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Abstract

In this Thesis, I provide a theoretical description of the properties of graphene 

on atomically flat hexagonal substrates, such as hexagonal boron nitride (hBN). It 

is known th a t the electronic properties of graphene-based devices can be dram ati

cally improved by the use of such substrates. At the same time, a small lattice mis

match or misalignment angle, results in the formation of the large quasi-periodic 

structure known as a moire pattern. The dominant effect of this, on graphene’s 

electrons, can be described in terms of scattering by the simplest harmonics of 

the moire pattern, which, combined with the symmetry of the system, allows a 

generic phenomenological Hamiltonian to be written. We systematically investi

gate the characteristic features tha t appear in the resulting miniband spectrum, 

and show tha t there generally exists additional secondary Dirac points, isolated on 

the energy axis, on the edge of the first moire miniband. This analysis is extended 

to bilayer-graphene/hBN heterostructures, which generically feature a gap at the 

edge of the first moire miniband.

In a strong magnetic field, we find that generations of gapped Dirac electrons 

systematically reappear in Zak’s magnetic miniband spectra, for rational values 

of the magnetic flux through the moire supercell. The fractal Hofstadter spectra, 

in the vicinity of such flux, can be described in terms of Landau levels, traced to 

the recurrent gapped Dirac electrons. Since this Landau level spectrum contains 

a zeroth energy level, separated by the largest gap from the rest of the spectrum, 

this determines a specific hierarchy of minigaps in the Hofstadter butterfly, and a 

peculiar sequence of dominant incompressible electron states.

By studying semiconductor materials databases, one finds tha t there are also 

several crystals with hexagonal facets almost commensurate with the y/3 x VS  

Kekule lattice of graphene: InA s(lll)B , In P (lll)B , PdTe2, PtTe2, InSe, hGaTe. 

Using generic phenomenological theory, for superlattice effects created by such 

substrates on the Dirac electrons in graphene, we find tha t a typical miniband
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spectrum has a band gap between the first two minibands.

Separately, a theory of the electron-phonon coupling and Raman scattering by 

phonons in graphene is developed. Also, we systematically investigate the effect 

of moire superlattice perturbation on graphene’s, otherwise featureless, optical 

absorption spectra.
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Chapter 1

Introduction

1.1 Introduction

The theory of graphene has its roots in the tight binding models of graphite [1- 

3], later used to model the spectra of fullerene molecules [4] and nanotubes [5]. 

However, it was only more recently that, in 2004, the group of Andre Geim first 

succeeded in using their mechanical exfoliation technique to isolate a single layer 

of graphite: graphene [6]. Not only was this the first two-dimensional carbon 

allotrope, it was the first ever truly two-dimensional material. And it would not 

be the last. Barely a year later the same exfoliation technique was applied to a 

variety of layered materials: boron nitride, dichalcogenides and complex oxides [7]. 

Since then, there has been rapid progress in the field of graphene, and many of 

the “low-hanging research fruits” have already been plucked. Because of this it is 

now the other two-dimensional materials, and their heterostructures, th a t look set 

to receive increased attention [8].

There is one particular graphene heterostructure tha t is almost always present 

in any graphene device; that is the heterostructure formed between graphene and 

its substrate. At first, with the use of the S i02 substrate, this was regarded as 

a mere nuisance. The graphene electrons experience scattering from impurities 

in the substrate, leading to a reduced mobility, and electron-hole puddles tha t 

hide the graphene Dirac point from the experimentalist [9-11]. One approach to
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prevent this is the clever use of suspended graphene samples [16, 17].

A simpler approach to obtain high quality devices is through the correct choice 

of substrate, with atomically flat hexagonal boron-nitride (hBN) proving particu

larly good in this role [9-15]. However, the substrate can play more than  a merely 

mechanical role in the structure of the device. Rather, the substrate can quali

tatively modify the graphene spectra, providing new opportunities to tailor the 

graphene bandstructure and observe new physical phenomena. W ith regard to 

the well aligned graphene on hBN system, the small lattice mismatch between the 

graphene and hBN lattices generates the long-period interference pattern  known 

as the moire super lattice. The superlattice potential [18-21] thus created results 

in the formation of replica secondary Dirac points in the graphene spectra, which 

have recently been observed experimentally [22-25]. Moreover, the well aligned 

graphene-hBN system is not just of academic interest, obtainable only through 

the careful alignment of the graphene and hBN crystallographic directions. In

stead, this system arises naturally during the epitaxial growth [26] of graphene on 

the hBN surface. Finally, there are many hexagonal surfaces with the unit cell 

area almost three times that of graphene. We will later show tha t these give rise 

to their own unique type of superlattice perturbation, which allows for the opening 

of band gaps in graphene’s spectrum, whilst, simultaneously, offering the prospect 

of good mobility.

This Thesis is organised as follows: In the first chapter, we review the key 

theoretical background used in the rest of the Thesis. The next four chapters 

will be devoted to the graphene-hBN heterostructure: Chapter 2 describing the 

phenomenological model for this system, and chapter 3 discussing the optical ab

sorption and electronic transport properties. Chapter 4 is devoted to the peculiar 

fractal properties of the Hofstadter spectrum of the graphene-hBN heterostructure 

in a strong magnetic field. The manifestation of these features in recent experi

mental results is discussed in chapter 5. In chapter 6, we move on to the bilayer 

graphene-hBN heterostructure. In chapter 7, we consider alternative hexagonal
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substrates, almost commensurate with the y/3 x \/3 Kekule lattice of graphene. 

Finally, in chapter 8, we review the electron-phonon coupling, and Raman spectra 

in graphene and graphene-hBN heterostructures. Some brief concluding remarks 

are made in chapter 9.

1.2 Geometry of Monolayer Graphene

Figure 1.1: a) The real space graphene lattice. Showing the two carbon atoms per unit 
cell (A and B), the primitive lattice vectors, and the point group symmetry operations 
(see section 1.5). b) The graphene Brillouin zone, with symmetry points and reciprocal 
lattice vectors labelled. The dashed lines in (a) and (b) show the tripled graphene unit 
cell and its Brillouin zone.

Graphene has the honeycomb lattice (Fig. 1.1 (a)), with two carbon sites per 

unit cell, known as the A  and B  sites. The primitive lattice vectors are a i  =  

a ( l /2 , \/3 /2 ) , and a 2 — a ( — 1/2, \/3 /2 ) , where a =  2.46 A is the graphene lattice 

constant [27, 28]. The nearest neighbour vectors are Sj =  # 2713/3 (0>a/y/3),  with 

R 27Tj /3  the anticlockwise rotation matrix.

In reciprocal space (Fig. 1.1 (b)) g v =  ^  and g 2 =

the =  ^ ( ± 1 ,0 )  are referred to as graphene’s two valleys; and M  =  ^0, •

1.3 Tight Binding Model for Monolayer Graphene

The majority of the material found in this Thesis relies on a minimal tight binding 

model of graphene, which we now briefly summarise. More detailed descriptions
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are found in Refs. [27, 29, 30].

The tight binding model is based on the diagonalisation of the microscopic 

Hamiltonian in a basis of the atomic orbitals on the carbon atoms (or some gener

alisation thereof). Each carbon atom provides six electrons, two of which belong 

to the core, with the remainder occupying the 2s, 2px, 2py, and 2pz orbitals. Of 

these, the low-energy electronic properties of graphene are controlled by the car

bon 2pz orbitals, which are directed perpendicularly to the graphene plane. The 

remaining electrons in the 2s, 2px and 2py orbitals, are hybridised into a sp2 con

figuration and are chiefly responsible for the 120° bond angles of graphene [27]. 

Moreover, the 2s, 2px and 2py orbitals are even under reflection in the plane of 

graphene, whereas the 2pz orbital is odd under this symmetry. As a result, there 

is no coupling between these two sets of orbitals and therefore, to understand the 

low-energy electronic properties of graphene, it is sufficient to concentrate entirely 

on the 2pz orbitals.

Due to the translational symmetry of the graphene lattice, any wavefunction, 

may be characterised by a wavevector k  [31]. The wavevector is defined, within 

the Brillouin zone shown in Fig. 1.1 (b), by,

TRM r )  = eik-RiPk(r), (1-1)

where Tr  is the translational operator, T jj/( r )  =  f ( r  +  R ).  Because of this we 

must form linear combinations of the 2pz orbitals which satisfy Eq. (1.1). To do 

this we consider the Bloch wavefunctions,

^ 2 eik<R+Ti)(j>pz(r - R - n ) ,  (1.2)

where i = A, B  labels the two carbon sites in the unit cell, and <fipz(r) is the 

normalised carbon 2pz orbital. The sum runs over all hexagon centre sites in the 

crystal, N  is the number of unit cells in the crystal, and t a / b  =  ±<5i- To make 

rapid progress I use the simplifying assumptions that:
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(i) The 0pz(r) wavefunctions decay so rapidly at r  <  a/y/Z  th a t the Bloch 

functions on the A  and B  sites are orthogonal.

(ii) Hopping is limited to nearest neighbours only,

(^Pz ( r - R f- T B)\H\(f)vz( r - R - T A)) =
—Jo for {R'+t b) -  (,R + t aj) = Sj=i )2)3 

0 otherwise

where 70 ~  3.0 eV [27] is positive. Additionally, I set the on-site energy of the 2pz 

orbital in the graphene lattice equal to zero, that is (0pZ|77|0pz) =  0

W ith these approximations it is immediately possible to write down the Hamil

tonian in the basis of Bloch wavefunctions

H  =  -  70
1 0  / ( * A

[ r ( k )  0 j
m  =  y ,  eik i

3 = 1 ,2 ,3

(1.3)

The Hamiltonian is readily diagonalisable to give two bands,

es{k) =  s |/(fe)|, s =  ±  1, (1.4)

which are plotted in Fig. 1.2. The electron-hole symmetry present in Eq. (1.4) is 

merely an artefact of the approximations used, and is lifted if the non-orthogonality 

of the Bloch functions is accounted for [27, 30].

For undoped graphene, one electron from each of graphene’s two carbon sites 

occupies the 7r-bands. Hence, counting spin degeneracy, the Fermi level sits at 

e =  0 , so tha t the lower branch (s =  - 1 ) is completely filled, while the higher 

branch (s =  1) is completely empty. The two branches meet at the Brillouin zone 

corners with a linear dispersion which we discuss in the next section.
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Figure 1.2: The bandstructure of graphene, in the first Brillouin zone, calculated from 
Eq. (1.4). The bandwidth is set by energies ± 3 7 0  which occur at the T-point, while 
energies ± 7 0  correspond to a Van-Hove singularity, due to the saddle-point occurring at 
the AT-point. The inset shows the linear dispersion found at the Brillouin zone corners.

1.4 k • p  Model for Graphene

To understand the electronic properties of any material, particular attention must 

be paid to the electronic states around the Fermi level. To this end, we use 

k  p  theory [32-34] to derive the the Dirac Hamiltonian, describing the low energy 

dispersion around graphene’s Brillouin zone corners. To do this we assume th a t the 

low-energy wavefunction, taking states from the K+ valley only*, can be written 

in the form,

ip(r) =  - - L  V  +  r i)eiK+iR+'ri)(l)pz(r - R ~ T i )
i = A / B  R

«  E  ^ ( r ) 7 y E  eiK*<R Tj). (1.5)
i= A /B  V R

*In reality, states from both valleys make up the low-energy wavefunctions (see treatm ent in, 
e.g., Ref. [34]). However, states with different wavevectors do not couple so the treatm ent here 
is sufficient.
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The envelope functions*, fc (R  + r*), vary smoothly over the scale of many lattice 

periods, which is used together with the rapid decay of the 2pz orbital to write the 

second line.

Wavefunctions ?/>(r ) diagonalise the microscopic Hamiltonian, if ,

(1 .6 )

This is used to find the Hamiltonian tha t acts in the space of envelope functions. 

To this end, we multiply Eq. (1.6) by e~tK+ ̂ R,+TA <̂ppz(r — R ' — t a )* and integrate 

to  get,

efA(R! +  t a ) = -7o  ^ 2  M #  + t a + Si)elK+'di (1.7)
<h =  l ,2 ,3

where we have used the same assumptions and notations as section 1.3. We now 

Taylor expand fB {R ' + t a + Si) in Si to get,

efA(r) ~  -70 E  tfeM  +  (5*' V )& (r) + ' ■' 1eiK+ Sl (L8)
8 i = 1 ,2 ,3

=  ^ Y al o [-dy -  idx] f B{r). (1.9)

Writing the similar expression for f B gives [35],

v
( q 7ft ̂

V* ° /
-0(r) =  ei/j(r), ip(r)

/ aW

y /s W y
n = p x + ip y .  (1-10)

Here, we use the basis ( ^ , i c +, $b,k+), momentum operators pXi =  - i d Xi, and the 

Dirac velocity v = ^UTo- The matrix, acting on the left of in Eq. (1.10), is iden

tified as the Dirac Hamiltonian, and can be written as vp  • er, where a  =  (oi, <t2) 

is the vector of Pauli matrices. The Hamiltonian in the vicinity of the oppo

site valley is the same as Hamiltonian (1.10) and has the basis (<&b,K-, ~ ^ a ,kJ)-

■^Taking f i ( R  +  n )  =  Cieifc (H+r,:) in the top line of Eq. (1.5) is equivalent to  using Bloch 
states (1.2).
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Diagonalisation gives

e,(fe) =  s^|fc|, i p s = ± ,k ( r )  =  - - L -  1 eik r , (1.11)
v 2 L \^seiQkJ

where k  is measured with respect to the valley centre. The same dispersion relation 

is obtained by expanding tight binding Hamiltonian (1.3) at momentum K + + k  

for k  <C 1/a.

1.5 Sym m etries o f Graphene

1.5.1 G eom etrical Sym m etries

Table 1.1: The character table for cqv». The right hand column shows the basis of 
matrices, acting on the space of graphene’s four-component electronic states, which 
transform according to each irreducible representation.

C-Qv" •

1

Tx ai

T-L a2

r36

T a A

l a i c6

r26
r46

c2To-i
r4Tc6i ai
clTa2
4 T a 2

c6
r56

CeTai
c6^ai

4 Ta2

3 Sy

3 TaiSy

3Ta2 Sy

3sx

3 Taisx 

3 Ta2sx

Ai 1 1 1 1 1 1 1 1 1 1
b 2 1 1 -1 1 1 -1 1 -1 -1 0373

a 2 1 1 1 1 1 1 -1 -1 -1 03
B i 1 1 -1 1 1 -1 -1 1 1 7-3

Ei 2 2 -2 -1 -1 1 0 0 0 04, 02
e 2 2 2 2 -1 -1 -1 0 0 0 — 0273, 0’l7"3
E ’ 2 -1 0 2 -1 0 0 2 -1 0'37"l, 0"374
E” 2 -1 0 2 -1 0 0 -2 1 7"i) r2
G 4 -2 0 -2 1 0 0 0 0 0’2Ti, —CF1T1

0 4 72, CF2T2

An understanding of the symmetry [36, 37] of the graphene lattice is essential 

to understand many of its physical properties. The graphene lattice has the c6v 

point group symmetry, the elements of which are shown in Fig. 1.1, and contains 

the 27r/6 rotation, c6, the sublattices preserving reflection, sy, and the sublattice 

exchanging reflections, sx. However, we will only be interested in the properties

19



of graphene’s electrons or phonons in the neighbourhoods of the two ineqnivalent 

Brillouin zone corners, K + and K _ .  It is therefore more convenient to consider the 

symmetry group of the tripled graphene unit cell, c6v» =  c6v +  (Taic6v) +  (Ta2c6v) 

[39]. The tripled graphene unit cell has a correspondingly three times smaller 

Brillouin zone, shown as a black dashed hexagon in Fig. 1.1 (b). Importantly, 

wavevectors K ±  are folded onto the T-point of this smaller Brillouin zone, which 

avoids having to work with the group of their wavevectors. The character table of 

Cqv>> is given in table 1.1

1.5 .2  M atrix  R epresen tation  of cqV"

In the the spirit of the k  p  approximation, any low-energy graphene electronic 

Hamiltonian can be written using 4 x 4  Hermitian matrices, acting in a basis of 

Bloch wave functions, {§ak+i $ b k+, &b k - ,  —$ ak-) ,  on the A  and B  sublattices at 

the exact Brillouin zone corners. These matrices are conveniently w ritten using the 

Kronecker products of two commuting sets of Pauli matrices a*, Tj, which are said 

to act on graphene’s spin and valley degrees of freedom separately. Throughout 

this Thesis, the Kronecker product will be implied so tha t <7*7} =  Tj 0  cq, and 

identity matrices are not written.

Upon application of a symmetry operation G, the Bloch wavefunctions will 

transform into each other according to some matrix T(G),

6 * ,(r )  =  = £ r * (G )® ,(r ) .
3

Here G~l is the coordinate transformation corresponding to G 

transformation therefore acts on the electronic matrices as,

GtTiTj = T{G)airj T \G ) .  (1.13)

It is sufficient to list matrices r(<3) for the generators of c§v». The m atrix for 

spatial inversion symmetry, I  =  cj?, and reflection symmetry sy, are also listed for
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convenience,

r  _  / , - ^ i  _  I  \ r  r  - t  1
2 2 ^  ^  ^1^3j r oi ( 2 z 2

r Sy= cr2T2, rI = a3T1. (1.14)

Figure 1.3 shows a convenient method of calculating these matrices, based on the 

application of geometrical symmetries to the Bloch wavefunctions. The combina

tions of ai and r^, tha t transform according to the irreducible representations of 

cqv>i , are shown in table 1.1.

1.5 .3  Sym m etries and D egeneracies

The Hamiltonian for a system must remain invariant under all symmetries the sys

tem  possesses. Constructing invariant combinations of the aiTj matrices with the 

other dependencies in the Hamiltonian is a convenient alternative to microscopic 

calculation, which will be used in full in the following chapters. That is,

GH(r) = r(G)H{G~1r ) r \G )  = H(r),  (1.15)

must be obeyed if the system possesses symmetry G. Moreover, each symmetry

of the Hamiltonian results in a degeneracy between wavefunctions ip and =

r  (G )^ (G -V ).

1.5 .4  T im e R eversal S ym m etry

The effect of time reversal symmetry, T, may be accounted for on a similar footing 

to the geometrical symmetries. In particular, time reversal acts as the complex 

conjugate on the phase factors of the Bloch wavefunctions. This effect is the same 

as the sy reflection, and therefore [38],

TH(r)  =  a2T2H* (r)r2a2. (1-16)
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Each of the cq and v* separately are odd under time reversal.

Time reversal symmetry is obeyed quite generally in the absence of external 

magnetic fields. In the absence of an intervalley coupling (such as might be pro

vided by a perturbation with the periodicity of the tripled graphene unit cell) the 

valley index K±  is a good quantum number. Time reversal then allows the spectra 

in graphene’s two valleys to be related*,

tK +{k) =  eK _ (—k). (1-17)

1.6 Coupling to the E lectrom agnetic F ield

The electromagnetic field is introduced into the Dirac Hamiltonian (Eq. (1.3)) 

using the Peierls substitution,

H(p) —>■ H(p  +  eA(r,  t)) = v [p +  e A( r , t)] ■ <x (1-18)

where A(r , t )  is the vector potential, e > 0, and we write a  = (oi,<72). The 

Hamiltonian for the coupling is then immediately written as,

He-em =  A(r, t) ■ j ,  j  =  =  eVCT‘ f1-1^

For the interaction with photons, the electromagnetic field is quantised as [39],

A(r,  t) = Y  , 1 + Taj, . ( i.20)
“  V2e0Vu(q) '  ’ Jq,lq

where V  is a 3 dimensional normalisation volume, I the in-plane component of the 

polarisation, a9ti the photon annihilation operator, and I have neglected to include 

the out of plane momentum. Also, as a m atter of course, the momentum of the 

photon will be neglected as compared to that of the electronic states.

