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Abstract

The main purpose of this thesis was to investigate longitudinally, cognitive and eye movement 

deficits in Alzheimer’s disease. A key aspect of the work was to examine the potential utility 

of saccadic eye movements in the diagnosis of Alzheimer’s disease. Study I investigated 

saccadic error rates and error correction in Alzheimer’s disease, other dementias and healthy 

elderly control participants using reflexive and voluntary saccade paradigms, to identify salient 

findings for further analysis. Study II explored the fixation offset effect in Alzheimer’s 

disease, other dementias and healthy elderly control participants, to study the attention 

(fixation) disengagement deficit previously reported in Alzheimer’s disease. Study III 

examined the effects of normal aging and disease, comparing Alzheimer’s disease patients and 

other dementia types with healthy young adult control participants, healthy elderly control 

participants and Parkinson’s disease patients. Study IV assessed the potential effects of 

acetylcholinesterase inhibitors on baseline data to eliminate medication effects. Study V 

investigated repeated measures data for salient observations from Studies I and II in 

Alzheimer’s disease patients and healthy elderly control participants over an 18 month period. 

Study VI evaluated salient saccadic eye movement and neuropsychological assessment 

variables, with a view to generating regression models that could predict dementia. 

Alzheimer’s disease patients were found to commit inhibition errors that increased in 

proportion according to the demands of the voluntary saccade task. Error-correction analysis, 

revealed that a high proportion of errors remain uncorrected in the antisaccade task, a finding 

apparently specific to dementia. The results were found to be consistent with the notion that 

the voluntaiy saccade tasks require selective attention, the facilitation of which is dependent on 

task goals being sufficiently activated in working memory. The magnitude of fixation offset 

effect was greater for Alzheimer’s disease patients than controls and Parkinson’s disease 

patients at baseline, but the longitudinal analysis showed that this magnitude decreased over 

subsequent test sessions. The large initial magnitude of fixation offset effect is believed to 

have been caused by over compensation of volitional compensation strategies at baseline, when 

the Alzheimer’s disease patients had mild dementia. Regression models using antisaccade 

variables and neuropsychological assessment scores as predictors both performed well. It is 

feasible that models could be developed that would enable a reduced set of neuropsychological 

assessments to be used and three predictors from one antisaccade task. The results confirm 

that the antisaccade task is a useful model paradigm for the study of oculomotor dysfunction in 

dementia.
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1 Introduction to the Study of Saccadic Eye Movements

Chapter One 

Introduction to the Study of Eye Movement 
Research in Alzheimer’s Disease

1.1 Introduction to the Study of Eye Movements

Eye movement research offers the scientist (and clinician) a valuable tool with which to 

gather important information regarding activity in oculomotor control systems, brain function 

and the localisation of disease. Using eye movements as a model system to study the 

regulation of neural activity provides the researcher with a number of benefits over other motor 

systems. Leigh and Zee Leigh (1999) outline the following points: i). Choosing from a range 

of oculographic technologies, it is possible to record accurate measurements of eye movement 

activity as rotations of the eyes are limited to three planes; ii). Eye movements fall into a 

number of different categories which correspond with visual activity, physiology and 

neuroanatomical substrates; iii) As the mechanical load that the eye muscles move against is 

constant, there is a lack of monosynaptic stretch; iv) Eye movement abnormalities are often 

characteristic of a particular pathophysiology, anatomical location or pharmacological 

disturbance.

Eye movements have been used extensively in the study of psychiatric and neurological

illness taking advantage of neuropsychological insights, derived from versatile experimental

design. Detection of the cortical structures involved in the control of saccadic eye movements

revealed by research employing various neuroimaging techniques, animal models and human

lesion investigations, has highlighted the crucial role of the prefrontal cortex and the parietal

lobes (Comelissen et al., 2002; Guitton, Buchtel & Douglas, 1985; Kimmig et al., 2001; Law,

Svarer, Rostrup & Paulson, 1998; Nieuwenhuis, Ridderinkhof, Blom, Band & Kok, 2001;

Paus, Petrides, Evan & Meyer, 1993; Pierrot-Deseilligny, 1991; Pierrot-Deseilligny, Milea &

19



1 Introduction to the Study of Saccadic Eye Movements

Miiri, 2004; Pierrot-Deseilligny, Rivaud, Gaymard, Mtiri & Vermersch, 1995; Pierrot- 

Deseilligny, Ploner, Miiri, Gaymard & Rivaud-Pechoux, 2002; Schall, 2004; Schlag & Schlag- 

Rey, 1987; Sweeney et al., 1996). Thus, a profile of disturbance indicated by performance on 

specific saccadic eye movement paradigms (saccadic eye movements and paradigms are 

outlined in Section 1.3) can give a valuable insight of brain dysfunction and oculomotor 

control.

Neuropsychological research has been employed widely as a means of investigating 

sensorimotor integration and executive function (see Section 1.1.1), yielding connections with 

high-level cognition. Planned control of action and cognition is governed by the prefrontal 

cortex (dorsolateral prefrontal cortex, the frontal eye fields, the supplementary eye fields, and 

the anterior cingulate cortex), linked with sub-cortical areas of the brain via distinct neural 

pathways (Section 1.4). Neuropsychological enquiry has thus utilized eye movement 

methodology extensively to probe executive function. The field of eye movement research 

benefits from a range of accurate recording systems that has the potential to deliver a plethora 

of measurements and behavioural information.

Behavioural oculomotor paradigms have indicated selective impairments in 

neurological patients, psychiatric patients and other groups such as dyslexics, highlighting the 

potential of eye movements to reveal abnormalities. Eye movement research on patients with 

schizophrenia has revealed deficits in smooth pursuit (see section 1.2.1 gaze shifting) eye 

movements (Broerse, Crawford & den Boer, 2001; Crawford & Broerse, 2001; Crawford et al., 

1998; Diefendorf & Dodge, 1908; Holzman, Proctor & Hughes, 1973) and with saccadic eye 

movements where patterns of cognitive dysfunction have been elucidated (Crawford & 

Broerse, 2001), as identified by deficits of inhibitory control (McDowell & Clementz, 1997; 

Sereno & Holzman, 1995), prolonged latency (Hutton & Kennard, 1998; Klein, Heinks, 

Andresen, Berg & Moritz, 2000a) and saccadic accuracy (McDowell, Myles-Worsley, Coon, 

Byerley & Clementz, 1999). Research with Parkinson’s disease patients using saccadic
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paradigms has also revealed a number of abnormalities including dysmetric responses and a 

characteristic multi-stepping pattern in the primary response, using a remembered target 

location paradigm (Crawford, Henderson & Kennard, 1989b). Additionally, abnormalities 

have been found for antisaccade latency and error rates (Briand, Strallow, Hening, Poizner & 

Sereno, 1999) and the relationship between antisaccade latency and error rates and clinical 

symptoms in Parkinson’s disease (Briand et al., 1999; Kitagawa, Fukushima & Tashiro, 1994).

A range of saccadic abnormalities have been revealed in dyslexia from erratic saccadic 

eye movements in visual tracking (Pavlidis, 1981) and reduced centre-of-gravity effect in a 

double-spot paradigm (Crawford & Higham, 2001), to possible attentional deficits where 

dyslexic participants produce high frequencies of express saccades (Fischer & Weber, 1990). 

Additionally, dyslexic participants have been found to have poor fixation control, lower 

vergence amplitudes and poor smooth pursuit compared with controls (Eden, Stein, Wood & 

Wood, 1994). A study into patients suffering from human immunodeficiency virus (HIV) 

discovered that abnormal saccadic accuracy (amplitude) was a sensitive measure between 

patients and healthy control participants (Merrill, Paige, Abrams, Jacoby & Clifford, 1991).

Huntington’s disease (Lasker, Zee, Hain, Folstein & Singer, 1987, 1988) and 

progressive supranuclear palsy (Pierrot-Deseilligny, Rivaud, Pillon, Fournier & Agid, 1989) 

are two additional diseases where eye movement abnormalities have been revealed. A further 

line of enquiry in the study of eye movements has been to conduct research on patients with 

dementia and of particular importance for this thesis, the study eye movements in Alzheimer’s 

disease (AD). A review of these studies can be found in Section 1.5.

Eye movement research provides a conduit by which researchers can thus understand 

more thoroughly, the neurocognitive systems underlying oculomotor processes; for example, 

inhibition of prepotent response and self-monitoring by evaluating error correction. The 

relative ease by which eye movement data can be collected in the laboratory or clinical setting 

demonstrates the neuropsychological utility of oculomotor methodology and its capacity to
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study both reflexive and complex behaviour (Leigh & Kennard, 2004). This property is 

particularly useful given the encumbrance of secondary behavioural characteristics that present 

in certain diseases (e.g. Alzheimer’s disease), which can overshadow primary cognitive 

dysfunction.

This thesis will focus on the investigation of primary horizontal saccadic eye 

movements and explore saccadic error and correction, self-monitoring, attention and a variety 

of temporal and spatial measurements in dementia patients of the probable Alzheimer type. 

The research employs a range of oculographic paradigms, utilising involuntary and voluntary 

oculomotor methodology.

1.1.1 Executive Function and Cognitive Terminology

The present thesis uses some terminology that is often applied vaguely in the wider 

literature, including the terms: executive function, working memory, visual attention, and 

inhibitory control. Therefore, this section aims to clearly define these terms and show how 

they are related in the context of the saccadic eye movement research described throughout the 

chapters that follow.

Executive Function: The term executive function stems from traditional theories of 

working memory (Baddeley, 1986) and is used in the present thesis to refer to higher-order 

cognitive processing for purposeful action such as planning, self-regulation, monitoring, 

volition and problem solving, i.e. the flexible control of cognition and action. The issue of 

there being a central control mechanism (such as the central executive in Baddeley’s original 

model of working memory) that controls the various mechanisms of cognitive control (e.g. 

memory and attention) remains a source of debate. There is a substantial amount of evidence 

to support the concept of a control mechanism that integrates the various cognitive functions 

and motor control (see Sections 1.4.2.3 and 3.1). Whereas in the past the central executive 

from Baddeley’s working memory model may have been considered for this purpose, in the 

present thesis Baddeley’s model is superseded by Miller and Cohen’s ‘Integrative theory o f
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prefrontal cortex function’ (Miller & Cohen, 2001). In Miller and Cohen’s theory executive 

function, i.e. cognitive control, is orchestrated by the prefrontal cortex through the “... active 

maintenance of patterns of activity that represent goals and the means to achieve them” (p. 

171) and via the resolution of competitive processes between weak task-relevant information 

and stronger (automated) task-irrelevant information pathways, to achieve goal-directed 

behaviour. Furthermore, Miller and Cohen’s theory corresponds with Massen’s hypothesis for 

the parallel programming of exogenous (externally stimulated) and endogenous (internally 

generated) components in volitional saccade tasks (Massen, 2004). Massen’s approach 

exemplifies the notion of task-relevant information (e.g. goal = antisaccade) and task-irrelevant 

information (e.g. antisaccade error = automated/reflexive saccade) and is therefore useful in 

explaining the inhibitory mechanisms responsible for successful completion of the antisaccade 

task and how inhibition errors may occur (see Section 1.3, 1.3.1, 1.3.2 & 1.3.2.1). A more 

detailed account of these theoretical constructs is discussed in Chapter 3, Section 3.1.

Working Memory: In the present thesis the term working memory is used to describe 

an active store which can hold information for short periods of time (i.e. short-term memory) 

for online processing and manipulation. Thus, working memory is part of executive function 

where information can be integrated with long-term memory and other cognitive modules e.g. 

prior to motor action, and can produce dynamic outcomes for example in arithmetic and 

problem solving by the manipulation of task rules and goals. This definition of working 

memory is basically the same as in Baddeley’s model (1986), except that it is used here to 

describe executive functioning from within the framework of Miller and Cohen’s integrative 

theory of prefrontal cortex function. Miller and Cohen’s theory is useful as a fundamental 

theoretical construct for executive function, where the prefrontal cortex is viewed as key to the 

active maintenance of task rules and goals. Allied to this theory the goal activation approach 

of Nieuwenhuis and colleagues applies the connectionist modelling of Miller and Cohen’s 

theory (and others) in the context of antisaccade task (Nieuwenhuis, Broerse, Nielen & de 

Jong, 2004). Central to this approach and commensurate with Miller and Cohen’s theory, the 

level by which a given task goal is activated is vital to the success of volitional control.
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Although task requirements may be fully understood by participants, goal activation failures 

result in goal neglect, which Nieuwenhuis et al. consider to be a characteristic of executive 

dysfunction. Nieuwenhuis et al.’s goal activation approach directly supports Miller and 

Cohen’s theory of prefrontal cortex function, and is a useful framework when attempting to 

explain why failures to consistently focus attention on task requirements may occur (see 

Chapter 3, Section 3.1). In summary, Miller and Cohen’s theory of prefrontal cortex function 

provides a contemporary framework for understanding working memory function (i.e. 

executive control) and the goal activation approach of Nieuwenhuis et al. can be 

conceptualised as a function of working memory.

Visual Attention and Inhibitory Control: Visual attention can be externally/exogenously 

stimulated or internally/endogenously generated. This can result in an overt shift of attention 

with an eye movement (to salient objects or events of interest) or in covert attention without an 

eye movement (Humphreys & Bruce, 1995). Furthermore, attention can be broadly 

categorised into i) selective attention, ii) sustained attention and iii) divided attention. 

Selective attention is where attention is directed to a particular stimulus whilst ignoring other 

irrelevant stimuli. Sustained attention is the ability to maintain an attentional focus for a 

prolonged period e.g. in a visual fixation task. Divided attention can be defined as the ability 

to share attention over more than one process at a time e.g. during dual task experiments 

(Peny & Hodges, 1999).

The prefrontal cortex has long been associated with endogenous selective visual 

attention and inhibitory control (Banich et al., 2000; Chao & Knight, 1997; Doricchi et al., 

1997; Fukuyama et al., 1997; Kimberg & Farah, 2000; Lecas, 1995; Mishkin, 1964; Posner & 

Petersen, 1990). Therefore, in the present thesis visual attention and inhibitory control are 

viewed from the perspective of Miller and Cohen’s integrative theory of prefrontal cortex 

function (Miller & Cohen, 2001). The theory views attention and inhibition as a reflection of 

behaviour stemming from a single underlying mechanism of cognitive control, following on 

from competition between processing pathways that are responsible for task performance. This 

suggests that selective attention and inhibition are two sides of the same coin. This idea
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corresponds with the biased competition model of Desimone and Duncan in which attention is 

the result of biasing competition in support of task-relevant information, and inhibition is the 

consequence of the attentional biasing against the irrelevant information (Desimone & Duncan, 

1995) i.e. attending to a stimulus automatically results in the inhibition of other stimuli. 

Chapter 3, Section 3.1 explains (in the context of the present thesis) how attentional processing 

and working memory are closely related in endogenous tasks and how the success of 

attentional processing relies on the extent to which a particular goal is activated in working 

memory.

1.2 The Importance of Eye Movements for Foveation

The visual system in humans has evolved to elicit functionally specific, useful and 

helpful information for the problem solving brain, thereby enhancing fitness and ultimately 

facilitating continued existence in the natural world. Inextricably linked to the fully 

operational healthy visual system, various types of eye movements play a crucial role in 

enabling the eyes to scan a scene, track a moving target and to locate objects of interest 

through a combination of movements and fixations. Therefore, eye movements perform two 

vital functions: firstly they serve to shift the direction of gaze and secondly, to stabilise the 

position of gaze so that the image, perhaps first detected in peripheral vision, falls onto the 

fovea (Figure 1.1). Thus, eye movements can actually facilitate foveation independently of 

head movements in foveate animals (Delgado-Garcia, 2000), but also serves to counter 

movements of the head that would otherwise disrupt visual processing due to sweeping visual 

stimulation across the retina.

Figure 1.1 Diagram Illustrating a Cross- 
section of the Human Eye Highlighting the 
Location of the Fovea (sagittal section, adapted 
from Zigmond etal., 1999)
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This function is very important for the visual system as the fovea, which is 

approximately centred on the visual axis serving 1° of visual field (Hughes, 1975), is the point 

o f highest resolution on the retina (Hess, Burgi & Bucher, 1946; Jacobs, 1979; Perry & Cowey, 

1985).

The retina is a highly complex part of the central nervous system (CNS), comprising a 

multifaceted array of photoreceptors (i.e. rods and cones) and three layers of ganglion cells 

(with five different cell types) that enable temporal, spatial and chromatic aspects of visual 

processing in the physical world (Figure 1.2). Vitally significant to the present topic, retinal 

ganglion cells consist of two major categories, M cells and P cells. M cells receive most of 

their input from rod photoreceptors, whereas P cell input is derived mainly from cone 

photoreceptors. M cells and P cells form the basis of two morphologically and physiologically 

distinct visual channels. The channels project from the retina via the optic nerve, through the 

optic chiasm and on to form the optic tracts. The optic tracts proceed to the dorsal lateral 

geniculate nuclei (LGN), which are linked to the striate cortex (primary visual cortex) via the 

optic radiations to form the magnocellular and parvocellular pathways (Leventhal, Rodieck & 

Dreher, 1981; Perry & Cowey, 1981; Perry, Oehler & Cowey, 1984). Retinotopic mapping is 

maintained at each level of the retina -  geniculate -  striate pathway (Figure 1.3).

rod cone

pigmented layer {

i j -  ,, |  f

photoreceptors 
(rods & cones)

} outer 
plexdorm layer

} inner 
plexiform layer

axons ot retinal 
ganglion cells form 
the optic nerve

light light

Figure 1.2 A Diagram to Illustrate the Complex Layers of the Human Retina
(from Hall & Robinson, 1998)
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Figure 1.3 Illustration Representing the M and P Visual Pathways
(from Hall & Robinson, 1998)

The characteristics of a third channel, the koniocellular pathway links with a third 

category of ganglion cell, W cells which are not relevant to the focus of the present thesis. 

There is a variation in the quantities of M ganglion cells and P ganglion cells at retinal 

eccentricity. The fovea and parafoveal areas of the retina contain a higher density of P 

ganglion cells than M ganglion cells, whereas M ganglion cells are evenly distributed across 

the retina. P ganglion cells are physiologically more sensitive to images of high contrast and 

low spatial frequencies and M ganglion cells more sensitive to low contrast and high spatial 

frequencies (Derrington & Lennie, 1984). Thus, foveation enables visual perception via the 

area o f the retina with highest visual acuity, where the P ganglion cells of the parvocellular 

system are most prolific. This physiology provides the visual system with mechanics for a 

parallel dual-processing system, where the high resolution of a foveated image enables detailed 

analysis and focused attention. Superior sensitivity to high spatial frequencies, motion and low 

contrast in peripheral areas of the retina - afforded readily by the magnocellular system - 

permits the visual system to easily detect movement and objects of potential interest for
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subsequent eye movements (and head and limb movements). Objects or salient events entering 

peripheral vision frequently trigger a reflexive ocular movement, known as the visual grasp 

reflex (VGR; Hess et al., 1946; Ingle, 1973), orienting the eyes so as to foveate an image of the 

object. The eye movement facilitates foveal fixation to within roughly 0.5° of midpoint on the 

fovea (Leigh & Zee, 1999). Essentially, the combined physiological characteristics of foveal 

and peripheral vision have evolved to provide an efficient system for survival in nature.

1.2.1 Stabilising and Shifting Gaze

Fundamentally important to the visual system, there are two versatile groups of eye 

movements that facilitate efficient foveation, gaze-stabilising and gaze-shifting mechanisms. 

By definition, gaze-stabilisation mechanisms serve to maintain a given visual input on the 

fovea, whereas gaze-shifting mechanisms provide the capacity for conveying an image onto the 

fovea (Leigh & Zee, 1999). There are numerous classes of gaze-stabilisation eye movements, 

which include the vestibulo-ocular system, the optokinetic system, smooth pursuit, visual 

fixation and vergence, where the eyes are able to binocularly converge or diverge 

disconjugately, as a target moves towards or away from the eyes. Stabilisation of gaze is 

activated automatically as a reflexive compensatory strategy (the vestibulo-ocular reflex; 

VOR) during head movements and thus retains foveation. The labyrinthine semicircular canals 

possess angular acceleration sensors that mediate the VOR. A combination of the VOR and 

supplementary optokinetic system correction, achieves accurate stabilisation across a range of 

head movements and postures (Robinson, 1977). The optokinetic system provides visually 

mediated saccades, as a result of sustained rotation when the VOR signal declines.

Mechanisms for gaze-shifting include quick-phase nystagmus, which resets the eyes to 

their normal working range so as to view objects and subsequent scenes during regular bodily 

rotations. Part of the vergence system also falls into this category of eye movement, enabling 

the eyes to move disconjugately in certain situations, for example, locating an object at close
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range. A further type of gaze-shifting mechanism is the saccadic system. Leigh and Zee 

(1999) provide the a useful summary for the functional classification of eye movements in 

Table 1.1.

Table 1.1 The Classification of Eye Movements (adapted from Leigh & zee 1999)

Eye movement Role of the system
Saccade Rapid conjugate eye movements to convey an image to the 

fovea to enable fixation

Smooth pursuit The ability to track a moving object and maintain the image on 
the fovea

Vestibular The vestibulo-ocular reflex can maintain an image on the fovea 
during rotations of the head

Optokinetic The optokinetic system maintains the image on the fovea 
through constant rotations of the head (following the VOR)

Visual fixation Visual fixation maintains foveation of stationary objects

Quick-phase nystagmus Resets the eyes to normal working range when self-rotating

Vergence Disconjugate eye movements facilitating foveation of objects 
moving towards or away from the eyes i.e. target depth

1.2.1.1 Mo ving the Eye

The eye is positioned in the orbit, a socket-type recess in the front of the skull. It is 

held in position by three pairs of extraocular muscles, which are able to move the eye with 

synergistic action through horizontal, vertical and oblique directions (Figure 1.4).

Superior rectus 
(turns eye upward

and inward) Superior oblique 

(turns eye 
downward and

Medial rectus 
(turns eye inward)

Figure 1.4 The Extraocular Muscles
(adapted from Zigmond etal., 1999) 29

Inferior oblique 
(turns eye upward 

and outward)

Inferior rectus 
(turns eye 

downward and 
inward)

Lateral rectus 
(turns eye outward)
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Horizontal eye movements (from side-to-side) are implemented by the lateral and 

medial recti muscles. Vertical eye movements (up and down) are facilitated by the superior 

and inferior recti muscles, whereas rotational eye movements are enabled by the superior and 

inferior oblique muscles. Brainstem motor neurons innervate the extraocular muscles. 

Specifically, this involves in the third {oculomotor), fourth {trochlear) and sixth {abducens) 

cranial nerve nuclei (Sparks, 2002). The functions of the cranial nerves involved in eye 

movements are displayed in Table 1.2 below.

Table 1.2 Brainstem Innervation of Extraocular Muscles
Cranial Nerve Extraocular Muscles
Oculomotor (III) Ipsilateral medial and inferior rectus, contralateral superior rectus and inferior oblique

Trochlear (IV) Contra-lateral superior oblique

Abducens (VI) Inpsilateral lateral rectus

The primary area of investigation for this thesis is the saccadic eye movement, which is 

discussed in Section 1.3 below. Further discussion detailing the neurological control of 

saccadic eye movements can be found in Section 1.3.1.

1.3 Saccadic Eye Movements

Fundamental to day-to-day vision saccadic eye movements are generated for example,

when we read text and thus serve to shift gaze direction and minimize drift of retinal image

between fixations. The word saccade can be defined as ‘jump’ and saccades may occur as a

series of rapid conjugate jerks of the eyes, which can be horizontal, vertical or oblique. When

a saccade is executed direction cannot be altered, thus, the saccade is a ballistic movement of

the eyes facilitating efficient foveation for a given fixation point. The saccadic system enables

the eyes to make rapid shifts of gaze from one point to another, with a peak velocity of up to

700V1 for large amplitude saccades (Becker, 1991). There is a consistent saturating

relationship between saccade velocity and amplitude, i.e. the size of movement (saccade
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duration and amplitude are also related linearly). As saccade size increases the faster the speed 

of the movement. The relationship between saccade velocity and amplitude is often termed the 

main sequence (Bahill, Clark & Stark, 1975), and the main sequence is also found in 

microsaccades and quick-phase nystagmus.

Saccadic behaviour manifests as two main categories, comprising involuntary and 

voluntary eye movements. Classification of these two categories is discussed in the following 

sections (1.3.1 & 1.3.2).

1.3.1 Involuntary Saccadic Eye Movements

Involuntary saccadic eye movements can be classified by a number of behavioural 

characteristics. The most basic form is quick phases of vestibular nystagmus, resulting from 

stimulation of the vestibular or optokinetic system to realign the eyes as a consequence of drift 

(Leigh & Zee, 1999). Involuntary saccades may appear spontaneously, without stimulation of 

the visual system by internal or external cues. The rapid eye movement activity that takes 

place whilst sleeping, is also involuntary. The end of Section 1.2 outlined the VGR, which is 

a saccadic response that occurs as a result of the sudden appearance of an external stimulus 

(visual, auditoiy or tactile). These saccades are frequently called reflexive saccades and 

involve bottom-up processing (the term prosaccade is often used interchangeably with 

reflexive saccade). However, the VGR is not a fully formed primary reflex as it can be 

inhibited, for example, during the antisaccade task. Despite the fact that visually-guided 

saccades involve an accurate motor system, they do not require response inhibition and 

working memory. Therefore, the cognitive system is placed under a relatively low load, the 

demand perhaps comparable with that required by visual attention (Broerse et al., 2001) where 

there is focussed awareness by the visual system. Reflexive saccades {horizontal) are included 

in the experimental design for the present study and a representation of the spatial
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characteristics for this type of saccade, are illustrated in Figure 1.5 (A) (a detailed account of 

the experimental paradigm can be found in Chapter 2, Section 2.3.3.1 & Figure 2.5(A)).

1.3.2 Voluntary Saccadic Eye Mo vements

Voluntary saccades are under volitional control and may be generated towards a known

activity. Volitional saccades can also be made to remembered locations. Additionally, 

voluntary responses include anticipatory and predictive behaviour, for example, in searching

of the target location or temporal characteristics. Thus, voluntary saccadic eye movements

high-level executive functions, that include planning, visual attention, anticipation, memory, 

inhibition of prepotent response (to the VGR) and sensory-motor integration. Voluntary 

saccades are therefore a product of top-down cognitive processing and can be considered as 

concept-driven (see Section 1.4). One such volitional task is the antisaccade first used by 

Hallett (1978).

stimulus location in a prosaccade fashion, in response to a command or during purposeful

for a target a saccade may be initiated ahead of appearance of the stimulus, due to a prediction

invoke a higher load on the cognitive system, utilizing multiple cognitive centres including

Reflexive Saccade and Antisaccade 
Oculomotor Paradigms

A B
Reflexive Antisaccade

-4° 0‘ 4‘ O' 4‘

Figure 1.5 The diagram above illustrates the basic concept o f reflexive saccade 
(A) and antisaccade (B) paradigms. In the reflexive saccade paradigm a saccade is 
produced directly towards the target. Conversely for the antisaccade paradigm a 
voluntary saccade is generated to the opposite hemifield, from that o f the target.
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1.3.2.1 The Antisaccade Task

The antisaccade task is one of the most widely used paradigms in the study of voluntaiy 

saccades and the inhibition of inappropriate action (Amador, Schlag-Rey & Schlag, 2004; 

Dorris & Munoz, 1995; Everling, Dorris & Munoz, 1998a; Fischer, Gezeck & Hartnegg, 2000; 

Mockler & Fischer, 1999; Roberts, Ralph, Hager & Heron, 1994), and places a high level of 

demand on the cognitive system. During the task the eyes have to move to an equidistant 

location in space, in the opposite hemifield (the mirror location) from where the target is 

(Figure 1.5 (B) & 2.5 (B)). To achieve this the visual system must first avoid overt capture of 

visual attention by the stimulus, which is presented randomly in the left or right visual field. 

This is done by volitionally maintaining attention and visual fixation on the central fixation 

point, thereby inhibiting the prepotent response created by the newly presented visual target 

appearing in peripheral vision {note, the VGR would normally result in a prosaccade towards 

the target). Concurrently, the top-down processing must also generate a representation of an 

imaginary target location in the opposite hemifield from that of the actual target. This 

endogenous process must to be initiated with sufficient time to spare so that the competing 

saccade programme of the VGR can be overridden. Attending to the coordinates of the 

imaginery target location, a volitional saccade must be generated immediately to the imagined 

spatial location. Therefore, compared with involuntary reflexive saccades antisaccades incur 

additional reprocessing time. This is due to the fact that attentional mechanisms inhibit 

saccadic response and attention must shift to the opposite hemifield from that where the visual 

stimulus is actually located (provided that attention was allocated in the first place).

1.3.2.2 Inhibition of Response Tasks

Alternative experimental paradigms can be designed to probe other aspects of volitional 

and inhibitory control. By manipulating the rules, saccadic inhibition tasks can be conducted 

to exert higher levels of cognitive load thereby taxing the executive system. Due to the
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instructional set of the paradigm - requiring response inhibition/response selection (where 

response is required to a certain target but not to others) and attention for action (self­

monitoring of response) - these tasks draw on higher-order executive function and motor- 

related processing (Braver, Barch, Gray, Molfese & Snyder, 2001; Isomura, Ito, Akazawa, 

Nambu & Takada, 2003). The Go /  No-Go task is an example of this type of task.

In eye movement tasks that employ Go/No-Go methodology the rule for example, may 

be that a voluntary prosaccade is commissioned towards a certain visual stimulus for the Go 

component of the test, however, for the No-Go component, a particular visual stimulus must be 

ignored by inhibiting the prepotent response to peripheral stimuli. Thus, these types of task 

require intact capacity for inhibitory and volitional control (Kiehl, Liddle & Hopfinger, 2000; 

Menon, Adleman, White, Glover & Reiss, 2001) (see Chapter 2, Section 2.3.3.3).

1.3.2.3 Cognitive Considerations for Inhibition of Prepotent Response

In order to carry out the antisaccade and Go/No-Go tasks the voluntary saccade system 

is integrated with higher-centres of cognition that facilitate working memory, problem solving, 

and error-monitoring. To perform the tasks correctly and efficiently the brain manipulates the 

problem forming an instructional set in accord with task instructions. The brain accomplishes 

this organization and manages the heavy demands inherent with the tasks by processing 

information via functionally integrated cognitive systems (Weber, Schwarz, Kneifel, Treyer & 

Buck, 2000), distributed in parallel (Selemon & Goldman-Rakic, 1988) for what are in essence 

frontal lobe tasks. Examination of variables derived from prosaccade and antisaccade 

paradigms has enabled the study of fundamental cognitive operations involved in the 

generation of eye movements. In particular, with voluntary saccades, the error correction rate 

provides a ‘window’ with which to observe the ability for self-monitoring, inhibitory control 

and the level of understanding that a participant has for a given task.
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1.3.2.3.1 Functional Basis of Voluntary Saccade Error

The precise functional basis of erroneous saccades in the antisaccade task, which 

requires inhibition of the prepotent response (suppression of reflexive gaze towards the target) 

and the generation of a voluntary saccade away from the target, is still a source of debate. 

Hallet & Adams (1980) postulated that reflexive errors towards the target in the antisaccade 

task result when a cancellation signal is issued too late to interrupt the automatic programming 

which executes the VGR. Referring to frontal lobe lesion patients Guitton and colleagues took 

a related approach and postulated that high error rates in the antisaccade task may be a 

consequence of frontal lobe damage, which slows down programming of the stop signal that is 

necessary to interrupt programming of the reflexive saccade and thus inhibit the VGR (Guitton 

et al., 1985). Roberts and colleagues proposed another account of inhibition errors in the 

antisaccade task (Roberts et al., 1994). Roberts et al. suggested that the systems of working 

memory and inhibitory control of prepotent response interact to enable on-line suppression of 

the VGR in healthy individuals (see Section 1.3.2.3.2). Roberts et al. (1994) reported that tasks 

such as the antisaccade (Hallett, 1978), Wisconsin Card Sorting Test (Milner, 1963) and the 

Stroop test (Stroop, 1935) all require suppression of a prepotent response and are also sensitive 

to frontal lobe function. The present thesis supports the notion that from a functional 

perspective the mechanisms of working memory and attention are strongly implicated in the 

antisaccade task, Wisconsin Card Sorting Test and Stroop test (Roberts et al., 1994), competing 

endogenous and exogenous programming systems that facilitate volitional control and 

counteract the impulsivity of compelling prepotent response.

1.3.2.3.2 The Working Memory Perspective for Erroneous Saccades

Roberts et al. (1994) demonstrated how working memory (see Chapter 3, Section 3.1)

resources are depleted during the antisaccade paradigm by introducing an arithmetic task to run

simultaneously with the antisaccade task. Interestingly, when the cognitive load was increased
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by the mathematical task to a level that left little or no surplus working memory capacity, error 

rates in the antisaccade task also increased. However, the secondary mathematical task did not 

increase error rates in the reflexive saccade task. Roberts et al. reported that the errors 

produced when the antisaccade task was performed simultaneously with a secondary task 

resembled those produced by patients with prefrontal dysfunction. From a working memory 

perspective, the results from Roberts et al. correspond with the working memory model of on­

line processing for plans and goals (Baddeley, 1986; Daneman & Carpenter, 1980; Roberts et 

al., 1994). Furthermore, the results also demonstrate that as task complexity increases 

demands on cognitive capacity also increase and consequently resources of available working 

memory are diminished causing under activation of the task goal.

Failure to inhibit the VGR in the antisaccade task results in error, which may or may 

not be corrected. Applying the concept of working memory this will depend on the level of 

working memory resources available, according to cognitive load of a given task (Stuyven, 

Van der Goten, Vandierendonck, Claeys & Crevits, 2000) and the extent to which a task is 

activated in working memory. Therefore, if working memory function is compromised or 

weakened to some degree (for example due to lesion in the frontal lobe), then this may be 

observed as a lack of ability to inhibit the prepotent response (as working memory and 

attention/inhibitoiy control are working as functionally integrated systems), lack of suppression 

of the VGR and consequently the generation of erroneous prosaccades (Roberts et al., 1994). 

Therefore, the resulting proportion of prosaccade errors in the antisaccade task denotes the 

inhibition function (Pierrot-Deseilligny et al., 2004). Contemporary approaches to the working 

memory perspective are considered in greater detail in Chapter 3, Section 3.1.

Healthy adults show improved performance over time on the antisaccade task, as

evidenced by reduced error rates and improved saccade accuracy (Ettinger et al., 2003). This

may verify somewhat that successful execution of the antisaccade paradigm (and other

voluntary tasks) in healthy individuals is reliant on efficient executive control over motor
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function and attention, through the level of task activation in working memory. Improvement 

on the antisaccade task represents that a learning process has taken place and that volitional 

control over prepotent response mechanisms has been reinforced by the executive system.

1.3.2.3.3 Inhibition and Prefrontal Cortex

The antisaccade task was termed a measure of frontal lobe integrity in early lesion 

studies by Guitton and colleagues (Guitton et al., 1985), and the prefrontal cortex considered 

fundamental for inhibitory control of prepotent response and the suppression of reflexive 

saccades (Roberts et al., 1994) and working memory (Goldman-Rakic, 1999; Sawaguchi & 

Goldman-Rakic, 1994). Section 1.4.5 highlights the important role of the dorsolateral 

prefrontal cortex in the antisaccade task. Past research has reported disinhibition in patients 

with frontal lobe lesions during neuropsychological assessment with tests that require working 

memory and frontal lobe function. Luria referred to the problems of perseveration (that 

patients are often aware that they have made a repetitive incorrect response) and lack of 

inhibition in finger tapping tests (“conflict” command and other tests such as “Go/No-Go”; and 

“alternating commands”) with frontal lobe lesion patients; this behaviour in the frontal lobe 

lesion patient being consistently distinct from the problems encountered by nonfrontal lesion 

patients (Luria, 1966, 1973). Drewe also used the Go/No-Go paradigm with finger tapping 

rules and found similar results, reporting that when patients with frontal lobe lesions have 

correctly mimicked the experimenter in a control condition they have great difficulty inhibiting 

the previously correct response in the experimental condition. Following training, patients 

were supposed to tap the table twice in response to a single tap by the experimenter and not at 

all to a double tap (Drewe, 1975). Furthermore, patients with frontal lobe lesions have been 

found to produce the same type of perseverative behaviour when using the Wisconsin Card 

Sorting Test (Drewe, 1976; Milner, 1963).
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These findings help to demonstrate the rationale that underpins a working memory 

explanation of the error component in the antisaccade task. The above studies emphasise 

deficits by patients with damage to frontal cortex and are believed to utilize working memory. 

Performance in the antisaccade task by frontal lobe lesion patients (Guitton et al., 1985; 

Walker, Husain, Hodgson, Harrison & Kennard, 1998), primate studies (Goldman-Rakic,

1987) and neuroimaging with PET in humans (Owen, Doyon, Petrides & Evans, 1996a) has 

revealed correlates that are consistent with working memory function. Thus, there appears to 

be a strong relationship between frontal lobe function in working memory and the role that this 

plays in manipulating task instructions on-line, for inhibitory control and the ability to perform 

the antisaccade and Go/No-Go tasks efficiently. Subsequent sections of this thesis will 

highlight the importance of the prefrontal cortex and the vital role of this area in the production 

of voluntary eye movements.

1.3.3 Saccadic Measures

The methodology adopted for the research in this thesis will be discussed in Chapter 2, 

and will outline the available techniques for recording eye movements and the reasons for the 

approach utilized in this study. The present investigation used infrared oculography and 

produced a range of saccadic variables. The saccadic outcome measures include the following:

• Latency: which is measured as the time (recorded in milliseconds) from when a visual 

stimulus is presented in the visual field to the movement of the eyes, i.e. the time taken 

to generate a saccadic eye movement from target presentation.

• Amplitude: the distance that the eye travels, giving a measure of accuracy at locating a

given target. Due to the fact that the eyes are virtually spherical and move with a

rotating motion, measurement is made using the unit of degrees.

• Duration: how long the saccade lasts measured in milliseconds
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• Maximum velocity, the maximum velocity attained by the saccadic eye movement 

measured in degrees per second.

For the present study the above measurements are reported across a number of 

paradigms, which are outlined in Chapter 2. The principal area of enquiry is the recording of 

measurements for the variables of the initial (primary) saccade, generated after the visual target 

is presented. However, when directional errors are generated, a spontaneous corrective 

saccade in the correct direction is often produced to compensate. These corrected error 

saccades are also monitored to provide important information regarding error correction and 

self-monitoring. Secondary corrective saccades following inaccurate primary saccades, 

commonly caused by undershooting the target (and also any dynamic overshoot), are not 

assessed in the present thesis. A range of computer spreadsheet templates were designed and 

used to manipulate and summarise saccade data resultant from analysis of analogue saccade 

signal data. The templates proved to be an invaluable time-saving tool, and aided the creation 

of further primary outcomes and secondary information from the initial saccadic output (across 

paradigms). The parameters generated include:

• Proportion of correctly directed primary saccades \

• Proportion of uncorrected primary saccade errors.

• Proportion of corrected errors (incorrectly directed primary saccade followed by a 

corrective saccade).

• Corrected error primary and secondary latency and also the intersaccadic interval (turn­

around time) measured in milliseconds.

• Corrected error primary and secondary saccade amplitudes and also the final eye 

position (FEP) measured in degrees.

* Percentages are calculated as the proportion o f the total valid trials.
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• Proportion of anticipatory saccades, defined as all responses with latencies of <80 

milliseconds.

• Proportion of omissions (no saccade generated).

1.4 Overview of the Neurological Control of Saccades

1.4.1 The Brainstem and Saccade Control

Whereas commands for vertical saccades derive from premotor neurons in the rostral 

midbrain (Btittner, Biittner-Ennever & Henn, 1977; Biittner-Ennever & Btittner, 1978; Sparks, 

2002), for horizontal reflexive saccades2, motoneurons innervating the extraocular muscles 

(Section 1.2.1.1) receive their inputs from saccade-generating neural mechanisms in the 

brainstem (the pons and medulla). Saccade burst neurons (long-lead burst neurons LLBNs and 

excitatory burst neurons - EBNs) found in the paramedian pontine reticular formation (PPRF) 

(Fuchs, Kaneko & Scudder, 1985; Moschovakis & Highstein, 1994) operate at high frequency 

for the generation of saccades, but are at rest during fixation (Figure 1.6).

PPRF with EBNs

Cerebellum( C N  I I I

A bducens >  
nuclei
fCN vn OPNs in 

the  NRIPONSOculomotor
nuclei

IBNs

Figure 1.6 Illustration of the Brainstem and Location of Burst Neurons
(P P R F  Parmedian Pontine Reticular Formation; EBNs, Excitatory Burst Neurons; 
IBNs, Inhibitory Burst Neurons; OPNs, Omnipause Neurons; NRI, Nucleus Raphe 
Interpositus) adapted from Peyronnard and Charron (1997).

2 This account w ill discuss horizontal saccade control only, the focus o f  the present thesis.
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Inhibitory burst neurons (IBNs), located in the dorsomedial rostral medulla (Horn, 

Biittner-Ennever & Biittner, 1996; Scudder, Fuchs & Langer, 1988; Strausmann, Highstein & 

McCrea, 1986), project across the midline to inhibit contralateral abducens motor neurons and 

intemeurons throughout ipsilateral saccade activity (Strausmann et al., 1986). It is assumed 

that the role of the IBNs is to suppress antagonist muscle activity, as axons also project to parts 

of the pontine reticular formation, the nucleus prepositus and the vestibular nucleus.

The PPRF is the horizontal saccade burst generator (Biittner-Ennever & Biittner, 1988; 

Strausmann et al., 1986), activity in this area having been found to be exclusive to horizontal 

saccades, as identified by microstimulation and lesion studies (Cohen & Komatsuzaki, 1972; 

Henn, Lang, Hepp & Reisine, 1984). Located in the nucleus reticularis pontis, the PPRF is 

found bilaterally of the midline, ventral and rostral in relation to the abducens nucleus. 

Pathways derived from the contralateral cerebral cortex and superior colliculus conduct input 

to the PPRF (Biittner-Ennever & Biittner, 1988). The ipsilateral abducens nucleus receives 

input from the PPRF and innervates motor neurons to the ipsilateral lateral rectus muscle. 

Intemeurons from the abducens nucleus to the inferior pons lead to the medial longitudinal 

fasciculus (MLF) and the contralateral medial rectus extraocular muscle subnucleus of the 

oculomotor nucleus (Sparks, 2002) (see Table 1.2 relating cranial nerves to extraocular 

muscles).

Omnipause neurons (OPNs), located towards the midline of the caudal reticular pontine 

formation in the nucleus raphe interpositus (NRI) (Biittner-Ennever, Cohen, Pause & Fries, 

1988) produce tonic activity between saccades, but pause fully just preceding and throughout 

saccades (Cohen & Henn, 1972; Keller, 1974; Luschei & Fuchs, 1972). The omnipause 

neurons are connected widely to burst neurons (Biittner-Ennever & Biittner, 1978; Horn, 

Biittner-Ennever, Wahle & Reichenberger, 1994; Strausmann, Evinger, McCrea, Baker & 

Highstein, 1987). As omnipause neurons must cease inhibition of burst neurons before a 

saccade can commence (Everling, Pare, Dorris & Munoz, 1998b; Horn et al., 1994) they act as
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a gating mechanism assisting with the synchronisation of premotor saccade burst neuron 

operation, and facilitating efficient fixation and saccade production (Fuchs et al., 1985; Munoz, 

2002).

The generation of a saccade involves precise neural activity in the form of pulse and 

step commands. The EBNs are largely responsible for initiation of the saccadic pulse 

command for motor neuron operation, with the level of activation integral to the dynamics of 

saccade amplitude, duration and velocity (Munoz, 2002; Robinson, 1975). The step command 

for motor neuron operation is generated by excitatory activity in the nucleus prepositus 

hypoglossi (NPH) and medial vestibular nucleus (MVN); tonic activity in the NPH and MVN 

is proportional to eye position (Scudder, Kaneko & Fuchs, 2002; Sparks, 2002). It is believed 

that the LLBNs may provide an important link in a feedback loop, that enables resetting and 

integration of saccades (Kustov & Robinson, 1995; Leigh & Zee, 1999). As the LLBNs are 

situated in the PPRF, connect with omnipause neurons (Hepp & Henn, 1983; Scudder, 

Moschovakis, Karabelas & Highstein, 1996a, 1996b) and also project to the central 

mesencephalic reticular formation (which is linked to the superior colliculus), Leigh and Zee 

(1999) postulate that the LLBNs may fulfil their role by two functions: i). Spatial-to-temporal 

transformation of saccadic commands; and ii). Synchronisation of onset and end of saccades.

1.4.1.1 Functions of the Superior Colliculus in Saccade Control

The superior colliculus (SC), located in the midbrain, is a vital component for the 

interaction of cortical areas and the central reticular formation. The SC consists of seven 

complex topographically mapped layers. These layers can be grouped into dorsal (superficial), 

and ventral sections, by their functional characteristics. The dorsal layers seem to be involved 

in visual processing and attention and have been shown to receive direct afferent projections 

from the retina (with retinotopographical mapping) and the striate (visual) cortex (Cynader & 

Berman, 1972), and send efferents to the lateral geniculate nuclei (LGN), pulvinar and
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pretectal nuclei (Leigh & Zee, 1999). Ventral layers of the SC have retinotopic motor mapping 

and generate premotor commands for saccades (Ma, Graybiel & Wurtz, 1991) with many 

efferent connections to brainstem nuclei that contribute to the production of saccadic eye 

movements (e.g. PPRF and MLF). There are also projections to the thalamus.

Figure 1.7 An Illustration  of t h e  Main Cortical Areas Involved with th e  Control
an d  G enera t ion  of Saccadic  Eye M ovem en ts

Dorsolateral Prefrontal Cortex (DLPFC); Frontal Eye Field (FEF); Supplementary Eye 
Field (SEF); Pre-Supplementary Eye Field (Pre SEF); Intraparietal areas (IPA);
Parietal Eye Field (PEF); Superior Parietal Lobule (SPL); Primary (Striate) Visual 
Cortex VC; Extrastriate Cortex (EC); Cerebellum (adapted from Pierrot-Deseilligny 
et al., 2004; and Rosenzwieg, Leiman & Breedlove, 1999)

The ventral layers of the SC also receive important projections from areas of the frontal 

cortex, including the frontal eye fields (FEF), supplementary eye fields (SEF), and dorsolateral 

prefrontal cortex (DLPFC); some of which link via the basal ganglia (Moschovakis, Karabelas 

& Highstein, 1988; Segraves, 1992; Shook, Shlag-Rey & Schlag, 1990). In addition, the SC 

also receives input via projections from the posterior parietal cortex (PPC), specifically, the 

parietal eye fields (PEF) and the cerebellum (cortical areas and cerebellum can be seen in 

Figure 1.7).

Given the characteristics of these structures, it is postulated that the ventral layers of the 

SC are imperative for sensory-motor integration, mediating and interfacing information 

between the many structures. Recent primate antidromic and orthodromic stimulation studies

43



1 Introduction to the Study of Saccadic Eye Movements

(Sommer & Wurtz, 2004a, 2004b) have revealed further insight into the feedback pathway 

provided by the ascending projections from the SC to the mediodorsal thalamus and onto the 

FEF. Topographically organised presaccadic activity was found to travel unchanged from SC 

to FEF and this activity is believed to provide vector signals for imminent saccades.

Reflexive saccadic eye movements {prosaccades) move toward objects of interest and 

maintain fixation as a result of opponent neural processes (Biittner-Ennever & Horn, 1997) that 

make it possible for high-speed interchange between saccade and fixation. The opponent 

processes that activate and inhibit the VGR brainstem activity are situated in the ventral layers 

of the SC. Thus, the pulse-step command system in the pontine and midbrain areas of the 

brainstem receives inputs largely from the SC.

Two sorts of cells in the SC - fixation and movement - are responsible for managing 

when and where the eyes move (Rafal, Machado, Ro & Ingle, 2000). Throughout fixation, 

neurons in the rostral pole of the SC generate tonic discharge, their function being augmented 

by stimulation when an object is fixated, thereby holding the eyes in position (fixation cells); 

these cells are able to inhibit movement cells. Movement cells are located caudally to the 

rostral pole neurons and these cells assist the eyes when moving to a new location; they are 

also inhibited by fixation cells (Machado & Rafal, 2000b; Munoz & Wurtz, 1993a, 1993b; 

Wurtz & Munoz, 1995). The SC, PPRF, and ocular motor nuclei are the final common 

pathway for all types of saccade.

1.4.2 Saccade Control by the Cerebral Cortices

The cerebral cortices play a crucial role in the generation eye movements, including 

both reflexive and voluntary saccades. In the first instance, visual input is transmitted via the 

retina -  geniculate -  striate pathway (Section 1.2) to the parietal lobes (PPC, parietal eye field 

(PEF) and superior parietal lobule (SPL)), where sensory-motor transformations and attentional 

processes take place (Section 1.4.1.3)(Andersen, Snyder, Bradley & Xing, 1997; Anderson &

44



1 Introduction to the Study of Saccadic Eye Movements

Mountcastle, 1983; Colby & Goldberg, 1999; Thier & Andersen, 1996). Saccadic and fixation 

activity is then distributed throughout a network that includes the cerebellum, frontal lobes and 

sub-cortical brainstem structures (Sections 1.4.1 & 1.4.1.2) with complex projections that are 

linked at numerous levels (Hikosaka, Takikawa & Kawagoe, 2000; Schall & Thompson, 1999; 

Tinsley & Everling, 2002). Two main pathways seem to perform important functions in 

mediating reflexive and volitional saccades. Reflexive saccades are largely controlled by a 

posterior pathway involving projections from the PPC to the SC which mediates reflexive 

saccades via the SC. Volitional saccades rely on anterior pathways that are mainly involved in 

mediating saccades via the FEF, SEF and DLPFC.

1.4.2.1 The Frontal Eye Fields

The FEF (Figure 1.7) have been identified by PET, fMRI and cortical stimulation 

studies (Fox, Fox, Raichle & Burde, 1985; Kleineschmidt, Merboldt, Requardt, Hanicke & 

Frahm, 1994; Sweeney et al., 1996). They are located around the lateral precentral sulcus 

leading superiorly to the intersection with the superior frontal sulcus, and involve the 

precentral gyrus and middle frontal gyrus (Leigh & Zee, 1999; Paus, 1996; Pierrot-Deseilligny 

et al., 1995). However, in another study by Luna and colleages (Luna et al., 1998) using fMRI, 

the frontal eye field was found to be limited to the precentral sulcus only for visually-guided 

saccades and not reaching into Brodmann’s area 8 (An illustration of Brodmann’s areas is 

shown in Appendix 23). A recent high resolution fMRI investigation confirmed the localised 

saccade area of the FEF to be in the upper portion of the antrerior wall of the precentral sulcus 

(Rosano, Krisky & Welling, 2002).

Many areas of the cortex and sub-cortex are involved in an array of intricate neural 

pathways that facilitate parallel processing and thus the integration of numerous sensoiy-motor 

systems in the production of cognitive and behavioural operations and the FEF is no exception 

to this. Primate studies have revealed high-level interactivity with inputs from many areas,
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including the visual cortex and inferior parietal lobule (IPL specifically the PEF). Inputs from 

contralateral regions are also found to include the FEF, SEF, DLPFC, thalamic nuclei, 

cerebellum, SC and substantia nigra pars reticulata (SNPr) (Huerta, Krubitzer & Kaas, 1987; 

Leigh & Zee, 1999; Sommer & Wurtz, 2004a; Stanton, Goldberg & Bruce, 1988a, 1988b, 

1995). Primate studies have also shown that the FEF not only sends reciprocal projections to 

these centres, but in addition, sends projections to the SC, caudate nucleus, SNPr, NRI and the 

nucleus reticularis tegmenti pontis (Huerta, Krubitzer & Kaas, 1986; Leichnetz, Smith & 

Spencer, 1984; Stanton et al., 1988b).

Neurons found in the FEF have been shown to discharge prior to the commencement of 

visually-guided saccades and memory-guided saccades (Bruce & Goldberg, 1985). Recent 

fMRI studies have revealed that during reflexive saccades, the FEF discharge prior to onset of 

saccades and that the PEF is also highly activated (Connolly, Goodale, Menon & Munoz, 2002; 

De Souza, Menon & Everling, 2003). However, in the antisaccade task, the FEF was activated 

prior to antisaccade generation, but not the PEF, which indicates that the FEF field is involved 

in the preparation of the antisaccade. It is postulated by Pierrot-Deseilligny et al. (2004) that 

the lesion studies (Rivaud, Miiri, Gaymard, Vermersch & Pierrot-Deseilligny, 1994) and fMRI 

investigations (Pierrot-Deseilligny et al., 2003a; Pierrot-Deseilligny, Rivaud, Gaymard & 

Agid, 1991b) demonstrate that the FEF triggers correct antisaccades, whereas the DLPFC 

exercises inhibitory control over the reflexive saccade system via the FEF.

As mentioned in Section 1.4.1.2, recent findings from primate studies (Sommer & 

Wurtz, 2004a, 2004b) have emphasised the crucial presaccadic topographically mapped vector 

signalling information that the SC projects to the FEF via the mediodorsal thalamus. Sommer 

and Wurtz conclude that the information is important for the coordination of saccade sequences 

and the stabilisation of vision from one saccade to the next. Previous research has noted that 

lesions of the FEF cause prolonged reflexive saccades on a fixation-target overlap task 

(Sharpe, 1986), whereas tasks with fixation point offset prior to target onset cause little
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problem; i.e. employing a temporal gap between fixation point offset and target onset3 (Pierrot- 

Deseilligny et al., 1991b). The delay reported for fixation disengagement in the overlap task 

possibly relates functionally to the reciprocal pathways between the FEF and SC, as discussed 

in Section 1.4.1.2, where two types of cell in the SC - fixation and movement - are responsible 

for managing when and where the eyes move (Rafal et al., 2000; Segraves & Goldberg, 1987; 

Segraves, 1992).

1.4.2.2 The Parietal Eye Field and Saccade Generation

The discussion in Sections 1.4.1 & 1.4.1.2 highlights that the basis of involuntary 

saccadic eye movement generation is largely the result of activity in the brainstem and 

midbrain, further to sensory integration, via relevant cortical areas. Interestingly however, 

involuntary saccades can also be triggered by various cortical areas, including the parietal lobe, 

namely the PEF (Pierrot-Deseilligny et al., 1995); the parietal lobes being crucially involved in 

gaze control and attention (Leigh & Zee, 1999).

The location of the PEF in humans (Figure 1.7) was shown by fMRI to be around the 

interparietal sulcus (Miiri, Ploner, Iba-Zizen, Derosier & Pierrot-Deseilligny, 1996) which is in 

the superior area of the angular gyrus and supramarginal gyrus (lying in Brodmann’s areas 39 

& 40, Appendix 23). Luna and colleagues (Luna et al., 1998) found that during visually- 

guided saccades, fMRI revealed activity in the parietal lobes in the precuneus, through the 

intraparietal sulcus and also reaching into the SPL and the IPL.

Brain lesion studies have shown that patients with lesions to the posterior parietal 

cortex (PPC), specifically the PEF, produce visually-guided saccades with significantly 

prolonged latencies (Heide & Kompf, 1998; Pierrot-Deseilligny et al., 1991b). Moreover, 

bilateral lesions of the PPC and the FEF in the human brain result in severe disruption for the 

triggering of both reflexive and volitional saccades (Pierrot-Deseilligny, Gautier & Loron,

 ̂xjjg ‘gap’ or ‘fixation offset paradigm’ - terms used interchangeably - is employed in Chapter 4 o f this thesis.
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1988), whereas damage to the FEF alone prolongs reflexive saccade latency for targets in the 

contralateral hemifield (Pierrot-Deseilligny, Rivaud, Penet & Rigolet, 1987). Electrical 

microstimulation studies in the lateral intraparietal area (LIP) of the intraparietal sulcus - the 

PEF in rhesus monkeys - have shown that stimulation of the lateral wall results in saccades 

that travel in a similar direction, regardless of initial position; whereas stimulation of the 

intraparietal sulcus floor and sub-ranging white matter, produces eye movements in directions 

that are dependent on initial eye position (Thier & Andersen, 1996). The LIP in humans, is 

known to project directly to the FEF and SEF (Schall, 1997; Schall & Thompson, 1999), thus 

demonstrating an important interface between visual input, brainstem and frontal regions.

In the gap/overlap paradigm (see Chapter 4), unilateral lesion studies have revealed 

saccade latency to be increased bilaterally in the gap task and additionally to be significantly 

worse in the overlap task (with a tendency for patients with right-sided lesions to have the 

largest latencies in the overlap task) (Pierrot-Deseilligny et al., 1995; Pierrot-Deseilligny et al., 

1991b). Therefore, given these findings, it is plausible to suggest that the PEF is involved in 

coding for particular objects of interest in spatial coordinates, and in the generation and 

triggering of saccades.

Further evidence that demonstrates the importance of the role of the parietal lobes in 

saccadic control was revealed in an EEG study by Wauschkuhn and colleagues (Wauschkuhn 

et al., 1998), who found that for voluntary saccades, presaccadic activity contralateral to 

saccade direction began about 100 msecs. prior to saccade initiation and was greatest in mesial 

parietal sites with involvement of some fronto-central test-oriented activity. This group of 

researchers interpreted this finding as the triggering signal for saccade execution. They also 

reported contralateral activation of lateral parietal areas optimal at 250 msecs. subsequent to 

stimulus onset, irrespective of saccade direction. Further activity was found at 330-480 msecs. 

contralateral to the stimulus if the stimulus was the target of the saccade. They postulated that 

these findings are an indication of parietal lobe involvement in both independent and
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interdependent processing of saccade preparation and shifts of visual attention. A recent 

primate study demonstrated that projections from the PEF to the FEF are more involved in 

processing visual information, whereas the PEF projection to the SC is more involved in 

saccade generation (Ferraina, Pare & Wurz, 2002). This again reinforces the evidence that the 

PEF provides the trigger for execution of reflexive saccades, via the parieto-collicular pathway.

In summary, the parietal lobes seem to be vitally important for the control of saccades 

in a number of ways, which include high-level processing of spatial head position and sensory- 

motor transformations, shifts (disengagement) of attention (both overt and covert)(Andersen et 

al., 1997; Colby & Goldberg, 1999; Corbetta, Miezin, Shulman & Petersen, 1993), the 

triggering of visually-guided saccades and a clear role in the programming of 

environment/visually-guided saccades, via the PEF.

1.4.2.3 The Dorsolateral Prefronta! Cortex

The DLPFC is located in Brodmann’s areas 9 and 46 (Appendix 23) on the dorsolateral 

area of the frontal lobe, in the middle third of the middle frontal gyrus (Figure 1.7) (Leigh & 

Zee, 1999; Rajkowska & Goldman-Rakic, 1995). There are reciprocal cortico-cortical 

connections with the FEF, SEF, PPC, hippocampus, parhippocampal cortex, cingulate cortex 

and nuclei of the thalamus; and descending projections to the PPRF, SC, caudate and putamen 

(Cavada & Goldman-Rakic, 1989; Huerta & Kaas, 1990; Selemon & Goldman-Rakic, 1988).

The DLPFC is active during voluntary saccade generation, for example, with saccades 

to remembered target locations and in antisaccade tasks (Matsuda et al., 2000; Miiri et al., 

1998; O'Driscoll et al., 1995; Sweeney et al., 1996). Patients with lesions of the DLPFC have 

been shown to have impairment on these tasks (Guitton et al., 1985; Pierrot-Deseilligny et al., 

2003b; Pierrot-Deseilligny, Rivaud, Gaymard & Agid, 1991b), Pierrot-Deseilligny et al.

(2003), showing that a lesion localised to the DLPFC caused impairment of ability to inhibit 

the VGR in the antisaccade task. Furthermore, in a primate study of working memory,
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pharmacological demobilisation of the DLPFC with D1 dopamine antagonists found that 

contralateral saccades were inaccurate in a remembered target location task (Sawaguchi & 

Goldman-Rakic, 1994). A further primate study recently investigated neuronal activity in the 

DLPFC during a directional-delay task for both memory-guided and visually-guided saccades. 

The results showed that most of the DLPFC neurons that were active during the delay period, 

were also active when the sensory stimulus remained on (Tsujimoto & Sawaguchi, 2004). 

Tsujimoto & Sawaguchi postulated that this sustained representation of information in the 

DLPFC should have potential utility in flexible cognitive controls of behaviour. Pierrot- 

Deseilligny et al. (2004) postulated that the DLPFC can exert inhibitory control over the SC 

directly via the prefronto-collicular tract, revealed by a human anatomical study (Gaymard, 

Francois, Ploner, Condy & Rivaud-Pechoux, 2003). Additionally, using fMRI, Matsuda et al. 

found that the DLPFC was only active during voluntary (antisaccade) saccades in humans and 

not in reflexive saccade tasks (Matsuda et al., 2000). They postulated that the DLPFC plays an 

important role in the inhibition of reflexive saccades. Moreover, Pierrot-Deseilligny et al. 

(2004) also speculated that the DLPFC is involved in the decisional processing of saccadic eye 

movements, by modulating inhibitory control of the reflexive saccade system and memorised 

information on-line in accord with task instructions. Additionally Pierrot- Deseilligny et al.

(2004) refer to an fMRI study (in preparation by Milea et al. at the time of writing) that has 

found evidence of significant activation of the DLPFC during the selection period, prior to 

saccade generation in a self-selection saccadic task with healthy participants. It seems that this 

evidence supports the notion that the DLPFC is considerably involved in working memory 

processing and that this contributes to the processing of information, for voluntary saccade 

generation.

The interconnections between the DLPFC and the anterior cingulate cortex (ACC) have 

been identified during antisaccade and remembered saccade tasks by PET and EEG studies 

(Anderson et al., 1994; Nieuwenhuis et al., 2001; Sweeney et al., 1996). Investigation of the
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posterior cingulate cortex (PCC) in primates has also shown that there is neuronal discharge 

before and after saccadic eye movements (Olson, Musil & Goldberg, 1996). A more recent 

study has refined this position somewhat using fMRI, and discovered that the PCC is active 

during reflexive saccades, but not during endogenous saccades (Mort et al., 2003).

Research has also discovered that the ACC, more specifically, the area referred to as 

the cingulate eye field (CEF), probably regulates activity in the DLPFC. Evidence from lesion 

studies of the CEF found dysfunction of inhibitory control for reflexive prosaccades in the 

antisaccade task (Milea et al., 2003) and impairment of memory guided saccades (Gaymard et 

al., 1998b).

Another study conducted event-related fMRI of the ACC during an erroneous response 

task and discovered that the ACC is active during both correct and incorrect responses (Carter 

et al., 1998). Carter and colleagues postulated that this finding possibly reflects the capacity of 

the ACC to detect conditions under which errors are likely to occur. Further fMRI study of 

error related activity has revealed that the ACC’s role in executive function is an evaluative 

one, providing on-line detection of processing conflicts, perhaps associated with deteriorating 

performance (Carter, Botvinick & Cohen, 1999; Kiehl et al., 2000). Furthermore, a recent 

study of primates using single unit recording of neural activity in a saccade countermanding 

task revealed dissociation of activity for error, reinforcement and conflict in the ACC. This 

finding supports the hypothesis that the ACC monitors for the consequences of actions (Ito, 

Stuphom, Brown & Schall, 2003). The significance of this role can be emphasised from an 

oculomotor perspective. Pierrot-Deseilligny et al. (2004) suggest that the CEF perhaps 

governs endogenous saccade preparation, whereas the PCC interacts with attentional signals 

from the PPC, thus preparing the PEF for reflexive response.

Given the reciprocal cortico-cortical interconnectivty of the DLPFC with the FEF, SEF, 

PPC and descending pathways to sub-cortical nuclei (particularly the hippocampus and SC), 

the above findings appear to reflect that the relationship between the DLPFC and the anterior
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cingulate cortex is multi-functional, forming part of a distributed parallel processing system, 

serving spatial working memory, inhibitoiy/suppressive control of reflexive response, and error 

processing and self-monitoring, which are all conducive to an efficient and correctional 

working memory.

1.4.2.4 The Supplementary Eye Fields

The SEF was first termed an eye field when neurons were found to fire prior to and 

during reflexive and spontaneous saccades (Schlag & Schlag-Rey, 1985, 1987). The SEF 

corresponds with the location of Brodman’s area 6 (Appendix 23) and is thus situated on the 

dorsomedial surface of the frontal lobe; on the superior frontal gyrus, superior to the FEF and 

anterior to the supplementary motor area (SMA) (Fox et al., 1985; Petit et al., 1996; Petit et al., 

1993; Sweeney et al., 1996). An additional area of interest is the pre-supplementaiy eye field 

(Pre-SEF), which is located just anterior to the SEF (Figure 1.7).

The SEF has many afferent and efferent pathways and is reciprocally connected with 

the FEF, cingulate cortex, DLPFC, caudate nucleus, interparietal sulcus (PEF), superior 

temporal sulcus and thalamic nuclei (Bates & Goldman-Rakic, 1993; Luppino, Rozzi, 

Calzavara & Matelli, 2003; Shook, Shlag-Rey & Schlag, 1988; Shook, Shlag-Rey & Schlag, 

1991). However, the is SEF in primates has been found to have a higher proportion of 

connections with prefrontal and skeletomotor areas and fewer connections with the visual 

cortex compared to the FEF, for example, which has greater connectivity with extrastriate areas 

(Huerta & Kaas, 1990). Additional investigation with primates has also demonstrated a 

convergence of FEF and SEF projections in the caudate nucleus and the striatum 

(Parthasarathy, Schall & Graybiel, 1992). The SEF has also been found to project to the OPNs 

in the NRI, caudate nucleus , putamen, SC, pontine nuclei (Huerta & Kaas, 1990; Shook et al., 

1988; Shook e ta l, 1990).
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Characteristics of saccade related activity have been revealed with neuroimaging 

techniques, and have shown that the SEF is active during the antisaccade task (Kimmig et al., 

2001; O'Driscoll et al., 1995; Sweeney et al., 1996), remembered saccades (Anderson et al., 

1994; O'Sullivan, Jenkins, Henderson & Kennard, 1995) and sequences of saccades 

(O'Sullivan et al., 1995; Petit et al., 1996).

The complex status of the SEF in saccadic control was also emphasised in primate 

studies, where different populations of SEF neurons have been identified that appear to relate 

to novel and familiar stimuli on a saccadic learning task (Chen & Wise, 1995). Activation of 

these populations of cells changes significantly according to task learning, via stimulus- 

saccade association. These neurons are more common in the SEF, than comparable cells found 

in the FEF and has led to the notion that the SEF may perform the role of an adaptable system 

that can integrate sensory input and motor response (Chen & Wise, 1996). Furthermore, a 

recent electrophysiological study of the SEF in the rhesus monkey (Olson & Gettner, 2002), 

has confirmed that activity is enhanced when difficult and complex rules are involved in a task 

or were conflict arises. Interestingly, recent TMS and fMRI investigations have highlighted 

that the Pre-SEF is activated during the presentation of a visual sequence and the SEF is active 

prior to activation of a programmed sequence (Pierrot-Deseilligny, Miiri, Ploner, Gaymard & 

Rivaud-Pechoux, 2003b). It appears that the SEF plays an important role in presaccadic 

activity and saccade control, mediating the programming of saccades. The SEF seems to be 

highly implicated where saccades are incorporated into complex behaviour such as 

remembering a target location or performing other voluntary learned tasks, as in antisaccade 

paradigms.

1.4.3 The Cerebellum and Saccade Control

The cerebellum (Figure 1.7) is a vital component for eye movements (Hayakawa, 

Nakajima, Takagi, Fukuhara & Abe, 2002) providing a calibration function that facilitates
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optimal eyesight. There are two essential sub-divisions i). The vestibulocerebellum (important 

for the dynamics of the VOR); and ii). The dorsal vermis and fastigial nucleus (Leigh & Zee, 

1999). Quaia and colleagues (Quaia, Lefevre & Optican, 1999) emphasise the indispensable 

role of the cerebellum in playing three key roles in the control of saccadic eye movements i). 

The cerebellum provides further activation, to improve acceleration of the eyes; ii). Monitors 

the advancement of a saccade towards the target; and iii). Chokes off drive from the SC to 

end the saccade.

The dorsal vermis and fastigial nucleus are key sub-structures for the initiation of 

saccadic eye movements. These nuclei are concerned with the accuracy of saccades and control 

the size of the pulse component. Lesions of these areas have been shown to result in saccadic 

pulse dysmetria, with undershoot and overshoot of the target (Siebold, Glonti, Kleine & 

Blittner, 1997; Takagi, Zee & Tamargo, 1996), and recently, structural MRI has confirmed the 

role of the vermis in saccade gain (Ettinger et al., 2002).

1.4.4 Control of Voluntary Eye Movements

Voluntary eye movements are regulated by the cerebral cortices, namely the visual 

cortex, dorsolateral prefrontal cortex (DLPFC, important for programming memory-guided 

saccades and providing inhibition of prepotent responses), frontal eye fields (FEF is involved 

in the disengagement of the fixation system and is able to initiate visually guided saccades and 

locate remembered or predicted positions for saccades), the supplementary eye fields (SEF, 

vital for the arrangement of multiple saccades and also, the integration of saccades with head 

and body movements) and the inferior parietal lobule (see PEF Figure 1.7) (concerned with 

visuospatial integration)(Corbetta et al., 1993; Pierrot-Deseilligny, Israel, Berthoz, Rivaud & 

Gaymard, 1993; Pierrot-Deseilligny et al., 1995). Sub-cortical structures are also involved in 

the generation of voluntary saccades, including the superior colliculus and basal ganglia 

(substantia nigra pars reticulata). Endogenous control of the fronto-nigral-collicular circuitry
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enables inhibition of the VGR and fixation reflexes, and thereby the production of voluntary 

saccades (Burman & Bruce, 1997; Everling et al., 1998). Voluntary control of saccadic eye 

movements may be disturbed if these circuits are damaged, as exemplified by the findings of 

research involving adults with damage to the frontal cortex that has been found to impede 

suppression of the VGR (Guitton et al., 1985; Pierrot-Deseilligny, 1991; Rafal et al., 2000). 

Lesions of the FEF result in little disruption to reflexive saccades, however, the dynamics 

(prolonged latency and lowered peak velocity) of voluntary (and remembered) saccades were 

found to be significantly impeded (Gaymard, Ploner, Rivaud, Vermersch & Pierrot- 

Deseilligny, 1998a; Gaymard, Ploner, Rivaud-Pechoux & Pierrot-Deseilligny, 1999).

1.4.5 Neural Control in the Antisaccade Task

There appear to be a range of brain regions that form the neural substrates of 

antisaccade eye movements and the specific location of these areas is still a matter for 

deliberation (Everling & Fischer, 1998). Research involving neuroimaging techniques has 

produced inconsistent results, which could be due to a number of reasons. It is probable that 

the differences lie in a combination of different methodologies and the lack of good temporal 

resolution with brain imaging methods, despite having good spatial resolution.

As discussed in Sections 1.4.1.2, 1.4.2.1 -  1.4.2.5 & 1.4.4, there is substantial overlap 

in the neural basis for exogenously (reflexive) and endogenously (voluntary) generated 

saccades, with the prerequisite that the production of the volitional antisaccade will incur a 

higher proportion of top-down processing as compared with the simpler and less cognitively 

demanding reflexive tasks. Therefore, it is suggested that antisaccades utilise the same 

circuitry, fundamental to reflexive saccadic eye movements which includes the FEF (Section 

1.4.2.1), PEF (Section 1.4.2.2), cerebellum (Section 1.4.3) and brainstem structures (Sections 

1.4.1 & 1.4.1.1; PPRF & SC). For antisaccade paradigms, the task involves a number of 

additional cognitive operations, which require higher-level processing and thus additional

55



1 Introduction to the Study of Saccadic Eye Movements

cortical areas for successful completion of the task: i). Inhibition of the VGR, i.e. suppression 

of the reflexive response; ii). Representation of an imaginary target, created in the opposite 

hemifield, from that of the target; iii). Coordinating the coordinates of the imaginary target, a 

volitional saccade is generated to the imagined spatial location.

Many studies have discovered neural correlates that have helped provide insight into 

the precise location of the areas involved during the generation of antisaccades. Initially, 

clinical studies investigating lesion sites, suggested that difficulties in suppressing reflexive 

glances during goal-directed saccades (antisaccade task) concerned the FEF, DLPFC (Section 

1.4.2.3) and SMA (SEF) (Guitton et al., 1985) and later, lesions of the FEF were implicated in 

prolonged antisaccade latency (Rivaud et al., 1994). Further lesion studies have highlighted a 

significant role for the DLPFC, demonstrating higher error rates for this lesion site 

(Fukushima, Fukushima, Miyasaka & Yamashita, 1994; Gaymard et al., 1999; Gaymard et al., 

1998b; Pierrot-Deseilligny et al., 1991b). As discussed in Section 1.4.2.3, the cingulate cortex 

is highly interconnected with the DLPFC and interestingly, lesions to ACC also result in higher 

antisaccade error rates (Gaymard et al., 1998b), perhaps emphasising the putative self­

monitoring and error processing role of the ACC (Carter et al., 1999; Carter et al., 1998; Kiehl 

et al., 2000).

Brain imaging studies using fMRI and PET have also found variously, that the FEF, 

SEF ACC, DLPFC and sub-cortical areas are active during antisaccade tasks. For example, 

two studies, Miiri et al., using fMRI (Miiri et al., 1998) and Sweeney et al., using PET 

(Sweeney et al., 1996) found the DLPFC to be significantly active in the antisaccade task. 

Paus and colleagues (Paus et al., 1993) compared activation of brain regions using PET during 

reflexive and antisaccade tasks and discovered that the ACC and PPC were significantly more 

active than other areas of the brain during the antisaccade task. Whereas, O’Driscoll and 

colleagues (O’Driscoll et al., 1995), also using PET, found a different pattern of increased 

activation during the antisaccade task that included the FEF, SMA, striate cortex, superior
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parietal lobe and sub-cortical areas (putamen and thalamus). O’Driscoll et al. (1995) 

postulated that the FEF was responsible for inhibition of the reflexive saccade component of 

the antisaccade task. This notion was reinforced by Comelissen and colleagues (Comelissen et 

al., 2002) using fMRI to study antisaccade and prosaccade tasks and discovered that the FEF 

was active prior to the execution of correct antisaccades, whereas this did not occur for errors 

of inhibition. The similarity between the findings of O’Driscoll et al. and Comelissen et al. 

further supports the idea that the FEF is involved in presaccadic inhibitory processes. This 

notion has been reinforced by recent neuroanatomical studies (pharmacological inactivation) of 

these regions of the brain in the monkey (Sommer & Wurtz, 2004a) which have found 

prominent presaccadic activity travelling unchanged from the SC to the FEF.

EEG has also been used to elucidate which areas of the brain are active during the 

antisaccade task. The shift of attention from the target stimulus (found to be in the 

contralateral hemisphere from the target) to the imaginary representation of a target (in the 

ipsilateral hemisphere with the target) was observed to be in the parietal cortex by Everling and 

colleagues (Everling, Spantekow, Krappmann & Flohr, 1998c). Additionally, Evdokimidis and 

colleagues (Evdokimidis, Liakopoulos, Constantinidis & Papageorgiou, 1996) postulated that a 

reduction in neural activity noted to occur 100 msec, prior to the initiation of a saccade 

(Everling, Krappmann & Flohr, 1997) was related to the frontal mechanism for reflexive 

saccade inhibition.

In summary, it appears that a distributed network, involving both cortical and sub- 

cortical structures of the brain is involved in the successful execution of antisaccades. The 

demands of the antisaccade task involve complex neural programming of both spatial and 

temporal task parameters. In order to achieve the goal of the task the mind not only utilizes 

brainstem circuitry involved in the production of reflexive saccadic responses, but also 

integrates this circuitry with higher-cortical pathways involving the FEF, PPC, SEF, DLPFC 

and ACC to bring about efficient volitional control.
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1.5 The Dementias

The term dementia covers a broad range of disorders which are characterised by various 

cognitive deficits and differentiated by etiology (American Psychiatric Association, 1994). In 

the United Kingdom prevalence rates show that there are in excess of 700,000 people suffering 

from dementia, and in the region of 18,500 of these people are below age 65 years. One person 

in twenty over the age of 65 years and one person in five over the age of 80 years are afflicted 

with dementia. Estimates put the figure for people with dementia worldwide, at approximately 

18 million (source: Alzheimer’s Society U.K., 2003). The incidence of dementia cases is 

progressively growing, as the proportion of older people steadily increases. In North America 

and Europe, approximately 4% of the population reached 65 years of age in the year 1900, 

whereas by 1980, the proportion of the population over 65 years had increased to roughly 10% 

of the overall expanding population (Kolb & Whishaw, 1996). Therefore, dementia is 

associated largely with old age, revealed by improved health and survival into old age 

(Whitehouse, Lemer & Hedera, 1993).

The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) published by the 

American Psychiatric Association (APA) (1994) lists the following types of dementia 

according to etiology: Dementia of the Alzheimer’s Type (AD); Vascular Dementia; Or due to 

HIV Disease; Head Trauma; Parkinson’s Disease; Huntington’s Disease; Pick’s Disease; 

Creutzfeld-Jakob Disease; and Dementia Due to Other General Medical Conditions; 

Substance-Induced Persisting Dementia; Dementia Due to Multiple Etiologies; Dementia Not 

Otherwise Specified.

Multiple cognitive deficits are central to the diagnosis of dementia and include memory

impairment as the pivotal factor, along with one or more disturbances, which comprise a deficit

of executive function, agnosia, apraxia or aphasia. For a diagnosis of dementia, disturbance in

cognitive performance should have interfered with everyday life to the extent that social

activities or employment are impeded, with cognition having deteriorated to a lower degree
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than that prior to onset of symptoms. Needless to say, it is useful to have a reliable and close 

informant of the patient (with a good working knowledge of the patient) along at interview, as 

patients often have difficulty in presenting a full and reliable account of their history.

1.5.1 Alzheimer's Disease

Alzheimer's Disease (AD) is defined by the National Institute on Aging as progressive, 

irreversible declines in memory, performance of routine tasks, time and space orientation, 

language and communication skills, abstract thinking, and the ability to learn and carry out 

mathematical calculations -  executive function. Other symptoms include personality changes 

and impaired judgement. The most widespread of the dementias, Alzheimer’s disease 

constitutes up to 55% of the total cases of dementia (source: Alzheimer’s Society, U.K., 2003).

1.5.1.1 Pathological Characteristics of Alzheimer's Disease

It is possible to distinguish between the healthy aging brain and the AD brain by 

comparison of neuronal degeneration (only observable post-mortem), the healthy aging brain 

showing significantly less cell loss and considerably fewer neurofibrillary tangles (Morrison & 

Hof, 1997; Price, Davis, Morris & White, 1991). The AD brain is found to be affected by two 

types of lesion, i) neuritic plaques, a dense build-up of cellular debris, consisting 

extracellularly, of the protein (3-amyloid; and ii) twisted strands (neurofibrillary tangles) of a 

protein called tau inside cells, in particular, pyramidal cells and the hippocampus (Clarke & 

Goate, 1993; Goedert, 1993). There is substantial synaptic loss in many areas of the brain that 

are vital to: Memory - the hippocampus; Emotion and personality -  the amygdala; 

Impairment of sense of smell - olfactory areas. Cell loss in the entorhinal limbic system leads 

to disconnection of the hippocampus.

In addition to sub-cortical damage, areas of the cerebral cortex and temporal cortex

suffer increasing cell loss as the disease progresses (Terry, Peck, De Theresa, Schecter &
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Horoupian, 1981; Wilcock, Esiri, Bowen & Hughes, 1988): The frontal cortex -  resulting in 

executive, strategic and social self-monitoring problems; the temporal cortex -  which results 

in agnosia, aphasia and problems with memory (Hodges & Patterson, 1995); Degeneration of 

the parietal cortex causing spatial orientation and attention difficulties and anosognosia (Jones 

& Richardson, 1990; Zola-Morgan & Squire, 1993). Concomitant with neuronal loss, are 

lower levels of the neurotransmitter acetylcholine (see Chapter 6) (Beach et al., 2000; Coyle, 

Price & DeLong, 1983; Davies & Maloney, 1976; Giacobini, 1990), primarily due a high 

degree of cell loss in the basal forebrain region, i.e. the nucleus basalis o f Meynert and the 

nucleus of the diagonal band complex (Arendt, Bigl, Arendt & Tennstedt, 1983; Francis, 

Palmer, Snape & Wilcock, 1999; Whitehouse, Price, Clark, Coyle & DeLong, 1981). These 

nuclei are responsible for supplying the hippocampus and many areas of the cortex with 

modulatory and activating cholinergic input. Other modulatory neurotransmitters affected 

include, noradrenalin, serotonin and dopamine (Moore, 1990) which are crucial for efficient 

frontal lobe function and inhibitory control (see Section 1.4.2.1). As the disease advances, 

there is extensive cortical atrophy and ventricular enlargement (Figure 1.8 shows an MRI scan 

illustrating extensive neural degeneration in a patient with advanced Alzheimer’s disease).

Figure 1.8 Magnetic Resonance Image of Alzheimer Diseased Brain

Comparative coronal sections of a healthy (normal) brain from a 78 year-old (A) and the 
brain of a 74 year-old patient with AD/MMSE score of 15 (B). Note: Cerebral (ca) and 
hippocampal atrophy (ha); and ventricular enlargement (ve), compared with normal 
brain on left (adapted from Detoledo-Morrell et al. 1997).
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The diagnosis of AD relies on the presence of a recognizable clinical syndrome and the 

exclusion of other possible causes of dementia. There are to date no specific biological or 

pathophysiological markers available in the diagnosis of AD (Kennard, 1998). Although some 

promising advances have been made in preclinical neuropsychological assessment (Visser et 

al., 2002) and the development of neuroimaging and cerebrospinal fluid analysis (Okamura et 

al., 2002).

1.5.1.2 Clinical and Cognitive Features of Alzheimer's Disease

The symptoms and pathology of Alzheimer’s disease, as defined on the previous two 

pages, originated from the work on a case study by the German physician, Alois Alzheimer in 

1906. The clinical features of AD present with an insidious slow onset and progressive 

deterioration of cognition. The following criteria extracted from DSM-IV, assist with a clinical 

perspective on the symptoms for the diagnosis of AD.

