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Abstract

A random walk, particle tracking model is used to study the dispersion 

characteristics of passive tracers in three different turbulent shear flows of varying 

geometric and hydrodynamic complexity.

The first half of the thesis is concerned with the application of random walk 

models to observations of two flows in the Flood Channel Facility at Hydraulics 

Research, Wallingford (an in-bank, 100mm flow depth and an over-bank, 176mm flow 

depth). A sensitivity analysis was undertaken in which several different random walk 

models were applied to the data. These were based on different inferences about the 

Lagrangian fluctuating velocity field. The different random walk models were used, 

since the actual form of the Lagrangian velocity statistics for an inhomogeneous flow is 

not known. The random walk models were semi-empirically fitted to the data, such 

that the macroscale particle distributions were in close agreement with the observed 

tracer concentration distributions, at a single measurement cross-section. The 

calibrated random walk models were then used to predict the statistics of the evolving 

tracer concentration distribution further downstream. It was found that at both the 

calibration and prediction stages, random walk models based on different 

perturbations, were able to match the observed concentration distributions to within 

the estimated experimental uncertainties. This property will hereinafter be referred to 

as equifinality.

In the second half of this thesis, a random walk, streamtube-based particle 

tracking model is used to study the dispersion characteristics of the flow in a meander 

bend of an upland gravel-bed river. A fieldwork campaign was undertaken in which 

measurements of velocity, turbulence statistics and rhodamine tracer mass-flux 

distributions from a dye-tracer experiment, were collected. These measurements were 

analysed and used to calibrate the random walk model using the same technique as for 

the channel flows. It was again found that the model could be calibrated such that the 

particle distributions matched the observed relative tracer mass flux distributions to 

within the estimated uncertainties.
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Ry Correlation tensor
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time series 
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A( ) preceding an observable, this implies the estimation of
the uncertainty in that observable 

s energy dissipation per unit mass
£x, sy, sz eddy diffiisivity components.
<|> angle
<|>i-7 coefficients in first order autocorrelation equation,
y intermittency.
rj non dimensionalised partial cumulative discharge or a

random number taken from a normal Gaussian 
distribution with zero mean and unit variance 

k  Von-Karman constant
Km molecular diffiisivity
Kt turbulent diffiisivity
X scaling constant
v kinematic viscosity of water
p density of water
ct standard deviation from the mean
a w> standard deviation from mean for fluctuating velocity

field, w\
CFmodei, tfdata estimations of the spread in the particle and

concentration distributions 
t shear stress
txy, Tzy components of the Reynolds shear stresses.
Tb bed shear stress,
o  angular velocity.
©i downstream vorticity component.
£ non dimensionalised downstream distance
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Introduction.

The research which is presented in this thesis is concerned with the 

understanding of pollutant dispersion in rivers; which placed in context, is a small but 

important aspect of water quality control. The management of river water quality is 

vital for both our good health and the health of the complex natural ecosystems which 

exist in and along the river corridors. This provides more than a sufficient gravamen to 

undertake the following research.

Recent integrated catchment management approaches, which have lately been 

adopted by bodies such as the National Rivers Authority have recognised the 

inescapable interconnectedness of river usage. The intensity of modern-day agricultural 

and industrial techniques, along with the domestic waste produced by a large 

population, puts an enormous strain upon water resources. The natural capacity of a 

river to dilute and ‘make safe’ our waste can easily be exceeded, a concept which has 

only relatively recently been acknowledged. Every effort should therefore be made to 

understand each stage of water quality control, in order that techniques can be used to 

minimise the harm to the human (and therefore social) and natural environment, which 

are intimately connected.

Computer models of river mixing can be used as aides to the understanding of 

the transportation, accumulation and eventual transformation of the pollutants which 

we create as residuals from one or other process. Bodies which require to use such 

models to predict the mixing of pollutants include the waste disposer (water company), 

the water quality regulator (National Rivers Authority), the water resources scientist, 

fishery scientists and aquatic botanists and ecologists. However, there are many
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complex natural processes which control the dispersion rates of pollutants in rivers, of 

which turbulence, topographic effects and non-linear interactions are the most 

significant. These factors make a quantitative description of river mixing difficult, and 

as a result predictive modelling has large uncertainties associated with it. Moreover, 

there are no exact solutions to the equations which govern the mixing of pollutants in 

a river flow, and so direct physical modelling is often supplemented using empiricism. 

This gives a model a more conceptual, rather than mathematically rigorous basis. Semi- 

empirical models require the calibration of parameters, and it is generally true to say 

that the fewer parameters which are used, and which are therefore required to be 

calibrated, the less the fieldwork is required, and therefore costs are kept low. All of 

the above mentioned groups generally require a simple, but flexible predictive 

technique with which to analyse the mixing problems, and the random walk model used 

in this thesis is suggested to meet these requirements.

In random walk particle tracking models, thousands of particles representing 

fluid elements are advected under the influence of a simulated mean flow field, whilst 

being subjected to random perturbations to simulate the effects of turbulence. In order 

to calibrate the models, the sizes of the perturbations are adjusted at the particle scale, 

until the large scale ensemble particle distributions are in agreement with the measured 

concentration distributions at sites downstream.

In this study, the models were first investigated in an artificial channel flow (at 

the Rood Channel Facility, Hydraulics Research, Wallingford) and were calibrated and 

then tested predictively against what was considered to be the most accurate set of 

hydrodynamic and tracer dispersion data available (so far as is known at the time of
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writing). Having undergone testing on the channel flows, the random walk model was 

applied to a more complex, natural flow in a bend of an upland gravel bed river.

For each of the above flows the study concentrated on the mixing of the dye 

immediately after release, before it becomes fully mixed. It is in this region, just after 

an outfall or spillage enters the river, that the highest concentrations of the pollutant 

exist, and where the most damage to aquatic organisms and the ecosystem occur.

The first chapter forms a review of literature pertaining to the fluid dynamics of 

a turbulent flow, and to the dispersion of a passive tracer within it, which lays the 

foundations for the assumptions which were made in the modelling work. The second 

chapter describes the principles of random walk models and their mode of application 

to complex flows.

In chapters three and four, the random walk model was applied to the 

aforementioned flume flows. Several different models which made different inferences 

about the form of the velocity perturbations were investigated within this well defined 

flow domain. Many of the different models could be calibrated simply by altering the 

sizes of the perturbations in the random walk, and that the random walk was 

sufficiently versatile to account for the effects which the massive range of scales of 

motion in the flow had upon the tracer dispersion. Further, many of the models were 

successful in predicting the tracer distributions to within estimated experimental 

uncertainties for two different flume geometries.

The random walk model was then applied to the more complex natural flow in 

the bend of a typical upland gravel bedded river (the River Lune) in chapters five to 

eight. Chapter five describes the velocity and tracer experiment measurements which
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were made on the river bend during the course of this research. The analysis of these 

measurements was described in chapter six, and the measurements were used in 

chapter seven to describe the construction of a mean flow model based upon the 

framework of streamtubes.

The eighth chapter describes a sensitivity analysis of the random particle 

tracking model. It was found once more that the model could be calibrated to fit the 

observed concentration distributions to within the estimated uncertainties.

Chapter nine forms a summary and discussion of chapters 1 to 8 and outlines 

the potential for future work. Here it is suggested that a momentum-exchange particle 

tracking model is a natural and desirable predecessor to mass transport modelling using 

random particle tracking techniques. The construction of a parallel computer-based 

momenta exchange algorithm is alluded to in chapter 9, as a suggestion for future 

work.
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Chapter 1

Classical fluid dynamics and tracer dispersion.

1.1 Introduction.

This chapter is split up into three principal sections, which deal with the 

classical equations of fluid motion, the equations of mass continuity for a passive 

pollutant and the hydrodynamics of river flows.

Section 1.2 describes the classical equations of fluid motion. The Reynolds 

number and the significance of the non-linear term in the momentum conservation 

equation are described. The difficulty in constructing a numerical model for a high 

Reynolds number flow has lead to many different approximate models of the equations 

of fluid dynamics. Some of these modelling techniques are investigated since they shed 

light on the underlying physics of the fluid motion.

Section 1.3 describes the advective diffusion equation for a passive tracer in 

turbulent flows. The different assumptions and approximations which have to be made 

when the equations are applied to realistic flows are discussed. The concept of 

streamtubes is introduced, and solutions to the cumulative discharge diffusion equation 

are examined since they can be compared with solutions from the random particle 

tracking model, which is used in the major part of the modelling studies used here.

Section 1.4 describes some aspects of the hydrodynamics of channel and river 

flows which are relevant to this study. The use of the logarithmic equation of the wall 

to model vertical velocity profiles is described. Finally, section 1.5 summarises this
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chapter, and indicates where the different pieces of classical theory have been drawn 

upon in later chapters.

1.2 The Equations of fluid motion

The two principal conservation laws in fluid mechanics are expressed in terms 

of the rates of change of mass and momentum per unit volume of the fluid. This draws 

upon the continuum hypothesis, which supposes that there is a continuity in these 

quantities from point to point. This in turn necessitates a definition of the spatial 

resolution of the equations, and in fluid mechanics this means the smallest volume of 

fluid which can be attributed the macroscopic properties (such as density, temperature, 

etc.) of the fluid in bulk. The relevant scale is greater than the scale at which the erratic 

molecular motions are resolvable, yet smaller than the scale at which the macroscopic 

quantities of the flow vary appreciably due to external influences.

The equations described in the following sections are applicable to a Newtonian 

fluid, which is defined as one for which the rate of strain is directly proportional to the 

applied shear stress.

1.2.1 The Navier Stokes and mass continuity equations

The continuity equation is a statement of the law of conservation of mass for a 

volume of fluid within the flow domain. It equates the mass flux of the fluid across the 

closed surface of the volume of fluid, to the rate of change in the mass of that volume 

of fluid in time, and is given by equation 1 .1 :
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9p , a ( p u . )  0
31 3jc, (1.1)

where Uj are the three orthogonal components of the vector velocity field, Ui,U2 and 

U3 and p is the fluid density. The flows which are investigated in this thesis are 

incompressible, such that the density of the fluid is constant throughout the flow field, 

and the velocities are small compared to the speed of sound in water. Under these 

assumptions, ( 1 . 1 ) simplifies to the incompressible form given by equation 1 .2 :

The equivalent momentum conservation equation is called the Navier Stokes 

(NS) equation, which expresses the rates of change of momentum of a fluid element in 

a frame of reference which follows that fluid element (Lagrangian framework). This is 

given by the substantive derivative, which expresses the changes in the fluid element’s 

momentum as it moves from place to place in the velocity field, and also as a result of 

temporal variations in the velocity field. The substantive derivative is given by the 

bracketed terms in the expression (1.3) below, where it is used as an operator on the 

momentum per unit volume of a fluid element:

( 1.2)

v

/
(1.3)
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The rate of change of momentum of the fluid element is equated to the pressure 

gradient, viscous and external forces acting on it. This balance is expressed in equation 

1.4, and is a statement of Newton's second law of motion (e.g.Tritton,1990):

dU{ 1 dp __.2 1-^T + U ,  •— s- = — -£ -+ vV2 f/f + - F  (1.4)
dt dxj p dxi p

where Ui is the velocity of a fluid element, p is the fluid density, v is the kinematic 

viscosity of a Newtonian fluid, P is the pressure field and F represents external forces 

acting on the fluid.

1.2.2 The Reynolds number

Reynolds demonstrated the existence of two different flow regimes of laminar 

and turbulent flow (see for example, Acheson, 1990). The laminar flow regime is 

characterised by smoothly varying flow, where the predominant forces are due to the 

action of the fluid viscosity. Turbulent flow is characterised by rapidly varying velocity 

field, with a loss in predictability of the values of flow parameters. The two regimes 

coexist, and a wide range of flows intermittently switch between the two regimes. 

Reynold’s experiment of 1883 demonstrated the transition of the laminar to the 

turbulent flow regime in a pipe flow, both regimes being solutions to the NS equation. 

The difference between the two regimes depends upon the relative importance of the 

different forces in the NS equation, which can be measured using the ratio of the 

inertial to the viscous terms as in equation 1.4. Dimensional analysis of this ratio
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reduces the ratio to the familiar form of the Reynolds number on the RHS of equation 

1.5:

(Acheson,1990). For a slow, viscous flow the non-linear term is relatively unimportant 

and any perturbations to the flow are rapidly damped out by the action o f viscosity. 

However, if the inertial forces are large, then the non-linear term becomes important 

and the motion becomes highly unpredictable and results in turbulence.

1.2.3 The non-linear term in the Navier Stokes equations

The non-linear term in equation 1.4 (second term on the L.H.S.) is responsible 

for the spreading of the kinetic energy of the motion between the continuum of scales 

present in the flow. Every scale of motion can essentially interact with any other scale 

of motion. Small disturbances may become amplified by the mean flow causing greater 

instability, and it is this form of interaction which leads to the transition from laminar to 

turbulent flow. Moreover, this form of mean flow - driven instability is an important 

mechanism in the momentum exchange between the bed and the bulk of the flow in 

fully developed turbulence.

At the smallest scales of motion the action of viscosity turns kinetic energy into 

heat, which acts as a sink to the turbulent energy (see for example, Tritton,1990). This 

dissipation requires a continual supply of kinetic energy down to the small scales from

(1.5)



the large energy producing scales. If the flow is in equilibrium then the transfer of 

energy through the energy cascade must also be in equilibrium with the dissipation.

The non-linear term in the Navier Stokes equation essentially leads to loss of 

predictability of the flow and sensitive dependence on initial and boundary conditions. 

This makes the measurement of observables (for examples velocity, temperature) at 

the same point in a flow unrepeatable so the only information which can be used to 

characterise the flow must be statistical in nature.

1.2.4 Numerical modelling of the Navier Stokes equations

There is no general analytical solution to the NS equations, although they have 

been solved numerically for some small scale or specialised flows (e.g. Marcus and 

Bell, 1994). The understanding of fluid dynamics has consequently relied upon a large 

amount of experimental work, and numerous approximations to the terms in the NS 

equation in order to make more soluble equations.

The difficulty of forming a numerical solution to anything other than the 

simplest flow is exemplified by investigating the number of degrees of freedom in a 

high Reynolds number flow, which must be resolved in the numerical problem. Each of 

these degrees of freedom have spatio-temporal constraints (boundary conditions) 

which must also be accounted for in the numerical model. The vast number of 

dynamically significant scales of motion varies from the heat dissipation scales to the 

characteristic scales of the flow domain. The number of active degrees of freedom can 

be approximated as the ratio of the largest scales to the smallest scales of motion,
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which can be expressed in terms of the Reynolds number (Frisch and Orzag,1990), 

given by equation 1 .6 :

Ns ~ Re9 /4 (1.6)

where Ns is the number of degrees of freedom per unit volume. For the river flow 

which is studied in later chapters, where Re ~ 50000, the number of degrees of 

freedom per unit volume is approximately: 410 .The problem is compounded by the 

absence of any distinct separation of scales in turbulence (Bowles, 1994).

If a single degree of freedom requires a single grid point in a numerical model, 

then reversing the relationship in equation 1.6, the Re number of the flow which can 

modelled increases by less than the square root of Ns (McComb, 1991). Clearly 

numerical modelling of large Re number flows is likely to remain an intractable for 

some time to come, despite enormous advances in computing power.

This justifies further the simplifications and approximations to the governing 

equations of fluid motion which will be discussed in sections below.

1.2.5 Kolmogorov scaling

Kolmogorov postulated that intermediate scales of motion could be considered 

as being solely dependent on the flux of energy from larger to smaller scales. These 

intermediate or inertial sub-range scales become independent of viscosity for fully 

developed turbulence, a phenomenon called Reynolds number similarity. With this
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assumption, the Navier Stokes equations are invariant if the distance, velocity and time 

are dependant on a length scale, X in the way given by equations 1.7:

. I u t
~)C

where H is a scaling exponent. Kolmogorov scaling theory requires that average 

quantities are scale invariant although infers nothing about the finer structure such as 

the form of the distributions which the velocity fluctuations take ( Lovejoy and 

Schertzer, 1992). The energy flux per unit mass,£, passing through an intermediate 

scale, /, is assumed to depend only on / and observables local to it. Given that the 

dimensions of the energy flux are energy per unit mass per unit time, the energy 

dissipation per unit mass is given by equation 1 .8 :

- 7  ( 1 8 )

where v/ is the velocity at scale /. Inserting the scalings given in 1.7 into equation 1.8, 

gives equation 1.9:

£ -» O-9)

However, if e  is assumed to be scale invariant in the inertial sub-range, this demands 

that H = 1/3 (Frisch and Orszag,1990). Given the value ofH  = 1/3, the scaling 

properties of other observables such as the energy spectrum can be derived. The 

energy spectrum (E) expresses the kinetic energy per unit mass as a function of wave 

number (k), and is an important quantity in the study of homogeneous turbulence.
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Essentially, the energy spectrum gives the contribution to the kinetic energy per unit 

mass from the different length scales (associated with eddies) of motion present in the 

flow. Using Kolmogorov scaling, and the value of H = 1/3, the energy spectrum scales 

in accordance with equation 1.10, otherwise known as the Kolmogorov-Obukhov(KO) 

law:

E(k) = CKOe2l3k~513 (1.10)

where C ko is a scaling coefficient. This has been found to be in agreement with 

measurements in high Reynolds number, homogeneous flows in many instances (for 

example Grant et al.,1962).

Kolmogorov originally used the scaling law to investigate the local velocity 

structure functions, rather than the energy spectrum. However, the energy spectrum 

assumes length scales (or Fourier modes) which are global to the entire flow and are 

therefore only truly represented in a homogeneous flow. The Fourier representation 

cannot be extended to describe inhomogeneous turbulence, where the velocity 

structure (functions) can vary from place to place. Studies have moved towards new 

representations of the spectra of inhomogeneous flows in order that the KO law might 

be studied for this more general flow (for example, Moser, 1994).

Despite the close agreement of experiment with the KO law reported above, 

the assumption that e  is invariant is not theoretically an exact description due to the 

intermittent nature of turbulence. This is explained by considering that intemnttency 

results in there being active and inactive eddies present at all scales. At the smaller 

scales, the ratio of active to inactive regions is smaller than at larger scales of motion,
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which requires that a greater energy flux per unit volume occurs in the smaller scales - 

in contradiction to the hypothesis of invariant energy flux. Corrections to the theory 

point towards a scaling exponent slightly larger than 5/3 in equation 1.10 (Tritton,

1990).

Further, corrections to the theory have been made by considering that 

structures within the flow scale with a range of values of H, each structure comprising 

a fractal set with dimension dependent on H (Frisch and Orzag,1990). This multifractal 

approach has met with some success and can be incorporated into the Lagrangian 

framework, as will be described in later sections. The scaling theory does not give any 

information about the sizes of the constants in equations, such as Cko in 1 .1 0 .

1.2.6 Reynolds averaging

To represent the turbulent fluctuations in the flow, statistical quantities are 

introduced to equations 1.1 and 1.4 by decomposing the observables into statistical 

time averaged mean and fluctuating components in a process called Reynolds 

decomposition in accordance with equation 1 . 1 1 :

Ui =ui +uii (111)

I n s e r t in g  (1.11) into (1.2) yields different statistical combinations of uf and which 

are assumed to follow the linear Reynolds averaging rules (Tennekes and

Lumley,1972) in accordance with equations 1.12:
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u',= 0

UfUy = U i U j + u ' i u ' j (1.12)

For the case when the averages are time averages, substitution of 1.12 in 

equation 1.4, gives the Reynolds averaged Navier Stokes( RNS) equations, which for 

statistically steady homogeneous flows gives equation 1.13 (where the external body 

forces in 1.4 have been removed for simplicity):

(for example, see Speziale,1985).The last term on the RHS expresses the rate of 

change of the time averaged product of u ’i and u ’j , called the Reynolds stress tensor. 

The different products must be estimated in order that (1.13) become fully 'closed', a 

process which is described in the next section.

1.2.7 The closure problem

There has been a considerable amount of effort gone into closing the RNS 

equations (see Speziale,1985; Younis, 1992; for reviews of closure models, and a clear 

description of the problem in McComb, 1990). The problem arises because there is no 

complementary equation to 1.13 which defines the non-linear term without using 

higher order products of the fluctuating velocities. These higher order terms have 

equations which can only be stipulated in terms of even higher order terms, and so on.

----- p 14, . ------ —----------
dt 3 dxj p dxi

(1.13)
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As a consequence of the closure problem, finite difference modelling of the 

RNS equations has to make a compromise between accuracy (i.e. the order in Ui to 

which the closure is made) and computation time. The greater the order in Uj at which 

the closure is made, so the finer the scales which can be resolved with accuracy.

The closure problem is closely related to the problem of determining the scales 

of the displacements or velocity fluctuations in a random walk, which will be discussed 

in later chapters.

1.2.8 The Lagrangian Integral Time Scale (TL).

The location, X, of a fluid particle with velocity U in a stationary homogeneous 

and isotropic turbulent velocity field, is defined by the integral of the particle velocity 

over the time t of interest, given by equation 1.14:

where the frame of reference is chosen such that the time averaged mean value of U is 

zero. The ensemble averaged value of the square of particle displacement for a large 

number of particles experiencing the same velocity field can be written in terms of the 

autocorrelation function R(s), given by equation 1.15 (Taylor, 1921):

(1.14)

( x 2(o) = 2{u 2)}(t -  s)R(s)ds (1.15)
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where s is a time lag between consecutive observations, and the angled brackets 

represent ensemble averaged quantities. The autocorrelation function is defined by 

equation 1.16:

R ( t -0 )  = {U(t)U(0))/{U1) (1.16)

From the assumption that the autocorrelation function approaches zero as time 

approaches infinity, the expectation of the square of the particle position (the variance 

of the particle positions over time t), approaches the value given in equation 1.17 

(Fischer et al.,1979):

(X 2) -> 2(u 2)t,J  + const. (1.17)

where the quantity TL is the Taylor integral time scale given by equation 1.18:

rL = U (i)d t (1.18)

From 1.17, it can be seen that, following the Lagrangian time scale, the 

variance of the particle position will grow linearly with time. Tl is also called a 

decorrelation time scale, since it is a measure of the average time it takes a particle to 

forget its initial velocity (Fischer, 1979).



1.2.9 Taylor’s hypothesis

Taylor’s frozen turbulence hypothesis assumes that the rate at which an eddy 

deforms is much slower than the rate at which it is being advected past a fixed point 

(Taylor, 1938). This hypothesis can be used to estimate Eulerian length scales from 

single point velocity integral time scales, and can be expressed in terms of the 

fluctuating velocity, and the variance of the fluctuating velocity of different particles 

passing a fixed position, given by equations 1.19:

where cv is the standard deviation from the time averaged mean of the fluctuating 

velocity, and <U> is the mean downstream velocity. This provides an estimate of the 

length scale associated with the spatial decorrelation (Raupach et al.,1991), otherwise 

called the Taylor integral length scale, Ll.

1.3 Dispersion of a passive tracer.

When a passive tracer is injected into an open channel flow, the cloud of tracer 

evolves in two main stages. Initially, the tracer mixes well in the vertical and the 

concentration distribution is drawn out longitudinally due to the vertical velocity 

gradient. Simultaneously, the pollutant has been stretched out in the longitudinal

(1.19)
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direction due to the transverse velocity gradients, but due to the cross-stream 

dimension being relatively large, the pollutant takes a longer period in order to mix 

well in the cross sectional direction.

These actions create a concentration gradient within the cloud, across which 

the turbulent diffusive mixing becomes important during the second stage of mixing, 

often called the Taylor period. The equations which describe the tracer dispersion in 

this stage, are described in section 1.3.2.

1.3.1 The gradient flux hypothesis

Molecules in a free gas obey the Fickian diffusion relationship, whereby the flux 

of molecules in a given direction is proportional to the concentration gradient of the 

molecules in that direction, given by equation 1 .2 0 :

m  = ~ K m  (120)ac

where Km is the constant of molecular diffiisivity, m is the mass flux of particles in the x 

direction and C is the concentration of molecules. This linear relationship is only true if 

there are distinct length and velocity scales which are universal to the entire medium 

(Fischer, 1979). This is the case for a cloud of molecules, since there are distinct length 

and velocity scales associated with the mean free path, and mean molecular velocity.

The mass flux of molecules out of an element Ax represents a temporal change 

in the concentration, expressed by the balance:

19



m(x + A x ,t ) -  m(x,t) dm dC
Ax limAx—»0 dx dt (1.21)

inserting 1 . 2 0  into 1 . 2 1  gives equation 1 .2 2 , which is called the diffusion equation:

1.3.2 Equation of mass continuity for an advecting passive scalar.

The substantive derivative used in section 1.2 is now applied to a conservative 

(non decaying), passive scalar (one which has indistinguishable physical properties to 

the carrier fluid) within a turbulent flow. The continuity equation, is simply a balance 

between advective and diffusive motions of the tracer, given by equation 1.23:

where C = C( x,t) is the concentration of the dispersing tracer, determined by the 

turbulent velocity field U= U(x,t) and molecular diffusivity K m (e.g. Sullivan and 

Chatwin,1993).

This equation is insoluble for all but the most simple flows, since both the 

concentration and velocity fields are vector fields with random components, and again

(1.23)
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the products of the fluctuating parts of each field must be estimated. This requires 

knowledge of the complete velocity field, and once more the closure problem is 

encountered. For this reason, approximate solutions must again be looked for.

1.3.3 Reynolds averaging the mass continuity equation.

Equation (1.23) is now Reynolds decomposed and time averaged as with the 

Navier Stokes equation, which produces products like u'c\ which are required to be 

estimated once more. Since these terms represent a flux of tracer, the gradient flux 

hypothesis is often drawn upon to form the closure, whereby an analogy is made with 

molecular diffusion, to give equations 1.24 (the tensor notation for the velocities is 

dropped for clarity from heronin, u = u i , v = U2 and w = U3 ):

where ex, £y and sz are called the eddy diftusivities in the x, y and z directions 

respectively. These are fundamentally different to the molecular diflusivity, since they 

are a property of the flow and not the flow medium. The use of eddy diftusivities 

assumes a distinct separation of length and velocity scales in the turbulent flow. This is 

a great simplification of the actual case, since there is a continuum of scales of motion, 

which are all interacting due to the non-linear terms in the NS equations, as discussed 

earlier in section 1.2.4.

dc
w'c' = - e 7 — 

1 8z
(1.24)
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These eddy diffusivities form a linear closure to the transport equation, 

although in regions of the flow where the Reynolds stresses and the velocity gradient 

do not share the same zeros, such an eddy diffusivity becomes singular (Younis, 1992) 

and the model breaks down. The development of solutions to, for example, the 

Reynolds stress transport equations overcomes this particular problem but requires 

much more computational power, and inevitably higher order closures, so have 

consequently only been used in some specialised flows (e.g. So et al. ,1991).

The closed, time averaged advective diffusion equation is now given by 

equation 1.25:

dc dc dc dc d 
—  + U — + V  —  +  W —  =  — -  
dt dx dy dz dx

/  d c ^  

\ xdxy
+  ■

dc_ d_( d c ' 
d z ^ ZdZ;

(1.25)

This equation has been further simplified in many different studies and applied 

to various flows (see for example Chatwin and Allen, 1985). The most fundamental 

approach was that of Taylor(1954) for pipe flow, and Elder(1959) for an infinitely 

wide two dimensional flow, concerning the one dimensional dispersion of a well mixed 

tracer in a homogeneous flow. This analysis is well documented in Fischer (1979). The 

most important consequence of Taylor’s analysis when applied to a shear flow, is that 

after the tracer has become well mixed in the vertical and cross-stream directions in a 

homogeneous isotropic flow, there is a balance between the downstream dispersion 

due to the velocity gradients and the diffusive action of turbulence in the cross-stream 

direction. The balance is expressed in terms of a one-dimensional advection diffusion 

equation (such as equation 1 .2 2 ), with a downstream longitudinal dispersion
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coefficient. However, for complex river flows, the flow is generally anisotropic, 

inhomogeneous and there are large secondary advections (flow perpendicular to the 

downstream direction) giving rise to enhanced longitudinal dispersion characteristics 

(for example see Beltaos, 1981). For river flows, the mixing is inescapably three 

dimensional (Rutherford, 1994) in the near-field (the region between the tracer 

becoming vertically well mixed and well mixed in the transverse dimension) and mid­

field (the region where the tracer is released until it becomes vertically well mixed). In 

the far-field (the region following complete vertical and transverse mixing), Taylor’s 

one-dimensional analysis can be applied, since the large scale secondary advections 

become associated with the stochastic mixing on the scale of a very long reach.

This study is concerned with an examination of the near-field and principally 

the mid-field dispersion characteristics. Clearly, in these regions Taylor’s hypothesis 

does not hold, and the analysis is required to be three or possibly two-dimensional. 

Nonetheless, it is clearly important to make use of any simplifying procedures which 

ultimately would result in equations which would make physical sense in three- 

dimensions, while only requiring the measurements of bulk flow parameters (Knight et 

al., 1989).

The next section discusses some of the simplifications to the Reynolds 

averaged advection diffusion equation which are relevant to the application of the 

advection diffusion equation to a complex channel flow.



1.3.4 Two and three-dimensional mixing models

Where the channel topography is changing or there is curvature, there is also 

transport by transverse velocities (for example see Rutherford ,1994). Further, under 

these non-uniform flow conditions, plots of concentration versus transverse distance 

do not necessarily conserve mass across a transect (Yotsukura and Sayre, 1976). 

Concentration versus transverse distance curves are often skewed and shifted in the 

transverse direction. The skewness arises primarily from the non-uniform distribution 

of flow across the channel, whereas the lateral displacement is due to transverse 

advective transport (Holley, 1971).

The true distribution of tracer in a non-uniform flow has to be examined in 

terms of the mass flux distribution in order to conserve mass and avoid this skewing 

effect. This can be achieved by examining the transverse distributions of the product, 

cq, (where q is the partial cumulative discharge integrated from the bank). Holley et 

al.(1972) derived a method for evaluating the longitudinal dispersion coefficient based 

upon measurements of the solute fluxes at different cross sections based in Cartesian 

co-ordinates, which took into account secondary advection. Yotsukura and Cobb 

(1972) suggested an alternative approach which simplified the analysis, whereby 

concentration is calculated as a function of partial cumulative discharge (which also 

maintains mass conservation). This approach was generalised by Yotsukura and Sayre 

(1976) into orthogonal curvilinear co-ordinates which are more adaptable to complex 

natural geometries.
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The equation of mass continuity and the advective diffusion equation have so 

far been written in Cartesian co-ordinates, which are not very suitable for the complex 

geometries of natural flows. For this reason, the equations of mass conservation and 

mass transport are re-written in curvilinear co-ordinates (Yotsukura and Sayre, 1976) 

to give equations 1.26 and 1.27:

5 dw d
—  ( mu)  +  mxmy— +  —  (mxw) =  0 
dx dz dy

(1.26)

dc d d d d
m m  — +— (mcu) + m m  —  (cw)+ — (mxvc) = —  

y dt dx y y dz dy dx
rm dc^

\™x ox j

+mxmy
dy + dy

mY dc
~ Ey T  ytn oy

(1.27)

where u,v,w are the local mean velocity components, ex, £y  and £z are the local 

turbulent mass diffusivities in the downstream, cross-stream and vertical directions, c is 

the local mean solute concentration and all these quantities have been time averaged 

over a suitable record length. The coefficients, mx, my and mz are metrics which 

account for changes along one basis due to changes along the other bases; mz is unity 

since the vertical axis is always perpendicular to the other two axes. These equations 

can be reduced to two-dimensional form by integrating each term over the depth, the 

details of which are given in Rutherford (1994). The depth integrated equations (1.28 

and 1.29) are given here in full, since they contain the products to which 

approximations are then made in the case of non-uniform channel flow.
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The angle brackets in these equations represent depth-averaged quantities. The 

products such as <uc> and < sx dc/dx > are approximated by applying the Reynolds 

averaging procedure, making use of equations 1.30 :

{lie) = (u)(c) + (u'c')

U * \ - M3c, dx

(1.30)

where the prime here denotes deviation of local values from the depth-averaged value. 

The covariance term (<u’c’> ) was then approximated using a gradient flux term, of the 

form used by Taylor (1954) and Elder(1959), given by equation 1.31:

E,d{c)
\u c} ~ —------—  (1.31)

771 ax,

where Ex is a dispersivity coefficient expressing the net effect of differential advection

/by u’ coupled with vertical turbulent diffusion. The covariance term, m \3 0 ,\e x'— j ,



is eliminated, under the assumption that the vertical variability of the longitudinal 

diffusion coefficient is negligible. The last two equations are then combined to give the 

single mixing coefficient, e*:

ex d  <c>  1
mx dx mx

where ( 1.32)

e* = {e*) + E,

where ex is the longitudinal coefficient of dispersivity, which includes the combined 

effects of depth averaged turbulent diffusion and advective dispersion. Similar 

approximations are made in the transverse direction, to produce a transverse 

dispersivity coefficient, ey. The resulting equations in curvilinear co-ordinates are given 

by equations 1.33 and 1.34:

m j ”y ' a  + & ^ myh < "  < v > ) = 0
(1.33)

a (  \a  mx .
+  - h

(1.34)

These equations have been solved numerically for a number of flows (see in Elhadi et

al., 1984), but do not as yet have general analytical solution.



For the case of a continuous, steady release of tracer, in a river with a steady 

flow, these equations lose the time derivatives, and the turbulent-diffusive mixing in the 

downstream direction becomes small compared to the downstream mixing due to 

differential advection. The first term of equation 1.33 is set to zero, and the advective 

diffusion equation becomes equation 1.35, for which the angled brackets for the depth 

averaged concentration and velocity have been dropped for clarity:

which again has no analytical solution, but has been solved numerically (see Elhadi et 

al.,1984).

1.3.5 A streamtube model

Equation 1.35 has the form of an advective diffusive equation, which can be 

further simplified into a diffusion equation from the transformation of the transverse 

co-ordinate (y) to the cumulative discharge, qc, given by equation 1.36:

(myhuc) + — (mxhvc) (1.35)

y
(1.36)

0
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where qc is the cumulative discharge, integrated from the left bank, and where Ud is 

the depth averaged velocity. Carrying out this transformation of 1.36 gives equation 

1.37, called the partial cumulative discharge diffusion equation:

FOD varies across the channel for most natural streams, which implies that the 

equation can only be solved numerically ( Lau and Krishnappan, 1981).

However, if the FOD is assumed to be constant across the cross section, a 

rough solution can be determined from the analytical solution (Elhadi et al., 1984). The 

solutions still account for the transverse advections to some extent.

1.3.6 Solutions to the cumulative discharge diffusion equation

Analytical solutions to the equations exist for a point source located at one 

bank, and for a continuous line source, stretching across the river to a width marking a 

specified fraction (r) of the total discharge at the input (Elhadi et al.,1984). The second 

solution is examined here since it is relevant to the study carried out on the river Lune, 

and is given by equation 1.38:

cC d  ( rl, 2 „  SC)—  = ----- Uh mrE v -----
&  Sqc \  y d } J

(1.37)

Where the product, (Uh2mxEy ) ,  is referred to as the factor of diffusion (FOD). The

c,
c + ^  image sources
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where the image sources are given by equation 1.39

oo

image sources = ĵP
2=1

- 2 i + r - n  . 2i + r + n . H - r - n  x 2 i - r  + r{
e r f ----- j= —- + e r f ---- ^ -.—  - e r f ---- .—  + erf —

(1.39)

and Coo = M/Q is the concentration far downstream after the tracer has been completely 

mixed across the stream. M is the mass of tracer injected per unit time, Q is the total 

discharge of the stream, r f - q c / 0 ,  is the normalised cumulative discharge, and

FOD .

Q 2
£= 2 — — x  is a dimensionless distance.

These solutions have been normalised and plotted in fig. 1.1 for different values 

of the transverse dispersivity coefficient (ey varied, while all other terms in the FOD 

held constant) for a reach having cross sectional average quantities corresponding to 

the study reach examined in chapters 4-8, as an example. The finer details to these 

plots will be given in chapter 8.

1.4 The hydrodynamics of channel and river flows.

1.4.1 Modelling the vertical velocity profile.

1.4.1.1 The turbulent boundary layer.

The turbulent boundary layer can be divided into three regions in which 

different length scales are predominant; a division which has been supported by 

numerous observations (Young, 1989). There is a region very close to the wall where 

the fluid is at rest due to the non slip condition, which arises due to the viscous forces.
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However these are short range forces acting over a length scale of the order v/u* (the 

viscous length scale, where u* is the friction velocity), beyond which the inertial forces 

of the main body of the fluid flow become more important.

Moving further away from the influence of the viscous forces, there is an inner 

region of the boundary where the flow is influenced by velocity scales of the order of 

the size of the friction velocity, u*, and a set of length scales characterising the surface 

roughness and the distance away from the boundary. The outer region, or the 

remaining 60-80% of the entire boundary region is governed by the friction velocity 

and length scales of the same order of magnitude as the boundary layer thickness, 6.

The Reynolds stresses are large in the inner region, giving rise to 80-90% of 

the total turbulent energy production within the boundary layer (Tennekes and 

Lumley,1972). The region is therefore characterised by continuous turbulent activity, 

with an intermittency, y , of unity (where yis defined as the fraction of the time that 

the flow is turbulent as oppose to laminar). The inner layer thickness depends on the 

relative roughness (the ratio of the roughness height to the flow depth) of the flow, but 

is generally considered to extend to 0.1 - 0.4 8.

In the outer region, turbulent production drops off and y  decreases to zero at 

about 1.2 8 , making it difficult to define the precise location of the edge boundary 

layer.

The inner layer logarithmic law and the outer layer velocity defect law are 

derived here from asymptotic analysis, which is applicable for both smooth and rough 

walls (Raupach et al.,1991). The flume flows under study here are smooth walled, but 

the river flow to be studied later is rough walled with a large relative roughness, so 

both approaches are addressed here.



1.4.1.2 Smooth walled case

For the smooth walled case, the only length scale of importance in the inner 

region arising from surface effects is the viscous length scale, to give equation 1.40 by 

dimensional analysis:

u „

—  =F]
zu*  '

(1.40)
V v j

where u* is the friction velocity. In the outer region, scale effects of the order of the 

boundary layer thickness, 8, are thought to be prevalent, which gives equation 1.41 by 

dimensional analysis:

u — u
= G v § J (1.41)

where uM is the free stream velocity. In the intermediate zone between the two regions, 

the profile must be continuous, and since the regions do not have any independent 

parameters in common, the gradients must be constant. The gradients are matched in 

the intermediate zone using equations 1.42:

du dG  3 t |  dF  5 ^  1

dz  3t|  dz dE, dz K

z  „ zu *
(1.42)

where r| = — =
8 v
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which when integrated gives equation 1.43 for the inner layer :

— = - l n  z'+C (1.43)
U *  K

where z  is the non-dimensionalised depth, and it has been found experimentally, that 

for smooth walls the integration constant C ~ 5.5 ( Allen (1982) used C=5.5 in the 

construction of a flow domain for a particle tracking model).