* Spatial inversion symmetry leads to  the same relation.
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Figure 1.3: The transformation of the Bloch wavefunctions (1.2) upon application 
of symmetry operations from c§v». The six corners of each hexagon represent the six 
atomic sites in the tripled unit cell. The top row shows the phases that the four Bloch 
wavefunctions, <lh=A/B.Fcv i place on each of these sites. Here r  = e*27r//3. The remaining 
rows show the phases for Bloch wavefunctions that have been affected by the symmetry 
transformations C6, sx, sy, Tai. The matrix, T(G), for each transformation is shown in 
the right column, and is deduced by comparing the transformed Bloch wavefunctions to 
their un-transformed counterparts in the top row.

1.7 Landau Levels Spectra

W ith a view to application in chapter 4, we now introduce the Landau levels [40] 

of graphene with a finite mass term. Here we use a non-orthogonal coordinate 

system adapted to the hexagonal symmetry of the graphene lattice. That is, we 

write r  = X\X\ +  X2X21 with basis vectors,

1 \/3 1 . y/3 ^
— - x  H— — x 2 = - - x  + — y ^ ‘21^

1

C 6

s x

y

T.

AK_

r ^ i*O

a  1

BK_

*

B K + -A K +

*

*

23



a)
400

*=. 200

-200

-400
0 5 10 15 20 25 30

400

—  200

-200

-400
0 5 15 20 25 3010

M agnetic Field [T] M agnetic F ield  [T]

Figure 1.4: The Landau levels of the Dirac Hamiltonian, shown with A = 0 (left panel) 
and A = 100meV (right panel). Showing valley degenerate bands (purple) and bands 
from the AT_ or A_ valley only (red or blue).

directed along the moire lattice vectors a\  and a 2 shown in Fig. 1.1. The coordi

nates are x\  =  x  +  y / V 3, X2 — —x  +  y / \ J 3.

In this basis, we choose the Landau gauge for the vector potential, A  =  

B x i ( —X\ +  2rr2)/ "n/3, resulting in the Dirac Hamiltonian,

H d =
1/ 2tz A vd)

vd _1/ 2^ A \/3
dXlel2* +  (dX2 + i\ZHeBxi/2)e 1 3

Here Eq. (1.18) has been used to introduce the magnetic field. The gap, A, is 

reflected in the resulting Landau level spectrum when a magnetic field is applied,

En^o = sign (n) \J  A 2/4  +  2\n\v2/ \ 2B, E 0 =  -7— rA' 
0 2 B  ’

(1 .22 )

where f  =  ±1 for the K± valleys, and AB = 1 /y/\eB\ is the magnetic length. 

For A =  0, the Landau levels fan out with the peculiar e ~  ± V n B  dependence 

[35, 41, 42] shown in Fig. 1.4a. A finite gap, A ^ O ,  will manifest itself as a gapped 

Landau level sequence, and broken valley degeneracy for the zeroth Landau level 

(Fig. 1.4b). The latter is possible due to the absence of both time-reversal and 

spatial-inversion symmetries in Ho-
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The wavefunctions corresponding to Eq. (1.22) are,

Jjk 2 -  6
0 —

ik2x2

V2L

(
iP\n\ + t 3 I ±

\ ik2x2

y cn ^ |n |_£^ ti y
- 2 - 2  

ip„ = \ / 3/ 2A n\ g 1/2e~12 e ~ ^ H

sTL

(1.23)

Here A n = l / ( v/n !2nv6 r), cn =  - e  sBXB{En-

k2\ b ,  and H n the Hermite polynomial.

1.8 Spectra of Bilayer Graphene

b)

L2

Figure 1.5: a) The crystal structure of A-B stacked bilayer graphene, showing the 
nearest neighbour intralayer coupling. 70 , and interlayer couplings 71 and 7 3 . b) The 
corresponding bandstructure with an enlargement of the low-energy bands.

The tight binding model of section 1.3 can be adapted for bilayer graphene. 

Here we consider A-B  stacked bilayer [42], shown in Fig. 1.5a, which consists of 

two parallel graphene layers, stacked such that the A  site of the top layer sits 

directly above the B  site of the bottom layer. Here we only take into account the 

two most important interlayer couplings, the vertical hop 71 «  0.39 eV and the 

skew hop 73 ^  0.32 eV, as well as the intralayer 70 ~  3.0 eV [35]. We immediately 

concentrate on the vicinity of the Brillouin zone corners, and write the momentum 

p  with respect to the valley centre,

j j BLG _
( , \T \V 3 ( ( T  ■ p )  VCT  • p

VCT • p 71̂1 r3 y
y/3 VS  ,

v = - y a7o, V3 =  ^ -« 7 3 , V3 <  V .  (1.24)
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The Hamiltonian is written in the basis of Bloch states ($^ i, $B2 , $ m ) for

the K + valley or {^b2 -,—̂ a i ^ b i , —̂ A2) for the K_  valley. The bandstructure 

of Hamiltonian (1.24) contains a pair of high-energy split bands (shown in red in 

Fig. 1.5b) with a dispersion, e «  ± ( 7 1  +  \ J \ v 2k2 +  7 2) / 2 , tha t is approximately 

quadratic for vp <C 7 ^ To discuss the low-energy bands, it is convenient to per

form the Schrieffer-Wolff transformation [43], projecting onto the low-energy 2 x 2 

subspace in the top right hand corner of (1.24),

v2
#?xL2G =  [ipl -  p l )a i +  tyxPy^] rz +  vs {p • cr)T . (1.25)

For the intermediate energy scale 7 i(u3/u ) 2 <C |e| <C 71 the low-energy bands 

obtained from Hamiltonian (1.25) disperse as e ^  ± v 2k2 /^ i .  This is the low 

energy approximation of e «  ± ( 7 1  — \ J 4u2/c2 +  7 ^) / 2 , which is obtained for the low- 

energy bands from Hamiltonian (1.24). At the lowest energy scale |e| <  71 (^3/ ^ ) 2 

the spectra is trigonally warped by the u3 term, forming a central Dirac point at 

k  =  0 with three surrounding Dirac points, separated by 120°, at |fc| =  7 iu3/u 2. 

This shown by the inset in Fig. 1.5b.

1.9 H exagonal Boron N itride

Hexagonal Boron Nitride (hBN) is becoming the substrate of choice for graphene 

devices. The relative smoothness of the surface of this material, combined with 

the reduced density of charged impurities relative to other substrates, means tha t 

the charge fluctuations (electron-hole puddles) found in graphene on this material 

are substantially reduced [9-15].

HBN has the same layered honeycomb structure as graphene (shown in Fig. 1 .1 ), 

but whereas for graphene both the A  and B  sites are occupied by carbon atoms, 

in hBN the A  site (say) contains a nitrogen atom while the B  site contains the 

boron atom. The lattice constant is also very similar to graphene, being only 1.8% 

larger. Chemically the nitrogen atom, having an atomic number of 7, and boron,
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having an atomic number of 5, sit on either side of carbon (atomic number 6 ) in 

the Periodic Table. Therefore the electronic properties of hBN may be modelled 

in a similar manner to tha t of graphene, the difference arising only from the fact 

th a t the two atoms in the unit cell are not equivalent. W ithin the tight binding 

model (section. 1.3) this difference is included by using different on-site energies, 

E n  and E b , for the 2pz orbitals of nitrogen and boron. This, in turn, leads to a 

gapped Dirac Hamiltonian, for the Brillouin zone corners of hBN,

H BN = Vb n P ■ or +  ~7p~Cr37"3, (1.26)

with vbn  the Dirac velocity appropriate for hBN and A b n  = (En  — E b ) ~  

4.6 eV [44]. The resulting dispersion relation, e =  ± y / v g Nk2 +  (A b n /2 )2 indicates 

th a t hBN is an insulator with a large band gap. The second term  in Eq. (1.26), 

which is responsible for the band gap, anticommutes with the m atrix for inversion 

symmetry, (1.14), and is therefore forbidden in the Hamiltonian for graphene.

1.10 The M oire P attern

The term  moire pattern is used to describe the beating of any two short range pe

riodic patterns to create a single long range quasi-periodic pattern. Moire patterns 

are found in everyday settings, for example when a line of sight intersects two simi

lar fences; technological settings [45, 46], including strain measurements, and range 

sensing (where the moire effect is useful) or image processing and under-sampling 

(where it produces unwanted artifacts).

For the purpose of this Thesis, we are primarily interested in the moire patterns 

th a t arise when graphene is placed on top of a crystal whose top layer of atoms has 

the hexagonal Bravais lattice and a lattice constant similar to graphene, e.g.. top 

row of Fig. 1.6. The hBN substrate is the archetypal example, with other exam

ples including I r ( l l l ) ,  N i( ll l) , C u ( lll) , R h ( lll) , Ru(0001) and P t ( l l l )  [48]. In 

chapter 7 , we also consider underlays which are almost commensurate with the
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7 3  x \/3  graphene superlattice. Here, however, I shall give a more general account

of this geometry, applicable to any two similar crystal lattices.

Suppose two crystals are placed on top of each other, the top crystal having 

primitive lattice vectors a* and reciprocal lattice vectors g and the underlay

Re is the anticlockwise rotation matrix. The reciprocal lattice vectors of the moire 

pattern, G*, can then be written immediately,

where 0 , S <C 1 has been assumed in the approximation of Ws-e-  In order to  find 

the primitive moire lattice vectors, A i} we use the definition, A* • Gj = 2n5ij, 

resulting in,

It should be noted that the moire lattice is not, in general, the same as the crys- 

tallographic lattice of the two layer system. The crystallographic lattice is defined 

in terms of a perfect translational symmetry that is only present when the peri

odicities of the two layers are commensurate. In contrast, moire lattice vectors

(1.28) are always defined. Moreover, for |A*| »  \ai\ limit, it is natural to expect 

th a t it will be the moire periodicity that determines the physical properties of the 

system, rather than the true crystallographic periodicity.

It is also interesting to note that if the underlay undergoes a translation u , the 

moire pattern will undergo the larger translation [47] U  =  - W ^ eu.  This effect 

has been used to measure the radius of curvature of the graphene over the step 

edges on I r ( l l l )  surfaces [49]. Due to its Face Centred Cubic crystal structure, 

there is an in-plane displacement between atomic positions in different atomic

with primitive lattice vectors a[ = (1 + 5)Re<ii and reciprocal lattice vectors g\ = 

(1 -\-b)~YRegi. Here 5,0 <C 1 are the lattice mismatch and misalignment angle and

(1.27)

V- 0 5

(1.28)

28



Figure 1.6: Top row: The defect-free moire pattern of graphene (blue) on a sim
ple hexagonal underlay (red), created by either a lattice mismatch (left), or rotational 
misalignment (right). Enlargements show the local atomic arrangements at different 
positions with in the moire unit cell. Lower rows: The magnifying effect that the moire 
pattern has 011 various types of defect. In the bottom panels the square lattice is used 
for clarity.



layers. Moreover, well aligned graphene grows continuously over the step edge to 

produce a displacement in the moire pattern, which, due to the large scale of the 

moire pattern can be easily measured. This effect is shown in the second row of 

Fig. 1.6. The effect of a small uniform strain, applied to the overlay, may also be 

accounted for using the frame-work of this section. This has the dramatic effect 

on the moire pattern shown in the third row Fig. 1.6, and illustrates the moire 

magnifying effect discussed more generally in the next section.

1.11 The M oire M agnifying Glass

In this section we describe the magnifying effect tha t the moire pattern  has on 

defects in the underlay (see Fig. 1.6). However, Eq. (1.28) is only applicable to 

the superposition of two perfect crystals, and so we begin by rigorously defining 

the moire lattice. Suppose H(r)  is a scalar function, e.g. the height of the overlay, 

which depends smoothly on the relative local displacements of atoms in the two 

layers. This function can written using a periodic function, h (r),

H  (r) =  h ( u ( r )), h(r  +  a*) =  h(r). (1.29)

Here u{r)  is the relative displacement of atoms in the second layer, with respect to 

the perfect reference lattice, in which every underlay atom sits directly underneath 

its counter part in layer one. It is assumed that this relative displacement varies 

smoothly over the scale of many lattice periods, a*, which allows the continuous 

function u(r )  to be defined unambiguously5. Note u(r )  depends on both the 

lattice mismatch and misalignment angle, in addition to the displacement fields 

of defects in the underlay. The moire spots, which define the moire superlattice, 

are defined by the maxima of H(r).  These are assumed to occur at each position

§Note u(r) describes the vector by which a patch of material at position r, in the already 
displaced second layer, was displaced by. This contrasts with the usual definition, u f (r), which 
describes the vector by which a patch of material at r, in the un-displaced second layer, will 
be displaced. The two displacements are related by u{r) = uf (r -  u f(r)), and error caused by 
neglecting this subtlety is on the atomic scale, which is much smaller than the moire scale by 
assumption.
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r  = A mn such that,

u ( A mn) = m a i  +  n a 2, n, m  integer. (1.30)

The utility of this approach is illustrated by the example of a dislocation in the 

underlay. A dislocation [50] creates a field of displacements Ud(r) with a non-zero 

Burgers vector, 6 ,

Qualitatively, the burgers vector characterises the number of rows of atoms th a t 

have been removed from the lattice (see bottom left panel of Fig. 1.6). Given a 

dislocation in the underlay, with burgers vector 6 , we wish to calculate the corre

sponding burgers vector, B , in the moire pattern. Suppose tha t the displacement 

field is,

u(r )  =  Ws,e • r  +  u d(r). (1.32)

The first term  Eq. (1.32) accounts for the lattice mismatch and misalignment angle, 

with Wfifi given in Eq. (1.27), whereas the second term accounts for the dislocation. 

To calculate the displacement of the moire lattice, U d = — A mn, describing

the position of the moire spot in the presence of the dislocation, A^nn, relative to

its position in the absence of the dislocation, A mn, we use definition (1.30),

Ws,e • A mn = m ax +  na2 (1.33)

Ws,e-Admn + ud( A in) = m a1 +  na2, (1.34)

This gives,

U d = A dmn -  Amn = (1-35)
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The linear transformation, —W ^1, describing the relation of U d to u d can be 

taken through the integration in the definition of the Burgers vector, Eq. (1.31), 

to  obtain,

B  = -W rfb . (1.36)

T hat is, each dislocation in the underlay gives rise to a partner dislocation in the 

moire pattern, but with a Burgers vector tha t depends on the lattice mismatch 

and misalignment angle. This is clearly seen in the bottom row of Figure 1.6.
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Chapter 2

Monolayer Graphene on a hBN  

underlay

2.1 Introduction

It has been demonstrated tha t the electronic quality of graphene-based devices can 

be dramatically improved by placing graphene on an atomically flat crystal sur

face, such as hexagonal boron nitride (hBN) [9-15]. At the same time, graphene’s 

electronic spectrum also becomes modified, acquiring a complex, energy-dependent 

form caused by incommensurability between the graphene and substrate crystal 

lattices [18, 19, 22]. For graphene placed on hBN, the moire pattern [10, 11, 18, 19, 

22] creates a periodic perturbation, usually referred to as a superlattice, which acts 

on graphene’s charge carriers and leads to multiple minibands [20] and the gener

ation of secondary Dirac-like spectra. The resulting new Dirac fermions present 

yet another case where graphene allows mimicking of QED phenomena under con

ditions th a t cannot be achieved in particle physics experiments. In contrast to 

relativistic particles in free space, the properties of secondary Dirac fermions in 

graphene can be affected by a periodic sublattice symmetry breaking and mod

ulation of carbon-carbon hopping amplitudes, in addition to a simple potential 

modulation. The combination of different features in the modulation results in
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(a) b0‘

lb 3

Figure 2.1: (a) The hexagonal Brillouin zone for the moire superlattice, (b) Three 
volumes in the space of the moire superlattice parameters where the edge of the first 
miniband, in graphene's valence band, contains an isolated sDP at the K-point (red) 
or the — /■c-point (blue) or three isolated sDPs at the sBZ edge (green). Parameters for 
which the ±K-point is triple degenerate are shown by the red and blue surfaces. The 
black dots represent sets of perturbation parameters for which miniband spectra are 
shown in Fig. 2.2. (c)The same for the conduction band in graphene.

a multiplicity of possible outcomes for the moire miniband spectrum in graphene 

which we systematically investigate in this chapter.

2.2 Superlattice Hamiltonian

To describe the effect of a substrate on electrons in graphene at a distance, d, 

much larger than graphene's lattice constant, a , we use the earlier observation 

[18, 19. 22, 51-54] that, at d >  a, the lateral variation of the wavefunctions of 

the pz carbon orbitals is smooth on the scale of a. This is manifested in the 

comparable sizes of the skew and vertical hopping in graphite and permits an 

elegant continuum-model description [51-54] of the interlayer coupling in twisted 

bilayers and the resulting band structure. A similar idea applied to graphene 

on a hBN substrate [18, 19, 22] suggests that a substrate perturbation for Dirac 

electrons in graphene can be described in terms of simple harmonic functions 

corresponding to the six smallest reciprocal lattice vectors of the moire superlattic.e.

Below, we shall use a similar approach to analyse the generic properties of moire 

minibands for electrons in graphene subjected to a substrate with a hexagonal 

Bravais lattice with a slightly different lattice constant of (l+d)a, \5\<  1, compared
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to th a t of a for graphene, and a small misalignment angle, 9 <C 1. The moire pattern 

harmonics are described by vectors

or a honeycomb lattice with two identical atoms, the perturbation created for 

graphene electrons is inversion-symmetric. For a honeycomb substrate where one 

of the atoms would affect graphene electrons stronger than the other (e.g. such as 

hBN, for which the occupancy and size of the pz orbitals are different) the moire 

potential can be modelled as a combination of a dominant inversion-symmetric 

part with the addition of a small inversion-asymmetric perturbation,

H  = vp -  cr +  uovbfiir)  +  u3vbf2(r)a3r3 +  uxv [lz x V f 2(r)]-ar3 +  u2v V f 2( r ) ■ ctt3

The Hamiltonian, H , is written in terms of direct products oyrj, of the Pauli

p  =  — i V+e A  describing the momentum relative to the centre of the corresponding 

valley, with V x A  =  B. The rest of the first line in Eq. (2.2) describes the 

inversion-symmetric part of the moire perturbation, whereas the second line takes 

into account its inversion-asymmetric part. In the first line, the first term, with 

AM  =  Em=0.. 5 eibm'r , describes a simple potential modulation. The second term, 

with f 2(r) = i J 2 m=o 5(—l) meibm‘r , accounts for the A-B  sublattice asymmetry, 

locally imposed by the substrate. The third term, with unit vector lz, describes the 

influence of the substrate on the A-B  hopping: consequently [55-57], this term  can 

be associated with a pseudo-magnetic field, eB eS = ± u 1b2f 2( r ), which has opposite 

signs in valleys K±. Each of the coefficients \ui\ <  1 in Eq. (2.2) is a dimensionless

with length |6 0| =bzz -^^y/52+02, which can be obtained from each other by the 

anticlockwise rotation, R 27rm/6■ For a substrate with a simple hexagonal lattice

+ Uovbf2{r) + u3vbfi (r )a3r3 + UiV [lz x V / i ( r ) ] -<773 +  u2v V f ^ r ) - c r r 3.

(2 .2)

matrices described in section 1.5.2. The first term in H  is the Dirac part, with
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phenomenological parameter with the energy scale set by vb «  2ir^52 +  0 27 O, 

where 70 ~  3eV is the nearest neighbour hopping integral in the Slonczewski- 

Weiss tight binding model [3]. Concerning the inversion-asymmetric part, the 

second line in Eq. (2.2), we assume that |{q| |rq|. Note tha t the last term  in

each line can be gauged away using ip —>• e~lT3̂U2̂ 2+jl2̂ i p .

Hamiltonian, iP, may be used to parametrise any microscopic model compatible 

with the symmetries of the system (see section 2.5) and the dominance of the 

simplest moire harmonics, elbm'r , in the superlattice perturbation. The values tha t 

parameters iq take are listed in Table 2.1 for several models of graphene on an hBN 

substrate, both taken from the recent literature [18, 19, 22] and analysed in sections 

2.6.1 and 2.6.2 , including a simple model in which the hBN substrate is treated as 

a lattice of positively charged nitrogen nuclei with a compensating homogeneous 

background of electron Pz orbitals. The examples of model-dependent values of 

parameters iq, listed in Table 2.1, indicate that the combination of several factors 

can strongly shift the resulting moire perturbation across the parameter space in 

Fig. 2.1. That is why, in this chapter, we analyse the generic features of the 

miniband spectra generated by the moire superlattice, rather than attem pt to 

make a brave prediction about its exact form for a particular substrate.