Diagnostic criteria for Dementia of the Alzheimer's Type

A. T he developm ent of multiple cognitive deficits m anifested by both

(1) m em ory im pairm ent (im paired ability to  learn new inform ation or 
to  recall previously learned inform ation)

(2) One (or m ore) of the  following cognitive d isturbances:
(a) aphasia (language d isturbance)
(b) apraxia (im paired ability to  carry ou t m otor activities desp ite  in tact m otor function)
(c) agnosia (failure to  recognise or identify ob jects desp ite  in tact sensory  function)
(d) d istu rbance in executive functioning (i.e. planning, organising , sequencing, 

abstracting)

B. The cognitive deficits in Criteria A l and A2 each cause significant im pairm ent in social or 
occupational functioning and rep resen t a significant decline from a previous level of 
functioning.

C. The course is characterised  by gradual on se t and continuing cognitive decline.

D. The cognitive deficits in Criteria A l and A2 are  not due to  any of th e  following:

(1) o th e r central nervous system  conditions th a t cause progressive deficits in m em ory and 
cognition (e .g . cerebrovascular d isease , Parkinson's d isease , H untington 's d isease , 
subdural haem atom a, norm al-pressure hydrocephalus, brain tum or)

(2) system ic conditions th a t are known to  cause dem entia (e.g . hypothyroidism , vitam in B12 
or folic acid deficiency, niacin deficiency, hypercalcaem ia, neurosyphilis, HIV infection)

(3) su b stan ce  induced conditions

E. T he deficits do not occur exclusively during th e  course of a delirium.

F. The d istu rbance is not b e tte r accounted for by ano ther Axis I disorder (e .g . Major D epressive 
D isorder, Schizophrenia).

(American Psychiatric Association, 1994)
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1.5.1.2.1 Memory Impairment in Alzheimer's Disease

The disease process seems to initially affect anterograde memory (memory from the 

time of disease onset) involving episodic memory (Lishman, 1986) and recent memory. For 

example, prospective memory becomes a major problem for the AD patient, often forcing 

adoption of memory aid strategies to remember appointments. The diary of an AD patient 

early on in the disease is cluttered with things to do, often to no avail as they forget to use the 

aid particularly as time moves on in their daily schedule, and this problem simply becomes 

worse as the disease progresses. This is exemplified by experiences during the course of the 

research for the present thesis, when many appointments were missed and rebooked as a result 

of AD patients failing to attend the hospital.

Recall memory is immensely impaired for the AD sufferer where even after only a 

short retention period, low scores result on tests of immediate recall for word lists. However, 

AD performance on tasks that do not induce a high working memory load, for example the 

Digit Span forwards test (Wechsler, 1997a) are found, is found to be relatively unimpaired in 

the early stage of the disease (Cherry, Buckwalter & Henderson, 2002) but deteriorates with 

severity. Importantly, tasks that cause a high working memory load such as the Digit Span 

reverse (Wechsler, 1997a) and Spatial Span reverse (Wechsler, 1997b), are found to result in 

lower scores for AD patients, even in the early stages of disease. This confirms a common 

finding in AD patients, that early on in the disease, executive function and in particular 

working memory are deteriorating and therefore tests with a high cognitive load (see Section 

1.3.2.3.2) requiring mental manipulation, planning and purposeful thought are more 

cognitively taxing for the AD patient than simpler tasks (Baddeley, Logie, Bressi, Della Sala & 

Spinnler, 1986; Becker, 1988; Cherry et al., 2002; Collette, Linden, Bechet & Salmon, 1999; 

Grossman & Rhee, 2001; Kensinger, Anderson, Growdon & Corkin, 2004). From a 

neuropsychological perspective, this denotes the reliance of working memory on the frontal
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lobes, temporal and hippocampal regions of the brain and the obvious difficulties that AD 

patients have compared with healthy elderly controls.

Semantic memory, autobiographical and remote/retrograde memory (memory prior to 

onset) or implicit memory are affected as the disease becomes more severe. The lack of 

capacity to learn and use new material and strategies, and the ability to form new memories are 

thus curtailed in AD, resulting in impairment of acquisition. AD patients, often in the initial 

stages the disease, fail to recognize groups (form associations) or categories when presented 

with items at a higher level (superordinate category), during semantic or verbal fluency tests. 

Typically, mild to moderate AD patients make perseverative statements, perhaps only minutes 

apart. A further compounding problem that is frequently present as a component of executive 

dysfunction for the AD patient, is the lack of ability to monitor response performance and error 

correction (Mathalon et al., 2003; Perry & Hodges, 1999), something which is normally a 

routine part of daily life (Perry & Hodges, 1999).

1.5.1.2.2 Language Difficulties in Alzheimer's Disease

Language problems present early on in AD, usually following on from memory 

difficulties (Nebes, 1990). Word finding difficulties, during conversation, become more severe 

as the disease advances, with frequent circumlocution, often causing frustration. In the early

stages, deficits are more semantically based. However, as the disease progresses, grammatical

-  syntactic aspects of conversation become more impaired following the moderate stage of the 

disease with the gradual breakdown of semantic context and comprehension leading to aphasia 

with eventual loss of speech in the profound stage of disease.

1.5.1.2.3 The Moderate Stage of Alzheimer's Disease

As AD advances into the moderate stage, visuospatial, constructional, ideomotor and 

ideational praxis impairments appear (McKhann et al., 1984; Welsh, Butters, Hughes, Mohs &
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Heyman, 1992). Therefore AD patients present with problems of face recognition 

(prosopagnosia), object identification, disorientation when finding their way about previously 

known areas (but not necessarily around the home), problems carrying out automated (over- 

learned) tasks and confusion, for example, over what they are doing during the day or what 

they have done. For instance, the AD patient may believe that they need to change into 

alternative clothing a number of times through the day. Later in the disease, patients may 

present with a Parkinson’s type gait, poor ambulation and motility of limbs with the face 

progressively appearing more vacant. Eventually at the profound stage, the AD patient 

requires permanent nursing care, but may still be able to sit in an easy chair throughout the day. 

In the final stage of AD and worst scenario for the patient and family, the patient will pass 

through their final days in a bed (which can last a considerable length of time) with cot sides 

raised for their safety to ensure they do not fall out.

1.5.1.2.4 Neuropsychiatric and Behavioural Disturbance in Alzheimer's

The manifestation of neuropsychiatric symptoms and behavioural problems may vary 

widely between individual cases, which can complicate diagnosis. However, these attributes 

help to predict the likely burden to the caregiver and also indicate how difficult a given piece 

of research may be with a particular case. The spouse, close friend or relative is often a very 

good informant of the changes that are presenting with the patient.

For AD, a common symptom is a change in personality. A particular problem 

recognised in many patients, is that they may seem to be less inhibited in the social context, 

perhaps presenting with inappropriate touching and speech; or for example, a dismhibition of 

sexual behaviour. Patients may also become apathetic or alternatively, present with what is 

apparently an extreme caricature (or amplification) of previous character trait. Delusion is also 

common, the patient perhaps believing that they are in the wrong house; suspect infidelity in 

their partner; have feelings of abandonment; ‘capgras’, where the patient believes that the
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spouse has been replaced by someone else (which could be more of a cognitive problem); or 

not recognize themselves in the mirror (which could also be a cognitive problem) (O'Neill & 

Carr, 1999). Some patients suffer from hallucination, the most common type being visual 

hallucination but other types do exist, including auditory, olfactory and haptic. Interestingly, 

recent research has indicated that disturbance of the olfactory system may be a common early 

dysfunction in AD (Schiffman, Graham, Sattely-Miller, Zervakis & Welsh-Bohmer, 2002).

Low mood is also common in AD (Kopelman, 1986; Lishman, 1986), however, there 

are also cases of mania, anxiety, anger and agitation (Ballard & Eastwood, 1999). Other non- 

cognitive behavioural problems that are common in AD include irregularity in eating patterns, 

sexual dysfunction, wandering, shouting and screaming, psychomotor restlessness, disturbed 

sleep/wake patterns rage and violence (Rapp, Flint, Herrmann & Proulx, 1992).

1.6 Eye Movement Research in Alzheimer's Disease

Research investigating eye movements in AD has explored a range of techniques, 

including smooth pursuit eye tracking (see Table 1.1), visual tracking (for example exploratory 

behaviour) and saccadic eye movements. However, compared to other strands of psychiatric 

investigation using eye movement methodology, such as for example schizophrenia, there is a 

relative lack of research in the area possibly due to the formidable challenge that the dementia 

patient presents.

Saccadic eye movement dysfunction in AD has been reported for a number of 

parameters, including prolonged latency, reduced peak velocity, hypometric amplitude and 

increased antisaccade error rates.

1.6.1 Smooth Pursuit Studies in Alzheimer's Disease

Findings from smooth pursuit studies have shown that performance for AD patients is 

different to that of healthy control participants, although there appears to be some
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inconsistency in the findings. Zaccara and colleagues (Zaccara et al., 1992) showed that peak 

velocity during smooth pursuit was significantly lower for AD patients than controls, as was 

the percent target matching index. AD patients were found to produce significantly more 

anticipatory saccades than control participants. Zaccara et al. (1992) also found that AD 

patients produced more catch-up saccades than controls, a finding supported by other studies 

(Fletcher & Sharpe, 1988; Gangemi et al., 1990; Hutton, Nagel & Loewenson, 1984; 

Kuskowski, Malone, Mortimer & Dysken, 1989; Muller, Richter, Weisbrod & Klingberg, 

1991). Using discriminant function analysis, Zaccara et al. (1992) produced an equation using 

oculographic variables, that they believe could possibly create an index of disease severity and 

thus predict clinical condition. Multivariable discriminant scores were found to be 

significantly correlated with Mini Mental State Examination scores, and thereby related to 

cognitive decline in AD patients. Zaccara et al. (1992) also suggested that AD patients may be 

impaired in determining target speed, as demonstrated by the number of dysmetric catch-up 

saccades produced by AD patients, which may be due to degeneration of the middle temporal 

visual area (MT) as indicated by lesion studies (Duersteler, Wurtz & Newsome, 1987). 

However, a study by Moser et al. (Moser, Kompf & Olschinka, 1995) found no significant 

difference for smooth pursuit gain between AD patients and controls (although gain was 

reduced for patients), although the target was restricted to 150s_1 and moving with constant 

ramps with a triangular trajectory. In contrast, the smooth pursuit stimulus used in the study by 

Zaccara et al. (1992), employed an unpredictable velocity that ranged from 5°s'1 to 100V1. 

Therefore, it is plausible to suggest that the stimulus used by Moser and colleagues (1995) was 

more predictable than the Zaccara et al., (1992) stimulus, thus enabling participants to more 

easily anticipate stimulus activity. Therefore, the unpredictability of the spatial and temporal 

stimulus characteristics incorporated within the Zaccara et al. (1992) experiment perhaps 

revealed the vulnerability of the visuospatial attention system and inhibitory control (as 

indicated by the significant number of anticipatory saccades) in AD patients. In another study
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of smooth pursuit eye movements, that tested a small group of AD patients (seven) on four 

occasions over a twelve month period (Hutton, 1985), a progressive impairment of pursuit 

tracking was reported. Cross-correlations showed that there was a decline in eye to target 

accuracy over time. However, it was not clear whether the changes in pursuit eye movement 

performance correlated with the changes in cognitive ability over time. A number of studies 

have reported that AD patients produce large inappropriate saccadic intrusions during smooth 

pursuit tasks(Fletcher & Sharpe, 1988; Gangemi et al., 1990; Jones, Friedland, Kos, Stark & 

Thompkins-Ober, 1983; Kuskowski et al., 1989). Therefore, this finding supports the notion 

that AD patients have dysfunctional inhibitory control.

1.6.2 Eye Tracking and Exploratory Ability in Alzheimer's Disease

A number of studies have recently revealed dysfunction in eye tracking or scanning 

ability in AD patients. Lueck and colleagues revealed disorganised visual scanning during 

reading (Lueck, Mendez & Perryman, 2000) and Mosimann et al. (Mosimann, Felblinger, 

Ballinari, Hess & Miiri, 2004) discovered that visual exploration was less focused and delayed 

on normalised regions of interest when scanning a clock face. An investigation of exploratory 

eye movements in AD found AD patients to have diminished curiosity (Daffner, Scinto, 

Weintraub, Guinessey & Mesulam, 1992) and another study of visual search strategy in AD 

demonstrated that planning of search strategy was inefficient and initiation of saccadic 

movements delayed (Rosier et al., 2000).

1.6.3 Saccadic Eye Movement Abnormalities in Alzheimer's Disease

Abnormalities revealed in the investigation of saccadic eye movements in AD suggest

impairment of neurocognitive processes that are responsible for attention, visual fixation, 

inhibitory control and self-monitoring with corrective action.

67



1 Introduction to the Study of Saccadic Eye Movements

1.6.3.1 Reflexive Saccadic Eye Movements in Alzheimer's Disease

Saccade latency was reported to be related to dementia severity in an early study of 

reflexive saccades (Pirozzolo & Haunsch, 1981), however, in another study Hershey and 

colleagues did not substantiate this finding; although they did highlight that saccade latency 

was prolonged for AD patients and other dementia type patients compared to age-matched 

control participants (Hershey et al., 1983); a finding further corroborated by recent studies 

(Bylsma et al., 1995; Shafiq-Antonacci, Maruff, Masters & Currie, 2003). More recently, 

Schewe and colleagues examined AD patients using an involuntary saccade paradigm and 

discovered that the Mini Mental State Examination (MMSE) scores of AD patients were 

significantly correlated with abnormal levels of various parameters, including saccadic 

intrusions during fixation (gaze impersistence), amplitude and latency (Schewe, Uebelhack & 

Vohs, 1999).

Fletcher and Sharpe (Fletcher & Sharpe, 1986) discovered that whilst attempting to 

fixate a central point, prior to peripheral target onset using a predictable prosaccade task, AD 

patients showed impersistence of gaze and also presented with large amplitude saccadic 

intrusions in the opposite direction to that required (a finding supported by Bylsma (1995) who 

also detected saccadic intrusions). In a task where targets appeared at unpredictable locations, 

AD patients generated saccades with significantly longer latencies than those of control 

participants, compared with the predictable target task where no significant difference was 

found between groups. Findings from an involuntary reflexive saccade task by Moser et al. 

(1995) revealed further support for the common finding that AD patients generate saccades 

with prolonged saccadic latency, compared with controls, but the same study did not reveal any 

significant differences between groups for saccadic amplitude and maximum velocity. 

However, in the study by Fletcher and Sharpe (1986) peak velocity was shown to be 

significantly lower for AD patients, compared with controls in the unpredictable involuntary 

saccade task and saccade latency was significantly prolonged, whereas no difference was
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demonstrated between groups in the predictable target task. In contrast to Moser et al. (1995), 

who found no difference between-groups for peak velocity but did find a corresponding 

significant prolongation of latency for unpredictable target locations. A further study by Scinto 

et al. reported no difference between ADs and elderly controls for saccade latency (Scinto et 

al., 1994). However, in this study Scinto et al. used double-steps of the target to induce 

saccades and the instructions may have been somewhat confusing for patients, which seems to 

have been reflected in the incredibly high error rate of 40%. Generally (when reported), the 

mean for group error for AD patients on random reflexive saccade tasks is very much lower 

(e.g. Shafiq-Antonacci et al. 2% and the present study also approximately 2%). Therefore, the 

nature of the Scinto et al. task provides a plausible argument for excluding the study from any 

further comparison with other studies mentioned at this point.

The present thesis will employ reflexive saccade tasks that exert low cognitive demand, 

with the targets directionally randomised in presentation, at locations with near eccentricity 

that borders parafoveal and peripheral vision. A single 4° target was employed as target 

location uncertainty is a major stimulus factor that determines saccadic reaction times (Walker, 

Deubel, Schneider & Findlay, 1997). In reducing this uncertainty and using of a near target 

location together with a salient target the aim was to facilitate the task as much as possible for 

the AD and elderly participants

It is also important to consider, that there is only a limited amount of time available 

when conducting laboratory eye movement tests - in view of the clinical group involved, AD 

patients and elderly persons - before fatigue and data quality may be compromised and also, 

patient/participant care is of paramount concern in this elderly experimental population. 

Therefore, in reducing the complexity of experimental conditions by restricting the number of 

levels, potential confounding factors are modulated and data output focused in relatively few 

trials for each test. Exploration of inhibitory and attentional aspects will be achieved by the 

introducing of gap and overlap paradigms (Section 1.3.1 & Chapter 2, Section 2.3.3.1).
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Analysis of saccadic amplitude to unpredictable target locations (randomised target 

eccentricity and direction) and predictable targets by Fletcher and Sharpe (1986) revealed an 

impairment in accuracy for AD patients, demonstrated by significantly smaller amplitudes for 

AD patients, resulting in frequent large corrective secondary saccades. Nakano and colleagues 

also found significant differences between groups for predictable stimulus amplitude, but this 

task involved eye and head coordination (Nakano et al., 1999). However, the study by Moser 

et al. (1995) found no difference between groups in amplitude for unpredictably timed targets. 

In contrast, another recent study found significant differences between-groups for both 

predictable and unpredictable target presentation, AD patients producing hypometric saccades 

compared with controls (Shafiq-Antonacci et al., 2003), supporting the findings of Fletcher and 

Sharpe (1986). The study by Shafiq-Antonacci et al. used a greater number of target 

amplitudes for the unpredictable target experiment, similar to Fletcher and Sharpe (1986) and 

also included more AD patients (N = 32) than the Moser et al. (1995) study (N = 10) resulting 

in more robust findings. The present thesis will attempt to build on previous investigations of 

AD and will include 30 dementia patients (Section 2.1.1) investigated across paradigms 

longitudinally in Chapter 7, and in Chapter 5 disease and age effects will be examined more 

closely, by comparing the data from the dementia patient group, with the data from a group of 

25 Parkinson’s disease patients (examining disease effects) and 17 young controls participants 

(examining age effects).

The study by Bylsma et al. (1995) found no significant differences between groups of 

AD patients and controls at baseline on a gaze fixation task, whereas on a predictable saccade 

task the AD group were found to have significantly prolonged saccade latency compared with 

controls (but no difference was observed for saccadic amplitude or peak velocity). On repeated 

measures of the study following after a nine-month inter-test interval to plot change, no 

deterioration was observed in the saccade task, the AD group still was found to have prolonged 

saccadic latency compared with controls. However, fixation stability appeared to have
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significantly deteriorated over time. Bylsma et al. (1995) thus suggest that fixation is a more 

sensitive marker than saccades for indicating the progression of AD. However, Bylsma et al.

(1995) used electro-oculography (EOG) for the study and as mentioned in Chapter 2 (Section 

2.3.1), EOG has been found to produce artefacts in the eye movement trace and is vulnerable to 

other interference (Doig & Boylan, 1989; Iacono & Lykken, 1981; Linsday, Holzman, 

Haberman & Yasillo, 1987; Ong & Harmen, 1979). Although Bylsma et al. (1995) took care 

to make adjustments to the data, in an attempt to compensate for irregularities, it remains 

conceivable that an unreliable level of error was present in the data. Furthermore, the saccadic 

task involved the use of a predictable stimulus only, which may indicate that the neural 

pathways involved for a task of this nature are less vulnerable to change over time than, for 

example an unpredictable stimulus. Additionally, unpredictable stimuli have revealed the more 

consistent abnormalities between studies. If Bylsma et al. (1995) had included an 

unpredictable condition (for test-retest) then potentially a more balanced picture may have 

been found. A further criticism of Bylsma et al. (1995) is the apparent lack of any practice 

trials in the saccade condition. A study by Abel et al. (2002) also used EOG (as magnetic 

search coil was not tolerated by participants in general) and this study found no significant 

differences between ADs and controls for reflexive saccade latency in predictable and 

unpredictable tasks. As to whether the lack of reflexive saccade group differences was due to 

the EOG method is a matter for debate. However, Abel and colleagues do explain, that 

calibration was less precise than that required to record amplitude and velocity (which were not 

to be recorded in the study) and that the EOG signal was relatively poor in the elderly 

participant study population. Therefore, EOG may be less reliable method for recording eye 

movements in elderly participant samples. The present thesis will use the infrared scleral 

reflection method (Chapter 2, Sections 2.3 & 2.5.2) of recording eye movements, due to the 

systems reliability and ease of application.
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1.6.3.2 Antisaccade Eye Movements in Alzheimer's Disease

Fletcher and Sharpe (1986) included the antisaccade task in their study and found that 

AD patients failed to inhibit the VGR on 74% of trials when asked to look in the opposite 

direction away from the target. A further finding was an omission of response on 22% of trials 

(however Fletcher and Sharpe (1986) do not report antisaccade latency). In another study that 

used both clinical (bedside manual type task) and laboratoiy oculographic antisaccade tasks, 

Currie et al. (Currie, Ramsden, McArther & Maruff, 1991) also found saccadic errors, again 

confirming that AD patients display dysfunction in the ability to generate saccades away from 

a visual target, which would seem to demonstrate poor inhibition of the VGR. Additionally, 

Currie et al. (1991) reported correlations between antisaccade error rates and disease severity, 

as indicated by Mini Mental State Examination (MMSE) (Folstein, Folstein & McHugh, 1975) 

scores. Furthermore, Currie et al. found correlations between antisaccade error rates and tests 

of frontal lobe function. Conversely, Mulligan and colleagues (Mulligan, Mackinnon, Jorm, 

Giannakopoulos & Michel, 1996) did not replicate the finding of a relationship between the 

clinical antisaccade test error rates and MMSE scores. However, strangely Mulligan et al.

(1996) fail to give any account of a method for the specific way in which the clinical (hand) 

test was administered to participants (although they do claim to follow the procedures of the 

test developers) and furthermore, do not conduct any laboratory based oculography tests for the 

antisaccade task. The number of AD patients (N = 15) included by Mulligan et al. (1996) was 

only half of the number (N = 30) included in the study by Currie et al. (1991) and the mean age 

was considerably older in the Mulligan et al study (Mulligan et al. (1996) AD mean age 81.8 

years; SD 7.8 years / Currie et al. (1991) mean age 67.0 years; SD 8.0 years). Also, many of 

the MMSE scores for AD patients in the Mulligan et al. (1996) study appear to cluster highly 

around 25, whereas in the Currie et al. (1990) study, AD MMSE scores are far more evenly 

dispersed producing a better representation of severity in the experimental group. Therefore, it 

is a plausible argument, that the finding by Mulligan et al. (1996) that indicates a lack of
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relationship between MMSE scores and antisaccade error rates, may be due to the 

methodological differences employed between the two studies.

Recent laboratory studies employing the antisaccade task (Abel, Unverzagt & Yee, 

2002; Shafiq-Antonacci et al., 2003) have supported the findings of Fletcher and Sharpe (1986) 

and Currie and colleagues (1991), showing significantly higher error rates for AD patients 

compared with elderly controls and furthermore, confirming antisaccade error rates to be 

significantly correlated with MMSE scores (the study by Shafic-Antonacci et al. (2003) also 

reported that antisaccade latency was observed to be significantly prolonged compared with 

controls). The present thesis will utilise the simplified temporal and spatial parameters from 

the reflexive tasks discussed earlier in this Section, and administer these with antisaccade 

instructions (Section 1.3.2.1 & Chapter 2, Section 2.3.3.2), maintaining the cognitive load 

induced by the tasks to a minimum. Further voluntary tasks requiring inhibitory control: No- 

Go and Go / No-Go tasks (Section 1.3.2.1 & Chapter 2, Section 2.3.3.3) will also use the same 

simple stimulus characteristics. Whilst the No-Go task purely requires inhibition of prepotent 

response with minimal working memory requirement, the Go/No-Go task is expected to make 

higher demands on working memory resources, above that required for the antisaccade tasks. 

Moreover, the present thesis will investigate AD antisaccade performance and performance on 

each of the other saccadic eye movement paradigms over time -  longitudinally, from baseline 

with repeated measures over three further 6 month inter-test intervals, i.e. in total four 

experimental sessions will be conducted for each test. This procedure will therefore attempt to 

plot the trajectory of disease progression, using an extensive range of saccadic eye movement 

tests (as compared with the Bylsma et al. (1995) study, which simply used a predictable 

reflexive saccade paradigm on test-retest4).

Taken together, the results outlined in this Section highlight a link between saccadic 

eye movements and cognitive performance, and the possibility that eye movements may be a

4 Bylsma et al. (1995) did however conduct an additional fixation task also using EOG.
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biological indicator of AD. It has been demonstrated that AD patients appear to have 

difficulties in the suppression of inappropriate action, but the implementation of corrective 

action has not been fully investigated. Only one study appears to have investigated corrected 

and uncorrected errors in AD, the study by Abel et al. (2002), which found that AD patients 

produced a significantly higher proportion of uncorrected errors compared with controls 

(whereas no significant difference was found between groups for corrected errors). The degree 

to which ADs have problems with ability for self-monitoring their actions in voluntaiy saccade 

tasks requires further investigation, a line of enquiry that will be pursued in this thesis on a 

longitudinal basis.

In summary, smooth pursuit eye movement results from studies of AD patients are 

somewhat inconsistent and less extensively studied than saccadic eye movements. This may at 

least in part be a reflection of AD patient ability to comply with task demands. However, 

saccadic eye movements would appear ‘potentially’, to be a more reliable marker for the 

prediction of disease, particularly with voluntary paradigms such as the antisaccade task and its 

relationship with cognitive test scores. AD patients consistently show impairment on a number 

of different saccadic variables, in particular saccade latency (and often amplitude/accuracy and 

velocity) although this finding is more often observed when targets are unpredictable. Various 

studies have reported that AD patients produce saccadic intrusions during attempted fixation, 

indicating impersistence of gaze (probably as a result of anticipatory action and due to 

impaired inhibitory control). Impairment of inhibitory control appears to be the most clearly 

consistent finding among studies of AD patients, a deficit that frequently results in 

unsuccessful suppression of the VGR in antisaccade tasks.

1.6.4 Inconsistent Saccadic Eye Movement Research Findings in Alzheimer's

Although, antisaccade findings using a variety of standard laboratory oculographic 

techniques are generally in agreement, there appear to be some inconsistencies in the findings
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discussed above for reflexive saccade tasks. The differences noted between some of the studies 

are highly likely to be due to the methodological issues already discussed above, such as 

differences in spatial and temporal parameters for stimulus presentation, eye movement 

recording techniques (e.g. recordings from EOG contain noise and artefacts, and are thus 

unreliable, requiring adjustments to the signal data) mentor differences between studies in the 

rating (analysis) of analogue signal eye movement data.

Whilst piloting the equipment and setting test parameters for the paradigms included in

the present thesis (for paradigms see Chapter 2, Section 2.3.3), it was found that test

parameters for healthy elderly volunteer pilot participants had to be reset several times, in order

to find satisfactory temporal settings for randomised target presentation. The parameters that

were found to be particularly important, although they may not be immediately obvious, were

the inter-trial interval, central fixation point duration and target duration. If by varying

degrees, the duration of these components was set too short, elderly people ranging from 75 -

85 years were found to have difficulty in performing reflexive saccade tasks, with performance

on antisaccade tasks found to be further disrupted. It was also observed that fatigue, caused

through extended test sessions, could pose a major problem for this study, therefore the number

of trials was set at a low number for each experimental condition (Section 2.3.3) to counteract

this potential confound. The studies of reflexive saccadic eye movements in AD, reviewed in

Section 1.6.3.1 involved an array of different temporal and spatial stimulus characteristics.

Stimulus properties in experimental conditions sometimes comprised fully predictable targets;

and/or temporally unpredictable targets; and/or directionally unpredictable targets. The target

amplitude in directionally unpredictable conditions, often included a range of eccentricities,

which could be responsible for variation in response. For example, in the study by Fletcher

and Sharpe (1986) the targets ranged from ±5°, 10 °, 20 0 & 40° (with regular timing), whereas

in the Shafiq-Antonacci et al. (2003) study the targets were at eccentricities of ±5°, 7.5°, 10°

12.5° & 15° (with regular timing). Both of these studies showed that AD patients produced
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hypometric saccades compared with controls. Interestingly, whereas Fletcher and Sharpe 

(1986) found no significant difference between AD patients and controls for saccadic latency, 

Shafiq-Antonacci et al. (2003) did. This difference may be due to inconsistency between the 

AD patient groups as it appears that AD patients in the Fletcher and Sharpe (1986) study may 

have been less severely impaired than the AD patients in the analysis conducted by Shafiq- 

Antonacci et al. (2003), who had a MMSE 17.1, with a large SD of 7.4 (lowest score reported 

was 4). This draws attention to the putative notion that saccade latency may be related to 

dementia severity. The mildly impaired patients in the Fletcher and Sharpe (1986) study were 

found to have significantly prolonged latency for targets with unpredictable temporal 

characteristics only, whereas the more severely impaired patients in the Shafiq-Antonacci et al. 

(2003) study generated saccades that were prolonged in latency in both predictable and 

unpredictable (with variable temporal and spatial properties) experimental conditions.

Therefore, an important consideration for all research involving elderly participants and 

a further possible explanation for the inconsistent findings between studies, is that there could 

be variation in the diagnosis or characteristics between different groups of AD patients (from 

the different studies), although this should be minimal, given that studies usually follow fairly 

standard diagnostic selection/exclusion criteria, such as DSM-IV criteria, NINCDS-ADRDA 

criteria and exclusion of other factors that could be responsible for illness.

An additional explanation for inconsistent findings, are possible differences in the 

characteristics of Alzheimer’s disease in different countries. Moreover, it is also feasible that 

some elderly control participants in the studies above have mild cognitive impairment (MCI), 

as the cognitive scores of MCI sufferers can be deceptively close to the scores of healthy 

controls, aside from specific isolated memory deficits such as short-term recall, with 

deterioration over time and informant reports of memory difficulties (Dubois & Albert, 2004; 

Grundman et al., 2004). Additionally, prevalence models estimate the likelihood of conversion 

to MCI from healthy non-affected to range from 1% at age 60 years to as high as 42% at age
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85 years (Yesavage et al., 2002). Furthermore, it has also been reported that MCI could 

possibly be prodromal AD (Dubois & Albert, 2004; Flicker, Ferris & Reisberg, 1991) a 

transitional state between the changes in cognition that come about through normal aging and 

those of early dementia. Evidence suggests that approximately 50% of patients diagnosed with 

MCI develop AD or another form of dementia within five years (Petersen, 2000; Petersen et 

al., 1999). Therefore, if some cases of undiagnosed MCI were mixed in with various elderly 

control groups, then the difference between group scores and effects would potentially be 

reduced. The present study in this thesis, will carefully monitor the performance of individual 

elderly control participants over time, in an attempt to ensure that participants who show signs 

of MCI are excluded.

1.6.5 Saccadic Eye Movements as a Possible Marker of Alzheimer's Disease

Customarily, Alzheimer’s disease type dementia has been recognised as a degenerative 

disorder with global neurocognitive deficits. As mentioned in section 1.5, different forms of 

dementia have now been qualified, as a result of differentiating aetiology and identifying the 

pathology of brain structures. Accordingly, different profiles of cognitive abnormality 

correspond to the various forms of dementia (Snowden, 1994). Localization of neurocognitive 

impairment using neuropsychological assessment batteries to measure a range of cognitive 

functions, have been adopted with a good deal of success (Perry & Hodges, 1999), although 

the conventional tests that measure episodic memory, executive function, attention and 

visuospatial function and language do not have good temporal resolution, specificity and a 

direct relation to regional functional activity in the brain.

Studying sensorimotor integration using saccadic eye movements may provide an index 

of neurocognitive function in AD. Various lines of enquiry may inform a greater 

understanding of the relationships between saccadic eye movements in AD and cognition. For 

example, is intellectual function associated with saccadic variables? Can a reliable distinction
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between AD patients and control participants be facilitated by the analysis of any saccadic 

variables? Is there a relationship between saccadic factors and severity of AD? The 

antisaccade eye movement task has been used extensively in psychiatric and behavioural 

research and provides a means of probing endogenous and exogenous behavioural control 

(Monsell & Driver, 2000). As outlined in Section 1.1, performance deficits in the antisaccade 

paradigm have been shown to be present in various psychiatric and neurodegenerative diseases 

and thus, the antisaccade paradigm is a potential biological marker of such disease (Broerse et 

al., 2001).

An area of increasing interest to health care professionals and the reason for extensive 

research in the treatment of dementia, is early diagnosis (Ferrarese & Di Luca, 2003; Foster, 

1998; Saunders, Hulette, Welsh-Bohmer & al., 1996). The advantage of early detection of AD 

by a relatively simple diagnostic test, would be an extremely attractive option for health service 

providers, as the relative cost and complexity of potential biochemical diagnostic marker 

systems and logistics (perhaps involving the extraction of cerebrospinal fluid) is extremely 

higher, than the cost of simple oculomotor test systems.

The advent of an early sensitive easy to administer diagnostic marker for AD would 

potentially therefore, have vital diagnostic benefits and implications for the primary approach 

to treatment, quality of life maintenance and prescribing of modem anti-dementia medications, 

with possible cost saving for the NHS from delayed requirement for nursing home care with 

the delay in disease progression. Moreover, should a treatment or cure be discovered for 

Alzheimer’s disease it is vital that diagnosis is made at the earliest opportunity before 

significant neurodegeneration takes place in the brain.

1.7 Chapter Summary

This chapter has introduced this thesis and commenced by demonstrating the 

importance and efficacy of eye movements in both the clinical and research fields,
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emphasizing how eye movements have been used extensively as a line of neuropsychological 

enquiry and in neurological and psychiatric illness. Reliable measurement of eye movements 

can be made relatively easily in the modem laboratory, and there are advantages in studying 

movements that the eyes make. Compared to other systems: the eyes only move in three 

planes; the neuroanatomical substrates have been extensively studied; the mechanical load for 

the eye muscles is constant, therefore there is a lack of monosynaptic stretch; and eye 

movement disturbances are often characteristic of certain pathophysiology, anatomical location 

or pharmacological disturbance.

Saccadic eye movements were discussed as the basis for the present thesis and the utility 

that they provide in psychiatric and neurological research. The distinction was made between 

involuntary -  reflexive saccadic eye movements and voluntary saccadic eye movements. It 

was explained that horizontal reflexive saccadic eye movements are largely the result of 

bottom-up processing triggered by descending pathways from the PEF and generated by the SC 

in the midbrain, the extraocular muscles receiving input from crucial motor neuron activation 

structures in the brainstem (the pons and medulla). However, voluntary saccadic eye 

movements are saccades made in response to specific task instructions or according to internal 

goals and are largely the product of top-down processing which involves various cognitive 

systems such as inhibitory control, attention and working memory. The generation of 

voluntary saccadic eye movements involves many cortical areas, including the FEF, PEF, 

DLPFC and SEF. There are reciprocal pathways between both the FEF and the PEF with the 

SC in the midbrain, but the extraocular motor neurons are innervated by the same brainstem 

structures as for reflexive saccade generation.

Alzheimer’s disease is the most prevalent of the dementias, forming approximately 55% of 

all types and at present diagnosis can only be confirmed postmortem. The neuropathology of 

the disease extends in particular, through pyramidal cells of the cortex (temporal, parietal and 

later frontal) and sub-cortically mainly in limbic structures - the hippocampus and amygdala, in
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the form of neuritic plaques and neurofibrillary tangles. The disease presents as a progressive 

and insidious onset of memory dysfunction primarily and problems with executive function, 

which can be concomitant with deteriorating elements of apraxia, aphasia and agnosia.

Saccadic eye movement research in AD has revealed a range of dysfunction, including 

relationships between errors on the antisaccade task and clinical rating scales, prolonged 

saccade latency and hypometric saccade accuracy. A common finding is the generation of 

errors in the antisaccade task that are believed to be due to a disturbance of inhibitory control, 

which results in a lack of suppression of the VGR causing inappropriate reflexive saccades 

towards the target.
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Chapter Two

Methodology

2.1 Participants

Participants for the experimental groups in the studies of the present thesis comprised 

dementia patients and healthy elderly control participants. All volunteering participants 

received an information sheet (Appendix 1) outlining the study and written informed consent 

(Appendix 2) was obtained from each participant. Demographics and brief history records 

(sample history sheet Appendix 3) were gathered from all participants at test, with detailed 

additional information extracted from medical records for the dementia patient group. All 

information, including longitudinal test scores, range of demographics, medical history and 

prescribed medications, was treated with the strictest confidence, registered under the Data 

Protection Act (1984) and stored on an extensive secured computerised relational database 

(Microsoft Access 2000™). Hard copies of all data were also filed for back-up reference and 

stored in a secure environment. All volunteers to the study were monitored for medications 

and health problems to ensure that confounding factors, such as mental disorder (e.g. 

depression), chronic hypertension, major heart disease, alcoholism, neurological disease, 

morbid conditions of the eye (e.g. congenital nystagmus, strabismus, cataracts), poor eye sight, 

drug abuse, alcoholism or lack of mobility (e.g. due to old age or chronic arthritis) could be 

excluded. Visual acuity was assessed for all participants using the Snellen’s test (Appendix 4) 

and participants were also screened for visual neglect using a line bisection test (Appendix 5) 

(Schenkenberg, Bradford & Ajax, 1980). The Geriatric Depression Scale (GDS -  short form, 

Appendix 22) (Shiekh & Yesavage, 1986; Yesavage et al., 1983) was utilised to test for
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depression and revealed that scores for 3 Dementia patients fell within the early mild range of 

clinical depression at the first stage of testing in the longitudinal program (however, it is not 

uncommon to find low mood or negativity in dementia patients, Lishman, 1986). All 

participants were right-hand dominant.

2.1.1 Dementia Patients

Dementia patients with a diagnosis of probable Alzheimer’s disease were recruited 

from the Memory Clinic in the Department of Old Age Psychiatry, Lytham Hospital, National 

Health Service (NHS), England, U.K., via consultant psychiatrist referral. Assessment and 

diagnosis of patients adopted the American Psychiatric Association’s Diagnostic and Statistical 

Manual of Mental Disorders 4th ed. (DSM IV) and the National Institute of Neurological and 

Communicative Disorders and Stroke -  Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) diagnostic criteria (McKhann et al., 1984), in an attempt to 

eliminate individuals with dementia (or alternative illness) of aetiology caused by other than 

AD. Additionally, a range of clinical investigations were conducted by a physician on the 

Dementia Patient group (Table 2.1) to exclude other possible causes for illness.

Table 2.1 Clinical Investigations

Clinical interview 
Physical examination 
Haemoglobin and full blood count 
Erythrocyte sedimentation rate 
Urea and electrolytes 
Liver function tests 
Blood glucose
Serum vitamin Bi2 and folate
Serology for syphilis
Urinalysis
Electrocardiogram
Neurological examination________
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A total of sixty-seven patients were invited to join the study. O f the invited patients, 

twenty indicated that they did not wish to take part, however, forty-seven patients expressed a 

positive interest with regard to participation (70.1% patient recruitment net success rate). Of 

the forty-seven dementia patients interested in taking part, four dropped-out prior to testing and 

eleven were excluded further to screening for one or more of the following: poor eye sight, 

hemi-neglect, prescribed medication or ill health. The balance of thirty-one candidates were 

recruited to the study, initially volunteering to join the research project on a longitudinal basis 

(46.3% longitudinal patient recruitment net success rate).

Attrition of dementia patient numbers over the longitudinal spread of the study can be 

seen in Figure 2.1. Overall, 67.7% of patients remained for the full duration of the longitudinal 

period; Retention of dementia patients appeared to correspond with health, thus dementia 

patients were most obliging in their efforts to continue with the project, if it was in their 

capacity to participate.

Figure 2.1
Dementia Patients Participation over time

Stage 1 Stage 2 Stage 3 Stage 4 
Time (inter-test interval 6 months)

Reduction of numbers participating on consecutive test stages was due mainly to 

deterioration of cognition with the progression of dementia disease severity (symptoms ranging 

from severe loss of memory [e.g. no recollection of the researcher or previous visits], 

circumlocution, agnosia, confusion and disorientation; fear of participation) and also as a result 

of general illness. Sadly one patient passed away.
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Impairment in the patient group was initially classed as probable Alzheimer’s type 

dementia, consisting of patients with mild to moderate severity, further to assessment using the 

Standardised Mini Mental State Examination (SMMSE, Appendix 13 and 13.1) (Folstein et al., 

1975; Molloy, Alemayehu & Roberts, 1991) and the cognitive sub-scale of the Alzheimer’s 

Diseases Assessment Scale (European version; EADAS-cog. Appendix 14 and 14.1; Dahalke 

et al., 1992; Rosen, Mohs & Davis, 1984). A further as rating of severity was made at stage 1 

only utilizing the Clinical Dementia Rating Scale (CDR; Appendix 6) (Hughes, Berg, 

Danziger, Coben, and Martin, 1982) (Section 2.5 discusses these tests and the range of 

neuropsychological assessments that were employed for the study). However, subsequent 

follow-up testing during the longitudinal stages of the research, investigation of clinical notes 

and collaboration with consultant psychiatrists, revealed the dementia patient group to 

comprise a range of probable dementia types as displayed in Table 2.2.

Table 2.2 Composition of Dementia Patient Candidates

Dem entia Type Number in group
Alzheimer's disease 17
Vascular dem entia 4
Mixed dem entia 4
Transient ischaemic attack 1
Mild cognitive 3
No dem entia 2

Therefore, in the final analyses the two patients classed as no dementia and a patient 

who had a recent transient ischaemic attack (TIA) and did not appear to have fully recovered 

were excluded.

2.1.2 Elderly Control Participants

A Control group, consisting of healthy non-demented elderly control participants was 

also required for inclusion in the experimental population. In order to recruit sufficient Elderly 

Control participants (ECs), the research project was promoted, via a number of means to
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generate awareness. The range of methods employed to promote the research project, 

included word of mouth, mail drop information/application pack, presentations to various 

groups in the locale, including Social Services carer groups and the Lancashire Dementia 

Research Interest Group (LADRIG). Posters were also designed to promote the study and 

these were erected in Lytham Hospital, GP surgeries, churches, residential homes and also in a 

variety of locations at Lancaster University.

Satisfactory response rates (presented in Figure 2.2 below) were generated by each 

promotional method.

Figure 2.2 Control Participant Recruitment Response Rates 
for the Range of Promotional Methods

Key: Promotion Method

□  Presentation

□  Word of Mouth

□  Poster

□  Mail Drop 

(N = 69)

The total number of candidates that applied to be ECs was sixty-nine. Therefore, the 

recruitment methods employed in the research project awareness campaign as a whole were 

successful in generating a total of one hundred and sixteen positive responses with combined 

applications across groups. Forty-six candidates were initially included as ECs for the 

longitudinal project. However, during the course of the study a further number ECs were 

excluded, due to exclusionary criteria surfacing that inadvertently had not previously been 

revealed (e.g. clinical depression; colour blindness; congenital nystagmus; poor mobility;
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cataracts). Therefore, the total number of ECs involved in the final analysis and incorporated 

in subsequent Chapters of this thesis, was reduced to thirty-four. Retention of ECs for the 

longitudinal duration of the project was good, with 88.2% of ECs remaining throughout the 

study. Attrition rates for ECs were low and can be seen in Figure 2.3 below. The four ECs 

that left the study did so for personal reasons or commitments and not due to a lack of interest 

in the study.

Figure 2.3

Elderly Controls Participation over time
</>

Stage 1 Stage 2 Stage 3 Stage 4 
Time (Inter-test interval 6 months)

The research ethics proposal for the project was approved by both the research ethics 

committee at Lancaster University and by the Blackpool, Wyre and Fylde National Health 

Service, Local Research Ethics Committee (Approval granted January 2001; Reference number 

611).

2.2 Health Status of Participants

Sections 2.1.1 and 2.1.2 outlined screening criteria that were applied to volunteers so as

to exclude candidates whose performance on saccadic eye movement paradigms may be

impeded by confounding illness, impairment or medication. The population of participants

included for testing and final analysis in this study - selected from diverse backgrounds - were
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elderly people and in view of this fact it is inevitable that a range of non-significant illnesses 

(from the perspective of this research non-neurological illness) may afflict some of the study 

population at the time of testing. The focus of this section is to delineate details of the health 

status for the elderly experimental groups.

2.2.1 Effects of Pharmacological Agents on Saccades

Previous research has indicated that certain drugs exert effects on the CNS that 

influence brain function and saccadic processes. Many drugs have been found to reduce the 

state of alertness in humans and thereby alter the dynamics of prosaccadic eye movements, 

namely reducing the speed, accuracy and variability of saccades, for example, diazepam (Drug 

group: Benzodiazepine anxiolytic; anticonvulsant; muscle relaxant (BMA, 2001)) (Gentles & 

Thomas, 1971; Jurgens, Becker & Komhuber, 1981; Roy-Byme, Cowley, Radant, Hommer & 

Greenblatt, 1993), alcohol (Blekher et al., 2002; Lehtinen, Lang, Jantti & Keskinen, 1979; 

Wilkinson, Kime & Purnell, 1974) and other various other compounds (Griffiths, Marshall & 

Richens, 1984). The benzodiazepine group of drugs, has also been found to interfere with 

antisaccade task performance; Various studies have revealed reduced maximum velocity and 

prolonged latency (Green & King, 1998; Green, King & Trimble, 2000). The antipsychotic 

drug chlopromazine, has been found to produce increased error rates (McCarten et al., 2001). 

Medication was closely monitored when recruiting participants, as part of the exclusionary 

criteria (Sections 2.1.1 & 2.1.2), taking care not to include those taking drugs that fall into the 

aforementioned categories.

Given the diminution of alertness and saccadic control that is caused due to the effects 

of certain drugs, the following Section outlines the medications that were taken by the some 

members of the elderly experimental population. The descriptions attempt to demonstrate that 

drugs (or ailments) reported in the subsequent Sub-Sections (2.2.2 & 2.2.3) covering within- 

group health status , do not effect the CNS in a manner that would impede performance on the
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study tasks; more specifically, it is argued that the medications are not detrimental to CNS 

performance, when used in the correct/adjusted/monitored dosage rate (BMA, 2001); Nor is 

performance enhanced on the saccadic or neuropsychological tasks. Emphasis should be 

placed on the continuity of regular prescribed and monitored dosage of medication. 

Participants in the research population who were taking medication for the various ailments 

reported were tolerating their medication well, and reported no side effects. A further point of 

note, is that the action of some drugs is also limited, only lasting for a short time e.g. glyceryl 

trinitrate 2 0 - 3 0  minutes (BMA, 2001). It can therefore be argued, that even if this drug was 

taken incorrectly or by a person with low tolerance, it is unlikely that any adverse effects such 

as, for example, dizziness, leg weakness or nausea would still be present at test. The well­

being participants was of primary importance throughout the duration of this research. In 

respect of this, participant welfare was monitored prior to commencement and during 

experimentation. Participants were asked several times throughout the test sessions, as to their 

well-being and, therefore, testing would not proceed should a patient feel unwell (fortunately, 

only two test sessions were terminated -  both Elderly Control participants: one with a head 

cold; the second grieving over the death of a close friend).

2.2.1.1 Experimental Population Medications

To aid interpretation of the group health status sub-sections, Table 2.3 describes the 

main generic substances taken by some of the experimental population. Simple medications 

such as, for example, skin creams, antacids and laxatives have been eliminated from the 

following account.
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Table 2.3 Generic Medications

Medication Common drug Action
Vasodilator Amlodipine Act to relax and smooth the 

muscles surrounding blood vessels, 
so as to widen the vessel and allow 
blood to flow more easily.

Diuretic Bendrofluazide Affect the filtration process of the 
kidneys, thereby reducing the level 
of water and sodium that is 
returned to the bloodstream; thus 
due to less water being present in 
the blood, excess water is removed 
from tissues and passed in the 
urine.

Statins Atorvastatin Lipid-lowering drugs, that reduce 
the level of blood cholesterol by 
acting on the processes of the liver.

Corticosteroid
inhaler

Budesonide Used to treat asthma and act on 
the respiratory system by reducing 
airway inflammation.

Bronchodilator Terbutaline Act on the autonomic nervous 
system to relax the muscles around 
the bronchioles of the lungs, 
thereby preventing bronchospasm.

Source: BMA 2001

2.2.2 Dementia Patients -  Health Status

Analysis of Dementia Patients’ brief history records (Appendix 3) and medical records 

revealed that eleven patients had an unremarkable medical history, with virtually no medical 

problems i.e. up to onset of dementia. However, there were some exceptions, including two 

patients that were found to have a history of ischaemic heart disease some years ago. In both 

cases, treatment was successful, one of the patients takes Aspirin 75 mg per day and the other 

case is still receiving long-term daily medication of Aspirin 150 mg; glyceryl trinitrate 

(Nitrolingual cfc-ffee pump spray) 400 micrograms; Co-amilofruse 2.5/20 tablet (diuretic); 

amlodipine 5 mg (anti-angina - blood vessel dilator); and atorvastatin 20 mg (tablet)
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(cholesterol lowering drug). Raised blood pressure levels were found in three Dementia 

Patients (one patient taking daily medication of bendrofluazide 2.5 mg (diuretic), another 

amlodipine 10 mg (anti-angina - blood vessel dilator) and the other patient losartan 10 mg 

(antihypertensive).

It was established that a further three patients had age-related diet-controlled diabetes; 

An additional patient was insulin dependent, taking daily medication of Mixtard 30/70 

(insulin), 22 units am, 12 units nocte. Head injury at some stage in the past was reported by 

eight patients; five of these having resulted in loss of consciousness at the time the injury was 

sustained. Full recovery from head injury was noted by all patients.

Records signified that one patient had a TIA on two occasions, the most recent six 

years prior to testing at stage one of the longitudinal study and appeared to have made a frill 

recovery (taking daily medication of Aspirin 75 mg). Severe migraine was reported by one 

patient, whose spouse indicated that the problem had been present throughout the life-span, 

particularly in childhood and adolescence, the complaint presenting so regularly at that time 

that it resulted in the patient losing study time at school. The migraine is now less frequent and 

less intense.

A number of patients had a medical history which included one or more of the 

following conditions: skin cancer (full recovery), stomach cancer (full recovery), mastectomy 

(due to breast cancer -  full recovery), appendectomy, hip replacement, knee replacement, 

eczema, haemorrhoids and arthritis. Chronic Obstructive Airways Disease (COAD) was 

present in two patients, although medication provided alleviation of symptoms (one patient 

taking daily medication of beclometasone inhaler, fenoterol with ipratropium bromide 

(Duovent) inhaler (bronchodilator) and one theophylline tablet (bronchodilator) at night; the 

other patient on medication of terbutaline (Bricanyl PRN) (bronchodilator); budesonide 

(Pulmicort turbohaler) (corticosteroid).
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Computerised tomographic scanning (CT scans) was carried out on seventeen of the 

patients, to exclude focal lesion, tumor and subdural haematoma. The CT scans for thirteen of 

the patients were found to be unremarkable and normal for people of this age group (with 

regard to sulci size/cerebral atrophy, ventricle dilation and absence of focal lesions). In four 

patients the CT scans displayed some prominent widening of sulci consistent with limited 

cerebral atrophy, two of these patients were also found to have moderate ventricular dilation5.

As discussed in section 2.1, three Dementia Patients may potentially have some mild 

depression or low mood as indicated by slightly elevated scores on the GDS.

2.2.2.1 Acetylcholinesterase Inhibitors

The group of twenty-eight Dementia Patients consisted of thirteen patients taking daily 

medication of acetylcholinesterase inhibitors (AChEI; anti-dementia outlined in Chapter 6) and 

fifteen patients who were not taking any anti-dementia drugs. Three different AChEI drugs 

comprised the with-medication group and included the following numbers of patients: 

Donepezil, N=5; Galantamine, N=3; and Rivastigmine, N=5.

2.2.3 Elderly Control Participants -  Health Status

Examination of the history records (Appendix 3) for the thirty-four Elderly Controls 

indicated that nineteen Elderly Controls had an unremarkable medical history and were in good 

health. Mild angina was reported for two Elderly Controls, however no medication was 

prescribed or being taken, in accord with the status of the complaint. Slightly raised blood 

pressure was present in four Elderly Controls, one of which was not prescribed or taking any 

medication. The other three Elderly Controls were currently taking prescribed daily medication 

of one of the following drugs Co-Amilozide 10 mg (diuretic), amlodipine 10 mg (blood vessel 

dilator) or warfarin (anticoagulant). An Elderly Control participant was taking daily medication 

of perindopril tert 2 mg (Butylamin) (vasodilator); indapamide 2.5 mg (diuretic) and

5 One o f  these patients suffered severe migraine throughout life as discussed in the previous paragraph.
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pravastatin 40 mg (cholesterol lowering drug), due to a TIA within 12 months prior to testing, 

but had made a full recoveiy when he volunteered for the study (as evidenced by high test 

performance throughout the study).

Head injury with loss of consciousness was reported to have occurred at some stage in 

the lives of five Elderly Control participants, all noting that they had made a full recovery. A 

medical history of deep vein thrombosis (DVT) was found for one Elderly Control, who takes 

medication of warfarin (anticoagulant) on a daily basis. Mild migraine was recorded for two 

Elderly Control participants, but no medication was prescribed or being taken due to the status 

of the complaint. A further two participants were taking daily medication for asthma, one of 

them using the following inhalers: actuations per day -  salbutamol (Ventalin) (bronchodilator) 

2 x 2 ;  oxitropium (Oxivent) (bronchodilator) 2 x 2 ;  fluticasone (Flixatide) (corticosteroid) 1 x 

2; and the other asthma sufferer was taking a budesonide (Pulmicort) inhaler twice daily.

Two Elderly Control participants recorded a history of prostate cancer and one Elderly 

Control indicated having had skin cancer in the past. Arthritis was found to be present in the 

hands of one Elderly Control and three of the Elderly Controls also recorded having had an 

apendicectomy at some stage in the past. GDS scores for the Elderly Controls included in the 

study indicated that one person may have very mild depression or low mood, but the level of 

this score did not raise concern.

2.3 Saccadic Eye Movement Recording

2.3.1 Apparatus and Equipment

Horizontal saccadic eye movement measurements were recorded monocularly (left eye) 

in a dimmed (ambient infrared light eliminated from the room for optimal recording 

conditions) and quiet room, using an ‘Express Eye’ (Optom™ Laboratory, Germany) infrared 

scleral reflection system (the headset can be seen in Figure 2.7, Section 2.4.2). The system has 

a spatial resolution of 0.1 degree and permits ±15° field of view. The temporal resolution of
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the equipment is 1 millisecond (operating at a sample rate of 1000 Hz), with a minimum 

bandwidth of 0 -  250 Hz and 10 bit digitisation rate. This specification falls well within the 

recommendations of Leigh and Zee for the reliable recording of saccades (Leigh & Zee, 1999). 

The system infrared amplifier was set at 75.0% throughout the study and analogue eye signal 

data was recorded on the hard drive of a Dell Inspiron 3800 laptop computer for analysis 

offline.

Infrared reflection equipment was chosen precisely for its temporal resolution 

properties and its non-invasive application. Alternatives, such as electro-oculography (EOG), 

and the search coil technique were avoided for a number of reasons. Firstly, EOG has been 

found to produce artefacts in the eye movement trace, when a saccade is generated, as a 

consequence of the neural activity (muscle action potential spike)(Iacono & Lykken, 1981; 

Linsday et al., 1987), eyelid movement and interference from the other eye (Doig & Boylan, 

1989; Ong & Harmen, 1979). Second, the search coil technique was thought to be too invasive 

for this study, particularly in view of the experimental patient (and elderly) groups involved. 

Third, the reliability, ease of use and speed with which the system could be set up, was 

advantageous in enabling experimental procedures to flow rapidly, given the potential for 

fatigue and problems with task compliance in dementia patients (Perry & Hodges, 1999).

2.3.2 Visual Stimulus Properties

Visual stimuli (targets and central fixation point) were generated by mini lasers 

mounted on the system headset thereby, largely compensating for possible changes in head 

position and viewing distance, although a chin rest was used to restrain the head (see Appendix 

9). The lasers projected a spot of light subtending approximately 0.2° of visual angle, onto a 

white tangential screen (Appendix 10) set to eye level, fixed at a distance of 57 cm from the 

eyes of the participant, a distance common to other studies (Levin, Jones, Stark, Merrin &
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Holzman, 1982; O'Driscoll, Lenzenweger & Holzman, 1998). This distance facilitates simple 

calculation of target amplitude, derived from the formula:

tan (a) = a/b.

In this formula a is equal to the distance between the central fixation point and the 

target; b is the distance of the eye from the target; and the amplitude (a  in Figure 2.4 below) 

is equal to the angle (degrees) produced by a and b. In this study, a = 4 cm, therefore, a  = 4°.

a

Figure 2.4 Calculating the  Visual Angle of the Stimulus
When b -  51 cm, a is approximately equal to a.

The stimulus array for each experiment consisted of a central fixation point at 0° that 

appeared within a0.75°x0.75° central square and peripheral targets with eccentricities of ± 4° 

in the horizontal plane, as depicted in Figures 2.5 and 2.6. The light output from the lasers was 

bright red in colour, with a wavelength of 635 nanometers and luminance of 66.4 cd/m2 at a 

distance of 57 cm. Luminance was measured using a Minolta luminance meter, Model LS -  

100. The lasers were of class 2 specification, with power of only 0.2 milliwatts. The normal 

reflex to close the eye lid in bright light, is adequate protection in the case of accidental 

exposure to lasers of less than one milliwatt power (Fischer, 1998). However, procedures were 

adopted to avoid directly gazing into the laser beams, as this may cause permanent damage to 

the retina.
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2.3.3 Experimental Design

Oculomotor paradigms included for this study were incorporated into 7 test blocks that 

were administered at each longitudinal testing session of the project. Experiments began with 

two blocks utilising prosaccade {reflexive) paradigms with i). a gap condition followed by ii). 

an overlap condition, each consisting of 24 trials. The next three blocks comprised A) a NO- 

GO condition, followed by two B) & C) GO/NO-GO conditions, each block of 10 trials in 

length. Two antisaccade tasks followed, using i). a gap condition then ii). an overlap 

paradigm, each consisting of 24 trials. The reflexive conditions were administered first, to 

avoid the potential for carry-over effects from the voluntary saccade paradigms (Roberts et al., 

1994), and to ensure that prepotent response was optimal, in readiness for the voluntary 

saccade paradigms. This is particularly important as previous research has highlighted that 

dementia patients are more accommodative at test, when the least cognitively demanding task

i.e. the prosaccade condition is conducted first (Perry & Hodges, 1999).

2 .3 .3 .1  Prosaccade Tasks

2.3.3.1.1 Prosaccade Gap Task

In the prosaccade gap condition (Figure 2.5, Ai), each trial commenced with the 

appearance of a central fixation spot displayed for 1000ms within a 0.75° x 0.75° central 

square. When the central fixation point was extinguished, a temporal gap of 200ms elapsed, 

prior to illumination of a peripheral target that was presented for 1798 ms. During the 

presentation of all visual stimuli, targets were randomised in the left and right (50:50) 

hemifields to avoid predictive behaviour. The inter-trial interval was 1200 ms. The 

instructions to participants were to:

“. ..look at the lights as quickly and accurately as possible.”
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2 .3 .3 .1 . 2  Prosaccade Overlap Task

For the prosaccade overlap condition (Figure 2.5, Aii), each trial commenced with the 

appearance of a central fixation spot that remained illuminated for 2998 ms within a 0.75° x

0.75° central square, the duration of the whole trial. After the central fixation spot had been 

displayed for 1200 ms, a peripheral target was illuminated for a period of 1798 ms, overlapping 

in time with the central fixation point, until the end of the trial at 2998 ms. The presentation of 

targets were randomised in the left and right (50:50) hemifields, to prevent prediction of target 

location. The inter-trial interval was 1200 ms. The instructions to participants were as in the 

gap (previous) task (Section 2.3.3.1.1) where they were asked to look at the lights as quickly 

and accurately as possible.

Experimental Conditions 
Prosaccade and Antisaccade Paradigms

(A)
Prosaccade

(0 Gap
4° 0°

(B)

(ii) Overlap
-4° 0° 4°

o  1 T 7 »

57cm*

Antisaccade

0) Gap
-4° 0° 4°

00 Overlap

57cm*

Figure 2.5 Prosaccade and antisaccade paradigms. In prosaccade tasks, a 
reflexive saccade is generated directly to the location of the target at onset. For the 
antisaccade tasks, a voluntary saccade is generated to an equidistant location to that of 
the target from the central point, but in the opposite hemifield i.e. away from the target. 
Diagrams A(i) and B(i) illustrate the Gap condition, where the central fixation point is 
extinguished 200 msec, prior to target onset. In overlap conditions A(ii) and B(ii), the 
central fixation point remains on throughout the tasks, overlapping with target onset.

* Target screen 57cm  from participant at eye level centred on the midline (measured from the point between 
the evebrows 96
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233.2  Antisaccade Tasks 

2.3.3.2.1 Antisaccade Gap Task

The temporal and spatial characteristics of the visual stimuli for the antisaccade gap 

condition (Figure 2.5, Bi), were the same as those employed for the prosaccade gap condition, 

however, different instructions were given. Therefore, each trial commenced with a central 

fixation point within a0.75°x0.75° central square, which was extinguished after 1000 ms had 

elapsed. Following a temporal gap of 200 ms, a peripheral target was presented for 1798 ms. 

Again, targets were randomised in the left and right (50:50) hemifields, to avoid predictive 

behaviour. The inter-trial interval was 1200 ms. The instructions to participants were as 

follows:

“...direct your gaze towards a position in space that is equally distant, but in the 

opposite direction front the target. So you look to the opposite side from where the target is, 

as quickly and accurately as possible”.

2.3.3.2.2 Antisaccade Overlap Task

The antisaccade overlap condition (Figure 2.5, Bii) adopted the same experimental settings for 

the visual stimuli as in the prosaccade overlap condition, but utilising different instructions. 

Thus, each trial began with a central fixation spot that remained illuminated throughout the 

trial for 2998 ms within a 0.75° x 0.75° central square. At 1200 ms a peripheral target 

appeared for a period of 1798 ms, overlapping in time with the central spot of light, until the 

end of the trial at 2998 ms.

Target presentation was randomised in the left and right (50:50) hemifields, to reduce 

the chance of prediction of target position. The inter-trial interval was set at 1200 ms. 

Instructions were the same as in the gap (previous) condition (Section 2.3.3.2.1), participants
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were asked to direct their gaze towards a position in space, equally distant but in the opposite 

direction from the target as quickly and accurately as possible.

2 .3 .3 .3  Saccade Inhibition Tasks

2.3.3.3.1 NO-GO Inhibition Task

The NO-GO inhibition task (Figure 2.6, A), trials started with the presentation of a 

central fixation point displayed for 1000 ms within a 0.75° x 0.75° central square, followed by 

a temporal gap of 200 ms. Following the gap period, a peripheral target appeared randomly in 

either the right or left (50:50) hemifield, for a duration of 700 ms. There was an inter-trial 

interval of 1000ms. Participants were instructed to:

’’look at the central point (maintaining fixation) and ignore targets that appear to the 

left or the right o f this point (inhibition o f response)”.

2.3.3.3.2 GO-Left/  NO-GO-Right Inhibition Task

In the GO-Left / NO-GO-Right task (Figure 2.6, B), the timing set-up of visual stimuli was the 

same as that used in the NO-Go task. Thus, a central fixation spot was displayed for 1000 ms 

within a 0.75° x 0.75° central square, followed by a gap of 200 ms. Next, a target was 

presented randomly in either the right or left (50:50) hemifield and illuminated for 700 ms, to 

the end of the trial, at which point there was an inter-trial interval of 1000 ms. Participants 

were told to adhere to the following rule:

“I f  a target appears on the right-hand side, ignore it and keep looking straight ahead 

at the central point. However, if  the target appears on the left-hand side, then look at it as 

quickly and accurately as possible99.
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(A)

Experimental Conditions 
NO-GO and GO /  NO-GO Paradigms

NO-GO

- 4° 0 ° 4° -4° 0 °

r i 
%

£
57cm*

4°

*

( A

(B)
GO-Left / NO-GO-Right

-4° 0° 4° -4° 0° 4°

GO-Right/NO-GO-Left

57cm*

57cm*

Figure 2.6 Figure A illustrates the NO-GO task, in which the central fixation spot 
is fixated and targets, presented randomly in either the right or left hemifield, are 
ignored. In Figure B, targets appear randomly in the right or left hemifield. On trials 
where the target is presented in the left hemifield (GO-Left), a saccade is generated 
towards the target. For trials where the target is presented in the right hemifield (NO- 
GO -  Right) the stimulus is ignored and fixation of the central fixation point 
maintained. For Figure C (GO-Right / NO-GO-Left) the task instruction is the opposite 
of that for Figure B. A, B and C all have a temporal gap of 200 msec, from the fixation 
point offset to target onset.

* Target screen 57cm from participant at eye level centred on the midline i.e.point between the eyebrows
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2.3.3.3.3 GO-Right/  NO-GO-Left Inhibition Task

For the GO-Right / NO-GO-Left task (Figure 2.6, C), the stimulus array characteristics 

were the same as in the GO-Left / No-GO-Right task, however, the instruction were the 

opposite. Therefore, Participants were told to adhere to the following rule:

“I f  a target appears on the left-hand side, ignore it and keep looking straight ahead 

at the central point However, if  the target appears on the right-hand side, then look at it as 

quickly and accurately as possible”.

2.4 Procedures

2.4.1 The Clinical Saccadic Eye Movement Task

The first part of the testing procedure was to train participants for the saccadic eye 

movement tasks. To facilitate a firm grasp of the requirements for the paradigms, a clinical 

saccadic eye movement task - adapted from (Currie et al., 1991) - was conducted with 

participants, emulating basic aspects of the infrared oculographic procedures from the main 

experiments. The training phase of the study facilitated the chance to observe reflexive 

prosaccade and antisaccade eye movements face-to-face with each participant. In 

administering the clinical test, the researcher’s hands (clenched fist) were held adjacent to the 

ears and bilaterally equidistant at shoulder width, in the same horizontal plane as the nose. The 

target was a vertically flexed index finger on the right or left hand. Participants were advised 

to keep the head in a fixed position looking forwards, moving the eyes only and not the head. 

As the aim of the clinical test was primarily to train participants, they were also instructed to 

try to remain alert throughout the tasks, only responding at the appearance of targets and that if 

they made an error, to continue with the task. Participants were also asked to try to refrain 

from blinking during trials. An advantage of the clinical saccade test, is that the researcher is
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able to modulate the speed of stimulus presentation and should mistakes occur, participants can 

be informed and advised accordingly.

For the prosaccade task, participants were asked to look straight ahead at the 

researcher’s nose (0° central fixation) and to look at the index finger that moves, as quickly and 

accurately as possible. When the finger was lowered, the instruction was to look at the nose 

again, ready for the next trial. A trial only commenced when the researcher was satisfied that 

the nose was fixated again for the start of a trial. When participants understood the reflexive 

prosaccade task (The general finding was that an understanding was gained within two or three 

trials), twelve trials were administered. For the antisaccade task, participants were told that the 

task had changed and instructed that when the index finger moved, they should look 

immediately as quickly and accurately as possible, to the opposite direction, at the position of 

the finger that did not move. Training in the antisaccade task was always found to take a little 

longer than for reflexive prosaccade saccade training. When participants understood the 

antisaccade task, twelve trials were conducted and responses (correct, corrected error or 

uncorrected error) recorded on clinical antisaccade test sheets for analysis (The clinical 

antisaccade test recording sheet can be found in Appendix 8).

The clinical saccadic eye movement test was found to be extremely helpful and a useful 

procedure, efficacious for both training and gathering informative data from patients. The test 

made it possible to ensure that participants thoroughly understood each condition. The 

procedure facilitates the ability of participants to understand that targets are randomly 

presented in either hemifield, to minimize anticipation and to reduce the training required 

during experimental trials with infrared oculography. For the present research project, 

minimizing the duration of saccadic eye movement test sessions was of particular importance, 

in view of the fact that the experimental groups comprised elderly people. Extended 

experimental procedures may cause fatigue for elderly people, particularly dementia patients 

who exhibit a level of neuropsychiatric disturbance.
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2.4.2 Infrared Oculography

The comfort of the elderly people taking part in this study was of paramount 

importance during all testing sessions, therefore, care was taken to ensure that volunteers were 

as comfortable as possible at all times. For the saccadic eye movement tasks, participants were 

seated on a comfortable armchair in front of a large desk with their head maintained in position 

using a chin rest (Appendix 9). The chin rest was fully adjustable (through three dimensions) 

and manoeuvred to suit each participant according to individual feedback, so as to attain the 

most comfortable position. Once the chin rest was set to the required custom height, the target 

projection screen was also adjusted to eye level. The participant was then told to sit back and 

relax in the chair, whilst the scleral reflection headset was fitted.

Figure 2.7 The Express Eye Headset
(Optom Lab, Germany).

During this period, the room light was dimmed and participants were adapted to this 

environment for 5 minutes. The Express Eye system was placed on the participant’s head 

(Figure 2.7) and adjusted as appropriate for individual needs. Participants were then asked to 

place their chin on the chin-rest, whilst the system was calibrated.
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Taking care that the infrared emitter/sensor unit was in the up position (i.e. away from 

the face) the Express Eye headset was carefully placed on the head of the participant, and 

adjusted for comfort. Once the headset is in position on the head it is important to work 

quickly and efficiently, to minimise the experimental session length and thereby maintain 

the quality of data by reducing the chance of causing fatigue in participants, which can have 

the effect of reducing alertness (Becker, 1991) and can also increase postsaccadic drift (Bahill 

& Stark, 1975); small eye movements referred to as glissades (Weber & Daroff, 1972). With 

the headset in position, participants were instructed to close their eyes, whilst the 

emitter/sensor unit was positioned approximately 15 -  20 mm in front of the eye, tilted slightly 

up towards the eye, which reduces disturbance from the upper eyelid. The infrared 

emitter/sensor unit is capable of fine adjustment by micro screws through three degrees of 

freedom and can also be tilted, to accommodate custom fitting of the device with individual 

participants (Figure 2.8).

Figure 2.8 Mechanical adjustment of infrared em itter/sensor apparatus

Side viewFront view

Up
Down

The fine adjustment of the emitter/sensor unit enables rapid calibration of the eye 

movement system. It is important that the emitter/sensor unit is positioned correctly in front of 

the eye as in Figure 2.8, and the infrared amplifier set at a approximately 75%. High amplifier 

settings and poor positioning of the emitter/sensor mechanism should be avoided, so as to 

reduce noise and non-linear signals (Fischer, 1998).
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In the first instance, all three spots of light were illuminated synchronously and 

participants were asked to identify both the number of lights and stimulus location. With all 

three points remaining on display participants’ responses were reinforced by pointing out each 

point of light with the statement:

“Yes, this is the central fixation point, and here is the target on the right and this is 

the target on the left”.

Calibration of the eye movement recording system was conducted prior to running the 

block of trials for each experimental condition. During calibration each individual point of 

light was presented in turn, the three point sequence commencing with the central fixation 

point followed by the peripheral target in the left hemifield and then the right hemifield. 

Participants were instructed to:

“concentrate on the spots o f light that appear on the screen in front o f you.”

Experimental instructions were read prior to running each oculomotor condition 

Firstly, the test was explained, drawing parallels with the clinical saccadic eye movement test, 

the eye movement recording system was then calibrated, followed by the five practice trials for 

the experimental condition and the instructions repeated prior to running the experimental test. 

Experimental trials then commenced in accordance with the relevant for a given paradigm, 

provided that the participant understood the task and that the experimenter was satisfied with 

the calibration pre-programmed into the Express Eye system (Section 2.3.2; the paradigm 

specific experimental protocol can be found in Appendix 11). Attendance by participants at 

eye movement recording sessions was noted on participation log sheets (Appendix 7) for each 

longitudinal test stage in order to keep track of complete/incomplete sessions, particularly in 

view of the extensive neuropsychological assessment battery.
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2.4.3 Saccadic Eye Movement Signal Data Analysis

As the principal focus for the present investigation was a clinical group i.e. Dementia 

Patients, the researcher was interested in two areas of enquiry, namely behavioural response 

characteristics and psychophysical recording parameters. Therefore, a number of dependent 

variables were decided upon, in accordance with the hypotheses set out in section 2.7.

During interactive analysis of analogue saccadic eye movement signal data, primary 

saccades were excluded according to the following criteria: i). a blink post target onset but 

prior to the primary saccade; ii). when a saccade occurred early i.e. prior to target onset, or iii). 

if saccade latency was <80 milliseconds, i.e. an anticipatory saccade. The minimum velocity 

for a saccade to be included in the analysis was 25V 1 and the minimum amplitude 0.5 degrees.

Dependent variables generated from analysis of primary saccades, included latency, 

amplitude, maximum velocity and duration. From a behavioural perspective, the dependent 

variables comprised error rates: total errors, corrected errors, uncorrected errors, omissions and 

anticipatory saccades.

Temporal characteristics o f visual 
stimulus Time (msecs.)

Figure 2.9 Recording of saccadic eye movements. The output screen as viewed when 
running the interactive saccade analysis program, during the antisaccade 
gap task. Alzheimer’s disease patient making a corrected error.
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Additionally, error correction - secondary saccadic measures were taken for secondary 

saccade latency, inter-saccadic interval (turn around time) and amplitude. Figure 2.9 above, 

shows a representation of the computer screen output whilst running the Express Eye saccade 

analysis program.

Figures 2.10A, B and C, illustrate analogue eye movement signal data during analysis, 

using the interactive analysis program. In Figure 2.10A (adapted from the computer software 

output screen), the signal trace is displayed for a correct saccade in the antisaccade Gap 

paradigm. The trace, representing the eye position in time and space, is shown moving away to 

the opposite hemifield from the target position providing an illustration of a correct 

antisaccade.

Figure 2.1 OB shows a typical corrected error response in the antisaccade Gap paradigm, 

where in the primary reaction the eye looks toward the target (prosaccade), but is corrected by 

a secondary movement, a corrective saccade that locates the eye to the opposite hemifield to 

that of the target. An example of uncorrected error in the antisaccade Gap paradigm is 

presented in Figure 2.10C. The signal trace of the eye is observed to locate the target 

(prosaccade), which is of course an incorrect response, as the eye should have located a 

position at an equidistant location in the opposite hemifield to the target position.

For corrected errors, the primary saccade latency and amplitude of the error, were 

reported dependent variables and the corrective saccade latency, inter-saccade interval, 

amplitude and final eye position (i.e. final eye position for corrected errors) were also derived 

from the analyses. For uncorrected errors, primary latencies and amplitudes were monitored 

and also entered as dependent variables. Resultant measures from the analysis of analogue 

saccade signal are generated in the form of an output file from the Express Eye analysis 

program. Furthermore, these files can only be read when transposed onto computer 

spreadsheets. However, the large amounts of data are arranged in columns with no 

identification, filtering or sorting and moreover, contain columns of unwanted system numbers.
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Therefore, a range of time saving devices were custom produced by the author, in the form of

paradigm specific data analysis spreadsheet templates, using Microsoft Excel Spreadsheet TM
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Antisaccade Gap Task: Correct 
Primary Saccade
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b Primary saccade latency 
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Time (msecs)

400 600

Figure 2.10 In the figu re a b o v e  th e  target is in d icated  by the red lin e  and the task  is the a n tisaccad e  
gap paradigm . F igu re A  sh o w s  a correct prim ary sa cca d e , the ey e  m o v in g  to an eq u id istan t lo ca tio n  in 
th e o p p o site  h e m ifie ld  to  that o f  th e target. F igure B illu strates an un corrected  error, w ere the e y e  has 
m o v ed  to  lo c a te  the target, in stead  o f  lo o k in g  to  the o p p o site  h em ifie ld .
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(C) Antisaccade Gap Task: 
Corrected Error

Target 4°

-5

a Central fixation  
b Primary saccade latency  
c Primary saccade amplitude 
d Corrected error latency  
e  Corrected error 
f  Final e y e  position

-10

-15
-400 -200 0 200 400 600
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F ig u re  2 .10  (c o n tin u e d )  Figure C illustrates a corrected error in the antisaccade gap 
paradigm. The trace shows that the primary response was to look in the same hemifield as the target. 
However, a corrective saccade quickly relocates the eye to a location in the opposite hemifield to that 
o f  the target.

The templates included a sorting tool that utilised macros to remove unwanted 

functional and system items from the data sheet and to sort the remaining data into meaningful 

groups. Paradigm specific input templates were produced, in order to sort and filter the data 

imported from the sorting template. To exemplify a typical data input template, a section from 

a completed data input template for the antisaccade gap task, is shown in Appendix 12. The 

data input templates exploit the capacity of a range of formulae, arguments and conditional 

formats, to facilitate identification and quantification of saccade characteristics and dependent 

variables, from individual eye movement data output files. Each paradigm specific template 

also generated a summary (average) of the whole output for (across the bottom of the sheet — 

not displayed in Appendix 12 due to sheet size) that was incorporated, via a cell pathway 

linkage, to overall experimental group paradigm specific data summary sheets. These
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summary sheets provided the platform from which selected dependent variables for final 

analysis, were extracted and exported to SPSS version 11.5 (SPSS Inc., Chicago 111) for 

statistical manipulation. Further to recording saccadic eye movements, each participant was 

tested with a battery of screening tests and neuropsychological assessments to provided a range 

of cognitive measures and correlates for statistical evaluation.

2.5 Screening Tests and Neuropsychological Assessment

As discussed in Chapter 1, AD progresses insidiously with a decline in various aspects 

of cognition and global function, discernible by the following characteristics which are 

extracted from DSMIV:-

The development of multiple cognitive deficits manifested by both:

1. Memory deficit -  lack of capacity to acquire new information or recall previously 

learned information.

2. Dysfunction by one or more of the following:

• Aphasia (language disorder)

• Apraxia (impairment of motor skills, although motor function is intact)

• Agnosia (failure to recognise or identify objects despite intact sensory 

function)

• Disturbance in executive functioning (i.e. planning, organising, sequencing, 

abstracting).

(American Psychiatric Association, 1994)

Given the span of cognitive impairments intrinsic to AD, a battery of screening tests

and neuropsychological assessments were selected and administered to all elderly participants,

in order to gauge dementia severity and derive quantitative measures for a range of cognitive

function including the components of memory, language, praxis, psychomotor performance,

orientation, and various frontal lobe tasks. It has been argued (Perry & Hodges, 1999), that
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basic conventional cognitive assessments lack temporal resolution, specificity and thus the 

capacity to determine the locality brain function. The tests have been found to be limited in 

their ability to detect early dementia (Feldman & O'Brien, 1999; Filley et al., 1989; Galasko et 

al., 1990), and may be affected by mood, age, fatigue or low motivation (Shafiq-Antonacci et 

al., 2003); hence the desire to find tests which are more sensitive or that are capable of 

detecting underlying pathological disturbance. To this end, the neuropsychological assessments 

are important for this research, as they provide a range of correlates for comparison with the 

saccadic eye movement measures and can therefore be used to investigate association between 

tests and in models of prediction and discrimination.

AD is often characterised by the onset of memory dysfunction, although attentional 

deficits have been found to feature prominently in the profile of impairment (Parasuraman & 

Haxby, 1993). A number of previous studies of cognitive impairment in AD have revealed 

attentional deficits (Spinnler, 1991), using a variety of conventional pencil and paper test 

methods (Della Sala, Laiacona, Spinnler & Ubezio, 1992; McKhann et al., 1984; Solffizzi et 

al., 2002; Stuart-Hamilton, Rabbit & Huddy, 1988). However, Parasuraman and colleagues 

highlighted the inherent problems of monitoring the dynamics and specificity of attentional 

deficits in AD, due to the lack of the temporal resolution in conventional pencil and paper type 

tests (Parasuraman, Greenwood, Haxby & Grady, 1992; Parasuraman & Haxby, 1993).

Measures recorded from the saccadic eye movement paradigms may reveal a signature 

of underlying impairment, due to disturbance in the oculomotor system, dysfunction of 

visuospatial cognition (analogous to previous research), working memory leading to problems 

of inhibitory control and perseveration. If saccadic eye movement paradigms can identify a 

neurological or behavioural marker in AD, it is feasible to suggest that sensitive tests, designed 

to measure the specific dynamics characteristic of the impairment, may hold some early 

diagnostic utility.
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2.5.1 The Mini Mental State Examination

The Mini Mental State Examination (MMSE) (Folstein et al., 1975) is likely to be the 

most commonly used brief screening tool for dementia. It is widely used throughout the 

Western world and in the United Kingdom, a standardised version (Molloy et al., 1991) has 

been adopted by many NHS authorities so that the same form is used with standardised 

procedures, facilitating correspondence across service and research (Patel & Renvoize, 2000). 

Thus, the standardised MMSE (SMMSE; Appendix 13 and 13.1) was utilised in the present 

study.

When applied to dementia patients the MMSE has been found to perform most 

successfully in distinguishing between control participants and patients with moderate and 

severe impairment (Folstein et al., 1975), and it was also demonstrated that the test is 

sufficiently receptive to detect cognitive decline over time (Teng, Chui, Schneider & Metzger, 

1987). However, the test is less able to discern differences between patients with mild 

dementia and control participants (Knight, 1992), emphasising the necessity for more sensitive 

diagnostic tests. The test is also prone to ‘floor’ and ‘ceiling’ effects and is largely based on 

language-verbal type sub-tests. Therefore, test performance of patients with damage mainly in 

the right hemisphere, may surpass that of patients with left hemisphere damage (Adair, 1998).

The MMSE comprises a number of elements that provide rapid assessment for a range 

of cognitive characteristics, which include items to test:- orientation in time and space; 

memoiy (registration and recall); attention; language (object naming, sentence repetition, 

following commands, reading and writing); constructional praxis (copying a geometric shape - 

intersecting pentagons). Points are awarded for successful trials (max. score 30) according to 

the test component. Severity ratings for dementia are as follows: NICE guidelines MMSE 

and Alzheimer’s disease (NICE, 2001):-

• Mild AD: usually associated with scores of 21 to 26

• Moderate AD: usually score of 10 to 20
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• Severe AD: usually score of less than 10.

Participants were tested at each stage of the study and the total score recorded for analysis.

