IV
4. Eddy covariance flux measurements and ambient 

concentrations of volatile organic compounds in 
central London

In this chapter measurements of volatile organic compound fluxes from central 

London are presented. Measurements were made using the virtual disjunct eddy 

covariance technique, which, during the Manchester campaign, was found to be more 

easily installed and operated than the DFS. The system was deployed on the Telecom 

tower, a 200 m communications mast located in the borough of Westminster. 

Ancillary measurements o f CO concentrations and fluxes were made and compared to 

measured VOCs. In addition, the measured VOC fluxes were related to local traffic 

density and up-scaled to give an annual emission estimate which was compared to 

data taken from the national atmospheric emission inventory.
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Abstract

Concentrations and fluxes of eight volatile organic compounds (VOC) were 

measured above central London during October 2006. Daily averaged VOC 

concentrations were within the range of 1 -  13 ppb for the oxygenated compounds 

methanol, acetaldehyde and acetone, 0.2 -  1.3 ppb for the aromatics, benzene, toluene

9 1
and ethylbenzene and typical VOC fluxes were in the range o f 70 -  130 pg m'“ h' . 

Concentrations were comparable with long term measurements at a nearby monitoring 

station. Detailed analysis of data from the station showed biogenic sources of isoprene 

to account for a significant fraction of the total measured isoprene within the city 

during warmer periods. The relationship between traffic density and VOC fluxes was 

demonstrated and the resultant parameterisation applied to a year long set of traffic
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data to derive annual emission estimates for each VOC. Comparison o f the measured 

benzene fluxes with the U.K national atmospheric emission inventory showed 

measured values to be of a similar magnitude as inventory estimates.

4.1 Introduction

Volatile organic compounds (VOCs) in ambient air influence local and 

regional air quality and can also impact upon human health through both primary and 

secondary pathways. For example, long-tenn exposure to compounds such as benzene 

and 1-3 butadiene has been linked with both acute and chronic forms o f leukaemia 

(Johnson et al., 2007). In addition, tropospheric ozone, a photochemical air pollutant 

formed as a consequence of VOC precursor emissions, has been associated with a 

number o f respiratory conditions (Burnett et al., 1997). At elevated concentrations, 

tropospheric ozone can also cause damage to crops, forest ecosystems and buildings. 

Similarly, certain VOCs are iteratively oxidised in the atmosphere and thus act as 

precursors for the generation of secondary organic aerosol (SOA), which contributes 

to particulate matter with implication on human health and the climate system.

VOCs are the subject of much scientific interest, and efforts have been made to 

curtail and better regulate the emission of anthropogenic VOCs (AVOCs). In Europe 

much of this has been achieved through the implementation o f both the Geneva VOC 

(UN ECE, 1991) and Gothenburg multi-pollutant protocols (UN ECE, 1999), which 

promote the introduction of 3-way catalysts to all newly manufactured road vehicles 

and forced steps to be taken to reduce evaporative emissions from petroleum products.

In order to quantify the effectiveness of such emission control measures 

accurately it is necessary to compile spatially disaggregated emission inventories. In
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the U.K. this is done using a “bottom-up” approach to produce a yearly emission 

estimate for 25 separate air pollutants as part o f the UK National Atmospheric 

Emission Inventory (NAEI) activity. Only two VOCs, benzene and 1-3 butadiene, are 

explicitly included in this, leaving other important VOCs, such as those with high 

ozone forming potentials, including toluene, largely unaccounted for. Furthermore, the 

compilation o f an annual estimate means short term temporal trends in VOC emission 

rates, which may be important in helping elucidate the processes involved in local 

photochemical pollution episodes, are not quantified.

In contrast to the NAEI, micrometeorological flux measurement techniques 

such as eddy covariance and virtual/disjunct eddy covariance (vDEC) offer a “top 

down” approach to emission estimates, giving insight into both spatial and temporal 

changes in VOC emission. To date most VOC flux measurements made with these 

methods have focussed on emissions of biogenic volatile organic compounds (BVOC) 

from vegetation canopies such as grassland (Karl et al., 2001; Rinne et al., 2001; 

Warneke et al., 2002; Ammann et al., 2006; Brunner et al., 2007) and forests (Karl et 

al., 2002; Grabmer et al., 2005; Spirig et al., 2005; Lee et al., 2006), avoiding the 

urban environment due to the difficulties associated with its high variability in surface 

cover and roughness elements (Velasco et al., 2005). However, recent studies have 

demonstrated that these techniques can also be extended to the urban canopy provided 

a measurement site with a suitable elevation above street level can be found (Nemitz 

et al., 2002; Dorsey et al., 2002; Velasco et al., 2005; Langford et al., 2008).

Direct micrometeorologically-based observations such as these offer several 

advantages over modelled emission inventories such as the NAEI. Firstly they 

integrate direct observations of vertical wind speed and scalar concentration over a 

wide spatial area, which ensures the numerous sources of VOC emissions at street
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level are resolved within the flux measurement. This is highly advantageous as it does 

not require the characterisation of individual sources as in the NAEI, nor does it rely 

on the accuracy o f activity statistics such as traffic counts, fleet composition, driving 

patterns or fuel consumption. Secondly, changes in emission rates can be resolved 

temporally, revealing changes in emission rates on time scales o f minutes and longer, 

something which is not currently possible using an emission inventory. Finally, the 

use o f the proton transfer reaction -  mass spectrometer (PTR-MS), an online VOC 

monitoring instrument, enables the simultaneous measurement of a number o f VOCs, 

providing scope for the development of speciated emission estimates.

Although there are uncertainties associated with any flux measurement 

technique, urban emission estimates derived using the vDEC technique have 

compared closely to modelled emission estimates in the past (Velasco et al., 2005). In 

the current study we demonstrate the use of the vDEC technique to derive emission 

estimates for eight volatile organic compounds above central London and, where 

possible, we compare the results to emission estimates within the most recent (2005) 

NAEI data base for London. We also compare VOC data with ancillary measurements 

o f CO concentrations and fluxes.

4.2 Experimental

4.2.1 Measurement site

During the autumn of 2006 (30/09/06 -  30/10/06), micrometeorological 

measurements o f VOC concentrations and fluxes were made over central London. The 

measurements were conducted as part of the REgents PArk and Tower Environmental 

Experiment (REPARTEE) in the framework of the UK CityFlux project, which 

encompassed a wide range o f scientific activities, including measurements of fluxes of
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H2O, CO2 , CO, O3 and aerosols. In addition to these tower based activities, ancillary 

ground-level measurements were made in Regent’s Park.

Greater London is made up of 32 district Borough Councils, covering 

approximately 1600 km2, with over 7.5 million inhabitants. The site selected for the 

study was the Telecom Tower (51°31’17.4” N; -0 °8’20.04” W), a

telecommunications tower, which is located in the Borough of Westminster in central 

London. The tower is situated 8  km east of the cities central business district and is 

surrounded by a mixture o f commercial and residential buildings giving the location 

an urban classification of 2 (Intensely developed high density urban with 2 - 5  storey, 

attached or very close-set buildings often of brick or stone, e.g. old city core) 

according to the criteria described by Oke (2004). A short distance from the tower in 

the SW and NW directions are two large amenity areas, Hyde Park and Regents Park. 

To the NE are three major railway stations and directly to the south is Oxford Street, 

one o f the principal shopping streets in central London.

The structural design of the Telecom Tower makes it an ideal platform from 

which to make micrometeorological measurements. It stands at a height of 191 m and 

has a typical diameter of 16 m. The cylindrical shape minimises the distortion of air 

flow around the building, while the 185 m elevation above the average surrounding 

building height is sufficient to escape the effects of roughness elements below, 

offering a homogenous fetch in all directions. A 12 m tall lattice structure is erected 

on the Tower’s flat roof, upon which was mounted a 3 m mast supporting an 

ultrasonic anemometer (Model R3-50, Gill Instruments, U.K.) and gas inlet. Air was 

pumped down a 45 m long Teflon tube (3/8” OD) at a flow rate o f 60 1 m 1 to the 

instruments which where housed in the Tower.



114 Telecom Tower, London

4.2.2 VOC sampling

VOC mixing ratios were measured using a proton transfer reaction mass 

spectrometer. Unlike some conventional mass spectrometers, the PTR-MS uses the 

transfer o f a proton to “softly” ionise the compound(s) of interest. A detailed 

description o f this instrument can be found elsewhere (Lindinger et al., 1998; de 

Gouw et al., 2007; Hayward et al., 2004). Briefly, H3 0 + primary ions are produced in 

a high voltage hollow cathode by the introduction of pure water vapour. From here the 

primary ions are accelerated into a drift tube region which is continually purged with 

sample air. Subsequently a proton is donated by the H3 0 + ions to any atmospheric 

constituent with a proton affinity greater than that o f water. The protonated ions are 

then mass (atomic mass unit; amu) selected as they pass through a quadrupole mass 

spectrometer, before being detected by a secondary electron multiplier (SEM). The 

design o f this instrument allows VOC mixing ratios to be measured with both fast 

response times (< 200 ms) and good sensitivity (10 -100 ppt) (Hayward et al., 2004; 

Hewitt et al., 2003).

In the current study an Ionicon (GmbH, Innsbruck, Austria) high sensitivity 

PTR-MS (fitted with 3 Varian turbo pumps and a silico steel heated inlet) was used 

for the measurement of VOC concentrations and operated in two modes, SCAN and 

FLUX. During the first five minutes of every hour the total mass range {m/z 2 1 -1 4 6 )  

was scanned to give basic concentration information on a wide range of hydrocarbons. 

The PTR-MS was then operated in FLUX mode for two 25 minute averaging periods 

per hour, with the quadrupole scanning through 11  pre-determined masses (0 . 1  s per 

m/z) in duty cycles lasting just over 1 s per cycle. The targeted protonated masses 

included: methanol (m/z 33), acetonitrile (m/z 42), acetaldehyde (m/z 45), 

acetone/propanal (m/z 59), isoprene/furan (m/z 69), benzene {m/z 79), toluene {m/z 93)
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and ethylbenzene (m/z 107). The remaining 5 minutes of each hour were used to 

measure the instrument background by sampling air which first passed through a 

platinum catalyst.

During the period o f measurements the PTR-MS was optimised to an E/N ratio 

o f 125 Td with the drift tube pressure set to 2 mbar and a flow rate of 300 ml min'1. 

The H30 + primary ion count ranged between 8  -10 x 106 ion counts per second (CPS) 

with less than 2 % CF and target ions ranged between 1 x 101 - lx  103 CPS after 

background subtraction.

One o f the major issues regarding PTR-MS measurements arises as a result of 

the mass detection system. As the quadrupole filters ions for detection, it separates 

them into integer m/z classes (m/z 2 1 , m/z 2 2 . . .etc), making it difficult to attribute an 

individual VOC to a particular m/z, since more than one VOC may be detectable at 

that mass number (Ammann et al., 2004). For example, when measuring at m/z 59, 

one might expect to see acetone; however, propanal can also be detected at this amu. 

Complimentary techniques such as GC-MS are often required to ensure correct 

compound identification. For the eight m/z’s presented in this study there are thought 

to be only very minor contributions from unknown or unexpected VOC, therefore we 

assume each m/z to correspond to the VOC mentioned previously.

4.2.3 Data acquisition

The sonic anemometer recorded temperature and 3-D wind speeds at a rate of 

20 Hz. The signal from the sonic was split six ways, allowing each analytical 

instrument to record both wind speed and concentration data simultaneously on their 

respective logging systems. The raw data were logged and archived for post

processing by a programme written in LabVIEW (National Instruments, Version 7.1).
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This programme also recorded ion counts directly from the PTR-MS using the 

Microsoft Windows “dynamic data exchange” protocol (DDE) and converted these 

signals to volume mixing ratios and performed preliminary online flux calculations.

4.2.4 Calculation of fluxes

The PTR-MS is capable of returning concentration information on individual 

VOCs at fast rates, in theory making it ideally suited to the eddy covariance flux 

measurement approach. In reality, the quadrapole can only filter one m/z at a time; 

therefore the temporal resolution of the data is governed by the total number of 

compounds measured. Consequently, rather than outputting a continuous high 

frequency data set, an array of measurements is returned as each measurement cycle is 

completed, in effect creating a disjunct time series of fast (0 . 1  s) measurements, which 

are made every 1.2 s or so. A flux may still be calculated using this reduced dataset, 

provided the averaging time of each individual measurement was sufficiently short 

(here 0.1 s). In some flux measurement setups this is achieved using a disjunct eddy 

covariance approach (DEC), where a grab sample of air is rapidly aspirated into a 

chamber and the contents analysed offline with slower sensors (Grabmer et al., 2005). 

Here, however, the need for grab samples becomes redundant, as the PTR-MS can still 

scan each individual mass at the desired sampling rate, just not simultaneously. 

Therefore the flux is calculated in the same direct way as the eddy covariance 

approach, the only difference being a reduced data set. Hence concentration data ix) 

were combined with the corresponding vertical wind velocity (w), and the flux (Fx) 

was derived from the time averaged covariance between the instantaneous deviations 

of w ’ and x ’ from their respective means:
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Fx =-'E(wi - wy(Xi-z)  0 )
^ i= n

As the air sample for PTR-MS analysis had to be pumped ~ 45 m down from 

the inlet to the instrument, a significant time lag was introduced between the two 

datasets. To correct for this temporal shift, concentration data were shifted back in 

time until a maximum in a cross-correlation function between w ’ and x ’ could be 

found within a user-defined time window. The maximum correlation typically 

occurred at around 6  s (or 120 data points at 20 Hz). This agreed closely with the same 

cross-correlation function applied to CO2 data recorded by a fast response instrument 

(Infrared gas analyzer LI-COR 7000) which sub-sampled directly after the PTR-MS. 

The precision o f each flux measurement was determined following the criteria 

specified by Spirig et al (2005), where the noise of the covariance function is 

characterised by the standard deviation of the function at distances far from the peak 

value. Working under the assumption of a normal distribution, multiplying the 

standard deviation by 3 gives the measurement precision at the 99.7% confidence 

interval, this value also acts as a proxy for the flux detection limit and provides an 

additional quality check for the data.

In addition to VOC measurements, CO fluxes were measured with a fast- 

response VUV CO analyser (AeroLaser AL5002).

4.2.5 Quality assessment of fluxes

A post-processing algorithm was written in Lab VIEW which not only re

processed fluxes but also filtered out data files which did not meet specific quality 

criteria. The algorithm involved the following steps: (i) rotation o f the coordinate 

system to correct for sonic anemometer tilt relative to the terrain surface, where u was



118 Telecom Tower, London

aligned with the mean wind direction, therefore setting w = 0 , (ii) removal of hard 

spikes caused by electrical interference and buffering, (iii) conversion of raw PTR-MS 

ion counts to ppb mixing ratios, (iv) calculation and setting o f lag times using a cross

correlation function, (v) calculation of fluxes, including sensible heat, momentum, 

frictional velocity (n*) and VOCs, (vi) calculation o f flux precision, rejecting files 

where the peak in the CC function was below three times the measurement precision 

(vii) testing o f mean wind speed (U), rejecting data files where U < 1 m s' 1 or u* < 

0.15 m s' 1 and (viii) testing of fluxes for stationarity, rejecting failed data files.

The stationarity test applied followed the theory outlined by Foken & 

Whichura (1996), which states that a time series % is stationary when the flux (Fx) is 

equal to the mean average flux of its components (Fxj, FX2 , FX3 ...). Here we took Fx to 

be the flux over the 25 minute averaging periods, and the components Fxj to Fxs to be 

the flux calculated from individual five minute blocks of the original time series. 

Following criteria specified by Velasco et al., (2005), if the mean of Fxj to F p  differed 

by more than 60% of the value of Fx the time series was considered non-stationary and 

the data were discarded. Time series where the fluxes differed between 30% and 60% 

were considered stationary, but to be of a low quality. High quality stationary data 

were taken to be any time series where the fluxes differed by less than 30%.

During the current study an average 13% of the data were rejected due to lack 

o f stationarity, 2 2 % were removed because of insufficient turbulence (u* < 0.15 m s '1) 

and a further 25% were rejected as fluxes were below the limit o f detection. O f the 

40% of the data that passed the quality assessment, 6 8 % were ranked as high quality 

and 32% low quality.

4.2.6 NAEI Emission Estimates
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The emission estimates used in this study were taken from the 2005 National 

Atmospheric Emission Inventory (NAEI). The NAEI provides disaggregated, 1 km x 

1 km gridded emission estimates for 25 atmospheric pollutants. A detailed description 

o f the NAEI mapping methodology is described elsewhere (King et al., 2003). Briefly, 

the NAEI generates emission estimates from 11 source sectors. Each estimate is a 

combination o f reported and estimated emissions, the latter calculated theoretically by 

multiplying an emission factor by a given activity statistic.

For example, the emission of benzene from road transport may be expressed as 

the amount o f benzene contained in car exhaust (emission factor), multiplied by the 

number o f kilometres driven per year (activity statistic). Intuitively, the accuracy of 

estimated emissions is governed by the quality of the statistical information used. 

Therefore emissions reported by the operator of the process (e.g. from large plant 

point sources) are often considered more robust than those estimated for area sources, 

as the former tend to be based on more reliable data. From this it follows that the 

accuracy o f an emission inventory is related to the ratio between reported and 

estimated emissions. For benzene, this ratio is very low, with just 10% of emission 

estimates coming from reported data, whereas for CO2 , for example, the ratio is much 

higher, with 46% o f data originating from known point sources.

Measured fluxes of both VOCs and CO were compared with the NAEI. The 

NAEI emission estimates are broken down into 1 x 1 km grid squares. Therefore, in 

order to generate an emission estimate for comparison, it was first necessary to

calculate the footprint of flux measurements and then integrate the encompassed grids 

to give a single annual emission estimate. The selected grids and flux footprint are 

shown in Fig. 4.1.
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Total Benzene

tot_ben_05

Value
High ; 312  647

Low 4.22902e-009

Figure 4.1. N ational atm ospheric em ission inventory m ap o f benzene in central London (in tonnes 
km '2 yr"1). T he black circle represents the approxim ate area o f the flux foot print (area containing  
80%  o f the m easured flux). The red circle in the centre m arks the location of the T elecom  T ow er  
and the turquoise  and purple circles represent the M arylebone autom ating m onitoring station  
and the London W eather C entre, respectively.

4.2.7 Calculation of the Flux Footprint

The typical daytime flux footprint for micrometeorological measurements 

conducted at the Telecom Tower was calculated using a simple parameterisation
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model developed by Klujan et al., (2004). Although originally developed for 

dynamically homogenous terrain, this model has been extended to the urban 

environment with some success, hence its application here. Typical values o f urban 

meteorology were used to determine footprint estimates under stable, neutral and 

convectively unstable atmospheric conditions, as well as for the average conditions 

experienced during the measurement campaign. The following parameters were used 

in the model: standard deviation of vertical wind velocity aw = 0.3 m s '1; friction 

velocity u* -  0.3 m s '1; measurement height zm = 200 m; roughness length zq = 0.4 m; 

and boundary layer height h = 250 m (stable), 1000 m (neutral) and 2000 m 

(unstable).

4.3 Results and discussion

4.3.1 Concentration measurements

4.3.1.1 Trends in VOC concentration

Averaged diurnal concentration plots for each o f the eight compounds are 

shown in Fig 4.2. During the study period, clear day-night trends were observed in the 

measurements o f VOCs, with the highest concentrations recorded during the daytime 

and the lowest at night. Temporal trends on a weekly time scale were also evident, 

with VOC concentrations typically 15% higher during weekdays when compared with 

weekends. Furthermore, at weekends, concentrations of some compounds began to 

rise much later in the day, frequently beginning to rise at 06.30 hrs [UTC], three or 

four hours later than was typical during the week. Throughout the measurement period
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Figure 4.2. Average diurnal concentration plots for eight of the measured volatile organic
com pounds measured between the 3011' of September and the 30' o f O ctober 2006. W hite circles
represent the total average concentration, solid line represents the average weekend 
concentration and the dashed line represents average week day values.
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concentrations o f the oxygenated compounds were highest, followed by those of the 

aromatics and isoprene. On a day to day basis, each analyte typically followed one of 

two patterns. The first, characterised most typically by the aromatic compounds, had 

two day time peaks, one occurring around 10.00 hrs and the second, larger peak at 

approximately 19.00 hrs. A third, much less well defined peak, occurring at around

14.00 hrs was also evident on certain days, although this tended to be more prominent 

at weekends. In addition to the aromatics, both acetonitrile and acetaldehyde loosely 

followed this 2-peak trend, whereas acetone and isoprene did not. Instead, only a 

single midday maximum was observed, followed by a decline in concentration 

throughout the mid to late afternoon and evening. Methanol concentrations were 

highly variable on both daily and weekly timescales and therefore could not be 

likened to either trend.

