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Abstract

Ethylene is generally an inhibitor of plant growth and it is produced in increasing 

amounts when plants are exposed to abiotic stress. A number of rhizobacteria which 

contain the enzyme 1-aminocyclopropane-l-carboxylate deaminase (ACCd) can 

hydrolyse ACC, the immediate precursor of ethylene, and thus decrease root ACC 

concentration and root ethylene evolution. Whilst promotion of plant vegetative 

growth by ACC-d containing rhizobacteria has been observed in different plant 

species, only a few studies examined the influence of this group of bacteria on plant 

development such as flowering time. This work presented here aims to study effects 

of the ACC-d containing rhizobacterium (Variovorax. paradoxus 5C-2) on the growth 

and development of Arabidopsis, and also investigate the role of ethylene in 

regulating the interactions between V. paradoxus 5C-2 and plants by using wild type 

plants and a group o f ethylene related mutants. Soil inoculation with V. paradoxus 

5C-2 promoted growth of Columbia wild type (WT) and the ethylene overproducing 

mutant eto l-1, and also enhanced floral initiation of WT plants. However, these 

effects were not seen in ethylene insensitive mutants (e trl-1 , ein2-l). Soil inoculation 

with V.paradoxus 5C-2 decreased foliar ACC concentrations of wild type plants and 

foliar ethylene emission in both WT and etol-1  plants. Taken together, these results 

suggest V. paradoxus 5C-2 inoculation promotes Arabidopsis growth and flowering 

via an ethylene-dependent pathway. The effect of V. paradoxus 5C-2 on wheat 

{Triticum aestivum cv. Ashby) was also assessed at seedling stage (with 3 leaves), but 

no growth promotion was observed in wheat either in well watered or drying soil.

Further experiments investigated interactions between ABA and ethylene in stomatal 

regulation of wheat. Abscisic acid (ABA) is a key signal which regulates plant response 

to stress, particularly in regulating stomatal responses to drought. It is suggest that 

older leaves (3 weeks old) lose stomatal sensitivity to ABA. Recent studies indicate
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that ethylene can close stomata when ABA levels are relatively low; but antagonize 

ABA induced stomatal closure such that they can remain open when ABA levels 

increase. The work described here explored the role o f ethylene in regulating 

stomatal responses of leaves of different growth stages to ABA, and to soil drying 

followed by rehydration. Furthermore, the hypothesis that lack of stomatal response 

to ABA in older leaves occurs via effects of leaf aging on ethylene production and/or 

sensitivity. Similar results as described by earlier report were obtained, whereby 

older, more mature leaves lost their ability to close stomata in response to exogenous 

ABA treatments and soil drying followed by rehydration, while young mature leaves 

closed stomata more fully in response to changes in water availability. Pretreating 

plants with 1-methylcyclopropene (1-MCP) which antagonizes ethylene receptors, or 

soil inoculation with rhizobacterium V. paradoxus 5C-2 restored the ability to close 

stomata after soil drying-rehydration treatments, indicating that ethylene is involved 

in the sluggish stomatal response to ABA in older leaves. Further work suggests that 

stomata of older leaves are more sensitive to ethylene compared to young leaves, 

explaining the relative insensitivity of stomatal closure to both ABA and 

drought/rehydration in older leaves. Therefore, improving stomatal response of aged 

leaves to soil drying via rhizobacteria or chemical (1-MCP) application can be useful to 

increase water use efficiency during plant vegetative growth period in agriculture 

practice.
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Chapter 1 General introduction

Chapterl -  General introduction

1.1 Food security and drought stress

Food security is becoming an issue of global concern. Among the major challenges are 

an increasing human population, natural resource depletion, climate change and a 

shortage of good quality land for increased cropping. Although the idea of food 

security includes food availability, food access, and food utilization, increased food 

production is one of the most important parts in the food system (Renzaho and 

Mellor, 2010). It is estimated that the world population will increase to 9 billion by 

2050. To feed this number of people, a declaration on food security targeted a 70% 

increase of agricultural output by 2050 (reviewed by FAO, November 2009). This 

declaration provides a substantial challenge to plant science and to plant scientists.

Since plants cannot move to avoid threats from the environment, they have to 

endure various environmental stresses which result from variable and extreme 

environmental conditions. These stresses include biotic and abiotic stresses that can 

decrease the growth or yield of plants. As water is a major component of plant tissues, 

the supply of water is critical for the survival of plants challenged by a dry 

atmosphere and by water scarcity in the soil. Water is used by plant cells to create 

internal hydrostatic pressures, called turgor pressure which impacts many 

physiological and developmental events including cell enlargement, gas exchange by 

the leaves, and transport in the phloem.

Plants take up water though the roots and it is evaporated from the leaves. If the 

amount of water uptake from the soil is less than the evaporative losses from leaves, 

plants show a water deficit in different aspects of their physiology processes,

l
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especially in the reduction of leaf growth (Hsiao, 1973). By surveying agricultural 

productivity in the United States, Boyer highlighted the substantial negative effects of 

drought on crop growth, compared to other biotic or abiotic stresses. It was 

concluded that 41% of insurance payments for crop losses were attributable to 

drought (Boyer, 1982). Due to global warming, more frequent and intense droughts 

are being experienced in many regions of the world. There were 296 large-scale 

drought events (greater than 500000 km2, and longer than 3 months) between 

1950-2000 (Sheffield et al., 2009). In Asia, the area (106 km2) encountering drought 

problems increased from 4.7 in 1982 to 8.2 in 1998. Many regions of the world 

(including China, Australia, part of USA, and South America) experienced serious 

drought in 2009 comparable to the worst recorded in human history. To meet future 

targets o f food demand in the face of global climate change, scientists must use 

different technologies to explore all possibilities for improving food production in 

unfavorable environments.

Turner (2004) reviewed the historical trend of wheat yield in Australia from 1860 to 

2000. Wheat yield nearly halved from 1860 to 1900 as soil nutrients were exhausted. 

From the beginning of the 20th century, despite fairly constant levels of water 

availability, wheat yield showed a steady increase explained by improved soil 

management including application of superphosphate, and nitrogen fertilizers, the 

introduction of legumes in crop rotations, the introduction of better-adapted 

cultivars such as semi-dwarf cultivars, timely planting, and the use of herbicides. 

Therefore, yields of dry-land (rain-fed) wheat in Australia showed increased yields 

and rainfall use efficiency due to the use of new cultivars and new agronomic 

practices. It has been argued that agronomic practices account for a bigger 

proportion of the increase of yield in the past two decades than the use of new 

cultivars (Angus et al., 2001, Turner, 2004). However, some agronomic practices used
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in the last 100 years have generated negative effects on the environment. Over-use 

of fertilizers such as P and N brings eutrophication to rivers and lakes, and also causes 

the dead zone in coastal due to a lack of oxygen in the water column caused by algal 

blooms. Soil acidification by N over-loading has become a major problem in China 

where intensive N fertilization has been applied (Guo et al., 2010). Global availability 

of phosphate for fertilizer is low (Simpson et al., 2011) and the production of nitrogen 

fertilizer has a high energy demand. The use of nitrogen fertilizer directly or indirectly 

produces greenhouse gases which partially account for the rise of average 

temperature on the earth (OECD, 2000). Herbicides bring a range of health and 

environmental issues when they are overused. Due the toxicity of herbicides, 

occupational exposure increases the risk of the development of Parkinson's Disease 

(Gorell et al., 1998) and the use of herbicides has shown negative impacts on ecology 

such as decreased bird populations (Blus and Henny, 1997). Environmental impacts 

such as these suggest that society should re-think about sustainable ways to maintain 

and improve crop yield but also protect the planet we live on. This thesis focuses on 

some novel plant science which can help us address some of the challenges 

highlighted above.

1.2 Root system improvement and hormone regulation

Plants take up nutrients and water though the root system to allow photosynthesis 

and thereby biomass accumulation. As discussed earlier, limitations in water and 

mineral nutrient supply will restrict the growth of plants. Yields of many crop plants 

show a linear relationship with increased fertilizer and water use (Loomis, 1992). In 

the past 100 years, higher and higher inputs of fertilizer have been applied to get high 

outputs of crops. However, excessive use of nitrogen fertilizer could cause growth

3
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biomass decline by affecting apoplastic pH (Jackson, 1997, Wilkinson et al., 2007). 

There is evidence that crop outputs per unit fertilizer input are declining (Zhang et al., 

2011). In addition to high fertilizer input, drought is one of the most critical risks that 

agroecosytems have to face as the result of global climate change (Easterling et al., 

2000). As roots are the primary sites of water uptake by plants, a vigorous root 

system (early and fast root extension and proliferation, greater root biomass) may 

enable the plant to access more water and nutrients from the soil and may be crucial 

to maintain growth and yield under adverse soil conditions, particularly in the earlier 

stages when young plants face serious stresses (Richards, 2008, Dodd et al., 2010). A 

vigorous root system can intercept and capture the nutrient, particularly nitrogen 

uptake before it moves below the rooting depth (Wilkinson and Davies, 2002), and 

enhance water capture in deeper soil layers which could show the potential to 

significantly increase grain yield (Manschadi et al., 2006).

However, there is debate as to whether increasing the size of root system could 

benefit shoot growth and final yield, because the metabolic costs of root growth and 

maintenance can be quite substantial, which could reduce growth of photosynthetic 

tissues (Nielsen et al., 2001, Lynch, 2007). Earlier investment of photosynthesis 

products to roots to obtain more resource is particularly important in conservation 

farming systems (Perez-Alfocea et al., 2010). Nevertheless, under the likely future 

situation of less land, less water, and reduced fertilizer availability, novel methods 

which act to increase plant water and nutrient uptake and use efficiency could be a 

sustainable way to increase yield.

To increase plant nutrient and water uptake from soil and resource use efficiency, 

effective root traits which could improve yield potential have been used by breeders. 

Lynch (2007) describes a method whereby specific root traits were selected through

4
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direct phenotypic evaluation or molecular markers rather than conventional field 

screening for crop yield. By focusing on root architectural traits including root growth 

angles, adventitious root formation and lateral branching, plants with specific traits 

which can enhance topsoil foraging and phosphorus acquisition from infertile soil 

were bred (Lynch, 2007). Crossing different genotypes to develop inbred lines 

combined new traits including both increased shallow roots and deep roots in 

common bean and soybean cultivars, thereby increasing phosphorus efficiency 

(shallow roots) and drought tolerance (deep roots) in the new genotype (Beebe et al., 

1997, Bonser et al., 1996, Liao et al., 2006, Liao et al., 2001). A new tra it with 

abundant root cortical aerenchyma (RCA) can reduce root metabolic costs, thereby 

permitting greater root growth and water acquisition from drying soil, hence 

increasing maize drought tolerance compared to the performance of a genotype with 

low RCA (Zhu et al., 2010).

In addition to specific root tra it selections, rhizosphere engineering with 

micro-organisms is another low-cost option to apply in the field to improve plant 

nutrient and water use efficiency. By taking advantage of mycorrhizal symbioses 

which occur in the majority of higher plant species, ectomycorrhizas and arbuscular 

mycorrhizas have been used to enhance phosphorus acquisition by plants and (Smith 

and Gianinazzi-Pearson, 1988, Smith and Smith, 1990, Smith et al., 2003). Other 

research employs rhizobacteria to regulate root-shoot hormone balance, thereby 

increasing water use efficiency of several plants such as peas and potatoes (Belimov 

et al., 2009 b, Belimov et al., 2009 a, Glick et al., 1995, Glick et al., 1997). Root and 

shoot biomass of pea experiencing water deficit can be increased by application of 

the ACC deaminase-containing rhizobacterium Variovorax paradoxus 5C-2 which can 

break down ethylene precursor ACC and hence regulate ethylene accumulation in 

roots and shoots (Belimov et al., 2009 b). As ethylene is known as 'stress hormone'

5



Chapter 1 General introduction

and negatively regulates several aspects of plant growth such as primary roots under 

low water potential (Spollen et al., 2000), and shoot growth (Sharp, 2002, Pierik et al.,

2006). Regulation of ethylene production under stresses could be one of the 

approaches to improve growth of plant with no more input in the agriculture system.

1.3 Ethylene signalling

The plant hormone ethylene is a gaseous hormone with simple two-carbon structure. 

However, ethylene is also involved in a variety of plant developmental events (such as 

seed germination, flowering, senescence of leaves and flowers, root growth and 

development, fru it ripening, and sex determination) (reviewed by Ecker, 1995) and 

responses to external stimuli. More importantly, ethylene is also recognized as a 

stress hormone because its production is induced by a number of stress signals, 

including pathogen infection, mechanical wounding, chemicals and metals, ozone, 

drought, and extreme temperatures (Kende, 1993, Ecker, 1995).

1.3.1 Ethylene biosynthesis

The precursor of ethylene biosynthesis is S-adenosyl-L-methionine (S-AdoMet) (Yang 

and Hoffman, 1984). S-AdoMet synthetase (SAM synthetase, EC 2.5.1.6) can convert 

nearly 80% of cellular methionine to S-AdoMet by utilizing ATP (Giovanelli et al., 

1985). As well as being the substrate of ethylene biosynthesis, S-AdoMet is also the 

major methyl-group donor in plants and is involved in polyamine biosynthesis, and 

the modification of lipids or proteins or nucleic acids (Ravanel et al., 1998). The first 

step of ethylene biosynthesis in the Yang cycle is the conversion of S-AdoMet to ACC 

that is catalyzed by ACC synthase (ACS) (S-adenosyl-L-methionine 

methylthioadenosine-lyase, EC4. 4. 14) (Kende, 1993, Yang and Hoffman, 1984). The

6
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enzyme ACC oxidase converts ACC to ethylene, carbon dioxide, and cyanide, which is 

detoxified to f3 -cyanoalanine to prevent cyanide accumulation. In the reaction, 

oxygen is an essential factor and at the same time, Fe2+ and ascorbate are required to 

work as cofactor and co-substrate, respectively. In addition, ACC synthase also 

produces 5'-methylthioadenosine (MTA), which is converted to methionine though a 

modified methionine cycle (Wang, Li et al. 2002). In this reaction, the methyl group is 

preserved for another round of ethylene production. Therefore, the pool of 

methionine is maintained and ethylene can be synthesized continuously (Wang et al.,

2002). The rate limiting step of ethylene synthesis is the conversion of S-AdoMet to 

ACC by the enzyme ACC synthase.

[SAM Symherase)

Protein
Synthesis S-AdoMetMethionine

ATP PPi + Pi

(ACC Synthase) ( ACC Oxidase) 

= >  | ACC | ethylene

0 2 c o 2+ h c n

Figurel.l. Biosynthesis pathway o f ethylene

Recent studies suggest ACC synthases are encoded by multigene families in all species 

examined and are highly regulated by multiple internal and external signals. There are 

12 AC5-like genes in the Arabidopsis genome and 7 ACS genes have been identified 

and characterized (Arteca and Arteca, 1999, Liang et al., 1992, Samach et al., 2000, 

Yamagami et al., 2003). Many studies have addressed the spatial and temporal 

regulation of these ACS gene activities by various endogenous cues (Vanderstraeten 

et al., 1992) and environmental stimuli (Wang et al., 2002). Indole acetic acid (IAA) 

induced gene expression of all ACS except ACS7 and ACS9 genes in root tissues 

(Yamagami et al., 2003). Meanwhile, IAA treatment can extend the expression of the 

ACS7 gene from the vascular zone to a layer of the parenchymatous tissue

7
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(Tsuchisaka and Theologis, 2004). Ethylene can induce the expression of ACS2 and 

ACS6 genes in the mature leaves (Vanderstraeten et al., 1992). Cytokinin up-regulated 

the expression of the ACS5 gene (Vogel et al., 1998). ACS6 is induced by touch in the 

leaves o f mature plants and also by wounding (Arteca and Arteca, 1999). ACS4 gene 

expression is also regulated by wounding (Abeles, 1992, Liang et al., 1996). Expression 

of ACS6, ACS8 and ACS9 genes is increased in Arabidopsis rosettes by reducing the 

light intensity (Vandenbussche et al., 2003).

In addition to the regulation of ethylene production by transcription increasing or 

decreasing ACS gene expression, posttranslational regulation of ACS protein activity is 

another important mechanism in controlling ethylene biosynthesis. Studies of 

ethylene overproducing (eto) mutants in Arabidopsis reveal the possibility of 

posttranslational regulation of ACS proteins (Chae and Kieber, 2005, Guzman and 

Ecker, 1990, Vogel et al., 1998). There are three eto mutants e to l, eto2 and eto3 

identified in Arabidopsis through the triple response assay (Guzman and Ecker, 1990, 

Kieber et al., 1993). In Arabidopsis, the triple response is characterized by the 

inhibition of hypocotyl growth and root elongation, a thickening of the hypocotyl and 

an exaggerated apical hook (Chen et al., 2005). eto mutant seedlings show an 

ethylene response phenotype under ambient air and 10- to 40-fold more ethylene is 

produced from eto seedlings than wild type seedlings grown in the dark, e to l is a 

recessive mutant and eto2 and eto3 are dominant. The protein ETOl has been 

identified as an E3 ligase component, a BTB/TPR protein (Wang et al., 2004). It 

negatively regulates ACS5 protein activity by directly interacting with the full-length 

protein of ACS5 which is degraded rapidly in wild-type etiolated Arabidopsis seedlings 

in vitro, this interaction can be disrupted by the eto2 mutation. In vivo analysis 

suggested the stability of ACS5 protein was increased in the e to l mutant (Chae et al.,

2003). The eto3 mutant phenotype is the result of a s-sense mutation-V457D within
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the C-terminal of ACS9 protein, which is the closest homolog of ACS5 protein in the 

Arabidopsis genome (Chae et al., 2003). The eto2 mutation is a single base-pair 

insertion of the C-terminus of the ACS5 protein by slowing down ACS5 protein 

degradation (Vogel et al., 1998). These results indicate that the phenotypes of eto 

mutants are gained by decreasing the rate of ACS protein degradation, which is an 

important mechanism to control ethylene production. However, the mechanism of 

ACS protein degradation in vivo is still not well understood.

In contrast to ACS genes and proteins, studies in tomato suggest that ACC oxidase 

(ACO) is constitutively present in most tissues and its expression increases during fru it 

ripening (Ecker, 1995). Since the synthesis of ACC is the key step to control ethylene 

production, mechanisms of ACO gene regulation have been less discussed in the 

literature. Recently studies of ethylene synthesis have addressed how endogenous 

and external signals govern the differential expression of ACS and ACO 

genes/enzymes in various plant species. However, many important questions about 

regulatory mechanisms still remain. For example, how do hormones like cytokinins, 

and biotic or abiotic stresses like wounding or pathogen attack evoke rapid ethylene 

biosynthesis from plant cells? Given the large number of ACS and ACO gene isoforms 

identified after the completion of the Arabidopsis genome sequence, it is necessary 

to ask why plants need multi-gene families for ethylene biosynthesis? Do these 

proteins have equivalent biochemical activities and similar regulatory mechanisms? 

Future research focused on the biochemical regulation of ACS/ACO proteins and the 

components involved in this regulation could further the understanding this 'stress 

induced' hormone-ethylene.

1.3.2 Ethylene signalling pathway

After ethylene synthesis from S-AdoMet, it is perceived by several receptors which

9
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invoke transfer through an intracellular signalling pathway, to trigger specific 

biological responses. Many key components of the ethylene signal transduction 

pathway including the receptors have been identified on the basis of the highly 

reproducible triple response in dark-grown Arabidopsis seedlings. Cloning and 

characterization of these genes are generating a clearer picture of the ethylene signal 

transduction pathway.

1.3.2.1 Ethylene perception

In Arabidopsis, ethylene is perceived by a family of five membrane-localized receptors 

(ETR1, ETR2, ERS1, ERS2, EIN4 proteins) that are homologous to two-component 

histidine kinases from bacteria (Chang et al., 1993, Hua et al., 1995, Hua and 

Meyerowitz, 1998, Hua et al., 1998, Sakai et al., 1998). Among these receptors, ETR1, 

ETR2 and EIN4 proteins have both a putative histidine protein kinase and a receiver 

domain, whereas, ERS1 and ERS2 proteins lack this receiver domain. The receptor 

family can be divided into two groups depending on structural similarities of the 

sensor domain: the ETRl-like subfamily including ETR1 and ERS1 proteins can form a 

membrane-associated, disulfide-linked dimer and contain ethylene-binding sites at 

the N-terminal region (Hall et al., 2000, Schaller et al., 1995); the ETR2-like subfamily, 

consisting of ETR2, EIN4 and ERS2, have four hydrophobic sub-domains at the 

N-terminus and a degenerate histidine kinase domain, which are considered 

necessary for catalytic activity (Hua et al., 1998, Sakai et al., 1998). Loss of function 

mutations in any single ethylene receptor show little or no effect on seedling growth 

in the absence of ethylene and this suggests there is functional overlap within the 

receptor family (Hua and Meyerowitz, 1998). Quadruple mutations (mutation of ETR1, 

ETR2, EIN4 and ERS2 genes) in the receptors show constitutive ethylene responses, 

indicating that these receptors negatively regulate ethylene responses.

10
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1.3.2.2 Ethylene Signalling

Several ethylene mutants were identified through the triple response assay. The C trl 

mutant shows a dwarf phenotype typical of ethylene treated plants, indicating its 

negative role in the ethylene signalling pathway (Kieber et al., 1993). Loss of function 

mutations in E/A/2 gene cause complete ethylene insensitivity for all ethylene 

responses tested throughout plant development, revealing that EIN2 protein is an 

essential positive regulator in the ethylene pathway (Alonso et al., 1999, Roman et al., 

1995). ein3 mutants show a loss of ethylene-mediated response and these can be 

rescued by over-expression of EIN3, EIN3-like (EIL)l or EIL2 gene in this mutant,
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indicating that they all mediate the ethylene response (Chao et al., 1997). These 

findings strongly contribute to our understanding of ethylene signalling downstream 

of reception.