2.5.2 Alzheimer's Disease Assessment Scale - Cognitive Sub-Sca/e

The Alzheimer’s Disease Assessment Scale - cognitive sub-scale (ADAScog) (Rosen et 

al., 1984) was designed with the explicit purpose of assessing the severity of cognitive 

dysfunction characteristic of AD (Rosen et al., 1984). The test has also been shown to be 

sensitive to the progression of cognitive dysfunction on a longitudinal basis (Rosen et al., 

1984; Rosen, Mohs & Davis, 1986). A European version of the ADAS-cog (EADAS-cog) was 

adapted from the original test by Dahalke and colleagues (1992) and it is this version that is 

used by the Memory Clinic (Department of Old Age Psychiatry) at Lytham Hospital in the 

U.K. and employed by the this research project, as a rating instrument for AD (see Appendix 

14 and 14.1).

The ADAS-cog consists of a series of cognitive behaviour tests. The tests examine 

memory (word list recall and recognition; recall of instructions); language (speech -  including 

word finding difficulty and circumlocution and comprehension); constructional praxis (copying 

a variety of geometric shapes); orientation (in space and time) and ideational praxis (ability to 

perform an over-learned task -  sending a letter to oneself). The scoring of this test is based on 

the number of errors made in relation to a points scoring system, i.e. high number of errors 

equals a higher score (max. score 70). Overall scores of 0-11 indicate that the patient may be 

normal. However, a score of 12 in conjunction with scores from other tests may signify 

dementia. Higher scores from 13 through 70 are indicative of dementia and require further 

investigation into the areas of impairment. Therefore, the test can be a useful instrument 

alongside other assessments. The EADAS-cog was conducted on all participants at each stage 

of the longitudinal study, to obtain a total score and a score from two of the sub-tests: recall 

memory and recognition memory.
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2.5.3 Clinical Dementia Rating Scale

The CDR (Hughes et al, 1982) is a rating scale to assess dementia severity (Appendix 

6). The assessment is completed by the physician, in the clinical setting, by applying detailed 

knowledge of the patient in six domains: memory; orientation; judgement and problem

solving; community affairs; home and hobbies; and personal care. The scale generates a 

severity rating that places the patient in one of the following categories: healthy (score 0); 

questionable dementia (score 0.5); mild dementia (score 1); moderate (score 2); and severe 

dementia (score 3). Fulfilling the role of a global staging measure, the CDR is covers a wide 

range of function, but has been found to be less susceptible to ‘floor’ and ‘ceiling’ effects 

(Morris, 1997). CDR ratings were conducted by psychiatrist at consultation however, this 

assessment was only available for stage 1 of the study.

2.5.4 National Adult Reading Test

An important consideration for many research projects involving the investigation of 

psychological and psychophysical factors, is that all extraneous variables have be managed e.g. 

confounding variables are controlled. This is vital for interpretation of results, so that findings 

can be reported reliably in view of theoretical rationale. None of the participants involved in 

this research project had been assessed using psychometric intelligence assessments prior to 

the study. Therefore, there was no measure of pre-morbid intelligence levels available for any 

of the dementia patients (and no intelligence measures were in existence for Elderly Controls).

Research in the past described how dementia patients appeared to be able to read 

surprisingly well, during routine assessments (Nelson & McKenna, 1975). Word reading 

ability was found to be highly correlated with WAIS Full-Scale IQ scores for adults and also 

maintained for dementia sufferers (Nelson & O'Connell, 1978). Nelson (Nelson, 1982) 

produced a test, referred to as the National Adult Reading Test (NART; Appendix 15), that 

relies on the orthographic characteristics of the English language, namely, the test was found to
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be a sensitive measure for previous familiarity of irregular words and thereby purported to 

predict pre-morbid IQ.

The basic rationale for the test is based on the idea, that in order to read an irregular 

word in the English language (words where the normal grapheme-to-phoneme correspondences 

do not apply), the reader must have prior knowledge of the word. Therefore, as the word 

cannot be read by sounding-out the phonemes (letter sounds) within the word, the word must 

be recognised (even if the definition is not remembered) so as to pronounce it.

The test is made-up of fifty irregular words of increasing difficulty (Appendix 15), 

which the participant has to read out aloud. Error scores accumulate for each incorrect answer. 

A predicted pre-morbid IQ score is generated by matching error scores with corresponding 

NART normative data and applying this to an IQ scale that was derived from regression 

analyses on the Weschler Adult Intelligence Scale.

The NART is of course well established as a standardised test, however, given the level 

of word finding difficulty and circumlocution that many dementia patients experience, it is 

open to question as to whether in some individual dementia cases there may be a subtle level of 

language impairment that is difficult to detect and that may adversely affect scores and as 

previous research has found thus underestimate pre-morbid IQ (Stebbins, Gilley, Wilson, 

Bernard & Fox, 1990).

Disturbance of this nature may perhaps be integral with pathways of the brain that are 

responsible for reading, difficult words, requiring interaction between the temporal and frontal 

lobes, namely the anterior cingulate and anterior inferior prefrontal areas (Peterson, Fox, 

Posner, Mintun & Raichle, 1989), areas of the brain that are also known to be implicated in the 

pathology of AD (as discussed in Chapter 1). Therefore ultimately, results from the test will 

depend on the specific nature of cognitive impairment for a given case of dementia, with the 

consideration that previous research has found that using the NART specifically to estimate 

pre-morbid ability in dementia patients with language impairment will underestimate pre-
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morbid IQ (Stebbins, Wilson, Gilley, Bernard & Fox, 1990). In addition to this, another study 

reported that the NART is sensitive to decline of language in AD and that the test may even be 

useful as a predictor of dementia (Schlosser & Ivison, 1989). Despite these findings, the 

NART is still widely used as a predictor of pre-morbid IQ.

In view of the fore-mentioned problems with the NART, scores in the present study are 

seen as a tentative guide towards prediction of pre-morbid IQ and thus, interpreted with some 

caution. Observations are made as to whether scores on this test fluctuate and/or deteriorate 

during the course of longitudinal investigation.

2.5.5 Verba! Fluency

Verbal fluency is a useful measure of frontal lobe function (Parks et al., 1988; 

Zangwill, 1966) utilizing the capacity for speed and spontaneity of verbal production. 

Research of patients with frontal lobe lesions has shown that deficits in verbal fluency appear 

to be associated with lesions of the orbital-frontal area (often in the left hemisphere, but not 

exclusively!) of the brain (Milner & Petrides, 1984; Raimer & Hecaen, 1970).

Functional imaging of the brain using positron emission tomography (PET) has 

revealed that more specifically, both the frontal and temporal lobes show the highest level of 

cortical activation (indicated by bilateral increase in cerebral glucose metabolic rate) compared 

with other parts of the brain (Parks, Loewenstein, Dodrill, Barker, Yoshii, Chang, Emran, 

Apicella, Sheramata and Duara, 1988).

The test employed for the present study (Appendix 16), required participants to name as 

many words as possible beginning with a specified letter (first trial letter ‘S’ and the second 

trial letter ‘P’) in a 60 second timed trial period (Storandt, Botwinick, Danziger, Berg & 

Hughes, 1984).

Participants were instructed not to use numbers or the names of people and places and 

encouraged to carry out the task as quickly as possible. The score was taken as the number of
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words spoken out loud and the score for each of the letters was added together, to make a total 

score (the mean was also calculated). Intrusions (words beginning with the wrong letter) non­

words, proper nouns, numbers, words with a different suffix and repetitions were excluded 

from the final score.

2.5.6 Trail Making Test

The trail making test (Appendix 17) is essentially a test of visual conceptual and 

visuomotor tracking (Lezak, 1995) and originates from the Army Individual Test Battery 

(1944). The test consists of two parts: Form A, primarily a measure of psychomotor speed and 

psychomotor coordination and Form B, requires the concurrent manipulation of information 

and measures visual sequencing, visuospatial working memory and shift strategy.

Form A, given first, by definition is the easier of the two tests and requires participants 

to draw a line as quickly as possible, that joins a sequence numbered circles from 1 through 25. 

Form B is more difficult, as participants have to draw a line (as quickly as possible) that 

alternates between a sequence of consecutive numbers and letters i.e. 1 - A - 2 - B - 3 - C . . .  

and so on (1 through 13 alternating with A through L). Therefore, psychomotor and sequenced 

cognition are the vital cognitive capacities that facilitate participation on the task, as the 

participant has to manipulate two streams of information alternating between the alphabetical 

letter sequence and number sequence correctly whilst searching for each item on the test sheet. 

In view of this, close attention is required when administering the assessment, to monitor 

performance, given that if an error is committed participants are informed of the fault and 

instructed to return to the circle preceding the mistake and continue with the correct sequence. 

Mistakes by dementia patients occur frequently on Form B of the test, where patients often 

perseverate by jumping to the next number or letter instead of alternating from number to letter 

to number and so on, hence the demands on executive function and working memory. Research
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using electrophysiological recordings suggest that frontothalamic regions of the brain are 

activated during both Forms of the test (Segalowitz, Unsal & Dywan, 1992).

The instructions and scoring methods employed for the present study were designed by 

Ralph Reitan, who used the test in a study that involved an experimental group with organic 

damage to the brain (Reitan, 1958). Reitan found that the test was able to discriminate 

between the experimental group (brain damaged) and controls (without evidence of brain 

damage), and used the test completion time to devise an ordinal credit system (Appendix 17.1). 

Therefore, the present study will examine this standardised credit system and the basic task 

completion time will also be used as a variable. An additional score is also investigated that 

basically removes the time factor, in order to explore Forms A and B. This is achieved by 

taking the difference between Forms B and A (i.e. Time B -  A). It is postulated that this score 

correlates with mental capacity and severity of cognitive impairment (Corrigan & Hinkeldey, 

1987).

2.5.7 Digit Span Test

The Digit Span test from the Wechsler Adult Intelligence Scale III (Wechsler, 1997a) 

was also included in the test battery. This test is essentially an assessment of executive 

function, measuring short-term auditory memory. However, it is important to bear in mind 

when interpreting results, that test performance also involves attention and concentration and 

therefore, these attributes may be reflected in the scores (Kaufman, McLean & Reynolds, 

1991).

The Digit Span Test consists of two separate sub-tests, Digits Forward and Digits 

Reverse, both of which are included in the present study (Appendix 18). When administering 

Digits Forward, a sequence of numbers are read out aloud at a rate of one per second. When 

the examiner has finished calling out the sequence, the participant responds by recalling the 

number sequence and calling the sequence out aloud, in the same exact order as the examiner.
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For Digits Reverse, a number sequence is called out by the examiner, however, the participant 

has to recall the sequence in the reverse order, to the number sequence that was called out by 

the examiner. The tests starts with number sequences of veiy short length (2 digits), but 

becomes progressively more difficult, as each sequence grows longer by adding 1 digit after 

two trials at each sequence length (Digits Forward: max. 9 digits; Digits Reverse: max. 8 

digits). One point is awarded for each correct sequence recalled. Both trials are conducted at a 

given sequence length, regardless of whether there is failure on the first trial of that sequence. 

The test is terminated if there is failure to recall the two trials of a given sequence length.

Both Digit Span Forward and Digits Span Reverse require working memory and are 

largely believed to involve the frontal and temporal lobes. Brain scanning with PET has shown 

that for the Digit Span Forward task, metabolism of glucose occurs bilaterally, although mainly 

in anterior dorsal areas (Chase et al., 1984). Studies of patients with brain damage, indicate 

that performance on both Digit Span Forward and Digit Span Reverse is predominantly 

affected by left hemisphere damage (Black, 1986; Weinberg, Diller, Gerstman & Schulman, 

1972). A recent PET study on healthy young adults by Gerton and colleagues, found that Digit 

Span Forward and Reverse recruit largely overlapping functional neuroanatomy, which is 

associated with working memory. Most interestingly, the right DLPFC, bilateral IPL and ACC 

were metabolised during both tasks and the degree of activation shown to increase linearly 

with increasing task difficulty in the Digit Span Forwards task. During the Digit Span Reverse 

task, additional areas were prominently recruited, notably the DLPFC was activated bilaterally, 

with the left IPL and Broca’s area. The medial occipital cortex was also found to be strongly 

activated, which the authors suggest may be the result of participants employing visual 

imageiy strategy -  which was supported by the experimental paradigms employed (Gerton et 

al., 2004). Performance on Digit Span Reverse typically falls approximately 0.6 -  2 digits 

below recall for Digits Forward (Black & Strub, 1978; Kaplan, Fein, Morris & Delis, 1991), 

The Digit Span Reverse test requires a higher level of mental-tracking (than the relatively
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simple repetition operation for Digit Span Forward) with the increased cognitive load due to 

simultaneously holding the forward string in memory and generating the reversal procedure.

2.5.8 Day/Night Response Inhibition Test

The Day/Night response inhibition test was adapted from an assessment used in a study 

of frontal lobe function, involving children between 6 and 12 years of age (Gerstadt, Homg & 

Diamond, 1994). The rationale for the test is based on research that suggests that frontal lobe 

lesions of the dorsolateral frontal cortex, generally in the left (but not exclusively) hemisphere 

of the brain (Grafman, Jonas & Salazar, 1990; Milner, 1963; Nelson, 1976) result in problems 

with response inhibition and rule breaking (Kolb & Whishaw, 1996). Thus, patients with left 

frontal lesions will present with perseveration on tasks requiring inhibition of a pre-potent 

response, especially where task demands change.

When administering the test, two A4 cards were placed on the bench in front of 

participants. One of the cards was white, with a sun in the upper right quarter, the “Day” card 

(Figure 2.11 A) and the other card grey, with a crescent moon and stars in the upper right 

quarter, the “Night” card (Figure 2.1 IB).

(B) Night(A) Day

Figure 2.11 The Day/Night Test. The Day/Night Test is a simple test of inhibitory control.
In the control condition the participant identifies the Day card (A) and the Night 
card (B) directly, by pointing the hand. In the inhibition task, the participant has 
to point to the opposite card i.e. Day = Night and Night = Day.

119



2 Methodology

In the control condition, participants were instructed to point to the “Day” card, when 

they heard the word day and the “Night” card, when they heard the word night. Conversely, in 

the inhibition task participants were required to point to the opposite card, i.e. if day was called 

out, the instruction was to point to the “Night” card and vice versa, if night is called out to 

point to the “Day” card. Participants were firstly given 20 trials in the control task followed by 

20 trials in the inhibition task, each block of trials comprising 50:50 day and night conditions 

pseudo-randomly presented. Responses were recorded on Day/Night Inhibition Test response 

sheets (Appendix 19).

2.5.9 Motor Perseveration Test

This present study used the motor perseveration test designed by A. R. Luria (Luria, 

1966, 1973) and can be found in The Middlesex Elderly Assessment of Mental Scale 

(MEAMS) test battery (Golding, 1989). This assessment is essentially an examination of 

executive control and frontal lobe function and investigates ability to modify motor response, 

impairment of which leads to perseveration. The test assesses motor regulation by requiring 

the participant to generate an opposite response to the signal made by the examiner. For the 

present assessment, the examiner gives the participant a table tapping rule as follows: 

Examiner taps once - participant taps twice / Examiner taps twice - participant taps once (see 

Appendix 19.1 for test and response sheet). Research on patients with frontal lobe damage, has 

shown that patients often perseverate, copying the signal of the examiner, as opposed to the 

correct converse response (Le Gall, Truelle, Joseph & etal., 1990; Luria, 1966; Malloy, 

Webster & Russell, 1985).

2.5.10 Gibson Spiral Maze Test

The Gibson Spiral Maze test (GSM) (Gibson, 1965, 1977) is used to assess

psychomotor ability and therefore involves a considerable visuomotor tracking component. In
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a sense, the GSM (Appendix 20) has similar motor characteristics to Form A of the trail 

making test (Section 2.5.7), although it is somewhat easier, requiring relatively minimal 

sequencing control to draw a pencil line round the track of the spiral outwards until reaching 

the end, whilst avoiding small circular obstacles. There are two scores recorded, these are time 

to complete the spiral and the number of errors committed. The present research project 

adopted to utilize the scoring system from the Clifton assessment procedures for the elderly 

(CAPE) (Pattie & Gilleard, 1987), however, the present thesis will only use the time to 

complete the test in seconds as the measure for statistical manipulation. For the CAPE system, 

the scoring elements (time and errors) are applied to a credit scoring system on an ordinal 

rating scale as in Table 2.3 (below); The score falls as the error rate increases. The final score 

may also be awarded extra points, according to the bonus system for speed of performance.

Under CAPE scoring rules, the time limit is 4 minutes for the test to be concluded and 

errors are scored as 1 error for every obstacle or black line that the pencil comes into contact 

with; 2 errors for every inch of extended contact or penetration of a black line. Participants 

are scored as N/C (not completed) if only the first circle of the maze is fulfilled and gives-up 

subsequent to three prompts. The outcome of the test is N/A (not attempted) is if the 

participant fails to complete any of the maze and gives-up subsequent to three prompts.

Table 2.4 CAPE Scoring System for the Gibson Spiral Maze

E rrors 0-12 13-24 25-36 37-48 49-60 61-72 73-84 85-96 96+ N/C N/A

S co re 10 9 8 7 6 5 4 3 2 1 0

Add  B on u s to  sc o re 2 if Time < or = to 60 secs.

1 if Time < or = to 120 secs.

N/C = not completed; N/A = not attempted.
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2.5.11 Spatial Span Test

The Spatial Span Test from the Wechsler Memory Scale III (Wechsler, 1997b)
*

measures visuospatial attention and visual memory. The test for Spatial Span involves the use 

of a block tapping board, as illustrated below in Figure 2.12 (The sequence and responses sheet 

can be found in Appendix 21). The test is very similar to the block-tapping test designed by P. 

Corsi, as outlined by Milner (Milner, 1971) except there are 10 blocks, rather than nine as in 

the Corsi version. The test requires efficient executive function and for a correct response, the 

ability to hold a sequence of visual-spatial events in working memory. The procedure for 

administration of this assessment, follows along the same lines as the Digit Span test (Section 

2.4.7) but in this, test a sequence of blocks are tapped by the examiner instead of calling out a 

string of digits.

Figure 2.12 Spatial Span Test Block Tapping Board

As with the Digit Span Test, the Spatial Span Test consists of two separate sub-tests, 

Spatial Span Forward and Spatial Span Reverse and both of these tests were included in the 

present study. For Spatial Span Forward, a pre-arranged sequence of blocks, are tapped by the 

examiner at a rate of one per second. When the examiner has finished tapping the sequence of 

blocks, the participant is required to tap the exact same sequence of blocks as the examiner. 

The procedural demands for the Spatial Span Reverse task, involve the examiner tapping a 

string of blocks on the board and the participant responding by reversing the sequence and
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tapping the same blocks, but in reverse. The tests starts with block sequences of very short 

length (2 blocks), however, the test grows more difficult after two trials at each sequence 

length, as 1 more block is added onto the chain length (Spatial Span Forward: max. 9 blocks; 

Spatial Span Reverse: max. 9 blocks). One point is awarded for each correct sequence of 

blocks tapped. Both trials are administered at a given sequence length, even if there is failure 

of the first trial at that sequence. The test is terminated after failure of both trials at a given 

sequence.

The Spatial Span Test has been found to be most sensitive at discriminating between 

patients with frontal lobe lesions and patients with temporal lobectomy (right or left) or 

controls (Canavan et al., 1989); Temporal lobe patients performing equal to controls. Test 

performance is also susceptible in patients with visual field deficit following stroke (regardless 

of hemisphere), research highlighting poorer spatial memory scores than patients that do not 

have visual field deficit (De Renzi, Faglioni & Previdi, 1977). Mild to moderately impaired 

AD patients were found to produce scores only slightly poorer than those of controls, severe 

AD patients generating scores that were markedly inferior (Corkin, 1982; Sullivan, Corkin & 

Growdon, 1986).

Clearly, lower scores on this test may reflect attentional deficits, such as poor volitional 

control or distractibility. Disturbance of attention will thus impair concentration and the 

capacity for mental tracking.

2.6 Observations from Saccadic Eye Movement Research in 

Alzheimer's Disease

The review in Chapter 1 highlighted how neuropsychological investigation can gain 

useful insight from saccadic eye movement research. The characteristics of various 

oculomotor tasks may be manipulated to provide tests that can probe the nature of neurological 

conditions and cognitive disturbance in psychiatric illness. The antisaccade task (along with
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other voluntary saccade paradigms) could prove to be effective in the detection of early AD, as 

this model paradigm has proved efficacious in other areas of research (Broerse et al., 2001; 

Monsell & Driver, 2000).

The main conclusions from Chapter 1 concerning the potential predictive capacity of 

saccadic eye movements for AD can be summarized as follows:

*$■ It appears that from an early stage in the disease process, saccade latency

becomes prolonged for antisaccades as the severity of AD progresses. Whereas 

reflexive saccade latency may remain relatively unimpaired, until the moderate 

to severe stage of the disease.

^  Saccade accuracy often seems to be hypometric for reflexive saccades but has

been little studied in the antisaccade task.

-$■ Inhibition errors occur frequently during antisaccade tasks, apparently due to

failure in suppression of the VGR. This is evident in AD patients of mild 

severity.

*$■ Understanding of the antisaccade task is demonstrated readily in mild AD by

the generation of corrected errors. However, a large proportion of errors remain 

unorrected error, therefore, corrected error performance can be construed as a 

measure of self-monitoring capacity.

4" Corrected error (secondary corrective saccade) saccade latency is found to be

prolonged in AD indicating greater processing cost, as measured by the inter- 

saccadic interval (turn around time).

^  AD severity seems to be related to working memory function.

^  AD is associated with attentional deficits early on in the course of the disease.
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2.7 Plan of Research Investigations, Rationale and Hypotheses

As mentioned in Section 1.5.2.2.1, deficits of working memory, attention, inhibitory 

control and other components of executive function, such as response-monitoring (the ability to 

self-monitor actions and error correction), planning and carry out dual concurrent tasks, occur 

early in the course of AD. The primary area of interest for this thesis was to investigate these 

aspects of cognition by using horizontal saccadic eye movement paradigms and 

neuropsychological assessment. Furthermore, the main aim was to evaluate measures derived 

from these methods for their diagnostic utility. The study monitored patients with mild 

dementia in an attempt to plot the trajectory of disease progression over-time and therefore, 

includes a longitudinal chapter. In addition to this, the thesis endeavours to provide 

theoretically important contributions to the understanding of cognitive and eye movement 

deficits in AD based on the fundamental theoretical constructs. The study explored the 

performance of AD patients in reflexive (involuntary) saccadic eye movement tasks that are 

exogenously stimulated, requiring motor initiation of the VGR only, compared with 

endogenously generated saccades during volitional antisaccade and Go/No-Go tasks that 

require reprocessing time (due to cognitive load of the task) in addition to motor initiation 

time.

The first area of study focused on inhibitory control of prepotent response in AD. For

the antisaccade and Go/No-Go tasks intact inhibitory control is believed to be fundamental to

efficient function during the tasks. In Study I (Chapter 3), error and latency analyses were

conducted on the experimental population and compared with neuropsychological assessments,

in an attempt to ascertain the role of the components of inhibition, volition and working

memory resources. Various studies in the past have found antisaccade error rates to be

correlated with MMSE scores and somewhat less consistently, reflexive saccade latency to be

correlated with cognitive measures. The present study also examined relationships between

inhibitory errors and clinical rating scale scores (MMSE and ADAS cog. scores) and
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additionally, looked at relationships between antisaccade errors and tests that have a working 

memory component (in particular: Trail Making; Digit Span reverse; Spatial Span reverse). 

The specific hypothesis for this study was that AD patients will demonstrate significant 

antisaccade (error rate) and Go/No-Go (error rate) impairments, compared with relatively 

intact reflexive saccade performance.

The second study (Chapter 4) investigates an area that has received little attention in 

AD eye movement research, the fixation offset effect (FOE). AD patients were tested on both 

reflexive and antisaccade eye movement paradigms, with the aim of investigating the putative 

attentional disengagement deficit in AD. The FOE for reflexive saccades, is believed to be 

largely the result of activity in the superior colliculus, which is supposed to be unaffected by 

AD. However, AD patients have been found to present with a disengagement deficit from an 

attended stimulus, when required to disengage the attended stimulus and attend an alternative 

stimulus. Therefore, the main hypothesis for Study II was that whilst saccade latency for AD 

patients may be prolonged, AD patients should present with an FOE of greater magnitude than 

that of controls. For the antisaccade paradigm, it was expected that the FOE for AD patients 

would be significantly attenuated due to the reprocessing costs involved for the antisaccade 

paradigm, causing any benefit derived from the gap task to be lost.

The analyses in Study III (Chapter 5) encompassed age and disease effects by including 

data sets from young controls (YC) and Parkinson’s disease (PD) patients. The investigations 

conducted in Studies I and II were analysed in the light of findings from the YCs and PD 

patients. ADs should produce more uncorrected errors in voluntary saccade tasks than all other 

groups. The main hypothesis for this study was that AD patients would produce significantly 

higher uncorrected error rates on the antisaccade and Go/No-Go tasks compared to YCs, ECs 

and PD patients. The crucial factor here is the ability to self-monitor (and produce a corrective 

saccade when the VGR is activated in error). An important question was whether the VGR
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would be suppressed in the first instance significantly more by PD patients than AD patients, 

as the results from previous studies are somewhat inconsistent.

No study to date has examined the effects of acetylcholinesterase medication on 

saccadic eye movements in AD6. In the dementia groups under study in the present thesis, a 

small number of patients were not taking medication of AChEIs at the time of testing. 

Therefore, although somewhat limited, medicated and non-medicated performance on the 

aforementioned factors primarily inhibitory control and also attentional disengagement can be 

assessed and related to clinical rating scale scores. The main hypothesis for Study IV (Chapter 

6) was that AD patients taking medication of the new generation of AChEIs would produce 

significantly better performance than the AD patient group who were not taking AChEIs.

Study V (Chapter 7) examined longitudinal data gathered from AD patients who were 

able to return over four experimental sessions, with an inter-test interval of six months. 

Review evidence suggests that only one previous study has examined AD over time, the study 

discussed in Chapter 1, Section 1.6.3.1 by Bylsma et al. (1995). In this study Bylsma et al. 

(1995) found that saccadic eye movements were significantly prolonged compared with 

controls at baseline, but did not deteriorate significantly more than controls over time (as 

compared with performance on a fixation task which was found to deteriorate over time). 

However, Bylsma et al. (1995) used a predictable visual stimulus for their study and as 

discussed in Chapter 1, it is unpredictable reflexive saccade paradigms that have been found to 

produce the most consistent results revealing saccadic impairment in AD, most prominently so 

for latency and amplitude. Moreover, no study to date has investigated inhibitory control, 

using voluntary saccade tasks (antisaccade and Go/No-Go), over time. Therefore, Study V 

investigated these areas over longitudinal repeated measures, to include factors that include 

saccade latency, amplitude and error measurement, in an attempt to find a measure that plots 

the progression of disease over time. Of particular interest, is the analysis of self-monitoring

6 Abel et al. (2002) tested AD patients who were taking medication of tacrine an acetylcholinesterase inhibitor (anti-dementia drug), but this 
study did not include comparison group o f  AD patients without medication.
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capacity over time for AD patients compared with normal ageing. For this study the main 

hypothesis was that inhibitory control, indicated by the number of errors generated in the 

antisaccade task would be found to deteriorate significantly over time, compared with controls. 

It was hypothesised that uncorrected errors would increase over time as inhibitory control 

becomes further impaired and that the ability to correct errors would be reduced over time (as 

to whether the clinical rating scales detect the same change over time was also examined). 

Furthermore, investigation of Go/No-Go tasks compared with antisaccade tasks should show 

significantly more errors in Go/No-Go tasks both within-groups and between-groups over time, 

as the Go/No-Go task is more demanding of cognitive resources. Additionally, as the 

attentional disengagement deficit becomes more pronounced in the AD patients over time, then 

magnitude of the FOE should become significantly greater for AD patients in the reflexive 

saccade paradigm. A further hypothesis, was that the additional reprocessing time cost induced 

by the antisaccade tasks (in addition to motor initiation time costs), as opposed to the motor 

initiation time for reflexive saccade tasks, should become prolonged over time compared to 

controls, demonstrating a processing deficit for AD over time.

In Study VI (Chapter 8), the neuropsychological assessments outlined in Section 2.5 

were compared with saccadic eye movement data, to investigate specific relationships, 

attempting to highlight certain elements of cognition, in particular attention, working memory 

and inhibitory control. Analyses were conducted to examine closely, the predictive capacity of 

both the neuropsychological assessments compared with the saccadic eye movement measures.

The overall theme of the thesis across each of the studies was to attempt to reveal a 

sensitive indicator for early dementia, more specifically AD, using oculomotor markers and 

comparing these with cognitive abnormalities. This was done using the antisaccade task (in 

particular the error rate) and other inhibition task (error rate) measures, against reflexive 

saccade tasks which are generally viewed as control conditions requiring only motor initiation 

for the task (given the obvious attentional/perceptual components also involved). Thus,
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reflexive tasks are hypothesised to cause few saccadic errors, whereas previous research 

investigating saccadic latency and amplitude in these tasks has produced inconsistent findings. 

It may be that any impairment of reflexive saccades, relative to voluntary saccade tasks is 

found to be only marginal or to deteriorate at a slower rate.

2.8 Chapter Summary

This chapter has introduced the methodology that is used for the thesis. Firstly, the 

recruitment methods and criteria for the participant population was discussed, emphasising that 

dementia patients with very mild dementia were selected, according to DSM IV and NINCDS- 

ADRDA criteria and that good response rates were found for each method employed to recruit 

participants. Attrition rates from the longitudinal study were also discussed and the importance 

of the working relationship and rapport between researcher and participants emphasised. The 

health status of participants was also evaluated, indicating that any illnesses or medications 

presently being taken by participants were not likely to impede performance of the oculomotor 

system on the saccadic eye movement tasks.

The saccadic eye movement recording technique and reasons for selection of the 

infrared scleral reflection system was outlined with the preference for this equipment lying in 

its reliability and non-invasive application. Of paramount concern was the comfort of 

participants during testing, given the nature of the clinical group and the age of participants 

involved in the study. The experimental design involved antisaccade and reflexive saccade 

paradigms (comprising gap and overlap conditions), so as to explore inhibitory control, 

attention disengagement deficit and the FOE, and basic saccadic measures of saccadic latency, 

amplitude, velocity and duration. A range of clinical rating scales and neuropsychological 

assessments were utilised for the study so as to assess dementia severity and cognitive 

performance (frontal lobe function, working memory, psychomotor ability, attention and 

orientation), also providing correlational and comparative measures for evaluation with 

saccadic eye movement measures.
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3 Dysfunction of Inhibitory Control

Chapter Three

Study I: Dysfunction of Inhibitory Control and Cognitive 
Impairment in Alzheimer’s Disease

3.1 Introduction

AD patients have been found to present with a range of cognitive dysfunction, as 

discussed in Chapter 1, Section 1.5.2. A feature that becomes prominent early on in the 

disease process, is an impoverishment of inhibitory control and thus the initiation of 

inappropriate behaviour (see Section 1.5.2.2.4) (O'Neill & Carr, 1999; Rapp et al., 1992). 

Along with the deficit of inhibition, there is a progressive decline in working memory, 

(Baddeley et al., 1986; Belleville, Peretz & Malenfant, 1996; Morris, 1994; Morris & 

Kopelman, 1986) and attention (Parasuraman et al., 1992; Parasuraman & Haxby, 1993; Periy 

& Hodges, 1999; Perry, Watson & Hodges, 2000).

Various studies of eye movements in AD have also detected a dysfunction of inhibitory 

control7. This problem is readily indicated by a deficit in the ability to inhibit the VGR during 

the antisaccade task (see Chapter 1, Section 1.3.2.3.1 & 1.3.2.3.2), compared with healthy 

controls who are able to inhibit the VGR much more efficiently (Abel et al., 2002; Currie et al., 

1991; Fletcher & Sharpe, 1986; Maruff & Currie, 1995; Shafiq-Antonacci et al., 2003). Often, 

this inappropriate activation of the VGR is followed by a spontaneous corrective (secondary) 

saccade that quickly rotates the eye to the opposite hemifield, thereby correcting the error 

(Abel et al., 2002; Everling & Fischer, 1998; Mathalon et al., 2003). Antisaccade error rate in 

AD has been shown by some studies to be related to disease severity (Abel et al., 2002; Currie 

et al., 1991; Mulligan et al., 1996; Shafiq-Antonacci et al., 2003).

 ̂ Although it is unclear as to whether or not the various modes o f inhibition (and deficits) in behavioural control are related.
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Error correction relies on the capacity for self-monitoring behaviour. The ability to 

monitor ongoing behaviour, predict the consequence of action and correct error when 

appropriate are abilities that healthy humans are able to cany out as a matter of routine 

(Blakemore, Rees & Frith, 1998; Menon et al., 2001). Of course, the ability to correct error 

depends on a number of things, including the level of prior knowledge for a given task, task 

complexity, ability to generate an appropriate alternative response to error and being able to 

decide on whether this response is deemed a suitable outcome. For example when problem 

solving, a number of attempts may be necessary before a correct solution is obtained and in 

some tasks error correction may become automated, as rules are developed or learning occurs. 

These abilities are considered by psychological theories which take the view that healthy 

humans maintain an internal representation of the world and that this knowledge base is 

evaluated with intentions for action and corresponding external events (Decety, 1996; 

Jeannerod, 1988). This notion fits very well with the definition of working memory as defined 

in Section 1.1.1.

The ability for error correction during the antisaccade task in AD, specifically the 

investigation of corrected and uncorrected error types has received little attention in eye 

movement research, to date only one study having evaluated this behaviour, revealing the 

proportion of uncorrected errors to be related to dementia severity (Abel et al., 2002). Is the 

ability for self-monitoring and error correction dependent on working memory? How closely 

are these functions related? Given the neural substrates that are believed to be involved in the 

facilitation of working memory (Inoue, Mikami, Ando & Tsukada, 2004; Nyberg et al., 2003; 

Owen et al., 1996a; Petrides, 1994; Rushworth, Hadland, Gaffan & Passingham, 2003) and 

executive control (primarily, the DLPFC and ACC), it can be argued that the cognitive 

components of error response (initial error/correction), selection and decision making are 

inextricably linked with working memory capacity. The antisaccade, Go/No-Go and No-Go 

paradigms, require participants to apply task instructions that invoke higher-order processing
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under executive control, so as to facilitate attentional processing and generate prosaccades 

accordingly. Interference with this behavioural control system through neurodegeneration or 

by doing tasks with a high cognitive load results in error. Therefore, the saccadic variables 

derived from these tasks, referred to in Chapters 1 & 2 (Sections 1.3.3, 2.4.1 & 2.4.2, i.e. 

proportions of: correct saccades, uncorrected errors and corrected errors [as a proportion of 

total valid trials]; see Figure 3.1), provide behavioural measures of inhibitoiy control and 

ability to self-monitor response.

Fixation point (0°)

Target (4°) right hemifield Target amplitude

‘I T 7 ‘

(A)
Correct Eye

(B)
Uncorrected error
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Corrected error
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Figure 3.1 An Illustrative Representation of Responses in the Antisaccade ‘Ga/d Task 
Displaying Temporal and Spatial Characteristics of the Visual Stimulus

(A) Correct: A nti-saccade that w as correctly directed into the opposite i.e. left hemifield.

(B) Uncorrected error: A ‘reflexive’ movem ent takes the eye incorrectly tow ards the visual 
angle of the target. No corrective saccad e  is generated  to correct this error.

(C) Corrected error : The primary movement takes the eye incorrectly towards the target. 
This error is subsequently  followed by a corrective movement to the opposite hemifield.

PSA  = Primary saccad e  amplitude; CSA = Corrective saccad e amplitude; FEP = Final eye position amplitude;
PSL = Primary sa cca d e  latency; CSL = Corrective saccad e latency.

By S. Higham - adapted from figure drawn for Crawford, Higham & e t al. (2005)
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Chapter 1 argued that the cognitive processes involved in working memory, attention 

and inhibitory control are closely related functionally. The fundamental cognitive basis of 

attentional dysfunction in AD is still disputed and the debate surrounding inhibitory control 

generally rests with trying to understand the principal mechanism by which inhibition is 

delivered. For example, in the antisaccade task can the processes simply be thought of in terms 

of signal processing and the timing demands of the task? Are errors the result of inhibitory 

control and self-monitoring deficit, and inhibition a separable component of cognition? Or, is 

inhibition part of attentional control and working memory? Additionally, do inhibition errors 

in the antisaccade task reflect a disturbance of volitional control and thus a dysfunction in the 

ability to endogenously generate saccades?

Several hypotheses have been postulated to account for errors of inhibition in the 

antisaccade task. An early explanation postulated that in order to interrupt the reflexive 

response (VGR) during the antisaccade task, a stop signal was required (Hallett & Adams, 

1980). Hallet and Adams suggested that inhibitory errors occur in healthy human participants, 

when a cancellation signal arrives too late to cancel the reflexive saccade programme and thus, 

prosaccade errors are related to saccade programming time compared with the time taken to 

generate a stop signal. In another study, Reuter and Kathman examined executive function in 

schizophrenia (schizophrenic patients have also been found to have impaired performance - 

error rate - on the antisaccade task) and proposed that errors in the antisaccade task were not 

the result of poor inhibitory control, but due to a deficit in the initiation of antisaccades i.e. 

impairment of volitional control (Reuter & Kathmann, 2004). They suggest that the exogenous 

signal for reflexive saccade generation is strong, whereas the endogenous transformation of 

task instructions into an oculomotor signal to generate an antisaccade, if too weak causes error. 

Furthermore, Reuter & Kathmann (2004) posit that the exogenous and endogenous signals thus 

compete (in strength), often ending with the stronger exogenous signal winning, resulting in 

directional errors in the antisaccade task. In summary, Reuter & Kathmann (2004) concluded
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that errors of inhibition on the antisaccade task arise from a deficient volitional control system, 

and not an isolated inhibitory mechanism. This model is not unlike the working memory 

framework (see below), where prepotent response would be the strong exogenous signal and 

the weak endogenous signal the result of insufficiently activated working memory.

Many studies has found evidence to suggest that the error rate in the antisaccade task is 

a reflection of the efficiency by which working memory is activated (Hutton, Joyce, Barnes & 

Kennard, 2002; Kimberg & Farah, 1993, 2000; Mitchell, Macrae & Gilchrist, 2002; Petrides, 

1994, 1996; Roberts et al., 1994; Stuyven et al., 2000; Walker et al., 1998).

Kimberg and Farah designed a computational model based on the efficiency of working 

memory function (Kimberg & Farah, 1993, 2000). In the traditional model of working 

memory by Baddeley (see Figure 2) the central executive (which Baddeley referred to as an 

attentional controller, Baddeley, 1986) was responsible for the manipulation of information

VISUOSPATIAL
SKETCHPAD

PHONOLOGICAL
LOOP

Spatial and/or visual 
rehearsal system; limited 

capacity; the inner eye

Verbal rehearsal system; 
time-based capacity; the 

inner voice

CENTRAL EXECUTIVE
j  r I* fi m II i ii tI I Mil i f i t 1 f fm 
Limited capacity; modality free;

attentional system

KNOWLEDGE BASE

Figure 3.2 An Illustration of the  Working M em ory Model
[simplified adaptation from Baddeley & Hitch (1974)]
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(i.e. the execution of control) and a storage component responsible for maintaining information 

online in an activated state. According to Baddeley’s model, loss of central executive control 

is demonstrated, for example, in dual tasks when concurrent loads are placed on working 

memory. However, the model provided by Kimberg and Farah emphasises a weakened 

influence of working memory rather than the diminution of a central executive.

Kimberg and Farah’s model used production-rules systems to model performance on 

the antisaccade task. The level of production rule activation corresponds with competing 

responses in a task, determining response selection. There are four sources of activation in the 

model: 1) working memory activation, 2) priming activation, 3) baseline activation, and 4) 

noise activation. The simulation model run by Kimberg and Farah gave reflexive saccades 

(prosaccades) higher baseline activation than antisaccades and simulated working memory to 

function at sub-optimal level, as would be the case in a dual task scenario (where working 

memory load is increased by concurrent tasks). Crucially, the reduction in working memory 

capacity was achieved by decreasing the amount of activation available to working memory. 

The model was found to have the effect of significantly increasing the number of direction 

errors in the antisaccade task, whereas virtually no errors were found in the reflexive 

(prosaccade) saccade task, due to the high baseline activation setting. Kimberg and Farah 

implicated human lesion studies (Guitton et al., 1985) and the study of infant behaviour 

(Diamond, 1990), which link the prefrontal cortex to working memory function and inhibitory 

control. They concluded that poor inhibitory control is not the result of a specific inhibitory 

mechanism, but is a function of working memory efficiency. Importantly, they suggest that the 

model simulates the weakening of connections between the prefrontal cortex and posterior 

areas of the brain, which results in disinhibited behaviour and antisaccade errors (as observed 

in patients with frontal lobe damage).

Roberts et al. (1994) presented a complimentary explanation to that of Kimberg and 

Farah, for the involvement of working memory in the inhibition of prepotent response and
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ultimately, successful completion of the antisaccade task. Roberts et al. observed that tasks 

such as the Wisconsin Card Sorting Task, Tower of Hanoi Task, Stroop task and antisaccade 

task all require executive function and suppression of a prepotent response. The prepotent 

response can be either incorporated into the task or acquired during the task. In order to carry 

out the task correctly, a participant must be able to retain information for a short period of time, 

avoid commission of the prepotent response and initiate the volitional action required by the 

task instruction. Roberts et al. (1994) argued that working memory processes have to be 

appropriately activated and maintained in order to enable the inhibition of prepotent responses 

by default, i.e. if the antisaccade response is actively maintained in working memory then a 

reflexive saccade to the target will be automatically inhibited. In summary, Roberts et al. 

hypothesised that if a task goal is insufficiently activated in working memory, due the demands 

on working memory induced by a secondary task (i.e. a task that requires working memory 

resources to run online concurrently with the antisaccade task), then errors of prepotent 

response (reflexive responding) will be increased due to a difficulty in preparing the correct 

response.

Roberts et al. conducted a dual task antisaccade/arithmetic experiment where the level 

of working memory load was varied during different arithmetic task conditions. Increasing 

working memory load by a more demanding secondary arithmetic task was found to result in 

directional errors (lack of inhibition of the prepotent response) in the antisaccade task, similar 

to the directional errors reported by Guitton and colleagues in patients with lesions of the 

frontal lobes (Guitton et al., 1985). Thus, Roberts et al. (1994) concluded that inhibition errors 

increase on the antisaccade task (and other tasks involving inhibition of prepotent response) if 

working memory load is increased to a point where the antisaccade task goal is insufficiently 

activated in working memory and thus unable to intervene in response preparation. The 

Roberts et al. (1994) approach is appealing as it accounts for varying levels of both pre­

potency and working memory load and because of responses that have been found to be
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correlates of working memory demonstrated in humans and primates (Goldman-Rakic, 1987; 

Owen et al., 1996a; Petrides, Alivisatos, Evans & Meyer, 1993). Additionally, as already 

mentioned lesion evidence also supports the working memory hypothesis (Owen, Morris, 

Sahakian, Polkey & Robbins, 1996b; Walker et al., 1998). Thus, there is general agreement 

that prefrontal tasks gauge response inhibition and working memory, but the nature of the 

principal processes underlying this cognitive system are a source of debate. What is the 

relationship between working memory and inhibition? Do they interact or do they operate as 

autonomous systems? According to the interactive framework by Roberts et al. (1994), 

inhibition of prepotent response occurs as a by-product of successful activation of task goals in 

working memory. Thus when working memory is at functioning efficiently, inhibition of 

prepotent response occurs automatically. Increasing demands on working memory decreases 

inhibitory control.

The concept of working memory is a helpful theoretical construct as it emphasizes an 

active store which can hold information (i.e. in short-term memory) for online processing and 

manipulation. Thus, working memory can be seen as a centre of consciousness, where the 

planning of action, such as that required in voluntary saccade tasks (e.g. antisaccade and 

Go/No-Go tasks) and error correction in problem solving, is coordinated. However, in the 

present thesis the traditional model of working memory by Baddeley (Baddeley, 1986, 1990; 

Baddeley, 1998; Baddeley & Hitch, 1974) is superseded by a contemporary connectionist 

theory of cognitive control that attempts to explain the mechanisms that facilitate executive 

control via prefrontal cortex function.

Miller and Cohen’s integrative theory of prefrontal cortex function is useful as it aims 

to unify previous models of attentional control and working memory, and stresses the 

significance of prefrontal cortex function in these processes. Crucially, the theory emphasises 

the importance of the prefrontal cortex in the active maintenance of task goals for successful 

cognitive control over intervening distractions (Miller & Cohen, 2001). Miller and Cohen

137



3 Dysfunction of Inhibitory Control

highlight the importance of reciprocal projections between the prefrontal cortex and many 

(posterior) areas of the brain, including sensory and motor systems at both a cortical and sub- 

cortical level, and the implications these have in the differentiation of top-down and bottom-up 

processing. In brief, the prefrontal cortex is associated with the top-down processing when 

behaviour must be guided by internal states to achieve goals (e.g. the antisaccade task and 

preparation of the correct response). On the other hand the bottom-up control of behaviour is 

enabled by “hardwired” pathways that rapidly facilitate well known behaviours automatically; 

for example in response to external events, such as the random appearance of peripheral visual 

stimuli in the reflexive saccade task.

Fundamental to the theory is the notion that goal-directed behaviour relies on the 

capacity to select a weak task-relevant response, against a competing stronger task-irrelevant 

(prepotent) response. This can be exemplified by the Stroop task (Stroop, 1935), especially 

when participants are required to name the colour of a written word with conflicting stimulus 

components (e.g. the word BLUE presented in the colour red). Healthy participants generally 

produce longer response times and higher errors in this condition, and patients with frontal lobe 

lesions have great difficulty with the task (Cohen & Servan-Schreiber, 1992). This is due to 

the strong prepotency to automatically read the word (e.g. BLUE), which competes with the 

weaker task goal of naming the colour in which the word is written (e.g. red). Miller and 

Cohen suggest that the functions of goal-directed behaviour, selective attention, behavioural 

inhibition and working memory (implicated in the Stroop task) all rely on the active 

representation of task goals and rules which are enabled by patterns of activity in the prefrontal 

cortex. The maintenance of this prefrontal cortex activity orchestrates processing in task 

relevant pathways in more posterior and/or sub-cortical areas of the brain, according to the 

demands of a given task. This top-down signalling favours weak task-relevant stimulus 

response mappings when they are in competition with stronger task-irrelevant mappings. 

Therefore, behaviour is manifest as a result of competitive processing between different neural
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pathways carrying different sources of information, the winning behaviours being those with 

the strongest activity. For the representation of a task goal to have a biasing influence over 

automated behaviours (e.g. reflexive saccades), it must remain activated throughout a task. 

Previous research with primates on a visual working memory task revealed that the prefrontal 

cortex has the ability to sustain activity during a delay task whilst visual distractors are 

presented (Miller, Erickson & Desimone, 1996).

Miller and Cohen’s integrative theory of prefrontal cortex function also addresses the 

control of attention and inhibition. Drawing on the biased competition model of Desimone and 

Duncan (1995), selective attention and inhibition are viewed as two sides of the same coin. 

Thus, Miller and Cohen propose that selective attention and inhibition are part of a single basic 

mechanism of cognitive control, commanded by the biasing effects prefrontal cortex activity 

on task-relevant pathways. Therefore, if task rules are sufficiently activated, representations in 

the prefrontal cortex will select for the desired task goal and attention will be successfully 

allocated as a result of inhibition by local competition of conflicting representations (i.e. via 

areas other than prefrontal cortex). In summary, attention results from biasing competition in 

support of task-relevant information, and inhibition is the consequence of the attentional 

biasing against the irrelevant information.

A related view of executive function which is openly supportive of Miller and Cohen’s 

theory is offered by the goal activation approach of Nieuwenhuis and colleagues, with direct 

reference to the antisaccade task (Nieuwenhuis et al., 2004). As discussed in the previous 

paragraphs, evidence suggests that goal activation is central to executive function and that the 

prefrontal cortex maintains a representation of task goals. Nieuwenhuis et al. noted that 

inconsistent performance on tasks that measure executive function may be the result of a 

failure to focus attention appropriately. They presented evidence from previous research, 

suggesting that many psychological tasks share a common reliance on goal activation, a 

process where task requirements are manipulated into suitable goals and sustained over time
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whilst competing with alternative (prepotent) response tendencies. Central to their approach, 

they adopted the concept of goal neglect which has been used previously to explain failures on 

tasks purported to require executive function (De Jong, Berendsen & Cools, 1999; Duncan, 

1995). Goal neglect occurs when control over behaviour is apparently lost, and has been 

observed predominantly in tasks that involve conflict or prospective memory. Although task 

instructions are understood and remembered, there is a failure to translate these requirements 

into actively maintained goals. Importantly, Nieuwenhuis et al. suggested that failures are 

most likely when attention is required to perform multiple task demands. Nieuwenhuis et al. 

argued that the antisaccade task is a conflict task due to the competition between the prepotent 

reflexive saccade response and the endogenously generated saccade. In summary, 

experimentation was carried out on healthy young and elderly participants and with reference 

to two versions of the antisaccade task8 (one of these cited from an earlier study), both of 

which required a non-speeded two-choice target response to a stimulus (a face: happy or sad) 

which appeared in a location opposite (antisaccade) to an initial cue and with a range of 

stimulus onset asynchronies (SOA; from 100 -  1500 msecs.) randomised across trials. In one 

of the versions of the task the instructions included an explicit request to make a saccade away 

from the initial cue (Nieuwenhuis, Ridderinkhof, de Jong, Kok & van der Molen, 2000), 

whereas in the other form of the task no saccade was specifically requested, instead subjects 

being instructed to make full use of the cue to improve performance on the target response 

(Nieuwenhuis et al., 2004). Importantly, in the latter version of the task the need to generate a 

saccade was implicit, simply induced as a consequence of the (impending) non-speeded two- 

choice target face (and due to having seen a visual animation of the task requirements prior to 

practice) and therefore, the generation of a saccade was subordinate to the target discrimination 

component. Interestingly, the main findings from these experiments were that when no explicit 

instruction was given to generate an antisaccade, elderly participants required more time at

8 A prosaccade task was also conducted and used as a control condition.
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each SOA than young control participants to suppress the prepotent response created by the 

cue9. A significant proportion of elderly participants’ trials remained uncorrected, which 

demonstrated a regular failure to anticipate target appearance, despite the longer SOAs. In 

contrast, this was not found to be the case for the version of task (from a previously published 

study) in which an explicit instruction to make an antisaccade was given. In this version of the 

task, ‘prompting’ participants to make saccades appeared to improve elderly control 

antisaccade performance. Interestingly, the speed with which elderly controls were able to 

initiate saccades (latency) was unaffected by saccade prompting. These results led 

Nieuwenhuis et al. to conclude that healthy elderly participants (and also first-episode 

schizophrenic patients, but not patients with obsessive compulsive disorder) are prone to goal 

neglect in the antisaccade task and they note that multiple task demands can increase goal 

neglect, manifesting as increased error rate. Furthermore, they suggest that task instructions, 

task features and concurrent task demands mediate the goal activation process and conclude 

that these three key factors modulate attention.

The above approaches to inhibition in the antisaccade task (Kimberg and Farah, 1993, 

2000; Roberts et al., 1994; Reuter and Kathmann, 2004; and Nieuwenhuis et al. 2004) all have 

one main feature in common and that is the level of goal activation allied to a concept of 

working memory function. This is important as it is directly related to the ability to focus 

attention on task demands, particularly when concurrent manipulation of tasks is required. 

Therefore, it is plausible to suggest that these accounts are useful in addressing ‘why' inhibition 

errors may occur in the antisaccade task. Additionally, Massen (2004) examined a hypothesis 

that is arguably useful in explaining ‘how’ inhibition errors occur in the antisaccade task. 

Massen tested a hypothesis for the parallel programming of exogenous and endogenous 

components in the antisaccade task. The main idea behind Massen’s ‘race’ hypothesis is that 

reflexive saccades — the exogenous component — are automatically programmed in response to

9 Repeated with schizophrenic patients the effect was found to be even more pronounced, but this was not the case 
for patients with obsessive compulsive disorder who were found not to differ from healthy young participants.
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the appearance of a peripheral stimulus. This ‘hardwired’ response corresponds with the 

bottom-up processing discussed earlier in the account of Miller and Cohen’s (2001) theory of 

prefrontal cortex function. An endogenous component is also concurrently generated — the 

voluntary antisaccade — which competes with the exogenous saccade programme. Massen 

manipulated the processing rate for the two components to test the prediction that slowing the 

exogenous component would result in less inhibition errors, whereas a slowing of the 

endogenous component should increase the inhibition error rate. In summary, the most 

relevant findings (e.g. Experiment 1: modulating the probability reflexive saccade and 

antisaccade trials) were that increased antisaccade errors occurred when endogenous saccade 

generation was slowed because antisaccade trials were unexpected, when mixed with a high 

probability for reflexive saccade trials, whereas reflexive saccade generation remained 

unaffected. In contrast, antisaccade errors were significantly lower when the probability of 

antisaccade and reflexive saccade trials was equivalent. Furthermore, Massen also found that 

corrected error saccades, which are often found to follow inappropriate reflexive saccades 

spontaneously in the antisaccade task, were of short latency (mean 124.3 msecs.), i.e. they 

were very fast. In fact Massen found that a proportion of the corrective saccades (35%) were 

less than 80 msecs. These findings support the idea that the reflexive saccade programme and 

the endogenous antisaccade programme are generated in parallel, as the correction time is 

simply too short to be the result of a sequential process of saccade generation.

Can the aforementioned models and hypotheses be reconciled? It is plausible to 

suggest that the parallel ‘race’ between exogenous and endogenous components in the 

antisaccade task is the basic mechanism for inhibition in the antisaccade task and can explain 

how, antisaccade errors occur at a fundamental level. This fits very neatly with why 

antisaccade errors may occur when goals are insufficiently activated in working memory, 

resulting in a lack of attentional processing. Thus, an error occurs when the exogenous parallel 

saccade programme wins the race against the endogenous saccade programme, which can
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happen when demand on working memory resources is high, as when taxed by a secondary 

task (i.e. the dual task paradigm), causing the task goal to be insufficiently activated and 

consequently poor attentional processing — multiple task demands ultimately result in a failure 

of attention.

It is possible to test the Roberts et al. (1994) theory by applying it to a clinical sample 

that have dysfunctional inhibitory control. Given that one of the main cognitive features of AD 

is working memory impairment, the voluntary saccade tasks mentioned earlier may reflect this 

deficit via the varying degrees of task complexity across the voluntary saccade tasks i.e. that 

oculomotor tasks make specific demands on working memory processes. Table 3.1 applies the 

approach used by Roberts et al. (1994) to the present study, rating voluntary saccade tasks and 

psychometric tasks that require working memory as to their pre-potency and working memory 

demand. The voluntary saccade tasks were preceded by blocks of reflexive trials (see Chapter 

2, Section 2.3.3.1 and Appendix 11), so as to optimise the pre-potency of the voluntary tasks 

that followed.

Table 3.1 Prepotent Responses, Alternative Responses and Working Memory Demands 
for the  Voluntary Saccade Tasks and Working Memory Tasks in the Study I, Following the 
Roberts, Hager and Heron Framework

Task
Prepotent
response

Alternate
Response

Working
Memory
demand

Prepotent/ Working 
memory

No-Go S accade to target Ignore Target Keep instruction 
active

Working memory: Low 
Pre-potency: High

Antisaccade S accade to target Saccade to 
opposite side

Keep instruction 
active apply current 
context

Working memory: m oderate 
Pre-potency: High

Go/No-Go Saccade to target Go: Prosaccade 
No-Go: Inhibit

Keep instruction 
active apply current 
context

Working memory: High 
Pre-potency: High

Trail Making B Don’t alternate 
sequence

Alternate
number/letter
sequence

Keep last item 
active and apply 
current context, 
alternate sequence

Working memory: High 
Pre-potency: Moderate

Digits Span 
Reverse

Repeat forward 
sequence

Reverse sequence Keep forward 
sequence active, 
reverse the 
sequence

Working memory: High 
Pre-potency: Moderate

Spatial Span 
Reverse

R epeat forward 
sequence

Reverse sequence Keep forward 
sequence active, 
reverse the 
sequence

Working memory: High 
Pre-potency: Moderate

Adapted and modified from Roberts, Hager & Heron (1994) 143
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The instructions for the No-Go task are to maintain gaze at the central target location 

and ignore peripheral targets. The simple instructional set for the No-Go task (relative to the 

antisaccade and Go/No-Go tasks) is reflected in Table 3.1 as a low demand on working 

memory, although pre-potency is high due to the unpredictable characteristics of the peripheral 

targets. Therefore, as this simple fixation task places less demand on working memory (as 

suggested by Walker et al., 1998) AD patients should perform quite well, but make some level 

of inhibitory error due to the high pre-potency of the task.

The working memory demand of the antisaccade task is classed as moderate, as the 

participant has to maintain inhibitory set throughout the trial and produce a single response 

type to the stimulus. Pre-potency is again high therefore, AD patients should find this task 

somewhat more difficult as it is postulated that they have working memory deficit thus there 

ability to carry out the task should be depleted. Thus, executive control of attention may be 

compromised, resulting in the production of erroneous VGR responses.

For the Go/No-Go task working memory demand is high and as can be seen by the 

alternate response column the task instruction is more complex than that of the antisaccade 

task. In this task the response is contingent upon the direction of the stimulus and the task 

requires the constant switching of set, between inhibition and activation, functions that are very 

demanding of attentional resources and working memory. Additionally, pre-potency is high 

for the Go/No-Go task which could result in very high inhibitory error rates, as executive 

function (which is dysfunctional in AD patients) is taxed to such a high level that working 

memory can no longer intervene to facilitate efficient attentional control. As the task is 

insufficiently activated in working, this results in failure to inhibit the VGR. Referring to 

Table 3.1 again, the tasks that require manipulation by working memory (i.e. Trail Making 

Form B; Digit Span Reverse; and Spatial Span Reverse) are allocated a high working memory 

component and only moderate pre-potency. Therefore, performance on these tasks that 

require prefrontal activation for working memory and attention may be correlated with
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performance on the voluntary saccade tasks that require higher levels o f working memory. 

Other researchers have employed oculomotor tasks that varied in cognitive demand, so as to 

examine possible links between inhibitory control and working memory (Hutton et a l, 2002; 

Walker et al., 1998). Hutton et al. (2002)10 examined inhibitory control in schizophrenic 

patients, and revealed that inhibitory errors increased as cognitive demands increased, placing 

higher cognitive load on working memory resources. However, the study did not conduct any 

psychometric tests that require working memory, as a method of investigating hypothesized 

links between inhibitory control and working memory. Walker et al. (1998) conducted a case 

study on a patient with prefrontal cortex damage, also using a range of tasks that varied in 

working memory demand. This study also found that inhibitory errors increased, as cognitive 

demand of the oculomotor tasks increased, and attributed this to a spatial working memory 

deficit due to the nature of the patient’s lesion in the prefrontal cortex.

For the present study, in addition to examining inhibition errors as a whole, the 

investigation of self-monitoring ability in AD patients was examined by analyzing corrected 

errors and uncorrected error rates (the component parts of inhibitory error) and relating these to 

working memory tasks. Of particular interest here, is the uncorrected error rate, which a 

previous study reported as being high for AD patients (Abel et al., 2002). There are a number 

of possible arguments that could possibly explain the high rate of uncorrected errors for AD 

patients. Firstly, uncorrected errors may result from a disturbance of pathways in the frontal 

lobes of the brain, that are responsible for self-monitoring and error correction. A second 

explanation could be that due depletion of working memory resources the task goal is 

insufficiently activated in working memory resulting in goal neglect. Thirdly, AD patients 

may have great difficulty in generating a saccade to an empty location, when a visual stimulus 

is already fixated, due to a fixation disengagement deficit.

10 Hutton et al. (2002) used three tests that were used in the Walker et al. (1998) study.
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Therefore, the purpose of this study was to examine the underlying cause of inhibitory 

impairment in AD, by investigating working memory as the principal cause of this deficit and 

also exploring the capacity for error correction.

3.1.1 Aims

The aims of the present study were, to investigate deficits of inhibitory control and self- 

monitoring in dementia of the Alzheimer’s type (AD) at stage one (baseline) in the longitudinal 

project and establish which measures or analyses are most sensitive in the detection of 

dementia. The study involved a range of saccadic eye movement paradigms varying in the 

degree of difficulty (Table 3.1), thus placing different demands on working memory resources. 

Therefore, the first analysis generated the factor: voluntary saccade task to compare the 

proportions of inhibition errors committed for each voluntary saccade task (No-Go; antisaccade 

and Go/No-Go) between and within-groups. Relationships between the saccadic (and 

behavioural) measures on these tasks and cognitive test scores, primarily clinical rating scales 

(SMMSE and ADAS cog.; see Sections 2.5.1 and 2.5.2 respectively) and neuropsychological 

assessments (Trail Making; Digit Span; and Spatial Span; see Sections 2.5.6, 2.5.7 & 2.5.11 

respectively) that require working memory and frontal lobe function (executive control) were 

also investigated, in an attempt to link working memory deficit in AD, with inhibition errors. 

This study also aimed to replicate previous research, that has examined corrected and 

uncorrected errors in AD (Abel et al., 2002) and this was done by generating the factor: 

correctness o f performance. The overall theme of this study was to describe the nature of 

inhibitory control in AD, its relationship to dementia severity and to establish whether the 

underlying cause of inhibitory error in AD is due to a working memory deficit.

A notable problem with the study by Abel et al. (2002) was that the AD group were on 

medication of acetylcholinesterase inhibitors. Thus, drug effects could potentially have 

affected the outcome. Additionally, the study did not compare the inhibitory errors in the
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antisaccade task, to any tasks without an inhibitory component. The present thesis examines 

drug effects in a later chapter (Study IV, Chapter 6) and as mentioned above, includes a range 

of different saccadic conditions.

3.1 .2  Hypotheses

The specific hypotheses for this study were: 1) Due to inhibitory deficit brought about 

by working memory dysfunction, AD patients will demonstrate significant antisaccade, No-Go 

and Go/No-Go impairments (error rate), in contrast with relatively intact reflexive saccade 

performance and compared with healthy controls. 2) Inhibitory error will be significantly 

related to dementia severity, as working memory deficit advances with disease progression. 3) 

Moreover, inhibitory errors from the saccadic tasks which have a higher cognitive load, 

therefore, using more working memory resources, will be significantly greater than for those 

tasks which cany less cognitive load both between-groups and within the patient group. 

Alternatively, in a task where prepotent response is very high (No-Go task), placing relatively 

low demands on working memory, errors should also be significantly higher in the dementia 

group but reduced compared to saccadic tasks that require more working memory resources. 4) 

These significant cognitive loadings will be significantly correlated in the AD group, with the 

neuropsychological assessments that require working memory, due to working memory deficits 

in AD.

A further line of inquiry for this chapter was to examine the ability of dementia patients 

to self-monitor performance during the antisaccade task. Therefore, comparisons were made 

between-groups, on the level of correct antisaccade commissioning and in the capacity for 

correction in the event of inhibitory error on the factor correctness of performance. 5) The 

specific hypothesis for this section was that AD patients would commit significantly more 

uncorrected errors of inhibition than the EC group and furthermore, that uncorrected error will 

be correlated with dementia severity and related to performance on neuropsychological
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assessments that also place high demands on working memory resources. 6) However, as the 

AD group were in the early stages of dementia it was also hypothesised that a significantly 

higher proportion of corrected errors (inhibition error corrections) would be evident for this 

group (demonstrating task understanding), as compared with the EC group who should have 

less need for error correction due to a lower error rate in the first place. Trend analysis should 

substantiate these profiles. 7) The inter-saccadic interval for corrected errors (secondary 

saccade) should be significantly prolonged for the AD group, compared with the EC group, 

due to a disturbance in error processing which relies on executive function, the operation of 

which is compromised with working memory deficit.

3.2 Methods

3.2.1 Participants

The dementia patients for this study were volunteers from the AD Research Project 

at Lytham Hospital Memory Clinic, United Kingdom. Elderly Control (EC) participants 

were volunteers from the local community of Lytham. The methods for recruitment, 

dementia diagnosis criteria, exclusion criteria and health status for the experimental 

population, were discussed in Chapter 2, Section 2.1. All participants were right-handed.

The Dementia Patient group (N=28; age range = 68-88 years; mean = 76.5; SD = 

4.7; male, n=19; female n=9) comprised two sub-groups, AD patients (N=17; age range = 

70-88; mean = 76.9; SD = 4.9; male n=12; female n=5) and Dementia of other types [DOT] 

(N =ll; age range = 68-81years; mean = 75.8; SD = 4.4; male n=7; female n=4). The 

composition of the EC group (N=33; age range = 58-85 years ; mean = 70.5; SD = 6.0; 

male n=13; female n=20). Clinical rating scale and neuropsychological assessment scores 

for the groups and sub-groups are shown overleaf in Table 3.2.
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Table 3.2 Clinical Rating Scale and Neuropsychological A ssessment Scores

Groups Dementia sub-groups
Elderly control Dementia Patients Alzheimer's disease Other dementia
Mean SD N Mean SD N Mean SD N Mean SD N

SMMSE 29.09 1.13 33 22.39 5.78 28 21.35 4.72 17 24.00 7.06 11
EADAS 7.79 2.46 33 21.39 12.06 28 22.76 9.35 17 19.27 15.65 11
Trails A 41.50 12.59 33 73.92 34.94 26 77.67 33.16 16 67.91 38.64 10
Trails B 80.36 26.77 33 142.18 62.25 19 150.34 63.44 11 130.98 62.97 8
DSF 10.30 2.28 33 8.75 2.20 28 8.65 2.23 17 8.91 2.26 11
DSR 7.39 2.36 33 5.39 2.79 28 5.06 2.46 17 5.91 3.30 11
SSF 7.45 1.80 33 5.36 2.08 28 5.53 2.07 17 5.09 2.17 11
SSR 6.73 1.18 33 4.32 2.06 28 4.24 2.11 17 4.45 2.07 11
DSF=Digit Span Forward; DSR = Digit Span Reverse; SSF=Spatial Span Forwards; SSR=Spatial Span Reverse 
Trails score = time measured in seconds

3.2 .2  A ssessm ent of Saccadic Eye Movements

All participants used the equipment, task protocol and experimental procedures 

described in Chapter 2 (Section 2.3), which involved the reflexive saccade gap task; No-Go 

and Go/No-Go paradigms; and antisaccade gap task with a central fixation point displayed at 

0° and target at ±4° in the horizontal plane, presented randomly by direction.

The reflexive task were presented first, in order to enhance or maximize the 

prepotent response and also to avoid potential carry-over effects from voluntary saccade 

paradigms (Roberts et al., 1994). Additionally, as discussed earlier, dementia patients have 

been found to be more compliant when tasks which are less cognitively taxing are 

presented first (Perry & Hodges, 1999). However, as so few errors were made by each 

group in the reflexive saccade gap task (see Table 3.3) they were not included in any of the 

analyses.

3.2 .3  Statistical Analysis

Statistical analyses were carried out using SPSS version 11.5 (SPSS Inc., Chicago 111). 

Firstly, Dementia Patients (DP) were assessed as a group compared with ECs and then the 

analysis extended to examine the dementia sub-groups (i.e. ADs and Dementia of other types). 

No laterality effects were found for any variables therefore data from left and right hemifield
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were collapsed. Normality of oculomotor variables was assessed using the skewness index, 

and variables transformed using square root or square, for positive (>1) or negative (<-l) 

skewness respectively (Tabachnick & Fidell, 1996). Analyses were conducted using univariate 

analysis of variance (ANOVA), analysis of covariance (ANCOVA) or repeated measures 

mixed between-within ANOVA, trend analysis, Scheffe multiple comparisons (noted for a 

conservative level of correction (Keppel, 1991), p. 173) and pair-wise comparisons (t-test), as 

applicable. For analyses using repeated measures ANOVA, Mauchly’s test was conducted on 

each variable to assess assumptions of sphericity. If assumptions of sphericity were violated, 

the Greenhouse-Geisser epsilon correction of degrees of freedom were used (Jennings, 1987). 

Correlational relationships were investigated using Spearman’s rank order correlation 

coefficient.

3.2.3.1 Effects of Age and Education

The effects of age and education were assessed using Spearman’s rank correlation 

coefficient for age with oculomotor variables. Comparison of age and education between- 

groups was examined using ANCOVA.

3.2.3.2 Group Comparisons of Saccadic Error Rates and Other Analyses

The analysis of group differences on saccadic variable was carried out using a two-factor 

repeated measures ANOVA (factor levels = oculomotor variables; between -groups factor = 

group). Additionally, univariate ANCOVAs were conducted for each oculomotor variable, 

with group as the independent variable (patients versus controls) and oculomotor variable as

the dependent variable (age was included as a covariate). Trend analyses were utilized to

investigate possible trends in specific error types. Multiple comparisons using the Scheffe test 

and within-groups pair-wise comparisons, employing the t-test where used where applicable.
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Effect sizes for oculomotor variables were calculated by applying Cohen’s d  statistic (Cohen, 

1988), using the following formula for between-groups designs:

U  - Mi )
^ (p o o le d )

ui = the mean of group land u2 = the mean of group 2. SD(pooied) = the pooled standard 

deviation of the two groups calculated as follows:

-  i ) S D f  +  ( N h - \ ) S D f

1 Na + Nb- 2

In the above formula, Na is the sample size of group A, along with standard deviation; and Nb 

is the sample size of group B, with standard deviation. Cohen used values of d  to divide the 

scale of effect size into three intervals as follows:- Values of d/effect size: .2 = small; .5 = 

medium; .8 = large.

Relationships between clinical rating scales, neuropsychological assessments and 

oculomotor variables were assessed using Spearman’s rank correlation coefficients (two-tailed) 

where applicable.

3.3 Results

Skewness (positive) was found to be present for some variables, which was transformed 

to normalise the skewness of distribution. Statistical analysis of transformed variables 

generated virtually identical output to untransformed scores, therefore for clarity of 

interpretation and descriptive statistics, the results given below use untransformed versions 

(were possible non-parametric analyses of all variables conducted simultaneously for 

thoroughness, also revealed the same results as ANOVA but are omitted from these sections).
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3.3.1 Effects of Age and Education

ANOVA revealed a significant difference for age between DPs and ECs 

(F[1,59]=T8.19, £><0.0001). However, age was not found to be correlated with the majority of 

oculomotor variables for either group (all correlations: r<0.09, £>>0.6); parametric and non- 

parametric tests where applicable, respectively). This was with the exception of two variables 

for DPs and three for ECs, each found to be significant at the 5% level: DPs antisaccade gap 

task omissions (r= 0.38, n=27, £><0.05) and No-Go task inhibition errors (r= 0.40, n=28, 

£K0.05); reflexive saccade gap task proportion of correct saccades (r= 0.38, n=32, £><0.05) and 

reflexive saccade gap task proportion of omissions (r= 0.45, n=32, £><0.05). As a precaution, 

age was included as a covariate in later analyses.

An ANOVA investigating differences in years of education, revealed no significant 

difference between DP (mean [years]= 12.2; SD = 2.4) and EC (mean [years] = 12.0; SD = 

2.6) groups (F[l,59]=0.11,£>>0.7). All other oculomotor variables (for each group) were found 

not to correlate with years in education (rs<0.25,£>>0.1).

3.3.2 Group Comparisons of Saccadic Error Rates

3.3.2.1 Comparing Inhibitory Errors Across Voluntary Saccade Tasks

Inhibitory errors were analysed in the No-Go, antisaccade gap and the Go/No-Go tasks 

(Table 3.3). The order of inhibitoiy errors across tasks showed that the No-Go task resulted in 

the least number of inhibitory errors for each group, the antisaccade gap task produced a 

moderate proportion and the Go/No-Go task was found to result in the highest proportion of 

inhibitoiy errors for each group. The DP group were found consistently to produce a higher 

proportion of inhibitoiy errors for each task.

A two-factor repeated measures mixed AVOVA was used to evaluate voluntary 

saccade task (with three levels of task) and group (DP and EC groups). The interaction 

between group and voluntary saccade task did not reach significance. However, trend analysis
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revealed a significant linear trend component to the interaction (F[l,57]=26.29, /?<0.0001), 

demonstrating that there was a significant increase in inhibition errors across saccadic tasks. 

The main effect of voluntary saccade task was also significant (F[1.76, 100.48]=28.69, 

/?<0.0001; Greenhouse-Geisser correction), showing that there were overall differences 

between tasks, both groups generating most errors in the Go/No-Go Task and least in the No- 

Go task. Additionally, the main effect of group (F[l, 57]=26.29, p<0.0001) was found to be 

significant, highlighting that there were overall differences between the groups on the tasks, the 

DP group producing more inhibitory errors than the EC group.

Univariate ANCOVAs were carried out to analyse differences between-groups 

(controlling for age as a covariate) for the proportion of inhibitory errors on the No-Go, 

antisaccade gap and Go/No-Go tasks. The DP group was found to produce significantly more 

inhibitoiy errors than the EC group, in all three tasks, No-Go (F[l,57]=20.23, pO.OOOl; d  =

1.1), antisaccade gap (F[l,56]=26.0,/?<0.0001; d = 1.6) and the Go/No-Go task (F[l,56]=4.41, 

/K0.048; d  = .7); therefore showing a significant deficit in performance with large and medium 

effect sizes, compared with the EC group of, +23.42% for the No-Go task, +32.15% for the 

antisaccade gap task, and +21.09% for the Go/No-Go task (see Table 3.3). Taken together 

these findings confirm that the DP group committed significantly more inhibitoiy errors in 

each task, compared with the EC group.

The mixed factorial ANOVA was repeated to include the sub-groups. This analysis 

showed that there was a significant interaction (Figure 3.3) between voluntary saccade task and 

the between-groups factor of sub-group (F[3.58, 100.29]=2.26, p<0.04; Greenhouse-Geisser 

correction) which indicates that there was a significant difference across the task error rates 

between the sub-groups. The main effect of voluntary saccade task was also significant 

(F[1.79, 100.29]=T9.94, ^<0.0001; Greenhouse-Geisser correction), showing that overall there 

were differences between the proportions of inhibitory error produced on the saccadic tasks;
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Figure 3.3 Inhibitory Errors for Alzheimer's Disease Compared with Dementia of 
o ther types and Elderly Controls in Voluntary Saccade Tasks
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Most highly in the Go/No-Go task and least in the No-Go task. The main effect of group was 

found to be significant, showing that there were overall differences between the groups on 

proportion of inhibitoiy errors committed in the tasks (F[2, 56]=13.29,£><0.0001).

Univariate ANOVA extended to the sub-groups, revealed significant differences in the 

proportion of inhibition errors committed between-groups for each task (No-Go, 

F[2,56]=11.42, £><0.0001; antisaccade gap, F[2,55]—13.153, £><0.0001 and Go/No-Go, 

F[2,55]=3.26, £><0.046). Post-hoc comparisons (Scheffe) showed that the AD group produced 

significantly more inhibitory errors than the EC group, on all three saccadic tasks, with large 

effect size (No-Go, £><0.01, d — .9; antisaccade gap, £><0.01, d -  1.8; and Go/No-Go, £><0.01, d 

= 1.0). Thus, compared with EC group performance, the AD group presented with an 

inhibitory error rate increase across the tasks of 18.18% for the No-Go task, 34.36% for the 

antisaccade task and 27.61% for the Go/No-Go task. This finding confirms the hypothesis that 

inhibitoiy errors would be significantly greater in each voluntary saccade task for the AD 

group, compared with inhibitory error rates generated in the EC group. The DOT group also
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produced a significantly greater proportion of inhibitory errors compared with the EC group, 

on the No-Go and the antisaccade gap tasks (both /K0.01; d=  1.5 and d=  1.7 respectively), 

however, although the DOT group produced more inhibitory errors than the EC group on the 

Go/No-Go task, this effect did not reach significance which perhaps indicates that the DOT 

group have better preserved working memory. AD patients produced a greater proportion of 

inhibitory errors on both the antisaccade gap task and Go/No-Go task compared with patients 

in the DOT group although these differences were not found to be significant. Conversely, AD 

patients were found to generate marginally less inhibitory errors on the No-Go task, than the 

DOT group, but this result was also non-significant (Figure 3.3). Taken together, these results 

suggest that in general, the DOT group showed less impairment of attentional control in tasks 

that require high working memory demand, compared with the AD group. However, the DOT 

appear to perform more poorly than other groups on the No-Go task, which requires motor 

preparation for fixation in order to fixate a blank space in the presence of a peripheral target. 

In summary, these results support the hypothesis that AD patients would produce significantly 

more inhibitory errors than the EC group in each task.

Within-groups repeated measures analysis of sub-groups of voluntary saccade task, 

revealed that the main effect of voluntary saccade task was significant for the AD group 

(F[2,32]=12.89, /?<0.0001) and EC group (F[1.59,49.14]=20.22, /KO.0001; (Greenhouse- 

Geisser correction), whereas this factor was not significant for the DOT group (F[2,18]= 0.86, 

jf?>0.4). Trend analysis for the sub-groups revealed a significant linear trend for the AD group 

(Figure 3.3) across the range of voluntary saccade tasks (F[l,16]= 18.28, /?<0.001), which 

supports the hypothesis that there would be a significant increase (linearly) in inhibitory errors, 

across tasks which increase in cognitive load and thus the degree of working memory required 

to carry out the task. A significant linear trend was also present for the EC group (F[l,31]= 

28.12, pcO.OOOl), which also supports the hypothesis of an increase in error rate, according to 

the working memory requirement of the task; The EC group producing significantly less
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inhibitory errors on each task, compared with the AD group. No significant trends (i.e. linear, 

quadratic or cubic) were found for the DOT (F[l,9] = 1.67, p>0.2), which indicates that 

although the DOT group produced significantly more errors than the EC group in the No-Go 

and antisaccade gap tasks, they did not differ significantly in the performance on each of the 

tasks, whereas the AD group did differ significantly on each task. The reader may recall from 

Table 3.1 and from the analysis of voluntary saccade task in the present analyses that the order 

of voluntary tasks is important for the hypotheses set out in Section 3.1.2, which postulate that 

the tasks vary as to the degree of working memory required to complete a given task, i.e. the 

No-Go task was considered least demanding; antisaccade gap task -  moderate and the Go/No- 

Go task -  high demand. Therefore, the performance of the EC group represents working 

memory performance during normal healthy aging, whereas the AD scores represent a clinical 

group with working memory deficit and corresponding inhibitory impairment, which should be 

reflected in performance across the range of voluntary saccade tasks (which vary in degree of 

working memory demand). The present analyses supported these hypotheses.

A supplementary set of within-group analyses were conducted to isolate performance 

across tasks and to substantiate the differences highlighted by trend analysis which showed a 

linear trend for the AD and EC groups. Pair-wise comparisons were conducted for each group 

to examine the simple effects between different levels of voluntary saccade task, for the 

proportion of inhibitory errors committed.

This analysis was firstly conducted on the EC and DP group data. A significant 

difference was found between the No-Go task and antisaccade gap condition for both groups, 

producing significantly more errors in the antisaccade gap task (DP group, t[26]=3.42, p<

0.002; EC group, t[31]=2.04, p<0.05). The antisaccade gap task was also compared with the 

Go/No-Go task, which revealed that more inhibitoiy errors were produced in the Go/No-Go 

task for both groups; However, this difference was only significant for the EC group (t[31]=- 

4.26, /K0.0001). The No-Go and Go/No-Go tasks were separated by the largest difference in
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the commission of inhibitory errors, as a function of voluntary saccade task and for each group 

(as illustrated in Figures 3.3). Not surprisingly, paired samples analysis within-groups for this 

comparison, revealed a highly significant difference for each group (DP group, t[26]=-4.12, 

/KO.OOOl; EC group, t[31]=-5.3,p<0.0001). These findings confirm that the errors do increase 

across the sequence of tasks presented in Figure 3.3. No-Go and Go/No-Go tasks were 

separated by the largest estimated degree of working memory demand (No-Go/low; Go/No- 

Go/high), which was reflected in significant differences in inhibition errors between these tasks 

for both groups. The No-Go and antisaccade gap task were also significantly different 

(antisaccade gap/moderate working memory requirement) for both groups, with more 

inhibition errors created in the antisaccade gap task, which posed a more difficult challenge for 

the DP group. The DP group generated a large proportion of errors in both the antisaccade gap 

task and the Go/No-Go task, which resulted in no significant difference between the two tasks, 

which indicates that the cognitive load of these tasks was high for the DP group.

Paired samples t-tests for the sub-group analyses of simple effects within-groups can be 

found in Table 3.4 below. An important observation from this analysis was that there are no 

significant comparisons between any of the voluntary saccade tasks by the DOT group, which 

corresponds with the finding that there was no trend present in the data for this group.

Table 3.4 Pair-wise Within-Group Comparisons of Voluntary Saccade
Task Inhibitory Errors Corresponding to Figure 3.3

Voluntary saccade task pairwise t-test p-value
Subgroup No-Go | Anti Gap | Go/No-Go
AD p< 0.002 p< 0.073
DOT NS NS
EC p< 0.05 p< 0.0001
AD p< 0.001
DOT NS
EC p< 0.0001
Instruction: E ach  pairwise com parison  corresp onds to  th e extrem e e n d s  o f  th e  cell 

and  th e  a b o v e  heading
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The significant paired comparisons for both the AD group and the EC group, are for the 

No-Go task with significantly more inhibitory errors generated in the antisaccade gap task. At 

the other side of Table 3.4, less inhibitory errors were generated in the antisaccade gap task 

than the Go/No-Go task in both groups, this difference was significant within the EC group but 

only approaching significance for the AD group. The highest significant difference for the 

proportion of inhibitory errors generated between voluntary saccade tasks within the sub­

groups, was at the extreme ends of the graph (Figure 3.3), for the No-Go and Go/No-Go tasks, 

which were found to be highly significant within-groups for the AD group and the EC group.