Figure 4.2A shows the plot for methanol. During the campaign, methanol 

concentrations ranged between 5 and 54 ppb, with an average o f 13 ppb, making it the 

most prevalent of the VOCs measured. This was consistent with a previous study by 

Langford et al., (2008), where methanol concentrations measured above the city of 

Manchester were found to be significantly higher than all other measured VOCs. In 

the present campaign, methanol concentrations varied significantly on both weekly 

and daily time scales. During the first week of measurements, concentrations 

increased steadily from 7 ppb, to a maximum of 54 ppb on the 8th of October. A slow 

decline in concentration was recorded in the subsequent days and, following a short 

disruption to the measurements between the 15th and 19th, concentrations returned to 

the level (7-10 ppb) observed at the start of the campaign. Unlike the other measured 

VOCs, strong diurnal trends were not apparent. During the working week, 

concentrations tended to be highest during the night time and lowest during the day,
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whereas at weekends the reverse was true, with a maximum peak typically occurring 

in the mid to late afternoon. This may suggest that, at weekends, the dominating 

influence on the concentrations are the dynamics of the boundary layer (leading to 

higher concentrations at night), while during weekdays the change in anthropogenic 

sources such as emissions from industrial activities dominates diurnal variations.

For acetonitrile (Fig. 4 .IB) diurnal trends were apparent throughout the week. 

Mixing ratios typically ranged between 0.09 and 1.1 ppb, with an average of 0.2 ppb. 

Concentrations began to rise from 03.00 hrs, before reaching a broad peak between 

08.00-11.30 hrs. During the mid afternoon, concentrations dipped before reaching a 

second, reduced, peak at around 19.00 hrs. At weekends a different, single peak was 

apparent, with concentrations rising much later in the morning at approximately 07.00 

hrs and peaking around 15.30 hrs.

Figure 4.1C shows the average diurnal trend in measurements o f acetaldehyde, 

which was the second most abundant compound observed, ranging between 0.3 and 

6.3 ppb, with an average of 2 ppb. The trend in acetaldehyde concentrations closely 

mirrored that o f acetonitrile, which is unsurprising as both of these compounds are 

largely derived from fossil fuel combustion and biomass combustion. Differences 

between the two compounds only became apparent at weekends, when acetaldehyde 

concentrations were marginally higher.

Measurements o f acetone (Fig. 4.2D) showed a very broad, single peak, with 

typical values ranging between 0.3 and 2.8 ppb and an average o f 1 ppb, making it the 

fourth most prevalent VOC measured during the study. The mixing ratios of acetone 

rose from 03.00 hrs during the week, levelling slightly at 07.00 hrs, before reaching a 

maximum between 10.00 and 14.00 hrs. A slow decline in concentration throughout 

the remainder o f the day was typical during both weekdays and weekends, although
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during the latter, the morning rise and afternoon peak did not occur until 07.00 hrs and

14.00 hrs respectively.

Isoprene (Fig. 4.2E) was present in the atmosphere at much lower 

concentrations than acetone, between 0.01 and 0.1 ppb, with an average o f 0.05 ppb, 

but demonstrated a similar trend. Morning increases in isoprene concentrations did not 

occur until approximately 07.00 hrs on both weekdays and weekends, which was 

significantly later than that observed for the other measured compounds. Subsequently 

the morning rise was rapid, with a broad peak forming between 13.00 and 18.00 hrs. 

Concentrations decreased abruptly during the evening, which was in contrast to the 

observed behaviour of acetone. In addition to this dissimilarity, isoprene 

concentrations, unlike any of the other VOCs measured, were marginally higher (6%) 

at the weekends, especially during the night. The ambient air temperature was also 

found to be higher at the weekends (2%), with the largest difference in temperature 

occurring at night time.

Measurements o f benzene and ethylbenzene are shown in Figs. 2F and 2H, 

respectively. These two compounds showed remarkable similarities, with almost 

identical trends observed on both weekdays and weekends. Ethylbenzene was the 

more prevalent of the two compounds, ranging between 0.03 and 1.3 ppb, with an 

average o f 0.2 ppb, compared with 0.05 - 1 ppb for benzene with an average 

concentration o f 0.2 ppb. Typically concentrations of both compounds began to rise at

03.00 hrs, before reaching the first of two peaks at 10.00 hrs. From 10.00 hrs onward 

concentrations decreased and levelled before reaching a second, marginally larger 

peak at approximately 19.00 hrs. Concentrations then decreased during the evening 

and through the night.
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Toluene (Fig. 4.1G) was more abundant than both benzene and ethylbenzene, 

ranging between 0.2 - 0.9 ppb, with an average of 1.3 ppb. Despite the higher 

concentrations, toluene demonstrated the same 2-peak trend, although some 

differences were apparent. Firstly, the morning and evening peaks were much better 

defined, in part due to a significant drop in concentration between 10.00 and 17.00 

hrs. Secondly, at weekends, the reverse was true, with much higher concentrations in 

the afternoon and lower values recorded in the evening and morning respectively, 

resulting in a single-peak trend.

4.3.1.2 Comparison with GC-MS and national monitoring network data

In addition to the high resolution PTR-MS measurements, secondary VOC 

concentrations were recorded for validation and comparison purposes at a much 

slower time resolution using a gas chromatography -  mass spectrometer (GC-MS). 

This system took canister samples of air over 30 minute time periods, with a 4 hour 

gap between each sample. Canisters were later analysed offline using a split column 

GC-MS. The results obtained, tended to be slightly higher than PTR-MS 

measurements for compounds in the low C2 to C3 range, while the heavier 

hydrocarbons, shown here in Fig. 4.3, such as benzene, toluene and ethylbenzene all 

showed excellent agreement.

During the study period VOC concentrations including, benzene, toluene and 

ethylbenzene, were also recorded by the U.K. government’s automatic urban and rural 

monitoring network (AURN) at their Marylebone road kerb site. This site is 900 m 

from the base o f the Telecom Tower in a westerly direction. Comparisons of the 

trends in concentrations between the two sites were in good agreement for benzene 

and ethylbenzene with R2 values of 0.5 and 0.6 respectively, whereas for toluene, the
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trend observed at the tower differed significantly from that seen at street level. 

Typically, at street level, concentrations of toluene were highest during the day with a 

broad peak between 07.00 hrs and 17.00 hrs and at their lowest during the night. On
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Figure 4.3 Com parison o f PTR-MS data with GC-MS data which both sampled VOC 
concentrations from the Telecom Tower during the CityFlux campaign.

the tower the reverse was true, with concentrations tending to be depleted during 

midday and peaked during the night. Similar night time maxima in toluene 

concentrations (but not in other VOCs) were observed during a study by Kato et al. 

(2001) where VOCs were measured by PTR-MS outside of Tokyo. This trend in 

toluene concentration was attributed to the presence of a nocturnal surface inversion 

layer, which may also be the case in the current study. In addition to this,



128 Telecom Tower, London

measurements at the tower are likely to be strongly influenced by air masses 

originating from outside o f the city, whereas at street level, where the sampling 

location is in close proximity of the primary emission sources, the influence of 

advected air masses is likely to be negligible. Despite good agreement in the 

concentration trends (with the exception of toluene), concentrations measured at the 

kerbside were significantly higher than those observed at the Tower, with, on average 

a 2 times dilution o f concentrations between street canyon and Tower.

4.3.1.3 Temporal trends in VOC concentrations in London from 2001 - 

2006

Historical measurements of VOC concentrations recorded between 2001 and 

2006 by the AURN monitoring station located on Marylebone Road were analysed to 

look for long term trends or seasonal variations in VOC concentration to help place 

the current results in context. The analysed data included measurements of benzene, 

isoprene, toluene and ethylbenzene, all of which showed a gradual decrease in 

concentrations between 2001 and 2006. The average rate of decline during this period 

ranged between -16 and -21% per year, which was in line with the national average 

during the same time period (Dollard et al., 2007).

Benzene concentrations were typically 18% higher during the winter months 

(October -  April) when compared to the summer (May -  September), with the highest 

concentrations typically observed in November and the lowest values found between 

April and July. Values recorded in October were 13% higher than the yearly average, 

suggesting that the measurements in the current study are likely to be slightly greater 

than the annual benzene concentration.
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Similar winter - summer variation was observed in measurements of 

ethylbenzene and toluene, although the difference between the two seasons was less, 

with average differences of 9 and 5% respectively. The highest concentrations were 

observed in November for toluene and October for ethylbenzene, which were 15 and 

18% higher respectively than the annual average.

The increase in aromatic VOC concentrations during the winter months could 

be linked to changes in the primary sources within the city, with a shift from traffic 

activity, which showed no variation with season, to combustion related emissions 

linked to both domestic and commercial heating, and/or industrial processes. It should 

be noted however, that although traffic density did not vary with season, vehicle 

emissions may show some variation, with increased emissions possible during colder 

temperatures due to the more frequent occurrence of cold engine starts. Higher 

concentrations o f the OH radical, which is the major oxidant of most VOC and is 

photochemically produced, may also actively lower VOC concentrations during the 

summer months.

The ratio o f benzene to toluene concentrations (b/t ratio) measured between 

2001 and 2006 is shown in Fig. 4.4. An increase in the b/t ratio is often associated 

with an elevated photochemical age of the airmass, i.e. a longer time between 

emission and sampling or higher photochemical activity (e.g. Warneke et al., 2001), 

but may also reflect changes in the emission ratio. A strong seasonal trend in the ratio 

is evident, with more benzene relative to toluene during the winter and more toluene 

relative to benzene during the summer. Similar seasonal trends were observed in ratios 

of benzene to isoprene, although the summer increase in isoprene was markedly 

higher, and on average summer values were over 50% higher than in winter. Benzene, 

toluene and isoprene are all constituents of petrol fuel (Borbon et al., 2001) and
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therefore within the urban environment they share the same two major anthropogenic 

sources: direct emissions from vehicles and evaporative emissions from petroleum 

products. For isoprene, a third possible source is biogenic emission from plants, where 

emission rates are both temperature and light dependent (Loreto & Sharkey, 1990). An 

attempt was made to separate the biogenic fraction of isoprene within the city using 

regression plots o f isoprene (y axis) and benzene (x axis) concentrations over a range 

o f ambient air temperatures (-5-0, 0-5...30-35 °C) (surface temperature measurements 

obtained from the London Weather Centre -  3.1 km east of Marylebone Road). The 

intercept o f the regression line was used to indicate the background concentration of 

isoprene which was not attributable to direct emissions from cars, and the 

temperature-dependent fraction [%] was calculated using this value as a percentage of 

the total isoprene present (5th -  95th percentile range).

1°-i
• . • ; .

: : . .  • ■

n r J  ' • ‘

01/01/2001 01/01/2002 01/01/2003 01/01/2004 01/01/2005
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Figure 4.4. Ratios o f  benzene/toluene concentrations measured at the M arylebone automatic 
m onitoring station between 2001 and 2006 relative to ambient air temperature measurements 
taken from the London W eather Centre.
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In order to isolate the biogenic fraction from the evaporative fraction a similar 

procedure was applied to concentrations of iso-pentane, a compound that shares the 

same two major sources as benzene and has a similar volatility to isoprene, but 

importantly has no biogenic component. The results of both experiments are plotted in 

Fig. 4.5. and show only slight increases in iso-pentane relative to benzene at higher 

temperatures due to increased evaporative emissions. In contrast, the temperature- 

dependent fraction of isoprene was significant and therefore biogenic isoprene is 

thought to account for a significant fraction of the total observed isoprene within the 

city. The percentage contribution of biogenic isoprene is thought to be in excess of 

-65%  at temperatures of 30°C.
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Figure 4.5. Plot showing the temperature dependency of isoprene (circles), toluene (diamonds) 
and iso-pentane (triangles), calculated using 5 years o f hydrocarbon data collected at the 
M arylebone Road autom atic monitoring station and temperature data from the London weather 
centre. Tem perature bands -5 -  0, N = 114; 0-5, N = 3405; 5-10, N = 9539; 10-15, N = 12176; 15- 
20, N = 9340; 20-25, N = 3171; 25-30, N = 673, 30-35, N = 73.

0.0997Xy = 3.4364e 
R2 = 0.9095



132 Telecom Tower, London

In a study of VOC concentrations and fluxes above Manchester in June 2006 

similar conclusions were reached, where temperature-dependent isoprene was found 

to contribute over 30% of the total observed concentrations at temperatures above 

30°C (Langford et al., 2008). The higher percentage contribution in London is likely 

to stem from the large areas of urban parkland that are located close to the 

measurement site, combined with the use of a much larger dataset (5 years, compared 

with 20 days) which gives a much more statistically robust estimate and importantly 

in this context there were generally higher temperatures in London than in 

Manchester.

Windroses o f isoprene concentration between 2001 -  2005, calculated using 

wind direction data also taken from the London Weather Centre (not shown), indicate 

the highest isoprene concentrations to come from the south west. In this wind sector 

Hyde Park is found in the immediate vicinity of Marylebone Road and Syon Park, 

Kew Gardens, Richmond Park, Wimbledon Common and Bushy Park are all located 

further south west o f the measurement site and could potentially provide biogenic 

sources o f isoprene.

4.3.2 VOC fluxes

4.3.2.1 Trends In VOC fluxes

Raw fluxes o f VOCs and CO are shown in Fig. 4.6 and their averaged diurnal 

flux profiles are presented in Fig. 4.7. Due to the very low concentrations, the majority 

o f isoprene fluxes were below the limit of detection and are therefore not presented 

here. For the remaining compounds the diurnal pattern o f the fluxes shows that, for the 

duration o f the measurement campaign, the city was acting as a net source of VOC to
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the atmosphere. However, during the weekends, when traffic activity within the city

Time & Date [UTC]
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Figure 4.6. Time series of volatile organic compounds (VOCs) compared with carbon monoxide 
(CO) fluxes measured during the month of October, 2006, from the Telecom Tower, London 
(U.K). Solid line represents VOC fluxes and greyed areas show CO fluxes.
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average weekday flux and open circles show the traffic density. Greyed areas represent the 
m easurem ent precision -  see text.

decreased, fluxes of some compounds became negative for short periods in the early 

morning, indicating deposition. Figure 4.7 also illustrates the tendency for fluxes to be 

reduced at weekends, and on average they were found to be -11%  lower than on 

weekdays. The morning increase in VOC fluxes typically coincided with the increase 

in traffic, which occurred at approximately 06.00 hrs (5 am local time). Yet, on some 

days, VOC fluxes were not seen until much later, between 07.00 and 08.30 hrs. It is 

probable, that during the night, due to the elevation of the measurement location, the 

site became de-coupled from the street-cany on activity and that fluxes were only 

observed as the nocturnal boundary layer broke up in the morning. This phenomenon 

was most noticeable on the morning of the 12th and is shown here in relation to the 

measured traffic activity in Fig. 4.8. The “saw-tooth” shaped curve is symptomatic of 

the venting o f nocturnal/early morning emissions and demonstrates the storage of 

pollutants within the street canyon at certain times. Thus, the local flux measured with 

the DEC approach at the comparably tall measurement height of 200 m is not always 

representative for the surface emission at that time because the storage could not be 

quantified during this campaign. However, it is expected that the integrated emission 

over the day nevertheless provides a robust estimate.

Although measurements of boundary layer height (BLH) were not recorded 

during this campaign, estimates of mixed layer depth were taken from the Hysplit 

model (http://www.arl.noaa.gov/ready/hysplit4.html) and compared with flux data. 

These show the nocturnal boundary layer to break up at around 07.00 hrs and the flux 

to rise shortly after. Spikes seen on the 10th, 11th, 12th and 23rd o f October in Fig. 4.6, 

are thought to relate to the storage and venting of VOCs from the boundary layer in

http://www.arl.noaa.gov/ready/hysplit4.html
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the process described above. Although the mixed layer depth estimates suggest a 

nocturnal boundary layer height of 250 m, some 50 m above the measurement location
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Figure 4.8. Graph o f acetone fluxes (running mean) measured during the 2nd (top panel) and 4lh 
(bottom panel) week of the campaign relative to typical vehicle counts (2004). The top panel 
shows acetone fluxes (open circles) rising after vehicle counts (dashed line) due to the suspected 
formation of a nocturnal boundary layer (greyed area indicates boundary layer height) and 
subsequent de-coupling o f the measurement from the street canyon activity below.

(200 m), the Hysplit model uses this value as a lower limit and the actual BLH might 

be much lower. Hence the measurement location may be located above the nocturnal 

boundary layer at night.

Throughout the campaign, the largest observed fluxes were of toluene (average 

daily flux 140 pg m 2 h’1), followed by acetaldehyde (127 pg m “ h ') and acetone (110 

pg nT2 h '1). The magnitudes of the fluxes were variable from day to day with much 

larger fluxes observed on certain days: for example, on Wednesday 11 October an 

emission fluxes in excess of 500 pg m “ h 1 was recorded for toluene and
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acetaldehyde. The remaining average daily fluxes are shown in Table 4.1, which 

compares findings from VOC flux studies above Mexico City and Manchester. Fluxes 

of acetone and methanol were approximately 1.3 times larger in London when 

compared with summer time flux measurements over the city of Manchester. 

Similarly, fluxes of both benzene and toluene were between 3 and 4 times higher in 

London, which can presumably be attributed to the larger volumes o f traffic. This is 

consistent with the observation of larger organic aerosol emission fluxes above 

London compared with Manchester (Thomas, 2007).

Table 4.1 Average daily VOC fluxes [pg m'2 h'1] measured over a num ber o f urban canopies, 
including M anchester and Mexico.

M ethanol Acetaldehyde Acetone Benzene Toluene Ethylbenzene

[m /z 33] [m/z 45] [m/z 59] [m/z 79] [m /z 93] [m /z!07]

London

(Autumn)
110 127 110 73 140 106

M anchester

(Summer)
78.8 59.6 87.8 18.9 42.4 -

M exico City 1044 - 396 - 828 468

Despite the differences in their relative magnitudes, the diurnal flux profiles 

are roughly similar for each compound and approximately follow the pattern of traffic 

activity in the city. The absence of a clear two-peak rush hour pattern is consistent 

with earlier CO2 flux measurements made above the city o f Edinburgh (Nemitz et al., 

2002). Rush hour behaviour tends to be more pronounced on commuter roads, thus 

affecting concentration measurements, which are influenced by air masses advected 

from outside o f the city centre. By contrast, in the central areas (the flux footprint of 

the tower), traffic density increases steadily throughout the day.

Despite the fluxes of VOCs following a similar pattern, there are also 

differences. For example, acetone emissions peak in the morning whereas emissions 

of ethylbenzene peak in the afternoon. Some fluxes remain relatively large into the
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late evening hours (benzene, toluene and acetaldehyde), while others decreases more 

rapidly (acetone and ethylbenzene). This may be due to a change in the sources in the 

evening (e.g larger contribution of residential heating sources, shift o f the traffic 

composition away from HGV, larger fraction of taxi journeys) or a different relative 

contribution o f combustion vs. evaporative sources which respond differently to 

changes in the meteorological drivers (such as temperature for biological and fugitive 

sources).

4.3.3 Comparisons of VOC and CO concentrations

Figure 4.9 shows the time series of VOC (25 min averages) and CO 

concentrations (30 minute averages) measured between the 20th and 30thtb o f October. 

Each o f the measured VOC appears to roughly follow the trend in CO concentration, 

although this was more apparent for some compounds compared with others. For 

example, both benzene and ethylbenzene follow the trend in CO very closely, 

matching the day-to-day variations while maintaining a relatively constant ratio. The 

good agreement between these compounds and CO (benzene: R~ = 0.47 p  < 0.0001; 

ethylbenzene: R2 = 0.40, p  < 0.0001) is not unexpected as vehicle emissions are 

thought to be the primary source of both the aromatic VOC and CO. In contrast, 

concentrations of the other aromatic compound, toluene, which also follows the trend 

very closely in places, showd a more dynamic range than that o f CO, with 

concentrations elevated relative to those of CO between the 20th and 22nd and between 

the 24th and 30th. This could indicate there to be an additional source of toluene which 

has no association with CO. Analysis of Fig. 4.5, where VOC flux measurements are 

plotted alongside CO fluxes during the same time period, shows the toluene flux to 

mirror the CO flux for the duration of the time series more closely. This suggests that
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the secondary source of toluene is originating from outside o f the flux footprint (the 

increased toluene concentrations appear to have no bearing on the flux, indicating 

horizontal advection of toluene past the measurement site rather than the vertical 

transport o f emissions from the ground below). The source o f secondary toluene is 

unknown, but due to its independence of CO, it is likely to be unrelated to 

combustion.

Similar behaviour was observed with the concentrations of isoprene. Again, as 

expected, isoprene, a known constituent of petrol fuel, followed the trend in CO 

concentrations, but only between the 23rd and 30th (R2 = 0.31 (p = <0.0001)). Before 

this period (19th -  23rd) no correlation between the two compounds was apparent (R2 = 

0.04 (p -  <0.0027)), suggesting either an additional source of isoprene to be present or 

interference from other masses such as furan.