The ethylene signaling pathway is regulated by both positive and negative signal 

components. W ithout ethylene in the air, ethylene receptors activate the kinase 

activity of CTR1 which is identified as a member of the Raf-like ser/thr kinase family 

with similar characteristics to mitogen-activated protein kinase kinase kinase 

(MAPKKK) (Huang et al., 2003, Kyriakis et al., 1992). CTR1 gene is a negative regulator 

that actively suppresses the downstream ethylene response gene, such as EIN2 gene 

which encodes a novel integral membrane protein and the EIN3/EIL transcription 

factors which act downstream of EIN2 in the absence of ethylene. Ethylene binds the 

receptors and makes the CTR1 protein inactive (Alonso et al., 1999, Roman et al.,

1995). Therefore CTR1 protein no longer suppresses the signal pathway and this 

activates EIN2 protein, inducing the signal cascades.

Other experimental data suggest that the basic components and mechanisms of the 

ethylene signal transduction pathway are conserved in most species including 

dicotyledons and monocotyledons, although some differences exist (Klee, 2004). 

Ethylene receptors have been identified in many other plant species, including rice 

[Oryza sativa.), tobacco (Nicotiana tabacum L), cucumber (Cucumis sativus /..), and 

tomato (Solanum lycopersicum) (Klee, 2002, Terajima et al., 2001, Yau et al., 2004). 

The presumed structures of the tomato receptor family are very close to those in 

Arabidopsis and each tomato receptor gene is expressed differently throughout plant 

development stages and in response to different environmental stresses (Klee, 2002). 

LeETRl and LeETR2 genes are constitutively expressed in all tissues of tomato 

throughout the life cycle, but LeETRl gene expression level is 5 times higher than

12
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LeETR2. These two genes didn't show any altered expression in response to external 

stimuli such as ethylene or pathogen infection. NR and LeETR4 genes can be induced 

by pathogen infection. Although many ethylene receptors have been identified in 

various plant species, less information is available for other downstream components 

in the ethylene signalling pathway such as CTR1, EIN2 and EIN3/EILs genes in other 

plant species. There are three CTR1-like genes found in tomato and two genes EIN2, 

EIL identified in maize (Zeo mays) (Adams-Phillips et al., 2004, Gallie and Young, 2004). 

But the components involved in the ethylene signalling pathway are still not clear in 

plant species other than Arabidopsis. Some questions such as whether other species 

share a similar ethylene signalling pathway to that in Arabidopsis and whether 

regulation mechanisms are also conserved in different species still remain to be 

answered.

1.3.3 The Involvement of Ethylene In Various Plant Stress 

Responses

Ethylene is involved in plants response to biotic and abiotic stresses (Wang et al., 

2002) and regulation of ethylene to plant responses could include different aspects, 

for example in the plant resistance to disease, ethylene is involved in regulation of 

symptom development or cell death in pathogen infection, defense gene expression 

and interacting with other signaling such as the jasmonic acid (JA) and salicylic acid 

(SA) signalling pathways (Wang et al., 2002, Ecker, 1995). Abiotic stress-induced 

ethylene production such as high temperature, drought, and ozone can cause growth 

inhibition, and yield loss (Djanaguiraman and Prasad, 2010, Hays et al., 2007, Sharp, 

2002, Zhang et al., 2009). Interactions between ethylene and other hormone signaling 

such as ABA are also important in regulating plant responses to abiotic stresses 

(Sharp et al., 2000, Wilkinson and Davies, 2010, Zhang et al., 2009).

13
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1.3.3.1 Ethylene in biotic stress response

The sensitivity of plants to ethylene is an important variable which impacts on the 

susceptibility of plants to disease and insect (Ecker, 1995, Adie et al., 2007). The 

ethylene-insensitive mutant ein2 of Arabidopsis showed less disease symptoms than 

the wild type when plants were infected by virulent Pseudomomas. syringae pv 

tomato or Xanthomonas campestris pv. campestris (Bent et al., 1992). It is also 

suggested that ethylene can function both in plant-herbivore and plant-plant 

communication, particularly function synergisticly with JA or even SA (Adie et al.,

2007)Further studies show that the ethylene signalling pathway regulates expression 

of a group of pathogen-related {PR) genes which are related to the disease resistance 

by coordinating with the JA pathway. Moreover, variable cross-talk between 

JA/ethylene- and SA-dependent pathways is important in the systemic acquired 

resistance which triggers a long-lasting plant response against subsequent infections 

by pathogens (Ecker, 1995, Ryals et al., 1994).

1.3.3.2 Ethylene and abiotic stress response 

Ethylene, wounding and ozone

It is well known that wounding stimulates biosynthesis of ethylene, through the 

induction of ACS activity (Kende, 1993). The stimulation of ethylene production has 

been shown to potentiate JA action in the wound response by co-regulation of the 

expression of proteinase inhibitor gene (PIN II) which are specific molecular markers 

for wound response with JA (Odonnell et al., 1996). By using ACO antisense 

transgenic lines, as well as inhibitors of ethylene biosynthesis or perception, it was 

demonstrated that induction of PIN II expression required active ethylene signaling in 

wounded tomato plants. However, direct application of ethylene did not induce PIN II 

expression, indicating that synergistic effects between ethylene and JA signaling are
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important in regulating expression of wounding response genes (Odonnell et al.,

1996).

Apart from wounding, ozone rapidly stimulates ethylene biosynthesis (Vahala et al., 

1998, Overmyer et al., 2000). Stimulation of ethylene production preceded 

synthesizes of JA and salicylic acid (SA) which both are involved in ozone response 

(Vahala et al., 1998). In Arabidopsis, ozone exposure stimulated ACS6 activity within 

30 min, and the production of ethylene reached the maximal rate in an hour, and 

then gradually declined (Vahala et al., 1998). Further work on SA and JA pathway 

mutants suggest that ethylene signaling is required for cell death and it acted 

synergistically with SA signal pathway but is antagonized by JA pathway (Wang et al., 

2002).

Ethylene, high temperature and drought

High temperature promoted ethylene production in different plant species, such as 

tomato (Lurie et al., 1996), pepper (Aloni et al., 1995), lettuce (Qin et al., 2007), and 

wheat (Hays et al., 2007). The high temperature induced ethylene can cause different 

problems to the plants, including cause premature leaf senescence in soybean 

(Djanaguiraman and Prasad, 2010), pepper flower abscission (Aloni et al., 1995), and 

kernel abortion in developing wheat grains (Hays et al., 2007). Work on tomato 

suggested high temperature stimulated ethylene production though expression of 

ACC oxidase (Lurie et al., 1996). It is suggested ethylene can enhance oxidative stress 

caused by high temperature by decreasing antioxidant defenses of plants 

(Munne-Bosch et al., 2004). High temperature stress usually is companied by drought 

in the field. However, compared to the effects of high temperature on ethylene 

production, the effect of drought is still under debate (Morgan and Drew, 1997, 

Wilkinson and Davies, 2010).
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Low tissue water potential can increase ethylene production in detached leaves 

(Aharoni et al., 1979, Apelbaum and Yang, 1981, Morgan et al., 1990), but not in 

intact plants (Morgan et al., 1990, Narayana et al., 1991, Eklund et al., 1992). Morgan 

& Drew (1997) concluded that rapid desiccation of detached leaves promoted 

ethylene biosynthesis, while soil drying did not increase ethylene synthesis of intact 

plants. Other factors including increased soil compaction, the reduction of N 

availability, and increased of soil salinity, contribute to an increase in ethylene 

production. Hussain et al. (1999) demonstrated that increases in soil compaction 

promoted ethylene production and decreased leaf expansion rate, but these 

responses were not found in A C O Ias  transgenic plants. Furthermore, by using 

split-pot approaches Sobeih et al. (2004) observed that ethylene production in 

tomato leaves was increased by partial soil drying and this was accompanied by 

reduction in leaf growth of wild type plants. The low-ethylene producing transgenic 

plant A C O Ia s  did not show increased ethylene production or leaf growth reduction in 

response to partial soil drying. Another view proposed by Gomez-Cadenas (1996) 

suggested that soil drying induced root accumulation of the ethylene precursor ACC. 

Re-watering induced a pulse of ACC transport to the shoot and then increased 

ethylene production of shoots. This ethylene peak decreased several hours later after 

re-watering.

As roots are the site of nutrient and water uptake, maintenance and improving of the 

root growth and health, particularly under stress conditions, are critical to maintain 

shoot growth. Several techniques which improve root traits or root behaviors have 

been tested including soil management and genetic work. Usage of a group of plant 

beneficial rhizobacteria (plant growth promoting rhizobacteria-PGPR) is one of 

approaches to improve root growth and health, thus improve shoot growth as it is 

discussed early (Lugtenberg and Kamilova, 2009, Vessey, 2003, van Loon, 2007).
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These beneficial rhizobacteria (with consideration of non-phytopathogenic 

characteristic of strains) offer several benefits to agriculture including a lost cost, low 

environmental impact and suitability for application in agriculture in developing 

societies.

1.4 Introduction of Plant Growth Promoting 
Rhizobacteria

The rhizosphere is the narrow region of soil where intense interactions among plant, 

bacterial, and fungal partners occur (L., 1904). The rhizosphere has up to a 100-fold 

greater population density of bacteria than the bulk soil w ithout plant roots and 

nearly 15% of the root surface may be covered by a number of bacterial species. Plant 

roots secrete exudates such as amino acids and sugars which provide a rich source of 

energy and nutrients to bacteria, leading to greater bacterial populations in the 

rhizosphere (Gray and Smith, 2005, Lugtenberg and Kamilova, 2009). In this area, 

some bacteria associated with plants roots are able to stimulate plants growth by 

different mechanisms and are referred as plant growth promoting rhizobacteria 

(PGPR) (Lugtenberg and Kamilova, 2009, Vessey, 2003, van Loon, 2007, Glick, 1995). 

Some PGPR can promote plant growth indirectly by inducing resistance to pathogens 

or preventing the deleterious effects of one or more phytopathogenic organisms 

which inhibit plant growth and development (Kloepper et al., 1992) . Some PGPR can 

directly promote plant growth by producing compounds such as plant hormones or 

enhancing plant nutrient uptake (Arshad and Frankenberger, 1991, Vessey, 2003, 

Dodd et al., 2010). Sometimes, a single bacterial strain can provide multiple beneficial 

effects to plants.
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One of the widely-studied example of PGPR is the Rhizobium-\egume symbiosis (Gray 

and Smith, 2005). In this model, Rhizobium bacteria attach to plant root hairs and 

secrete a host-specific lipochitooligosaccharide (LCOs) -Nod factor to induce root 

nodule development. Within the nodules, Rhizobium bacteria grow by taking 

carbohydrates from the host and providing fixed nitrogen in return. In nitrogen-poor 

conditions, Rhizobium bacteria can promote legume plant growth by providing this 

important nutrient for amino acid biosynthesis of plants.

Some PGPR can enhance the solubilization of minerals such as phosphorus and iron 

from soil to be taken up by plant roots (Kloepper et al., 1980, Neilands, 1982). PGPR 

such as P. putida and P. oerruginoso can produce and secrete siderophores that are
3+

iron-chelating agents with a high affinity for Fe , and this iron-siderophore complex 

can be taken up by plant roots. Later the iron is released from the siderophore and 

used by the plant tissues (Crowley et al., 1988). At the same time, siderophores also
3+

decrease the Fe levels of the rhizosphere which are crucial for the survival of some 

fungal pathogens like Fusarium oxysporum and Pythium spp..

The production of phytohormones including IAA (indole-3-acetic acid), cytokinin and 

gibberellin or other compounds by bacteria is another common mechanism by which 

PGPR affect plant growth and development (de Salamone et al., 2001, Dodd et al., 

2010, Loper and Schroth, 1986). Studies suggests up to 80% of rhizobacteria can 

produce IAA (Loper and Schroth, 1986). Some Pseudomonos fluorescens strains show 

the ability to promote seedling emergence and increase plant root length by 

producing cytokinins (de Salamone et al., 2001). Bacillus pumilus and B. licheniformis 

produce high levels of gibberellins: Al; A3, A4 and A20 and promote plant stem and 

shoot elongation in Alnus. glutionsa (Gutierrez-Manero et al., 2001, Manero et al., 

1996, Ramos Solano et al., 2008). Rather than exuding phytohormone signals to the
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rhizosphere, a group of PGPR can utilize phytohormones exuded from plant roots and 

indirectly affect plant hormone concentrations.

1.4.1 ACC deaminase containing PGPR

A number of PGPRs contain the enzyme 1-aminocyclopropane-l-carboxylate (ACC) 

deaminase, which can hydrolyse ACC (the immediate precursor of the plant hormone 

ethylene) to ammonia and a -ketobutyrate. These bacteria take up ACC from plant 

root exudates and use ACC as a sole nitrogen source (Jacobson et al., 1994, Glick et al., 

1995). This may lead to a decrease of plant root ACC concentration (Penrose et al., 

2001) and root ethylene evolution (Madhaiyan et al., 2006), and thus increase root 

growth (Glick et al., 1998, Belimov et al., 2001). However, the mechanism of bacterial 

uptake of ACC from plants is still not well understood.

A proposed model of the interaction between ACC-deaminase-containing PGPR and 

plants suggests that bacteria bind to plant seeds or roots in the soil, and synthesize 

and secrete IAA (Glick et al., 1998). In this model, plants take up the IAA produced by 

bacteria and IAA can stimulate activity of the enzyme ACC synthase, and thus increase 

plant ACC production. Bacteria take up ACC exuded from plant seeds or roots and 

thus decrease their internal ACC accumulation. Although many different PGPR 

ACC-deaminase containing strains which belong to different families can promote 

plant growth (Belimov et al., 2009 a, Belimov et al., 2009b, Belimov et al., 2007, 

Belimov et al., 2005, Glick et al., 1995, Madhaiyan et al., 2006), and these bacteria 

decrease ACC concentration in the root (Penrose et al., 2001), xylem sap (Belimov et 

al., 2009 b) and ethylene accumulation in the whole seedlings (Mayak et al., 2004a, 

Mayak et al., 2004b), an essential role of IAA in this model has not yet been directly



Chapter 1 General introduction

demonstrated. For example, Alcaligenes xylosoxidans which contains ACC-deaminase 

but cannot produce IAA in vitro promoted growth of rape seedlings (Belimov et al., 

2001).

PGPRs containing ACC deaminase have been used to maintain or even promote 

growth of plants under different stress conditions, which indicates the potential use 

of PGPR in agricultural practice. Strain Achromobacter piechaudii AVR8 which 

contains ACC deaminase significantly increased the fresh and dry weights of tomato 

seedlings under salt stress (Mayak et al., 2004a). Ethylene overproduction induced by 

salt stress was decreased by inoculation with A. piechaudii. The bacteria did not affect 

the content of sodium and slightly (but significantly) increased the levels of 

phosphorous and potassium in the plant tissues. A similar effect was found with both 

Pseudomonas fluorescens strain TDK1 and P. putida strain UW4, which contain ACC 

deaminase (Saravanakumar and Samiyappan, 2007, Cheng et al., 2007). Both wild 

type strains increased in plant resistance to saline conditions but mutants with lower 

ACC deaminase activity lost their ability to promote plant growth under salinity stress. 

Burkholderia phytofirmans with ACC deaminase activity increase potato and 

grapevine resistance to heat stress or ambient temperature stresses (Barka et al., 

2006, Bensalim et al., 1998). Strains Pseudomonas brassicacearum Am3, and 

Pseudomonas sp. Dp2 with ACC deaminase activity isolated from soil contaminated 

by heavy metals promoted the growth of rape and pea which were cultivated in 

cadmium-supplemented soil (Belimov et al., 2001). One explanation for the beneficial 

effects of PGPR containing ACC deaminase could be suppression of negative effects of 

ethylene accumulation, and thus help plants cope better with different environment 

conditions (Ecker, 1995).

In addition to the stresses mentioned above, PGPR with ACC deaminase activity
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promoted growth of drought treated plants (Mayak et al., 2004b, Belimov et al., 

2009b). A. piechaudii ARV8 with ACC deaminase activity significantly increased the 

biomass o f pepper and also improved the growth recovery when watering resumed 

(Mayak et al., 2004b). Variovorax paradoxus 5C-2 containing ACC deaminase activity 

increased growth of roots and shoots and diminished xylem ACC concentration of pea 

plants exposed to soil drying, indicating root and shoot transport o f ACC is involved in 

5C-2 growth promotion on plants (Belimov et al., 2009b). Although ACC 

deaminase-containing bacteria can regulate ethylene accumulations in young 

seedlings and stimulate plant growth (Mayak et al., 2004a, Mayak et al., 2004b), 

details of the long distance signaling pathways involved in these plant-bacteria 

interactions have not been well described. For example, does the inoculation of 

rhizobateria such as 5C-2 to plant roots regulate ethylene production of mature 

leaves? And whether bacteria inoculation could affect the down-stream signaling 

pathway of ethylene under stress conditions? Could ACC-d containing bacteria be a 

tool to investigate ethylene function in plant response to stresses? Therefore, some 

research works here were designed to investigate these questions and further the 

understanding ACC deaminase containing PGPR and plant signaling interactions.

1.5 Overview of the investigations presented in this 

thesis

Ethylene has been shown to inhibit floral transition in Arabidopsis. As ACC deaminase 

containing rhizobacteria which can reduce ACC concentrations -  ethylene precursor 

in the root and xylem sap was used in this study to test whether rhizobacterial 

inoculation on Arabidopsis can regulate its floral transition, meanwhile growth. 

Although ethylene has been suggested as the key element in regulating plant
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responses to the inoculation of ACC deaminase containing rhizobacteria by using ACC 

deaminase mutant strain or ethylene synthesis /  action inhibitor of plants, ethylene 

insensitive or over-producing mutants were used here to further explore ethylene in 

regulating the interaction between ACC deaminase containing strain V. paradoxus 

5C-2 and Arabidopsis. In second part of this thesis, the growth promotion effect of 

ACC deaminase containing rhizobacteria was tested in wheat as it is an important 

crop in UK. Particularly, stomatal response to soil drying was studied by using ACC 

deaminase containing rhizobateria and ethylene inhibitor 1-MCP as it is suggested 

ethylene is involved in regulating stomatal response to ABA which is a key hormone in 

controlling stomato response to soil drying. General methods including growth 

conditions, ABA and ethylene measurement, and bacterial inoculation were 

introduced in the chapter 2. Certain methods which were only applied in one chapter 

were described in that chapter. The last part of this thesis is general discussion, which 

deals with central themes and places the findings of the investigations into the 

context of a foundation o f work on which to build future investigations
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Chapter 2 -  General Materials & Methods

2.1 Chapter overview

Two model species Arabidopsis thaliana, and wheat [Triticum aestivum) were used as 

plant subjects in this study. A. thaliana in the family Brassicaceae is widely used in the 

plant sciences as a model organism. Mutant collections of A. thaliana allow scientists 

to dissect the function of components in many pathways including hormone signalling 

pathways. To explore rhizobacterial effects on hormone signal regulation, the wild 

type and ethylene-related mutants of A. thaliana were used in this study. Wheat is 

one of the world's major food crops. Ethylene has been shown to be involved in the 

regulation of wheat growth and grain filling (Balota et al., 2004, Yang et al., 2006). 

Here, wheat is used to elucidate the possible regulation by ethylene of the stomatal 

response to water deficit. General information on plant culture, growth conditions, 

physiological measurements, biochemical and molecular assessments is provided in 

this chapter. Information on specific materials and method protocols is included in 

individual experimental chapters.

2.2 Plant propagation and sowing conditions

2.2.1 Arabidopsis thaliana

Different lines of A. thaliana including mutants in the ethylene biosynthesis and 

signalling pathways were used as detailed in chapter 3. In an attempt to avoid any 

surface contamination from microbes, all seeds were surface sterilized before sowing 

in the substrates by rinsing with 70% (v/v) ethanol, followed by 95% (v/v) ethanol for
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lm in . The seeds were first kept at 4 °C for 2 days on wet filter paper (Whatman #1) to 

increase germination rates before sowing on the growth medium. Seeds were sown 

in separate pots (diameter 5 cm, height 6 cm, Richard Sankey & Son Ltd, UK) 

containing a mixture of All Purpose Growth medium (SHL multi-pupose; Sinclair 

Horticulture, UK), horticultural silver sand (Silvaperl; William Sinclair Horticulture, UK), 

vermiculite (LBS Hort, UK) at the ratio 3:1:0.5 (v/v/v). The growth medium was sieved 

and then sterilized by autoclaving (121 °C for 15 minutes). Pots were kept in the 

controlled environment (CE) room with an average temperature of 23 °C ± 2 °C, and 

at 230 ± 20 pmol m'2s 1 photosynthetically active radiation (PAR) during a 16-h 

photoperiod and kept well-watered throughout. The luminaires ( light source) - each 

containing a single 400 W HQI-BT daylight bulb (Osram powerstar; Osram Ltd., 

Langley, UK) were set 2 meters above the bench. Eighteen days after germination, 

nutrient solution (modified Hoagland solution - Table 2.1) was used to fertilize the soil 

(one time only) by watering the plants until drops of water appeared at the bottom of 

pots.

When individuals of seed lines were grown to bulk up additional seeds, the 

components of the Arasystem® which built up a dome cover to contain the seeds 

were applied from the beginning of reproductive shoot growth (ARACON bases and 

tubes; Betatech bvba, Gent, Belgium). When siliques became yellow, the stems were 

cut and then shaken over a plastic gauze to separate the seeds from other plant 

material. Seeds were kept at room temperature for a short term use and at -20 °C for 

long-term use.