3.3.2.2 Relationships Between Voluntary Saccade Performance and Tasks
Involving Working Memory

Spearman’s rank correlation coefficients were calculated to assess the hypothesised 

relationships. Specifically, that 1) Inhibitory errors would be correlated with dementia 

severity; 2) That AD group performance on voluntary saccade tasks with a high working 

memory component (i.e. cognitive load), thus requiring more working memory resources, 

would be correlated with neuropsychological assessments that require working memory due to 

AD working memory deficit. Therefore, correlations were conducted between inhibitory errors 

committed during voluntary saccade tasks (i.e. No-Go; Antisaccade Gap; Go/No-Go) clinical 

rating scales and neuropsychological assessments (scores in Table 3.2).

The correlations for the AD group and the EC group are displayed in Table 3.5 overleaf 

(the DOT group were omitted from the table for clarity, and will be reported at the end of this 

section). For the AD group, the EADAS cog clinical rating scale correlated significantly with 

the No-Go task (r= 0.492, n=17, /?<0.05). However, the correlations between AD group 

EADAS cog scores and the proportion of inhibitory errors on the other two voluntary saccade 

tasks were found to decrease with voluntary saccade task difficulty. The fact that these 

correlations were not significant and reduced proportionately according to task difficulty may 

be an important observation in itself.
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Table 3.5 An Analysis of Relationships Between Voluntary Saccade Task 
Inhibitory Error and Psychometric Test Scores

Elderly controls Alzheimer’s disease

No-Go Anti Gap Go/No-Go No-Go Anti Gap Go/No-Go

SMMSE -0.345 -0.256 0.164 -0.216 -0.241 0.081

EADAS 0.014 -0.003 -0.135 0.492* 0.388 0.234

Trails A 0.337 0.12 0.323 0.148 $ 0.540* t 0.248 $

Trails B 0.410* 0.176 0.195 -0.106 § 0.154 § -0.109 §

DSF -0.114 0.033 -0.016 -0.313 -0.344 -0.049

DSR 0.010 -0.195 0.113 -0.014 -0.625** -0.130

SSF 0.297 0.122 -0.136 -0.170 -0.296 -0.285

SSR
N

0.084
32

0.143
32

-0.103
32

-0.182
17

-0.571*
17

-0.268
17

Spearman's rank correlation coefficient * Correlation significant at the 
0.05 level/ ** Correlation significant at the 0.01 level (2-tailed)

N=16t; N=11§; N=8f; DSF= Digit Span Forward; DSR = Digit Span Reverse; SSF =
Spatial Span Forward; SSR = Spatial Span Reverse

Dementias of other types not included , only significant correlation SSR vs No-Go task 
(r= .710, n=11, p< 0.05).

This finding could indicate that as task difficulty increases, errors increase to a level 

where any relationship with this measure of global cognitive function breaks down, i.e. in the 

Go/No-Go task, errors were committed whether patients had a high or low EADAS cog score. 

Digit Span Forwards, which is generally considered to be a test of short-term auditory memory 

and also attention and concentration was correlated weakly with the No-Go task and the 

antisaccade gap task (but they failed to reach significance). These results show that focused 

attention and short-term memory performance do not appear to be related to inhibitory control 

performance in AD patients. AD group performance on the Trail Making Form A task was 

found to be significantly correlated with the antisaccade gap task (r= 0.540, n=17, /K0.05), 

which may be due to a dysfunction of attention-shifting and visual search.

A strong significant correlation was also found between the Digit Span Reverse task 

(scatter plot Figure 3.4) and antisaccade gap task (r= -0.625, n=17,/T<0.01), and the Spatial
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Figure 3.4 A Scatter Plot Illustrating the Relationship between Alzheimer's 
Disease Patients' Inhibitory Error During the Antisaccade Gap Task and Digit 
Span Reverse Test Scores
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Span Reverse task was also significantly correlated with the antisaccade gap task (r=-0.571, 

n=17, p<0.05). The Digit Span Reverse and Spatial Span Reverse tasks both load highly on 

working memory resources and so this finding supports the hypothesis, that in the AD group, 

performance of neuropsychological assessment tests that require high working memory 

resources will be related to voluntary saccade tasks that weight highly on working memory 

resources; due to working memory deficit in the AD group. However, Digit Span Reverse and 

Spatial Span Reverse were not significantly correlated with either the No-Go or the Go/No-Go 

tasks. A reduced correlation between these two psychometric tests was expected for the No- 

Go task, as it does not load highly on working memoiy. However, the lack of correlation 

between both the Digit Span Reverse and Spatial Span Reverse tasks and the Go/No-Go task
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was not expected. This result may be due to the difficulty of the Go/No-Go task and depleted 

working memory resources in the AD patient group causing some patients to perform poorly 

on the task and others to perform well, producing irregular scores and no strong correlations 

with any of the psychometric tests.

The EC group were found largely to have weak correlations between each combination 

of neuropsychological assessment and voluntary saccade task, with the exception of one 

moderate positive correlation between the No-Go task and Trail Making Form B (r=0.410, 

n=32, /K0.05). Task completion time on the Trail Making Form B test, appears to be 

associated with the proportion of inhibition errors committed on the No-Go task. The No-Go 

task requires less working memory resources than the other voluntary saccade tasks, relying 

more on motor preparation and fixation of a blank space, whilst ignoring a peripheral target. 

Therefore, this finding may indicate that members of the EC group with relatively poorer 

psychomotor ability and working memory, as revealed by Trail Making test scores perform 

less well on the No-Go task.

Table 3.6 Correlations Between Inhibitory Errors and 
Psychometric Test Scores for Dementias of Other Types

Dementias of other types

No-Go Anti Gap Go/No-Go

SMMSE -0.520 0.012 -0.436

EADAS 0.619 -0.061 0.128

Trails A 0.619 0.377 0.235

Trails B 0.270 f -0.405 t 0.071 f

DSF -0.159 0.216 0.012

DSR -0.552 -0.110 -0.018

SSF -0.466 0.111 -0.199

SSR
N

-0.710*
11

-0.177
10

-0.232
10

Spearman's rank correlation coefficient 
* Correlation significant at the 0.05 level

N = 8t; DSF = Digit Span Forward; DSR = Digit Span Reverse; 
SSF = SpatialSpan Forward; SSR = Spatial Span Reverse

162



3 Dysfunction of Inhibitory Control

The correlations for the DOT group are reported in Table 3.6. Only one significant correlation 

was obtained for this group, a moderate association between Spatial Span Reverse - a test 

highly dependent on working memory - and the No-Go task, r= 0.710, n=ll,^<0.05), high No- 

Go inhibition errors being related to low Spatial Span Test scores, which may be simply 

represent global cognitive impairment, as other correlations were not significant.

Several other correlations were of moderate size for the DOT group, but did not reach 

significance, for example EADAS cog rating scale and Trail Making Forms A and B with the 

No-Go; And Trail Making Forms A and B with the antisaccade gap task. Digit Span Reverse 

produced a moderate correlation with the No-Go task, which grew consistently weaker across 

the more complex voluntary saccade tasks; which appears to correspond with the reduced error 

rates in these tasks, compared to those of the AD group (see Figure 3.3). These results appear 

to indicate impairment of a more diffuse nature and weighing more heavily on processes 

associated with the No-Go task.

In summary, the most reliable correlations were found for the Alzheimer’s disease 

group, with prominent relationships apparent between the antisaccade gap task and Trail 

Making Form A, Digit Span Reverse and Spatial Span Reverse. This appears to support the 

hypothesis that working memory dysfunction in AD will be indicated by relationships between 

scores on saccadic eye movement tasks and psychometric tests that place a high demand on 

working memory resources. These measures were not correlated significantly in the EC group, 

which may indicate that working memory in the EC group was relatively intact, by comparison 

with that of the AD group. Another observation was that whereas poor AD group scores on 

psychometric tests generally correspond with high inhibition error rates, the EC group have 

lower inhibition error rates, but their performance on tests such as Digit Span and Spatial Span 

is only slightly better than that of the AD group. This suggests that these psychometric tests 

have poorer resolution in distinguishing between AD and EC participants. Furthermore, the 

range of tasks may be measuring different aspects of working memory. Correlations of the
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DOT group scores on these measures were less strongly correlated, stronger correlations being 

found between the No-Go task inhibition errors and most of the psychometric scores, 

indicating a different profile of impairment, to that of the AD group which suggests that 

perhaps the DOT group had less working memory impairment.

3.3.3 Analysis of Corrected and Uncorrected Errors: Self-Monitoring Performance 
on the Antisaccade Gap Task

This analysis focuses on the antisaccade gap task at the sub-group level, as inhibitory 

errors for DPs were investigated in depth in earlier sections. The sub-group proportions of 

correct saccades are displayed in Figure 3.5, along with the proportions of uncorrected and 

corrected errors that comprise the proportion of inhibitory errors discussed in Sections 3.3.2.1 

& 3.3.3. The proportions of omissions and anticipatory saccades, make up the balance of 

valid trials are reported in a later section (Section 3.3.3.3).

Figure 3.5 Stacked Bar Charts Illustrating the Proportions of Correct 
Saccades, Corrected Errors and Uncorrected Errors by Sub-group for the 
Antisaccade Gap Task
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Unitary ratios were calculated for the mean proportions presented in Figure 3.5, to 

clarify the balance between attention (or awareness), self-monitoring and error correction in the 

antisaccade gap task. The ratios are displayed as a bar chart in Figure 3.6 below, and are an 

attempt to visually illustrate clearly the difference between-groups in these abilities. Compared 

to the AD patient group (2.60:1) and the DOT group (5.88:1), the ratio of correct and corrected 

error saccades to uncorrected error saccades for the EC group, was found to be extremely large 

(44.28 : 1). This ratio highlights the difference between the EC group’s level of attention or 

primary conscious awareness and self-monitoring, with the ability to correct mistakes, 

compared with the significantly lower ratios found for the AD group and DOT group. Unitary 

ratios of correct saccades to inhibitory errors (uncorrected errors + corrected errors) are also 

included in the chart for reference and to emphasise the difference between the sub-groups for 

primary correct action, compared to error.

Figure 3.6 An Illustration using the Unitary Ratio to Display the Ratio for 
the Proportion of Correct Saccades to Inhibitory Errors Compared to the 
Proportion of Correct Saccades+Corrected Error saccades to uncorrected 
Errors in the Antisaccade Gap Task by Sub-group
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To gain an understanding for the spread of data by group for correct saccades, corrected 

errors and uncorrected errors (in that order), the data were subjected to a two-factor repeated 

measures mixed ANOVA, forming the factor: correctness o f performance. Not surprisingly, 

significant findings were obtained for the main effects of group and correctness of 

performance, a result expected, as these components correspond with variables already found 

to be significant in previous between-groups analyses reported in Section 3.3.2.1. The 

interaction between sub-group and correctness of performance (Figure 3.7) was found to be 

significant (F[4,112]=15.81, p<0.0001) suggesting that there were significant differences 

across the measures by sub-groups. Analysis of the interaction revealed that there was a 

significant linear trend component with a significant quadratic element (F[2,56]=9.95, 

/K0.0001), which indicated that as there were three groups and three measures, the nature of 

the interaction was fairly complex, but generally indicated a linear decrease in scores across the 

measures.

Figure 3.7 Graphs Displaying Correctness of Performance for Sub-groups 
in the  Antisaccade Gap Task
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Scheffe post-hoc tests showed that for correctness of performance, no significant 

differences were present between the EC group and the DOT group (p> 0.1). However, a
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significant difference was obtained for the AD group, when compared with both the DOT 

group and the EC group (p< 0.01).

Within-Groups Effects: Within-groups analysis on factor correctness of

performance, revealed that there was a significant main effect of correctness of performance 

for the EC group (F[1.2,33.7]=388.96, /K0.0001; Greenhouse-Geisser correction) and that the 

DOT group was approaching significance (F[2,18]=3.33, p<0.059). The main effect of 

correctness of performance for the AD group, was found to be non-significant (F[2,32]=0.534, 

p> 0.5 NS).

Trend analysis of correctness of performance, was able to isolate the presence or lack of 

trends for each sub-group, in the pattern of correct saccades, corrected errors and uncorrected 

errors, adding to the latter analysis. The EC group was found to have significant linear trend 

(F[l,31]=627.46, p<0.0001) and (with a smaller effect size) significant quadratic trend 

(F[l,29]=103.01, /K0.0001) components, probably due to the very high proportion of correct 

saccades compared to errors which flatten out the lower part of the graphs.

No significant trends appeared across the correctness of performance factor for the AD 

group, as illustrated by the rather flat graph in Figure 3.7, with the low proportion of correct 

saccades appearing similar to the proportions of corrected and uncorrected errors. However, a 

significant linear trend was found for the DOT group, across the three levels of the correctness 

of performance factor (F[l,9]=6.23, p<0.034).

In summary, the findings indicated (refer to Figures 3.5 & 3.7) that within the AD

group patients do not produce significantly different proportions of correct saccades, corrected

errors and uncorrected errors, as revealed by the lack of linear trend. In contrast to AD

patients, EC participants consistently produced a high proportion of correct saccades with

relatively low proportions of corrected errors and a negligible level of uncorrected errors.

Therefore, EC participants had a strong linear component due to the high proportion of correct

saccades, whereas the low proportions of corrected and uncorrected errors caused an abrupt
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tail-off on the graph and also resulted in the presence of a quadratic trend in the data. The 

DOT group presented with a linear trend across the levels of the factor correctness of 

performance, due to a moderate correct saccade rate and lessening proportions of corrected 

errors and uncorrected errors respectively.

Figure 3.5 also has the results from within-groups paired-sample t-tests (comparing 

paired levels of the factor correctness of performance i.e. correct saccades, corrected errors and 

uncorrected errors). The paired samples elaborate on the trend analyses and show that the AD 

group has non-significant differences between any combinations of pairs, hence the lack of any 

trends found in the trend analysis and the rather flat graph in Figure 3.7. Conversely, the EC 

group has significantly different (highly reliable) proportions for each combination of pairs in 

the analysis, due to high correct saccade rate and low inhibitory error rates. For the DOT 

group however, the proportion of corrected errors increases, resulting in no significant 

difference from other levels (correct saccades and uncorrected errors); Whereas there is still a 

significant difference between the proportion of correct saccades (moderate) and uncorrected 

errors, by virtue of the groups ability to produce relatively fewer uncorrected errors compared 

to AD group for example. These analyses have demonstrated that trend analysis can 

differentiate between the sub-groups on the factor for correctness of performance, as set out in 

the hypotheses.

Between-Groups Effects: Between-groups levels of analysis for error type were 

examined with univariate ANCOVA (controlling for age as a covariate), applied to antisaccade 

gap task corrected error and uncorrected error data (Table 3.3). Oculomotor variable was the 

dependent variable and group, independent variable. A significant difference was found 

between-groups for each analysis, corrected errors (F[2,55]=3.17, p<0.05) and uncorrected 

errors (F[2,55]=8.83,/KO.OOOl).

Multiple comparisons (Scheffe post-hoc tests) were utilised to examine differences 

between sub-groups for antisaccade gap task corrected and uncorrected errors. AD patients
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produced approximately twice the proportion of corrected errors to that of the EC group 

(+12.98%), a difference that was approaching significance (p>0.05 NS; d = .8); therefore, the 

hypothesis that a significantly higher proportion of errors would be corrected by the AD group, 

compared to the EC group was not supported on this occasion, although the effect size was 

large. However, although this finding clearly indicates that the AD group have some capacity 

to correct errors of inhibition, this is limited, on this occasion to only 53.6% of the total 

inhibitory errors. Whereas the difference between the EC group and DOT group was 

significant (p<0.05; d  = 1.1), the DOT group generating more corrected errors than ECs 

(+16.73%); indicating that the DOT have a greater capacity for error correction, than the AD 

group as on this occasion the DOT group corrected 69.21% of the total errors of inhibition that 

they committed.

The uncorrected errors sub-group analysis showed that the AD group created 

significantly more uncorrected errors with a large effect size in the antisaccade gap task 

(+21.38%) than the EC group (p<0.01; <7= 1.5). This supports the hypothesis that significantly 

more uncorrected errors would be committed by the AD group than the EC group, 

demonstrating that many of the inhibitoiy errors committed by the AD group remain 

uncorrected. The DOT group was also found to produce more uncorrected errors than the EC 

group (+11.69%), but this difference did not reach significance. This is in accord with the 

previous paragraph and indicates that the DOT group have a better capacity for inhibition error 

correction, than the AD group.

In summary, the between-groups analysis of corrected errors uncorrected errors 

revealed a marked difference between the AD group and EC group in the proportion of errors 

committed and that the DOT group display a similar (but less severe) pattern to the AD (as 

evidenced in the lack of any significant difference between the two groups). The profile of 

whether correction is required or initiated or not can be seen most clearly from the trend
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analysis which incorporated the proportion of correct saccades. This is measure is crucial, as 

the AD group commission less correct saccades than both the EC group and DOT group.

3.3.3.1 Correlations

Correlations (Spearman’s) between antisaccade gap task correct saccades, corrected 

errors and uncorrected errors, showed several interesting relationships with dementia severity, 

as measured by the clinical rating scales (Section 2.5, Chapter 2). For the AD group the 

proportion of correct saccades commissioned was found to be moderately correlated with the 

CDR (r=-0.486, n=T7,/?<0.05) and the EADAS cog (r=-0.505, n=17,/?<0.05), which indicates 

that these variables are related to the level global cognitive function and that the ability to 

generate correct saccades in the AD group was impaired in relation to dementia severity. 

However, it is interesting to note that the EADAS cog score has a large memory component. 

These variables, however, did not correlate with the SMMSE, which suggests that this task 

measures a different array of cognitive functions. No significant relationship was observed 

between corrected errors and EADAS cog or CDR (both r = < .3) for the AD group, although 

these small correlations did show some limited evidence that lower EADAS cog scores (or 

CDR) indicate a higher capacity for error correction.

Uncorrected errors committed in the antisaccade gap task were strongly correlated with 

dementia severity scores on the CDR (r=0.607, n=17, /K0.01) and EADAS cog (r=0.704, 

n=17, / t<0.01). This clearly indicates that as dementia severity increases, uncorrected error also 

increases, and supports the hypothesis that dementia severity would be related to uncorrected 

error generation. However, scatter plot evidence showed that although some AD patients 

produce high uncorrected error rates they still have the ability to generate corrected errors. At 

stage one (baseline) of the longitudinal analysis, this indicates that AD patients both 

understand the task and are able to self-monitor their performance which gives support to the 

hypothesis that corrected error and the ability to monitor performance would be preserved in
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the early stages of AD. The most striking correlations for the AD group were found between 

antisaccade uncorrected error rates and tests which place a large demand on working memory 

function (Digit Span Reverse, Spatial Span Reverse and Trail Making Form B). The 

antisaccade gap task uncorrected error rate showed strong correlations with the Digit Span 

Reverse (r=-0.612, n=17, /?<0.01), Spatial Span Reverse (r=-0.844, n=17, p<0.0\) and Trail 

Making Form B (r=0.494, n= ll, p>0.05 NS) which just failed to reach significance. These 

relationships seem to indicate that uncorrected error generation may be related to working 

memory capacity, or more directly that inhibitory control is related to working memory 

performance. Additionally, a patient who generates uncorrected errors is more likely to have 

poor working memory capacity. Finally, there was also a strong correlation between Trail 

Making Form A and uncorrected inhibitory errors (r=0.737, n=16, p<0.01), which suggests a 

link between lower working memory capacity or visuospatial attention and the generation 

uncorrected error rates as Trail Making Form A places lower load on working memory.

Correlations for the EC and DOT groups were found to be non-significant in general 

although interestingly, the DOT group had a significant correlation between the CDR rating 

and antisaccade gap task corrected errors (r=-0.665, n=10, /K0.05), which showed that as 

dementia severity increased, the ability to correct errors decreased.

3.3.3.2 Group Comparisons of Inter-saccadic Interval for Corrected Error 
Saccades in the Antisaccade Task

The inter-saccadic interval (Table 3.7), resulting when a corrected error is 

commissioned during the antisaccade gap task (difference between erroneous VGR primary 

saccade and secondary corrective antisaccade, Section 2.4.3) was analysed with ANOVA for 

the DP and EC groups.
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Table 3.7 The Inter-saccadic Interval for Corrected Errors 
in the Antisaccade Gap Task

Antisaccade Gap Task
Group Mean SD N
Dementia patients 257.88 85.09 25
Elderly controls 205.96 72.13 28
Alzheimer's disease 269.96 82.89 16
Other dementia types 236.41 89.59 9

This analysis revealed, that the DP group inter-saccadic interval was significantly 

prolonged by comparison to the EC group (+ 51.92 msecs. F[l,51]=5.78, p< 0.02; d — .7).

Sub-group analyses found a significant difference between-groups (F[2,50]=3.42, 

p<0.041), multiple comparisons (Scheffe) revealed that the inter-saccadic interval for the AD 

group was significantly prolonged (+64.0 msecs.) compared with that of the EC group (p<0.05; 

d  = .8). However, no significant difference was found between the DOT and EC groups. 

These results support the hypothesis, that the inter-saccadic interval for corrected errors would 

be significantly prolonged for the AD group, compared with the EC group. This could indicate 

that there is a disturbance in the processing of the error signal, which is reliant on executive 

function, a component of higher cognition believed to be depleted in working memory deficit.

3.3.3.3 Omissions and Anticipatory Saccades

The DP group produced a higher proportion of omissions11 than the EC group in both 

the reflexive gap and antisaccade gap tasks. However, univariate ANOVA (controlling for age 

as a covariate) revealed that there were no significant differences between the DP group and 

the EC group for omissions in the antisaccade gap task (DP, 8.34%; EC, 3.02%; 

F[1,56]=T.351; p>02 NS) or the reflexive gap task (DPs, 4.93%; ECs, 4.43%; F[l,57]=0.353; 

p>0.5 NS).

11 Trials in which no saccade was produced, fixation remaining at the central location 0°.
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A higher proportion of anticipatory saccades12 was found to be generated by the DP 

group compared with the EC group, in the antisaccade gap task (DP group, 3.89%; EC group 

2.37%), but these marginal differences were found to be non-significant using univariate 

ANOVA (F[l,56]=1.98,/?>0.1 NS). The EC group produced a higher but negligible proportion 

of anticipatory saccades in the reflexive saccade gap task (DP, 2.41%; EC, 3.68%), this 

difference found to be non-significant (F[l,57]=0.195,/?>0.6 NS).

3.4 Discussion

3.4.1 Key Findings

Present study has revealed a number of key findings, which can be summarised as 

follows:-

1. Voluntary saccade task inhibitory errors were measured across the range 

of tasks in accord with a putative increase in working memory demand by task 

(No-Go < antisaccade gap > Go/No-Go) comparing the data between and within- 

groups. Between-groups analyses of sub-groups on voluntary saccade task, 

revealed that the AD group and other dementia patient group were significantly 

different from the EC group, but not from each other. However, within-groups 

trend analyses revealed a significant linear trend across the tasks (as ordered 

above) for the AD group and for the EC group, but no significant trend for the 

DOT group.

2. Analysis of relationships between voluntary saccade tasks and 

neuropsychological assessments that rely on working memory, revealed that the 

AD group produced strong correlations between the Digit Span Reverse task and 

the antisaccade gap task, and also between Spatial Span Reverse and the 

antisaccade gap. Trail Making Task A which is less dependent on working memory

12
Saccade initiated <80 msecs. after target presentation.
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resources, was also strongly correlated with the antisaccade gap task. The EC 

group showed only small correlations (non-significant) between tasks requiring 

working memory, whereas the correlations for DOT group, were only small and 

not significant for these tasks.

3. Correctness of performance was examined by analysis of the proportions 

of correct saccades, corrected errors and uncorrected errors in the antisaccade tasks. 

Sub-group analysis revealed that this factor could distinguish between AD group 

from both the EC group and the DOT group. Trend analysis showed that AD 

patients have no trend to the factor correctness of performance, whereas the EC 

group and DOT group have a significant linear trend to the data from these 

measures. Uncorrected error rates on the antisaccade task are strongly correlated 

with tasks that require working memory and are also related to dementia severity.

4. A further line of enquiry for the antisaccade gap task was the inter- 

saccadic interval, derived from the corrected error saccade latency and its 

comparison between-groups. This measure was found to significantly prolonged 

for the AD group compared to controls, but was unable to dissociate between 

dementia sub-groups at stage one of the longitudinal analysis.

5. Differences between-groups in proportions of omissions and anticipatory 

saccades in the antisaccade gap task were found not to be significant.

The primary goal of this study was to conduct a thorough analysis of error rates in the 

voluntary saccade tasks (No-Go, antisaccade gap and Go/No-Go), with the aim of investigating 

the locus of the deficit that causes error in AD. The main area of enquiry was voluntary 

saccade inhibitory error rate, which was analysed to examine the notion that the principal
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underlying problem involves a working memory deficit and furthermore, to establish whether a 

suitable measure of this component will dissociate between AD, other forms of dementia and 

healthy ECs.

3 .4 .2  Inhibitory Error Across Voluntary Saccade Tasks and Relationships with 
Neuropsychological Assessm ents Requiring Working Memory

Inhibitory error rates were assessed across the voluntary saccade tasks between-groups 

and within-groups, in an attempt to establish whether the underlying mechanism of inhibitory 

error in AD is due to a working memory deficit and furthermore, whether this deficit would be 

detectable via the range of voluntary tasks. Moreover, as discussed in the introduction (Section

3.1) the basis of inhibitory control has long been a source of debate. Therefore, this clinical 

study could contribute to the understanding of mechanisms underpinning inhibitory control. 

Should an increase in AD inhibitory errors be found to correspond with greater voluntary 

saccade task complexity and those inhibitory errors be related to poor performance on 

neuropsychological assessments that depend of working memory function, then this may 

provide an important link between working memory and inhibitory errors.

At the between-groups level of voluntary saccade task, which incorporated all three

tasks, the finding that the between-groups level of analysis could distinguish between-groups

was informative, but this was not carried through to sub-group differentiation of AD and other

dementias. Nonetheless, the results were in support of the hypothesis that AD patients would

create significantly more inhibitory errors than the EC group in corresponding tasks ranging

across voluntary saccade task difficulty and confirms that the AD group do have a dysfunction

of inhibitory control which is found to increase linearly across tasks with increasing working

memory load. Within-groups trend analysis further reinforced these results, the factor of

voluntary saccade task being highly significant for the AD group, but not for DOT group

indicating that the DOT group produced less inhibition errors in oculomotor tasks that were

highly demanding of working memory resources. However, the factor voluntary saccade task
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was significant for the EC group (Figure 3.3) showing a linear trend but with significantly less 

errors across the range of tasks than the AD group. Therefore, this result again confirmed 

significant changes across the tasks for the AD and EC group, the trend analysis confirming 

that the profile of the data for both groups fitted a highly significant linear trend with the 

simpler task resulting in the least inhibitory errors through to the more difficult Go/No-Go task 

producing the most inhibitory errors. Thus, the hypothesis was again supported for the AD and 

EC groups, that there would be a significant and increasing shift in the number of inhibition 

errors generated in the oculomotor task that requires relatively little working memory through 

to an oculomotor task that demands a high degree of working memory. Moreover, further pair­

wise tests (Table 3.4) within-groups analysing the trend for each group, confirmed a consistent 

difference between the pairs of tests in the majority of cases for the AD and EC group. 

Interestingly, no such differences existed for the DOT group as they performed much the same 

at each task which seems to indicate that the DOT group comprised patients with a range of 

cognitive deficit and ability, that results in performance being affected fairly evenly on tasks 

ranging in cognitive load. Most significantly, the hypothesis that AD group performance on 

voluntary saccadic eye movement tasks would result in proportionate increases of inhibitory 

error according to task demand and that this increase would be significantly higher than 

healthy elderly controls was strongly supported by detailed analyses.

Analysis of correlations between scores from neuropsychological assessments that 

require working memory and inhibitory error rates from the voluntary saccade tasks, were 

assessed to explore relationships that may suggest deficient working memory in AD patients. 

Strong and significant correlations revealed relationships between antisaccade inhibition errors 

and the Digit Span Reverse task (i.e. high inhibition errors = low Digit Span Reverse score. 

Trail Making Form B was not strongly correlated with any voluntary saccade task, but Trail 

Making Form A was on both antisaccade tasks. It is interesting to note that only eleven AD 

patients were able to complete Trail Making Form B, indicating the difficulty that patients had
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with this task (the eleven patients scored poorly also). Performance was poor on Form A of the 

Trail Making Task, but only one AD patient failed to complete this task. Therefore, it can be 

argued that the Trail Making Form B resulted in a flooring effect, whereas Form A was also 

difficult for patients resulting in elevated scores, but they could at least complete this task. The 

Spatial Span Reverse was also moderately correlated (but failed to reach significance) with 

antisaccade inhibitoiy errors (high inhibitory errors = low Spatial Span Reverse score.

Interestingly, the AD group scores on the EADAS cog clinical rating scale, were found 

to be significantly correlated with No-Go task inhibition errors, examination of the scatter plot 

revealing that dementia severity and No-Go task inhibition errors increased correspondingly. 

However, proportionately weaker correlations were found between the EADAS cog and the 

more demanding oculomotor tasks. One explanation for the reduction in correlation strength 

with voluntary saccade task cognitive demand, (according to the scatter plots) is that 

antisaccade task inhibitory error rates appear to become worse as a whole for the AD group, 

with little association to EADAS cog scores. This pattern was even more severe for the 

Go/No-Go task. These findings appear to signify that inhibitoiy control will be impeded in 

these tasks, regardless of dementia severity. A further explanation, is that the lack of 

association is due to the EADAS cog test being a global measure of cognitive function, which 

also relies heavily on measures of orientation, recall memory and recognition memory and not 

working memory. Thus, there is no association between inhibition errors - which are 

hypothesised to be due to working memory deficit — because the EADAS cog task does not 

measure working memory, but a range of other faculties that result in variation in the 

relationship with inhibitoiy errors. There was a distinct lack of significant correlations for the 

same measures in the EC group and the DOT group, probably due to a ceiling effect on the 

EADAS cog test for the EC group and lower inhibition errors, whereas the DOT group 

appeared to vary in the abilities, perhaps due to the heterogeneity of this group.
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Strangely, none of the correlations of the Go/No-Go task inhibition errors with 

neuropsychological assessments were even moderate in size. It is evident that the Go/No-Go 

task resulted in the highest proportion of inhibition errors for each group, but it appears that the 

Go/No-Go task may have caused difficulty or confusion for some AD patients, as the scores 

were distributed unevenly on the scatter plots without the usual uniformity and linearity for 

moderate/strong correlations. Therefore, perhaps the cognitive load of the task was too taxing 

for meagre working memoiy resources of the AD group. Evidence in support of a working 

memory dysfunction in the AD group was demonstrated by the results of the Trail Making 

Form B test (Section 2.5.6). Only eleven of the AD patients were able to complete the task, 

showing that poor working memory in eight of the patients may have contributed in their 

ability to participate. Analysis of task completion times for the eleven AD patients who were 

able to complete the task, revealed a significant difference between the AD patients and 

healthy elderly controls, AD patients taking significantly longer to carry out the task (P< 0.01 

Scheffe). In actual fact, the DOT the EC groups also produced scatter plots with a distinct lack 

of uniformity for the Go/No-Go task inhibition error rates with neuropsychological 

assessments. The longitudinal chapter of this thesis will revisit this issue.

In Section 3.3.2.1, inhibitory errors were compared across the tasks: No-Go, 

antisaccade gap and Go/No-Go. Each of these tasks requires volitional control of action and it 

was argued, that working memory is the principal cognitive mechanism for the facilitation of 

efficient performance on voluntary tasks that require manipulation of instructions, inhibition of 

primaiy prepotent responses and the generation of motor action. Taken together, the findings 

from this section for the AD group appear to support the hypothesis that inhibitory errors result 

from a depletion of working memory resources, as evidenced by the increase in errors of 

inhibition across the range of tasks and corresponding correlations with poor scores 

(diminished working memory) on tasks requiring working memory. This finding maps onto 

studies that have demonstrated that depleted working memory resources, results in increased

178



3 Dysfunction of Inhibitory Control

errors of inhibition of prepotent response(Mitchell et al., 2002; Roberts et al., 1994; Stuyven et 

al., 2000) and can be applied to the model of Roberts et al. (1994).

3.4.3 Correctness of Performance: Corrected and Uncorrected Errors the Capacity 
for Self-Monitoring

Inhibition errors were examined more closely in Section 3.3.3.1, with the analysis of 

corrected error and uncorrected error components in comparison with the proportion of correct 

saccades to form the factor: correctness of performance. Obviously, these three aspects are 

important in the search for a sensitive profile of oculomotor behaviour in AD, as variation in 

the proportion of correct saccades denotes an increase or decrease in erroneous activity. 

Furthermore, analysis of error correction is important, as it represents the capacity for self- 

monitoring.

In the first instance, unitary ratios were calculated to indicate primary conscious 

awareness and self-monitoring in the ability to correct mistakes. The unitary ratios were thus 

derived from the addition of the proportion of correct saccades13 to the proportion of corrected 

errors over the proportion of uncorrected errors (lack of awareness/self-monitoring). The ratio 

of collapsed correct and corrected actions (ability to correct) to uncorrected action, was very in 

high in the EC group, compared with that of the AD and DOT groups (the AD group having 

the lowest ratios) which indicates that the EC group had a much higher capacity for conscious 

awareness and self-monitoring. Additionally, this may also mean that the EC group simply 

had a more efficient inhibitory control and working memory system.

The hypothesis that mild ADs would have preserved capacity to generate corrected 

errors and that this proportion of corrected errors would be significantly higher than in the EC 

group approached significance, whereas the proportion of corrected errors for the DOT group 

was found to be significantly higher than that of the healthy elderly control group. The

13 Proportion o f total valid trials.
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hypothesis that the AD group would generate significantly higher proportions of uncorrected 

errors than the EC group was also supported, but no significant difference was found between 

the DOT group and healthy elderly controls. Within-groups paired samples analysis of 

corrected and uncorrected errors, revealed that although both AD patients and the DOT group 

produced higher proportions of corrected errors compared to uncorrected errors, the 

proportions of these two error types did not differ significantly from one another within 

dementia sub-groups.

These results show that AD patients in the present study were able to generate corrected 

errors, the proportion of which did not differ significantly to that of healthy controls. 

However, many AD patient inhibition errors remain uncorrected, whereas healthy elderly 

controls generate significantly lower proportions of uncorrected errors than AD patients. Thus, 

the overall requirement for any correction by the EC group is significantly reduced compared 

with the AD group, by virtue of the EC group’s ability to generate correct antisaccades. 

Therefore, AD patients were found to be significantly impaired in the capacity for error 

correction, compared to elderly controls.

These findings correspond with the unitary ratios that measured primary conscious 

awareness and self-monitoring. Importantly, possibly relative to efficient working memory, 

the EC group carried out the task with comparative efficiency, generating a significantly higher 

proportion of correct saccades (compared with ADs) and correcting the vast majority of 

inhibitory errors, leaving only 2.1% of inhibitory errors uncorrected. Thus, the EC group can 

1) maintain the task instructions in mind efficiently enough to, 2) perform capably on the task, 

and 3) self-monitor activity, so as to take corrective action as and when necessary. However, 

the AD group produced significantly less correct saccades than the EC group, created more 

corrected errors (approaching significance), but failed to take corrective action for a 

significantly high proportion of erroneous saccades that remained uncorrected. Therefore, in 

comparison to the EC group, it appears that the AD group 1) are able maintain the task
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instructions in mind, but 2) perform the task poorly, and 3) self-monitor activity so as to rectify 

some inhibitory errors, but do not perform corrective action reliably as and when required. 

Thus, error correction in early AD patients, shows some preservation but in the main is 

dysfunctional when uncorrected errors are accounted for.

Correctness of performance was used in an attempt to include the vital measures 

(correct saccades, corrected errors and uncorrected errors) discussed in the previous 

paragraphs. This factor was found to be a useful method of assessing the inhibitory error and 

error corrective behaviour of AD patients and other groups, on the antisaccade task. The AD 

group was found to have a significantly lower magnitude of correctness of performance 

compared with both the EC group and the DOT group. Within-groups, the factor was found to 

be significant for the EC group and approaching significance for the DOT group, thus 

indicating significant differences between the component levels/measures of the factor. 

However, the AD group was not found to be significant on the correctness of performance, 

revealing no significant differences between the factor levels. These findings were further 

confirmed by trend analysis, which revealed the profiles for each sub-group, the EC group 

having a highly significant linear trend and a less significant quadratic component (both 

antisaccade tasks), the DOT group having significant linear trends for each task and the AD 

group having no trends, due to the levels of the factor correctness of performance being fairly 

balanced. Trend analysis of the combination of correct saccades, corrected errors and 

uncorrected errors appears to be a quite a reliable indicator of AD and seems not to have been 

conducted in the only previous study of corrected errors and uncorrected errors in AD (Abel et 

al., 2002). Follow-up analyses of the profiles for corrected errors and uncorrected errors with 

proportion of correct saccades, will be carried out in the longitudinal chapter of this thesis.

Further analysis, using correlations found that AD severity was related to the ability to 

generate correct saccades in the antisaccade gap task, however corrected errors was not related 

to dementia severity. Uncorrected errors were also found to be significantly correlated with
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measures of dementia severity. Most importantly, strong correlations were found between 

uncorrected errors and neuropsychological assessments that require working memory for 

efficient task performance.

Analysing the constituent parts of inhibitory error and finding weaker correlations with 

corrected errors, isolated the most vulnerable attribute of AD, the uncorrected error proportion 

in the antisaccade task and by implication, working memory as uncorrected errors are 

generated through inhibitory dysfunction and the notion that inhibitory control sub-serves 

executive function in working memory. In addition to this, there are implications for self­

monitoring capacity as working memory is dysfunctional. Why do such a high proportion of 

inhibitory errors remain uncorrected in AD patients?

There are a number of possible explanations that could plausibly account for the high 

rate of uncorrected errors in the patients early AD. Firstly, errors that remain uncorrected may 

result from a dysfunction in the capacity for self-monitoring and error correction. This could 

result from a disturbance in the ACC and or the DLPFC and pathways connecting with parietal 

cortex (Garavan, Ross, Murphy, Roche & Stein, 2002; Kiehl et al., 2000; Menon et al., 2001; 

Schall, Stuphom & Brown, 2002) i.e. the uncorrected errors are unrecognized or unchecked.

An alternative explanation could be that uncorrected errors are due to the depletion of 

working memory resources found in the AD group. In the present study, the AD group were 

found to perform significantly worse than controls on the Spatial Span Reverse, Digit Span 

Reverse and Trail Making Form B tasks, which all place high demands on working memory 

resources. Therefore, as the antisaccade task represents a high cognitive load for AD patients, 

as indicated by the high overall inhibitory error rate, a high proportion of inhibitory errors 

remain uncorrected. This explanation could also have some overlap with the first explanation 

in that task which load heavily on working memory have the potential to impede self­

monitoring and error correction.
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Previous research in healthy individuals has shown that fixations of a stimulus are 

usually recognized if they are longer than 140 msecs. (Mockler & Fischer, 1999), so are there 

any further explanations for what was happening with the dementia patients? It is conceivable, 

that AD patients could have great difficulty in generating a saccade to an empty location, when 

a visual stimulus is already fixated. Therefore, a third explanation for uncorrected errors, is 

that errors could remain uncorrected due to disruption of fixation cells in the SC (Dorris & 

Munoz, 1995; Munoz & Wurtz, 1992, 1993a, 1993b), causing inhibition of the SC movement 

cells and thereby impeding error correction. This third argument will be further explored in 

Study II (Chapter 4), where the fixation offset effect (FOE) will be examined. If it is found 

that the magnitude of FOE was greater for the AD group, then this would support the argument 

that when an uncorrected error is generated by AD patients in the antisaccade gap task, they 

have difficulty in disengaging fixation from the already fixated visual stimulus in order to 

execute a saccade to an empty location.

3 .4 .4  Inter-saccadic Interval for Corrected Error Saccades in the Antisaccade Task

Section 3.3.3.2 analysed the inter-saccadic interval that accompanies the corrected error 

in the antisaccade task. The measure at this stage (stage one) of the longitudinal analysis 

showed that the inter-saccadic interval measure could distinguish between the DP group and 

EC group, DPs having a prolonged inter-saccadic interval. At the sub-group level of analysis, 

the AD group had an antisaccade corrected error inter-saccadic interval that was significantly 

prolonged compared with the EC group, but this measure was unable to distinguish between 

the AD and DOT groups although the DOT group did not differ significantly on this measure 

from the EC group. This measure may prove interesting in the latter stages of the longitudinal 

study, as reprocessing time for primary antisaccades, has been found to deteriorate in healthy 

controls with normal ageing (Olincy, Ross, Young & Freedman, 1997). Therefore, this 

deterioration may be more pronounced in AD patients compared to controls, and map onto the
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inter-saccadic interval for the corrected error saccade. The initiation of the corrective saccades 

depends on the integrity of numerous pathways in the preffontal and parietal cortex of the 

brain. Executive function also depends on circuitry in these regions and therefore, disturbance 

of these pathways may be related to working memory deficit and ultimately inhibitory 

dysfunction in the AD group. A more thorough discussion of the neuroanatomical 

considerations that relate to these findings are addressed in Chapter 9.

No significant differences were found between the groups for other error components in 

the antisaccade task for this stage of the longitudinal project. Therefore, this study has found 

contrasting results for anticipatory saccade rates in early AD, compared with the findings of 

some other studies that indicated high proportions on this variable (Abel et al., 2002; Hotson & 

Steinke, 1988). This may indicate that the patients in the present study derived a benefit from 

the pre-test training with the clinical (‘bedside’) eye movement test, the temporal and spatial 

characteristics of the experiment and structure of the procedures. Alternatively, the two studies 

mentioned above both employed predictable target direction, whereas in the present study 

target direction was randomised. Therefore it is plausible to argue that patients with early AD 

may anticipate the target if the experiment presents the target in an expected location i.e. if 

patients are aware of where the target will be which could be related to ‘preparatory set’ and 

pre-stimulus activity in the SC (Everling et al., 1998a). However, when direction is 

unpredictable, as in the present study, fixation and inhibitory control is enhanced, until the 

target appears.

Further discussion of these findings to include theoretical and neuroanatomical 

implications is reviewed and deliberated in Chapter 9, the General Discussion of this thesis.
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3.5 Conclusions

-v* The present study examined inhibitory control by measuring error rates in voluntary

saccade tasks and replicated previous findings of poor inhibitory control in 

Alzheimer’s disease, which was found to be correlated with dementia severity and 

other neuropsychological measures.

^  Alzheimer’s disease patient inhibition errors are significantly reduced for voluntary

saccade tasks with a low cognitive load compared with tasks of higher cognitive 

load. Moreover, relationships are found between inhibitory error rates in the 

antisaccade gap task and psychometric tasks that require working memory.

It is feasible to argue that working memory and inhibitoiy control are closely 

related and that depleted working memory resources as in Alzheimer’s disease, 

appears to result in a lack of goal activation which results in compromised visual 

attention i.e. capacity to inhibit prepotent response in accordance with the Roberts 

et al. (1994) methodology.

Correctness of performance is most usefully analysed by trend analysis, revealing a 

lack of trend in the profile of Alzheimer’s disease patients on the antisaccade gap 

task variables of correct saccades, corrected errors and uncorrected errors.

Whilst some capacity for error correction is preserved in early Alzheimer’s disease 

when performing the antisaccade task, a significant proportion of erroneous trials 

remain uncorrected. These uncorrected errors are significantly related to tasks that 

require working memory and furthermore, are related to dementia severity. 

Therefore, it is plausible to argue, that uncorrected errors result from dysfunctional 

working memory and/or a corresponding self-monitoring deficit. However, it is 

possible that the error correction deficit may be related to a disruption of fixation 

neurons in the FEF or SC. This would cause inhibition of movement cells 

producing a fixation disengagement deficit, thereby impeding error correction. 

Study II should examine this possibility by examining the fixation offset effect in 

AD.
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Chapter Four

Study II: Magnitude of Fixation Offset Effect 
in Alzheimer’s Disease

4.1 Introduction

The human oculomotor system generates eye movements that serve to foveate objects 

for high resolution visual processing. When an object of interest is foveated, the eyes maintain 

fixation via the fixation reflex (Table 1.1, p. 9). Fixation can be defined as the controlled focus 

of gaze on a stationary target. Gaze-holding of a stationary target is relatively undemanding of 

the cognitive system and deficits observed during fixation are not essentially the result of 

higher cognitive dysfunction. Fixation impairments can be induced by lesions to various areas 

of the brain, which include the cerebellum, FEF, DLPFC, SMA, inferior parietal lobule, basal 

ganglia and the SC (Anderson et al., 1994; Leigh & Zee, 1999; Petit et al., 1999). The brain 

activity of healthy humans during fixation has been shown by neuroimaging studies to involve 

largely frontal regions in the facilitation of fixation control. These include the SEF, cingulated 

cortex, precentral gyrus and prefrontal cortex (ventromedial and anterolateral) (Anderson et al., 

1994; Petit et al., 1999).

A crucial aspect of fixation is the ability to suppress eye movements that can direct the

fovea away from a given location. Inhibitory control formed the basis of Study I, in Chapter 3,

and the fundamental processes that enable and initiate inhibitoiy control of saccades are

generated by a mechanism that incorporates opponent neural processes in the SC (Biittner-

Ennever & Horn, 1997) as described in Section 1.4.1.2. This mechanism facilitates high-speed

interchange between saccade and fixation, thereby enabling the eyes to move toward objects of
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interest and then maintain fixation. Thus, these opponent processes have the capacity to 

activate and inhibit the VGR. When and where the eyes move is enabled by fixation cells and 

movement cells. Research has revealed that neurons (fixation cells) in the rostral pole of the 

SC are active throughout fixation and that their activation is increased when the eyes are 

fixated on a target. The fixation cells are able to inhibit movement cells. The movement cells 

are located caudally to the rostral pole neurons and assist with movement of the eyes, but can 

be inhibited by the fixation cells (Machado & Rafal, 2000b; Munoz & Istvan, 1998; Munoz & 

Wurtz, 1993a, 1993b; Wurtz & Munoz, 1995), hence the term opponent neural processes.

The VGR (visual grasp reflex - discussed in Sections 1.2 & 1.3.1) is activated when an 

exogenous event occurs abruptly in peripheral vision, resulting in an involuntary action 

(reflexive saccade) followed by the maintenance of gaze with the fixation reflex. Endogenous 

control of fronto-nigral-collicular circuitry enables inhibition of the VGR and fixation reflexes 

and thereby the production of voluntary saccades (Burman & Bruce, 1997; Everling et al., 

1998a). However, voluntary control of saccadic eye movements may be disturbed if these 

circuits are damaged. For example, as discussed in Chapter 1, damage to the frontal cortex in 

adults has been found to impede suppression of the VGR (Guitton et al., 1985; Pierrot- 

Deseilligny et al., 1991b; Rafal et al., 2000).

The properties of visual stimuli used for presentation during eye movement tasks have a 

crucial bearing on the saccadic and behavioural measures under investigation. The temporal, 

spatial, and luminance characteristics as well as the number of visual stimuli, can have a direct 

effect on the programming of eye movements elicited during a given paradigm. Saccade 

latency and amplitude will be modulated within certain parameters and inhibitory errors are 

found to be more prevalent under certain experimental conditions (e.g. Reflexive saccade, No- 

Go or antisaccade tasks; see Chapter 3). Therefore, intra-saccadic visual processing is 

influenced by pre-saccadic events (Anagnostou & Skrandies, 2001). For example, when 

stimulus luminance is of higher intensity (e.g. above 10 cd/m2), saccade latency is found to be
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reduced as compared with less intense targets which cause latency to be increased (Crawford, 

1996; Reuter-Lorenz, Hughes & Fendrich, 1991). Furthermore, displaying two targets 

simultaneously or sequentially modulates saccade metrics (amplitude), causing an effect 

referred to as the global or centre-of-gravity effect. This results in an averaging of the ensuing 

saccade, where the saccade lands at an intermediate location between the two targets (Becker 

& Jurgens, 1979; Coren & Hoenig, 1972; Crawford & Higham, 2001; Findlay, 1982; Ottes, 

Van Gisbergen & Eggermont, 1984). Moreover, a visual stimulus presented simultaneously or 

overlapping temporally with the target of interest, has been found to mediate a high magnitude 

of inhibitory effect; Observed as an increase in saccade latency, most prominently when 

located in the central foveal region of the visual field. Interestingly, these effects - referred to 

as the remote distractor effect - are also observed to occur by varying degrees, when the remote 

distractor is located in the wider regions of the visual field (Walker et al., 1997), causing the 

latency for reflexive saccades to the intended target to be prolonged. Walker et al. (1997) 

suggest that the remote distractor effect is related to the inhibitory processes facilitated by the 

rostral pole of the SC.

The focus of the present study was to investigate a phenomenon referred to as the 

fixation offset effect (FOE), and to examine the magnitude of this effect in dementia patients. 

The FOE involves inhibitory processes and produces effects similar to those described by 

Walker et al. (1997). Saslow (1967) was the first to describe a reduction in reaction time to 

peripheral targets, afforded when the fixation point is extinguished prior to target onset. The 

FOE, also referred to as the gap effect, is demonstrated by a reduction in saccadic latency 

resulting from the offset of a fixated central visual stimulus preceding (up to 400msecs.) a 

peripheral target. This is compared with the saccadic latency resulting from tasks were the 

central fixation stimulus remains visible (overlaps) with the appearance of a peripheral target, 

in which saccade latency is prolonged. Interestingly, Walker et al. (1997) found that the
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magnitude of the remote distractor effect was optimal when the distractor was situated in the 

central location.

The FOE has been investigated extensively in both prosaccade and antisaccade 

paradigms (Fischer & Weber, 1992; Klein, 1977; Machado & Rafal, 2000a; Machado & Rafal, 

2000b; Reuter-Lorentz, Oonk, Barnes & Hughes, 1995; Reuter-Lorenz et al., 1991) and 

research has indicated that the FOE is due not the accrual of sensory information (i.e. warning 

effects from the central fixation point offset), but to the motor aspects of saccade generation, 

i.e. the programming or execution of saccades (Forbes & Klein, 1996). A number of possible 

mechanisms have been postulated to produce the FOE, including oculomotor readiness with 

the fixation mechanisms of the SC (Kingstone & Klein, 1993; Reuter-Lorenz et al., 1991; Tam 

& Stelmach, 1993), facilitated sensory processing (Reulen, 1984) and attentional 

disengagement involving the parietal cortex (Fischer & Breitmeyer, 1987; Kawakubu, 

Maekawa, Itoh & Iwanami, 2002; Posner, Walker, Friedrich & Rafal, 1984).

Neurophysiological research has provided evidence of a neural correlate for the FOE 

(Dorris & Munoz, 1995). Studies have shown that the benefit of fixation offset on saccade 

latency is due to a reduction in fixation cell activity and subsequent disinhibition of the VGR 

by an increase in movement cell activity in the SC on the appearance of the peripheral target 

(Machado & Rafal, 2000b). Thus, offset of the fixation point reduces activity of fixation cells, 

decreasing saccade latency (Dorris & Munoz, 1995), whereas, if the fixation point remains on 

(temporally overlapping with the target), disengagement of fixation from the target will be 

delayed somewhat due to fixation cell activity and inhibition of the VGR.

According to the argument outlined in the previous paragraph, in the case of exogenous 

reflexive saccades, fixation (and thereby attention) is disengaged automatically from the 

central fixation point on the abrupt appearance of a peripheral target. However, for voluntary 

saccades volitional control can intervene with this process and initiate inhibitory processes to 

inhibit the VGR and carry out goal-driven tasks providing that working memory resources are
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not depleted and therefore executive control undiminished (in agreement with the hypotheses 

of Chapter 3).

Recent event related potential (ERP) studies have revealed that a number of neural 

correlates contribute to the FOE, including prefrontal preparatory processes preceding target 

appearance, enhancement of cortical visual response in gap trials and prolongation of parietal 

activity in the overlap condition compared with that of the gap condition, prior to saccade 

execution (Csibra, Johnson & Tucker, 1997). Kawakubu and co-workers (Kawakubu et al., 

2002) discovered that target-locked ERPs in the gap task induced automatic processing of 

attentional disengagement, activity appearing some 60 msecs. prior to onset of the target 

stimulus. Saccade-locked ERPs showed that pre-saccadic activity appeared earlier and higher 

in the overlap condition, compared to the gap condition. Thus, it appears that cerebral 

processing of attentional disengagement can be dissociated by the existence of a temporal gap 

in saccadic eye movement paradigms.

It has been found that the magnitude of FOE in the antisaccade paradigm is smaller 

than that found in reflexive saccade paradigm (Reuter-Lorenz et al. (1991) found no significant 

antisaccade FOE). There is debate about the source of the smaller magnitude FOE in 

antisaccade tasks. Forbes and Klein (1996) hypothesised that the reduction is due to inhibitory 

processes required to suppress the VGR, in order to produce an antisaccade correctly, i.e. the 

FOE is lost during the prolonged latency incurred during antisaccade tasks, caused by the extra 

processing time brought about by inhibiting the peripheral stimulus and implementing the task 

instructions. However, Machado and Rafal (2000a) found that in a Go/No-Go task interleaved 

with a Go/antisaccade task (using both gap and overlap tasks) the FOE was larger in the 

Go/No-Go task. Given that the Go/No-Go task and the antisaccade task are similar, in that 

they both require inhibition of the VGR, Machado and Rafal suggest that the reduction in 

magnitude of FOE in the antisaccade task may not be sufficiently explained by the requirement 

to inhibit the VGR alone. Furthermore, Machado and Rafal (2000b) postulate that the FOE is
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dependent on strategic set and can thus be modulated by the individual, in both reflexive and 

antisaccade tasks, which appears to correspond with the ERP evidence mentioned above. 

Machado and Rafal also hypothesise that involuntary and voluntary saccade FOEs depend on 

activity in separate fixation cell systems. The FOE for reflexive saccades being dependent on 

fixation cells in the SC and the antisaccade FOE dependent on fixation cell activity in the FEF 

(Section 1.4.2.1), emphasising cortical control over the SC. Given the reciprocal connections 

between the FEF and SC and the PEF (and intraparietal areas) and SC, these suggestions seem 

to map onto the ERP evidence for attentional disengagement.

Lesion studies in humans have found that a primary role for the FEF is in the 

generation of volitional saccades (Section 1.4.2.1) and in the active disengagement of fixation 

(Pierrot-Deseilligny et al., 1995; Rivaud et al., 1994). Latency of saccades made during the 

gap paradigm for patients with FEF lesions have been found to be normal (Pierrot-Deseilligny 

et al., 1991b; Rivaud et al., 1994). However, in the reflexive saccade overlap task, where the 

fixation point remains on with target onset necessitating active disengagement of fixation from 

the central fixation point prior to a saccade to the target, latency is increased after a FEF lesion 

(Rivaud et al., 1994).

Investigations on patients with lesions of the PPC show bilateral increase of the 

latencies of reflexive saccades in the gap task (Pierrot-Deseilligny, Rivaud, Gaymard & Agid, 

1991a; Pierrot-Deseilligny et al., 1987), whereas in the overlap task, latency is even more 

prolonged (Walker & Findlay, 1996). The distinct increase of latency in the overlap task 

indicates that the PPC may have a role in the disengagement of fixation, as does the FEF.

The functional basis of saccade generation and control was described in Chapter 1 

(Section 1.4). In relation to fundamental neural architecture portrayed in Section 1.4, Forbes 

and Klein (1996) designed a model (Figure 4.1) based on their research of the FOE in reflexive 

saccade, antisaccade and verbally induced saccades. The model postulates the functional basis
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of exogenous and endogenous saccadic eye movements, by outlining the interaction of neural 

substrates that control the execution of saccades and the resultant FOE.

Figure 4.1 The Forbes & Klein Model Illustrating the Functional Activity Between 
Endogenous (ENDO) and Exogenous (EXO) System s in the Control of Saccade (SAC) 
Generation

ENDO

F i x a t e

Source: Forbes & Klein (1996)

In prosaccade paradigms, were saccades are generated toward a stimulus, the natural 

reflexive mechanisms of the SC are utilized. Thus, the neural systems that orchestrate stimulus 

driven reflexive saccades (involuntary saccades) can be termed exogenous. However, the 

antisaccade paradigm requires an eye movement that directs visual gaze in the opposite 

direction (i.e. mirror location) from the target. The processes involved in the antisaccade task 

demand that reflexively generated programs of the SC are inhibited and that saccadic 

parameters for the saccade to the opposite hemifield are correctly planned. As the 

characteristics of the target are not precisely visible, Forbes and Klein use term endogenous,
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for the neural systems involved in the generation of goal-driven antisaccades (Forbes & Klein, 

1996; Klein, Kingstone & Pontefract, 1992).

The Forbes and Klein model outlines the sub-systems that are important for the control 

of exogenous (EXO) and endogenous (ENDO) saccades in the FOE. For the exogenously 

generated saccades, the model depends on the VGR response, i.e. reflexive prog ram m ing for 

the prompt execution of saccades to visual targets. Forbes and Klein (1996) stipulate that the 

neural substrates involved in the exogenous generation of saccades involve the SC and the 

parietal cortex. The reader may recall that Section 1.4 discussed the importance of the SC (and 

connections with the brainstem; Sections 1.4.1.1 & 1.4.1.2) and pathways projecting from the 

PEF (1.4.2.2) in the generation of involuntary saccades.

Where endogenous saccades are concerned, Forbes and Klein’s endogenous system 

contains the FEF, SEF and prefrontal cortex along with the caudate nucleus and substantia 

nigra pars reticulata. The SAC component of the model, refers to the final common pathway 

for the control of saccades in the oculomotor nuclei of the brainstem (described in Sections 

1.2.1.1 & 1.4.1), and receives saccade commands through the omnipause neurons, from both 

the ENDO and EXO systems.

Applied to the fixation offset effect the Forbes and Klein model works as follows:-

Reflexive saccades: For reflexive saccades the ENDO and EXO systems both receive 

input, but the EXO system generates the majority of saccadic parameters and 

commands that facilitate foveation, via the VGR. On presentation of the fixation point, 

the fixation cells of the SC provide a brake by inhibiting movement cells in the SC and 

providing excitatory stimulation of the inhibitory omnipause neurons in the SAC 

system. By removing the fixation point, the systems are disinhibited and saccade 

latency reduced.
Antisaccades: For the antisaccade task, Forbes and Klein suggest that inhibitory 

control is active prior to saccade initiation, as the task is planned or goal-driven. 

Therefore, the ENDO system tonically inhibits the SC prior to target presentation. This
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inhibition is controlled by the prefrontal cortex. Saccade metrics are generated in 

accordance with visual input and instructional set of the task, and conducted via the 

ENDO system in parallel to the EXO and SAC systems. With this approach, inhibition 

of the SC is sustained and the magnitude of FOE decreased, due to the endogenous 

saccade program encountering reduced inhibition by the fixation system. 

(Forbes & Klein, 1996)

Many studies have reported a dysfunction of attention in AD (Baddeley, Baddeley, 

Bucks & Wilcock, 2001; Della Sala et al., 1992; Parasuraman et al., 1992; Parasuraman & 

Haxby, 1993; Perry & Hodges, 1999; Scinto et al., 1994; Solfrizzi et al., 2002; Tales, Muir, 

Bayer & Snowden, 2002), which appears to coincide with the progressive decline in working 

memory and executive function (Awh & Jonides, 1998; Parasuraman & Greenwood, 1998). 

There are a number of aspects to attention which include, sustained attention (vigilance), 

selective attention and divided attention. In the early stages of AD, there appears to be an 

impairment of selective attention, most prominently, spatial selective attention (Parasuraman & 

Haxby, 1993). Thus, early in the course of AD the mechanism for the selection of information 

from a particular region of a scene for focused processing seems to be impaired. The 

neuropathology of AD was outlined in Chapter 1 (Section 1.5.2.1) and drew attention to the 

degeneration of frontal, temporal and parietal cortical areas, as revealed by post mortem 

examination of the AD brain. These regions of the cortex are particularly important for the 

present study given the role of the parietal cortex in attention (Mesulam, 1981; Posner & 

Petersen, 1990; Posner, Walker, Friedrich & Rafal, 1987) and the frontal and temporal areas of 

the cortex for working memory (Nyberg et al., 2003; Owen, Sahakian, Semple, Polkey & 

Robbins, 1995).

Parasuraman and colleagues (Parasuraman et al., 1992) found that AD patients of mild

severity displayed what they refer to as an attention-shifting or disengagement deficit, not

unlike that which presents in hemi-neglect patients as a result of damage to the parietal lobe

(Posner et al., 1984). Parasuraman et al. (1992) investigated cue-directed shifts of attention in
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mildly impaired AD patients, employing a letter-discrimination task. The study revealed that 

AD patient reaction time benefits for valid cues did not differ from healthy controls, whereas 

the response time costs for AD patients following invalid cues was significantly higher than 

that of healthy control participants. Moreover, the findings showed that focused attention to 

spatial locations is preserved in early AD, whereas automatic disengagement of attention 

generated by the presentation of peripheral cues, is impaired. Furthermore, using PET 

Parasuraman et al. (1992) also found that the degree of disengagement deficit was correlated 

with the level of hypo-metabolism in the superior parietal lobe. Interestingly, Parasuraman et 

al. (1992) concluded that the impaired disengagement of attention in early AD may be due to a 

disturbance of the cortical pathways connecting the parietal and frontal lobes. Bearing in mind 

the saccadic eye movement abnormalities reported in AD (e.g. prolonged latency, hypometria, 

impersistence of gaze, see Section 1.6.3), Study II investigated whether the attention 

disengagement deficit in AD can be detected using fixation offset paradigms.

According to the literature, only one published study (Abel et al., 2002) has 

investigated the fixation offset effect in AD. However, Abel et al. only investigated the FOE 

for reflexive saccades, and did not explore the FOE in an antisaccade paradigm. In the Abel et 

al study a significant gap effect was found to be present in both AD patients and elderly 

controls, there was however, no significant difference between-groups in the size of the effect. 

This is possibly due to the authors using a simultaneous or zero gap task to compare with the 

gap task. Had the authors employed an overlap task, rather than simultaneous fixation 

offset/target onset task, a more significant delay may have been recorded for the AD group, 

due to attentional disengagement deficit.

Abel and co-workers (2002) also found that an inordinate proportion of anticipatory 

saccades were produced by both AD patients and elderly controls (particularly for AD 

patients). Unfortunately, the authors did not report the number of anticipations explicitly. 

From the histograms it looks as though anticipation could have been as high as 35% of all AD
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patient trials. A previous study of reflexive saccades reported much lower anticipation rates, 

with means in the region of 5.5% for AD patients (Shafiq-Antonacci et al., 2003). Other 

studies appear not to have considered reporting anticipatory saccades or perhaps did not 

register any significant number during reflexive saccade tasks (Currie et al., 1991; Fletcher & 

Sharpe, 1986; Nakano et al., 1999; Schewe et al., 1999)14. Unfortunately, when taken together 

with the evidence of anticipatory levels in other studies, the proportion of anticipations during 

the Abel et al. study is arguably a potential confound for the outcome. It is possible that some 

methodological reason underpins the high proportions of anticipatory saccades generated in the 

Abel et al. study. The stimulus was directionally predictable between 0° and 15° and was 

randomly timed 0 . 5 - 2  seconds, with no inter-trial interval reported by the authors. It is 

feasible that the predictability of the direction combined with unpredictable temporal spacing, 

motivated participants to predict target direction or onset. The instructions were to “follow the 

light as soon as it moves”. Did these instructions, along with what appears to have been 

limited practice, cause participants to anticipate target onset (movement)? Or was it a 

combination of these factors, leading to a task that was simply too difficult for participants to 

complete (AD patients and elderly controls) that caused to problem? Moreover, if little or no 

inter-trial interval was present for the tasks then this could be the reason why participants 

generated such high proportions of anticipatory saccades.

The present study will attempt to simplify the task and optimise the potential for 

participation, whilst maintaining the integrity of the task to generate saccadic responses, 

bearing in mind that the experimental population are elderly people. Therefore, the study used 

a target eccentricity of only 4° with high saliency.

14 Fletcher & Sharpe (1986) also reported gaze impersistence and a number of large saccadic intrusions that 
apparently, on occasion, appeared to be anticipatory. However, no clear distinction was made as to the proportion 
of anticipatory saccades produced.
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4.1 .1  Aims

The main aim of the present study was to investigate reflexive saccade and antisaccade 

latency, in AD and elderly controls, using gap and overlap tasks in an attempt to find a 

sensitive oculomotor marker for AD. A previous study (Abel et a l, 2002) reported that the 

FOE was preserved in AD, but was of the same magnitude as that of controls and did not 

examine antisaccades. The present study attempted to improve on the methodology employed 

by Abel et al. (2002). In part, the aim for the present study was to assess whether the attention- 

shifting or disengagement deficit previously reported in AD was detectable using oculomotor 

paradigms. Thus, the present study examined the FOE in AD by employing an overlap task in 

an attempt to maximise fixation disengagement delay, compared with a gap task employed to 

optimise fixation offset benefits.

The specific hypothesis for Study II was that AD patients would present with an FOE 

of greater magnitude than that of the EC group. Given the attention disengagement deficit 

reported by studies of selective attention in AD, it was hypothesised that AD patients would 

generate saccades to peripheral targets in the reflexive gap task with virtually the same latency 

as elderly controls, taken that reflexive saccade generation is based in the SC. However, 

correspondingly in the reflexive overlap condition AD patients would have significantly 

prolonged latency to peripheral targets compared with the EC group. The prolonged latency 

results from a delay in fixation disengagement from the central fixation point, hence the 

hypothesised larger magnitude FOE for the AD group compared with the EC group. If an 

FOE of greater magnitude was found for the AD group (compared with that of the EC group) 

as a result of prolonged latency in the reflexive saccade overlap task, this would lend support 

for the hypothesis that uncorrected errors in the antisaccade gap task (Study I) may be due to a 

dysfunction of fixation disengagement. Thus, once the target is located inappropriately in the 

antisaccade task - through impaired inhibitory control of the VGR - it is difficult for the AD 

patient to generate a corrective saccade into an empty space in the opposite direction whilst
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already fixating a target - as fixation cannot be disengaged from the target. It is plausible to 

suggest that this is possibly brought about by disruption of the opponent neural processes in the 

SC.

For the antisaccade paradigm, it was hypothesised that the FOE for AD patients would 

be significantly attenuated, due to the cognitive load that the antisaccade paradigm represents 

for this group and the reprocessing costs involved in generating an eye movement into the 

opposite hemifield. Thus, for the AD group, the benefit derived from the gap task when 

compared with the overlap task will be significantly reduced and saccade latency should be 

significantly prolonged for both antisaccade tasks. This corresponds with the results from 

Study I, which indicated that for AD patients the antisaccade task represented a high cognitive 

load due to diminished working memory function.

Saccade amplitude (accuracy), duration and maximum velocity were also examined. 

The specific hypotheses here were that, due to parietal disturbances spatial orienting would 

show a deficit and therefore, that saccadic accuracy would be impaired in AD patients 

compared with controls in the gap task. Thus AD patients should show no benefit with fixation 

offset in this task. However, overlap task accuracy should be less impaired, given that the 

central fixation point is displayed along side the target thereby facilitating accuracy. Given the 

main sequence (Section 1.3) of saccadic eye movements, the relationship between velocity and 

amplitude (also for duration and amplitude), it is hypothesised that the difference between- 

groups for saccadic amplitude should map onto saccade duration and maximum velocity 

producing similar results.

A further line of enquiry for this chapter was be to examine directional error rates in 

gap and overlap tasks, to explore whether AD patients derive any benefit from fixation offset. 

It was hypothesised that no benefit (reduction in error rate) would be derived from fixation 

offset in either the reflexive saccade paradigm or the antisaccade paradigm. Given the high 

degree of pre-potency for the reflexive paradigm, the pace facilitated in the gap task may
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induce a high level of anticipation and a corresponding number of errors, which exceed the 

guidance and prolonged latency provided by the overlap task. However, for the antisaccade 

task, as working memory is somewhat impaired in the AD group, it was hypothesised that 

inhibitory error rates would again be higher in the gap task as this task causes a high cognitive 

load due to the instructional set required for the task combined with the fixation point offset. 

Thus, no benefit will be derived from fixation point offset.

4.2 Methods

4.2 .1  Participants

The participants for this study were from the same pool of dementia patients and 

elderly control volunteers discussed in Chapters 2 and 3 and at stage one in a longitudinal 

study. Thus, patients were from the AD Research Project at Lytham Hospital Memory 

Clinic, United Kingdom and Elderly Control (EC) participants were volunteers from the 

local community of Lytham. Recruitment methods, criteria for dementia diagnosis and 

exclusion, and participant health status were discussed in Chapter 2, Section 2.1. Numbers 

in this study were slightly lower than in Study I, as data for the reflexive overlap condition 

was missing for some of the experimental population. All participants were right-handed.

Table 4.1 Clinical Rating Scale Scores

Groups Dementia sub-groups
Elderly control Dementia Patients
Mean SD N Mean SD N

Alzheimer's disease
Mean SD N

Other dementia
Mean SD N

SMMSE 29.15 1.05 26 22.22 6.20 23 21.15 5.26 13 23.60 7.30 10
EADAS 7.54 2.28 26 22.26 12.52 23 23.77 9.36 13 20.30 16.10 10

The Dementia Patient group (N=23; age range -  68-88 years; mean — 77.0; SD — 

4.7; male, n=15; female n=8) comprised two sub-groups, AD patients (N=13; age range = 

71-88; mean = 77.6; SD = 5.0; male n=8; female n=5) and Dementia of other types [DOT] 

(N=10; age range = 68-81years; mean = 76.3; SD = 4.4; male n=7; female n=3). The
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composition of the EC group (N=26; age range = 62-80 years ; mean = 70.5; SD = 5.0; 

male n=9; female n=17). Clinical rating scale scores for the groups and sub-groups are 

shown above in Table 4.1.

4.2 .2  A ssessm ent of Saccadic Eye Movements

All participants used the same equipment and procedures as in Study II (Chapter 3) 

which were described in Chapter 2 (Section 2.3). This investigation was a parallel analysis to 

Study I, in that it involved the oculomotor measures of saccade latency, amplitude, duration 

and velocity gathered from the reflexive saccade paradigm (gap and overlap paradigm); 

antisaccade paradigm (gap and overlap tasks). The central fixation point was displayed at 0° 

and the target at ±4° in the horizontal plane, with the direction randomised.

The reflexive saccade and antisaccade paradigms employed two tasks, gap and overlap. 

A 200 msec, gap was incorporated into the gap tasks as a temporal gap is known to facilitate 

the disengagement of attention (Fischer & Breitmeyer, 1987). Therefore, given the difficulty 

that AD patients have in disengaging attention from a visual cue, the gap task was used to 

facilitate the disengagement of attention. However in the overlap task, the central fixation point 

was not extinguished at target onset, but remained on, until both were simultaneously 

extinguished at the end of the trial. Thus, AD patients should have difficulty disengaging the 

central cue, to shift attention to the peripheral target.

4.2 .3  Statistical Analysis

SPSS version 11.5 (SPSS Inc., Chicago 111) was used to conduct statistical analyses. 

The statistical procedures were the same as those outlined in Section 3.2.3. Firstly, Dementia 

Patients (DP) were assessed as a group compared with ECs and then the analysis extended to 

examine the dementia sub-groups (i.e. ADs and Dementia of other types). Oculomotor data 

from the left and right hemifield were collapsed as no laterality effects were found for any
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variables. Oculomotor variables were assessed for normality using the skewness index, and, if 

necessary, transformed using square root or square for positive (>1) or negative (<-l) skewness 

respectively (Tabachnick & Fidell, 1996). Analyses were conducted using two-factor repeated 

measures mixed ANOVA with Bonferroni multiple comparisons, and also one-way ANOVA. 

For analyses using repeated measures ANOVA, assumptions of sphericity were assessed on 

each variable using the Mauchly test. The Greenhouse-Geisser epsilon correction of degrees of 

freedom was used if assumptions of sphericity were violated (Jennings, 1987). Planned 

contrasts were used to test between-groups hypotheses and pair-wise comparisons (t-test), were 

applied to within-group analyses. Correlations were investigated using Pearson’s product 

moment correlation coefficient and Spearman’s rank order correlation coefficient where 

appropriate. Between-groups effect sizes for oculomotor variables were calculated with the 

Cohen’s d  statistic (Cohen, 1988) as in the previous study (see equations in Section 3.2.3.2).

4.2.3.1 Effects of Age and Education

The effects of age and education were assessed using Spearman’s rank correlation 

coefficient, to test relationships with oculomotor variables.

4.2.3.2 Group Comparisons for the Magnitude of Fixation Offset Effect

The analysis of group differences on saccadic variables was carried out using two- 

factor repeated measures mixed ANOVA (within-subjects factor levels = oculomotor variables; 

between-subjects factor = group). Additionally, ANOVA were conducted for each oculomotor 

variable, with group as the independent variable (patients versus controls) and oculomotor 

variable as the dependent. Between-groups hypothesis testing was carried out using planned 

comparisons and within-groups pair-wise comparisons, employing the t-test where used to test 

within-groups effects. Relationships between clinical rating scales, neuropsychological
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assessments and oculomotor variables were assessed using Spearman’s rank correlation 

coefficients (two-tailed).

4.3 Results

Skewness (positive) was found to be present for some antisaccade variables (latency, 

amplitude, duration and maximum velocity), which were transformed to normalise the 

skewness of distribution. Output for statistical analysis of untransformed scores was found to 

be generally identical to transformed variables. For clarity of interpretation and descriptive 

statistics the results given below use untransformed versions (where possible non-parametric 

analyses of all variables conducted simultaneously for thoroughness, also revealed the same 

results as ANOVA, but are omitted).

4.3.1 Effects of Age and Education

The oculomotor variables that were included in the present analysis were found to have 

only small non-significant correlations with age and education in the majority of cases (saccade 

latency in each task <0.3 NS). However, there were some minor exceptions as age for the EC 

group, was found to be moderately correlated with maximum velocity for both the reflexive 

saccade gap task (r=-0.40, n=26, p<0.05) and antisaccades tasks (gap, r =-0.42, n=26,/?<0.05; 

overlap, r = -0.49, n=25, p<0.05). Additionally, a moderate correlation was found for 

education with amplitude (r=0.43, n=26, /?<0.05) and also maximum velocity (r=0.43, n=26, 

p<0.05) for the EC group on the antisaccade gap task.

4.3.2 Magnitude of Fixation Offset Effect for Reflexive Saccades

Group descriptive statistics for oculomotor variables used in the present analysis are 

displayed in Table 4.2.
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Table 4.2 Descriptive Statistics for Oculomotor M easures in the Reflexive 
Saccade Paradigm

 ___________________________________R eflexive_sa cc a d e __________________________________________
_____________________ Overlap_____________________   Gap_______________________

AD EC DOT AD EC DOT
Measure Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Latency (m secs) 298.63 45.40 253.58 30.83 274.72 31.94 206.05 45.40 195.67 35.08 212.22 39.97

Amplitude (degs) 3.10 0.60 3.38 0.81 2.98 0.84 3.09 0.63 3.04 0.63 2.69 0.82

Duration (m secs) 46.51 7.78 50.77 8.41 47.35 8.75 47.95 8.35 48.99 8.29 46.85 9.49

Max. Velocity (d e g s 18) 110.25 17.32 115.04 26.52 106.77 32.03 107.03 17.59 106.82 19.78 96.50 29.20
AD = Alzheimer's disease; EC = Elderly control; DOT = Dementia of other types

4.3.2.1 Saccade Latency

Reflexive fixation offset was created as the within-subjects factor in a two-factor 

repeated measures mixed ANOVA, using reflexive gap and overlap saccade latency as factor 

levels, with DP and EC groups as a between-groups factor. This analysis revealed significant 

main effects for reflexive fixation offset (F[l,47]=163.65,pO.OOOl) and group (F[l,47]=6.66, 

/K0.01). The interaction between group (DPs and ECs) and reflexive fixation offset was found 

to be significant (F[l,47]=4.04,p<0.05; see Figure 4.2).

Figure 4.2 Interaction Between Reflexive Fixation Offset and Group 
(Dementia Patients and Elderly Controls)
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The analysis was repeated with the sub-groups, to investigate whether the interaction 

existed at the sub-group level. This analysis revealed significant main effects for reflexive

fixation offset (F[l,46]=158.65, /K0.0001) and group (F[l,46]=3.50, /K0.039). The
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interaction between reflexive fixation offset and group (AP, EC and DOT) was found to be 

significant (F[2,47]=4.07, p<0.024; Figure 4.3), indicating that the magnitude of fixation offset 

effect was significantly different between the groups. Due to the interaction between sub­

group and reflexive task, multiple comparisons (Bonferroni) were used to examine the 

between-group effects for the factor reflexive fixation offset. This analysis showed that the 

factor was significantly greater for the AD group compared with the EC group (/?<0.05), 

however, the DOT group did not differ significantly from ADs or ECs. Therefore, in view of 

Figure 4.3, the significant interaction was caused by the magnitude of FOE being greater for 

AD patients compared with EC and DOT groups.

Figure 4.3 Interaction Between Reflexive Fixation Offset and Group 
(Alzheimer's disease, Elderly Controls and Other Dementia Types)

320

300-

280 -

^  26 0 -

j= 24 0 -
Group

®  220 -
Other dementia types

• o  2 0 0 - Eiderly controls

Alzheimer's d iseaseCO 180 _______
Gap (200 m secs) Overlap

Reflexive saccade paradigm

Histograms displaying frequency distributions for reflexive saccade latency in the gap 

and overlap tasks are displayed for both the AD and EC group below, in Figure 4.4. Figure 

4.4 clearly illustrates that the peak for of the reflexive gap task distributions are similar for 

each group. This confirms the observation in Figure 4.3 displaying the interaction, indicating 

that the AD group derived a benefit from the gap task that was close to that of the EC group. 

However, the peak and spread of the distribution for the AD group in the overlap task, is 

situated subtly to the right, compared with that of the EC group who have a tighter distribution
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Figure 4.4 Histograms Displaying the Frequency of Saccade Latency 
in the Reflexive Gap and Overlap Tasks
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to the left o f the display. This shows that in general, reflexive saccade latency in the overlap 

task was generally prolonged for the AD group, compared with that of the EC group. Hence, 

the magnitude of the fixation offset effect was larger for the AD group than the EC group. 

One-way ANOVA with planned contrasts were carried out between-groups at the sub-group 

level, for each level of the factor: reflexive fixation offset, i.e. reflexive saccade gap task 

latency and reflexive saccade overlap latency. This analysis was used to test the hypothesis 

that there would a significant difference between the AD group and the EC group for reflexive
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saccade latency in the overlap task, whilst in the reflexive saccade gap task, there should be no 

significant difference between the groups (hence the use of planned contrasts (Keppel, 1991)).

For reflexive saccade gap task latency, no significant difference was found between- 

groups with the omnibus ANOVA (F[2,46]=0.754, /?>0.4). Correspondingly, the planned 

contrasts showed that there was no difference between sub-groups. However, a significant 

difference was found between sub-groups, with the omnibus ANOVA, for latency in the 

reflexive saccade overlap task (F[2,46]=7.133,Jp<0.002). The planned contrasts between sub­

groups on this measure, revealed that the mean for the AD group was significantly prolonged 

compared with that of the EC group (t[37]=-3.745,/?<0.001), with a large effect size of 1.2 (d), 

whereas no significant differences were found between the DOT group and each of the other 

groups. This finding supports the hypothesis that the AD group would generate saccades with 

significantly prolonged latency in the reflexive saccade overlap task.

Within-Groups Effects: To aid interpretation of the sub-group interaction with

reflexive fixation offset (Figure 4.3), within-group pair-wise t-test comparisons of the gap and 

overlap tasks were used. These comparisons showed that the difference between gap and 

overlap reflexive saccade latency (Table 4.2) was significantly different for each group (AD, 

t[12]=-8.927,/K0.0001; EC, t[25]=-8.950,/X0.0001; DOT, t[9]=-4.537,/7<0.001).

Thus, each group derived benefit in the gap task with the fixation point offset:

Reflexive Saccade Paradigm:
Fixation offset effect = overlap task latency -  gap task latency

(AD = 92.6 msecs.; EC = 57.9 msecs.; DOT = 62.5 msecs.) as opposed to the overlap task, 

where the central fixation point remained on with target onset and throughout the task, which 

caused primary saccade latency to be significantly prolonged within each group.

In summary, the magnitude of FOE for reflexive saccade latency was found to be

significantly larger for the AD group compared with that of the EC, but not significantly larger

than that of the DOT group. Additionally, no significant difference was found between the
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DOT and EC groups. Whilst the dementia sub-groups produced saccade latencies in the 

reflexive saccade gap task that were very slightly higher than those of the EC group, no 

significant differences were present between any of the groups. However, for the reflexive 

saccade overlap task, the AD group generated saccades with latencies that were significantly 

prolonged compared to the EC group, whereas the DOT group did not differ significantly from 

the either the AD or the EC group. Although the magnitude of FOE was found to vary 

between groups, a significant FOE was found to be present for each sub-group, confirming a 

benefit from fixation offset.

4.3.2.2 Saccade Amplitude, Duration and Maximum Velocity

Individual analyses, conducted with two-factor repeated measures mixed ANOVA, 

were used to examine the reflexive saccade amplitude, duration and maximum velocity data at 

the sub-group level (group x factor: fixation offset level; i.e gap and overlap tasks; Table 4.1). 

In each analysis, no significant effects were observed for the main effect of group or for the 

interaction between group and reflexive fixation offset. However, the main effect of the factor 

reflexive fixation offset was significant for amplitude and maximum velocity, indicating that 

overall for these two measures, there were significant differences between gap and overlap 

tasks (amplitude, F[l,46]=4.419,p>0.04; maximum velocity, F[l,46]=4.508,/?>0.39). In order 

to examine specifically where the amplitude and maximum velocity differences between gap 

task and overlap were located, pair-wise within-groups comparisons were carried out on the 

data. These tests revealed that there were no significant differences between gap and overlap 

tasks for the measures of amplitude or maximum velocity in the AD and the DOT groups. 