Whilst both toluene and isoprene provide examples o f VOC sources which are 

independent o f traffic, more subtle examples can be observed within the CO time 

series. For example, on the morning of the 29th, as VOC concentrations are generally 

at their lowest, concentrations of CO have already reached a morning peak. This 

might suggest a source of CO that is independent of VOC emissions which may be 

linked to a change in primary sources. Such changes are likely to involve a shift from 

traffic related emissions, which are at their lowest during the early hours of the 

morning, to sources normally secondary in nature, such as central heating in homes 

and businesses.

Concentrations o f acetonitrile, acetone, m/z 41 (a number of fragment ions, 

including, acetone, propanal and methacrolein can be detected at this m/z) and m/z 43 

(multiple species detected at this m/z, including, propylene and fragments of acetone, 

acetic acid and PAN (de Gouw and Warneke, 2006)) also showed some agreement
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with the observed CO concentrations, with R2 values of 0.39 (p = <0.0001), 0.22 (p = 

<0.0001) 0.37 (p = <0.0001) and 0.35 (p — <0.0001), respectively.

4.3.4 Comparison of VOC and CO fluxes

Figure 4.6 shows a time series of VOC fluxes alongside CO fluxes measured 

between the 30th o f September and 30th of October. Despite the noisy appearance of 

the data, it is clear that fluxes of VOCs and CO follow a similar trend. Fluxes can be 

seen to vary on both daily and weekly time scales. For example, on a day to day basis 

the shape o f the flux was not constant, with a saw tooth shaped curve observed on 

some days, thought to relate to the break up of nocturnal inversions (commonly seen 

during the second week of measurements), and a more symmetrical curve seen on 

others when no inversion was present. The magnitudes of the fluxes also varied both 

diumally and weekly. For example, a clear increase in VOC fluxes from week 1 to 

week 2 can be seen in the measurements of acetone, acetaldehyde, and toluene and 

this change was also mirrored by the CO fluxes. During the 5th week when 

measurements resumed after instrument downtime between the 13th and 18th, the 

fluxes were still relatively large, but decrease steadily to a low on the 22nd (Sunday). 

On the 23rd (Monday) a large flux is observed for most VOCs as well as CO, which is 

much higher than on previous week days. Variations in flux magnitude such as this 

can sometimes be related to the meteorological conditions at the time. For example, in 

this instance, the larger fluxes may relate to the venting o f urban concentrations that 

accumulated during a day time inversion (Fig. 4.8), which may be associated with the 

relatively low average wind speeds of 5.8 m s '1.

Day-to-day variation in the magnitude of the aromatic compound fluxes could 

be brought about by changes in wind direction, with shifts from heavily trafficked 

areas to wind sector where urban parkland is the dominant feature (North — Reagent’s
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Park, South west — Hyde Park) and traffic density is low. For other compounds such 

as acetone, acetaldehyde and methanol, all of which may or may not be under some 

biological control, the ambient air temperature could play an important role in 

determining emission rates.

4.3.5 Ratios of VOC to CO -  Concentrations and fluxes

Analysis of the ratios o f both concentrations and fluxes of VOCs to CO can be 

useful in the determination and identification of sources. The ratios of concentrations 

and fluxes may agree or disagree depending on whether or not the major sources are 

contained within the flux footprint. Ratios may change throughout the day due to 

shifts in the major emission sources, or through removal processes such as reaction 

with the OH radical or scavenging by rain. Here, average VOC/CO ratios for the 

campaign are presented in Table 4.2 and the typical diurnal pattern of the ratio is 

shown in Fig. 4.10 for each of the measured compounds.

Ratios o f benzene and ethylbenzene with CO concentrations remain relatively 

constant throughout the day indicating both sets of compounds to share a similar 

source. For the remaining compounds, ratios with CO concentrations all follow a 

similar trend, with a higher ratio during the night time and mid afternoon. The two 

troughs in the VOC/CO ratio coincide with peak traffic flows on the commuter roads 

outside o f the city centre. Explanations for these troughs may include the following;

(i) emissions o f CO may be elevated in congested traffic situations relative to VOC 

emissions, or (ii) during transport the air is photochemically processed before reaching 

the tower and therefore the VOC are depleted in relation to CO which reacts more 

slowly. The latter point is consistent with the isoprene/CO ratio showing a more 

pronounced trough than the other compounds, with isoprene being the most reactive
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of the compounds measured. The main explanation, however, is that some of the VOC 

have additional sources that are not related to combustion.

The ratios o f VOC/CO fluxes differ from concentration ratios, which is an 

indication that some of the sources contributing to the concentration measurements 

were located outside the flux footprint. Between the hours of 07:00 and 22:00 the ratio 

of VOC/CO remains relatively constant suggesting both sets of compounds to 

originate from a similar source. However during the night time the ratio becomes 

elevated, with more VOC relative to CO. Although this increase could be linked to a 

shift in the major sources of CO and VOC, in this instance it is thought more likely to 

relate to the post-processing of the data. The stricter quality controls applied to the 

VOC data which removed fluxes below the calculated limit o f detection as well as 

files where u* was below 0.15 m s '1, may have meant night time fluxes were 

systematically biased towards higher values.

Flux and concentration ratios of VOC to CO differ for each compound. This 

indicates VOC sources originating from outside of the flux footprint and helps to 

substantiate earlier observations of toluene concentrations and fluxes.

Table 4.2 Averaged VOC/CO ratios for both concentrations and fluxes.

voc/co M ethanol 
fm /z 331

Acetonitrile 
[m/z 42]

Acetaldehyde 
[m/z 45]

Acetone 
[m/z 59]

Isoprene 
[m/z 69]

Benzene 
fm/z 79]

Toluene 
[m/z 93/

Ethylbenzene
[m /zl07]

Concentrations
IPPb] 7.82 * 10'2 1.10 x 10° 1.21 x 10'2 5.90 x 10"1 3.03 x 10"1 1.17 x 10"1 7.89 x 10"1 1.01 x io-1

Fluxes
[ggnfh1] 7.43 x io-1 1.48 x 10° 7.09 x 10"1 5.09 x 10"1 - 3.37 x 10"1 7.43 x 10"1 5.85 x IQ"1

4.3.6 VOC flux dependence on traffic activity

The NAEI (2005) suggests road transport to be the second largest source of 

benzene in the U.K, accounting for approximately 25% of the total emission. In 1990, 

approximately 73% of benzene was attributable to the road transport sector, but since
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the introduction o f three-way catalysts in 1991, emissions from industrial, commercial 

and residential combustion now make up the bulk of the total. However, in inner city 

locations road transport is the dominant source of benzene, and in 2005 it was thought 

to contribute 73% of the total benzene emission in Westminster (NAEI, 2005). Traffic 

also accounts for 91% of the total CO emission in this area.

An attempt was made to characterise the relationship between observed fluxes 

o f VOCs and CO with the pattern of traffic activity within the city. Traffic density 

data recorded on Marylebone Road (2004) were used as a proxy for traffic activity 

across the whole flux footprint and compared to the measured VOC fluxes, the results 

o f which are shown in Fig. 4.11. These plots indicate a clear relationship with traffic, 

with an increase in both VOC and CO emission with increasing volumes of traffic. 

The non-linear regression was chosen after analysis o f the average vehicle speed with 

respect to vehicle counts, as shown in Fig. 4.12. As the volume of traffic increases, the 

roads become congested and the average vehicle speed drops from the permissible 50 

kph (30 mph) on this road to 34 kph at peak times. Both VOC and CO emissions from 

vehicles increase with decreasing vehicle speed (Heeb et al., 2000), therefore the 

slower average vehicle speed combined with increased ‘stop — start’ driving 

conditions, explains the exponential rise in emissions.

The plots show good correlation between the measured fluxes and traffic 

activity, yet in places the fit to the data is close to the limit of uncertainty. This is 

particularly noticeable at vehicle counts of between 3100 and 3300 and is best 

illustrated in plot of acetone and toluene. Vehicle counts in this range typically 

occurred between 08.00 hrs and 11.00 hrs, which coincided with the breakdown of the 

nocturnal boundary layer and subsequent venting of night time and early morning 

VOC emissions. Therefore, in reality, these points would most likely have had a much
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closer Tit to the curve. Conversely, when vehicle counts are at their peak, between

19.00 and 20.00 hrs, VOC fluxes fall below the curve. In this instance the deviation 

from the curve is thought to be due to the formation of the nocturnal boundary layer.
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Figure 4.12. Plot showing the relationship between traffic counts and average vehicle speed on 
data collected from the M arylebone Road traffic monitoring site (2005).

The intercept of the curve with the zero traffic line was used to calculate the

proportion o f the flux not attributable to road traffic. Overall this figure was between

12 and 20% of the peak fluxes, indicating traffic counts to be a very good surrogate

for most VOC fluxes at this site. It should be noted however, that vehicle counts are

not the only contributing factor and that the average driving speed, driving conditions

and ambient air temperature are all likely to influence the relative source strength of

VOCs.

4.3.7 Comparison of measured fluxes with NAEI emission estimates

An attempt was made to calculate an emission estimate using measured VOC 

fluxes for comparison with the NAEI. Previously this has been done by simply
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extrapolating average daily flux measurements to give an annual estimate. Here, we 

use the equation of the line from Fig. 4.11 (Section 3.6), where VOC fluxes were 

plotted against traffic density, to produce an emission estimate using a year long set of 

traffic data from Marylebone Road (2004). As the parameterisation is based on a 

“snap-shot” o f the total yearly fluxes, this method relies heavily on the assumptions 

that (i) vehicle emissions account for the bulk of the VOC emissions within the city

(ii) the observed traffic density is representative of traffic activity occurring 

throughout the flux footprint and (iii) that there is little or no seasonal variation in the 

emission o f VOCs. This last assumption has been shown to be untrue for some of the 

measured VOC, but no correction has been applied here, potentially introducing 

significant bias to the emission estimates of those VOC most temperature dependent.

The traffic density data set was not continuous over the whole year, therefore 

missing sections, which were usually confined to one or two lanes of traffic (6 lanes in 

total), were filled by repeating data from the equivalent lane of traffic. Where no 

equivalent data were available, data were taken from the previous month, taking care 

to match both time o f day and day of week. In total less than 15% of the traffic data 

set was filled in this way.

Emission estimates for benzene generated using the flux data suggest an 

average emission o f 0.88 t km 2 yr'1. This value is ~ 1.8 times lower than that 

suggested by the NAEI (1.55 t km'2 y r'1) which calculated the flux by integrating the 

values o f grids contained within the flux footprint (shown in Fig. 4.1). Despite being 

considerably lower than the value given by the NAEI, the measured estimate was 

within the calculated uncertainty o f±  1 standard deviation (0.7 t k m 2 yr ). Estimates 

o f CO emissions (329 t km'2 y r'1) from the city compared more favourably with NAEI 

estimates (427 t km 2 yr"1), with the calculated emission found to be 30% lower than
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the NAEI and well within the calculated uncertainty (SD = ± 230 t km'2 y r'1). The 

closer agreement o f CO estimates compared with those of benzene may relate to the 

higher percentage contribution of vehicle emissions within the NAEI estimate (93% 

compared with 73%) and suggest non-traffic related sources are being overestimated 

by the NAEI for benzene.
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Emission estimates for the seven remaining VOCs are shown in Fig. 4.13, but 

further comparisons with the NAEI were not possible. Toluene had the largest 

calculated annual emission rate (1.54 t km" y r '). Acetaldehyde (1.48 t km yr ), 

acetone (1.37 t km'2 y r'1) and ethylbenzene (1.28 t km'2 y r'1) had the next largest 

emission estimates, followed by methanol (1.27 t km yr ) and acetonitrile (0.29 t 

km'2 y r '1).
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4.5 Conclusions

Traffic density within the city has been shown to be the primary source of 

VOC fluxes to the atmosphere within central London, but its relative contribution 

varies from compound to compound and also temporally, with changes occurring from 

hour to hour and in some cases even season to season. It is thought that the relative 

source strength also varies, with vehicle counts just one of many variables, including 

air temperature (increased emissions from cold starts), driving conditions (start -  stop 

driving in congested areas) vehicle speed (larger emissions at slower average vehicle 

speeds) and traffic composition (range of fuel/engine types).

The ambient air temperature has also been shown to play an important role in 

the emission rates o f certain VOCs. Isoprene concentrations in the city, for example, 

are highly dependent on the ambient air temperature, with biogenic emissions, most 

probably originating from the large areas of urban parkland within the city, thought to 

contribute as much as 68% of the total isoprene concentrations recorded at the 

Marylebone Road monitoring station at temperatures above 30°C. Such information 

may be significant in aiding our understanding of VOC precursor emissions associated 

with photochemical pollution episodes.
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Chapter V

5. M ixing ratios and fluxes o f volatile organic 
com pounds above Mediterranean macchia vegetation  

(Castelporziano, Italy)

In this chapter the virtual disjunct eddy covariance technique was applied 

to a typical Mediterranean ecosystem type in the grounds of the Castelporziano 

nature reserve near Rome, Italy. Fluxes of five volatile organic compounds, 

including isoprene and monoterpenes, were measured above macchia vegetation 

using two independent PTR-MS instruments, one standard model (Std), the other a 

high sensitivity model (HS). The experiment aimed to both establish the reliability 

and reproducibility of the vDEC technique as well as to generate a set of direct 

“top down” emission estimates for isoprene and monoterpenes, which could be 

compared to a well established “bottom up” model for BVOC emissions. Within 

this chapter, the interpretation of VOC fluxes and concentrations, with the 

exception o f the inter-comparisons, relates solely to data collected using the Std 

PTR-MS.
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Pawel Misztal (Univ. Edinburgh & CEH): Operated the CEH HS PTR-MS 
instrument, post-processed concentration and flux data from the HS PTR-MS, 
Performed calibration of HS PTR-MS.
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Chapter V
5. M ixing ratios and fluxes o f volatile organic compounds 

above M editerranean macchia vegetation 
(Castelporziano, Italy)

5.1 Introduction

In Chapters 3 and 4, the virtual disjunct eddy covariance (vDEC) 

technique was applied to urban canopies and gave detailed flux information for a 

number o f predominantly anthropogenic volatile organic compounds. However, 

emissions o f biogenic VOCs (BVOCs) also play an important role in atmospheric 

chemistry, which probably exceeds that of anthropogenic VOCs (AVOCs) 

(Guenther et al., 2000). In many locations, emissions of BVOCs, in particular 

isoprene, are much larger than A VOC emissions and are also potentially more 

reactive, as they are emitted as a function of both light and temperature, which can 

predispose them to photolysis. When VOCs undergo photolysis in atmospheres 

rich in NOx, tropospheric ozone is formed, potentially causing damage to crops, 

forest ecosystems, buildings and impacts on human health (Silman, 1999).

In areas such as the Mediterranean, where both photolysis and emission 

rates o f BVOCs are high, photochemical air pollutants such as ozone can be a 

problem. In order to better understand the processes controlling photochemical 

pollution episodes, much attention has been devoted to developing regional as 

well as global scale models of BVOC emissions. Within Mediterranean type 

ecosystems, isoprene and monoterpene emissions form the bulk o f the total 

emitted BVOC, and their emission rates are known to be strongly regulated by 

specific species distributions and variations in light and temperature (Guenther et 

al., 1993). These controls have been well characterised in a number o f models
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(Guenther et al., 1993, Guenther et al., 1995), but the models have been limited by 

the high level o f uncertainty that accompanies input variables such as basal 

emission rates. Until the mid 1990s, model estimates for biogenic emissions from 

ecosystems similar to those found in the Mediterranean (Guenther et al., 1995), 

including regions of Chile, California, South Africa, Australia and Europe, were 

calculated using basal emission rates taken from Californian Mediterranean type 

ecosystem species only (Owen et al., 1997). As both isoprene and monoterpene 

emissions are very much species specific, this generated considerable uncertainty 

in the model. Since then, efforts have been made to generate emission rates for a 

number Mediterranean ecosystem types. In Europe, BVOC emissions in 

Mediterranean areas were extensively studied as part of the Biogenic Emissions in 

the Mediterranean Area (BEMA) project (Seufert et al., 1997; Street et al., 1997; 

Owen et al., 1997; Kesselmeier et al., 1997; Bertin et al., 1997; Ciccioli et al., 

1997; Valentini et al., 1997; Owen et al., 2001), which focused on emissions of 

monoterpenes and isoprene from the Castelporziano nature reserve near Rome, 

Italy. The site comprised a number of vegetation types and allowed the estimation 

o f both species specific and averaged ecosystem (forest, pseudosteppe or macchia) 

emission rates, which could improve modelled BVOC emission estimates within 

this region. These earlier measurements were made with enclosure techniques and 

manual relaxed eddy-accumulation, which were not ideal for sticky oxygenated 

compounds such as methanol.

In this work, we utilise the recent developments in PTR-MS to measure 

fluxes o f methanol, acetaldehyde, acetone, isoprene and monoterpenes are 

measured above macchia vegetation in the grounds of the Castelporziano nature 

reserve, Italy, using both standard and high sensitivity PTR-MS instruments.
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Concentration and flux measurements from the two instruments are compared and 

discussed to establish the reliability and reproducibility of the vDEC technique. In 

addition, fluxes o f isoprene and monoterpenes are compared with modelled 

emission estimates which are calculated using the algorithm of Guenther et a l,  

(1995) using basal emission rates taken from data collected during the earlier 

measurements at Castelporziano within the BEMA project.

5.2 Method

5.2.1 Site description

The Castelporziano Presidential estate is located ~ 20 km SSW of central 

Rome, on the western coast of Italy. The estate covers an area of 6100 ha, 

comprising a number of typical Mediterranean land types, which have been 

preserved for centuries thanks to restrictions on public access and the prevention 

o f encroachment from the heavily urbanised surrounding areas. These land types 

include oak/pine plantation {Santo Quercio), cork-oak (Quercus subur) forest, 

pasture, Mediterranean macchia sand dunes and beach.

The oak/pine plantation is made up of a wide variety o f plant species, but 

is dominated by Quercus ilex (50%), a known emitter of monoterpenes. To the 

south o f the estate, is the macchia vegetation which comprises high macchia (2 -  

2.5 m; Q. ilex, Phillyrea, Pistacia, Rosmarinus, Arbutus, Juniperus and others), 

low macchia (0.5 — 0.7 m; Cistus, Erica Helichrysum) and grasses, and is followed 

by a beach which extends approximately 200 m to the shoreline (Seufert et al., 

1997).
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F igure 5.1 Satellite  im age (G oogle Earth, 2008) and sketched cross section o f the sam pling  
location inside the C astelporziano presidential estate.

There are few roads within the estate and traffic is restricted to estate 

workers and police, so localised vehicle emissions are very low. However, along 

the western edge runs a busy public commuter road which links the residential 

area o f Ostalia with central Rome, some 3.5 km west of the measurement site. In 

addition, a smaller public coast road (SS601) transects the southern-most end o f 

the estate, creating a clear boundary between the high and low macchia 

vegetation, which can be found north and south of the road respectively. It is the 

low macchia. sandwiched between the beach/grasses and the SS601 coast road 

that forms the focus o f this study.

5.2.2 C lim ate and  m eteorology

The climate in the region o f the Castelporziano estate can be characterised 

as typically Mediterranean, with a pronounced aridity during the summer months 

(M ay-August) which can lead to drought stress o f the vegetation. Temperatures 

during the summer months reach an average maximum oi 25 C and are typically



Chapter V 157

very dry with little or no precipitation. In contrast, the winter is cool, with 

temperatures ranging from 6-12 °C and increased precipitation. The 

Castelporziano catchment receives an average annual precipitation of 740 mm.

The meteorology in the area is very characteristic of Mediterranean coastal 

areas. During the summer the sea-land breeze becomes the dominant air mass 

circulation pattern. During the afternoon and early evening the sea breeze is active 

until around 19.00 hrs, at which point the circulation reverses and from about

03.00 hrs the land breeze dominates until about 11.00 hrs (Manes et al., 1997). 

During the winter the meteorology at the site is dominated by synoptic scale 

circulations, with cold winds from the N-NE direction bringing air masses and 

pollutants directly from Rome to the site (Mantes et al., 1997).

5.2.3 Instrumentation

An ultrasonic anemometer (Solent R1012, Gill Instruments) was mounted 

on a mast 5 m above ground level, and fixed to the south-west corner o f the 

central measurement tower. This positioning gave a fetch of approximately 300 m 

to the north-west, > 500 m to the south-east, but < 60 m in the two major wind 

directions (south west and north east).

A small shed was positioned 15 m to the SE of the measurement tower 

which housed the analytical instrumentation. Air for analysis by PTR-MS was 

pumped at a flow rate of approximately 18 1 min 1 through 20 m of 3/8 OD Teflon 

tube, the inlet of which was mounted 30 cm below the sonic anemometer. A uv- 

absorption ozone monitor sub-sampled air from the same tube at a rate of 0.1 Hz 

and ancillary measurements of temperature, humidity, air pressure, and 

photosynthetically active radiation (PAR) were recorded by an EGM which was
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located at the measurement hut and logged by a programme written in LabVIEW 

(National Instruments, v 7.1) with a 20 s time resolution.