24



Chapter 2 General Materials & Methods

Table 2.1 Hoagland's solution

Macro-component Stock Solution Final concentration
kh2po4 1 M 1 mM

k n o 3 1 M 5 mM
Ca(N03)2 1 M 5 mM

Iron (Sprint 138 iron chelate) 15 g/L 22.5 mg/L
MgS04 1 M 2 mM

Minor-component g/L mg/L
h3bo3 2.86 2.86

MnCl2 x 4H20 1.81 1.81
ZnS04 x 7H20 0.22 0.22
CuS04 x 5H20 0.08 0.08
H2M o0 4 x h 2o 0.02 0.02

2.2.2 Triticum aestivum (wheat)

Wheat seeds were surface-sterilized to avoid any microbial contamination. Sodium 

hypochlorite solution at 5% (v/v) was used to sterilize seeds for 15 min, followed by 

10 washes with sterile water. Next, the seeds were soaked in distilled water for 12 

hours to allow imbibition of water. Seeds were carefully moved to wet filter paper 

(Whatman #1) placed on 90 mm petri-dishes. Seeds were pre-germinated on the filter 

paper for 2 days. Then seedlings with similar root length were transferred to pots 

which were filled with a growing substrate comprising a 1:1 (w/w) mixture of a 

loam-based compost (John Innes No. 2, J. Arthur Bowers, Lincoln, UK) and quartz 

sand. Elemental composition of this mixture was (mg kg'1): total carbon (C)-22000; 

total nitrogen (N)-1100, nitrate N-210; available phosphorus (P)-30; available 

potassium (K)-210; pH 6.0 (Belimov et al., 2009 a). Before transfer of the seedlings, 

each pot was irrigated with tap water until drops of water appeared from the bottom 

of pots. The seedlings were gently planted into substrate at a depth of 2 cm. The pots 

with seedlings were covered with black plastic film for two days at 23 °C ± 2 °C to 

retain substrate moisture. When shoots extended 1 cm above the soil surface, each
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pot was moved to a particular growth environment, depending on the particular 

experiment. Three growth facilities were used for the wheat experiments, including

greenhouse, controlled environment (CE) room and Snijder cabinet. The greenhouse

2 1is a naturally lit environment with additional artificial lighting of 200 pmol m" s' 

(Sodium bulb 600 W, Osram powerstar; Osram Ltd., Langley, UK), a 12 h photoperiod 

and minima/maxima temperatures of 15 °C /26 °C. Environmental conditions set for 

the CE room were: average temperature of 23 °C ± 2 °C, 230 ± 20 pmol m'2s 1 

photo-synthetically active radiation and a 12 h photoperiod. Wheat plants used in 

chapter 4 were grown in the glasshouse and then moved to the CE room 1 week 

before measurements started. The conditions in the Snijder cabinet were: 15 °C for 

the dark period and 21 °C for the light period; 250 pmol m'V1 photo-synthetically 

active radiation; 40%-50% humidity and an 8 h photoperiod which allowed 

measurements of leaf length to be taken at the start and end of the photoperiod.

2.3 Rhizobacterial application

2.3.1 Bacterial cultures

Bacteria Variovorax paradoxus (5C-2) were originally isolated from the root zone of 

Indian mustard (Brassica juncea L Czern) variety VIR-3129 cultivated in sewage sludge 

and mining waste (Belimov et al., 2005). Cultures used in this experiment were 

obtained from collections obtained from The All-Russia Research Institute for 

Agricultural Microbiology (ARRIAM), St Petersburg. This strain shows ACC deaminase 

activity in vitro (9.3 ± 0.8 pM alpha-ketobutyrate KB m g 'V 1) and stimulates root 

elongation of B. juncea (variety VIR3129) seedlings on filter paper culture in vitro and 

plant growth in pot trials.
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2.3.2 Bacterial inoculation and enumeration

Three days before plant inoculation, bacterial strains were cultured on solid 

Bacto-Pseudomonas F (BPF) medium (Belimov et al., 2001) at 28 °C. The composition 

of BPF medium included (g I 1) peptone 10, casein hydrolysate 10, K2HP04 1.5, MgS04 

1.5, agar 15. The bacterial solution for plant inoculation was prepared by scraping 

bacteria from the agar plates into tap water. The liquid suspension culture was 

diluted with water to yield 107 cells m l1 as determined by monitoring the optical 

density (OD) at 540 nm (Ultrospec 2100 pro spectrophotometer Amersham company, 

UK). Bacterial suspensions were added to the substrates to reach a final 

concentration of 106 cells g 1 growing substrate.

To assay the population of bacteria on the roots, plant roots were removed from the 

substrates by thorough shaking to remove adhering substrate particles. Both main 

and lateral roots were used for analysis immediately after sampling. Plant samples 

were homogenized in sterile tap water with a sterile mortar and pestle, the 

homogenates serially diluted in 10-fold steps, and 50 pi aliquots plated in duplicate 

on BPF agar supplemented with rifampicin at 20 mg I 1, and Kanamycin at 30 mg I"1 (to 

which 5C-2 shows resistance) and nystatin at 40 mg I 1 (to prevent fungal growth). 

Colony forming units (CFU) were counted by comparing with the morphology of the 

original strain grown on BPF agar after incubation of plates for 4 days at 28 °C.

2.4 Plant physiology and development

2.4.1 Flowering time and whole plant harvest of Arabidopsis

Flowering time of Arabidopsis was determined by two methods, (i) Recording the
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total number o f rosette leaves (excluding cotyledons) plus the number of leaves in 

the inflorescence on the day when the floral stem was 1cm long, (ii) Recording the 

growing days since sowing when the floral stem was 1 cm long. Flower number was 

recorded daily after the first flower opened.

The rosette was harvested at four different time points during the growth period and 

these were variable depending on the genotype. The fresh weight of the rosette was 

determined using an electronic balance (Precisa 125A; Precisa Balances, Switzerland), 

leaf number and leaf area by LI-COR LI-3000A area meter (Model LI-3000A area meter, 

LI-COR inc, Lincoln, USA). Leaf samples were wrapped in aluminium foil immediately 

after measurement and placed in liquid N2 for 10 seconds, and then stored at -80 °C 

for further analysis.

2.4.2 Leaf elongation rate of wheat

To calculate the leaf elongation rate, the leaf length was measured when the 

photoperiod started and 30 minutes before the photoperiod finished using a ruler. 

Leaf length measurements were carried out on Leaf 2 and 3 when they emerged. The 

growth rate was divided into day and night growth rates since under a constant 

temperature, dark growth rate of water stressed plants can be higher.

2.4.3 Stomatal conductance of wheat

Stomatal conductance of both abaxial and adaxial leaf surfaces was determined by a 

diffusion porometer (AP-4, Delta-T Devices Ltd, UK) as described by Wilkinson (2009), 

and mean was calculated. Before each measurement, the ambient humidity was 

measured and the cycling range was set in a range in which the ambient value fell. 

The instrument was allowed to equilibrate with the temperature of the growth room 

or chamber for 20 min before the measurements started. The porometer was
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calibrated using a standard plate for which the water diffusion resistances are known. 

The standard curves were given by plotting the known resistances versus their 

corresponding porometer readings. If the standard error of the measurements was 

less than 10%, the calibration was installed prior to sample measurements. Only fully 

expanded leaves were chosen to assess stomatal conductance and values were 

obtained from similar positions on equivalent leaves.

2.5 Plant tissue hormone analysis

2.5.1 ABA assay

ABA concentrations were determined in plant samples by using a radioimmunoassay 

(RIA). The monoclonal antibody (McAb) used here was kindly provided by Dr Geoff 

Butcher (Babraham Institute). A competitive RIA using the labeled, DL-c/s, trans-[G-3H] 

abscisic acid (Amersham pic, UK), and the antibody AFRC MAC 252 was employed. 

The antibody is specific for (+)-ABA as the free acid and aqueous extracts of wheat 

leaf tissue which showed no evidence of immunoreactive contamination (Quarrie and 

Galfre, 1985, Quarrie et al., 1988). Consequently, aqueous extracts were prepared 

w ithout any purification. The cross-reactivities of this antibody are listed in Table 2.2. 

The protocol used in this study was developed by Quarrie et al. (1988). The details of 

the different steps in the assay are listed in the following section. The tritium  label 

remaining in the samples was counted in a scintillation counter (Liquid Scintillation 

Analyser 1600-TR, Packard).

Different concentrations of standard ABA were prepared by using synthetic unlabeled 

(±)-c/s, trons-ABA (Sigma Let., UK). A standard curve of counts recovered versus 

unlabeled ABA added was produced with each batch of samples. ABA concentration
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from samples was calculated by reference to this standard curve after linearization 

using the "logit" transformation, where the logit transformation of a variable B is 

given by

Logit B =  In
(  B—Bmin  \  
\B m a x -B m in ) ,

B -B m in  \  
. Bm a x-B m inJ

to give a straight line

Correlation coefficients (r2> 0.99) were considered acceptable. If r2 values were lower 

than this standard curve, samples were re-run.

ABA extraction

Plant leaves for ABA determination were kept at -20 °C until required. Tissue samples 

of around 50 mg fresh weight were freeze-dried in 1.5 ml Eppendorf tubes for 48 h 

before ABA extraction. Leaf tissue was cut to powder using fine scissors in the tubes. 

The Eppendorf tube was weighed before any tissue was put in and after the tissues 

were cut to powder, with the difference considered as the dry weight of the tissues. 

Milli-Q. level water was added to the tube at a ratio of 1:25 (dry weight:water). All 

tubes with samples were placed on a shaker in a dark cold room (<10 °C) overnight to 

extract ABA from tissue samples. After shaking, tubes were centrifuged for 5min at 

12000 rpm and supernatant was transferred to a new 1.5 ml Eppendorf tube. The 

supernatant can be stored at -20 °C until required for the radioimmunoassay.
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Table 2.2 Specificity of the monoclonal antibody AFRC Mac 62 for (S)-2-cis-abscisic acid (Quarrie et al., 

1988, Walker-Simmons et al., 1991). Mac252 showed similar specificity as Mac 62 (Borel et al., 1997)

Compound Percentage cross-reaction

(S)-2-cis-abscisic acid 100

(S)-2-trans-abscisic acid 0.9

(RS)-2-cis-abscisic acid 51

(S)-2-cis-abscisic acid methyl ester 0.4

(S)-2-cis-abscisic acid glucose ester 0.1

Phaseic acid 0.1

Dihydrophaseic acid 0.1

Xanthoxin 0.1

Abscisic alcohol 0.002

Abscisic aldehyde 0.2

ABA Immunoassay

This method is based on a method previously described by Quarrie et al. (1988). 200 

pi of 50% (v/v) phosphate buffer saline (PBS) (50 mM Na2HP04  and 100 mM NaCI, 

adjusted to pH 6.0) was added to each 2 ml tube supported in a foam rack. Fifty pi of 

sample solution, or standard solution of known ABA concentration (ranging from 

0-2000 pg ABA per 50 pi) was added to the PBS. Then 100 pi tritiated ABA dissolved in 

buffer mixture (5.0 mg/ml globulin dissolved in PBS) and 100 pi MAC 252 dissolved in 

buffer mixture (5.0 mg/ml bovine serum albumin and 4.0 mg/ml polyvinylpyrrolidone 

dissolved in PBS) were added. Tubes were capped and mixed by gentle vortexing 

whilst in the foam rack and placed in the fridge for 45 min, after which samples were 

centrifuged for 1 min. Saturated ammonium sulphate solution was added to the 

samples prior to incubation in the dark at room temperature for 30 min to precipitate 

the ABA-antibody complex. After incubation, samples were centrifuged at 8000 g for 

5 min to pellet the precipitate and the supernatant removed. Pellets were washed 

with 1 ml 50% ammonium sulphate to remove excess unbound radioactivity. Tubes
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were centrifuged for 5 min at 8000 g to drain the excess liquid from the sample. To 

dissolve the pellet, 100 pi dd water was added, followed by vortexing. Scintillant 

cocktail (1.4 ml - Ecoscint H, National Diagnostic, NJ, USA) was added and then each 

tube was thoroughly vortexed, individually. After that, each tube was placed in a 20 

ml clean glass scintillation vials in a counting rack and samples were counted 

overnight (6 min per sample) in a scintillation counter (Liquid Scintillation Analyser 

1600-TR, Packard). Data were presented as cpm (counts per minute) and the 

concentration of ABA was calculated from a calibration curve by interpolation.

2.5.2 ACC assay

A gas chromatography-mass spectrometry (GC-MS) method was used to detect ACC 

extracted from mature leaves. Although a GC method for ACC quantification based on 

the oxidative conversion of the extracted ACC to ethylene has been widely used in the 

past th irty  years, it shows low accuracy (Coleman and Hodges, 1991). Penrose et al. 

(2001) developed the WatersACCQ-Tag amino acid method to quantify ACC from 

roots of canola seedlings, but no internal reference can be included in the assay. 

Furthermore, Penrose et al. (2001) detected that ACC degraded during the time of 

sample preparation. Although the amount of ACC can be quantified by using an 

external ACC standard curve, the linearity of standard curve is between 1 and 25 

pmol. More effort is then required to determine the ACC range in different samples. 

The GC-MS method developed by Smets et al (2003) overcomes these weaknesses. 

Pentafluorobenzyl bromide (PFBBr) used in this method allows sensitive detection of 

ACC by using GC-MS in negative chemical ionization mode. Therefore, the method 

used here was based on Smets et al. (2003).

Methanol (80% v/v) was used to extract ACC from plant tissues (100-150 mg) 

overnight at -20 °C. Fifteen ng [2H4] ACC was added as an internal standard
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(Olchemim, Olomouc, Czech Republic) with methanol. The following procedures were 

modified from Dodd et al. (2009b) and Smets et al. (2003). After centrifugation (2000 

rpm, 15 min, 4 °C), the supernatant was transferred to a Ci8cartridge (DSC-18 100 mg, 

Sigma). The elution was dried to an aqueous phase and the pH was adjusted to 2 by 

adding 0.01 M HCI. Then the samples were purified by a strong cation-exchange resin 

(Extract Clean SCX 200 mg/ml, Grace Davison Discovery Sciences, Lokeren, Belgium). 

After sample loading, the cartridges were rinsed with 3 ml o f water: methanol (1:8 

v/v). Next, 4 M ammonium hydroxide (750 pi) was used to elute ACC from the 

cartridge. The eluent was dried by a stream of nitrogen and kept at -20 °C. Samples 

were dried carefully as any residual moisture in the samples will strongly affect 

derivatisation in the following steps.

The samples were derivatised by the method described by Smets et al. (2003) and 

Dodd et al. (2009b). Aqueous MeOH (80% v/v) was used to transfer samples to 

brown-glass vials for derivatisation. The samples were dried under nitrogen, and 

dissolved in 60 pi acetone. 2 pi of 1-ethylpiperidine and 10 pi of 

bromopentaflurotoluene were added to the vials and vials were incubated at 60 °C 

for 45 min. Samples were then purified by liquid-liquid extraction (ethyl 

acetate-water). The ethyl acetate fraction was dried by nitrogen and then 

re-suspended in 30 pi methanol for injection onto the GC-MS. In this experiment, 

ACC-b/s-pentafluorobenzyl samples were injected by auto-injection onto a gas 

chromatograph connected to a mass spectrometer (6890N GC and 5975 Inert MSD, 

Agilent Technologies, UK).

2.5.3 Ethylene assay

In this study, the gas chromatograph (GC) was used to measure ethylene emission 

from plant leaves (Wilkinson and Davies, 2009). Mature leaves were removed from
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plants, immediately weighed, and then placed in glass vials (of different volumes 

depending on the size of leaves) containing water saturated filter paper. The vials

were flushed for 1 min with fresh air from outside the laboratory and then

immediately capped with rubber septum lids. Samples were incubated for 60 min 

under illumination providing 100 pmol PPFD m’V1. Gas from the vial headspace was 

extracted (1 ml) with a disposable plastic syringe and manually injected into a gas 

chromatograph (6890N, Agilent Technologies UK Ltd, Wokingham, UK) fitted with a 

J8tW HP-AL/S (50 m x 0.537 mm x 15.0 mm) column (HiChrom Ltd, Reading, UK). 

The temperature was maintained at 100 °C for 5 min to resolve ethylene and then 

increased at 15 °C min'1 to 150 °C and held for 1.5 min to remove the water vapour 

introduced into the column by sample injection. The helium carrier gas was set at a 

flow rate of 5.7 ml m in 1 and detection was by flame ionization. Ethylene

concentration was calculated with reference to peak areas of known ethylene

standards (BOC Special Gases, Manchester, UK) and corrected for tissue fresh weight 

and the time of incubation to determine ethylene emission rate.

There are some disadvantages in using detached leaves for ethylene quantification 

because of ethylene production from wounding. Leaves were incubated for only 60 

min to minimize the production of wound-induced ethylene (Geballe and Galston, 

1982). ACC measurement was included in this study to complement ethylene data.

2.6 RNA manipulation

2.6.1 RNA extraction

Plant tissue samples required for RNA extraction were frozen in liquid nitrogen and

stored at -80 °C until extraction. Frozen tissue samples were ground to a fine powder
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in liquid nitrogen using a mortar and pestle. In this step, it is important to keep 

samples frozen by adding additional liquid nitrogen. Total RNA was extracted from 

approximately 100 mg tissue using the TRIzol reagent from Invitrogen (15596-026), 

following the manufacturer's instructions. TRIzol reagent contains a mono-phasic 

solution of phenol and guanidine isothiocyanate and it can separate RNA and DNA 

into two different phases by working with chloroform, thus avoiding contamination of 

RNA with DNA. All the material including gloves and plasticware were RNase-free.

The method for using TRIzol reagent includes three major steps: homogenization, 

phase separation, and RNA precipitation. The ground material of lOOmg plant tissues 

was transferred to 1.5 ml centrifuge tubes. One ml TRIZOL was added to the samples 

and mixed by vortexing for homogenization. Samples with TRIZOL were incubated at 

room temperature for 5-10 min to allow the complete dissociation of nucleoprotein 

complexes. Next, 0.2 ml of chloroform per 1 ml of TRIZOL reagent was added to the 

supernatant and tubes were vigorously shaken by hand for 15 seconds. After 

centrifugation in a bench top centrifuge at 7,500 x g for 15 minutes at 2 to 8 °C, the 

upper aqueous phase which is colorless was transferred to a clean 1.5 ml tube. 

Isopropyl alcohol was added to the fresh tube with the aqueous phase with a ratio of 

0.5 ml per 1 ml o f TRIZOL reagent used for the initial homogenization. Then samples 

were incubated at 15 to 30 °C for 10 minutes and centrifugation was carried out at 

12,000 x g for 10 minutes at 2 to 8 °C. After centrifugation, RNA pellets were 

precipitated on the bottom of tubes. RNA was re-precipitated and re-pelleted by the 

addition of 1 ml 75% (v/v) cold ethanol, followed by centrifugation in a 

micro-centrifuge at 7,500 x g for 5 minutes at 2 to 8 °C. Pellets were drained and left 

to dry on the bench for around 30 min, after which pellets were re-suspended in 

RNase-free water (500 mg material with 40 pi water) by passing the solution a few 

times through a pipette tip, and then were incubated for 10 minutes at 55 to 60 °C.
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2.6.2 RNA quantification and agarose gel assay

RNA was diluted 25-50 times using RNase-free TE (10 mM Tris, 1 mM EDTA, pH 8.0) 

buffer and quantified using a spectrophotometer (Ultrospec 2100 pro, Amersham 

company, UK) and UV microcuvettes (Life Science Products). Absorbance at 260 nm 

was recorded to calculate the RNA concentration.

RNA from samples was loaded onto a 1.2% (w/v) agarose gel (Sigma) which was made 

by heating agarose in a microwave with 1 x TAE buffer (40 mM Tris acetate and 12 

mM EDTA, pH 8.0) and then cooled down and allowed to set in a gel casting tray for 

analysis. Ethidium bromide was added to the agarose gel before it was cooled down. 

The gel was submerged in an electrophoresis tank (Bio-Rad) filled by 1 x TAE buffer. 

Purified RNA (1 pi comprising 1-5 pg) was loaded to each well of the agarose gel with 

RNase-free loading buffer (50% (v/v) glycerol and 0.01% (w/v) Bromophenol Blue in 

RNase-free water. All chemicals were from Sigma). Electrophoresis was performed at 

90 V for 30 min. RNA was visualized by exposure on a UV transilluminator and gel 

images were obtained using a Biodoc-IT™ Gel Documentation System (UVP).

2.7 Gene expression analysis by Reverse transcription 
PCR (RT-PCR)

RT-PCR allows semi-quantitative determination of changes in mRNA abundance in 

parallel samples. It includes two step, cDNA synthesis and cDNA polymerase chain 

reaction (PCR). RNA (2.5 pg) was used for the first reverse transcription (RT) from 

each sample and mixed with Oligo dTi5 (MWG Biotech, Germany) 1 pg. The mixture 

was kept at 70 °C for 5 min, and then cooled on ice for 2 min. After cooling, M-MLV 

reverse transcriptase 200U (M170A Promega UK), dNTPs 1.25 pi at 10 mM
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concentration (U151A Promega UK) and recombinant RNasin Ribonuclease inhibitor 

25U (N2511 Promega UK) were added into the RNA mixture. Samples were briefly 

centrifuged and incubated at 37 °C for 1 h.

PCR was carried out using a thermocycler (Mastercycler gradient, Eppendorf company, 

UK) according to the manufacturer's instructions. Subsequently, 2 pi cDNA was used 

for the polymerase chain reactions (PCR) with pairs of gene sequence-specific primers. 