M odel vbuo vbui vbu2 vbus
[meV] [meV] [meV] [meV]

Potential modulation [22] 60 0 0 0

2D charge modulation [18] Vo
2 0 0 73Vo

2
One-site version of G-hBN

1.6
- 3.25 3 .26> - 2 .8

hopping [19] (section 2.6.2) V52+e2 VS2+92

Point charge lattice V —vS v9 y/3v
(section 2.6.1), 0 .6 < u < 3 .4 2 Vs2+e2 VS2+92 2

Table 2.1: The inversion-symmetric parameters, vbui, for various models of the moire 
superlattice. In the 2D charge modulation model [18], V0 is a phenomenological param
eter. The G-hBN hopping model in Ref. [19] used the hopping parameter from twisted 
bilayer graphene. Estimates in sections 2.6.1 and 2.6.2 show that the sets of parameters 
using a model of point charges attributed to nitrogen sites and for the G-hBN hopping 
model are very similar.
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In the absence of a magnetic field, the Hamiltonian Eq. (2.2) obeys time- 

reversal symmetry, which follows from both cq and t* changing sign upon the 

transformation t —>• —t  (section 1.5.4). As a result, €k ++p =  €k - - p and we limit 

the discussion of minibands to the K + valley. Subject to this limitation, the 

bandstructure for the inversion-symmetric superlattice perturbation obeys the c3t, 

symmetry. Moreover, using the commutation properties of cq one can establish 

th a t

Uo,Ul,U3   _  -Uo,—U\,Uz   _  — Uo,Ul,-U3   Uo,—Ul,—U3 fry n \
t K + + p  ~  t K + - p  ~  K+-\-p ~  K + —p ■

2.3 Generic M iniband Spectra of G raphene-hB N  

H eterostructures

To calculate the miniband spectrum for H  in Eq. (2.2) we perform zone folding (in 

the graphene K + valley) bringing states with momenta related by the reciprocal 

lattice vectors rq&i +  n 2£>2 of the moire pattern to the same point of the superlat

tice Brillouin zone (sBZ) in Fig. 2.1(a). Then, we calculate the matrix elements 

of H  between those states and diagonalise the corresponding Heisenberg m atrix 

numerically exploring the parametric space (u0 ,u i ,u 3) of the dominant inversion- 

symmetric part of the moire perturbation shown in Fig 2 .1  (b,c). The size of the 

m atrix is chosen to guarantee the convergence of the calculated energies for the 

three lowest minibands in both the conduction band (s =  + 1 ) and the valence 

band (s =  —1). Below, we discuss the generic features of the moire miniband 

spectra for the characteristic points in the parametric space {u0, u i , u 3), marked 

using black dots in Fig. 2 .1 (b,c), using both the numerically calculated dispersion 

surfaces in Fig. 2.2 and analytical perturbation theory analysis.

For the zero-energy Dirac point in graphene, there are only the original p  = 0 

states in each valley that appear at e =  0 upon zone folding. For all three charac-
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F i g u r e  2 .2 : N um erica lly  ca lcu la ted  m oire m in ib an d  (left), th e  co rresp o n d in g  d en sity  
of s ta te s  (cen tre ), and  L an d au  level sp ec tru m  (righ t) for e lec tro n s in  th e  v ic in ity  of 
g ra p h e n e ’s Is p o in t. H ere we use th e  rhom bic sBZ, so th a t  th e  sy m m e tiy  of th e
m oire  su p e rla ttic e  sp ec tru m  is n o t obviously  seen in th e  im ages.
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teristic spectra shown in Fig. 2.2, for the inversion-symmetric moire perturbation, 

the gapless Dirac spectrum persists at low energies near the conduction-valence 

band edge with almost unchanged Dirac velocity, [1 +  0 ( u 2)\ v. The inversion- 

asymmetric terms U{ are able [19] to open a minigap at the Dirac point,

A 0 =  24vb\uiUo u0ui\. (2.4)

For the point /x =  60/2  on the edge of the first sBZ, zone folding brings together 

two degenerate plane wave states, |/x +  q) and \/i +  6 3 +  q). The splitting of 

these degenerate states by the moire potential in Eq. (2.2) can be studied using 

degenerate perturbation theory. The corresponding 2 x 2  matrix, expanded in 

small deviation q of the electron momentum from each of the three sBZ /x-points 

* has the form

Hli+q kb (2.5)

s sql 
2 +  ’62"’

qx
H u  ~  {sui -  it3) -  i(sui -  U 3 )  +  2— (u0 +  zuq).

For the inversion-symmetric perturbation, the dispersion relation resulting from 

Eq. (2.5) contains an anisotropic secondary Dirac point (sDP) [22, 58, 59] with 

Dirac velocity component ~  2uoV in the direction of the sBZ edge and ~  v in 

the perpendicular direction. This feature is clearly seen at the /x-point of the first 

moire miniband in the valence band, in the top row of Fig. 2.2. Note th a t the 

electron spectrum is not symmetric between the valence and conduction bands 

and th a t the sDPs at the ju-point in the conduction band are obscured by an 

overlapping spectral branch.

Moving in parameter space, e.g., along the line shown in Fig. 2.1(b), the po-

*The Ham iltonian in the vicinity of other two inequivalent points on the sBZ edge, p '  =  
^ 277/ 3 ^ , /x" =  P 47T/3 AC can be obtained using H^+q =  ^ #t/+A2w/3Q =  3q-
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sitions of the three anisotropic sDPs shift along the sBZ edge towards the sBZ 

corners: either k, = (64 +  &s)/3, or — k , as shown by arrowed lines in Fig. 2.1(a). 

In general, a spectrum with three isolated sDPs at the sBZ edge is typical for 

the green volume in the parameter space in Fig. 2.1(b) for the valence band, or 

Fig. 2.1(c) for the conduction band. In contrast, for (uo ,u i,u3) in the clear part 

of the parameter space, sDPs on the edge of the first sBZ are overshadowed by 

an overlapping spectral branch, as is the case on the conduction band side for all 

three cases shown in Fig. 2.2.

For the points in Fig. 2.1(b,c) on the red and blue surfaces, the three sDPs 

reach the /s-point, forming a triple degenerate band crossing, as in the valence 

band spectrum shown in the middle row of Fig. 2.2, which can be traced using the 

perturbation theory analysis of the band crossing at n  discussed below.

The third line in Fig. 2 .2  shows the third type of spectrum of moire minibands, 

characteristic for the red and blue volumes of the parameter space in Fig. 2.1. 

The characteristic feature of such spectra consist of a single isolated sDP, at the 

±K-point, in the valence band (Fig. 2.1(b)) or the conduction band (Fig. 2.1(c)).

For the k  and —K-points, zone folding brings together three degenerate plane 

wave states, |C(« +  g)), IC(« +  bi +  <?)), and \((k  +  b2 +  q)) (where C =  ± ), whose 

splitting is determined by

( u o — 2 s ( u i  +  V ^ C u ^ j ^ r i (  ( u o + 2 s ( u i — V 3 ( u 3 j  . (2 .6 )

For 7̂  0, the inversion-symmetric terms in H ^ K+q) partially lift the (^-pom t

degeneracy into a singlet with energy ( ^  -  2wc)vb and a doublet with ener

gies _|_ W(.)v b, so that a distinctive sDP [59] characterised by Dirac velocity 

Vk =  [1 _|_ 0(u)\  |  [18] is always present at ± k  somewhere in the spectrum .1 This 

tN ote th a t the spectra derived from #c(«+<7) obey the three-fold rotational symmetry.
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behaviour reflects the generic properties of the symmetry group of wave vector k., 

detailed in section 2.5, which has the two-dimensional irreducible representation 

E  (corresponding to the sDP) and one-dimensional irreducible representations A\  

and A-2- Note tha t each isolated sDP is surrounded by Van Hove singularities in 

the density of states corresponding to saddle points in the lowest energy mini

bands. The weaker inversion-asymmetric terms, \ui\ <C |ui|, in the second line of 

Eq. (2.2), open a minigap in both types of sDP discussed above. The perturbation 

theory leading to Eq. (2.5) and Eq. (2.6) has been performed to greater accuracy, 

and the sDP positions have been tracked in greater detail, in appendix A.

The appearance of sDPs at the edge of the first miniband results in a peculiar 

spectrum of electronic Landau levels, as shown on the r.h.s of Fig. 2 .2 . Each 

data point in these spectra represents one of the Hofstadter minibands [60] (with 

an indistinguishably small width) calculated for rational values of magnetic flux, 

|<Fo Per moire supercell following a method in Ref. [53]. Using these spectra one 

can trace a clearly separated “zero-energy” Landau level related to the isolated 

fc-point sDP in the valence band in the bottom row of Fig. 2.2, in addition to 

the true zero-energy Landau level at the conduction-valence band edge. The three 

isolated sDPs on the sBZ edge in the valence band (top row of Fig. 2.2) also result 

in a “zero-energy” Landau level, though not as clearly separated and split by the 

magnetic breakdown occurring at <F «  0 .1$o-

2.4 Effect o f the M iniband Spectra on the Hall 

CoefRcent

The inversion-symmetric moire perturbation will result in either the first sBZ 

separated from the rest of the spectrum by one or three sDPs, or, for weak pertur

bations, will result in overlapping first and higher minibands. The experimental 

consequences of this consists in a non-monotonic variation of the Hall coefficient 

upon doping the graphene flake with electrons or holes. For example, for those
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Figure 2.3: The relation between the two densities at which the Hall coefficient in 
graphene reverses sign upon its doping with holes. The results are shown for several 
realisations of moire superlattice in the parameter range corresponding to either three 
isolated sDPs on the sBZ edge (squares) or one isolated sDP at the sBZ corner (other 
symbols). The thresholds for isolation are indicated on the x-axis.

miniband spectra in Fig. 2.2, where there are isolated sDPs in the valence band, the 

Hall coefficient would pass through a zero value and change sign at two character

istic densities, rii and n2. At. the density n 1} which corresponds to the valence band 

filled with holes up to the Van Hove singularity, the Hall coefficient will change 

sign from positive to negative. At the higher density, n2, which corresponds to a 

completely filled first miniband, it would repeat the behaviour at the neutrality 

point changing sign from negative to positive. Such behaviour is expected to take 

place for the entire regions of the parametric space painted red, blue or green in 

Fig. 2.1. The relation between these two carrier densities for various types and 

strengths of moire perturbations is shown in Fig. 2.3. This behaviour was observed 

in experimental results discussed in chapter 5. For the clear part of the parametric 

space for which we find substantial overlap between many moire minibands such 

alternations in the sign of the Hall coefficient would be obscured by the competing 

contributions from the “electron-like” and “hole-like” branches in the spectrum.
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2.5 Sym m etry of the Moire Superlattice

We now discuss the consequences of the moire superlattice symmetry, both for 

Hamiltonian (2.2) and the sDP. The point group symmetry of graphene on an in

commensurate substrate is given by the intersection of the point group of graphene, 

c q V:  with tha t of its substrate. For a perfectly aligned (6 =  0) inversion-symmetric 

substrate, with either a single (dominant) atom per unit cell or two identical atoms 

arranged in a honeycomb lattice, the point group symmetries of the substrate and 

graphene coincide. The corresponding Hamiltonian, Eq. (2.2), with moire harmon

ics orientated as per Fig. 2.1 (a), must necessarily commute with the operators 

corresponding to the elements of c6v: c6 , sx and sy which describe 2tt/6  rotations 

and reflections tha t either exchange or preserve the graphene sublattices. The 

operators for c6 and sy involve the valley exchanging matrices T\^ with the result 

th a t the symmetry of the Hamiltonian restricted to the K  valley, as well as the 

K  valley bandstructure, is reduced to c3v = {id,c$,sx}, where c3 =  Cg has no 

intervalley structure. Each of the fq terms are odd under c6, while the u2 and u2 

terms are odd under sy. so that these terms are forbidden for the perfectly aligned 

inversion-symmetric system described above. The point group of substrates with 

the honeycomb lattice and two non-equivalent atoms per unit cell, such as hBN, 

only possesses the c3 and sy symmetries which allow inversion-asymmetric param

eters Wi=o,i,3 to take a finite value.

For a finite misalignment angle, the reflection symmetries of graphene and the 

substrate do not coincide, and the moire harmonics become misaligned, by an angle 

<f>, from those in Fig. 2.1 (a). However, the moire harmonics may be brought back 

into alignment using the transformation H(r)  ->• eia3̂ H (R^r )e~ l<73̂  and the u2 

and u2 terms, which are no longer forbidden, may be gauged away. This procedure 

restores the reflection symmetries to the Hamiltonian, despite their absence in the 

geometry of the moire pattern for finite misalignment angle.

The symmetries described above can be used to gain a deeper understanding 

of the sDPs discussed in the main text. The K  valley plane wave states from the
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three equivalent sBZ corners, C^n=o,i,2 =  C-^Wn/s^, which form the basis for H(K, 

Eq. (2.6), transform into each other on application of symmetry operators of c%v. 

In the same basis, the symmetry operators acting on H^K take the form of matrices

^ o o - h
r Cre(c3) = - 1 0  0 

o 1 o

rCre(sx) = sc
/

' 1 0 o '
0  0  1 

0  1 0

(2.7)

For the inversion-symmetric superlattice perturbation, the singlet eigenstate of H^K 

is given by v s = -̂ = (1 , —1 , —1 ). The action of matrices from Eq. (2.7) on this state 

show th a t it transforms according to the one-dimensional irreducible representa

tions of Czv'- either Ai  for =  1 or A 2 for s (  = —1 , indicating evenness or oddness 

under sx respectively. Similarly, the doublet states of v + =  v/3  ( ^ ’ v / 2 ’ V 2 )  

and V-  = (0 , 1 , —1 ) transform as the two-dimensional irreducible representa

tion, E , and their degeneracy is therefore protected by the c3u symmetry.

The three anisotropic sDPs can be understood using the compatibility rela

tions in the group appropriate for the sBZ edge, ch = {id ,sx}. This group only 

supports one-dimensional irreducible representations A\  and A 2 with the doublet 

states reducing as E  =  A\  +  A 2. For a given band, s =  ±1, the split bands at k  

and —k  belong to different irreducible representations of ch and therefore cannot 

be joined along the sBZ edge. Instead, if both of these bands are closer to zero 

energy than the doublet states, they must each be joined to one of the doublet 

bands at the opposite sBZ corner. Thus, along the sBZ edge, a crossing of the 

split bands is required, resulting in the sDPs illustrated in the valence band for 

the top row of Fig. 2.2.
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2.6 M icroscopic M odels

2.6 .1  P oin t Charge M odel

The point charge model analysed below mimics the effect of the quadrupole electric 

moment of the atoms in the top layer of the substrate. In application to  the 

graphene-hBN system, we neglect the potentials of the quadrupole moments of 

the boron atom, which have only n-orbitals occupied by electrons, and replace 

nitrogen sites by a point core charge + 2 |e| compensated by the spread out cloud 

of the 7r-electrons, which we replace by a homogeneous background charge density, 

giving —2|e| per hexagonal unit cell of the substrate. This model gives an example 

of an inversion-symmetric moire superlattice. The matrix elements of the resulting 

perturbation, taken between sublattice Bloch states i and j  ( i , j  = A  or B),  acting 

on the low-energy Dirac spinors of the graphene K+ valley, are given by the long 

wavelength components of

graphene sheet; $K+,i(r >z ) are Bloch wavefunctions of graphene 7r-electrons ex

actly at the K+ point. Then the Fourier transform has been used to write SHij in 

terms of a sum over substrate reciprocal lattice vectors, g N, and graphene recip

rocal lattice vectors, g and g ' . Nearest neighbour vectors, t i =a /b =  i ( 0 ,  a/y/3)  

are the same as in Fig. 1.1. The homogeneous background charge has not been in

cluded in Eq. (2.8) since its only role is to exclude g N =  0 from the sum. The long 

wavelength terms in the first exponential of the second line of Eq. (2.8) determine

47re0a / \ /3
e i(g,-g+9 N) -re i(g-Ti -g'-Tj ) _

In Eq. (2.8) R n  are positions of nitrogen sites and L 2 is the to tal area of the
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bm =  — id' — 9  +  9 n ) -  The dimensionless integral,

32aQ
J  dq2drf

A  + {Qz -  q’z)2

is written in terms of the Fourier transform of the hydrogen-like graphene P z(r, z) 

orbitals with an effective Bohr radius a0,

The integral, Iq,q',9n, rapidly decays as a function of the magnitude of all its 

arguments so tha t we limit the sum in Eq. (2.8) to only several terms such tha t

\K+ + 9 \  = \K + + g ' \  = \K +l with  I  = l K +,K+,go where 9o = ^ 1+7 ) '

The carbon Pz orbitals may have a different effective Bohr radius compared

cally in Fig. 2.5.

Both the dominance of the simplest moire harmonics, and the finite values for 

the off-diagonal terms u\ and u2, stem from the three-dimensional treatm ent of the 

substrate potential. The potential is strongest near the substrate, and therefore a 

greater proportion of the integral Iq,q',9n comes from the region near the substrate, 

where the graphene Pz orbitals are broad and therefore have both rapidly decaying 

Fourier components and significant overlap with their neighbours. This contrasts 

with the model employed in Ref. [18] which is based on a two-dimensional substrate 

potential resulting in iti =  U2 = 0 .

^(Q^Qz) = [ drdzz l{Q’r+qzZ)PZ(r ,z )
c l q 2tr J

-64 ia0qz
(1 +  4ag(Q 2 +  <g) )3-

to hydrogen. The range of values quoted for v =  I  in Table 2.1 corre

sponds to the interval 0.27 A <  a0 <  0.53 A, indicated by the black double-arrow in 

Fig. 2.4, where the interlayer separation 3.22 A < d <  3.5 A is taken from Ref. [61]. 

The resulting superlattice perturbation and dispersion surfaces are shown graphi-
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Figure 2.4: Solid lines show the dimensionless integral I. as a function of the effective 
Bohr radius of the graphene Pz orbitals, for various choices of interlayer separation d. 
To demonstrate convergence of the sum in Eq. (2.8), dashed lines show l2K+,K+,g0 f°r 
the same values of d.

2.6.2 G ra p h e n e -h B N  H o p p in g  M odel

In Ref. [19], Kindermann et al. modelled a hBN substrate as a lattice of P z orbitals 

onto which the graphene electrons can hop. This treatment, extended from a model 

of twisted bilayer graphene [62], assumed equal values for the hopping integral to 

the boron and nitrogen sites, with the difference between the two sublattices arising 

from their different on-site energies. Here we consider an inversion-symmetric, 

version of the hopping model of Ref. [19], assuming that coupling between graphene 

and the hBN layer is dominated by the hopping to only one of the two sublattices 

(e.g. boron). Using k p  theory (section 1.4), this coupling can be written in the 

basis of graphene K + valley Bloch states, $/•<:+,b)? as [19]?

Neglecting a non-oscillatory term, which corresponds to a trivial constant energy 

shift, Eq. (2.9) as applied to graphene electrons in valley K + , leads to the moire

(2.9)
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Figure 2.5: a) The simple potential modulation, uo/i(r )? the local sublattice asym
metry, u^f2 (r), and pseudo-magnetic field, eb~2BeS — U\f2 (r) for the choice of pa
rameters corresponding to the point charge model or the hopping model scaled so that 
lwo| + lu i| +  1^31 = 0.15. b) The corresponding miniband spectra.

Hamiltonian, Eq. (2.2), with

The parameters of the superlattice perturbation given in Table 2.1 of the main text, 

correspond to 7  =  0.3 eV, V -  0.8 eV and m = 2.3 eV, in accordance with Ref. [19]. 

For the perfectly aligned system, we always find u2 =  0, which is a consequence 

of the reflection symmetries present in the perfectly aligned substrate-graphene 

system (see section 2.5).