5.2.4 VOC sampling

Two PTR-MS instruments, one high sensitivity (HS) model and the other 

standard (Std), were used for the monitoring of VOC concentrations. Each 

instrument was optimised to an E/N ratio of 128.2 Td and was operated with <1% 

O2 background signal. The two PTR-MS sub-sampled from the same main sample 

line at a flow rate of 0.25 1 min'1 via a teed reducing union (3/8” to 1/8”) and two 

3-way Teflon solenoid valves (Parker, Hannifin) which were controlled by the 

A/O channels o f the PTR-MS. The first valve allowed the PTR-MS to switch 

freely between the sample line and an open inlet which could be used to attach 

either calibration standards or a Tedlar bag filled with breath isoprene which 

allowed for the periodical measurement of the SEM voltage. The second valve 

was connected to the outflow a platinum catalyst (flow rate of 0.5 1 min"1) which 

provided a zero air source for the instrument. This valve was activated once every 

hour for five minutes, allowing the instrument background concentrations, which 

can change with fluctuations of humidity, to be monitored throughout the 

experiment. The excess zero air was purged through a length of PFA tubing and 

vented.

The two PTR-MS were setup to measure in three modes, flux mode (FLX), 

mass scan mode (MS) and zero air mode (ZA). When in FLX mode, each PTR- 

MS scanned through a small suite of protonated masses which included the 

primary ion count (m/z 21), water cluster (m/z 39), methanol (m/z 33), 

acetaldehyde (m/z 45), acetone (m/z 59), isoprene (m/z 69) and £  monoterpenes



Chapter V 159

(which includes compounds such as a-pinene, /Tpinene, limonene, sabinene and 

A3-carene) which can be measured as the sum of m/z 81 and m/z 137.

3/8” Teflon 
tube

Platinum
Catalyst

Connection to fit bag of 
breath isoprene for 
SEM check

Connection to fit bag of 
breath isoprene for 
SEM check

Pump

Pump

3-Way solenoid

PTR-MS

HS

PTR-MS

Std

Figure 5.2 Schematic of the system setup used at the Castelporziano field site.

Each m/z was given a dwell time of 0.2 s with the exception o f m/z 21 and 

m/z 39 which were both measured at 0.1 s. This gave a total duty cycle time of 1.4 

s, which corresponds to ~ 1070 data points during a 25 minute averaging period.

During the first five minutes of each hour the Std PTR-MS switched valve 

one and was operated in ZA mode, using the same duty cycle described above. 

Between 30 and 35 minutes into each cycle, the PTR-MS was operated in MS 

mode, measuring a number of different BVOCs as well as some anthropogenic 

VOCs which can be used as markers to identify air masses that have been 

advected from inland locations. The mass scan sequence included the 

measurement o f the following masses: dimethylsulphide (DMS) (m/z 63),
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Methy 1-ethy 1-ketone (MEK) (m/z 73), peroxacetyl nitrate (PAN) (m/z 77), benzene 

(m/z 79), toluene (m/z 93), ethylbenzene (m/z 107) and C9 aromatics (m/z 121). In 

this mode, each m/z was monitored with a dwell time of 1 s as this data was solely 

used to provide concentration information. The same measurement modes were 

used for the HS PTR-MS, but in reverse, with the MS followed by the ZA.

5.2.5 Calibration

The two PTR-MS systems were calibrated against the same gas standards, 

which contained methanol, acetaldehyde and acetone at a concentration of 1 ppm 

(Appendix IV). Calibration standards were prepared using 0.6 1 Tedlar bags and a 

high precision glass syringe, and were diluted using a high purity N2 gas. In total 5 

calibration standards were made in the range of 2 - 750 ppb as well as one blank.

In order to help with the inter-comparison of the two instruments, VOC 

concentrations were calculated using the approach used by Rinne et al (2007) 

which standardises the PTR-MS operating conditions by normalising the primary 

ion counts to 1 x 106 and the drift tube pressure to 2 mbar. Concentrations were 

then calculated using the following equation:

where S  is the calibration coefficient (see Appendix IV), R H j  is the signal o f the 

mass in ion counts per second, R H :ero is the signal of the mass measured from the 

zero air source, M21 and M37 are the counts of the primary and reagent cluster 

ions respectively measured during the flux mode, M21:ero and M37:ara are the

r

zero

zero  J

M 21„„ + M37„
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primary and reagent cluster ions when measuring in ZA mode and pDrift is the 

pressure o f the drift tube in mbar.

For isoprene and monoterpenes, for which no gas standard was available, 

concentrations were calculated using Eq. (5.1) and calibration coefficients were 

taken from the transmission curve.

5.2.6 Data logging

Data from the sonic anemometer and PTR-MS were logged to a single 

laptop computer using a programme written in LabVIEW which separated the data 

into 30 minute files. Ion counts from the PTR-MS were passed to the LabVIEW 

programme using the Microsoft protocol “Dynamic Data Exchange” which was 

operated by a sequence file written in the PTR-MS software (Quadstar) (Appendix 

IV). A separate LabVIEW programme was written to log data from an ozone 

sensor (2b Technologies) and Environmental gas analyser (EGM) (PP-Systems), 

which measured temperature, humidity and PAR, into separate half hourly files.

5.2.7 Flux calculation

In order to calculate VOC fluxes it is first necessary to calculate the lag 

time that exists between the vertical wind speed data (w) and the PTR-MS data (%) 

which arises due to the ~ 20 m separation distance between the two sensors. This 

was first calculated theoretically using measured flow rates to give a rough 

estimate, and then calculated experimentally, using a cross correlation function. 

The latter approach is needed as the performance of the pump may be influenced 

by changes in temperature and pressure and therefore the lag time may not be 

constant. Finding the maximum in the cross correlation is sometimes difficult,
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especially at night when fluxes are low and turbulence is minimal. In order to 

ensure the correct lag time was identified, a small humidity sensor was placed 

inside a 14” tee-piece which was plumbed into the main sample line directly after 

where the PTR-MS sub-sampled. Data from the humidity sensor was then 

combined with vertical wind velocities, allowing a cross correlation function to be 

applied and a clear lag to be identified. The cross correlation applied to VOC data 

was then refined to a six second time window (3 s before humidity lag and 3 s 

after). Data points where no clear peak was apparent in the window were not 

included in the final analysis and are not presented here.

After realignment o f the two data sets, vertical wind data was paired up 

with the corresponding PTR-MS data and the flux was calculated using the 

following equation which calculates the time averaged covariance:

Fx = -  X  O, " w) ‘ (Zi ~ Z)  (5 -2)
, l  i=n

Where the over bars denote averaging over the 25 minute measurement period.

5.2.8 Post-processing of data

All data files were post-processed using a programme written in 

LabVIEW. The criterion used to quality assess the data are described in detail in 

Chapter 2, and included the removal of data where the average wind speed 

dropped below 1 m s '1 and the rejection of non-stationary averaging periods. In 

total, an average o f 24.7% of the data (low wind speed 19.7% and non-stationary 

periods 4.0%) was rejected as well as a further 26% for files where no clear lag 

could be found. These data are not presented here.

5.2.9 Modelling of isoprene and monoterpene fluxes
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Measured fluxes of isoprene and monoterpenes were compared against a 

typical “bottom-up” modelling approach based on the earlier BEMA 

measurements. In most regional and global scale models the emission flux (FXi, pg 

m’2 h"1) o f a given BVOC is calculated using the relationship:

Fx = E ND y  (5.3)

where Em is the emission flux normalised to Ts = 30 °C and L, = 1000 pmol m'2 s-1 

(pg gdw"1 h-1), D  is the biomass density (gdW rn'2) and y is a non-dimensional 

activity factor. For isoprene emission, the light and temperature dependent activity 

factor (yi) is described by the algorithm of Guenther et al. (1995) hereafter termed 

G95, where the isoprene emission rates are described by:

n  =
E + E i 2

exp Cn ( T ~ C

Cn  +exp

R T J  j

Cn { T - T j
RTT

(5.4)

where a  = 0.0027 m2 s pmol’1, Cli -  1.066 units, C77 -  95,000 J m o l', Ct2 -

230,000 J m ol'1 and TM = 314 K are empirically derived constants, R is the gas 

constant (8.314 J K '1 m ol'1), L, is the flux of PAR (pmol m'2 s '1) and Ts is the leaf 

temperature at standard conditions (303 K used here). Leaf temperature 

measurements were not recorded during the campaign, therefore ambient air 

temperature was used as a surrogate. Leaf temperature can fluctuate rapidly which 

can undoubtedly result in large discrepancies between ambient air and leaf 

temperature. For example, in a previous study by Singsaas et al. (1999) leaf and
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air temperature were found to vary by as much as 15 °C, however these 

fluctuations are typically on the order of seconds to minutes, thus averaging of 

leaf temperature over longer periods as demonstrated by Street, (1995) can 

provide a more robust estimate and uncertainty can be reduced to as little as ±1 °C 

(Owen et al., 2001).

As monoterpene emissions are often assumed to be solely a function of 

temperature a second G95 algorithm was used.

yr = exp(/l[T-T x]) (5.5)

where p is an empirical proportionality constant equal to 0.09°C'1 and T  and Ts are 

the leaf temperature and standard leaf temperature (303 K), respectively.

5.3 Results and discussion

5.3.1 Summary of weather and meteorology

Measurements at the Castelporziano site took place between the 7th - 14th 

o f May 2007. In the days before the campaign, heavy rainfall in the region led to 

flash flooding in and around Rome, relieving the vegetation o f any potential 

drought stress. The unsettled, cloudy weather, which was atypical for the time of 

year, gradually gave way to clearer skies, and warmer conditions were 

experienced for the duration of the measurements. The ambient air temperature 

ranged between 13.3 and 24.1 °C with an average of 19.4 °C and a gradual 

increase in daily average temperature could be seen between the 7th (18 C) and 

13th (20 °C).



Chapter V 165

Wind speeds ranged between 0.1 and 4.3 m s '1 with an average o f 1.8 m s '1. The 

highest wind speeds were typically observed around 13:00 hrs (UTC), whereas the 

low values coincided with the reversal of the sea — land breeze, which occurred 

between the early evening and midnight.

5.3.2 Measurements of VOC concentrations

Measurements of VOC fluxes measured by the two PTR-MS instruments 

are presented in Figure 5.3 and are summarised in Table 5.1. Each compound 

showed a clear diurnal variation with daytime maximums for methanol, 

acetaldehyde, acetone and isoprene. Monoterpene concentrations differed from the 

other compounds, with a day time minimum and a night time maximum. This 

trend was closely related to the wind direction and the oscillating land-sea breeze 

and will be discussed further in Section 5.3.5.

Concentrations of methanol were highest, ranging between 2 and 8.9 ppb 

(5th and 95th percentiles). Acetone (0.6 -  4.2 ppb) and acetaldehyde (0.5-2.6 ppb) 

were the next most abundant compounds, followed by the monoterpenes (0.1 -  1.0 

ppb) and isoprene (0.05 -  0.4 ppb). With the exception of the monoterpenes, each 

o f the VOCs followed a very similar trend and regression analysis between the 

measured compounds showed R2 values of between 0.52 (methanol against 

isoprene) and 0.8 (acetone against acetaldehyde).

Typically concentrations of methanol, acetaldehyde, acetone and isoprene 

began to increase at around 03:00 hrs (05:00 hrs local time). Methanol and 

acetaldehyde both peaked in the early morning (06:00 hrs) followed by a gradual 

decrease throughout the rest of the afternoon and early evening. Measurements of 

acetone although similar to that of methanol and acetaldehyde, showed some
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Figure 5.3 Trend in VOC mixing ratios measured between the 7"' and 14,h of May 
2007 using both standard and high sensitivity PTR-MS instruments.

differences, such as a sharp decline in concentration at around 18:00 hrs. Isopiene 

concentrations increased throughout the afternoon after an initial peak at 06.00 

hrs, to reach a maximum at 14:00 hrs, before decreasing sharply in a trend similar

to that of acetone.
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Table 1 Sum m ary o f VOC concentrations and fluxes measured at the Castelporziano nature 
reserve between the 7lh and 13lh of May 2007.________________ ________________

Methanol Acetaldehyde Acetone Isoprene E
Monoterpene

Concentrations
IPPbI
Mean 4.1 1.2 1.9 0.1 0.4

Median 3.5 0.1 1.6 0.1 0.3
Range 5th 2.0 0.5 0.6 0.05 0.1

95th 8.9 2.5 4.2 0.4 1.0
SD 2.1 0.6 1.1 0.1 0.3
n 340 340 339 340 339

Fluxes 
[jug m 2 f t 1]  

Mean 199.1 150.6 134.4 31.5 132.8
Median 239.8 131.2 139.4 31.6 133.8

Range 5th -193.2 -103.8 -186.3 -44.5 -104.8
95th 575.1 413.5 514.3 129.6 350.1

n 125 141 123 135 132

Results o f the comparison study between the standard and high sensitivity 

PTR-MS instruments are shown in Fig. 5.4. The two instruments showed excellent 

agreement in concentration trends, with R2 values ranging between 0.92 and 0.98 

(Fig. 5.4), but the absolute values differed significantly for some compounds. The 

largest deviation was observed in the measurements of monoterpenes, with > 40% 

difference in absolute concentration between the two systems. This offset is likely 

to occur due to the use of transmission numbers instead o f gas standard 

calibration. The offset is made worse as the monoterpenes fall near the end of the 

transmission curve, and thus small errors in the calculation of the curve are 

magnified. In addition, total monoterpenes are calculated as the sum of m/z 81 and 

m/z 137, therefore any offset in the transmission curve is effectively doubled.

The calibrated compounds, methanol, acetaldehyde and acetone as well as 

isoprene all agreed well with less than 20% difference between the two
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instruments. As each PTR-MS was operated by a separate computer, there was 

often a slight drift between the two system clocks, but this is not thought to have a 

significant impact on the measured concentrations.
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Figure 5.4 Regression plots of VOC concentrations measured by a standard and high 
sensitivity PTR-M S at the Castelporziano field site between the 7lh and 14lh of May 2007. 
Dashed line shows the 1:1 regression line.

5.3.3 Fluxes of VOC from the macchia

Figure 5.5 shows a time series of VOC fluxes measured between the 7th 

and 13th o f May 2007 at the Castelporziano field site and Fig. 5.6 shows the 

averaged diurnal pattern for each compound. Emission fluxes of all five 

compounds were observed from the macchia, with emission rates highest during 

the mid to late afternoon and lowest during the night. In contrast to concentration 

measurements, fluxes of monoterpenes also showed daytime maxima.

Fluxes of methanol (199 pg n f2 h '1) were largest, followed by 

acetaldehyde (151 pg m ~ h’1), acetone (134 pg m “ h '), monoterpenes (13j» pg m



Chapter V 169

h ) and isoprene (32 |xg m" h *). During the night time, some deposition was 

observed, although these values should be treated with some caution as night time 

flux measurements are associated with large degrees of uncertainty due to the 

often stable atmospheric conditions and low wind speeds.

Fluxes of methanol closely followed the diurnal profile of temperature, 

with emissions peaking at around midday. This was in slight contrast with 

concentration measurements, which peaked in the early morning, before 

decreasing steadily throughout the afternoon. Emissions of methanol from 

vegetation have been related to the physiological processes within the plant such 

as growth (Fall and Benson, 1996; HUeve et al., 2007; Schade and Goldstein, 

2006), cell expansion and protein repair reactions (Mudgett and Clarke, 1993). 

Once inside the plant, methanol emission is controlled via the transpiration stream, 

which is itself governed by light and leaf temperature (which accounts for the 

close agreement with temperature), as well as stomatal conductance. Since the 

synthesis o f methanol can occur during the night time when the stomata are 

closed, methanol builds up in the plant before being released in a burst when the 

stomata are opened in the morning. This venting process has been demonstrated 

by Cojocarui and Flewitt (2008) but is not thought to be the reason for the morning 

maxima in VOC concentrations as similar peaks are not seen in the flux. Instead, 

it is assumed that the concentration increase is related to an accumulation of early 

morning emissions into a still shallow nocturnal boundary layer. Cojocarui and 

Hewitt (2008) also showed smaller nocturnal bursts of methanol in emissions from 

tobacco plants, which were attributed to the periodical opening o f stomata during 

the night, however this process was not observed over the vegetation in the current 

study.
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Figure 5.5 Tim e series o f VOC fluxes (open circles) and sensible heat fluxes (greyed area) 
measured at the Castelporziano nature reserve.
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Emissions o f methanol are known to be influenced by a number of stress 

factors, including elevated ozone, frost, drought, flooding and mechanical leaf 

wounding (Beauchamp et al., 2005; Fukui and Doskey, 1998; Holzinger et al., 

2000; Karl et al, 2005). Although flash flooding was widespread throughout the 

region in the days prior to the campaign, the macchia were situated on a sandy, 

well drained soil and therefore were unlikely to be affected. Mechanical leaf 

wounding caused due to the trampling of local vegetation during the set-up in the 

days prior to the measurements may have contributed to the increased 

concentrations and fluxes between the 7th and 8th of May. In addition, high levels 

o f ozone (50-60 ppb) on these days may also have caused stress related emissions, 

however comparison of methanol and ozone concentrations measured over the 

duration o f the campaign showed no significant correlation.

Fluxes of acetone and isoprene follow the diurnal pattern of measured 

PAR very closely, with emissions starting at sunrise (04:30 hrs), peaking at 

midday and stopping at sunset (17:00 hrs). The light and temperature dependency 

o f both compounds have been well documented (Shao & Wildt, 2002; Shao et al., 

2001; Guenther et al., 1993, 1995). For isoprene, the biosynthetic pathways of its 

production are well understood (Fall 1999; Kesselmeier and Staudt 1999; 

Lichtenthaler, 1999), but for acetone our knowledge is still incomplete. It is 

however known that unlike isoprene, acetone can be emitted as both light 

dependent or light independent responses in the leaf as well as from the 

mechanical wounding of plant tissue (Steiner & Goldstein, 2007).

In contrast to isoprene and acetone, emissions o f acetaldehyde remained 

positive until much later in the evening (20:00 hrs). Previous studies have noted
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that emissions of acetaldehyde are often triggered during the transition from light 

to dark (Holzinger et al 2000; Karl et al 2002). It is has been suggested that levels
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Figure 5.6 Average diurnal profiles of VOCs fluxes (closed circles) and PAR  (dashed line) 
measured between the 7'" and 13th of May 2007 at the Castelporziano nature reserve. Error 
bars show standard deviation of measured fluxes.
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of pyruvic acid in the leaf increase as the light fades, causing excess pyruvate to 

be catalysed by a safety valve to form acetaldehyde, which is subsequently 

leached from the intercellular space (Steiner and Goldstein 2007). It is possible 

that the evening emissions of acetaldehyde observed in the current study were as a 

result o f this process.

The monoterpene fluxes also remained positive throughout the night, only 

becoming negative for short periods in the early morning. Emissions of 

monoterpenes from vegetation are predominantly controlled either by temperature 

only or by a combination of light and temperature (Kesselmeier & Staudt, 1999; 

Loreto et al 2001). In temperature dependent terpenoid emitters, the production of 

monoterpenes is believed to be a defence mechanism for the plant for two reasons. 

Firstly, after synthesis in the leucoplasts or cytosol, monoterpenes are stored in 

specialised structures such as glandular trichomes and resin ducts, and secondly 

specific monoterpenes have been shown to both repel and attract insects (Steiner 

& Goldstein, 2007). In plant species where monoterpenes synthesis is both 

temperature and light dependent, production occurs in the chloroplasts and is 

closely linked to the photosynthetic cycle (Loreto et al., 2001). As the 

monoterpene fluxes remained positive during night time hours it must be assumed 

that the macchia was composed of both light and temperature dependent terpenoid 

emitters.

5.3.4 Comparison o f VOC fluxes

Due to the collaborative nature of the PTR-MS inter-comparison, at the 

time o f writing only isoprene and methanol fluxes were available for the HS PTR- 

MS data set, therefore the comparison presented here was limited to just two 

compounds. Isoprene fluxes measured by both the HS and Std PTR-MS
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instruments are presented in Fig. 5.7. The trend of the two data sets were in good 

agreement (R2 = 0.67, p < 0.0001, n = 141), yet, the fluxes measured by the HS 

PTR-MS appeared to have a more dynamic range. The higher sensitivity of the HS 

instrument may have had some bearing on the greater amplitude of the fluxes, but 

it is thought more likely to relate to uncertainties in the identification of sample 

lag times which can cause a systematic overestimation of the absolute magnitude 

of the flux. Selecting the correct lag time to use can be difficult and is further 

complicated at lower measurement heights as the mean eddy size is shorter, which 

results in more noisy cross-correlation functions. For data collected using the Std 

vDEC system, which concurrently logged data from the in-line humidity sensor, 

stricter quality controls could be imposed for the selection of lag times, resulting 

in fewer, but ultimately more accurate lag estimates.
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Figure 5.7 Com parison of isoprene and methanol fluxes measured using a standard (Std) and 
high sensitivity (HS) PTR-M S during the Castelporziano field campaign.