Each 25 pi PCR reaction contained 50 ng forward and reverse primer and 20 pi PCR 

ready mix (1.1* Reddy Mix from ABgene) which includes Taq DNA polymerase and 

dNTPs. A control gene such as Actin was used to ensure equivalent amounts of cDNA 

from different samples (Testa et al., 2002) . Amplification proceeded as described in 

Table 2.3. For each sample and gene of interest, triplicate PCR reactions were 

performed. 1-1.2% (v/v) agarose gel dissolved in 1 x TAE buffer (described above) was 

made for electrophoresis. DNA marker lOObp and lkb  (New England BioLabs, UK) was 

used to determine the size of PCR product.

Table 2.3 PCR parameters

Step Time Temperature °C Number of cycles
Initial denaturing 3 minutes 94 1

Denaturing 45 seconds 94 30
Annealing 45 seconds 50-55
Extension 1 minute 72

Final Extension 5 minutes 72 1
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Chapter3 -  ACC deaminase containing 
rhizobacteria promote growth and development 

of Arabidopsis via an ethylene-dependent 
pathway

3.1 Introduction

The triple response of dark-grown seedlings is a classic example illustrating that 

ethylene inhibits plant growth by reducing hypocotyl elongation and root growth 

(Guzman and Ecker, 1990). Application of ethylene or its precursor ACC or the 

ethylene-releasing chemical ethephon (which both can be converted to ethylene by 

plants) reduced leaf expansion and shoot growth (Lee and Reid, 1997, Pierik et al., 

2006). Treatment with ethephon and ACC reduced area o f primary leaves of 

sunflower in a dose-dependent manner (Lee and Reid, 1997). Leaf growth inhibition 

caused by ACC and ethephon were reversed by pre-treating the plants with silver 

thiosulphate, an inhibitor of ethylene action. Pierik (2006) summarized exogenous 

ethylene dose-response relationships in different plant species and tissues. Cucumber 

root elongation showed a near linear reduction with increasing ethylene 

concentration. Low levels of ethylene showed a small stimulatory effect on the 

growth of Arabidopsis hypocotyls and wheat coleoptiles, and then with an increase of 

ethylene concentration, both tissues showed a reduction of growth. Similar response 

was also observed in slow-growing Poa alpine and Poa compressa in terms of leaf 

growth (Fiorani et al., 2002). In addition to plant growth regulation, A delay of floral 

transition time was observed in Arabidopsis by using exogenous ethylene treatment 

and assessments of ctrl-1  mutants in which the ethylene pathway is constantly 

stimulated (Achard et al., 2007). GA treatment restored floral transition which was 

inhibited in ctrl-1  mutants or was inhibited in wild type by ethylene. Further evidence
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suggested that ethylene regulated plant floral transition via DELLA proteins which 

belong to a family o f nuclear growth repressor proteins mediated pathway.

However, most studies addressed ethylene function in plants by using exogenous 

ethylene gas, the ethylene-releasing chemical ethephon, or the ethylene precursor 

ACC to treat plants. Alternatively, ethylene biosynthesis inhibitors or ethylene 

antagonists or ethylene insensitive mutants were used to investigate ethylene 

function during plant growth and development. However these approaches only 

allow elucidation of 'on' and 'o f f  effects of ethylene rather than dose related effects. 

In contrast to these studies, only a few studies have looked at regulation of 

endogenous ethylene and its influence on developmental processes. McDonnell et al. 

(2009) demonstrated that the Arabidopsis genome contains genes which are bacterial 

ACC deaminase-like. Down-regulating one of the ACC deaminase-like genes in plants 

caused significantly more ethylene production. Bacterial ACC-deaminase has been 

transformed into plants such as tomato and canola to control ethylene responsive 

phenotypes (Biswas et al., 2008, Lopes and Reynolds, 2010). ACC deaminase gene 

driven by constitutive promoter 35S was expressed in tomato and a significant 

reduced ethylene production in leaves and fru it was observed in transgenic plants 

together with significant delays in ripening (Klee et al., 1991). Canola with root 

over-expressed ACC deaminase showed improved tolerance to nickel stresses 

(Stearns et al., 2005). Compared to transgenic approaches, soil inoculation of bacteria 

containing ACC deaminase offers another way to explore ethylene function by 

regulating endogenous ethylene.

A group of PGPR which contain the enzyme ACC deaminase can decrease the ACC 

concentration in the root (Penrose et al., 2001) and mitigate ethylene's inhibitory 

effects on the shoot (Belimov et al., 2009b, Belimov et al., 2005, Glick, 2005, Glick et
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al.# 1998). Inoculation of ACCd containing bacteria decreased ACC levels in the xylem 

sap (Belimov et al., 2009 b) and decreased ethylene production of plant roots 

(Madhaiyan et al., 2006, Mayak et al., 2004a, Mayak et al., 2004b, Penrose et al., 

2001). Ethylene biosynthesis or perception inhibitors were used to determine 

whether the growth promoting effects of bacteria were ethylene mediated and 

results showed similar effects as bacterial inoculation (Belimov et al., 2002, Belimov 

et al., 2009 b). An ACC deaminase minus mutants of Variovorax paradoxus 5C-2 did 

not show any distinct growth promoting effects on pea in contrast to the wild-type 

strain (Belimov et al., 2009 b). Except the usage of ACCd mutant strain, only a few 

studies have examined the linkage between effects of bacterial growth promotion to 

ethylene, particularly effects of bacterial inoculation on the ethylene production of 

mature shoots tissues or on the ethylene signalling pathway of plants. Lopez-Bucio J 

et al. (2007) used ethylene or auxin signalling defective mutants to investigate effects 

of PGPR strain B. megaterium on auxin or ethylene signalling transductions which 

could be the explanations of altered root architecture of bacterial inoculated 

Arabidopsis. Following this idea, ethylene insensitive mutants were used here to 

explore whether V.paradoxus 5C-2 mediate plant growth via an ethylene-dependent 

pathway.

Two ethylene insensitive Arabidopsis mutants were used in this study including etrl-1 , 

and ein2-l. As discussed in chapterl, the stimulated ethylene signal pathway includes 

EIN2 protein activation and the accumulation of EIN3 or EIN3-like proteins (Roman et 

al., 1995, An et al., 2010) (Figure 1.2.). Studies on EIN2 protein which mediates the 

step downstream of CTR1 protein and upstream of EIN3 protein suggests EIN2 

encodes a novel integral membrane protein which is similar in its amino acid 

sequence to the members of a family of disease-related metal-ion transporters like 

the natural resistance-associated macrophage protein (Nramp) (Alonso et al., 1999,
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Roman et al., 1995). EIN3 and the EIN3-like (EIL) proteins belong to a family of 

transcription factors, which act downstream of EIN2 protein (Roman et al., 1995). 

E/A/3 gene expression is not induced by ethylene but EIN3 protein is constantly 

degraded through via the proteasome-mediated degradation pathway if EIN2 protein 

is not active (Guo and Ecker, 2003, Chao et al., 1997). However, EIL1 gene expression 

is negatively regulated by ethylene application (Van Zhong and Burns, 2003, De Paepe 

et al., 2004). EIN3 and EIN3-like proteins can stimulate the transcription of 

transcription factor ETHYLENE-RESPONSE-FACTOR1 (ERF1), a member of AP2-like 

DNA binding transcription factors family, referred to as ethylene-response-element 

binding proteins (EREBPs) (Chao et al., 1997, Solano et al., 1998), and then induce 

certain gene expressions. EBP (ethylene-responsive element binding protein) gene 

encodes a member of the ERF (ethylene response factor) subfamily B-2 and 

transgenic studies suggests it is downstream of E/A/2, but not under E/A/3 (Buttner and 

Singh, 1997). EBP can be up-regulated by ethylene application (Buttner and Singh, 

1997, Van Zhong and Burns, 2003).

The rhizobacterium V. paradoxus strain 5C-2 (Belimov et al., 2005) was used in this 

study since it contains high levels of ACC deaminase in vitro, and can use ACC as its 

sole nitrogen or carbon source. It stimulates growth of different species under 

different conditions such as root growth of Indian mustard (Brassica juncea), 

especially under high cadmium conditions (Belimov et al., 2005); root and shoot 

growth of pea plants in a pot experiment (Belimov et al., 2009 b) and field trial under 

drought conditions (Teijeiro unpublished data 2009b); and weight of potato tubers 

of plants growing under drought conditions (Belimov et al., 2009 a). However, the 

impact of V. paradoxus 5C-2 on Arabidopsis have not been examined, particularly the 

effects of bacteria on development.
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This study aims to investigate the impacts of V. paradoxus 5C-2 on the growth and 

development of Arabidopsis to further understand the signaling pathways in plant 

and bacterial interactions by exploiting the genetic resources available in Arabidopsis. 

A series of ethylene related mutants were used to explore the ethylene signaling 

pathway in regulating effects of V. paradoxus SC-2 on growth and development. The 

ACC concentrations and ethylene accumulation of mature leaves were assessed to 

determine whether rhizobacterial root inoculation of growing substrate affects 

long-distance ethylene signalling. Furthermore, expression of ethylene responsive 

genes was examined to study the down-stream signaling response of ethylene in the 

mature leaf. Two ethylene responsive genes (EIL1 and EBP) were selected to 

determine ethylene response under bacterial inoculation since EIL1 gene expression 

is negatively regulated by ethylene while EBP gene expression is positively regulated 

by ethylene. It is hypothesized here that V. paradoxus 5C-2 stimulated plant growth 

via an ethylene-dependent mechanism, thus ethylene insensitive mutants should 

how no growth stimulation in response to inoculation.

3.2 Materials and Methods

Seed lines and bacterial inoculation

Lines used in this study were Arabidopsis thaliana Columbia (Col) wild-type, the 

ethylene insensitive mutants etrl-1 , ein2-l, and the ethylene over-producing mutant 

etol-1  (Bleecker et al., 1988, Guzman and Ecker, 1990, Roman et al., 1995). All 

mutant lines were derived from parental A. thaliana Columbia, e trl-1  and ein2-l 

were kindly given by Dr Mike Roberts (Lancaster environment center, Lancaster 

University, UK) and etol-1  mutant was obtained from NASC (European Arabidopsis 

Stock Centre ) stock center. Surface sterilized seeds were kept at 4 °C for 2 days and 

then sown on top of the growth medium (All Purpose Growth medium- Sinclair Hort
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Products, UK- mixed with sand and vermiculite at ratio of 3:1:0.5 v/v/v ). Details of 

growth conditions were given in chapter 2.

Bacterial strains grown on BPF medium were used for liquid suspension preparation. 

Liquid suspension was applied to the plant growth medium by thoroughly mixing

prior to filling the pots. The final bacterial concentration in the growth medium was

6 110 cells g" compost. Arabidopsis seeds were planted (4 seeds per pot) on the surface 

of the soil. Seventy pots were used for each genotype, with half used as a control, and 

half irrigated with bacterial suspension. Thirty five plants were kept in a tray with the 

propagator lid with the vent open. Thirty plants were used to determine the response 

of flowering and growth, while five plants were used to enumerate bacterial 

colonization o f the root system. Ten days after planting (DAP) the seeds, seedlings 

were thinned to one seedling per pot.

Physiological and biochemical measurement

To determine the fresh weight of the rosette, leaf number and leaf area, plants were 

harvested at four points during the growth period: 15 days after planting (DAP), 17 

DAP, 21 DAP, 29 DAP for wild type and 33 DAP for etrl-1  or 35 DAP for ein2-l.

To determine ethylene production, mature leaves (around 0.5 g) from wild type 

plants and the eto l-1  mutant at a stage 1 or 2 days before bolting were taken and 

placed in 7.8 ml glass vials to incubate for 1 hour. Leaf samples for ACC measurement 

were also collected 1 or 2 days before bolting.

Analysis o f gene expression by reverse transcription PCR

Rosette leaves of Arabidopsis which are 1 or 2 days before bolting were collected and 

frozen in liquid nitrogen. Samples were stored at -80 °C until analysis.
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Primers used in RT-PCR 

EIL1 (AT2G27050):

Forward 5'-CGGCGAAAGAGAGTGCTACTT-3'

Reverse 5'-TCCTTCCATTGCTCCGGTTTG-3'

Size of DNA: 851bp 

EBP (AT3G16770):

Forward 5'-TT ATTT CCG ATT AT G CC-3'

Reverse 5'-CGTACCAAGCCAAACTCTAAC-3'

Size of DNA: 543bp 

Actin2 (AT5G09810):

Forward S'- GGCCGATGGTGAGGATATTC-3'

Reverse 5'- CCGCAAGATCAAGACGAAGGA-3'

Size of DNA: 548bp

Statistics

Pairwise comparisons used Student's t-tests and standard error (SE) in SigmaPlot for 

Windows Version 7.0 (Jandel Scientific, Erkrath, Germany). Two way analysis of 

variance (ANOVA) was performed to determine effects of rhizobacteria, genotype and 

their interactions with SPSS version 19 (SPSS Inc, Chicago, USA).

3.3 Results

Flowering time of Arabidopsis was assessed by determining the number of growing 

days since sowing and the rosette leaf number when the plant stem extended to 1cm. 

Wild type plants (Columbia genotype) inoculated with V. paradoxus 5C-2 flowered
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significantly earlier than control plants (P<0.01; Figure 3.1). However, ethylene 

insensitive mutants e trl-1 , and ein2-l which were inoculated with V. paradoxus only 

showed a small but not statistically significant (P>0.1; Figure 3.1) increase in flowering 

days. Inoculation with V. paradoxus significantly (P<0.01) decreased the number of 

rosette leaves at flowering (Figure 3.2) but this effect was not found in the ethylene 

insensitive mutants etrl-1  and ein2-l (P>0.1; Figure 3.2). However, effects of V. 

paradoxus inoculation on cauline leaf number of wild type and ethylene insensitive 

mutants were not significant (P<0.1; Figure 3.2).

Inoculation o f V. paradoxus significantly (P<0.01) increased fresh biomass of wild type 

plants throughout development (Figure 3.3). The total fresh biomass (% of control) in 

different genotypes which were inoculated with or w ithout V. paradoxus 5C-2 was 

analyzed by means of a two-way ANOVA. The effects of bacterial inoculation and 

genotype were significant (both P<0.001), as was the interaction (P<0.001; Figure 3.4). 

The significant interaction term indicates that bacterial inoculation significantly 

(P<0.01, T-test) stimulated growth of wild type plant but not etrl-1  and ein2-l 

mutants (Figure 3.4). Similarly, bacterial inoculation and genotype significantly 

affected leaf area (P<0.05 and P<0.001 respectively) and, there was a significant 

interaction between genotypes and bacterial inoculation (P<0.001; Figure 3.5). Again, 

leaf area of wild type plants was significantly (P<0.01) increased by inoculation of V. 

paradoxus but there was no promotion effect on etrl-1  and ein2-l mutants (Figure 

3.5).

V. paradoxus inoculation also significantly (P<0.01; Figure 3.6) increased growth of 

the ethylene over-producing mutant etol-1. At the end of the experiment, the 

introduced strain 5C-2 was detected on roots of both wild type plants and ethylene 

mutant e trl-1  and ein2-l (Figure 3.7), but there was no significant genotypic effect.
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However, as not enough root tissues were obtained to analysis bacterial numbers. 

Bacterial numbers were not determined in the etol-1  plants.

The inoculation with the 5C-2 strain (P<0.05) significantly decreased ACC 

concentrations (Figure 3.8) in rosette leaves of mature wild type plants. Furthermore, 

bacterial inoculation significantly decreased (P<0.01) ethylene emission from the 

rosette leaves o f mature wild type and etol-1  mutants. Ethylene emission of both 

genotypes responded similarly to inoculation, as indicated by the showed significant 

effects on ethylene emission (P<0.01), while the interaction of genotype x inoculation 

is non-significant (P>0.05; Figure 3.9).

ACTIN2 (AT5G09810) was selected as a baseline control in all subsequent RT-PCR 

assays. In this experiment, ethylene response genes EBP and EIL1 were selected to 

test the molecular response of Arabidopsis to bacterial inoculation. Fully expanded 

leaves from four independent experiments were sampled for gene expression and 

only two of these showed different expression patterns between bacterial treatment 

and control. In these batches, bacterial inoculation down-regulated EBP expression in 

wild type and eto l-1  plants but up-regulated EIL1 expression in rosette leaves of wild 

type plants (Figure 3.10).
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Figure 3.1. Percentage decrease in flowering date of V. paradoxus 5C-2 treated 
wild type, etrl-1  and ein2-l plants. Control plants are 0 compared to inoculated 
plants. The flowering time was recorded in days after sowing when the floral 
stem was extended to 1cm. Bars were indicated as mean ± standard error (SE) (n 
= 30).
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Figure 3.2. The percentage increase or decrease in the leaf number (rosette or 
cauline leaf) from the V. paradoxus 5C-2 treated wild type, etrl-1  and ein2-l 
plants. Control plants are 0 compared to inoculated plants. Leaf numbers were 
recorded when floral stem was extended to 1cm. Bars indicates as mean ± SE (n 
= 30).
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Figure3.3. Fresh biomass accumulation of wild type plants which were harvested 
at 17 days, 22 days, and 33 days after planting in response to V. paradoxus 5C-2 
inoculation. Bars indicates as mean ± SE (n=25-30). Asterisks indicate significant 
difference at P<0.01.
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Figure 3.4. Fresh biomass accumulation (% of control plants) of wild type plants 
and ethylene mutants (e trl-1 , ein2-l) in response to V. paradoxus 5C-2 
inoculation. Wild type plants were harvested at 29 DAP, while etrl-1  and ein2-l 
were harvested at corresponding development stage - 33 DAP and 35 DAP 
respectively. Bars indicates as mean ± SE. Asterisks indicate significant pair wise 
difference between treatments within lines (** P<0.01). P values are shown for 
two-way ANOVA for bacterial treatment (5C-2), genotypes (Genotype) and 

interaction (int).
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Figure 3.5. Leaf area (% of control plants) of wild type and ethylene mutants 
[e trl-1 , ein2-l) in response to V. paradoxus 5C-2 inoculation. Wild type plants 
were harvested at 29 DAP, while e trl-1  and ein2-l were harvested at the 
corresponding development stage - 33 DAP and 35 DAP respectively. Bars 
indicates as mean ± SE. Asterisks indicate significant pair-wise difference 
between treatments within lines (* P<0.05, **  P<0.01). P values are shown for 
two-way ANOVA for bacterial treatment (5C-2), genotypes (Genotype) and 

interaction (int).
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Figure 3.6. Leaf area (2 left columns) and fresh biomass (2 right columns) 
accumulation of ethylene mutant etol-1  in response to 5C-2 inoculation, etol-1  
was harvested at 28 DAP. Bars indicates as mean ± SE (n=25-30). Asterisks 
indicate significant difference between treatments (P<0.01)
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Figure 3.7. The number of bacteria isolated from the root of inoculated wild 
type, etrl-1  and ein2-l plants. Plant roots were harvested after above-ground 
tissues were harvest to detect the number of bacteria V. paradoxus 5C-2. Bars 
indicates as mean ± SE (n=4). One way ANOVA showed no effect of genotype on 
root colonization.
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Figure 3.8. ACC concentration in fully expanded leaves of plants (Col-O) 
inoculated with V. paradoxus 5C-2 or not. Plant leaves were harvested 1 or 2 
days before bolting. Bars indicate as mean ± SE (n=8-10). Asterisks indicate 
significant difference (P<0.05)
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Figure 3.9. Ethylene emission from fully expanded leaves of plants (Col-0 and 
eto l-1) inoculated with V. paradoxus 5C-2 or not. Plant leaves were harvested 1 
or 2 days before bolting. Bars indicates as mean ± SE (n=10-12). Asterisks 
indicate significant difference (P<0.05) between rhizobacterial treatments. P 
values are shown for two-way ANOVA for bacterial treatment (5C-2), genotypes 

(Genotype) and interaction (int).
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Ctrl 5C2
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Figure 3.10. RT-PCR shows expressions of ethylene response gene. 
Expressions of EBP and EIL1 by RT-PCR in control (Ctrl) and bacteria 
5C-2 treated plants. Leaf samples of wild type and etol-1  mutants 
were tested. Size of DNA bands: EIL 851bp, EBP 543bp, and ACTIN 
548bp.
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3.4 Discussion

Plant growth promoting rhizobacteria can trigger developmental changes in the host 

plant via multiple mechanisms as discussed in the introduction. The responses of 

plants to PGPRs usually involve several hormone or hormone-related signalling 

pathways (de Salamone et al., 2001). The work presented here showed that 

Variovorax paradoxus 5C-2 regulated endogenous ethylene production from plants, 

thereby influencing plant biomass accumulation and the development of the plant. 

Although this strain also produces IAA in vitro (Belimov et al., 2005), the lack of 

growth stimulation of ethylene insensitive mutants suggested that a functional 

ethylene signalling pathway is necessary for 5C-2 to stimulate Arabidopsis shoot 

growth and development (Figure 3.1-3.5).