1.4.1.3 Rough walled case

Where the roughness of the boundaries is significant, length scales which are 

representative of the roughness height, roughness element shape and spacing must be 

considered as scales which can shape the turbulence within the inner region. Moreover, 

the process of ceddy shedding’ (bursting) of fluid close to the boundary, whereby 

patches of high vorticity move up through the water column, are thought to influence 

the outer region as well as the inner (Krogstadt, 1992). Dimensional analysis of 

parameters relevant to the inner layer for a rough boundary gives equation 1.44:

(1.44)

where Lt is the set of length scales characterising the roughness elements and their 

spacing and h is the roughness height.
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The roughness causes the whole flow profile to be displaced upwards by an 

amount d, the displacement height. It has been shown (Raupach et al., 1991) that d is 

approximately the mean height of momentum absorption of the wall. However, it is 

rather difficult to measure, and the most obvious method of ascertaining its value, by 

fitting the velocity profile to the data set, has been shown to be inaccurate (Raupach et 

al., 1991).

If an analysis of the vertical velocity gradient, similar to that for the case of the 

smooth boundary, is carried out for the rough boundary, then a logarithmic shape 

results once again for the inner layer (Raupach et al.,1991), with the difference that the 

constant C in equation 1.42 is now dependent on h and L. The constants are often 

absorbed by again assuming a roughness length scale Zo, which is then interpreted as 

the height above the displacement height at which the mean velocity is zero, given by 

equation 1.45:

However, a more empirical approach has been to try and define a more universal value 

of the constant. This was first done by Nikuradse in 1933 (cited in Raupach et al.,

1991), in measurements of fully developed turbulence over a homogeneous layer of 

fixed sand grain to give equation 1.46:

(1.45)

(1.46)
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Subsequently 'equivalent sand grain roughnesses’ (which is the inverse logarithm of 

the constant 8.5 in equation 1.46) have been defined for different flows.

1.4.1.4 Alternative models for the vertical velocity profile

The vertical velocity profile in natural flows is often a more complicated shape 

than has been so far discussed in this section, and further degrees of freedom are 

necessary for a better functional representation such as the S shaped Dean profile (for 

example see Ferro and Biaimonte, 1994). However, this requires the specification of 4 

parameters (as oppose to two for the logarithmic profile). This requires an increased 

number of measurements.

The logarithmic profile has been used over the entire flow depth in previous 

studies to describe the flow in curved open channels, despite its strict applicability only 

to the lower 20% of the flow. The velocity measurements made by Bridge and Jarvis 

(1976) in a river (The River Esk, Scotland) with similar pool and riffle geometry to the 

reach of the River Lune under study in later chapters of this thesis, suggested that a 

large number of velocities throughout the water column fell on the logarithmic profile. 

The presence of helicoidal flow may increase the value of the von-Karman coefficient, 

k ,  because of the enhanced vertical momentum transfer. Measurements such as those 

of Anwar (1985), have also shown non-compliance with the logarithmic profile in a 

meandering flow, thus it is important to ascertain the conditions under which the 

logarithmic profile might be utilised in a meandering flow.
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The influence of the roughness height length scale on the flow throughout the 

depth has, however, been shown to be non-negligible (Krogstadt 1992) since the 

phenomenon of eddy shedding carries fluid higher into the water column (whereas Zo 

is not usually included as a dependent variable in the analysis).

1.4.2 Bursts and Sweeps

The presence of intermittency in turbulent flows has already been mentioned in 

terms of its effect on the Kolmogorov scaling laws and with its association with the 

occurrence of periodic ‘bursts’ of fluid motion arising from instabilities which can be 

amplified by the mean flow. Early flow visualisation techniques employing the use of 

hydrogen bubbles showed the presence of coherent streaks of fluid motion in the near 

bed region of a turbulent boundary layer, which after some period would lift upwards, 

oscillate, and then become unstable and break up (see McComb, 1990). Such an event 

belongs to a group of behaviours commonly called bursts and sweeps. These 

phenomena are rapid, coherent upwards or downwards accelerations of fluid. These 

accelerations of the fluid correspond to both positive and negative correlations 

between the vertical and downstream fluctuating velocities in either direction. The 

positive correlations demonstrate the presence of counter velocity gradient momentum 

transfer, although this has been found to be less significant in the process of 

momentum exchange between the bed and the mean flow (Lu and Willmarth, 1973).

The four possible kinds of interaction (up and down acceleration, up and down 

deceleration) have been studied using quadrant analyses (see Lu and Willmarth, 1973 

or Kelsey, 1994), whereby the different events are identified from measurements of the
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near bed shear stress time series. Measurements have shown that the Reynolds shear 

stress time series consists of long periods of relative quiescence, interspersed with 

large scale correlated motions from one of the four categories above. Clearly it 

becomes difficult to define precisely the duration of any particular event, since there 

must be some imposed definition of a threshold value of shear stress to signify an 

event. This also makes it difficult to define the average time between events, important 

for statistical modelling and for testing theory (Luchik and Teiderman, 1986).

Quadrant analysis of shear stress series which were measured over a gravel 

bedded section in the West Solent by Williams et al. (1989), demonstrated that on 

average, ejections and inward interactions, or sweeps and outward interactions each 

contributed ~ 45% of the total stress in only -28% of the time.

1.4.3 Secondary circulation

Secondary circulation (fluid flow non-parallel to the downstream direction) 

drastically influences the distribution of stresses exerted by the flow and its ability to 

disperse contaminant. There are two principle kinds of secondary circulation (Bathurst 

etal.,1979):

1. Pressure induced secondary motion (Prandtl's flow of the first kind).

2. Turbulence driven secondary motion (Prandtl's flow of the second kind).

The two flume flows under investigation in chapters 3 and 4 are subject to 

Prandtl's flow of the second kind, and are the same flows which were investigated by
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Knight and Shiono(1989). Prandtl’s flow of the first kind dominates the secondary 

advections in the river flow in chapters 5 to 8, although both kinds of flow are present. 

Straight channel flow has significant three-dimensional structure, despite the relatively 

simple geometry, which comprises distinct regions of secondary circulation which will 

be described fully in chapter 3.

The local differences in the three normal stress components of the Reynolds 

stress tensor, u' u\ w' w', v' v ', are responsible for the generation of the turbulence 

driven secondary motion, as demonstrated by looking at the longitudinal component of 

the vorticity equation which is derived by taking the curl of the NS equation. It is the

distribution of (w'2 -  v'2) that determines the structure of secondary flows. The

vorticity equation is given here for the longitudinal vorticity component, coi, by 

equation 1.47 (Tominaga et al.,1989):

* —  ( a 2c
„ , , , v'w' + u — , ,

dy dz cfydz\ /  \d z  dy J  \  dy dz )
dcol dcol d2 (—  — \ f d2 d2 j - t - j  [ d20)l d2col

v — —  +  w — —  =  —  - w  j - |  — -------- —  | V W  +  V  ------------------------- -

(1.47)

dv d t
Where co, is the longitudinal vorticity component col = ----------- , or more m

dy dz

familiar terms, the secondary circulation. It is generally observed that the viscous term 

is much smaller than the other terms except very close to boundaries, and can be 

disregarded. The first, and the difference between the second and third terms are of the 

same order of magnitude, and it is therefore important to model all three terms if the 

secondary motion is to be correctly simulated.
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The flow cannot be reproduced correctly if modelled using, for example, a 

Bousinesq stress-strain relationship (Cokljat, 1992), since these predict that the

Normal Reynolds stresses v'2,w'2 are equal.

A model of the NS equations which could account for turbulence induced 

secondary circulation would therefore require to use a non-linear eddy viscosity for 

which the normal stresses are not necessarily equal (Younis, 1992).

Pressure, or skew induced secondary currents occur when cross-stream 

vorticity (caused by e.g. bed friction) is twisted to produce a component of vorticity 

about the downstream direction. This arises in the case of meandering channels, where 

the action of the centrifugal forces give rise to twisting.

1.4.4 Flow through a meander.

The flow in a meander is affected by the upstream and downstream flow 

conditions. Considering a sufficiently long straight approach reach to a meander, such 

that there are no remnant secondary flows from meanders further upstream, practically 

all of the isovels are parallel to the flow direction with the exception of those due to 

small turbulence induced secondary circulation. Such flows were considered in chapter 

1, and can be identified by the bulges towards the banks in the primary isovels which 

they cause, for example see Anwar (1985).

At the bend entrance the flow encounters the non-uniform pressure 

distribution resulting from the redistribution of flow in the meander. There is a 

depression of the water surface at the inner bank, which presents a favourable pressure 

gradient to water flowing into the bend at the inner bank (Demuren and Rodi, 1986).
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There is also, therefore, an adverse pressure gradient near to the outer bank which may 

cause flow separation at high flows (although this is not always a sufficient condition 

Tritton, 1990). The depression/elevation is significant and has been measured e.g. for a 

meandering reach of the River Esk having similar geometry to the section of the Lune 

under study (Bridge and Jarvis, 1976).

Inside the bend the vertical velocity gradient is differentiated by the action of 

the velocity-dependent centrifugal force such that faster moving water near the surface 

experiences a greater acceleration towards the outer bank than the slower water close 

to the bed (the centrifugal acceleration is proportional to the square of the 

downstream velocity and inversely proportional to the radius of curvature of the

thalweg, u/ r ). This causes the vertical velocity profile to become skewed and induces

a downstream component of vorticity, causing secondary circulation. The water near 

to the outer bank therefore elevates. The slower moving water near the bed moves to 

replace the water which has moved to the outer bank. The secondary flow shifts the 

primary isovels so that the velocity maximum moves closer to the outer bank, and the 

maximum shear stress subsequently follows, though there may be some delay. This 

arises because the secondary circulation actually inhibits the movement of the water 

close to the bed towards the outer bank (Bathurst et al., 1979).

The strength of the circulation at any transect in a meander depends on the 

Reynolds number, the distance of the transect downstream from the bend entrance, the 

aspect ratio of the channel, the ratios of the radius of curvature to width, and the arc 

angle of the bend, which are all functions of discharge (Bathurst et al., 1979). 

Secondary velocities have been measured up to 40-50% of the downstream flow 

velocity.
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Instability of the circulating cell arises when the balance between the transverse 

pressure gradient and the centrifugal force is temporarily broken, resulting in the large 

cell to break up into a large and a small cell, with the small cell close to the right bank, 

circulating in the opposite sense to the main cell. This cell is generally observed when 

there is a steep outer bank (Bridge and Jarvis 1976).

The strength of the secondary flow rate varies with discharge. It has been 

observed to be the strongest under medium discharges, because there is a decrease in 

the bulk centrifugal forces at comparatively high or low flows (Bridge and Jarvis, 

1976). It is generally agreed that at high flows the mean flow moves outward from the 

thalweg and at low flows the mean flow slows down. Both of these cause the

centrifugal acceleration (u/ ^ )  to decrease.

At the bend exit the secondary flow continues to circulate to conserve angular 

momentum, although viscous effects eventually replace the symmetry in the primary 

isovels after a distance which depends on the nature of the river. In a series of 

meanders, the secondary flow can be very sensitive to history effects (Anwar, 1985).

1.4.5 Separation

In order for flow to separate away from a boundary, the rate of change of 

velocity in a direction normal to the boundary surface with respect to that same normal 

direction must be non-zero and positive, as defined by equation 1.48:

^ > 0  (1.48)
dn
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where un is the component of velocity in the direction n, normal to the surface. This is 

an analytical result which can be derived from making the two-dimensional boundary 

layer approximation (e.g. see Tritton,1990). For the large separations observed near to 

the inner bank of flow entering a meander bend, this inequality arises due to the action 

of centrifugal forces in the direction normal to the inner bank. When the flow 

separates, it takes with it strong vorticity into the main flow, generating increased 

shear and enhanced mixing. The inequality more generally arises due an adverse 

pressure gradient in the direction of flow, expressed by equation 1.49:

Flow can remain attached in the presence of a small adverse pressure gradients under 

some situations.

1.5 Summary of classical theory, and applications in future chapters.

This section summarises the different theories which have been described in this 

chapter, which form a background to the assumptions which were made in later 

chapters, and gives an indication of where in the following chapters these theories were 

put to use.

In the first few sections some fundamental equations of fluid motion were 

examined, giving some insight into the origins of the complexity of fluid flow. The 

Reynolds number was shown to be indicative of the complexity of a flow, and in later
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chapters, it was often used as a scaling factor, for example in the estimation of the 

thickness of the laminar sub-layer at the bed for the particular flows under study. 

Further, the number of degrees of freedom was shown to increase rapidly with the 

Reynolds number, which was used to explain the limitations of the use of direct 

numerical simulations of complex, high Reynolds number flows, and ultimately 

explains the need for research into models of a conceptual and semi-empirical nature (a 

point which is discussed in more detail in the final chapter).

Kolmogorov scaling theory was included because it leads to the important, well 

studied scaling law (Kolmogorov-Obukhov law) for homogeneous, isotropic 

turbulence, which provides a useful standard to assess the performance of a conceptual 

model under idealised conditions. This formed the background to further discussion of 

the random walk model in chapter 2.

The difficulties associated with direct numerical simulations, and the 

inapplicability of scaling theories to inhomogeneous flows lead to a discussion of the 

method of Reynolds averaging and the Reynolds averaged momentum conservation 

equations. These form the basis of most engineering / environmental flow models, and 

are expressed in terms of the mean and fluctuating parts to the flow observables. The 

equations require to be ‘closed’, by the additional specification of the values of the 

Reynolds stresses, which generally rely upon the assumption of a gradient-flux type of 

relationship.

The closure models form the closest counterpart in classical hydrodynamics to 

the conceptually based random walk models, but lack the simplicity, and are more rigid 

in their applicability to different flows, especially with the higher order closures.
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The Lagrangian integral time scale was defined in terms of the Lagrangian 

autocorrelation function and is later required to be estimated in order to specify a time 

step between the perturbations in the random walk models. The spatial decorrelation is 

recovered via Taylors frozen turbulence hypothesis and in later chapters this hypothesis 

was for example tacit to the Eulerian measurements of the turbulent time scales using 

the electromagnetic current meters in chapter 5.

Having described the basic equations governing fluid motion, the dispersion of 

a passive tracer was then described as the balance between the advection and diffusion 

of a random vector concentration field. Solving the advection diffusion equation has 

the same problems associated with it as the momentum conservation equation, since 

the velocity field must first be resolved in order to solve it. The processes of Reynolds 

averaging, depth averaging and approximating which followed, ultimately resulted in 

the formulation of a solution to an approximate form of the advection diffusion 

equation (the streamtube equation). By this stage, the co-ordinates of the equation had 

been transformed into partial cumulative discharge and downstream distance, and an 

effective dispersion coefficient had been prescribed which lumped together the effects 

of turbulent diffusion and secondary advective transport. The simplified, streamtube 

equation provided a valuable alternative (if approximate) solution to the analysis of 

tracer dispersion in the final chapter of this thesis.

The analytical treatment of a turbulent boundary layer in the section following 

this resulted in the logarithmic equation of the wall, which provided a useful tool in 

chapters 3 and 7 in the interpolation between point velocity measurements.

Finally, the causes of secondary circulation were described since the section of 

the River Lune which were studied in chapters 5-8 comprises a single 180 degree
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meander bend, in which secondary circulation enhances the mixing rate of a tracer. 

Previous measurements of transverse mixing coefficients are left until chapter 8.
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Chapter 2

Random walk models and their application to complex flows.

2.1 Introduction

In the following chapters random particle tracking models are investigated as 

tools for studying the turbulent dispersion of a passive tracer in several different flows. 

The imaginary particles undergoing the random walks represent parcels of the fluid 

which carry the tracer. The various representations of the velocity perturbations which 

are used in the random walk models described in this chapter draw upon observations 

and measurements of turbulent motion.

This chapter describes how the random step equation is applied in practice and 

reviews some of the mathematical properties of random walk models. The implications 

of applying the model to different kinds of flow, such as non-uniform, inhomogeneous 

or anisotropic flows are discussed. The random step equation can be formulated such 

that the particle trajectories include the physical properties observed in fluid flows. 

Some formulations of the random step equation which have been previously studied 

are then reviewed.

In section 2.2 the Lagrangian nature of the random walk model is discussed, 

and the step equation for its application is described. Different properties of single and 

multiple particles undergoing random walks are then discussed.

Section 2.3 presents the first order Markov chain process which is used (with 

several different sets of assumptions) as a model for turbulent motion, and several
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properties of this type of process are discussed. Section 2.4 discusses further aspects of 

the application of different random walk models to channel flows.

In section 2.5 the flume geometry for the two different flows is described, since 

the form of some of the different random walk models which are described in the 

ensueing sections depend upon it.

Section 2.6 is a description of the different random walk models which are 

investigated in chapters 3 and 4 in order to test the sensitivity of the large scale 

dispersion characteristics to the form of the velocity perturbations in the random walk 

in chapters 3 and 4.

2.2 The random walk model.

2.2.1 Random particle tracking in a Lagrangian framework.

The small scale hydrodynamics of an inhomogeneous turbulent flow play an 

important part in determining the dispersion of a solute, which makes dispersion a very 

locally generated phenomenon. In the case of inhomogeneous turbulence a complete 

picture of dispersion requires a Lagrangian description (Tampieri et al. 1992).

However, the parameterisation of Lagrangian particle tracking models is hindered 

considerably due to the Eulerian nature of most field / flume measurements. Generally 

the Lagrangian velocity fluctuation variance is assumed to be equal to the Eulerian 

equivalent (Sawford, 1985), although this is only strictly justifiable for simple 

homogeneous, isotropic flows. The difficulty with the translation between the two 

frames arises because the large scales of motion have a sweeping effect on the smaller 

energy containing eddies and therefore contribute to the correlations measured at a
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fixed point. Moreover, there is no generalised theory which defines the extent of the 

sweeping effect in inhomogeneous turbulent flows. Lagrangian correlations have been 

measured in small scale turbulent flows using techniques such as particle image 

velocimetry whereby video images of illuminated particles passing through a laser light 

sheet are digitised and tracked as described fully in, for example, Perkins and Hunt 

(1989) or Dalziel (1992). However, it is large scale flow  Lagrangian measurements in 

realistic flows which are needed to parameterise the length and time scales for this 

study.

The random walk has not been derived rigorously from the Navier Stokes 

equations for inhomogeneous turbulent flows and in these realistic flows it has not 

been formulated to give an exact solution to the transport equation 1.23 (Van Dop et 

al 1985). However, it provides a flexible alternative to approximate solutions to the 

advection-diffiision equation for modelling tracer dispersion, which cannot generally be 

applied close to a source (in the near field region). Random walk models are exactly 

mass conserving, and can be applied to the modelling of the dispersion of passive 

tracers in high Reynolds number, complex turbulence and can take account of 

inhomogeneneity, unsteadiness and non-Gaussianity in the turbulence velocity 

distribution (Thomson, 1987). Further, the particle tracking techniques lend themselves 

well to parallel computing since they are multiple task-orientated, and are potentially 

more computationally efficient, since calculations only involve marked fluid elements 

of interest. All of the random walk particle tracking models described here were based 

on a parallel array of transputers.
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2.2.2 The random step equation

For a one dimensional random walk a test particle is repeatedly subjected to 

randomly orientated displacement, such that there is a 50% probability that the particle 

will be displaced to the right or to the left at each step. The particle may be considered 

to be carrying some physical property such as mass (for this study) or momentum from 

place to place. Fig.2.1 demonstrates an example random walk, where the arrows 

represent equal probabilities for the two possible orientations at each step.

Fig. 2.1 Schematic diagram of a random walk.

The absisca could equally well be represented by the number of the step from the 

origin, although it is represented by a cumulative time interval ( At) between steps 

here. For the simplified case of one dimension, the net displacement of a particle, x’, 

having undergone a series of random, discrete displacements of distance Ax, in one 

dimension is described by a symmetric binomial probability distribution P (p), given in 

equations 2.1:

particle
position

0

*

At
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x'= A x ± A x ± A x ± A x .........

x'= Ax(2 p - n )

where ^

P(P) = (">.5"

where p is the number of unit displacements which the particle reaches away from the 

particle origin after n steps in total.

This distribution rapidly approaches a Normal distribution (Fischer, 1979) as 

the number of displacements surpasses 10 ( n=10 gives a fit to second order moments 

of -  2%), although it is only an exact solution to the diffusion equation for an infinitely 

small time step and an infinite number of steps (Einstein, 1905, cited in van Dam,

1992). It has zero mean and a variance proportional to the number of displacements n, 

given by equation 2.2:

((x'-(x'))2} = Ax2// (2.2)

Analogously, the Fickian diffusion equation (1.22) has a solution for a point source, 

which is a normal Gaussian distribution having a variance which is proportional to t. 

For comparisons between the two solutions, the time interval is related by: t = n At.

The effective diffusivity for a particle undergoing a random walk is given by 

equation 2.3:

K = ^ r  (2-3)2A t

The next step is to infer that both descriptions can be used to model the rapid, 

seemingly random motion of turbulence. The most important implication of this is that
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it is assu m ed  that there, is  a d istinct separation of turbulent length scales between the 

diffusive and the ad veetive m otions, w hereas in reality there is  a  continuum  o f  scales. 

Clearly from previous sections, this is not the case in turbulent motion, although an 

average decorrelation lengthscale can be associated with the eddies for homogeneous, 

isotropic turbulence (see the discussion of the Taylor integral lengthscale in section 

1.29, equation 1.19).

Based on these assumptions, the random walk is  u sed  in the following chapters 

as a model of the dispersion of a passive tracer in  turbulent motion. Numerous 

amendments will be made to the simplest form of random walk described above, in an 

attempt to account for additional properties of inhomogeneous flows.

The random walk model allows for more flexibility in its application to real 

flow dispersion problems than analytical solutions to the adveetive diffusion equation 

which are only valid at distances downstream which are greater than the mixing length.

2.2.3 The Central limit theorem.

The Central Limit Theorem states that in the limit (of an infinite sample size), 

the sum of independent, identically distributed random variables is normally distributed 

(i.e. that the centroid of the centroids of independent samples from any random 

distribution approaches the centroid of the normal distribution as the number of 

samples increases). Therefore one would expect that the ensemble average of the 

trajectories of a large number of particles in a random walk model would approach the 

mean trajectory.
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2.2.4 The Ergodic hypothesis

A requirement for the particle tracking approach to modelling is that the 

statistics of the resulting particle concentration field can be compared to the statistics 

of the pollutant concentration field which is being modelled. This assumption draws 

upon the Ergodic Hypothesis which approximates the ensemble averaged observed 

distribution of all spatio-temporal realisations by the time averaged observed 

concentration distribution. It was emphasised by Allen (1985) that the above 

assumption requires careful selection of sampling period (which becomes more 

important in complex environments). This also relates to the fact that the fractal 

codimension of scaling parameters will always be sample size dependent (Lovejoy and 

Schertzer,1992); which implies that the probability of occurrence of an event over a 

threshold being observed depends on the sample size.

2.2.5 Random step equation using a continuum of step sizes taken from a 

specified distribution.

The simple random walk which has been described so far uses displacements 

which have a constant size. For this form of random walk, the particles are constrained 

to lie at discrete distances from the origin, in the case of a point source. This can be 

overcome by allowing the displacements to be selected from a continuous distribution, 

whilst maintaining the average magnitude of the displacements (van Dam, 1992). The
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effect of this phenomenon on the resulting particle distributions is discussed in chapter 

4, where both kinds of random walks are used.

The resulting change to the effective diffusion coefficient for a random walk 

with displacements which are selected from a distribution was shown by Einstein 

(1905, cited in Van Dam, 1992) to be given by equation 2.4:

where the only requirements on the probability distribution ( P ( Ax)) are that it must 

be an even function, and that its integral over all space is finite. Later in this chapter, a 

random walk is described for which the distribution of the displacements follows a 

Normal Gaussian distribution. Inserting this probability distribution into equation 2.4 

gives equation 2.5:

K = —  } — P(Ax)d(Ax) 
A r 2
1 TAjc'J (2.4)

for which the integral on the right hand side can be evaluated from tables (Davies, 

1987) to give equation 2.6:



2 .2 .6  S elf-C o n sisten cy  problem o f au tocorrela tion s for ran d om  w alk .

If the time series of a particle’s velocity is analysed for a simple (constant step 

size) random walk, then the autocorrelation is zero for times greater than the time step, 

At, and for t < At, there is a (At -t)/ At chance that the velocity is unchanged between 

time = 0 and time= t, which results in a triangular function for times less than At 

(Wang and Stock, 1992), given by equations 2.7:

A t - t
R(t) = --------yforit < At.

At (2.7)
R(t) = 0,/orif > At

Since the value of the autocorrelation, R (0) is unity, the integral timescale is the area 

under the triangular function, given by: 1/2 x lx  At. If the time interval is simply set as 

the estimated Lagrangian timescale, then the effective integral timescale, T l ,  for the 

random walk is actually only Tl/2.0. By setting At= 2TL, the desired integral timescale 

may be achieved. This is termed the self-consistency problem, which clearly becomes 

more of a problem, the more complicated the step equation. However, for the purposes 

of this modelling work, whereby the effective diffusivity of the different random walk 

models is fitted using variable parameters (see section 2.5), the correction can be 

absorbed into the size of the variable parameter. However, if the autocorrelation 

functions for the random walk models are analysed, then the correction must be taken 

into account.
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2.3 Markov Processes.

A Markov type process has been included in some of the particle tracking 

models used in this study, since it provides a framework for the inclusion of 

autocorrelations and cross-correlations which are observed in measurements of the 

fluctuating velocities. The exclusion of such correlations might well have an important 

effect on the accuracy of modelling dispersion in more complex flow. Sawford and 

Borgas (1993) have shown that discrete random walks (random walks for which the 

time steps are of the same order of magnitude as the Taylor integral timescale) are 

inconsistent with Kolmogorov's theory of local isotropy, which requires the Lagrangian 

velocity to be a continuous function of time.

2.3.1 The step equation for a Markov process.

The Markov process could be said to take the analogy of fluid elements in 

turbulent motion with microscopic particles in Brownian motion to the extreme. 

Brownian motion can be described by the Langevin equation (e.g. van Dop et al 1985), 

given by equation 2.8:

where dw’ is the change in the fluctuating velocity component over a small time 

increment, dt, and where the standard deviation of the fluctuating velocity component
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at time t is given by gw-. TL is the Lagrangian integral time scale and w” is a Gaussian 

random variable having zero mean and unit variance.

The finite difference form of (2.8) is then the first order Markov chain (see for 

example Sawford 1985), given by equation 2.9:

w' (t + At) = w' (t)R(At) + a w,</T- R2(At) • w" (t + At) (2.9)

where Rl is the autocorrelation function, related to the values of the fluctuating 

velocities at time t and (t + At) by equation 1.16 . The form of this correlation is 

known to be exponential for constant time steps, in the limit that At approaches zero 

(Durbin, 1980). The change dw’ in equation 2.8 is modelled by the finite difference 

between the velocities at times t and ( t + At).

2.3.2 Regions of inhomogeneity

In inhomogeneous turbulence there is an unphysical build up of particles in 

regions of the flow where the time scales are large, since there is on average less 

opportunity for particles to step out from this region into a region of shorter time 

scales than in the opposite direction. In other words, the maxima in particle 

distributions moves away from regions of relatively high diffusivity. Attempts have 

been made to amend this by the simple addition of a drift term to equation 2.8 (for

example, see Sawford 1985), dw'2

dz  
v y

dt .Van Dop et al (1985) have demonstrated that

the formulation of the Langevin equation with this term is approximately in agreement
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with solutions of the Eulerian equations for moments up to the second order, of 

concentration and velocity. Thomson (1987) derived the drift term on a more formal 

mathematical basis.

2.3.3 Selection of the time step for a Markov process.

An investigation into how large At could be (for the sake of saving 

computation time), without the particle dispersion characteristics deviating away from 

the correct behaviour, was carried out by Wilson and Zhaung (1989). The problem was 

addressed by comparing the spreads predicted by Taylor's analytical solution to the 

diffusion equation for the discrete process (which used the time step TL) with his time 

continuous solution (which does not involve a time step). It was found that for a 

timestep of 0.25TL, there was an error in the spread of the discrete solution of over 

5%, which was considered too large, especially for models which incorporate further 

complexities, such as cross-correlations. A timestep of Ar=0.1TL was suggested for 

homogeneous turbulence, for which the discretisation error in the spread was ~ 2%. 

Further, the exponential autocorrelation in the velocity series is approximately realised 

for Af=0.1TL, which is the behaviour in the limiting case, as At approaches zero 

(Wang and Stock, 1992).
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2.3.4 First order autocorrelation equation

Equation (2.8) provides a framework to include cross-correlations in the 

velocity components. The scheme used here was introduced by Zannetti (1991). Often, 

in vertical shear layer flows, only the cross-correlation r™ is considered as important:

u'w'
(2.10)

Combining this with the single point autocorrelations, the explicit first-order 

autocorrelation equations are given by equations 2.11:

u (t + At) = (^u (t) + u (t + At)

v (t + At) = <|)2v (t) + v (t + At) (2.11)

w (t + At) = <j)3w (t) + (l)4u (t + At) + w (t + At)

where u', v1 and w' are the downstream, transverse and vertical fluctuating velocity 

components and the parentheses indicate which timestep. The mean adveetive velocity 

in the downstream direction is added to the fluctuating component at each generation. 

The equations are heuristic in origin, since they may or may not be in agreement with 

solutions to the transport equation (1.23). The <|> coefficients are algebraic 

combinations of components of the correlation tensor, the values of which are given by 

equations 2.12 (Zannetti, 1990b):
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4>i = ru(At)
<j>2 = ry(At)

± ^(AO- /̂uwCO)
* 3  = -----  ̂ x 2  2 ^Y3 l-̂ V'uwCO)

_ rnw(Q)o..[l-^)/w(AOl 

?4 CTjl-^V o^O )]

(2.12)

where for example ru is the component of the correlation tensor corresponding to the 

autocorrelation in u \ The variance of the completely random components (u”,v” and 

w”) in 2.11 are given by equations 2.13:

where these are the standard deviations away from the means of the components of 

u" . The autocorrelations are typically modelled using exponential functions, which in 

the limit of the discretisation interval, At, approaching zero, is known to be the 

correct behaviour (see Wang and Stock, 1992).

The equations can be simplified if the time steps used are greater than the 

integral time scale, such that the autocorrelations can be ignored and only the cross­

correlations are considered to give equations 2.14 and 2.15 (Kelsey, 1994):

(2.13)

(2.14)

/ 2\1/2
=  U  ”  ruw ) <V

2y/2 (2.15)
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where w” is a Gaussian random noise component with standard deviation aW”.

The cross-correlation coefficients can be estimated from Eulerian measurements of the 

u' and w'. The latter has been done by various authors over a wide range of flows 

using electromagnetic current meters. Heathershaw (1978), measured ruw values 

between the vertical and down stream fluctuating velocities in the neutrally stratified 

bottom boundary layer of a tidal current at 100 cm and 150 cm above the bed of -0.18 

+/- 0.018 and -0.15 +/- 0.017 respectively. Holland et al., (1990) made turbulence 

measurements on the river Severn for which, on a straight section, ruw had an ensemble 

value of approximately -0.4. On the S.E.R.C. Flood Channel Facility (see chapter 3), 

analysis of the laser-Doppler-anenometer data, carried out on the in-bank 100mm flow 

depth data, yields an ensemble average value of ruw = -0.27.

Alternatively, the correlation ruw may be substituted by r„v and the equations 

reformulated for the case when the transverse correlation is more significant than the 

vertical.

Finally, both correlations, ruw and rm may be included in the form of equation

2.16:

u'= u"
v'= ^u'+v" (2.16)

w'= ^ v '+ ^ u ’+w"

where the <|> coefficients are simple algebraic combinations of the correlation tensor 

given by equations 2.17 and 2.18:
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The correlation between u' and v' and the correlation between u' and w' intimate a

correlation between v’ and w', hence the inclusion of fa • The derivation of these 

coefficients, and the values of the variance of the fluctuating velocities is given in 

appendix 2A. The variances are given by equations 2.19 and 2.20:

2.3.5 Further properties of the Markov chain.

2.3.5.1 Correction to fluctuating velocity variance.

The spatial variance of the size of the particle cloud is determined from the 

autocorrelation function in accordance with equation 2.21 (Kampe de Feriet 

following Taylor (1921), cited in Reid, 1978):

(2.19)

(2.20)



(2.21)

where t’ is a dummy time variable and cz is the spatial variance of the particle cloud 

distribution.

The use of a discrete time interval, At, in the finite difference form of the 

Langevin equation implies that for this periods of time the autocorrelation in the 

fluctuating velocity time series is unity. The spatial variance given by 2.21 can only be 

equal to that for the continuous time case if the velocity variance is modified by a small 

amount, such that the equality 2.22 holds:

w'2 J (t -  t')R(t')dt'= w,2ffcctlve )(t -  t 'W (2.22)

where w’ effective is the modified time averaged fluctuating velocity which accounts for 

the finite time steps. Evaluating the integrals, using an exponential autocorrelation 

function, this gives equation 2.23 (Reid,1978):

2 Tr
weffective Af

1 w'2 exp-
\ TL J

At 
+ — - 1 (2.23)

where At = t - 1’ . However, in the studies reported here this correction will 

automatically be absorbed into the multiplicable factors to the step sizes, which were 

used as variable parameters in order to calibrate the model, as discussed in section 2.5.
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2.3.5.2 Accounting for the effects of intermittency in a Markov chain.

Intermittency is ubiquitous in turbulent flow measurements, and investigations 

have been carried out into the possibility of integrating its effects into the random walk 

scheme by Borgas and Sawford (1990). The patchiness of turbulence which arises from 

intermittency implies that at smaller scales, the ratios of active to inactive regions 

decreases which should result in there being local variations in the intensity of energy 

transfer down the energy cascade. This is at odds with the assumption of a constant 

energy flux which is central to Kolmogorov scaling theory. However, many 

measurements have been made in approximately homogeneous turbulence, which are 

somewhat paradoxically in agreement with Kolmogorov's scaling laws. The 

multifractal scaling approach has met with some success in accounting for the 

intermittency effects (which on a larger statistical scale change the kurtosis of the 

velocity distributions). Borgas and Sawford (1993) incorporated this idea into a 

stochastic model of a one particle dispersion model in which the multifractal scaling 

was derived from Eulerian measurements. However, the authors concluded that the 

inclusion of intermittency made little difference to the dispersion, and there were no 

discernible advantages to its inclusion.
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2.4 The application of random walk models to channel and river flows.

2.4.1 Previous studies.

The random walk has been used in relatively few instances to model the 

dispersion characteristics of the flow in a channel. Recently the model was applied to 

the flow in the River Severn (Heslop and Allen, 1993). This study was primarily 

concerned with the longitudinal dispersion characteristics of the reach, and the tracer 

tests which were carried out showed skewed concentration curves with long tails in the 

upstream direction. This suggests that there were deadzones or long term correlations 

present in the flow (e.g. due to deadzones with large storage times or secondary 

circulation cells) which were not accounted for by the random walk model. The 

random walks in use were unable to reproduce the observed long tails, a shortfalling 

which it was said could be improved slightly with the inclusion of deadzone ‘storage’ 

effects near the modelled river bed, although results from such a model were not 

presented. Secondary circulation and dead zones are also present in the river flow 

which is investigated in chapters 5-8, and efforts are made to account for these features 

by the inclusion of a variable effective dispersivity coefficient for the random walk.

2.4.2 The scale dependency of the dispersion process.

The effects which the suggested inhomogeneities above can have on solute 

dispersion are exemplified by considering the case where the diffusion equation is used 

to predict the transport of the cross-sectional mean concentration of a tracer over a
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large distance compared to any meander arc length in the reach. Here the length scales 

contributing to the constant of dispersivity are large because the large scale circulatory 

motions of the secondary currents can be considered as random and part of the 

dispersive motion. If the local concentration is of interest, as in this study, then the 

constant of dispersivity depends on the scales which are small enough that their motion 

can be considered random. However, due to the sweeping effect that the larger scales 

of motion have on these smaller scales, the dispersion equation at this scale is not 

enough to describe the evolution of the localised concentration. The sweeping effect 

can give rise to dispersion which is non-Fickian, a problem which is addressed here by 

the inclusion of an effective memory to the motion of the particles, which can be 

modelled in many different ways (for example see Kinzelbach, 1990).

2.4.3 Estimating the integral length scale from Lagrangian measurements.

Most of the time and length scales used in the different random walk models 

which are described below have been based upon the flume photography experiments 

carried out by Sullivan (1972), and were also employed by Allen (1982; 1992) and 

Heslop & Allen (1993). Alternatively the scales are based upon the measured Eulerian 

fluctuating velocity field in the channel flows. The measurements by Sullivan are the 

largest scale Lagrangian measurements available at the time of writing so far as is 

known.

Sullivan’s Lagrangian measurements were carried out using a camera which 

was moved along at the mean down stream velocity in a channel flow, recording the 

positions in two dimensions (three including camera position) of particles having
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neutral buoyancy (0.5mm diameters). The flume was 8.95cm deep, with a working 

width and length of 0.46m and 2.45m. The experiment is outlined below.

The transverse and vertical positions of the particles were projected onto a 

plane perpendicular to the downstream co-ordinate. The particle paths in this plane 

could be resolved into a series of circular arcs. Three successive co-ordinate positions 

were used to define a plane upon which a circular arc could be drawn through the three 

positions. The radius of the arc was then used to define an instantaneous length scale, 

r', which is shown in the sketch below:

r’ was non-dimensionalised by the depth, d = 8.95cm. The swept angle made by the arc 

was divided by two time intervals to define an instantaneous angular velocity, © 

(which was non-dimensionalised using [h/u*], where h is the channel depth and u* is 

the friction velocity). Next an experimental probability density function was defined by 

fitting the scale and shape parameters of gamma distributions to the observed 

distributions of instantaneous length scales at ten different depths.