2.6.3 Inversion  A sy m m e tr ic  M icroscopic  M o d e ls

To generate the inversion-asymmetric perturbation terms in the microscopic mod

els discussed above, we now account for both the nitrogen and the boron sublattice 

of the hBN underlay. This is achieved by taking the moire perturbation,

7  2/(vb) j 1 —5 9 \f\
9(m +  V) \  2 ’ 7 F + P ’ v P + P ’ ~ "2

(2 .10)

48



Here SH(r ) is the Hamiltonian (2.8), and vB <C 1 controls the strength of the 

perturbation due to the boron sites with respect to that of the nitrogen sites. The 

choice of origin used for 5H' in Eq. (2.10) corresponds to the location in the moire 

unit cell with the nitrogen site directly below the centre of the graphene hexagon; 

whereas the coordinate shift ~ ^ b 0 in the last terms of Eq. (2.10) corresponds to 

the position with the boron site directly under the centre of the graphene hexagon. 

This coordinate change in the last term affects a rotation in the parameter space 

i for vBH ( r  -  $ b0)

VBUi

( \
VB Ui

yVBUi j

Hence the parameters are given by

- 5  6 V 3

—1 for i = 0
a = {  . (2.11)

1 otherwise

_  »,+

where v+ = v ( l  — ^ f )  and v~ = It is interesting to note that, for this

choice of parameters, the zero-energy Dirac point remains un-gapped, due to  can

cellation of the two terms in Eq. (2.4) tha t is peculiar to this choice of parameters. 

However, gaps in the sDPs are opened as expected.

2.7 Conclusion

Using a general symmetry-based approach, we have provide a classification of 

generic miniband structures for electrons in graphene placed on substrates with 

the hexagonal Bravais symmetry. In particular, we identify conditions at which 

the first moire miniband is separated from the rest of the spectrum by either one,

tin  Eqs. (2 .5 ) and (2.6) this transform ation is equivalent to a gauge transform  and therefore 
leaves the bandstructure unaltered.
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or a group of three isolated mini Dirac points, and is not obscured by dispersion 

surfaces coming from other minibands. In such cases the Hall coefficient exhibits 

two distinct alternations of its sign as a function of charge carrier density. Other 

experimental consequences of the miniband spectra will be discussed in the next 

three chapters.
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Chapter 3

Optical Absorption in 

Graphene-hBN Heterostructures

3.1 Introduction

In this chaper, we investigate how the characteristic features of the moire mini

bands of graphene-hBN heterostructures, described in chapter 2, are reflected in 

the absorption spectra in the infrared to visible optical range. It has been noticed 

in recent tight-binding model studies [63, 64] that the absorption of light by Dirac 

electrons in twisted Bilayer graphene (which also feature a moire superlattice) 

acquires robust features due to the edges and van Hove singularities of the first 

minibands. These are affected by both the modulation of the density of states and 

the sublattice structure of the electron Bloch states in graphene modified by the su

perlattice. The purpose of this chapter is to establish what characteristic features 

in the graphene-hBN heterostructure absorption spectrum can be attributed to one 

or another combination of moire parameters in the phenomenological Hamiltonian 

Eq. (2.2), with a view to narrowing down their choice based on the combination 

of the transport data with the forthcoming optical studies.

The inversion-symmetric perturbation in (2.2) determines a gapless miniband 

spectrum, with the sDP singularities either at the edge of the first miniband, or

51



embedded into a continuous spectrum at higher energies, whereas the asymmetric 

part opens a ‘zero-energy’ gap A0 and gaps Ai at the secondary Dirac points in 

conduction and valence bands (s — ±1 respectively),

A 0 =  24u6|uiu0 “t- UqU\ |,

Ai = Vs\u0 + 2s(ui — v̂ 3Ĉ 3|-

However, recent transport experiments [23, 25] did not show any pronounced gap 

at the miniband edges, and either no gap [23] (see discussion in section 5) or a small 

gap [25] at zero energy (A ~  20meV), telling us that the inversion-asymmetric part 

of the moire superlattice potential is wTeak. This agrees with the ansatz made in 

in section 2.6 tha t only one out of the two sublattices (either N or B atoms) of the 

honeycomb lattice of hBN top layer dominates in the coupling with the graphene 

electrons, thus making the effective lattice of the hBN perturbation simple hexag

onal and prescribing inversion symmetry to the moire potential. Therefore, in the 

following we assume that |tq| <C \ui\ and neglect the inversion asymmetric terms 

in the analysis of optical absorption in the infrared-to-visible range.

Besides the above described dominance of the inversion-symmetric part in the 

moire superlattice potential, very little is known for definite about the values of 

the superlattice parameters in Eq. (2.2). Two microscopic models, based on either 

scattering of graphene electrons by the quadrupole electric moments of nitrogen 

(section 2.6.1), or on hopping between graphene carbons and hBN atoms (section 

2.6.2), predict similar relationships between coupling constants u0, iq, and u3 in 

(2 -2),
v —vS V3v

Uo = ^ b '  Ul = ^ 7 W W '  U3 = ~ ^ b '  (3' 1}

with 0.6meV < v < 3.4meV, to compare with vb «  340meV for 6 =  0 and 

vb «  750meV for 9 = 2°. However, rather simplistic approximations are used in 

these models, and one must assume much larger values of super lattice potential 

parameters to relate the theory in chapter 2 to the recent magneto-transport data.



This suggests that these models show that all three inversion-symmetric interaction 

terms in the Hamiltonian in (2.2) should be taken into account in a comprehensive 

phenomenological theory of moire superlattice in graphene-hBN heterostructures. 

Note tha t the strongest deviations of the optical absorption by electrons in a 

heterostructure from the universal graphene absorption coefficient gi =  ire2/he  

would be most pronounced in a spectral range around uj ~  vb (from infrared at 

6 — 0° to visible at 6 ~  5°): for much lower photon frequencies, electron states 

are almost the same as in the unperturbed Dirac spectrum, whereas photons of 

much higher energies involve transitions between numerous overlapping minibands 

such tha t individual spectral features would be smeared out by the faster inelastic 

relaxation of photoexcited electrons and holes.

The coefficient of absorption of light described by energy cj and polarization e

is
, S ttH ^  f p s '  ~  f p s  „ , s s '  *g(uj) -  r im  > -------- - -------- ------ —M*o  ea eB

cooA co +  eps — eps' T IT)
p ,s,s'

where a , /3 =  x, y, eps stands for the miniband energy found by diagonalisation of 

the Hamiltonian in (2.2), f ps are the occupation numbers, A  is the normalization 

area of the miniband plane wave states, and g is the broadening of the energy 

states (we take g = vb/ 200 unless otherwise stated). We also find numerically the 

eigenstates of H  to calculate the matrix elements of the current operator,

Ma0 =  (Ps l i l  IPs') (Ps'\h  |PS>

where j a = evaa are Dirac current operators. The above equation gives the se

lection rules for optical transitions between the miniband states (we neglect the 

momentum transfer due to absorption of the photon), and take into account the 

spin and valley degeneracy. The c3 rotational symmetry of the moire pattern im

plies tha t there is no dependence of g(oo) on the polarization angle of the light, and 

after taking into account the fact that the two valleys in the graphene spectrum 

are related by time-inversion symmetry, we conclude tha t the absorption spectrum
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Figure 3.1: (a) The optical absorption spectra for the model moire perturbation in 
with parameters in (3.1) for v = 17meV and various misalignment angles. The Fermi 
energy, ep = 0. (b)-(d) Band structures corresponding to each of the spectra in (a). We 
have marked transitions responsible for the absorption maxima in (b).

is independent of the polarization state of photons.

3.2 Optical Absorption Spectra

We discuss the features of the absorption spectrum specific to the various realisa

tions of the moire superlattice perturbation. In Fig. 3.1(a) we show the features 

of the absorption spectrum calculated for the realization of the moire superlattice 

with substantially sizeable amplitudes and the weight of parameters u0. w1} and u;i 

set in (3.1). In this case, the electron spectrum features a sDP at the edge of the 

first miniband on the valence band side and overlapping bands on the conduction
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band side. It is strongly electron-hole asymmetric, which makes the spectral fea

tures of the superlattice less pronounced. The optically active transitions which 

provide the deviation from the standard absorption g(uj) =  g\ come from the edge 

of the mBZ, as shown by the arrow in Fig. 3.1(b). This figure also shows the ten

dency of the spectral features to stretch into higher energies and gradually decrease 

in size with increasing misalignment angle.

It is also instructive to analyse spectra for more peculiar realizations of moire 

superlattice, starting only with one of the three terms in the perturbation, and 

then increasing the size of the others. The corresponding evolution of the absorp

tion spectra is shown in Fig. 3.2(a) for each of the three interaction terms. The 

distinctive feature of a pure uq interaction [black line, band structure shown in 

Fig. 3.2(b)] is the double peak structure near uj/vb «  0.8. Fig. 3.2(e) shows the 

spectra for the same uq interaction with a small u\ or u3 interaction added for the 

frequency interval near the double peak. For both added interactions, each part 

of the double peak is split in two destroying this simple structure. Therefore, the 

most obvious identifying feature of a strong uq interaction is masked by even weak 

additions of the other two interactions. The red line in Fig. 3.2(a) is the spectrum 

for the Ui — 0.15 interaction, with the associated band structure in Fig. 3.2(c). 

There are two key features to this spectrum, the first being tha t the initial devia

tion from the standard g(uj) =  g\ result for low uj is downwards, not upwards as for 

the pure u0 and u3 interactions. The second key feature is the strong single peak 

at oj/vb «  0.8 due to the electron-hole symmetry of the u\ interaction allowing 

van Hove singularities in both the valence and conduction bands to contribute to 

the absorption simultaneously, as indicated by the double arrow marked ‘(1)’ in 

Fig. 3.2(c). In Fig. 3.2(f) we show this peak with a strong mixture of the u0 and 

u3 interactions [compare the size of the perturbation to tha t in Fig. 3.2(e)]. For 

both additional interactions, the position of the peak has shifted a little, and the 

peak has decreased slightly in height, but the peak is still clearly identifiable indi

cating that this spectral feature is rather robust against perturbation by the other
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two interactions. Finally, the u3 = 0.15 interaction is shown by the green line in 

Fig. 3.2(a) and the band structure in Fig. 3.2(d). The identifying feature in this 

case is the small peak followed by a large frequency range where the absorption is 

suppressed substantially below the value of gi.

Fig. 3.3 illustrates several examples of how the absorption spectrum would 

be modified by change in the carrier density (and Fermi energy ep) in the het

erostructure. In contrast to unperturbed graphene (where Pauli blocking simply 

suppresses absorption at uj < 2ep) here, due to Bragg scattering of electrons by 

the superlattice potential, empty states in higher minibands of the valence band 

or filled states in higher minibands of the conduction band open new absorption 

channels.

3.3 Conclusion

In conclusion, we have demonstrated tha t optical spectroscopy with infra-red and 

visible radiation may be used to gain insight into the detailed characterization of 

the interaction between layers in graphene-hBN heterostructures with a small mis

alignment angle. Since the exact parameters of this interaction are unknown, we 

have described the general features of optical spectroscopy due to each of the inter

action terms allowed by symmetry, and linked these parameters to the formation 

of secondary Dirac points in the heterostructure spectrum and nearby van Hove 

singularities in the moire miniband spectra. We also show th a t the modification 

of the optical transitions rules, due to the Bragg scattering of graphene electrons 

off the moire superlattice, modify the doping dependence of graphene absorption 

spectrum, in a manner very sensitive to the detailed structure of moire superlattice 

potential.
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Figure 3.2: (a) Absorption spectra for each of the interaction terms in (2.2), and Fermi 
energy, ep = 0.. (b)-(d) The corresponding band structures with the transitions that 
make the strongest contribution to the labelled peaks in (a) marked with vertical arrows, 
(e) The change in the u0 = 0.15. ui = u3 = 0 double peak at w/vb % 0.8 with addition 
of weak u\ and u3 interaction terms, (f) The change in the u\ = 0.15, u0 = u3 = 0 peak 
at uj/vb «  0.8 due to the addition of strong electron-hole symmetry-breaking terms u0 

and u3. In (e) and (f), we have // = r?6/500.
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Chapter 4

Fractal Spectrum of M agnetic 

Minibands in Graphene-hBN  

Heterostructures

4.1 Introduction

The fractal spectrum of electron magnetic bands in crystals subjected to a strong 

magnetic field [6-5, 66] is one of the most spectacular results of the quantum theory 

of solids [67]. For electrons on a two-dimensional lattice, it consists in the fractur

ing of their band structure into multiple gaps and magnetic bands at each value 

B e =  E(j)o/S of the field providing a rational fraction of magnetic flux quantum,
q Q

0oj Per unit cell area, S, of the crystal, [65, 67]. Its graphical representation [60], 

obtained for a square lattice model with the nearest neighbour hopping, known as 

the Hofstadter butterfly, offers an attractive image of a hierarchical self-similarity 

in physics, which has stimulated numerous experimental attem pts to observe the 

fractal spectrum of electrons in quantum transport measurements. Since the spar

sity of the spectrum increases and the size of the gaps decrease for larger values of 

the denominator q of the rational fraction, the observation of fractal magnetic band 

spectra in real crystals would require unsustainably strong magnetic fields. Hence,
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the early efforts in observing the Hofstadter butterfly spectrum of electrons were 

based on two-dimensional electron gases in periodically patterned GaS/AlGaAS 

heterostructures [68], where the superimposed superlattice period was made large 

enough to obtain the low denominator fractions within the experimentally avail

able steady magnetic field range B  < 35T. The more recent observation of hexag

onal moire superlattices in graphene, residing on substrates with hexagonal lattice 

facets [48], has shown an alternative way towards creating a longrange periodic 

potential for electrons: by making lattice-aligned graphene heterostructures with a 

hexagonal crystal with an almost commensurate period. For this, hexagonal boron 

nitride provides a perfect match, and, during the last year, several observations 

of moire superlattice effects in graphene-hBN heterostructures have been reported 

[23-25].

In this chapter, we use the phenomenological model described in chapter 2, 

to study generic features of Zak’s magnetic minibands of electrons, in graphene- 

hBN heterostructures. Graphene’s specific electronic properties play an important 

role in this study. First of all, due to the long-range of the superlattice period, 

we describe graphene electrons using the effective Dirac theory, where the form 

of moire perturbation depends on the detailed structure and symmetry of the 

underlying surface. In particular, for an inversion-symmetric surface layer, the 

zero-magnetic-field spectra features isolated secondary Dirac points at the first 

miniband edge. Here we find that generations of Dirac electrons systematically 

reappear at the edges of Zak’s magnetic minibands for values of the magnetic 

flux through a moire supercell, and that fractal Hofstadter spectra in the vicinity 

of such points can be described in terms of 4<?-times degenerate Landau levels of 

gapped Dirac electrons in an effective magnetic field SB = B  — B e . A s the Landau 

level spectrum of Dirac electrons contains a zero-energy level, separated by the 

largest gap from the rest of the spectrum, this determines a specific hierarchy of 

minigaps in the Hofstadter butterfly, resulting in a peculiar sequence of dominant 

incompressible states of electrons in graphene-hBN heterostructures in a strong
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Figure 4.1: The moire pattern of graphene on a hBN underlay, shown with an exag
gerated lattice mismatch (top left), and the moire perturbation (remaining panels) with 
v~ = 0 = 0 and v+ — 0.06'3vb. The pseudo magnetic field, associated with u\ is shown 
in the lower right panel. The red hexagon shows the moire unit with area S = ^ A 2, 
and the lattice vectors A\ = A( 1/2, \/3/2), A 2 = A(—l/2, y/3/2).

magnetic field.

4.2 Magnetic Translational Symmetry and Cal

culation of Zak’s Magnetic Minibands

In the presence of a strong magnetic field, the electron spectrum can be described 

in terms of Zak’s magnetic minibands for any value of B,  providing a rational 

value of magnetic flux through the unit cell of the moire pattern,

0 =  B S  ̂ 0o- (4.1)
<7

Here p and q are coprime and d0 = h/e. This ensures a commensurability between 

the moire superlattice and the superlattice with one flux quantum per super cell. 

One usually [65, 67, 69, 70] exploits the commensurability in Eq. (4.1) by enlarging 

the unit cell g-times in, e.g., the A i direction, which would imply a magnetic
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&2

v &3 j = o*.

Figure 4.2: The moire Brillouin zone (large hexagon, with area \/Zb2j2 ), the moire re
ciprocal lattice vectors bm. The (/-times smaller and (/2-times smaller magnetic Brillouin 
zones (described in the main text) for 0/<f>O — 2/3 are shown in light blue and dark blue 
respectively. The chain of k2 values (red dots) used to construct Bloch states (4.2) are 
also shown.

Brillouin Zone (/-times smaller than the moire Brillouin zone in the 6 2  direction, 

as shown in Fig. 4.2, with the dispersion repeated inside it with the period b\jq. 

However, to preserve the point group symmetries, here we enlarge the unit cell 

(/-times in both the A \  and A 2 directions. With this choice the magnetic. Brillouin 

zone (Fig. 4.2) is (/2-times smaller than the moire Brillouin zone, and zone folding 

of the periodically repeating dispersion onto the smaller Brillouin zone provides a 

^-fold degeneracy of all energy states in its bands [6 6 ].

The classification of Zak's magnetic minibands, and their degeneracies, can be 

deduced from the properties of the group, {5x : X  =  mi A i + 772,2^ 2 }, of magnetic 

translations. Here we follow section 1.7, and use a non-orthogonal coordinate 

system, adapted to the hexagonal symmetry of the moire pattern,

r  = x-ii-i +  x 2x 2,

with basis vector i :i= l:2 = A^ /A  directed along the the lattice vectors of the moire 

pattern (see Fig. 4.1). Also, we use the Landau gauge for the vector potential,
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A  = B x  i ( - x i  +  2x2)/VZ,  so that the magnetic translational operators are,

S x  =

where T x  are the geometrical translations. The commutation and multiplication 

rules are,.

The subgroup of this group made of translations R  =  m iq A i  +  m 2q A 2 on a 

(q x <?)-enlarged superlattice is isomorphic to a simple translational group, so th a t 

its eigenfunctions, = elk R$ k : can be used as a plane wave basis. Since

the whole group {5x} is non-albelian, and has g-dimensional irreducible represen

tations [66], the spectrum of such plane-wave states on the lattice will be g-fold 

degenerate. A convenient choice of basis states, to study Zak’s miniband spectrum, 

is given by Bloch wavefunctions built from the Landau levels in Eq. (1.23),

where the sums run over r, s = —N/2,  • • • , A/2. This basis is similar to the set 

of Bloch wavefunctions for a one dimensional chain with p sites per elementary 

unit cell, labelled by j  = 0, • • • ,p — 1, and the Landau level index, n, analogous 

to multiple atomic orbitals on each site. The index t = 0, • • • q — 1 labels basis

determines both the degeneracy of, and the lack of coupling between, wavefunc

tions built from Bloch states with different t.

To calculate the magnetic miniband spectrum, we calculate the m atrix ele-

k2 + ̂ b(ps+j+^-)
(4.2)

functions in the g-dimensional irreducible representation and k — kiki  +  k2k2) 

\ki\ < ^ b ,  ki ■ Xj = 5ij. The action of magnetic translations on this basis set,

(4.3)
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Figure 4.3: The numerical calculated energy spectrum in the absence of a magnetic 
field (left), and the magnetic miniband spectrum (right) calculated for k  = 0 (black 
points), or, when the flux takes a simple fraction, the full spectral support (blue vertical 
lines). The insets show the magnetic miniband spectrum for simple fractions, with the 
fitting to a gapped Dirac spectra show in yellow for the lower magnetic miniband at 
cp/(f)Q = 2. [The right panel was provided by Xi Chen.]

of Hamiltonian (2.2) between Bloch states (4.2) with various n and j ,  and numer

ically diagonalize the resulting Heisenberg matrix, with a large enough range of n 

to ensure convergence of the resulting energy spectrum. Since Hamiltonian (2.2) 

contains only the simplest moire harmonics, the sum in the above expression is

ments

2̂ + ̂  b j, ko + ̂  b(ps+j'')

s
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Here Ljf is the associated Laguerre polynomial, A =  &A#/2, 6^ =  ^ ^ ± 736/2 ; 

J° =  <Jfc'jfc2. The &2 dependence has the period ps/3b/2.