Inoculation of bacteria 5C-2 containing ACC deaminase decreased ethylene 

production of wild type plants and in the ethylene over-producing mutant etol-1  by 

regulating shoot ACC levels. Meanwhile, stimulation of plant growth and flowering 

were observed in the inoculated wild type plants. Root inoculation with V. paradoxus 

5C-2 allowed earlier flowering in wild type plants, but not in ethylene insensitive 

mutants (Figure 3.1). Furthermore, inoculation of V. paradoxus 5C-2 decreased leaf 

number at flowering compared to control plants (Figure 3.2), indicating 5C-2 

promotes Arabidopsis flowering by promoting floral initiation. These data support 

suggestion that exogenous ethylene application or a constantly active ethylene 

signalling pathway inhibited floral transition (Achard et al., 2003). The growth 

promotion effect of V. paradoxus 5C-2 was observed from 17 DAP to 33 DAP (Figure 

3.3), suggesting this effect continued throughout the vegetative growth stages. The 

promotion o f leaf area development and fresh biomass accumulation of wild type 

plants indicates that V. paradoxus 5C-2 induced stimulation of leaf area growth
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greatly contributed to the increase of fresh biomass. Two-way ANOVA analysis 

suggested growth promotion effect of bacterial inoculation was genotype dependent 

(Figure 3.4, 3.5). Growth promotion of wild type but not ethylene insensitive mutants 

in response to V. paradoxus 5C-2 inoculation indicates that a functional ethylene 

signalling pathway is necessary for 5C-2 to promote growth of Arabidopsis. However, 

small reduction of leaf area (6.3%; P<0.05) was observed in bacterial inoculated 

etrl-1  mutants, indicating that bacterial inoculation negatively affect etrl-1  leaf 

expansion.

etol-1  is an ethylene over producing mutant as a result of an increasing in the 

stability of ACC synthesis protein 5 (Chae et al., 2003). The dwarf phenotype of etol-1  

is consistent with the idea that high levels of ethylene inhibit plant growth. V. 

paradoxus 5C-2 inoculation partly reversed the etol-1  phenotype, both in leaf area 

and fresh biomass, indicating that decreased ethylene levels can be the explanation 

for the growth promotion stimulated by V. paradoxus 5C-2.

As discussed earlier, there is a lack of studies to show the clear evidence that 

bacterial inoculation of the soil affects ethylene evolution from shoots of mature 

plants growing in soil. Although Belimov et al. (2009b) demonstrated that inoculation 

of V. paradoxus 5C-2 decreased ACC levels in xylem sap, which indicates that V. 

paradoxus 5C-2 affect plant signaling systemically, this is still based on the 

assumption that root ACC export quantitatively contributes to shoot ethylene 

evolution (Else and Jackson, 1998). However, ACC synthase is encoded by multi-gene 

families which can be expressed in roots and shoots in different plant species (Wang 

et al., 2002, Liang et al., 1992, Johnson and Ecker, 1998), indicating that plants can 

regulate its ACC pool in many ways. These observations raise the question: how does 

ethylene evolution of shoots and roots respond to bacterial inoculation and is root to
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shoot long distance ACC signalling involved in this interaction between V. paradoxus 

5C-2 and Arabidopsis? Results of studies reported here demonstrate that inoculation 

of bacteria 5C-2 decreased foliar ACC levels and ethylene accumulation in the shoots 

of mature plants. This suggests bacterial inoculation not only causes local effects on 

roots but also systemic effects via long-distance ACC signalling.

Decrease in ethylene evolution of mature leaves in response to bacterial inoculation 

was also found in the etol-1  mutant, consistent with the response of leaf area and 

fresh biomass. The concentration of ethylene from mature leaves of the etol-1  

mutant was around 2 times higher than from wild type leaves, as previously 

suggested (Guzman and Ecker, 1990). Absolute values of ethylene emission from 

mature leaves of both wild type and etol-1  (Figure 3.9) differ from those previously 

reported (Guzman and Ecker, 1990). The difference may be due to the 

methodological difference such as incubation time of leaves. Higher ethylene 

emission may have occurred by high CO2 accumulation since ethylene and CO2 

accumulation can positively feedback and regulate ethylene production (Dhawan et 

al., 1981, Nakatsuka et al., 1998). Long term incubation of detached leaves may cause 

wound induced ethylene production (Geballe and Galston, 1982, Coleman and 

Hodges, 1987). Usually after one hour of wounding treatment, ethylene production 

starts to increase. While V. paradoxus 5C-2 inoculation caused ethylene production 

from etol-1  to decrease to the levels found in wild type plants, the leaf area and 

fresh biomass were still much less than wild type plants, e to l mutant gains a 

recessive mutation in ETOl which acts as a substrate adaptor to ACS5 and regulates 

ACS5 protein degradation (Wang et al., 2004). But ETOl contains a BTB 

(Broad-complex, Tramtrack, Brie- a'-brac) motif which offers sites for ETO to interact 

with other proteins and make ETO muti-functional (Collins et al., 2001). Therefore, 

inoculation of V. paradoxus 5C-2 partly reversed effects of ethylene over production
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on growth, but not all of the phenotypes gained from mutation in ETOl.

In previous studies, root inoculation of PGPR Pseudomonas-thivervalensis MLG45 

which can improve plant resistance to pathogen regulated gene expressions both in 

roots and shoots (Cartieaux et al., 2003). Meanwhile, incubation of canola roots with 

Enterobacter cloacae UW4 containing ACC deaminase modified the expression of 

several genes including an RNA binding protein, a cell division cycle protein and 

defense related proteins (Hontzeas et al., 2004). No ethylene related genes were 

identified but this may be due to the limited information on the gene sequences in 

canola. Here it is found that inoculation of bacteria 5C-2 regulated expression of two 

ethylene response genes in wild type plants in two independent experiments. EBP 

(At3G16770) which encodes an ethylene response factor is induced by ethylene 

treatment (Van Zhong and Burns, 2003), while EIL1 (AT2G27050) is one member of 

the family of ethylene insensitive 3 (EIN3) like genes and it is negatively regulated by 

ethylene treatment (Chao et al., 1997, De Paepe et al., 2004). Although it is shown 

that bacterial inoculation decreased shoot ethylene emission (Figure 3.9), it is still not 

clear whether this decrease could affect intracellular signalling. In this study, EBP was 

down-regulated and EIL1 was up-regulated by bacterial inoculation, indicating 

bacterial inoculation regulated plant signalling both at the physiological and the 

molecular levels. However, as results of four experiments showed, inoculation of 

bacteria regulated the expression of ethylene response genes in only two 

experiments. Bacterial effects on plant biomass accumulation are statistically 

significant but also long term effects. RT-PCR only can pick up momentary differences 

in gene expression at the time of tissue harvest. It is half quantity technique and may 

not be sensitive enough to pick up differences of gene expressions. How bacteria 

regulate ethylene signal transduction and how ethylene is involved in hormone 

net-works requires further investigation. To fully elucidate this response, better
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techniques such as real time PCR need to be carried out in different independent 

experiments to understand how bacterial inoculation affect plant molecular 

responses.

The work presented in this chapter elucidated that root inoculation of rhizobacteria 

containing ACC deaminase promoted plant shoot growth and development via 

ethylene dependent signal pathway by regulating shoot ethylene production. 

However, the work here only explored bacterial effect on ethylene signaling under 

optimal conditions. Future experiments should address the regulation of plant 

signaling net-works under certain stress conditions following bacterial inoculation.
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Chapter4 -  The response of leaf elongation of 
wheat to rhizobacterial inoculation in well 

watered and drying soil

4.1 Introduction

As the soil dries, plant transpiration decreases and leaf elongation slows, which may 

be interpreted as a water saving mechanism. Both hydraulic and chemical signals are 

involved in plant responses to drying soil (Bacon et al., 1998, Christmann et al., 2007, 

Tardieu and Simonneau, 1998, Wilkinson et al., 1998). Water present in the vacuole 

generates turgor pressure which maintains cell or plant structural integrity. The 

maintenance of water potential gradients from xylem to expanding cells is required 

for continued cell expansion. When cell turgor exceeds a threshold value, it generates 

a demand for water to which allows water to enter by relaxation of the cell walls, 

thus causing cell water extension (Boyer, 1985, Tomos, 1985). Soil drying can cause a 

collapse of water potential gradients, thus leading to reduction of cell turgor, and 

these changes lim it leaf growth (Boyer, 1968, Stearns et al., 2005). In addition to 

hydraulic signals, chemical signals or metabolics also are involved in regulating leaf 

expansion during soil water deficit (Bacon et al., 1998, Lopez-Bucio et al., 2007, 

Michelena and Boyer, 1982, Ben Haj Salah and Tardieu, 1997, Wilkinson et al., 1998). 

The importance of chemical signalling was demonstrated by experiments that 

maintained leaf turgor as soil dried by applying a pneumatic pressure to roots, leaf 

elongation can still be inhibited (Pantin et al., 2011, Passioura, 1988). Abscisic acid 

(ABA) is one of chemical signals which is involved in plant response to soil drying 

(Davies and Zhang, 1991, Jackson, 1997, Wilkinson and Davies, 2010). It was observed 

in many species that soil drying can increase ABA accumulation. ABA is transported to 

the shoot in the xylem sap (Cutler and Krochko, 1999, Davies and Zhang, 1991, Dodd
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et al., 2008, Gowing et al., 1993, Wilkinson and Davies, 2002). Once ABA arrives at the 

guard cell, it can induce stomatal closure to help plants save water (Davies and Zhang, 

1991, Loveys, 1984, Wilkinson and Davies, 2002). In addition to stomatal regulation, 

Sharp and his colleagues (LeNoble et al., 2004, Sharp et al., 2000, Spollen et al., 2000) 

suggested that ABA functions to maintain, rather than inhibit shoot or root growth at 

low water potential by restricting ethylene production. Dodd et al. (2009b) also 

showed that increased supply of ABA from a wild-type rootstock could phenotypically 

revert an ABA-deficient scion by decreasing xylem ACC concentration and foliar 

ethylene production.

While it is well recognized that water deficit increases ABA production, there is still 

some debates about whether water deficit promotes ethylene synthesis as discussed 

in chapterl. Although now it is not clear that whether ethylene is involved in 

regulation of leaf growth during soil drying, Belimov et al. (2009 b) showed that 

rhizobacteria Variovorax paradoxus 5C-2 containing ACC deaminase partially restored 

pea growth which was inhibited by water deficit. Inoculation of plants with 

rhizobacteria 5C-2 increased root and shoot dry weight of pea grown in the water 

deficit conditions, but such growth promotion effect was not observed with a mutant 

M4 of Variovorax paradoxus 5C-2 which had lower ACC deaminase activity. 

Inoculation with rhizobacteria 5C-2 also promoted vegetative growth, tuber yield in 

potato plants grown in drying soil (Belimov et al., 2009 a). Furthermore, the 

promotion effect of 5C-2 was also observed in maize plants which subjected to water 

deficit (Dodd et al., 2009a). Particularly this report suggested that there is no effect of 

5C-2 inoculation on leaf xylem ABA concentration. However, ethylene emission from 

leaves was not examined. In the work described here, possible effects of 5C-2 

inoculation were examined in wheat grown in well watered and soil drying conditions. 

Furthermore, earlier reports suggested elevated carbon dioxide concentrations
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increased ethylene emission (Dhawan et al., 1981). Light also stimulated ethylene 

emission in leaves of Gomphrena globosa L, (Grodzinski et al., 1982, Grodzinski et al., 

1983). In sunflower seedlings, two peaks of ethylene emission were observed in a 24 

hour period (Finlayson et al., 1991). As light and carbon dioxide vary due to 

photoperiod and thus could affect ethylene emission, the ACC pool in leaves and 

roots could be affected by the progress of the photoperiod. It is not clear whether the 

growth promotion effect of 5C-2 will differ between the light period and the dark 

period. Therefore, leaf growth rates (LER) in the light period and the dark period were 

studied to explore whether photoperiod could affect plant responsiveness to bacteria. 

Attempts were made to measure foliar ethylene emission to explore the potential 

effect of bacteria 5C-2 inoculation on ethylene production in wheat plants subjected 

to soil drying.

4.2 Methods

Spring wheat (Triticum aestivum) cultivar Ashby was used in this study. Seeds were 

pre-germinated as described in chapter 2 before they were transferred to pots (L 6cm 

x W 6cm x H 8cm) filled with a mixture of loam-based compost (John Innes No. 2, J. 

Arthur Bowers, Lincoln, UK) and quartz sand at a ratio of 2:1. Bacterial strain grown 

from BPF medium was used to prepare liquid suspensions which were applied to the 

compost mixture by thoroughly mixing the compost. The final bacterial concentration 

in the growth compost is 106 cells g'1 compost. Pre-germinated seeds were planted 

carefully into the pots with growing substrate. Plants were grown on in a Snijder 

cabinet under conditions described in chapter 2. All plants were fully watered before 

applying a soil drying treatment. Two types of soil drying were applied in this study. In 

experiment 1, plants were kept well watered for 8 days after transplanting and then
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water was withheld from plants in the soil drying treatment. Well watered plants 

were watered every two days to maintain matric potential around -25 -hPa to -55 

-hPa. Once leaf number 2 or 3 appeared, leaf length was measured by ruler at the 

start and end of the photoperiod, until the leaf stopped growing. At the end of the 

photoperiod, pot weight was measured by placing pots on an analytical balance at 

regular time intervals to estimate evapotranspiration (ET). Soil evaporation was 

estimated by using blank pots (without a plant). For experiment 2, plants were kept 

well watered for 7 days and then soil drying was imposed by supplying plants daily 

with 50% of the water that was lost through evapo-transpiration (Eta) in the previous 

24 hours. 100% of water lost by Eta was delivered to well watered plants daily. In 

both experiment 1 and 2, four treatments were included: (± soil drying) x (± 

rhizobacteria).

At the end of each experiment, the introduced strain, 5C-2, was isolated from roots of 

3 pots (randomly selected) per treatment (Figure 4.1). After bacterial isolation, 

growing substrate w ithout above-ground parts from an individual pot was weighed 

and then transferred to a drying oven (48 hours at 80 °C), then removed and weighed. 

To determine substrate moisture release characteristics, a calibration curve described 

by Martin-Vertedor and Dodd (2011), was developed to convert substrate water 

content to substrate matric potential (Figure 4.2).

Ethylene emission

To study ethylene emission in different treatments, leaf tissues (0.5-lg) from four 

treatments (well watered or soil drying plants with or without 5C-2) were incubated 

in 7.8 ml vials to collect ethylene for ethylene concentration quantification by GC 

method described in chapter.
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Statistics

Pairwise comparisons used Student's t-tests and standard errors (SE) in SigmaPlot for 

Windows Version 7.0 (Jandel Scientific, Erkrath, Germany).

4.3 Results

Experiment 1: Leaf length Leaf elongation rate

Soil drying showed an effect on soil matric potential 5 days after water withholding. 

The matric potential of soil subjected to a drying treatment in both control and 

bacterial inoculated plants continued to fall until 7 days after water withholding 

(Figure 4.3). Due to the limit of measurement with a water-filled tensiometer which 

can not sense the difference in matric water potential when substrate water content 

is lower than 0.1 g g 1, no difference was found in matric water potential from 7 days 

but substrate water content continued to decrease, indicating matric potential 

continued to decrease (Figure 4.4). Soil drying did not show any significant effect on 

the leaf length of the second leaf or leaf elongation rate (LER) (Figure 4.5) comparing 

to well-watered control plants. No significant difference of second leaf growth or LER 

was observed in rhizobacteria treated plants either in well watered or soil drying 

treatment (Figure 4.6). The second leaf kept growing until 2 days after the third leaf 

emergence. For the third leaf, a significant decrease in the LER (Figure 4.7, table 4.2) 

and leaf length (Figure 4.8, table 4.1) caused by the soil drying treatment was first 

observed from both control and 5C-2 inoculated plants 7 and 9 days after watering 

was withheld, respectively. Meanwhile, the LER of well watered plants either control 

or bacterial inoculated reached maximal rate in the light period of 7 days after soil 

drying started accompanied with reduced rate during dark period, and maintained for
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4 days during light period (Figure 4.7, table 4.1). However, the LER of soil drying 

plants continued to fall and no difference was found between light and dark period 

either in control or bacterial inoculated plants (Figure 4.7). The third leaf of 

un-watered plants stopped growing from 9 days after water withholding while the 

leaf length of well watered plants still increased for 12 days after water withholding 

(Figure 4.8, table 4.1). However, there is no difference detected in the leaf length and 

the LER between control and 5C-2 inoculated plants either in the watered treatment 

or in the soil drying treatment during light or dark period. Colonies of introduced 

strain 5C-2 were detected on inoculated roots but not from control roots (Figure 4.1). 

No significant difference was found in bacterial inoculation between watered and 

those subjected to soil drying.

Experiment 2: Leaf length and leaf elongation rate

In experiment 2, soil drying was imposed by supplying only 50% of plant 

evapo-transpiration, Matric potential showed a gradually decrease 7 days after the 

drying cycle started (Figure 4.9). The matric potential of drying soil continued to fall 

but still did not reach -800 -hPa at the end of experiment as shown in experiment 1. 

During drying cycles, the second leaf continued to grow until 8 days after the drying 

cycle started and then growth remained at a near steady rate (Figure 4.10). Soil 

drying did not cause any reduction in the final leaf length and the LER of the second 

leaf of either well watered plants or plants in drying soil (Figures 4.10 and 4.11). The 

LER of the second leaf reached maximal rate in the light period of 5 days after drying 

started and remained steady in the light period for 2 days with a reduction in growth 

rate in the dark period (Figure 4.11). However, in the third leaf, a decrease caused by 

soil drying treatments in the final leaf length (Figure 4.12, table 4.2) and the LER 

(Figure 4.13, table 4.2) was observed at 10 and 11 days after the drying cycle started,
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respectively. The LER of the third leaf of 5C-2 and control plants reached maximal rate 

in the light period of 5 days or 7 days after drying started respectively with well 

watered. In soil drying plants, the LER reached maximal rate in the light period of 7 or 

8 days after drying started in 5C-2 inoculated or control treatments respectively. The 

LER of the third leaf in soil drying plants with or w ithout bacteria showed relatively 

high value in light period and low value in the dark period once the rate reached 

maximal rate (Figure 4.13). In both well watered and drying soil, 5C-2 did not show a 

stimulation effect on the growth of the second and the third leaves. Colonies of 

introduced strain 5C-2 were detected from roots of bacteria inoculated roots but not 

control (Figure 4.1). No significant difference was found between well watered and 

soil drying plants, and between experiment 1 and 2.
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£  6

*
Exp1-WW Exp1-WS Exp2-VWV Exp2-WS

Figure 4.1. Number of bacteria [V. paradoxus 5C-2) isolated from roots of wheat 
plants in experiment 1 with well watered (Expl-WW) or soil drying (Expl-WS); 
and experiment 2 with well watered (Exp2-WW) or soil drying (Exp2-WS). No 
bacteria colony was detected from control plants which were not inoculated by 
V. paradoxus 5C-2. Data are means ± SE of 3 replicates.
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Figure 4.2. Relationship between soil (substrate) matric potential and gravimetric 
water content for the substrate used in this study.
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Figure 4.3. Experimentl: Matric potential of soil (substrate) in four treatments: 
control watered well (Cont-W • ) ;  control with soil drying (Cont-D A); 5C-2 
inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil drying 
(5C-2-D ▼). Each pot was weighed every afternoon before watering. Soil drying 
was applied by withholding water. Data are means ± SE of 5 replicates.
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Figure 4.4. Experimentl: Substrate water content of soil subjected to four 
treatments: control watered well (Cont-W • ) ;  control with soil drying (Cont-D 
▲ ); 5C-2 inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil 
drying (5C-2-D ▼). Each pot was weighed every afternoon before watering. Soil 
drying was applied by withholding water. Data are means ± SE of 5 replicates.
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Figure 4.5. Leaf elongation rate of second leaf from wheat plants subjected to 
four treatments: control watered well (Cont-W • ) ;  control with soil drying 
(Cont-D A); 5C-2 inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated 
with soil drying (5C-2-D ▼). Leaf length was measured when photoperiod 
started (am) and before it finished (pm). Data are means ± SE of 5 replicates.
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Figure 4.6. Second leaf length of wheat plants subjected to four treatments: 
control watered well (Cont-W • ) ;  control with soil drying (Cont-D ▲); 5C-2 
inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil drying 
(5C-2-D ▼). Leaf length was measured when photoperiod started (am) and 
before it finished (pm). Data are means ± SE of 5 replicates.
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Figure 4.7. Leaf elongation rate of third leaf from wheat plants subjected to four 
treatments: control watered well (Cont-W • ) ;  control with soil drying (Cont-D 
▲ ); 5C-2 inoculated plants well watered (5C-2-W ■ );  5C-2 inoculated with soil 
drying (5C-2-D ▼). Leaf length was measured when photoperiod started (am) 
and before it finished (pm). Data are means ± SE of 5 replicates.
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Figure 4.8. Third leaf length of wheat plants subjected to four treatments: 
control watered well (Cont-W • ) ;  control with soil drying (Cont-D A); 5C-2 
inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil drying 
(5C-2-D ▼). Leaf length was measured when photoperiod started (am) and 
before it finished (pm). Data are means ± SE of 5 replicates.
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Table 4.1. Leaf length (mm) and LER (mm h'1) ± S.E. of the third leaf at different 
light period points in the drying cycle when growth analyses took place. Five 
replicas were used for each treatment. Significance of difference was tested 
between well watered and soil drying treatments in control or 5C-2 inoculated 
plants. **  were indicated as significance at the 5% level, ***w ere indicated as 
significant at the 1% level.