The instantaneous angular velocity of a particle was found to have a definite 

dependence on the instantaneous length scale. All the values of © which had the 

same instantaneous length scales, to within experimental accuracy, were averaged to 

produce a mean value co, and an experimental relationship was determined of the form 

given by the relation 2.24:

Flow is into the page

Sketch showing 
construction o f r ’ The traced particle trajectory,

vertical T
A

|B projected onto the x/y plane is ABC.
These three points form a unique 

  arc, o f radius r ’.
cross-stream -»
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m -  2.2(r')~°'m  (2.24)

The average of the absolute value of the difference between individual co values and 

values given by the equation when corresponding values of r' were used was found to 

be ~ 20-30%.

An ensemble average angular velocity was then determined by inserting the 

ensemble mean observed length scale which was (r')=0.1 into 2.24. This was then used 

to determine an ensemble average fluctuating velocity magnitude in the y/z plane by 

putting (u'^ = (r ^G)  ̂ = 1.0975 in non-dimensional units. This estimate is

fundamentally based upon the Lagrangian length and inverse time scales estimated in 

the experiment. These values were used by Allen (1982 ; 1992) and Heslop and Allen 

(1993).

2.4.5 The random walk model applied to regions of shear.

A continuous range of step sizes can be used in the random walk, rather than 

using steps of equal sizes and applied in time steps equal to an estimation of the 

integral Lagrangian timescale T l . The major difference that this makes to the 

dispersion is that the coarseness of the resulting field is reduced. Further, for the 

random walk having constant step sizes it becomes important to ensure that there are 

particle trajectories which take odd and even total numbers of steps between release 

and the sampling cross section since if the particles all take an even number of steps, 

then they are unable to settle at odd integer numbers of displacements away from the 

release site. This effect is especially likely to occur when there are small velocity 

gradients perpendicular to the mean flow direction (such as in the transverse dimension 

for the in-bank flow, which will be described in the next section).
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2.5 Flume geometry and flow conditions.

The hydrodynamic and dye dispersion data used in this report came from two 

different sets of experiments which were carried out on the Rood Channel Facility at 

Hydraulics Research, Wallingford. The flume geometry will be described here, since 

the different random walk models (described in section 2.6) were chosen for the 

specific flows of interest.

The tracer dispersion tests were carried out by Guymer et al.(1989) for in-bank 

and over-bank flows for several release points and different depths of flow in a two 

stage, straight channel with geometry given in fig. 2.2:

Fig. 2.2 Diagram showing flume geometry for Flood Channel Facility, 

Wallingford (not to scale).

 ^ | 2 -7

<--------75.0 --------M -30.  224.0  ►

{allmeasurements in cm.}

The two flows which were examined in this sensitivity analysis corresponded to flow 

depths of 177mm (over-bank flow) and 100mm (in-bank flow), both having a side wall 

slope of 2. The dye injection points considered in the analysis were channel side- bank 

top (depth = 15mm, y= 1.05m) for the over-bank flow, and centreline-water surface 

for the in-bank flow.
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The ratio of the over-bank flow depth to the main flow depth can be considered 

as similar to that observed on natural rivers, with the side wall slope representing the 

slope of the inner bank between the flood plain and the main channel.

2.6 Sensitivity of the large scale dispersion characterstics to the form of the 

velocity perturbations in the random walk model, leading to descriptions of the 

different formulations which are used in this study.

A variety of random walk models will shortly be described, which make 

different assumptions about the form of the velocity perturbations in the flume flows. 

This selection of different models was included because the exact form which the 

perturbations should take is not known for inhomogeneous turbulence, but it was also 

included in order to investigate the sensitivity of the macroscale dispersion 

characteristics of a cloud of particles to the nature of the velocity perturbations which 

are applied to the individual particles at the microscale. The different models have 

varying degrees of complexity, ranging from the simple, constant step size type, to a 

model which takes into account the measured fluctuating velocity field and the fine 

structure cross correlation and autocorrelation information. The sensitivity analysis 

also aims to ascertain the worthwhile degree of complexity, baring in mind the 

additional effort which is required in terms of computation and fieldwork.

The sensitivity analysis of the different random walk models in the next 

chapters is principally conducted on the more simple, in-bank flow. The best 

performing models in the in-bank flow will be paid particular attention when studying
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the over-bank flow although the best fitting models might not be the same for the two 

flows.

The various random walks which were used in this study were given names 

(see parentheses in each section heading below) for identification. All of the velocities, 

displacements or timescales discussed have been non-dimensionalised using 

combinations of the depth and the friction velocity of the flume flow. Each of the 

random walks discussed below incorporated three principal variable parameters, fu, fw 

and fv which were multipliers to the estimations of the longitudinal, vertical and 

transverse integral lengthscales respectively. In this way the values of fu, fw and fv 

ought to be of the order unity if an appropriate model has been defined.

The value of fu was essentially fixed so that the downstream perturbations were 

of the correct order of magnitude, since this study concentrated on transverse and 

vertical mixing. Moreover, the downstream dispersion is controlled more by the 

differential advection due to cross stream and vertical shear velocity profiles. The 

values of fv and fv , however, were adjusted in size until the predicted particle 

distribution for each model fitted the measured concentration distributions at the first 

measurement site downstream (4m). These calibrated values were then fixed, and the 

particles were allowed to disperse further downstream. The predicted particle 

distributions were then compared with the measured concentration distributions further 

downstream.

The over-bank hydrodynamic data available at the time of writing was not as 

detailed as that for the in-bank flow, so there are differences between the basic forms 

of random walks which are examined in this section. Wherever possible, the same form 

of model is used for both flows.
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2.6.1 Random walk with a constant step size (JUMP).

This subroutine selects a random real number r) from a uniform distribution in 

the interval (0,1) and if rj is greater than 0.5, the particle is displaced a distance 

fw x Ll upwards, if r| is less than 0.5, the particle undergoes the same displacement 

but downwards.LL is the ensemble Lagrangian length scale estimated in section 2.4. 

The resulting symmetrical binomial distribution rapidly approaches the normal 

distribution as discussed in section 2.2. The process is repeated for the remaining two 

dimensions using corresponding factors fu and fv for downstream and cross stream 

respectively. The steps are applied every integral timescale TL, which is 0.4 seconds in 

real time, as estimated from the inverse time scale determined by Sullivan ( 1972).

2.6.2 Random walk with step sizes selected from a normal random distribution 

and variance scaled using ensemble average length and velocity scales 

(NEWJUMP).

This subroutine introduced a continuous range of step sizes such that the 

particles could in theory sample the entire fluctuating velocity field. The ensemble 

average fluctuating velocity scale was used to scale the variance of a random number 

which was generated from a normal Gaussian distribution having zero mean and unit 

standard deviation, p(0,l). The factors fv,fw were used once more, such that for 

example the vertical steps size took the form given by equation 2.25:
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L  = f„ x/?(o,i) xz., (2.25)

where /» is the resulting particle displacement.

For the over-bank flow, another model (NEWJUMP B) was constructed in 

which the length and timescales were derived from the measured dimensionless eddy 

viscosity as determined from the measurements of Knight and Shiono (1990) in which 

the flume was divided into four subsections in the transverse direction, and each of 

these given a different effective dispersivity. Knight and Shiono (1990) show numerical 

solutions to a shear stress model which incorporated such a discretised eddy viscosity, 

and which greatly improved the fit of the model to the data. One of the sub-regions has 

been omitted in this work, since the particles never enter the extreme right hand side of 

the flume in these experiments. In non-dimensional form, the eddy dispersivities,ey 

took the values in the intervals given by equations 2.26:

The step sizes were derived from these values by dividing f * by the non

dimensional Lagrangian velocity scale determined from Sullivan’s work (the 

Lagrangian velocity determined from Sullivan’s work scaled using the friction velocity 

for these flows was 0.029ms’1).

2.6.3 Random walk scaled using the fluctuating velocity field (TURJ2).

The value of a surface fitted to the vertical fluctuating velocity field and the 

estimated Lagrangian time scale were used to scale the vertical length scale every step 

such th a t: /w = fw(w')TL. The transverse fluctuating velocity was scaled similarly, but

0.00m < y  < 0.75m 

0.75m < y  < 1.05m (2.26)
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using a surface fitted to the transverse fluctuating field : /v = f^(v')TL. However, the 

longitudinal fluctuations were scaled using the vertical fluctuating field, since no data 

was available for the longitudinal component, thus : /u = fu(w')TL .

2.6.4 Random walk with step sizes selected from a continuous range, with 

displacements scaled using the local velocity (NSCALE).

This subroutine was based on 2.6.2 and 2.6.3 above, with the addition of a 

scaling factor based on the variation in mean flow velocity. The displacements were 

f  w1 T zi
scaled as: /w = —-----—, where u is the mean downstream velocity, non-

w*

dimensionalised using the mean friction velocity.

2.6.5 Random walk with continuous range of step sizes and cross-correlations 

(CORJ2A, CORJ2B, CORJ3 and CORJ4).

These subroutines were much the same as 2.6.3 above with the addition of a 

correlation coefficient derived from the measurements of the Reynolds stresses (Shiono 

and Knight, 1990). The inclusion of cross-correlations attempted to account for the 

effect that regions of large shear have on the dispersion of a passive contaminant.

The correlation coefficient may either be determined using the local values of 

Reynolds stresses measured in the flume, or by using an ensemble correlation 

coefficient value. A surface was fitted to the u'w' field (see chapter 3), and the local 

values of ruw were determined from the interpolated values of the field and the local 

values of u’ and w’, using equation 2.10. The coefficient ruw was then incorporated
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into the random walk using equations 2.14 and 2.15 for the in-bank flow case 

(CORJ2A). CORJ2B was the same as CORJ2A, except the ensemble average value 

for ruw of -0.27 was used.

The fluctuating velocity field measurements were not obtainable for the over­

bank flow at the time of writing (although these were available in S.E.R.C. report 

SR314,1992), although measurements of the transverse shear stress (Shiono and 

Knight, 1990) were used tentatively to construct an estimation of ruv . The shape of the 

transverse shear stress distribution was essentially a saw-tooth with a minimum above 

the bank top (maximum if absolute value used). The shear stresses were assumed to 

have a similar distribution, from the relationship 2.27:

(2.27)

However, the Reynolds stresses were an order of magnitude greater than the bed shear 

stresses, and consequently the expression above cannot be approximated using the 

shear velocity in place of the r.m.s. velocities, as is common practice in atmospheric 

modelling (Zannetti, 1990b), since this would yield correlations in excess of unity. A 

maximum value of correlation was therefore estimated from measurements of u'v' for 

the in-bank flows ( |r j  = 0.3). Essentially the effect of a saw-tooth shaped correlation

distribution was the important factor in this model. The correlation was then 

implemented in the modified form of equations 2.14 and 2.15 replacing r^v with r^ 

(CORJ3) and also in the form of equations 2.16 - 2.19 (CORJ4), which included the 

correlations in both r™ and r^ . The multiplicative factors fu, fvand fw were then used
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in the same way as described for TURJ2 (i.e. /w = fw(w')TL , /v = ^(v')TL and

4  =  f u ( w ' ) T L ) .

2.6.6 Markovian random walk (MARKOV).

Here the finite difference equation 2.9 was used and cross-correlations were 

included in the form of equations 2.11-2.13. The sizes of the displacements were then 

scaled using the multiplicable factors in the same way as for the model TURJ2 (i.e.

/w = fw(w')TL , /v = f^(v')TL and /n = fu(w')TL ). The instantaneous values of the 

velocity fields were used to estimate the cross-correlations for the in-bank flow.

In the case of the over-bank flow the fluctuating velocity fields were not 

available at the time of writing (although these were available in S.E.R.C. report 

SR314,1992), but rather empirical, ensemble average fits to the data were used in the 

model (MARKOV B) as determined by Knight and Shiono (1990):

where z  is the depth non-dimensionalised by the total depth of the flow.

Unfortunately this method restricted the particles so that they were unable to 

experience any transverse variation in the effective eddy viscosity, since the fluctuating 

velocities have been given as a function of depth (z) only. MARKOV A assumed 

constant values for the fluctuating velocity components (equal to the ensemble 

averaged values).

Aj = 2.1810 A2 = 1.3860 A3 = 1.1403 
Bx = 0.6650 B2 = 0.6642 B3 = 0.5581

(2.28)
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2.6.7 Discrete random walk with displacement sizes selected from gamma 

distributions (SULLU)

This random walk was created so that a large amount of the information from 

the experimental results from the flume photography carried out by Sullivan could be 

used directly.

The instantaneous length scale was generated using gamma distributions 

(based on algorithm in Dagpunar, 1990) which used the best fit shape parameters 

determined in Sullivan’s experiment. The local angular velocity was estimated using 

equation 2.24, with a Gaussian noise component having a standard deviation of 25% 

(of the local angular velocity) as an attempt to model the degree of disagreement of 

the power law with the data. This allows the possibility that the local length scale 

might become negative. If the length scale became negative upon being corrected with 

noise, the noise term was generated once more and another value returned . Values of 

r’ which fell outside the observed range (0.01 < r’< 0.5) in the experiments were also 

disregarded. Both of these amendments were somewhat ad hoc, and the extent to 

which the latter affected the distribution is not known. However, the resulting 

simulated frequency histogram (fig.2.3) shows that the general shape of the gamma 

distribution was maintained. The instantaneous velocity was then determined as the 

product of the local length scale and the local angular frequency, (vinstant= r’xco). The 

displacement sizes were then determined from: lw = fw x v ^ *  xTL, K  ^  ^ in s ta n t ^

^ d  /„ = fu x Vj,,^ x Tl .
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2.6.8 Random walk based on fast fractional Gaussian noise (FASTA, FASTB 

and FASTC).

Some fast fractional Gaussian noise (FFGN) was generated using an algorithm 

due to Mandelbrot (1971), and was scaled using the ensemble average fluctuating 

velocity scale in order to produce a series of fluctuations (vp)i which could be applied 

consecutively to the particle trajectories. The displacement sizes were then determined 

from: lw = fw x(vF), x Tl , /v = ^  x(vF), xTL and lu = fu x(vF), xTL.

This kind of noise attempts to model the long term correlations often observed 

in natural flows by correlating the series of steps that the particles take over their entire 

journey. The covariance (equivalent of non-normalised autocorrelation function) of the 

FFGN is given by equation 2.29:

Cov(s,H) = 2-'(|s+  i f " - 2 |s f "  + | j -  i f " )  (2.29)

where s is a time lag. The extent of the correlation was varied using three different 

values of the H exponent, 0.65 (FASTA), 0.95 (FASTB) , 0.55 (FASTC). The FFGN 

which was generated was stored in an array, the dimensions of which were sufficient to 

accomodate the number of particles plus the the total number of steps which were 

likely to be taken. The generation of different noises for each of the particles resulted 

in a large increase in the computation time (or alternatively the storage space required).
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Appendix 2A

Formulation of the autocorrelation equation to include correlation between 

vertical and streamwise and transverse and streamwise velocity fluctuations.

Here the first order autocorrelation equation is written out in triangular form to 

give equations A2.1:

u' (t + A t) =  (()]U' {t) +  u' ' (t + At)

V (t + At) = <t)2v' (t) + 4>3Mf (t + At) + v" (t + At) (A2.1)

w' (t + At) = <J>4w' (t) + ())5v' (t + At) + <|)6u' (t + At) + w" (t + At)

Zannetti(1990) gives the full analysis of A2.1 to give the values for each (j) coefficient. 

This is achieved by reducing the correlation tensor with appropriate correlations into 

triangular form and solving a set of simultaneous equations for the unknown 

coefficients in terms of components of the correlation tensor. However, the 

autocorrelations are set to zero here, for the simplified case where the time steps in the 

random walk are the same order as the integral time scale. These assumptions give :

<j)j = <j)2 = (|)4 = 0, and reduce (|)3 to equation A2.2:

<t>3 =! k ^ £ .  (A2_2)
(J..-

which reduces equation A2.1 to A2.3:
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u'= u" 

v'= ^3w'+v'' 

w'= ^v'+^w '+w ''

(A2.3)

The cross-correlation between transverse and vertical components has a 

negligible effect on the dispersion , although the term <(>5 cannot be dropped in solving 

the equations since there is a mutual correlation between v' and w ', arising from their 

independent correlations with u'.

The variances of the random parts of the fluctuating velocities are given by 

A2.4 and A2.5:

The values of <|>5 and <|>6 were obtained through rearranging the autocorrelation 

equation in terms of the full correlation tensor (nj) , to the form given by equation A2.6 

and by solving the resulting simultaneous equations:

(A2.4)

and:

(A2.6)

where:
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Inserting these values gives simultaneous equations A2.8:

Y^
^ 3 ° V / '»v0 'v ’ +  4

T <J ,uw w (A2.8)

Reducing these equations gives equation A2.9 :

& =

(A2.9)

r„.(r2„  + l)

which enables the simplification of the variance of the random component of the 

fluctuating velocity from equation A2.5 to equation A2.10:

cr2 =<x,, - r
r \

3 r 2U'v' - 1

r 2u'v + 1)'
(A2.10)

So there is now all the information available to solve equations A2.3.



Chapter 3

Description and interpolation of velocity measurements, and description of tracer 

concentration measurements in the Flood Channel Facility, Wallingford.

3.1 Introduction.

This chapter summarises aspects of the hydrodynamic (see Knight and Shiono, 

1989) and dye dispersion experiments (by Guymer et al, 1989) which were undertaken 

at the Flood Channel Facility at Hydraulics Research, Wallingford. These experiments 

were carried out under controlled conditions with a relatively high degree of precision 

and so provide a good standard by which to assess the performance of hydrodynamic 

or dispersion models.

Section 3.2 describes the velocity measurements which were taken using laser, 

Doppler anemometer techniques.

Section 3.3 describes the tracer tests which were carried out using a steady 

release of fluorescent dye from a point source, and an array of fluorometers with which 

to measure the concentration distributions at different depths and distances 

downstream.

Section 3.4 describes how the point measurements of the mean and fluctuating 

velocities were used to construct interpolated velocity fields. It was important to model 

the mean flow field accurately, since it determines the extent of the differential 

advection of the particles in the random particle tracking model.
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3.2 Hydrodynamical measurements.

The turbulence and velocity data were collected using a laser Doppler 

anemometer (L.D.A.). Here a 300mW argon ion laser beam was directed through a 

fibre optic cable connected to a submersible 15mm diameter probe head. The back- 

scatter signal was processed and the shift in the frequency between the outgoing signal 

and the back-scatter was used to measure a continuous velocity time series (see Knight 

and Shiono, 1989). The probe was mounted on a rig, which had three degrees of 

freedom, so that the probe could be positioned anywhere in the flow, with a spatial 

resolution of 2mm in the transverse direction and 0.5mm in the vertical direction. The 

sampling frequency was between 20 and 100 Hz.

3.2.1 Over-bank flow modelling.

Over-bank flow has been much studied since it occurs in most natural rivers 

during peak flows and is important in the design of flood alleviation schemes (New 

Scientist, 1994). The strong shear layer which exists between the in-bank and relatively 

slow over-bank regions of flow causes a large amount of momentum transfer, such that 

the cross-section averaged mean downstream flow velocity is reduced. The studies of 

the non-linear shear stress distributions in the Flood Channel Facility have led to a 

greater understanding of how the different shear stresses in the Navier Stokes 

equation (or in approximations to it) affect the mean flow, as described in the next 

paragraph.
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The distribution of shear stresses on a horizontal plane ( Zzx) through the flow 

is affected by the distribution of the transverse shear stresses( xzy ) and the secondary 

velocities, in addition to the gravitational force per unit area (Knight et al. 1990). If 

these additional stresses are neglected, the balance results in a logarithmic distribution 

of the downstream velocity in the vertical direction. By including the additional effects, 

the velocity profile becomes more complex, altering the depth averaged velocity and 

consequently discharge calculations at a cross-section. Similarly, the distributions of 

shear stresses on a vertical plane (t Zy  )are also affected by the secondary currents and 

the distributions of vertical shear stresses.

The analytical models developed for the flume flows have been applied to 

natural over-bank flows in sections of the River Severn. Knight et al. (1990) report 

how the model was able to predict the correct depth averaged velocity distributions 

and total discharges for several cross-sections.

3.2.2 Previous work on the flume flows under study.

There has been a considerable amount of research into measuring the secondary 

flow structure and into analytical solutions to the depth-averaged momentum equations 

for the particular flume flows under study (Knight and Shiono 1989; 1990, Tominaga 

et al., 1989 for a similar flume geometry). It is therefore informative to compare the 

random walk model results against the detailed flow structure and the conclusions 

which were arrived at in the analytical approach.
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Observations in these studies have shown that the secondary velocities for the 

trapezoidal in-bank flows are 1-3% of the downstream velocities, and manifest 

themselves in the form of several coherent cells. In the case of the over-bank flow, 

similar cells with slightly stronger circulation (1-4% of the downstream velocities) 

exist. The secondary flow structure is shown schematically in fig. 3.1, which has been 

reproduced from Shiono and Knight (1991). This structure is well understood in terms 

of the spatial variation of the different shear stresses and has been reported in detail 

elsewhere (Shiono and Knight, 1989).

In the case of over-bank flow it was shown by Shiono and Knight (1990) that 

the use of an eddy viscosity which varied in the transverse direction could vastly 

improve their analytical model’s fit to the observations. It was also found to be 

essential to include a secondary flow advective term in the model, if no allowance for 

this variation in eddy viscosity was made. The study showed that if only four different 

values of dimensionless transverse eddy viscosity were used to model the transverse 

variation, then the simulations agreed well with observations. References to this work 

will be made throughout this thesis.

3.3 Tracer data

3.3.1 Instrumentation and sampling strategy

The Rhodamine wt tracer concentrations were measured by Guymer and 

colleagues (Guymer et al., 1989) using fluorometers which measure the relative 

fluorescence of the water. The fluorescence is linearly related to the concentration of 

the tracer, and the constant of proportionality can be determined through calibration
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using a standard solution. A vertical array of four fluorometers was traversed across 

the flume at a chosen cross-section, and the concentrations were measured at different 

profile positions. The array of fluorometers was then traversed in the opposite 

direction, but at a different depth, so that the concentrations were now determined at 

up to eight locations through the vertical and as many as 35 locations in the transverse 

direction. This gave a resolution of approximately 0.01m in the vertical direction and 

0.03m in the transverse direction, for the in-bank flow. For the over-bank flow, the 

resolution was approximately 0.02m in the vertical and 0.03m in the transverse 

direction. The concentrations distributions were measured at seven cross-sections in 

the downstream direction, and an example distribution is given in fig. 3.2 (Guymer et 

al., 1989). Table 3.1 gives the location of the sites at which the concentration 

measurements were made:

Table 3.1 Measurement sites for concentration measurements in the Flood 

Channel Facility.

Flow downstream measurement 
sites (m)

measurement positions in 
vertical (mm)

In-bank 4,6,8,10,12,14,16 24,34,44,54,64,74,84

Over-bank 4,8,12,16 14,34,54,74,94,114,134,15
4,159

3.3.2 Background fluorescence.

There were several problems with the tracer data which complicated the 

analysis of the dispersion of the rhodamine tracer. The concentration data was subject
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to a cross-sectional sloping background due to the time required for the measurements 

to be made at each transverse site. However, as fully described elsewhere (Guymer et 

al. 1989) the background as subtracted from one concentration data set was not 

consistent when subtracted from another curve for the same cross-section but at a 

different depth. This resulted in the ‘tracer data with background removed’ still having 

some concentration curves with sloping backgrounds, as depicted in fig.3.3a.

However, here the statistical moments of the concentration field were 

analysed. The position-weighted concentration moments were then calculated up to the 

third order (centroid, variance and skewness) and after the stage of initial vertical 

mixing, showed Gaussian-like shape, with consistent centroids and very small 

skewnesses in the case of the in-bank tracer test. The higher order statistical moments 

were nonetheless treated with caution.

The systematic error due to sloping background was worse in the data at 16m 

than at 14m for the in-bank case (as can be seen by comparison of figs.3.3a and 3.3b) 

which led to the selection of the 14m downstream as being the site at which the 

different predictive capabilities of the models were assessed.

3.4 Modelling the mean velocity field.

3.4.1 Previous work.

The mean downstream velocity field measurements at each cross section, 

u(y,z), were represented by fitting a surface s(y,z) using a bi-cubic spline 

approximation which was advocated by Brockie(1991) following work on the data set.

88



This surface can be used to infer the vertical velocity profiles at every horizontal 

location in the flow and, moreover, the shape of these profiles is influenced by the 

entire velocity field. Brockie (1991) used independent polynomials to interpolate to the 

velocity distributions in the transverse direction, at each depth of measurement, and the 

particles in the random particle tracking model were only allowed to reside at the 

measurement depths.

3.4.2 Modelling the viscous sub-layer

The viscous sub-layer is modelled in the random particle tracking models for 

smooth walled boundaries, by disallowing the particles to penetrate to within a 

specified distance of the boundary. The length scales of the displacements applied to 

the particles in the bulk of the flow would not apply within this thin layer. The 

thickness of the viscous sub-layer has been estimated from observations as

:Zo = (m), for example see Young, 1989. Where Re is the Reynolds number
Re

and 0 ( ) stands for ‘the order o f. Allen (1982) used Zo = 15/Re (m).

The same value of viscous sub-layer thickness which was adopted by Allen was 

used in this study, which for the over-bank flume flow, with a Reynolds number (based v 

on the friction velocity, depth and molecular viscosity of water) of approximately 

2166, gives Zo = 0.007m. The use of a viscous sub-layer confines the flow modelling 

to a channel with a smooth bed (Allen, 1982, Young, 1989).

89



3.4.3 Interpolations between point velocity (downstream mean component) 

measurements for in-bank and over-bank flows.

The in-bank flow was of a regular enough cross-sectional geometry to fit a 

surface to the entire y-z (transverse, vertical) velocity domain, although it was found 

that the over-bank flow geometry was too irregular to allow the fitting of a surface to 

the velocity field. Therefore the over-bank flow was divided into the two regions, as 

shown in fig. 3.4, and only the in-bank region of the velocity field had a surface fitted 

to it.

Fig. 3.4 Diagram showing interpolation techniques applied to the Over-bank and 

in-bank regions of the Flood Channel Facility, Wallingford (not to scale).

surface fitting polynomial fitting

-75.0 +4-30. +4- -224.0

I t 2 '

0

{allmeasurements in cm.}

The over-bank velocity field was divided vertically into three (there were three depths 

of velocity measurements in this region) and Chebychev polynomials were fitted to 

each of the resulting horizontals. The velocity field was determined at any vertical 

through a logarithmic interpolation between these polynomials as described below. The
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vertical profile in the over-bank region away from the boundaries is generally agreed to 

be described by the log law (for example, see Tominaga and Nezu, 1990).

There was no secondary mean advective velocity (i.e. v or w) data available at 

the time of writing, and the effects of the secondary advections were absorbed into the 

effective dispersivity coefficients for the random walk model.

Surfaces were also fitted to the distributions of the fluctuating velocity fields 

u’,v’ ,w’ and Reynolds stress fields, u'w',u'v', for the in-bank flow. The process of 

surface fitting is described in sections below.

3.4.3 Bi-cubic spline approximations

This section describes the use of bi-cubic splines to interpolate between the 

velocity measurements, using NAG algorithm, E02DDF. The velocity measurements in 

the vertical and transverse direction formed a surface which could be expanded in 

terms of normalised bi-cubic splines, given by Mi(y) and Nj(z) in equation 3.1:

M x - 4  M y - 4

Us u r f a c e ( y ’ Z ) =  X X ̂ M t ( y ) N .(z) (3.1)
i = l  j = 1

where Mx is the number of knots (linking together cubic splines) in the y direction and 

My is the number of knots in the z direction. The coefficients, /?•, are then calculated

subject to minimising the velocity residuals whilst constraining some function of the 

curvature such as a second differential (Mackay, pers. comm., 1993). The NAG
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algorithm, E02DDF uses a parameter S, the size of which determines the extent of 

trade off between closeness of fit and smoothness, although the precise functional form 

of the constraint is not given in the description of the algorithm.

A formal technique for determining the optimum trade off between smoothness 

and closeness of fit was required. It was evident from the plots of the resulting surfaces 

(see fig. 3.5) that at the extreme of having the largest permissible number of splines 

(or knots, limited by the degrees of freedom available) the surface becomes unstable 

and oscillates. At the other extreme of having the smallest number of knots, the 

surface is clearly too smooth and ignores the small scale features in the data.

The optimum S factor was estimated using a cross-validation technique which 

will be described in section 3.5.5. The measured velocity field had a high resolution, 

and it was relatively simple to visually detect deviations away from the shape of the 

measured velocity field.

3.4.4 Surface fitting at the flow boundaries

All of the models described in chapter 2 incorporated the mean velocity field 

interpolations described below. The velocity data sets did not cover the entire flow 

domain, since velocity measurements could not be made right up to the boundaries. 

However the random walk model requires the complete flow domain {outside of the 

viscous boundary layer) if the flow is to be modelled. Consequently a few ‘dummy’ 

data points were initially introduced at the boundaries having zero velocities in order 

that the surface fitted the entire flow domain.
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The bi-cubic spline coefficients required to define the surfaces were determined 

using a program incorporating NAG subroutine E02DDF, and values of the surface 

were then determined at user defined locations using NAG subroutine E02DFF so that 

they could be compared with the data.

Since the flume is symmetrical, only half of the flow field was used in the 

fitting, the opposite half was assumed to be a simple reflection about the centre line, 

although this would not be true for a non-axis symmetric flow geometry such as that 

for a meandering channel. This was conveniently implemented through temporarily 

changing the sign of the transverse position of the particle during the subroutine in 

which the velocity of the particle was returned.

Similarly in the case of the over-bank region for the over-bank flow case, the 

polynomial coefficients were determined using NAG routines, E02ADF and E02DDF.

3.4.4.1 In bank flow interpolations close to the boundaries.

The closest velocity measurements which were made to any boundary were 

between 9 mm and 15mm away from the bed for the in-bank flow (Subsequent to these 

measurements, the velocities were measured closer to the wall, at 2mm, using the 

Preston tube technique, although these measurements were not available at the time of 

writing) . Dummy data points were put in place at the boundaries with zero velocities, 

although they were given zero weightings. The problem with giving these points zero 

velocities with weightings, was that for the velocity field to drop to zero in the space of 

a few millimetres, a large number of knots had to be used with the S factor having a 

very small value to give good closeness of fit. It is evident from fig. 3.5 that a large 

number of knots gave rise-
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to a large degree of instability elsewhere in the flow domain. However, the exclusion of 

a weighted, zero velocity point at the boundaries introduces two problems:

(1) A contradiction to the non slip condition.

(2) It can also have the effect of reducing the velocity gradient close to the wall from 

its true value.

However, the contradiction of the non-slip condition was not experienced by 

the particles since they were reflected about a point a small distance from the 

boundaries, this representing the modelled viscous sub-layer (discussed above). This 

distance represented the viscous sub-layer thickness on the smooth bed of the channel, 

and was estimated in section 3.5.2 to be 7mm.

The second problem of a reduction in the near bed velocity gradient, caused by 

excluding the weightings was therefore only a problem in the region of flow between Z 

= 7mm and z = 9mm or 15mm depending on the local value of the minimum depth of 

velocity measurement. It was assumed that the uncertainties arising from this form of 

approximation were smaller than those which were found to arise from using 

weightings.

In the case of the fluctuating velocity field, the inclusion of weighted zero 

velocities at the boundary produced a peak in the velocities which was unphysical since 

it displaced the region of maximum turbulent energy production away from the 

boundaries, whereas in reality the maximum is very close to the boundary (see Tritton, 

1990 or Raupach, 1991). The fluctuating velocity field was therefore not extrapolated 

to zero at the boundaries, but rather the value of the fluctuating field at an adjacent
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measurement site was adopted at the boundary. The same procedure was carried out 

with the interpolations of the Reynolds stresses.

Finally dummy data points with zero weighting were also placed at the water 

surface, where there were also no velocity measurements. The behaviour of the 

velocity profile close to the surface was chosen through criteria described in the 

sensitivity analysis in section 3.5.5.

3.4.4.2 Over-bank flow interpolations close to the boundaries.

The closest velocity measurements to the bed were 5 mm for the over-bank 

flow, and since the same value for the viscous sub-layer thickness as for the in-bank 

flow was used (7mm), neither of the problems which were discussed above were 

encountered with the over-bank flow model. Extrapolation of the flow domain was not 

required, and the interpolation was carried out as described above. In the over-bank 

region (shown in fig. 3.4), 6th order Chebychev polynomials were fitted to the 

transverse velocity distributions. These required further interpolation in the vertical 

direction, and this was done during the particle tracking model, through the use of a 

logarithmic profile derived from the point values in the vertical, the latter having been 

determined from the values of the polynomials. Table 3.2 shows the values of the 

polynomials, splines and data at measurement points at the join of the polynomials and 

the surface. The small discrepancy in these values was considered to be smaller than 

the uncertainties arising from the use of surfaces or the polynomials in the first 

instance.
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Table 3.2 Values of the surface and polynomial fits to the over-bank flow where 

they join together above the bank top.

depth (m) value of surface 
(m/s)

value of polynomial 
(m/s)

recorded value 
(m/s)

0.155 0.421 0.398 0.412

0.16 0.446 0.455 0.460

0.17 0.462 0.440 0.465

Fluctuating velocity data was not available for the over-bank flow at the time of 

writing, although some large scale empirical relations determined by Knight and 

Shiono (1990) were used and are discussed later.

3.4.5 Sensitivity analysis applied to fitting the velocity surfaces

The easiest way of examining the surface was to slice through it horizontally 

and vertically at those levels at which the data was collected. The resulting curves 

could then be compared to the raw data. The number of knots used and the S factor 

were adjusted until:

(a)The instability evident in the graphs(e.g. fig. 3.5 for Mx = 14, My =12, where Mx, 

My are the number of knots used) was minimal.

(b)The extrapolated tails of the graphs(fig. 3.5 for Mx = 14, My = 12 or Mx =13,

MY=11) showed a minimal deviation from the trend of the interpolated region of the 

graphs.
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The worst area of disagreement between the surface and the data set was found 

to be in a vertical slice adjacent to the comer made between the flume bed and wall at 

around y = 0.75m. It was thought prudent to carry out the sensitivity analysis in this 

region, concentrating on one or two particular verticals (plane y = 0.78m in fig.3.5). 

The closest fitting surface was chosen by inspection and then the surface was examined 

at a different vertical also adjacent to the comer (y = 0.70 for the in-bank flow as in 

fig. 3.5, y = 0.75 for the over-bank flow as in fig. 3.6). The surface was split into 

further slices horizontally and vertically (for example, see fig. 3.7 for the in-bank flow, 

fig. 3.8 for the over-bank flow) where it could be compared to the data and was 

considered acceptable.

For the in-bank flow case, the surface was fitted to the fluctuating velocity 

fields (figs. 3.9 and 3.10) in order that, for some random walk models, the step sizes 

could be scaled using the local values of the known velocity fluctuations. This 

introduced the inhomogeneous turbulent flow field of turbulent shear flow to the 

models which incorporated these fields, which also introduced the complications 

discussed in chapter two. It was more difficult to fit a surface to the Reynolds stress 

field because of the large depthwise variation, and fig. 3.11 shows a poor closeness of 

fit to the data. However, the general shape of the distribution was at least modelled, so 

that the effect of a cross stream varying Reynolds stress could at least be addressed.
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Fig. 3.1
Schematic representation of secondary velocity structure in the over-bank flow 
examined using a random particle tracking model after Shiono and Knight,

1991.
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Fig.3.2
Example set of tracer data from the experiments of Guymer and colleagues, 1989
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Fig.3.3

Examples of measured concentration distributions with backgrounds removed, 
showing systematic error at 16m downstream for the in-bank flow.
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Chapter 4

Sensitivity analysis of different random walk models using the measurements

from the Flood Channel Facility.

4.1 Introduction

This chapter aimed to measure the sensitivity of the macroscale particle 

dispersion characteristics in the two channel flows to the form of the velocity 

perturbations incorporated in the different random walk models. The more simple of 

the two flows was studied first, for which more detailed flow measurements were 

known and which could be incorporated into some of the random walk models. By 

using two flows of different complexity, the flexibility of the random walk model in 

general was also tested to some extent, although the sensitivity analysis for the over­

bank flow is less detailed.

For each flow one set of concentration measurements at the closest point to the 

dye-release point were sacrificed in order to calibrate the different models. This was 

achieved by varying the size of two principal variable parameters (as described in 

chapter 2, fv and fw adjust the size of the displacements in the horizontal and vertical 

planes respectively), until the macroscale behaviour of the ensemble average particle 

concentration field was in as far as possible in agreement with the measured 

concentration field. The closeness of fit of the modelled and measured concentration 

distributions was assessed in terms of two objective functions, which were based upon 

the second order moments of the distributions.

108



The objective functions were optimised to a resolution which was determined 

as being compatible with the degree of uncertainty of the collected data.

Having forfeited the concentration measurements made at one site downstream, 

the calibrated models were then used to predict the measured concentration 

distributions further downstream. The predicted particle distributions were once more 

compared against the measured concentration distributions at the furthest downstream 

site, using the same measures for the closeness of fit which were used at the calibration 

stage. The relative performances of the different models were finally cross-compared 

for the in-bank and over-bank flows.

Before the main sensitivity analysis described above was carried out, a number 

of preliminary investigations were undertaken into more general properties of the 

random walk models, which include an investigation into the number of particles which 

were necessary to achieve steady particle distributions (section 4.2) and into the 

behaviour of the distributions in the presence of boundaries (section 4.3). The 

sensitivity analysis described above was then carried out in sections 4.4 to 4.7 and 

section 4.7 concludes the first four chapters of this thesis.

4.2 The steady state

The number of particles (N) which was necessary to obtain particle 

distributions which were in the steady state was established by looking at the variation 

in the centroids and variances of the particle distributions in the model for repeated 

releases having different random sequences. The statistical uncertainty in estimates of 

the second order moments is proportional to f°r a one-dimensional continuous

109



line source, and increases multiplicatively with the number of dimensions (Sawford 

1985), so for 20000 particles an uncertainty of approximately 2% in the spread would 

be expected for a line source. Here the output from the model is examined in three 

dimensions, and the particles are released from a point source.

The centroid in the particle number or the measured concentration distributions 

were estimated from an approximation to the integral given by equation 4.1, via the 

trapezium rule.