4.3 Generic Features in the M agnetic M iniband  

Spectra

We now discuss the generic features of the numerically calculated magnetic mini

band spectrum shown in Fig. 4.3. In the left panel, we show the 0 = 0 disper

sion surfaces using parameters taken from the microscopic models (see chapter 2, 

Eq. (2.12)) with v~ = 6 = 0 and v + =  0.063vb. This spectrum contains both a 

gapless zero-energy DP and gapless secondary DP on the valence band side of the 

spectra. The right panel contains the energy spectrum calculated for rational val

ues of the flux. For 0 < O.20o the magnetic miniband spectra can still be traced to 

the sequence of Landau level (extended towards 0 =  0 as red lines) corresponding 

to the two DPs.

At higher flux, the degeneracy of each Landau level is split by the moire per

turbation to reveal an intricate self-similar spectra, consisting of repeated Landau 

level-like features at multiple flux and at multiple energy scales. Despite this, 

the zeroth Landau level of the main DP remains separated from the rest of the
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spectrum by large gaps, which allow unambiguous identification of filling factors 

v =  ±2. The carrier density (measured in carriers per moire unit cell) required 

to place the chemical potential within this gap is obtained using po — F°r

all other gaps, the carrier density is determined by p =  p0 +  sgsgv/q, where s 

is the number of magnetic minibands crossed from the reference density po, and 

gs — gv — 2 accounts for spin and valley degeneracy. In the absence of time reversal 

symmetry, tha t is <p ^  0, the valley degeneracy in Fig. 4.3 is only prescribed by the 

spatial inversion symmetry, and is absent if the inversion asymmetric superlattice 

perturbation is included *.

When the flux ratio is simple, that is integers p and q are small, the magnetic 

minibands have a significant band width. Representative examples are shown as 

insets in the right panel of Fig. 4.3, and generally take the form of a weakly gapped 

DP with spectrum e «  \ J v ^ p 2 +  A2. For a small window of flux 0 =  p(f)0/q+Scp, the 

magnetic miniband spectra can then be traced [73] to a sequence of effective Lan

dau levels, obtained from the weakly gapped Dirac-like spectra, using Eq. (1.23), 

and relative magnetic field SB =  Sep/S. This allows us to obtain an approxima

tion to the magnetic minibands spectrum (blue continuous lines in Fig. 4.3) in 

the vicinity of simple flux fractions, where the dimension of the Heisenberg matrix 

with basis (4.2) is too large to diagonalize. Each effective Landau level undergoes 

its own splitting by the moire perturbation, although the zeroth effective Landau 

level generally remains well separated. Also note the visible discontinuity in the 

energy of the zeroth effective Landau level as it skips across the gap, A, at SB = 0.

In the main and lower left panel of Fig. 4.4, we show the fan diagram in which 

each gap in Fig. 4.3 is mapped to the point at the carrier density at which the gap 

occurs, with a strength of colour reflecting the gap size. This figure provides our 

main contact with forthcoming compressibility measurements, since the presence 

of each significant gap, A > 0, will be observed as an incompressible state.

*For the spatial inversion symmetry, H{ r , Ci  =  (rzH { - r ,  - ( ) a z , prescribes the relation
CK++k — eK -  - k  between spectra in graphene’s two valleys. For 0 =  0, tim e reversal sym m etry 
prescribes the same relation, however when both 4>,Ui 7  ̂ 0  the spectra in the two valleys are 
unrelated.
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In Fig. 4.4 the well separated zeroth Landau levels associated with both the 

zero-energy DP at p = 0, and the secondary DP at p = — 4 produce clearly visible 

filling factor lines u =  ±2. Similarly, each Dirac-like feature, occurring at simple 

flux ratio (j)/cj)o~p/q, generates its own peculiar crossing features in fan diagram 

4.4. Here the g s g v q - fold degeneracy of the well separated zeroth effective Landau 

level prescribes a pair of crossing, strongly gapped, filling factor lines separated by 

tilt angle g s g v Q -  These features are seen at many locations on Fig. 4.4 including 

those which correspond to the exemplary magnetic miniband spectra shown on 

Fig. 4.3. Moreover, these features are independent of the particular realization of 

the moire perturbation.

In the lower right panel of Fig. 4.4, the fan diagram is shown for the same 

inversion symmetric moire perturbation as the rest of the figure but with the 

additional inversion asymmetric perturbation u-  =  u+/10. This eliminates the 

valley degeneracy, gv , which is manifested in the fan diagram as additional filling 

factor lines intersecting at tilt angles gvq. Note that similar effects, including the 

lifting of spin degeneracy, may be provided by the electron-electron interaction.

4.4 Conclusion

We diagonalize the phenomenological Hamiltonian of graphene with a hBN under

lay, in a strong magnetic field. The resulting spectral support shows robust fea

tures, independent of the particular realization of the moire perturbation, which 

arises due to the tendancy of the magnetic minibands to take the form of gapped 

Dirac points. The degeneracy of effective Landau levels, traced to these features, 

is reflected in the change of tilt angle of filling factor lines in the fan diagram.
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Figure 4.4: The fan diagram for the same moire perturbation as Fig. 4.3 (top) with 
a detailed enlargement of the section containing the valence band secondary DP (lower 
left). The lower right panel shows the same region, but the inversion asymmetric part of 
the moire perturbation has been included. The grey lines fulfil the Diophantine equation 
[71, 72]; v = <7 h  + 9 s9 vS(f)o/<f>, °h=9s9vZ + 2, s and z are integers. [Figure provided by 
Xi Chen.]

68



Chapter 5 

Experimental Realisation of the  

Graphene-hBN Heterostructure

In this short chapter we describe the recent experimental realisation of graphene- 

hBN heterostructures, and the observation of the Hofstadter spectra, reported by 

L. A. Ponomarenko and co-workers [23]. The experimental work was carried out by 

the group of Andre Geim, and interpreted using the theory described in chapters 

the preceding three chapters.

The experimental devices consisted of encapsulated multi-terminal Hall bars, 

similar to those reported in [12]. The new element here being tha t the crystallo- 

graphic directions of the graphene flake and the bottom hBN layer were aligned 

to within about one degree. A second hBN layer was used to encapsulate the 

graphene flake. This top hBN layer was deliberately misaligned from the graphene 

to avoid additional lowr-energv reconstructions of the graphene spectra. An oxi

dised Si wafer acted as a back gate, enabling a shift in graphene’s Fermi energy of 

up to ~  0.35 eV. This allowed access to the part of the spectrum reconstructed by 

the superlattice perturbation.

Figure 5.1a shows the behaviour of longitudinal and Hall resistivities (pxx and 

pxy, respectively) for experimental device A. The standard peak in pxx at carrier 

density n — 0, corresponds to graphene’s main neutrality point. An additional
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Figure 5.1: a) The Longitudinal resistivity, pxx, as a function of n. Positive and neg
ative values of n correspond to electrons and holes, respectively, b) The experimentally 
measured Hall resistivity, pxy, changes sign at hole doping ng ~  3.0 x 1012cm~2, reveal
ing a well-isolated secondary Dirac point. The data is for device A. [Adapted from Fig. 1 
Ref. [23]]

peak in pxx appears at the doping n = ns  of four holes per moire unit cell. This 

is accompanied by a reversal in sign of pxy (Fig. 5.1b). These features prove that 

electron-like carriers appear in the valence bands of graphene, and are attributed 

to the isolated secondary Dirac, points discussed in section 2.3. Similar features 

are found in the conduction band, but are much weaker, and provide an example 

of the electron-hole symmetry breaking also discussed in section 2.3.

In Figure 5.2 the observed fan diagrams are presented. Near doping n =  

ns,  the Hall resistivity repeatedly changes its sign with increasing B , indicating 

recurrent appearance and disappearance of electron-like orbits within graphene’s 

valence band (Fig. 5.2 b). This occurs with a periodicity in l / B  described by 

(f) = <p0/q. The calculated spectral support allows us to understand many of the 

experimentally observed features. Indeed, Figure 5.2c. shows strong features at 

fluxes (f> = ( p o / q .  which are attributed to the gapped Dirac-like magnetic miniband 

spectra (see section 4), and give rise to sign changes in Hall resistivity. The effective 

Landau levels arising from these magnetic minibands are illustrated in Fig. -5.2d 

by magenta curves, which, as an example, magnifies a part of Fig. 5.2c. near the 

hole side neutrality point and c p = ( p o / 2 .

The capacity of the magnetic minibands can be used to determine the position
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of the Fermi energy for the doping n = ns. It is found that if 4> = <fio/q then Fermi 

energy lies inside one of a magnetic minibands, whereas for 0 =  4>o/(q +  1/2) it 

lies inside a gap. This explains the experimentally observed oscillations in axx( B ), 

with have the period set by 0 =  0o/g.

n (1(T2 cm -)

W'i

\  \  \* S ' p». V-l ' V

A
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-4  -3  -2
n (1012 cm-2)
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«•

Figure 5.2: a) Experimentally measured longitudinal conductivity, aX X  —  Pxx/{p xx +
p l y ) ,  as a function of n  and B  (device B). Grey scale: white, OkQ; black, 2.2m S .  The 
dashed lines indicate B  = (1 /q)(j>o/Auc with q = 3 -  10. b) Experimentally measured 
Hall resistivity, pxy, for the same device, as a function of n and l /B .  Colour scale: navy, 
- 2 k w h i t e ,  OkH; wine, 2kQ. In both plots, T  = 2K. c) Spectral support for the 
graphene-hBN heterostructure. The blue curves show several low index Landau levels 
calculated from the 0 = 0 miniband spectra. The green dots indicate the position of 
Fermi level for n = ns- d) Section of (c) with superimposed effective Landau levels 
calculated from the 0 = 0o/2 magnetic miniband spectra, e) Hall resistivity, p x y , for 
device C (ns «  3.6 x 1012cm-2). Colour scale: navy, -3kft; white, Okft; wine, 3kQ. 
T  = 20 K. [Taken from Fig. 3 Ref. [23]]
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Chapter 6

Bilayer Graphene on hBN

6.1 Introduction

The heterostructures of graphene with other hexagonal layered crystals, or crystals 

with hexagonal symmetry facets, feature moire patterns which are the result of 

incommensurability of the periods of the two two-dimensional lattices, or their 

misalignment. Since the period of the moire pattern is longer for a pair of crystals 

with a closer size of lattice constants and better aligned principal crystallographic 

axes, the long period moire superlattices are characteristic for graphene/hexagonal 

boron nitride (hBN) heterostructures with a small misalignment angle 6 between 

the two honeycomb lattices. Such heterostructures have recently been created 

by transferring graphene onto hBN [10, 22, 23, 25]. The influence of hexagonal 

moire patterns on Dirac electrons in monolayer graphene (MLG) has been studied 

in detail [10, 18, 19, 22, 23, 25, 74], using both specific microscopic models and 

phenomenologically. Three possible types of moire miniband structures on the 

conduction/valence band sides of graphene’s spectrum have emerged from the 

theories [18, 19, 22, 23, 25, 74]: sometimes, spectra without a distinct separation 

between the lowest and other minibands; quite exceptionally, the first miniband 

separated from the next band by a triplet of secondary Dirac points (sDPs) in 

each of the graphene valleys K + and AT; more generically, a single sDP at the 

edge of the first miniband in each valley. Also, the signatures of the miniband
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formation have been observed experimentally in the tunnelling density of states 

[22] and magnetotransport characteristics [23, 25] in MLG/hBN heterostructures.

In this chaper, we analyse the characteristic moire miniband features in het

erostructures of bilayer graphene (BLG) with highly oriented and almost commen

surate, hexagonal crystals, such as hBN, recently created and investigated using 

magneto-transport measurements by Dean et al. [24]. We find that, in contrast 

to monolayers, the electronic spectrum of BLG on hBN is most likely to exhibit 

gaps between the first moire miniband and the rest of the spectrum (on valence or 

conduction band side, and sometimes in both bands), or have the bands strongly 

overlapping with each other, whereas Dirac points at the miniband edge appear 

only for exceptional choices of moire parameters. Also, we find tha t a gap at 

the edge between the valence and conduction bands can be opened in BLG by 

the same moire perturbation that would not open a ‘zero-energy’ gap in MLG. 

This behaviour is prescribed by the substrate creating a moire perturbation only 

for one layer of BLG, thus breaking the inversion symmetry of the moire super

lattice. The results of a systematic study of the miniband regimes in BLG-hBN 

heterostructures is summarized in the parametric space diagrams in Fig. 6.1, where 

the regions of the parameter space with gapped spectra are painted red and over

lapping (non-resolved) bands are left transparent. Differences between the two 

diagrams corresponding to different misalignment angles 6 arises from the inter

play between the orientation of the supercell Brillouin zone (sBZ) and the skew 

interlayer hopping in BLG. This interplay, unique to BLG, can help in narrow

ing down the microscopic parameters of moire pattern at graphene-hBN interface 

using magnetotransport and capacitance experiments.

6.2 M oire Superlattice H am iltonian

The analysis in this chapter is performed using the phenomenological approach of 

chapter 2. This involves the description of the long-range moire superlattice using 

a Dirac-type model for graphene electrons, where we include all symmetry-allowed
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Figure 6.1: Parameter space (uq,111, 11,3) used to classify characteristic behaviour of 
moire miniband in highly oriented BLG on almost commensurate substrate: in red, 
we paint regions where BLG spectrum has a gap separating the first miniband in the 
valence band from the rest of the spectrum, regions with overlapping (unresolved) bands 
are transparent and blue/green mark the degenerate conditions for the appearance of 
isolated secondary Dirac points at the first miniband edge, like in MLG [18, 19, 22]. The 
thick cyan lines show directions in the parameter space favoured by the point charge 
lattice and graphene-hBN hopping models discussed in chaper 2. A similar parametric 
plot describing the minibands on the conduction band side can be obtained by inversion 
in the 11Q-U3 plane.

terms in the moire perturbation applied to one of the two layers in BLG and 

perform an exhaustive numerical analysis in order to characterise the miniband 

behaviour over a broad range of the parameter space. For BLG placed on top of 

a substrate with hexagonal symmetry and the lattice constant ag= (l +  5)a larger 

by 5 than tha t of graphene, (a=2.46A, and for the case of hBN, 5=1.8% [10]), the 

lattice mismatch, together with a possible misalignment of the two lattices given 

by the angle 0 , lead to a periodic structure which can be described using a set of 

reciprocal lattice vectors,

b „ = R mr/3
4tt

1 —(1 +  5) lRe ($ , -= - ) ,  72 =  0 ,1 , . . .  ,6,
Voci

where R v stands for anticlockwise rotation by angle and b =  |bn | ss +  62

[25]. Note that this set both rotates by (f)(8) and changes its size as a function 

of 0, Fig. 6.2. Because of the rapidly decaying nature of the interlayer interac

tion, we only take into account the influence of hBN on the bottom carbon layer, 

neglecting any interaction with the top one. Then, following the MLG investiga-
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Figure 6.2: Hexagonal Brillouin zone (BZ) of BLG with the valley coordinate system 
Pxi Py and the electronic bands in the vicinity of the K  valley, together with the zoom in 
on the supercell Brillouin zone (sBZ) where we mark its own symmetry points k and p.

tions of chapter 2 , the electrons in BLG/hBN heterostructure are described by the 

Hamiltonian

H

SH

vcr-p+5Hsym + SH asym :̂ { r 3a 1- i a 2) - \ - ^ { a 1-\-iT3a 2 )(Px+ *t3 py )\

^ t 3g 1 + ic r2) +  f{<Ji- i T 3a 2\ P x ~ i r 3p y ) vcr p

sym

SH asym

= u0vb f1(r )+ u3vbf2{r)(T3T3+ii1v[lz x W f 2{r)]-crr3+ u2v V  f 2{r)-crr3, 

= ^ o ^ / 2(^ )+ % ^ 6/ 1(r )a 3T3 +  z7iu[^ x V  fi{r)] -crr3+ u2v V  f i ( r )  ■ crr3,

f 1 ( r )  =  Y i e i b n T , ( r ) = i £ ( - l ) " e ibn r (6 .1)

written in the basis of the Bloch states on sublattices {d>(Hi), <l>(F>i), <F(A2), <F(.B2)} 

in the K + valley and {$(.Bi), — $ (B 2), — $(H 2)} in K _ , where indices 1/2

mark the bottom /top layers and the substrate directly acts on the electrons in 

the bottom layer. We also use h — 1 and employ two sets of Pauli matrices cr?:, 

cr =  (<7 i, cr2), and r i} acting in the sublattice and valley space, respectively.

The moire perturbation, scaled using energy scale vb and parametrised us

ing dimensionless {v,it ff?}, i = 0 ,1 , 2 ,3, captures the effect of the substrate on BLG 

through its coupling with carbon orbitals in the closest, bottom layer only. Follow

ing the approach used in the monolayer study, we separate the moire perturbation 

due to hBN into inversion-symmetric and asymmetric terms, SHsym and SHasym, 

respectively. Bv considering two limiting cases in which electrons in graphene are
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dominantly affected by only one of the two atoms in hBN unit cell, we argue tha t 

\ui\ \ui\ and neglect SH^ ym in all further discussions of the band structures, 

except the analysis of a gap opened at zero energy. The remaining parameters, 

Wo,1,2,35 can be associated with the following characteristics of the moire pattern: 

parameter uq characterizes the magnitude of a smooth electrostatic potential, u3 

captures the local asymmetry between the A\  and B\  sublattices, and u\ and u2 

introduce modulation of the in-plane hops for the electrons travelling within the 

bottom  layer. As opposed to the monolayer case, in BLG the rotorless u2 term  

cannot be completely gauged away. However, it vanishes for zero misalignment 

angle, and its effect on the band structure is generated via the interplay with the 

trigonal warping term: therefore, it is small and can be neglected. Note that, since

we scale all energies by v b ^ v :̂ \ / 5 2+62, the size of dimensionless parameters Ui 

in Eq. (6.1) would be larger for smaller angle 6 for the same pair of BLG and a 

substrate.

6.3 Sym m etries in the M iniband Structure

Due to the time-inversion symmetry [38, 77], described in chapter 1

H ( p )  =  a 2 r 2 H  ( - p )

electronic spectra in the two valleys are related, ck++p — £k_-p> so tha t we only 

discuss electronic spectra the K + valley. We find that, in contrast to unperturbed 

BLG, the spectrum resulting from a generic choice of parameters in Hamiltonian 

(6 .1) is not electron-hole symmetric, but obeys the following relation,

U0,Ul,U3 _ _ —UQ,Ul,—U3
CK + + p —  K + + p  ■

which reduces the parameter space (uq, 111, 113) to be explored.
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6.4 Low-energy H am iltonian for BL G -hB N  H et

erostructures

For the sake of a systematic comparison with the low-energy ‘two-band’ model of 

free-standing BLG [35], applicable at the energy scale e*C7 i, we use a Schrieffer- 

Wolff transformation [43] and project the four-band Hamiltonian onto the low- 

energy bands, reducing it to an effective two-band Hamiltonian,

v2
H eS =  [(p l  ~  p 2y)o -1 +  2pxp ya 2\ r 3 +  v3{a ■ p ) T +  (6 .2)

vb v^b
— g+{r) {  1 +  cr3T3) +  ^ - 2  iPx -  i<T3Py)9-{r )(PX +  ^3Py)(l “  CT3T3) +  

v2b 
—  [{px +  ipyT3) g ( r ) (a 1 -  i a 2r3) +  g*{r)(px -  ipyr3) (a  1 +  z<t2t 3) ] ,
Z71

where

9±{r)  =  (uQ± u 3) f i { r )  ±  (u3 ±  uQ) f 2( r ) ,

9 (r ) =  ^ 2 e%bTl'r ( K  +  ^nrs) [ ( - l ) n(u2 +  zzqT3) +  (uir3 -  iu2) \ ,
n

bn = b(bInX ) .

The applicability of the simplified Hamiltonian to the description of, at least, the 

first moire miniband in the BLG spectrum requires that 71 >  2vb. For a perfectly 

aligned BLG/hBN heterostructure, we estimate that ^  ~  7 7  —1-107, which

suggests tha t a quantitative description of moire minibands in BLG/hBN requires 

the use of the four-band Hamiltonian, Eq. (6.1).
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6.5 M iniband Spectra of BLG -hBN  H eterostruc

tures

Little is known about the exact values of each of the perturbation parameters 

Ui. Due to the size of the moire pattern and the importance of Van der Waals 

interaction in graphene/hBN heterostructures, the resources needed for supercell- 

size ab initio calculations are prohibitive. At the same time, even for the more 

studied system of MLG/hBN, experimental data obtained so far also does not 

allow for clear determination of the perturbation [23]. Hence, in our numerical 

modeling of spectra, we broadly cover the (uo,Ui,u3) parameter space, Fig. 6.1. 