Well watered 
for 9 days

9 days drying Well watered 
for 11 days

11 days 
drying

Leaf 173±16 127±10 230116 129113
length ** * * *

LER 2.02±0.12 0.175±0.28 1.2710.14 0
* * * * * *

Well watered 5C-2 + 9 days Well watered 5C-2 + 11
with 5C-2 drying with 5C-2 days drying
inoculated inoculated

Leaf 170±5 112111 23216 113111
length * * * * * *

LER 2.08±0.15 0.0510.08 1.4210.09 0
** * * * *
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Figure 4.9. Experiment 2: Matric potential of soil (substrate) subjected to four 
treatments: control watered well (Cont-W • ) ;  control with soil drying (Cont-D 
A); 5C-2 inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil 
drying (5C-2-D ▼). Each pot was weighed every afternoon before watering. Soil 
drying was imposed by supplying plants daily with 50% of the water that was lost 
through evapo-transpiration (Eta) in the previous 24 hours. Data are means ± SE 
of 11 replicates.
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Figure 4.10. Second leaf length of wheat plants subjected to four treatments: 
control watered well (Cont-W • ) ;  control with soil drying (Cont-D ▲); 5C-2 
inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil drying 
(5C-2-D ▼). Leaf length was measured when photoperiod started (am) and 
before it finished (pm). Data are means ± SE of 11 replicates.
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Figure 4.11. Leaf elongation rate of second leaf from wheat plants subjected to 
four treatments: control well watered well (Cont-W • ) ;  control with soil drying 
(Cont-D ▲); 5C-2 inoculated plants well watered (5C-2-W ■ );  5C-2 inoculated 
with soil drying (5C-2-D ▼). Leaf length was measured when photoperiod 
started (am) and before it finished (pm). Data are means ± SE of 11 replicates.
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Figure 4.12. Third leaf length of wheat plants subjected to four treatments: 
control watered well (Cont-W • ) ;  control with soil drying (Cont-D A); 5C-2 
inoculated plants well watered (5C-2-W ■ ); 5C-2 inoculated with soil drying 
(5C-2-D ▼ ). Leaf length was measured when photoperiod started (am) and 
before it finished (pm). Data are means ± SE of 11 replicates.
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Figure 4.13. Leaf elongation rate of third leaf from wheat plants subjected to 
four treatments: control watered well (Cont-W • ) ;  control with soil drying 
(Cont-D A); 5C-2 inoculated plants well watered (5C-2-W ■ );  5C-2 inoculated 
with soil drying (5C-2-D ▼). Leaf length was measured when photoperiod 
started (am) and before it finished (pm). Data are means ± SE of 11 replicates.
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Table 4.2. Leaf length (mm) and LER (mm h 1) ± S.E. of the third leaf at different 
growth time in the drying cycle when growth analyses took place. Eleven replicas 
were used for each treatment. Significance of difference was tested between 
well watered and soil drying treatments in control or 5C-2 inoculated plants. ** 
were indicated as significant at the 5% level, ***w ere indicated at significant at 
the 1% level.

Control 11 
days well 
watered

11 days drying 5C-2
inoculated + 11 
days well 
watered

5C-2+11 days 
drying

Leaf Length 
(mm)

217±6 186±4
***

209±5 193±4
**

control 9 days drying 5C-2
inoculated

5C-2+9 days 
drying

LER
(mm h'1)

1.59±0.19 1.06±0.17
**

1.65±0.14 1.28±0.11
**
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4.4 Discussion

In control or bacterial inoculated plants grown well supplied with water, increased 

growth (LER) during the light period was observed in the second and third leaves 

either in experiment 1 or 2 (Figure 4.5, 4.7, 4.11, 4.13). Although enhanced growth 

rate during the dark period was reported in tall fescue (Durand et al., 1995, Parrish 

and Wolf, 1983), higher growth rate during light period was also noted in wheat by 

Dodd & Davies (1996). The LER has been suggested to be sensitive to VPD (Squire et 

al., 1983). Decreased water potential in the elongating cells of grass due to the 

transpirational water loss exceeding water uptake during the light period, plants 

could develop water stress despite high levels of soil water (Watts, 1972). The 

enhanced growth during the light period suggests hydraulic signalling is unlikely to be 

the only factor in controlling plant growth at this time. To validate this, water status 

of growing cells in leaves during light and dark period needs to be studied in any 

future experiment. Another factor, sugar which was suggested to be important in the 

growth of wheat leaves (Kemp, 1981) could be a factor which can enhance growth 

during light period.

In experiment 1, complete cessation of watering was applied to plants and this 

resulted in a sharply decreasing leaf growth rate of the third leaf (Figure 4.8 and 4.7), 

although the second leaf did not show any reduction in LER or limitation in leaf length, 

which may be because the leaf approached maturily when the drying cycle started. 

There was no pronounced diurnal rhythm found in the third leaf of un-watered plants 

(Figure 4.7). Belimov et al. (2009 b) observed a growth promotion effect of 5C-2 on 

pea plants in soil drying conditions (40% of ET applied daily). It seems possible that 

daily soil drying with re-watering cycles may be important to allow bacterial effects 

on leaf growth, as under such conditions, chemical signalling is likely to be of most 

importance. Therefore, a mild soil drying (deficit irrigation) was imposed on wheat
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seedlings in experiment 2.

In experiment 2, 50% of water lost through evapo-transpiration in the previous 24 

hours was given back to plants daily. The third leaf showed gradually decreasing 

length and LER but still grew (Figure 4.12, 4.13). In the light period of 9 days after soil 

drying, a significant difference was found between well watered and soil drying plants 

either bacterial-inoculated or controls, but a similarly enhanced diurnal rhythm was 

also found in the third leaf of plants subjected to soil drying (Figure 4.13), indicating 

hydraulic signalling is not the limiting factor of growth in soil drying plants. However 

in either well watered and soil drying plants of experiment 1 and 2, no significant 

stimulation of growth by 5C-2 was observed. Although in the well water treatment, 

the third leaf reached maximal growth rate 2 days earlier in bacterial inoculated 

plants than in control plants, no significant difference was observed in leaf length 

between control and inoculated plants (Figure 4.11, 4.12). Bacterial colonisation of 

the root system detected at the end of experiments was approximately 10 times less 

than peas grown in a similar substrate or tomatoes grown in gnotobiotic conditions 

(Belimov et al., 2007, Belimov et al., 2009 b) or Arabidopsis (discussed in chapter 3). 

Although it was shown that colony number is not important in promoting root growth 

by the gnotobiotic assay (Belimov et al., 2007), the plant used here was grown in pots 

with an unsterile substrate. Bacteria or fungus in this substrate could bring 

competition with inoculated 5C-2. Under this condition, bacteria population could 

become important for survival and functioning of 5C-2.

Different rhizobacterial strains may have favoured hosts. \/. paradoxus 5C-2 was 

isolated from Indian mustard (Brassica juncea L Czern) (Belimov et al., 2005) rather 

than wheat. This is the first study of the interaction between 5C-2 and wheat. Several 

reports show that growth promotion by bacteria containing ACC deaminase varies
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from strain to strain in wheat (Naveed et al.; 2008, Nadeem et al., 2010, Zahir et al., 

2009). Zahir et al. (2009) showed that 10 ACC deaminase containing rhizobacteria 

strains were isolated from wheat rhizosphere had varying growth promotive effects 

on wheat in axenic conditions with salinity stress. Three strains (Pseudomonas putida, 

Pseudomonas aeruginosa, Serratia proteamaculans) out of 10 strains showed most 

promising effects compared to control, but no significant difference was observed 

among these three strains in the root or shoot growth. In pot experiments with 

salinity stress, the same three strains showed promotion effects on growth and yield 

of wheat, particularly, Pseudomonas putida was most effective one compared to 

other two strains. Nadeem et al. (2010) screened 18 rhizobacteria containing ACC 

deaminase strains and found 4 strains effectively stimulated growth of wheat under 

high salinity conditions in vitro. The greatest growth stimulation was observed in with 

two strains. Therefore, in vitro screening could be useful to select the most effective 

strains in promoting wheat growth before moving to pot experiments.

In this study, plants less than two weeks old were used rather than mature plants 

used by Belimov et al. (2009 b). At different development stages, plants can regulate 

or respond to hormone signals differently. It was found that the expression of 

ethylene response genes was enhanced in proliferating and expanding leaves but not 

mature leaves under osmotic stress conditions in Arabidopsis (Skirycz et al., 2010). 

Expression of ABA synthesis and response genes were differently regulated (up or 

down) in mature leaves under osmotic stress comparing to control. These reports and 

others indicate that ethylene can be crucial in regulating the response of young 

tissues to environmental stresses. In the present study, it seems that young plants 

may use different mechanisms to regulate the response to ethylene, compared to 

mature plants. Attempts were made to measure foliar ethylene emission but 

ethylene concentration can not be detected by the method and cultivar used here.
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Furthermore, ethylene could act as an earlier signal to help young tissue protect itself 

from stresses. The decrease of ethylene production by bacteria may negatively affect 

the response of young tissue to stresses. Or under stress conditions, ethylene 

production is strongly increased or signal transduction is highly active in young tissues. 

Thus even though bacteria may decrease root-sourced ethylene levels, this decrease 

may not be important in the regulation of the responses of young tissue to stresses. 

These suggestions raise an interesting question, how different tissues response to 

stresses and bacterial inoculation, and whether ethylene acts differently in different 

leaf developmental stages. To further explore these questions, in the next chapter, 

mature wheat plants were used and responses of different leaves to soil drying were 

investigated. Since many factors contribute to growth regulation, a specific response 

(stomatal response) was studied in the next chapter.
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Chapter 5 -  The role of ethylene in regulating leaf 
age-dependent stomatal responses to ABA and 

soil drying

5.1 Introduction

Abscisic acid (ABA) is a key signal involved in regulating plant responses to stress, 

including drought, high VPD, heat stress, salinity stress, and nutrient deficiency 

(Wilkinson and Davies, 2002). ABA synthesised by leaves and/or transported from 

roots can close stomata, consequently plants can save water by reducing 

transpiration to adapt to stress conditions such as drought. Although ABA is generally 

accepted as an anti-transpirant factor (Davies and Kozlowski, 1975, Davies and Zhang, 

1991, Jones and Mansfiel.Ta, 1970, Trejo and Davies, 1991), under some 

circumstances, stomata show relatively insensitive responses to ABA or to stresses 

that act through it (Wilkinson and Davies, 2009, Atkinson et al., 1989).

Atkinson et.al (1989) suggested that stomatal responses of wheat leaves to ABA are 

variable, dependent on leaf age. Stomata of more mature "aged" leaves of wheat, 

responded less sensitively to ABA than younger leaves. However, fundamental 

understanding of a reported insensitivity of the stomatal response to ABA in aging 

leaves is lacking and implications of this phenomenon have not been extensively 

explored. Furthermore, it was pointed out in the work of Atkinson et.al (1989) that 

photosynthesis was dramatically reduced (over 60%) as leaves matured (plant grew 

from 25 days to 35 days), but that similar water loss was found throughout the 

growth period (plant grew from 25 days to 35 days). This leads to decreased water 

use efficiency when leaves age (Atkinson et al., 1989). One general observation made 

historically by farmers and gardeners alike has been that in many herbaceous plants
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exposed to stress, old leaves w ilt first, followed by younger leaves, whilst rapidly 

expanding leaves w ilt last (Raschke and Zeevaart, 1976). Zhang & Davies (1989) also 

reported young sunflower leaves exhibited higher water relations than old leaves 

when plants were exposed to soil drying. This could be explained by a differential 

stomatal response to a reduction in water availability, and/or other stomatal closing 

stimuli. Experiments described here were designed to elucidate the mechanism 

behind the relative insensitivity of the stomatal response to ABA in aging leaves, and 

to elucidate mechanisms which could help to develop new approach to improve 

water use efficiency in agriculture practice during crop vegetative growth and 

improve plant quality in horticulture practice.

In addition to effects of leaf age on stomata responses to ABA, reduced sensitivity to 

ABA has also been found in Leontodon hispidus plants exposed to ozone pollution 

(Wilkinson and Davies, 2009). Elevated ozone concentrations (up to 70 ppb) reduced 

sensitivity of Leontodon hispidus stomata to soil drying and to exogenous foliar 

sprayed or stem injected ABA. However, by pre-treating with an ethylene perception 

antagonist 1-methylcyclopropene (1-MCP), responses of stomata to both applied ABA 

and soil drying were fully restored under elevated ozone concentrations, indicating 

that ethylene was involved in the loss of stomatal sensitivity to ABA. Many reports, 

including that of Wilkinson and Davies (2009), show that elevated ozone stimulates 

ethylene production in plants (Diara et al., 2005, Overmyer et al., 2003, Tamaoki et al., 

2003, Sinn et al., 2004, Wellburn and Wellburn, 1996). In addition, Benlloch-Gonzalez 

et al. (2010) also noted an antagonistic effect of ethylene on drought-induced 

stomatal closure in K+ -starved sunflower plants with heightened ethylene production, 

with nutrient starved plants exhibiting greater transpiration rates.

Previous studies on stomatal responses show that ethylene can have one of two
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opposing effects on stomata. Ethylene induced stomatal closure when it was applied 

to Arabidopsis leaves in the absence of exogenous ABA when plants grew under 

optimal conditions (Desikan et al., 2006). However, when both ABA and ethylene 

were applied to epidermal peels of Arabidopsis plants, ethylene antagonised the 

effect of ABA to close stomata and stomata stayed open (Tanaka et al., 2005). The 

mechanism by which an ethylene signal regulates stomata or the stomatal response 

to ABA is still not fully understood. Hydrogen peroxide was suggested to be a linkage 

between ABA and ethylene signalling in guard cells (Desikan et al., 2006, Wilkinson 

and Davies, 2010).

As discussed in chapter 1, many stresses such as drought, disease, wounding, ozone 

pollution, and high temperature can stimulate ethylene biosynthesis (Morgan and 

Drew, 1997, Wang et al., 2002, Wilkinson and Davies, 2010). Ethylene is involved in 

growth modulation and in developmental processes such as leaf senescence, epinasty 

and abscission (Wang et al., 2004, Else and Jackson, 1998, Pandey et al., 2000). 

Several research groups have reported that ethylene promotes leaf senescence (Jing 

et al., 2005, Zacarias and Reid, 1990, Pandey et al., 2000, Munne-Bosch and Alegre, 

2004). Furthermore, leaf senescence is often associated with the high levels of 

ethylene production (Jing et al., 2005, Zacarias and Reid, 1990). Zacarias and Reid 

(1990) suggested that, in addition to ethylene, ABA also promotes senescence via an 

ethylene independent pathway. Jing et.al (2005) reported that ethylene can play a 

dual function in regulating leaf senescence, both as an inducer and a repressor, 

depending on the time of ethylene exposure. Although it is clear that ethylene is 

involved in leaf senescence and that ethylene can antagonize ABA function in 

stomatal closure, the connection between ethylene induced stomatal insensitivity to 

ABA and ethylene promoted senescence has not previously been made. The work 

presented by Haroni and Sisler (1979) described ethylene production patterns in
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different aged leaves of tobacco, and it was shown that young expanding leaves 

actually produced higher levels of ethylene than all other ages of leaves. When leaves 

were fully expanded, ethylene evolution started to decrease. When leaves began to 

senesce and turn yellow, ethylene levels increased again but were not as high as in 

expanding leaves. Even if wheat plants exhibit similar patterns of ethylene evolution 

as tobacco plants, ethylene may still antagonize stomatal responses to ABA through 

age-induced changes in ethylene sensitivity, rather than through age-induced 

increases in the extent of ethylene production. The hypotheses tested in this chapter 

are, then, that 1) the loss of stomatal sensitivity to ABA in aged leaves is due to 

antagonism from aging-associated changes in ethylene biosynthesis, and 2) the 

antagonistic effect of ethylene on stomatal responses to ABA is enhanced in the aged 

leaves compared to the young leaves because of increases in cellular sensitivity to 

ethylene rather than, or in addition to, any observed increased ethylene production.

5.2 Methods

The spring wheat (Triticum aestivum) cultivar Ashby, which is very popular with UK 

growers, was used in this study. Seeds were pre-germinated as described in chapter 2 

before they were transferred to pots with growing substrate comprising a 1:1 (w/w) 

mixture of a loam-based compost (John Innes No. 2, J. Arthur Bowers, Lincoln, UK) 

and quartz sand. Pre-germinated seeds were planted carefully in pots filled with the 

same weight of growing substrate. Plants were raised in the green-house for 26 days 

and were then moved to a growth chamber. Growth conditions in the green-house 

and the growth chamber were as described in chapter 2. Plants were fully watered 

before the application of soil drying or chemical spray.

91



Chapter 5 Leaf age-dependent stomatal responses to ABA and soil drying

Soil drying was applied to 30 day old plants (table 5.1) by withholding water until 

matric potential reached around -300 -hPa calculated from the moisture release 

curve as described in chapter 4, after weighing pots at the end of the photoperiod. At 

that point, stressed plants were fully re-watered (until drops of water appeared in the 

holding tray of pots before the photoperiod finished). Stomatal conductance was 

measured the following day on abaxial and adaxial sides of leaves with a diffusion 

porometer (AP-4, Delta-T Devices Ltd, UK). Means of gs from abaxial and adaxial sides 

of leaves were calculated and presented in following graphs. Four different aged 

leaves (Leaf 2, 3, 6, and 7 on the main stem, numbering from the base of the plant) 

were used for stomatal conductance measurements.

ABA or ACC were applied to 34 days old plants which were well watered as foliar 

spray (table 5.1). ABA was dissolved in ethanol, and ACC was dissolved in water for 

stock solution preparation. Both sides of leaves were sprayed with water, ABA (107 

mmol m"3, 3xl0~7mmol m'3, 7xl0~7 mmol m‘3) or ACC (3x l0 ‘6 mmol m'3, 7 x l0 ‘7mmol 

m'3, 1CT6 mmol m'3). 0.025% (v/v) of a wetting agent-Silwett (L-77, De Sangosse Ltd, 

Cambridge, UK) was included in all solutions. ABA or ACC solutions (30 ml per plant) 

were sprayed on each plant 2 hours after the start of photoperiod and stomatal 

conductance was measured on abaxial and adaxial sides of leaves with a diffusion 

porometer (AP-4, Delta-T Devices Ltd, UK) 3 hours after spraying. Means of gs from 

abaxial and adaxial sides of leaves were calculated and presented in following graphs. 

A proportion of each chemical sprayed on to the leaf surfaces was assumed to 

penetrate the interior of the leaves.

Some plants which were well watered were pre-treated with 1-MCP (kindly provided 

by Smart-Fresh, AgroFresh Inc, Spring House PA, USA), applied as a sprayable liquid 

after dissolving a solid preparation containing 3.8% active ingredient, at a rate of 0.1 g
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L 1 in a 0.025% (v/v) Silwett L-77 solution. Once made up, the solution (30 cm3) was 

immediately sprayed over both sides of the leaf of plants which had been placed 

inside 0.8x0.8 m3 cardboard boxes with 10 plants in a ventilated room. Each control 

plant sprayed with 30 ml 0.025% (v/v) Silwett L-77 solution only also was kept in 

cardboard boxes. Plants were incubated in 1-MCP (released as a gas within 5 minutes 

of the active ingredient being dissolved) in closed boxes for 16 h. After this time, 

plants were transferred to the growth chamber. Soil drying or chemical sprays were 

applied to plants 4 days after 1-MCP treatment (table 5.1) as described above. 1-MCP 

treatment can be effective at preventing ethylene binding to its receptor for up to 1 

month after application (Sisler and Serek, 2003).

Bacteria, strain Variovorax paradoxus 5C-2, grown on BPF medium, were used to 

prepare liquid suspensions. Liquid suspension was applied to the plant growing 

substrate by thoroughly mixing with the substrate. The final bacterial concentration 

in the inoculated substrate was 106 cells g 1. Pre-germinated seeds were planted 

carefully in the pot filled with the bacterial-inoculated growing substrate (one seed 

per pot). Seven days prior to initiation of the soil drying treatment described above, 

new bacterial solution with same concentration as earlier inoculation was used to 

irrigate plants.

Leaf tissues were collected from control and 5C-2 inoculated plants 16 h after 

rehydration. ABA concentrations were determined by using a radioimmunoassay as 

described in chapter 2. Three hours after ACC application, leaf tissues of different 

ages were collected for ACC concentration determination by GC-MS, as described in 

chapter 2. Leaf tissues (0.5 g FW) were also sampled 3 hours after ACC application to 

determine ethylene emission rate after incubating in 7.8 ml sealed glass vials to 

collect ethylene for GC analysis as described in chapter 2.
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Table 5.1. Timetable o f d ifferent treatments w ith rhizobacteria or chemical spray 
under d ifferent irrigation condition

Treatment Growth period Treatments start Treatments end
ABA foliar 

spray
Grow 34 day under well 

watered conditions
34 day after sowing 

(DAS)
Measure gs on 34 DAS

1-MCP + soil 
drying

Grow 30 day under well 
watered conditions, 

pretreat 1-MCP on 26 DAS

Soil drying 30 DAS 
(usually 2-3 days) then 

rehydration
Measure gs after rehydration

5C-2 + soil 
drying

Grow 30 day under well 
watered conditions

Soil drying 30 DAS 
(usually 2-3 days) then 

rehydration

Measure gs after rehydration 
and collect leaf samples for 

fu rther analysis

ACC foliar 
spray

Grow 34 day under well 
watered conditions

34 DAS
Measure gs on 34 DAS and 
collect samples for ACC or 

ethylene

ACC + 1-MCP
Grow 34 day under well 

watered conditions, 
pretreat 1-MCP on 30 DAS

Spray on 34 DAS Measure gs on 34 DAS

Statistics

Pairwise comparisons used Student's t-tests and standard errors (SE) in SigmaPlot for 

Windows Version 7.0 (Jandel Scientific, Erkrath, Germany). One way analysis of 

variance (ANOVA) was performed to determine differences in stomatal conductance 

among the 4 age categories of leaves under different treatments (SPSS version 19 

(SPSS Inc, Chicago, USA)).

5.3 Results

5.3.1 Effect of leaf age on stomatal response to applied ABA.

To investigate effects of leaf age on the stomatal response to ABA, three 

concentrations of ABA (10-7 mol m'3, 3xl0~7mol m"3, 7 x l0 '7 mol m'3) were applied to 

leaves of different ages on intact wheat plants (Figures 5.1 and 5.2). Figure 5.1 

showed the absolute value of gs from 1 experiment. In figure 5.2, % of control was
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used to present gs as data from more than one separated experiments were 

presented in one graph. ABA-induced stomatal closure was shown to be sensitive in 

the young mature; especially leaf 7, where even the lowest ABA concentration (10~7 

mol m 3) significantly decreased stomatal conductance (Figures 5.1 and 5.2). However, 

with increasing leaf age, closure became less sensitive to ABA. In Figure 5.2, leaf 3 and 

leaf 2 only showed (statistically insignificant) reductions of 26% and 22% respectively. 