However, a significant difference was found between each measure for the EC group 

(amplitude, t[25]=-2.547, /?<0.017; maximum velocity, t[25]=-2.133, p<0.043). Interestingly, 

the saccade amplitude for the EC group was significantly more accurate in the reflexive 

saccade overlap condition, and maximum velocity was higher (main sequence amplitude and
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velocity relationship), supporting the hypothesis of better accuracy; perhaps due to the 

presence of the central fixation point in the overlap task which facilitate better guidance for the 

programming of saccade metrics. On examination of the group means (Table 4.1), a similar 

pattern was present for AD and DOT patients showing that no benefit is obtained in the gap 

task for these measures. In addition to this, the hypothesis that AD patients would be 

significantly less accurate than the EC group, when making a reflexive saccade was not 

supported.

4.3.2.3 Directional Errors

Descriptive statistics for the directional error rates in the reflexive saccade paradigm are 

displayed below in Table 4.3.

Table 4.3 Descriptive Statistics for Directional Error Rates in the Reflexive 
Saccade Paradigm

Reflexive Saccade Task
Overlap 

errors (%)
Gap 

errors (%)
Group Mean SD N Mean SD N

Elderly controls 0.65 1.95 26 1.13 2.94 26
Alzheimer's d isease 1.68 2.22 13 1.94 2.24 13
Other dementia types 2.08 4.50 10 1.68 2.76 10

The error rates are extremely low for this task, indicating that the reflexive capacity of each 

group was intact. Analysis of directional error rates in the reflexive saccade paradigm was 

conducted at the sub-group level to explore whether an FOE was present in the data. This 

analysis used a two-factor repeated measures mixed ANOVA and revealed no significant 

differences in the magnitude of fixation offset effect between the sub-groups. Furthermore, no 

significant difference emerged between sub-groups in the number of errors committed, with the 

conclusion that negligible error rates were present for the reflexive tasks among the sub-groups 

and that all groups demonstrated good performance for this task.
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4.3.3 Magnitude of Fixation Offset Effect for Antisaccades

Descriptive statistics used in the present analysis of the FOE in the antisaccade 

paradigm, are displayed in Table 4.4 below. Analyses in this section followed much the same 

pattern as the analyses used in Section 4.3.2.

Table 4.4 Descriptive Statistics for Oculomotor Measures in the Antisaccade 
Paradigm

_____________________________________________ A ntisaccade______________________________________________
_____________________ Overlap_____________________   Gap_______________________

AD EC DOT AD EC DOT
Measure Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Latency (m secs) 374.55 173.01 329.95 66.49 413.11 143.90

Amplitude (degs) 3.94 2.69 4.09 1.59 3.31 1.74

Duration (m secs) 52.38 21.01 54.90 14.25 46.87 15.43

Max. Velocity (degs'13) 119.33 48.19 121.04 27.79 107.83 35.49
AD = Alzheimer's disease; EC = Elderly control; DOT = Dementia of other types

4.3.3.1 Antisaccade latency

The antisaccade latency data were subjected to a two-factor repeated measures mixed 

ANOVA forming the within-group factor antisaccade fixation offset with two levels, 

antisaccade overlap task and antisaccade gap task. Group was the between-group (DP group 

and EC group) factor. The main effect of antisaccade fixation offset was only approaching 

significance (F[l,44]=3.442, p>0.07), but the main effect of group was significant 

(F[l,44]=4.621, p<0.037). However, the interaction was not found to be significant which 

shows that the magnitude of FOE did not differ significantly between-groups. The analysis 

was carried out again, this time at the sub-group level, but none of the effects were found to be 

significant (all p>0.01). Figure 4.5 shows a line graph to illustrate the spread of data points for 

sub-group means.
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Figure 4.5 A Line Graph Illustrating the Fixation Offset Effect Within Sub-groups 
for the Antisaccade Task
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In the graph above, latencies are clearly prolonged for the dementia patient sub-groups 

compared to those of the EC group, in both the overlap task and the gap task. This explains the 

significant between-groups difference in the DP and EC group analysis, the most prolonged 

latencies being for the DOT group, compared to the EC group. However, none of these 

differences reached significance and therefore the null hypothesis could not be rejected on this 

occasion. Furthermore, there is plainly an FOE present for each group, but the magnitude of 

this effect is not significantly different between the groups, as revealed by the lack of 

significant interaction in the factorial ANOVA.

The histograms in Figure 4.6 (above) show the frequency distributions for antisaccade 

latency in the gap and overlap tasks, for the AD and EC groups. The peaks for the 

distributions are closer together, for each group than in the reflexive saccade paradigm, 

indicating that the FOE is smaller in the antisaccade paradigm than in the reflexive saccade 

paradigm (Figure 4.4). Moreover, the peaks are very similar between-groups, hence no 

difference in magnitude of FOE. The AD group distribution shows considerably more 

variability in latency than the EC group distribution, which can be seen in the standard 

deviations in Table 4.4.
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F ig u re  4 .6  Histograms Displaying the Frequency of Antisaccade 
Saccade Latency in the Gap and Overlap Tasks
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Within-GroupS Effects: Pair-wise within-group comparisons (t-test), between 

antisaccade gap and overlap task latency data were used to examine the within-group FOE:

Antisaccade Paradigm:
Fixation offset effect = overlap task latency -  gap task latency

This analysis showed a significant difference for the EC group (t[24] 2.980, p<0.007), which

indicates a significant FOE (26.27 msecs.). However, despite the larger difference between
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gap and overlap task means for the AD (38.76 msecs.) and DOT (53.88 msecs.) groups, the 

effects were not significant (p>0.3). Thus, the FOE was not found to be significant for the AD 

and DOT groups, which can be attributed to the high within-group variability of antisaccade 

latency measures. It is also possible that the lack of significant effects for the patient groups 

was due to a lack of data points for correct antisaccades. For example, AD group repeated 

measures antisaccade latency data on the gap and overlap task were derived from only ninety- 

nine correct saccades. This small number of data points would reduce the reliability and power 

of this analysis considerably.

To ascertain the level of attenuation for the antisaccade paradigm, the FOE was 

compared between paradigms using the formula:

Attenuation o f FOE for antisaccades = Reflexive saccade FOE -Antisaccade FOE

The results of this analysis are displayed above in Table 4.5. The FOEs for each 

paradigm were compared within-groups using paired samples comparisons (t-test). The 

within-groups analysis revealed that the for the EC group, the FOE was significantly lower in 

the antisaccade paradigm compared to the FOE in the reflexive saccade paradigm (t[24]=- 

4.474, /K0.0001). However, no significant difference was found for the dementia sub-groups, 

due to the high variability of latencies in the antisaccade task.

Table 4.5 Attenuation of the Fixation Offset Effect in the Antisaccade Paradigm

Paradigm
Reflexive saccade
Fixation offset effect 

(msecs.)

Antisaccade
Fixation offset effect 

(msecs.)

Attenuation of 
fixation offset 
effect (msecs.)

Group Mean SD Mean SD Mean N
Elderly controls 57.75 33.66 26.27 44.07 31.48 25
Alzheimer's disease 96.87 35.55 38.76 204.00 58.11 12
Other dementia types 56.92 42.25 53.88 173.39 3.04 9
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In summary these findings support the hypothesis that the FOE for saccade latency 

would be significantly reduced in the antisaccade paradigm for the AD group, compared to that 

of the EC group. In fact, due to the extent of variability within AD, and also, the DOT group 

antisaccade latency, no significant FOE was evident. Moreover, the findings also support the 

hypothesis that the FOE would be severely reduced for the AD group in the antisaccade 

paradigm compared to the reflexive saccade paradigm, due to the cognitive load that this 

paradigm places on the impaired working memory of AD patients. However, the EC group 

simply presented with a significantly reduced FOE in the antisaccade task compared to the 

reflexive saccade FOE.

4.3.3.2 Saccade Amplitude, Duration and Maximum Velocity

Analysis of the saccade amplitude, duration and maximum velocity data presented in 

Table 4.4 was conducted following the pattern of manipulation used in previous sections. 

However, no significant findings were shown to be present in any of these measures, with 

regards to the FOE between-groups or sub-groups.

Interestingly, the amplitude of saccades in the antisaccade overlap task appeared to be 

more accurate than amplitudes in the antisaccade gap task, although this observation did not 

reach significance between-groups. However, within-groups pair-wise comparisons (t-test) 

found that accuracy was not significantly different between the tasks for the AD and DOT 

groups. Thus, this finding did not support the hypothesis that the AD group would be 

significantly less accurate in the gap task than the overlap task. For the EC group, the 

difference between tasks was found to be significant, indicating that saccades were more 

accurate in the antisaccade overlap task, than the antisaccade gap task (t[24]= 2.242, /?<0.034), 

due to overshoot in the gap task. A Pearson’s correlation revealed only a weak relationship (r 

= -0.23), showing that antisaccade gap task latency was not significantly associated with 

amplitude. However, the correlation is in the right direction for a potential speed-accuracy
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trade-off perhaps for some participants, thus the lower saccade latency is, the less accurate 

saccade amplitude will be in the antisaccade gap task, perhaps at least for some of the EC 

group (as indicated by the weak correlation). Within-group analysis of saccade velocity and 

duration, showed that there was no significant difference between gap and overlap conditions 

in the antisaccade paradigm for dementia patients. For the EC group however, saccade 

velocity was found was to be significantly higher in the gap task (t[24]= 2.679, p<0.013) than 

in the overlap task, which probably relates to the size of amplitude and the main sequence 

relationship, as the saccades had significant overshoot in the gap task.

4.3.3.3 Inhibition Errors

Descriptive statistics for the inhibition errors committed in the antisaccade paradigm 

are presented below in Table 4.6. Statistical analyses following the same pattern of tests from 

previous sections of Study II revealed that there was no significant FOE for inhibition errors 

for any group.

Table 4.6 Descriptive Statistics for Inhibition Error Rates in the 
Antisaccade Paradigm

Antisaccade Task
Overlap 

errors (%)
Gap 

errors (%)
Group Mean SD N Mean SD N

Elderly controls 14.06 11.43 24 17.56 14.03 24
Alzheimer's disease 47.83 26.57 13 50.04 29.19 13
Other dementia types 40.10 21.93 9 45.50 27.43 9

As can be seen in Table 4.6, the error rate was actually higher in the gap task than the 

overlap task as hypothesised, however this difference was not significant15. These findings do 

not support the hypothesis that for the AD group, the antisaccade gap task error rate would be 

higher than the antisaccade overlap task error rate, although errors were marginally higher.

15 Supplementary analysis between antisaccade gap task and overlap task uncorrected errors and also, corrected 
errors revealed no significant differences within-groups.
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In summary, only a negligible, hence, non-significant difference was found for the 

increase in inhibition errors rates across groups in the antisaccade gap task, compared with 

inhibition error rates in the antisaccade overlap task. Although it was clear that performance 

on the antisaccade paradigm was significantly different between the EC group and dementia 

groups (as emphasised in Study I, Chapter 3), this difference did not extend to between task 

analysis for the gap and overlap conditions.

4.4 Discussion

4.4 .1  Key findings

The main findings for the present study can be summarised as follows

1. The magnitude of fixation offset effect for saccade latency in the reflexive 

saccade paradigm was found to be significantly greater for the DP group 

than for the EC group. However, at the sub-group level it was only 

possible to dissociate AD patients from the EC group, but not the DOT 

group.

2. There was no significant fixation offset effect for saccade latency in the 

antisaccade paradigm for the AD or DOT groups, whereas the EC group 

did have a significant fixation offset effect. The magnitude of fixation 

offset effect, was significantly attenuated for the EC group in the 

antisaccade paradigm, as compared with fixation offset effect in the 

reflexive saccade paradigm.

3. No fixation offset effect was obtained for saccade amplitude, duration and 

maximum velocity in any group or paradigm. The only significant 

differences on these measures were within the EC group who produced 

saccades that were significantly more accurate in the overlap task, in both
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the reflexive saccade and the antisaccade paradigms. The EC group also 

had a significantly higher saccadic maximum velocity in the reflexive 

overlap task.

4. Directional errors in the reflexive saccade paradigm showed no 

significant fixation offset effects. In the antisaccade paradigm there was 

no fixation offset effect for the proportion of inhibition errors, in any of 

the groups.

The objective of this study was to investigate the FOE in AD, primarily for saccade 

latency, but also exploring saccade amplitude, duration, maximum velocity and errors. 

Deficits in the disengagement of attention have been established in a number of studies in AD, 

and the present study sort to establish the fundamental basis which underpins this attentional 

dysfunction, in terms of a fixation disengagement deficit. This study attempted to exploit the 

fixation disengagement deficit, by employing oculomotor paradigms designed with the aim of 

being sensitive enough to detect the deficit and thus dissociate AD from other groups. The 

analysis included both involuntary and voluntary saccade paradigms, to compare the 

magnitude of FOE between paradigms and between groups. A further reason for including the 

antisaccade paradigm, was to establish how working memory impairment in the AD group may 

affect attentional processes, given the results of Study I, where working memory impairment 

was considered as the principal underlying problem that formed the basis of inhibitory error in 

voluntary saccade tasks for the AD group.

4 .4 .2  Magnitude of Fixation Offset Effect for Reflexive Saccades

The magnitude of FOE for saccade latency in the reflexive saccade paradigm was 

examined between-groups and revealed a significant interaction between the DP group and EC 

group. However, although analysis of dementia sub-groups showed that each group was found
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to have a significant FOE further analysis revealed that the magnitude of FOE was 

significantly greater for the AD patient group than for the EC group, though this measure did 

not significantly dissociate the AD group from the DOT. Furthermore, the magnitude of FOE 

for the DOT group was not found to be significantly different to that of the EC group. This 

possibly indicates that the DOT patients may lie somewhere on a continuum, from the FOE of 

healthy normal elderly controls to a higher magnitude of FOE brought about by AD.

The increased magnitude of FOE for the AD group was isolated to a significantly 

prolonged saccadic latency in the reflexive saccade overlap task, with a large effect size when 

compared with the EC group. The present study argues that the significantly prolonged 

saccadic latency in the reflexive saccade overlap task for AD patients is due to an impairment 

in the disengagement of fixation, which corresponds with previous studies of attention in AD, 

that have reported an attention-shifting or disengagement deficit (Parasuraman et al., 1992; 

Perry et al., 2000). Therefore, it is feasible to argue that the high uncorrected error rates 

reported for the AD group in Study I, are due to a disruption in the disengagement of fixation.

4.4 .3  Magnitude of Fixation Offset Effect for Antisaccades

No significant difference was observed between-groups, for the magnitude of FOE in 

the antisaccade paradigm (saccade latency). Substantial intra-group variability was discovered 

for saccade latency in the dementia sub-groups, having a deleterious effect on the FOE. It is 

plausible to suggest that this may have been caused by the relatively small number of data 

points available for correct antisaccades for the AD and DOT groups, from which the mean 

latency was derived. However, the EC group were found to benefit from offset of the central 

fixation point, more consistently in the antisaccade gap task, generating a significant FOE. The 

EC group antisaccade latency means were derived from nearly 500 correct saccades, a 

considerably higher number of data points than the dementia patient groups.
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There was no significant fixation offset effects for saccadic amplitude, duration or 

velocity. Conversely, amplitudes were in the main, found to be more accurate in the 

antisaccade overlap task. For the dementia patient sub-groups, no difference was found 

between antisaccade gap and overlap metrics, however, EC group saccadic amplitude was 

found to be significantly more accurate in the antisaccade overlap task.

4 .4 .4  Implications of the Fixation Offset Effect in Alzheimer's Disease

Where AD is concerned, the FOE has only been investigated in one previous study 

(Abel et al., 2002). Abel et al. (2002) found that the FOE for saccade latency was preserved in 

AD for reflexive saccade tasks, as the present study has confirmed. However, Abel and co­

workers (2002) found that the magnitude of the FOE was no different to that of elderly controls 

and that both groups generated a large proportion of anticipatory saccades (grossly for the AD 

group). The present study found a significantly higher magnitude of FOE for the AD group 

compared with the magnitude of FOE for the EC group, but the AD magnitude was not found 

to be significantly greater than that of the DOT group. Furthermore, the present study found 

no evidence of extremely high rates of anticipatory saccades (Section 3.3.5). Additionally, the 

present study reported saccadic amplitude, duration, velocity and error rates in relation to the 

FOE, and can confirm that no FOE was present on any of these measures for any group. There 

were numerous methodological differences between the present study and the study by Abel et 

al. (2002), which may account for these findings (Section 4.1):

1). Most prominently, Abel et al. used a central fixation point that was extinguished 

simultaneously with target onset. However, the present study used an overlapping target that 

was present alongside the fixation point for the duration of each trial. Thus, the capacity for 

fixation of the central point was optimised. Previous research has demonstrated that a 

simultaneous fixation point offset and stimulus onset results in a reduced FOE, when compared 

with the FOE derived from no fixation offset (Forbes & Klein, 1996).
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2). The Abel et al. (2002) study employed a target that was predictable in direction, 

whereas in the present study, the stimulus direction was randomised.

3). The temporal characteristics of the target stimulus in the Abel et al. (2002) study 

were randomised, whereas in the present study target onset time remained constant.

4). Target eccentricity was ±15° for the Abel et al. study, whereas a 4° target was 

employed in the present study.

The design of the present study resulted in a higher magnitude of FOE for the AD 

group, compared with the FOE of the EC group which was found to have been due to the 

overlap task resulting in saccades of significantly prolonged latency between-groups. Taken 

together, these results suggest that in the present study, the use of a smaller target eccentricity 

(±4°) and the randomisation of target direction facilitate participation in the task, making the 

test easier and more appropriate for elderly participants, most importantly dementia patients. 

This is in contrast with the Abel et al. study, which used temporal randomisation of stimuli 

combined with large target eccentricities (e.g. ±15°) and an unreported inter-trial interval, 

which appear to have induced high rates of anticipatory behaviour.

Given that the Abel et al. (2002) study reported no significant difference between the 

FOE for AD and controls, it should be noted that the FOE for the control group was found to 

be marginally larger than that for their AD group. A logical argument in the present study, is 

that the large magnitude of FOE for the AD group was due to the overlap condition, combined 

with task parameters that facilitated the ability to participate with a high level of valid trials 

and minimal anticipatory behaviour. However, the experimental parameters in the Abel et al. 

(2002) study - which used a central fixation point that was extinguished simultaneously with 

target onset - did not result in prolonged saccadic latency for their AD group. If Abel et al. 

(2002) had employed an overlap condition then they may well have found a larger magnitude 

of FOE for the AD group.
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4.4 .5  Neuroanatomical Considerations

The findings of this study can potentially inform both the understanding of 

neurodegeneration in AD and the debate over the attenuation of the FOE in the antisaccade 

paradigm compared to the magnitude of FOE reported in reflexive saccade paradigms. The 

findings correspond very well with the Forbes and Klein (1996) model illustrated in Figure 4.1, 

but are also interesting for the control of endogenously generated saccades, given the different 

accounts of this control between Forbes and Klein (1996) and Machado and Rafal (Machado & 

Rafal, 2000a; Machado & Rafal, 2000b).

For exogenous saccades there was no significant difference between AD group saccade 

latency and that of the EC group in the gap task, although typical of most studies in AD, 

latencies for AD patients were marginally prolonged. Following the Forbes and Klein (1996) 

model, in the gap task, removal of the fixation point facilitates disinhibition of the SAC system 

reducing saccade latency, which is intact for all experimental groups. However, in the overlap 

task, the disinhibition of the SAC system takes longer for all experimental groups, due to the 

brake effect of the fixation cells on movement cells and stimulation of inhibitory omnipause 

neurons in the SC, caused by the presence of the central fixation point. For the AD group, a 

delay in the disinhibition of the SAC system results in a larger magnitude FOE. The larger 

magnitude FOE may therefore be due to a dysfunction of the fixation neurons in the SC, 

causing inhibition of the movement cells, i.e. disruption of opponent neural processing (see 

Section 1.4.1.1). Alternatively there may be a disturbance of input from the PEF to the SC or 

PEF to the FEF (Sections 1.4.2.1 & 1.4.2.2 respectively), given vital parallel pathways that 

exist between these areas and the importance of the complex layers in the SC for visual 

processing, attention (dorsal layers), motor mapping and motor commands (ventral layers) 

(Section 1.4.1.2). The pathology in AD (Section 1.5.2.1) and the degeneration in parietal areas 

in early AD could plausibly account for a deficit in the disengagement of fixation and 

subsequent delay in attending the peripheral target, compared with healthy control participants.
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For endogenously generated saccades in the antisaccade task, inhibitory control of the 

VGR is actively operating prior to saccade initiation, due to the planned nature of the 

antisaccade task. The ENDO system provides the tonic inhibition of the SC and inhibition is 

mediated by the prefrontal cortex, so the endogenous saccade program encounters less 

inhibition from the fixation system. This model is fine for the EC group in the present study 

with a relatively intact working memory. However, the AD group have been found to have a 

deficit of working memory, which may impede the preparatory set for the task. Therefore, not 

only is saccade latency prolonged in both the antisaccade gap and overlap task, due to their 

cognitive load, but consequently, there is no significant FOE either, as the presence or 

elimination of the fixation point has little effect when AD patient finds the task demands so 

high.

Further psychoneural considerations for these findings, in relation to recent literature in 

the field will be examined in the General Discussion in Chapter 9.

4.5 Conclusions

The reflexive saccade paradigm incorporating gap and overlap conditions was 

able to dissociate between early Alzheimer’s disease patients and elderly control 

participants, but could not distinguish between dementias of other types and the 

other groups.

4- Prolonged saccade latency for the Alzheimer’s patients in the reflexive overlap 

task, appears to be due to prolonged fixation which corresponds with the deficit 

in the disengagement of attention that has been previously reported by various 

studies of early Alzheimer’s disease.

>  The antisaccade paradigm, comprising gap and overlap tasks resulted in a 

significantly attenuated FOE for each group and could not dissociate between 

any of the groups. Only the elderly control group was found to have a reliable 

FOE in the antisaccade task.
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The antisaccade task appears to exert a high level of cognitive load for the 

Alzheimer’s disease group, resulting in high variability of saccade latency and 

consequently, a lack of any significant fixation offset effect.

Uncorrected errors reported in the antisaccacde task in Study I are likely to be 

due to a difficulty that AD patients have in generating a saccade to an empty 

location, whilst already fixating a target i.e. fixation disengagement is 

dysfunctional.

Saccadic amplitude, duration, maximum velocity and error rates do not result in 

a fixation offset effect. Therefore, no benefit is derived from the removal of the 

central fixation point in the gap task for these measures for dementia patients or 

elderly controls.

^  Consideration of experimental design and task parameters are crucial when 

conducting research with clinical groups.
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Chapter Five

Study DI: Investigating Effects of Age and Disease

5.1 Introduction

The previous chapters discovered some prominent saccadic abnormalities in dementia 

and more specifically AD, which included dysfunctional inhibitory control, poor error 

correction - as indicated by the proportions of inhibition errors that remain uncorrected - and a 

higher magnitude of FOE in reflexive saccade tasks. Study III aimed to discover whether the 

findings from Studies I and II could distinguish between control groups other than healthy 

elderly participants. Therefore, the study seeked to explore more closely, the degree to which 

normal aging may contribute to the saccadic and behavioural effects reported earlier and also, 

attempts to ascertain the extent to which the effects are characteristic of the disruption caused 

by the pathology in dementia. To this end, the present analyses extended the previous studies 

to include Parkinson’s disease (PD) patients so as to examine disease effects and healthy young 

control (YC) partcipants, to analyse age effects more thoroughly.

5.1.1 Parkinson's disease

The cardinal clinical features of idiopathic PD present as a triad of tremor, rigidity, and 

akinesia (Gelb, Oliver & Gilman, 1999; Waters, 1999). The principal area of the brain affected 

in PD is the basal ganglia, which comprises the striatum, globus pallidus (internal and external 

segments), intralaminar nuclei of the thalamus, subthalamic nucleus and the substantia nigra 

(comprising the pars reticulata (SNpr) and the pars compacta (SNpc); Figure 5.1). PD is a 

neurodegenerative disease, the pathology of which affects dopaminergic neurons in the SNpc
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causing degeneration of the pathway between the SNpc and the striatum. This results in 

dopamine depletion in the striatum and leads to the symptoms mentioned above (Waters, 

1999). Due to the degeneration of cell bodies in the brainstem, dopaminergic neurons in the 

caudate nucleus and most prominently in the putamen, also die out (Rosenzwieg, Leiman & 

Breedlove, 1999a).

Globus

Figure 5.1 Illustration locating the Basal Ganglia in the Human Brain. 
Coronal section (A) and Sagittal section (B). (from Zigmond etal. 1999)
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It is believed that loss of striatal dopamine increases tonic inhibitory outflow from the 

SNpr, via both the indirect pathway to the external segment of the globus pallidus and 

subthalamic nucleus, and also via the direct caudate-nigral pathway (DeLong & Georgopoulos, 

1981). Some patients develop a marked cognitive decline, generally in the advanced stages of 

the disease process (Cummings, 1995). This is probably due to diffuse degeneration in the 

cortex and sub-cortical regions (Lueck, Tanyeri, Crawford, Henderson & Kennard, 1990). The 

cognitive deficits found in PD are characteristic of fronto-striatal disturbance (Taylor, Saint-
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Cyr & Lang, 1986) and it has been found that dysfunction of delayed response and visuospatial 

working memory can appear at the moderate stage of disease (Brown & Jahanshahi, 1996; 

Pillon, Dubois, Lhermitte & Agid, 1986). Alexander and colleagues (Alexander, DeLong & 

Strick, 1986) anatomically defined pathways which link the frontal cortex, thalamus and basal 

ganglia, via a system of multiple, parallel and partially segregated basal ganglia cortico­

thalamic loops. Alexander et al. (1986) suggested that disruption of these neural loops leads to 

cognitive deficit, due to dopamine deficiency in the DLPFC.

The etiology of Parkinson’s disease is still unknown, therefore, distinguishing PD from 

other forms of disease that include Parkinson-plus syndromes or secondary Parkinson’s disease 

(resulting from infection, toxins or vascular disease) can be clinically difficult. Furthermore, 

studies assessing diagnostic accuracy via autopsy, found that 15-20% of patients diagnosed 

with PD were actually misdiagnosed (Hughes, Daniel, Kilford & Lees, 1992; Jellinger, 1996). 

Therefore, the study of saccadic eye movements in PD can be difficult due to these potentially 

confounding factors, which should be taken into consideration when assessing findings.

Many studies have found common results in the study of reflexive saccades in PD, 

showing that performance is normal in patients with mild or moderate PD (Briand et al., 1999; 

Crawford et al., 1989b; Crevits, Vandierendonck, Stuyven, Verschaete & Wildenbeest, 2004; 

Fukushima et al., 1994; Kingstone, Klein, Maxner & Fisk, 1992; Kingstone et al., 2002; 

Kitagawa et al., 1994; Lueck et al., 1992a; Lueck et al., 1990; Mosimann et al., 2005; Shaunak 

et al, 1999; Vidailhet et al., 1994); Crevits et al. (2004) also reported a significant fixation 

offset effect. Antisaccade performance is also generally found to be normal for mild to 

moderate cases of PD (Fukushima et al., 1994; Kingstone et al., 1992; Kingstone et al., 2002; 

Lueck et al., 1990; Vidailhet et al., 1994), although in severe patients, performance has been 

found to deteriorate as evidenced by increased error rates and latency (Briand et al., 1999; 

Kitagawa et al., 1994). Thus, task difficulty does not appear to affect mild Parkinson’s

patients, but the effects in advanced Parkinson’s - when cognitive deficit is likely, probably
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reflects disruption of the DLPFC and this possibly relates to working memory function and its 

relationship with cognitive load of a given task. PD patients tested in saccadic paradigms 

involving a delay have been found to generate hypometric saccades, which is also the case 

when the central fixation point overlaps with the signal to generate a saccade (Crawford, 

Henderson & Kennard, 1989a; Hodgson, Dittrich, Henderson & Kennard, 1999; Lueck, 

Tanyeri, Crawford, Henderson & Kennard, 1992b; Rivaud-Pechoux et al., 2000; Shaunak et 

al., 1999). Other studies have also shown that PD patients generate more directional errors on 

delayed saccade tasks (Armstrong, Chan, Riopelle & Munoz, 2002; Yoshida, Yamada & 

Matsuzaki, 2002).

5.1.2 Normal Aging

There is good reason to examine healthy ageing more closely by investigating a further 

healthy control group (YCs) to expand on the role played by healthy elderly control 

participants in the analyses of Studies I and II. The healthy ageing human brain may lose up to 

8% of its mass, due to neuronal deterioration (Dekaban & Sadowsky, 1978) and a reduction of 

intracellular water content during the lifespan. Neuronal loss causes the degeneration of axons 

and consequently the loss of inputs to downstream cells. There is some compensation, as the 

loss of connectivity triggers nerve growth factor, which induces other neurons to sprout out 

dendritic branches and thus re-innervate at a structural level. However, this plasticity lasts for 

only a finite period, between fifty and seventy years of age, after which it ceases (Buell & 

Coleman, 1979). The neuronal loss in normal ageing, occurs mainly in areas of the frontal and 

temporal cortices (Creasey & Rapoport, 1985), other regions appearing little affected by the 

ageing process.

The extensive reduction in brain mass during the lifespan can result in a reduction in 

the capacity of cognitive function, but this varies greatly between individuals. For example, 

one study found that duration of arithmetic operations were increased and accuracy reduced for
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elderly participants compared with younger controls, on working memory tasks that require 

frontal lobe function when the cognitive load of a task was increased (Oberauer, Wendland & 

Kliegl, 2003); Whereas processing rates with simpler tasks were equivalent between groups. 

However, tasks that involved selective access to working memory, showed no deficit for 

elderly people. Therefore, the ability to carry out tasks appears largely preserved, but 

information processing speed reduced with age. It is important to acknowledge, that there has 

been a large amount of research conducted on ageing, which found that working memory 

performance (executive function) and inhibitory control decline with age (Bowles & Salthouse, 

2003; Chiappe, Hasher & Siegel, 2000). Studies have shown that if nonrelevant information is 

not suppressed -  purportedly due to poor inhibitory control -  working memory performance is 

impeded (Andres, Van der Linden & Parmentier, 2004; Hasher, Stoltzfiis, Zacks & Rypma, 

1991; Hasher, Zacks & May, 1999). Much of this research thus supports the inhibition- 

reduction model of proposed by Hasher and Zacks, which hypothesises that age-related 

deterioration of working memory is a consequence of the diminution in ability to inhibit 

irrelevant information. Accordingly, Hasher and Zacks postulate, that inhibition is a central 

mechanism in determining what information enters working memory and the consequential 

effects that this has on various types of cognitive function (Hasher & Zacks, 1988). When 

inhibitory control is poor the timing of relevant and nonrelevant information is compromised, 

which causes working memory to become cluttered and consequently results in the production 

of inappropriate responses.

The study of saccadic eye movements in healthy ageing has revealed that there are 

subtle changes in saccade latency for both reflexive and antisaccades. For example, various 

studies have revealed that saccadic latency for reflexive saccades is prolonged in elderly 

participants compared with younger controls (Abel, Troost & Dell'Osso, 1983; Carter, Obler, 

Woodward & Albert, 1983; Kaneko, Kuba, Sakata & Kuchinomachi, 2004; Munoz, 

Broughton, Goldring & Armstrong, 1998; Olincy et al., 1997; Shafiq-Antonacci et al., 1999;
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Sharpe & Zackon, 1987; Spooner, Sakala & Baloh, 1980; Sweeney, Rosano, Berman & Luna, 

2001; Warabi, Kase & Takamasa, 1984). However, the study of saccadic accuracy in reflexive 

tasks, as indicated by saccade amplitude, appears to be little affected by age (Shafiq-Antonacci 

et al., 1999; Sweeney et al., 2001; Warabi et al., 1984), although not all studies are in 

agreement with this (Olincy et al., 1997; Sharpe & Zackon, 1987). Interestingly, attentional 

shifting prior to target onset has also been found unaffected by age (Kaneko et al., 2004).

Performance by elderly participants on antisaccade tasks, has shown that antisaccade 

latency is significantly prolonged, compared with that of young controls (Munoz et al., 1998; 

Nieuwenhuis et al., 2000; Olincy et al., 1997; Shafiq-Antonacci et al., 1999; Sweeney et al., 

2001). Furthermore, a number of studies have found that antisaccade error rate is increased 

significantly in healthy elderly participants compared with young controls (Fukushima et al., 

1994; Nieuwenhuis et al., 2000; Olincy et al., 1997; Shafiq-Antonacci et al., 1999; Sweeney et 

al., 2001). However, the capacity for error correction following inhibitory error, appears to be 

intact in healthy elderly participants (Olincy et al., 1997; Sweeney et al., 2001).

5.1.3 Aims

The aim of the study was to examine salient findings from the earlier studies (I and II), 

in comparison to data gathered from additional control groups that included PD patients and 

YC participants. This was done in order to explore whether it was possible to distinguish 

between age effects and disease effects in the salient outcomes from the EC, DOT and AD 

groups. As saccadic control in mild to moderate PD has been found largely to be normal for 

reflexive and antisaccade tasks, this group should provide a convenient method for examining 

disease effects more closely and thereby distinguish more clearly the significant results 

revealed for the AD group. The inclusion of a young control group should also provide a 

method to further establish, which effects are due to dementia and which effects occur as a 

consequence of normal ageing.
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The first hypothesis for this study was that PD patients would perform significantly 

better i.e. generating less inhibition errors than the AD group across the range of voluntary 

saccade tasks which demand varying degrees of working memory resources, as working 

memory function should be relatively intact in the PD group. Furthermore, performance of PD 

patients should not differ significantly from that of healthy elderly control participants. 

However, performance of the YC group should be significantly better than each of the other 

groups, as inhibition errors have been found to increase as a function of normal ageing.

It is also hypothesised, that the ability to self-monitor performance in the PD group 

should be significantly increased by comparison with the AD group, as indicated by inhibition 

errors generated in the antisaccade gap task. A further hypothesis, is that the PD group’s 

capacity to correct erroneous saccades should be similar to that of the EC group, however, 

uncorrected error rates should be significantly lower than the AD group, indicating that self­

monitoring capacity and correctness of performance in the PD group is relatively intact. 

Furthermore, the ability to self-monitor performance and generate correction for inhibition 

errors should not vary significantly between the YC, PD and EC groups as the capacity to carry 

out tasks in the elderly has been found to affect processing time and not the ability to carry out 

the task (Oberauer et al., 2003). Therefore, there should be no significant difference between 

the uncorrected error rates for these groups. However, the YC, PD and EC groups should 

produce significantly less uncorrected errors than the AD group, as the AD group are believed 

to have a deficit in the disengagement of attention (Parasuraman et al., 1992; 1993) and thus a 

disturbance in ability to generate a saccade to an empty location, once already fixating a target 

(all be it erroneously).

An additional hypothesis concerns the magnitude of the FOE in the reflexive saccade 

paradigm. The hypothesis here, is that the magnitude of FOE should be significantly larger for 

the AD group, by comparison to the PD and YC groups, whereas the magnitude of FOE for the 

EC group should not differ significantly from that of the PD and YC. Attentional deficits in
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AD have been reported in numerous previous studies. As a neural correlate for the FOE has 

been located in the SC (Dorris & Munoz, 1995), this hypothesis is in accord with the notion of 

a disturbance in the disengagement of fixation (inhibition of movement cells by fixation cells) 

when already viewing a visual stimulus, particularly when the stimulus is fixated at a central 

location.

5.2 Methods

5.2.1 Participants

Participants for this study included patients diagnosed with mild to moderate idiopathic 

PD (N=25; age range = 48-74 years; mean = 62.8; SD = 7.4; male, n=16; female n=9) 

recruited from the Departments of Neurology and Neurophysiology, Royal Preston Hospital, 

Lancashire Teaching Hospitals NHS Trust, Lancashire, U.K. All were diagnosed on the basis 

of clinical evaluation by consultant neurologist, including motor function assessment with the 

Webster Rating Scale16 (Webster, 1968) and the Hoehn and Yahr classification (Hoehn & 

Yahr, 1967) mean score = 2.2; SD = 0.83. PD patients were also free of dementia and assessed 

with the SMMSE and the EADAS cog. Due to clinical restraints of the study, it was not 

possible to test the PD patients 12 hours post medication, as suggested by previous clinical 

investigations of PD (Langston et al., 1992). Twenty-three of the PD patients were taking 

medication of levodopa and three patients were not taking any PD related medications. 

Patients were excluded under the criteria discussed in Chapter 2 (Sections 2.1), thus none of 

the patients were taking anticholinergic drugs or any medication known to affect cognition or 

oculomotor function and therefore, any additional medications conformed to those outlined in 

Sections 2.2.1 and 2.2.1.1. All patients gave written informed consent prior to participation in 

the study17.

16 Unfortunately the Webster Rating Scale scores were unavailable at the time of writing this thesis.
17 Ethical approval for this study was granted by Lancaster University Research Ethics Committee and the Local 
Research Ethics Committee for the NHS Trust (2001).
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YC participants were recruited from the postgraduate student population at Lancaster 

University18 (N=17; age range = 22-27 years; mean = 23.82.5; SD = 1.8; male, n=8; female 

n=9). All YC participants reported good health, via health questionnaire and gave written 

informed consent.

Dementia patients and EC participants were from the same groups reported in Chapters 

3 and 4. The AD patients (N=17; age range = 70-88; mean = 76.9; SD = 4.9; male n=12; 

female n=5) and DOT (N =ll; age range = 68-81years; mean = 75.8; SD = 4.4; male n=7; 

female n=4). The composition of the EC group was (N=33; age range = 58-85 years ; 

mean = 70.5; SD = 6.0; male n=13; female n=20).

5.2 .2  Assessm ent of Saccadic Eye Movements

All participants used the equipment, task protocol and experimental procedures 

described in Chapter 2 (Section 2.3), which involved the reflexive saccade gap and overlap 

paradigm; No-Go and Go/No-Go paradigms; and antisaccade gap and overlap paradigm with a 

central fixation point displayed at 0° and target at ±4° in the horizontal plane, presented 

randomly by direction. Therefore, it was possible to examine inhibitory control and also, the 

fixation offset effect. Unfortunately, it was not possible to gather Go/No-Go task data from the 

Parkinson’s disease group.

As in Chapter 3, the reflexive gap task was presented first, which is particularly 

important for testing inhibitory control, in order to enhance or maximize the prepotent 

response and also to avoid potential carry-over effects from voluntary saccade paradigms 

(Roberts et al., 1994). Furthermore, Perry and Hodges (Perry & Hodges, 1999) highlight 

that dementia patients are more amenable when less cognitively demanding tasks are 

administered first. As is Chapter 3, directional errors in the reflexive saccade gap task 

were omitted from the analyses as so few were made (see Table 5.3).

18I am very grateful to Sue Tetley for collecting the healthy young control group data as part o f her postgraduate 
MSc. degree research.
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5.2 .3  Statistical Analysis

Statistical analyses were carried out using SPSS version 11.5 (SPSS Inc., Chicago 111). 

As in the previous studies laterality effects were absent from all variables, therefore data from 

left and right hemifields were collapsed. The skewness index was used to assess the normality 

of oculomotor variables, and variables transformed using square root or square, for positive 

(>1) or negative (<-l) skewness respectively (Tabachnick & Fidell, 1996). Analyses were 

conducted on the salient findings from previous studies, to include the PD and YC groups. 

These procedures incorporated one-way analysis of variance (ANOVA) or two-factor repeated 

measures mixed ANOVA with trend analysis. For analyses using repeated measures ANOVA, 

Mauchly’s test was conducted on each variable to assess assumptions of sphericity. If 

assumptions of sphericity were violated, the Greenhouse-Geisser epsilon correction of degrees 

of freedom were used (Jennings, 1987). Group comparisons involved post hoc analyses using 

the Sheffe test and also, where specific hypotheses where tested, the Least Significant 

Difference t-test was used to evaluate the fixation offset effect. Within-groups pair-wise 

comparisons (t-test), were applied where applicable. Correlational investigations were 

conducted using Spearman’s rank order correlation coefficient.

5.3 Results
Skewness was found to be present as in the previous studies for some variables, which 

was transformed to normalise the distribution. As in previous the studies, statistical analysis 

of transformed variables generated output that was practically the same as that produced by 

untransformed scores, therefore for clarity of interpretation and descriptive statistics, the results 

given below use untransformed versions.
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5.3.1 Clinical Rating Scales and Neuropsychological Assessment

Clinical rating scale and neuropsychological assessment scores are displayed in Table 

5.1. There was only slight difference in performance between the EC and PD groups across the 

range of tests (only Verbal Fluency scores were available for the YC group).

Table 5.1 Clinical Rating Scale and Neuropsychological Assessment Scores to include 
Parkinson's Disease Patients and Young Control Participants

Groups Dementia sub-groups
Elderly control Young control Parkinson's disease Alzheimer's disease Other dementia

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

SMMSE 29.09 1.13 33 - 28.92 1.29 25 21.35 4.72 17 24.00 7.06 11

EADAS 7.79 2.46 33 - 6.68 2.46 25 22.76 9.35 17 19.27 15.65 11

VFlu 38.42 10.63 33 34.12 10.17 17 36.60 10.50 25 22.59 10.32 17 22.55 11.07 11

DSF 10.30 2.28 33 - 9.80 1.78 25 8.65 2.23 17 8.91 2.26 11

DSR 7.39 2.36 33 - 6.72 2.28 25 5.06 2.46 17 5.91 3.30 11

SSF 7.45 1.80 33 - 8.04 1.46 25 5.53 2.07 17 5.09 2.17 11

SSR 6.73 1.18 33 - 7.08 1.38 25 4.24 2.11 17 4.45 2.07 11
Vflu=Verbal Fluency; DSF=Digit Span Forward; DSR = Digit Span Reverse; SSF=Spatial Span Forwards; SSR=Spatial 
Soan R e v e r s e

For the SMMSE, EC and PD scores were virtually the same, whereas on the EADAS cog, 

the PD group performed marginally better than the EC group. However, the EC group 

performed slightly better than the PD group at each of the other tests. The dementia sub­

groups are shown to have performed more poorly on all tests than the EC and PD groups. 

Univariate ANOVA was conducted to assess between-group differences statistically for each 

measure. The omnibus ANOVA results showed that there were significant differences 

between-groups on each test (Table 5.2).

Multiple comparisons using the Scheffe post-hoc test revealed that the PD group 

generated test scores which were significantly better than both the AD group and the DOT 

group, on the SMMSE, EADAS cog, Verbal Fluency, Spatial Span Forward and Spatial Span 

Reverse (ps<0.01). Importantly, no significant difference was found between the PD group 

and EC group on the same measures (ps>0.6 NS).
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Table 5.2 Between-Groups Statistical Analyses for Clinical 
Rating Scale and Neuropsychological Assessment Scores

Test Omnibus betw een-groups  
ANOVA

SMMSE F[3,82]= 25.58, p<0.0001

EADAS cog F[3,82]= 25.10, p<0.0001

Verbal fluency F[4,98]= 9.85, p<0.0001

Digit Span Forward F[3,82]= 2.76, p<0.047

Digit Span Reverse F[3,82]= 3.58, p<0.017

Spatial Span Forward F[3,82]= 11.17, p<0.0001

Spatial Span Reverse F[3,82]= 16.82, p<0.0001

Y oung Control data  only availab le  for Verbal F luency te s t

However, the conservative error correction afforded by the Scheffe test resulted in the 

difference between the PD group and AD group for the Digit Span Reverse test failing to reach 

significance (where a simple between-groups t-test result was significant t[40]=-2.24, p<0.03). 

The EC group score for Digit Span Reverse was shown to be significantly better than that of 

the AD group (p<0.05), but not significantly different from the DOT group or PD group. None 

of the groups differed significantly from each other on Digit Span Forwards, when compared 

using the Scheffe test. The YC group were found to perform significantly better than the AD 

group on the Verbal Fluency test (p<0.05), but were not significantly different from the EC 

(p>0.7), PD (p>0.9) or DOT (p>0.09) groups.

These results appear to confirm the assertion that the PD group was dementia free, as 

measured by the clinical rating scales and the fact that PD scores did not differ significantly to 

those of the EC group. Moreover, the PD group actually scored marginally lower than the EC 

group on the EADAS cog test (high EADAS cog scores indicate poor performance). 

Furthermore, the PD group did not differ significantly from the EC group on any of the
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neuropsychological assessments. In addition to this, the EC and PD groups performed 

marginally higher than the YC group on the Verbal Fluency test, reputed to be a test of frontal 

lobe function. Therefore, the implication is that of better frontal lobe function (at least for 

Verbal Fluency) for the PD and EC groups than for the YC group.

5.3.2 Group Comparisons of Saccadic Error Rates

5.3.2.1 Comparing Inhibitory Errors Across Voluntary Saccade Tasks

Inhibitory error rates were compared across the No-Go, antisaccade gap and Go/No-Go 

oculomotor tasks levels, to assess the effects of age and disease on the findings revealed in 

Section 3.3.2.1. Descriptive statistics are displayed in Table 5.3 below. The Go/No-Go task 

was not administered to the PD patients, therefore a separate analysis was carried out on the 

No-Go and antisaccade gap task data alone, so as to include this group.
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5 Investigating Effects of Age and Disease

Whereas Study I revealed a linear increase in inhibitory error rates for each group 

across the oculomotor tasks according to working memory load, the present study found that 

the YC and PD groups both produced higher error rates in the antisaccade gap task compared 

to the No-Go task only. The inhibitory error rate was marginally lower for the YC group in the 

Go/No-Go task than the antisaccade gap task, which appears to be an exception to the rule. 

However, it was not possible to examine whether there was a linear increase in error from the 

antisaccade task to the Go/No-Go task for the PD group, due to the lack of data for this task 

(Figure 5.2).

Figure 5.2 Inhibitory Errors Across Voluntary Saccade Tasks
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For the statistical analysis, firstly a two-factor repeated measures mixed ANOVA, with 

the three task levels forming the within-subjects factor: voluntary saccade task (as in Study I) 

and the between-groups factor: group (YC, EC, AD and DOT) was calculated. The interaction
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between voluntary saccade task and group was found to be significant F[5.4, 130.6]= 4.64, 

/K0.001, indicating that there were significant differences between the groups in the number of 

errors generated across the range of tasks. The corresponding sub-groups interaction found in 

Section 3.3.2.1 was also found to be significant, therefore, the present interaction appeared 

somewhat more complex and probably the result of the high antisaccade error rate for the AD 

group, relative to EC and YC scores and also a lower Go/No-Go task error rate for the YC 

group (Figure 5.2).

The main effects of the factors: voluntary saccade task and group, were also significant 

(Voluntary saccade task, F[1.8, 130.6]= 20.32, p<0.0001; Greenhouse-Geisser correction; 

Group, F[3, 72]= 21.09, /K0.0001), which shows that there were significant differences 

between the overall error rates on each oculomotor task and supports the hypothesis that 

inhibitoiy error rate would vary as a function of task cognitive load; specifically, that there 

would be significant overall differences between-groups respectively. Post-hoc comparisons 

using the Scheffe test on voluntary saccade task revealed that performance of the YC and EC 

groups did not differ significantly. However, both the AD and DOT groups were found to 

perform significantly poorer on this factor than the YC group (ps< 0.01), the AD group also 

significantly poorer than the EC group. Therefore, poor performance on this factor is 

dissociable from the effects of normal ageing.

To examine the PD group a further two-factor repeated measures mixed ANOVA was 

carried out on the within-groups factor: voluntary saccade task. For this analysis, the factor 

voluntary saccade task comprised just two levels, No-Go and antisaccade gap task (due to the 

lack of Go/No-Go data for the PD group, Figure 5.2) and the between-groups factor five levels, 

comprising the participant sub-groups (PD, YC, EC, AD and DOT). The interaction was not 

found to be significant (F[4, 96]= 1.9, p> 1.0 NS). The main effects of voluntary saccade task 

and group were both significant (Voluntary saccade task, F[l, 96]= 22.64, /?<0.0001; Group, 

F[4, 96]= 14.2,/?<0.0001), again showing that there were overall differences in the error rates
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generated across the tasks and between the groups, respectively. Scheffe post-hoc comparisons 

of the factor: voluntary saccade task, showed that there was no significant difference between 

the YC and PD groups, YC and EC groups or the PD or EC groups for this factor. However, 

significant differences were noted between the YC group and the AD and DOT groups 

(ps<0.01); the PD and the AD group {p< 0.05); and the EC group and the AD and DOT groups 

(/?s<0.01). The difference between the PD group and the DOT group was only approaching 

significance (p<0.06) due to the conservative precaution to avoid familywise type I error 

afforded by the Scheffe test. These results emphasise that the magnitude of change in error 

rate from the No-Go task to the antisaccade gap task was significantly greater for the AD group 

compared to the PD, YC and the EC groups, whilst for the DOT group, the difference was 

most pronounced for the YC and EC groups. A within-groups trend analysis also showed that 

the profile of the YC group data across the three voluntary saccade tasks had no significant 

trends (i.e. linear, quadradic etc.), as indicated by the rather flat YC line graph illustrated in 

Figure 5.2. These findings support the hypotheses that error rates would be greater for the AD 

group than control groups on oculomotor tasks that require higher working memoiy resources 

and that the AD error rates would increase linearly across the saccadic tasks. These effects are 

distinguishable from normal ageing and PD another neurological disease.

Univariate ANOVA was conducted to examine the differences between-groups on each 

oculomotor task (Go/No-Go task without the PD group). The results showed that there were 

significant differences overall between-groups for each task (No-Go, F[4,96]= 15.78, 

^<0.0001; antisaccade gap, F[4,97]= 7.78, /?<0.0001; and Go/No-Go, F[3,72]= 14.27, 

/K0.0001).

Post-hoc Scheffe multiple comparison tests showed that in the No-Go task, the YC 

group generated significantly less inhibitory errors than both the AD (p< 0.05) group and the 

DOT group (p<0.01), whereas, no significant difference was found between the YC, PD and 

EC groups. As the working memory demand of the No-Go task is low, it was expected that
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there would be no significant difference between the proportion of inhibitory errors generated 

by the YC, PD and EC groups on this task. The PD group generated significantly less errors 

than the DOT group (p<0.05), but generated non-significantly less inhibitory errors than the 

AD group. Whereas Study I revealed that the EC group generated significantly less errors than 

the AD and DOT groups. The No-Go task inhibitory error rate therefore appears to be able to 

distinguish between healthy young and old participants, but not between the PD and AD 

disease groups.

For the antisaccade gap task, Scheffe tests revealed that the YC group generated 

significantly less inhibitory errors than both the AD group (p<0.01) and the DOT group 

(p<0.01). However, no significant difference was found between inhibitory error rates for any 

combination of the YC, PD and EC groups. The PD group, like the YC group and the EC 

group in Study I, also created significantly less inhibitory errors than the AD group (p<0.01), 

but although the PD group produced less inhibitory errors than the DOT group, this difference 

did not reach significance (p> 1.0 NS). Furthermore, PD group correlations between 

oculomotor tasks and neuropsychological assessments that place high demands on working 

memory resources were found to be non-significant. Therefore, the antisaccade inhibitory 

error rate appears to be able to distinguish between the effects of both normal healthy ageing 

and PD which also corresponds with the hypothesis that error rates will be lower in these 

groups, than in the dementia groups and also, that error rates would increase linearly as a 

function of task cognitive load most significantly for the AD group due to working memory 

deficit.

For the Go/No-Go task, multiple group comparisons revealed that the YC group created 

significantly less errors than each of the groups included in the analysis (PDs not included) i.e. 

AD, DOT and EC (ps<0.01). Whereas Study I revealed a significant difference between the 

healthy EC group and AD group, the present results seem to indicate that the Go/No-Go task
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inhibitory error rate appears to deteriorate as a function of both normal healthy ageing through 

the life, which in turn is dissociable from AD effects.

In summary, taken together the above findings specifically show that when the 

cognitive load for oculomotor tasks places low to moderate demands on working memory 

resources (No-Go and antisaccade), inhibitory error rates increase linearly with no significant 

difference between the rates of healthy young and elderly controls, and PD patients. However, 

the significantly lower inhibitoiy error rates for these three control groups, compared with the 

higher rate for AD patients, demonstrates that AD can be dissociated from the three control 

groups, which control for age and disease. When the cognitive load of the oculomotor task was 

high (as in the Go/No-Go task), healthy young controls were found produce significantly less 

inhibitoiy errors than all other experimental groups (although no data was available to confirm 

this for the PD group). Therefore, it appears that oculomotor tasks with high cognitive load 

have the capacity to dissociate between the effects of AD and healthy ageing. Furthermore, 

younger people do not necessarily find the Go/No-Go task more demanding than the No-Go or 

the antisaccade task, whereas this is not the case with healthy elderly or diseased groups. In 

fact, pair-wise within-groups comparisons confirmed this, revealing that YC group inhibitory 

error rates in the antisaccade gap task and Go/No-Go tasks were not significantly different 

(t[16]= 1.05,p>0.312 NS), neither was there a significant difference between YC error rates in 

the No-Go and Go/No-Go tasks (t[16]= 1.29,p>0.216 NS). However, there was a significant 

linear increase in YC group inhibitory errors in the antisaccade gap task, compared with the 

No-Go task (t[16]= 2.46, p<0.026). The same linear increase from No-Go to antisaccade gap 

task inhibitory error rates was also significant for the PD group (t[24]= 2.07, p<0.049).

5.3.3 Analysis of Corrected and Uncorrected Errors: Self-Monitoring 
Performance on the Antisaccade Gap Task

The components of the inhibitory error rate in the antisaccade gap task - corrected

and uncorrected errors - were analysed to investigate further, the effects of age and disease
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by including the YC and PD groups. The proportions of correct saccades, corrected errors 

and uncorrected errors are displayed below in Figure 5.3.

Figure 5.3 Stacked Bar Charts Illustrating the Proportions of Correct 
Saccades, Corrected Errors and Uncorrected Errors Including Parkinson's 
Disease Patients and Young Controls
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The mean proportions of correct saccades, corrected errors and uncorrected errors 

were also evaluated as unitary ratios to compare the balance between attention, self­

monitoring and error correction for the YC and PD groups, with the output from Study I. 

The ratios are displayed in Figure 5.4 below. The ratio of correct and corrected error 

saccades to uncorrected errors for the YC group was very high (98.79:1). This appears to have 

been due to the high correct saccade rate, extremely low uncorrected error rate and the majority 

of inhibitory errors having been corrected (Figure 5.4), which demonstrates good task 

awareness and self-monitoring capacity, and thus the ability to efficiently take corrective action 

when necessary. The YC group ratio was actually found to be over twice that of the EC group 

ratio (44.28:1) for correct and corrective saccades to uncorrected saccades.
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Figure 5.4 An Illustration using the Unitary Ratio to Display the Ratio for 
the Proportion of Correct Saccades to Inhibitory Errors Compared to the 
Proportion of Correct Saccades + Corrected Error saccades to uncorrected 
Errors in the Antisaccade Tasks by Sub-group
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For the PD group, the ratio of correct saccades and corrected errors to uncorrected 

errors (46.58:1) was in fact higher than that of the EC group. Although in this instance, this 

was the result of a high corrected error rate, i.e. although the PD group have higher combined 

inhibitoiy error rate (and lower correct saccade rate) than the EC group (not significantly 

different, see Section 5.3.2.1), a high proportion of PD errors were corrected. Consequently, 

the PD group were found to have a low uncorrected error rate, which was virtually 

indistinguishable from that of the EC group (Figure 5.3). Thus, it would appear that whilst the 

PD group produced a higher proportion of combined inhibitory error, than the EC group, the 

capacity of the PD group for error correction demonstrates task understanding, awareness and 

therefore, intact ability for self-monitoring. Unitary ratios expressing the ratio of correct 

saccades to inhibitory errors (uncorrected errors + corrected errors) are also incorporated into
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Figure 5.4, to highlight the difference across the groups for correct primary saccadic action 

compared with erroneous saccades.

The findings from the present study reinforce the data from Study I and make plain, 

that the antisaccade error rates for the dementia subgroups can be dissociated from age and a 

disease effect. To examine this more closely and statistically, the data for correct saccades, 

corrected errors and uncorrected errors were subjected to a two-factor repeated measures 

mixed ANOVA, to form the factor: correctness o f performance and the experimental groups 

were included as the between-groups factor so as to compare the YC and PD groups along with 

groups with earlier analyses.

A significant interaction was found between correctness of performance and group 

(F[6.8,162.97]= 14.70, /?<0.0001; Greenhouse-Geisser correction), which demonstrates clearly 

that there were differences in the magnitude of correctness of performance across the groups 

(Figure 5.5). The line graphs in Figure 5.5 illustrate that the YC and EC groups have a similar 

shape to their data but that the YC group’s correctness of performance is more efficient than all 

other groups, closely followed by the EC group and then PD group.

Figure 5.5 Graphs Displaying Correctness of Performance in the Antisaccade 
Gap Task for Parkinson's Disease Patients.and Young Controls
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The main effects of correctness of performance (F[l.70,162.97]= 183.73, /?<0.0001) 

and group (F[4,96]= 10.59, p<0.0001) were both significant, showing that there were omnibus 

differences in the levels of the factor: correctness of performance and between the groups. 

Visual examination of the graphs in Figure 5.5, shows that the efficiency of correctness of 

performance gradually reduces by group down to the AD group, who produce a rather flat line 

across the levels of the factor. As previously reported in Section 3.3.3.1, trend analysis of the 

AD data revealed that there were no significant trends in the data, whereas significant linear 

trends were present within the EC group and DOT group data. Trend analysis carried out 

across the levels of the factor correctness of performance within the YC group and PD group 

data, revealed a significant linear trend for both groups (YC, F[l,16]= 1371.56, /?<0.0001; PD, 

F[l,24]= 227.7, p<0.0001), although, as with the EC group, there was also a significant 

quadratic trend component in the YC group data (F[l,16]= 98.99, /?<0.0001); due to the high 

proportion of correct saccades which is in contrast to the flattening out in the tail of the graph, 

to illustrate error proportions. To expand on the trend analysis, within-groups paired-samples 

t-tests were conducted on the YC and PD groups data, between the various combinations of the 

levels of the factor, correctness of performance and are displayed in Table 5.4.

Table 5.4 Within-group t-tests Comparing Proportions of Correct Primary 
Saccades, Corrected Errors and Uncorrected Errors

Within-group pair-wise YC group PD group

Correct saccade vs Uncorrected error (t[16]= 37.03, p<0.0001 (t[24]= 15.09, p<0.0001

Correct saccade vs Corrected error (t[16]= 16.99, p<0.0001 (t[24]= 6.24, p<0.0001

Corrected error vs Uncorrected error (t[16]= 3.62, p<0.002 (t[24]= 6.78, p<0.0001

The results of the within-groups paired samples t-tests show a familiar pattern to that 

found for the EC group in Section 3.3.3.1, where a significant difference is present between
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each level of the factor: correctness of performance. This is in direct contrast to the AD group, 

where there is no significant difference between levels of the factor.

To examine the specific differences between the error proportions for each group, 

between-groups analysis of oculomotor error type was conducted to include the YC and PD 

group data. Univariate ANOVA revealed significant differences between groups for both 

corrected errors (F[4,96]= 5.35, /K0.001) and uncorrected errors (F[4,96]= 12.16, /?<0.0001). 

Multiple comparisons using the Scheffe post-hoc test revealed that for corrected errors, the YC 

produced a significantly lower proportion than the DOT group (/?<0.05), whereas although the 

YC group generated less corrected errors than the AD and PD groups, this difference was only 

approaching significance (p>0.05 NS). There was no significant difference between the YC 

group and the EC group for the proportion of corrected errors (p>0.9). The proportion of 

corrected errors for the PD group was not found to be significantly different from any other 

group (p>0.05).

The multiple comparisons output for uncorrected error rates showed that the YC group 

generated significantly less uncorrected errors than the AD group (as did the EC group; 

/?s<0.01). The PD group also created significantly less uncorrected errors than the AD group 

(p< 0.01). However, there were no significant differences between the proportions of 

uncorrected errors committed by the PD, YC and EC groups (ps>0.9). This is in support of the 

hypothesis that these groups would perform in a similar fashion with regard to the number of 

errors that remain uncorrected; as they either make higher proportions of correct saccades or 

are able to correct the majority of errors. Additionally, no significant difference was found 

between the DOT group uncorrected error rate and any other group, although they did generate 

more uncorrected errors than the YC, EC and PD groups but less uncorrected errors than the 

AD group. It should be noted, that the Scheffe test applies a very conservative adjustment to 

avoid family-wise error. When a t-test was used to assess the groups (with no precaution 

against Type I error) the YC, PD and EC groups were still found not to differ significantly
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from each other and of course, to have generated significantly less uncorrected errors than the 

AD group, moreover, they were found to generate significantly less uncorrected errors than the 

DOT group. Furthermore, using the simple t-test also revealed that the DOT group created 

significantly less uncorrected errors than the AD group (p<0.05).

Taken together, these findings support the hypotheses that the capacity for error 

correction and the proportions of errors that remain uncorrected will not be significantly 

different between the YC, PD and EC groups. Moreover, that the uncorrected error rate will 

discriminate between these groups and the AD group’s overall error correction capacity, taking 

into account the proportion of errors that remain uncorrected.

5.3.4 Magnitude of Fixation Offset Effect for Reflexive Saccade Latency

The present analysis investigated the FOE for saccade latency in the reflexive saccade 

paradigm, comparing the subset of data for AD, DOT and EC groups from Study II, with the 

data gathered from the YC and PD groups. The descriptive statistics for this data set are 

displayed below in Table 5.6. The magnitude of FOE for the YC and PD groups was 

calculated and compared to the groups using the formula:-

Fixation offset effect -  Reflexive overlap task latency -  Reflexive gap task latency

The FOEs for each group are displayed below in Figure 5.6. The YC group were found 

to have the smallest magnitude of FOE and the largest difference from other groups. The 

magnitude of FOE for the EC, PD and DOT groups was very close in size, with the AD group

Table 5.5 Descriptive Statistics for Reflexive Saccade Latency with 
Parkinson's Disease Patients and Young Controls Added to the groups

Reflexive saccade paradigm 
EC YC PD AD DOT

T a sk  Mean SD Mean SD Mean SD Mean SD Mean SD

O verlap  253.58 30.83 211.24 44.42 242.29 74.79 298.63 45.40 274.72 31.94

G ap  195.67 35.08 202.79 28.93 183.46 50.21 206.05 45.40 212.22 39.97
EC = Elderly control; YC = Young control; PD = Parkinson's disease; AD = Alzheimer's disease; DOT = Dementia of other types
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generating the highest magnitude of FOE. A one-way ANOVA was conducted on the FOE 

magnitude data, to include the YC and PD groups along with the other groups. The omnibus 

ANOVA was found to be significant (F[4,86]= 8.01, /?<0.0001), showing that there were 

significant differences in the magnitude of FOE between-groups.

Group comparisons of FOE magnitude, revealed that the YC group FOE magnitude 

was significantly smaller than that of each of the other groups (p<0.01). However, no 

significant difference was found between the PD and EC groups {p>0.9 NS) and also between 

the DOT group and these groups (ps>0.7).

Figure 5.6 The Magnitude of Fixation Offset Effect in the Reflexive Saccade 
Paradigm for Young Controls and Parkinson's Disease Patients 
Compared with Elderly Controls and Dementia Patients
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The magnitude of FOE for the PD, EC and YC groups was also observed to be 

significantly lower than that of the AD group (p<0.05,/?<0.05 and ̂ <0.01 respectively), but as 

reported in Study II, the difference observed between the AD and DOT groups did not reach 

significance. One-way ANOVA was used to explore the between-groups differences for gap
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and overlap task reflexive saccade latency. A significant difference was found between the 

group means for the overlap task (F[4,86]= 6.12,/?<0.0001), but not for the gap task (p>0.2).

Taken together, these results indicate that both age and dementia affects the magnitude 

of FOE, as evidenced by the significant difference between the magnitude of FOE for the YC 

group and that of the EC, PD and DOT groups. However, whilst the AD group FOE was 

significantly greater than that of the PD, EC and YC groups, it was not found to be 

significantly different from the FOE of the DOT group19. Therefore, these findings suggest 

that the magnitude of FOE can distinguish between dementia and the effects of normal healthy 

ageing and also another neurological disease, PD. However, the magnitude of FOE could only 

discriminate marginally between the dementia sub-groups included in this study i.e. the AD 

and DOT groups.

As a supplementary analysis, the PD group and YC group FOEs were also examined 

within-groups. Frequency distributions for primary reflexive saccade latency in the gap and 

overlap conditions, are displayed in Figure 5.7 below, which compares the histograms for the 

YC and PD groups alongside the AD and EC groups.

The saccade latency frequency distributions in Figure 5.7 clearly show that for the YC 

group, there was little disruption caused by the overlap condition during which there is no 

fixation offset, as the peaks for each histogram run fairly closely together indicating only a 

negligible all FOE. For the PD group however, the distribution peaks are slightly separated 

indicating an FOE that is more pronounced than that of the YC group.

19 This may have been due to variability in the DOT group resulting from the small number of participants in this 
group (n= 11). The standard error of mean (SE) for the DOT group was found to be 13.8, which was higher than 
the SE for the other groups that had more participants (AD = 10.4; PD = 10.5; EC = 6.5; YC = 9.3). Therefore, 
increasing the DOT sample size in a future study could potentially result in a significant difference between the 
AD and DOT groups.
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Figure 5.7 Histograms Displaying the Frequency of Saccade Latency 
in the Reflexive Gap and Overlap Tasks
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Within-groups paired samples t-tests confirmed that there was no significant difference 

between reflexive gap and overlap task latency for the YC group, i.e. the YC group do not 

produce a significant FOE (t[16]= -0.9, /?>0.3 NS). However, for the P D  group, a significant 

FOE was found to be present, the reflexive overlap task resulting in significantly prolonged 

latency by comparison to the reflexive gap task latency (t[24]= -5.58,/?<0.0001.
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The antisaccade paradigm did not result in any salient findings for the dementia sub­

groups in Study II. Therefore, the descriptive statistics presented in Table 5.6 below, purely 

serve to inform the reader of the observations for the YC and PD groups.

Table 5.6 Descriptive Statistics for Antisaccade Latency with Parkinson's 
Disease Patients and Young Controls Added to the groups

____________________ Antisaccade paradigm____________________
EC YC PD AD DOT

Mean SD Mean SD Mean SD Mean SD Mean SD

O verlap 329.95 66.49 251.56 60.54 340.45 104.5 374.55 173.01 413.11 143.90

G ap 303.68 57.49 242.99 39.28 298.66 60.76 335.79 138.99 359.23 78.49
EC = Elderly control; YC = Young control; PD = Parkinson's disease; AD = Alzheimer’s disease; DOT = Dementia of other types

A significant within-groups FOE was present for the PD group which was found to be 

marginally larger (non-significantly) than that of the EC group. The YC group however, 

generated a non-significant within-groups FOE (as in the reflexive saccade task). The FOE in 

the antisaccade paradigm will not be examined any further in this chapter.

5.4 Discussion

The purpose of the present study was to introduce additional control groups (healthy 

young participants and Parkinson’s disease patients) into this thesis, to examine whether it 

would be possible to distinguish between healthy normal ageing and disease effects in the data 

from the previous studies.

5.4.1 Key findings

There are several key findings that the present study has produced, which are pertinent 

to the earlier studies in this thesis:-

1. Performance scores for patients with mild PD and EC participants on 

clinical rating scales and neuropsychological assessments were found not 

to vary significantly.
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2. PD neuropsychological assessment and clinical rating scale scores were 

found to correlate only weakly and non-significantly with voluntary 

oculomotor tasks, indicating that the PD group performance was virtually 

indistinguishable from the EC group.

3. Verbal fluency scores for PD patients, EC and YC participants - that are 

believed to be a measure of frontal lobe function - were found not to 

differ significantly between the groups. Therefore, this finding suggests 

that frontal lobe function for this activity is equivalent for these groups.

4. AD inhibitory error rates generated across the voluntary saccade task 

range were greater than those generated by the PD, EC and YC groups.

5. The factor for correctness of performance in the antisaccade task, was 

found to be non-significantly different between the YC, PD, EC and DOT 

groups. However, these groups were found to differ significantly on this 

factor, from the AD group.

6. The proportion of inhibition errors that remain uncorrected in the 

antisaccade task was found not differ significantly between the YC, EC 

and PD groups, whereas a significant difference was found between these 

groups and the AD group.

7. The magnitude of FOE in the reflexive saccade paradigm was found to be 

significantly greater for the dementia sub-groups, than for the YC, PD and 

EC groups. However, as revealed earlier, this measure did not distinguish 

between the AD and DOT dementia sub-groups, perhaps due to the small 

DOT sample size.
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5.4.2 Inhibitory Error Across Voluntary Saccade Tasks and Relationships with 
Neuropsychological Assessm ents Requiring Working Memory

The previous analysis (in Study I) of inhibition errors across the voluntaiy saccade 

tasks, revealed that there was a significantly higher proportion inhibition errors for the AD and 

DOT groups, than there was for the EC group. Furthermore, for the AD group there was a 

significant linear increase in inhibition error rate according to cognitive load of oculomotor 

task (i.e. No-Go > antisaccade gap > Go/No-Go) and additionally, antisaccade inhibition errors 

were found to correlate strongly with neuropsychological assessments known to place high 

demands on working memory resources. Whereas the EC group also showed a linear increase 

in inhibitory error rate across the tasks, the error rates for oculomotor tasks with higher 

cognitive load correlated only very weakly with neuropsychological assessments that place a 

high demand on working memory resources. In the present study, the YC group was examined 

in comparison to the findings from the earlier analysis and it was found that the YC group 

produced an inhibitory error rate on the factor: voluntary saccade task that was non- 

significantly different to that of the EC group and furthermore, no significant trend was present 

across the tasks for the YC group. Further analysis showed that whilst YC group inhibition 

errors were significantly lower than AD and DOT group inhibition errors on the No-Go, 

antisaccade and Go/No-Go tasks, the YC and EC group only differed significantly on the 

Go/No-Go task, the YC group generating significantly less errors.

Unfortunately, the present analysis for the PD group was limited, as data were only 

available for the No-Go and antisaccade tasks. Nevertheless, compared with the YC and EC 

groups, the PD group was found to generate a non-significantly higher proportion of inhibition 

errors on these two voluntary saccade tasks. Whereas compared with the AD and DOT groups, 

the PD group generated less inhibitory errors on both tasks. Thus, PD group performance was 

indistinguishable from the YC and EC groups, but distinguishable from the AD and DOT 

groups.
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In light of the YC group creating significantly lower proportions of inhibitory errors on 

the Go/No-Go task than all other groups and these errors being non-significantly different to 

the YC antisaccade task inhibitory error rate, these findings suggest that the YC group found 

each voluntary task somewhat less taxing of executive control. It is plausible to argue that this 

ability is due to greater working memory resources in young adults.

Taken together these findings suggest that working memory capacity decreases with 

healthy normal ageing, however, the effects of PD and healthy normal ageing are 

indistinguishable. In contrast, the deterioration in working memory capacity for dementia 

patients, in particular those with AD, is in turn dissociable from the effects of healthy normal 

ageing and PD. Moreover, the working memory capacity for each of these groups is indicated 

by oculomotor tasks that require voluntary control of saccades.

5.4.3 Correctness of Performance: Corrected and Uncorrected Errors the Capacity 
for Self-Monitoring

Differences in the magnitude of correctness of performance across groups - highlighted 

by the interactions in Figure 5.6 - illustrated that this factor could distinguish the AD group 

from each of the other groups, a finding that was confirmed statistically. In addition to this, 

within-groups analysis of correctness of performance also revealed that the PD and YC groups 

had a significant linear trend to their factor profiles. In sum, these findings verify that the 

effects reported in the inhibitory error analyses are characteristic of AD and dissociable from 

the effects of normal ageing and also from the pathology associated with PD. The finding that 

the uncorrected error rate could distinguish between the AD group and all other groups using a 

simple t-test was compelling even though this discrimination did not survive the conservative 

correction applied by the Scheffe multiple comparison test to protect against family type I 

error.

The findings from the present study serve to substantiate the robustness of the data

from Study I and emphasise the effectiveness of the factor: correctness of performance in
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distinguishing AD from other groups. Moreover, the findings also show that antisaccade 

uncorrected error rates for the dementia sub-groups, can be dissociated from age and disease 

effects and that this measure appears to be a sensitive indicator for AD.

5 .4 .4  Magnitude of Fixation Offset Effect for Reflexive Saccades

The FOE for the AD group was found to be significantly larger than that for the PD and 

YC groups. However, the FOE for the PD group was found to be virtually the same as that for 

the EC group, whereas the YC group produced a non-significant FOE (within-groups), with a 

magnitude that was significantly smaller than that of all other groups.

Perhaps this finding reinforces the notion put forward in Chapter 4, that FOE 

magnitude falls on a continuum that increases as a function of age and/or disease, i.e. the FOE 

becomes more pronounced with age and even more evident with dementia of the Alzheimer’s 

type. For the YC group, the parameters employed in the reflexive saccade overlap task did not 

have the effect of prolonging saccade latency (in comparison to reflexive gap task latency), 

whereas for the other groups the experimental set-up was such, that a significant FOE was 

induced.

In summaiy, these findings indicate that under the experimental parameters employed 

for the present series of tasks (Appendix 11), healthy elderly participants, PD patients and 

dementia patients (in particular AD) were sensitive to the effects of a central fixation point that 

remains illuminated when a peripheral target appears (overlap condition), in that a saccade was 

generated with prolonged latency. This is compared with the gap paradigm - during which the 

central fixation point was extinguished prior to peripheral target onset (with a 200 ms stimulus 

onset asyncrony) - where there was no significant difference in saccade latency between all of 

the groups.
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5.5 Conclusions

AD inhibitory error rates generated across the voluntary saccade tasks ranging 

from low to high in terms of the demands placed on working memory resources, 

are distinguishable from the effects of normal ageing and PD.

*$■ Oculomotor tasks that require voluntary control appear to rely on efficient 

working memory function for successful completion.

Antisaccade uncorrected error rates can be dissociated from age and disease 

effects and that this measure appears to be a sensitive indicator for AD.

^  Reflexive saccade FOE magnitude increases as a function of normal ageing, 

however, the FOE is further enlarged as a result of dementia; the largest FOE 

caused by AD.

256



6 Pharmacological Effects of Acetylcholinesterase Inhibitors

Chapter Six

Study IV: Medicated and Non-Medicated Alzheimer’s
Disease Patients

Pharmacological Effects o f Acetylcholinesterase Inhibitors

6.1 Introduction

The purpose of the present study was to examine the possible implications of 

pharmacological compounds on the findings revealed by Studies I and II. As discussed in 

Chapter 2 (Section 2.2.2.1), some dementia patients were prescribed with anti-dementia drugs 

at an early point in their dementing illness. A comparison was drawn between dementia 

patients who were taking medication with acetylcholinesterase inhibitors (AChEIs) and those 

who were not, in performance on saccadic eye movement paradigms, neuropsychological 

assessments and clinical rating scales. The aim was to establish the extent to which medication 

with these compounds could represent a potential confound within the results from the earlier 

studies of the present thesis.

Acetylcholine (ACh) is a neurotransmitter that is important for the autonomic nervous 

system’s function (involuntary control) at neuromuscular junctions throughout the body. 

Disruption of ACh in this system affects motor control and coordination. However, ACh is 

also crucial to the CNS and diffuse cholinergic systems also modify the actions of other 

neurotransmitters throughout many areas of the brain (Bullock et al., 1992; Snyder, 1996). 

There are three main cholinergic regions in the brain, comprising pathways that project 

neurons from i). the pontine reticular formation, to the amygdala, thalamus, basal forebrain 

and spinal cord; ii). the nucleus basalis of Meynert and nuclei of the diagonal band, i.e. the
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basal forebrain, which send vast projections to the cerebral cortex; and iii). the septum which 

forms the septohippocampal pathway (Deutch & Roth, 1999). Histopathologic analyses of the 

brains of AD patients have revealed a decline in ACh (Beach et al., 2000; Coyle et al., 1983; 

Davies & Maloney, 1976; Giacobini, 1990) - and other neurotransmitters, as outlined in 

Section 1.5.2.1- resulting in cholinergic deficits (Greig et al., 2001; Periy, Perry, Blessed & 

Tomlinson, 1977) which cause dysfunction attention and memory (Davis et al., 1992; Perry et 

al., 1978; Perry et al., 2000; Rogers, Farlow, Doody, Mohs & Friedhoff, 1998).

Numerous studies have shown a reduction in choline acetyl transferase (CAT) activity - 

the enzyme that converts choline to ACh - in the brains of AD patients compared to healthy 

controls. Moreover, CAT activity was found to correlate with severity of cognitive symptoms 

and the extent of pathological changes (Perry et al., 1977; Perry et al., 1978; Roth & Hopkins, 

1953). The study of AD brains at post mortem has also revealed depletion of cholinergic 

neurons (Whitehouse et al., 1981; Whitehouse et al., 1982), due to degeneration caused by 

neuritic plaques and neurofibrillary tangles (Tomlinson & Corsellis, 1984). These pathological 

changes in AD involve cholinergic neuronal pathways that project from the basal forebrain to 

the cerebral cortex and hippocampus (Arendt, Bigl, Tennstedt & Arendt, 1985). These 

structures are believed to be involved in the function of memory, attention, learning, and other 

cognitive processes (Kopelman, 1986; Perry et al., 1977). Numerous animal and human 

studies have confirmed the link between CNS cholinergic systems and cognition (Everitt & 

Robbins, 1997; Francis et al., 1999; McGaughy, Everitt, Robbins & Sarter, 2000). 

Furthermore, recent pharmacological studies have demonstrated that administration of the 

anticholinergic drug procylidine, impairs cognitive test performance (Zachariah et al., 2002), 

alertness (Sharma et al., 2002) and the disruption of prepulse inhibition -  an operational 

measure of sensorimotor gating (Kumari et al., 2001).

In Studies I, II & III of the present thesis, the antisaccade task was used as a volitional 

saccadic eye movement task in experimental groups of healthy control participants, PD patients
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and dementia patients. The cognitive processes that are involved in the antisaccade task 

include attention (covert and overt), inhibitory control and working memory (Section 1.3.2.1) 

(Mitchell et al., 2002; Roberts et al., 1994; Stuyven et al., 2000; Walker et al., 1998) and it is 

likely that central cholinergic pathways play an important role in mediating these functions 

(McGaughy et al., 2000). Furthermore, a study recently discovered that administration of 

nicotine to schizophrenic patients and healthy controls, enhanced antisaccade task performance 

-  reduced error rates -  (Depate et al., 2002), most likely due to the effects of nicotine on 

nicotinic cholinergic receptor sites. Taken together, these studies highlight the importance of 

the cholinergic system in neurocognitive function.

6.1.1 The Action of Acetylcholinesterase at the Synapse

Acetylcholinesterase (AChE) is an enzyme that is produced in cholinergic neurons of 

the brain and stored in the postsynaptic membrane at locations adjacent to ACh receptor sites. 

On stimulation, ACh - stored in synaptic vesicles in the terminal part of neurons, inside the 

presynaptic membrane - is diffused across the synaptic cleft to the postsynaptic membrane, 

where it binds at cholinergic receptor sites. When ACh binds at receptor sites AChE is 

released and inactivates ACh, by breaking it down the into its constituent parts, choline and 

acetic acid (Snyder, 1996). The choline and acetic acid then migrate across the synaptic cleft 

to re-uptake sites on the pre-synaptic membrane, where ACh is synthesised and stored in 

synaptic vesicles ready for use (Snyder, 1996). Therefore, AChE has the effect of stabilising 

and restraining the action of ACh (BMA, 2001).

6.1.2 Pharmacological Action of Acetylcholinesterase Inhibitors

As already discussed, due to neurodegenerative processes, cholinergic activity is 

diminished in areas of the AD brain that are linked to efficient cognitive function. Therefore, 

the additive effect of AChE in breaking down deficient levels of ACh is conducive to a
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progressive further decline in memory function and other aspects of cognition. In view of this, 

researchers realised that there was a potential therapeutic benefit - cognitive enhancement - that 

may be gained, by modifying the action of AChE at the synapse, i.e. prolong the action of ACh 

by inhibiting the action of the enzyme AchE (Davis & Mohs, 1982; Davis, Mohs, Rosen, 

Greenwald & Horvath, 1983). AChEIs are a class of drugs that block the action of AChE 

(Greig et al., 2001; NICE, 2001). At the synaptic and molecular level, it is unknown precisely 

how AChEIs actually work, however, it is believed that cholinergic function is enhanced, 

resulting in a modest improvement of cognition for patients with Alzheimer’s type dementia 

(Christensen, Maltby, Jorm, Creasey & Broe, 1992; Raffaele et al., 1996; Rogers et al., 1998). 

Moreover, is postulated that the mechanism by which this enhancement works, is through 

reversible inhibition in the hydrolysis of ACh by cholinesterase, thereby increasing the 

concentration of ACh at the synapse (Greig et al., 2001). In the early stages of dementia, this 

can lead to enhanced cognitive function, increased alertness and a slowing in the rate of 

deterioration from disease (Almkvist, Jelic, Amberla, Hellstrom-Lindahl & Meurling, 2001; 

Nordberg et al., 1998; Wolfson et al., 2002). However, AChEIs do not allay the progression of 

disease and therapeutic effects may decrease with the progression of neurodegeneration, as 

functional integration within the cholinergic system diminishes (NICE, 2001). There were 

three AChEIs involved in the medication of patients in the present project. These were 

donepezil and rivastigmine, which are reversible inhibitors of AchE and galantamine, which is 

also a reversible inhibitor of AChE and also has nicotinic receptor agonist properties.

Study IV will explore the data within the treatment sub-groups of the dementia patients 

in the present thesis, in an attempt to ascertain the potential pharmacological influence of 

AChEIs on oculomotor task performance. This analysis was only feasible for stage one of the 

longitudinal project, as the vast majority of dementia patients commenced drug therapy by 

stage two.
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6.1.3 Aims

The main aim of the present study was to examine whether medication with AChEIs 

enhanced performance on oculomotor measures and neuropsychological assessments in the 

dementia patient groups. Medicated and non-medicated groups of dementia patients with mild 

to moderate symptoms were compared, which included an analysis of AD sub-groups. The 

main hypothesis for Study IV, was that due to potential cognitive enhancement by the 

administration of AChEIs, patients receiving medication would demonstrate superior cognitive 

function indicated by significantly better performance scores on neuropsychological 

assessments and saccadic eye movement measures.