Examples of characteristic moire miniband spectra on the valence band side in 

BLG/hBN are shown in Fig. 6.3: (a) overlapping minibands characteristic for the 

transparent part of the parameter space in Fig. 6.1; (b) and (c) gapped spectrum 

at the edge of the first moire miniband characteristic for the red-painted part of 

the parameter space in Fig. 6.1. Also shown are the corresponding densities of 

states, with a global gap in the valence band, Fig. 6.3(b), (c).

Spectra in Fig. 6.3(a) and (c) both correspond to the same choice of pertur

bation, uo =  ui =  0, u3 =  0.15, but with a different misalignment angle 0, which 

is enough to cause opening of a band gap between the first and second minibands 

on the valence side. This is because of the trigonal warping of the unperturbed 

BLG spectrum, which shifts the energy e° of a momentum state (px,Py) by 

^warp~ —sv3p cos3(^, where ip =  a rc ta n ^ , p=  y/p'i+Py and s =  1 (s =  —1 ) denotes 

the conduction (valence) band. For 6 =  <fi =  0, this results, for example, in the 

k  («') point in the valence band shifted up (down) in energy, like in Fig. 6.3(a). 

However, misalignment angle 9 =  0.595° leads to sBZ rotation by <f> = -30° and 

the trigonal warping correction at the points /c and «' of the rotated sBZ vanishes, 

as seen in Fig. 6.3(c). Such a strong dependence of the miniband spectrum on 

the misalignment angle is special to BLG, because in MLG trigonal warping cor

rections are much weaker. Consequently, experimental investigation of the BLG

78



miniband spectra for several misalignment angles (determined from the moire ge

ometry) may yield new information about the nature of the perturbation felt by 

graphene electrons due to hBN. For example, two of the models suggested for the 

MLG/hBN heterostructure, graphene-hBN hopping model and point charge lat

tice model (see chaper 2 ), yield the same form of the iq coefficients as a function 

of the misalignment angle 0 ,

1~ 6 VS  , N
u° = 2V’ Ui = - ^ w t w v ’ U3 = ~ i>' (6-3)

(v > 0 is a strength of the perturbation), corresponding to a single line for each mis

alignment angle 0, as shown with bold cyan lines in Fig. 6.1 for 0 =  0 and 0 =  0.595°. 

It is interesting to note that in the diagram for 0 =  0.595°, this line passes close

behind the green region where a secondary Dirac point at k! = (—-j=b, 0) separates

the first and the second miniband on the valence side. In Fig. 6.4, we show a 

detailed study of the gap between the first and second miniband in the conduc

tion band as a function of the misalignment angle 0 and perturbation magnitude 

u = J2i W  assuming that Eq. (6.3) holds, where ‘negative’ gap means tha t the 

minibands overlap. However, for the valence band, due to trigonal warping, a gap 

opens for 0 ~  0 .6 °; for points marked with a circle, this is a direct gap at the 

k! point. Note that even a small change of misalignment angle leads to a large 

rotation of the moire pattern and a different involvement of trigonal warping due 

to skew interlayer coupling in BLG. The corresponding evolution of BLG moire 

spectra is illustrated in Fig. 6.5. For 0 =  0, left column in Fig. 6.5, trigonal warping 

affects /c and in the opposite fashion (shown in the inset) which obscures the 

sDP at k! . However, the sDP becomes isolated on the energy scale for 0 ^ 0 .5 ° , 

centre column in Fig. 6.5. It disappears again as the misalignment angle is in

creased further, with the asymmetry between k and k! reaching a maximum for 

0 =  1.786° when the sBZ is rotated by 60°, right column in Fig. 6.5.

Also, all of our above conclusions have been tested for a ” single-side gate” 

geometry, where large charge density required to fill the first miniband (four elec
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trons per moire supercell) is induced by a single gate, which induces additional 

interlayer asymmetry [78, 79], and found that its presence has almost no effect on 

the type of the miniband spectrum at the edge of the first miniband (gapped or 

overlapping minibands).

One can notice that, in the majority of the spectra presented in Fig. 6.3 and 6.5, 

and for generic moire perturbation, a gap, A, is opened at the ‘neutrality point’ 

between the conduction and valence bands, in contrast to monolayer graphene, 

where a such gap, A ^LG =  24u6|u1uo+'u0ffi|, appears only when moire pattern  con

tains an inversion asymmetric perturbation. In the monolayer, this is accompanied 

by an overall shift, 12u6 (uiU3+ffiff3), resulting in the edges of conduction/valence 

band at e±LG =  12vb(uiU3+uiu3)± 12vb(uiUo-HioUi). In BLG, one of the two degen

erate zero-energy states belongs to the bottom and one to the top layer. Because 

the top layer is unaffected by the perturbation, the corresponding state stays at 

zero energy, while the other one is shifted by e+LG, just like one of the states in 

MLG. As a result, the bilayer gap is nonzero even if the moire perturbation is 

inversion-symmetric,

A b l g ~  12u6|ui(w3+ u 0) + u i ( u 0+ u 3) |. (6.4)

as a consequence of the hBN substrate breaking the equivalence of the two layers 

and, hence, the inversion symmetry. For BLG sandwiched between two hBN layers, 

the asymmetry will be still present, if the misalignment angles between graphene 

and top/bottom  hBN layers are different.

6.6 Conclusion

We shown that the interplay between interlayer coupling (including skew hopping 

between layers leading to the trigonal warping effect in BLG) in bilayer graphene 

and breaking of layer symmetry by the substrate play an important role in de

termining the miniband spectrum of BLG-hBN heterostructures. As opposed to
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MLG in which a gap at the Dirac point is open only for inversion-asymmetric 

moire perturbation, in BLG a ‘zero-energy’ gap is open even for an inversion- 

symmetric perturbation, as a direct consequence of interlayer asymmetry caused 

by the substrate.
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a) 8 = 0, vb = 0.903^, = 0.15, = u\ 0

density of states [arb. u.]
b ) 6  = 0,vb = 0.9037i, u = 0.15, U\ = 0

£

density of states [arb. u.]
c) 6 = 0.595°, vb = 1.0537i, w3 = 0.15, u0 = u\ = 0

0.5

QJ

-0.5
density of states [arb. u.J

Figure 6.3: (a-c) M oire m in ib an d  sp e c tra  (draw n w ith in  th e  rhom bic  sB Z) an d  den sity  
o f s ta te s  (D oS) p o rtra y in g  tw o ch a rac te ris tic  behav iou rs of th e  m in ib an d  sp e c tru m  as 
de te rm in ed  in Fig. 6.1.
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valence band conduction band

misalignment angle [°] misalignment angle [°]

Figure 6.4: The size of the gap between the first and second minibands on the conduc
tion (right) and valence (left) side as a function of the perturbation magnitude u = J2 t \ui\ 
and the misalignment angle 6 , assuming that the perturbation parameters are described 
by relations in Eq. (3). Negative values for the gap denote overlapping bands. Points 
marked with blue circles correspond to spectra for which the global gap is direct at k! .

1.043yi;
-30°
0.034 
-0.058 
-0.058

£  O . l v b

0  = 0.595v b  = 
cP = 
Uq = 
Ml =

w3 =

- 0 . 5 v b

v b  = 1.8067]; 
< p  = -60° 
u 0  =  0.040 
U \  = -0.040 
u 3 =  -0.070

Figure 6.5: Moire miniband spectra (drawn within the rhombic sBZ) illustrating the 
role of trigonal warping in determining whether the first and second minibands on the 
valence side are overlapping or gapped at a secondary Dirac point. For these examples, 
we assumed that relations in Eq. (3) hold and set u — J2i \ui\ ~  0-15- The insets show 
the angular dependence, cos3</>, of the trigonal warping for the valence band within the 
(rotated) sBZ.

6  =  1.786°v b  = 0.903/];
( p  =0 
u 0 =  0.032 
U i =  -0.063 
m3=- 0.055

£ O . l v b
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Chapter 7

Monolayer Graphene with Alm ost 

Commensurate Vo x y / S  

Hexagonal Crystals

7.1 Introduction

Two alternative methods exist to create long-period superlattices for two-dimensional 

(2D) electrons. One method, developed for semiconductors, is based on the litho

graphic patterning of the semiconductor surface [68]. The other method, high

lighted by the studies of 2D atomic crystals, arises naturally from the existence 

of quasi-periodic moire patterns formed by two slightly incommensurate 2D lat

tices with similar crystal symmetry, placed on top of each other. Graphene on 

hexagonal boron nitride is one example of such heterostructure, where the effect 

of the moire superlattice on 2D electrons leads to pronounced changes in the elec

tronic properties detected by STM [11, 80, 81], and magnetotransport experiments 

[23-25].

The specific form of moire superlattice for graphene electrons, generated by 

a hexagonal underlay, depends on the ratio between the periods of the two lat

tices and their mutual orientation. The abundance of layered hexagonal crystals
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Figure 7.1: (a) The moire pattern formed from graphene (blue) on a underlay (red) 
with 6 = 0, 8 = The black hexagons follow Kekule lattice of graphene, (b) The two 
sets of reciprocal lattice vectors. bm and /3.m, with their associated Brillouin zones.

and semiconductors with a hexagonal surface layer, allows for a multiplicity of 

qualitatively different superlattice structures, with various levels of moire super

cell complexity. The simplest and, by now, best studied is the highly orientated 

graphene-hBN heterostructure. Here we analyze the second simplest moire pat

tern for Dirac electrons in graphene produced by a hexagonal underlay with an 

elementary unit cell approximately 3 times bigger than tha t of graphene. The 

effect of a perfectly commensurate \/3 x \/3 superlattice, known as the Kekule 

distortion of the honeycomb lattice [82], consists in the Bragg type intervalley 

scattering of graphene electrons, which opens a gap between the conduction and 

valence bands. A hexagonal underlay with the lattice constant as =  a/3(1 +  d)a. 

|d| <C 1, slightly different from that of the Kekule superlattice of graphene and a 

small misaligned angle 6 , produce a periodically oscillating intervalley coupling. 

Although this does not open a gap in graphene’s Dirac point, it creates a specific 

miniband spectrum, whose generic features are studied in this chapter. Below, we 

employ a phenomenological approach to classify the possible structure of moire 

minibands of Dirac electrons in graphene [21] and, in particular, the behaviour of 

the edge of the first minibands on the conduction and valence band sides.
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7.2 Phenom enological Superlattice H am iltonian

The image of a moire supperlattice for graphene on a substrate with a period 

almost commensurate with the y/3 x y/3 Kekule lattice of graphene is shown in 

Fig. 7.1. Since graphene electrons belong to the Bloch states in its hexagonal 

Brillouin zone corners and a Kekule perturbation leads to their intervalley Bragg 

scattering, the symmetry of the electronic system is described by the group of 

wavevectors K±, equivalent to the extended point group Cqv + tC§v + t2Cev where 

t is an elementary translation of the honeycomb lattice. That is why in Fig. 7.1 (a) 

we show both the actual positions of carbon atoms in graphene and, using lines, the 

Kekule lattice. The periodic occurrence of sites from the underlay under equivalent 

positions of graphene honeycomb lattice is described by a moire pattern  which 

is periodic under translations by Xq and X \.  The associated reciprocal lattice 

vectors belong to the set b =  {bm =  i?27rm/6&o}m=o, - ,5  where is the rotation

matrix, and b0 = 1 — (1 +  5 ) ~ 1R q (o, so that |6n | = b = - ^ V S 2 + 02. 

In contrast, the equivalent positions of substrate sites on the Kekule lattice are 

characterized by the V3 times longer period of X 0 +  X \  and reciprocal lattice 

vectors from the set (3 - {/3m =  - ^ R ^ . b m}m=o,...,5 with \(3n\ =  (3 — bjyj3. The 

coexistence of these two periodicities is taken into account, on an equal footing, in 

the phenomenological Hamiltonian for graphene’s Dirac electrons,

H  =  vp ■ cr +  UE>vf3F($)a3 +  Uqv [cr x lz\ ■ VF(/3) +  Uc'va  • V F (/3) (7.1)

+u0vbfi{b) +  u3vbf2{b)a3T3 +  u xv [lz x V /2(6)] • c t t 3 +  u2vr3cr ■ V /2(6);

/ , (* )=  Y ,  eiVmr- M*)  = i E  F(v) = M i ) n  + f2(v)r2.
771= 0 ,■■■ ,5  777= 0 , • • •  ,5

This Hamiltonian is written in terms of the Pauli matrices and Tj which act 

separately on the sublattice (A ,B )  and valley (KT+,iF_) components of the 4- 

spinors (/iPai<+^ b k+^ b k -^ ~ ^ a k- ) T describing graphene electrons. Hence, the 

second line describes intravalley Bragg scattering, whereas the first line accounts 

for intervalley scattering. In writing H, we use the earlier observation [18, 19, 22,



51-53] tha t the potential felt by the graphene electrons is smoothened by the larger 

separation between graphene and the substrate than the carbon-carbon distance in 

graphene. For graphene on hBN, as well as twisted bilayer graphene, this resulted 

in the presence of only the simplest set of harmonics, 6, in the moire perturbation 

[18, 19, 22, 51-53]. For graphene on a almost commensurate v^3 x y/3 hexagonal 

underlay the same argument leads to the appearance of the intervalley terms. 

In Eq. (7.1), the relative strength of moire perturbations, measured in the unit of 

energy vb =  y/3vf3, is set by dimensionless parameters C/gy, Ug , Uq> , Wi=o, 1,2,3 - Here, 

we assume that such moire perturbation is small, \Ui\ <C 1, \uj\ <C 1, and th a t the 

underlay has an inversion-symmetric unit cell, which is a natural approximation * 

for a simple monoatomic surface layer.

7.3 M icroscopic M odels

To supplement the phenomenological approach to describe the moire supperlattice, 

Eq. (7.1), we also estimated parameter Ui and Uj by adapting the two microscopic 

models discussed in section 2.6. That is, where the underlay is modelled as a 

hexagonal lattice of point charges (section 2.6.1), or modelled as a lattice of atomic 

orbitals on to which the graphene electrons can hop (section 2.6.2). Both models 

produce similar estimates for sets of phenomenological parameters Ui and Uj,

~ S  ’ ' (7 -2 )

vb{uo, u u u2, u3} =  „ F ,  ~ ^ = ,  - ^ = ,

' V<52 + 0 2 ■ v s 2 + e 2

- S
nzz.----T77 5

0
---- rrr 5

""Inversion asymmetric terms may be included into Eq. (7.1) by adding terms with fi(v) 
f 2{-v) and f 2(y) -» fi(-v).

87



Parameters V  and v reflect the strength of the intervalley and intravalley pertur

bations. For the point charge model,

V  — I  (47r /(3 a ) ) , v =  I  [ati/ (\/3a)^j ;

9a4e j  g 2  +  ( q z - q 'z)2

Here Q is the charge per substrate lattice site, D  the graphene-substrate distance,

e the electric permittivity and “0(Q , g2) the Fourier transform of the graphene P 2

orbitals A The point charge model predicts V  fl, whereas for the hopping model 
2

V  — v — with 7  the hopping integral to the substrate and es is the energy of 

the substrate state.

7.4 Param eter Space of the Superlattice Pertur

bation

The features of the miniband spectrum of the Dirac electrons prescribed by the 

intravalley terms, Uj, in the second line of Eq. (7.1) have already been explored 

in chapter 2 as well as in previous studies of graphene on hBN [18, 19, 22]. The 

characteristic features, present in the lowr energy graphene band structure for this 

case, consist in the formation of additional secondary Dirac points [18, 21, 22] in 

a gapless spectrum. * In contrast, intervalley perturbations Ui are able to open 

gaps in the spectrum at the edges of the low energy moire minibands. Hence, 

we focus on the role of the intervallev terms, and explore the parameter space 

[Ue ' i Ug , UG' l  classifying the resulting electron spectra. It is useful to notice that

^Comparison with section 2.6 suggest, all things being equal, that the point charge model of 
the \/3 x a/3 underlay generates a significantly stronger perturbation than l x l  underlay. This 
follows from the fact that 1(g) decreases rapidly as a function of its argument.

*The addition of a small intervalley component to a larger intravalley perturbation may open 
a minigap in the secondary DP, depending upon which valley the secondary DP occurs in.



for the Hamiltonian in Eq. (7.1)

- £ - u E,,uG,uG,(k) = eUEl,uG,uGl{k) =  e~uE, -u G -u G,(k).  (7.3)

The first equality in Eq. (7.3) allows us to relate the bandstructure of the valence 

band to tha t of the conduction band by flipping the sign of Ue - Also, it turns 

out tha t the parameter Ug> affects the miniband spectra of electrons only in the 

second order, since its first order effect on the electron energies can be removed by 

the gauge transformation ip —>• e~lUG'F^ i p ' .

7.5 Translational Sym m etries and Zone Folding

The correspondence between the translational symmetries of the Hamiltonian H  

and the geometrical symmetry group of the moire supperlattice, G s l  =  {cq, T x 0},  

is set by the fact that a translation e.g. by the period X 0 indicated in Fig. 7.1, is 

accompanied by a valley-dependent unitary gauge transformation, Ut — — |  — ̂ 73 , 

which represents the effect of the elementary translation of the honeycomb lattice 

on the 4-component spinors ip. This argument establishes the isomorphism of G s l  

to the symmetry group GH =  {c6, S x 0} of the Hamiltonian H , where, instead of 

geometrical translation T x q: we use S x 0 =  UtT x 0 (and S x  1 =  U \Tx  1 instead of 

T x J .  This correspondence allows one to use two equivalent descriptions of the 

folded mini Brillouin zone (mBZ) of the electrons in the presence of the moire 

pattern, Fig. 7.1(b). One, based on the longer periodicity implicit in the elf3m"r 

dependence of the intervalley part of the Hamiltonian H , suggests plotting the 

miniband dispersion over the smaller mBZ. The other, adjusted to the periodic

ity of the geometrical arrangement of atoms, uses the three times larger mBZ. 

For the smaller mBZ, the Dirac cones from both K + and valleys are folded 

onto the centre of the mBZ, resulting in the valley degenerate dispersion surfaces 

shown in the left panel of Fig. 7.2(a). In contrast, the zone folding into the larger 

mBZ, shown in the centre panel, places Dirac cones from graphene’s two valleys



at opposite mBZ corners. The folding of dispersion surfaces from the larger mBZ 

into the smaller mBZ can be used relate the spectra shown in these alternative 

schemes. The unfolding of smaller mBZ into the larger mBZ is provided by the 

gauge transformation -» Ad//, H  —>• H' =  U^HU where U =  e ^ bo+T3̂ ' r repre

sents a valley dependent shift of momentum. After this gauge transformation, the 

new Hamiltonian H' can be written solely in terms of the b harmonics,

7.6 Characteristic M iniband Spectra

Characteristic miniband spectra, calculated by numerical diagonalisation in the 

basis of zone-folded plane waves of K + and AT Dirac electrons, are shown in 

Fig. 7.2(b,c). The choices of phenomenological parameters used to calculate these 

spectra, marked with black dots in the lower right panel of Fig. 7.3, correspond 

to the direction in the parameter space set by Eq. (7.2) with 9 — 0. Since nesting 

obscures some of the dispersion branches, it is useful to plot them over both the 

smaller mBZ (left) and the larger mBZ (middle). Also, we note tha t the calculated 

spectra will be electron-hole asymmetric, e(k) ^  — e(fc), unless either Ue = 0 or 

UG =  UG, =  0.