The largest discrepancies between the two systems tended to occui at

night, when concentrations (excluding monoterpenes) and wind speeds weie at
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their lowest. It is perhaps necessary to impose stricter quality controls on data 

collected at night such as removal of periods where u* is below 0.15 m s '1, or to 

simply reject these data completely.

Fluxes of methanol also compared very favourably, with an R2 value of 

0.66 (p < 0.0001, n = 76). As was the case for isoprene, fluxes measured using the 

HS instrument had a more dynamic range than those measured by the Std PTR- 

MS. A comparison of the absolute relative error (abs((HS-Std)/Hs x 100%)) 

showed that on average the two techniques differed by less than 30%.

5.3.4 Wind sector dependence

Wind roses o f VOC concentrations and fluxes are shown in Fig. 5.8. Data 

were separated into two categories, day (04:30 - 17:30 hrs) and night (18:00 -  

04:00 hrs), which roughly corresponded with the rotation of the land-sea breeze. 

During the night, airmasses were transported over the measurement site from the 

north-west and for most compounds both VOC concentrations and fluxes were 

lower than during the day. While this was true for monoterpene fluxes, 

measurements o f concentrations showed nocturnal maxima. This maximum was 

caused by the advection of monoterpene emissions from the oak/pine plantation 

(situated North West o f the sampling location) where the dominant species present 

is Quercus ilex, a strong light and temperature dependent monoterpene emitter 

(Bertin et al., 1997). The fact that a similar trend is not seen within the 

monoterpene fluxes confirms the source of emission to be outside of the flux 

footprint, which would be consistent with oak/pine plantation emissions.

During the night measurements of benzene made during the MS mode also 

showed a maximum as anthropogenic emissions from the surrounding urbanised 

areas were advected over the measurement site as seen in Fig 5.9. Small nocturnal
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increases in temperature were also recorded at night, which are thought to relate to 

heat storage in the surrounding urban areas.
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Figure 5.8 W ind roses of VOC concentrations (ppb) and fluxes (pg m'2 h 1) measured 
between the 7th and 13th o f May 2007 at the Castelporziano nature reserve. Closed circles 
represent night time measurements made between 18:00 - 5:30 hrs and open circles / crosses 
show daytim e m easurem ents between 05:30-18:00 hrs.

During the daytime the wind predominantly came from the south-west and 

was associated with higher VOC concentrations for methanol, acetaldehyde, 

acetone and isoprene. The highest concentrations and fluxes were observed during 

westerly winds, which tended to correspond to higher afternoon temperatures.
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Figure 5.9 W ind rose o f benzene concentrations measured during the mass scan mode which 
operated for five minutes o f each hour.

5.3.5 Com parison of measured and modelled fluxes

Estimates of isoprene and Monoterpene emissions were calculated using 

the G95 algorithms and were compared with the measured fluxes. Typical 

summertime basal emission rates of 2.5±1.4 (n = 6, ±sd) and 2.6±5.6 (n = 83, ±sd) 

(pg gdw h '1) for isoprene and monoterpenes respectively (Em) were taken from 

Owen (1998) who performed a detailed screening of the macchia during the 

BEMA project. A biomass density of 175 (g m'2) for the measurement site was 

taken from Seufert et al. (1997) who also participated in the BEMA campaign. 

Light and temperature values were averaged between the 7th and 13th of May to 

give a typical diurnal flux profile which is shown in relation to the measured 

fluxes in Fig. 5.10.

Isoprene fluxes measured using the vDEC technique showed excellent 

agreement with modelled values, with less than 10% difference between the 

averaged daily emissions of 0.8 and 0.73 mg m " d 1 for measured and modelled, 

respectively. Measured and modelled fluxes of isoprene both started to rise at 

04:00 hrs, but the measured values appear to decrease and approach zero
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Figure 5.10 Com parison of modelled and measured emission fluxes of isoprene and 
monoterpenes from the Castelporziano field site between the 7th and 13th of May 2007. 
M odelled fluxes were calculated using the G95 algorithms and measured fluxes were 
obtained using the virtual disjunct eddy covariance technique. Dashed line shows 1:1.

approximately 1 hour before the modelled values. The reason for this offset is not 

clear, but may relate to either a lag between air and leaf surface temperature or the 

early evening reversal of the land-sea breeze, which is (i) associated with low 

wind speeds and consequently little or no turbulence for tracer transport or (ii) the 

180° shift in the flux footprint, which could influence emission rates in a

heterogeneous canopy.

Monoterpene fluxes compared slightly less favourably than isoprene with 

measured values typically 27% lower than modelled emissions (3 and 4.2 mg m
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d for measured and modelled, respectively). In the morning and late afternoon, 

modelled fluxes showed a slower increase and decline compared with measured 

fluxes. This may relate to the use of ambient air temperatures instead of leaf 

temperature, as leaf temperature responds quickly to direct sunlight, whereas the 

atmosphere responds more slowly as it is heated indirectly by the Earth’s surface. 

The modelled monoterpene fluxes are also, on average, higher than measured 

values during the night time, but, importantly, monoterpene emissions also remain 

positive during the night, which is in contrast with the isoprene emissions. 

Comparison o f night time fluxes should be treated with a degree of caution for 

reasons stated earlier, however, it is thought that the lower measured values are 

likely to relate to the heterogeneity of the macchia. For instance, the G95 

algorithm applied here was done so under the assumption that the vegetation was 

comprised o f temperature dependent monoterpene emitters only, whereas in 

reality the macchia also contains some monoterpene emitters which are dependent 

on both light and temperature, whose emission rates will be greatly reduced at 

night. During the BEMA campaign, the percentage contribution of light dependent 

monoterpene emitters was estimated to be approximately 17% (Owen, 1998).

It is clear that changes in light and temperature control emission rates of 

both isoprene and monoterpenes from vegetation which are well described by the 

G95 algorithm, but biogenic emissions of methanol, acetaldehyde and acetone 

have also been shown to have a strong dependency on temperature (Cojocariu et 

al., 2004; Grabmer et al., 2006; Filella et al., 2007). As the G95 algorithm is 

specifically tailored to emissions of isoprene and monoterpenes, further modelling 

o f VOC emissions was not possible, but measured fluxes were plotted against 

temperature as shown in Fig 5.12 and results showed excellent agreement. The
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non-linear increase in emissions with temperature appears typical of most BVOC 

emissions (Filella et al., 2007). However, it is unclear as to whether this 

relationship is regulated by the physiology of the plant or simply a consequence of 

vapour pressure and thermodynamics.
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Figure 5.12 Graphs showing the temperature dependence of VOC fluxes measured during 
the Castelporziano field campaign.

5.4 Conclusions

The vDEC technique has been shown to be a reliable tool for the 

measurement of volatile organic compound fluxes, with excellent agreement
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between two flux measurement systems (though based on the same sonic 

anemometer). Importantly, the reproducibility of the technique has been 

demonstrated, although areas for improvement have been highlighted, such as 

establishing better criteria for the identification of lag times. Simple changes such 

as increasing m/z dwell times from 0.2 s to 0.5 s would increase the signal to noise 

ratio o f the PTR-MS data and reduce noise in the cross-correlation function, which 

could aid the identification of lag times and further reduce the uncertainty in the 

flux measurement. On the downside, it would reduce the number of data points 

going into the flux calculation. This approach is likely to be most effective when 

measuring at higher locations such as those in Chapters 3 and 4, whereas, for 

lower measurement heights such as in this study, dwell times should be extended 

with caution, so as to avoid the attenuation of high frequency flux contributions.

The favourable comparisons between trends in modelled and measured 

fluxes confirm that the G95 algorithm is able to accurately characterise the light 

and temperature dependencies of isoprene and monoterpene emissions. Yet, the 

differences in the relative magnitudes of the monoterpene fluxes show that the 

effectiveness o f the model is very much based on the accuracy of the input 

variables as well as any assumptions made, such as species composition. These 

assumptions will always be associated with high levels of uncertainty and are 

unavoidable when using a “bottom up” approach. In contrast, the “top down” 

measurement approach, although itself associated with much uncertainty, 

integrates the flux over the entire area and therefore negates assumptions on 

species composition or source strengths, creating a compelling argument for the 

inclusion o f more local scale flux measurements in both regional and global scale 

models as opposed to typical ecosystem base emission rates.
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Chapter VI

6. Analysis o f uncertainties and errors

6.1 Systematic and random errors

Flux measurements are often associated with significant uncertainty. It is 

therefore important to highlight and where possible, quantify potential errors, which 

may be systematic or random in nature. Systematic errors cause a bias to a dataset, 

shifting all data so their mean value is displaced, reducing measurement accuracy. The 

classic example o f a systematic error is the stretching of a tape measure, which causes 

each subsequent measurement to be offset by the same amount. In micrometeorology, 

an obvious example o f a systematic error is flux loss due to the separation distance 

between the sonic anemometer and the gas inlet. This source of uncertainty was 

investigated by Kristiensen et al (1996), who suggested the effect could be minimised 

by displacing sensors vertically, positioning the sample line below the sonic 

anemometer. In each of the field applications of the DEC and vDEC systems 

described here this advice was followed and therefore errors due to sensor separation 

are thought to be minimal, especially because measurement heights were mainly high 

which results in larger and slower eddies.

Other systematic errors can come about due to the configuration of the flux 

system, such as the dampening of the wind components due to the distortion of air 

flow around the sonic anemometer and or sampling system. Wind tunnel experiments 

have suggested flow distortion around the anemometer to cause damping of the wind 

components by as much as 20% (Foken et al., 1995). In the real atmosphere, this 

figure may be less, as the effect of flow distortion depends on the ratio of the obstacle 

length and the turbulence integral scale (Wyngaard, 1981), which can change rapidly
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in the atmosphere: therefore a quantitative correction is not easily applied (Foken & 

Wichura, 1996). O f the work presented in this thesis, damping o f the vertical wind 

component was most likely to have affected the CO2 validation experiment, where the 

DFS was mounted directly below the sonic anemometer, although steps were taken to 

keep this to a minimum. Other systematic errors typical of micrometeorological flux 

measurement systems can include damping of signals due to long sampling tubing, 

which are particularly bad under laminar flow conditions, calibration errors, 

inadequate sensor response times or insufficient elevation above the terrain surface 

(Moncrieff et al., 1996).

In contrast to systematic errors, random errors cause fluctuations from one 

measurement to the next, yielding a measurement distributed about some mean value, 

at a reduced precision. Random errors are typically associated with a lack of 

sensitivity in a sensor, or extraneous disturbances such as white noise, which can be a 

particular problem when measuring fluxes of trace gases. In addition, random errors 

can also be attributed to the varying size of the flux footprint, surface homogeneity 

and non-stationarities (Moncrieff et al., 1996).

6.2 Potential systematic errors in the DEC systems

6.2.1 Transmission numbers and calibration

The calibration of the PTR-MS has the potential to introduce a considerable 

systematic error to both the DEC and vDEC systems. For the measurements presented 

in Chapters 3 and 4, no gas standards were available for the calibration of the PTR- 

MS and therefore concentrations were calculated using the transmission curve of the 

instrument and tabulated reaction rate coefficients, which is standard practice in the 

application o f PTRMS (Ammann et a l, 2004). The transmission curve describes the
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efficiency with which each protonated mass traverses the drift tube and is therefore 

required to establish the ratio of primary ions to protonated target ions, which is then 

used in Eq. (2.19) to calculate the VOC mixing ratio. The transmission numbers for 

the PTR-MS instrument used in Chapters 3 and 4 were both calculated experimentally 

in the laboratory following the guidelines issued by the manufacturer. Nevertheless, 

previous studies have shown that determining concentrations in such a way can result 

in uncertainties as large as a factor of two (de Gouw & Warneke, 2007). This, 

however, is very much a worst case scenario and confidence in the measurements was 

gained thanks to the good agreement between concentration measurements from the 

PTR-MS and GC-MS instrument calibrated with a gas standard (Apel-Riemer 

Environmental Inc., Denver, CO) which were shown in Chapter 4. For the study 

presented in Chapter 5, isoprene and monoterpene concentrations were also calculated 

using transmission curves. For isoprene, deviation between the two instruments was 

very small (<15%), whereas for monoterpenes the two instruments differed by > 40%, 

showing a large systematic error which was discussed in Chapter 5. For measurements 

o f acetone, acetaldehyde and methanol, concentrations were verified using gas 

standards which had an uncertainty of approximately ± 5%. Comparison between the 

two PTR-MS instruments for these three compounds showed a difference o f between 

<1 and 13%.

As the concentration is used in the flux calculations, uncertainties in the 

calibration feed through to uncertainties in the flux. However, since the flux 

calculation is based on the deviation from the mean, only errors in the span calibration 

affect the flux, whereas errors in the zero (or instrument background) would not affect 

the flux.
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6.2.2 Disjunct sampling intervals and flux attenuation

The use of disjunct sampling intervals (DSI) means a systematic error is 

introduced to the flux measurement for each averaging period (Lenschow et al., 

1994). The variability of the fluxes is dependent upon the comparable magnitudes of 

the length o f sampling interval and the integral timescale of the turbulent fluctuations 

Qws)- When the interval is kept short and is below lws, the variability of the fluxes 

should be small, but as the interval is increased and approaches lws the variability 

becomes large. In order to assess the systematic error incurred due to the choice of 

sampling intervals during each campaign, sensible heat data were used to simulate the 

disjunct sampling process following the procedures laid out in Section 2.5. Results are 

presented in Table 6.1 and show the average error (abs((EC-DEC)/EC x 100%) per 30 

minute file and the cumulative error, where the sum of fluxes measured during the 

campaign are compared to the sum of those measured by DEC. The average error in 

the 30-minute measurements is typically much higher than the relative error in the 

averages. This is because the cumulative error sums the average error, which is either 

positive or negative, therefore over a sufficiently long time period the errors cancel 

and the overall uncertainty is reduced as was demonstrated in Chapter 2, Fig 2.8. It 

should be noted that relative errors in EC measurements tends to increase as the 

absolute value decreases. Thus, this numerical analysis will give larger relative errors 

in conditions where the heat fluxes were lower.

Systematic errors are also incurred due to the loss of high frequency flux 

contributions, which are attenuated as the sample time (as dictated by the grab sample 

time in the DEC and dwell time in vDEC) increases. In order to quantify the overall 

effect o f flux attenuation (AT), sensible heat data was again used to simulate disjunct 

sample intervals and the measurement resolution of the EC data was reduced to the
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Table 6.1 Uncertainty in the flux measurements caused due to systematic errors associated with 
disjunct sam pling intervals (DSI) and the attenuation of the flux (AT) from measurement 
resolution.

Campaign DSI uncertainty DSI & AT uncertainty

Cumulative Average Error Cumulative Average Error

Edinburgh

Error o f  30-minute 
values Error o f  30-minute 

values

15 s, 0.5 s 
z = 2 m 

Lj = 3 days 
Manchester DEC

32% 44% 11% 48%

12 s, 0.5 s 
z = 95 m 

Lj = 3 weeks 
Manchester EC

1 % 25% 8% 25%

0.6 s, 0.02 s 
z = 95 m 

Lj = 3 weeks 
London

0.05% 3% n/a n/a

1.2 s, 0.1 s 
z = 200 m 

Lj = 4 weeks 
Italy

2% 14% 2%
14%

1.4 s, 0.2 s 
z = 5 m 

Lj = 1 week

0.07% 6% 5% 7%

z = measurement height; L j = duration o f  campaign

desired amount by simply averaging the required number of temperature data points, 

as shown in Chapter 2. This process was based on the assumption of identical 

frequency behaviour between scalars. Separating the uncertainty due to DSI and AT 

was not possible due to the propagation of the errors, therefore the total uncertainty 

due to both sampling intervals and flux attenuation are presented alongside DSI errors 

in Table 6.1.

Comparison of the average errors for the DSI and DSI & AT data sets shows 

the reduced time resolution to have little effect on the average uncertainty in the flux. 

In contrast, the cumulative error is consistently much larger in DSI & AT data sets 

compared to DSI only data sets. This is because the slower sampling times result in 

the attenuation of the flux, which is subsequently systematically underestimated. 

Although this causes little difference to the average error in the flux measurement,
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when flux values are summed over the entire campaign, the error due to flux 

attenuation is consistently negative and does not cancel out, therefore a net 

underestimation of the flux is observed. The magnitude of the underestimation due to 

flux attenuation is loosely correlated with the measurement height, as the portion of 

the flux carried by higher frequency eddies scales inversely with height.

Typically errors due to both the choice of disjunct sampling intervals and the 

attenuation o f higher frequency fluxes resulted in an underestimation of the 

cumulative flux by no more than 10%. The exception to this was the Edinburgh based 

campaign, where the cumulative uncertainty due to disjunct sampling intervals was 

much larger (>30%). This large uncertainty may relate to the very short duration of 

the campaign (3 days), which may not have been sufficient to gain a statistically 

robust estimate o f the average flux.

6.2.3 Attenuation o f  low frequency flux contributions

As well as being attenuated at the high frequency end of the spectrum, flux 

measurements can also be attenuated at the low end through the use of insufficiently 

long averaging periods. Typically, averaging periods of between 10 and 60 minutes 

are used in eddy covariance, which is, for most situations, thought to be sufficient to 

fully resolve the contribution from both high and low frequency eddies. Yet, at 

elevated measurement heights, where the mean eddy size is larger this may not be the 

case. O f the work presented in this thesis, the most likely to have suffered from low 

frequency attenuation were the measurements made during the REPARTEE campaign 

from 200 m tall Telecom Tower. In order to investigate this effect, sensible heat flux 

data from the campaign were re-analysed by joining individual 30 minute files to 

create averaging periods of 30, 60, 90, 120 and 150 minutes.
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A coordinate rotation was applied to the resulting files which acted as a high 

pass filter (Finnigan et al., 2003) to the three dimensional wind velocity 

measurements, ensuring that fluctuations from eddies with a time period greater than 

that o f the averaging period could not contribute to the flux measurement (Moncrieff 

et al., 2004). The resulting fluxes were then compared back to the average values 

measured using the standard 30 minute averaging periods which were also rotated to 

ensure the flux was only made up by turbulent fluctuations of 30 minutes or less. The 

results are shown in Fig. 6.1, where the y  axis shows the fluxes calculated from the 

extended averaging period and the x axis show the flux calculated from the same 

period but constructed from the consecutive 30 minute averaging periods. The results 

show that eddies with a time period of between 30 minutes and one hour increase the 

flux by 3.4%, similarly eddies with a period of between 1 hour and 1.5 hours increase 

the flux by 2.5 %. Extending the averaging period further to 2.5 hours shows a total 

flux increase of 11.5 % but after this little further increase is observed. Similar results 

were observed in heat fluxes measured at Nelson Monument, Edinburgh (E. Nemitz, 

personal comm.) and in CO fluxes measured above Boulder, Colarado (Nemitz et al., 

2008). These findings show that the flux measurements made at the Telecom Tower 

were bandwidth limited as low frequency contributions were being missed due to the 

choice of averaging period. Therefore, VOC fluxes measured at the tower may be 

underestimating the true flux by some 10 to 15%. However, increasing the averaging 

period for the PTR-MS measurements to 2.5 hours would have increased the 

likelihood of non-stationarities affecting the flux measurements. In addition, lower 

time resolution in the flux measurements contains less information to study the 

processes affecting the fluxes, which was an important objective of this work. Thus a
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30-minute averaging time appears to find the right balance.
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Figure 6.1 Fluxes of sensible heat measured at the Telecom Tower, FH [W m'2|, 
calculated using averaging periods of 1, 1.5, 2 and 2.5 hours and compared with fluxes calculated 
using the more standard 30 minute averaging period.

6.3 Potential random  errors in the DEC systems

The use of the proton transfer reaction mass spectrometer for the measurement 

of VOC concentrations is a potentially large source of random error in both of the 

DEC systems. As with most mass spectrometers the precision of the instrument is 

controlled by counting statistics. Lee et al (2004) suggest the percent uncertainty in 

mixing ratios due to the effect of counting statistics can be expressed as:

I R H ~
\R H i t

(6.1)
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where RH, is the mean count rate (counts per second) and t is the counting time (PTR- 

MS dwell time). This equation was applied to the data collected during each of the 

three campaigns. The average count rates for the calculation are displayed alongside 

the PTR-MS dwell time and average uncertainty in Table 6.2. It is clear that the 

chosen dwell time is an important factor in controlling the uncertainty of individual 

measurements. In Manchester, the 1 s dwell of the DEC system meant uncertainty was 

kept <5% for most compounds. In contrast the 0.02 s dwell time used by the vDEC 

system resulted in very large uncertainties (3 -  77%), especially for the less abundant 

compounds such as benzene and isoprene for the raw DEC measurement points.