6.2 Methods

6.2.1 Participants

The dementia patients for this study comprised the pool of patients from the earlier 

studies of this thesis and demographic details are discussed in Chapter 2. Patients were 

from the AD Research Project at Lytham Hospital Memory Clinic, United Kingdom. 

Recruitment methods, criteria for dementia diagnosis and exclusion, and participant health 

status were discussed in Chapter 2, Section 2.1. All patients were right-handed.

The present analyses consisted of the dementia patient (DP) group as a whole 

comprising the sub-groups DP medicated (N=13; age range = 68-84 years; mean = 74.9; 

SD = 4.5; male, n= l l ;  female n=2) and DP non-medicated (N=15; age range = 71-88 

years; mean = 77.8; SD = 4.6; male, n=8; female n=7). A further analysis examined the 

AD patients, to include AD medicated (N=9; age range = 70-84; mean = 76.0; SD = 4.2; 

male n=7; female n=2) and AD non-medicated (N=8; age range = 71-88; mean = 77.9; SD 

= 5.7; male n=5; female n=3). There was no analysis conducted on the dementia of other 

types (DOT) medicated/non-medicated sub-groups, due to a very low number of patients 

taking medication.
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6.2 .2  Assessm ent of Saccadic Eye Movements

The equipment, task protocol and experimental procedures were described in Chapter 2 

(Section 2.3), and involved the reflexive saccade gap task; No-Go and Go/No-Go paradigms; 

and antisaccade gap task. The central fixation point was displayed at 0° and target presented 

randomly at ±4° in the horizontal plane, as discussed in the previous studies.

6.2.3 Statistical Analysis

The statistical analyses for this study involved a series of one-way ANOVA, to 

examine between-group differences for medicated and non-medicated sub-groups (for the DP 

group as a whole and the AD group).

6.3 Results

6.3.1 Effects of Age and Education
ANOVA showed that there was no significant difference in age or the number of years

spent in education (Table 6.1), between DP medicated and non-medicated groups (Age, 

F[l,26]=2.81,/?>0.1 NS; Education, F[l,26]=0.42,/?>0.8 NS). An age and education analysis 

was also carried for the AD medicated and non-medicated sub-groups and revealed that there 

were no significant differences between these sub-groups (Age, F[l,15]=0.60, p>0.4 NS; 

Education, F[l,15]=0.003,/?>0.9 NS).

6.3.2 Clinical Rating Scales and Neuropsychological Assessment

Table 6.1 displays clinical rating scale and neuropsychological assessment scores 

(means) for the medicated and non-medicated sub-groups (for dementia patient group as a 

whole and also for the AD group).

For the DP group as a whole, no significant difference was found to be present between 

medicated and non-medicated sub-groups on the clinical rating scales (SMMSE, F[l,26] = 

3.45,/?>0.08 NS ; EADAS cog, F[l,26] = 2.72,^>0.1 NS), as was the case for the AD
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Table 6.1 Education, Clinical Rating S ca le  and  Neuropsychological A ssessm ent 
Scores for Medicated and Non-Medicated Dementia Patients

Dementia group Alzheimer's disease
Medicated Non-medicated Medicated Non-medicated

Mean SD N Mean SD N Mean SD N Mean SD N

Education (yrs) 12.08 1.75 13 12.27 2.92 15 12.56 1.74 9 12.50 2.27 8

SMMSE 20.31 6 .10 13 24.20 4 .99 15 20.56 3.64 9 22 .25 5.83 8

EADAS 25.31 13.89 13 18.00 9.41 15 23.11 9.25 9 22 .38 10.08 8

VFlu 19.77 11.01 13 25.00 9.58 15 22.11 11.34 9 23 .13 9.79 8

DSF 8.54 2.57 13 8.93 1.91 15 8.89 2.62 9 8.38 1.85 8

DSR 4 .23 2 .89 33 6.40 2.35 15 4 .78 3.11 9 5.38 1.60 8

SSF 4 .85 2 .34 13 5.80 1.78 15 5.33 2.18 9 5.75 2.05 8

SSR 3.31 1.84 13 5.20 1.86 15 3.78 1.86 9 4 .75 2.38 8

VfIu=Verbal Fluency; DSF=Digit Span Forward; DSR = Digit Span Reverse; SSF=Spatia! Span Forward; 
SSR=Spatial Span Reverse

medicated and non-medicated sub-groups (SMMSE, F[l,15] = 0.53,p>0.48 NS; EADAS cog, 

F[l,15] = 0.25, /?>0.88 NS). For neuropsychological assessments, the DP group analysis 

showed that there was no significant difference between medicated and non-medicated sub­

groups for Verbal Fluency, Digit Span Forward and Spatial Span Forward scores. 

Interestingly, however, the non-medicated DP sub-group produced significantly higher scores 

than the medicated sub-group for Digit Span Reverse (F[l,26] = 4.79, p< 0.038) and Spatial 

Span Reverse (F[l,26] = 7.27, p<0.012). However, this result was likely to be due to 

variability within the groups, brought about by the various types of dementia. Analysis of AD 

medicated and non-medicated sub-group neuropsychological assessment scores, revealed that 

there were no significant differences on any of the tests.

6.3.3 Saccadic Error Rates

Descriptive statistics for the analysis of saccadic errors are displayed in Table 6.2. 

Inhibition error rates were found to be marginally higher for medicated groups than for non- 

medicated groups on each paradigm, with only one exception, this being for AD medicated 

patients who generated less inhibition errors than non-medicated patients, on the No-Go task.
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However, none of the between-group one-way ANOVA, i.e. for DP medicated and non- 

medicated sub-groups and between AD medicated and non-medicated sub-groups, were found 

to be significant for any saccadic variables. Therefore, the analyses confirmed that inhibition 

error rates and corrected and uncorrected error components for medicated and non-medicated 

sub-groups were indistinguishable.

6.3.4 Saccade Latency

Analyses of saccadic latency were carried out on the sub-group means (Table 6.3 

below) for reflexive saccade (gap and overlap) and antisaccade (gap and overlap) paradigms. 

The output showed that there were no significant differences between medicated and non- 

medicated DP sub-groups, and further analysis found that this was also the case for the AD 

medicated and non-medicated sub-groups.

Table 6.3 Saccade Latency for Reflexive and Antisaccade Paradigms

Reflexive saccade paradigm
Dementia group 

Medicated Non-medicated 
Task M ean SD  M ean SD

Alzheimer's disease 
Medicated Non-medicated

M ean SD M ean SD

Overlap 2 9 2 .2 3  53 .72  2 8 5 .66  332.61 

Gap 194 .65  3 8 .19  215 .12  4 2 .66

308 .34  63 .18  2 9 2 .5 6  33 .82  

196 .67  4 4 .9 5  2 0 4 .9 9  4 4 .4 3

Antisaccade
Dementia group 

Medicated Non-medicated
M ean SD  M ean SD

i paradigm
Alzheimer's disease 

Medicated Non-medicated
M ean SD M ean SD

Overlap 3 8 5 .74  179 .08  359 .46  129.83 

Gap 376 .1 8  97 .72  309 .95  107.89

344 .38  149 .37  355 .74  179.21 

375 .74  108 .74  2 6 5 .0 7  118 .93

6.4 Discussion

The present study was carried out with the aim of establishing whether dementia

patients — in particular those with AD — taking medication of AChEIs would exhibit enhanced

saccade dynamics and behavioural characteristics compared with non-medicated patients on
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involuntary and voluntary saccade tasks. Additionally, cognition and global function was also 

compared in the two sub-groups, using neuropsychological assessments and clinical rating 

scale scores.

6.4.1 Key findings

Key findings from the present study are summarised as follows:-

1. Medication with AChEIs was not found to enhance performance on 

clinical rating scales and neuropsychological assessments.

2. Primary saccade latency for reflexive and voluntary tasks, were found to 

be non-significantly different between medicated and non-medicated AD 

patient groups.

3. Behavioural characteristics, namely inhibition error rates committed on 

reflexive and voluntary saccade tasks, were found not to vary 

significantly between medicated and non-medicated AD patient groups.

4. Corrected errors and uncorrected error rates did not differ significantly 

between medicated and non-medicated AD patients.

6 .4 .2  Clinical Rating Scales and Neuropsychological Assessm ent

The findings from statistical analysis of clinical rating scale and neuropsychological 

assessment scores showed that there was no significant difference between medicated and non- 

medicated patients on the vast majority of tests. Furthermore, the only significant differences 

that were demonstrated concerned the DP non-medicated sub-group, were scores on the Digit 

Span Reverse and Spatial Span Reverse tests were significantly higher than those of the DP 

medicated group. A plausible suggestion as to the cause of this outcome is that the result was
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due to the mixture of dementia types present in the study. Importantly, the AD medicated/non­

medicated sub-group analysis, found no statistically significant differences between the sub­

groups for any of the tests. For the context of the present study, this a salient methodological 

finding, as it confirms that AD patients taking treatment of AChEIs, were at no advantage 

compared with non-medicated patients. Moreover, these results show that medicated patients 

were unlikely to represent a confound for the project as a whole as there was no drug induced 

cognitive enhancement. As such, the findings do not support the hypothesis underpinning 

Study IV, that medicated sub-groups would have superior cognitive performance. For the 

majority of AD patients in the present study, medication was only initiated for a relatively 

short period of time prior to test (approximately 4 weeks at test20). Therefore, a longer period 

treatment with AChEIs prior to testing may have resulted in an improvement in test 

performance as found in previous studies (Edwards, O'Connor, Button, Goodman & Norton, 

2002; Jones et al., 2004; Wolfson et al., 2002) . These studies highlighted the efficacy of 

AChEIs in the treatment of AD, by their capacity to improve cognition by reducing ADAS-cog 

scores (by 4 - 5  points) and increasing MMSE scores (by 1-2 points) at around twelve weeks 

of medication. However, some studies have found that not all AD patients derive benefit from 

treatment (Edwards et al., 2002; NICE, 2001)

6.4.3 Involuntary Saccades

The finding that there was no significant difference between medicated and non- 

medicated AD patients in primary saccade latency and behavioural characteristics for reflexive 

saccade tasks was not too surprising. The reflexive gap task analysis in Study II showed that 

there were no significant differences between AD patients and elderly control participants, so 

medicated AD patients would not be expected to exceed the performance of normal healthy 

controls. Furthermore, the initiation of reflexive saccades relies heavily on the SC and

20 Although the average was 11 weeks, as some patients had been taking medication for a longer period.
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brainstem, in association with the PEF and FEF and not on prefrontal areas of cortex such as 

the DLPFC, which is involved with the inhibition of reflexive saccades and higher order 

processing (hence the negligible error rates). Sections 1.4.1.2 and 4.4.5 discussed how fixation 

cells inhibit movement cells in the SC and Section 1.4.2.1 described the important role played 

by the FEF, with it’s reciprocal connections with the SC, via the mediodorsal thalamus. Due to 

the characteristics of the reflexive gap paradigm, movement cells in the SC would be 

disinhibited and free to generate a saccade on time, due to the removal of the central fixation 

point 200 ms prior to the onset of the peripheral target. If any difference was to have been 

anticipated between medicated and non-medicated patients in the reflexive saccade paradigms, 

it would have been more likely to have occurred in the reflexive overlap task, as a significant 

difference was observed in Study II between AD patients and elderly controls. It is important 

to remember, that AD patients generated saccades with prolonged latency in the overlap task, 

thus resulting in an FOE that was significantly larger in magnitude to that of controls. 

Therefore, it is conceivable that AD patients, medicated with AChEIs, could potentially have 

had improved fixation disengagement in the reflexive overlap task, afforded by enhanced 

attentional processing via the pathways between the PEF and FEF (fixation and movement 

cells are also found in the FEF) thereby reducing saccade latency to a level comparable with 

that of elderly controls. However, as the results in the present study revealed, medicated AD 

patients drew no benefit over those that had not commenced treatment.

6.4 .4  Voluntary Saccades

The proportion of inhibitory errors on voluntary saccade tasks (No-Go; antisaccade gap 

and Go/No-Go), was found not to differ significantly between medicated and non-medicated 

AD patient groups. These findings were somewhat surprising, as voluntary saccades require 

working memory and importantly, inhibitory control. Thus, voluntary saccades rely on 

executive control mediated by the frontal lobe, specifically reciprocal connections between the
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DLPFC, ACC, FEF, SEF and PEF. Therefore, it is plausible to suggest, that AD patients 

medicated with acetylcholinesterase inhibitors should perform more efficiently than non- 

medicated AD patients, due to cognitive enhancement via the neural pathways involved in 

higher order processing of voluntary saccade tasks. These findings both affirm and correspond 

with the findings discussed in the previous sections, that medication with acetylcholinesterase 

inhibitors does not induce any significant improvement in performance on voluntary saccade 

tasks, compared with non-medicated patients. Therefore, these findings do not support the 

cognitive enhancement hypothesis for medicated patients in this study. However, as 

mentioned earlier, it is feasible that benefits from medication with acetylcholinesterase 

inhibitors may have emerged after longer periods of taking the drugs. Thus, the results do not 

rule out the possibility that acetylcholinesterase inhibitors could in the longer term, reduce 

inhibition error rates.

6.5 Conclusions

Cognitive enhancement - as indicated by improved clinical rating scale and 

neuropsychological assessment scores - did not result from medication with 

AChEIs for the small cohort of dementia patients included in the present study. 

This may have been due to insufficient time for the full pharmacological benefit 

of the drugs to exert an effect as the majority of patients had only been taking 

the medication for a short time.

A Saccade dynamics and behavioural characteristics of AD patients on medication 

with AChEIs are negligibly different to those of non-medicated patients on 

involuntary or voluntary oculomotor tasks.

Cognitive enhancement may potentially transpire, further to longer treatment 

periods of medication with acetylcholinesterase inhibitors, which could manifest 

in longitudinal analyses.
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Chapter Seven

Study V: Longitudinal Analysis of Saccadic Eye Movement 
and Cognitive Performance in Alzheimer's Disease

7.1 Introduction

This study examined the data from a sample of AD patients and EC participants who 

were systematically re-assessed over time on saccadic eye movement tasks, clinical rating 

scales and neuropsychological assessments. The study was longitudinal from baseline testing, 

with subsequent test sessions taking place at six monthly intervals to provide a total of four 

data sets. The main goal of the present study, therefore, was to examine only salient findings 

from the previous studies over time, so as to determine which oculomotor variables or 

cognitive tests are sensitive to the progression of AD.

The investigation of eye movements in AD over time has been limited, previously only 

two studies having explored the progression of AD via repeated measures (Bylsma et al., 1995; 

Hutton, 1985). Both of these studies reported that AD patients have a deficit in fixation 

stability or smooth pursuit tracking, characterised by saccadic intrusions. Bylsma (1995) found 

that the inability of AD patients to inhibit intrusive saccades on a fixation task correlated with 

the baseline measure of MMSE and with the decrease in MMSE over time, i.e. increased 

cognitive impairment. This measure was shown to be more sensitive to the progression of AD 

than reflexive saccade latency through repeated test sessions.

Studies I, II and III of the present thesis provided an extensive account of baseline 

cognitive and saccadic performance in dementia patients (including sub-group analyses for AD
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and other types of dementia) compared with that of healthy elderly controls (ECs), healthy 

young controls and mild Parkinson’s disease patients (Study III: age and disease effects). The 

most salient finding from Studies I and III, was the generation of inappropriate reflexive 

saccades by AD patients during voluntary saccade tasks due, apparently, to a deficit in the 

ability to inhibit the VGR. These reflexive saccades were termed inhibitory errors and 

committed by dementia patients in violation of task instructions. It was postulated that the 

proportion of inhibition errors corresponded, largely, with the cognitive load of a given saccade 

task and as a function of task pre-potency. Furthermore, the cognitive load of a given saccade 

task was reflected in the level of demand placed on working memory resources. Participants 

were found to generate least inhibition errors during the No-Go task (task outlined in Section 

2.3.3.3.1) and the proportion of errors committed increased linearly through the antisaccade 

gap task (outlined in Section 2.3.3.3.1), to the Go/No-Go task (see Section 2.3.3.3.1).

A further salient finding from Studies I and III was that AD patients were found to 

produce a high proportion of inhibition errors that remain uncorrected, whilst performing the 

antisaccade gap task. Analysis of the factor: correctness o f performance showed that the EC, 

YC, PD and DOT groups were significantly different to the AD patient group and that the AD 

group presented with no trend (flat profile) in their profile plot on this factor. Compared with 

AD patients, other groups tend to generate significantly higher proportions of correctly 

commissioned saccades, lower error components, i.e. lower proportions of corrected errors 

(apart from DOTs who tend to correct inhibition errors at a higher ratio than ADs) and lower 

proportions of uncorrected errors.

An additional salient finding revealed by Studies II and III was that AD patients 

generate an FOE for reflexive saccade latency which is of significantly higher magnitude to 

that of the EC, YC and PD groups, although, the magnitude of FOE was not significantly 

different from that of the sub-group of dementia patients with other types of dementia. To 

reiterate, it is of significance to note that the significant findings summarised above, were
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reliable baseline measures. Moreover, importantly these measures were able to discriminate 

between AD and other groups, of significance distinguishing the AD group from the effects of 

normal ageing, Parkinson’s disease (another neurological disease) and education. An obvious 

extension of the previous studies, therefore, is to explore longitudinal data, for any changes in 

these factors over time.

For the factor voluntary saccade task, which incorporates three voluntary saccade tasks 

(No-Go; antisaccade gap; Go/No-Go), what would be expected to happen to the inhibitory 

error rates over time? Working memory is required for each of the tasks which comprise the 

factor, but each task places different demands on working memory resources: No-Go = low; 

antisaccade = moderate; Go/No-Go = High (see Table 3.1). Previous research has shown 

working memory to deteriorate over time in AD (Baddeley, Bressi, Della Sala, Logie & 

Spinnler, 1991), so it may be the case that inhibitory error rates will simply increase linearly 

over time for each task. Alternatively, the progression of AD over time may not be reflected 

on every task to the same degree, as the working memory component of each task is different. 

Furthermore, working memory does not operate purely in isolation, it is thus important to 

consider other fundamental components of behaviour and cognition which are required to 

perform the tasks successfully, such as inhibitory control, attention, representation and fixation 

mechanisms.

Correctness of performance, the factor comprising variables derived from the 

antisaccade gap task (correct saccades; corrected errors; uncorrected errors) may provide a 

sensitive measure of self-monitoring capacity over time in AD patients. The high antisaccade 

uncorrected error rate for AD patients was notably one of the most salient findings of baseline 

performance in the AD group. Moreover, the factor correctness of performance was able to 

discriminate the AD group from both the EC and DOT groups. Given the nature of cognitive 

deterioration in AD overtime, it is feasible that correctness of performance may be sensitive to
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the progression of AD, because of deteriorating self-monitoring capacity and consequently, an 

increased uncorrected error rate.

The magnitude of reflexive saccade FOE may be found to increase over time for AD 

patients, but may also reach a ceiling level for reflexive response. Obviously, this factor is 

dependent on the comparison of saccade latency in reflexive gap and overlap tasks. As was 

found in Studies II and III, saccade latency was prolonged in the reflexive saccade overlap task 

at baseline. However, it is conceivable that reflexive overlap task saccade latency could 

become more prolonged over time, plotting the progression of AD as a function of 

neurodegeneration and consequentially an increasing fixation disengagement deficit.

The MMSE has been shown previously to detect a 1 -  2 point change in AD patients 

over a 12 month inter-test interval, for patients taking medication of AChEI’s (Edwards et al., 

2002) and 9 month inter-test interval for a study involving non-medicated patients (Bylsma et 

al., 1995). Therefore, it is of interest to determine as to whether any of the factors, i.e. 

voluntaiy saccade task, correctness of performance or magnitude of reflexive FOE (or any of 

the variables comprising the factors) possesses sufficient resolution, to detect changes in AD 

cognition over the eighteen month time span of a longitudinal study.

An obvious predicament for the researcher in any longitudinal study of dementia is that 

of subject mortality. Unfortunately, the present study was no exception to the problem of 

intermittent availability or attrition of participant numbers, due to illness or death. In fact, a 

large proportion of the original sample examined in the earlier studies from this thesis, were 

not included in the present analyses. For the current study, participants were required to be 

present at each stage of the project, i.e. without any missed visits, to gain a truly representative 

pattern of activity over time. Therefore, the account given was derived fully from repeated 

measures data, with other participants excluded from the study as a result of missing eye 

movement data occurring at a particular stage further to baseline measurement.
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7.1.1 Aims

The aims of the present study were to investigate further the salient findings from stage 

one, i.e. baseline, of the longitudinal study so as to examine whether any of the factors are 

sensitive to the progression of AD over time (from baseline through further test sessions at 6, 

12 and 18 months). The study examined both within- and between-groups differences, to 

include analyses of saccade dynamics and behavioural characteristics and also an extensive and 

detailed analyses of clinical rating scales and neuropsychological assessments.

7.1 .2  Hypotheses

The specific hypotheses for this study were: 1) Further to deterioration of working 

memory capacity over time, a significant increase in voluntary saccade task magnitude will be 

found for the AD patient group, indicating that inhibition error rate is sensitive to the 

progression of AD. 2) The increase in inhibitory errors across time will increase in proportion 

to the cognitive load of a given task. 3) There will be significant difference between the AD 

group and EC group on the factor for correctness of performance, as AD group correct saccade 

proportions decrease and uncorrected errors increase over time, suggesting that the capacity of 

AD patients to self-monitor performance deteriorates over time. 4) Due to a decline in 

fixation disengagement capacity, the magnitude of reflexive saccade FOE for the AD group 

will become greater over time. 5) An alternative hypothesis here, is that the magnitude of 

reflexive saccade FOE will not increase, but that there will be a linear increase in saccade 

latency for both reflexive saccade tasks (i.e. gap and overlap tasks) as a result of sensorimotor 

dysfunction developing over time. 6) Clinical rating scale scores should be significantly 

poorer to those of control participants and will demonstrate a decline in global function over 

time, whereas no change should be evident for the EC group. 7) AD patients will score more 

poorly than the EC group on neuropsychological assessment tasks which require working 

memory (e.g. Digit Span, Spatial Span [in particular the reverse forms] and Trail Making Form
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B) and frontal lobe function (e.g. Verbal Fluency, Trail Making Forms A and B) and 

furthermore, there will be a significant decline in performance over time for AD patients, 

whereas performance of the EC group should decline less markedly. 8) Performance on tests 

that require minimal working memory and mainly load on psychomotor ability (such as the 

Gibson Spiral Maze and Trail Making Form A), should be virtually the same for the AD and 

EC groups at baseline, but show a decline in performance for the AD group over time. 9) 

National Adult Reading Test (NART) scores should be non-significantly different between- 

groups at baseline. However, although this task has been regarded as a reliable predictor of 

pre-morbid IQ, scores over time will be expected to decline in the AD group due to language 

deficits caused by problems with lexical access through memory dysfunction.

7.2 Methods

7.2.1 Participants

Dementia patients (DP) and EC participants for the present study comprised those 

people who consistently attended all test sessions. As in the earlier studies, dementia patients 

were volunteers from the AD Research Project at Lytham Hospital Memory Clinic, United 

Kingdom. The EC participants were volunteers from the local community of Lytham. The 

methods for recruitment, AD diagnosis criteria and health status for the experimental 

population, were discussed in Chapter 2, Section 2.1. All participants were right-handed. 

Analyses for the DP group was derived from a reduced baseline group (N=15; age range = 70- 

88; mean = 76.5; SD = 4.5; male n=9; female n=6) and this was also the case for the AD sub­

group (N =ll; age range = 70-88; mean = 76.6; SD = 5.0; male n=8; female n=3). 

Unfortunately, it was not possible to carry out a longitudinal analysis for the DOT dementia 

sub-group, due to subject mortality. The EC group was obtained from the baseline group of 

EC participants (N=27; age range = 58-85 years ; mean = 71.2; SD = 6.1; male n=l 1; female 

n=16).
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7.2.2 Assessm ent of Saccadic Eye Movements

All eye movement tasks were conducted using the ‘Express Eye’ eye movement 

recording system, task protocol and experimental procedures described in Chapter 2 

(Section 2.3). So as to extend baseline measures, tasks for this study included the reflexive 

saccade gap and overlap paradigm, No-Go and Go/No-Go paradigms and the antisaccade 

gap and overlap paradigm, as discussed in the previous studies. The central fixation point 

was displayed at 0° and the target stimulus presented randomly in the right or left visual 

field at ± 4° of visual angle in the horizontal plane.

7.2.3 Statistical Analysis

Statistical analyses were carried out using SPSS version 11.5 (SPSS Inc., Chicago 111). 

Firstly, dementia patients (DP) were assessed as a group compared with ECs and then the 

analyses were conducted on the AD sub-group with the EC group. No laterality effects were 

found for any variables either at baseline or for any subsequent test sessions, therefore, data 

from left and right hemifields were collapsed as in the previous studies. Normality of 

oculomotor variables was assessed using the skewness index, and variables transformed using 

square root or square, for positive (>1) or negative (<-l) skewness respectively (Tabachnick & 

Fidell, 1996).

Analyses were conducted using variously, two or three-factor repeated measures mixed 

ANOVA, One-way ANOVA, trend analysis and Bonferroni pair-wise comparisons as 

applicable and t-tests. For analyses using repeated measures ANOVA, assumptions of 

sphericity were assessed on each variable using the Mauchly test. The Greenhouse-Geisser 

epsilon correction of degrees of freedom was used if assumptions of sphericity were violated 

(Jennings, 1987). Spearman’s rank order correlation coefficient was used to examine 

relationships within the data. Effect sizes for between-groups analyses of oculomotor variables
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were calculated using Cohen’s d statistic (Cohen, 1988) as in the earlier studies (see equations 

in Section 3.2.3.2).

7.3 Results

Corresponding with earlier studies, some saccadic variables were found to have some 

positive skewness, which when transformed to normalise the skewness of distribution, 

generated virtually identical output to untransformed scores. Therefore, for clarity of 

interpretation and descriptive statistics, the results given below use untransformed versions 

(were possible non-parametric analyses of all variables conducted simultaneously for 

thoroughness, also revealed the same results as ANOVA but are omitted from these sections).

7.3.1 Longitudinal Group Comparisons of Clinical Rating Scale and 
Neuropsychological Assessment scores

A summary of clinical rating scale and neuropsychological assessment scores (group 

means) from longitudinal test sessions is displayed in Table 7.1 below. Both clinical rating 

scales showed a change of two points through the four tests sessions for the dementia group 

(SMMSE = decrease and EADAS cog = increase). However, with the AD group, the change 

was somewhat less pronounced on the SMMSE (-1.55). Interestingly, the EADAS cog 

detected an increase of 3.82 in the AD group over the four test sessions. The reader may recall 

from Chapter 2 (Sections 2.5.1 and 2.5.2 respectively), that a decease in SMMSE score equals 

a poorer score, whereas the opposite is true for the EADAS cog i.e. higher scores equal poorer 

scores. The clinical rating scales were assessed statistically using separate two-factor repeated 

measures mixed ANOVA.
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Table 7.1 Descriptive Statistics for Longitudinal Clinical Rating Scale and 
Neuropsychological Assessm ent Scores

Dementia Patients
Baseline 6 months 12 months 18 months

Test Mean SD Mean SD Mean SD Mean SD N
SMMSE 23.80 2.98 24.20 3.08 24.00 3.82 21.87 3.89 15
EADAScog 18.00 7.07 18.13 6.03 18.67 7.35 20.27 12.51 15
DSF 9.07 2.19 9.07 2.02 9.00 2.20 9.07 2.55 15
DSR 5.93 2.43 5.73 2.25 5.47 2.03 5.13 2.56 15
SSF 6.00 2.04 5.80 1.57 5.33 1.95 6.07 2.02 15
SSR 5.13 1.51 5.40 2.23 5.73 1.83 5.00 2.10 15
Gibson SM 70.55 29.62 67.88 26.28 69.57 26.00 69.32 29.08 15
Verbal fluency 27.20 7.88 26.67 8.83 27.13 9.66 25.67 9.21 15
Trails A 54.68 13.04 54.38 13.00 49.27 15.27 54.38 24.95 15
Trails B 131.85 50.57 147.82 68.04 121.81 39.53 133.68 48.73 15
NART 107.67 10.20 107.20 10.19 107.07 10.19 106.73 11.73 15

Elderly Controls
Baseline 6 months 12 months 18 months

Test Mean SD Mean SD Mean SD Mean SD N
SMMSE 29.22 1.09 28.85 1.46 29.22 0.93 29.48 0.80 27
EADAScog 7.96 2.53 6.26 2.54 5.56 2.36 5.59 2.19 27
DSF 10.33 2.48 10.22 2.26 9.85 2.27 10.22 2.19 27
DSR 7.52 2.42 7.07 1.75 7.44 2.24 7.67 2.20 27
SSF 7.52 1.74 7.26 1.43 7.52 1.83 7.48 1.58 27
SSR 6.85 1.26 6.93 1.64 6.74 1.32 7.04 1.53 27
Gibson SM 63.87 20.53 60.44 14.40 59.05 14.04 56.36 10.89 27
Verbal fluency 37.85 11.10 40.26 11.07 42.37 9.71 44.04 10.51 27
Trails A 42.11 13.31 34.13 7.29 30.71 6.66 32.31 7.51 27
Trails B 80.30 26.54 71.50 28.60 63.51 15.55 59.74 14.60 27
NART 114.15 12.92 115.37 11.76 116.56 10.46 117.15 10.99 27

Alzheimer's disease (Dementia Patients sub-group)
Baseline 6 months 12 months 18 months

Test Mean SD Mean SD Mean SD Mean SD N

SMMSE 23.00 2.68 23.82 3.12 23.27 4.15 21.45 4.27 11

EADAScog 19.45 6.68 19.18 6.00 20.18 7.60 23.27 13.46 11

DSF 9.09 2.39 8.91 2.26 9.45 2.34 9.45 2.88 11

DSR 5.64 2.69 5.91 2.59 5.45 2.34 4.73 2.87 11

SSF 6.18 2.27 5.73 1.62 5.45 2.16 6.27 2.24 11

SSR 5.00 1.67 5.45 2.54 5.73 2.10 4.82 2.44 11

Gibson SM 70.14 28.06 68.61 28.32 69.78 27.07 72.01 32.98 11

Verbal fluency 27.09 7.05 26.36 9.23 27.73 10.90 25.36 10.40 11

Trails A 59.25 11.26 55.55 14.02 49.21 17.83 57.01 30.30 11

Trails B 130.38 60.70 159.86 81.82 124.75 48.60 148.03 52.39 11
NART 108.00 11.27 107.09 11.55 106.73 11.46 105.73 13.24 11
DSF=Digit Span Forward; DSR = Digit Span Reverse; SSF=Spatial Span Forwards; SSR=Spatial Span Reverse; Gibson SM = Gibson Spiral Maze (secs); 
Trails A  = Trail Making Form A  (secs); Trails B = Trail Making Form B(secs); NART = National Adult Reading Test.

278



7 Longitudinal Analysis

7.3.1.1 The Standardised Mini-Mental State Examination

A two-factor repeated measures mixed ANOVA was conducted on the four data sets of 

SMMSE scores, i.e. from baseline through to 18 months, forming the repeated measures factor 

of SMMSE test session, with group (DP group as a whole and EC group) as the between-groups 

factor, to investigate changes over time in SMMSE scores. The main effect of SMMSE test 

session was found to be significant (F[2.41, 120] = 2.97, /?<0.047), as was the main effect of 

group (F[l, 40] = 102.03, /?<0.0001), indicating that overall, there was a significant difference 

over time on the SMMSE and between DP and EC group scores. The interaction between 

SMMSE test session and group was also significant (F[3, 120] = 6.47, p O .0001), which shows 

that there were differences in the performance of the two groups over time on the SMMSE. A 

single-factor within-groups repeated measures ANOVA for the DP group on the SMMSE test 

session factor, revealed that main effect of SMMSE test session was significant (F[3, 42] = 

2.02, p<0.04), polynomial trend analysis revealing a significant quadratic trend (F[l, 14] = 

4.96, p<0.043) to be present in the data over test sessions (time). Bonferroni pair-wise 

comparisons of the levels of the factor SMMSE test session revealed that there was a 

significant decrease in the DP scores at 18 months from 12 months (/?<0.01), but no significant 

difference was found between any other test session comparisons. Conversely, the within- 

groups repeated measures ANOVA for the EC group resulted in non-significant findings, 

which shows that the EC group did not change over time.

These results highlight that the SMMSE was able to detect the deterioration in dementia 

severity for the DP group and that this was present after 18 months, whereas the healthy EC 

group showed no change in their mental status. Additional analyses using between-groups 

one-way ANOVA (with Bonferroni adjustment) at each test session were highly significant at 

each stage (Table 7.2 [A] below), showing that the DP group performed significantly more 

poorly than the EC group, at each SMMSE test session.
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Table 7.2 Longitudinal Statistical Analyses (ANOVA) Between-Groups for Clinical 
Rating Scales and Neuropsychological Assessments

Dementia Patients vs. Elderly Controls

Test Baseline 6 months 12 months 18 months
SMMSE F[1,40]= 73.13, p<  0.0001* F[1,40]= 44.44, p<  0.0001* F[1,40]= 46.41, p<  0.0001* F[1,40]= 97.89, p<  0.0001*
EADAScog F[1,40]= 44.82, p < 0.0001 * F[1,40]= 80.34, p<  0.0001* F[1,40]= 73.67, p<  0.0001* F[1,40]= 35.87, p <  0.0001*
DSF F[1,40]= 2.73, p> 0.1 F[1,40]= 2.72, p> 0.1 F[1,40]= 1.39, p> 0.2 F[1,40]= 2.39, p> 0.1
DSR F[1,40]= 4.11, p<  0.049 F[1,40]= 4.60, p<  0.038 F[1,40]= 8.01, p<  0.007* F[1,40]= 11.47, p< 0.002*
SSF F[1,40]= 6.50, p < 0.015 F[1,40]= 9.38, p< 0.004* F[1,40]= 13.15, p<  0.001* F[1,40]= 6.35, p< 0.016
SSR F[1,40]= 15.58, p< 0.0001* F[1,40]= 6.44, p < 0.015 F[1,40]= 4.25, p<  0.046 F[1,40]= 13.016, p<  0.001*
GSM F[1,40]= 0.74, p> 0.3 F[1,40]= 1.42, p> 0.2 F[1,40]= 2.93, p> 0.09 F[1,40]= 4.39, p<  0.044

Verbal flu F[1,40]= 10.75, p<  0.002* F[1,40]= 16.66, p<  0.0001* F[1,40]= 23.83, p< 0.0001* F[1,40]= 32.07, p <  0.0001*
Trails A F[1,40]= 12.46, p<  0.001* F[1,40]= 39.10, p< 0.0001* F[1,40]= 28.22, p<  0.0001* F[1,40]= 23.69, p<  0.0001*

Trails B F[1,40]= 20.84, p<  0.0001* F[1,40]= 24.80, p< 0.0001* F[1,40]= 47.93, p< 0.0001* F[1,40]= 65.23, p< 0.0001*
NART F[1,40]= 2.79, p> 0.1 F[1,40]= 5.10 ,p <  0.029 F[1,40]= 8.08, p<  0.007* F[1,40]= 8.26, p<  0.006*

Alzheimer's D isease Patients vs. Elderly Controls

Test Baseline 6 months 12 months 18 months

SMMSE F[1,36]= 106.1, p<  0.0001* F[1,36]= 46.58, p<  0.0001* F[1,36]= 51.11, p<  0.0001* F[1,36]= 90.89, p<  0.0001*

EADAScog F[1,36]= 60.55, p < 0.0001 * F[1,36]= 89.19, p< 0.0001* F[1,36]= 83.33, p<  0.0001* F[1,36]= 45.14, p<  0.0001*

DSF F[1,36]= 2.00, p> 0.1 F[1,36]= 2.64, p> 0.1 F[1,36]= 2.36, p> 0.6 F[1,36]= 0.800, p> 0.3

DSR F[1,36]= 4.42, p< 0.042 F[1,36]= 2.60, p> 0.1 F[1,36]= 6.01, p< 0.019 F[1,36]= 11.68, p< 0.002*

SSF F[1,36]= 3.87,p> 0.057 F[1,36]= 8.32, p< 0.007* F[1,36]= 8.98, p< 0.005* F[1,36]= 3.58, p> 0.067

SSR F[1,36]= 13.9, p< 0.001* F[1,36]=4.53,p< 0.040 F[1,36]= 3.23, p> 0.08 F[1,36]= 11.49, p< 0.002*

GSM F[1,36]= 0.587, p> 0.4 F[1,36]= 1.40, p> 0.2 F[1,36]= 2.60, p> 0.1 F[1,36]= 4.93, p< 0.033

Verbal flu F[1,36]= 8.81, p< 0.005* F[1,36]= 13.46, p< 0.001* F[1,36]= 16.58, p< 0.0001* F[1,36]= 24.82, p< 0.0001*

Trails A F[1,36]= 18.30, p< 0.0001* F[1,36]= 40.74, p< 0.0001* F[1,36]= 27.18, p< 0.0001* F[1,36]= 24.86, p< 0.0001*

Trails B F[1,36]= 16.24, p< 0.0001* F[1,36]= 23.34, p< 0.0001* F[1,36]= 42.75, p< 0.0001* F[1,36]= 84.18, p< 0.0001*

NART F[1,36]= 1.896, p> 0.1 F[1,36]= 3.91, p> 0.056 F[1,36]= 6.53, p < 0.015 F[1,36]= 7.50, p<  0.010*
’Significant after Bonferroni adjustment alpha level .013; per longitudinal psychometric test

DSF=Digit Span Forward; DSR = Digit Span Reverse; SSF=Spatial Span Forwards; SSR=Spatial Span Reverse; GSM = Gibson Spiral Maze; Verbal flu = 
Verbal fluency; Trails A  = Trail Making Form A; Trails B = Trail Making Form B; NART = National Adult Reading Test.

The same analytical procedure was carried out with the AD sub-group data to 

investigate how their cognitive performance changed over time, as measured by the SMMSE. 

The main effect of group was significant (F[l, 36] =114.0, p<0.0001), showing that there were 

significant differences between AD and EC group scores in the omnibus ANOVA. Although 

the main effect of SMMSE test session was non-significant the interaction between SMMSE 

test session and group (Figure 7.1) was found to be significant (F[3, 108] = 5.158, /K0.002), 

showing that there were differences between the AD group and EC group for the change in 

SMMSE scores over time. Between-groups one-way ANOVA (with Bonferroni adjustment) 

at each test session were highly significant at each stage (Table 7.2 [B] above), showing that

280



7 Longitudinal Analysis

the AD group performed significantly more poorly than the EC group, at each SMMSE test 

session. Bonferroni pair-wise comparisons between the levels of the SMMSE test session AD 

within-groups data showed there was a significant difference between 12 months and 18 

months (/?<0.01), but not other test sessions.

These findings show that although there is significant quantitative change during the 

later test sessions for the AD group, the changes between baseline and the later stages are only 

qualitative. In fact, as can be observed in the data profile (Figure 7.1), AD test session scores 

appear to be nearly quadratic. Polynomial contrasts showed that a quadratic trend was 

approaching significance (F[l, 10] = 4.43,p>0.06 NS).

Figure 7.1 Graph Displaying the Interaction Between SMMSE Test Session 
and Group (Alzheimer's Disease and Elderly Controls)
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In summary, these results show that the SMMSE was able to detect significant changes 

in dementia group global function over time and that it was possible to distinguish these 

differences clearly from control group performance. This supports the hypothesis that the 

clinical rating scale scores for dementia patients i.e. ADs, should be significantly poorer to 

those of control participants and that the test should detect a decline in global function over 

time, whereas no change should be evident for the EC group.
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7.3.1.2 The European Alzheimer's Disease Assessment Scale Cognitive Sub- Test

A two-factor repeated measures mixed ANOVA was calculated to analyse the test 

session data for the EADAS cog, from baseline through to 18 months. For this analysis, 

EADAS cog test session was the repeated measures factor (four levels) and group (DP and EC 

groups) the between-groups factor. The main effect of the factor EADAS cog test session was 

not significant. However, the main effect of group was significant (F[l,40] = 71.79, 

jt?<0.0001), showing that overall, there was a significant difference between the two groups. 

The interaction between EADAS cog test session and group was found to be significant (F[3, 

120] = 3.085, /K0.047), which indicates that the groups performed differently on the EADAS 

cog over time. Single-factor within-groups repeated measures ANOVA of the factor EADAS 

cog test session, revealed that there were no significant effects for the DP group. However, for 

the EC group, the within-groups analysis showed that the main effect of the factor EADAS cog 

test session was significant (F[3, 78] = 9.89, /?<0.0001) and that a significant linear trend was 

present in the profile of the test session data (F[l, 26] = 119.24, pO.OOOl), confirming that EC 

group scores significantly decreased/improved linearly over the 18 month period. Bonferroni 

pair-wise comparisons on the EC group test session data verified this, showing that baseline 

scores were significantly different to subsequent retest scores at 6 (/?<0.05), 12 and 18 months 

(both /?<0.01). However, comparisons between other test sessions, i.e. 6 months with 12 and 

18 months or 12 months with 18 months were found to be non-significant, which indicates that 

further to a decrease after baseline measurement, there was only marginal changes in EC group 

scores at later stages. Between-groups analyses using one-way ANOVA (with Bonferroni 

adjustment), showed that there was a significant difference between-groups at each test session 

(Table 7.1 [A]). This was due to DP group scores being were significantly higher that EC 

group scores at each test session from baseline to 18 months.

The analyses were repeated with the AD sub-group and EC group as the between-groups 

factor in the two-factor repeated measures mixed ANOVA. The main effect of group was
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found to be significant (F[l, 36] = 86.86, p<0.0001), indicating that there were differences 

overall, between the AD and EC groups. The main effect of EADAS cog test session was not 

significant, however, the interaction between EADAS cog test session and group was 

significant (F[3, 108] = 5.009, p<0.003), which shows that there were differences in group 

performance over the test sessions (Figure 7.2).

Figure 7.2 Graphical Representation of the Interaction Between EADAS cog Test Session 
with Group (Alzheimer's Disease and Elderly Controls)
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Within-groups analysis of the AD group repeated measures factor EADAS cog test session 

found no significant effects. Between-groups analysis comparing the AD and EC groups 

showed that there were significant differences between the groups at each stage of the 

longitudinal project (Table 7.2 [B]). This was due to the AD group producing a significantly 

higher score than the EC group at each test session from baseline through to 18 months. In 

summary, the EADAS cog was able to detect subtle within-group changes from baseline 

through to 18 months for the DP group and the AD sub-group, however, these differences were 

only qualitative and not statistically significant. A clear dissociation was observed between the 

EC group and dementia groups in EADAS cog performance over time. Elderly healthy 

controls demonstrated a significant linear improvement in their test scores over time, from a
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baseline mean that lay well within the bounds of scores that would raise any concern. These 

results support the hypothesis that the clinical rating scale test score should be significantly 

poorer to those of control participants and that cognition should decline as a function of time.

7.3.1.3 Digit Span

The scores from both the Digit Span Forward and Digit Span Reverse tests are 

examined together in this section to assess the difference in performance between the two tasks 

over time. As can be seen in Table 7.1 performance on the Digit Span Forward test appeared 

not to change over time for any of the groups, although overall, it seems that the EC group 

produced scores that were generally about 1 point (10.2 = grand mean over time) above both 

the whole DP group (9.1) and AD sub-group (9.2). Digit Span Reverse test scores were 

observed to be about 3.5 points lower than Digit Span Forward scores for the dementia patient 

groupings (DP = 5.6; AD = 5.4, grand mean over time) and also 2.8 points lower for controls. 

It is fairly normal to find a difference of approximately 2 points between the Forward and 

Reverse forms of the test (Black & Strub, 1978; Lezak, 1995).

A three-factor repeated measures mixed ANOVA was carried out on the Digit Span 

Forward and Reverse data from the four tests sessions. Test session formed the first repeated 

measures factor with four levels (baseline, 6 months, 12 months adnl8 months) and Digit Span 

test formed another repeated measure factor with two levels (Forward and Reverse). The 

between-groups factor was group (comprising DP and EC groups). The only significant 

effects were the main effect of Digit Span test (F[l, 40] = 4.13,p<0.049) and the main effect of 

group (F[l, 40] = 6.30, /K0.016). Therefore, these results show that overall, there was a 

significant difference between scores on the Digit Span Forward (9.6) and Digit Span Reverse 

(6.5) tests, and that there was a significant difference between the overall group scores (DPs 

7.31 andECs 8.79).
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Between-Groups Effects: To examine the main effect of group and task more 

closely, between-groups analyses using one-way ANOVA (with Bonferroni correction) at each 

test session can be seen in Table 7.2 (A). For the Digit Span Forward task, there was no 

significant difference at baseline through to the test session at 18 months. The DP group 

scored lower than the EC group at each test session, however, due to the bonferroni adjustment 

only the scores from the 12 months and 18 months test sessions were found to be significantly 

lower than the EC group i.e. without Bonferroni adjustment, the DP group score significantly 

lower than the EC group at each stage of testing. This supports the hypothesis that tests which 

place a high demand on working memory - in this case the Digit Span Reverse task -  will be 

performed less efficiently for dementia patients than for control participants. However, the 

hypothesis that there would be a significant decrease in performance for dementia patients over 

time was not supported.

The procedure for the analyses of Digit Span Forward and Digit Span Reverse was 

replicated for the AD sub-group, with the AD and EC groups forming the levels of the 

between-groups factor in a three-factor repeated measures mixed ANOVA. Test session 

formed the first repeated measures factor with four levels (baseline, 6 months, 12 months 

adnl8 months) and Digit Span test again formed the other repeated measure factor with two 

levels (Forward and Reverse). The main effects of Digit Span Test and Group were significant 

(Digit Span test, F[l, 26] = 254.53, /K0.0001; Group, F[l, 36] = 4.54, p<0.040), as was the 

interaction between Digit Span Test and Group (F[l, 36] = 6.76, p<0.013). Thus, these result 

show that overall, there was a significant difference between scores on the Digit Span Forward 

task (9.7) and Digit Span Reverse task (6.4) and also, that the groups performed significantly 

differently to each other (EC = 8.8 and AD = 7.3). Futhermore, the interaction shows that the 

groups performed differently on some level of the factor Digit Span test. The three-way 

interaction (Figure 7.3) between test session x Digit Span Test x Group, was also significant 

(F[3,108] = 2.97,/K0.035).
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Figure 7.3 A Graph Displaying the Three-Way Interaction Between Digit Span Test 
Session (baseline, 6 months, 12 months, 18 months), Digit Span Test 
(Forward and Reverse) and Group (ADs and ECs)

Alzheimer's disease Elderly Controls
11

10

9

8

7

6

5

4
Forward Reverse

11

10

9

8
Test session

7
Baseline

6 6 months

5 12 months

4 18 months
Forward Reverse

Digit Span Digit Span

This higher-order interaction is due to the interaction of the factors Digit Span task and 

test session, not being the same at the levels of the between-groups factor: group. As can be 

seen in Figure 7.3, AD group scores for the Digit Span Reverse task are less clearly defined 

from the EC group at the 6 months test session, a sharper decrease only being evident at the 12 

and 18 month stage. Whereas Digit Span Forward scores increased at later test sessions which 

may play a large part in the significant three-way interaction. No other effects were found to 

be significant.

Between-GroupS Effects: Between groups analyses using one-way ANOVA (with 

Bonferroni adjustment, Table 7.2 [B]) showed that the AD group scored significantly lower 

than the EC group on the Digit Span Reverse task at the 18 month test session. However, the 

difference between the groups was not significant at baseline, 6 months and 12 months21. No 

significant difference was found between the AD and EC groups for the Digit Span Forwards 

task at any test session.

Within-Groups Effects: Two-factor within-groups repeated measures ANOVA were 

conducted on the AD and EC group data. The main effect of Digit Span task was found to be

21 The difference at baseline and 12 months was not significant due to the stringency of the Bonferroni adjustment.
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significant for both groups (AD, F[l, 10] = 120.94, p<0.0001; EC, F[l, 26] = 154.09, 

/K0.0001), showing that overall, both the AD and EC sub-groups performed with higher 

scores on the Digit Span Forward task, compared with the Digit Span Reverse task. Paired 

samples t-tests of the Digit Span Forward with Digit Span Reverse scores, found that there was 

a significant difference within the AD group at each test session: Baseline, t[10]= 5.68, p< 

0.0001; 6 months, t[10]= 5.40, /K0.0001; 12 months, t[10]= 11.21,p<0.0001 and 18 months, 

t[10]= 6 .62,/K0.0001. The same was also found for the EG group: Baseline, t[26]= 6.98,/K  

0.0001; 6 months, t[26]= 8.20, /?<0.0001; 12 months, t[26]= 7.71, p<0.0001 and 18 months, 

t[26]= 8.99, /?<0.0001. These findings show that although there was no change in scores over 

time, Digit Span Reverse scores were significantly lower than Digit Span Forward score at 

each test stage.

The two-factor within-groups repeated measures analysis for both the AD and EC 

groups, enables a clearer understanding of the three-way interaction, found in the three-factor 

repeated measures mixed ANOVA, where group was added as a third factor. The within- 

groups analyses both show that there are significant differences on the factor of Digit Span 

Test, demonstrating that Digit Span Forward scores are higher than Digit Span Reverse scores. 

However, test session and the interaction between this factor and Digit Span test, were not 

significant in either of the analyses. Thus, the introduction of the third factor - the between- 

groups factor of group (AD and EC) - caused the significant higher-order three-way interaction 

between Digit Span test session, Digit Span Test and Group. This shows that the groups 

perform significantly differently from each other over time, across the tasks. These findings 

support the hypothesis that tasks loading highly on working memory, in this case the Digit 

Span Reverse will result in a lower performance for AD patients than the EC group, and that 

AD scores will decline over time due to a decline in working memory function.
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7.3.1.4 Spatial Span

Both forms of the Spatial Span task - Forward and Reverse - are analysed together in 

the following analyses so as to investigate changes in performance on the two tasks over time. 

On examination, the data for these two tests (Table 7.1) appear to show only marginal changes 

over the sequence of tests sessions for each of the groups. There also seems to be little 

difference between Spatial Span Forward and Spatial Span Reverse scores both within and 

between each group. To examine these observations statistically, a three-factor repeated 

measures mixed ANOVA was carried out on the data, firstly with the whole DP and EC groups 

as the between-groups factor and then the analysis is repeated with the AD sub-group and EC 

group as the between-groups factor. The design incorporated two within-groups factors 

(repeated measures) which were Test session with four levels (baseline, 6 months, 12 months 

adnl8 months) and Spatial Span test with two levels (Forward and Reverse). In the first 

analysis with DP and EC groups, the main effect of test session was found to be non-significant 

as was the interaction between this factor and group. This shows that there were no differences 

over time between the two groups, when Spatial Span test scores (Forward and Reverse) are 

collapsed. The main effects of Spatial Span task and group were both significant (Spatial Span 

Task, F[l, 40] = 9.98, p<0.003; group, F[l, 40] = 15.71,/K0.0001), which demonstrates that 

there were significant differences overall, between the scores for Spatial Span Forwards (6.6) 

and Spatial Span Reverse (6.1). Therefore, Spatial Span Reverse scores were lower collapsed 

across groups. Collapsed across tasks, the DP group (5.6) produced significantly lower scores 

than the EC group (7.2), hence the significant between-groups difference. No other effects 

were found to be significant.

B e tw e en -G rO U p S  E ffe c ts : To examine the between-groups effects more closely, a 

series of one-way ANOVA (with Bonferroni adjustment) were conducted between the DP and 

EC groups on each task at each test session. The results (Table 7.2 [A]) showed that on the 

Spatial Span Forward task, DP group scores were significantly lower than EC group scores at
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the 6 and 12 months tests sessions, but the baseline and 18 month sessions failed to reach 

significance, resulting from the Bonferroni correction. For the Spatial Span Reverse task, 

again, DP group scores were found to be significantly lower than EC group scores but this time 

the scores were significantly lower at baseline and at 18 months. Scores at the 6 and 12 month 

tests sessions failed to pass the stringent Bonferroni correction.

The three-factor repeated measures mixed ANOVA was repeated, with the AD sub­

group and EC group as the between-groups factor. The main effects of Spatial Span test (F[l, 

36] = 10.59, p<0.002) and group (F[l, 36] = 11.73, p<0.002) were found to be significant. 

However, no other effects or interactions were significant.

Between-Groups Effects: Between-groups analyses (AD and EC) of the Spatial Span 

test scores at each test session were conducted using one-way ANOVA (with Bonferroni 

adjustment; Table 7.2 [B]). For the Spatial Span Forwards test, AD patients were found to 

generate significantly lower scores than the EC group at the 6 month and 12 month test 

sessions, whereas the difference between the two groups at baseline and 18 months was only 

approaching significance. For the Spatial Span Reverse task, AD group scores were found to 

be significantly lower than EC group scores measured at basline and 18 months. The test 

session at 6 months failed to reach significance due to the Bonferroni adjustment.

In summary, scores on the Spatial Span Forward and Spatial Span Reverse tests were 

found not to change significantly over time within the DP, AD and EC groups. However, the 

DP and AD groups were found to perform significantly more poorly than the EC group overall, 

when test scores were collapsed. For the Spatial Span Forward task, both the DP group as a 

whole and the AD sub-group generated scores that were significantly lower than those of the 

EC group at the 6 month and 12 month test sessions, indicating that performance was better for 

DP and AD groups when measured at baseline and interestingly, at 18 months. However, for 

the Spatial Span Reverse test, the DP group and AD sub-group scores were found to be
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significantly lower than the EC group at baseline and 18 months, demonstrating an 

improvement in DP and AD scores when tested at 6 months and 12 months.

The Spatial Span Reverse task was found to be more difficult than the Spatial Span 

Forward task, and this was found to be the case over the four test sessions. These results are in 

support of the hypothesis that the Spatial Span Reverse task -  which places a high demand on 

working memory resources -  would result in lower scores for the dementia patients than 

healthy controls, but do not support the hypothesis that dementia patient scores will deteriorate 

over time.

7.3.1.5 Gibson Spiral Maze

The scores for the Gibson Spiral Maze (representing time in seconds) are displayed in 

Table 7.1. This analysis purely examines whether the groups differred in speed of task 

completion, the motor component of the test. There appears to be little change on this test, 

from baseline measurement and through the later test sessions, for both the DP group as a 

whole and the AD sub-group. For the EC group there is a decrease in the time taken to 

complete the task at baseline from that measured at successive test sessions. However, a 

further supplementary assessment of the data using the CAPE credit scoring system (Section 

2.5.10, Table 4), was adopted in an analysis to incoporate error rates (see Section 2.5.10) into 

the final score (Table 7.3 below).

Table 7.3 Longitudinal Gibson Spiral Maze Credit Scores (CAPE Scoring System)

___________________ Gibson Spiral Maze Credit Score___________________
Baseline 6 months 12 months 18 months

G roup M ean SD  M ean SD M ean SD M ean SD N

EC 11.52 0.58 11.26 0.81 11.44 0.51 11.63 0.49 27
DP 10.47 1.36 10.73 1.39 10.73 0.88 10.47 1.41 15
AD 10.36 1.50 11.00 1.55 10.73 1.00 10.36 1.50 11
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To examine task completion times, isolate the motor component and compare the DP 

and EC groups on the task, a two-factor repeated measures mixed ANOVA was used. Test 

session was the repeated measures factor comprising four levels (baseline, 6 months, 12 

months and 18 months) and the factor group (DP and EC groups) as the between-groups factor. 

The main effects of test session and group and the interaction between these two factors were 

found to be non-significant. Therefore, these results suggest that for the Gibson Spiral Maze 

task there were no differences over test sesssions with groups collapsed. Furthermore, there 

was no significant difference between the two groups in the magnitude of change over time, as 

indicated by the lack of interaction between Gibson Spiral Maze test session and group. 

Additionally, there was no difference evident between the DP and EC groups, when test 

session was collapsed to analyse the overall group difference.

Analysis of the AD sub-group group data was included in the same procedures as 

above. The two-factor repeated measures mixed ANOVA was found to result in no significant 

effects. This means that there were no differences over test sesssions with the AD sub-group 

and EC group data collapsed. Additionally, there was no significant difference between the 

two groups in the magnitude of change over time, as evidenced by no interaction between test 

session and group. Also, there was no difference found between the AD and EC groups when 

test session was collapsed to analyse the overall group difference22.

Scores Incorporating Error Rates. A supplementary analysis of AD and EC group 

Gibson Spiral Maze scores was carried out next, using the CAPE credit scoring sytsem so as to 

introduce error rate in the investigation. This analysis used a two-factor repeated measures 

ANOVA as in previous analyses, but the repeated measures factor of Gibson Spiral Maze test 

session - which previously comprised test completion times - was substituted by the credit 

score for each teat session (Table 7.3). The main effect of group was found to be significant 

(F[l,36] = 15.91,/KO.0001), which shows that overall the groups performed differently from

22 For information purposes only, suplementary between-group one-way ANOVA are displayed in Table 7.2 
[A&B].
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one another. Comparison of main effects confirmed that the AD group scored lower than the 

EC group (p<0.01, Bonferroni). The main effect of test session was found to be non­

significant, showing that when group data were collapsed, there was no difference between 

sessions in the omnibus ANOVA. The interaction between test session (credit score) and 

group was close to significance (F[3,108] = 2.65, /?>0.052 NS), which emphasizes that there 

was a slight difference in the magnitude of change over time between AD and EC group 

scores.

To examine the AD and EC between-group differences more closely, one way ANOVA 

was conducted on the credit scores from each test session. This analysis showed that the AD 

group scored significantly more poorly than the EC group at baseline (F[l,36] = 11.99, 

p<0.001), 12 months (F[l,36] = 8.59, /?<0.006) and 18 months (F[l,36] = 15.64, /K0.0001). 

However, there was no significant difference between the groups at the 6 months test stage 

(p>0.5). Within-groups analyses revealed that there were no significant changes for either 

group from baseline to testing at 18 months.

In summary, the present analysis found that the DP group, AD patient sub-group and 

EC group did not show any significant change over time in Gibson Spiral Maze test completion 

times. The EC group performed the task in a shorter time (i.e. faster rates) than the DP group 

and AD sub-group. However, when error rates were incorporated into the investigation by 

analysis of credit scores, it was found that the AD group produced lower scores than the EC 

group at each stage, with the exception of the test session at 6 months where there was no 

difference. There was no change in credit scores over time.

When the above findings are considered in light of task completion times or motor 

speed, they are in support of the hypothesis that performance of AD patients and the EC group 

on the Gibson Spiral Maze task - which is mainly a test of psychomotor ability - should be 

virtually indistinguishable at baseline. In contrast, when the results are examined to include 

error rate/accuracy, it is clear that AD patients generate more errors than controls, which does
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not support the hypothesis that the AD group would perform no differently to the EC group at 

baseline. Therefore, although AD patients have little problem with speed of action, they 

produce higher error rates than controls. Additional analyses found that the hypothesis that AD 

patients would show a decline in performance over time was not supported.

7.3.1.6 Verbal Fluency

The Verbal Fluency data shown in Table 7.1 indicate that the performance of the DP 

group and AD sub-group did not appear to change over the tests sessions. However, this was 

in contrast to the EC group who seem to have improved at consecutive test sessions. 

Furthermore, EC group performance appears to achieve considerably higher scores, than the 

other groups from baseline and through each test session.

In the first instance, a two-factor repeated measures mixed ANOVA was conducted, to 

investigate the Verbal Fluency data from the four tests sessions by DP and EC groups. Test 

session formed the repeated measures factor with four levels (baseline, 6 months, 12 months 

adnl8 months) and group was the between-groups factor (DP and EC groups). The main effect 

of Verbal Fluency test session was not significant, showing that overall (omnibus ANOVA), 

when the group data are collapsed to compare test sessions there is no difference between test 

sessions. The main effect of group was found to be significant (F[l, 40] = 24.05, /?<0.0001), 

which shows that when the test sessions are collapsed, there was a significant overall 

difference between-groups. The interaction between Verbal Fluency test session and group was 

also significant (F[3, 120] = 4.38, p<0.006) highlighting that the groups performed differently 

over time.

A single-factor within-groups repeated measures ANOVA on the DP group data for 

Verbal Fluency test session data, showed that the there was no significant effect on this factor. 

This indicates that DP group Verbal Fluency scores did not change significantly over time 

from baseline. The single-factor within-groups repeated measures ANOVA was repeated for
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the EC group data. The output from this analysis revealed that there was a significant main 

effect for this factor (F[3, 78] = 8.408, p<0.0001), which shows that there were significant 

differences within the Verbal Fluency tests sessions over time. Trend analysis with polynomial 

contrasts showed that there was a significant linear trend in the data, as scores increased 

(improved) over time from baseline through to 18 months (F[l, 26] = 32.14, /?<0.0001). 

Bonferroni pair-wise comparisons of the EC group Verbal Fluency test session data revealed 

that there was a significant difference between the scores at baseline and 12 months (/?<0.01) 

and 18 months (p<0.01). There was also a significant difference between the scores at 6 

months and 18 months (p<0.05). No significant difference was found between baseline scores 

and scores at 6 months (p>0.6) and between scores at 12 months and 18 months (p>1.0). 

These results suggest that the linear trend is caused by a steep increase in scores, which is most 

evident between baseline through to the latter two tests sessions (12 and 18 months). However, 

the increase is less prominent between scores at 12 months and 18 months. Between-groups 

analyses of DP group and EC group scores at each test session, using one-way ANOVA (with 

Bonferroni adjustment) showed that there were significant differences between the groups at 

each of the four test sessions (Table 7.2 [A]). This result was due to the EC group score more 

highly than the DP group at each stage.

The analysis using a two-factor repeated measures mixed ANOVA, was replicated to 

include the AD sub-group with the EC group, as the between-groups factor. Verbal Fluency 

test session again formed the repeated measures factor with four levels (baseline, 6 months, 12 

months adnl8 months). The main effect of verbal fluency test session was found to be non­

significant. However, the main effect of group was significant (F[l, 26] = 32.14, /KO.OOOl), 

showing that the were significant differences between the groups overall when the test sessions 

were collapsed on the repeated measures. This was due to the EC group having a significantly 

higher overall mean score. The interaction (Figure 7.4) between Verbal Fluency test session
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and group was found to be significant (F[3, 108] = 3.55, pO.OOOl) revealing that the groups 

scored differently over the test sessions.

A single-factor within-groups repeated measures ANOVA was applied to the AD sub­

group data on the factor Verbal Fluency tests session. This analysis showed that there were no 

significant effects and that the interaction in Figure 7.4, between Verbal fluency test session 

and group, was due to the incraese over time in the EC group scores (as described above where 

a linear trend was found in the EC group scores which due to an increase over time). Between- 

groups analysis with one-way ANOVA (with Bonferroni correction) examining the AD sub­

group and EC group, resulted in a significant difference for each test session (Table 7.2 [B]). 

Again, this was due to the EC group scores being significantly higher than the AD sub-group at 

each test session.

Figure 7.4 Graphical Representation of the Interaction Between Verbal Fluency Test 
Session and Group (Alzheimer's Disease and Elderly Controls)
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In summary, the EC group scored significantly higher on the Verbal Fluency test, than 

the whole DP group and AD sub-group at each test session. The DP group and AD sub-group 

scores did not change over time, whereas the EC group showed a significant improvement, 

scores increasing with a linear trend over time from baseline to 18 months. These findings
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support the hypothesis that AD group Verbal Fluency scores will be significantly lower than 

control group scores. However, the findings do not support the hypothesis that AD group 

scores will significantly decrease over time, as no significant changes were found to be present 

in the scores from baseline through successive test sessions.

7.3.1.7 Trail Making

On cursory examination of the Trail Making test data in Table 7.1, a noticeable 

difference was observed between Form A and Form B task completion times, Form A taking 

less time to complete than Form B for each group. For the DP group as a whole and the AD 

sub-group, times on both forms appeared to be more prolonged than those of the EC group, 

most strikingly so for Form B. For the DP and AD sub-group, times on Form A did not appear 

to change over time, whereas for the EC group Form A completion times seemed to decrease 

somewhat linearly over time. On Form B, DP group and AD sub-group times appear to 

fluctuate over time, however, the EC group times for Form B appeared to decrease linearly 

over the test sessions from baseline measurement through to 18 months.

To examine test form, test session and group effects, the data were subjected three- 

factor repeated measures mixed ANOVA, firstly to include the DP and EC groups and then this 

analysis was repeated with the AD sub-group and EC group. In the first three-factor repeated 

measures mixed ANOVA, the repeated measures factor of Test session was created with four 

levels (baseline, 6 months, 12 months and 18 months). Trail Making test form was created as 

a second repeated measures factor, with two levels (Form A and Form B). The between- 

groups factor was group (comprising DP and EC groups). The main effects of test session 

(F[3, 111] = 5.82,p<0.001), Trail Making test form (F[l, 37] = 180.53,/?<0.0001) and group 

(F[l, 37] = 48.28, p<0.0001) were found to be significant. Therefore, this indicated that 

overall, i) there were significant differences over time when Trail Making test form data was 

collapsed; ii) that there was a significant overall difference between Trail Making Form A and
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Form B, when test session and group data was collapsed, and; iii) The EC and DP groups 

performed significantly differently from each other when test form and test session data were 

collapsed. Significant interactions were observed between Trail Making test session and group 

(F[3, 111] = 3.14,p<0.028), and also between Trail Maiking test form and group (F[l, 37] = 

180.53, /KO.OOOl). These results show that the groups performed significantly differently from 

each other both over time and on test form (A and B).

In order to investigate the within-groups effects, two-factor within-groups repeated 

measures ANOVA were carried out for the DP and EC groups. The only significant result for 

the DP group was on the factor of Trail Making test form (F[l, 11] = 49.01, p<0.0001). Trend 

analysis, using polynomial contrasts, revealed a significant cubic trend within the Trail Making 

test session factor (F[l, 11] = 5.81, p<0.035), confirming that scores fluctuate across the test 

sessions from baseline through to 18 months.

The within-groups analysis was repeated for the EC group, again using a two-factor 

repeated measures ANOVA. The main effect of Trail Making test session was significant 

(F[2.22, 57.59] = 15.52, p<0.0001), which shows that there were differences within the test 

sessions across time with the test forms collapsed. The factor of Trail Making test form was 

also significant (F[l, 26] = 167.06, £><0.0001), i.e. overall there was a significant difference 

between the Trail Making test forms. The EC group interaction, between Trail Making test 

session and Trail Making Test was found to be bordering on significance (F[3,78] = 2.71, 

/K0.051), which demonstrates that the EC group performed differently over time on the two 

test forms i.e. the magnitude of change in task completion time from baseline to the 18 months 

was different in Form B compared with Form A. Trend analysis, using polynomial contrasts, 

revealed a significant linear component to the interaction (F[l, 26] = 6.81, £><0.015), as test 

completion times decreased over time. To examine this more closely, within-group Bonferroni 

pair-wise comparisons of the EC group Trail Making test sessions were conducted by test 

form. For Trail Making Form A, there a significant difference was found when comparing
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baseline with each subsequent test session (p<0.01). A significant difference was also found 

between the 6 month and 12 month test sessions (p<0.05), but not between 6 months and 18 

months or 12 months and 18 months (test time actually increased slightly at 18 months!). 

Therefore, this suggests that the rate of change for the decreasing Form A completion times, 

was most prominent over the first three test sessions leading and only marginal in the latter 

stages. For Trail Making Form B, there was a slightly different pattern of significance between 

test sessions for the decrease in test completion time across test sessions. Baseline was not 

found to be significantly different from the test at 6 months (p>0.2), but was significantly 

slower than testing at 12 months (p<0.05) and 18 months (p<0.01). There was no significant 

difference between other test session combinations. Thus, it is plausible to suggest that 

although test completion times clearly decrease, gradually becoming faster from baseline 

through subsequent test sessions, this decrease is significant in the early test sessions but only 

marginal between 12 months and 18 months.

Differences between the DP and EC groups on each Trail Making test from were next 

assessed at each tests session using one-way ANOVA (with Bonferroni adjustment, see Table

7.2 [A]). For Trail Making Form A and for Form B, the EC group was significantly faster than 

the DP group at each test session (i.e. from baseline through to 18 months).

To examine the AD sub-group, the three-factor repeated measures mixed ANOVA was 

repeated, the repeated measures factor of Trail Making test session was created with four levels 

(baseline, 6 months, 12 months and 18 months). Trail Making test form was created as a 

second repeated measures factor with two levels (Form A and Form B). The between-groups 

factor was group, this time comprising the AD sub-group with the EC group. For this analysis 

all main effects and interactions were significant. The output of the main effects and 

interactions for three-factor ANOVA to include the AD and EC groups, can be summarised as 

follows: Trail Making test session (F[2.3,76.6] = 4.93, /?<0.007); Interaction between Trail 

Making test sesion x group (F[3,99] = 4.66, p<0.004); Trail Making test form (F[l,33] =
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137.20, £><0.001); Interaction between Trail Making test form x group (F[l,33] = 25.55, 

/K0.0001); Interaction between Trail Making test session and Trail Making test form (F[3,99] 

= 3.38, j?<0.021); Three-way interaction (Figure 7.5) between Trail Making test session, Trail 

Making test form and group (F[3,99] = 3.77,p<0.013).

Figure 7.5 A Graphical Representation of the Three-Way Interaction Between Trail 
Making Test Session (baseline, 6 months, 12 months, 18 months), Trail 
Making Test (Form A and Form B) and Group (ADs and ECs)
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The synopsis for this output is as follows: i) there were significant overall differences 

between Trail Making test sessions, when group scores were collapsed; ii) the groups differed 

in their performance when the test sessions were collapsed, irrespective of test form; iii) there 

was an overall difference between Trail Making Form A and Form B when group times were 

collapsed; iv) the groups performed significantly differently on the form of test, with test 

session data collapsed; v) overall, i.e. with groups collapsed, the magnitude of change is 

different on the Trail Making test forms over the test sessions; vi) there is a higher-order 

interaction which is due to the interaction of Trail Making test form and Trail Making test 

session being significantly different for each group.

A two-factor within-groups repeated measures ANOVA was used to assess the AD sub­

group data. The only significant effect, was the main effect of Trail Making test form (F[ 1,7.0]
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= 25.06, p<0.002), which shows that there were significant differences overall, between test 

Form A and test Form B, Form B being significantly slower to complete than Form A 

(Bonferroni: /K0.01).

Table 7.2 (B), shows the summarised statistical output for a series of one-way ANOVA 

(with Bonferroni adjustment) that were used to examine the differences between AD sub-group 

and EC group data for each test form at each of the testing sessions. The EC group was found 

to be significantly faster than the AD sub-group on both the Trail Making Form A task and 

Trail Making Form B task at each test session, i.e. baseline through to 18 months.

In summary, all groups performed significanlty faster on completing Form A than From 

B, of the Trail Making test. Both the DP group as a whole and the AD sub-group, performed 

significantly differently from the EC group on each of the task forms and over time. The DP 

group and AD sub-group showed some fluctuation in task completion times over time, but no 

significant increase (deterioration) or decrease (improvement) between baseline and 18 months 

was observed for either Form A or Form B of the Trail Making test. EC group performance 

was found to improve significantly on each test form over time, i.e. test completion times 

decreased significantly btween baseline and 18 months.

7.3.1.8 National Adult Reading Test: Predicted Measure of Pre-morbid IQ

The opportunity was taken to evaluate the NART for it’s stability over time, as a 

predictor of pre-morbid IQ. To evaluate the test, two-factor repeated measure mixed ANOVA 

were used to analyse the predicted IQs from the DP and EC groups and in a separate analysis, 

the AD sub-group and EC group. For the first analysis, the repeated measures factor was 

NART session and the between-groups factor was group (DP and EC groups). The main effect 

of NART session was not found to be significant, which shows that there were no overall 

differences across time when group sessions were collapsed. However, the interaction between 

NART session and group was significant (F[3,120] = 5.60,/?<0.001), indicating that the groups
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performed differently from each other over time. The main effect of group was also significant 

(F[l,7.0] = 25.06, /?<0.002), which shows that there was an overall difference between the 

groups, when the scores from the NART session were collapsed over sessions.

Between-groups analyses at each test session were carried out using one-way ANOVA 

(with Bonferroni correction, Table 7.2[A]). The analysis revealed that there was no significant 

difference between the groups at baseline and also, at 6 months (the 6 month session did not 

reach significance due to Bonferroni adjustment). At the 12 months and 18 months stages, 

there was a significant difference detected between the two groups.

Within-groups analyses, using single-factor repeated measures ANOVA for each group 

on the factor NART session, showed that the difference in groups in the later stages of testing 

was caused by EC group scores increasing over time (Factor: NART test session (F[3, 78] = 

9.22, £><0.0001). Trend analysis, with polynomial contrasts also showed that the profile of EC 

group scores over time from baseline to 18 months, was due to a significant linear increase in 

the scores (F[l, 26] = 22.53, £><0.0001). However, the within-groups analysis for the DP 

group, did not find any significant effects. In summary, this means that DP group scores do 

not change significantly over time, whereas the EC group scores did change (improved). The 

two-factor repeated measure mixed ANOVA was repeated for the AD sub-group. Again, the 

repeated measures factor was NART session and the between-groups factor was group (with 

AD sub-group and EC groups). The main effect of NART session was found to be non­

significant, but the interaction between NART session and group was significant (F[3, 108] = 

7.70,/KO.OOOl) which highlights that there was a significant difference between the groups in 

their performance over time (Figure 7.6).

Between-groups analyses at each test session were carried out using one-way ANOVA 

(with Bonferroni correction, Table 7.2[B]). The results of this analysis showed that there was 

no significant difference between the groups when tested at baseline, 6 months and 12 months 

(12 months failed due to Bonferroni correction).
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Figure 7.6 A Graph Representing the Interaction Between National Adult Reading Test 
Session and Group (Alzheimer's Disease and Elderly Controls)
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However, there was a significant difference between the groups at 18 months, with the 

EC groups scoring more highly that the AD group. This corresponds with an analysis of years 

spent in education, which revealed no significant difference between the groups (mean number 

of years: EC =11.9; AD = 12.0; p> 0.9, NS).

A within-groups analysis of the AD sub-group, using a single-factor repeated measures 

ANOVA on the factor NART session, showed that the factor of NART test session was not 

significant and the polynomial contrasts for trend analysis showed that there was a linear trend 

that was only approaching significance (F[l, 10] = 4.05, /?>0.07 NS). A paired samples t-test 

between AD group baseline and 18 months NART test session scores, showed that the 

difference between these two test sessions was approaching significance (t[10] — 2.11, p>0.06 

NS), as scores declined over time.

To summarise, at baseline the EC group predicted IQ scores did not differ significantly 

from those of the DP group as a whole, or the AD sub-group, which supports the baseline 

measurement hypothesis of no difference between-groups. Over time, the EC group scores 

improved significantly by comparison to the DP group, which did not change over time.
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However, in contrast AD sub-group scores did show a subtle decline over time but this fall off 

from baseline to the 18 months test session just failed to reach significance. This finding does 

not support the hypothesis that AD scores would decline significantly over time, on this 

occasion. However, it is plausible to suggest that the reliability of the NART to predict pre- 

morbid IQ with dementia patients at different levels of severity - as is reflected in the 

longitudinal scores resulting from the present study - should be treated with caution.

7.3.2 Longitudinal Group Comparisons of Saccadic Error Rates

7.3.2.1 Comparing Inhibitory Error Rates Across Voluntary Saccade Tasks 
Over Time

Cursory analysis of inhibition errors committed during voluntary saccade tasks (see 

Table 7.4 below), appeared to show that error rates increased as a function of cognitive load for 

a given task, i.e. as in Studies I and III, least errors were committed in the No-Go task, next the 

antisaccade task and finally, the Go/No-Go task resulting in the highest proportion of inhibition 

errors. In the earlier studies of this thesis voluntary saccade task was used as a repeated 

measures factor in ANOVA to examine the three voluntary tasks. In the present analyses, this 

factor was examined to investigate whether there were any changes over time, both between 

and within groups. The data were subjected to three-factor repeated measures mixed ANOVA, 

firstly to look at the DP group along with ECs and then the AD sub-group compared with ECs. 

Therefore, test session formed the first repeated measures factor with four levels (baseline, 6 

months, 12 months and 18 months) and the second repeated measures factor was voluntary 

saccade task (inhibition error rate for each voluntary task), with group as the between-groups 

factor.
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Table 7.4 Descriptive Statistics for Longitudinal Saccadic Eye Movement Data
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Test
Baseline

Mean SD d
6 months

Mean SD d
12 months

Mean SD d
18 m onths

Mean SD d N

No-Go 22.00 16.87 0.9 21.00 26.44 0.4 17.11 19.42 0.6 27.00 29.08 1.3 10
Anti-saccade 32.75 20.69 1.1 28.87 13.39 1.0 33.04 17.90 1.1 33.87 30.70 1.0 10
Go/No-Go 49.60 32.40 0.5 49.27 27.04 1.1 48.26 31.68 1.2 47.13 26.16 1.1 10
Correct saccades 52.45 26.18 -1.4 59.31 18.23 -1.1 53.81 23.36 -1.5 55.15 35.59 -1.2 13
Corrected error 22.96 15.71 0.7 24.22 12.01 0.7 30.18 17.50 1.0 23.50 21.49 0.6 13

Uncorrected errors 11.85 17.25 0.9 7.61 12.03 1.1 9.02 27.46 0.5 18.02 32.79 0.9 13

Gap task 206.04 46.92 0.3 204.70 40.58 0.3 208.31 54.83 0.2 205.57 47.34 0.0 10

Overlap task 281.08 37.65 1.0 277.67 30.22 1.2 266.13 25.34 0.5 268.22 45.53 0.4 10
d = Cohen's d; effect size when patient group compared with Elderly Control group

Elderly Controls

Test
Baseline

Mean SD
6 months

Mean SD
12 months

Mean SD
18 months

Mean SD N

No-Go 10.00 11.77 12.22 18.05 8.88 11.39 4.94 10.10 27

Anti-saccade 15.61 13.32 15.66 12.53 15.96 14.39 15.84 10.30 27

Go/No-Go 34.81 28.62 29.97 20.45 28.82 22.98 34.96 25.44 27

Correct saccades 79.42 15.82 78.50 17.25 80.89 14.82 82.11 11.37 27

Corrected error 13.91 12.13 15.35 12.50 15.32 13.61 15.23 10.42 27

Uncorrected errors 1.70 5.81 0.31 1.12 0.63 1.96 0.62 1.90 27

Gap task 194.75 36.69 194.55 31.10 199.82 32.19 206.70 47.32 22

Overlap task 251.08 27.50 242.45 29.25 250.88 32.89 253.15 41.29 22

Alzheimer's d isease (Dementia Patients sub-group)

Test
Baseline

Mean SD d
6 months

Mean SD d
12 months

Mean SD d
18 months

Mean SD d N

No-Go 26.67 15.06 1.3 21.67 27.87 0.5 20.00 24.49 0.8 31.67 34.30 1.6 6

Anti-saccade 42.07 19.19 1.8 29.87 14.76 1.1 37.72 14.53 1.5 41.30 31.39 1.6 6

Go/No-Go 61.78 30.45 0.9 53.93 27.54 1.1 59.39 33.77 1.2 61.91 20.77 1.1 6

Correct saccades 41.49 21.58 -2.2 54.34 18.25 -1.4 46.26 20.36 -2.1 46.29 35.89 -1.8 9

Corrected error 26.22 15.31 1.0 22.81 12.05 0.6 32.94 17.20 1.2 25.36 21.47 0.7 9

Uncorrected errors 15.71 19.75 1.3 10.99 13.24 1.6 12.11 33.02 0.7 24.51 37.97 1.3 9

Gap task 189.36 34.18 -0.1 189.33 34.21 -0.2 194.39 50.27 -0.1 187.16 33.85 -0.4 7

Overlap task 281.39 38.82 1.0 272.91 33.15 1.0 259.59 23.22 0.3 253.11 44.79 0.0 7

d = Cohen's d; effect size when patient group compared with Elderly Control group;

Anti (%) = antisaccade gap task; Reflexive (msecs) = Reflexive saccade paradigm latency in milliseconds

Dementia Patients and Elderly Controls: For the DP vs. EC group analysis, the 

main effect of test session and the interaction of this factor with group did not reach 

significance. This indicates that there was no significant change over time in the proportion of 

inhibition errors when group data was collapsed, and also, that the magnitude of change in 

performance over time was no different for the DP and EC groups. However, the main effects 

of voluntary saccade task (F[2,70]=35.17, /?<0.0001) and group (F[l, 35] — 12.53, p<0.001)
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were found to be significant, which indicates that there was a significant difference overall 

between the saccadic tasks and also, that there was a significant overall difference in the 

performance of each group. The higher-order three-way interaction (test session x voluntary 

saccade task x group) was found to be non-significant.

Between-Group Effects: As the between-group factor was significant, one-way ANOVA 

(with Bonferroni correction) was used to examine DP and EC group inhibitory errors on each 

task (Table 7.5 [A]). For the No-Go task, no significant differences were found between the 

two groups at baseline, 6 months and 12 months, whereas by 18 months a significant 

difference was present. This was due to an increase in the proportion DP group inhibition 

errors (large effect, Table 7.4). For the antisaccade task, significantly more inhibition 

errors were produced by the DP group than the EC group, at each test session (with 

large effect sizes, Table 7.4).