JyCdy 

centroid = — ------

J c d y

(4.1)
y max

£yCAy 
centroid = -------y max

£CAy
y min

where here C represents either the measured mean concentration or the number of 

particles, and ymax and ymin determine the limits of the measurement field. Ay is the 

separation between measurements in meters (or the width of the mesh size for the grid 

over which the particle numbers are summed in the determination of the particle 

distributions in the modelling work). The error incurred due to cutting off the tails of 

the distributions (through the use of finite limits, ymax and ymin) was thought to be 

minimal, as the concentration distributions were flattened out and close to zero in the 

vicinity of ymax and ymin.
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Similarly, the second order moment (spread) of the measured concentration or 

particle number distributions were determined from an approximation to the integral 

given by equation 4.2:

J* C(centroid -  y)2dy 

(spread)2 = —-----------------------

Jcdy

^  C(centroid -  y)2 Ay
ymax

2 _  ymin(spread)v r  '  ymax

(4.2)

ymin

A value of N = 20000 was found to give less than 1% variation in both the 

position of the depth-averaged centroid and the spread, when six different random 

number sequences were used for each model, as demonstrated for the random walks, 

NEWJUMP and CORJUMP2 in table 4.1 below (these were found to be representative 

all of the random walks).
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Table 4.1 Standard deviation away from the mean spread and centroid for 

repeated runs of the random walk model using 20000 particles for the in-bank 

flow.

example random 
walk

coefficient of 
variability of 
depth-averaged 
spread

coefficient of 
variability of 
depth-averaged 
centroid

NEWJUMP 0.002 0.00001
CORJUMP2 0.001 0.00001

4.3 Reflection at boundaries

In this section, the macroscopic behaviour of the particle distributions was 

investigated in the vicinity of the boundary for different forms of reactions when a 

particle impinged upon a boundary. The random walk with a displacement size which 

was selected from a normal Gaussian distribution (NEWJUMP) was used in this part 

of the study, in order that the particles were not restricted positions at to discrete 

distances away from the boundary. Cross-correlations in the random walk used here 

were excluded in order that the behaviour of the particles could be investigated 

without any other sources of bias. The flow studied here was for a logarithmic vertical 

velocity (downstream component) profile, with a one dimensional random walk.

The average absolute size of the displacements was chosen so that it was 

approximately one tenth of the flow depth (a value used by Allen, 1982 and Van Dam, 

1991), in order that the particles became vertically well mixed. 10000 particles were
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used (since this was a simple one dimensional random walk), and each of these were 

allowed to wander for at least 100 time steps (100 displacements).

The two sorts of interaction which were investigated here, were for the cases 

for which the particles either reflected on contact with a boundary or remained at the 

same distance away from the boundary, should the next displacement have taken the 

particle beyond the boundary.

At the downstream output boundary, the depth was split into thirty sub­

divisions, which gave a greater resolution than the average absolute size of the 

displacements, in case there were small scale effects close to the boundary. The 

numbers of particles in each sub-division were then determined, and a frequency 

histogram was constructed for both type of interaction, shown in fig. 4.1.

4.3.1 Results and discussion for the case where particles reflect at the boundaries.

Fig. 4.1 shows that there were no surfeits or dearths of particles close to the 

boundary (-5 on the abscissa), which were in excess if the random uncertainty 

associated with the random walk, which was approximately 5 %. There were therefore 

no discernible facets to the macroscale behaviour due to the presence of the boundary, 

for the number of particles used, and at the resolution examined.

There is a theoretical discrepancy with the treatment of particles close to the 

boundaries in this way, although this has evidently not affected the macroscale particle 

distribution. This discrepancy can be understood schematically using fig. 4.2:
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Fig. 4.2 Diagram illustrating the modified particle displacement distribution due 

to the presence of a boundary for a random walk in which the displacements are 

selected from a normal Gaussian distribution.

Boundary

A B

where the solid curved lines represent the Gaussian probability distributions for the 

next displacement size for particles A and B. The dashed curved lines represent the 

modified probability distributions due to the presence of the boundary. It now becomes 

clear that particle A has a greater probability of moving to the location at which 

particle B is at than particle B has of moving to the location at which particle A is. This 

asymmetry is a violation of the principle of conservation of mass for the individual 

particles (or downstream linear momentum, as discussed by Hoogebrugge and 

Koelman,1992).

This form of boundary interaction was used by Heslop and Allen(1993), and in 

all of the studies of a random particle tracking model in a bounded flow which are

114



known about. The study by Heslop and Allen, however, used constant sized steps, so 

this problem was not encountered.

4.3.2 Results and discussion for the case where particles remain at their present 

location, if their next step takes the particle across the boundary.

The second form of boundary interaction was examined since it preserves the 

symmetry which was discussed in the last section. Fig. 4.1 shows that the macroscale 

particle distributions for this form of interaction were also not affected by the presence 

of the boundary.

The first sort of behaviour, whereby the particles are reflected was used in the 

models used in this chapter, for consistency with previous work and since no adverse 

macroscale effects had been discovered.

4.3.3 Reflection from an inclined surface.

If the particles are reflected about their angle of incidence to an inclined surface 

then the individual particle momenta are conserved (for example see Matalas,1980). 

The net result of many of such reflections is to enhance the transverse mixing by a 

small amount. However, in this study, it was thought that by separating the vertical and 

transverse mixing of the particles, calibration of the vertical and horizontal 

displacements in the random walk would be simpler. This allowed for more 

independent studies of the horizontal and vertical mixing coefficients. For this reason,
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most of the random walks only allow for vertical reflection from the boundaries, no 

matter what the inclination of the bed. This implies that the transverse mixing effects 

due to vertical motions in the real flow are lumped into the transverse mixing 

coefficient. Nonetheless, the reflection about an angle of incidence, in the manner 

shown schematically in fig. 4.3 for the over-bank flow was investigated.

Fig. 4.3 Diagram to illustrate transverse mixing due to a vertical displacement 

and a non-horizontal surface.

where the solid particle path results from the reflection from the inclined boundary 

surface, and the dashed arrow represents the transverse component of the reflected 

particle’s velocity.

This form of reflection was likely to have a greater effect in the case of the 

over-bank flow, for which the particles were released from the top of the bank above 

the join between the main channel and the over-bank region. In this case, the released 

particles faced an asymmetrical flow field, and the reflection about an angle of 

incidence was likely to cause a skewness in the transverse tracer distribution. Results 

are reported as part of the studies of over-bank flow in section 4.6.
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4.4 Sensitivity analysis: Investigation into the ability of different random walks 

to model the observed concentration distributions.

The different random walks were now calibrated by varying the fv and fw 

parameters until the macroscale particle distributions were in agreement with (as close 

as was possible, given the sensitivity of the objective functions shortly to be described) 

the measured concentration distributions at the first cross-section downstream. These 

calibrated values were then maintained, and the particles were advected further 

downstream, where their evolving macroscale statistics were compared again to further 

concentration measurements.

4.4.1 Calibration of different random walk models.

The displacement sizes, or the average magnitude of the displacement sizes for 

the different random walks were now calibrated using the concentration distributions 

which were measured at 4m downstream. The time intervals between the 

displacements for the random walks, which were not intended to model the particle 

movement at sub-Lagrangian integral time scales, were set at the value of 0.4s from 

the measurements of Sullivan, described in chapter 2. Since this was only an order of 

magnitude’ estimation of the Lagrangian integral time scale, the value was not doubled
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in order to achieve a ‘self-consistency’ in the autocorrelation curves of the random 

walk. For the Markovian models, a time step which was one tenth of this value was 

used (0.04s), for which the exponential form of the autocorrelations was consistent 

with the continuum case, as discussed in chapter two (section 2.2.6). Further details of 

the different random walks were given in chapter 2.

The random walk algorithms were assessed by their ability to match the 

observed spread in the data at different depths at a downstream distance of 14m (for 

the in-bank flow) or 16m (for the over-bank flow), having been optimised to fit the 

spreads at different depths at a cross-section 4m from the source. The transverse and 

vertical displacements, together with the time step were considered to be the most 

important degrees of freedom within the model.

The sizes of the vertical and lateral displacements were adjusted by the varying 

the multipliers of the estimated Lagrangian integral length scale, fw and fv. In this way 

the values of the multipliers ought to be of the order of unity, if the estimate is good. 

The estimated length scale was either the ensemble average Lagrangian length scale 

determined from Sullivan’s work, which was described previously, or a local value 

determined from the Eulerian velocity.

All of the random walks included a downstream random displacement, although 

the downstream dispersion due to turbulent fluctuations is usually assumed negligible 

compared to the effects of differential advection (as discussed in chapter 1). However, 

some of the random walks included cross-correlations, for which it is necessary to 

include the downstream fluctuating component. Therefore the downstream 

displacement multiplier, fu , was included in all the models for consistency. This was
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set using the ensemble average measured value of the ratio of w’/ u’ = 0.53 for the 

100mm in-bank flow and the modelled value of the vertical fluctuating velocity.

4.4.2 Objective function measures.

Two objective functions were devised to measure the closeness of fit of the 

modelled particle distributions to the measured concentration distributions.

4.4.2.1 An objective function to measure the closeness of fit of the transverse 

spread of the particle distributions to the corresponding spread of the data.

The squares of the deviation of the spreads in the models (cw ie i) from the 

observed spreads of the data (adepth) at each depth, were summed to make one 

objective function, called objl, given by equation 4.3:

^  (̂ data ^mod el)
objl = i= l (4.3)

where n = number of depths where the concentrations were measured (n = 7 for the in­

bank flow, n=l for the over-bank flow) at and ymax, ymin are the observed bounds to 

the concentration field in the transverse direction. The spreads were defined earlier, 

using equation 4.2. Fig. 4.4 shows the variation of spread with depth in the early stages
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of mixing (the tracer becomes fully mixed in the vertical direction 10m downstream) 

for the in-bank flow.

Only a single depth was considered using this objective function for the over­

bank flows because the concentration distributions below this depth were highly 

skewed and would require at least third or fourth order moments to be compared 

against the particle distributions. The second objective function, shortly to be defined, 

overcame this problem by comparing the areas under the concentration distribution 

curves at every depth of measurement with the corresponding measurement for the 

particle distributions.

4.4.2.2 An objective function to measure the closeness of fit of the modelled and 

observed vertical mixing.

A second sensitivity factor, obj2, was devised using the ratios of the areas 

under the particle distribution curves at each depth to the area under the corresponding 

curve at the surface (the tracer release was at the surface for both flows). These ratios 

will hereafter be referred to as Bv ratios. The objective function was the sum of the 

squares of the deviations of the 7 values of the Bv ratio (for the different depths) from 

the corresponding Bv values constructed from the data, and is given by equation 4.4:

1 n_1
obj2 =  V.

ymax

\Y1 /  i
ymax

ŷmin

/  > ymax

X C dataA y
^ymin j

max ^

X C dataA y
^ymin j n _

(4 .4)
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This sensitivity measure was also minimised through varying the multipliers, fv and fw 

in the way described in the next section. The Bv ratios approach unity for the in-bank 

flow after 10m downstream, although for the over-bank flow, they are always 

relatively small because of the effects of the flume geometry on the tracer dispersion 

(see variation of concentration distributions with depth at 16m downstream in fig.4.5).

The two objective functions which were used in the analyses are not an 

absolute measure of the performances of the different models. Alternative objective 

functions could have included a measure of the least square deviations of the model 

concentration profile away from the data concentration profile, although an argument 

against this is that the data sets were noisy in themselves, and that only statistical 

quantities, such as the variance in the overall concentration distributions were less 

uncertain.

4.4.3 Combination of objective functions.

The values of objl and obj2 were normalised individually using the sum of 

their respective values over all values of fv and fw which were investigated. These 

normalised values were then summed together to create a single objective function, 

obj3, given by equation 4.5, the value of which could be plotted as a function of fv and

fw as a surface.
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0 b j3  -  o b J ' i  +  <*>& (4 5)
J * Nvw Nvw V*--'/

^objii ^0bj2i 
i=l i=l

where Nvw is the total number of combinations of fv and fw used. However, a suitable 

discretisation interval, or resolution for the fv and fw parameters was first required to 

be determined, which took into the account the uncertainties in the data. In this way 

the sensitivity analysis could be carried out to a precision which was supported by the 

resolution of the measurements. The discretisation interval is selected in section 4.4.5 

below, following an estimation of the uncertainties in the data.

4.4.4 Estimation of uncertainties in data.

The experimental uncertainty in the measured spread (Act) at any particular 

depth was approximated as the standard deviation of the spread at different depths 

from the depth-averaged spread at cross-sections were the tracer was considered to be 

vertically well mixed (from approximately 10m downstream) for the in-bank flow (the 

experimental error was assumed to be the same for the over-bank flow), given by 

equation 4.6:

_ ( d a t a  data)
Ao * l°i ~g J
a  ~ T l  la*™

(4.6)
i=l
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where 7 is the number of measurement depths. These fractional standard deviations are 

given in table 4.2:

Table 4.2 Standard deviations from the depth-averaged spread for the measured 

tracer concentration distributions for the in-bank flow, when the tracer has 

become vertically well mixed.

distance
downstream(m)

depth-averaged 
spread (m)
(7 depths)

standard deviation 
from the mean (m)

10m 0.140 0.003 (2%)

12m 0.170 0.004 (2%)

14m 0.184 0.008 (4%)

16m 0.20 0.02 (10%)

The variation of the depth-averaged spread with downstream distance for all of 

the data (see for example, fig. 4.11) show an irregular relationship, which suggests that 

the uncertainties in the data are more consistent with the larger deviations in table 4.2. 

Without further experimental information (such as repeated measurements of the 

spread at the same depth and transect) the fractional uncertainties in all of the spreads 

which were determined from the measurements, were assumed to lie between 4% and 

10% and a value of 7% was used as an estimate. The large uncertainty at 16m 

downstream was, however, thought to be in part due to the systematic error which was 

discussed earlier (due to the incorrect background having been subtracted), and this 

cross-section was not considered in the sensitivity analysis.
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4.4.5 Selection of a discretisation interval for the objective functions taking into 

account the estimated uncertainties in the data.

The sensitivity of the spread at 4m downstream to varying the factor fv was 

investigated for a selection of different models in order to determine a sensible 

minimum for intervals at which fv might be discretised . The resulting empirical 

relationship between fv and the depth-averaged spread has been plotted in fig. 4.6 for 

the random walk for which the displacements were taken from a Gaussian distribution 

(similar plots for the other random walks which were investigated showed a similar 

relationship). The graphs were approximately linear over the range investigated. From 

standard error analysis, since this relationship was linear, the fractional uncertainty in fv 

could be considered to be approximately the same as the fractional uncertainty in the 

measured depth-averaged spread. The discretisation interval for the fv value was 

therefore made to be approximately 4-5% for the in-bank flow and the over-bank 

flows. Discretisation intervals of no greater than 5% in the values of fw were used for 

the second objective function, since this also depended upon the spreads in the 

distributions.
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4.4.6 Optimisation of combined objective function, ob]3.

The surfaces described in section 4.4.3 were examined over ranges of fv and fw 

values which were known to be in the proximity of the best fitting values from 

experimentation. Two such surfaces are plotted in fig. 4.7, at the downstream 

measurement site closest to the tracer release point (4m downstream). The 

combination of the values of fv and fw which yielded the smallest value of obj3 were 

then used to predict the concentration distributions further downstream.

4.4.7 Using the calibrated models to predict distributions further downstream

The predicted particle distributions at cross-sections further downstream were 

now examined for the different models, using the calibrated values of fv and fw in each 

case. The closeness of fit of each particle distribution to the measured concentration 

distribution were again examined at the cross-section furthest downstream for each 

flow (14m for the in-bank flow, 16m for the over-bank flow).
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4.5 Results and discussion of sensitivity analysis.

Here the results of the sensitivity analysis for the in-bank flow are presented in 

section 4.5.1 and discussed in 4.5.2, followed by the presentation of the results for the 

over-bank flow in section 4.5.3 and the discussion of these results in section 4.5.4.

4.5.1 Results for in-bank flow.

The objective function values for the best fitting (limited by the resolution of 

the sensitivity analysis) values of fv and fw have been arranged in order of increasing 

total objective function, obj3 (not normalised as in equation 4.5) in table 4.3 (i.e. the 

closeness of fit to the data is in decreasing order).
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Table 4.3 Analysis of particle distributions for the different random walks 4m 

downstream for the in-bank flow at the calibration stage.

data/model depth- 
averaged 
centroid 
(m) for 
release at 
y=0.0m

depth
avgd.
spread
(m)

objl*
io-4

obj2*
103

obj3*
10'3
not
norm­
alised

fv fw

DATA -0.0098 0.098
+/-
0.007

SULLIJA 0.0030 0.099 1.2 0.5 0.6 2.0 0.90

FASTC 0.0086 0.096 0.9 6.6 0.7 2.3 1.10

TURJ2 0.0015 0.100 0.3 0.8 0.9 2.4 1.22

CORJ2A 0.0011 0.101 0.4 0.9 0.9 2.4 1.20

CORJ2B 0.0004 0.100 0.3 1.0 1.0 2.4 1.20

FASTA 0.0014 0.097 1.0 1.2 1.3 2.2 0.94

NSCALE 0.0012 0.099 1.2 2.0 2.1 2.2 0.90

NEWJUMP 0.0011 0.098 1.0 2.0 2.1 2.6 1.14

MARKOV 0.0015 0.095 1.4 2.0 2.2 2.6 1.00

FASTB 0.0029 0.104 1.0 2.9 3.0 1.5 0.78

JUMP 0.0022 0.095 1.1 4.9 5.0 2.9 1.32

JSCALE 0.0012 0.096 1.5 10.0 10.2 2.1 0.98

The optimised fv and fw values were kept at the same values, and the particles 

were allowed to advect further downstream. The evolution of the particle cloud in 

terms of the increase in depth-averaged spread with downstream distance was 

compared against the corresponding spreads of the tracer plume. Figs. 4.8,4.9, 4.10
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and 4.11 show the variation in depth-averaged spread for the in-bank flow (discussed 

in section 4.5.2).

The closeness of fit of the different particle distributions to the concentration 

distributions at 14m downstream, for each random walk, was assessed using the same 

objective functions as for the calibration stage, and the different models are again 

arranged in order of decreasing closeness of fit to the data in table 4.4:

Table 4.4 Analysis of particle distributions for the different random walks 14m 

downstream for the in-bank flow.

data/model depth-
averaged
centroid
(m)

depth-
averaged 
spread (m)

objl*10'3 obj2*10'3 obj3*10‘3,
not
normalised

DATA 0.0092 0.184 

+/- 0.013

JSCALE 0.0021 0.179 0.09 1.3 1.4

NSCALE 0.0014 0.184 0.07 2.9 2.9

JUMP 0.0001 0.180 0.11 5.3 5.4

NEWJMP 0.0004 0.185 0.07 5.3 5.4

SULLU 0.0019 0.195 0.20 7.5 7.7

FASTC -0.0015 0.198 0.26 23.2 23.4

FASTA -0.0019 0.228 1.97 43.4 45.5

MARKOV 0.0011 0.236 2.49 55.4 57.9

TURJ2 -0.0017 0.199 0.27 62.6 62.8

CORJ2A -0.0023 0.199 0.26 67.4 67.7

CORJ2B -0.0026 0.198 0.24 71.5 71.8

FASTB 0.0119 0.309 15.62 82.4 98.0

Minimum value of objective function 0.07 1.3 1.4
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Fig. 4.12 shows the modelled distributions for the model NEWJUMP, at the 

calibration and prediction stages (at example depths) and compares these to the 

measured concentration distributions. These distributions were typical of most of the 

models, the performance of which is summarised in the tables above. Figs. 4.13 again 

shows the predicted particle distributions at cross-section 6 for several different 

models, which are again representative of the results summarised in the tables above.

4.5.2 Discussion of in-bank flow results.

This discussion is split up into four principal sections, which refer to the 

calibration stage, the evolution of particle cloud with downstream distance, the 

prediction stage, and several comparisons between models having similar properties.

4.5.2.1 Calibration stage for in-bank flow.

The values of the centroids in the first column of table 4.3 show the presence of 

a small bias since the centroids were all positive, compared to the small negative value 

observed for the centre line release, which was consistent to all of the models.

However, the centroids deviated by less than a single centimetre in all cases, which was 

smaller than the resolution of the measurements (3 cm: see chapter 3), and 

consequently acceptable.
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The values of the spreads in the second column of table 4.3 demonstrate that 

all of the models could be calibrated so that the spread of the particle distributions 

matched the spreads in the measured concentration distributions. The fractional 

deviations (coefficients of variability) of the modelled spreads from the measured range 

between: less than 1 % to 3.0%, which is less than the estimated uncertainty in the 

data due to experimental error (7%).

Using simply the depth-averaged spread as an indication of the ability of the 

model to fit the model is insufficient, since different vertical distributions of the 

particles could yield the same depth-averaged spread. It is therefore more informative 

to examine the sizes of the total objective function, obj3, which has been used to sort 

the different random walks in decreasing order of closeness of fit in all of the tables.

The model SULLIJA was found to be the best fitting model at 4m downstream.

The range in the values of obj3 (which is one order of magnitude) stems from 

the range in the values of obj2 rather than obj 1. The objective function, obj2, is derived 

from the square of the fractional areas under the concentration or particle distribution 

curves (called Bv ratios, see section). The actual range of values of the Bv ratios is 

therefore more like a third of an order of magnitude. For the model, JSCALE, the 

fractional areas to give a poor fit to the data, and yet the deviation away from the 

depth averaged spread is small. This could be accounted for if the vertical mixing was 

too rapid, giving rise to larger than expected Bv ratios, yet maintaining a fairly depth 

averaged spread similar to that in the data.
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In fig. 4.12, the example curve labelled ‘newjump, 4,84’ confirms the good fit 

of the modelled particle distribution to the concentration distribution at the calibration 

stage, at 84mm above the bed.

4.5.2.2 Discussion of the evolution of depth-averaged spread curves for in-bank 

flow.

The graphs of the variations of depth-averaged spread with downstream 

distance (figs. 4.8-4.11) show that only relatively few of the random walks agreed with 

the data, to within the estimated 7% uncertainties, for the entire test reach. The 

random walk models which fitted into this category were JSCALE and JUMP, but the 

shape of the spread against downstream distance curves for these models were 

characteristic of many of the models. This observation has lead to the conclusion that 

there exists an equifinality in the results, which will be expounded upon in section 4.7.

In order to achieve a closer fit to the distributions throughout the test reach, 

the other random walk models required further calibration, and could not be used in a 

predictive sense using a single-stage (data from a single cross-section) calibration only. 

This will also be discussed further in section 4.7.
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4.5.2.3 Prediction stage for in-bank flow.

The centroids of the distributions at 14m downstream were again in agreement 

with the data to within the measurement resolution of 3cm, although this time the 

centroids had different signs, which is more indicative of random error about a zero 

centroid.

All of the models were able to predict the spread in the measured concentration 

distributions to within the estimated uncertainties, with the exceptions of MARKOV, 

FASTA and FASTB. The range in the coefficient of variability of the spread is between 

less than 1% and 68%. The range in the values of obj3 (two orders of magnitude) 

again stems from the range in the values of obj2 (of two orders of magnitude, resulting 

from a range of one order of magnitude in the Bv ratios) rather than obj 1 (which now 

has a range of one order of magnitude). This is attributed to the same reason described 

for the calibration stage.

However, it is evident from comparing tables 4.3 and 4.4, especially for the 

model JSCALE, that achieving a poor fit to the data at the calibration stage, in terms 

of the total objective parameter, does not necessarily result in a poor fit at the 

prediction stage. This could be explained if the variation in the effective dispersivity of 

the tracer with downstream distance is considered (this variation will be discussed in 

section 4.7). The model, JSCALE, showed a relatively large value of obj2, which 

resulted from a poor fit to the data in the vertical direction at 4m downstream. The 

sizes of the steps in the random walk which gave this result, may have resulted in an 

effective dispersivity which was more representative of the average dispersivity of the
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entire channel from 4m to 14m. This could explain the good fit to the data of the 

model JSCALE at the downstream site, despite its relatively poor calibration. This 

indicates a shortfalling in the calibration of the dispersion models using information 

from a single cross-section, which this sensitivity analysis aimed to do.

Fig. 4.13 gives examples of predicted distributions at 14m downstream and at a 

depth of 84mm, for the cases of models which do and do not fit the data to within the 

uncertainties. The models, NEWJUMP, CORJ2A and NSCALE are able to give good 

fits to the data, whereas the model MARKOV has over predicted the spread in the 

concentration distribution. The over prediction of the rate of increase of depth 

averaged spread with downstream distance is common to all of the models which do 

not fit the data, especially between 4 and 10 m downstream. This will be discussed 

further in section 4.7.

4.5.2.4 Comparison between the simple random walk (JUMP) and random walk 

with step size selected from normal distribution (NEWJUMP).

The random walk, JUMP, produced transverse concentration distributions 

which showed a larger than expected scatter, considering that the binomial distribution 

should approach a normal distribution after 10 steps (see section 2.22). The average 

number of steps undertaken by a particle travelling 4m downstream was 20 steps. The 

discrete intervals between the displacements means that the particles are confined to 

integral numbers of step sizes away from the centre line release position. If the 

particles all had similar travel times then the total number of random steps which each
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particle undergoes could be coincident, causing there to be a bias in the parity of total 

numbers of steps. This was found to be the case for the random walk JUMP (with 

constant step sizes) steps over the first 4m of the flow. This resulted in regularly 

spaced features or ‘oscillations’ in the concentration curves having a wavelength which 

was twice the step size, since particles taking an odd total number of steps could not 

reside at an even integer number of step lengths away from the release point. As the 

particle trajectories separated via differential advection, the numbers of odd and even 

total numbers of steps became approximately equal by 6-8 m downstream as 

demonstrated in table 4.5a, where 20000 particles were used.

Table 4.5a. Analysis of number of particles taking odd and even total numbers 

of steps between release and measurement cross section for in-bank flow for 

model using constant step sizes (called JUMP).

distance downstream(m) number of particles taking 
odd total of steps

number of particles taking 
even total of steps

4 5778 14222
6 9517 10483
16 9779 10221

Since the time step in use was not considered as a variable parameter, and it could 

therefore not be reduced. This effect is avoided to a large extent when the step size is 

made variable as for the model NEWJUMP, where the total numbers of steps which 

are even and odd was close, as shown in table 4.5b. The discrepancy in the total 

numbers of particles taking odd and even number of steps is not as important for this 

random walk, since the step sizes come from a continuous distribution, and 

consequently there are no ‘oscillations’ in the particle distributions.
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Table 4.5b. Analysis of number of particles taking odd and even total numbers 

of steps between release and measurement cross-section for in-bank flow for 

model using step sizes taken from normal Gaussian distribution (called 

NEWJUMP).

distance downstream(m) number of particles taking 
odd total of steps

number of particles taking 
even total of steps

4 8859 11141

4.5.2.5 Comparison between random walks using an ensemble average and a 

locally determined cross-correlation coefficient.

Fig. 4.11 demonstrates how the use of an ensemble average cross-correlation 

between u’ and w’ ( ruw) produced very similar results to the case when the local field 

values estimated from the measured distributions of ruw are used. This suggested that 

the use of an ensemble average cross-correlation was sufficient for the uniform flow 

under study, and that nothing was gained by the inclusion of the finer structure.

4.5.2.6 Discussion of random walks which include correlations.

Some run time Lagrangian autocorrelations and cross-correlations are shown in 

fig. 4.14 for the model, MARKOV, which were determined from the velocity time 

series of a single, example particle using the NAG algorithm G13DAF (NAG, 1987). In
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the model, the time steps were 0.04s, and the 1/e time constant in the autocorrelation 

equation was set at 0.4s, with a cross-correlation, ruv = -0.27.

Using the same NAG algorithm, the above correlations were recovered from 

analysis of the Lagrangian time series, confirming that the particles were subject to the 

correct correlations.

A similar analysis of the autocorrelations for the model FASTC was carried 

out, for which the 1/e time constant was determined to be the same size as the time 

step, of 0.4s, which is smaller than might be expected due to the long term correlations 

present in this kind of noise. However, due to the extreme fluctuations between 

negative and positive values inherent to this kind of noise (W.Kinzelbach, 1990), the 

time for the particle velocity to drop below 1/e of its initial velocity can be extremely 

rapid.

4.5.2.7 Variation of the memory term (H) in the fast fractional Gaussian noise 

random walk model.

The Fast Fractional Gaussian Noise model with the smallest H exponent (which 

was called FASTC, for which H = 0.55) has been found to be the model in closest 

agreement with the observations out of the three FFGN models which were used. 

Fig.4.10 demonstrates the large difference in the behaviour of the modelled evolution 

of the spread depending on the choice of the H parameter as described above. If H = 

0.5, long term correlation is absent, since the covariance determined by equation 2.29 

is zero. This suggests that further calibration of the displacement sizes in the random
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walk is required (with particle cloud evolution), if random walks with very long term 

correlations are used. The fact that the best fitting model was FASTC is consistent 

with there not being any regions in the flume with which to associate long term 

correlations. The H exponent could be increased for natural flows were such effects 

are present, but this might entail more calibration points in the downstream direction.

4.5.3 Results for the over-bank flow.

Here the optimised values of the objective function, obj3, were used again to 

arrange the different models in decreasing order of closeness of fit at the calibration 

stage, at cross-section 1 (4m downstream), given by table 4.6.
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Table 4.5 Analysis of particle distributions for the different random walks 4m 

downstream for the over-bank flow.

data/ model cntrd. at 
depth = 
159mm 
(m)

spread 
at depth 
=159mm
(m)

objl*
10'6

obj2*
10'3

obj 3*

10‘3 not 
norm­
alised

opt.
fv
value

opt.
fw
value

DATA 1.07 0.169 ± 
0.012

MARKOV A 1.11 0.169 0.04 4.2 4.2 1.0 1.0

MARKOV B 1.12 0.169 0.3 5.2 5.2 1.5 0.7

FASTC 1.10 0.167 2.1 5.4 5.4 2.1 1.4

NEWJUMP 1.12 0.168 1.3 5.6 5.6 2.6 1.1

CORJ3 1.11 0.167 3.0 6.0 6.0 2.5 1.6

CORJ4 1.13 0.166 8.4 6.1 6.1 2.6 1.5

NSCALE 1.12 0.170 0.7 6.5 6.5 1.5 1.4

JUMP 1.08 0.166 8.6 7.1 7.1 2.7 1.1

JSCALE 1.12 0.168 1.4 10.3 10.3 2.1 1.4

NEWJUMPB 1.09 0.163 29.7 38.3 38.4 4.0 1.7

The continuing evolution of the spread in the particle distributions with 

downstream distance, at a depth of 159mm was examined and compared with the 

corresponding spreads in the concentration distributions in figs. 4.15 and 4.16.

The predicted particle distributions were then examined in detail at cross- 

section 7 (16m downstream), using the same objective functions described earlier, and 

the closeness of fit for each model is given in table 4.7:
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Table 4.7 Analysis of particle distributions for the different random walks 16m 

downstream for the over-bank flow.

data/ model centroid at 
depth = 
159mm (m)

spread at 
depth = 
159mm (m)

obl*10'3 ob2*10'3 ob3*10'3

DATA 1.05 0.302 ± 
0.02

JSCALE 1.21 0.314 1.4 10.8 10.9

CORJ4 1.22 0.341 1.5 10.3 11.8

NSCALE 1.22 0.323 4.3 12.0 12.4

JUMP 1.14 0.317 0.2 12.4 12.7

MARKOVA 1.17 0.331 0.8 13.2 14.0

NEWJUMP 1.21 0.342 1.5 12.9 14.5

CORJ3 1.21 0.350 2.2 14.2 16.4

FASTC 1.20 0.360 3.4 14.7 18.1

MARKOV B 1.27 0.343 1.7 24.5 26.2

NEWJUMPB 1.14 0.324 0.5 29.3 29.8

Minimum value of objective function 0.2 10.3 10.9

Fig. 4.17 shows the modelled distributions for the model NSCALE, at the 

calibration and prediction stages (at a depth of 159mm) and compares these to the 

measured concentration distributions. These distributions were typical of most of the 

models, the performance of which is summarised in the tables above. Fig. 4.18 again 

shows the predicted particle distributions at cross-section 7 for several different 

models, which are again representative of the results summarised in the tables above.
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4.5.4 Discussion of over-bank flow models.

This discussion is again split up into four principle sections, which refer to the 

calibration stage, the evolution of particle cloud with downstream distance, the 

prediction stage, and several comparisons between models having similar properties

4.5.4.1 Calibration stage for over-bank flow.

The centroids of the particle distributions differed from the data by between 3 

and 6 cm, and again showed a positive bias. The discrepancy between the modelled 

and measured centroids was however of the order of the resolution of the 

measurements (3cm) and was considered acceptable at 4m downstream.

All of the spreads in the particle distributions at a depth of 159mm agreed to 

within the estimated experimental uncertainty with the spread in the concentration 

distributions (the coefficient of variability was in the range from less than 1% to 4%), 

which is confirmed by the example particle distribution for the model NSCALE 

labelled ‘nscale 40’ on fig. 4.17. The predicted particle distribution at 16m downstream 

(labelled ‘nscale 160’) on the same figure shows, however, that there are problems to 

come.
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4.5.4.2 Evolution of particle distributions with downstream distance for over­

bank flow.

The graphs (fig. 4.15 and 4.16) showing the evolution of the spread at 159mm 

with downstream distance show that most of the modelled distributions over-predict 

the measured spread in the concentration distribution. Only one of the models, 

JSCALE predicts the observed behaviour to within the uncertainties at all of the 

measurement sites in the downstream direction, although the characteristic shape of the 

curve is representative of several of the models (NSCALE, JUMP, CORJ3 and 

CORJ4). This will again be discussed in section 4.7.

The centroids in the particle distributions showed a non-trivial drift in the 

centroids of approximately 15 cm by cross-section 7, but remained relatively steady in 

the data as shown in table 4.8 for the model NEWJUMP:

Table 4.8 Variation of centroids with downstream distance for data and two 

different models.

distance
downstream

data 
centroid (m)

NEWJUMP 
centroid (m)

NEWJUMP 
(modified with 
boundary reflection 
about angle of 
incidence) centroid 
(m)

4m 1.073 1.116 1.084
8m 1.095 1.143 1.111
12m 1.065 1.185 1.129
16m 1.046 1.213 1.143
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Fig.4.18 shows the observed and modelled transverse non dimensional 

concentration distributions for the single depth of 159mm and for the downstream 

distance 16m in the case of the over-bank flow.

The drift was initially thought to be due to the use of reflections from 

boundaries, which had previously not properly taken into account the transverse 

momentum of a particle approaching the sloped side wall of the over bank flow 

geometry. The particles were now reflected about the normal to the bed slope to 

conserve momentum (as discussed in section 4.3.3). The drift in the centroid was 

found to be reduced slightly (see table 4.8 above), although the systematic drift of the 

centroid remained.

A further investigation into the reason for the drift was undertaken, initially to 

see if there was any connection between the drift and the difference between the 

velocities in the over-bank region and those in the main channel. A simulation was 

undertaken whereby the random walk in the horizontal direction was left the same, but 

vertical steps were excluded from the trajectories so that the particles all remained at 

the release depth. This produced good agreement of the model centroid with the 

observed value. Next the particles were allowed to step vertically, but were restricted 

to the region of the flow no deeper than the bank top. Again the model and observed 

centroids were in close agreement.

The above two observations strongly suggested that the misfit in the centroid 

positions was not due to the relatively large difference in velocities between the in­

bank and over-bank regions. This velocity difference might have otherwise given rise
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to the sort of drift effect discussed in chapter 2, whereby maxima in particle number 

densities drift away from regions of high diffusivity, or short time constants.

Having eliminated other possibilities, it was considered that the drift was 

associated with the asymmetric flow field faced by the particles following their release. 

Initially, following the injection, an equal number of particles (on average) would 

disperse either side of the line y = 1.05m. The particles over the main channel would be 

free to disperse downwards, so that there would then be relatively fewer particles close 

to the surface (or in the vicinity of z = 159mm at which depth the distributions were 

examined in detail for the over-bank flow). This would result in there being relatively 

more particles towards the over-bank region than in the main channel region in the 

simulation, whereas for the real flow, this was not observed. This facet of the real flow 

could be explained if the turbulence induced secondary circulation above and adjacent 

to the bank-top (see fig. 3.1), was increasing the mixing rate of tracer close to the 

bank-top, on the over-bank side, into the main channel, giving the tracer on average 

more opportunity to ‘escape’ into the main channel.

This effect was next attempted to be accounted for by including a transverse 

varying eddy viscosity as mentioned above, for the random walk, NEWJUMPB. This 

allowed for a greater effective eddy dispersivity in the region of the bank-top, to 

simulate this ‘enhanced mixing’ due to secondary circulatory cells, and was described 

in section 2.6.2. However, this did not produce any better agreement with the 

centroids, and by all other accounts (this model was included in the sensitivity analysis 

above), NEWJUMPB performed badly. It was concluded that in order to investigate
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this effect further, more information about the secondary advections was required, 

which was not available at the time of writing.

4.S.4.3 Prediction stage for over-bank flow.

The predicted spreads in the particle distributions at cross-section 7 for the 

models JSCALE, NSCALE and JUMP agree with the spreads in the concentration 

distributions to within estimated uncertainties in the data, with the remaining models 

deviating by between 10% and 19 % from the observations. However, it is again 

important to examine the vertical distributions, by inspecting the combined objective 

function, obj3, which was again used to list the models in decreasing order the 

closeness of fit in tables 4.4 and 4.5.

4.6 Relative performances of the different models at the calibration and 

prediction stages for the two flows combined.

The objective functions (obj3) in tables 4.3 to 4.6 stem from normalised 

measures of closeness of fit. The values at the calibration and prediction stages were 

combined in order to give an indication of which model performed best overall. 

However, the objective functions, obj2, are not strictly compatible for the two flows, 

since the Bv ratios were normalised using the areas under the distribution curves close 

to the surface. Since the concentration distribution close to the surface (159mm) for 

the over-bank flow-
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bank flow is relatively much larger than that at all other depths in the main chanel, the 

Bv ratios are relatively smaller than their counterparts for the inbank flow.

The different random walk models are nonetheless listed in table 4.9 in order of 

decreasing closeness of fit using this combination of objective functions, for the in­

bank flow and over-bank flows (for the ‘best fit’ values of objective parameters).

Table 4.9 Comparison of closeness of fit of particle distributions to observed 

concentration distributions for the different random walk models.