Generically, we find either a gapped edge of the first moire miniband (on the 

conduction and/or valence band side of the graphene spectra) for a strong moire 

perturbation, or gapless spectra with overlapping minibands for a weak moire 

perturbation. In all cases, the main Dirac point is preserved with a renormalized 

Dirac velocity, (1 -  12U%, — 24UG)v. The parameter range where the spectrum

(7.4)

+  UE>vb (tiR e f  -  r 2Im /')  cr3 +  UGv (n R e g '  -  r 2Imflr/) cr

2 27
f  = (1 +  eibi r +  eib2'r) , 0 ' =  —  (60 +  b2eib' r +  b4eib* r) .
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a) U& =o ,  uG =  o, ug> = o

b) Ue' — 0.02, U q  — —0.04, U q > — 0

c) Ue' — 0.07, U q  —  —0.14, U c — 0

e [vb\
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Figure 7.2: Numerically calculated moire minibands shown in the smaller mBZ (left) 
and larger mBZ (centre), and the corresponding density of states (right). A Van Hove 
singularity, originating from the first moire miniband (in both the conduction and valence 
bands) is always present for the perturbed spectra.
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Figure 7.3: The regions of parameter space for which a band gap is present in the 
conduction band. The parameter space for the valence band is obtained by flipping the 
sign of Ue ' .

has a gap at the first miniband edge in the conduction band is shown in red in 

Fig. 7.3, whereas the parameter range with a gapless spectrum is left transparent. 

The magnitude of the band gap between the first and second minibands in either 

the conduction band (s =  1) or the valence band (s =  —1), may be expressed in 

the form

value of A indicates that the bands are overlapping (no band gap, transparent 

volume of Fig. 7.3). A more detailed discussion is found in appendix B.

7.7 Conclusion

To summarize, Dirac electrons in graphene heterostructures with hexagonal crys

tals with a three times larger unit cell than that of graphene are likely to have a

mm (7.5)

c «  - 1  +  |4UE' ~  &SUG\ +  \  (U%, + 6sUE,UG -  W% -  3U%)
A o

d «  |UB  -  2sUg \ +  ^ (3V%, -  4U 2g,) .

where and d are the values of the indirect and direct band gaps. A negative
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Table 7.1: Surfaces almost commensurate with the \/3 x y/3 graphene superlattice.

Surface «S[A] "oS II S- "aT < B an d  gap[eV] R ef.
In A s(lll)B 4.28 0.026 0.35 [83]
In P ( lll)B 4.15 0.145 1.34 [83]
PdTe2 4.04 0.289 0.2 [84, 85]
PtTe2 4.03 0.303 0.8 [84, 86]
InSe 4.05 0.276 «1 [87]
h-GaTe 4.04 0.289 2.1 [88-90]
\/3 a graphene 4.26 n /a 0 [28]

band gap, Eq. (7.5), at the edge of the first moire miniband, either in the conduc

tion or valence band of graphene. This feature, and the resulting suppression of 

the electron density of states in graphene, take place at the energy eq ~  ± v b / \/3 , 

counted from the ungapped Dirac point. The energy scale where such feature oc

curs depends on the difference between the lattice constants of the two crystals 

and their misalignment.

For each hexagonal crystal, the lowest possible value of eQ is shown in Table 

7.1: it corresponds to the perfect alignment of the two lattices, 9 = 0, and it is 

set by the lattice mismatch 5. In this table, we list several semiconductors which 

can provide facets nearly commensurate with the y/3 x Kekule superlattice in 

graphene. Two of them are zinc blende type crystals, InAs and InP, whose ( l l l )B  

surfaces retain the hexagonal structure of the top layer of As or P atoms without 

surface reconstructions [91-93]. Of these two, InA s(lll)B  has a work function 

[94] close to tha t of free-standing graphene [95], and a polar surface which causes 

a downward band bending, sometimes leading to an accumulation electron layer 

near the surface. However, it is possible to produce accumulation-free In A s(lll)B  

surface [96, 97], or deplete graphene-InAs using gate-controlled doping in a field 

effect transistor. Due to a smaller size of the energy e0 than the InAs band gap 

(see Table 7.1) it should be possible to reach the gap at the first miniband edge in 

graphene, before depleting states in the valence band of the InAs substrate, thus 

producing a graphene-based field effect transistor with improved current on/off ra

tio. Since the energy of the first moire miniband edge depends on the misalignment
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angle, the proposed device will work only for a limited range of (small) misalign

ment angles. By comparing the size of the corresponding values of eo to the band 

gaps of materials Table 7.1, we suggest tha t In P (lll)B , hGaTe and InSe may also 

be suitable for producing high on/off current ratio in field-effect transistors, but 

for PdTe2 and PtTe2 the band gap is too small as compared to cq.
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Chapter 8 

Raman Scattering by Phonons in 

Graphene

8.1 Introduction

The electron-phonon interaction (EPI) determines many kinetic properties of met

als and semiconductors. Its measurement, together with the characterization of 

the spectra of lattice vibrations, represents an important step in the study of new 

materials. Graphene [6, 99], a two-dimensional sheet of carbon atoms arranged on 

a honeycomb lattice, is no exception. Over the several years since its discovery, 

the phonon spectra and coupling between Dirac-type electrons and phonons in 

graphene have been studied both theoretically [27, 39, 100-108] and experimen

tally [109-115], in particular, using inelastic (Raman) scattering of light. Using 

the irreducible representations of the symmetry group of the honeycomb crystal 

of monolayer graphene (section 1.5) it has been established that the lattice modes 

engaged in EPI include in-plane optical phonons in the centre of the hexagonal Bril

louin zone (BZ), transverse optical (TOK±) as well as longitudinal optical (LOk±) 

and longitudinal acoustic (LAK±) phonons in the vicinity of the BZ corners K+ 

and K_.*

*Time reversal symmetry forbids electronic coupling to TAK±- This mode belongs to irre
ducible representation E" of c&v», and therefore couples with the t x , ry electronic matrices. These 
are odd under time reversal. Also, out-of-plane modes can only couple quadratically, since the
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Figure 8.1: The in-plane phonon modes (left panel) calculated using a simplistic two 
parameter valence-force field model, separately accounting for the forces required to 
stretch the carbon-carbon bond and change the bond angle. The Raman spectra of 
graphene and graphite (right panel), measured experimentally using 514nm light [taken 
from Ref. [98]]. For comparison 1 meE = 8.06554cm-1 .

By now, T-point optical phonons (LOr and TOp) and transverse optical (TOk± ) 

phonons in the corner of the hexagonal Brillouin zone (BZ) have been exten

sively studied using Raman and X-ray spectroscopy (see Fig. 8.1). Their coupling 

to electrons has been calculated using ab-initio density functional theory (DFT) 

[100, 102], incorporated in the graphene tight-binding model [101], and subjected 

to the study of renormalisation by the electron-electron interaction [107]. Based on 

the theory of phonon renormalisation by the EPI [100-103], the experimentally- 

observed variation of the G-line in Raman (attributed to the excitation of one 

T-point optical phonon) as a function of carrier density in graphene [113] and a 

fine structure it acquires at a strong magnetic field under the condition of magneto- 

phonon resonance [104, 105, 116] have permitted a direct measurement of the EPI 

constant with this mode. A further comparison between the integral intensities of 

the two-phonon peaks in Raman attributed to the excitation of a pair of T-point 

optical phonons (2D' peak) and a pair of T O k ± phonons (2D peak) facilitated the 

experimental determination of the corresponding EPI constants.

In contrast to the above-discussed phonon branches, the Raman signature of the 

LOk and LAk., modes in graphene and their interaction with electrons have not 

been satisfactorily established. This pair of lattice excitations is quite interesting.

system assumed to be symmetric under reflection in the graphene plane (the substrate neglected 
until section 8.5). These modes will not be considered further.
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The LOk± and LAk± modes are degenerate exactly at the BZ corners, with a 

spectrum resembling the conduction/valence band spectrum of Dirac electrons. 

On the theory side, it was suggested [39] that such coupling is negligibly weak and 

cannot be described within the tight-binding model approach, despite the fact tha t 

ab-initio studies [118, 119] indicated substantial EPI effects. At the same time, 

the LOk± and LAK± double-phonon Raman lines have not been unambiguously 

identified in the published Raman data.

In this chapter, we use a analytical description of the pair of longitudinal 

phonons in the vicinity of the BZ corners to show that the interaction between 

Dirac electrons in graphene and these modes can be described within a minimal 

tight-binding model and estimate the corresponding coupling using DFT, and cal

culate the lineshape of the corresponding two-phonon signal in Raman. We predict 

tha t the latter is strongly asymmetric, reflecting a substantial trigonal asymme

try  of these phonons’ dispersion around the BZ corners, with the linewidth being 

dependent on the energy of the incoming photon. We also show tha t the pres

ence of a superlattice perturbation modifies the EPI, resulting in a non-isotropic 

renormalisation of the energy of the T O k ± mode.

8.2 In-plane Phonon M odes

The relevant phonon branches include optical phonons near the BZ center where 

we describe the phonon state using the full value of wave vector q  and in the 

vicinity of the BZ corner where q  =  q(cos (p. sin ip) is the valley wave vector part 

of the total wave vector K + +  q. A full microscopic theoretical description of the 

phonon spectrum [27, 103, 120, 121] should be done by means of diagonalization 

of a full 4x4 dynamical matrix D4x4 determined in the space of the inplane (x- 

y) displacements of A and B sublattice atoms: A x, A y, B x, B y. For the sake of 

simplicity of the Raman spectrum analysis, we perform a partial diagonalization 

of the actual dynamical matrix D4x4 and employ a Schrieffer-Wolff transformation 

[122] to reduce it to a block-diagonal form describing each of the phonon branches
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around the K(K’) points separately.

A degenerate pair of TO and LO modes at the center of the BZ (q <C a ^ 1, where 

acc is the A-B bond length), with polarization |uLo )r =  (l/2q)(qx, qy, — qx, — qy,) 

and |uTo )r =  ~ Qx, ~Qy, Qx,) have an almost isotropic dispersion [123], <^LO-To(r\ q)

ojp +  Ar q2 (wr ~  0.2eV). In the vicinity of the K+-point, the highest energy branch 

(TO) is only slightly anisotropic with respect to the direction of the phonon 

wave vector q  in the valley (£ =  ±1) [polarization |uTo)*r+ =  M , 1)

and |uTo)x_ =  |^ to )k + ]: wt o ( t )  -  ^ to  +  ^ to  Q2 +  CXto Q3 cos(3<p), where 

a;To ~0.15eV  [114].

This contrasts with the much stronger anisotropy of the pair of LO-LA phonons, 

which are degenerate in the BZ corners K and K ’, where both have the same energy 

u;l ~  0.15eV [114], and polarization vectors \v\)k+ =  2-1/2(i, 1, 0, 0), \v2)k+ =  

2_1/2(0 ,0, — z, 1), \v \)k -  — \v iYk+i an(  ̂ \v2) k -  — \v 2)*k+ f°rm the 4-dimensional 

irreducible representation G of the symmetry group of the crystal. For each valley, 

the pair [|ui), |u2)] can be used as a basis to describe the polarization of lattice 

displacements at a finite valley wave vector q, as |u) =  ?7i|u i) +  7721̂ 2)- Then, the 

LO-LA spectrum can be described [121] using the 2x2 dynamical matrix acting 

in the space of two-component vectors 77 =  (771, 772)

VK. (q)
^ Lot + K q 2 Pl {k*)2 ~  s l«

y phHL2 -  slk* u i  +  Al  qz j  

D 77 =  (J277, k =  qx +  iqy = qeltp, (8 .1 )

k _ (q) =  © k+ ( - q ) , PK- (q) =  v k + ( - q )  •

In group-theory terms, this representation is equivalent to the irreducible repre

sentation provided by the two-component electronic wave functions in the valleys 

K+ and K_ of monolayer and bilayer graphene. The dynamical matrix (8.1) has 

structure similar to that of the electronic Hamiltonian [124], with sL playing the 

role of ‘Dirac velocity’ and the term with pL that of the ‘warping term ’. On the 

basis of diagonalization of the full 4x4 dynamical matrix, we observe tha t sL > 0,
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Pl > 0. The corresponding spectrum and polarization of the LO(+) and LA(-) 

modes near K and K ’ read

jf+ifa) — + AL g2 ± n1/2, u>k'+zt(q) = uk+±{—q),
n  =  sl  ( f  +  Pl ~  2pL sL ReK3 ,

/  .

(8 .2)

^ +±(q) =
>/2n

±[Pl {k*)2 -  sl k]

Vu

8.3 Electron-Phonon Coupling

Below, we use the electronic tight-binding model to describe the electron coupling 

with all of the above-mentioned lattice modes. The minimal tight-binding model 

reads

H — 6ic\ci -  ^ 2  \kijc\c3 +  h -c- • (8-3)
1 (i,j)

Here the first term takes into account the fact tha t the on-site energy e* on the 

zth site on the honeycomb lattice may depend on the mutual distance between 

neighboring (A/B) carbon atoms. The second term describes nearest-neighbor 

(A/B) hopping. For an unperturbed honeycomb lattice, e* =  eo and Uj =  t, 

and electrons with momenta K + +  p (iT_ +  p) in the vicinity of the BZ corners 

[p =  p(cos 0, sin 0) is the valley momentum] are described by the Hamiltonian

H, = ^ l
(

\

e0 +  u p < r 0 

0  e0 +  u p c r

\

J
ipP’

where K , 0#  K+, ~ ax,y are Pauli matrices in the space

of the electron amplitude on A and B sublattices, and v = Zacct/2h.

Modulation of the hopping energy Uj is known to lead to EPI with T-point 

optical phonons and TOK± phonons [39]. This can be established using an expan

sion, tij = t + t' (uj — u i) e ij: of the hopping parameter in the lattice displacements 

u*. Here, t' =  d t/dacc is the hopping parameter derivative with respect to the AB
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bond length acc, and is a unit vector connecting two neighboring sites i and j .  

Similarly, the dependence of the on-site energy e* with respect to the surrounding 

three honeycomb lattice sites j ,

leads to EPI parameterized using e' =  de$ fdacc. To compare the two EPI param-

augmented-wave method to obtain first principles values for the derivative of the 

on-site energy with respect to the carbon-carbon bond length. The plane-wave 

cutoff energy was 500eV, which corresponds to a very large basis set where basis 

set superposition errors are negligible, and a 72 x 72 Monkhorst-Pack grid was 

used in fc-space. Results were obtained using three different DFT functionals: 

the Ceperley-Alder local density approximation functional (LDA), the Perdew- 

Burke-Ernzerhof generalized gradient approximation functional (PBE), and the 

Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06). The derivative of 

the on-site energy was calculated by numerical differentiation using a 0.01 A dis

placement in the bond length preserving lattice symmetry. Since the on-site energy 

in the tight-binding model sets the Fermi energy relative to the vacuum, the key to 

obtaining first principles results for the on-site energy e0 (acc) is to obtain the cor

rect reference energy of the vacuum in each step of the calculation. This was done 

by computing the electrostatic potential in real space, which saturates at a ‘zero 

level’ far from the graphene layer. This method was previously used to compare 

absolute values of the Fermi energy of carbon nanotubes of varying diameter [126]. 

Our results for parameters e' and t! are summarized in Table 1, in comparison with 

earlier calculated t! values.

Substituting the expansion of Uj and into the tight-binding model (8.3) 

yields electron coupling to all of the above-discussed phonons in the centre {v =  

tT his part of the work was carried out by V. Zoloymi, who also compiled table 8.1

J

eters, we employed’1’ the DFT-based Vienna ab initio simulation package (VASP) 

[125] with a plane-wave basis set used within the framework of the projector
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Table 8.1: The DFT values of parameters e' and t' in units of eVj A  (calculated here 
and taken from recent literature).

LDA PBE HSE06 SSH DFPT
—e' 6.1 6.0 6.3
- i !  4.5 4.5 5.1 3.4 [127]; 5.3 [128]; 5.5 [129] 7.8 [100, 130]

L 0 r ,T 0 r)  and corners {y = T O k ±, LOk±, LAk±) of the BZ,

# e p i  — t^ p -q  [hi, +  hro +  ^ r ]  V’p +  h .c .;

(

hr = 9r
V n

A q  ,v'0 iK ++q,i/
\

(

A q (i/ =

(8.4)

E
i/=LO,TO

Lcr 0

V 0 “ lq.t/CT
6fu—q,ui

1 1
IlO =  - ( —qyiQx), ItO =  -{QxiQy)

u — 9TO
h m - 7 N  ̂ 0K-+q(J2

'K+W  

0

where N  is the number of unit cells and the coupling constants are written using 

the carbon mass m.

- e 'V h
y/4muj l ’

9 t o  —
s t 'V h

a/2mujTo ’
3 t'y/h  

/4 m w r

Here, c /, are creation operators of the corresponding LO/LA, TO and T-

point optical phonons, whereas all phonon annihilation operators are incorporated 

in the Hermitian conjugated (h.c.) terms. In HEPh the lower-left blocks describe 

the emission of a phonon due to intervalley scattering of an electron from K-|- to 

K_ valley, and the upper-right blocks - scattering from K_ to K+ valley. The form 

of H l in H epi agrees with that proposed using symmetry-based phenomenology 

in Ref. [39], however, the comparison of the DFT-calculated coupling parameters, 

Table 1, suggests that the coupling of electrons to the LA/LO branches is not 

diminishingly small, in contrast to Refs. [39, 100].
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Figure 8.2: Resonant two-phonon scattering in graphene. The cones indicate the elec
tronic bands in the vicinity of the Brillouin zone corners, labeled K + and K -.  Lightning 
marks indicate an incoming (outgoing) photon. The electron-hole pair generated in one 
valley scatters to the other valley (by emission of phonons with wave vectors ±Q), where 
it recombines to contribute to the Raman signal.

8.4 LO-LA Ram an Spectra

Finally, we can use EPI in Eq. (8.4) to calculate the spectral density of inelastic 

light scattering accompanied by the emission of a pair of LAK;t or LOk± phonons. 

The two-phonon Raman scattering is a fully-resonant process. It is illustrated 

in Fig. 8.2, and was discussed in detail in relation to the Raman spectroscopy 

of transverse phonons [39]. An incoming photon, with energy generates an 

electron-hole pair in the vicinity of one of the valleys (the K+-point in the upper 

panel of Fig. 8.2). Owing to energy and momentum conservation and the negli

gible momentum of the incoming photon, the photoexcited electron has the same 

momentum, p =  (Q;/2u)(cos 0, sin 0) as it had in the emptied state (which can 

be viewed as a valence band hole). Then, both the electron and hole scatter to 

the other valley (the K_-point in Fig. 8.2) emitting a pair of phonons with op

posite wave vectors ±Q . The kinetics of this process are such that both electron

102



and hole retrace their paths after emitting ± Q  phonons, to be able to recom

bine into a photon with energy Qf =  fh — 2lov. This requires tha t Q =  K _ +  2p 

and —Q =  K + — 2p and prescribes the use of q  =  —2p (q ~  qQ «  Sli/v) when 

calculating the energy and polarization of the corresponding modes.