Table 7.5 Longitudinal Statistical Analyses (ANOVA) Between-Groups for 
Saccadic Eye Movement Data

Dementia Patients vs. Elderly Controls

Test Baseline 6 months 12 months 18 months

No-Go F[1,36]= 5.97, p <  0.02 F[1,36]= 1.33, p> 0.2 F[1,36]= 2.56, p> 0.1 F[1,36]= 12.12, p <  0.001*

Anti-saccade F[1,36]= 8.86, p <  0.005* F[1,36]= 7.83, p <  0.008* F[1,36]= 9.02, p <  0.005* F[1,36]= 7.38, p <  0.01*

Go/No-Go F[1,36]= 1.82, p> 0.1 F[1,36]= 5.45, p< 0.025 F[1,36]= 4.24, p< 0.047 F[1,36]= 1.64, p> 0.2

Correct saccades F[1,39]= 16.47, p<  0.0001* F[1,39]= 10.47, p <  0.003* F[1,39]= 19.95, p <  0.0001* F[1,39]= 13.06, p <  0.001*

Corrected error F[1,39]= 4.026, p> 0.052 F[1,39]= 4.53, p <  0.04 F[1,39]= 8.67, p <  0.006* F[1,39]= 2.73, p> 0.1

Uncorrected errors F[1,39]= 7.72, p <  0.008* F[1,39]= 10.03, p <  0.003* F[1,39]= 2.56, p> 0.1 F[1,39]= 7.76, p <  0.008*

Gap task F[1,31]= 0.55, p> 0.4 F[1,31]= 0.60, p> 0.4 F[1,31]= .305, p> 0.5 F[1,31 ]= .004, p> 0.9

O verlap  task F[1,31]= 6.48, p<  0.016 F[1,31]= 9.77, p <  0.004* F[1,31]= 1.68, p> 0.2 F[1,31]= .861, p> 0.3

Alzheimer’s  D isease Patients vs. Elderly Controls

Test Baseline 6 months 12 months 18 months

No-Go F[1,32]= 8.93, p <  0.005* F[1,32]= 1.1, p> 0.3 F[1,36]= 2.95, p> 0.09 F[1,32]= 12.74, p <  0.001*

Anti-saccade F[1,32]= 16.5, p <  0.0001* F[1,32]= 5.94, p <  0.021 F[1,32]= 11.2, p <  0.002* F[1,32]= 12.83, p <  0.001*

G o/No-Go F[1,32]= 4.27, p< 0.047 F[1,32]= 5.95, p< 0.021 F[1,32]= 7.32, p< 0.011* F[1,32]= 5.82, p< 0.022

Correct saccades F[1,35]= 32.28, p <  0.0001* F[1,35]= 12.87, p <  0.001* F[1,35]= 30.48, p <  0.0001* F[1,35]= 21.55, p < 0.0001 *

Corrected error F[1,35]= 6.10, p <  0.019 F[1,35]= 2.45, p> 0.1 F[1,35]= 9.93, p <  0.003* F[1,35]= 3.62, p> 0.06

Uncorrected errors F[1,35]= 11.27, p<  0.002* F[1,35]= 18.23, p <  0.0001* F[1,35]= 3.43, p> 0.07 F[1,35]= 11.27, p < 0.002*

Gap task F[1,28]= 0.118, p> 0.7 F[1,28]= 0.14, p> 0.7 F[1,28]= 0.115, p> 0.7 F[1,28]= 1.02, p> 0.3

O verlap task F[1,28]= 5.28, p <  0.03 F[1,28]= 5.42, p <  0.028 F[1,28]= 0.42, p> 0.5 F[1,28)= 0.00, p> 0.9

‘Significant after Bonferroni adjustment alpha level .013; per longitudinal block
Anti = antisaccade gap task; Reflexive = Reflexive saccade paradigm
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The Go/No-Go task analysis resulted in no significant difference between the two 

groups at baseline and 18 months. Interestingly, at the 6 month and 12 months test stages, 

the EC group had a reduction in the proportion of inhibition errors committed, but this did 

not survive the Bonferroni correction (although the effect size was large, d  = 1.1 and 1.2 

respectively).

Within-Groups Andlyses for Dementia Patients: To investigate voluntary 

saccade task simple effects, within-groups analyses were conducted using within-groups 

repeated measures ANOVA for the DP group and the EC group. For the DP group 

analysis, the main effect of voluntary saccade task was significant (F[2,18]=13.67, 

/K0.0001), showing that the DP group performed differently on the range of voluntary 

saccade tasks, with test session collapsed (the main effect of test session was not 

examined). Trend analysis revealed that there was a significant linear trend across the 

tasks (F[l,9]=49.18, pO.OOOl), with the No-Go task resulting in least inhibition errors, 

followed by the antisaccade task and the Go/No-Go with the highest rate. Overall (i.e. sessions 

collapsed), Bonferroni pair-wise comparisons revealed that the antisaccade task inhibition error 

rate did not differ significantly from either the No-Go or the Go/No-Go tasks (p>§2 and 0.06 

respectively), although the difference between the No-Go and antisaccade tasks was 

approaching significance. However, the No-Go task inhibition error rate was found to be 

significantly lower than that of the Go/No-Go task (p<0.01). These findings show, that there 

is a distinct change in the proportion of errors that result in a task with low cognitive demand, 

through to tasks with high demand on working memory resources. The interaction between 

voluntary saccade test session and voluntary saccade task, was not found to be significant. 

This result indicates that although there appears to be some change over time for inhibition 

errors - with a fall in error rates at 6 months from baseline and then increasing up to 18 months 

(for the No-Go and antisaccade tasks) - this change is only qualitative and subtle for the DP 

group.
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Within-Groups Analyses for Elderly Controls: The within-groups analysis for EC 

group inhibition errors on the voluntary saccade tasks showed a similar pattern to that of the 

DP group, with the main effect of voluntary saccade task significant (F[2,52]=29.205, 

/KO.OOOl). This demonstrates that overall there was a significantly different performance 

across tasks by the EC group. Trend analyses showed that there was a significant linear trend in 

the proportion of inhibition errors committed by the EC group across tasks (F[l,26]=59.436, 

/K0.0001), the trend following that of the DP group with least errors in the No-Go task through 

antisaccade and Go/No-Go tasks. Bonferroni pair-wise comparisons of the collapsed session 

data showed that overall the EC group produced significantly less inhibitory errors on the No- 

Go task when compared with both the antisaccade and Go/No-Go tasks (p<0.05 and p<0.01). 

Inhibition errors in the antisaccade task were also found to be significantly lower than in the 

Go/No-Go task (p<0.01).

Alzheimer's Disease Patients and Elderly Controls: A three-factor repeated

measures mixed ANOVA was repeated, this time to include the AD sub-group and EC group 

as the between-groups factor. As in the previous analysis, the first repeated measures factor 

was test session (four levels: baseline, 6 months, 12 months and 18 months) and the second, 

voluntary saccade task (No-go, antisaccade and Go/No-Go). The results for the main effects 

were very similar to those found in the previous analysis with the DP group. The main effect 

of test session and the interaction of this factor with group were not significant, which indicates 

that there was no significant change over time in the proportion of inhibition errors when AD 

sub-group and EC group data were collapsed. Furthermore, the magnitude of change in 

performance over time was no different for the AD and EC groups. However, the main effects 

of voluntary saccade task (F[2,62]= 31.85, £><0.0001) and group (F[l, 31] = 21.615,/?<0.0001), 

were found to be significant, although the interaction between these two factors was not 

significant. Nonetheless, these findings show that there were overall significant differences
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between the saccadic tasks and in the performance of each group. The higher-order three-way 

interaction (test session x voluntary saccade task x group) did not reach significance.

Between-Group Effects: As the main effect of group was significant, differences 

between the AD sub-group and EC group inhibitory error rates were investigated using one­

way ANOVA (with Bonferroni correction) to examine on each task (Table 7.5 [B]). The No- 

Go task analyses revealed a significant difference between-groups at baseline, as AD 

patients produced more inhibition errors than controls (large effect for Cohen’s d, Table 

7.4). However, by 6 months the difference between the group error rates was non- 

significantly different, as AD inhibition errors had reduced by 5.0% (and there was a slight 

increase of 2.2% for the EC group). By 12 months, the AD sub-group error rate had 

reduced further, but by a negligible 1.0% and the EC group error rate continued to fall by a 

further 3.3%, but the test session group means were non-significantly different. However, 

by the 18 month stage, the difference between groups was significant, which was due to a 

large increase in the proportion AD sub-group inhibition errors (11.7%), whereas the EC 

group mean was reduced by a further 3.9% (large effect size, <7=1.6). In the antisaccade 

task, significantly more inhibition errors were produced by the AD sub-group than the EC 

group, at the baseline, 12 months and 18 months test sessions (with large effect sizes). 

However, due to Bonferroni correction (and a large reduction of 12.2% in the AD sub­

group error rate), the 6 month test session data was non-significantly different between the 

groups, with the EC group error rate remaining static across the test sessions. In the 

Go/No-Go task AD patients were found to have a higher error rate that the EC group at 

each test session. However, as can be seen in Table 7.5 [B], this difference was only 

significant at the 12 month stage, with the Bonferroni correction resulting in the failure of 

the tests to reach significance at baseline, 6 months and 18 months, although effect sizes 

using Cohen’s d  were all large (Table 7.4).
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W ith in -G ro u p s  A n a ly s e s  f o r  A lz h e im e r 's  D is e a s e  P a tie n ts : A within-groups 

analysis was conducted on the AD sub-group data, using a repeated measures ANOVA to 

examine the voluntary saccade task. The main effect of voluntary saccade task was 

significant (F[2,18]=13.67,/?<0.0001), which demonstrates that the AD sub-group generated 

different inhibition error proportions on the range of voluntary saccade tasks, with test 

session collapsed. Trend analysis revealed that there was a significant linear trend across 

the tasks (F[l,5]=420.59, p<0.0001). As was found for the other groups, the AD group trend 

emerged because least inhibitory errors were produced in the No-Go task, followed by the 

antisaccade task and the highest error rate being in the Go/No-Go. Overall (i.e. sessions 

collapsed), Bonferroni pair-wise comparisons revealed that the antisaccade task inhibition error 

rate did not differ significantly from either the No-Go or the Go/No tasks (p>0.5 and 0.1 

respectively). However, the No-Go task inhibition error rate was found to be significantly 

lower than that of the Go/No-Go task (p<0.01). As in the DP group analysis, these findings 

show that there is a clear change in the proportion of inhibition errors as a function of the 

cognitive demand for a given voluntary task.

To summarise the findings from the results of the present analyses, there was a non­

significant difference in the magnitude of the factor of voluntary saccade task and this finding 

did not change as a function of time for either group. This finding does not support the 

hypothesis that there would be a significant linear increase in magnitude for voluntary saccade 

task for the AD group over time. However, it was found that there was a significant overall 

difference in error rate (irrespective of tests session or group) between each of the voluntary 

saccade tasks. Inhibitory error rate was found to increase with a significant linear trend, as a 

function of voluntary saccade task type. The No-Go task was found to elicit the lowest 

proportion of inhibitory errors, with the antisaccade task resulting in moderate error rates and 

the Go/No-Go task the highest number of errors. This finding supports the notion that 

inhibitory error rate increases with the cognitive load of a voluntary saccade task. It is
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important to note, that both the dementia patient group as a whole and the AD sub-group, were 

found to produce significantly more errors overall (task and session errors collapsed) when 

compared with elderly controls.

At task level, significant between-group differences were found, which varied by 

session. AD patients were found to have higher error rates than controls on the No-Go task at 

baseline, which was then reduced at the 6 month and 12 month test sessions, until rising to 

significance again at 18 months (a very similar pattern was present for the DP group). In the 

antisaccade task, inhibition errors were significantly higher for the AD patients than controls 

(and in the dementia group analysis at all test sessions) at baseline, 12 months and 18 months, 

although the 6 months test just failed to reach significance due to the Bonferroni adjustment. 

For the Go/No-Go task, only the test session at 12 months was found to result in a significantly 

higher inhibition error rate for the AD patients than elderly controls, further to the stringency 

of the Bonferroni correction; the baseline, 6 months and 18 months error rates failing to reach 

the conservative alpha level. Thus, had the precaution for family-wise type error not been 

taken by using Bonferroni, the AD group would have been found to generate significantly 

higher error rates than elderly control at all test sessions (the DP analysis resulted in no 

significant difference at each session for the Go/No-Go task.

7.3.2.2 Longitudinal Analysis of Corrected and Uncorrected Errors: 
Self-Monitoring Performance on the Antisaccade Gap Task Over Time

Study I found that the profile of the factor correctness o f performance was able to

discrimnate between the AD patient group and both EC and DOT groups. Therefore, for

reasons of brevity, this section will conduct analyses on the AD sub-group and EC groups

only. To analyse the difference between groups over time on the factor for correctness of

performance, a three-factor repeated measures mixed ANOVA was carried out. The first

repeated measures factor was test session, with four levels (baseline, 6 months, 12 months

and 18 months) and the second repeated measures factor was correcteness o f performance
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with three levels (correct saccade, corrected errors and uncorrected errors). The between- 

groups factor was group with two levels (ADs and ECs).

The main effect of correctness of performance was found to be significant 

(F[2,68]:=103.77, p<0.0001), as was the interaction of this factor with group (F[2,68]=22.372, 

/KO.OOOl). These findings signify that with data for test sessions and groups collapsed, there 

was a significance difference within the factor levels and also, that there was a reliable 

difference between the groups in the magnitude for correctness of performance with test 

sessions collapsed. The main effect of test session was also found to be significant 

(F[3,102]=9.067, £><0.0001), which shows that there were differences over the test sessions 

with group and correctness of performance collapsed. The interaction between test session and 

group was also found to be significant (F[3,102]=3.159, p<0.028), demonstrating that the 

groups performed differently over time in their correctness of performance. The main effect of 

group was also significant (F[l,34]=15.53,£><0.0001), which revealed that there was an overall 

difference in the performance of the two groups, when all data were collapsed across variables 

and test sessions. However, the three-way interaction (test session x correctness of 

performance x group) did not reach significance (F[6,204]=1.873, £>>0.08 NS; Figure 7.7). 

Nonetheless, it is clear by looking at the three-way interaction in Figure 7.7, that whilst the EC 

group did not change in correctness of performance over time, there was a marginal change for 

the AD group and also, a subtle improvement in the magnitude of correctness of performance 

on testing at 6 months; indicated by the reduction in errors which was balanced by an increase 

in correct saccades.

311



7 Longitudinal Analysis

Figure 7.7 A Graph Displaying the Longitudinal Perspective for Alzheimer's Disease 
Patients and Elderly Controls for the Factor of Correctness of Performance 
on the Antisaccade Task
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Between-Group Effects: A series of one-way ANOVA (with Bonferroni correction) 

were conducted to examine the differences between-groups on the variables comprising the 

factor for correctness of performance over time (Table 7.5[B]). The proportion of correct 

saccades was found to be significantly lower for the AD patients at each test session, which 

was further endorsed by the large effect sizes shown in Table 7.4. The corrected error rate 

almost reached significance at baseline, with the AD group producing a higher proportion of 

corrected errors than the EC group; But the Bonferroni correction resulted in it lying just 

outside significance. The only significant difference for the corrected error rates was at 12 

months, again due to AD patients producing a higher corrected error rate than the EC group. 

For the uncorrected error rates, a significant difference was found at baseline, 6 months and 18 

months as a result of higher proportions of uncorrected errors being committed by the AD 

group at each test session (Figure 7.8). The test session at 12 months was only approaching 

significance.
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Figure 7.8 A Graph to Display Longitudinal Antisaccade Uncorrected Error Rates 
for Alzheimer's Disease Patients and Elderly Controls
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Within-Groups Analyses for Alzheimer's Disease Patients: To analyse the 

changes across time within groups on the factor correctness of performance, a two-factor 

within-groups repeated measures ANOVA (i.e. the factors: test session and correctness of 

performance) was conducted on the AD data. The main effects of test session and 

correctness of performance were both found to be significant (F[3,24]=4.19, p<0.016 and 

F[2,16]=3.74, /?<0.046, respectively). These results show that there were significant 

differences over time with the levels of correctness of performance collapsed. Bonferroni 

pair-wise comparisons revealed that the only significant difference was between baseline 

and 18 months (p<0.05). Additionally, when test sessions were collapsed, there was a 

reliable difference within the levels of correctness of performance, although Bonferroni 

comparisons did not reveal any significant differences between the levels of correctness of 

performance collapsed over test sessions. The interaction between test session and 

correctness of performance did not reach significance, which showed that there was no 

significant change in the magnitude (or profile) of correctness of performance for the AD
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patients over time. This was further confirmed by the lack of any significant trends in the 

data using polynomial contrasts.

Within-Groups Andlyses for Elderly Controls: The two-factor within-groups 

repeated measures ANOVA was repeated with the EC group data. The main effects of test 

session (F[3,78]=2.99, /?<0.036) and correctness of performance (F[1.07,27.75]=483.904, 

/K0.016; Greenhouse-Geisser correction) were both found to be significant, whereas the 

interaction between the two factors was non-significant. This indicates that EC group 

correctness of performance did not change in magnitude over time. Trend analysis revealed 

that there was a significant linear trend in profile for correctness of performance 

(F[1,26]=T295.3, /?<0.0001), as was found in Study I. Furthermore, Bonferroni pair-wise 

comparisons showed that overall there was a significant difference between every combination 

of the variables comprising correctness of performance (all /?<0.01).

In summary, it was found that the factor correctness of performance was able to 

distinguish between AD patients and the EC group as in Study I, with controls possessing a 

linear profile to their data and AD patients presenting with no significant trends. Surprisingly, 

there was only a subtle change over time in the factor for correctness of performance for the 

AD group and no change for the EC group (Figure 7.9), which suggests that this factor is 

insufficiently sensitive for the detection of quantitative short-term change, due to the 

progression of AD or the effects of normal healthy ageing over time. On this occasion, these 

findings do not support the hypothesis that the magnitude of correctness of performance would 

change over time for the AD group, compared with that of elderly controls. However, the 

trend in the EC group and lack of trend in the AD group was repeated over the test sessions. 

AD patients were found consistently, to commission significantly less correct saccades than the 

EC group at each test session. Furthermore, uncorrected error rates were also significantly 

higher in proportion than EC uncorrected error rates over test sessions and there was a 

tendency for corrected errors to be generally higher for AD patient group, although at 18
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months this was less pronounced, as a function of increasing correct saccades and uncorrected 

errors.

7.3.3 Longitudinal Analysis of the Reflexive Saccade Fixation Offset Effect

The magnitude of reflexive saccade FOE for latency was investigated in Studies II and 

III of this thesis, and revealed that AD patients produced a greater magnitude FOE, than that of 

elderly and young healthy control participants and also, Parkinson’s disease patients. The 

present study will extend baseline analyses, by investigating whether or not the magnitude of 

reflexive FOE changes over time in AD patients, compared with EC performance, the focus 

being on the AD and EC group (i.e. excluding the overall DP group analysis).

On cursory examination, the longitudinal data presented in Table 7.4 for the AD and 

EC groups (reduced from baseline) appear to be very similar to those observed in Studies II 

and III of the present thesis. There seems to be a negligible difference between-groups for 

saccade latency in the reflexive saccade gap task and a more prominent difference between- 

groups in the reflexive saccade overlap task (AD patients with prolonged latency). Therefore, 

both groups present with a noticeable FOE. The longitudinal data were manipulated using a 

three-factor repeated measures mixed ANOVA. The first repeated measures factor was test 

session, comprising four levels (baseline, 6 months, 12 months and 18 months) and the second 

repeated measures factor was reflexive fixation offset, with two levels (gap and overlap). As 

with earlier analyses, the between-groups factor was group (two levels: AD and EC).

The main effect of reflexive fixation offset was found to be significant 

(F[l,27]=99.337, /?<0.0001), demonstrating an overall significant difference between the gap 

and overlap task group (collapsed) data. The main effects of reflexive fixation offset test 

session and group, failed to reach significance, as did the interaction between these two factors 

showing respectively, that with group data collapsed there was only marginal change over time 

and that with task and test session data collapsed, there was only a negligible difference 

between the groups. Importantly, the interaction between the factor of reflexive fixation offset
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and group was significant (F[l,27]= 4.238, /?<0.049). This finding suggests that the groups 

had a significantly different magnitude of FOE somewhere within the longitudinal data (Figure 

7.9). The three-way interaction between reflexive saccade test session, reflexive fixation offset 

and group did not reach significance, showing that there was no significant change in the 

magnitude of FOE over time between-groups.

Figure 7.9 A Graphical Representation of Reflexive Saccade Fixation Offset Effect 
Over Time for the Alzheimer's Disease and Elderly Control Groups
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In order to investigate the significant interaction between reflexive fixation offset and 

group more closely, a series of two-factor repeated measures mixed ANOVA were carried out 

to explore interactions over the time course of the FOE in relation to the progression of AD 

(Figure 7.10). The interaction between reflexive fixation offset and group was found to be 

significant at baseline (F[l,27]= 6.0, p<0.021) and 6 months (F[l,27]= 4.364, p<0.046), but 

non-significant at 12 months and 18 months. Interestingly, this finding demonstrates that there 

was a reduction in the difference between groups over time for the magnitude of FOE, which 

was apparently due to a reduction in the magnitude of FOE for the AD group.

Between-Group Effects: One-way ANOVA (displayed in Table 7.5 [B]) were used to 

assess between-group differences in saccade latency reflexive saccade tasks at each 

longitudinal test session and elucidate more clearly, the components of the above interactions.

316



7 Longitudinal Analysis

For the reflexive saccade gap condition, no significant difference was found between-groups at 

baseline or any subsequent test session. However, for the reflexive saccade overlap task, large 

effect sizes (Table 7.3) were observed between the means at baseline (d = 1.0) and 6 months (d 

= 1.0). A small effect size was present at 12 months (d = 0.3), but no effect was found at 18 

months.

Figure 7.10 Reflexive Saccade Fixation Offset Effect: Two-Way Interactions at each 
Test Session for the Alzheimer's Disease and Elderly Control Groups
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As only a small number of theoretically based comparisons were made to test the 

hypothesis of prolonged saccade latency for the AD group, in comparison with the EC group 

on the overlap condition, it is reasonable to exclude Bonferroni adjustment (Keppel, 1991) and 

therefore, to accept the significant outcome from the ANOVA in Table 7.5 [B]. Thus, 

reflexive saccade overlap task latency for the AD group was found to be significantly 

prolonged compared with that of the EC group, at baseline and 6 months, but not for the test 

sessions at 12 months and 18 months.

Within-Groups Analyses for Alzheimer's Disease Patients: A two-factor

within-groups repeated measures ANOVA was applied to the AD group data, to assess the 

factors of reflexive fixation offset test session and reflexive fixation offset. This analysis 

revealed a significant main effect for reflexive fixation offset (F[l,6]= 29.96, /?<0.002), which 

shows that overall, there was a significant difference between gap and overlap tasks. A pair­

wise comparison conformed that reflexive saccade gap task latency was significantly lower 

than that of reflexive saccade overlap latency (p<0.01). However, no other effects were 

significant, which suggests that the magnitude of FOE within the AD group did not change 

significantly over time. Paired-samples t-tests carried out between gap and overlap conditions 

at each test session, confirmed that a significant FOE was present at each stage of testing: 

baseline, t[6]= -5.29,p< 0.001; 6 months, t[6]= -3.853,p< 0.008; 12 months, t[6]= -3.028,p<

0.023; 18 months, t[6]= -4.399, p< 0.005.

Within-Groups Analyses for Elderly Controls: The above within-groups analyses

were carried out on the EC group, which resulted in a very similar set of results. In the

two-factor within-groups repeated measures ANOVA, the main effect for reflexive fixation

offset was found to be significant (F[l,21]= 77.925, /?<0.0001), demonstrating an overall

significant difference between gap and overlap tasks. A pair-wise comparison showed that

reflexive saccade gap task latency was significantly lower that of reflexive saccade overlap

latency O<0.01). No other effects were significant which highlights that the EC group FOE
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magnitude did not change significantly over time. Paired-samples t-tests carried out between 

gap and overlap conditions at each test session, verified a significant FOE at each test session: 

baseline, t[21]= -8.830, p<0.0001; 6 months, t[21]= -6.925, /K0.0001; 12 months, t[21]= - 

7.059,p<0.0001; 18 months, t[21]= -4.803,p<0.005.

In summaiy, the results from the present section show that AD patients and EC 

participants both generate a significant FOE at each test session (within-groups). Longitudinal 

analyses revealed that whilst the AD group had a FOE that was of significantly greater 

magnitude than the EC group at baseline and 6 months, this was reduced at 12 months and 18 

months, to a magnitude that was non-significantly different from that of the EC group. This 

finding does not support the hypothesis that the magnitude of FOE for the AD group would 

increase over time, by comparison with that of the EC group. The alternative hypothesis, that 

the AD group magnitude of reflexive saccade FOE would not increase, but that there would be 

a linear increase in saccade latency for both reflexive saccade tasks, i.e. gap and overlap tasks, 

also was not supported. This was evidenced by no change in reflexive gap task latency and 

interestingly, a reduction in reflexive overlap task latency over test sessions resulting in the 

reduced FOE magnitude for the AD group over time. However, the change over test sessions 

in overlap task latency within the AD group was not found to be significant.

7.4 Discussion

The present study was used to systematically evaluate the performance of AD patients 

on oculomotor and neuropsychological tasks longitudinally, to elucidate which variables are 

most sensitive to the progression of AD over time. This was achieved by recording data over 

repeated measures at six monthly inter-test session intervals, for patients who were able to 

attend test sessions consistently from baseline, through to 18 months (i.e. four data sets).
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7.4.1 Key findings

The present study revealed a number of key findings, which extend the earlier studies in 

this thesis, to project a longitudinal perspective:-

1. The clinical rating scales - SMMSE and EADAScog - were able to 

distinguish between performance of AD patients and EC participants 

over time, demonstrating that they are sensitive to the progression of 

AD.

2. Neuropsychological assessments that place relatively high demands on 

working memory resources, i.e. Digit Span Reverse, Trail Making 

Form B and Spatial Span, were found to discriminate between AD and 

EC groups.

3. Verbal fluency scores for AD patients were significantly lower than 

those of EC participants. However, the verbal fluency test did not 

detect any change in AD over time, indicating that some aspects of 

frontal lobe function remain preserved in AD.

4. AD group predicted IQ scores did not differ significantly from the EC 

group at baseline. However, a significant change was observed 

between the groups in performance on the NART over time. The 

NART should be treated with caution as a measure of pre-morbid IQ.

5. Psychomotor ability for AD patients, as indicated in performance on 

the Gibson Spiral Maze was well preserved.

6. Inhibitory error rate was found to increase linearly, as a function of the 

cognitive load of voluntary saccade task. The factor of voluntary 

saccade task was found not to change significantly as a function of
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time, for either the AD or EC group. However, inhibition error rate 

overall (magnitude), was found to be significantly higher for the AD 

group compared with that of the EC group.

7. The factor correctness of performance was found to distinguish 

between-groups overall and the characteristic trend profile of EC 

performance as noted in Study I, was clearly evident at each test 

session. However, only marginal change was observed longitudinally 

for the AD group, as a function of an increased uncorrected error rate.

8. A significant reflexive saccade FOE was found for both the AD and 

EC group at each stage of longitudinal assessment. The magnitude of 

FOE for the AD group was found to be significantly greater that that 

of the EC group at baseline and 6 months, but no difference was found 

between the two groups at 12 months and 18 months. Thus, there was 

a reduction in FOE for the AD group over time.

9. Qualitative observation at 6 months of AD group voluntary saccade

task inhibitory error rates, indicated a reduction, which may have been 

due to the subtle effects of medication with acetylcholinesterase 

inhibitors.

7.4.2 Longitudinal Assessm ent of Clinical Rating Scales

The MMSE and ADAScog clinical rating scales have, in recent years become the

mainstay in the United Kingdom (and much of the Western world) for assessment of global

function in dementia, alongside clinical appraisal. The present study monitored dementia

patient performance longitudinally and compared this with control participants to evaluate the

sensitivity of the tests to detect the progression of AD over time. The SMMSE and
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EADAScog were both able to distinguish between performance of AD patients and EC 

participants longitudinally, but only the SMMSE demonstrated reliable quantitative sensitivity 

to the progression of AD.

For the SMMSE, the profile of AD test session data over the period of 18 months, 

tended to fluctuate somewhat. It is plausible to suggest that this fluctuation may have been 

due to the subtle benefit derived by some patients from medication with AChEIs, which were 

frilly prescribed (apart from one patient) by the 6 months stage of the longitudinal project. As 

can be seen in Figure 7.1, there was an elevation in AD scores at 6 months from baseline, but 

by the 12 months test session this had decreased back towards baseline level. However, by 18 

months the scores diminished rather rapidly from measurement at 12 months, perhaps as drug 

therapy became ineffective.

EADAScog scores were more static for the AD group from baseline to 6 months, but 

subtle increase was apparent by the 18-month stage of testing. However, the EC group scores 

demonstrated a significant to improvement or practice effect. Both tests examine orientation, 

attention and short-term memory, as part of their repertoire. It may be the case, that as time 

went on through the tests sessions, the EC group began to anticipate the nature of the tasks and 

prior to attending subsequent test sessions prepare for example, perhaps by making a mental 

note of the date. It is plausible to suggest that the EC participants were able to adapt to test 

conditions more easily that AD patients, perhaps understanding how tasks would be 

administered. Many EC participants reported that they looked forward to their visit and how 

much they enjoyed taking part in the study. Conversely, by and large AD patients had no 

recollection of ever having attended previous test sessions, did not remember the researcher 

and had no idea why they should even be at the hospital.

The present findings correspond with results from previous research, which also found 

that the MMSE was sensitive to cognitive decline in dementia over time (Folstein et al., 1975; 

Teng et al., 1987). Previous studies have also noted that the MMSE is most sensitive in

322



7 Longitudinal Analysis

distinguishing moderate to severe patients from healthy controls (Folstein et al., 1975; Knight, 

1992), however, the present thesis has shown that the test can clearly discriminate between 

mild to moderate AD patients and healthy elderly controls. The EADAScog findings for the 

present study are in contrast to a previous study, in which the authors of the ADAS cog 

recorded a significant 6 point increase over a 12 month period for AD patients and no 

significant change in the performance of control participants (Rosen et al., 1984). The results 

from the present study may be a reflection of the relatively small AD group sample size, 

caused by attrition of AD patient numbers over time.

7.4.3 Longitudinal Neuropsychological Assessm ents

Digit Span: The present study showed that patients with AD performed significantly 

more poorly than EC participants on the Digit Span Reverse task at baseline and at the 18 

months test session, whereas on the Digit Span Forward test, no significant difference was 

found between the groups at any of the test sessions. In addition to this, AD group Digit Span 

Reverse task performance was shown to deteriorate over time in relation to the EC group, as 

highlighted by the three-way interaction between Digit Span test, Digit Span test session and 

group.

The Digit Span test is fundamentally an assessment of executive function and measures 

short-term auditory memory. The Forward and Reverse forms of the test both require working 

memory and are largely believed to involve the frontal and temporal lobes (Gerton et al., 2004) 

see Section 2.5.7. The PET study by Gerton and colleagues outlined in Section 2.5.7, found 

that the Forward and Reverse forms of the Digit Span test, activate overlapping neuroanatomy 

that is responsible for working memory. Prominently, the right DLPFC, bilateral IPL and ACC 

were metabolised during both tasks, with the level of activation increasing linearly as task 

difficulty escalated in the Digit Span Forwards task. However, in the Digit Span Reverse task 

supplementary areas were recruited in particular bilateral activation of the DLPFC, the left IPL
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and Broca’s area. The Digit Span Reverse test necessitates coherent mental-tracking with 

increased cognitive load, due to simultaneously holding the forward string of digits in memory 

and generating the reversal procedure. This is in contrast to the comparatively straightforward 

repetition of digits, for the Digit Span Forward task. Vitally important to the present study, 

performance on the test also involves attention and concentration (Kaufman et al., 1991), 

which are, it is plausible to suggest related to inhibitory control. The finding that AD group 

performance on the Digit Span Forward test did not differ significantly from that of the EC 

group, confirms that low loading on working memory resources (i.e. short-term auditory 

memory) for the AD group was relatively well preserved and remained so over time. 

Conversely, the Digit Span Reverse test results indicate that higher loading on working 

memory resources induces poor performance in AD patients and it is plausible to suggest, that 

working memory performance is perhaps compromised in AD by a disturbance of the DLPFC.

Spatial Span: The results from the Spatial Span tests showed that AD patients found 

both sub-tests difficult, with no significant difference in performance between the sub-tests at 

any test session and compared with healthy elderly control participants (i.e. ADs produced 

lower scores). However, neither group deteriorated significantly over time.

The findings for the between-groups comparisons (with Bonferroni adjustment, Table

7.2 [B]) were somewhat puzzling. At baseline, AD group performance on the Spatial Span 

Reverse test was found to be significantly poorer than that of the EC group, but at 6 months 

and 12 months, there was no significant difference between the groups. The test at 6 months 

failed to reach significance as a result of the Bonferroni correction. However, by the test 

session at 18 months, AD patients generated scores that were again significantly lower than 

those of the EC group. This result is inline with other findings in the present study (reported 

above), which noted an improvement in test performance at around the 6 months test session, 

with deterioration on subsequent stages. Comparison of AD and EC longitudinal Spatial Span 

Forward scores revealed results that were in contrast to Spatial Span Reverse findings. AD
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Spatial Span Forward scores were lower than those of the EC group, which approached 

significance at baseline, however, it is perplexing that scores at 6 months and 12 months were 

significantly poorer than those of the EC group, but then improved somewhat at 18 months. 

AD performance on the Spatial Span Reverse test should be expected to be poorer than 

performance on the Forward sub-test and poorer than EC group performance. This is a 

plausible suggestion, due to the higher demand that the Spatial Span Reverse test places on 

working memory resources and the fact that AD working memory is somewhat compromised, 

particularly when patients are approaching a moderate degree of dementia severity.

The prominent observation from these findings is that AD patients under perform 

compared with ECs, on both sub-tests of the Spatial Span test. These findings reflect the 

dependency on working memory for successful completion of the Spatial Span test and the 

dysfunction that AD patients present with, both in terms of working memory and spatial 

attention. In fact, when a supplementary analysis was conducted on Spatial Span Total scores 

(i.e. combining Forwards and Backwards test scores), one-way ANOVA revealed that AD 

patients performed significantly more poorly than ECs at each test stage (Table 7.6).

Table 7.6 Longitudinal Statistical Analyses (ANOVA) Between-Groups for 
Spatial Span Total Scores

Spatial S aan Total
Baseline 6 months 12 months 18 months

FM.361= 9.41 p <  0.004 Ff1,36l= 8.47, p <  0.006 Ff1.361= 7.87, p <  0.008 Ff 1,36]= 11.33, p <  0.002

As outlined in Chapter 2 (Section 2.5.11), previous research has shown that the Spatial 

Span test is most sensitive in discerning patients with frontal lobe lesions, from those with 

temporal lobectomy (right or left) or controls (Canavan et al., 1989). Moreover, the test has 

also been found to distinguish between AD patients and controls (Corkin, 1982; Sullivan et al., 

1986), results which are consistent with those of the present study. Further to the basic 

capacity for encoding of visual stimuli, the Spatial Span task places demand on a number of
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other cognitive components during completion. The task requires mental tracking, entailing 

short-term visual memory, which incorporates sequential, spatial and kinaesthetic coding. 

Additionally of significance, the task necessitates the maintenance of information over time 

and response selection preceding overt execution of response. It is feasible to argue, that these 

cognitive components generally comprise working memory.

The neuroanatomical substrate of working memory is believed to be located in the 

prefrontal cortex, namely the DLPFC (Goldman-Rakic, 1999; Sawaguchi & Goldman-Rakic, 

1994), hence patients with frontal lobe lesions perform poorly on the Spatial Span test due to 

the high demand placed on working memory resources, which are functionally compromised 

due to lesioning in these patients. Correspondingly, therefore, it is highly likely that AD 

patients perform poorly on the task due to a working memory deficit. The spatial working 

memory element of the Spatial Span test appears to play a major role in AD patient 

performance, as simple tasks that requiring motor preparation and/or low cognitive load e.g. 

Gibson Spiral Maze or Digit Span Forwards, pose little problem for the AD patient with mild 

to moderate dementia severity.

Gibson Spiral Maze: The Gibson Spiral Maze test is chiefly a test of psychomotor 

ability and the present study found that the test was not sensitive to the progression of AD over 

time and the magnitude of change did not differ from that of the EC group. Importantly, these 

findings highlight that dementia patients with AD are able to carry out simple visual tracking 

tasks with motor components (but of low cognitive load), at a speed that matches control 

participants in performance. This was also found to be the case longitudinally, as it was found 

that AD test performance at the final test session (18 months)- where AD patient cognition had 

deteriorated by a number of points (see Section 7.4.2) - was only approaching significance 

when compared with the EC group.

The analysis of task completion times in the Gibson Spiral Maze was found only to 

represent part of what was actually happening during AD testing. When credit scores that
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include task error rates were analysed, AD patients were shown to perform more poorly than 

controls at each stage of testing, appart from that at 6 months (which may again be explained 

by the subtle effects of medication with AChEIs). These results are concomitant with frontal 

lobe dysfunction and it appears that AD patients seem unable to inhibit erroneous action whilst 

concurrently maintaining a rapid pace in order to achieve a swift task completion time, in 

accordance with the rules of the task. Arguably, this behaviour is perhaps analogous to errors 

of inhibition committed by AD patients during voluntary saccade tasks, reported in earlier 

studies of the present thesis. In view of the outcomes from the credit score analysis the reults 

taken together, show that AD psychomotor ability is in fact rather poor by comparison with 

that of controls.

An additional finding of the present study was that the Gibson Spiral Maze was 

insufficiently sensitive to detect the progression of disease over time, neither in the analysis for 

speed of task completion or surprisingly, credit scores.

Verbal Fluency: The Verbal Fluency test was found to result in significantly poorer 

scores for AD patients than EC participants at each stage of testing. Whereas no significant 

change was found in the AD group over time, the EC group actually improved with a 

significant linear trend, from baseline to 18 months. The results for the AD patients show that 

they are less capable of performing tasks that require frontal lobe - executive function for 

effortful retrieval, than healthy elderly control participants. However, the Verbal Fluency test 

does not detect any deterioration in AD scores over time, performance remaining rather static 

longitudinally for the 18-month period. Thus, the results from the present project suggest that 

this particular version of verbal (phonemic) fluency is not sensitive to the progression of AD 

over time, bearing in mind that this was only a short-term, i.e. 18 months project.

Trail Making:• Results from the Trail Making test showed that each group took 

significantly longer to complete Form B than Form A. The reader may recall from the outline 

of the test in Chapter 2 (Section 2.5.6) that Form A is principally a gauge of psychomotor

327



7 Longitudinal Analysis

speed and psychomotor coordination, whereas Form B is sensitive to visual sequencing, 

search-shift strategy and working memory. Thus, Form B places a greater cognitive load on 

mental resources, due to the simultaneous management of multiple information streams in 

working memory. The DP group as a whole and the AD sub-group performed significantly 

more poorly than the EC group on each task form and over time. The DP group and AD sub­

group showed some subtle fluctuation in task completion times over time, - actually worsening 

at 6 months - but no significant increase (deterioration) or decrease (improvement) between 

baseline and 18 months was evident for either Form A or Form B. These findings were in 

contrast to those of healthy elderly controls, who showed significant improvement in 

performance over the 18-month period, on both Form A and Form B of the test.

The findings for Trail Making Form A appear reflect the nature of the task, in that 

although the task places a low load on working memory, it is primarily a test of psychomotor 

ability. However, frontal lobe function plays an important role for efficient completion of this 

task, and thus the finding that the DP group and AD sub-group performed more poorly than the 

EC group supports the hypothesis that tasks requiring frontal lobe function will be performed 

more poorly by AD patients. However, the hypothesis that there would be a deterioration in 

AD performance over time on tests of this sort was not supported, perhaps due to psychomotor 

ability deteriorating slowly in AD patients (as seen over time for the Gibson Spiral Maze AD 

longitudinal data).

Trail Making Form B places a high demand on working memory with the concurrent 

manipulation of information along with a psychomotor component. Therefore, it was not 

surprising to see that all groups performed significantly more slowly in completing this task. 

The finding that the DP group and the AD sub-group performed with significantly prolonged 

Form B completion times - by comparison to the EC group -  supports the hypothesis that the 

AD group would perform more poorly on tasks that have a high working memory component. 

However, Form B did not detect deterioration in AD performance over time, which does not
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support the hypothesis that the test would identify changes over time, from baseline to 18 

months, postulated on the basis of detecting a decline in working memory performance.

Research using electrophysiological recordings proposes that both forms of the trail 

making test require the activation of frontothalamic regions of the brain (Segalowitz et al., 

1992). Thus, the results from the present study imply that AD patients have a disturbance of 

these areas, but that this disorder does not decline in the short-term. An alternative explanation 

is that the test is insufficiently sensitive enough to detect a change over time. Furthermore, the 

results indicate that these regions are well preserved during the process of normal ageing, as 

denoted by the improvement in performance reflected in the performance of health elderly 

control participants.

National Adult Reading Test The results from the present longitudinal study of the 

NART data confirmed the hypothesis that there would be no significant difference between the 

groups in predicted IQ at baseline. However, overtime a significant difference emerged by the 

18 months test session, between the EC group scores and those in the DP and AD group 

analyses. The difference in magnitude of change over time was in part due to a significant 

linear improvement in the EC group scores, which were likely due to practice effects. In 

contrast, the DP and AD analyses showed only subtle (non-significant) within-groups decline 

in scores over time, although for the AD group, the difference between scores at baseline and 

18 months was close to significance. Therefore, as the change in AD predicted IQ over time 

was only subtle, the hypothesis that there would be significant change between baseline and 18 

months was not supported on this occasion.

Given the change found in AD group scores over the 18-month test session period, it is 

important to note that caution should be exercised with regards to the reliability of the NART 

as a tool for the estimation of pre-morbid IQ for AD patients at different levels of dementia 

severity. It is a plausible to suggest that the NART may be prone to underestimate pre-morbid 

IQ. The findings from the present study correspond with conclusions drawn from previous
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studies of NART scores for AD patients. Earlier research has reported a drop in performance 

over time (Cockbum, Keene, Hope & Smith, 2000; Paque & Warrington, 1995; Patterson, 

Graham & Hodges, 1994), a relationship between NART and dementia severity (Paolo, 

Troster, Ryan & Koller, 1997; Taylor, 1999) and has questioned the reliability of the NART as 

a tool for predicting pre-morbid IQ (Cockbum et al., 2000; Conway & O'Carroll, 1997; Law & 

O'Carroll, 1998; Taylor, 1999). It is likely that the deterioration over time of AD patient 

NART scores reflects a decline in reading ability, which commences in early dementia.

7 .4 .4  Longitudinal Investigation of Voluntary Saccade Tasks

Longitudinal analysis of the factor volunatry saccade task, revealed that there was 

no significant difference between or within the groups, in the rate of change for the 

magnitude for this factor over time. Importantly, this finding shows that the voluntary 

saccadic eye movement tasks, as manipulated in the present analysis, do not actually detect 

a any change in inhibition errors and correspondingly, working memory performance over 

time for AD patients. Therefore, this finding does not support the first hypothesis, that due 

to deterioration of working memory capacity over time a significant increase in voluntary 

saccade task magnitude would be found for the AD patient group in comparison to controls. 

Additionally, the findings also fail to support the second hypothesis that an increase in 

inhibitory errors across time will increase in proportion to the cognitive load of a given task. 

However, it is important to note that the present study was recorded over an 18-month period 

only. Therefore, a longer study may have revealed an elevation of the inhibition error rate on 

the antisaccade and Go/No-Go tasks corresponding with working memory dysfunction and in 

accord with the working memory deficit previously reported in AD (Baddeley et al., 1991).

The most notable changes recorded over time were for the AD group, whose 

inhibition error rate on the antisaccade gap task was found to fall on testing at 6 months 

and then increase again on subsequent test sessions at 12 and 18 months. In fact, it
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emerged that the increase in error rate from 6 months to 12 months was significant. Figure 

7.7 clearly illustrates the longitudinal change in error rate for each task. Therefore, an 

important message from these data, is that there appears to be a reduction in error rate by 

the 6 months test session, albeit marginal and qualitative for the No-Go and Go/No-Go 

task, but nontheless present for each task. It is plausible to suggest that these subtle 

reductions in error rate, could be due to cognitive enhancement brought about by 

medication with AChEIs. Study IV found no significant difference between medicated and 

non-medicated AD patients at baseline testing. However, by the 6 month test session all 

but one of AD patients were recieving medication AChEIs.

Due to attrition of AD patients over the longitudinal test sessions, a change was 

apparent in the present study, for the proportion of inhibition errors recorded at baseline as 

compared with that reported in both Study I and III. The inhibition error rate was lower in 

the analysis for the present study for each voluntary saccade task (see Table 7.7).

Table 7.7 Inhibition Error Rate in Studies I and III compared with Baseline 
measurement in Study V

Inhibition error rate

Studies 1 & III Present study (V)
Task Mean Mean fall
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C
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s

No-Go

A nti-saccade

Go/No-Go

10.31

16.30
35.78

10.00

15.61
34.81

0.31

0.69
0.97
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's

di
se

as
e

No-Go

A nti-saccade

28.49

50.66

26.67

42.07
1.82
8.59

Go/No-Go 63.39 61.78 1.61

Most markedly, the AD group mean for the antisaccade task was reduced by 8.59% 

in the present study, with a smaller decrease for the No-Go and Go/No-Go tasks. 

Intuitively, it can be argued then, that some patients with higher error rates were unable to 

continue with subsequent sessions or were intermittent in attendance for the repeated
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measures study (and so excluded from the present analysis) which is a reflection of their 

illness, i.e. moderate AD corresponds with higher error rates. Therefore, the reduction of 

AD group numbers - as a consequence of the study only including complete repeated 

measures across the four test sessions - is likely to have reduced the power of the preset 

study considerably. However, the reduction in baseline score in the present study had 

little effect on the difference between the AD and EC group scores at baseline on the No- 

Go and antisaccade tasks, as both were found to be significantly different, the AD group 

generating more errors on each task (as in the earlier studies). However, the difference 

between the AD and EC group inhibition error rates on the Go/No-Go task failed to reach 

significance - due to Bonferroni adjustment - which was likely due to the reduction in the 

number of AD patients.

7.4.5 Longitudinal Assessm ent for Correctness of Performance

The present study analysed the factor for correctness of performance longitudinally and 

it emerged, that correctness of performance was able to distinguish between the profile of AD 

patients and the EC group as previously discovered in Study I. The key finding is that AD 

patients present with no significant trends to the profile of their data across the variables, which 

constitute the levels of the factor correctness of performance, whereas controls always generate 

a linear profile to their data. Interestingly, the factor for correctness of performance was found 

not to change significantly over time for either the AD or EC group. This observation shows 

that this factor is not sensitive to the short-term effects of ageing or to the progression of AD, 

but remains consistent over time. However, it is important to remember that the present 

longitudinal study was of 18 months duration only and a longer study may have revealed a 

long-term sensitivity to the progression of AD.

The results of the present study do not support the hypothesis that the magnitude of 

correctness of performance would change over time for the AD group, compared with that of
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elderly controls. It is a reasonable argument to suggest that given time, as AD becomes more 

severe - perhaps in an extended version of this study - the uncorrected error rate of AD patients 

should increase, along with a corresponding decrease in corrected error and correct saccade 

rates as the capacity of patients to self-monitor performance continues to decline. This would 

of course potentially result in a linear profile appearing in the AD data, however, the profile 

would be the reverse of that found in healthy ageing. Of course, by this hypothetical stage, it 

could also be argued that AD patients would be so severely afflicted by the ravages of 

neurodegeneration, that the reliability of antisaccade task compliance would be extremely 

diminished. Therefore, it is most practicable and helpful that the profile for correctness of 

performance is able to detect AD in the early stages of dementia, particularly as this could 

potentially facilitate early diagnosis of the disease.

7.4 .6  Longitudinal Reflexive Saccade Fixation Offset Effect

The longitudinal analysis of reflexive saccade FOE showed that AD patients and EC 

participants generated a significant FOE at each test session. As in Studies II and III, the 

magnitude of FOE for the AD group was found to be significantly greater than that of the EC 

group at baseline and on testing at 6 months, despite the reduction in group membership due to 

attrition of the sample over time. Interestingly, on comparing the magnitude of FOE between- 

groups at each test session, it emerged that the AD group magnitude of FOE actually declined 

over the period of 18 months, to a level that was non-significantly different to that of the EC 

group at both the 12 months and 18 months stages (see Figure 7.11 below). The hypothesis for 

this analysis was that the magnitude of FOE would increase over time for the AD group, 

compared with that of the EC group. This was based on the findings from previous research, 

which described dysfunctional attention in AD (Baddeley et al., 2001; Della Sala et al., 1992; 

Perry & Hodges, 1999) and specifically, an attention-shifting or disengagement deficit
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(Parasuraman et al., 1992). Thus, the findings from the present study do not support this 

hypothesis; conversely, the outcome was precisely the opposite.

Figure 7.11 A Bar Chart Displaying the Reflexive Saccade Fixation Offset Effect for Elderly 
Control Participants and Alzheimer's Disease Patients Over Time

100-

90-

80-

70-

60 -

CO
o
0)CO
E

50 -

4 0 -
-*-»o
it=
Q) 3 0 -

4-<
<D

£o 20-

c
o 10-
CD
X
Ll 0

47.9

92.0

83.6

65.2 65.9

Test session

Baseline

m months

12 months

18 months
Elderly controls Alzheimer's disease

Two explanations are offered here to account for the change in FOE in the AD group 

over time. The first explanation could be that overlap task saccade latency becomes less 

prolonged as a result of deterioration in the fixation system. This notion would map onto the 

findings of Bylsma et al. (1995), where a fixation task was found to be sensitive to the 

progression of AD as a consequence of intrusive saccades, but this proposal works in counter 

fashion to a fixation disengagement deficit. Thus, it is plausible to suggest that in the long­

term, overlap saccade latency may continue to fall past that of the EC group as suggested in 

Figure 7.12 to a point where the FOE is extinguished completely for AD patients. This idea is 

implemented in Figure 7.12, by comparing AD and EC group means on the longitudinal 

reflexive saccade overlap task. The graph clearly shows a steady linear decrease across test 

sessions in AD group latency. It is tempting to fit a linear trend line to the data, as in Figure
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7.12, calculated using the least squares fit represented by the following equation, where m is 

the slope and b is the intercept

y  = mx + b

Figure 7.12 A Graphical Representation of Longitudinal Reflexive Saccade Overlap Task 
Latency with Projected Trend line to Estimate Future Saccade Latency
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The linear trend line in Figure 7.13, demonstrates that reflexive overlap saccade latency 

fell over the 18 months of testing from baseline. The R-squared value -  the coefficient of 

determination -  is extremely high (0.9839), which shows that the estimated values for the trend 

line very closely correspond to the observed latency data from the actual tests sessions and 

consequently, that the trend line is highly reliable. Furthermore, the trend line estimates AD 

reflexive overlap saccade latency for future hypothetical test sessions at 24 — 48 months and 

plainly predicts that by 48 months, reflexive overlap saccade latency will fall to just above 200 

msecs., very close to that of the reflexive saccade gap task. However, as the trend line uses
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the group means in the diagram to generate the estimation, the analysis is limited and should be 

treated with caution. The actual individual patient data points for the AD group were found not 

to contain a linear profile when trend analysis was applied to the data set using polynomial 

contrasts. Whereas several AD patients (approximately 57%) obviously presented with a 

decline in reflexive saccade overlap task latency over time (profile as in Figure 7.12), reflexive 

overlap latency for numerous AD patients fluctuated over the test sessions.

An alternative explanation for the reduction in magnitude of FOE could be that AD 

patients with mild dementia apply compensation strategies. Thus, in the present analysis 

patients were over-compensating at baseline to counteract attentional difficulties caused by 

dysfunction of the fixation disengagement system. However, as time progressed through 

subsequent tests sessions, the compensation strategies were diminished as dementia severity 

increased. The final outcome following this transition was that the FOE settled down to a 

lower magnitude, but remained larger than that of the EC group. This second explanation is 

expanded in Section 9.3.2.

7.4 .7  Theoretical Considerations for the Reflexive Saccade Fixation Offset Effect, 
Uncorrected Errors and Attention-Shifting Deficit in Alzheimer's Disease

Study II discussed the likelihood that a reflexive FOE of greater magnitude for the AD

group (compared with ECs) and a correspondingly high uncorrected error rate, could be due to

a dysfunction of fixation disengagement. The theory was that once a target was captured

inappropriately in the antisaccade task via poor inhibitory control of the VGR, AD patients

have difficulty in generating corrective saccades into empty space in the opposite direction

whilst already fixating the target, i.e. fixation cannot be disengaged from the target.

Furthermore, this situation is possibly brought about by disruption of the opponent neural

processes in the SC. The present study has shown that the AD group data are consistent with

this theory at baseline and six months. However, at 12 months and 18 months there is a clear

dissociation between magnitude of FOE and the uncorrected error rate. There is no
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disengagement deficit at 18 month when uncorrected errors are at a maximum. Therefore, 

these findings suggest that uncorrected errors are not due to a deficit in the disengagement of 

attention from fixation, but due to a diminished self-monitoring capacity through a deficit in 

working memory brought about by a dysfunctional inhibitory control system.

Further consideration of the theoretical and neuroanatomical implications for the 

findings of of this discussion will be addressed in Chapter 9.

7.5 Conclusions

^  The Standardised Mini Mental State Examination and The European 

Alzheimer’s Disease Assessment Scale, were found to be sufficiently sensitive 

to detect the progression of AD over time.

“y* Medication with acetylcholinesterase inhibitors appears to induce subtle and 

qualitative cognitive enhancement for a period of between approximately 6 and 

12 months. Peak performance appears to manifest at approximately 6 months 

following commencement of medication. The enhancement effect is observed 

for voluntary saccade inhibition errors, neuropsychological assessments and 

clinical rating scales.

^  The Digit Span Reverse test was sensitive to the progression of AD over time. 

The test places a high cognitive load on working memory resources. Therefore, 

AD patients present with a decline working memory performance over time.

-y* Caution should be exercised when employing the NART as a measure of pre- 

morbid IQ, as the test has a tendency to underestimate IQ. AD patient scores 

are liable to decline over time.

^  The inhibition error rate for voluntary saccade tasks is not sensitive to the 

progression of Alzheimer’s disease over time.

^  The factor correctness of performance does not change significantly over time 

in AD. The uncorrected error rate appears to change most prominently, in 

accord with the progression of AD.
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^  The pronounced FOE in early AD is possibly caused by over compensation, to 

counter disturbance of the fixation system. The magnitude of reflexive saccade 

FOE reduces over time for AD patients, as compensation strategies can no 

longer cope with disturbance in the fixation system.

^  Dissociation between magnitude of FOE and uncorrected error rate emerges 

over time for AD, suggesting that uncorrected errors are not caused by a 

dysfunctional attention-shifting system, but by a diminished self-monitoring 

capacity caused through working memory deficit, induced by dysfunctional 

inhibitory control.
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Chapter Eight 

Study VI: Evaluating Saccadic Eye Movements in 
The Prediction of Dementia

Comparison of Saccadic Eye Movements & Neuropsychological Assessments

8.1 Introduction

Previous studies of the present thesis attempted to isolate sensitive cognitive and 

oculomotor markers for AD and other forms of dementia, which could distinguish between the 

effects of disease and normal ageing. The salient findings revealed by the earlier studies are 

now examined in Study VI, to ascertain the predictive capacity of oculomotor paradigms and 

neuropsychological assessments in the diagnosis of mild to moderate dementia.

The NINCDS-ADRDA criteria for diagnosis of AD (McKhann et al., 1984) applies a 

stringent cut-off for case classification, which ensures good specificity. However, to guard 

against low sensitivity, which would otherwise result in the exclusion mild cases in the early 

stages of AD, patients attending memory clinics for evaluation are usually assessed with a wide 

range of neuropsychological assessments, as the NINCDS-ADRDA guidelines offer only 

limited direction as to how many neuropsychological assessments should be conducted (Bucks 

& Loewenstein, 1999). Clinical psychologists require an extensive psychometric background 

for patients experiencing memory problems, as a patient may potentially have one of a number 

of illnesses such as dementia, brain tumor, or depression manifesting as a pseudodementia. 

Thus, selective psychometric assessment is a useful aid to diagnosis, with the purpose of: i). 

Establishing whether a memory and/or other cognitive deficits are present; ii). Assessing the 

type and extent of dysfunction; iii). Providing support for the approach taken with treatment;
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iv). Giving a baseline measure as a comparison for plotting change over time. 

Neuropsychological assessments complement the clinical tests carried out by medical doctors 

(Section 2.1.1) and are a vital part of the overall multi-disciplinary approach to patient care. 

However, conducting extensive neuropsychological assessment is time consuming and 

potentially fatiguing for patients. Many memory clinics have developed batteries comprising 

well known neuropsychological assessment tests, some examples follow: - The Bristol Memory 

Disorders Clinic - University o f Bristol Department o f Care o f the Elderly and Frenchay 

Healthcare National Health Service Trust - this battery comprises 14 different tests which are 

labour intensive to administer; The Wien Center for Alzheimer’s Disease and Memory 

Disorders - University o f Miami Department o f Psychiatry and Behavioural Sciences and the 

Mount Sinai Medical Center - a battery comprising 17 different tests, with some sub-tests also, 

which in total takes several hours to administer and as a consequence fatiguing for the patient; 

The Consortium to Establish a Registry for Alzheimer’s Disease - This battery comprises 7 

main tests, but there are some sub-tests; again test time duration long (Morris et al., 1989) 

(Bucks & Loewenstein, 1999). Some of the tests from these batteries are included in the 

present study. The present analysis incorporated a small range of commonly used tests, which 

were included in the research project at Lytham Hospital (Section 2.5) and attempted to show 

which tests are most informative for the diagnosis of dementia, i.e. a minimum number of 

neuropsychological assessments and/or saccadic eye movement variables that can predict 

dementia. Obviously, the clinical rating scales (EADAScog & SMMSE) are not included in 

the present regression analyses, as scores from these tests were fundamental to the initial 

diagnosis of dementia (i.e. were used for the classification of patients with a probable dementia 

caused by a neurodegenerative disease). Thus, it is of immense interest to establish whether 

supplementary neuropsychological assessments are more powerful than oculomotor variables 

in classifying dementia patients and EC participants.

340



8 Predicting Dementia

8.1.1 Aims

The main aim of the present study was to examine more closely the diagnostic utility of 

saccadic eye movement paradigms in mild to moderate dementia. This was done by comparing 

baseline measurement on variables from oculomotor paradigms (antisaccade task error rates 

and reflexive saccade latency) with neuropsychological assessment scores. This analysis 

attempted to address the following important questions: 1. Are any of the saccadic eye

movement variables sufficiently sensitive enough to reliably predict mild to moderate 

dementia? 2. Is it possible to use a small number of neuropsychological assessments - a 

reduced set - to reliably predict mild to moderate dementia? 3. Should insufficient sensitivity 

be present with either approach in isolation, is there an ultimate regression model that can 

utilise the practical benefits of combining variables from eye movement tasks along with a 

reduced set of neuropsychological assessment tests? If such a model could be derived from 

these variables is it conceivable that the model could be applied in association with clinical 

rating scales and the standard medical examination for diagnosing dementia?

In an attempt to answer these questions, logistic regression analyses were conducted in 

an attempt to find the most efficient regression model, sensitive to the detection of early 

dementia. In the first instance, error components from the antisaccade gap task were evaluated 

as predictors of dementia, because the earlier studies showed that dementia patients generated 

higher proportions than controls on components from this task. No-Go and Go/No-Go task 

inhibition error rates were also evaluated later in the model. A further model, examined 

reflexive saccade overlap task latency as a potential predictor of dementia, since the magnitude 

of FOE was found to be significantly greater for the dementia groups than that of controls 

(Studies II & III).

Other regression models were also examined that included neuropsychological 

assessment scores. Of particular interest here, were tests that place a high demand on working
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memoiy function and/or dissociated between dementia and EC groups. Therefore, the primary 

focus of this analysis was on Digit Span, Spatial Span and Trail Making test scores.

8.2 Methods

8.2.1 Participants

The participants for this analysis comprised AD and EC participants from Study I 

(AD patient group N=17; age range = 70-88; mean = 76.9; SD = 4.9; male n=12; female 

n=5. EC group N=32; age range = 58-85 years; mean = 70.5; SD = 6.1; male n=12; 

female n=20). The group with dementias of other types were evaluated later in the study 

by the final models. Descriptive statistics for neuropsychological assessment and eye 

movement tasks from baseline assessment are shown below in Table 8.1.

Table 8.1 Descriptive Statistics for Saccadic and Neuropsychological Variables

E lderly  C o ntro ls A lzh e im er's  D isease

E y e  M o v e m e n t  V a r ia b le s Mean SD N M ean SD N

Uncorrected errors (% ) 2.09 5.50 32 23.47 23 .25  17

Antisaccade G ap Corrected errors (% ) 14.21 11.88 32 27.19 21.74  17

Omissions (% ) 3.02 5.04 32 10.19 10.70 17

Anticipatory (% ) 2.37 4.00 32 5.42 5.81 17

G o/N o-G o Gap Inhibition errors (% ) 35.78 27.70 32 63.39 32.32  17

No-G o G ap Inhibition errors (% ) 10.31 13.32 32 28.49 27.35  17

R eflexive
saccade O verlap Latency (msecs) 253.58 30.83 26 298.63 45 .40  13

Neuropsychological Assessments

Verbal Fluency Total 38.38 10.80 32 22.59 10.32 1

Trail Making Form A T im e (secs) 41 .64 12.76 32 77.67 33.16  1

Trail Making Form B Tim e (secs) 81.24 26.70 32 150.34 63.44

Digit Span Forward 10.25 2.30 32 8.65 2.23

Digit Span Reverse 7.31 2.35 32 5.06 2.46

Spatial Span Forward 7.41 1.81 32 5.53 2.07 1

Spatial Span Reverse 6.75 1.19 32 4.24 2.11 1

*D ay - Night inhibition task (score /20) 19.88 0.55 32 19.12 1.65

*M otor Perseveration (score 15) 5.00 0.00 32 4.59 1.06 1

Gibson Spiral M aze: T im e (secs) 65.12 20.36 32 86.38 50.18  1

*Groups responding at or near to ceiling
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8.2 .2  Assessm ent of Saccadic Eye Movements

As this is a supplementary analysis, participants thus used the equipment, task protocol 

and experimental procedures described in Chapter 2 (Section 2.3) and subsequent chapters, to 

include the antisaccade gap, reflexive saccade overlap, No-Go and Go/No-Go paradigms.

8.2 .3  Statistical Analysis

Statistical analyses were carried out by means of SPSS version 11.5 (SPSS Inc., 

Chicago 111). The present study used sequential logistic regression to predict group 

membership of AD and EC participants (i.e. disease/no disease) from a range of eye movement 

and cognitive predictors (regressors). Correspondingly, in predicting group membership the 

category classification output from logistic regression analysis provides information regarding 

a number of positive and negative outcomes, as listed below in Table 8.2.

Table 8.2 Possible Positive and Negative Outcomes from the 
Logistic Regression Analyses

Outcome type Description

T ru e  positive 
T ru e  negative  
False positive 
False negative

D em entia patien t, correctly predicted  
Elderly control participant, correctly  pred ic ted  
Elderly control participant, incorrectly predicted  
D em entia patien t, incorrectly predicted

Thus, the analysis can provide estimated probabilities regarding the sensitivity and 

specificity of a given model or test. Traditionally, the medical profession has applied the 

following definitions for the sensitivity and specificity of a test in predicting the health status 

of patients: -

• Sensitivity: Measure of reliability of a screening test, based on the proportion of people 

with a specific disease who react positively to the test (the higher the sensitivity the 

fewer false negatives).
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• Specificity: The proportion of people free from disease (controls) who react negatively 

to the test, i.e. the higher the specificity, the fewer false positives {Oxford Medical 

Dictionary, 2002).

The present analysis used response operating characteristic (ROC) curves to plot model 

sensitivity (true positives) as a function of false negative rates (1 - specificity), to demonstrate 

the trade-off between the two outcomes.

Whilst it is appreciated that using two or more predictors will yield better predictions, 

with the present experimental population comprising fairly low numbers, the temptation to 

enter a large number of variables into the equation was avoided. The ratio of cases to variable 

is an important consideration in logistic regression, as too few cases relative to the number of 

predictors, can lead to failure of model convergence; The maximum likelihood solution is 

impossible when the outcome groups are perfectly separated (Hosmer & Lemeshow, 1989; 

Tabachnick & Fidell, 1996).

Logistic regression does not hold the same assumptions regarding data as other 

predictive statistical approaches (such as multiple regression or discriminant function). 

Consequently, it is not necessary for predictors to be normally distributed, linearly related or 

have equal variance in each group (Tabachnick & Fidell, 1996). Moreover, logistic regression 

can accommodate any mix of continuous, discrete or dichotomous variables. However, care 

should be taken to avert multicollinearity and singularity in the predictor set. The model to 

estimate the true probabilities {itj) for group membership, used the following logistic function:

Exp(Lj)
Probability (Dementia) — T C j  —

1 +Exp(Lj)

The equation estimates probabilities of one outcome or another, directly as a 

non-linear function of the best linear arrangement of predictors, producing
th * ■two outcomes. Where k / is the estimated probability that they case is in

344



8 Predicting Dementia

one category or another, Exp is the exponential and Lj is some linear 

combination of predictors. Lj is a standard linear regression equation, where 

L j = b o  + bj(Xj); with constant bo, slope b i and predictor (s) Xj. The above 

is used along with a loss function for maximum likelihood estimation as 

a measure of the discrepancies between observed and estimated values, 

enabling the evaluation of a given model. The loss function used for the 

present procedure was the -2 log(likelihood) statistic.

8.3 Results

8.3.1 Correlation of Neuropsychological Assessments and Saccadic Eye Movement 
Variables with Clinical Rating Scales

Correlations for oculomotor variables and neuropsychological assessment scores with

clinical rating scale scores are displayed below in Table 8.3.

Table 8.3 Correlations Between Clinical Rating Scales Scores, Saccadic Variables 
and Neuropsychological Assessment Scores

Elderly Controls Alzheimer's Disease

Eye Movement Variables SMMSE ADAScog N SMMSE ADAScog N

U ncorrected errors (%) -0.065 0.000 32 -0.691 0.687 17

A ntisaccade G ap
C orrected  errors (%) -0.197 -0.019 32 0.285 -0.283 17

O m issions (%) 0.277 -0.019 32 -0.336 0.252 17

Anticipatory (%) 0.148 -0.115 32 0.136 0.087 17

Go/N o-G o G ap Inhibition errors (%) 0.171 -0.140 32 -0.009 0.122 17

No-Go G ap Inhibition errors (%) -0.386 0.061 32 -0.325 0.454 17

R eflexive
sa c c a d e O verlap Latency (m secs) -0.229 0.315 26 -0.525 0.373 13

Neuropsychological Assessments

V erbal F luency Total 0.427 -0.103 32 0.685 -0.648 17

Trail Making Form A T im e (secs) 0.061 0.013 32 -0.657 0.584 16

Trail Making Form B T im e (secs) -0.399 -0.096 32 -0.253 -0.023 11

Digit S p an  Forward 0.427 -0.281 32 0.422 -0.061 17

Digit S p an  R ev erse 0.392 -0.229 32 0.294 -0.027 17

Spatial S p an  Forward -0.233 0.296 32 0.499 -0.239 17

Spatial S p an  R ev erse 0.036 0.166 32 0.777 -0.714 17

*Day - Night inhibition task -0.039 -0.107 32 0.619 -0.600 17

*Motor P ersevera tion ** — 32 0.641 -0.576 17

G ibson Spiral M aze: T im e (secs) -0.182 0.008 32 -0.669 0.780 17

* Groups responding at or near ceiling. ** EC group no correlation, Motor Pers. = constant/ceiling.
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The correlations provide an indication of the association between a given oculomotor 

measure or neuropsychological assessment score and dementia severity. These relationships 

thus, offer one method of assistance in selecting a reasonable set of predictors for regression 

analyses - as the overall goal of the analysis is to account for the data set in terms of a 

minimum number of predictors. More importantly, the correlations are a useful aid in the 

decision as to which predictors should be given the highest priority, i.e. a priori order of entry, 

for sequential logistic regression. Thus, predictors where entered into logistic regression 

models sequentially, based on assigning the highest priority to predictors that were expected to 

most strongly predict dementia (and differentiate between dementia patients and ECs). 

However, analyses were broken down into a number of stages in an attempt to obtain as much 

information as possible from all candidate predictors, given that small correlations can be 

important for this type of analysis.

Given the outcome from earlier studies in the present thesis, it was clear that for the 

first saccadic eye movement model, antisaccade gap task error rates would probably provide 

the most useful saccadic indicator of dementia and that these predictors should be given the 

highest priority for sequential entry. Furthermore, it was considered that inclusion of inhibition 

error rates from other saccadic tasks, such as those in the No-Go and Go/No-Go tasks would 

also be informative and provide useful insight into the predictive capacity for a range of error 

rates. Therefore, inhibition errors from the No-Go and Go/No-Go tasks were entered into the 

model, following antisaccade task error variables. Reflexive saccade overlap task latency was 

considered separately, due to a reduced data set for this variable.

The neuropsychological assessment logistic regression model firstly included predictors 

that were associated with working memory function, followed by variables from tasks that 

place demands on frontal lobe function. The rationale for this approach is based on previous 

evidence that AD patients have a working memory deficit, which at least in the early stages of
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dementia, is more prominent than frontal lobe dysfunction (Baddeley et al., 1991; Becker, 

1988; Morris, 1994). A final set of analyses attempted to build-up a model that combines both 

oculomotor variables and neuropsychological assessment variables to form an ultimate model.

8 .3 .2  P r e d ic tin g  D e m e n tia  fro m  N e u r o p s y c h o lo g ic a l A s s e s s m e n ts

In view of the correlations presented in Table 8.3 and the desire to employ a minimum 

number of predictors or tests, the following predictors were selected for sequential logistic 

regression. Spatial Span Reverse was allocated the highest priority, as it places a high demand 

on working memory resources and also resulted in the strongest correlation for the dementia 

group, with SMMSE and EADAScog scores. Trail Making Form A was also considered to 

warrant high priority status in the model, as the correlations with clinical rating scales were 

found to be moderate to strong for the dementia group. Furthermore, Trail Making Form A 

also places demand on working memory resources, albeit low demand for sequencing and 

requires frontal lobe function for the psychomotor component. Although the dementia group 

correlations between the Digit Span Reverse test and clinical rating scales were only small, the 

test was included on the basis that it places a high demand on working memory resources. 

Verbal Fluency and the Gibson Spiral Maze are both frontal lobe tasks and in the present 

analysis, were found to correlate with dementia group clinical rating scales scores. Therefore, 

both tests were evaluated in the regression model.

Trail Making Form B was excluded from this analysis, firstly, because the correlations 

for the dementia group between this measure and clinical rating scale scores were small and 

secondly, because the number of patients able to complete the test was reduced. This would 

have the effect of reducing the possible number of cases in the data set and thereby reduce the 

robustness of the analysis. Furthermore, if a high proportion of patients with early dementia 

find test completion too difficult, consequential floor effects render the test of little diagnostic 

utility. The Day/Night Response Inhibition test and Motor Perseveration test were also
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excluded from the analyses. This was based on the finding that both the dementia and EC 

groups were found to respond virtually at ceiling level on each test. Thus, neither group can be 

considered to have found either test demanding and therefore, the diagnostic capacity of each 

test is negligible (at least in the early stages of AD) due to ceiling effects. Digit Span Forward 

and Spatial Span Forward were also excluded, as these two tests both place a lower load on 

working memory resources.

A sequential logistic regression analysis was performed on neuropsychological 

assessments that require i) working memory resources and ii) frontal lobe function, to assess 

prediction of group membership for the category of dementia or EC. The first block to be 

entered into the model, Spatial Span Reverse, Trail Making Form A and Digit Span Reverse 

was found to be significant against the constant only model, %2 (3, N=48) = 34.312, p<0.0001, 

showing that this block of predictors reliably distinguished between dementia patients and EC 

participants. However, examination of the parameter estimates revealed the Wald statistic for 

Digit Span Reverse to be non-significant for the prediction of dementia (z = 0.266, p>0.6), 

whereas Trail Making Form A was significant (z = 6.894, /?<0.009) and Spatial Span Reverse 

(z = 3.791, p<0.052) virtually significant. Therefore, Digit Span Reverse was excluded from 

the model and the analysis re-run, to include only Spatial Span Reverse and Trail Making Form 

A in the model. This model was also found to be significant against the constant only model %2 

(2, N=48) = 34.032, £><0.0001. Importantly, this model resulted in a Chi-square value that was 

virtually the same as that of the previous model, but now for only 2 degrees of freedom. 

Moreover, removal of Digit Span Reverse from the model had the effect of decreasing the loss 

by only 0.28. It is worth noting that the 5% level of reliability for Chi-square is 3.84, for one 

degree of freedom. Therefore, any change in loss has to deliver at least this value to be of 

significant use in a model. Elimination of the Digit Span Reverse from the model, resulted in 

parameter estimates with significant Wald statistics for both the Spatial Span Reverse (z =
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4.758, /?<0.029) and Trail Making Form A (z = 6.949, /><0.008). The predictive success of this 

model was promising, at this stage of the sequential procedure, with 75.0% of dementia 

patients and 96.9% of EC participants correctly predicted, with an overall success rate of 

89.6%.

Verbal Fluency was the next variable to be entered into the model and although 

inclusion of this variable indicated a reliable change from the previous model %2 (3, N=48) = 

43.956, /K0.0001, the specificity of the model was reduced, with only 90.6% of EC 

participants correctly predicted and the overall success rate thereby reduced to 85.4%. 

Sensitivity remained unchanged for dementia patients with 75.0% of patients correctly 

predicted. Examination of the Wald statistic in the parameter estimates also showed that 

Verbal Fluency did not contribute significantly to disease status (z = 3.499,/?>0.07), therefore, 

Verbal Fluency was omitted from the analysis.

The Gibson Spiral Maze task was entered into the model along with Spatial Span 

Reverse and Trail Making Form A. This model showed a reliable accumulative loss that was 

significant compared with the previous model, %2 (3, N=48) = 47.830, /KO.OOOl (see Table 

8.4).

Table 8.4 Accumulative Loss for the Logistic Regression Model with 
Neuropsychological Assessments

Variable

Model

Loss

Change in Loss
2

X df

Accumulative Change in Loss 

% df p-ievel

Constant only (initial -2 Log Likelihood) 61.105

Spatial Span Reverse 39.652 21.453 1 21.453 1 0.0001

Trail Making Form A 27.073 12.579 1 34.032 2 0.0001

Gibson Spiral Maze 13.276 13.798 1 47.830 3 0.0001

Inspection of the parameter estimates (Table 8.5) revealed that each of the variables in 

the model reliably contributed to the prediction of disease status. Prediction success was
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impressive, with 93.8% of dementia patients and also 93.8% of EC participants correctly 

predicted. The overall success rate was therefore 93.8%. The R2 (Negelkerke) for this final 

model was high (R2 = .876), showing that the variables in this model were able to account for a 

large amount of variance in disease status.

Table 8.5 Parameter Estimates for the Logistic Regression Model with 
Neuropsychological Assessments

Variable B S.E. Wald df Sig. Exp(B)

Spatial Span Reverse -3.251 1.603 4.114 1 0.043 0.039
Trail Making Form A 0.379 0.168 5.088 1 0.024 1.461
Gibson Spiral Maze -0.203 0.094 4.660 1 0.031 0.816
Constant 12.237 7.927 2.383 1 0.123 206195.772

The parameter estimates for the present model showed that the odds ratio for Trail 

Making Form A (Exp(B) in Table 8.5, i.e. the exponential o f the log odds ratio (B)) demonstrates 

a change in the likelihood of dementia by a factor of 1.461, based a one unit change, i.e. for 

each 1 second increase in time taken to complete the test. The Gibson Spiral Maze odds ratio 

indicated that the likelihood of dementia increases by a factor of 0.816, for each unit increase 

in time (seconds). However, Spatial Span Reverse showed little change in the likelihood of 

dementia for a 1 unit decrease in score, with a low odds ratio (0.039).

The above model comprising three neuropsychological assessments can therefore be 

applied to individual cases for the prediction dementia using the following equation:

gbo+bjXj +b2X2+b3X3 

Probability of Dementia = --------, v . v ^; v—
I  _l_ ^ b 0-JrbIX I+b2X2+b3X3

e 12.237+(-3.251)(X;)+(0.3 79) (XJ+f-O.203) (XJ  

j  +  e 12.237+(-3.251)(Xl)+(0.379)(X2)+(-0.203)(X3)

350



8 Predicting Dementia

Taking the constant and B coefficients and individual scores on each variable (Xj) a probability 

of greater than 0.5 = dementia, using a classification cut-off point of 0.5 and the equation 

solved for the outcome of dementia coded as 1 and no disease 0.

8.3.3 Predicting Dementia from Saccadic Eye Movement Variables

Examination of dementia patient correlations for antisaccade error rates showed 

antisaccade gap task uncorrected errors to be strongly correlated with both the SMMSE and 

EADAScog clinical rating scale scores (i.e. uncorrected errors are related to the severity of 

dementia). Small correlations were also found for dementia patients’ antisaccade gap task 

corrected errors and omissions with the clinical rating scales scores, whereas anticipatory 

saccades were only weakly correlated. The No-Go task inhibition error rate for dementia 

patients correlated with the SMMSE (small) and the EADAScog (moderate), however, for the 

Go/No-Go task, there was no correlation with the SMMSE and only an extremely weak 

correlation with the EADAScog. Only very weak to small correlations were found to exist for 

the EC group on all variables.

Reflexive saccade overlap task saccade latency was excluded from this analysis, as the 

number of cases for which data were available produces a reduced set, i.e. including this 

variable would have reduced the number of cases in the overall sample. Therefore, a separate 

analysis was conducted to investigate the value of this variable as a predictor of dementia.

A sequential logistic regression analysis was performed on the saccadic error 

components of the antisaccade gap, No-Go and Go/No-Go tasks. The antisaccade gap task 

was given the highest priority, due to the ability of variables derived from this task, to 

distinguish between groups in the earlier studies of this thesis. In the first block, antisaccade 

uncorrected errors, corrected errors, omissions and anticipatory saccades were entered into the 

model which was significant compared with the constant only model %2 (4, N=49) = 34.345, 

/KO.OOOl, showing that this set of predictors was able to discriminate between dementia
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patients and EC participants. However, examination of the parameter estimates showed that 

the Wald statistic for antisaccade anticipatory saccades did not significantly predict dementia 

(z = 0.876, p>0.3), whereas the other three variables in the model did make a significant 

prediction for dementia (corrected errors, z = 4.278, p<0.039; uncorrected errors, z = 4.717 

/K0.030; and omissions, z = 5.763, p<0.016). In view of this observation, a re-run of the 

analysis was carried out with the exclusion of the variable, anticipatory saccades. This analysis 

showed that a combination of antisaccade corrected errors, uncorrected errors and omissions 

resulted in a model that again, was significant against the constant only model %2 (3, N=49) = 

33.461,/?<0.0001 (Table 8.6).

Table 8.6 Accumulative Loss for the Logistic Regression Model with Saccadic 
Eye Movement Variables

Variable

Model

Loss

Change in Loss

x2 df

Accumulative Change in Loss 

X2 df p-level

Constant only (initial -2 Log Likelihood) 63.262

Antisaccade corrected errors 56.568 6.694 1 6.694 1 0.0100

Antisaccade uncorrected errors 37.175 19.393 1 26.087 2 0.0001

Antisaccade omissions 29.801 7.374 1 33.461 3 0.0001

However, with the exclusion of the anticipatory saccade variable, this model was more 

efficient as it only used 3 degrees of freedom at the expense of a small non-significant 

reduction in the Chi-square value (.884). Observation of the parameter estimates for the three 

rem ain ing variables in the model, showed that when not controlling for anticipatory saccades, 

antisaccade corrected errors and uncorrected errors had a higher value for the Wald statistic 

and that there was a negligible reduction in the value of the Wald statistic for antisaccade 

omissions (see Table 8.7).
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These results affirm that each of these variables is able to reliably predict disease status 

in the present model. The predictive capacity of this model was reasonable, with 82.4.0% of 

dementia patients and 96.9% of EC participants correctly predicted and an overall success rate 

of 91.8%. The R2 (Negelkerke) for this model (R2 = .683) demonstrated that a strong level of 

variance was accounted for in disease status.

Table 8.7 Parameter Estimates for the Logistic Regression Model with Saccadic 
Eye Movement Variables

Variable B S.E. Wald df Sig. Exp(B)

Antisaccade corrected errors 0.084 0.037 5.044 1 0.025 1.088

Antisaccade uncorrected errors 0.113 0.046 5.918 1 0.015 1.119

Antisaccade omissions 0.160 0.068 5.506 1 0.019 1.174

C onstan t -4.339 1.273 11.622 1 0.001 0.013

For the next block of sequential input, No-Go and Go/No-Go inhibition error rates were 

entered into the model. However, entry of these two variables as a block did not result in a 

significant improvement from the previous model %2 (2, N=49) = .614, p>0.7, and although 

the overall model remained significantly different from the constant only model % (5, N=49) = 

33.074, /K0.0001, the loss was reduced. Furthermore, examination of the parameter estimates 

revealed that neither No-Go (z = 0.578, p>0A) or Go/No-Go (z = 0.140, p>0J) inhibition error 

rates, was a significant predictor of disease status. In view of this analysis, the previous model 

comprising antisaccade corrected errors, uncorrected errors and omissions was found to be the 

best set of saccadic eye movement variables that could reliably classify dementia patients and 

EC participants.

The odds ratios (Table 8.7, Exp (B)) for antisaccade error components showed that there 

was a change in the likelihood of dementia, by a factor of 1.119 for uncorrected errors, 1.174 

for omissions and 1.088 for corrected errors, for each unit / % change / increase in error rate.
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A separate analysis with a reduced data set was conducted on the reflexive overlap task 

saccade latency. However, it was found that this variable was unable to significantly 

contribute as a predictor of dementia.

As with the earlier analysis of neuropsychological assessments, the parameter estimates 

and individual scores on each variable (Xj) for the regression model using the three antisaccade 

variables can thus be used for the prediction of dementia in individual cases, using the 

following equation (again, a probability of greater than 0.5 = dementia; using a classification 

cut-off point of 0.5 and the equation solved for the outcome of dementia coded as 1/no disease 

0):

Probability of Dementia =
^bo+biXi+b2X2+b3X3

1+ ebo+bjXj+b^+bsXj

e ~4.339+(0.084)(X1)+(0.U 3)(X2)+(0.160)(X3)

1+ er4.339+(0.084)(XJ)+(0.113)(X2)+(0.160)(X3)

8.3.4 Combining Saccadic Variables and Neuropsycgoiogicai Assessments in a 
Logistic Regression Model to Predict Dementia

The next analysis investigated the possibility of formulating a logistic regression model 

that would generate a superior equation by combining predictive components revealed in the 

previous analysis of neuropsychological assessments and saccadic eye movement variables 

(Sections 8.3.2 & 8.3.3). Examination of correlations between the key saccadic eye movement 

and neuropsychological assessment predictors, showed that AD antisaccade gap task 

uncorrected error rates were highly correlated with Trail Making Form A (.845) and Spatial 

Span Reverse (-.812) scores. In view of this finding, antisaccade uncorrected errors were 

omitted from the analysis, on the grounds that they would be a source of multicollinearity. 