IN-BANK FLOW OVER-BANK FLOW

data/model sum of objective 
functions for 
cross-sections 1 
and 6*10'3

data/model sum of objective 
functions for 
cross-sections 1 
and 6 *10'3

NSCALE 5.0 JUMP 13.4

NEWJUMP 7.5 NEWJUMP 15.1

SULLUA 8.3 CORJ4 17.8

JUMP 10.3 MARKOV A 18.2

JSCALE 11.6 NSCALE 18.2

FASTC 24.1 JSCALE 21.2

FASTA 46.8 CORJ3 22.4

MARKOV 58.5 FASTC 23.5

TURJ2 63.7 DEBRA 24.8

CORJ2A 68.6 MARKOV B 31.4

CORJ2B 72.8 NEWJUMPB 68.2

FASTB 101.0

If the table is taken literally, then it would appear that the models, NEWJUMP, 

JUMP and NSCALE perform the best overall. These random walk models are
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relatively simple compared to the alternatives, which suggests that the additional 

degrees of freedom in the other models have not been optimised for the flow as a 

whole. However, additional physically-based parameters, such as cross-correlations or 

memories have mainly been based on measured values in the flow (with the exception 

of the SULLIJ and FAST algorithms), rather than attempting to fit the values in a 

further calibration analysis.

4.7 Further discussion of the sensitivity analysis for the in-bank and over-bank 

flows and Conclusions.

The sensitivity of the random walk models to varying the size of the 

displacements was examined, and a discretisation interval was estimated which was 

compatible with the uncertainties in the measured concentration distributions. The sizes 

of the vertical and transverse displacements in the different random walk models were 

adjusted until the macroscale particle distributions were in close agreement with the 

concentration distributions for two different flows. It was found that all of the random 

walks could be calibrated in this way so as to reproduce the observed spread in the 

measured concentration distributions to within the estimated uncertainties at 4m 

downstream, for both flows.

The calibrated values of the displacement sizes were then used to predict the 

evolution of the tracer plume further downstream. As already stated, relatively few of 

the models for both flows showed the same depth-averaged spread (or spread at z = 

159mm for the over-bank flow) as the data at every downstream measurement site.

The shape of the spread against downstream distance curves, for those models which
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did agree (JSCALE, JUMP for the in-bank flow and JSCALE for the over-bank flow) 

with the data at every measurement site (to within experimental uncertainties), were 

characteristic of many of the models.

For the models NSCALE, MARKOV, NEWJUMP, CORJ2A and CORJ2B for 

the in-bank flow, and the model JUMP for the over-bank flow, the curves could be 

made to pass through all of the data points to within the estimated uncertainties by 

reducing the fv factor slightly. This conditional fitting of the data relies upon the 

additional information which is gained by examination of more of the concentration 

data than was used at the calibration stage. The calibration stage of the study was 

based on the data from a single cross section, and the objective functions effectively 

assume zero uncertainty in the spread at this cross section. This ‘ties’ the evolution of 

spread curve more rigidly to the first data point than is necessarily conducive to 

obtaining the best overall fit to the entire data set over the whole length of the channel. 

However, it is highly desirable to be able to calibrate the models based on the 

measurements at a single cross-section, since this would ultimately lead to less 

measurements.

Collectively, the models show the greatest deviation from the data at the cross 

sections 6m, 8m and 10m downstream from release, in the earlier stages of mixing. 

This was most likely to be due to the models failing to predict the vertical mixing 

behaviour properly. Inspection of the measured concentration distributions (for the in­

bank flow) shows that the tracer becomes fully mixed in the vertical mixing by ~ 10m 

downstream. The turbulent structures which are generated by the bed shear contain 

motions of the same order of magnitude as the depth of the flow, but the vertical 

mixing is being modelled using step sizes of the order 1/1 Oth of the flow depth, which
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are supposed to be representative of the average scale of motion in the vertical 

direction. This could explain the failure of some of the models to model the depthwise 

mixing process, since they do not explicitly account for these larger scale motions and 

the correlations which are associated with them. The rate of transverse mixing is 

affected by the rate of vertical mixing, so if the latter is not modelled correctly in this 

critical early stage, then the models will not necessarily reproduce the correct 

transverse spread either.

Most of the models which do not fit the data to within the estimated 

uncertainties over-predict the depth-averaged transverse mixing in the early stages of 

mixing, which could be explained by the following. If the transverse dispersivity is 

actually greater close to the surface (as for example in Prandtl’s mixing length theory, 

where the mixing length in a turbulent boundary layer is proportional to the depth), 

then for the surface release (this was the case for both flume flows), the mixing would 

tend to be strongest in the early stages of mixing. As the tracer mixed into greater 

depths, it would experience a decrease in the effective vertical and transverse 

dispersivities. Since the models were all calibrated using the tracer data at the first 

cross-section downstream from the surface release, the calibrated step sizes would 

reflect this relatively strong initial vertical and horizontal mixing, and could not 

account for the reduction in the mixing rate as the tracer cloud continues to mix.

The model TURJ2, which included vertical and transverse step sizes scaled 

with the measured fluctuating velocity fields, would be expected to account for this 

effect to some extent, but this model in particular still slightly over-predicts the depth- 

averaged transverse spread at 6 and 8 meters downstream. The behaviour of the tracer 

is therefore again suggested to be due to larger scale correlations in the flow. Future
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work could investigate this, if more information about the secondary currents was 

made available.

Following the tracer becoming well mixed in the vertical direction, the 

dispersion process is better represented by the purely stochastic process, since on 

average, each fluid element (containing tracer) has had the opportunity to experience 

the dispersivities (in all directions) at every depth. The random walk model therefore 

gives a better representation of the ‘average’ mixing process further downstream.

The main sensitivity analysis of the different models was conducted at the 

furthest downstream location supported by the measurements, in order to put to the 

test their predictive capabilities. However, from the graphs of the evolution of spread 

with downstream distance, it is evident that if the analysis had been carried out, for 

example, 8m downstream, fewer of the models would have collapsed the data to within 

the estimated uncertainties. However, this does not affect the general conclusions 

which have been made about the equifinality of the model results for the in-bank flow 

and to a lesser extent the over-bank flow, since it is the general shape of the graphs 

which many of the models have in common.

In summary of the predictive capabilities of the models, for the in-bank flow, 

the models JUMP, NEWJUMP, JSCALE, NSCALE, SULLU came within the 

estimated uncertainty bounds of the measured depth-averaged spread at 14m 

downstream, and all gave a good fit to the concentration distributions at different 

depths. These models also possessed the smallest values for the two objective 

functions. The models TURJ2, CORJ2A and CORJ2B were very close to meeting the 

same criteria, and were also regarded as successful. The uncertainty bounds are 

estimates of experimental errors, which should only accommodate 66% of the data
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points, if they are truly representative of random error. All of the above models show a 

similar shape in their respective evolution of depth-averaged spread curves.

For the over-bank flow, the three models, JSCALE, NSCALE and JUMP were 

successful by the above criteria in reproducing the concentration distributions at 16m 

downstream. The models MARKOVA, CORJ3 came close to meeting the criteria, and 

for the same reasons as explained above, these were also regarded as successful 

models. However, these conclusions are less certain for the over-bank data set, since 

the data was relatively sparse in the number of downstream measurement sites.

The drift of the modelled centroids away from the observed was unable to be 

explained in terms of the velocity difference between the over-bank and the main 

channel flow velocities causing a drift in the particles towards the region of lower 

velocities (the over-bank region). The drift was reduced to some extent by 

incorporating boundary reflections which accounted for the angle of incidence. It was 

considered that the drift was associated with the asymmetric flow field, causing a bias 

in the relative numbers of particles either side of the injection point (at bank-top at y =

1.05 ). It was suggested that the drift was not observed in reality, because of the 

effects of turbulence induced secondary circulation. This was attempted to be modelled 

by incorporating a spatially varying effective transverse eddy dispersivity, and although 

it reduced the drift of the particles towards the over-bank, it resulted in a distribution 

which did not otherwise fit the concentration distributions very well. Future work 

could explore different versions of this approach, or perhaps, as stated earlier, the 

secondary advections in the flow could be incorporated into the model.

All of the different models had to be calibrated, including those for which the 

perturbations were directly based upon the measured Eulerian fluctuating velocity field
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(for the in-bank flow only). The calibration of each model simply involved the 

adjustment of the values of the multipliers to the perturbations for the entire flow field, 

so that these values were ‘global’ to the entire flow field. Therefore, in the case of the 

models which were based upon the Eulerian fluctuating velocity field (for example, 

TURJ2), and considering that the particle tracking model was essentially based in a 

Lagrangian framework, it would appear that there existed a simple linear relationship 

between the Eulerian and Lagrangian fluctuating velocity fields, at the microscale 

(particle scale), which gave rise to the correct ensemble particle behaviour at the 

macroscale. The calibrated displacement size for the model TURJ2 is given by 

equations 4.7:

where <v’> is the cross-section average transverse component of the fluctuating 

velocity. If this represents the mean Lagrangian ‘decorrelation’ length scale, then the 

decorrelation time scale in the downstream direction, using the cross sectional average 

downstream velocity of <U> = 0.68 ms *, as measured by a stationary laser-Doppler- 

anenometer, would on average be given by equation 4.8:

Ll  = 2.4 X (v') X Tl  

Ll  =2.4x0.034x0.4 

Ll  = 0.033m

(4.7)

(4.8)
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Dividing this by the Lagrangian time scale used in the model, of ~ 0.4s, the ratio of 

Lagrangian to Eulerian time scales is : TL / TE~ 8.0. This ratio is larger than the ratio 

(T l / T e = 3.5 to 5.0) which was estimated by determined in two separate pieces of 

work by Engelund (1969) and Hansen (1972), which were also cited in Cotton and 

West (1980). However, these values were determined from measurements of the 

motions of buoyant particles in the surface layer at the centre of wide channel flows, 

so that the particles did not experience wall boundary effects, and nor did they 

experience the full three dimensional dispersion. These effects would more than likely 

increase the Lagrangian lengthscale, and lead to a larger ratio.

Since the in-bank flow represented a relatively complex three dimensional shear 

flow, with anisotropy, secondary advections and inhomogeneities, this simple linear 

relationship is somewhat surprising, and will be discussed further in chapter 9.

For the application of the particle tracking models to a less accurate set of 

measurements of velocities and tracer concentrations in a more complex river flow, the 

use of the simpler random walks is suggested on the basis of this work.
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Fig.4.4
Graphs showing the measured concentration distributions at different depths for 

a downstream distance of 4m, for the in-bank flow.
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Fig.4.5
Graphs showing the measured concentration distributions at different depths for 

a downstream distance of 16m, for the over-bank flow.
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Fig.4.7
Maps to show the minima in some of the objective functions for tw o example

models.
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Chapter 5 

Field measurements of velocities, turbulence and tracer dispersion in a meander 

bend of an upland gravel bed river (River Lune).

5.1 Introduction.

This chapter is a description of the laboratory work and fieldwork which was 

collected for the purpose of constructing a computer model of the mixing 

characteristics of the flow in a bend of the River Lune. The flow is highly complex, 

with large scale inhomogeneities, pool sections, riffle sections, deadzones and flow 

separations. The combined effect of these structures on the flow and its mixing 

characteristics can only be ascertained with a large degree of uncertainty even with 

detailed field measurements. The construction of a model of the transport of a tracer 

within such a complex environmental flow is therefore likely to have an inherently large 

degree of uncertainty. The experiments must therefore be designed to compensate for 

the natural variability at every stage, through for example careful selection of sampling 

periods long enough to accommodate periodic trends in the measurement of 

observables.

Section 5.2 gives a qualitative description of the study reach and the principle 

hydrodynamical features. The laboratory and field work comprised four main sets of 

measurements and instrumentation, which are then described in the four main sections 

of this chapter. The surveying of the field site is described in section 5.3 and the 

velocity and stage measurements are described in section 5.4. These measurements
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were later used to define the mean velocity field and geometry of the model simulation. 

Section 5.5 describes the measurements of the fluctuating velocity time series in three 

dimensions using electromagnetic current metering, which were used to define the 

characteristic time scales in the random walk model. Section 5.6, describes a dye tracer 

experiment carried out on the reach, the measurements from which were used to define 

the input to the model and to calibrate the model.

Each of the four sections are divided into sub-sections (where relevant) on 

instrumentation, calibration, sampling strategy, results and any further experimentation 

which was undertaken, such as investigations into experimental uncertainties.

Finally, section 5.7 summarises the data sets which were used in the 

construction of the random particle tracking model.

5.2 Qualitative description of field site

The field site for this study was a short reach of the river Lune east of Tebay at 

OS grid reference SD 540 658. The main aspect of the reach was a single large 180 

degree meander, within which most of the field measurements were taken. The course 

of the river is straight for in excess of 200m upstream of the meander, although 

downstream there were several minor meanders before the river resumed a straight 

course once more. The river was gravel bedded and had many complex 

geomorphologic and hydrodynamic features. At the start of this project, some 

fieldwork had already been carried out at the field site by Harriet Orr of the Institute 

for Freshwater Ecology (IFE), Windermere, for a study of the bed load transport. This 

project was also in initial stages and it was clear that the field work which was required
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for the two projects conveniently overlapped, sufficiently so that resources could be 

combined. An overview of the entire test reach on the day of the tracer experiments is 

given in fig. 5.1.

The bed material in the reach varied from small pebbles to large cobbles and 

was distributed in a typical pool-and-riffle regime. The river had a mean surface slope 

of approximately 0.009 (from measurements between the first and last cross-sections, 

using the distance around the meander bend).

The upstream straight reach comprised a narrow fast flowing channel 

with a steep left bank which was prone to slumping, and a steep sided shoal along the 

right bank. As the flow entered the meander there were a number of important 

features. A small brook (Street Beck) enters the river at an acute angle from to the 

right bank into a region of relatively still water (noticeable in the top left hand comer 

of fig.5.2a). Here the flow was slowly flushed by the small volume of water from the 

brook and was estimated to have a time constant of approximately 7.5 minutes for a 

moderate flow, which was established by dye dispersion tests in a MSc project by 

A.Morgan (1993). The still water in this region allowed for a small amount of weed 

growth. There was a region of strong transverse shear between the slow flow in this 

pool and the main flow.

On the opposite bank, the main flow separated away at the bend entrance 

(visible in fig. 5.2a, for a medium stage)and impinged upon the right bank several 

meters downstream, where an elevation of the water surface was visible in medium to 

large flows.

Further into the bend the flow close to the right bank separated once more 

across a small recess in the bank (fig. 5.2a). This separation resulted in a large region

171



of recirculation over a deep pool which was 1.5-2m deep for a medium stage. The pool 

extends for 5m downstream where the flow entered the main riffle section of the 

meander (fig. 5.2b) at cross-section 1. The cross-section widens between cross- 

sections 2 and 6, and a large point bar forms the outermost of several concentric 

terraces marking the former course of the river. Between cross-section 1 and 6 the 

right bank elevates considerably and here it was undermined and eroded extensively 

during the winter of 1992, as seen in fig.5.2b.

5.4 Surveying of the test reach.

5.4.1 Instrumentation and sampling strategy.

A geodimeter which operated using infra-red wavelength was used to measure 

the distances and angles between the cross-sections. The survey was carried out on 

two occasions, due to a landslide which occurred in December 1992 (visible in fig. 

5.2b). For each set of measurements the angles between cross-sections were measured 

relative to a permanent feature of the landscape (A large oak tree).

The meander bend was divided into seven cross-sections, 15-25m apart, which 

can be identified by the stakes in fig. 5.1. This was considered to give a sufficient 

resolution in order that the mean flow in the meander could be defined, within the 

limitations of the time needed to take detailed measurements at each site in a single 

day. The aim was to have a complete set of measurements at a constant stage.

Cross-section A1 marked the furthest upstream measurements which would 

define the initial flow and concentration distributions for the model. This cross-section 

was a few meters downstream of the Street Beck confluence.
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5.4.2 Results.

The results from the survey were used to create an overall picture of the reach, 

shown in fig.5.3a., where the dashed line shows the water line for a moderate flow. 

Fig. 5.3b. shows the topology at each of the measurement cross-sections for the 

second survey. The bed topology was measured at each of these transects at intervals 

of 0.5-1.0 m above an arbitrary datum beneath the bed and the measurements are 

shown in figs. 5.4 and 5.5. The topology of the river bed was only slightly changed 

between cross-sections Al-2 (fig.s 5.4a-5.4c), but was different at cross-sections 3-5 

(fig.s 5.5a-5.5d). At cross-sections 3 and 4 only, the general shape of the cross-section 

was shifted towards the left bank (fig. 5.5a, 5.5b), although the shape was changed 

significantly at cross-section 5 and 6 (fig. 5.5c and 5.5d) following the landslide.

Table 5.1 below gives the separations between the cross-sections along the 

inner bank and the angles between the surveyed transects for the second set of 

surveying measurements:

Table 5.1 Surveyed geometry of reach.

measurements Separation along angle(degrees)
between cross- inner bank (m)
sections:

Al-1 24.6 29.8
1-2 21.0 43.5
2-3 26.7 47.0
3-4 18.9 14.9
4-5 18.0 21.8
5-6 14.1 0.05
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5.5 Stage and Velocity measurements.

This section is principally concerned with the measurements of the mean 

downstream flow velocities at different stages, although some measurements of 

secondary flow were also undertaken.

5.5.1 Instrumentation.

A stage board was set up by H.Orr(I.F.E.) in Autumn 1992, in a pool 

downstream of the meander which was used in all subsequent work to determine a 

relative stage.

The velocity measuring equipment was changed over the three year period, 

due to the acquisition of new equipment by the I.F.E. The first three sets of velocity 

data were measured using an array of impeller meters (Ott meters) mounted on a single 

staff. Following these measurements, an electromagnetic current meter (E.C.M.) with a 

single head, and then an array of E.C.M. meters were purchased by the I.F.E. and were 

used in subsequent measurements of velocity. The multiple point velocity 

measurements enabled the structure of the vertical velocity profile to be examined in 

greater detail.

The E.C.M comprises a coil and a pair of electrodes housed inside a 

streamlined casing. The coil produces an electromagnetic field around the meter head, 

which when immersed in a conducting medium such as water, which is in relative 

motion to the meter head, cause an electro-motive force (E.M.F.) in the water. This
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creates a potential gradient which is directly proportional to the relative velocity of the 

water in accordance with Faraday’s law. This E.M.F. is detected by measuring the 

difference between the potentials of the two electrodes, and it is calibrated to indicate 

the velocity.

5.5.2. Sampling strategy.

Much of the river catchment is steep sided with high annual rainfall and a rapid 

runoff response, making the stage subject to flashy responses to precipitation. The 

hydrodynamic model was steady state only, which required that the field measurements 

were taken under settled weather conditions. The velocities were measured at as many 

different stages as possible so that a stage-discharge curve could be determined.

The measurements of the mean downstream velocities were made at 

approximately 1.0 m intervals in the transverse direction at each cross-section. The 

local downstream direction, parallel to the mean direction of the two banks, was 

estimated by eye at each measurement site. The uncertainty in the measurements due to 

misalignment by eye was estimated from the scatter of repeated measurements in 

section 5.4.4.

The velocities which were measured using a single E.C.M. were taken at 0.2 

and 0.8 of the local flow depths. For the case of the array of E.C.M.’s or Ott meters, 

the depths of measurement were at fixed distances from the bed (0.05, 0.09, 0.15,

0.25,0.37, 0.51m and 0.05, 0.09,0.15, 0.30,0.46, 0.63m for the E.C.M. and Ott 

meters respectively), such that in shallow regions only the bottom few probes were 

under water. There were regions of shallow flow over the point bar, in which it was
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only reasonable to make a single velocity measurement in the vertical. In this case the 

single velocity measurement was used as the depth averaged mean velocity. The 

velocities at 45 degrees to the downstream direction were also measured for the cases 

when the E.C.M.’s were used and are described in section 5.4.5.

The sampling time was 30s for all of the measurements, under which conditions 

suitably stationary velocity time series were found to be obtainable. This was later 

confirmed by time series analysis of the fluctuating velocity, where the longest 1/e time 

constant was found to be 6.6s in the deadzone at cross-section Al.

The velocity measurements which had been made using both the Ott and 

E.C.M. meters described above had to be corrected at a later stage because the original 

calibrations of the probes were at fault due to an incorrect calibration flume. The 

corrections were supplied by the I.F.E.
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5.5.3. Results

The velocity measurements taken on the different dates are summarised in table

5.2:

Table 5.2 Summary of downstream and secondary velocity measurements made 

on River Lune.

Date Stage (m) Cross-sections
examined

Velocity probe 
used and no. of 
depths

Secondary
velocity
measurement

15/9/92 0.52 1-6 impeller meter 
multiple depths

none

22/9/92 0.58 1-6 as above none
29/9/92 0.30 1-6 as above none
3/12/92 0.70 1-6 e.c.m. meter 

0.2 and 0.8 of 
depth

0.2 and 0.8 of 
depth

10/12/92 0.39 1-6 as above as above
19/2/93 0.23 A1,A2,1 as above as above
19/7/93 0.40 1,3,5 multiple e.c.m. 

probes & depth
multiple probe 
&depth

1/11/93 0.20 Al.1,4 as above as above
2/11/93 0.20 7,8 as above as above

5.4.4 Further experimentation: Estimation of uncertainty in velocity 

measurements due to misalignment of probe head.

The velocity measurements had a degree of inherent uncertainty due to the 

error in alignment by eye of the different probes with the mean downstream direction. 

All of the downstream velocity measurements were taken by holding the different

177



probes pointing upstream, in a direction which was as parallel to the mean direction of 

the banks as it was possible to judge by eye. The uncertainty due to misalignment was 

estimated for the E.C.M. by making repeated measurements at particular locations 

given in table 5.3a, for which the probe was turned out of alignment and realigned by 

eye for each measurement.

Table 5.3a Repeated measurements of velocities to ascertain uncertainty due to 

misalignment of E.C.M. probe.

repeated 
meas. no.

site 1 
velocity m/s

site 2 
velocity m/s

site 3 
velocity m/s

site 4 
velocity m/s

site 5 
velocity m/s

1 0.303 0.52 1.09 -0.007 1.06
2 0.304 0.54 1.08 -0.012 1.04
3 0.296 0.51 1.10 -0.007 1.04
4 0.265 0.50 1.07 -0.009 1.05
5 0.286 0.49 1.09 -0.007 1.02
6 0.295 0.49 1.04 -0.008 1.04
7 0.283 0.47 1.07 -0.017 1.01
8 0.272 0.51 1.06 -0.012 1.02
9 0.292 0.56 1.05 -0.009 1.02
10 0.268 0.53 1.07 -0.007 1.03

The different sites were chosen to be representative of the different flow regimes 

within the channel, and are described in table 5.3b:
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Table 5.3b Description of sites at which repeated velocity measurements were 
made.

site description
1 0.3 m flow depth, smooth water surface 

no large scale inhomogeneities
2 0.45m, as above
3 0.80m, water surface characteristic of 

riffle.
4 0.2m, slow recirculating region of water 

behind slump - deadzone, negative 
readings

5 0.2m, long riffle section.

The coefficient of variability (fractional deviation from the mean of a quantity divided 

by the mean) gives an estimate of the fractional uncertainty for each set of 

measurements, and is tabled for each set in 5.3c.

Table 5.3c Coefficient of variability for repeated velocity measurements.

site 1 2 3 4 5
m ean(m /s) 0.286 0.510 1.071 -0.010 1.031
a n_i(m/s) 0.015 0.027 0.019 0.003 0.020
Gn.i/m ean 0.051 0.053 0.018 0.3 0.019

The uncertainty in most of the measurements ranges from 2-5%, with the 

exception of site 4, where the flow was negative with respect to the probe orientation 

due to recirculation (see table 5.3b). The large uncertainty in the measurements at site 

4 was thought likely to have been caused by flow separation around the pole to which 

the probe was attached, interfering with the flow over the probe head. In such 

instances, the probe should therefore be orientated such that it was pointing upstream.
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This observation also cast doubt on the validity of the measurements which were made 

at 45 degrees to the flow.

5.5.5 Further experimentation: Secondary current measurements by 

decomposition of velocities measured at 45 degrees and parallel to the 

downstream flow.

The streamlined shape of the E.C.M. head minimised probe interference with 

the flow, and it was thought that the probe might also be used to measure the flow at 

45 degrees to the downstream direction, by rotating the probe by 45 degrees (using a 

compass bearing) to the downstream direction. These measurements were combined 

with their counterpart downstream velocity measurements and the two vectors were 

resolved in order to determine the secondary velocity strengths using the technique 

described in chapter 6. The dates for which these measurements were made are also 

given in table 5.2

5.5 Turbulence measurements using an electromagnetic current meter (E.C.M.).

5.5.1 Instrumentation.

A pair of Valeport series 800 two-axis electromagnetic current meters were 

used to collect three dimensional velocity measurements. These E.C.M.’s operated on 

the same principles which were described above, but had an additional pair of 

electrodes in the plane of the coil, such that the velocity field could be measured in two
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dimensions as demonstrated in fig.5.6, where a schematic diagram of the 

electromagnetic fields is given:

Fig. 5.6 Plan view of E.C.M. head showing electromagnetic fields.

Ev

Eu «----------
velocity field

U

electrode pair B field into paper

Where Eu is the electric field induced in the water due to the U component of the 

velocity field, and Ev that due to the V component.

The E.C.M.'s were attached to a rig which had been designed for the purpose 

of holding two meters at different angles to the flow as demonstrated in fig 5.7.

The two E.M.F.’s for each probe were recorded as digital units by an analogue- 

to-digital converter attached to a portable computer, and the digital units were 

converted to voltages (2048 digital units=5.0 volts) such that they could be translated 

to velocities using the calibration information given by Valeport. The E.C.M. was 

powered by two 12v batteries in series, and operated with a power consumption of 

approximately 5 amp-hours.

The probes were held at 45 degrees to the vertical, such that one channel of 

each probe recorded the downstream velocity time series. The alternate channel for 

each probe recorded the velocities at 45 degrees to the vertical and transverse 

directions, such that the velocities in these directions could be determined from the 

vector superposition of the signals, given by equations (5.1):
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•J2

where chO-ch3 were the four signals measured by the probes, and chU,chV,chW are 

the components of the signals corresponding to the desired U,V,W flow directions.

5.5.2 Calibration.

The E.C.M.’s were calibrated by Valeport in 1992. However, the zero offsets 

for the probes, were investigated before the main set of measurements were made.

5.5.2.1 Laboratory experiments.

Before the E.C.M. rig was taken to the measurement site, it was tested in the 

laboratory flume, essentially to test that the heads were recording sensible outputs. The 

heads were then tested for drift in a large metal water tank. The signals which were 

recorded by the probes when immersed in the tank were discovered to be larger than 

expected and are detailed below in tables 5.4 and 5.5.
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Table 5.4 Measurements of offsets in laboratory test tank for E.C.M.

corresponding to Pod C / (yellow pod).

time channel 0 (digital units) channel 1 (digital units)
11:53:34 59.50671 33.62001
11:54:12 58.64996 32.69667
11:58:32 54.7467 30.16334
11:59:23 53.58331 26.54999
12:04:44 49.25337 24.28336
12:15:01 44.87001 24.76003
12:37:52 38.64335 20.76003
13:05:34 34.28001 17.30668
13:07:05 34.07661 17.27334
13:10:37 33.64666 17.72668
13:41:13 30.5535 16.33332
16:09:01 23.27664 13.2533

Table 5.5 Measurements of offsets in laboratory test tank for E.C.M. 

corresponding to Pod A / (green pod).

time channel 0 (digital units) channel 1 (digital units)
11:16:13 -140.8701 -44.09007
11:17:59 -143.5769 -40.60670
11:20:32 -143.2698 -40.15004
11:21:13 -146.8299 -40.06671
11:22:01 -147.2799 -40.14005
11:26:52 -147.2368 -39.56670
11:27:42 -149.8534 -39.50669

Probe C (table 5.4) showed a drift of 40 digital units (~0.02m/s) in the offsets 

on both channels over a few hours. Probe A (table 5.5) was also found to give a small 

amount of drift over the quarter of an hour for which it was tested. The probes had 

recently been re-calibrated by the manufacturer, and it was thought that the drift may 

have been due to disturbances caused by the immersion of the probes into the water in
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a large laboratory tank, not having settled over the period of measurement. At this 

stage, the probes were taken to the field, to test for the offset drifts in situ, using 

plastic caps to cover the heads in order to create zero flow around the probe heads.

5.5.2.2 Off-setting in situ.

The offsets were measured in the river by covering the E.C.M. heads with large 

plastic caps, and by immersing them in the water in the same position as if they were 

when recording direct measurements. The motion of the water surrounding the plastic 

caps could still give rise to an induced E.M.F. across the coils of the E.C.M., although 

the plastic caps were large (10cm diameter), so that the signals induced due to this 

effect were assumed to be negligible compared to the signals when the plastic caps 

were removed. The offsets have been called zero offsets, although as discussed above 

this is not strictly true. Table 5.6 shows the zero offsets which were taken at cross- 

section A1 on the 12/3/93.

Table 5.6 Measurements of offsets for E.C.M. pods A and C in River Lune on 

12/3/93.

pod C___________ pod A
time channel 0(d.u.) channel l(d.u.) channel 2(d.u.) channel 3(d.u.)

11:43:35 45.50335 19.66002 -160.2235 -40.03002
11:44:13 45.40994 19.26003 -158.1699 -39.99337
11:45:44 44.86006 18.84336 -157.8633 -41.61663
12:06:58 34.40002 16.61666 -161.0534 -41.61663
14:35:07 27.55671 13.67003 -159.6633 -38.87334
14:35:57 27.38003 13.68668 -159.5134 -38.37335
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The offsets were found to be of the same order of magnitude as the laboratory 

measurements. The offsets for pod C were greater by a factor of at least ten compared 

to measurements made by Clifford et al.(1993), in which the zero offsets were typically 

of the order ~ 0.01 v , although this will vary between different instruments. However, 

the offsets which were measured in the laboratory and in the field for the probes 

belonging to Lancaster University were of the order tenths of a volt. The 

manufacturer’s calibration figures (1992) show that the zero offsets were of the order 

hundredths of volts, suggesting that the zeros had drifted in the year following these 

tests.

The calibration given by the manufacturer was non-linear over the entire range 

of velocities, although the range was split up into three sub ranges within which three 

different linear calibrations were given. The signals delivered by the heads when 

immersed in stationary water, fell within the middle sub-range of the calibration. The 

non-linearity of the calibration was signal size dependant, so the zero offset voltages 

were translated into velocities before they were subtracted from the velocity 

measurements.

Table 5.6 also demonstrated that the zeros were not drifting by as much as had 

been measured in the laboratory for both of the heads. This suggests that the drift in 

the test tank could have been due to disturbances in the tank. The drifts which were 

measured over the three hours in the river amounted to systematic deviation of less 

than 10 digital units in three of the 4 channels and of less than 20 digital units for 

channel 0. 20 digital units corresponded to a velocity of approximately 0.01 m/s (per 3 

hours) which is smaller than the uncertainties associated with misalignment of the 

E.C.M. rig. for most of the measurements. The signals were therefore considered to
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have sufficient stationarity such that time series analysis could be carried out on further 

velocity measurements.

5.5.3 Sampling strategy.

5.5.3.1 previous work.

The turbulence rig had been used in a previous study by an undergraduate 

(P.Mullen, 1992) on the straight section of the reach upstream of the meander. This 

study aimed to ascertain the minimum probe separation that could be attained without 

the probes interfering with each other. This was important to establish, since the cross- 

correlations were required to be made in as smaller an area as possible, in order that 

they were representative of the local flow structure. The report concluded that the 

minimum acceptable separation of the probes was 6cm, for which the resolved channel 

signals gave an average correlation of 0.9 over the depth, as shown in fig. 5.8a (due to 

Mullen, 1993). Here x is the correlation between both of the downstream signals and y 

is the correlation in both of the cross-stream signals. However, more recently a study 

by Clifford et al.(1993) suggested that the separation which was required was 

somewhat larger at 20 cm. The value determined by Mullen was adhered to throughout 

this study, since it was determined using the same turbulence rig.

186



5.5.3.2 Zero offsets on days of velocity time series measurements.

The zero offsets were collected at the beginning of each set of velocity 

measurements after a warm up period of at least 15 minutes, but were not collected 

throughout the experiments. These are given in table 5.7:

Table 5.7 Measurements of offsets for E.C.M. pods A and C in River Lune on 

7/5/93.

pod C pod A

date channel 0 channel 1 channel 2 channel 3

7/5/93 34.76617 -11.05271 -182.7605 -26.82402

These offsets were the same order of magnitude as on all previous tests, and were used 

with the understanding that they were drifting by at least the same amount as was 

determined for the measurements on the 12/3/93( i.e. O.Olm/s per 3 hours).

5.5.3.3 Intensity of field measurements.

The report by Mullen(1993) mentioned above found that the variation of the 

turbulent fluctuations with depth in the water column at any particular cross-sectional 

position did not show any particular trend in the sections of the reach which were 

examined (see fig. 5.8b, due to Mullen, 1993). In this case, and because the number of 

measurements which could be made in a field day was limited, it was decided that
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turbulence measurements would only be made at a single depth in the water column at 

each measurement site. This would show up any spatial variations in the turbulent 

intensities over the reach in the transverse and downstream directions only. However, 

it is acknowledged that there was a large probability of significant vertical variation in 

the turbulent intensities in, for example, the deeper regions of the flow.

5.5.3.4 Sampling period and duration for E.C.M measurements

The sampling period used was 7 minutes which was selected as a compromise 

between the need for a record length long enough to capture long term events in the 

flow and a record length short enough such that a large number of sites could be 

sampled at in a single day. The seven minute record lengths were of the same order of 

magnitude as the 1/e time constant which was estimated from the deadzone tracer 

experiment mentioned above.

The results from the E.C.M. measurements are not presented here, but are 

summarised in chapter six following a description of the different analyses carried out.

5.6 Tracer experiments.

The tracer experiments were carried out with two principal aims : 1) to 

estimate the lateral variation of the concentration of the tracer such that the predictive 

abilities of the model could be assessed, 2) so that a time series analysis could be 

carried out on the measured concentration of the passive tracer, which would contain
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information about the larger scale mixing processes which the tracer had experienced 

in the reach.

5.6.1 Instrumentation.

The tracer tests which were carried out on the river Lune made use of four 

main pieces of apparatus : a fluorometer, a Marriotte (constant head) bottle for the dye 

injection, a water pump and hosing, a rig to hold the fluorometer in place above the 

water.

5.6.1.1 Fluorometer design.

The sample chamber dimensions and maximum sampling rate were used to 

determine the correct pumping rate of water through the sample chamber. Fig. 5.9 

shows the sample chamber specifications.

Fig. 5.9 Diagram to show fluorometer sample chamber dimensions.

L

<
Fmax=lHz L=0.037m Umax=L*Fmax 

Umax=0.037m/s 

D=0.018m
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The maximum sampling rate was given by the manufacturer as 1 second. This 

constrained the discharge through the sample chamber to an upper limit, above which 

the fluorometer would be integrating the fluorescence from a larger volume of water 

than the capacity of the sampling chamber. In this case the florescence time series as 

measured by the fluorometer would no longer be the true fluorescence time series 

which was passing through the tubing.

The theoretical maximum discharge required, if such integration effects were to 

be avoided was therefore given by equation 5.2:

Qmax = Vw  — «1 x 10 ~5cumecs (5.2)

However, further integration effects occur from turbulent mixing in the intake 

pipe, and from the fact that the water is being pumped out of the river at a different 

rate to the local river flow.

The first effect was reduced through making the intake pipe to the chamber as 

short as possible. This entailed designing a rig to hold the fluorometer as close to the 

sampling site as possible. The rig was a simple metal table on which the fluorometer, 

pump and power supply could be held and is shown in fig.5.10. This effect can also be 

reduced through having fluted pipework, although there was a small difference in the 

radii of the intake pipe and the sample chamber, as designed by the manufacturer.
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5.6.1.2 Pump specification.

A pump was acquired which had roughly the required discharge. The pumping 

rate depended on the length of the intake pipe, due to frictional losses increasing with 

the length of the pipe, so the same length of intake pipe (2.0m) was used in the 

determination of the pumping rate (table 5.8) and in the field measurements.

Table 5.8a Measurements of pumping rate for fluorometer rig.

intake pipe 
length(m)

volume
pumped(ml)

in time(s) discharge
(cumecs)

2.0 520.0 39.0 0.0000133
2.0 450.0 37.0 0.0000122
2.0 575.0 48.0 0.0000120

Unfortunately, during investigations on the 4/5/93 the pump seal broke and had to be 

repaired, which reduced the pump rate to:

Table 5.8b Measurements of amended pumping rate.

intake pipe 
length(m)

volume
pumped(ml)

in time(s) discharge
(cumecs)

2.0 2000.0 248.0 0.0000081

Both of these pumping rates were close to the estimated maximum acceptable 

discharge which was calculated in section 5.6.1.1. The rates were also larger than the 

minimum recommended pumping rate(8.33xl0'7 cumecs) of the manufacturer which is 

necessary to avoid non-trivial heating of the sample during flow through the chamber.
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5.6.1.3 Fluorometer calibration.

The fluorometer was calibrated in the laboratory with a 10.06/jgl 1 standard 

solution of rhodamine wt at 22.4 degrees centigrade in accordance with the manual. 

The florescent dye used was rhodamine wt, which has a low adsorption rate on 

inorganic and organic material (Yotsukura et al, 1970) and is believed to have a low 

toxicity. The rhodamine is sold in caustic solution, which was the main objection to the 

use of the dye in large quantities put forward by the National Rivers Authority 

(N.R. A.). However, the small amount of the solution which were used in these 

experiments (~ 2g rhodamine per day) was acceptable to the NRA.

5.6.1.4 Continuous dye release.

The dye was released into the river from a Marriotte bottle or continuous head 

device, which was calibrated in the laboratory. The experiments in the field were 

predicted to last for anything up to 5 hours, so the discharge had to be designed to be 

slow enough for this. The discharge was essentially governed by the head of the outlet 

pipe below the level of the air inlet to the Marriotte bottle, and by the bore of the 

outlet pipe. The bore of the outlet pipe was reduced until the discharge was small 

enough such that the 201 capacity would drain in approximately 5 hours for a head of 

~ 40cm .
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5.6.2 Sampling strategy.