During the London based REPARTEE campaign, the dwell times of the PTR- 

MS were lengthened in an effort to increase the precision of the measurements. In 

theory, at least a 4 times increase in the dwell time is needed to decrease the 

uncertainty by 50%. To this end, 0.1 s dwell times were chosen which reduced the 

random error to an average of between <1% and 32%. During the work in 

Castelporziano, the dwell times were doubled to 0.2 s. Regardless of this action, the 

uncertainty in measurements of the less abundant compounds was still large and in the 

case o f isoprene, the uncertainty was greater than in measurements made in London. 

This is initially counter-intuitive given that ambient concentrations of isoprene were 

higher than they had been in London and dwell times were longer. However, the 

difference is due to the different sensitivities of the two PTR-MS instruments used in 

the respective campaigns. In Caste lporziano a standard PTR-MS was used, whereas in 

London a high sensitivity model was used. The addition of a third turbo pump in the 

HS model
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Table 6.2 Uncertainty in individual VOC measurements due to counting statistics for each 
m easurem ent campaign._____

Manchester [DEC] Manchester [EC] London Italy
c o m p o u n d s ICPs Dwell Error ICPs Dwell Error ICPs Dwell Error ICPs Dwell Error

M ethanol 232 1 s 0.4% 218 0.02 s 3.2% 1555 0.1 s 0.2% 95 0.2 s 2.3%

Ace tonit rile n/a n/a n/a ria ria ria 28 0.1 s 11.% n a n a n a

Acetaldehyde 181 1 s 0.5% 103 0.02 s 6.8 % 217 0.1 s 1.5% 46 0.2 s 4.9%

Acetone 146 1 s 0.7% 114 0.02 s 6.1% 101 0.1 s 3.1% 73 0.2 s 3.1%

Isoprene 25 1 s 4.% 11 0.02 s 65% 12 0.1 s 26% 7.5 0.2 s 30%

Benzene 10 1 s 9.6% 9 0.02 s 77% 11 0.1 s 28% n a n a n a

Toluene 26 1 s 3.8% 17 0.02 s 42% 136 0.1 s 2.3% n a ria n a

Ethylbenzene n a n a n/a ria ria ria 10 0.1 s 32% n a n a n a

m/z 81 ria n a n/a ria ria ria ria ria n a 6.4 0.2 s 37%

m/z 137 n/a n/a ria ria ria ria ria ria n a 4.2 0.2 s 53%

means that the inlet to the detection chamber can be widened while still maintaining 

the desired pressure which in turn increases the measured count rate and instrument 

sensitivity. This increased sensitivity is demonstrated in Table 6.2, where isoprene 

counts measured in London can be seen to be double that of those recorded in Italy, 

despite o f their higher absolute concentrations.

The error of limited counting statistics on the flux measurement is inversely 

proportional to TV0 3, where N  is the total counts during a (30-minute) flux averaging 

period (Fairall, 1984). N  remains similar, independent of whether a concentration is 

measured frequently with a short dwell time, or less often with a longer dwell time. 

However, reducing the error associated with individual count rates on the raw DEC 

data points is important as it can impact upon the cross correlation (CC) function used 

to calculate the lag time between PTR-MS and vertical wind speed measurements and 

affect the overall precision of the flux measurements. When the random error is high, 

the CC function becomes noisy and difficult to interpret, thus reducing the 

measurement precision. During the Manchester CityFlux campaign, theoretically 

calculated lags were used (calculated using flow rates and tube lengths) for averaging
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periods where no clear peak in the CC function could be identified. This process may 

have introduced a systematic overestimation of the flux. Comparison of the two 

techniques in Chapter 3 showed there to be an offset between the two techniques for 

the less abundant compounds, which could not be fully resolved by the slower 

measurement resolution of the DEC system. It is thought that the remaining offset is 

likely to relate to the overestimation of the flux by the vDEC system due to the noisier 

CC function and incorrect identification of lag times.

Random sensor noise such as that observed in the PTR-MS measurements can 

strongly affect the variability of flux estimates but will not bias them systematically, 

provided clear peaks in the CC function can be identified (Wesley & Hart, 1985). 

Hollinger and Richardson (2005) suggest that when a pair of independent flux 

measurements, made repeatedly and under identical conditions, is available, the 

random error (g(5)) of the flux measurement system can be determined as:

<r(^) = - ^ 0-(Xl - X 2) (6.2)

where a is the standard deviation and Xj and X 2 are the flux measurements made by 

the respective systems.

In order to gauge the cumulative effect of the random PTR-MS noise on the 

flux, this process was applied to the two vDEC flux data sets presented in Chapter 5. 

Strictly speaking, the two systems were not 100% independent of each other, as they 

shared a single sonic anemometer, sample line and zero air source. However, this 

calculation may still give a good indication of the random error associated with the 

flux measurements. The results showed isoprene and methanol fluxes to have a 

random uncertainty of ± 28% and ± 37%, respectively. This suggests that despite the
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best efforts to reduce the uncertainty in the individual measurements, individual 30- 

minute flux measurements made by the vDEC may well be accompanied by sizable 

error bars. However, 30-minute fluxes measured with collocated eddy-covariance 

setups can also show uncertainties of 20% (Wilson & Meyers., 2001), and it is likely 

that a fraction of this uncertainty reflects true variability in the air-masses measured 

by the two systems at the 30-minute time-scale which averages out over time.

6.4 Measurement precision and detection limits

The discussion above has shown that the precision of a flux measurement is 

largely controlled by the noise of the cross-correlation function. Consequently, in 

order to calculate the precision of an individual flux measurement it is necessary to 

characterise this noise. This can be done by calculating the standard deviation o f w ’x ’ 

at a distance far away from the true lag time, typically three or four times the integral 

timescale and multiplying this value by three gives the precision of the measurement 

at the 99.7% confidence interval (Spirig et al., 2005). In addition to measurement 

precision, this value also acts as a proxy for the detection limit (LOD) of the 

measurement and allows an extra quality control to be applied to measured flux data, 

with the rejection of data files where no clear maximum in the CC function can be 

identified above the LOD.

These criteria where applied to filter the data collected during the REPARTEE 

campaign in London presented in Chapter 4. The standard deviation of w x  was 

measured between -180 to -160 s and 160 to 180 s and three times the average value 

was used to define both the precision and detection limit o f the flux measurements and 

the results o f this process are shown in Fig. 6.2. The peak in the covariance function is
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Figure 6.2 Cross-correlation functions for sensible heat and five of the compounds measured 
during the REPARTEE campaign in London. The limit of detection (Long Dash) of the flux 
measurem ent (solid line) is determined by the average of three times the standard deviation of the 
cross correlation function in the ranges o f -180 s - -160 s and 180 s — 160 s (short dash).

offset by between 6 and 10 seconds which accounts for the travel time of sample air 

through the 40 m inlet line. The cross-correlation function should fluctuate around 

zero in the 160 s -  180 s zone (marked with short dashed line) where in theory there is 

no correlation between the two data sets. While this is perhaps true foi benzene (m/z
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79) and acetonitrile (m/z 42), for the other compounds this is not the case and is an 

indication that there is still a loose correlation between the two data sets. As a result, 

the approximations o f the detection limit (shown as a long dashed line) are probably a 

slight overestimation.

6.5 Measurement site and the effect of wake turbulence

When measuring fluxes over a non-homogenous surface errors can occur due 

to the effects of wake turbulence which is generated by the roughness elements within 

the measurement fetch. Wake turbulence can be a particular problem when measuring 

above the urban environment due to the extremely heterogeneous nature of the urban 

canopy, as surfaces such as buildings, roads, trees and parks are often in close 

proximity. Provided the measurement location is high enough above the canopy, small 

scale heterogeneities merge to form one stationary net-flux above the city (Nemitz et 

al., 2002). However wake turbulence generated from individual buildings that exceed 

the average building height can generate additional wake effects.

The effects of wake turbulence were investigated for the two sets of urban 

measurements presented in this thesis. Figures 6.3 and 6.4 show an aerial view of the 

measurement locations in Manchester and London respectively, and the inset pictures 

show the roof surface of each measurement location and wind frequency. Highlighted 

on each figure are the tallest buildings in the surrounding areas, which all exceeded 

the average building height within the fetch and may have represented a source of 

additional turbulent mixing. In Manchester (Fig. 6.3), at the time of measurement 

there where three buildings in the surrounding area which exceeded the height o f the 

measurement location, they were the City Tower (107 m) which was 0.23 km to the 

North, Arndale House (90 m) located 0.7 km to the north west and Beetham Tower 

(169 m) which was situated 0.9 km to the south west. In addition, a fourth, shorter
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F igure 6.3 Satellite  im age o f M anchester City centre (G oogle Earth, 2008), highlighting the 
m easurem ent location Portland Tower (G reen) and som e o f the taller surrounding buildings 
(Y ellow ). T he inset pictures (top right) show a close up o f the roof o f Portland tower and a w ind  
rose o f  w ind frequency during the period o f m easurem ents (bottom  right).

building, 111 Piccadilly (64 m) was located to the north east o f Portland tower. During 

the period of measurements, the prominent wind directions were from the north, east 

and south, which meant flux measurements made at the Tower may have been 

influenced by wake turbulence from the City Tower. Arndale House and 1 I 1 

Piccadilly, as well as from other buildings not listed here.

In London there were very few buildings that exceeded the height of the 

Telecom Tower and of those that did (One Canada Square (235 m). 8 Canada Square 

(200 m) and 25 Canada Square (200 m)) they were situated over 8.5 km away. In the 

immediate vicinity of the Telecom Tower was Euston Tower (124 m) 0.42 km to the 

north, the Centre Point building (117 m) 0.65 km to the south east and Portland I louse 

(101 m) 0.63 km to the south. During the REPARTEE campaign the predominant 

wind direction was from the south west, a wind sectoi which was unobstiucted b\
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large buildings, consequently it may be assumed that the effect of wake turbulence 

generated by surrounding buildings was minimal during the period of measurements.

Figure 6.4 Satellite im age o f central London (G oogle Earth, 2008), highlighting the m easurem ent 
location  Telecom  T ow er (G reen) and som e o f the taller surrounding buildings (Yellow). The inset 
pictures (top right) show a close up o f the roof o f the Telecom  Tow er and a wind rose o f wind  
frequency during the period of m easurem ents (bottom  right).

Enhanced turbulent mixing can also occur due to the wake effect created by 

the surfaces o f  the building from which the measurements are being made. In order to 

escape the worst of these effects a general rule of thumb suggests that the vertical 

extension from the rooftop should be at least two times the horizontal extension of the 

building. At Portland Tower, the rectangular roof surface measured 50 x 20 in, 

meaning a mast of between 40 and 100 m would have been required to escape the 

worst o f  the buildings wake. At the Telecom Tower the rooftop was circular with a 

diameter o f  16 m. this meant a vertical extension of 32 m would have been required. 

Unfortunately it was not possible to meet these theoretical requirements at either site
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Figure 6.5 W ind rose plots showing the rotation angle 0 necessary to set w  -  0 for the Manchester 
City Flux (panel a) and London REPARTEE (Panel b) campaigns.
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due to both practical and safety considerations, therefore it cannot be ruled out that the 

flux measurements presented here were somewhat influenced by the building 

structure. In order to assess the building’s influence on the turbulence measurements, 

the rotation angle used to realign measurements o f u and w, 0, was plotted against 

wind direction, and the results for each campaign are shown in Fig. 6.5. The 

rectangular shape of Portland Tower combined with its non-uniform roof surface 

meant rotations o f up to 30° were required to correct for the influence of the building, 

although rotation angles were mainly <20° for SW and <12° for E and N wind 

directions. The angular structure of the building caused the angle of rotation to differ 

significantly with wind direction. In contrast, the cylindrical shape of the Telecom 

Tower minimised the wake effect and gave relatively consistent rotation angles, 

consequently rotations o f no more than 10° (and typically < 7°) were required during 

the entire period of measurements which is well within the permitted angle of attack 

for the ultrasonic anemometer used (±25°).

In order to assess the effect of wake turbulence on flux measurements Foken 

and Whichura (1996) developed a set of guidelines to classify the overall quality of 

measurements based on analysis of the integral turbulence statistics of the vertical 

wind velocity (gw/m* = standard deviation of the vertical wind velocity normalised by 

the friction velocity) (Anderson & Farrar, 2001). They developed a model to predict 

a ju *  for a set of ideal conditions which could be used as a standard from which real 

measurements could be compared. The overall data quality was then rated by the 

percentage difference between measured and modelled data. In addition to this model, 

other authors have contributed measured results obtained under ideal conditions 

(Panofsky & Dutton, 1984; Stull, 1988), including measurements made over urban 

canopies (Roth, 2000) which can also be used for comparison purposes. In order to
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rate the quality of data obtained during the CityFlux and REPARTEE campaigns as 

well as data collected at the Castelporziano measurement site in Italy, the 

measurements o f a ju *  were compared to the following model (Foken et al., 2004) 

where z  was the measurement height, L was the Monin-Obukhov length and the values 

of C] and C2 were given by Table 6.3.

*
u

— c. (6.3)

Table 6.3 Table o f  parameters used for Eq. (6.3) taken from Foken et al, (2004).
Parameter z/L Q c2

ow/u 0 > z/L > -0.032 1.3 0
-0.032 > z/L 2.0 1/8

The results o f the comparison are shown in Fig. 6.6 which details the 9 quality 

classes along the x axis and the number of data files per class on the y  axis. The 

classification of data quality for the results was originally developed for the 

FLUXNET programme and are described by Foken et al (2004) in the following way: 

classes 1 -  3 (0-50 % difference) Data is of a sufficient quality for fundamental 

research e.g. development of parameterisations; 4-6 (51-250%) quality sufficient for 

general use; 7-8 (251-1000%) data quality only sufficient for orientation; class 9 

(>1000%) data quality very low and should be rejected completely. Data at class 9 and 

beyond are rejected as very large differences between measured a ju *  and modelled 

aw/w* indicate increased turbulent mixing which could point to a lack o f similarity in 

the surface layer, invalidating the fundamental flux Eq. (1.4).

Measurements made at Portland Tower were found to be of the highest quality, 

followed by Italy and London. This was somewhat surprising given that on average a
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larger rotation angle was required at Portland Tower than at the Telecom Tower. The 

poorer quality of the London data is thought to relate to the very high measurement
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Figure 6.6 Quality assessment of data recorded during the three measurement campaigns (City 
Flux, REPARTEE and Castelporziano) based on the integral turbulence statistic oJ u  .

location, which resulted in the sampling location moving in and out of the boundary 

layer. Transition in and out of the boundary layer would invalidate the model used to 

calculate aju*  as it designed for surface layer approximations only.

The enhanced mixing observed at the Castelporziano site was also interesting 

but can be explained by an insufficient fetch in the two major wind directions (NE and 

SW). To the south west of the site was a sloping sand dune which obstructed air flow 

from this wind sector and most likely generated a wake effect. When the air flow 

reversed at night time and returned to the site from the north east, flow was obstructed 

by the Home Oak forest which probably caused some enhanced turbulence mixing.

Despite the increased turbulent fluctuations caused by individual roughness 

elements as well as wake effects from the measurement locations themselves, less

Manchester 
I I London 

Italy

16-30% 31-50% 51-75% 76-100% 101-250% 251-500% 501-1000% >1000%

Percentage difference between (cr/t/*)model and (a/u*)m easurem ent
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than 5% of all the data collected from each of the campaigns failed at level 9 of the 

quality check.

It is unclear at present whether the reference parameterisation of a w/w* of 

Table 6.4 is the ideal reference for the urban environment and in particular for 

measurements above the nocturnal boundary layer. More research is needed to 

investigate this question.

6.6 Errors due to geophysical variability

Wesley and Hart (1985) have suggested that errors encountered due to 

geophysical variability may be approximated for both unstable and neutral conditions 

using the following equations (Karl et al., 2002).

where z is the height of the measurement above the surface (m), U is the average wind 

speed (m s '1) and Tav is the averaging period (s).

Using these equations, uncertainties were calculated for each of the four 

campaigns presented in this thesis and the results are presented in Table 6.4 along 

with the variables for each campaign. The uncertainty was lower for the Edinburgh 

and Italy campaigns where measurement heights were close to the terrain surface. In 

Manchester and London where measurement heights were between 100 and 200 m, 

the uncertainty was much greater. In order to reduce the variability of flux estimates at 

these locations, a significant increase in the averaging period would have been 

required. The averaging length required to give a specific level of accuracy (a) can be 

estimated by re-arranging Eqs. (6.6) and (6.7) to give:

unstable conditions (6.4)

neutral conditions (6.5)
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T = \2 z(a2U)~l unstable conditions (6.6)

and

T -  20z{a2U)~x neutral conditions (6.7)

Setting a to 20% and using unstable conditions, averaging periods of 3.3 and 2.4 hours 

respectively would have been required for each campaign. Although the decrease in 

measurement uncertainty is desirable, using averaging periods of this length may have 

resulted in further errors associated with non-stationarities as discussed above.

Table 6.4 Uncertainty in flux measurements due to geophysical variability during neutral and 
unstable atm ospheric conditions. Measurement heights (z) show the mast height relative to the 
ground and the m ast height relative to the average canopy height.

Edinburgh Manchester London Italy
z [m] 2 95, 80 200, 185 5,4

U[m  s '1] 3 3.3 5 1.8
T [  s] 1800 1500 1500 1500

Uncertainty [%] 
[unstable ] 7% 47%, 44% 56%, 54% 14%, 13%

Uncertainty [%] 
[stable] 9% 61%, 56% 73%, 70% 19%, 17%

6.7 The representativeness of flux measurements made over urban canopies

In micrometeorology, when measuring over homogenous canopies, it is 

generally assumed that an equilibrium boundary layer will form, in which measured 

fluxes will be representative of the exchange processes occurring at the surface 

(Fowler et al., 2001). In the urban environment the situation is more complicated due 

to the very heterogeneous nature of the canopy. Sufficient elevation of measurement 

sensors is required to ensure the small scale processes occurring at the surface blend 

into one homogenous net flux above the city. However, operating at the required 

heights can result in the de-coupling of the measurement location from the ground, 

especially at night time and during the early hours of the morning as was shown in
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Chapter 4 by the lag time between the morning increase in traffic counts and the 

measured fluxes. In this case the measurement location was thought to be above the 

top o f the nocturnal boundary layer and clearly was not representative of the true 

exchange occurring at the surface. In situations such as this applying the conservation 

equation in it’s simplest form may not be justified as errors from storage and 

advection may occur. Investigating this effect goes beyond the scope of the current 

study. Nonetheless, it is felt that the use of daily averaged flux profiles should give a 

robust estimate o f the surface exchange, as de-coupling was not observed on a daily 

basis.

6.8 Conclusions

Calculating the errors associated with VOC flux measurements is not trivial 

and requires careful consideration. The brief analysis of errors and uncertainty given 

in this chapter has highlighted some of the major sources of uncertainty surrounding 

measurements made by the DEC and vDEC systems and where possible an attempt 

was made to quantify these errors. Errors incurred due to flux attenuation of both low 

and high frequency eddies were highly site specific, but generally were not more 

than a few percent. In contrast, random errors associated with the PTR-MS count 

rates were found to be significant. It was shown that the precision of flux 

measurements made using both the DEC and vDEC techniques appear to depend 

upon two key factors, the length of disjunct sampling interval and the dwell time 

used for PTR-MS measurements, which in turn determine the level of noise in the 

cross correlation function. The former controls the number o f data points used in the 

CC function, while the latter controls the random error of the individual 

measurements.
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During the first application of the techniques in Manchester, the use of short 

dwell times for the vDEC of 20 ms resulted in the systematic over estimation of 

fluxes due to the high level of noise in the CC function if this technique was used to 

determine the time-lag. In London, as the technique was developed further, efforts 

were made to increase the precision of measurements by reducing the random count 

rate error through the increase of dwell times to 0.1 s. This step greatly reduced the 

noise o f the CC function and allowed for the clear identification of lag times, 

calculation o f individual measurement precision and the estimation of flux detection 

limits. During the Castelporziano measurements the dwell times were increased 

further to 0.2 s in an effort to further increase measurement precision, however the 

CC function remained very noisy which confounded the identification of lag times. 

The reason for the noise is unclear but it is thought to relate to the very low 

turbulence («* <0.25 m s’1 » 8 0 % ) and poorly defined turbulence statistics that were 

observed throughout the study. In addition, the PTRMS used at Castelporziano had a 

significantly lower sensitivity than that used in London.