Therefore, models concentrated on two saccadic variables, antisaccade gap task corrected
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errors and omissions, and three neuropsychological assessments, Trail Making Form A, Spatial 

Span Reverse and Gibson Spiral Maze.

A sequential logistic regression was carried out on the key saccadic and 

neuropsychological assessment variables, found in the previous sections, to be favourable in 

the prediction of dementia. The most impressive logistic regression model, delivering greatest 

predictive success was found to be a combination of antisaccade gap task omissions, Trail 

Making Form A, Spatial Span Reverse and Gibson Spiral Maze scores. These predictors 

resulted a model that was significant against the constant only model %2 (4, N=48) = 47.952, 

/K0.0001 (Table 8.8), suggesting that the predictors as a set, reliably distinguished between 

dementia patients and EC participants. Antisaccade corrected errors were excluded from this 

final model, as they were not found to contribute to overall predictive success. Negelkerke’s 

R2 for the final model was very strong at .877, showing that a high level of variance was 

accounted for in disease status. The predictive success of the model was impressive with 

93.8% of dementia patients and 96.9% of EC participants correctly predicted and an overall 

success rate of 95.8%.

Table 8.8 Accumulative Loss for the Logistic Regression Model with Saccadic 
Eye Movement and Neuropsychological Assessment Variables

Variable

Model

Loss

Change in Loss

x 2 df

Accumulative Change in Loss 

X2 df p-level

Constant only (initial -2 Log Likelihood) 61.105

Antisaccade omissions 53.287 7.818 1 7.818 1 0.0050

Trail Making Form A 31.378 21.909 1 29.727 2 0.0001

Spatial Span Reverse 26.456 4.922 1 34.649 3 0.0001

Gibson Spiral Maze 13.152 13.304 1 47.952 4 0.0001

The regression coefficients, Wald statistics and odds ratios are displayed below in 

Table 8.9. The equation derived from the regression model combining antisaccade and
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neuropsychological assessment variables to calculate the probability of dementia for individual 

cases from the parameter estimates (Table 8.9) and individual scores on each variable (Xj), is as 

follows (as with the previous analyses, a probability of greater than 0.5 = dementia; using a 

classification cut-off of 0.5 and the equation solved for the outcome of dementia coded as 1/no 

disease 0):

^ b 0+bIX I+b2X2+b3X3+b4X4 

Probability of Alzheimer’s = -----------------------------------
J _|_ ^ b 0+bjXi+b2X2+b3X3+b4X4

11.526+(0.027)(X])+(0.367)(X2)+(-3.120)(X3)+(-0.199) (X J  

j  +  e 11.526+(0.027) (X J +(0.367) (X J + (-3.120) (X J + (-0.199) (XJ

Table 8.9 Parameter Estimates for the Logistic Regression Model with Saccadic 
Eye Movement and Neuropsychological Assessment Variables

Variable B S.E. Wald df Sig. Exp(B)

Antisaccade omissions 0.027 0.078 0.120 1 0.730 1.027

Trail Making Form A 0.367 0.167 4.858 1 0.028 1.444

Spatial Span Reverse -3.120 1.613 3.741 1 0.053 0.044

Gibson Spiral Maze -0.199 0.093 4.579 1 0.032 0.820

Constant 11.526 8.101 2.024 1 0.155 101274.200

However, the Wald statistics indicate that in the present model only Trail Making Form 

A (z = 4.858, p<0.028) and the Gibson Spiral Maze (z = 4.579, /K0.032) reliably predict AD, 

whereas Spatial Span Reverse just failed to reach significance (z = 3.741, p<0.053). 

Antisaccade omissions do not appear to be a reliable predictor of dementia in the present 

model, when controlling for the three neuropsychological assessments.
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Therefore, although the overall predictive success of the model combining 

neuropsychological assessments and antisaccade omissions was improved by 3.1%, compared 

with the neuropsychological assessment only model (Section 8.3.1), the combined model in the 

present analysis showed that there was little to be gained by combing the two types of variable. 

In the original neuropsychological assessment only model, the total loss had a Chi-square value 

of 47.830, for three degrees of freedom (Table 8.4) and the R2 was .876. On introducing 

antisaccade omissions into the equation, the Chi-square value only increased by 0.122, to give 

a total loss of 47.952 with four degrees of freedom -  clearly, a nonsignificant improvement. 

Additionally, the R value only increased to .877 demonstrating that virtually no extra variance 

was accounted for by the model.

In summary, sensitivity of the original neuropsychological assessment only model was 

impressive at 93.8% as was specificity, also at 93.8%. For the saccadic eye movement only 

model, sensitivity was less pronounced at 82.4% (i.e. lower true positive probability), however, 

at 96.9%, specificity (higher true negative and lower false positive probability) was slightly 

higher. In the model combining neuropsychological assessments and saccadic eye movements 

variables, sensitivity remained unchanged from that achieved in the neuropsychological 

assessment only model, at 93.8% (no change in true positive probability), however, the 

specificity of this model showed improvement by increasing to 96.9% (higher true negative 

and lower false positive probability).

Figure 8.1 above displays ROC curves which plot sensitivity (true positives) as a 

function of false negatives (1 — specificity), i.e. the trade-off between the two, to demonstrate 

the detectibility of dementia for a given model. The curves actually show the true positive 

performance of the models at every observed value of their true negative. Since the values are 

trade-offs, it is always possible for a model to perform very well in one direction at the expense 

of the other. What the ROC curve does is to make this trade-off explicit for each value of one
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parameter versus the other. The present results show that the area under the curve is >0.9 for 

both models, i.e. the neuropsychological assessment only model and the eye movements only 

model, suggesting near perfect detectibility performance for each model.

Figure 8.1 Receiver Operating Characteristic Curves for Neuropsychological Assessment 
and Eye Movement Models with Dementia Patients
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8.4 Discussion

8.4.1 Key findings

The key findings from the present study are summarised as follows

1. Behavioural characteristics of the antisaccade task are sensitive in the 

detection of early dementia.

2. Error components of the antisaccade gap task, specifically corrected 

errors, uncorrected errors and omissions form a useful logistic regression 

model with high specificity and, which is able to predict dementia with a 

good level of sensitivity.
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3. A reduced set of neuropsychological assessments, namely the Spatial 

Span Reverse, Trail Making Form A and Gibson Spiral Maze tests are 

able to predict dementia with a high degree of both specificity and 

sensitivity.

4. No advantage was found by combining saccadic eye movement variables 

and neuropsychological assessments in an attempt to form a superior 

model.

5. Variables derived from just one antisaccade task can be used to predict 

Dementia, whereas the neuropsychological assessment model requires 

that three separate tests be conducted.

6. Sensitivity was higher in the neuropsychological assessment model, than 

for the saccadic eye movement model, however, both models had high 

specificity. ROC curves indicated that both models perform at > 0.9 

detectibility.

8.4 .2  Towards Interpretation

Although the present analyses were conducted on the AD patient group data (and ECs), 

it is vital to note that the models are useful in predicting dementia generally, rather than 

specifically AD. Uncorrected and corrected error rates were prominent in the data for the 

dementia group as a whole (comprising AD and DOT sub-groups). Therefore, it is feasible 

that the proportions recorded for these variables in the present thesis could be generalized to 

dementia. However, it is important to recognize that antisaccade task inhibition errors are not 

exclusive to the clinical groups of AD and the other forms of dementia that are reported in the 

present thesis, In fact, as demonstrated in Studies I and III, healthy control and PD participants
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also make errors of inhibition. Additionally, many studies of schizophrenia have also 

examined antisaccade error rate (Crawford, Haeger, Kennard, Reveley & Henderson, 1995a, 

1995b; Hutton & Kennard, 1998; Hutton et al., 1998; Hutton et al., 2001; Klein et al., 2000a; 

Klein, Brugner, Foerster, Muller & Schweickhardt, 2000b; McDowell, Myles-Worsley, Coon, 

Byerley & Clementz, 1999; Nieman et al., 2000; Straube, Riedel, Eggert & Muller, 1999; 

Thaker, Cassady, Adami, Moran & Ross, 1996; Thaker, Nguyen & Tamminga, 1989; Thaker et 

al., 2000) and some studies also investigated error correction (Clementz, McDowell & Zisook, 

1994; Crawford et al., 1998; McDowell & Clementz, 1997). However, interestingly the 

analysis of error correction in schizophrenia has shown that correction rates (calculated as: 

corrected error/total inhibition error x 100) are significantly higher at 81-92% (Clementz et 

al., 1994; Crawford et al., 1998; McDowell & Clementz, 1997), than those found for dementia 

patients in the present thesis: Dementia patients as a whole (61.58%) or the sub-groups (AD, 

59.96%; DOT, 64.14%). Moreover, the correction rates in schizophrenia do not tend to differ 

from the rates found for PDs, ECs or YCs (Figure 8.2). Therefore, is plausible to conclude 

that low error correction rate or a high proportion of errors that remain uncorrected is a specific 

characteristic of early dementia. Furthermore, it can be argued that the error correction rate is 

a sensitive marker of dementing illness.

Figure 8.2
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8.4.3 Performance of the Logistic Regression Models

For the present study, it was considered both useful and necessary to verify the 

performance of the each logistic regression model, although this was only possible to a limited 

extent due to the small number of participants available. Therefore, in an attempt to evaluate 

the models, both the saccadic eye movement model and the neuropsychological assessment 

model were applied to the baseline data of patients from the other clinical groups in the present 

thesis, i.e. the DOT sub-groups and Parkinson’s disease patients. This simple test is 

advantageous for the study in a number of ways. Firstly, two of the dementia sub-groups (i. 

Mixed Dementia; and ii. Vascular Dementia) actually had a diagnosis of mild dementia, thus, it 

is feasible to use these patients as a way of testing the models, a procedure which should 

indicate dementia for the majority of cases for a reliable model. Secondly, as discussed in 

Chapter 1, it is widely accepted that many MCI patients may actually be at an early stage of 

dementia (See, Chapter 1, Section 1.6.4) therefore, it is important to consider the MCI patients 

from the present study in light of this notion, to assess whether either model can predict any 

early dementia and then reflect on this outcome in view of the present mental status of each 

patient. Thirdly, a small proportion of PD patients develop Parkinson’s dementia as the 

disease becomes more advanced. Therefore, it is informative to examine the data from the 

twenty-five PD patients that were included earlier in this thesis (Study III, Chapter 5), to 

investigate whether either model predicts dementia for any of these cases and then evaluate this 

prediction in view of the present mental status of each patient. As the PD patients were found 

to have a high (good) error correction rate, the number of cases with a positive prediction of 

dementia, were expected to be minimal. A summary of the outcome from each of these 

assessments is shown below in Table 8.10. For identification purposes, the participants are 

allocated a simple number in the table.
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8.4.3.1 Mild Cognitive Impairment

The MCI patients represented an interesting test for each model as these patients were 

assessed as not having dementia, the outcomes are summarised as follows:

Case 1: This patient first attended the memory clinic at Lytham Hospital with a very 

mild memory deficit. Certainly, the clinical rating scale scores for this patient at this time 

(baseline) - high SMMSE score of 28 (out of 30) and normal EADAScog score of 9 - 

demonstrated that there were no obvious signs of dementia. However, when the patient’s 

antisaccade error rates were entered into the saccadic eye movement model, the model 

predicted that this MCI patient as having (or perhaps would develop) early dementia. 

Surprisingly, the other model using a reduced set of neuropsychological assessments, did not 

classify this patient as having early dementia. Interestingly, this patient’s scores had 

deteriorated somewhat at the 18 month test session (final), the SMMSE score falling by 3 

points to 25 and the EADAScog increasing to 11, which suggests that the patient’s deficits had 

become more severe. Some four years on from the initial test date, the present status of this 

patient at the time of writing this thesis, indicated that the patient appears to have clear signs of 

dementing illness, becoming easily confused when confronted with day-to-day tasks and only 

vaguely remembering having taken part in any type of study. Therefore, the eye movement 

model appears to have correctly predicted that the patient had early dementia in this case, a 

deficit that was apparently too subtle for initial psychological tests and clinical rating scales to 

detect efficiently.

Case 2: This patient was referred to the memory clinic following mild problems with 

prospective memory. Early cognitive tests indicated that further clinical evaluation was 

advisable. However, supplementary tests were found to be unremarkable. On entering the 

baseline scores of this patient into the saccadic eye movement model, the model classified the
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patient as having early dementia, whereas the model using a reduced set of neuropsychological 

assessment scores did not predict dementia for this case. By the final test session at 18 months, 

the clinical rating scale scores for this patient had worsened (SMMSE = 26, EADAScog 16), 

showing a subtle decline in cognition over time. On following this case up at three years post 

baseline test, the patient was found to have obvious signs of mild dementia, with severe 

memory impairment, circumlocution and confusion. The patient has no recollection 

whatsoever of having taken part in the study and does not remember the researcher (despite 

having had a close rapport during the study). Thus, the saccadic eye movement model 

predicted dementia from the initial antisaccade error components for this patient, whereas the 

neuropsychological assessment model did not (Table 8.10). However, it should be stressed 

that the initial clinical rating scale scores for this patient did draw attention to the case. 

Importantly, as mentioned above however, further psychological assessment results were found 

to be unremarkable and inconclusive.

Case 3: This case was referred to the memory clinic following mild problems with 

prospective memory. Early cognitive tests were fairly normal as indicated in Table 8.10. 

However, this patient’s memory continued to deteriorate over time and the patient no longer 

remembers having participated in the study and of particular note, she has no memory of the 

investigator with whom a good rapport was established. Puzzlingly, both regression models 

failed to predict dementia for this case, with the implication that memory may be dysfunctional 

in some patients, whilst inhibitory control and psychomotor ability remain preserved.

8.4.3.2 Vascular Dementia and Mixed Dementia

The cases with vascular dementia and also those with mixed dementia, where 

diagnosed as having a dementing illness, on entering the present study. However, as displayed 

in Table 8.10, both models were insufficiently sensitive to predict dementia for all these cases.
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The eye movement model predicted dementia correctly in five out of the seven cases, whereas 

the neuropsychological assessment model predicted only four out of the seven cases correctly.

Case number 8 has emerged as an interesting patient over time. The saccadic eye 

movement model classified this case as normal, whilst conversely, the neuropsychological 

assessment model correctly predicted dementia. This patient sustained a head injury some 25 

years ago (1980), it is therefore possible to argue that this patient's dementia actually stems 

from the head injury. Indeed, this is the conclusion recently suggested by consultants, 

following an MRI scan of the patient’s brain. The scan revealed extensive atrophy of frontal 

cortical areas, which correspond with the location of the head injury. Therefore, the location of 

the head injury may explain the nature of the outcomes from various cognitive tests. The 

patient was found to have good inhibitory control in the antisaccade task at each test session of 

the longitudinal study, however, the clinical rating scale scores were somewhat fluctuant. 

Whilst the SMMSE score remained unchanged over time (baseline = 24, 18 months = 24), the 

EADAScog score improved from a high score of 25 to a much lower score of 12. 

Psychomotor ability was well preserved in this patient (Trail Making and Gibson Spiral Maze 

scores were found to be no different to those of the EC group), however, working memory 

performance was poor, which resulted in a classification of dementia for this patient by the 

neuropsychological assessment model. This is another interesting case, where it seems 

apparent that working memory can be impaired, whilst inhibitory control is well preserved.

8.4.3.3 Parkinson's Disease

The saccadic eye movement model was applied to the Parkinson’s disease patients, and 

interestingly, three of the patients were classified as having dementia. Unfortunately, the 

neuropsychological assessment model could not be applied to the PD patients, as the full range 

of neuropsychological assessment tests were not conducted with this group. Interestingly, on 

following up the three cases predicted as having dementia, patients 11 and 12 were found to
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have developed some cognitive problems, including short-term and prospective memory 

deficits (Table 8.10). Patient 13 has also demonstrated a subtle decline in short-term memory 

performance. Of course, without a comprehensive follow-up of all the other PD patients, to 

verify as to whether they have also developed memory difficulties, these results remain 

inconclusive.

8.4 .4  The Saccadic Eye Movement Model in the Prediction of Dementia

One of the most striking observations of the present study was the ability of the 

saccadic eye movement model to detect apparently subtle deficits of inhibitory control early on 

in dementing illness. Of particular interest here, was the finding that two MCI patients were 

predicted as having early dementia by the model, which now transpires to be the case, as the 

patients display clear signs of having developed dementia. Furthermore, the model was able 

to classify mixed and vascular dementia cases with a high success rate. It may be the case that 

the key to the success of the model is that inhibitory control is a sensitive marker of early 

dementia i.e. a disturbance of inhibitory control and error correction is characteristic of 

dementia. Many batteries of psychological tests do not assess inhibitory control but instead 

concentrate to a large extent on the assessment of various types of short-term memory, 

orientation and psychomotor ability. This would explain why the MCI patients were not found 

to have dementia early on in the course of their disease.

Of practical interest, is the fact that this model was derived from patients with probable 

AD of mild to moderate dementia severity, i.e. the patients were recruited to the study in the 

early stages of disease. The main implication for the results is that a small set of variables 

from just one antisaccade task was able to distinguish between patients with early dementia 

and control participants with impressive sensitivity and specificity. Thus, there is a good 

argument in favour of the antisaccade gap task as and aid to diagnosis of early dementia. The 

antisaccade task is easy to administer and takes less time than an extensive battery of

366



8 Predicting Dementia

neuropsychological assessments. Specificity was high, i.e. the test produced very low false 

positives (3.1 %), whereas sensitivity was good, which means that the test generated few false 

negatives (17.6%). However, there is thus a risk in the applied setting, that approximately 

17% patients in the mild stages of dementia may test negative, when in fact, the are positive 

(i.e. they have dementia). Nevertheless, it is possible that the antisaccade task could be 

refined, by adjusting the temporal parameters of the visual stimuli and developing the test 

further by validating the model on many more patients considered to have early dementia. 

Thus, further research is needed to establish the test as a model paradigm. However, it is clear 

that the antisaccade gap paradigm can reliably dissociate between dementia patients and other 

groups, and that regression models have the capacity to reliably predict dementia from saccadic 

variables. Moreover, the data suggest that uncorrected errors are specific to dementia, as other 

groups (including clinical) have been shown to have high inhibition error correction rates.

Although the analysis in the present project was somewhat limited due to the low 

number of dementia patients and with regard to the relatively small number of 

neuropsychological assessments included in the test battery, it is important to note that the 

patients were also clinically evaluated prior to test and final diagnosis. Therefore, it is 

reasonable to claim that the classification of cases by each model provides a reliable prediction 

of dementia, which could potentially reduce the degree of extensive testing that is presently 

associated with the diagnosis of dementia (and specifically AD) in Health Service Trusts with 

limited resources.

8.5 Conclusions

>  The present study has demonstrated that error components of the antisaccade

gap task, specifically corrected errors, uncorrected errors and omissions, provide a 

sensitive indicator of early dementia. These variables can be successfully included 

in a logistic regression model that can be used to predict dementia.

367



8 Predicting Dementia

-v* High proportions of uncorrected errors are specific to dementia as other groups

retain the capacity to spontaneously correct errors of inhibition.

Although working memory and inhibitory control are closely associated, some 

patients appear to have a deficit of one more than the other.

*$■ A reduced set of neuropsychological assessments can reliably predict dementia

with somewhat higher sensitivity than that of the saccadic eye movement model. 

However, the saccadic eye movement model requires only one short test from 

which three sensitive variables can be derived. The neuropsychological assessment 

model on the other hand requires three separate tests.

-v* Combined with a clinical rating scale test, a refined antisaccade task that

produces high sensitivity and specificity, has the potential to provide a test that is a 

sensitive marker of early dementia, thereby facilitating early diagnosis and 

treatment with modem drugs that may provide prophylactic benefit for dementia 

patients and ease the burden of care for carers.

8.6 Limitations of the Study

The number of patients in the initial study was too small. Validation of the 

present models would require a study designed with powrer analyses and a greater 

number of patients to both replicate the existing observations and extend the 

findings further.

The final regression models were only tested on a small number of dementia 

patients of other types than AD. The models should be applied to data gathered 

from a greater number of dementia patients, recruited randomly from various 

locations widely ranging around the United Kingdom.
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Chapter Nine

General Discussion 

9.1 Introduction

The primary aim of the present thesis was to investigate the potential for sensitive 

oculomotor markers in the detection of dementia, specifically, AD given the findings of 

extensive previous research into AD, which has indicated working memory and attention 

deficits, in addition to eye movement abnormalities. Voluntaiy and involuntary saccade 

paradigms were utilized in an attempt to probe these cognitive deficits, which were described 

in the earlier chapters of the present thesis. In particular, the antisaccade task was employed, 

as this model paradigm has proved advantageous in previous studies (Broerse et al., 2001; 

Hutton et al., 2002; Monsell & Driver, 2000). This final chapter will endeavour to draw 

together the findings from each of the studies in this thesis.

9.2 A Longitudinal Analysis of Cognitive and Eye Movement Deficits 
in Alzheimer's Disease

The present thesis explored a range of oculomotor tasks specifically employed to

investigate the dynamics and behavioural characteristics of saccadic eye movements.

Additionally, a battery of neuropsychological assessments and clinical rating scales were used

to assist in the diagnosis of AD and to provide a range of cognitive measures.

A number of areas provided the focus of interest for the study, which included

inhibitory control for attention and the FOE. Error correction was also investigated and each

of these areas was examined to distinguish the effects of healthy aging from dementia.
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Furthermore, additional tests sessions were conducted longitudinally, in an attempt to look 

closely at the progression of disease over time by an extensive analysis of cognitive and eye 

movement tests.

9.2.1 Voluntary Saccade Tasks and Inhibitory Control

In the case of inhibitory control generally, it was hypothesized that as working memory 

is dysfunctional in AD diminished working memory resources would result in AD patient 

performance decreasing linearly across voluntary saccade tasks, depending on the cognitive 

load (i.e. task demand) for a given task. As working memory resources become more taxed, 

task goals are insufficiently activated and the requirement to inhibit prepotent responses would 

result in errors of inhibition. Therefore, a task that places low demands on working memory 

resources would result in lower errors of inhibition, as the level of activation for task goals 

remains sufficient to facilitate attentional processing. Conversely, a task that taxes working 

memory resources highly would result in a higher proportion of inhibition errors. The control 

groups should obviously produce less inhibition errors than AD patients, as working memory 

in these groups is relatively well preserved or intact. Thus, controls are endowed with more 

efficient online processing for a given task and ultimately greater capacity to manipulate task 

instructions and thereby inhibit prepotent response.

9.2 .2  The Fixation Offset Effect

AD patients have been found to present with a disengagement deficit from an attended 

stimulus, when required to disengage the attended stimulus and attend an alternative target. 

Correspondingly, for the FOE the general hypothesis was therefore that AD patients would 

present with an FOE of greater magnitude than that of controls. Thus, as a result of attentional 

capture by the central fixation point and a disruption in the ability to disengage this point, the 

latency of the primary saccade to the peripheral target in overlap tasks would be prolonged.
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9.3 Discussion of Findings

9.3.1 Inhibition Errors

A number of analyses were carried out on inhibition error rates in an attempt to 

investigate thoroughly the sensitivity of this measure to the effects of disease. These analyses 

included the following:-

• Comparison of inhibitory error across voluntary saccade tasks

• Analysis of corrected and uncorrected errors

9.3.1.1 Inhibitory Errors Across Voluntary Saccade Tasks

The main findings from this analysis were that dementia patients as a whole and at the 

sub-group level of AD and DOT, committed higher proportions of inhibition errors than the EC 

group on each voluntary saccade task, as predicted (Study I). However, there was no 

significant difference between sub-groups (i.e. between ADs and DOTs). Furthermore, data 

from PDs and YCs in Study III, revealed that these effects were able to distinguish between 

dementia and the effects of normal aging and moreover, PD. Importantly, a linear trend was 

also found in the data, relating to the demands of the voluntary saccade task, supporting the 

hypothesis that error rates would increase linearly in accord with task demand: The No-Go 

task, placing least demand on working memory resources, through antisaccade gap task and the 

Go/No-Go task taxing working memory resources to the highest degree. The results from the 

present study are consistent with a depletion of working memory resources, as found in AD 

may be explained in terms of poor inhibitory control and thus the generation of inhibitory 

errors.

As previously discussed in Section 3.1, there is healthy debate concerning the primary 

mechanism by which inhibition is delivered. Hasher and Zacks (1988) for example, postulated 

that inhibitory mechanisms are less efficient with age, as task-irrelevant information becomes
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more active in working memory. Along a similar trend of thought, other researchers 

hypothesise that errors of inhibition in eye movement tasks can be explained as a consequence 

of depleted working memory resources and with effective inhibition and attentional processing 

requiring that task goals be sufficiently activated in working memory.

The findings outlined above support the results from previous research in healthy 

individuals and schizophrenic patients which investigated the antisaccade task and variously, 

the consequences of varying task demands or secondary tasks on working memory resources 

(Eenshuistra, Ridderinkhof & van der Molen, 2004; Hutton et al., 2002; Mitchell et al., 2002; 

Roberts et al., 1994; Stuyven et al., 2000; Walker et al., 1998). However, in the present thesis 

correlations between AD group voluntary saccade inhibition error rates and cognitive tasks that 

require working memory, were found to be varied in size from weak to only moderate strength. 

In fact, only the antisaccade gap task was moderately correlated with Spatial Span Reverse, 

Digit Span Reverse and Trail Making Form A.

How can the lack of correlation between the more demanding Go/No-Go task inhibition 

error rate and cognitive tasks that place demands on working memory resources be explained? 

One possible alternative explanation is that there was a high variance in the scores of 

individual participants on the different tests, hence the weak correlations. However, there is a 

further plausible explanation that corresponds with the pattern of results and this is that 

working memory and inhibitory control could feasibly operate as individual parallel systems, 

the performance of which will co-vary depending on the nature of a given task (Figure 9.1).
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Figure 9.1 The Components of Working Memory and Inhibitory Control Co-vary 
Depending on the Nature of a Given Task

Component deficits vary depending on the 
task and dementia patient 

< ►

Working
Memory

Inhibitory
Control

Crucially, for the present thesis, working memory and inhibitory control could co-vary 

according to the AD patient. Therefore, some patients may have good working memory and 

poor inhibitory control, and the converse of this situation could conceivably be the case for 

other patients, whilst some patients have more of an even performance between the two 

components. This notion would also support the idea of a competition between two parallel 

programmes as discussed in Section 3.1, the reflexive automatically generated programme and 

the endogenously generated voluntary saccade programme each competing to execute a 

saccade (Massen, 2004; Mockler & Fischer, 1999). Attention and inhibition can be viewed as 

two sides of the same coin and when task goals are sufficiently activated in working memory 

(Miller & Cohen, 2001; Nieuwenhuis et al., 2004), the attentional biasing is sufficiently 

activated to attend to the task appropriately.

Longitudinally, inhibition error rates were not found to change significantly for either 

group over time, the 18 month period of testing reflecting little change in the progression of 

AD, although a non-significant increase was observed overall in each task. However, it is 

possible to argue these results are somewhat complicated by the fact that medication with 

acetylcholinesterase inhibitors may have produced a subtle improvement (reduction) in the 

error rates for each task at the 6 month test session.
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9.3 .1 .2  Error Correction

On committing saccadic errors, the majority of healthy individuals frequently generate 

a spontaneous corrective saccade so as to position the eye to the correct location in accordance 

with task instructions. By far the most prominent observation in the analysis of inhibition 

errors for the present thesis was the low corrective error rate of AD patients. This was 

examined in the first instance during Studies I and III (Chapters 3 and 5 respectively) where 

the factor correctness of performance was found to reveal a profile that was different to that of 

the other groups. Specifically, the antisaccade gap task variables for the proportions of correct 

saccades, corrected errors and uncorrected errors were found to have a flat profile for the AD 

group. However, the data for each of the other groups consistently produced a profile with a 

linear trend across these three variables. Therefore, this profile is able to distinguish between 

the effects of normal aging and also between disease effects for AD and PD. These findings 

highlight the potential for error correction rates as a possible sensitive diagnostic marker for 

AD, and the plausibility of their inclusion in some sort of predictive model. The profile for 

correctness of performance was chosen as it incorporates the data from all participants in the 

study, thereby providing an account of performance for the whole group. This is in contrast to 

the error correction rate that was utilised in the discussion section (8.4.2) of Chapter 8, which 

only includes participants that have generated errors (corrected errors/inhibition errors xlOO). 

The vital component for either analysis was observed to be the uncorrected error rate for the 

AD patients. An additional analysis from the present project in a recently published article, 

showed that the corrected errors were just as common in the second half of the task as in the 

first half (Crawford et al., 2005a). Thus, this result confirms that the corrected error rate does 

actually indicate that patients have understood the task instructions and furthermore, that 

spontaneity of error correction is intermittent in AD. This finding is important as it 

demonstrates that patients understood the demands of the task, following training with the 

clinical antisaccade task and subsequent practice trials prior to commencing the task.
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Moreover, it also shows that uncorrected errors in AD are not the result of patients having 

forgotten the task instructions, due to memory deficit. Previous research showed that 

individuals are likely to modify behavioural responses on detecting errors, facilitating a 

decrease in further errors (Rabbitt, 1967). However, it is evident that this is not the case for 

the AD patients in the present thesis, who demonstrate a sporadic dysfunction in error 

monitoring, as errors occurred intermittently during the antisaccade task. These findings 

suggest that the AD patients in the present study have a dysfunction of error monitoring that is 

distinct from control participants and two other clinical groups, PD and as described in Chapter 

8, schizophrenia. A significant increase in the uncorrected error rate for the AD group was 

also observed to occur longitudinally, between the 6 and 18 months test sessions indicating that 

this measure is sensitive to the progression of AD over time.

Recent studies have found evidence to suggest that the neural substrates involved in 

error correction and self-monitoring include the ACC and DLPFC (Section 1.4.2.3). In 

particular the ACC is believed to be specifically involved in error processing (Garavan et al., 

2002; Ito et al., 2003; Menon et al., 2001), whereas the DLPFC is involved in response 

inhibition and monitoring competition between tasks (Gaymard et al., 2003; Matsuda et al., 

2000; Menon et al., 2001; Pierrot-Deseilligny et al., 2004). Alternative explanations to account 

for sporadic uncorrected errors in AD antisaccade performance, could involve a dysfunction of 

working memory, which corresponds with the ideas set out in Section 9.3.1.1. A further 

explanation could involve a fixation disengagement deficit. Thus, once a reflexive saccade has 

been generated inappropriately by the VGR in response to the peripheral stimulus in the 

antisaccade gap task, the AD patient has difficulty disengaging fixation from the already 

attended target location and thus there is a generating a saccade to an empty location. This 

observation may be specific to the antisaccade task and possibly involve a disturbance of 

working memory.
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9.3.2 The Fixation Offset Effect for Reflexive Saccades

As hypothesized, the reflexive saccade FOE was found to be of a significantly greater 

magnitude for the AD group at baseline compared with that of the EC, PD and YC groups23. 

Although the magnitude of FOE for the AD group was also greater than that of the DOT group, 

this difference was non-significant. Surprisingly, the magnitude of this measure did not 

increase over time as hypothesized. Conversely, the magnitude of FOE actually decreased 

over the following test sessions from baseline through 18 months. Study V (Section 7.4.6) 

offered two possible explanations for the decrease of FOE over time. The first explanation 

suggested that the decrease over time in reflexive saccade overlap task latency could be the 

result of deterioration in the fixation system. This idea is supported by Bylsma et al. (1995) 

study, which found that intrusive saccades interrupt fixation longitudinally in AD. Therefore, 

this notion would correspond with a dysfunction of inhibitory control overtime, as found in the 

antisaccade gap task (uncorrected errors). However, a plausible alternative explanation for the 

reduction of FOE was also postulated in Study V (in Chapter 7), and suggested that early on in 

the course of the disease, it is possible that patients tended to apply compensation strategies to 

counter a dysfunctional fixation system (commensurate with the attentional deficits reported in 

previous AD research (Parasuraman & Haxby, 1993; Perry & Hodges, 1999). However, this 

fixation dysfunction may be such that the AD patients over compensate when attending the 

central fixation point. It is feasible that this adaptive behaviour manifests as the observed 

increase in latency during the reflexive overlap task, when the central fixation point overlaps 

temporally with the appearance of the peripheral target in contrast to the gap task, where 

following offset of the central fixation point, a temporal gap of 200 msecs. elapses prior to 

onset of the peripheral target. Over compensation could have the effect of exaggerating the 

FOE. However, the phenomenon could diminish over time, as dementia severity worsens and 

patients no longer over compensate so that the FOE settles down to a lower magnitude, but a

23 The PD and YC groups were only analysed in Chapter 5. Longitudinal data was not gathered from the PD and 
YC groups, i.e. these two groups are not included in Chapter 7.

376



9 General Discussion

magnitude that is nonetheless larger than that of the EC group, as indicated by the longitudinal 

results.

This notion corresponds with mild dementia, which was the severity rating for the 

majority of the cases at baseline. Furthermore, volitional control was a faculty that remained 

reasonably functional at this stage of illness. Note, that these patients were able to participate 

successfully in the voluntary saccade tasks, having completed the No-Go, Go/No-Go and 

antisaccade paradigms (following the reflexive tasks). Moreover, notwithstanding that the AD 

patients commit an abnormal proportion of inhibition errors on the voluntary saccade tasks 

(compared to the EC group), it is important to remember that they were also able to correct 

inhibition errors to some degree (baseline mean antisaccade gap task = 27.2 % of trials). A 

further interesting point, is that the mean latency for the AD group in the reflexive saccade 

overlap task was 293 msecs., which is actually not very much shorter than the antisaccade gap 

task latency of the EC participants (304 msecs.) and AD participants (336 msecs.). Antisaccade 

gap task amplitude (4.3°) for the AD group also indicates fair accuracy for target location, 

further confirming task understanding. Taken together, these observations offer good support 

for the view that the AD patients could have been using volitional compensation in an attempt 

to comply with the task instructions for the reflexive saccade overlap task and counteract 

disturbance of the visual fixation system. In essence, it is reasonable to suggest that perhaps 

the AD patients performed the task along the lines of a voluntary saccade task, rather than a 

reflexive task, however, the simplicity of the task resulted in saccades of shorter latency than in 

the antisaccade task. However, by the end of the longitudinal study the volitional 

compensation had deteriorated somewhat, leaving a FOE of magnitude that was only subtly 

larger than that of the EC group - which for the AD group, is the manifestation of the putative 

fixation disengagement deficit. This deterioration of voluntary control would also correspond 

with the progressive degeneration found in AD, of frontal cortex and the limbic system. 

Furthermore, the reduction in voluntary control is also consistent with the increase reported in

377



9 Genera! Discussion

Chapter 7 for the proportion of antisaccade uncorrected errors by the final test session at 18 

months of longitudinal study.

The neural basis for the fixation disengagement deficit in AD can be envisaged in terms 

of the Forbes and Klein model, which was discussed in Study II (Section 4.1, Chapter 4). 

Figure 9.2 is a modified version of Figure 4.1, and highlights the proposed areas for the model 

that result in the fixation disengagement deficit in AD.

In healthy individuals, the ENDO and EXO systems both receive stimulation for 

reflexive saccades, however, VGR foveation is assisted by saccadic parameters and commands 

that are mostly generated by the EXO system. When a fixation point is presented, the fixation 

cells of the SC provide a brake by inhibiting movement cells in the SC and providing 

excitatory stimulation of the inhibitory omnipause neurons in the SAC system. By removing 

the fixation point, the systems are disinhibited and saccade latency reduced.

F ig u re  9 .2  The Forbes & Klein Model Illustrating the Functional Activity Between 
Endogenous (ENDO) and Exogenous (EXO) Systems in the Control of 
Saccade (SAC) Generation. Modified to Highlight the Theorised 
Neurodegenerative Links for Alzheimers' Disease

M o v e

[Modified]
Source: Forbes & Klein (1996)
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In Figure 9.2 certain links in the Forbes and Klein model have been highlighted in red 

to indicate where in the model, the putative disruption of the fixation system occurs in AD. 

The present thesis draws the conclusion that the disruption occurs in elements of the EXO 

system, corresponding with reflexive saccades or using terminology from the Forbes and Klein 

model, exogenously generated saccades. Here, according to the model, the neural substrates 

involved in the generation exogenous saccades involve the SC and the parietal cortex. The 

parietal lobe is reported to have reciprocal connections with the FEF, which is also known to 

possess fixation and movement cells, thus, the parietal lobe, in particular the PEF provides an 

important interface with brainstem nuclei. As latency in the reflexive saccade gap task was 

found to be normal for the AD group, it is probable that the SAC system and perhaps the SC 

component of the EXO system are functioning normally. However, when the fixation point 

remains illuminated in the reflexive overlap task, it is hypothesized here, that latency is subtly 

prolonged by comparison to that of the EC group, due to dysfunction of the fixation cells or 

movement cells in the FEF or PEF in the parietal lobe. Note that Section 1.4.2.2 emphasized 

the vital importance of the PEF in coding for particular objects of interest in spatial coordinates 

and in the generation and triggering of saccades.

An alternative, but less likely explanation for the prolongation of saccades in the 

reflexive overlap task, would be to draw attention sub-cortically, to a possible disturbance of 

the fixation cells in the SC (Section 1.4.1.2) which has been found to be the neural correlate of 

the FOE (Dorris & Munoz, 1995). These areas would seem to be the most likely locations in 

which a disturbance of fixation would occur in AD, given the neuropsychological background 

of the disease. However, it should be noted that previous lesion evidence has found that 

fixation impairments can be induced not only by lesions to the FEF and SC, but also the 

cerebellum, DLPFC, SMA, inferior parietal lobule and basal ganglia (Anderson et al., 1994; 

Leigh & Zee, 1999; Petit et al., 1999).
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9.3.3 Neuropsychological Assessment

In Chapter 7, an extensive and thorough examination of neuropsychological assessment 

and clinical rating scale scores was conducted on longitudinal data gathered from four test 

sessions spanning a period of 18 months at 6 monthly intervals. With the exception of the 

Digit Span Forwards test, all neuropsychological assessment tests and clinical rating scales 

were found to result in poorer performance scores for dementia patients as a whole and the AD 

patient sub-group, when compared with the scores of EC participants. Thus, the Digit Span 

Forwards test, which assesses short-term auditory memory and can also be considered as an 

index of attention or concentration, was insufficiently sensitive to detect the subtle short-term 

memory problems symptomatic of all dementia patients in the study.

However, this broad analysis revealed that with the exception test of the Digit Span 

Reverse test, none of neuropsychological assessments were sufficiently sensitive to the 

progression of AD (within-groups) over the period of 18 months. These results demonstrate 

that although the tests are sensitive in detecting the difference between mild dementia and 

healthy control participants, having poor temporal resolution they detect little by way of 

change overtime. The range of tests comprising the present battery is also rather limited by 

comparison with the number tests contained in some of the more extensive test batteries that 

are in use (see Chapter 8). Thus, it is a plausible argument, to suggest that in many memory 

clinics the number of tests involved in the assessment for the diagnosis of AD is almost 

certainly too high, as clinicians try to ensure high sensitivity in an attempt not to miss any 

patients (however, a counter argument might suggest that it is important to establish a deficit 

remains, even if that deficit has not changed over time). Therefore, it would be advantageous to 

the clinician to be able to reduce the number of tests in a battery when it is appropriate to do so, 

thereby reducing the labour intensity of diagnosis, potential for test duplication and the 

possibility of unnecessary fatigue for patients. The aim of Study VI in Chapter 8, was to 

investigate the range of eye movement test variables and neuropsychological assessments, in
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an attempt to find a sensitive set of regressors that would successfully predict dementia. This 

approach is discussed in the following section.

9.4 Predicting Dementia

In Study VI of the present thesis, the saccadic eye movement variables and 

neuropsychological assessments found to be of salient value in distinguishing between 

groups in the earlier studies of the thesis were evaluated to establish their ability to predict 

dementia. The rationale behind this study was to attempt to find a model that could predict 

dementia efficiently with the least set of predictors as possible. The benefit of such a 

model would be that patients with early dementia could be diagnosed effectively with a 

minimum number of tests, perhaps along with the SMMSE or EADAScog. Additionally, if 

patients could be diagnosed as having dementia with some certainty at the earliest 

opportunity, then there is potential for early treatment or prophylactic action from modern 

anti-dementia drugs, such as the acetylcholinesterase inhibitors.

Two models were achieved in the study using logistic regression for the prediction 

of dementia using the AD group of patients. The first model used a reduced set of 

neuropsychological assessments, the most efficient of which was found to combine Spatial 

Span Reverse, Trail Making Form A and the Gibson Spiral Maze test as predictors. 

Prediction success was impressive in this model, with 93.8% of dementia patients and 93.8% 

of EC participants, correctly predicted. Thus, the model reached an overall success rate of 

93.8%. The variables in this model were also able to account for a large amount of variance in 

disease status, having a high R2 of .876. Therefore, both sensitivity and specificity were very 

good in this model, the model performing with few false negatives or false positives.

The second model incorporated saccadic eye movement predictors and found that the 

solution for the best model included antisaccade gap task variables. The best predictors of 

dementia in this model were found to be corrected errors, uncorrected errors and omission
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errors. Interestingly, omission errors emerged as a good predictor of dementia, but were 

analysed in Study I without finding statistical significance. The reason for this earlier non­

significant finding was that the statistical procedure employed in the study used age as a 

covariate (i.e. to control for age as a precautionary measure) and this almost certainly removed 

some of the treatment effect, reducing the likelihood of obtaining a significant result. For this 

model, 82.4.0% of dementia patients and 96.9% of EC participants were correctly predicted 

and the overall success rate was 91.8%. A strong level of variance was accounted for in 

disease status by this model with the R2 value reaching .683. Sensitivity for this model was 

not quite as high, indicating the chance of higher false negatives in application, however, 

specificity was slightly higher than the neuropsychological assessment model showing that 

fewer false positives would be generated when applying the model to cases.

A further model was attempted, in an effort to obtain a superior model by combining 

neuropsychological predictors with saccadic eye movement predictors, but to no avail. 

Therefore, no benefit was found by combining measures from saccadic eye movement 

variables with neuropsychological assessment scores.

In comparing the detectibility of the two models using ROC analysis, both models 

performed impressively showing that the area under the curve was > 0.9 in each model. 

Thus, the trade-off between true positives and false negatives was shown to be negligible 

for each model and with that there would be no significant difference between the two 

models.

Both models were tested on the data from the DOT patients and also, on the PD 

patients from Study III. For the DOT patients, the saccadic eye movement model predicted 

seven out of ten cases correctly, whereas the neuropsychological assessment model 

correctly predicted only four out often cases (Table 8.10). It is interesting to note that the 

eye movement model predicted two MCI patients as having dementia and that these two 

cases have now deteriorated into a demented state (which the neuropsychological
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assessment model failed  to do). However, one of the MCI patients now has an extremely 

severe memory deficit, but unfortunately neither model predicted dementia with this 

patient’s data. Three PD patients were classified as having dementia by the saccadic eye 

movement model24 and post-test follow-up suggested a significant deterioration in 

cognition for these patients, particularly for two of the patients who appeared to have 

developed prospective and short-term memory deficits (one of the patients presenting with 

word finding difficulties with circumlocution). It is of course possible that these patients 

are in the process of developing Parkinson’s dementia. However, without following up the 

rest of the PD group to assess their mental status, it is impossible to conclude precisely 

how well the model has performed on these patients i.e. some of the patients who the 

model classified as not having dementia (who were omitted from Table 8.10) may now 

have some dysfunction.

A crucial difference between the two models is that the saccadic eye movement 

model requires three predictors that are derived from only one short antisaccade task, 

which takes only a matter of minutes to train, set-up and conduct the test with the patient. 

However, the neuropsychological assessment tests take substantially longer to conduct and 

are possibly more susceptible to problems of conformity with the patient, who may not 

wish to comply with memory tasks, computer based tasks or pencil and paper tests. During 

the course of the study, none of the patients complained of the eye movement tasks, but 

occasionally became fatigued or annoyed with neuropsychological assessment despite 

having developed a good rapport with the researcher.

The present results of the antisaccade dementia prediction model are promising and 

if developed, has the potential to form a useful aid to assist in the prediction of early 

dementia perhaps when incorporated with the SMMSE and EADAScog.

24 Unfortunately PD patients were not tested with the full range of neuropsychological assessments.
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9.5 Methodological Considerations

Study IV assessed the baseline data of medicated and non-medicated patients, in an 

attempt to eliminate medication with acetylcholinesterase inhibitors as a confounding variable 

at that stage of the study (as medicated patients had only commenced medication shortly -  in 

the majority of cases -  prior to baseline test). Although the study concluded that there were no 

medication effects for that stage, all but one of the patients were on medication throughout the 

test sessions following baseline measurement and as the data demonstrate, there appear to be 

some subtle medication effects. However, this study was not a clinical trial and at no time was 

it under consideration that patients should be deprived from medical treatment that had the 

potential to improve quality of life. Therefore, with regard to the longitudinal data, there are a 

number of points that should be noted regarding dementia patients treated with 

acetylcholinesterase inhibitors, which are as follows:

• Patients may respond differently to each drug.

• It is not clearly established which dementia patients derive benefit from which drug.

• No all patients derive benefit from medication with acetylcholinesterase inhibitors.

• Some patients suffer side effects from acetylcholinesterase inhibitors, including 
sickness and diarrhoea, which may affect performance at test.

• Neuropsychiatric presentation in dementia patients fluctuates.

Therefore, in view of these observations care should be taken when interpreting longitudinal 

data.

A further point of interest concerns the equipment used for the present study. Although

the headset was fairly lightweight, any research in relation to the development of the prediction

model would benefit from a ‘headset free’ system, to minimize the potential for fatigue in

patients. Without the headset, it is possible that the number of trials could be increased to 40

(from 24) per block, thereby improving the reliability of the data. The present Express Eye

headset system has a sample rate of 500 Hz, if future development of the prediction model only

required the analysis of saccade behavioural characteristics i.e. the saccadic errors of the
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present prediction model and not saccade dynamics, then a sample rate of 250 Hz or less would 

be quite sufficient and considerably cheaper than a head set free 500 Hz system.

The results of the present thesis were weakened somewhat, by the low number of 

dementia patients that were available for participation. Findings for the study would have been 

much more robust, had the study been able to include more patients. Future study will 

endeavour to increase numbers to between eighty and one hundred patients to rectify this 

situation.

9.6 Future Research

The present thesis has drawn attention to a number of potential areas for future 

research. Firstly, studies in the future should consider validating the error correction rate as a 

diagnostic marker for dementia. This should be carried out with considerably more 

participants than took part in the present study. The antisaccade model to predict dementia 

could be applied to these data. An additional element of the study could manipulate temporal, 

spatial and luminance characteristics of targets in the antisaccade gap task, in an attempt to 

ascertain the structure of the uncorrected error in dementia, particularly AD. Can error- 

correction be assisted in dementia patients by manipulating target features, or any of the 

characteristics mentioned previously? As outlined in Chapter 2 for example, previous studies 

have indicated that target luminance has a direct effect on saccade latency (Crawford, 1996; 

Reuter-Lorenz et al., 1991). The time-course of the uncorrected error could feasibly be plotted, 

by changing the central fixation offset and target SOA through a range of temporal gaps.

It would also be interesting to investigate the FOE for reflexive saccades in greater 

depth on AD patients. The SOA for this task could also be manipulated to plot the time course 

of the reflexive saccade FOE, perhaps using SOAs of 0, 100, 200, 300 and 400 msecs. If 

volitional compensation strategies were being adopted by mild dementia patients in the present 

thesis, resulting in the large magnitude of FOE at baseline, then an intermediate SOA may
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remove the capacity to compensate. Additionally, manipulating target eccentricity many also 

have an effect on volitional compensation.

Further research could explore the inhibitory effect of a recent distractor (Crawford, 

Hill & Higham, 2005b) in AD patients. It is postulated that visuomotor centres are linked 

areas of the brain that identify the spatial location of a distractor. This information is used by 

the visual system to inhibit eye movements to that location. This task is possibly a somewhat 

simpler alternative task to the antisaccade task, for AD patients to participate in. The 

participant simply has to ignore distractors that appear on screen simultaneously with targets. 

Therefore, in a large study high success and reliability rates could be anticipated. The task 

comprises two target screens, the first with a target and a distractor and the second with a target 

only, which can appear at the same location as the target in the previous screen, the location of 

the distractor in the previous screen, or a new location altogether (three conditions). Error- 

correction rates could be derived from inhibition errors to target screen one and the latency for 

saccades to screen two following errors in screen one could also be monitored. For successful 

trials where the target was located successfully in screen one (and the distractor inhibited) the 

primary saccade latency for the saccade in target screen two would be the key measure 

compared across the three experimental conditions. To reiterate, the task should be is easier 

for patients to do, but similar information to the antisaccade task could be derived with 

minimal training.
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APPENDIX 1

INFORMATION SHEET - Eve Movement and Memory Study

You are being invited to take part in a research study. Before you decide, it is important that you 

understand why the study is being done and what it will involve. Please take time to read the following 

information carefully and discuss it with anyone you wish. Please ask if there is anything that is not 

clear, or if you want more information. Take your time to decide whether or not you want to take part.

BACKGROUND

We have recently started a research project looking at memory and concentration. The aim of the study is 

to look at whether eye movement tests can help us in the assessment of patients with this type of 

difficulty. A team of local hospital and university researchers have decided to undertake this research to 

try to help us understand if abnormal eye movements are related to early memory problems. We hope 

that in the long term this research will help to improve our understanding of diseases associated with 

memory problems.

WHAT IS INVOLVED ?

The research project involves tests looking at how fast and accurately your eyes move in response to the 

movement of a small target. In order to record your eye movements a small helmet will be placed on 

your head, and you will be asked to track the target whilst your eye movements are monitored.

Normally the eye movement tests will last for approximately 25 minutes but you can rest at any time if 

you would like a break.

We will also need to conduct some specific memory tests. This will involve the researcher talking to 

you and asking you some questions. This will enable us to understand how eye movements are related to 

memory. These tests may be conducted over several sessions and will take approximately 2 hours to 

administer. You may rest at any time during the study if you wish.

Your decision on whether to participate in the study will have no bearing on your treatment. You will be 

free to withdraw from the study at any time should you so wish. Should you choose do so this will have 

no effect on your treatment or management.
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APPENDIX 2

CONSENT FORM : Eye Movement and Memory Study

1. Please read this carefully.

2. If there is anything that you do not understand about the information sheet or consent form or 
you want to ask any questions; please speak to Steve Higham whose number and address is 
at the bottom of the Information sheet attached.

3. Please check that all the information is correct. If it is and you understand the information 

please tick the boxes G below and sign the form.

D  I h a v e  read  an d  received  a  copy of th e  R e sea rch  Information S heet.

□  I h a v e  had  th e  opportunity  to  a sk  q u es tio n s and  d iscu ss  th e  study.

D  I h av e  received  en o u g h  inform ation ab o u t th e  study.

D  I h av e  sp o k e n  to  so m e o n e  involved in th e  research .

D  I u n d e rs ta n d  th a t I am  free  to  withdraw  from th e  study a t any  tim e without giving a  rea so n  and  without 

it affecting th e  future c a re  of e ither m yself or a  relative/friend.

D  I h a v e  had  en o u g h  tim e to  think ab o u t th e  study, talk to relatives and  friends ab o u t it and  to  decide , 

w ithout p re ssu re , if I w an t to  tak e  part.

D  I a g re e  to  ta k e  part in th e  re se a rch  study.

N am e (BLOCK CAPITALS p le a se ) ....................................................................................

S ig n a tu re .........................................................  D a te ...............................................................

N am e of w itn ess  (BLOCK CAPITALS p le a se ) ............................................................

S ig n a tu re  of w itn e ss .................................................................................................................

RMO (BLOCK CAPITALS p le a se ) ...........................................................................

S ig n a tu re  of RM O........................................................................................................................
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APPENDIX 3

Participant History

Participant:........................................................  Date:

DOB:..................................Place of birth:....................................

Histoiy:...........................................................................................

Siblings: None| | Brother(s) | [ Sister(s) | | Retirement Age

Single | | Married | |. Widowed | | Divorced| | Children: None | | Boy(s) | | Girl(s) | |

Familial dementia:

Education:- Primary: Yes| | No| | Senior: Secondary| | Grammar | |

Starting ag e   Other | |

Left school aged:

Health:

Medication: 

Smoking: .. 

Alcohol: ....
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APPENDIX 4

Snellen  Chart
60

o
H L A
N T C O
H L A O T
N  T  O  1- A  E

6

L  N E T H O A 

O T L H E  N A C

L H T O C N E A
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APPENDIX 6

Clinical Dem entia  Rating Scale CDR

C a te g o ry
H e a lth y  
CD R  O

Q u e s tio n a b le  
d e m e n t ia  C D R  0.5

Mild d e m e n t ia  
C D R  1

M o d e ra te  d e m e n t ia  
C D R  2

S e v e re  d e m e n c ia  
C D R  3

M em ory N o  m em ory loss o r  
slight inconstant 
forgetfulness

Mild consistent forgetful­
ness; partial recollection 
of events;‘benign’ 
forgetfulness

M oderate m em ory loss, 
m ore marked for recent 
events; defect interferes 
with everyday acuvities

Severe m em ory  loss: 
only highly learned 
m atenal re tan ed : new 
m atenal rapidly b s t

Severe m em ory loss, 
only fragments remain

O rien tation Fully oriented Some difficulty with tm e  
relationships: o riented 
for p h ce  and person  at 
examination but may 
have geographic 
dtsonentation

Usually disoriented in 
time, often to  p hce

O riental o n  to  person 
only

Judgment + 
problem  
so lvng

Solves every day 
problem s well; ludgment 
good in relaucn to  past 
perform ance

Only doubtful 
impairment in solving 
pncfclems. similarities, 
differences

M oderate difficulty in 
handling complex 
problems', social 
ludgment usually 
maintained

Severely impaired in 
handling problem s, 
simibritles. differences; 
soon! ludgment usually 
m paircd

Unable to make 
ludgpnents o r solve 
problems

Com munity
affairs

Independent fm ction  at 
usual level in |ob. 
shopping, business and 
fnandal affairs, volunteer 
and socn l groups

On|y doubtful o r mild 
impairment, if any. in 
these activities

Unable to  fm ction 
independently at these 
activities though may still 
be engaged in some; may 
still appear normal to  
casual inspection

N o pretence of ndependent function outside hom e

H om e ♦ 
hobbles

Life a t  hem e, hobbies, 
intellectual interests veil 
m antained

Life at hom e.hobbies, 
intellectual interests well 
maintained o r  only 
slightly impaired

Mild but definite 
impairment of function 
a t hom e;m ore difficult 
chores abandoned; m ore 
complicated hobbles and 
interests abandoned

O nly simple chores 
preserved: very 
restricted interests, 
poorly sustaned

N o sigiifirant function in 
homo outside of own 
room

Personal care Fully capable of self care N eeds occasional 
prompung

Requires assistance in 
dressing, hygiene, keeping 
o f personal effects

Requires much hefc) with 
personal care: often 
incontinent

Score using box overleaf. Score as 0 .0 . S. 1 .2 .3  only if m pairem ent is duo to  cognitive bss.

Hughes CP etal̂ Br J Psychiatry 1982; 140; 566-572.
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APPENDIX 6

Clinical Dem entia  Rating Scale cont'd CDR

ASSIGNING THE CLINICAL DEMENTIA RATING

T h e re  a re  tw o  m eth o d s o f combinir^g th e  dom ain sc o res  to  give the  overall C D R .T h e  dom ain sc o re s  can 

e ith e r  be sum m ed  to  give th e  CDR-SB (Sum o f  Boxes) sc o re , o r  an algorithm  can b e  used  as follows:

T h e  global C D R  sc o re  is derived  from  th e  sco res in each of th e  six  categories. M em ory  (Mi is consid ered  the 

p rim a ry  ca te g o ry  and all o th e rs  are secondary. CD R = M if a t least th re e  seco n d ary  ca tegories a re  given the 
sam e s c o re  as m e m o ry .W h en ev e r th re e  o r  m o re  se co n d ary  ca tegories a re  given a sc o re  g re a te r  o r  less than 

th e  m e m o ry  sc o re . C D R  equals the  sco re  of th e  m ajority  o f  se co n d ary  ca tegories th a t are  o n  w hichever side 
o f  M has th e  g re a te s t  num ber o f  secondary  categories. If th e re  a re  ties in the  seco n d a ry  ca teg o ries  on  o n e  
s ide  o f M. th e  C D R  sc o re  c lo ses t to  M is chosen.

W h en  M = O S. C D R  = I if a t  least th re e  o f  th e  o th e r  ca tegories a re  sc o red  o ne  o r  g rea ter. If M = 0 5. CD R 

c a n n o t be 0 . it can only be 0.5 o r  I . If M = 0. C D R  = 0  unless th e re  is questionab le im pairm ent in tw o o r 
m o re  se c o n d a ry  ca teg o ries , in w hich case  CD R = 0.5.

Score 0 0.5 1 -»i. 3

M

O

JPS

c

HH

PC

C D R  0 -  N o  D e m e n tia C D R  2 -  
M o d e ra te  D e m e n tia

Mark in only one box for each category. To assign the CDR. 
see grids on the right. Shaded areas indicate defined range 
within which the scores of individual subjects must fall to be 
assigned a given CDR.

Clinical Dementia Rating □

CD R 0.S -  
Q u e s tio n a b le  D e m e n tia

Score 0  0 .5

CDR I -  Mild D em entia

Score 0 0.5 1 2
M
O
JPS
c

HH
PC
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APPENDIX 8

Clinical an tisaccade  te s t report

N am e:............................................  Stage: Date:

T est seq u en ce :

Trial
1. Anti saccade Right (Inhibit left)

2. Anti saccade Right (Inhibit left)

3. Anti saccade Left (Inhibit right)

4. Anti saccade Right (Inhibit left)

5. Anti saccade Left (Inhibit right)

6. Anti saccade Left (Inhibit right)

7. Anti saccade Right (Inhibit left)

8. Anti saccade Left (Inhibit right)

9. Anti saccade Right (Inhibit left)

10. Anti saccade Right (Inhibit left)

11. Anti saccade Left (Inhibit right)

12. Anti saccade Left (Inhibit right)

Correct Primary =

Corrected errors =

Uncorrected errors -

Correct Corrected
Primary error

Score Proportion

Uncorrected
error
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APPENDIX 9

Vertical
adjustment

Chin rests comfortably 
into chin s lo t.

▲

Front view

View from above

Participant faces this way

Swivel/tilt

Chin rests chin into the felt-lined chin slot above and 
places arms folded in front of chest resting on elbows here

Chin Rest
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APPENDIX 10

Adjustable target screen (for desk mounting)

Target screen 200 x 90 (mm) 
[original made of Perspex]

□

Target 
screen is 
free to 
move up 
and down.

Holding
screws Target screen

25 mm x 25 mm 
square box tubing

Base
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Experim ental P rocedure: Infra-red O culography APPENDIX 11

1 R eflex  S acc ad e  G ap - look at the lights as quickly and accurately as  you can

Explain Central fixation: 1000ms duration
calibration Target onset: 1200ms; 1798ms duration
Instructions Target offset: 2998ms
5 practice trials - stop SRT start: 1200ms
24 experimental trials Pause: 1200ms Trial end: 2998ms
R/L 50%

2 R eflex  S acc ad e  O verlap  - Look at the lights as  quickly and accurately as you can

Expla in Central fixation: 2998ms duration
calibration Target onset: 1200ms; 1798ms duration
Instructions Target offset: 2998ms
5 practice trials - stop SRT start: 1000ms
24 experimental trials Pause: 1200ms Trial end: 2998ms
R/L 50%

3 Inhibition of VGR: Look at the central target and ignore the targets that appear
NO-GO to the Right or Left.

Explain Central fixation: 1000ms duration
calibration Target onset: 1200ms; 700 ms duration
10 trials T arget offset: 1900ms
R/L 50% SRT start: 1200ms

Pause: 1000ms Trial end: 1900ms

4 (GO-Left / NO-GO-Right) I'm going to give you a rule; If the target appears to the Right,
I want you to ignore it and keep looking straight ahead. But if the target appears on the Left 
then look at it.

Explain Central fixation: 1000ms duration
calibration Target onset: 1200ms; 700 m s duration
Instructions Target offset: 1900ms

5 practice trials - stop SRT start: 1200ms
10 experimental trials Pause: 1000ms Trial end: 1900ms
R/L 50% Repeat with converse instruction.

(GO-Right/NO-GO-Left)

5 Anti S acc ad e : G ap - Direct your gaze towards a position in space  equally distant but in the
opposite direction from the target, as  quickly and accuratley as you can

Explain Central fixation: 1000ms duration
calibration Target onset: 1200ms; 1798ms duration
Instructions Target offset: 2998ms
5 practice trials - stop SRT start: 1200ms
24 experimental trials Pause: 1200ms Trial end: 2998ms

R/L 50%

6 Anti S acc ad e : O verlap  - Direct your gaze towards a position in sp ace  equally distant but in the
opposite direction from the target, as quickly and accuratley as you can

Explain Central fixation: 2998ms duration
calibration Target onset: 1200ms; 1798ms duration
Instructions Target offset: 2998ms
5 practice trials - stop SRT start: 1000ms
24 experimental trials Pause: 1200ms Trial end. 2998m s
R/L 50%
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APPENDIX 13

Standardised Mini-Mental 
State Examination (SMMSE)

lam  going to ask you some questions and give you some problems to solve. 
Please try to answer as best you can.

1. (Allow 10 seconds for each reply)

a) What year is this? (accept exact answer only)

b) What season is this?
(during last week of the old season or first 
week of new season, accept either season)

c) What month o f the year is this?
(on the first day of new month, or last day 
of the previous month, accept either)

d) What is today’s date?
(accept previous or next date, e.g. on 
the 7 accept the 6th or 8th)

e) What day o f the week is this?
(accept exact answer only)

2. (Allow 10 seconds for each reply)

a) What country are we in?
(accept exact answer only)

b) What province /  state /  country are we in? 
(accept exact answer only)

c) What city /  town are we in?
(accept exact answer only)

d) (In clinic) What is the name o f this 
hospital/ building?
(accept exact name of hospital or institution only)

(In home) What is the street address o f 
this house?
(accept exact name of hospital or institution only)

e) (In clinic) What floor o f the building 
are we on?
(accept exact answer only)

(In home) What room are we in?
(accept exact only)

Max
Score

1

1

1

1

1

1

I

1

1

1

1

1
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APPENDIX 13

3. Iam going to name 3 objects. After I  have said all 
three objects, I  want you to repeat them. Remember 
what they are because I  am going to ask you to name 
them again in a few minutes.

(say them slowly at approximately 1 second intervals)

Ball Car Man

For repeated use:

Bell Ja r Fan
Bill Tar Can
Bull W ar Pan

Please repeat the 3 items for me.
(score 1 point for each correct reply on the first attempt)

Allow 20 seconds for reply, if subject did not repeat all 3, repeat until they are 
learned or upto a maximum of 5 times.

4. Spell the word WORLD. 5
(you may help subject to spell world correctly)

Say: now spell it backwards please. Allow 30 seconds to spell backwards.
(If the subject cannot spell world even with assistance -  score 0)

5. Now what were the three objects that I  asked 3
you to remember?

Ball Car Man

Score 1 point for each correct response regardless of 
Order, allow 10 seconds.

6. Show wrist watch. Ask: What is this called? 1

Score 1 point for correct response. Accept “wristwatch” or “Watch”.
Do not accept “clock”, “time”, etc. (allow 10 seconds)

Show pencil. Ask: What is this called?

Score 1 point for correct response. Accept “pencil” only, 
score 0 for pen.

I ’d like you to repeat a phrase after me: “no if’s, and’s or but s . 
(allow 10 seconds for response. Score one point for a correct repetition.
Must be exact, e.g. “no if’s or but’s ” -  score 0)

Max
Score

3
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Read the words on this page and do what it says:

Hand the subject the sheet of paper with CLOSE 
YOUR EYES on it.

CLOSE YOUR EYES

If subject just reads and does not then close eyes -  you 
may repeat: read the words on this page and then do 
what it says to a maximum of 3 times. Allow 10 
seconds, score 1 point only if subject closes eyes.
Subject does not have to read aloud.

Ask if the subject is right or left handed. 
Alternate right/left hand in statement, e.g. if the 
subject is right-handed say Take this paper in 
your left hand... Take a piece of paper -  hold 
it up in front of subject and say the following:

“Take this paper in your right/left hand, fold 
the paper in half once with both hands and 
put the paper down on the floor. ”

Takes paper in correct hand 
Folds paper in half 
Puts it on the floor

Allow 30 seconds. Score 1 point for each instruction 
correctly executed.

Hand subject a pencil and paper.

Write any complete sentence on that piece o f paper.

Allow 30 seconds. Score 1 point. The sentence should make 
Sense. Ignore spelling errors.

Place design, pencil, eraser and paper in front of 
the subject.

Say: “Copy this design please. ”

Allow multiple tries until the patient is finished and hands it back. 
Score 1 point for correctly copied diagram. The subject must have 
drawn a 4-sided figure between two 5-sided figures.
Maximum time - 1  minute.

Total Test Score
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CLOSE YOUR EYES
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Writing:

Copy design:
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APPENDIX 14

European Alzheimer’s Disease Assessment Scale 
Cognitive sub-test

Participant:.................................. Date:

Euro-ADAS

1 Word-recall task
SCORE □

(average number incorrecO

The pattcnt reads 10 high-lmagery words exposed for 2 seconds each. The patient then recalls the 
words aloud One trail of reading and recall is given. The score equals the number of woids 02! 
recalled (maximum -10).

TRIAL 1

WORD Yes No

BOTTLE

POTATO

GIRL

TEMPLE

STAR

ANIMAL

FOREST

LAKE

CLOCK

OFFICER

TOTAL INCORRECT 
(TOTAL “NO”) _________________ f
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APPENDIX 14

Euro-ADAS

2. Commands

Receptive speech is assessed on the patient's ability to carry out on<Mo-fivo-stcp commands (1). 
The command may be repeated once in its entirety. Check each command successfully oompleted 
by the patient.

I Response Correct?
| YES NO

I 1. Make a fist (one-step command)
2. Point to the ceiling, then tolhe floor (two-step command) j

Line up a pencil, watch and card, In that order, on a table tn front of the patient.

Response Correct?
YES NO

3. Put the pencil on top of the card, then put it back (three- 
step command)

4. Put the watch on the other side of the pencil and then 
lum over the card (four-step command)

5 Tap each shoulder twice with two fingers, keeping your 
eyes shut (five-step command)

Each command scored is as a whole. Check the rating corresponding to the highest number of 
commands correctly performed. Record the number corresponding with that rating as the SCORE.

□□□□□□

0 -  Five commands correct

1 " Four commands correct

2 = Three commands correct

3 = Two commands correct

4 ■ one oommand correct

5 = All commands incorrect

SCORE □
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Euro-ADAS

Naming finger/objects
a. The patient is asked to name irie fingers of his/her dominant hand. 

Check "Yes* or *No* per patient response.

Finger Response Correct?
Yes No

Thumb ......... -  ------------
Middle
Rina

Finger Response Correct?
Yes No

Index
Pinky or little finger

[ 3a. Number moorrectly named" T

The patient is then asked lo name 12 randomly presented real objects, whose 
frequency values* are: high, medium and low. Standard dues may be used to 
assist those patients having difficulty. The objects and their dues are listed below.

Object-Clue Response Correct?
Yes No

Whistle - makes sound when blown 
Comb - used on hair 
Tweezers - use to pick up small objects 
Flower (plastic) - grows in garden 
Mask - hides your face 
Wallet - holds your money 
Bed - (doll house furniture) - used for sleeping 
Scissors - cuts paper 
Harmonica - a musical instrument 
Pencil - used for writing 
Rattle -  a baby's toy 

] Stethoscope - doctor uses it to listen to your heart

\ 3b, Number incorrectly named
1-----------------------------------------------------------------------------  L. j  j .........I.....

Check the rating corresponding to the number of items (objects and/or fingers) named incorrectly (3a 
& 3b)

CD 0 = 0-2 items inoorretf

□  1 = 3-5 items incorrect

□  2 ■ 6-8 Items incorrect

□  3 = 9-11 items incorrect

□  4 ® 12-14 items Incorrect

□  5 = 15-17 items incorrect
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4 Drawing

GEOMETRIC DESIGNS SCORESHEET

AJt four drawings correct - 0

One drawing tnoorrea *  1

Two drawings incorrect a 2

Three drawings incorrect = 3

Four drawings incorrect = 4

No drawing attempted = 5

TOTAL SCORE FOR GEOMETRIC DESIGN

APPENDIX 14

□
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Euro-ADAS

5. Ideational Praxis
SCORE □

The patient is given an 8 *  x IV  sheet of paper and a long envelope. The patient is instructed to 
pretend to send the letter to himself/herself. The patient is tokJ to put the paper Into the envelope, 
seal it. address it to himself/hereelf. and indicate where to place the stamp. If the patient forges part 
of the task, re-instruction is given, one task at a time. Impairment on this item should reflect 
dysfunction in executing an over learned task only and not recall difficulty.

TASK Completed Correctly?
Yes No

Fold letter
Put letter in envelope 
Seal envelope 
Addressing of envelope 
Put stamp on envelope
Number Incorrect (‘ No*)

Check the rating which describes the patient's performance on this exercise. Record the number 
associated with that description as the SCORE.

O l  0 a all task completed successfully

□  1 = difficulty or failure to perform 1 task

□  2 = difficulty or failure to perform 2 tasks

d  3 -  difficulty or failure to perform 3 tasks

Q  4 = difficulty or failure to perform 4 tasks

□  5 = difficulty or failure to perform 5 tasks

6. Orientation SCORE □
The components of orientation and the acceptable range of answers for each component are given 
below. Enter the fotal number of Incorrect responses are the SCORE for this section.

ITEM Response Correct?

Yes No

Person (self, full name)
Date (day's date ± 1 day)
Month (current month)
Year (current year)
Day of the W eek (current day)
Season (current season or within 1 week of 
upcoming season or within 2 weeks of previous season) 
Time of the day (current time ± 1 hour)
Place (partial or full name of site)
Total Number Incorrect Responses (“No")
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Euro-ADAS

7  Word-recognition task

The patient reads aloud 12 high-imagery words. These are then randomly mixed \vilh 12 words the 
palient has not seen. The patient indicates whether or not the word was shown previously. The 
score equals the number of incorrect responses (maximum score allowed >12). P a-e a mark next 
to the work if instructions repeated.

List woods are LARGE and BOLD, and new words are SMALL and ITALIC

TRIAL 1
WORD Answer Correct?

Yes No
COST
NATION

CHIMNEY
S P A R R O W

DAMAGES
TRAFFIC

SANDWICH
SE R V IC E
SHELL

SOLUTION
YARD

TUBE
B O D Y

G R O U N D
STICK

ENGINE
RICHES
GRAVITY
SU M M E R
W ISD O M

MAN

MEAL
PASSENGER

1ACID
Number Incorrect
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Euro-ADAS

6. Spoken-language ability (checK the box which best describes the patient's capabilities. 
Record the number associated with that description as the SCORE).

SCORE □
This is a global rating of the quality of speech, ic. clarity and ease or difficulty in making oneself 
understood. Quality is not rated on this item

Q l 0 = none; patient speaks clearly and/or is understandable 

Q  1 = very mild; one insiance of tack of understandably

□  2 -  mild; subject has difficulty < 25% of the time

Q  3 *  moderate; subject has difficulty 25*50% of the time 

a  4 = moderately severe; subject has difficulty s 50% of ihe time

□  5 = severe; ono or two word utterances; fluent, but empty speech; mute

9. Comprehension of spoken language {check the box which best describes the patent's 
capabilities. Record ihe number associated with the description as the SCORE

SCORE □
This rating evaluates the palicnf s ability to understand speech. Do not include responses to 
commands.

□  0 -  none; patient understands

G 1b very mild; one instance of misunderstanding 

Q  2 = mild; 3*5 instances of misunderstanding 

G  3 = moderate; requires several repetitions and rephrasing

G 4 = moderately severe; patient only occasionally responds correctly, ie. yes/no questions 

Q  5 -  severe, patient rarely responds to quesitons appropriately, not due to poverty of speech
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Euro-ADAS

10. Remembering test instructions (check the box which best describes the patient's 
cspabilriies. Record the number associated with that description as the SCORE.

SCORE □
The patient's ability to remember the requirements at the Word-rccognition task (task #7) te 
evaluated. On each recognition trail, the patient is asked prior to presentation of the first two words, 
“Old you see this work before or is this a now word?" For Ihe third word, the patient is asked, *How 
about this one?" If the patient responds appropriately, ie, “yes" or “no", then recall of instructions is 
accurate, ir the patient fails to respond, this signifies that the instructions have been forgotten Then 
instruction is repealed. The procedure used ror the third word is repeated for words 4-24. Each 
instance of recall failure is noted.

□  0 9 none; paiient remembers instructions

□  1 = very mild; forgets once

Q  2 = mild: must be reminded 2 times

□  3 -  moderate; must be reminded 3 or 4 times

□  4 = moderately severe: must be reminded 5 or 6 times 

Q  5 s severe; must be reminded 7 or more times

11. Word-finding difficulty in spontaneous speech (check the box which best 
describes the patient's capabilities. Record the number associated with that description as the 
SCORE.

SCORE □

Determines the level of difficulty the patient has in finding the desired word in spontaneous speech. 
The problem may be overcome by circumlocution, ie. giving explanatory phrases or nearly 
satisfactory synonyms. Do not include finder and object naming jn this.Eal’ftQ

Q  0 a rone, no instances of difficulty

□  1 = very mild; one or two instances, not clinically significant

□  2 = mild; noticeable circumlocution or synonym substitution 

Q  3 = moderate; loss or word without compensation on occasion

□  4 = moderately severe; frequent loss or words without compensation

□  5 * severe; nearly total loss of content words: speech sounds empty; one- or two- word
utterances
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APPENDIX 15

National Adult Reading Test (NART)

Response Sheet

Nam e:....................................................................  D ate:............................

Errors Errors
CHORD

ACHE

DEPOT

AISLE

BOUQUET

PSALM

CAPON

DENY

NAUSEA

DEBT

COURTEOUS

RAREFY

EQUIVOCAL

NAIVE

CATACOMB

GAOLED

THYME

HEIR

RADIX

ASSIGNATE

HIATUS

SUBTLE

PROCREATE

GIST

GOUGE

SUPERFLUOUS

SIMILE

BANAL

QUADRUPED

CELLIST

FACADE

ZEALOT

DRACHM

AEON

PLACEBO

ABSTEMIOUS

DETENTE

IDYLL

PUERPERAL

AVER

GAUCHE

TOPIARY

LEVIATHAN

BEATIFY

PRELATE

SIDEREAL

DEMESNE

SYNCOPE

LABILE

CAMPANILE
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APPENDIX 16

Verbal Fluency Date:......................................  Participant N o:...........................

The test requires the participant to produce as many words as possible beginning with the 
letters ‘S’ and ‘P’ each within a one minute time period.

Say: “I  am going to say a letter from the alphabet and I  want you to name as many words as 

you can that begin with the letter, calling the words out loud as fa st as you can. But you 

have not to use numbers or the names ofplaces and people. For example, i f  I  say the 

letter ‘A ’you could say: apple, able or attic. Can you think o f  any other words that 

begin with the letter

Wait for the participant to give 2 examples, if successful indicate that the responses were 

correct and proceed with the test. If inappropriate words or replies are given, or failure to 

respond, repeat the instructions.

When satisfied begin the task:

Say: “That is fine. Now I  would like you to name as many words as you can beginning with 

another letter, the letter ‘S ’. You will have one minute and I  want you to tell me all the 

words you can think o f  beginning with ‘S ’ in one minute ”.

“Are you ready, begin. ”

S 160 secs.l

Total:
Intrusions:

Reneat test this time with the letter ‘P’
P 160 secs.l

Total:
Intrusions:

Grand Mean:
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TRAIL MAKING

Form A

SAMPLE
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Begin



APPENDIX 17

TRAIL MAKING 

Form B

SAMPLE

End

Begin
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APPENDIX 17.1

CREDITS FOR TRAIL MAKING

FORMA 
Time in Seconds Credits

FORM B 

Time in Seconds Credits

0 - 3 8 10 0 - 4 3 10

3 9 - 4 4 9 4 4 - 5 0 9

4 5 - 4 9 8 5 1 - 5 6 8

5 0 - 5 8 7 5 7 - 6 3 7

5 9 - 6 5 6 6 4 - 7 1 6

6 6 - 7 2 5 7 2 - 7 8 5

7 3 - 8 2 4 7 9 - 8 8 4

8 3 - 9 7 3 8 9 - 9 9 3

9 8 - 1 1 0 2 1 0 0 - 1 4 5 2

111 and over 1 146 and over 1
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APPENDIX 19

Response Inhibition Tests |Date: 

Day/Night Test

Participant:

Trial Control Correct Incorrect Inhibition Correct Incorrect
1 D N
2 D N
3 N D
4 D N
5 N D
6 N N
7 D N
8 N N
9 D D

10 N D
11 D N
12 D D
13 N N
14 D D
15 N D
16 N D
17 D N
18 N N
19 D D
20 N D

Score

Motor Perseveration - Tapping APPENDIX 19.1

Say: Tm gong to give you a rule. When I tap on the table once, you tap twice; and when I 
tap twice, you tap once'.

Give three practice runs - correcting the participant as necessary and then follow on with the 
test sequence; DO NOT CORRECT THE PARTICIPANT DURING THE TEST !

Trial Task Correct Incorrect
Practice 1 - - -
Practice 2 - - -
Practice 3 - - -

1 Tap twice once

2 Tap once twice

3 Tap once twice

4 Tap twice once

5 Tap once twice

Score
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T H E  G IB S O N  SPIR A L M A Z E
C opyright (£) H. B. G lbton 1961

Aii moms nrsmvrn
Twenty-second impression \998

Hodder & Stoughton 338 Euston Road, London NWI 3BH

(Reduced to 65% of actual size)
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Spatial Span
Discontinue Rule: Scoring Rule:
After scores of 0 on both trials of any item. For both Spatial 0 - 1  point for each trial
Span Forward and Spatial Span Backward, administer both 
trials of each item even if trial 1 is passed.

Spatial Span Forward

Item/Trial Response
Score 
(0 or 1)

1. Trial 1 3 - 1 0

Trial 2 7 -4

2. Trial 1 1 - 9 - 3

Trial 2 8 - 2 -7

3. Trial 1 4 - 9 -1 -6

Trial 2 10 - 6 - 2 - 7

4. Trial 1 6 - 5  - 1 - 4  -8

Trial 2 5 - 7 - 9 - 8  -2

5. Trial 1 4 - 1 - 9 - 3 - 8 - 1 0

Trial 2 9 - 2  - 6 - 7 - 3  -5

6. Trial 1 1 0 - 1  - 6 - 4  - 8  - 5 -7

Trial 2 2 - 6 - 3 - 8  - 2 - 1 0 - 1

7. Trial 1 7 - 3 - 10 - 5 - 7  - 8 - 4 - 9

Trial 2 6 - 9  - 3  - 2 -1 - 7 - 10 - 5

8. Trial 1 5 - 8  - 4 - 10 - 7 - 3 -1 - 9  - 6

Trial 2 8 - 2  - 6 - 1 - 1 0  - 3 - 7 - 4 - 9

Forward Total Score

(Range = 0 to 16

Spatial Span Backward
Score 
(0 or 1)(Correct Response)/ResponseItem/Trial

Trial 1

Trial 2

Trial 1

Trial 2

Trial 1

Trial 2

Trial 1

Trial 2

Trial 1

Trial 1

Trial 2

Trial 1

Trial 2

Trial 1

Trial 2

Backward Total Score

Range = 0 to 16)

Total Score

Range = 0 to 32)
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APPENDIX 22

Geriatric Depression Scale 
(Short form)

Please answer all the following questions by ringing “Yes” or “No”.

1. Are you basically satisfied with your life? Yes / No

2. Have you dropped many of your activities and interests? Yes / No

3. Do you feel that your life is empty Yes / No

4. Do you often get bored? Yes / No

5. Are you in good spirits most of the time? Yes / No

6. Are you afraid that something bad is going to happen to you? Yes / No

7. Do you feel happy most of the time? Yes / No

8. Do you often feel helpless? Yes / No

9. Do you prefer to stay at home, rather than going out and

doing new things? Yes / No

10. Do you feel you have more problems with your memory than most? Yes / No

11. Do you think it is wonderful to be alive now? Yes / No

12. Do you feel pretty worthless the way you are now? Yes / No

13. Do you feel full of energy? Yes / No

14. Do you feel that your situation is hopeless? Yes / No

15. Do you think that most people are better off than you are? Yes / No
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APPENDIX 24

Hoehn and Yahr: Parkinson's disease motor function assessm ent  

Stage One
1. Signs  and symptoms on one side only

2. Symptoms mild

3. Symptoms inconvenient but not disabling

4. Usually presents  with tremor of one limb

5. Friends have noticed chan ges  in posture,  locomotion and facial expression  

Stage Two
1. Symptoms are bilateral

2. Minimal disability

3. Posture and gait affected

Stage Three
1. Significant slowing of body movements

2. Early impairment of equilibrium on walking or standing

3. Generalized dysfunction that is moderately severe

Stage Four
1. S e v e r e  symptoms

2. Can still walk to a limited extent

3. Rigidity and bradykinesia

4. No longer able to live alone

5. Tremor may be le ss  than earlier s ta g e s

Stage Five
1. Cachectic  s tage

2. Invalidism complete

3. Cannot stand or walk

4. Requires constant nursing care
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