5.6.2.1 Concentration calculations in accordance with N.R.A.

The River Lune is an important salmon river, so the dates of field work and the 

maximum allowed concentration of dye used had to be prearranged in agreement with 

the National Rivers Authority. The maximum permissible dye concentration when well 

mixed in the river was approximately 0.1 figl~l, so that the tracer experiments had to 

be designed with this in mind. The fluorometer was capable of discerning 

concentrations down to 0.01 jugl~l (Elhadi et al, 1985), but this was limited by the 

natural background levels of fluorescence. Given the discharge on the day of 

measurement, the maximum rate of addition of mass to the river was given by 

equations 5.3:

m = lOO(jugnf3).Q(m3s~l) ^

or m -  0.36. Q(ghr'x)

where m=mass flux and Q=river discharge. For a five hour experiment, the total mass 

of rhodamine which could be added to the Marriotte bottle, was 1.8Q grammes. For a 

discharge of 1 cumec, 1.8 g of pure rhodamine or 9g of 20% solution were added.



5.6.2.2. Tracer concentration measurements.

The tracer experiment was undertaken on the 7/5/93 (in conjunction with 

E.C.M. velocity measurements), for a steady stage of 0.24m.

A measurement of the background fluorescence was taken over a period of 20 

minutes before the dye was released. The trace did not show any systematic trends, so 

this period was considered to be sufficient.

The dye was injected into a turbulent part of the channel 50m upstream of 

cross-section A1. At least twenty minutes were allowed to elapse before the 

fluorometer readings were taken, as this was considered long enough for the steady 

state to have been achieved. The fluorometer was also allowed a 15 minutes warm up 

period as recommended. The maximum sampling rate of Is was used, with sampling 

periods of 3-4 minutes. Table 5.9 summarises the measurements.

Table 5.9 Summary of tracer concentration measurements.

date stage cross-sections
examined

dye release sampling
intervals

7/5/93 0.24 A l,l,4 left bk. + 
3m,(Al-50m)

Is

The fluorometer was deployed at lm intervals in the transverse direction for 

each of the transects and at least one minute(or more when there was clearly a large 

amount of turbidity) was allowed to elapse before the fluorescence was recorded to 

allow for any disturbance during the movement of the rig.

5.6.7 Results.

The time averaged mean background concentration was measured as:
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c = 0.046 +/- 0.003 ng r 1 . (5.4)

The measurements of the concentration downstream, following the dye release are 

tabulated below for cross-sections A 1,1 and 4, with the temperature corrected and 

background-subtracted concentrations in the final column. The depth averaged 

concentrations are displayed graphically in fig.s 5.11,5.12 and 5.13.

Table 5.10a Tracer concentration measurements at Cross-section A 1(7/5/93).

Transverse 
position(m) 
from L.bank

Total 
depth (m)

Meas. 
height 
above bed 
(m)

mean concn. 
(Itg f 1)

1.0 0.32 0.08 0.623
0.29 0.757

2.0 0.30 0.15 0.253
0.24 0.321

3.0 0.40 0.11 0.253
0.30 0.205

4.0 0.31 0.13 0.326
0.28 0.201

5.0 0.46 0.22 0.358
0.38 0.241

6.0 0.43 0.22 0.265
8.0 0.51 0.44 0.278

195



Table 5.10b Tracer concentration measurements at cross-section 1(7/5/93).

Transverse 
position(m) 
from L.bank

Total 
depth (m)

Meas. 
height 
above bed 
(m)

mean concn. 
(ptg r 1)

1.0 0.32 0.12 0.200
0.24 0.201
0.31 0.245

2.0 0.41 0.15 0.366
0.35 0.235
0.40 0.176

3.0 0.30 0.10 0.248
0.27 0.239

4.0 0.19 0.15 0.178
5.0 0.15 0.10 0.271
6.0 0.09 0.05 0.130
7.0 0.05 0.05 0.165
8.0 0.06 0.02 0.172
11.2 0.26 0.12 0.247

0.25 0.232

Table 5.10c Tracer concentration measurements at cross-section 4(7/5/93).

Transverse 
position(m) 
from L.bank

Total 
depth (m)

Meas. 
height 
above bed 
(m)

mean concn. 
(ktg r 1)

0.1 0.08 0.06 0.115
1.1 0.19 0.10 0.073
2.1 0.22 0.18 0.070
3.1 0.21 0.14 0.080
4.1 0.26 0.22 0.090
5.1 0.30 0.14 0.071
6.1 0.20 0.15 0.089

The temperature correction will be discussed with the rest of the data analysis in 

chapter 6. The measurements were made at more than a single depth were possible, 

and around the mid depth in the shallow regions.
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5.6.8 Further experimentation: discharge in Street Beck.

Attempts were made to measure the discharge in the brook flowing into the 

main river, several times using salt dilution gauging. However, the flow was very slow 

further upstream and there were problems with the salt not mixing adequately. It was 

estimated from velocity measurements to have a discharge of 0.005-0.01 cumecs, for a 

medium stage in the River Lune. The brook was also discovered to have a different 

temperature to the river, by as much as 2 degrees centigrade on more than one 

occasion. This might act as a useful tracer if the reach was examined in the future using 

temperature as a tracer.

5.7 Selection of a data set for model calibration.

The different data sets which were collected on the reach were taken on 

different days, on which there were inevitably small differences in the stage and 

discharges. This section describes which data sets were used.

The data which was collected on the 7/5/93 for a 0.24 stage was the only 

complete data set, for which measurements of tracer concentration and turbulence 

characteristics were made at three cross-sections. This was considered the minimum 

number of measurements which could be used to characterise the dispersion 

characteristics of the reach. However, comprehensive velocity measurements were not 

made at all of the cross-sections A1-6 on this date. A full set of velocity measurements
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for all seven of these cross-sections was required in order to create the mean flow 

model. These measurements had to be corrected for differences in the stage and 

discharge by making the approximation that the banks were vertical.

The velocity measurements which were made with a stage most similar to 0.24, 

were taken on 29/9/92, stage=0.3 ; 19/2/93, stage=0.23. The measurements which 

were taken on 29/9/92 were the more comprehensive, since these were carried out for 

multiple depths in cross-sections 1-6, although did not include cross-section Al. The 

measurements of velocity which were taken for the stage of 0.23 were used in the 

mean flow interpolations between cross-sections Al and 1. The rescaled velocity field 

for the entire reach, on which the model is based is given in chapter 6. In summary the 

data sets in table 5.11 were used:

Table 5.11 Summary of velocity, turbulence and tracer concentration 

measurements selected to be used for the construction of the computer model.

measurement date stage cross-sections stage

adjustment to:

tracer test 7/5/93 0.24 A l,l,4 -

e.c.m. 7/5/93 0.24 A l,l,4 -

velocity 19/2/93 0.23 A l,l 0.24

velocity 29/9/92 0.30 2,3,4,5,6 0.24
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Fig.5.3
Contour maps of test reach constructed from survey.
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Fig.5.8a Correlations in signals from two E.C.M. probes separated by 6 cm 
(P.MulIen, 1993).

0 .9 -i

0.8 -

0.7-

0 .6 -

0.5-

0.4-O
X CORRELATION 
Y CORRELATION

0.3-

0.2 -

0.0
0.30.2 0.40.10.0

normalised height

Fig. 5.8b R.M.S. Values of siganls chl,ch2,ch3 and ch4 for E.C.M.’s with probe 
separation of 6cm (P.MulIen, 1993).

0.03-1

RMS OF XI 
RMSOFY1 
RMSOFX2 
RMSOFY2

0 .0 2 -

a
to<Da
>
to

0.01 -

0.00 0.40.30.2
normalised height

o.o

205



F
ig

.5
.1

0

206



Fi
g.

5.
11

tr
an

sv
er

se
 

di
st

ri
bu

tio
ns

 
of 

de
pt

h 
av

er
ag

ed
 

co
nc

en
tr

at
io

ns
, 

st
an

da
rd

 
de

vi
at

io
ns

 
fro

m 
tim

e 
av

er
ag

ed
 

m
ea

n 
co

n
ce

n
tr

at
io

n
s,

CL-d Q-
C
c
o
+->
o
Q)
CO CD

JC+-»
Cl
Q)

XJ

_C

CMCD

(qdd) 'ouoo /  (w ) iftdap

207

tr
an

sv
er

se
 

po
si

ti
on

(m
)



Fi
g.

5.
12

tr
an

sv
er

se
 

di
st

ri
bu

ti
on

s 
of 

de
pt

h 
av

er
ag

ed
 

co
n

ce
n

tr
at

io
n

s,
 

st
an

da
rd

 
d

ev
ia

ti
on

s 
fr

om
 

tim
e 

av
er

ag
ed

 
m

ea
n 

co
n

ce
n

tr
a

ti
o

n
s,

 

an
d 

th
e 

de
pt

hs
 

at
 

cr
os

s 
se

ct
io

n
 

1

a  -d a.

4-  o

ID

(qdd) *ouoo

CM

O

oo

-  CD

— Nf

CM

c_o
‘coo
CL

<D
CO

>
CO
c
D

208



Fi
g.

5.
13

tr
an

sv
er

se
 

di
st

ri
bu

ti
on

s 
of 

de
pt

h 
av

er
ag

ed
 

co
n

ce
n

tr
at

io
n

s,
 

st
an

da
rd

 
de

vi
at

io
ns

 
fro

m 
tim

e 
av

er
ag

ed
 

m
ea

n 
co

n
ce

n
tr

at
io

n
s,

 
an

d 
th

e 
de

pt
hs

 
at 

cr
os

s 
se

ct
io

n 
4

CD

CNl

o
CN
o

(UJ) tfldsp

209

tr
an

sv
er

se
 

po
si

ti
on

(m
)



Chapter 6

Analysis of field measurements from the River Lune.

6.1 Introduction.

This chapter describes an analysis of the different measurements which were 

reported in chapter 5. The analysis can be divided into three principal sections, dealing 

with the measurements of mean velocities, velocity time series, and tracer 

concentrations. These sections are further divided into sub-sections which deal with 

different stages in the analysis including the estimation of uncertainties.

The aim of the analyses was to retrieve enough information from the different 

data sets to enable the construction of a three dimensional random particle tracking 

model, which will be described in chapters 7 and 8.

6.2 Analysis of velocity measurements.

In this section the velocities which were recorded on different dates are used to 

create a stage discharge curve. The vertical velocity profiles are examined and 

modelled using logarithmic profiles. The measurements of velocities at 45 degrees to 

the downstream direction are used to estimate the secondary flow velocities. Finally, 

length scales associated with secondary current speeds are estimated.
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6.2.1 Construction of a stage-discharge curve.

The velocity measurements at each cross-section were used to calculate the 

discharge passing through each section, using the velocity-area method. This technique 

required the estimation of the depth-averaged velocity at each measurement site. When 

only one velocity measurement was taken through the depth, due to shallow water, this 

was taken to be the depth-averaged velocity. When two measurements (at 0.2m and 

0.8m of the depth) were used, the average of these velocities was taken to be the 

depth-averaged mean. When the multiple-head velocity meters were used, and it was 

possible to fit a logarithmic profile to the data, the depth-averaged mean velocity 

assuming a logarithmic profile throughout the depth was used (see section 6.2.3). This 

was generally necessary in order to extrapolate the velocity measurements to the 

surface, where there were no measurements. The velocity-area method is given by 

equation 6.1:

where Q is the total discharge through a cross-section, ud,i is the depth-averaged 

velocity at measurement site i, (which includes the zero velocities at the waters edge) 

hi is the total depth at measurement site i, and y* is the transverse location of 

measurement site i.NM is the number of measurement sites plus two (to account for the 

zero velocities close to the banks).

(6 .1)
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The discharges for the different stages which were determined this way are 

given in table 6.1, and the resulting stage / discharge curve is given in fig.6.1.

Table 6.1 Reach averaged discharge and secondary current speeds for the 

different sets of velocity measurements.

stage(m) number of depths 
and cross-sections 
examined

reach averaged 
discharge (m3/s)

reach averaged 
secondary current 
speed if recorded 
(m/s)

0.52 multiple 6 3.4 +/- 0.1 (3%) -

0.58 multiple 6 4.3 +/- 0.1 (2%) -

0.30 multiple 6 0.76 +/- 0.07 (9%) -

0.70 2 6 6.2 +/- 0.3 (5%) 0.22
0.39 2 6 1.36 +/- 0.06 (4%) 0.16
0.23 2 3 0.32 +/- 0.02 (6%) 0.14
0.40 multiple 3 1.41 +/- 0.09 (6%) 0.26
0.20 multiple 3 0.24 +/- 0.02 (8%) 0.11
0.20 multiple 2 0.27 0.14

6.2.2 Uncertainties in the discharges

The discharges are quoted with +/- deviations( and also with fractional 

deviations expressed as a percentage, given by Gq/Qx IOO) in table 6.1, which are 

simply the standard deviations from the mean of the discharges which were determined 

from the different cross-sections examined for each stage. The final measurement set 

are not quoted with a deviation, since only two cross-sections were examined. The 

table shows that the scatter is greater when only a few cross-sections are used.

The next step was to approximate the fractional uncertainties in the discharges 

as the fractional deviations from the mean (<Jq/Q ) , but first the expected uncertainties 

from estimated experimental uncertainties in the measurements of velocity, depths and
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transverse distances were examined. This was carried out since it was important to 

verify the values of uncertainties in the discharges, since these were later used in the 

estimation of the uncertainties in the tracer mass fluxes.

The discharge between any two measurement sites was calculated in the 

velocity area method using equation 6.2:

? i -  2------------2----------------------------------------- (6 -2)

The uncertainty in each value of qi? for each cross-section, was estimated from the 

estimated uncertainties in the measurements of depths, velocities and distances and 

using standard error analysis of 6.2 to give equation 6.3:

Aqt2 =
v9“i J

A u- +
dQi

ydlti+1 j
AuM +

dq,

\ dhi J

dqt

dhi+1 j

f-. V
Ahi+j +

dQi
dy{

(6.3)

Ayf +
v '- 't y

dqt
Ay-i+1

where the fractional uncertainty in the velocity measurements due to misalignment was 

estimated from the scatter of repeated measurements in chapter 5 to be approximately 

5%. The fractional uncertainties in the depth and the transverse distance measurements 

are estimated as having uncertainties between 3-5% due to the rough geometry of the

reach.
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The fractional uncertainty in the total discharge at each cross-section can then 

be determined from standard error analysis of 6.1 to give equation 6.4:

w-1

A Q

( 6 - 4 )

Equations 6.1-6.3 were used to estimate the reach averaged mean of the expected 

fractional uncertainties in the discharges for the 7 sets of measurements which were 

used in the construction of the computer model. These 7 sets of measurements were 

taken from the measurements at stages of 0.23 and 0.3 (discussed in chapter 5).

For the estimates of 3% and 5% in the distance measurements this gave the 

range of values given by equation 6.5.

0.08 <AQ/Q< 0.12 (6.5)

This range of values compares with the range of fractional deviations of 6% 

and 9% for the 0.23 and 0.3 stages respectively, given in table 6.1.

6.2.3 Vertical velocity profiles.

The number of velocity measurements at each site was limited by the relatively 

shallow depths involved in the study reach and by the necessity to make measurements 

at many different sites in a limited amount of time. A low order fit to the profiles was
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therefore required to avoid large uncertainties arising from calibrating a large number 

of parameters.

At measurement sites where it had been possible to measure more than two 

velocities through the depth, a logarithmic profile was regressed to the data. This made 

the assumption that lower layer of the turbulent boundary layer extended over the 

whole of the depth. The dependent variable in the regression analysis is the velocity 

(Bergeron et al 1992), although it is plotted on the abscissa following normal practice.

Figs. 6.2,6.3 show the velocity measurements at different cross-sections in the 

form of semi-logarithmic plots of ln(z) against velocity for selected sites where 

velocities had been measured at 4 locations through the depth. If the logarithmic 

distributions are suitable, then the points on the graphs should all be in a straight line. 

However, there are clearly non-linear relationships at some of the of sites, and the 

gradients of the lines varied by a large amount.

This analysis neglected the zero plane displacement height which was discussed 

earlier in chapter 1, but the uncertainties caused by this were considered to be smaller 

than the uncertainties caused by making the assumption of a logarithmic profile 

throughout the depth.

The shear velocity, u* and the roughness height, Zo were determined from the 

gradient of the regression and the point of interception of the regression with the 

ordinate, respectively for measurement sets for which there were more than two 

measurements of velocity through the depth.

At sites where there was only a single velocity measurement, the single 

measurement was taken to be the depth-averaged velocity, and this was equated to the 

depth-averaged velocity assuming a logarithmic profile (in terms of the undetermined
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friction velocity and roughness height). In this case, there are two unknowns, and only 

one piece of information (the depth-averaged velocity). This was overcome by 

approximating the roughness height as the cross-section averaged value. These values 

were used later to determine the downstream velocity at any depth in the flow for the 

random particle tracking model, and are given in tables 6.2a and 6.2b for the data sets 

used in the construction of the model.

The data for the 0.23 stage (table 6.2a) comprised two point measurements 

only (at 0.2 and 0.8 of the depth) and consequently the logarithmic profile could not be 

fitted with any degree of certainty. In regions were the upper velocity was slower than 

the lower velocity, for which cases a log profile could not be fitted, the depth averaged 

velocity was again calculated, and this, in conjunction with the cross-section averaged 

roughness height were used to determine a friction velocity using the same technique 

which was described above. This was carried out in the absence of a better data set for 

the correct stage. It was, however, considered to be the best available form of 

interpolation, given the data set.
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Table 6.2a Depth-averaged velocity, friction velocity and roughness heights 

determined from measurements of velocity from 0.23 stage for cross-sections A l

and 1.

transverse distance 
from left bank(m)

depth-averaged
downstream
velocity(m/s)

friction
velocity(m/s)

roughness
height(m)

Cross-section Al
0.0 0.000 0.000 0.000
0.8 0.149 0.020 0.0058
1.8 0.389 0.066 0.015
2.8 0.273 0.080 0.044
3.8 0.121 0.035 0.032
4.8 0.030 0.008 0.032
5.8 0.021 0.005 0.058
6.8 0.012 0.002 0.040
8.6 0.000 0.000 0.000

Cross-section 1
0.0 0.000 0.000 0.000
1.15 0.168 0.018 0.004
2.15 0.179 0.003 0.002
3.15 0.166 0.017 0.0021
4.15 0.156 0.015 0.0011
5.15 0.133 0.013 0.001
6.15 0.110 0.011 0.002
7.15 0.112 0.009 0.002
9.15 0.040 0.005 0.0002
11.15 0.389 0.030 0.002
11.75 0.000 0.000 0.000
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Table 6.2a Depth-averaged velocity, friction velocity and roughness heights 

determined from measurements of velocity from 0.3 stage for cross-sections 2 to 

6.

transverse distance 
from left bank(m)

depth-averaged
downstream
velocity(m/s)

friction
velocity(m/s)

roughness
height(m)

Cross-section 2
0.0 0.000 0.000 0.000
2.0 0.618 0.091 0.005
4.0 0.525 0.120 0.019
6.0 0.524 0.166 0.040
8.0 0.469 0.079 0.007
10.0 0.614 0.303 0.030
10.5 0.000 0.000 0.000

Cross-section 3
0.0 0.000 0.000 0.000
1.5 0.140 0.042 0.026
2.5 0.206 0.073 0.043
3.5 0.396 0.128 0.051
4.5 0.816 0.137 0.021
5.0 0.000 0.000 0.000

Cross-section 4
0.0 0.000 0.000 0.000
2.5 0.424 0.160 0.049
3.5 0.630 0.136 0.021
4.5 0.708 0.213 0.045
5.5 0.658 0.109 0.012
6.4 0.000 0.000 0.000

Cross-section 5
0.0 0.000 0.000 0.000
2.6 0.607 0.154 0.031
4.6 0.571 0.077 0.006
5.6 0.345 0.122 0.054
6.6 0.357 0.078 0.021
7.1 0.000 0.000 0.000

Cross-section 6
0.0 0.000 0.000 0.000
0.3 0.492 0.075 0.005
2.3 0.534 0.091 0.008
4.3 0.542 0.150 0.023
6.3 0.292 0.099 0.057
8.3 0.342 0.070 0.028
8.9 0.000 0.000 0.000
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The reach averaged friction velocity was determined for each stage from the 

values determined from the above tables. It was not calculated from the single 

measurement of the water surface slope which had been made, since the secondary 

currents have a large influence on the depression/elevation of the water surface (see 

Bridge and Jarvis, 1976).

6.2.4 Secondary current measurements.

Secondary currents were clearly visible (fig. 5.2a, stage ~ 0.5), and attempts 

were made to measure them. The cross stream velocity component was estimated from 

vector addition of the downstream velocity and the velocity at 45 degrees to the 

downstream direction at the same site. This is demonstrated schematically in fig. 6.4:

Fig.6.4 Definition diagram for vector addition in secondary current velocity 

analysis.

Ux
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The cross stream velocity, ux is calculated from equation 6.6:

W45

COS(45) ^ d o w n s t r e a m  (6.6)

in which U45 was the velocity measured at 45 degrees to the downstream direction.

Table 6.2 shows the absolute velocity (u) and secondary currents(ux) which 

were estimated for a 0.23 stage at cross-section Al at two different heights in each 

profile:

Table 6.2 Secondary velocity measurement at cross-section A1 for a 0.23 stage.

distance 
from left 
bank (m)

total depth 
of water (m)

absolute 
velocty 
(m/s) at 
0 .8 h

cross stream 
component 
(m/s) at 
0 .8 h

absolute 
velocty 
(m/s) at 
0 .2 h

cross stream 
component 
(m/s) at 
0 .2 h

0 . 8 0.29 0.241 -0.155 0.203 -0.168
1 . 8 0.36 0.533 0.198 0.268 0.039
2 . 8 0.35 0.386 0.114 0.130 -0.092
3.8 0.35 0.170 -0.125 0.161 -0.096
4.8 0.45 0.326 -0.325 0.227 -0 . 2 2 0

5.8 0.52 0 . 2 1 2 -0.209 0.161 -0.160
6 . 8 0.55 0 . 0 2 0 0.014 0.008 0.006

The tabulated values were typical of all the measurements, and were selected because 

of the similar stage to the day of the tracer experiment. The secondary velocities 

determined in this way did not show a distribution which was characteristic of a large 

scale coherent motion such as helicoidal flow. The variation of the sense of the signs of 

the velocity with transverse distance, suggests that the secondary circulation comprised 

relatively small cells (compared to the channel width) of water rather than a single 

large cell of gross helicoidal flow. This was thought to be due to the very rough nature 

of the gravel bed causing strong shear layers and introducing vortical motions into the
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main body of the flow, in turn causing instability and the break down of any large scale 

(channel width) motions. The obvious secondary currents in the photograph (7/5/93) 

unfortunately occurred just downstream of cross-section Al on the day of the 

secondary current measurement.

The use of the velocity probes to measure the velocity at 45 degrees to the 

downstream direction was thought likely to be highly uncertain, although no detailed 

studies were made of this problem. The repeated measurements of velocities in a 

region where there were negative velocities in chapter 5, showed a large scatter which 

suggested that if the probe was not aligned with the direction of flow, the 

measurements became inaccurate.

The absolute magnitudes of the velocities were calculated as an indication of 

the intensity of the secondary advective mixing and are given in table 6.3 for the 

measurements at cross-section Al for the 0.23 stage:

Table 6.3 Average secondary current speed over cross-section A l for 0.23 stage.

cross-sectional average magnitude 
of secondary velocity at 0.8h

cross-sectional average magnitude 
of secondary velocity at 0.2h

0.16 m/s 0.11 m/s

The depth-averaged secondary current speeds given in table 6.1 were also determined 

in this way. Little information can be drawn from these numbers, except that the 

variation of the average absolute velocities with stage were consistent with 

observations in other studies such as that of Anwar(1985) where it was found that the 

secondary currents were strongest for the intermediate stages.
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6.2.5 Estimation of length scales associated with secondary current 

measurements.

The depth-averaged secondary current speeds were used to estimate a length 

scale associated with the mixing due to transverse advection by dimensional reasoning. 

This also required the estimation of a Lagrangian time scale, TL. This was 

approximated as being equal to the mean of the measured Eulerian 1/e (inverse 

exponential) time scales which are determined in the section 6.3.1, to give equation 

6.7:

L v  -  u x - T l -  0.135x 0.7 = 0.09/77 (6.7)

6.3 Electromagnetic current metering.

In this section the cross-correlations and autocorrelations in the velocity time 

series are estimated. The 1/e time scales from the autocorrelations are determined, and 

were later used as the time steps in the random particle tracking model. The vertical / 

downstream velocity correlations were found to be negative at all sites, which is 

consistent with a shear layer distribution such as the logarithmic profile. The transverse 

/ cross stream velocity correlations were found to vary in the transverse direction, 

which is consistent with the variation of the sign of the secondary current velocities in

the transverse direction.

No further analysis was carried out on the velocity time series, such as quadrant 

analysis, or Fourier analysis despite it providing additional valuable information into 

understanding the processes in the flow. This is justified for two principal reasons.
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(1) The studies of the different random walk models in the channel flows in chapters 2- 

4 suggested that there were no advantages to the inclusion of finer scale structure.

(2) The associated time constants and time averaged cross-correlations at each 

measurement point were considered to be robust indications of the local flow structure 

in a highly inhomogeneous flow, and any finer structure was considered to be less 

significant to the transport process.

6.3.1 Autocorrelations in the velocity time series.

The autocorrelations were determined from the 7 minute record length, 

velocity time series using a NAG algorithm, G13DAF (NAG, 1987). Fig. 6.5 and 6.6 

show some selected examples of typical autocorrelation functions. These were 

approximated as having an exponential decay from unity, and the corresponding 1/e 

time constants for the three dimensions (Tuu,Tvv and Tww) were determined.

Tuu,Tvv and Tww can be associated with the decorrelation times of downstream, 

cross stream and vertical velocity fluctuations respectively, and are given in the second, 

third and fourth columns for cross-sections Al, 1 and 4 in tables 6.4a-c:

Table 6.4a Analysis of turbulence time series at cross-section Al.

posit’n 
(m)

Tuu
(s)

Tvv
(s)

Tww
(s)

Ruv Ruw u’ var. 
(m/s)

v’ var. 
(m/s)

w’ var 
(m/s)

LB+1. 1.3 1.0 1.2 0.35 -0.58 0.026 0.036 0.032
+2.0 0.7 0.7 0.8 0.06 -0.48 0.030 0.047 0.056
+3.0 0.7 0.6 0.6 -0.30 -0.20 0.028 0.050 0.055
+4.0 1.6 1.1 1.8 0.47 -0.54 0.013 0.017 0.021
+5.0 4.9 6.6 4.4 0.59 -0.37 0.003 0.004 0.003
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Table 6.4b Analysis of turbulence time series at cross-section 1.
+1.4 1.2 1.0 1.2 0.32 -0.53 0.013 0.018 0.018
+2.4 2.1 1.2 2.5 0.05 -0.51 0.010 0.012 0.014
+3.4 0.8 0.7 0.8 0.13 -0.30 0.010 0.012 0.011
+4.4 0.8 0.7 0.6 0.29 -0.44 0.008 0.010 0.010

+5.4 0.5 0.4 0.4 0.16 -0.31 0.020 0.046 0.037

Table 6.4c Analysis of turbulence time series at cross-section 4.
LB+2. 0.6 0.5 0.6 -0.12 -0.24 0.035 0.046 0.038

+3.0 0.4 0.6 0.5 -0.22 -0.10 0.038 0.058 0.054
+4.0 0.5 0.7 0.7 -0.14 -0.50 0.047 0.072 0.089
+5.0 0.5 0.5 0.5 0.39 -0.40 0.028 0.028 0.040

The time constants increase from left to the right bank for cross-section Al, which is 

consistent with the observation that there is a region of slow moving water in the pool 

close to the right bank. The time constants at cross-section 1 show a small trend, 

which may be associated with a region of recirculation just upstream. The time 

constants show that the turbulent time scales are fairly homogenous at cross-section 4, 

which was consistent with the observation that the flow across the entire cross-section 

was characteristic of a riffle.

6.3.2 Cross-correlation

The cross-correlations between the time series of u’ and v’ (Ruv), and u and 

w?(Ruw) were determined using the same NAG routine mentioned above, and are 

given in the fifth and sixth columns of tables 6.4a-c. The cross-correlation of v with 

w’ was considered insignificant and was therefore not examined.
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If the vertical velocity decreased with depth, then the cross-correlation Ruw 

would be expected to be negative since an upwardly perturbed element of water would 

on average carry water from a region of lower downstream velocity to a region of high 

downstream velocity, causing a negative shear stress (Tritton, 1990). This was found 

to be the case at all measurement sites, and the scatter plots of u’ against w’ help to 

support the significance of the cross-correlations. Fig. 6.7 shows one such scatterplot, 

which was selected as an example from a region of strong secondary currents at cross- 

section 1.

The cross-correlations Ruv show a large degree of variability and fluctuate 

between positive and negative values. The significance of the cross-correlations are 

again supported by the example scatterplot of u ’ against v’ in fig. 6.8. This was 

qualitatively consistent with there being multiple cells of transverse motion, which was 

also intimated by the measurements of secondary velocity.

6.4 Tracer experiments.

In this section the concentration measurements were corrected for differences 

in the sample temperature at the calibration and measurement stages* and the 

background measurement of concentration was subtracted from all of the 

measurements.

A mass balance of the input and tracer concentration measurements was carried 

out, and several inconsistencies were discovered. The constraints which this imposed 

upon the modelling work are discussed.
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The uncertainties in the concentration measurements, and the additional 

uncertainties from assuming a depth-averaged concentration are estimated. Finally the 

autocorrelations in the concentration time series are examined.

6.3.1 Temperature correction.

The fluorescence time series was automatically translated into a concentration 

time series by the computer in the fluorometer, which used the calibration information 

that had been determined in the laboratory. This time series was then corrected for the 

temperature difference between that on the day of measurement and that during 

calibration, using the correction which was used by Wallis et al.(1987), given by 

equation 6.8:

= F,iSn* exp[-0.027(« -  «)] (6.8)

where ct is the calibration temperature, st is the sample temperature and the value 

0.027 is a temperature coefficient used by Wallis et al.(1987).

The time averaged concentrations and standard deviations away from the 

mean concentrations were determined for all of the data. The uncertainties in the 

concentration measurements are discussed in section 6.3.3.
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6.3.2 Mass balance.

A mass balance for the tracer test was carried, the results of which are shown in 

table 6.5:

Table 6.5 Mass balance of tracer from the input to cross-section 4.

Transect tracer mass flux jig/s
injection site 49.3

Al 130+/- 20
1 66 +/- 10
4 25 +/- 4

The mass fluxes which were estimated from the concentration and discharge 

measurements at each cross-section did not balance. Possible explanations for this will 

shortly be described, but the problem was overcome for the modelling work by 

normalising the mass fluxes at each cross-section using the total mass flux at each 

cross-section, so that only the relative mass fluxes were being examined (this technique 

was used by Lau and Krishnappan, 1981).

The increase in the mass flux from the injection to cross-section A1 cannot be 

accounted for by the estimated uncertainties alone. There are a number of possible 

explanations for the increase, in the absence of instrumental (and calibration) errors. 

Firstly, at cross-section A 1, it is possible that the dye had not become fully mixed in 

the vertical direction, and that the error incurred due to this was larger than had been 

estimated from the deviations in the relatively sparse depthwise concentration 

measurements. The measurements were least intense in the vertical close to the right 

bank at cross-section A l, were the presence of pond weed prevented the use of the 

fluorometer, without it becoming choked. Possibly a filter should be used in future
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investigations where this sampling technique is used. However, the increase in the total 

mass flux at cross-section Al due to the assumption that the tracer was well mixed in 

the deadzone was at most -16 jigs'1, which is insufficient to completely explain the 

discrepancy. However, if the assumption that the dye was vertically well mixed was 

incorrect right across the channel, then this could account for the discrepancy.

An alternative explanation could be that there were channels in the flow, down 

which the tracer advected preferentially, due to for example large obstructions or 

secondary motions. If the fluorometer had only sampled within these channels, then the 

readings would be too large. However, the relatively well resolved spatial sampling 

would tend to make this explanation highly unlikely.

Finally, another explanation could be that the background fluorescence of the 

water entering the river just upstream of cross-section Al was relatively high 

(unfortunately, this was assumed to be the same as the background reading in the river 

in the experiment). However, this could only lead to relatively large concentrations in 

the vicinity of the deadzone at cross-section A l, since the water from the brook could 

not possibly have dispersed right across the main channel width at cross-section Al, 

thereby influencing all of the concentration measurements. Since the concentrations 

which were measured in the deadzone only contributed a maximum of —16jigs1 to the 

total mass flux, passing through cross-section Al, this explanation was also extremely 

unlikely.

In conclusion, the first of the above suggestions is the most likely explanation 

for the apparent increase in mass flux. Qualitatively, the concentration measurements 

showed the expected behaviour of the tracer, in that at cross-section Al, the maxima 

was close to the left bank, following its release from close to the left bank. Following
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the sharp curvature between cross-sections Al and 1, the tracer had become well 

mixed in the transverse direction, which was also expected, given the clearly 

observable secondary currents in this section. Therefore, the normalisation of the mass 

fluxes, which was described above, so that only the relative mass fluxes were being 

examined was justified.

The subsequent decrease in the mass flux from cross-section Al to 4 was more 

natural if the dye was being lost somehow, although it was also quite extensive. This 

might be explained if the tracer was being temporarily stored and released over a long 

period of time. This could occur by two principle mechanisms, due to storage in a 

stagnant or slow moving region of water (such as the deadzone close to the outer bank 

at cross-section Al) or by tracer dispersing into the gravels and cobbles of the river 

bed, and subsequently being released slowly to give smaller concentrations during the 

time period of the experiment. Such mechanisms were forwarded by Bencala and 

Walters (1983) to explain this transient storage effect, which were also observed in the 

concentration measurements of a chloride tracer during investigations in a pool and 

riffle mountain stream. Further experimentation was carried out in which the 

interaction of the slow percolation flow in the stream bed material with the stream flow 

was investigated, this time using a continuous chloride injection (Bencala et al., 1984). 

This was achieved by comparing concentration measurements in an inflow to the main 

stream, with concentration measurements upstream and downstream of the inflow. 

From the observations it was apparent that the chloride entered the inflow via the 

gravel and returned to the main stream. Further to these observations, increased tracer 

concentrations were observed in the banks several meters away from the water’s edge, 

again consistent with there being a ground water-main stream interaction.
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An alternate, but less likely explanation might be (again) that there were local 

preferential streams down which the tracer was being advected.

A poor recovery in a similar experiment using rhodamine wt (50% recovery) 

was found at all cross-sections by Holley and Nerat(1983), for which there was no 

explanation could be forwarded. In another experiment Lau and Krishnappan (1981) 

had recovery rates which varied between 77 and 97%, and the losses were attributed to 

adsorption of the tracer onto bed materials.

6.3.3 Uncertainties in the measured concentrations.

The standard deviations from the mean, oVi, in the concentration time series 

measurements and the standard deviation from the depth averaged concentration, a dn_i, 

at sites were more than measurement was made, were used to estimate two different 

values for the uncertainty in the depth averaged mean concentration (since this was the 

quantity used in the modelling work). These estimates are given in the next two 

sections.

6.3.3.1 Estimating the uncertainty in the depth averaged concentration from the 

standard deviations away from the time average concentrations^n.i) in each 

measurement.

For sites where only a single concentration measurement had been made, the 

fractional uncertainty could only be estimated from the coefficient of variation, cr -̂i/c.
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For sites at which more than one concentration measurement was made, the 

depth-averaged mean for two (for example) concentration measurements was simply 

estimated using equation 6.9:

Ct +C->
(6.9)

The uncertainty in the depth-averaged concentration was then determined using 

standard error treatment of equation 6.9 to give equation 6.10, and by assuming that 

the uncertainties in Ci and c2 could be approximated as the standard deviations from 

the means(i.e. Ac * cVi) of their respective time series:

Ac/ =
ocd

y d c . j
Aq +

Oq,
Aq2 (6.10)

which simplifies to equation 6.11:

A + (6-n )

This equation was used to produce the first estimate of the uncertainty in the depth 

averaged concentration, ACd/Cd, given in the fifth columns of tables 6.6a-c below 

(where it is called (o*n-i)d/ cd).
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6.3.3.1 Estimating the uncertainty in the depth averaged mean concentration 

from the standard deviations away from the depth averaged mean 

concentrations(adn.i).

Here the fractional uncertainty was simply estimated as the coefficient of 

variation, odn_i/Cd for sites at which more than one measurement was made. This 

quantity was highly uncertain due to the small number of measurements through the 

depth at each site, but is included where relevant in the sixth columns of tables 6.6a-c.

Table 6.6a Analysis of tracer time series at cross-section Al.

transv.
distance
(m)

depth of 
meas.(m)

mean 
conc. 
cQigr1)

std. dev. 
conc. 
(Hgr1)

depth- 
average 
conc. cd 
(ttgf1)

(oVOd/
cd

^  n-l/Cd

1.0 0.08
0.29

0.623
0.757

0.039
0.084

0.690 0.07 0.14

2.0 0.15
0.24

0.253
0.321

0.023
0.021

0.287 0.07 0.17

3.0 0.11
0.30

0.253
0.205

0.022
0.013

0.229 0.04 0.21

4.0 0.13
0.28

0.326
0.201

0.056
0.020

0.264 0.11 0.3

5.0 0.22
0.38

0.358
0.241

0.022
0.116

0.299 0.20 0.28

6.0 0.22 0.265 0.037 0.265 0.14
8.0 0.44 0.278 0.028 0.278 0.10
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Table 6.6.b Analysis of tracer time series at cross-section 1.

transv.
distance
(m)

depth of 
meas.(m)

mean 
conc. 
c(|igf1)

std. dev. 
conc. 
(fig I'1)

depth- 
average 
conc. cd 
(Itgf1)

(Ĉ n-Od/
Cd

n-l/Cd

1.0 0.12
0.24
0.31

0.200
0.201
0.245

0.038
0.026
0.023

0.215 0.09 0.12

2.0 0.15
0.35
0.40

0.366
0.235
0.176

0.018
0.040
0.008

0.259 0.04 0.38

3.0 0.10
0.27

0.248
0.239

0.027
0.039

0.244 0.09 0.02

4.0 0.15 0.178 0.011 0.178 0.06
5.0 0.10 0.271 0.029 0.271 0.11
6.0 0.05 0.130 0.012 0.130 0.09
7.0 0.05 0.165 0.031 0.165 0.19
8.0 0.02 0.172 0.032 0.172 0.19
11.2 0.12

0.25
0.247
0.232

0.012
0.009

0.240 0.04 0.04

Table 6.6c Analysis of tracer time series at cross-section 4.

transv.
distance
(m)

depth of 
meas.(m)

mean 
conc. 
c (ggf1)

std. dev. 
conc.
W 1)

depth- 
average 
conc. cd 
dig/’1)

Ĉ n-l/C

0.1 0.06 0.115 0.004 0.115 0.03
1.1 0.10 0.073 0.011 0.073 0.15
2.1 0.18 0.070 0.004 0.070 0.06
3.1 0.14 0.080 0.004 0.080 0.05
4.1 0.22 0.090 0.005 0.090 0.06
5.1 0.14 0.071 0.003 0.071 0.04
6.1 0.15 0.089 0.005 0.089 0.06

There were no consistent and systematic trends to the vertical variation of the 

concentration measurements. The tracer was assumed to be vertically well mixed such 

that the depth-averaged concentrations at all of the transverse sites were taken to be 

the mean of the measurements made through the vertical at each site.
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Table 6.7 Reach ensemble coefficients of variability of fluctuating tracer 

concentration, and depth-averaged tracer concentration.