The analysis of the integral turbulent statistics and rotation angles suggests 

none o f the three measurement sites chosen during this work to be ideal and all were 

very likely subject to some errors due to the effects of wake turbulence. However, 

turbulence characteristics proved to be satisfactory. Measuring over non- 

homogenous canopies requires sufficient elevation above the canopy to ensure the 

small scale fluxes blend into one homogenous net flux. Finding locations to meet this 

requirement is challenging, especially in the urban environment, where there are 

additional considerations such as building access and safety. For all measurement 

campaign, sampling sites were chosen very carefully and reflect the best possible 

balance between quality and practicality.
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Chapter VII

7. Discussion and conclusions

The original aims of this thesis were threefold. First, a system capable of 

measuring surface layer fluxes of volatile organic compounds between the biosphere 

and atmosphere was to be designed, tested and validated. Secondly, the system was to 

be deployed over a range of terrain types, including both rural and urban locations. 

Finally, wherever possible, measured fluxes were to be compared to current bottom- 

up modelling techniques and evaluated. In the following sections the two flux 

measurement techniques developed will be discussed and the relative merits and 

limitations o f each approach will be considered. Areas for improvement will be 

highlighted and possible future work and long term goals will be reviewed.

7.1 Disjunct eddy covariance

The disjunct eddy covariance technique has been explored both theoretically 

and experimentally and results have demonstrated the potential for this approach to 

give very detailed information on surface layer fluxes of volatile organic compounds. 

Theoretical appraisal of the disjunct eddy covariance (DEC) concept has highlighted 

the importance of selecting sample / analysis times which relate to the measurement 

height, with a clear need for faster measurement frequencies when operating close to 

the terrain surface. The field evaluation of the technique, where the disjunct flux 

sampler (DFS) was compared with the established eddy covariance technique, has 

validated the method, and importantly, highlighted the system limitations, which 

should be addressed before future work is carried out.
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Many of these issues relate to the grab sampling system, which in its current 

configuration is bulky, heavy and difficult to mount. Although these problems could 

be addressed by replacing the stainless steel ISRs and pipe work with lightweight 

PTFE alternatives and the addition of mounting brackets, other problems persist. The 

most serious o f these relates to the backpressure that is generated when drawing air 

from the ISR for analysis, which has been shown to alter the E/N  ratio in the PTR-MS 

by up to 5 Td and could introduce a large systematic error to VOC mixing ratios. As 

explained in chapters 2 and 3, the backpressure occurs because of the separation 

distance between the DFS and PTR-MS, and is exacerbated when the distance is 

increased. In some situations, where the sonic anemometer and gas analyser are 

separated by tens of metres, as was the case at the Telecom Tower, the volume of air 

in the sample tube may exceed the total volume of the ISR, thus rendering the 

technique unusable. Furthermore, the mounting of the DFS to tall masts is difficult 

because o f the weight of both the sampler and the lengths of heavy armoured cable 

which are needed to activate the mains operated solenoid valves. Although a solution 

for this problem is demonstrated in chapter 3, where the DFS was teed directly into 

the sampling line at the base of the mast, corrections are needed for the ISR 

concentrations, as an increase in ISR carry-over between samples is observed, and the 

technique loses its directness. As a consequence, one of the major advantages of the 

DFS system, which is the flagging of grab samples to allow for the pairing of 

corresponding PTR-MS and wind data, as demonstrated in chapter 2, is lost, resulting 

in the use of a cross-correlation function to identify lag times, which, when limited 

data are available, can become noisy and difficult to interpret.

Despite these drawbacks, the DEC technique should not be discarded. The 

increased analysis times afforded by the ISR chambers allow for much longer PTR-
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MS dwell times, which can substantially increase the signal to noise ratio o f the 

individual measurements and ultimately reduce the associated random error. A higher 

level o f precision in flux measurements is very desirable as uncertainties surrounding 

them are often very large, as was demonstrated in chapter 6. Simple revisions to the 

current sampler configuration could greatly improve the system, such as reducing the 

length o f tubing between ISR and the evacuation pump to curtail flow resistance and 

aid in the evacuation o f sample canisters, or the widening of sample valve orifices to 

decrease the response time of the instrument. Ultimately, however, this technique is 

best suited to locations were separation between the DFS and PTR-MS can be kept to 

a minimum.

7.2 Virtual disjunct eddy covariance

In contrast to the DEC system, the vDEC technique is much simpler to install 

and operate, which is a major advantage, especially for deployment in locations such 

as Portland Tower (Manchester) or the Telecom Tower (London), where the mounting 

o f equipment to the instrument mast is logistically difficult. The only technical 

difficulties are associated with the development of software capable of recording data 

from the PTR-MS and sonic anemometer simultaneously. Previously, some 

researchers have chosen to wire the output of the PTR-MS into the analogue channels 

o f the sonic anemometer. However, it has been demonstrated here that this is 

unnecessary as the “DDE” protocol can be used to pass data between the Quadstar and 

LabVIEW software, thus allowing the concurrent storage of both 3D wind velocities 

and PTR-MS data to a single file.

The absence o f a physical sampling system means the vDEC technique is not 

logistically limited in the same way as the DEC system. Firstly, sample lines can be
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mounted very close to the sonic anemometer, causing only a minimal disruption to the 

wind flow. Secondly, no significant pressure drop is created as air is sub-sampled 

from the inlet line, allowing measurements to be made at a constant E/N  ratio. Finally, 

sampling intervals are not limited by the time taken to evacuate the ISR, as in DEC, 

therefore many compounds can be measured during each duty cycle, using relatively 

short dwell times and thus minimising disjunct sample intervals, which consequently 

reduces the uncertainty associated with the use of a discontinuous data set. However, 

it is important to note that any increase in precision gained from the use of shorter 

sampling intervals may well be nullified by the increased random error which is 

associated with the use of shorter dwell times. Furthermore, the increased noise 

associated with short dwell times can hinder the determination of lag times when 

using cross-correlation functions to align the vertical wind velocity with PTR-MS 

count rates. The use of experimentally calculated lag times for files where no clear 

maximum in the CC function can be identified, as in Chapter 3, can introduce a 

systematic overestimation of the flux. Instead, it is recommended that data are 

rejected, resulting in a smaller but ultimately more precise data set, as shown in 

chapters 4 and 5.

7.3 System improvements

7.3.1 Compound identification

Compound identification is an issue whenever using the PTR-MS, 

consequently, both the vDEC and DEC techniques would benefit with improvements 

in this area. In the short term, improvements could be made by using a GC-MS system 

in conjunction with the PTR-MS, splitting the sampled air flow between the two 

instruments. Although the GC-MS has a much lower sampling resolution compared to



Chapter VII 211

that o f the PTR-MS, it would allow compound identification on a time scale of < 2 

hrs, which would complement the PTR-MS measurements, particularly for VOCs 

such as acetone and isoprene which can suffer interference from other ion fragments.

In the medium-to-long term, time of flight-proton transfer reaction-mass 

spectrometry (TOF-PTR-MS) will allow for both the speciation and simultaneous 

measurement of the entire mass spectrum and thus allow the standard eddy covariance 

technique to be applied to VOC flux measurements. However, this kind of analytical 

system, which is already in place in some instruments, such as the aerosol mass 

spectrometer, brings with it the problem of data storage, as half hour, 10 Hz flux 

measurements can be as large as two gigabytes per file.

7.3.2 Online calibration

In chapter 5, the vDEC setup was altered, with the introduction of a 3-way 

Teflon switching valve to allow for the periodical measurement of the SEM voltage 

and calibration standards. This valve could be utilised further to make the calibration 

of the PTR-MS either fully automated or user controlled. This could be implemented 

using a series o f mass flow controllers, each powered by the A/O of the PTR-MS and 

controlled by the Quadstar sequence file. Continued venting of the calibration gas 

would provide stable VOC concentrations (a particular problem for methanol), and the 

introduction o f zero air through the mass flow controllers could dilute the standards to 

the desired concentrations. This system could then be made fully automated and 

configured to calibrate the PTR-MS once a week. Alternatively, calibrations could be 

performed at a touch of a button, using controls in the LabVIEW logging programme 

(such as a Boolean switch) to trigger events in the Quadstar sequence file (such as the 

calibration sequence). This latter procedure would require the bidirectional poking
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of data between the PTR-MS and Lab VIEW programme with each switching between 

client and server, in a process which currently has only had limited success.

7.3.3 Padding o f data fo r  spectral analysis

During this work, measured VOC fluxes were subjected to a stationarity test, 

as first proposed by Foken et al (1996). The test is particularly useful for disjunct data 

sets as it does not require vertical wind velocities and mixing ratios to be of the same 

temporal resolution. However, more sophisticated tests, such as ogives, can be 

performed using spectral analysis in the frequency domain. In order to transform the 

data from the time domain into the frequency domain a mathematical tool known as 

the Fast Fourier Transform (FFT) is used. Much as a prism allows us to deconstruct a 

beam o f white light to see its component parts, the FFT allows us to do the same with 

turbulence data and ultimately calculate what portion of the flux is carried by a 

particular frequency (Stull, 1988). In order to apply the FFT to a data set, both the 

vertical wind velocity and scalar concentration must be of the same time resolution. 

While this is the case for EC data sets, for both DEC and vDEC this causes a problem 

as the resolution of the PTR-MS data is much less than that of the measurements of 

the vertical wind velocity. Previous groups have employed gap filling as a means of 

padding the PTR-MS data to allow for spectral analysis. In practice this is achieved by 

simply repeating the PTR-MS measurement until the next data point becomes 

available and therefore a single data point is considered to be representative of the 

total measurement cycle. While this may be true for data sets collected at high 

measurement heights, where low frequencies dominate the flux, at lower elevations a 

larger portion of the flux may be carried by the higher frequency eddies and these
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Interpolate
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contributions may become attenuated and lost. Consequently the benefits of spectral

analysis of the data may not outweigh the cost of flux loss. In such cases there

Data points [20 Hz]

0 100 200 300 400 500 600 700 800 900

Data points [20 Hz]

Figure 7.1 Graph showing alternative padding methodologies to the standard “Gap fill” 
approach for disjunct data sets. Increasing the resolution of the data in this way allows more 
robust quality checks to be imposed upon the data in the frequency domain.

is a need for alternative means of padding the data which reduce the attenuation of 

higher frequencies. Figure 7.1 shows the concept of data padding and demonstrates 

some simple alternatives which may help to reduce the flux loss. Each of these 

methods was tested using a week long set of sensible heat data collected at a height of
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5 m to simulate a disjunct flux (2 s interval), which could then be compared back to 

the original EC data set. The results of the experiment (shown in Fig 7.2) showed the 

standard “Gap Fill” technique to perform worst, underestimating the cumulative flux 

by 36%, compared to 29 and 25% respectively for the “interpolation” and “spline” 

techniques. The least attenuation, 2%, was observed when using the “regression” 

method, a process where the w and x data sets are first aligned to correct for temporal 

shifts and then correlated to give a regression line which is used to fill the gaps in the 

data. This approach means higher frequencies are retained in the covariance function 

and therefore much of the flux carried by higher frequency eddies is retained; 

however, it is not without its limitations. Firstly, lag times must be accounted for 

before using the technique, which eliminates a major advantage of padding disjunct 

data, which is a clearer cross-correlation function. Secondly, the effectiveness of

D E C

G a p  Fill

In te rp o la te

S p lin e

R e g r e s s io n

DEC
R e g r e s s io n  

S p lin e  

In te rp o la te  

G a p  Fill

Padded Heat Flux [W m ”2 s '1]

Figure 7.2 Regression plot of disjunct eddy covariance (DEC) heat fluxes (2 s disjunct sampling 
interval) against standard eddy covariance (EC) heat fluxes. Each DEC data set was padded 
using various gap filling methodologies to match the time resolution of the EC data. The data set 
labelled DEC was not gap filled in any way.
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the padding depends on (i) how well the relationship between w and % can be 

characterised and (ii) the relationship remaining stationary throughout the averaging 

period. Despite these drawbacks, the “regression” method illustrates how relatively 

simple steps can be taken to avoid attenuating the flux when padding disjunct data. 

There is obviously a large scope for further improvement in this area. Many of the 

techniques currently being used to gap fill missing data in long-term eddy covariance 

measurements o f CO2 could be applied to this problem and allow for a more 

comprehensive assessment of disjunct data sets in the frequency domain. For example, 

Stauch and Jarvis (2006) showed that by combining a multidimensional semi- 

parametric spline interpolation with independent variables such as light, temperature 

and time, gaps in CO2 data could be filled. In chapter 5 it was shown that the biogenic 

VOCs measured were all strongly controlled by changes in either light, temperature or 

both. Similarly, when measuring over urban canopies as in chapters 3 and 4, it was 

clear that anthropogenic VOCs were strongly controlled by traffic density and 

temperature. Therefore, these variables could be used in a similar way to help pad the 

missing sections in disjunct data sets and allow for much more detailed analysis and 

quality testing of disjunct data in future campaigns.

7.3.4 Improvements to logging software

Recently, the manufacture’s of the PTR-MS, Ionicon (GmBH, Innsbruck), 

have released a new version of the software used to operate the instrument. Rather 

than using the Quadstar programme, the new software is written entirely in LabVIEW. 

The major advantage of this, is that data from the PTR-MS are channelled directly 

into the LabVIEW programme via the serial interface, negating the need for the 

dynamic data exchange protocol, which is a less efficient means of data transfer.
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Simple amendments to the software developed in this thesis could be made to include 

this new data transfer mechanism, or perhaps, more simply, global variables could be 

used to share data between the PTR-MS software and the vDEC logging software 

which could be run simultaneously. Upgrading the software in this way would mean 

only the LabVIEW software would be needed to run the system, which would free up 

system resources and potentially reduces random spikes in the data which are caused 

when the serial buffer becomes full.

7.4 “Top down” versus “Bottom up” emission inventory approach

During the course of this thesis, two “top-down” style approaches, DEC and 

vDEC, have been developed and applied for the measurement of VOC surface layer 

fluxes. In Manchester, measured fluxes of benzene were up-scaled to give an annual 

emission estimate for the city centre, which was subsequently compared to emission 

estimates from the NAEI. Despite the large degree of uncertainty surrounding the flux 

measurements, the “top-down” approach gave a figure that was in the same ballpark 

as estimates made using the “bottom-up” approach of the NAEI. In London, efforts 

were made to reduce the uncertainty of the flux measurements by increasing dwell 

times to enhance the precision of the VOC measurements. Again, fluxes of benzene 

were compared to emission estimates from the NAEI, but rather than simply 

extrapolating the 4 weeks o f data as before, a parameterisation between VOC fluxes 

and traffic density was used. For a second time, estimates from the “top-down” 

measurement approach compared well with the “bottom-up” style of the NAEI and in 

addition, similar comparisons with CO flux data, showed even closer agreement with 

less than 35% difference between the two approaches. This demonstrates that, on an 

annual basis, the bottom-up approach adopted by the NAEI can provide emission
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estimates o f benzene and CO that are in the right ball park. The performance of the 

inventory with regards to other important VOCs is still unknown; nevertheless, as the 

majority of VOC within the city are emitted from vehicles, their emission from within 

the urban environment should be well characterised by the NAEI. However, in rural 

areas, the NAEI is not a suitable means for deriving VOC emission estimates as its 

primary focus is anthropogenic emissions. In these more remote locations where 

biogenic emissions dominate the total flux, models such as MEGAN (Guenther et a!., 

2006) and the G95 algorithm (Guenther et al., 1995) are better suited.

In chapter 5, fluxes o f five biogenic volatile organic compounds were 

measured above a typical Mediterranean ecosystem type. Comparisons of 

monoterpenes and isoprene fluxes with those measured by the G95 algorithm showed 

the “bottom-up” modelling approach to give a very good approximation of the 

measured flux. Once more this suggests that bottom-up style techniques are very 

capable o f providing emissions estimates from both urban and in this case rural 

locations.

Both “bottom-up” and “top-down” approaches have been shown to be 

effective, but in reality the “bottom-up” style emission inventory approach will always 

be favourable. They can be applied on much larger spatial scales, are cost effective 

and, depending on the variables supplied, can give information on both current and 

future emissions. Nonetheless, top-down measurement techniques such as those 

presented in this thesis will always be relevant as they provide a means with which to 

validate and constrain emission estimates made by bottom-up modelling approaches.

7.5 Future work
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In the short term, there are plans to deploy the vDEC system as part of the 

NERC funded consortium project “Oxidant and particle photochemical processes 

(OP3) above a South-East Asian tropical rain forest”. The overall goal of this project 

is to increase our understanding of the interactions that exist between natural forests 

and the Earth’s climate system in the tropical regions. The vDEC system will be 

deployed on a 100 m tower to measure fluxes o f a wide range o f BVOCs from the 

forest canopy below. This activity will be complemented and verified by a series of 

finger print measurements o f VOC mixing ratios made by GC-MS both above and 

below canopy. The work will be staged over two separate campaigns which will each 

last approximately 4 weeks during 2008.

In the longer term, research using these techniques should be focused on 

generating flux measurements over longer time periods, as a criticism often levelled at 

VOC flux measurements is their short duration. Typically, measurement campaigns 

last between two and four weeks, which only provides a snap-shot of the surface 

exchange occurring throughout the year. Although this may be enough to generate an 

appreciation of emission rates occurring at that given time, it does not consider how 

seasonality may impact upon emission rates. For example, in chapter 4, analysis of 

data from a long-term monitoring station showed strong seasonal trends in isoprene 

and toluene concentrations which could not have been resolved during a typical 

campaign of 4 weeks.

Since there is now an infrastructure at the Telecom Tower to support 

micrometeorological measurements, the site presents an excellent platform from 

which to make longer-term measurements of VOC fluxes from the city. In addition to 

resolving important temporal trends in emission rates, an extended campaign may well 

help to establish if the biogenic isoprene observed in chapter 4 originated from
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locations within the flux footprint such as Regent’s Park or Hyde Park, or was simply 

advected from sources situated further outside o f central London. Quantifying the 

biogenic fraction o f isoprene in London is important for two reasons. Firstly, as was 

demonstrated in chapter 4, the biogenic component can make up a significant fraction 

o f the total observed isoprene during periods of elevated temperatures and secondly, 

due to its highly reactive nature, isoprene is an important precursor for photochemical 

pollution episodes. Given that the NAEI currently do not consider motor vehicle 

exhaust or evaporative sources of isoprene in their inventory (R.G. Derwent, personal 

comm) there is a real need to quantify and separate the three major sources (direct 

emissions from cars, evaporative emissions and biogenic emissions) o f isoprene in the 

city.

In order to set about this task, a two-fold approach would be required. Firstly, 

deployment o f the vDEC system at the Telecom Tower would be needed to provide 

direct flux measurements of isoprene emissions from the city centre. In addition, 

measurements of aromatic compounds such as benzene and ethylbenzene could be 

used as a marker for vehicle related emissions, which in turn could help to separate the 

biogenic isoprene fraction. Secondly, as was stated in chapter 4, the most likely source 

o f the biogenic isoprene was thought to be the parkland situated to the south west of 

the Tower. Although Hyde Park may fall within the flux footprint (wind direction 

allowing), Richmond Park, which was thought to be the most likely source due to its 

extensive covering of oak trees, which are strong emitters of isoprene, would not. 

Therefore, any attempt to quantify the source o f biogenic isoprene using flux 

measurements based at the Telecom Tower, should be supported by ancillary flux 

measurements made above canopy at Richmond Park.
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7.6 Final remarks

The theoretical appraisal and field deployment of the DEC and vDEC systems 

have convincingly demonstrated their capacity to give very detailed information on 

VOC fluxes from both urban and rural canopies. This information has compared well 

with bottom-up style inventory approaches and may be further improved with longer 

term measurements and more detailed analysis of the flux footprint.

Evaluation o f the DEC approach in the field, although convincing, has shown 

the technique to be logistically limited. Future applications should be restricted to 

measurement locations where the separation distance between the PTR-MS and 

sampling system can be kept short and pressure drops along sampling lines 

minimised. In contrast, the vDEC technique is practical and simple in its operation, 

but may suffer from decreased measurement precision when PTR-MS dwell times are 

very short. On this basis, it is recommended that dwell times are set to at least 0.2 s, 

with 0.5 s thought to be an optimum value.

In conclusion, the DEC and vDEC flux measurement techniques can be used 

to provide robust estimates for the surface exchange of a large number o f VOCs from 

both urban and rural canopies and at length scales of 100 m2 to 106 m2. The results 

generated can subsequently be used to feed into regional and global scale models such 

as MEGAN (Guenther et al., 2006) or to validate and constrain emission inventories 

such as the NAEI.
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Appendix I

The sequence file used to perform SEM voltage checks is shown below. This 

sequence was written for the testing o f Pfeiffer SEMs, hence the higher voltage range 

(2000 -  3500 v), when using a Mascom SEM, this range is lowered to 1400-2500 V.