The highest ABA concentration (7xl0 ‘7 mol m'3) significantly closed stomata in leaves 

of all ages except the oldest tested one - leaf 2, which failed to respond significantly 

to any of the three concentrations of ABA used. In general, older, more mature leaves 

lost their ability to close their stomata in response to exogenous ABA treatment.

5.3.2 1-MCP restores the sensitivity of stomata in aged leaves 

to soil drying treatment.

A soil drying treatment was applied to wheat plants to produce endogenous ABA, and 

a rehydration treatment was applied to stimulate potential coincidental ethylene 

production (GomezCadenas et al., 1996). Plants were rehydrated when substrate 

matric potential reached -300 -hPa (Figure 5.3). Drought-induced stomatal closure 

was less sensitive in aged leaves (Figure 5.4). In water stressed plants, the ethylene 

perception antagonist 1-MCP had no effect on gs in well watered or droughted leaves 

which were less mature (Leaf 7 and 6), but in the more mature leaves (Leaf 3 and 2) it 

increased stomatal conductance in well watered plants, whilst enhancing stomatal 

closure in droughted plants. Thus ethylene was responsible for the lack of stomatal 

response to drought in more mature leaves. Inhibition of ethylene function improved 

stomatal responsiveness to drought in aged leaves.
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5.3.3 Substrate inoculation with of V. paradoxus 5C-2 restores 

the sensitivity to soil drying of stomata in aged leaves.

The soil drying treatment (followed by a rehydration when matric potential reached 

-300 -hPa) (Figure 5.5) closed stomata in the two less mature leaves (Leaf 7 and 6) by 

55% and 57% respectively, but did so to a lesser extent in more mature leaves, such 

that closure was not significant in the oldest leaf (Leaf 2) (Figure 5.6), mirroring the 

effect of leaf age on the stomatal response to ABA treatment (Figures 5.1 and 5.2) 

and soil drying (Figures 5.4). Inoculation of substrate with 5C-2 had no effect on gs of 

well watered or droughted plants in the less mature leaves. In the more mature 

leaves, 5C-2 increased gs of well watered plants but not significantly. However, 

bacterial inoculation reduced the gs of more mature leaves (Leaf 3 and 2) of 

droughted plants such that drought-induced stomatal closure was as great relatively 

as that exhibited by the less mature leaves. This result is consistent with the effect of 

1-MCP seen in Figure 5.4, such that both modulators of ethylene restored the 

sensitivity of drought-induced stomatal closure in the aged leaves to that exhibited by 

the less mature leaves, even though one modifies ethylene production (5C-2 Figure 

5.6), and one modifies ethylene perception (1-MCP Figure 5.4). These data strongly 

indicate that ethylene is one factor regulating the stomatal response to soil drying 

and/or ABA in aged leaves.

5.3.4 Effects of leaf age and bacterial inoculation on hormone 

generation

a) ABA.

To determine whether either leaf age or bacterial inoculation affects foliar ABA 

concentration, ABA concentration was measured in less mature (mixed samples from 

Leaf 6 &7) and more mature (Leaf 2 and 3) leaves. The data in Figure 5.7 show that
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soil drying (followed by rehydration) increased ABA concentrations to the same 

extent (from a similar basal level in both less mature and more mature leaves), and 

that bacterial inoculation did not affect ABA concentrations (Figure 5.7), indicating 

that stomatal responses in leaves of different ages or in leaves treated with bacterial 

inoculation were not due to effects of age or bacteria on bulk ABA concentration in 

leaves.

b) Ethylene generation in relation to stomatal response

Ethylene emissions from leaves of different ages can often be quantified by GC using 

the method described above and in chapter 2. However, this method did not provide 

enough resolution to measure the small amounts of ethylene generated from wheat 

leaves of this variety. Instead, concentrations of the ethylene precursor, ACC, were 

determined in leaf 3 and 6 (Figure 5.10). Younger leaves contained slightly (but not 

significantly) higher ACC concentrations than old leaves, indicating that the low 

sensitivity of stomatal responses to ABA in older leaves is not due to greater 

production of ethylene or of its precursor ACC. Thus it is necessary to determine 

whether leaf age affects stomatal sensitivity to ethylene, in order to explain the 

ability of 1-MCP and 5C-2 to restore stomatal sensitivity to ABA in older leaves 

(Figures 5.4 and 5.6).

5.3.5 Effects of leaf age on stomatal sensitivity to applied ACC.

To investigate the possibility that leaf age affects stomatal sensitivity to ethylene, the 

ethylene precursor -ACC was applied to intact wheat plants as a foliar spray. 

Responses of stomata in leaves of four different ages were tested after three 

different ACC concentrations (3x l0 '7mol m'3, 10'6mol m'3, and 3 x l0 '6mol m'3) were 

applied (Figure 5.8). None of these ACC concentrations affected gs in less mature
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leaves (Leaf 7 and 6). However, ACC applications decreased gs in more mature leaves 

(Leaf 3 and 2), especially when applied at 3 x l0 '6mol m"3 ACC. To confirm that the 

stomatal closing response to ACC application is due to ethylene rather than to ACC 

itself, plants were pretreated with 1-MCP. Stomata lost their sensitivity to the ACC 

application after 1-MCP pre-treatment (Figure 5.9). Following foliar application of 

3 x l0 '6 mol m'3 ACC, concentrations of both ACC and ethylene emission were 

increased equally in younger and older leaves (Figures 5.10 and 5.11). These results 

indicate that stomata of older leaves are more sensitive to ethylene generated by an 

ACC application than younger (newly mature) leaves.
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Control
10 mol m ABA 
3*1 O'7 mol m'3 ABA

^  500 7*1 O'7 mol m'3 ABA

CN 400

O 300

U
young aged leaves
mature leaves

Figure 5.1. Stomatal conductance (gs) of four leaves of different ages following 
foliar ABA application. Plants were well watered. Three concentrations of ABA 
(1CT7 mol m'3, 3 x l0 '7mol m'3, 7xl0~7 mol m'3) were applied respectively. Stomatal 
conductance was measured 3 hours after ABA application. Data are expressed 
from 5-6 replica plants within experiment. Bars indicate ± standard error (SE). 
Differences between treatments within leaves of a single age are denoted by 
different letters (P<0.05 Tukey test).
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Figure 5.2. Stomatal conductance (expressed as a percentage of the control 
treatment) of four leaves of different ages following foliar ABA application. 
Plants were well watered. Three concentrations of ABA (107 mol m 3, 3xl0~7mol 
rrf3, 7 x l0 '7 mol m'3) were applied respectively. Stomatal conductance was 
measured 3 hours after ABA application. Data are from 15-16 replica plants 
across 3 separate representative experiments. Bars indicate ± standard error 
(SE). Differences between treatments within leaves of a single age are denoted 
by different letters (P<0.05 Tukey test).
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-800 -

Cont+WW Cont+SD 1-MCP+WW 1-MCP+SD

Figure 5.3. Matric potential of substrate that was watered well -  WW or soil 
drying -  SD. Plants were treated with 1-MCP or without - Cont. Before the 
rehydration pots were weighed to calculate matric potential as described in 
chapter 4. Experiments were repeated 3 times and data here are from a 
representative experiment. Bars indicate ± standard error (SE) (n=7 or 8). 
Differences between treatments are denoted by different letters (P<0.05 Tukey 

test).
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Figure 5.4. Stomatal conductance (expressed as a percentage of the control 
treatment) of four leaves of different ages on well watered -  WW or soil drying -  
SD plants. Measurements were taken 16 hours after rehydration with or without 
1-MCP treatments. Plants (26 days old) were pre-treated by 1-MCP, then soil 
drying was applied 4 days after 1-MCP exposure. Data are from 15-16 replica 
plants across 2 separate representative experiments. Bars indicate ± standard 
error (SE). Differences between treatments within leaves of a single age are 
denoted by different letters (P<0.05 Tukey test).
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Cont+WW Cont+SD 5C2+WW 5C2+SD

Figure 5.5. Matric potential of substrate that was watered well -  WW or soil 
drying -  SD. Plants were inoculated with V. paradoxus 5C-2 or without - Cont. 
Before the rehydration pots were weighed to calculate matric potential as 
described in chapter 4. Experiments were repeated 3 times and data here are 
from representative experiment. Bars indicate ± standard error (SE) (n=7). 
Differences between treatments are denoted by different letters (P<0.05 Tukey 

test).
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Figure 5.6. Stomatal conductance (expressed as a percentage of the control 
treatment) of four leaves of different ages on well watered -  WW or soil drying- 
SD plants. Measurements were taken 16 hours after rehydration with or without 
V. paradoxus 5C-2. V. paradoxus 5C-2 was inoculated to plant roots at sowing 
time and 23 days after sowing. Soil drying was applied to 30 days old plants. Data 
are from 15-17 replica plants across 2 separate representative experiments. Bars 
indicate ± standard error (SE). Differences between treatments are denoted by 
different letters (P<0.05 Tukey test).
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Figure 5.7. ABA contents of less (Leaf 6 and 7) and more mature (Leaf 2 and 3) 
leaves on well watered -  WW or soil drying -  SD plants; Plants were inoculated 
with V. paradoxus 5C-2 or without -  control. Leaf samples were collected after 
measurements of stomatal conductance. Experiments were repeated 3 times 
and data here are from representative experiment. Bars indicate ± standard 
error (SE) (n=8). Differences between treatments within single leaf age are 
denoted by different letters (P<0.05 Tukey test).
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Figure 5.8. Stomatal conductance (expressed as a percentage of the control 
treatment) of four leaves of different ages following ACC applications. Three 
concentrations of ACC (3xlCT7 mol m'3, 10'6 mol m'3, and 3xl0~6 mol m 3) were 
applied respectively. Stomatal conductance was measured 3 hours later after 
ACC applications. Data are from 20-24 replica plants across 3 separate 
experiments. Bars indicate ± standard error (SE). Differences between 
treatments within single leaf age are denoted by different letters (P<0.05 Tukey 

test).
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Figure 5.9. Stomatal conductance (expressed as a percentage of the control 
treatment) of four leaves of different ages following by 3x106 mol m'3 ACC 
applications with 1-MCP pre-treatment or without - control. Plants (30 days old) 
were pre-treated with 1-MCP and ACC was applied 4 days after 1-MCP 
treatment. Data are expressed as % of controls from 15-17 replica plants across 2 
separate representative experiments. Bars indicate ± standard error (SE). 
Differences between treatments within single leaf age are denoted by different 
letters (P<0.05 Tukey test).
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Figure 5.10. ACC concentrations of leaf 6 and 3 from 34 days old plants grown 
under well watered conditions following by 3xl0"6 mol m~3 foliar ACC application. 
Leaf samples were collected 3 hours after ACC application for ACC measurement. 
Data are from representative experiment. Bars indicate ± standard error (SE) 
(n=6). Differences between treatments between two leaves are denoted by 
different letters (P<0.05 Tukey test).
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Figure 5.11. Ethylene emission from four leaves of different ages from 34 days 
old plants following 3xl0~6mol rrf3 ACC application. Ethylene emission could not 
be detected in all four leaves of control plants. Data are from representative 
experiment. Bars indicate ± standard error (SE) (n=6).
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Figure 5.12. Summary of gs, ethylene, ABA, and hydrogen peroxide 
across different age leaves based on the data from work here.
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5.4 Discussion

Here we have explored stomatai responses of mature leaves of four different ages to 

ABA, applied exogenously or generated endogenously by soil drying. It was found that 

older, more mature leaves exhibited a reduced sensitivity of the stomatai closing 

response to both exogenous ABA treatments and to soil drying-induced ABA (Figures

5.1, 5.2, and 5.4). These results (Figures 5.1 and 5.2) are similar to those described by 

Atkinson et.al (1989), in which responses of a given leaf to xylem-supplied ABA 

were studied at earlier or later growth stages. In particular, the stomata of leaf 7 the 

youngest mature leaf tested here showed the greatest sensitivity to all ABA 

treatments, but the stomata of leaf 2 (the oldest tested) failed to respond to any of 

the ABA treatments. It has previously been suggested that younger leaves contain 

higher ABA levels than aged leaves in rice (Zhang et al., 2009), Coleus blumei (LaMotte 

et al., 2002), and Xanthium-strumarium (Raschke and Zeevaart, 1976), but this was 

not the case here (Figure 5.7), suggesting that differences in endogenous ABA 

concentrations were not the reason for the age-dependent differences insensitivity to 

applied ABA.

There are several potential implications of age-induced differences in stomatai 

sensitivity to ABA. Increased sensitivity to ABA in young leaves has been suggested 

could contribute to turgor maintenance, which may be important for the continued 

expansion of young leaves in stressful conditions such as soil drying (Raschke and 

Zeevaart, 1976). However, water relations of the different aged leaves were not 

examined here. It will be important to investigate this in future experiments to 

explore the consequences of the loss stomatai sensitivity to ABA in aging leaves on 

whole plant physiology, particularly in plants experiencing various types of stress 

which generate or re-circulate ABA (or ethylene-see below). Furthermore, we 

propose here that the loss of sensitivity to ABA in aging leaves could contribute to
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developmentally-induced senescence, potentially by affecting leaf water relations. 

This may be particularly noticeable in stressed plants (described in introduction). 

Vegetative senescence is an important process in plant ontology as consequences for 

fru it ripening and reproduction (Munne-Bosch and Alegre, 2004).

We tested the hypothesis that the loss of sensitivity of the stomatai closure response 

to ABA in aging leaves resulted from an effect of leaf aging on ethylene biology. 

Wilkinson & Davies (2010) summarize current knowledge regarding the interactions 

between ethylene and ABA, and proposed that ethylene plays two separate but 

inter-changeable roles in regulating stomatai response: when ABA levels are relatively 

low or are less responsive, ethylene can close stomata; however when ABA levels 

increase, ethylene antagonizes the effect of ABA to close stomata (Tanaka et al., 2005) 

such that they remain open, or re-open, depending on the chronology of the changes 

in hormone concentration. Therefore, ethylene could potentially be a factor which 

reduces ageing leaf responsiveness to ABA, as shown in Figures 5.1 and 5.2.

To investigate the role of ethylene in regulating stomatai responses of leaves of 

different growth stages to ABA, two different methods of manipulating ethylene 

biology were employed: 1) 1-methylcyclopropene (1-MCP), which can antagonize 

ethylene receptors and thus decrease ethylene sensitivity of plants (as described in 

the introduction), was applied to the plants as a foliar spray; and 2) plant 

growth-promoting rhizobacteria V. paradoxus 5C-2, which contains ACC deaminase 

and decrease concentrations of the ethylene precursor ACC in the xylem (Belimov et 

al., 2009 b) and shoots (see chapter 3), and hence the increased production of shoots 

(Belimov et al., 2009 b, Belimov et al., 2009 a) was applied as a soil treatment. 

Gomez-Cadenas et al. (1996) showed that low water potential of soil stimulated ACC 

production in Cleopatra mandarin roots, and then rehydration allowed delivery of

112



Chapter 5 Leaf age-dependent stomatai responses to ABA and soil drying

this ACC from roots to shoots via the transpiration stream, giving rise to a burst of 

ethylene production in the shoot. Inoculation of the soil around wheat roots with V. 

paradoxus 5C-2, is assumed to decrease ACC accumulation in the root when soil dries, 

and eventually to decrease ACC in the xylem and delivery to the shoot (Belimov et al., 

2009 b), thus potentially decreasing ethylene production in shoots. In these 

experiments (Figures 5.4 and 5.6), soil drying (followed by some rehydration) was 

used to induce internal ABA production (in conjunction, presumably, with maximal 

ACC delivery to the shoot), and it was found that neither leaf age nor bacterial 

inoculation affected basal or drought-enhanced ABA concentrations (Figure 5.7). 

Comparing Figures 5.4 and 5.6 with Figures 5.1 and 5.2, it can be seen that soil drying 

had a similar effect on stomatai closure to that resulting from external ABA 

application, whereby less mature leaves exhibited sensitive stomatai closure, but 

more mature leaves exhibited a reduced sensitivity to soil drying, especially in the 

oldest leaf (leaf 2) tested. By pre-treating plants with 1-MCP (Figure 5.4) or after 

rhizobacterial inoculation (Figure 5.6), the ability of the more mature leaves to close 

their stomata after soil drying treatments, was restored. These experiments suggest 

that ethylene is an important the factor which reduces stomatai responsiveness to 

ABA as leaves age.

Furthermore this work indicates that rhizobacateria which contain ACC deaminase 

can be used as a tool for probing the involvement of ethylene in plant responses. 

Although 1-MCP, aminoethoxyvinylglycine (AVG), and silver ions are frequently used 

to study ethylene functions in plants, the use of some of these compounds can be 

accompanied by toxic effects. ACC-deaminase bacterial inoculation offers a relatively 

non-toxic and more subtle regulation of ethylene accumulation in both roots and 

shoots (1-MCP is only effective in disrupting shoot ethylene biology as it cannot 

penetrate the soil). ACC-deaminase containing rhizobacteria have been shown to
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have a growth promoting effect on plants in some studies, particularly under the 

types o f stress conditions which are sometimes associated with enhanced ethylene 

production such as drought or high salinity (Belimov et al., 2009 a, Belimov et al., 

2009 b, Nadeem et al., 2010, Mayak et al., 2004a, Glick et al., 2007). It is assumed 

that bacterial regulation of ethylene accumulation influences plant growth because 

ethylene can directly negatively regulate plant growth at the cellular level (Dodd, 

2005, He et al., 2009, Sobeih et al., 2004, Hussain et al., 1999, Wilkinson and Davies, 

2010, Pierik et al., 2006). Studies here suggest an alternative or additional 

explanation for bacterial growth promotion. Bacterial growth promotion could occur 

through sensitizing stomata of aged or more mature leaves to any stress that 

produces ABA, such as drought, thus improving turgor for tissue expansion in more 

leaves per plant than in the non-inoculated plants. Tardieu et al. (2010) discuss the 

current understanding of the involvement of ABA in maintaining growth either 

through turgor maintenance or non-hydraulic growth regulation. Further work needs 

to be done to determine whether the growth promotion effect of bacteria occurs 

through turgor improvement in growing tissues or via a reduction in the more direct 

effect of ethylene to inhibit leaf cell extension rate, or both.

In order to determine whether ethylene-regulated leaf age effects on stomatai 

sensitivity to ABA occurred via age-dependent modulations of ethylene generation, or 

age-dependent modulations of target cell sensitivity, gas chromatography was used 

to measure ethylene production in different aged wheat leaves as described in 

chapter 2. However, ethylene generation from the leaves of this plant species and 

variety under these particular experimental conditions was too low to be detected in 

this system, except when leaves were pretreated with the ethylene precursor ACC 

(Figure 5.11). ACC content in plant tissues is related to the extent of ethylene 

production by that tissue as the rate limiting step of ethylene synthesis is ACC
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synthesis (Wang et al., 2002, Guzman and Ecker, 1990, Kieber et al., 1993). Gas 

chromatography-mass spectrometry (GC-MS) was used here to measure ACC 

concentration, as a surrogate for ethylene production. As shown in Figure 5.10, there 

were no significant differences in the ACC concentration in leaves of different ages, 

both in the presence and absence of a pre-treatment with exogenous ACC. Nor were 

the amounts of ethylene generated by the ACC-pretreated leaves any different 

between age categories (Figure 5.11). Together, these data suggest that the lack of 

stomatai sensitivity to ABA in the older leaves could be due to an increase in stomatai 

sensitivity to ethylene, rather than to an age-related increase in ethylene production. 

As described above and together with reports of Desikan et al (2006) and Wilkinson & 

Davies (2010), ethylene closes stomata when ABA concentrations are relatively low, 

thus the concentration-dependent sensitivity of stomatai closure to ACC can be used 

as a surrogate for stomatai sensitivity to ACC or ethylene per se -  whether the effect 

o f ethylene causes stomatai closure or antagonizes ABA-induced stomatai opening.

To substantiate this hypothesis, three concentrations of ACC were applied to wheat 

leaves to induce ethylene production in plants. The data in Figure 5.8 show that, 

except for the lowest concentration, application of ACC could close stomata in the 

oldest leaves tested, but not in the two less mature leaves. As ACC can act as an 

independent signaling molecule in plant cells (Tsang et al., 2011), 1-MCP was used to 

investigate whether effects induced by ACC were indeed brought about through the 

ethylene that was generated as a consequence of its application. Stomata of less 

mature leaves, which had been most sensitive to ABA, showed only limited 

ACC-induced closure when pre-treated with 1-MCP, indicating that ethylene had 

indeed been the signal to which stomata in ACC-treated leaves were responding 

(Figure 5.9). These data, together with the findings that a given ACC application 

generates a similar amount of ethylene (and ACC) in leaves of all ages, indicates that
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ethylene antagonizes ABA to a greater extent in more mature (aged) leaves is due to 

their greater sensitivity to ethylene, but not due to age-related differences in 

ethylene production (Figure 5.12). Such increased sensitivity to ethylene can explain 

the relative insensitivity of stomata to ABA and soil drying in older leaves, given that 

we know that ethylene antagonizes the stomatai response to ABA as shown in Figures

5.1, 5.2, 5.4 and 5.6 (and by Wilkinson and Davies (2010)). Antagonism between ABA 

and ethylene may be important to improve plant fitness to the environment in 

addition to matching carbon gain and water availability. For example, in sunflower, 

low nutrient availability stimulated ethylene production, thus increasing gs and 

transpiration thereby increasing soil nutrient abstraction rates (Nicotra and Davidson, 

2010, Benlloch-Gonzalez et al., 2010). Both ethylene and ABA were involved in plant 

competition by regulating transpiration of competing plants (Vysotskaya et al., 2011). 