<oVl/Cd> <Odn-i/Cd>

0.09 0.18

6.3.4 Time series analysis of concentration measurements.

The autocorrelations in the time series of concentrations which were measured 

at each site were now examined. The autocorrelations were obtained in a similar 

manner to the velocity fluctuation autocorrelations, and 1/e time constants were 

determined and are tabulated in table 6.8, where the transverse coordinate of the 

measurement sites are in increasing order starting from the left bank, at the same as 

those in table 5.10:
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Table 6.8 1/e time constants for tracer concentration time series for the three

cross-sections.

cross-section Al(s) cross-section l(s) cross-section 4(s)
3 7.5 30 21 2 2
12 20

13
12 7 7 9 35 35
2 11

9
3 2.5 2 2 3 3
2 2
34 18.5 3 3 2 2
3
3 17 13 13 3 3
31
32 32 11 11 3 3
6 6 28 28 4 4

34 34
7 9
11

mean = 12.9s mean = 14.4s mean = 7.4s

These time constants showed a greater degree of variability than those determined 

from the e.c.m. readings, but with similar trends, which will be discussed in the next 

section.

6.3.5 Discussion of time scales derived from concentration measurements.

The time constants at cross-section Al show a similar trend to those which 

were determined from the velocity time series analysis. There is a large time constant 

close to the right bank, in the deadzone region. Further downstream at cross-section 1, 

the time constants show a similar trend, with the exception of one measurement of a 

large time constant close to the left bank. The general trend of large time constants
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close to the right bank is in agreement with the tracer having undergone large scale 

foldings with large time constants close to the right bank between cross-sections Al 

and 1 because of the region of slow moving water (deadzone) there.

Finally at the fourth cross-section, all the time constants bar one show small 

time constants, but otherwise show no trends. The single large time constant is 

discussed following a more general discussion.

The concentration time series are fundamentally different to the velocity time 

series because the tracer plume contains information about the history of the 

fluctuations and differential advection to which it has been subjected since release. This 

information is lost to a large extent for the point velocity measurements, from the very 

local nature of the measurement. The velocity series can contain information about any 

large scale local fluctuations, or remnant advections due to circulations immediately 

upstream, but the information about the mixing which that local piece of water has 

undergone in order to reach the measurement site is limited. The tracer data, however, 

contains information about the large and small scale ‘foldings’ which the tracer has 

undergone since release. Therefore, although it might be expected that the small scale 

fluctuations will become smeared over, the large scale variations or trends in the data 

might give a better indication of the mixing time scales involved in the reach due to 

large scale fluctuations or secondary advections.

The presence of large time scales of the order of half a minute, even at cross- 

sections far downstream in this experiment emphasise the importance of the range of 

scales of motion in the flow. Such a wide range of scales is ubiquitous of turbulent 

motion, and highlights its chaotic nature. Moreover, the presence of large time scales 

(of the order of half a minute) in the concentration time series a riffle section, in which
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the turbulent time constants had been measured to be of the order of a second, 

suggests that large memory effects can remain superimposed onto a highly noisy 

background of turbulent flow over a rough bed.

The product of the sampling period and the velocity of the river water passed 

the intake pipe can be used to estimate the minimum spatial dimension over which the 

sample has been drawn from. If this length scale exceeds the Lagrangian length scale or 

average eddy size, the time series are insensitive to the concentrations within 

individual eddies. The transverse and vertical length scales of the sample drawn from 

the river are dependent on the bore of the intake tubing. Given the intake pipe had a 

diameter of 0.5cm, and assuming that the sample drawn from the river is cylindrical, 

then the radius of this cylinder could be approximated as the transverse and vertical 

dimensions of the sample from the river. For a flow of 0.5m/s ,a Is sampling period 

and a pumping rate of 1,2xl0 '5 cumecs, the minimum length of the cylinder is 0.5m 

with a diameter of 5.5mm . These scales indicate, to an order of magnitude, the 

resolution of the flurometry measurements.
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Chapter 7

Construction of a random particle tracking model based on streamtubes to 

simulate the observed dispersion of a passive tracer in the River Lune.

7.1 Introduction.

This chapter describes the construction of a computer simulation of the mean 

flow in the study reach of the River Lune, based upon the measurements of the 

topology, geometry and mean velocities which were described in chapters 5 and 6. A 

random particle tracking model was used once again to simulate the turbulent 

trajectories of fluid elements within the mean flow field. The resulting particle 

distributions were studied and compared with the measured dye tracer distributions. 

The complexity of the system to be modelled is emphasised and uncertainties in the 

measurements are discussed at each stage.

The model comprised four main stages which can be summarised as: the 

assimilation of data into a suitable format for the hydrodynamic model, the input to the 

model, the particle tracking model and the model output. These principal stages can be 

further divided into sub-sections which relate to distinct functions or algorithms within 

each stage. A sensitivity analysis of the ensemble dispersion characteristics of particles 

undergoing random walks within the framework of the hydrodynamic model is 

undertaken in chapter 8.
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7.2 Assimilation of the data sets into a suitable format for the flow interpolations.

In this section, the depths and discharge of the flow at each cross-section are 

rescaled to those values which corresponded to the day of the tracer experiment; the 

cross-sections are divided into streamtubes which carry equal discharges and all of the 

variables are non-dimensionalised.

7.2.1 Rescaling the model depths and velocities to simulate the discharge on the 

day of tracer experiment

The flow through each of the modelled cross-sections was rescaled to have a 

discharge which was estimated from the stage-discharge curve in fig. 6.1 as 0.35 m V1 

for the day of the tracer dispersion test. This was carried out by making the 

assumption that the river banks could be approximated as being vertical, and by using 

the known ratios of the discharges and stages on the days of the tracer experiment and 

velocity measurements. This information, combined with equation 7.1 was sufficient to 

rescale the mean velocities, such that the flow in the modelled reach was the same as 

on the day of the tracer experiment:

nb

Qm  £ u‘ 'Ab>'z>' ( u;  £  AV \

ôc-ineas ^LUfAbjZj

i=1

j=1

u4 z tub JV  AL--V d j  ̂ UjjAbjZj
i=i

(7-1)

246



where Qtxacer was discharge estimated on the day of the tracer experiment, Qmeas was the 

discharge on the day of velocity measurements; both were determined using the 

trapezium rule. The suffices indicate measurements made on the day of the tracer 

experiment. The index nb corresponds to the measurement site at the right bank. A b \  

Ab are the intervals in the transverse direction between the velocity measurement sites, 

ua’ and ua are depth average velocities for each interval.

The ratio of the depths was known from the ratio of the stages for the two sets 

of measurements. The widths of the cross-sections, and therefore of the intervals, Ab\ 

Ab are constrained to be constant for the two stages, implying that their ratio is unity. 

This introduced the approximation whereby the banks were assumed to be vertical. 

Since the ratio of the discharges are known, the velocity ratio for the two stages can be 

deduced from the law of conservation of mass equations, and equation 7.1, to give 

equation 7.2:

z' stage' A V
z stage A b
r (7<2)

Q tracer S t a g e

U J  Q m eas StClg e '

The rescaling of the depth averaged velocity in this way implied that the entire 

velocity profile was shifted by the rescaling ratio. For an assumed logarithmic profile, 

the friction velocity estimated from a logarithmic fit to the new profile would therefore 

increase if the velocity rescaling ratio was greater than one. The correction to the 

friction velocity can be estimated for an assumed logarithmic velocity profile, by
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equating the rescaled depth averaged velocity for a particular profile with the 

integrated depth average of the logarithmic velocity given by equation 7.3:

ud - where u = — In— (7.3)
u

Integrating this equation by parts gives equation 7.4:

u* = KUd (7.4)
h I n  h + z,

J

The rescaled depth averaged velocity and the rescaled depths were inserted into 

7.4, but before the corrected friction velocity could be determined, an estimation of the 

new roughness height was required. This was assumed to be approximately equal to 

the original value which had been determined from the measured velocity profile. The 

uncertainties which were invoked by making this additional approximation were 

considered to be smaller than those which had already been invoked due to assuming a 

logarithmic profile.

7.2.2 Transverse division of each cross-section into streamtubes.

The advantages of dividing the channel into streamtubes or regions of equal 

discharges, in terms of being able to differentiate between different forms of mixing,
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were discussed in relation to solutions of the diffusion equation in chapter one. This 

section discusses the application of streamtubes to the particle tracking model and 

moreover it explains the necessity for the use of streamtubes when modelling flows 

with non uniform geometry in the downstream direction.

7.2.2.1 Reasons to use streamtubes.

The velocities and depths at each cross-section were measured at essentially 

arbitrary points in the transverse direction at each cross-section. These values had to be 

interpolated between in the downstream direction in order to construct a complete 

flow field. However, the channel geometry was non uniform in the downstream 

direction (largely due to the meandering of the thalweg), so that the discharge between 

any two measurement sites in the transverse direction was not constant, as depicted for 

the simplified case in fig. 7.1:

Fig. 7.1 Diagram to aid description of the downstream interpolation technique.

B

downstream

The case is considered when the depths and velocities are simply interpolated 

between the measurement sites to give the two sub-sections A and B illustrated in 

fig.7.1. The mass flux of water passing through individual sub-sections is not likely to
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be conserved in the downstream direction. Clearly, in the real situation the water 

diverges or converges under the influences of gravity and the bed topology, so that the 

total mass flux at each cross-section is conserved. If a number of particles were 

released into sub-section A in a particle tracking model which simply used interpolation 

between measurement sites, then these particles would all end up within sub-section B, 

in the absence of transverse perturbations. For the model to conserve mass, the 

particles need to follow mean streamlines which conserve the total mass flux. In other 

words, the mean trajectories of the particles have to follow the same 

divergent/convergent streamlines which the real flow takes.

The streamlines are difficult to define unless the downstream interpolation is 

carried out between sub-sections of constant discharge. In this way the mean 

divergence or convergence of the boundaries which define the streamtubes can be 

interpreted as following the mean flow divergence/convergence which must have taken 

place in order that the total mass fluxes be conserved at each cross-section. It then 

becomes an easy matter to maintain the particle positions relative to these boundaries 

under the influence of the mean advective velocities only. Tests were devised in the 

following chapter to demonstrate that this was the case.

7.2.2.2 Determination of streamtube boundaries

Having discussed the necessity for dividing the flow into streamtubes, the 

depths, widths and velocities which were measured and then rescaled at each cross- 

section were now used to construct streamtubes. The streamtube boundaries were
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determined at each cross-section from an approximation to a cumulative integral of the 

discharge using equation 7.5:

Where qc is the cumulative discharge; YL is the left hand boundary of the streamtube, 

which is initially zero at the left bank; and YR is the right hand boundary of the 

streamtube, which is determined once qc is equal to the streamtube discharge. The 

velocity, ud is the depth averaged mean velocity in the transverse discretisation interval 

Ay, which was given a value of 1mm, while z is the average depth in this interval. NR 

multiplied by Ay gives YR, the precision of which depends on the discretisation 

interval.

Starting at the left bank, the integral is carried out until the cumulative 

discharge is equal to the total discharge (Q) divided by the number of streamtubes 

(Ns), and the y coordinate at this point gives the right hand boundary to the first 

streamtube. The integral is continued, until the discharge reaches 2Q/Ns, which gives 

the right hand boundary to the second streamtube, and so on. The streamtube 

boundaries at each cross-section are given following a description of the downstream 

interpolations.
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7.2.2.3 Uncertainties due to the use of streamtubes.

The measured depths and velocities were linearly interpolated between 

measurement sites in the transverse direction, so that their respective values could be 

estimated at the boundaries of the streamtubes. However, this incurs an error in the 

streamtube discharge, when it is re-calculated using the stream tube boundary values of 

depths and velocities, which is illustrated by fig. 7.2:

Fig.7.2 Diagram to demonstrate the error in approximation caused by 

interpolation between streamtube boundaries.

Here the dashed lines represent the new streamtube boundaries and the solid lines 

represent the measurements. A similar error arises in the velocity interpolations.

Errors which are incurred due to this effect can be minimised by increasing the 

number of streamtubes, since this reduces the intervals over which the depths and 

velocities are required to be interpolated. The error cannot be reduced completely due 

to the finite number of measurements which were made at transverse locations which 

do not necessarily correspond to streamtube boundaries. Trials were undertaken to 

examine the variation of this uncertainty with the number of streamtubes which were 

used, the results of which are given in table 7.1.
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Table 7.1 Variation of the uncertainty incurred due to linear interpolations 

between streamtube boundaries with number of streamtubes used in the 

transverse direction.

no. streamtubes Cq/q
6 0.17
8 0.09
10 0.06
12 0.05
14 0.04

Where a q is the standard deviation of the new streamtube discharges calculated from 

the boundary depths and velocities, away from the discharge per streamtube as 

calculated from the data ( i.e. Q/Ns), with which it has also been normalised. These 

deviations showed a random scatter, and the factor Oq/q was approximated as the 

uncertainty in the streamtube discharges due to the use of streamtubes. The number of 

streamtubes was therefore chosen such that the factor was smaller or equal to the 

uncertainty in the discharge calculated from the measurements.

The uncertainty in the discharges calculated from the measurements was 

estimated in chapter 6. From table 6.1, the fractional uncertainty in the discharge for 

the two sets of measurements which were utilised in the computer model were 

estimated as: AQ/Q = 0.06 and AQ/Q = 0.09 for the 0.23 and 0.30 stages 

respectively. Assuming that the uncertainties in the modelled discharge due to making 

the approximation that the banks were vertical were small compared to these 

uncertainties, it was concluded that the fractional uncertainty in the modelled discharge 

lay within this range.
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The fractional uncertainty in the discharge in each of the streamtubes (q) is the 

same as the fractional uncertainty in the total discharge since q and Q are linearly 

related, which gives 7.6:

0.06 <Aq/q< 0.09 (7.6)

The uncertainty in the discharges which were calculated from the streamtube 

boundaries had to be at least as small as these estimated uncertainties. Therefore, 

twelve streamtubes were used for which the factor a q/q was approximately half the size 

of the uncertainty in the discharge (5%).

The tracer concentration measurements had been carried out at approximately 

half as many locations as this (reach average no. of measurements = 7), so later the 

streamtubes were coupled together in order that the resolution of the modelled mass 

fluxes was supported by the resolution of the measurements.

The depth averaged velocities, friction velocities and depths at the streamtube 

boundaries, along with the transverse co-ordinates were then stored as the boundary 

conditions to the streamtubes for the particle tracking model. These will be presented 

following a description of the downstream interpolations.
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The fractional uncertainty in the discharge in each of the streamtubes (q) is the 

same as the fractional uncertainty in the total discharge since q and Q are linearly 

related, which gives 7.6:

0.06 < Aq/q < 0.09 (7.6)

The uncertainty in the discharges which were calculated from the streamtube 

boundaries had to be at least as small as these estimated uncertainties. Therefore, 

twelve streamtubes were used for which the factor a</q was approximately half the size 

of the uncertainty in the discharge (4%).

The tracer concentration measurements had been carried out at approximately 

half as many locations as this (reach average no. of measurements = 7), so later the 

streamtubes were coupled together in order that the resolution of the modelled mass 

fluxes was supported by the resolution of the measurements.

The depth averaged velocities, friction velocities and depths at the streamtube 

boundaries, along with the transverse co-ordinates were then stored as the boundary 

conditions to the streamtubes for the particle tracking model. These will be presented 

following a description of the downstream interpolations.
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7.2.3 Downstream interpolation of depths and velocities at streamtube 

boundaries.

The modelled cross-sections were set at the surveyed angles to each other and 

the channel curvature was approximated using linear interpolations between each 

cross-section in the downstream direction as shown in fig. 7.3:

Fig. 7.3 Diagram illustrating the form of linear approximation which was made 

to the downstream curvature.

section of 
bend

where the dashed lines represent the streamtube boundaries, and the solid curved line is 

the curvature of the river bank. The distance S was approximated by the distance X in 

the modelled geometry for each section. The error in this approximation can be 

estimated from the difference between the distance X and the length along a circular 

arc (The use of a circular arc is still an approximation to the real curvature, as can be 

observed from inspection of fig.5.1). With these assumptions, the error in the linear 

approximation can be estimated for each section using equation 7.7:
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( S - J f l  = r(& ~ sin&) ( 7.7)

where 0 is in radians. For an estimated radius of curvature of r  = 50m, and a measured 

value of 0 = 29 degrees the approximation is fairly small; (S-X) = 1.07m, or 

expressed as a fractional error : (S-X)/S = 0.04 = 4%. These values were typical of the 

reach geometry.

The resulting geometry for the entire reach is shown in fig. 7.4, and should be 

compared against fig. 5.3 which shows the surveyed boundaries.

Fig. 7.4 also shows the comer points of the transverse streamtube boundaries 

(using six streamtubes for clarity) for cross-sections Al-6. The boundaries showed 

convergence and divergence in regions of high and low partial discharges respectively, 

as might be expected. For example the streamtube near the right bank at cross-section 

A1 is very wide and corresponds to the ‘deadzone’ region described earlier.

The geometry, rescaled depths and rescaled velocity field on the streamtube 

boundaries are shown in figs. 7.5a and 7.5b. The contour maps have been constructed 

by bi-linear interpolation on a graphics package, which is the same form of 

interpolation carried out in the model. There are some discrepancies between the two 

sets of interpolations due to differences choice of interpolation basis axes, although the 

maps give the correct overall impression.

Linear interpolations of velocities, depths and widths between the measurement 

sites in the downstream direction were carried out in order that the least amount of 

information was asserted about the topology, geometry and flow structure between 

measurement sites. However, discrepancies between the interpolated velocity field and 

the actual velocity field become apparent when comparisons are made between the
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interpolations of fig. 7.5b with the photographs in figs.5.2. Between cross-sections At 

and 1, there are two regions of slow moving water, or deadzones, separated by a 

region of fast moving water near to the right bank. This sort of detail can only be 

accounted for through a more intensive fieldwork campaign, in which more cross- 

sections are examined.

7.2.4 Non-dimensionalising of flow variables.

The reach averaged values of some of the hydraulic parameters were used to 

non-dimensionalise the velocities, depths and time scales used in the model The mean 

friction velocity, u*, was used to non-dimensionalise all of the velocities, and the mean 

hydraulic radius, rh, was used to non-dimensionalise the depths. The time scales used 

in the model were non-dimensionalised using the linear construct ih/u*. These values 

are given in table 7.2:

Table 7.2 Table of parameter values used to non-dimensionalise modelled 
observables.

hydraulic radius friction velocity time scale
0.25 m 0.036m/s 6.94s

This procedure removed the scale dependence of the model observables and enabled 

the model results to be compared with previous studies more easily.

257



7.3 Model input.

This section describes how the tracer concentration measurements at cross- 

section A1 were used to define the input to the flow model. The vertical and transverse 

distributions are examined.

7.3.1 Transverse distribution of initial mass fluxes.

The spatial intensity or resolution of the concentration measurements was 

considered insufficient to allow a three dimensional analysis of the model output, and 

depth averaged concentrations were examined in the modelling work. At sites where 

several concentration measurements had been made through the depth, there were no 

systematic and consistent variations of concentration with depth.

The depth averaged concentration measurements which were given in chapter 

6, table 6.6, were interpolated linearly in the transverse direction and were averaged 

over the whole of a streamtube to define an average concentration. These streamtube 

average concentration values were assumed to be equal to the average concentration 

within each streamtube, which when multiplied by the discharge per streamtube, q, 

gave the tracer mass flux through the streamtube. The sum of these values, multiplied 

by the discharge in a streamtube was therefore the total tracer mass flux through the 

cross-section.

The tracer mass fluxes in the streamtubes were then normalised by dividing 

through by the total mass flux. The normalised values could then be used to distribute 

the total number of particles at the input cross section in such a way that the relative
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particle numbers were the same as the relative mass fluxes. The normalised mass flux 

distributions at the input cross-section (Al) and at the other two cross-sections are 

shown in fig. 7.6, where the uncertainties have been estimated in the next section.

The particles in any particular streamtube were uniformly distributed between 

the streamtube boundaries in the transverse direction. This was as a consequence of the 

chosen minimum discretisation interval which could be supported by the 

measurements.

The positions of the particles at the input were plotted as a scatterplot against 

particle number in fig.7.7. The banding in this plot reflects the different numbers of 

particles which have been distributed uniformly within each streamtube. A frequency 

histogram (fig. 7.8) demonstrates the form of the corresponding discretised probability 

distribution function.

7.3.2 Uncertainties in the transverse mass flux distributions.

There were a number of sources contributing to the uncertainty in the 

measured mass flux distributions. These can be largely attributed to the experimental 

errors involved in the determination of the discharge and tracer concentrations, from 

which the mass flux of tracer were derived.

The uncertainty in an individual concentration measurement was approximated 

as the standard deviation from the time averaged mean of the measured concentration 

time series. The reach averaged fractional standard deviation calculated in this way was 

determined in chapter 6 to be: <&n-i> = 0.09.
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However, if the standard deviation from the depth averaged mean 

concentration, crdn-i, is examined for those measurement sites at which more than one 

measurement was made through the water column, then the fractional reach averaged 

standard deviation suggests that the uncertainty in assuming a depth averaged 

concentration is greater: <oVi > = 0.18 . The estimates of od„.i are based upon only 2 

or 3 samples through the depth, and cannot be estimated for those sites at which only a 

single measurement was made. For these two reasons these standard deviations could 

well be an exaggeration of the uncertainty in the depth averaged concentration values .

The fractional uncertainty in the depth averaged concentrations was concluded 

to lie within the range:

0.09 <Acd/cd< 0.18 (7.8)

Where Acd is the estimated uncertainty in the depth averaged concentration.

Using this range of values, together with the range of uncertainties which were 

estimated for the streamtube discharges in equation 7.6, the fractional uncertainty in 

the mass fluxes of tracer per streamtube can now be determined. The mass flux in a 

streamtube is given by equation 7.9:

m -  qcd (7,9)

where q is the discharge in the streamtube and cd is the depth-averaged concentration 

within the streamtube. The fractional uncertainty in the mass flux can then be estimated 

through standard error treatment of 7.9 to give equation 7.10:
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The estimated lower and upper bounds of the fractional uncertainties in q and 

Cd can be inserted into 7.10 to give the expected bounds on the uncertainty in the 

tracer mass fluxes, given by 7.11:

0.11 < Am/m <0.20 (7.11)

A fractional uncertainty in the estimated mass fluxes for the streamtubes of 

0.15 or 15% was selected as being representative of this range of values.

7.3.3. Vertical distribution of initial mass fluxes.

Given the large uncertainties in the calculated mass fluxes, the output from the 

model was only examined in terms of depth averaged number of particles per 

streamtube. However, the model flow domain retained the three dimensions in order 

that the mass fluxes were correctly maintained, and so that the non-uniform geometry 

could influence the particle trajectories as in the real situation.
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The flow was strongly turbulent, and had been estimated to have a Reynolds 

number of approximately 50000 for a 0.23 stage, so the vertical mixing was likely to 

take place in a short distance. The measurements of tracer concentration which had 

been made in the vertical direction (table 5.4) supported the assumption that the tracer 

had become well mixed in the vertical direction by the time it reached cross-section 

Al.

The logarithmic vertical velocity distribution was used to define the relative 

mass flux of particles through each vertical, with the assumption that the vertical 

concentration distribution was uniform. Given that only the depth averaged particle 

numbers were examined at the output, it might be thought that the particles could be 

distributed uniformly throughout the depth at the input. However, if the eddy 

coefficient is allowed to vary in the transverse direction, as will be investigated in 

chapter 8, the vertical mass flux distribution in combination with the channel geometry 

could have an influence on the transverse mixing. This has been visualised for the 

simplified case of two adjacent regions of high and low dispersivity for the two forms 

of distribution shown schematically in fig.7.9:

Fig. 7.9 Diagram to illustrate the importance of using the correct initial vertical 
distributions of particles in a flow with a laterally varying transverse dispersivity 
coefficient.
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Where eyi, ey2 are two different transverse dispersivities and the large particles are 

representative of the mass fluxes of particles passing through the cross-section. Clearly 

for the first case, more of the particles on the right hand side are inhibited by the bed 

topography from entering the region of greater dispersivity, than for the second case. 

Thus the transverse dispersion for the two cases are likely to differ.

A discretised logarithmic probability distribution was therefore constructed, in 

order that the relative numbers of particles might be distributed according to the 

expected mass fluxes for a logarithmic distribution.

The mass flux of water for a one dimensional logarithmic profile between the 

roughness height and an increment Az in the vertical direction can be calculated from 

integrating the velocity profile between these two limits using equation 7.12:

where m is the mass flux, u is given by 7.3 and p is the density of water. If this integral 

is carried out for n subdivisions, Az, of the depth then the relative mass flux per 

interval can be used to define a discretised probability distribution, using equation 7.13:

m= p (7.12)
Zo

(7.13)

Zo
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Where the sum of the probabilities over the intervals is unity, ■and h is the flow depth at 

a particular transverse position. The cumulative probabilities where then used in 

conjunction with a random number generator which produce a random number in the 

interval (0.0-1.0). For example, the probability of a particle being in the first interval 

from the bed was 0.02, and that of a particle being in the second interval was 0.03, 

then a particle would be assigned to the second interval if the random number which 

was generated for that particular particle lay between the cumulative probabilities 0.02 

and 0.05. The particles were distributed uniformly between the intervals, of which 30 

were used. Fig. 7.10 shows a frequency histogram of the particle distribution when 

they were all confined to a one dimensional profile.

7.3.4 Instantaneous release of particles.

The particles were all released at the same time in the simulations, using the 

same technique which was used for the channel flow. The modelled flow was steady 

state, so the instantaneous release represented the input to the reach for all times. This 

required that all of the particles which were released at one instant to be accounted for 

at the output. The number of particles which were necessary in order to achieve a 

steady state was investigated in chapter 8.

7.4 Particle tracking through streamtubes.

This section describes the particle tracking model which was used to examine 

the dispersion characteristics of the modelled flow field. This comprised the adveetive

264



and random parts of the particle motion, the transverse metric correction to the 

particles following divergent or convergent streamlines, and the modelled behaviour of 

the particles at the boundaries.

7.4.1 Transformation of particle coordinate system.

Each downstream section of the reach between measurement transects formed 

a trapezium, which can be observed by inspecting fig. 7.4. The upstream transect and 

the left bank formed an orthogonal bases set, with the origin in the upstream left hand 

comer of each trapezium (see fig.7.11 below). Whenever a particle entered a new 

section of the river in the downstream direction, the origin was moved to the upstream 

left hand comer of the new section. The particle was assigned downstream and cross 

stream co-ordinates on these bases, and in addition a streamtube index, depending on 

which streamtube boundaries it fell between.

Finally, since the transverse and downstream interpolations were all linear, the 

distances between the streamtube boundaries were rescaled to lie in the interval 0.0- 

1.0. This necessitated a similar scaling of the particle displacements in die transverse 

direction. This rescaling process made it simple to define the transverse and 

downstream boundaries, which were now always 0 or 1, as demonstrated in fig. 7.11:
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Fig. 7.11 Diagram showing particle coordinate system in one section of the river 

and the transformation into a unit square for simplicity in boundary handling.

river section

<■

transformed section

y axis 

x axis 0 (origin)

7.4.2 Advection.

Following the initialisation of the particle co-ordinates, the particles were 

advected through the streamtubes in accordance with the interpolated velocity field. 

Random displacements were periodically applied to the particle trajectories following 

the same technique which was described for the channel flow, the lengths and time 

intervals of which will be discussed in chapter 8. The particles were not subjected to 

any other body forces, such as a centrifugal acceleration. Centrifugal forces give rise to 

secondary circulation in the real situation, and these currents strongly influence the 

mixing characteristics of the reach. However, the enhanced mixing effects due to 

secondary circulation were absorbed into the transverse dispersion coefficient in the 

model (a process which was described in chapter 1).

The only effect which the channel curvature had upon the modelled particle 

trajectories, was in the times of travel between transects. A particle which remained
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close to the outer bank would clearly have a longer time of travel than a particle close 

to the inner bank.

7.4.3 Approximation to a metric due to flow convergence / divergence.

The streamtubes diverged and converged due to changes in the channel width 

and because of the meandering of the thalweg. The position of a particle relative to its 

current streamtube boundaries was maintained after the each time step and advection 

due to the mean velocity. This ensured that the particle followed a streamline which 

diverged or converged consistently with the streamtube boundaries. When the position 

of a particle was increased in the downstream direction, the transverse position of the 

particle was therefore also altered in accordance with the local flow divergence. The 

random step part of the particle’s motion was additional to this correction.

7.4.4 Time steps for the random walk.

The time steps for the random walk were initially set to be constant and 

homogeneous throughout the flow for simplicity. However, the inhomogeneities in the 

turbulent time scales, evident from the time series analyses in tables 6.4, suggested that 

the time steps and therefore the transverse dispersivity coefficient should be allowed to 

vary, especially in view of the deadzone region. For this reason a varying time step 

model is investigated in chapter 8.
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7.4.5 Form of the displacements for the random walk.

The study of the tracer dispersion in the river model was more restricted than 

the study which had been undertaken on the flume flow in chapters 3 and 4. The 

detailed set of measurements which were taken in the flume allowed for an 

investigation into the sensitivity of the modelled tracer dispersion to a variety of 

random walk models. It was shown that most of the different forms of random walks 

could be calibrated to model the observed tracer distributions. However, the river flow 

was less well defined and the turbulent, topological and geometrical inhomgeneities 

gave rise to large uncertainties. It was therefore considered that the model would be 

insensitive to the small differences between different forms of random walk after 

calibration. Therefore only one random walk model, for which the displacement sizes 

were selected from a normal Gaussian distribution, was used in the following 

investigations (equivalent to the model NEWJUMP in the flume flows). This random 

walk was selected since it allowed for a more rapid sampling of the entire flow field 

than the random walk which used a single and constant displacement size.

The size of the variance for this random walk was changed through alteration 

of the size of the transverse step size multiplier, fv , in equation 7.14, using the same 

technique which was used the flume model:

(7.14)



where ly is the displacement, |i(0,l) is a random number generated from a normal 

Gaussian distribution with zero mean and unit variance and Ly is an estimation of the 

expected length scale due to secondary advections(from dimensional arguments). Ly 

was included in order that the calibration of the step size should result in fv having a 

value close to unity for convenience. Ly was considered by dimensional reasoning in 

chapter 6 (equation 6.7) to be of the order 0.1m. The step length was therefore fixed at 

the calibrated value, although the transverse dispersivity coefficient could still be varied 

through varying the size of the time steps.

7.5 Output from model.

Although twelve streamtubes had been used in order to minimise the errors 

arising from interpolations (described in section 7.2.2), there were insufficient 

concentration measurements at cross-sections 1 and 4 to support this degree of spatial 

resolution, especially considering the uncertainties involved. There were on average 

seven concentration measurements in the transverse direction from which the tracer 

mass fluxes per streamtube were estimated. For this reason, the streamtubes were 

paired together at the outputs, in order that there were now six larger streamtubes. The 

spatial resolution of the modelled mass fluxes was now more compatible with that of 

the measurements.

The numbers of particles which the model predicted to be in each streamtube at 

a measurement cross-section were compared against the normalised measured mass 

fluxes (which were rescaled using the total number of particles used in the model). The
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predicted and measured numbers of particles per streamtube are presented in either 

tabular or graphical form for comparison, in the next chapter.

7.6 Summary of particle tracking, streamtube model.

The computer model of the flow through the reach of the River Lune 

comprised a random walk, particle tracking model based within a simple streamtube 

structure. This structure was incorporated since it allowed for the conservation of mass 

(and momentum) of the particles within the non-uniform flow field. The streamtubes 

were based on linear interpolations between point measurements in the cross-stream 

direction. The curvature of the river in the downstream was approximated by a series 

of trapezoidal streamtube sections joined end on end. As the particles advected in the 

downstream direction, their changes in cross-stream position (whilst allowing for the 

turbulent perturbations) due to the changing geometry and relative discharge were 

accounted for by metrics.

The entire data set was not collected for a single stage, which made it necessary 

to rescale the velocities and flow depths in order that the model was able to simulate 

the flow on the day of the tracer experiment. The vertical velocity profiles were 

approximated as logarithmic profiles, although only the depth averaged mass flux 

distributions were later examined. The model output was examined in terms of the 

number of particles occupying regions of equal partial cumulative discharge in the 

cross-stream direction. These relative number of particles per streamtube were 

compared against the relative measured mass fluxes for the streamtubes in a sensitivity 

analysis carried out in chapter 8.
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Chapter 8 

Sensitivity analysis of a random particle tracking model of the tracer dispersion 

characteristics in the reach of the River Lune.

8.1 Introduction.

This chapter describes a sensitivity analysis which was carried out on the 

simulation of the tracer dispersion in the reach of the river Lune. The extent to which it 

was necessary to calibrate the model before the measured concentration distributions 

could be reproduced to within estimated experimental uncertainties is discussed. This 

ultimately has implications on the quantity of fieldwork which it is necessary to 

undertake in order to operate the model to within given uncertainty bounds.

In section 8.2, the model equivalent of the conservation of mass and 

momentum laws are examined. The number of particles which were necessary to 

achieve steady state transverse distributions, to within acceptable uncertainty bounds is 

investigated.

In section 8.3 choice of the average size of the vertical perturbations in the 

random walk is explained so that the model exhibited the strong vertical mixing 

required to reproduce the field data.

In section 8.4 it is argued that the reach naturally divides into two sub-reaches, 

with most of the mixing taking place in the first sub-reach. The analysis is therefore 

divided into two sections, 8.5 and 8.6 which deal with the transverse mixing in the first 

and second sub-reaches respectively. In these sections the sensitivity of the model to
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changes in the effective transverse dispersivity coefficient (ey) are investigated, and the 

model is calibrated to within the estimated uncertainties using the measured tracer 

distributions. The value of ey is estimated for each sub-reach, and its uncertainty 

bounds are estimated from the model sensitivity.

Section 8.7 examines the particle distributions in the reach as a whole, and a 

reach averaged value of ey is estimated.

In section 8.8 the estimated values of ey are compared with values determined 

from measurements made on similar rivers and are found to be in agreement, to within 

the estimated uncertainty bounds.

In section 8.9 numerical experiments are described in which a square wave 

distribution of particles are input to the model and the predicted particle distributions 

downstream are compared with approximate solutions of the cumulative discharge 

diffusion equation for the equivalent input distribution of mass flux, and having the 

same reach-averaged factor of diffusion. The two models exhibit similar cross-section 

averaged mixing characteristics which helped to confirm that the calibrated value of the 

transverse dispersivity coefficient was the correct order of magnitude.

Finally section 8.10 is a summary of the modelling work, which is also 

discussed further in chapter 9.

8.2 Preliminary tests on the model.

8.2.1 Conservation of total number of particles.

The particle tracking algorithms were initially tested to ensure that all of the 

particles remained within the flow domain. This was simply achieved by summing the
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total numbers of particles which reached the cross-section at which the mass fluxes 

were calculated, and comparing this with the number of particles at the input. These 

tests were carried both with and without random velocity fluctuations. Conservation of 

mass is generally a simple matter to test for using random particle tracking models, 

since the particle number is simply the index of an outermost loop in the computer 

algorithm. Mass conservation is generally violated if the boundary conditions are 

inadequate.

8.2.2. Tests on the particle trajectories in the absence of random perturbations.

A test was devised to ensure that there were no spurious mixing effects in the 

absence of any random fluctuations. The transverse and vertical random components of 

the particle trajectories were set to zero so that the particles were advected under the 

influence of the mean interpolated velocities only. The number of particles in each 

streamtube was then determined at the last cross-section to be exactly the same as the 

number of particles which had been input into each streamtube. This result helped to 

confirm that the boundary and metric handling were performing correctly. Further 

checks were carried out during the run time operation of the model, such as the 

inclusion of statements which stopped the program if the particles went outside of the 

flow domain. Similar checks were carried out on the remainder of the interpolated 

variables.

The above test was then carried out with a non-zero vertical random 

component, such that vertical mixing was permitted but transverse mixing was not.

The boundary handling, which was fully described in chapter 4 was used once again,

279



whereby if the random displacement would place the particle outside the boundary, 

then the particle remained at its current transverse or vertical position. In this way, the 

transverse mixing was uniquely dependent on the sizes of the transverse displacements, 

and was consequently more easily controlled. The transverse mixing effects due to the 

interaction of vertical motions with the bed topography in the real situation were 

therefore absorbed into the effective transverse dispersivity coefficient of the model.

8.2.3. Achieving a steady state in the particle distributions.

Although full three dimensional movement of particle trajectories was 

modelled, the modelled mass flux distributions could only be substantiated by the 

measured data in two dimensions, and consequently only the depth averaged mass flux 

distributions were examined. The model was run repeatedly using different random 

sequences for the random perturbations, and the mean numbers of particles in each 

streamtube at the output were determined. The coefficients of variability for the 

numbers of particles in each streamtube for these different runs were determined and 

these were averaged over the six streamtubes in a cross-section to give a measure of 

the variability in the model output due to the stochastic element of the random walk. 

Table 8.1 demonstrates the variability of the mass fluxes for different random number 

sequences, for 2000, 5000 and 10000 particles at cross-sections 1 and 4. A sample 

size of six different random sequences were used in the determination of each 

fractional deviation.
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Table 8.1 Variation of standard deviation from the mean spread for repeated 

runs of the random walk having different random sequences, with total number 

of particles.