// SEM Check

// Start Voltage = 2000 [V]
// End Voltage = 3500 [V]

// Entering the start voltage 
SetVar( i[0]=2000 )
SetAO( 8=10000 )

// This loop increases the SEM voltage by 50 volts every time it 
iterates. The 1500, is the total number of volts to be added to the 
2000 starting volts 
Loop( i[l]=0;1500;50 )
Begin

// adds initial SEM voltage to the incremented loop voltages 
Calculate! i [2] = i[0]+i[l] )
// sets SEM to new voltage, and turns it on 
SetQMS ( Comra3EM=i [ 2 ]  , SEM=on )
// This pauses the check fpr 5 s to allow everything to settle 

after the change of voltage
Delav( Time=5, Disp=off )
// The second loop controls the number of cycles per voltage - 

default is 10 cycles
Loop( i [3]=C;9 )
Begin

DDEInit( Service="QUADSTAR" )
Message! Text = "SEM check now in progress please

wait SEM voltage is currently " ; i [2] )
MID (

Par="c:\orogra~l\qs4 22\workpl ~l\sequen ze\ec\sem.mip", SaveGfa = 0,
O d v E, gs [0] ) 

DDEPoke( Service= "labview" , Topic="PTR-MS’, Item="mass0
Data=gfa [0] [0] ) 

DDEPoke( Service= "labview" , Topic="PTR-MS', Item="massl
Dat a=g f a [0]

DDEPoke( Service= "labview" , Topic="PTR-MS' Xtem="mass2
Data=gfa [ 01 [21 ) 

DDEPoke( Service= "labview" , Topic="PTR-MS', Item="mass3
Data=gfa [0] [3] ) 

DDEPoke( Service= "labview" , Topic-"PTR-MS' , Item="mass4
Data=gfa [0] [4] ) 

DDEPoke( Service= "labview" Topic="PTR-MS' , Iter-"mass5
Data=gfa [0] [5] ) 

DDEPoke( Service^ "labview" Topic^"PTR-MS' , Item="mass6
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DDEPoke( Service^"labview", Topic="PTR-MS", Item="mass7", 
Data=gfa[0}[7] )

DDEPoke ( Service="labview" , Topic="PTR-MS", Item="mass8 " , 
Data=gfa[0][8] )

DDEPoke( Service-"labview", Topic="PTR-MS", Item="mass9", 
Data=gfa[0][9] )

SetVar( gi[l]=l )
DDEPoke( Service="labview", Topic="PTR-MS", 

ltem=" nev/data", Data=gi[l] )

End
End
SetQMS ( CoirimSEM=0, SEM=off )

SetAO( 8=0 )

* * *

B e lo w  are pho tos  o f  the d is junct  flux  sam p le r  dur ing  the val idat ion  s tudy 

w h e re  CCb and FBO f lux m e asu rem en ts  w ere  com pared  w ith  those  m easu red  by the 

s tandard  eddy  co va r iance  techn ique .
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Screen  shot o f  the  D FS  logg ing  so f tw are ,  sh o w in g  the opera tion  o f  sam ple  

valves ,  ISR  pressu res ,  sonic a n e m o m e te r  and  IR G A  data  and p re lim inary  on line  flux 

ca lcu la t ions .
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Appendix II

T h e  se q uence  file used to contro l the D D E  pro tocol and  transfe r  da ta  from  the 

P T R -M S  to the L a b V lE W  logging  p ro g ra m m e is show n  below. In th is  sequence  the 

P T R -M S  m o d e  w as  al tered  from  D E C  to v D E C  every  30 m inutes .

// i [0] main loop counter
// i [1] year 
// i [2] month 
// i [3] day
// i [4] hours of current time
// i [5] minutes of current time
// g i [0] global mode flag (0=Scan; 1=MID)
// gi[l] global data flag (l=new available)
// gfa [0] ...gfa[9] data

SetPar( BarWidth=15, ColorMode=single, Cycles=50, DispOpt=last, 
LineType=solid, Marker-on, YRaster=on )
DDEInit( Service="QUADSTAR" )
Loop( i[0]=0;200000000 )
Begin

GetDate ( Day=i[3], Month=i[2], Year=i[l] )
GetTime( Hour=i[4], Min=i[5] )
SetString( gs[0] = )
SetString( gs[0] = gs[0];i f1] )
SetString( gs [0] = gs [0];i [2] )
SetString( g s [0] = gs [0];i [3] )
SetString( gs[0] = gs[0];i[4] )
//Repeat MID measurement for at least 25 minutes

IfVar( i [5] < 4 )
Begin

SetVar( g i [0]=0 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="ptrmsmode", Data=gi[0] )
ScanBar(

Par="c:\progra~l\qs422\workpl~l\sequenze\ec\portland.sbp' , 
Disp=on, SaveCyc=gs[0] )

End
Else

IfVar( i [5] < 30 )
Begin

SetVar( g i [0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item=Mptrmsmode", Data=gi[0] )
MID (

par="c :\progra~1 \qs4 2 2 \workpl~l\sequenze\ec\ec.mip", SaveGfa=0, 
SaveCyc=gs[0] )
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DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="massO", Data=gfa [0] [0] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="massl", Data=gfa[0] [ 1 ]  )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass2", Data=gfa[0] [2] )

DDEPoke( Service= ’labview", Topic="PTR-MS",.
Item="rnass3", Data=gfa[0] [3] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass4", Data=gfa[0] [4] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass5", Data=gfa[0] [5] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass6", Data=gfa[0] [6] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="rnass7 ", Data=gfa[0] [7] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass8", Data=gfa[0] [8] )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="mass9", Data=gfa[0] [ 9 ]  )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="masslO", Data=gfa[0 ] [ 1 0 ]  )

DDEPoke( Service= ’labview", Topic="PTR-MS",
Item="massll", Data=gfa[0 ] [ 1 1 ]  )

SetVar( gi[i]=i )
DDEPoke( Service= ’labview", Topic="PTR-MS",

Item="newdata", Data=gi[l] )
End
Else

IfVar( i [5] < 34 )
Begin

SetVar( gi[0]=0 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="ptrmsmode", Data=gi[0] )
ScanBar(

Par="c:\progra~l\qs422\workpl~l\sequenze\ec\portland.sbp",
Disp=on, SaveCyc=gs[0] )

End
Else
Begin

SetVar( gi[0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="ptrmsmode", Data=gi[0] )

MID (
Par="c:\progra~l\qs4 22\workpl~l\sequenze\ec\disjunct.mip", 
SaveGfa=0, SaveCyc=gs[0] )

DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massO", Data=gfa[0][0] )

DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massl", Data=gfa[0] [ 1 ] )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="mass2", Data=gfa[0][ 2 ]  )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="mass3", Data=gfa[0][ 3 ]  )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="raass4 ", Data=gfa[0] [4J )
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DDEPoke Service="labview" , Topic="PTR-MS",
Item="mass5", Data=gfa [0] [5] ) 

DDEPoke Service="labview", Topic="PTR-MS",
Item="mass6", Data=gfa[0][6] ) 

DDEPoke Service="labview", Topic="PTR-MS" ,
Item="mass7", Data=gfa[0][7] ) 

DDEPoke Service="labview" , Topic="PTR-MS" ,
Item="mass8" , Data=gfa[0][8] ) 

DDEPoke Service="labview" , Topic="PTR-MS" ,
Item="mass 9", Data=gfa[0][9] ) 

DDEPoke Service="labview" , Topic="PTR-MS",
Item="masslO" Data=gfa[0][10] )

DDEPoke Service="labview", Topic="PTR-MS",
Item="massll" Data=gfa[0][11] )

SetVar( 
DDEPoke

gi [1]=1 )
Service="labview", Topic="PTR-MS",

Item="newdata", Data=gi[l] )

End
DDEClose( )

End.

P hotos  o f  taken  dur ing  the City  F lux  ca m p a ig n  in M anchester .  P icture A  show s  a v iew  

o f  Port land  to w e r  taken  from  the  east at s treet level.

lUMPH

Photo  by C laire  M artin
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Picture B sh o w s the in s trum ent m as t  w h ich  ex tended  15 m  above  the  ro o f  surface.

P ho to  by C laire  M artin
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Picture  C g ives  a v ie w  from  the  ro o f  o f  P ort land  T o w e r  look ing  N orth .  In th is  w ind  
v ec to r  bo th  the C ity  T o w e r  and A rnda le  cen tre  can  be c learlv  seen.

Pho to  by  C laire  M artin

G raph  il lustrating  in term itten t sp ikes  in the V O C  concen tra t ions .  T h is  w as  caused  by 

the  the rm al tr ip  o f  the  sam p le  pum p. A v erag in g  periods  affec ted  w ere  filtered and 

rem o v e d  and  w ere  no t inc luded  in the final da ta  analysis .
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Appendix III
L ab o ra to ry  testing o f d isjunct flux sam pler

T he  D FS  w as  se tup  under  “ n o rm a l’' opera ting  cond it ions ;  intake valve 

sw itc h in g  set for 0.5 s o pen ing  (the m in im u m  tim e required  for an evacua ted  1SR to be 

p ressu r ised  to am b ien t  level), and sam ple  ana lys is  t im e (d is junc t  in terval)  set to 12-15 

s. A  T e d la r®  bag filled w ith  breath  isoprene w as  at tached  to the in take va lve  o f  one 

channel ,  the  o ther  left open  to am b ien t  air. A short length o f  V * '  P T F E  tub ing  

co n n e c ted  the bag  to a m anually  opera ted  2 -w ay  so lenoid  valve (Sw age lok .  

M a n c h e s te r  Fluid S ystem s),  w ith a furthe r  inlet line connected  directly  to the D FS and 

the  o the r  line to the P T R -M S  instrum ent. Such  a se tup a l low ed  the P T R -M S  to sw itch  

freely  be tw een  ana lys ing  the  air w ith in  the T ed la r®  bag and the air from  the DFS 

(Fig. 1).

Teflon Bag ISR 1

PTR-MS
2 way (X 
valve

Pump

ISR 2

P T R - M S

Figure 1. Schem atic o f the disjunct eddy sam pler and experim ental setup. Crossed circles 
represent com puter autom ated sw itching valves and red circles areas o f the system  where the two 
independent channels converge.
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A ssum ing  the system is airtight and there is no dilution occurring from inter

channel mixing, concentrations recorded in the bag should be the same as those 

sampled by the DFS. Any discrepancies between the two monitored sources would 

indicate system leakages. The experiment was then repeated with the bag placed upon 

the second inlet valve with the previous valve now open to am bient air.

Results

Channel 1 testing:

The results from Channel 1 testing initially indicated a serious discrepancy 

between the measured concentrations from the channel and the bag. The concentration 

o f  isoprene with in  the bag was measured at a stable 70 ppb, such stability 

indicating a

BAGBAG
8 0  -

6 0  -
DFS_Q

C L
C L

DFS DFS

0
C
0

Q.OW

20  -

0 50 4 5 0 5 0 03 5 0 4 0 03 0 02 5 0200150100
Measurement Cycle

Figure 2. Graph showing the results for Channel 1. The plot indicates isoprene concentrations to 
differ between the bag (large peaks), Channel 1 (intermediate peaks) and Channel 2 (baseline) 
which was left open to ambient air. Irregular isoprene concentrations observed within channel 1 
indicate multiple leakages within the system.
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good seal around the intake valve and outlet tubing. The isoprene concentration from 

channel 1 was markedly  lower, at an average o f  10 ppb, 14 %  o f  that o f  the bag (Fig. 

2). Channel 1 concentrations showed no evidence o f  stability, ranging from as low as 

1 ppb to 23 ppb. Such irregularities within the recorded concentrations indicate more 

than one source o f  leakage within that channel.

Channel 2 testing:

Further  discrepancies between the bag isoprene and DFS channel isoprene 

concentra tions w ere  observed when Channel 2 was investigated. Again concentrations 

were in the region o f  14% o f  the measured bag concentration o f  70 ppb. This figure 

rose to approxim ately  21%  when the PTR-M S intake flow rate was increased from 

250 ml min"1 to >  350 ml m in '1. Unlike channel 1, stability was observed in channel 2 

concentrations, possibly indicating ju s t  one leak within this region o f  the DFS system 

(Fig. 3).

BAGBAG BAG
80 -

60 -
DFSDFSDFSDFS-QQ.

C l

<D
CQ)
ClOW

20  -

400300 350250200150100500
M easurem ent Cycle

Figure 3. Graph showing the results of Channel 2 testing. The graph indicates how isoprene 
concentrations differed between the bag (large peaks), Channel 2 (intermediate peaks) and 
Channel 1 (baseline) which was left open to ambient air. Channel 2 concentrations show
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regularity when compared to channel 1 (Fig. 2). PTR-M S intake flow rate was increased to >350 
ml m in'1 at 200 cycles, which saw an increase of ~5 ppb in concentration.

W hen the deficit between the two channels and bag concentrations are

considered it is noticeable that both channels are underestimating by -8 6 % .  Such

agreem ent between the two independent channels indicates the primary source o f

leakage to occur at such a point where the two channels converge (Fig. 1).

Leak testing o f  DFS

In order  to locate the source o f  dilution occurring within the DFS the two 

channels were separated, ensuring total independence. Repeating the experiment 

outlined above on each channel saw excellent agreem ent with concentrations directly 

measured from the bag. The connection between the two channels along the

60

D FSBAGD F S BAG D FS

50

40

30

20

10

0
350300250200150100500

Measurement Cycle

Figure 4 the plot shows how the reorientation of valves 3 and 6 saw isoprene concentrations rise 
from 14% of that in the bag to 60%. The decline in concentration observed in the first few peaks 
is indicative of leakages. Tightening of piping joints took place at around 200 cycles which had an 
immediate impact.
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evacuation pum p tubing (Fig 1) was first eliminated by reassem bling the DFS and 

installing separate pum ps for each channel. This saw concentra tions in both channels 

drop to the levels seen in Figs. 2 and 3, thus indicating valves 3 and 6 on the DFS to 

be at fault.

Testing  o f  valves 3 and 6 revealed them to maintain a pressure better in one 

direction com pared with the other. Thus in their present orientation, when each 

canister w as undergoing evacuation, air was drawn from the opposite canister, 

disrupting the measured concentration. A simple reorientation o f  both valves 3 and 6 

saw  imm ediate success as concentrations rose to that o f  the bag (Fig. 4and 5). In the 

case o f  Channel 1, which had previously been suspected o f  having more than one leak 

due to the irregularity

DFSBAGDFS
60 -

XI
Q .
CL 40 -
<Dc<D
Q.OC/>

20  -

10 20 30 40  50 60 70 80 90 100 110 1200
Measurement Cycle

Figure 5. Plot showing the results from the leak testing of Channel 2 after the reorientation of 
valves 3 and 6. Concentrations now being representative o f that of the bag indicate an air tight 
system.

o f  m easured concentrations, isoprene levels were still approxim ately 40%  below that 

in the bag. W hen the data from Channel 1 was analysed it w as clear to see a decline in
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concentration with each 3 second PTR-MS cycle, such a drop off is indicative of a 

leak within the system. All jointing within Channel 1 was tightened, which resulted in 

the immediate rise o f concentrations equivalent to those seen in the bag.
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Appendix IV
P hotos  o f  the  v D E C  se tup  du r ing  the R E P A R T E E  cam pa ign ,  the T e leco m  

T o w e r  and v iew s  o f  the  su r round ing  areas.

CfeJiEauLi
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Appendix V

T he  sequence  file used  du r ing  the  C aste lpo rz iano  field ca m p a ig n  is show n 

be low . T h e  sequence  has been  m odif ied  to a l low  the  au tom ated  sw itch ing  o f  valves ,  

w h ich  enab le s  the P T R -M S  to sw itch  freely  be tw een  the sam p le  line and the zero  air 

source .

// i [ 0] main loop counter
// i [1] year 
// i [2] month 
// i [3] day
// i [4] hours of current time
// i [5] minutes of current time
// g i [0] global mode flag (0=Scan; 1=MID)
// gi[l] global data flag (l=new available)
// gfa[0]...gfa[9] data

SetPar( BarWidth=15, ColorMode=single, Cycles=50, DispOpt=last, 
LineType=solid, Marker=on, YRaster=on )
DDEInit( Service="QUADSTAR" )
Loop( i [0]=0;200000000 )
Begin

GetDate ( Day=i [3 ]  , Month=i[2], Year=i[l] )
GetTime( Hour=i[4], Min=i[5] )
SetString( gs[0] = "@@@@" )
SetString( g s [0] = g s [0];i[1] )
SetString( gs[0] = gs[0];i [2] )
SetString( gs[0] = gs[0];i[3] )
SetString( gs[0] = gs [0];i[4] )
//Repeat MID measurement for at least 25 minutes

IfVar( i [5] < 5 )

Begin
SetAO( 9=10000 )
SetVar( g i [0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS",

Item="ptrmsmode", Data=gi[0] )
MID( Par="c:\qs4 22\workpl~l\sequenze\ec\ec_italy.mip", 

SaveGfa=0, SaveCyc=gs[0] )
DDEPoke( Service="labview",Topic="PTR-MS",
Item="mass0",Data=gfa [0] [0])
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massl", Data=gfa[0] [1] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass2", Data=gfa[0][2] )
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DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass3", Data=gfa[0][3] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass4", Data=gfa[0][4] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass5", Data=gfa[0][5] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass6", Data=gfa[0] [6] )
DDEPoke( Service="labview", Topic="PTR-MS",  
Item="mass7", Data=gfa[0][7] )
DDEPoke( Service="labview" , Topic="PTR-MS", 
Item="mass8", Data=gfa[0][8] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass9", Data=gfa[0][9] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="masslO", Data=gfa[0][10] }
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="inassll", Data=gfa [0] [11] )
SetVar( gi[1]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="newdata", Data=gi[l] )
End
Else

IfVar( i [5] < 30 )
Begin

SetAO( 9=0 )
SetVar( gi[0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="ptrmsmode", Data=gi[0] )
MID (

Par="c:\qs422\workpl~l\sequenze\ec\ec_italy.mlp", SaveGfa=0, 
SaveCyc=gs[0] )

DDEPoke(Service="labview",Topic="PTR-MS", 
Item="mass0",Data=gfa[0][0])
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massl", Data=gfa[0][1] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass2", Data=gfa[0][2] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass3", Data=gfa[0][3] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass4", Data=gfa[0][4] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass5", Data=gfa[0][5] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass6", Data=gfa[0][6] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass7", Data=gfa[0][7] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass8", Data=gfa[0][8] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="mass9", Data=gfa[0][9] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massl0", Data=gfa[0][10] )
DDEPoke( Service="labview", Topic="PTR-MS", 
Item="massll", Data=gfa [0][11] )
SetVar( gi[l]=l )
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DDEPoke( Service="labview", Topic="PTR-MS", 
Item="newdata", Data=gi[l] )

End
Else

IfVar( i [5] < 35 )
Begin

SetVar( g i [0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Itern="ptrmsmode", Data=gi[0] )
MID (

Par="c:\qs 4 22\workpl~l\sequenze\ec\masscan.mip", SaveGfa=0, 
SaveCyc=gs[0] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass0", Data=gfa[0][0] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="massl", Data=gfa[0][1] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass2", Data=gfa[0][2] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass3", Data=gfa[0][3] )

DDEPoke( Service— "labview", Topic= "PTR-MS
Item="mass4", Data=gfa[0][4] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass5", Data=gfa[0][5] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass 6", Data=gfa[0][6] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass7", Data=gfa[0][7] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass8", Data=gfa[0][8] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="mass9", Data=gfa[0][9] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="massl0", Data=gfa [ 0] [ 10] )

DDEPoke( Service="labview", Topic= "PTR-MS
Item="massll", Data=gfa[0] [ 11] )

SetVar( gi[1]=1 )
DDEPoke(

Service^"labview", Topic="PTR-MS", 
Item="newdata", Data=gi[l] )
End
Else

Begin
SetVar( g i[0]=1 )
DDEPoke( Service="labview", Topic="PTR-MS", 

Item="ptrmsmode", Data=gi[0] )

MI D (
Par="c:\qs422\workpl~l\sequenze\ec\ec_italy.mip", SaveGfa=0, 
SaveCyc=gs[0] )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="massO", Data=gfa [0][0] )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="massl", Data=gfa[0][1] )

DDEPoke( Service="labview", Topic="PTR-MS",
Item="mass2", Data=gfa[0][2] )
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DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass3", Data=gfa[0][3] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass4", Data=gfa[0][4] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Itern="mass5", Data=gfa[0][5] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass6", Data=gfa[0][6] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass7", Data=gfa[0][7] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass8", Data=gfa[0][8] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="mass 9", Data=gfa[0][9] ) 

DDEPoke Service= "labview", Topic="PTR-MS"
Item="massl0" , Data=gfa[0][10] 

DDEPoke
)
Service= "labview", Topic="PTR-MS"

Item="massll" , Data=gfa[0][11]

SetVar( 
DDEPoke

)

g i [ l ] =1 )
Service= "labview", Topic="PTR-MS"

Item="newdata", Data=gi[l] ) 

End
DDEClose( )

End

C alib ra t ion  g raphs  for  m e thano l ,  ace ta ldehyde  and acetone.  The  s lope o f  the fit g ives 

the  in s t ru m e n t  sensitiv i ty  w h ich  is used  for  the  ca lcu la t ion  o f  m ix ing  ratios.
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