It will be interesting to explore how these hormones interact in different stresses 

such as heat, flooding, UVB where this interaction could allow plants to efficiently use 

water in a 'low-cost' way, thereby increasing fitness in a changing environment.

It has been shown that hydrogen peroxide synthesis is essential in the stomatai 

response to ethylene (Desikan et al., 2006). It is suggested that the enzyme 

nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (AtrobohF) 

stimulated hydrogen peroxide production in response to ethylene in Arobidopsis, thus 

leading to stomatai closure. A further study of age-associated oxidative stress in 

plants suggested that chloroplastic antioxidant defenses levels decreased in aging 

plants (Munne-Bosch and Alegre, 2002). However, it is not clear whether increased 

stomatai sensitivity to ethylene with leaf aging is linked with age-associated oxidative 

stress in different leaves (Figure 5.12). It could be worthwhile to investigate this 

question in future work.
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Interactions between ethylene and ABA occurred both at the level of synthesis where 

ABA restricted ethylene production to maintain shoot and root growth in low water 

relation conditions (Sharp, 2002) and in terms of cellular sensitivity where both 

hormones acted together to control seed germination (Ghassemian et al., 2000), but 

it would seem, in this case, that age-related changes in ethylene biology did not affect 

stomata through changes in ABA biosynthesis or catabolism, because there was no 

effect of leaf age on ABA concentration, in plants grown in either well-watered or 

drying soil (Figure 5.7). Therefore we propose that age-related changes in ABA 

sensitivity occur at the levels of an interaction between the guard cell ABA- and 

ethylene-signal transduction pathways, as previously proposed by Wilkinson and 

Davies (2010). In the future it will be important to use, molecular techniques to 

explore this interaction further. For example, the expression of ABA response genes 

under ethylene treatment by using RT-PCR.
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Chapter 6 -  General Discussion

Concerns about global food security are increasing. Increasing food production in a 

sustainable way is an essential component to balance the supply and demand of the 

food, particularly staple food crops such as wheat, rice and maize (Parry and 

Hawkesford, 2010). In the mid-1940s-1950s, Dr Norman Borlaug led a pilot program 

in Mexico, which developed high yielding semi-dwarf wheat varieties that resulted in 

a 6 fold increase of wheat yield between 1944 and 1963. This was known as the 

beginning of 'first green revolution'. To meet a target of 70% more food available by 

2050 (FAO, November 2009) when facing factors such as land degradation, climate 

change which could cause yield reductions, a new green revolution is needed to 

increase crop yield. However, rather than a single 'magic bullet' such as semi-dwarf 

cereal crops used in the first green revolution, an integrated, interdisciplinary and 

sustainable approach is required to increase production per unit area and also 

optimize the resource use efficiency of crops (Parry and Hawkesford, 2010).

Over the past decades, many scientific efforts have aimed to manipulate 'above 

ground' traits (eg. Increasing crop harvest index with dwarf plant varieties), but 

genetic variation in root system properties has been largely neglected (Lynch, 2007). 

Root systems are currently attracting much scientific effort, as their manipulation 

could provide an approach to go beyond the first green revolution (Gewin, 2010). 

Lynch has highlighted the key role that may be played by the root system in reducing 

crop reliance on potentially expensive inputs such as chemical fertilizers and irrigation 

(Lynch, 2007). Wojciechowski et al. (2009) found the root length was decreased up to 

33% in dwarf lines which contain Rht-lBc, Rht-Dlc, and Rhtl2  dwarfing alleles in a 

common genetic background ('Mercia' and 'Maris Widgeon') when plants grew either
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in pots with soil or in the field. Waines and Ehdaie (2007) also examined root 

characteristics in early green-revolution wheat lines and later-generation semi-dwarf 

lines and found that root biomass or size of modern cultivars is smaller in comparison 

with landraces. They suggested that this root tra it may explain why dwarf genotypes 

carrying Rht dwarfing genes such as Rht-Blc have not been widely planted, 

particularly in dry environments.

As described in chapter 1, root architecture can have a crucial effect on nutrient and 

water uptake. Shallow roots usually allow plants to capture surface applied fertilizer 

such as immobile phosphate; while deeper roots may be required to explore deeper 

N reserves and access water in deeper soil layers. Ho et al. (2005) examined the 

correlations between shallow or deep roots and phosphorus and water acquisition in 

the greenhouse and field. Under combined water and phosphorus stress treatment, 

the best genotype was one with dimorphic root system (shallow and deep) in the 

greenhouse, while in the field genotypes with shallow roots grew best compared with 

deep-rooted or dimorphic root genotypes, indicating early vegetative growth is 

important for plants to cope with terminal drought environments. Watt's team is 

working with wheat lines which have deeper, faster-growing roots (Kirkegaard et al., 

2007, Gewin, 2010). By crossing these lines with currently commonly used cultivars, 

400 new wheat lines were developed and have being tested in the field in different 

regions of the world (Gewin, 2010).

Microbial manipulation is another approach to increase plant growth by regulating 

the growth and functioning of root system as discussed in chapter 1. Lopez-Bucio et al. 

(2007) observed that inoculation of Arobidopsis and bean with the PGPR strain 

Bacillus megatenum showed promoted shoot growth of bean and Arabidopsis, but 

inhibited primary root growth while increasing root hair length, and lateral root
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number and growth of Arabidopsis. A recent report by Gutierrez-Luna (2010) showed 

that volatile organic compounds emitted by PGPR strains such as Bacillus cereus, and 

B. simplex can stimulate primary root growth and lateral root formation. PGPR strains 

which can produce indole-3-acetic acid (IAA) exhibited promotion effects on rooting 

in semi-hardwood and hardwood plants, indicating their potential usage in organic 

nursery material production as a replacement of synthetic auxin on rooting 

promotion (Erturk et al., 2010).

In addition to growth promotion effects on roots and shoots, the work presented in 

chapter 3 suggests another way that rhizobacteria could regulate plant development. 

Variovorax paradoxus 5C-2 which contains ACC deaminase not only stimulated floral 

transition in Arabidopsis, but also promoted Arabidopsis leaf growth. It is suggested 

that ethylene could be a major factor in the regulating plant growth and development 

in response to soil inoculation with this strain. Although rhizobacteria containing ACC 

deaminase have been shown to increase plant growth in different plants and under 

different conditions (Glick, 1995, Mayak et al., 2004a, Mayak et al., 2004b, Belimov et 

al., 2005, Belimov et al., 2009 b), very few studies reported the regulation of plant 

development by this group of rhizobacteria. Although Belimov et al (2009a) showed 

5C-2 decreased time to flowering in potato, the mechanism causing this 

developmental regulation was not discussed. The work described in chapter 3 

examined the potential role of ethylene in rhizobacteria-induced growth promotion 

and altered development of Arabidopsis by using ethylene mutants, measuring ACC 

concentrations in and ethylene production from Arabidopsis leaves, and determining 

transcription patterns of ethylene response genes. Taken together, these results 

suggest that soil inoculation with \/. paradoxus 5C-2 promoted Arabidopsis growth 

and flowering via an ethylene-dependent pathway. Particularly, this work broadens 

the understanding that the regulation of ethylene status in plant by ACC deaminase
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containing bacteria not only occurs locally in the root (Penrose et al., 2001), 

throughout young seedlings (Mayak et al., 2004a, Mayak et al., 2004b), or in the 

xylem sap (Belimov et al., 2009 b), but also in fully expanded mature leaves. This 

suggests ACC deaminase containing rhizobacteria could be used as a tool to mitigate 

short term ethylene over-production problems under serious stress conditions such 

as high temperature (Aloni et al., 1995, Djanaguiraman and Prasad, 2010) or ozone 

(Sinn et al., 2004, Vahala et al., 1998).

Effects of rhizobacteria 5C-2 on wheat were examined in chapters 4 and 5. Although 

5C-2 stimulated floral transition and promoted vegetative growth in Arabidopsis, its 

effects on wheat were only observed in altered stomatai responses of aged leaves to 

soil drying and rehydration (chapter 5), but not in leaf growth of wheat seedlings at 

the 3rd leaf stage of plants grown in well watered or drying soil. Ethylene may have 

different effects on different plant species, particularly because of interactions 

between plant developmental stages and environment. Thus examining the effect of 

rhizobacterial inoculation on certain plant species under certain conditions is 

important before using bacteria in the field experiment. In the work here, only plant 

physiological and molecular responses were evaluated in response to rhizobacterial 

inoculation, while bacterial responses to plants were not examined. For example, it is 

not clear whether components of plant root exudates could regulate bacterial activity, 

population, or ACC deaminase activity in the rhizosphere under different 

environmental conditions. Investigating these variables in future experiments could 

benefit usage of ACC deaminase containing bacteria in different environmental 

conditions, especially in the field for the purpose of maintaining or improving crop 

yield.

The interaction between ABA and ethylene in regulating root and shoot growth has
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been reported when plants face low shoot or root water potential (Sharp, 2002) or 

encounter compacted soil (Hussain et al., 2000). It is suggested that ABA maintains 

shoot and root growth by regulating ethylene production. Also, ABA and ethylene 

interact at the level of signal transduction in controlling seed germination 

(Ghassemian et al., 2000). However, only a few studies have explored ABA and 

ethylene interactions in regulating stomatai behavior. In ethylene treated Arabidopsis 

or ozone stressed Leontodon hispidus with enhanced ethylene production, stomata 

lost sensitivity to ABA (Tanaka et al., 2005, Wilkinson and Davies, 2009), as observed 

in older leaves by Atkinson et al. (1989) and the experiments reported in chapter 5. 

The work in chapter 5 provided insights into ABA and ethylene interactions in terms 

of stomatai regulation: Not only was the production of ABA and ethylene regulated to 

cause antagonistic effects on stomata as shown by Wilkinson and Davies (2009), but 

also in terms of changes in stomatai sensitivity to ABA and ethylene.

This is the first report that showed stomatai responses to ethylene are leaf age 

dependent. It suggests that when plants are setting seed, stomatai hyper-sensitivity 

to ethylene could lead to dramatically increased water loss when plants encounter 

ethylene stimulated by stresses such as high temperature (Djanaguiraman and Prasad, 

2010, Hays et al., 2007) or ozone (Sinn et al., 2004). This problem could become 

worse if plants encounter multiple stresses such as drought with ozone (Wilkinson 

and Davies, 2009). Under these circumstances, rapid loss of water could cause plant 

water deficits, leading to a reduction of yield. Furthermore, if this leaf-age dependent 

sensitivity of ethylene is not only manifest as stomatai responses but also in the leaf 

cell, hyper-sensitivity to ethylene in aged leaves under stress conditions could cause 

more serious problems as ethylene is involved in inhibiting net photosynthesis (Kays 

and Pallas, 1980, Gunderson and Taylor, 1991, Pierik et al., 2006, Khan, 2004), 

modulating the timing of leaf senescence (Djanaguiraman and Prasad, 2010, Jing et al.,
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2003), eventually leading to yield loss.

It has been reported in wheat that stress resistance or tolerance varied among 

genotypes and this can be associated with the levels of stress-induced ethylene 

production (Balota et al., 2004, Hays et al., 2007). Stress susceptible genotypes 

produced significantly more ethylene under optimum or stress conditions such as 

high temperature, or oxidative stress than stress resistance genotypes. It is suggested 

that ethylene synthesis can be increased (autostimulation) or decreased 

(autoinhibition) by ethylene (Arteca and Arteca, 1999, Yang and Hoffman, 1984, Chae 

and Kieber, 2005). However it is not clear whether ethylene sensitivity could be 

related to ethylene production under stress conditions and this could be used as an 

indicator for 'stress tolerance' across genotypes. Therefore, it will be worthwhile to 

examine relations between ethylene sensitivity and genotypic variation in stress. 

Probing the relationship between these two could provide a novel target for plant 

breeding programs for stress avoidance or for increased productivity.

Inoculation with rhizobacteria 5C-2 not only improved vegetative growth and 

stimulated floral transition in Arabidopsis as shown in chapter 3, but also increased 

root elongation at the early seedling stage in mustard (Belimov et al., 2005), and 

tomato (Belimov et al., 2007). Early root vigour is crucial for plants to take up water 

from deeper soil layers if plants face drought at a later growth stage (Palta and Watt, 

2009). ACC deaminase-containing rhizobacteria such as 5C-2 could be used to 

improve root vigor. However, environmental factors could affect rhizobacterial 

populations and/or activity. For example, Martinez et al. (2011) reported that 

fertilizer such as N applied in the soil or soil pH regulated population size of the PGPR 

strains Bacillus, Enterobacter, Pseudomonas and Serratia and their trait activities such 

as IAA production or phosphorus liberation. In addition to soil characters,
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competition within the microbial community of rhizosphere could strongly affect the 

survival or activity of PGPR strains, particularly the inoculated 'foreign7 strain, since 

cooperation between plants and bacteria exhibits a high level of host specificity 

(Morrissey et al., 2004, Lugtenberg and Kamilova, 2009). These factors probably 

explain why many strains promote growth in laboratory experiments but do not 

always show consistent, effective performance in diverse field situations (Mark et al., 

2006, Morrissey et al., 2004).

To obtain consistent and effective beneficial effects from bacteria on plant growth 

regardless of diverse environmental conditions, a genetic approach has been used to 

over-express the ACC deaminase gene from bacteria in tomato or canola using 

tandem constitutive cauliflower mosaic virus (CaMV) 35S promoters (Klee et al., 1991, 

Stearns et al., 2005) or specifically in the root of canola using a root specific promoter 

(Stearns et al., 2005). Reduction in ethylene synthesis was observed in leaves or fruit 

of transgenic tomato, in which 35S promoters was used to over-express ACC 

deaminase at whole plant levels, but no differences in apparent vegetative 

phenotypes were found between wild type and transgenic lines except significant 

delays in fru it ripening (Klee et al., 1991). Increased shoot and root growth was 

observed in transgenic canola either with 35S or root specific promoter lines at the 

seedling stage, but plant growth was enhanced in the transgenic line under the 

control of the root specific promoter when treated with nickel stress in soil. These 

studies suggest that tissue-specific over-expression of ACC deaminase may be a viable 

strategy to manipulate shoot ethylene production, especially since constitutive 

promoters could cause pleiotropic effects as basal levels of ethylene production are 

important for plant growth and development. As discussed, multiple stresses such as 

ozone and drought can potentially cause plant dehydration as increased transpiration 

during stress period due to the antagonism between ABA and ethylene (Wilkinson
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and Davies, 2009), Therefore down-regulating ethylene production in the guard cell 

could be a potential approach to alter stomatai behavior under multiple stress 

conditions where both ABA and ethylene levels are increased at the same time. 

Recently, a strong stomatai specific promoter was isolated from Arabidopsis (Yang et 

al., 2008) and this offers a potential opportunity to specifically over-express bacterial 

ACC deaminase genes in the stomata in order to study ethylene function in the 

stomata. This could result in a new approach to help plants conserve water for later 

growth stages and thereby maintain crop yield under stress.

As discussed earlier, exploring and exploiting useful root traits could offer the 

opportunity of a second green revolution (Lynch, 2007). Using ACC deaminase 

containing rhizobacteria to regulate plant growth and development or stomatai 

responses under stress indicates strongly that ethylene production/sensitivity could 

be a target for breeding work to improve root performance. However, studies 

focused on ethylene effects on roots suggested that ethylene played a complicated 

role in regulating root growth and development, and the picture of ethylene function 

in roots is still not very clear. In Arabidopsis, application of ethylene gas or ACC 

reduced root elongation in a concentration-dependent way by decreasing root cell 

length (Dolan, 1997, Le et al., 2001). Sharp and co-workers suggest that ethylene can 

negatively regulate growth of primary maize roots at low water potential if ABA is 

deficient in those roots. Hussain et al (1999) showed that root-sourced ethylene 

inhibited leaf growth when plants encounter compacted soil. Gallie et al. (2009) 

reported that down-regulating the expression of ACC synthesis genes in maize 

decreased ethylene production, and increased growth of primary and seminal roots 

when plants were grown on filter paper. In addition to inhibition of primary root 

growth, ethylene is also involved in lateral root branching by inhibiting lateral root 

initiation and formation (Ivanchenko et al., 2008, Lewis et al., 2011), and cell division
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modulation in the quiescent center in the stem cell niche (Ortega-Martinez et al., 

2007).

Ethylene is involved in multiple net-works with other hormones including as ABA 

(Sharp, 2002, Ghassemian et al., 2000, Hussain et al., 2000), auxin (Tsuchisaka and 

Theologis, 2004, Stepanova et al., 2005, Stepanova et al., 2007, Ruzicka et al., 2007) 

and gibberellin (GA) (Achard et al., 2006) in regulating root growth and development. 

These hormonal interactions are regulated at multi-levels. For example, exogenous 

applications of either auxin or ethylene can alter the other's biosynthesis (Tsuchisaka 

and Theologis, 2004, Stepanova et al., 2005, Stepanova et al., 2008, Ruzicka et al., 

2007); signalling or sensitivity (Stepanova et al., 2007); and ethylene can direct auxin 

transport in controlling cell expansion and lateral root formation (Lewis et al., 2011, 

Strader et al., 2010). In addition to net-works with other hormones, apoplastic 

alkalinization is also involved in ethylene-mediated regulation of root length or root 

cell length (Staal et al., 2011). Therefore, simply altering ethylene production or 

sensitivity could cause secondary effects since other signaling pathways such as the 

auxin pathway will be affected. For example, Strader et al. (2010) isolated an allele of 

the e to l ethylene overproducer and it restored auxin responsiveness to the 

auxin-resistant mutant ibr5.

Moreover, considering ethylene is involved in plant responses to different stresses 

(Wang et al., 2002), regulating ethylene biosynthesis or sensitivity could lead to 

different plant responses under different conditions. For example, Gallie et al. (2009) 

reported that a maize line with down-regulated expression of ACC synthesis genes 

displayed increased root growth in the filter paper system but decreased root 

biomass when plants grew in the soil. These complexities of ethylene functions in 

regulating plant growth and development, particularly in roots bring challenge in
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using ethylene as a target in breeding or transgenic work. Therefore, more efforts 

need to be made to further our fundamental understanding of ethylene function as a 

plant growth regulator, especially in regulations of ethylene biosynthesis or sensitivity 

under different conditions in different regions of growing roots. Because high 

concentrations of exogenous ethylene or ACC and long incubation times (many hours 

to days) were used in earlier studies to uncover the effect of ethylene on root growth 

and development, and this probably is very different from what occurs in nature (Le 

et al., 2001).

In the field, plant growth and yield are affected by several factors such as soil 

properties, plant species and genotypes, and climate properties. Among these factors, 

the rhizosphere is crucial as the place where plants take up water and nutrients and 

interact with soil-borne microorganisms. Many factors influence the rhizosphere 

environment such as applications of fertilizer, irrigation, plant exudates, and 

soil-borne microorganisms. For example, applications of different types of fertilizer 

can affect rhizosphere pH (Ryan et al., 2009). Ammonium-based fertilizers can acidify 

the rhizosphere whereas nitrate-based fertilizers tend to alkalise the rhizosphere. 

Changes in pH can affect chemistry around the roots and microbial communities. 

Usage of organic manure also can increase soil microbial biomass and activity 

compared to those managed exclusively with mineral fertilizer, and also increase 

plant P uptake efficiency, thus improving yield (Simpson et al., 2011). Plants can 

modify the rhizosphere by releasing inorganic and organic substances from roots 

(Ryan et al., 2009). AVP1 pyrophosphosphatase was over-expressed in Arabidopsis to 

increase H+ efflux to the rhizosphere, leading to the acidification of the rhizosphere, 

which can increase nutrient acquisition by increasing Fe and phosphorus availability 

(Yang et al., 2007). Inoculation of PGPR strains to the soil can promote plant growth 

directly by interacting with plants or indirectly by influencing rhizosphere microbial
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communities. For example, introducing PGPR which produce antibiotics to the 

rhizosphere can suppress pathogen growth, thus improve health of plant roots (Ryan 

et al., 2009). Co-inoculation of ACC deaminase containing rhizobacteria and rhizobia 

can promote nodulation to a greater extent than rhizobial inoculation alone 

(Shaharoona et al., 2011, Zahir et al., 2011). The work presented here investigated 

effects of beneficial rhizobacteria containing ACC deaminase on plant growth, 

flowering time, and stomatai regulation which could increase plant water use 

efficiency under stress conditions. These strategies offer potential ways of using 

rhizobacteria to improve crop yield via rhizosphere engineering. Furthermore, 

mechanisms under lying rhizobacterial regulation of plant response(s) are explored, 

highlighting the role of ethylene in regulating plant responses to stress, thus opening 

a window for breeding and genetic modification work to target ethylene in their 

future work.

However, due to the complexity of rhizosphere chemistry and biology, predictabe 

rhizosphere engineering still remains a challenge. Further understanding of the 

complex chemical and biological interactions in the rhizosphere could help to develop 

more ecologically friendly agricultural practices. From the discussion above, it should 

be clear that no 'general' or 'universal' technique/method will secure food supply in 

the future. It seems clear that an interdisciplinary approach is needed to identify 

opportunities and develop innovative or improved techniques to improve crop yields 

in the future. In these new technologies or approaches, both genetic improvements 

of crops by genetic modification to introduce desirable traits or breeding new crop 

varieties and soil management practices in a more sustainable way are needed to 

contribute to food crop production. Considering regional diversity of global 

agriculture, there is no panacea for global food security and no techniques or 

technologies should be ruled out (Baulcombe, 2009).
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