Similarly to TO phonons [39, 106], the matrix element of the LO-LA fully 

resonant process is given by

M Vfa«e2L2gl  [e„ x e<] J eq x e}]z ^  ^
q'1' m ^ h  + Ws {v (q -  q0) -  2 i7 ]3/2 ’ ( " }

where L 2 is the sample area, e*, e/ are polarization vectors of the photons and 

©q =  q /q. The denominator [u (q — q0) — 2ẑ y]3/ 2 describes a sharp peak of the 

matrix element around the phonon wave vector qQ =  (f2* +  Qf)/(2v)  ~  Qi/v  

corresponding to resonant backscattering. The width Sq ~  j / v  of this peak is 

determined by the electron inelastic-scattering rate 2q. The factor

ALO,LA(q)
1

1 ± PlQ ~  sLq cos 3ip 
nV2 (8 .6)

(+  stands for the LA and — for the LO mode) shows that the kinetics of the LO-LA 

fully resonant process are strongly affected by the anisotropy of their dispersion, 

Eq. (8.2), which increases upon departure from the BZ corners. This anisotropy, 

shown in Fig. 8.3, will be observable in the spectral density of the LO-LA signal,

= 3  E  /  w v|M<J2 S{oJ ~ 2̂ (q)) -
7rC i/=LO,LA W

because the wave vector of the emitted phonons q =  q0 ~  Qi/v  may be tuned by 

changing the photon energy

In the limit 7  —> 0, the resulting lineshape for the Raman spectrum, studied
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using non-polarized light, is

3Cg / e2Qfg^L2\ 2 lo
128 \  vc2~fN J  127rr/92 ô

(8.7)

V T  -  9 o ( s l  -  P l< /o) ] \ql(sh + PhQo)2 -  T2] ’ 
r (^ )  =  I^L +  AliJo — w2/4 |  , q0 as 0;/?),

H £ ± P l9o)2 -  Sl9o]2

where c5 =  ([eq x ej]2[eq x e ^ )  ~  1/4 is a factor determined by averaging over 

the photon polarization. The lineshape is composed of two non-overlapping lines 

corresponding to the LA (+) and LO (—) phonon branches. The contribution from 

each line is characterized by a square root singularity oc [cu — u± ti\~1̂ 2 at the lower 

spectral end, uj±j =  2[a;2 +A l qlTShQo — PlQo]1̂ 2, and it vanishes as [uj±,u — u;]3/2 at 

the upper spectral end, u±^u =  2[ujI  +  AL q= sLq0 +  ph(ll}l/2- In experiments, each 

contribution would acquire a distinctive triangular shape, smeared by finite broad

ening ~  7 Sl/u. The splitting ~  2si£li/v and linewidth ~  2pLQ2/ v 2 are smaller, 

and the intensities of the LA and LO modes are closer for a Raman signal taken 

using photons with a lower energy (FIR), whereas the LA mode should dominate 

in Raman spectra taken using more energetic photons (e.g. ultraviolet). Note tha t 

the TO mode near the BZ corner is strongly red-shifted by the electron-phonon 

interaction [100-103, 114], so it is possible that its spectral line will he over tha t 

of the LO mode taken using high-energy photons.

Integrating the spectral density with respect to frequency uj yields the total 

intensity of the two-phonon Raman signal for longitudinal phonons near the BZ 

corner / l  ~  (%c g /12%) (e2 Vt f  g2LL2/vc2r)'N)2. It can be used to measure the value of 

the e-ph coupling constant because the constant gr of the electron coupling to 

the T-point optical phonons has already been extracted from the density-dependent 

shift [109, 112, 113] and splitting at high magnetic held [116] caused by such 

coupling to the electronic excitations. One can, therefore, compare * the predicted 

~  (3 /32)(w r/W )2(e73£ ')4 ~  1/140 according to  the LDA results in Table 1.
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Figure 8.3: The theoretical lineshapes for the LA mode (blue lines) and LO mode 
(green lines). Solid lines indicate the 7  —>• 0 limit with the dashed lines indicating the 
same line shape subjected to finite broadening.

LO-LA peak intensity with tha t of the so-called 2D' Raman peak (corresponding to 

the emission of two F-point phonons), and determine gi from the integral intensity 

ratio IL/ I T =  (3/32)(gi/gr )4.

8.5 Renormalisation of the TOx± Phonon for Graphene 

on hBN

Motivated by the recent experimental measurements by A. Eckmann and co

workers [117], we now turn our attention to the Raman spectra of the graphene/hBN 

heterostructure. Rather than calculate the correction to the small LO-LA peak, 

due to the superlattice perturbation, we instead concentrate on the strongest Ra

man peak: the 2D peak. This peak is caused by the emission of a pair of TO #± 

phonons, whose highly isotropic spectrum results in the sharp, symmetric Raman 

peak clearly visible in Fig. 8.1. In the absence of the superlattice, the isotropic 

nature of the Dirac electrons and the strong electron-phonon coupling leads to a 

strong isotropic downwards renormalisation of the TO phonon energy [100]. In this 

section I describe how the superlattice breaks the isotropy of the renormalisation, 

and the manifestation of this in the Raman signal.§

§A full account of the Ram an signal of this system should also account for a periodic inho
mogeneity of the graphene layer and corresponding shift in the 2D peak position (e.g. caused
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8.5.1 V ertex C orrection D ue to  th e  Superlattice P erturba

tion

Before calculating the phonon self-energy diagrams, responsible for the energy 

renormalisation of the TO x± mode, we must first calculate the correction to EPI 

(8.4) due to the superlattice perturbation. To do this we use the point charge 

model (section 2.6.1) describing the perturbation to the graphene electrons due to 

the hexagonal substrate. The difference here is that a small displacement of the 

graphene lattice due to T O ^± phonons is taken into account. Retaining terms to 

first order in the displacements (which we then quantise) results in the correction 

to the EPI,

HEPM = -2K[v‘TO,K+(rzT~+uTo,K-(rzT+][uovbfi +  uiv[lzx V f2]-erT3 +  u2v V/2 • crr3]; 

u r W r )  =  ^  ^ = = = ( 6 l (K±+5) +  bK±+q) e ^ .  (8.8)

Here K  = \K±\  and parameters iq retain their meanings from the point charge 

model in section 2.6.1^,

8.5 .2  TO k ± Self-Energy C alculation

We calculate the renormalisation of the TO k± phonon energy due to the self-energy 

diagrams, shown graphically in Fig. 8.4. We treat the superlattice perturbation 

as small and therefore only include diagrams up to second order in this param

eter. There is no correction to first order since the moire perturbation transfers 

momentum bm to the electron, which must latter be absorbed.

In Figure 8.4, diagram n 0,n represents the usual isotropic correction to the

by strain  modulated with the periodicity of the moire pattern). The size of laser spot used in 
experiments averages over many moire periods which leads to  a broadening of the Ram an signal 
[117].

^Since Hamiltonian (8.8) consists of the product of a superlattice perturbation  in the form 
of Eq. (2.2) and the EPI for the TO/<-± phonon (8.4), it is trivial to check th a t it obeys the 
appropriate geometrical symmetries. A term  like the U3 perturbation  in Eq. (2.2) can not be 
added into Eq. (8.8) since it would not be Hermitian. Also the u 2-like term  in (8.8) can not be 
gauged away.
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Figure 8.4: Contributions to the self energy of the TO/y± phonon, taking into account 
contributions up to second order in the superlattice perturbation. Solid (dashed) lines 
represent the unperturbed electron (phonon) Green’s function, circles represent the EPI 
for the TOiy± phonon (Eq. 8.4), diamonds the vertex correction to the EPI (Eq. 8.8), 
and black squares the moire perturbation (Eq. 2.2).

TO/<:± energy. This part, calculated in Ref. [100], is always present regardless of 

the substrate and therefore we assume that it is already accounted for in the energy 

of the T O ^± phonon. In contrast, diagram rio.s does depend on the substrate. 

However this diagram is also neglected since it only leads to a small featureless 

correction to the contribution from n 0i/i. Also a cancellation between the dia

grams Tl2,i=A,B.c,D means that their contribution vanishes. Finally, the intermedi

ate phonon state in Hi is almost on resonance, and therefore the contribution due 

to n i  is far greater than that due to Us,i=A,B,c• This allows n 3̂  to be neglected^.

Therefore, keeping terms up to <?2, the dominant contribution to the phonon

IIActually this diverges at small b =  |bm | as n 3?i(^To(9)> 9) ~  3^ ^ cv%9to log (§)• How
ever, even for perfect alignment between graphene and hBN, b takes a finite value of approxi
m ately 0.052 A. Therefore setting q — 0.3 A (typical wavevector of phonon em itted in a Ram an 
experiment) and vbui ~  30meV we estim ate n 3>i(g) < 0.03meV. This is negligible on the scale 
of Fig. 8.5 and has been confirmed by numerical calculations.



self-energy correction is,

ni(wT0(q),q) as £  B^^ + n^ )  + n1.^) + n ^ ) |2; (g.g)
m —0 ,2,4  VTOQ COt2 (O') ~  VTO  ̂  S in  (0')

n i )j4(<?) +  n i j5(qr) —^ ( 2^ 2 ° Iab \.vbui sin(^) +  vbzi2 cos(0')];

12y/3alcgTo\K\ vbu<
y/2mujTo v2{2'ir)2

7T2 ('v q f
27tA — — v q  +  I c d

2 A

Here 0' =  6q — c2̂ m. — Qbô 9q^ 0) is the angle q(b0) makes with the x-axis, and A is 

a high energy cut-off, of order the graphene 7r-band width, which was introduced 

to ensure convergence of the integral over intermediate electron states. Also the 

energy scales vb and ujto were neglected in comparison to the typical energies of 

the intermediate electrons, and the dimensionless integrals Iab  ~  2.44 and Icd  ~  

1.17 where calculated numerically. The phonon Green’s function D 0(cu,q) was 

approximated as D ° ( o j T o ( q ), q +  bm) ~  ~  w t o ( q  +  bm) -MO]- 1 . Moreover,

since Raman line-shape only depends on the phonon spectra around q «  q0 «  Qi/v, 

the almost isotropic phonon dispersion has been approximated by u j t o { q )  ~  FroM  

with vto ~  0.035 eVA (using Ref. [114] and fl; «  2eV).

The TO mode energy ivTo{qo,Oq) for w 2eV, subject to the correction in 

Eq. (8.9), is displayed in the left panel Fig. 8.5 for various misalignment angles, 

0, of the graphene and its substrate. In contrast to the unperturbed spectra, a 

strong angular dependence with a 2tt/3 period is evident. This periodicity, rather 

than a 27t/6 periodicity, reflects the fact that both -1- n i ;B and n 1;c  +  I l i tD 

make a significant contribution to Hi. The right panel displays the corresponding 

Raman spectra, calculated using the method outlined in section 8.4. A pair of 

small satellite peaks is visible at small misalignment angles, the splitting of which 

reflects the 27t/3 periodicity in the spectrum.
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Figure 8.5: The TOr + phonon energy uJroiQo^q) (left panel) is displayed for various 
misalignment angles, vqo = 2eV, and A = 5eV. The spectrum in the absence of the 
superlattice perturbation is assumed to be isotropic. Superlattice parameters from the 
microscopic model (section 2.6.1), scaled so that |wo| + |ui| +  |u3 | = 0.15, have been used. 
The corresponding 2D Raman peaks are shown in the right panel.

8.6 Conclusion

We used a minimal tight-binding model for the EPI with the LAK± and LOk± 

phonons in the BZ corner in graphene to study the resonant two-phonon Raman 

processes. Owing to the strong anisotropy of the nearly degenerate LAK± and 

L O k + branches, the predicted contribution to the Raman spectrum of graphene is 

non-Lorentzian (almost triangular) with a much larger linewidth than other two- 

phonon peaks that is strongly dependent on the energy of the incoming photon. 

We also show that the presence of a superlattice perturbation modifies the EPI, 

resulting in a non-isotropic renormalisation of the energy of the T O k ± mode.

109



Chapter 9

Conclusion

In the preceding chapters, we have developed the theory of graphene heterostruc

tures, and described how the novel features of these systems are manifested in 

experiment. Chapter 2 dealt with the reconstruction of graphene’s spectra due to 

the superlattice potential arising from an hBN underlay. The generic appearance 

of an isolated secondary Dirac point on the edge of the first miniband was pre

dicted. This feature was observed experimentally, by Yankowitz and co-workers 

[22], as a dip in the density of states, on the valence band side of graphene’s 

spectrum. The recent transport measurements [23], described in chapter 5, mea

sured a change in sign of the Hall resistivity in graphene’s valence band. This 

confirmed the presence of the electron-like carriers associated with the isolated 

secondary Dirac point. Moreover, the experimental manifestations of the frac

tal magnetic minibands spectrum were also observed. Here, the tendency of the 

magnetic minibands to form strong Dirac-like features (chapter 4), at simple flux 

fractions was observed as oscillations of the Hall resistivity, periodic in the inverse 

of the magnetic field strength. Similar results were later reported, for unencapsu

lated graphene-hBN heterostructures, by Hunt and Co-workers [25]. The principle 

difference with Ref. [23] being the appearance of a small gap in the main Dirac 

point.

Chapter 6 dealt with the bilayer-graphene/hBN heterostructure, predicting 

the appearance of a gap, on the edge of the first miniband, for a broad range of
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superlattice parameters. However, the pair of microscopic models, based on either 

scattering by the quadrupole electric moments of nitrogen, or the hopping between 

carbon and hBN atoms, predict the exceptional choice of superlattice parameters 

for which the first miniband edge is almost gapless. This is in agreement with the 

experimental results of Dean and co-workers [24], for which no significant gap was 

observed, and lends credit to the use of the microscopic models.

An alternative method of narrowing down the superlattice parameters is pro

posed in chapter 3, based on the anticipated modulation of graphene’s optical 

absorption spectra. The effect of each symmetry allowed superlattice perturba

tion term  is analysed in detail, which should prove a useful guide to experiment.

Further experiments are proposed in chapter 7. Here we show tha t large band 

gaps may be generated, in graphene’s bandstructure, when placed on an hexagonal 

underlay almost commensurate with the \/3 x Kekule lattice of graphene. We 

propose tha t the ( l l l )B  surface of InAs is suitable for this role.

Separately, in chapter 8, we analyze the electron-phonon coupling and Raman 

spectra of both graphene and graphene/hBN heterostructures. Raman processes 

accompanied by the emission of a pair of LO or LA phonons from the corner of 

the Brillouin zone are included, and we find that the lineshape of the correspond

ing Raman signal consists of two peaks with a strongly non-Lorentzian (almost 

triangular) form.
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Appendix A 

Minibands in the Vicinity of k  

and /Lt-points of Graphene-hBN  

Heterostructures

Additional terms can be included in effective Hamiltonians Eq. (2.5) and Eq. (2.6) 

of the main text to increase their accuracy and provide greater detail on the move

ment of the sDPs.

A .l  /i-point H am iltonian

Similar to Eq. (2.6), we project Hamiltonian (2.2) on to the basis, (|/z +  </), |/z +  

^3 + q))- Retaining terms to second order in iq and first order in tq,

Ên +  H\2 ^
y H 12 — s^- j

(A.1)

Eh =  s ( l /2  +  ql/b2 -  ^ s  (24u2Q +  29u \ +  5u \ -  70suiu3) ,

QxH 1 2  =  (su \ — w3) — i(su \ — u3) +  4wq(2wi — sw3) +  2— (no +  iuq) +  2-^|(n3 — m 3).
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The spectrum resulting from Eq. (A.l) contains two anisotropic sDPs, rather than 

the one predicted by Eq. (2.5), which occur at wavevectors,

„sD P _  n „sDP _  -Uo ±  V u0 +  2n3(-5Ui +  u3 -  4u0(2ui -  su3)) u f Aqy o, qx 0 yJ\.Zj
zu3

When |u0| |u i |, |u 3|, the two wavevectors are qsDP w ([u3 — sui]/[2u0], 0)6

and «  (—u0/u 3,0)6. Only the former occurs within the range of momenta for 

which H^+q is valid, and coincides with the single sDP depicted in the top line 

of Fig. 2.2. Away from the |u0| |wi|, |w3| limit, H^+q can capture the merging

of two sDPs of opposite topological winding number [70, 131], which occurs when 

ul +  2 u 3 ( - s u i  +  u3 -  4u0(2ui -  su3)) =  0.

It is an interesting technical point that, to capture the existence an ungapped 

sDP in Eq. (A.l), requires the existence of a particular qx for which both the real 

and imaginary parts of H 12 simultaneous vanish. For an approximate Hamiltonian, 

such as H^+qi this is not guaranteed. Indeed, due to the expansion in q, the 

presence or absence of ungapped sDPs depends on the (g-dependent) gauge choice 

used for the Dirac plane wave states in the basis of H^+q. In Eq. (A.l) (and also 

Eq. (A.3) ) the careful use of Dirac plane waves in the gauge (e~z6><A2; Sel9q/2)T was 

required.

A .2 H am iltonian at the Appoint

In a similar manner to Eq. (2.6) we take a basis of graphene plane waves (|£(« +  

q)), |C(/c +  61 +  q))y |£(« +  b2 +  <7) ) ) ,  however now terms to second order in Ui and
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first order in Ui are retained,

■H-C,{K+q) vb

( P I sqxK- I h

(w£ +  vuQ+) e 

y (w^ + vuQ _)e

■z22L 
1 6

(wc +  vuQ+) e%2£ (w£ +  vuQS) e *2e

E k -  sQ_ (wc -  vu%f) elir

w VuJ-) e l2e E K sQ+

s (  21
K ~  v l  v 1 ~  T  u'°

2 9 2 18s 93iq +  - u 3 -  6sC^oWi +  - j= u iu 3 +  2 ^ ^ U°U3

(u0 — 2s£ui E  V S ( u ^  +  iC, {^Uq +  2 s ( u i  — y / S ^ u ^ j  

s ( lliig lOiii 9u3 20(su0ui
“  2 { V f  +  F T  +  2V3 +  “ T T ^  “  iSUlUi ~ CU0U3

\ (n~. 4-
3u0 -  (u 3 , Q± = -

2b

\

J

(A.3)

In the absence of inversion-asymmetric terms, the q =  0 spectra results in a singlet 

and a doublet band at energies E K — 2 and E K +  w$ respectively, so tha t sDP 

is always seen in the doublet band at the exact £K~Pohit, with Dirac velocity 

[1 +  2i>„] f .

Away from the exact K-point, three additional sDPs are found with wavevector 

and energy,

C 3 =  o, Qx
sDP 2wc(s +  2vu) 

vu(2s +  vu)
wc/v t

e = E k +  wc -  +  vu ĵ q f p E k + w^ - s
U)£
2vu ’

(A.4)

as well as the wavevectors obtained by a ±27r/3 rotation. For vu > 0 these sDP 

occur between the singlet and the doublet band, where as for vu < 0 they occurs 

between the two branches of the doublet band and correspond to the sDPs obtained 

from Eq. (A.l).
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Appendix B 

Minibands of Graphene with  

Almost Commensurate y / 3  x y / S  

Hexagonal Crystals

The minibands described by Hamiltonian (7.4) of chapter 7 will now be discussed in 

greater detail. The minibands can feature secondary Dirac Points (sDPs), which we 

also discuss. However, in contrast to the graphene-hBN heterostructures (chapter 

2), the sDPs discussed here never become isolated on the energy axis for any 

reasonable choice of perturbation parameters.

For k  — bo/2, zone folding brings together two states, one from each valley, 

each with energy Their splitting is described by,

QQjb) f  1 A. \
es,± =  —  I -  ±  2 {UE, -  sU0 ) + j ( 2  U% +  8sUe.Ug -  U2G) j  . (B .l)

When Ue ' — sUg the degeneracy of these states remains intact, as shown in the 

conduction band in Fig. B .l (a). For \UE>\ < \Uq \ the degeneracy is lifted such 

tha t the two lowest energy minibands do not touch at any point. For \UE'\ >  \Uq \ 

the degeneracy is also lifted but the two band touch at six highly anisotropic sDPs 

(one of which is circled in Fig. B .l (b)). The sDPs travel in a straight line towards 

fc =  0 as \Ue ' \ is increased relative to \Uq \- When 0 < U^,—Uq <C l ,  their positions
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Ju2 _[/2
are given by bo/2— and 27t/6 rotations thereof. It can also be noted

that the Van Hove singularities, surrounding the main Dirac points in the lower

two panels of Fig. 7.2, arise due to the saddle point at k  — bo/2 (related by 2tt/3

rotations) in the dispersion of the lowest energy branch described by Eq. B .l.

At k  =  0, the zone folding brings together 3 states from each valley, each with

an energy These are split into two nondegenerate states, e^]_, and two two-fold 
( 2 )degenerate states, J_, with energies,

4 i = Ŝ ( l ± 2 ( U E,-2sUG) + ̂ (UE’+sUG)2+ 4u£ \  

g i = Ŝ ( l ± ( U E,-2sUG) +  ^(UE,+sUG)2 + '^ ll -  2U2X

The 6 anisotropic sDPs will reach k  =  0 at Ue > — 2sUq which is when the two 

nondegenerate states, q(1+, cross. This allows the first and second minibands to 

separate from each other, allowing a global bandgap to develop for a sufficiently 

strong perturbation.

Figure B .l: Further examples of numerically calculated moire minibands shown in the 
larger mBZ. Showing perturbation parameters for which; (a) k  = bo/2 is degenerate; 
(b) 6 highly anisotropic sDPs are found on the mBZ edge; (c) the first and second 
minibands are not connected, also note the electrons-hole symmetry (discuss in section 
7.6) is present in this case.
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