Cross-section number of particles used cross-section averaged 
coefficient of variability.

1 2000 0.07
1 5000 0.03
1 10000 0.02
4 10000 0.02

The table indicates a decrease in the uncertainties in the modelled distributions 

as the number of particles was increased at cross-section 1. The 2% variability in the 

modelled distributions at cross-sections 1 and 4 respectively which resulted when 

10000 particles were used, were considered to be accurate enough for the sensitivity 

analysis, considering the size of the uncertainties in the measured distributions were 

15%. These two measures of sensitivity come from different sources, the model 

variability from repeated computing experiments, and the uncertainties in the 

measurements from the estimated experimental error. If the particle tracking model is 

considered as a tool for investigating the mixing coefficient for the reach, the accuracy 

of the measurements on which the model is based is still the limiting factor in the 

determination of the value of the model mixing coefficient. 10000 particles were 

therefore used in all the following investigations. Fig. 8.1 demonstrates this variability 

graphically for the case of 10000 particles at cross-section 1. The curves have been 

smoothed using the minimum smoothing factor in a cubic-spline approximation on the 

graphics package, UNIRAS.
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8.3 Vertical mixing.

The variance of the step sizes in the vertical direction was set at a fixed value 

throughout the reach, such that the average magnitude of the step sizes was 

approximately equal to one tenth of the reach averaged mean flow depth (mean flow 

depth was 0.3m, and the vertical step size was held at the value 0.03m). This value was 

sufficient to cause vertical mixing over the correct order of length scale, and has been 

used in the past by Allen (1982) and Van Dam (1992). This ensured that the particles 

rapidly diffused and were able to experience the entire vertical velocity distribution as 

they were advected between regions of different depths. The variance of the vertical 

step size was held constant for the remainder of the study, which was primarily 

concerned with transverse mixing. The effective vertical mixing coefficient was 

therefore constant, unless the time step was allowed to vary. The time step was 

allowed to vary spatially in the final model, in order to account for the observed 

variability in the turbulent time constants (as will be described in the next few 

sections).

8.4 Division of the reach into two sub-reaches.

The model needed to take into account several features of the flow which were 

considered to have a large influence on the mixing characteristics of the reach. These 

characteristics were apparent from direct observation and from the turbulence and dye 

concentration measurements and are outlined here.
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From the measurements of concentration at cross-sections A1, 1 and 4 it was 

evident that most of the transverse mixing, at least in the main body of the flow, took 

place between cross-sections A1 and 1, as demonstrated in fig.7.6. This was thought 

to be mainly due to the secondary currents which were visible on the day of the tracer 

experiment, and can be identified in the region just after the bend entrance in fig.5.1. 

The sensitivity analysis was therefore concentrated on the study of the model 

behaviour between cross-sections A1 and 1.

Another difference between the two sub-reaches was evident from the 

turbulence and concentration time series analyses.

The first sub-reach showed a transverse variation in the turbulent time scales 

(tables 6.4), which can be attributed to the presence of two distinct regions of flow in 

the cross stream direction. There was a region of slow moving water close to the right 

bank at cross-section Al, and a region of fast moving water close to the left bank. 

However, the second sub-reach (1-4) comprised a riffle section, and the time scales 

measured at different cross stream positions at cross-section 4 indicated that the 

turbulence was homogeneous to within the accuracy of the measurements.

The transverse distributions in the time constants which were determined from 

the tracer concentration time series supported the above observation. Further, these 

time constants were considered to contain information about the large scale foldings or 

mixing of the dye in the river upstream of the measurements. The large time constants 

in the autocorrelations close to the right bank at cross-section 1, suggested that the 

deadzone close to the right bank had a strong influence in the first sub-reach.

The natural division of the reach into two sub-reaches was made use of 

throughout the sensitivity analysis.
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8.5 Random particle tracking model applied to the first sub-reach.

In this section the sensitivity of the model to changes in the transverse step 

sizes and in the sizes of the time step are estimated. The transverse displacement size 

and the time steps are calibrated for each of the sub-reaches. The time steps are 

allowed to vary in the cross stream direction in the first sub-reach but are held constant 

in the second sub-reach, in accordance with the analysis of the E.C.M. measurements.

8.5.1. Average magnitude of the displacement sizes and time intervals for the 

random walk in the transverse direction in the first sub-reach(between cross- 

sections A l and 1).

The model initially used a constant value for the variance of the transverse step 

size, and a constant time step for the entire sub-reach. This effectively meant that the 

modelled transverse eddy dispersivity coefficient was constant for the entire reach. The 

size of the variance could be changed through alteration of the size of the transverse 

step size multiplier, fv , in equation 7.14, using the same technique which was used the 

flume model.

It rapidly became apparent that the use of a single effective eddy dispersivity 

coefficient for the entire reach was insufficient to characterise the transverse dispersion 

characteristics (see for example the one time constant model results in fig. 8.2). This 

was to be expected from the large differences in the turbulent time constants which had
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been determined from the turbulence measurements across-section Al. Further, the 

variation in transverse turbulent time scales across the channel at cross-section Al was 

thought to be characteristic of much of the sub-reach due to the presence of a second 

‘dead zone’ close to the right bank, although no measurements had been taken to 

substantiate this.

The model eddy dispersivity coefficient was therefore allowed to vary spatially 

to account for these inhomogeneities. This could be achieved in a number of ways, by 

either allowing the time step or the displacement size to scale with local properties of 

the flow. Initially the first sub-reach was examined, and the variance of the 

displacement size was kept spatially invariant, while the time step was varied in 

accordance with local turbulent time constants.

8.5.2 Localised values of time steps.

The time constants determined by measurement at cross-section Al in table 6.4 

show two distinct regions having slow and fast time scales. The corresponding two 

regions in the model framework were given two time scales which were the same order 

of magnitude as these measurements. The time step in the deadzone was set at 7 s (the 

measured value was 7 +/- 3s), and the time step in the other regions was set as 0.8s 

(the measured value for the first sub-reach was 0.8 +/- 0.3). Thus, the transverse eddy 

dispersivity was allowed to vary discretely in the transverse direction, analogously to 

the approach taken by Knight and Shiono (1989) for the problem of the overbank flow 

field, which was described in chapters 3 and 4. This approach was described fully in 

chapter 4, in which the overbank channel flow was divided into four regions, each of
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which was attributed a different value of transverse eddy dispersivity coefficient. 

Knight and Shiono defined the boundaries of the regions by inspecting the cross- 

sectional variation of the measured transverse eddy dispersivity, rather than the 

measured time constants, as in this study.

Fig. 8.2 shows the immediate improvement to the modelled mass fluxes at 

cross-section 1, which was achieved by having two regions, A and B, instead of one, 

with effectively two different eddy dispersivity coefficients, the calibrated values of 

which are given in table 8.2:

Table 8.2 Boundaries and time steps for two-time constant model.

region / transverse location 

(m from L.Bank)

Time step(s)

oo1oo'<

0.6

B 4.8 - 8.6 7.0

The boundary of the deadzone was estimated by examining the downstream velocity 

distribution. The two time step sizes were varied between the ranges estimated from 

the turbulence measurements given above, in order to optimise the model fit to the 

data.

However, with only two regions, the model under predicted the mixing close to 

the left bank. This behaviour could not be accounted for in terms of the turbulent time 

constants, but was thought to be due to observed region of separation close to the left 

bank, which gave rise to rapid secondary advection. This feature which can be 

observed for the day of the tracer experiment in fig. 5.1. Unfortunately, the separation
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occurred a few meters below the measurement cross-section Al, on the day of the 

tracer experiment. This region of strong secondary advection would give rise to an 

enhanced transverse dispersion coefficient, which could be incorporated into the model 

by either increasing the displacement sizes, or through reducing the time step in a 

region close to the left bank. The latter approach was adopted for consistency. The 

minimum acceptable time step was estimated from dimensional reasoning to be 

approximately 0.1s, which for the displacement sizes in use corresponded to the 

maximum observed advective velocity of 0.8m/s. The region close to the left bank, in 

which this reduced time step was incorporated was kept as small as possible (0.5m), 

since the time constant was highly uncertain.

It was found that model could be further improved by incorporating three 

regions, A,B, and C with three time steps (and therefore dispersivity coefficients), as 

demonstrated by fig. 8.2, and where the calibrated values of the time steps in each 

region are given by table 8.3:

Table 8.3 Boundaries and values of time step for three-time constant model.

region / transverse location 

(m from L. bank)

Time step(s)

A 0.0 - 0.5 0.08

B 0.5 - 4.8 0.6

C 4.8 - 8.6 10.0

The time step in region A had to be reduced to a value which was just smaller than the 

estimated minimum time constant. The use of such a small time step is accepted as
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being somewhat artificial, but this was carried out in order that the displacement size 

could be held constant for simplicity. The effective dispersivity coefficient for the 

model increases with the square of the displacement size in the random walk, whereas 

it is inversely proportional to the time step. The same enhanced dispersivity coefficient 

could therefore be attained by keeping the time step at a larger value and by increasing 

the displacement size by a proportionally smaller amount than the necessary reduction 

in the time step.

The variation in the time steps, combined with a constant vertical step size gave 

rise to a varying vertical mixing coefficient. The effects of this variation were not 

investigated (since the study was primarily concerned with the depth averaged mixing 

processes), although it was considered for example, that in a region of enhanced 

transverse mixing, the vertical mixing should also be enhanced.

It was only by using three dispersivity coefficients that the modelled mass 

fluxes could be fitted to the measured mass fluxes within the estimated uncertainties, as 

demonstrated in fig. 8.3. No further sub-regions were added to the model to avoid the 

use of even more degrees of freedom at the calibration stage.

8.5.3 Sensitivity of model to changes in the transverse dispersion coefficient.

The following exercise enabled the sensitivity of the model to increments in the 

variable parameter, fv , and in the time steps for the three regions to be investigated, 

while taking into account the random errors inherent to the model. It was more 

difficult to quantify the sensitivity of the model to changes in these parameters than had 

been possible in the channel flows due to the irregularity of the mass flux distributions.
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8.5.3.1 Sensitivity of model to varying the fv factor.

The model was run using three fv factors over a small range of values, and the 

mean of the numbers of particles for the three values was taken for each streamtube. 

The coefficients of variability from these mean values for each streamtube was 

averaged over the cross-section, and used as an indication of the sensitivity of the 

model to the small increments in fv . This was repeated for another range of fv values 

in case the model sensitivity was dependent on the absolute values of the fv factor. 

Table 8.4 shows the mean number of particles and the coefficients of variability, for 

each streamtube for two sets (of three localised values) of fv using 5% increments(set 

1: fv =0.50,0.53,0.56 and set 2: fv=1.05,1.10,1.15).

Table 8.4 Sensitivity of particle distributions to small (five percent) changes in 

the displacement sizes.

streamtube
number

<N> for 3 
intervals(set 1)

cVi/N <N> for 3 
intervals(set 2)

CVi/N

1 2246 0.01 1675 0.03
2 2179 0.01 1711 0.02
3 1595 0.02 1778 0.004
4 1420 0.02 1877 0.02
5 1150 0.001 1388 0.02
6 1410 0.003 1571 0.008

«3n- l/N> = 0.01 « j n.i/N> = 0.02

where « V i /N >  is the cross-sectional average value o f the fractional standard deviation  

from the mean.

The cross-section averaged coefficient of variability from these means for the 

three values was determined to be between 0.01 and 0.02. This includes variations due
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to systematic changes in fv , but is also subject to the random uncertainties discussed 

above. This coefficient of variability was the same order of magnitude as the random 

error incurred due to sampling the flow with 10000 particles, and the model could 

therefore be said to be insensitive to increments of this size. 10% increments in fv 

were now examined, again using two sets of fv values (fv=0.5,0.55,0.6 and 

fv =1.0,1.1,1.2) and the results are shown in table 8.5:

Table 8.5 Sensitivity of particle distributions to small (ten percent) changes in the 

displacement sizes.

streamtube
number

set 1, <N> for 
3 intervals

tfn-i/N set 2, <N> for 
3 intervals

tfn-l/N

1 2230 0.03 1666 0.04
2 2155 0.02 1719 0.0 5
3 1611 0.03 1784 0.006
4 1431 0.03 1869 0.03
5 1156 0.006 1391 0.05
6 1424 0.02 1576 0.02

<an.i/N> = 0.02 <on-i/N> = 0.03

Here the cross-section averaged coefficients of variability from the mean show 

values Of 0.02 and 0.03, which are slightly greater than the random error associated 

with the stochastic part of the model (0.02), and could therefore be attributed in part to 

small systematic changes in the mean particle numbers, due to the increments in fv .

The fv parameter was therefore optimised to within the accuracy afforded by using 

10% increments.
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8.5.3.2 Sensitivity of the model to changes in the values of the time steps.

A similar sensitivity analysis was applied to the variation the time steps in 

advance of the model calibration. This time steps in each of the regions A,B, and C 

were varied by 5% (set 1) and then 10% (set 2) about three localised values (T = 0.08, 

T = 0.6, T = 10.0) in each region. Since the time steps in each region could be varied 

independently of one another, there were many possible combinations of variations for 

the three regions. A representative sample of 8 of these combinations were examined 

for each set. The mean number of particles and the fractional standard deviation from 

these means in each streamtube were again determined for the different combinations, 

and are given in table 8.6:

Table 8.6 Sensitivity of particle distributions to small (five and ten percent) 

changes in the different time steps in the different regions.

streamtube
number

set 1, <N> for 
8 combinations

an.i/<N> set 2, <N> for 
8 combinations

crn-i/<N>

1 1672 0.008 1711 0.036
2 1706 0.017 1767 0.025
3 1788 0.007 1766 0.008
4 1864 0.011 1839 0.027
5 1392 0.020 1388 0.018
6 1571 0.008 1530 0.019

< (W < N >  > = 0.01 <on- i/< N »  = 0.02

The three sets of values for the three regions, A, B, and C, for set 1 and set 2 

are given in table 8.7:
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Table 8.7 Values of the time steps used in the sensitivity analysis.

region / transverse location 

(m)

Three sets of time step(s) 

using 5% increments 

(setl)

Three sets of time steps 

using 10% increments 

(set2)

A 0.0-0.5 0.080, 0.076, 0.084 0.08, 0.07, 0.09

B © L/i i G
O 0.57, 0.60, 0.63 0.54, 0.66, 0.60

C 4.8-8 .6 10.0, 10.5, 9.5 9.0, 10.0,11.0

8.5.4 Estimation of the uncertainty in the model value of effective transverse 

eddy dispersivity coefficient.

The transverse dispersivity coefficient was related to the reach averaged values 

of the step displacement size as given by equation 8.1:

3(fyLy)_ jv

y '  (T>

where the factor 3 arises due to the use of a random walk for which the displacements 

are selected from a normal Gaussian distribution (see section 2.2.5, equations 2.5 and 

2.6). The uncertainty in the reach averaged value of ey is determined from standard 

error analysis of 8.1 to give equation 8.2:
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where the length scale Lv is constant, and effectively has no uncertainty. Evaluating the 

partial differentials, this gives equation 8.3:

The fractional uncertainty in the values of fv and T were then inferred from the 

sensitivity analyses in section 8.5.3. The model was found to be sensitive to at least 5% 

changes in the size of the fv factor, and 5% changes in the time steps. Substitution into

8.3 results in an estimated sensitivity in the effective model dispersivity coefficient 

given by:

8.5.5 Discussion of the effect of increasing the transverse dispersivity coefficient.

The transverse eddy dispersivity coefficient of the model was adjusted by 

varying the fv parameter as described earlier. Fig. 8.3 demonstrates the effect of 

increasing fv on the modelled distribution at cross-section 1, together with the input 

distribution at cross-section Al. As fv was increased, the peak close to the left bank at 

cross-section 1 was gradually decreased in size until it approached the measured

(8.3)

Aey / Gy =0.11 (8.4)



relative mass flux value at cross-section 1. However, as fv was increased another 

feature became apparent in the 4th and 5th streamtubes, which was not apparent in the 

data. This feature was of the same order of magnitude as the estimated experimental 

error in the measurements. The peak in the modelled mass flux for streamtube number 

4 exceeds the upper uncertainty bound slightly, although it would be expected that 

some of the points would fall outside of the uncertainty bounds if these were truly 

representative of random experimental error.

The feature was nonetheless a characteristic of the model and might be 

attributed to the presence of a larger wave-like structure between streamtubes 4-6. If 

the central streamtube (5) of these three was a region of relatively high diffusivity in 

the model, then it would be expected that the particles would diffuse away in the 

transverse direction over many steps and accumulate in the two adjacent streamtubes. 

To support this, the numbers of particles in each of the adjacent streamtubes 4 and 6 

were relatively large. By inspecting fig. 7.4, the 5th streamtube boundaries at cross- 

section 1 is much wider than the other streamtubes. This results from a relatively 

shallow, slow moving region of flow between the boundaries of streamtube 5. No 

provision had been made in the model for this large region of slow moving water in 

terms of increasing the time scale, (i.e. decreasing the eddy diffusivity) as had been 

done for the dead zone close to the right bank. Thus the eddy dispersivity was 

artificially too high in the fifth streamtube.

This effect implied that the size of the eddy dispersivity could be linked to the 

mean flow velocity. Therefore a model of the same form as NSCALE in the flume flow 

analysis was investigated, for which the velocity perturbations in the random walk 

scaled with the mean downstream velocity. However, the model could not be
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calibrated so that it reproduced the data to within the estimated uncertainties. The main 

problem arose in the vicinity of the boundaries, and regions of sharp gradients in the 

downstream velocity gradient. Different approaches to handling the boundaries were 

investigated, such as having a minimum value for the effective dispersivity of the 

model. These trials were again unsuccessful, and this might be put down to the use of 

simple linear interpolations between the mean velocity measurements giving rise to the 

incorrect small-scale shear velocity gradients. The form of the shear velocity gradients 

strongly influence the dispersion, and in the absence of a more accurate mean velocity 

field, the modelling was continued using velocity perturbations which did not scale 

with the mean velocity.

The model predictions might be further improved by subdividing the channel 

into further sub-regions having different eddy dispersivities, but this was not carried 

out to avoid over parameterisation at the calibration stage. The modelling aimed to use 

the minimum amount of calibration under which was possible to collapse the 

measurement to within the estimated uncertainties, and this had already been achieved.

The three time constant model was therefore used, and was found to give a 

best fitting distribution to the measured mass fluxes for an fv value of 1.1, which is 

shown in conjunction with the input and the estimated uncertainties in fig.8.4. This 

gave rise to an ensemble average transverse step size o f : <fv Lv> = 0.08m. The 

ensemble average time interval between steps was <T> = 1.6s. The ensemble average 

effective eddy dispersivity coefficient of the model in the first sub-reach was therefore 

given by equation 8.5:
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3(fvLv )2 , .
eY = .v/ = 0.012 ±0.001m s (8.5)

where the value quoted as an uncertainty has been estimated from the model 

sensitivity, using 8.4.

8.6 Optimisation of the multiplier on the transverse step size for the second sub­

reach (cross-sections 1-6).

The model was expected to have a smaller effective transverse dispersivity 

coefficient in the second sub-reach since here the flow entered a riffle section where 

there were no obvious regions of flow separation or secondary circulation. The time 

steps between the random displacements were set at 0.6s, which was within the range 

of the characteristic time scales which had been determined from the turbulence 

measurements at cross-section 4. This was also the same as the time scale which had 

been used for the bulk of the flow in the first sub-reach in region B. Since there was 

not a transverse gradient in the turbulent time scales at cross-section 4, the time scale 

was held at this single value for the entire riffle section (the second sub reach). The 

multiplier, fv was now optimised independently for the riffle section.

Fig. 8.5 shows that for a very small value of fv , the modelled mass flux 

distribution at cross-section 4 matches the measured distribution to within the 

estimated uncertainties. This implied that the tracer had almost completely mixed in the 

transverse direction by cross-section 1 and no further mixing was necessary to predict 

the distribution at cross-section 4. However, as fv was increased from a small value,
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the feature in the 5th streamtube, which was pointed out at cross-section 1, 

disappeared, showing the effects of increased mixing.

The maximum in the number of particles close to the left bank could not be 

reduced simply by increasing the fv factor further. This suggested that there was an 

equilibrium in the number of particles which were entering and leaving the streamtube 

close to the left bank due to the zero flux boundary condition. The maximum was again 

a feature of the model, but complied with the measurements to within the uncertainties.

From inspection of fig. 8.5, the best fitting distribution corresponded to an fV 

value of 0.14, which gave rise to an average transverse step size of <fv Lv> = 0.021m. 

The best fitting distribution is given with the input and the estimated uncertainties in 

fig.8.6. The average time interval between steps was 0.79s, the model dispersivity 

coefficient was estimated to be:

= 3( f vLv )_  = 0.0017 ± 0.0002/w V 1 (8.6)
(T)

8.7 Modelled mass fluxes for entire reach, and reach averaged transverse 

dispersion coefficient.

Fig. 8.7 show the modelled mass fluxes for the entire test reach for the fully 

calibrated model. The model predicts that the mass flux distribution remains well mixed 

following cross-section 4, although as described previously, no tracer concentrations 

were taken further downstream of cross-section 4 within the meander.
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Fig. 8.8 gives a bi-linear interpolation of the modelled mass fluxes for the entire 

reach from the values which were saved at the measurement cross sections. Cross 

sections 5 and 6 are included in this plot, although there was no data available to 

compare with these distributions. However, the dye remained well mixed to within the 

15% uncertainties which had been used between cross sections Al-4.

A reach averaged value of the transverse dispersivity coefficient was estimated 

from the values which were determined for the two sub-reaches. The sub-reach values 

were weighted according to the distances for which they applied to, given by equation 

8.7:

_ 24.6x(er )mi_mcM + 6 6 -6 x (ej-)»t.-r.^a _ 0 nnfn ( 8  7 )
” (24.6 + 66.6)

where the uncertainty was estimated using standard error analysis of equation 8.7, 

using equation 8.8:

Aey = a2(Aey)2sub_reacli+b2(Aey)2sub_reac}a (8.8)

where a = (24.6/91.2) and b = (66.6/91.2), which gave a 7% uncertainty in the reach 

averaged value of ey.
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8.8 Discussion of model dispersivity coefficient.

The fv value was used as a multiplier to a length scale which had been 

estimated as being representative of the strength of the secondary currents in the first 

sub-reach, and was described in section 7.4.5. Since the calibrated fv value was close 

to unity for the first sub-reach, the eddy dispersivity can already at this stage be said to 

be of the expected order of magnitude in the first sub-reach.

The estimations of the transverse dispersion coefficient for the two sub-reaches 

were now compared with values which have been determined on different rivers. The 

rivers included in table 8.8 were selected from previous investigations as having 

geometries and flow characteristics which were as close as possible to the reach on the 

River Lune.
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Table 8.8 Summary of transverse dispersion characteristics from this study and

from different studies on similar rivers.

River sinuosit
y

width
(m)

Q m3/s w/h mean 
velocit 
y m/s

u*
(m/s)

ey
(m2/s)

e/hu*

Lune
(A l-l)

1.4 10.2 0.35 34.0 0.12 0.036 0.012±
0.001

U 1±0
.09

Lune
(1-4)

1.4 7.6 0.35 27.1 0.16 0.036 0.0017 
+ 0002

0.17±0
.02

Lune
reach

1.4 8.5 0.35 30.4 0.15 0.036 0.0045
±.0003

0.45+0
.03

Beaver
River/4

1.3 42.7 20.5 44.5 0.5 0.044 0.043 1.01

Kris-
raba/1

mndr 10 8.0 9.4 0.8 0.069 0.011 0.16

Isere/5 mndr. 60-70 250 28.9 1.4 “ " 0.5-
1.6

South
River/3

1.0 18.3 - 7.3 0.18 0.040 .0046 0.26

Rea/2 1.0 6.7 0.75 37.2 0.73 0.075 0.004 0.24

where the references are:

/I Symlyody(1977)

/2 Cotton and West (1980)

13 Yotsukura and Cobb(1972)

/4 Beltoas(1980)

/5 Holley and Nerat(1984)

There have been very few investigations of the transverse dispersion coefficient

for relatively shallow, sharply curved gravel bedded rivers such as the river Lune.
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In a summary of previous literature, Fischer et al.(1979) concluded that for 

slowly meandering channels, the non-dimensional transverse dispersion coefficient lies 

between: ey/hu* = 0.6 ± 0.3. It was also emphasised that sharp or rapid changes in 

channel geometry could give rise to higher values.

Rutherford (1994) similarly concluded for gently meandering rivers a value of: 

0.3 < ey/du* < 0.9, but that for more tightly curved channels, 1 < ey/du* <3, although 

no precise definition of curvature was given.

Beltoas (1980) gives a range of values having a larger mean dispersion 

coefficient of 0.4 < ey/du* < 2.5. These values were mainly determined (with the 

exception of the Beaver River tabulated above) from channels over 100m wide, with 

large discharges.

The sinuosity (mean downstream distance divided by distance along the valley) 

or channel curvature clearly have a large effect on the values of the dispersion 

coefficient. The curvature leads to secondary currents which give rise to secondary 

advective mixing. Elhadi et al.(1984) examined the variation of ey/du* with width to 

depth ratio and sinuosity, ey/du* increased rapidly with sinuosity, but gradually 

decreased for large width to depth ratios.

That the transverse dispersion should change in the test reach of the River Lune 

is supported by detailed observations by Chang (1971) and Sayre and Yeh (1973). 

These studies showed that ey/du* tends to vary periodically in the downstream 

direction, usually reaching a value of twice the average in the downstream portion of 

the bend and a minimum of about half the average in the upstream portion. In the River 

Lune a slightly larger value of ey/du* occurred at the upstream section than at the 

downstream section. This difference can be attributed to the particular geometry of the
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Lune flow (the curvature was large between cross-section A1 and 1), and the observed 

distribution of the secondary currents, which have a large effect on the dispersion 

coefficient.

In summary, the estimated average dispersion coefficient for the reach falls 

within the range of values quoted by Fischer et al.(1979) and Rutherford(1994), for 

gently meandering rivers.

8.9 Comparison of the calibrated model with a simplified analytical solution.

The tracer concentration measurements at all of the measurement sites were 

required to calibrate the model by varying degrees. There was consequently no data set 

with which to test the model in a predictive sense. However, if a more simple input 

distribution was used, the predictions of the model could be compared with analytical 

solutions to the partial cumulative discharge equation (see section 1.3.5, equation 

1.37) for the same input. This part of the study was only carried out for the first sub­

reach, in which practically all of the tracer mixing had taken place.

The factor of diffusion (FOD - described in section 1.3.5) had to be assumed to 

have a constant value across the channel in order to use the analytical solution.

From the preceding discussions, this is evidently a large approximation. The average 

value of the FOD for the first sub-reach, could nonetheless be estimated from using 

the calibrated particle tracking model to determine the ensemble average eddy 

diffiisivity which was experienced by the particles. Having inserted the estimated 

average factor of diffusion into equations 1.38 and 1.39, for which the number of
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image sources was set at 6 (recommended by Rutherford,1994), and non- 

dimensionalised the mass fluxes, the model output could be compared with the 

analytical solution for the same square wave input, shown in fig. 8.9.

The model prediction of the decrease in the relative height of the input 

maximum is supported by the analytical solution, although the maxima close to the left 

bank has not reduced by as much as for the random walk model. This is due to the the 

analytical solution relying upon a cross-sectional average transverse dispersivity, which 

is smaller than the large effective dispersivity coefficient close to the left bank in the 

random walk model. The random walk model also predicts that the mixing close to the 

right bank is poor, which is a reflection of the small, local effective dispersivity 

coefficient. It would again not be expected that the mixing be any less close to the right 

bank for the analytical solution, due to it using a constant, cross-section averaged 

effective dispersivity coefficient

The analytical solution has therefore shown the expected behaviour, in that it is 

able to reproduce the overall mixing behaviour, but is unable to account for the smaller 

scale features to the mass flux distributions. The comparison of the random walk 

model results with the analytical solution helps confirm that the net diffusive 

(dispersive) behaviour of the random walk model, given its initial and boundary 

conditions, results in a similar net behaviour predicted by the analytical equations.

8.10 Summary and conclusions.

The random particle tracking, streamtube-based model, was able to be 

calibrated such that the particle distributions in regions of equal discharge matched the
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relative tracer mass flux distributions to within the estimated experimental 

uncertainties. These uncertainties were large, but were not unreasonably large given 

the extent of the inhomogeneities which were prevalent in the system which was under 

study. The large uncertainties, however, give rise to a non-uniqueness in the type of 

model which can be used to collapse the data (for instance several different random 

walks based upon slightly different assumptions could be used to collapse the observed 

mass flux distributions to within the uncertainties). However, this appears to be an 

inescapable feature of investigations attempting to model complex environmental 

flows (based on the conclusions about equifinality of the results for different models, 

which were made following investigations on the flume flows). This property is 

discussed further in chapter 9.

The main difference between the river flow model which was developed here, 

and the models of the channel flows in earlier chapters, was that it had to account for 

the large scale inhomogeneities and non-uniform flow. The first characteristic was 

accounted for using a variable effective dispersivity coefficient, whilst the second 

characteristic was accounted for by the incorporation of streamtubes. The particles 

were advected in the downstream direction along streamlines which diverged or 

converged in accordance with the boundaries of regions of equal partial discharge 

(streamtubes).

It was found that the calibration of the model to give a fit to the data (to within 

the estimated uncertainties), was only possible if the effective transverse dispersivity 

coefficient was allowed to vary spatially in the transverse and downstream directions. 

This measure was supported by the variation in the measured turbulent time constants 

to a large degree, and by observations of strong secondary circulation. It was also
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established from the tracing experiments that most of the mixing occurred within the 

first sub-reach, which was expected, since the curvature of the flow was the greatest in 

this region. This lead to the division of the test reach into two sub-reaches, for which 

the mixing behaviour was examined separately.

The effective transverse dispersivity coefficient of the model was estimated 

from the calibrated time step and displacement sizes, and its uncertainty was then 

estimated from a sensitivity analysis of these parameter values. The value of the 

estimated transverse dispersivity coefficients compared favourably with previous 

measurements on other rivers having similar features.

The limitations of the model, given the different approximations which were 

made in its construction (such as rescaling of velocities and flow depths, or linear 

interpolations between point measurements) and the relation of the modelled system to 

the actual system is discussed and expounded upon in chapter 9.

It is concluded that the model forms a robust, semi-empirical, but flexible tool 

in the investigation of the mixing characteristics of a complex environmental flow. The 

stochastic element of the random walk appears once more to be able to embody the 

effects which all the different scales of motion have on the tracer dispersion, to within 

the accuracy of the experiments, given a degree of empirical ‘fitting’ of variable, 

physical parameters.
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Fig. 8.7

Input and predicted mass flux distributions for X sections A1—4 
*102 (uncertainties omitted for clarity)
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Fig.8.9

Solutions for the cumulative discharge diffusion equation 
for a square wave input to correspond with a similar input to 

the random particle tracking model, using the same factor of diffusion

= 0.013 for both models
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Chapter 9

Discussion, conclusions and suggestions for future work. 

9.1 Introduction.

This chapter is a summary and discussion of the previous eight chapters with 

some suggestions for the direction in which the work might be continued. Section

9.2.1 crystallises the principal conclusions of the study, which the subsections (9.2.2 - 

9.2.8) attempt to justify based on information from the previous eight chapters, and 

suggest possibilities for future work.

In section 9.3 suggestions for further research are given, which build on the 

success of the particle tracking technique in order to model momentum transfer in 

addition to mass transfer. Particle tracking models which allow for momentum transfer 

between particles (see for example Hoogerbrugge and Koelman, 1992) are suggested 

as being a credible alternative technique which could model the hydrodynamics of a 

flow in addition to the transport of a passive tracer by the flow. The desirability of such 

models is discussed with reference to other studies, and the construction of an 

algorithm and preliminary investigations are alluded to, as an indication of way in 

which such a model might be developed. Finally, section 9.4 summarises the principal 

conclusion of this thesis.
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9.2 Discussion of chapters 1 to 8.

9.2.1 Principal conclusions.

In this study the dispersion characteristics of a passive pollutant in three 

different flows have been modelled on a semi-empirical basis using random walk 

particle tracking techniques. For the channel flows which were investigated, the 

macroscale dispersion characteristics of the particle distributions were found, in a 

sensitivity analysis, to be largely insensitive to the form of the fine structure (sub 

Lagrangian time scales) of the velocity perturbations, and the distributions from which 

the velocity perturbations were drawn.

The apparent equifinality of the predicted particle distributions for many of the 

models (especially for the in-bank flow case) arose because of their indistinguishability 

from the measured concentration distributions to within the estimated experimental 

uncertainties. This demonstrated an insensitivity of the current data set to discern 

which, if any, of the inferences about the velocity perturbations gave the best 

representation of the combined effects of the turbulence on the large scale tracer 

dispersion characteristics.

For all three flows, the collapse of the measured concentration distributions by 

the predicted particle distributions to within the estimated uncertainties leads to the 

conclusion that the random walk model appears to be able to embody the stochastic 

elements of these systems in such a way as to reproduce the net mixing characteristics 

of a tracer borne by such flows, to the accuracy afforded by the experiments. All this, 

despite the huge range of interacting, dynamically significant scales of motion, the
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inhomogeneities, the anisotropies and, for the river flow, the rugged geometry which 

are all ubiquitous to complex natural flows.

9.2.2 Summary and further discussion of classical theory of fluid dynamics and 

tracer dispersion (chapter one).

The first chapter described aspects of the classical theory of fluid dynamics and 

tracer dynamics which were relevant to the study of tracer dispersion in turbulent 

flows, in order to provide a theoretical foundation to the following chapters. It was 

shown that the non-linear term was responsible for the interactions between all scales 

of dynamically significant motion in a turbulent flow. As the scale and Reynolds 

number of the flow of interest increases, so the number of degrees of freedom which 

must be modelled increases rapidly, and the computing power necessary to directly 

simulate all of these degrees of freedom, with all their interactions, boundary 

encounters and sensitivity to initial conditions, escalates way beyond the present 

computing capabilities for the kinds of flow which were examined in this thesis. If such 

computing power did become available, it would need to be accompanied by even 

better resolution measurements than those which have been described here, in order 

that the initial and boundary conditions could be specified with equal precision. Such 

measurements would be expensive and difficult to apply in the field, while the present 

study suggests that there is no guarantee that models with different behavioural aspects 

(such as the distribution of the velocity perturbations, or treatment of rough 

boundaries) would be resolved between on the basis of the data. For this reason the 

use of semi-empirical models which contain sufficient flexibility to cope with the
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variability of conditions in an environmental flow is suggested as a promising approach 

in environmental flow modelling.

Direct numerical simulations and high order closure models of complex flows 

are highly desirable, and it is likely that these techniques will solve many engineering- 

flow problems in the near future, but the above conclusions suggest that the move 

towards higher and higher resolution models for the purpose of studying environmental 

flows, is unlikely to provide the entire solution.

9.2.3 Summary and further discussion of random walk theory (chapter two).

Chapter two introduced the concept of a random walk model as a simple and 

flexible alternative to conventional modelling techniques in studies of pollutant 

dispersion in turbulent flows. The random walk method can be used in the study of 

complex, inhomogeneous, high Reynolds number flows at all times, greater than the 

Lagrangian integral time scale, subsequent to the tracer release. This is not true of 

models which are based upon simple solutions to the Reynolds averaged advection 

diffusion equation, since the tracer must have been allowed sufficient time (the Taylor 

mixing period) to experience the entire transverse and vertical velocity field (for a 

uniform flow) before an average eddy diffusivity can be applied. More complex models 

of this sort, which allow for a spatially varying eddy diffusivity, require extensive 

calibration.

The simple, Lagrangian mode of application of the random walk is physically 

transparent, and is by definition exactly mass conserving, which is not necessarily the 

case with finite difference schemes, in which numerical errors may lead to violation of
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conservation laws. Investigations in chapter 4 also suggests that there exists a simple 

linear relationship between the Lagrangian and Eulerian time averaged fluctuating 

velocity fields, for the relatively simple in-bank flow (although this flow was 

inhomogeneous and had a relatively large Reynolds number).

Since random walk models comprise repetitive tasks (application of the same 

rules to thousands of particles) they are suitable for parallel computing.

However, the form which the velocity perturbations in the random walk should 

take in order to best represent the motion of a passive tracer in an inhomogeneous 

flow-field is not known. For this reason the remainder of chapter 2 outlined a variety of 

random walk models which made different inferences as to the nature of the turbulent 

velocity perturbations. Some models for the in-bank flow included information from 

the measurements of the fluctuating velocity field, although this information was not 

available for the over-bank flow at the time of writing.

The different models attempted to account for the secondary advections 

(turbulence induced) which were known to be present in both flows, by the use of an 

effective eddy dispersivity. This lumped together the effects of dispersion due to both 

differential advection (caused by the secondary currents) and the diffusive behaviour of 

turbulence. Observations in chapter 4 suggest that, in the case of the over-bank flow, 

the drift in the centroids of the particle distributions, which was not observed in the 

centroid of the concentration distributions, were due to the combined effect of the 

asymmetric flow field, and the secondary circulations. Such a combination is frequently 

present in natural flows, although the asymmetry causing the drift in one direction, 

would more likely be balanced on average by a similar drift in the opposite direction, 

perhaps at a different depth or downstream distance, making the large-scale behaviour
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stochastic and therefore more suitable to be modelled using a random walk. It would 

be an important part of future work to investigate this drift using random walk models 

which included secondary circulation.

However, the core investigation was into the sensitivity of the macroscale

at the particle scale, and this was undertaken in chapter 4

9.2.4 Sum m ary and further d iscussion  o f  th e  F lood  C hannel F acility  flow and 

con cen tra tion  m easurem ents (chapter th ree).

The overall structure of this entire thesis, which concentrated initially on 

laboratory experiments and advanced to a complex environmental system, follows the 

same structure which is used in many studies of environmental systems, but because of 

scale effects associated with the dispersion process in complex flows, it was imperative 

that the laboratory flow was as large as possible in order that it be compatible with the 

river flow. These scaling effects render many tracer experiment sets inapplicable to this 

study because of their small scale.

Chapter 3 described the relatively large scale channel flows for which detailed 

sets of hydrodynamic and tracer concentration data were collected. The relatively high 

resolution measurement s of velocity and concentration fields formed a good standard 

by which to carry out a sensitivity analysis of the different random walk models.

The study of two different flows at this stage of the analysis allowed the 

flexibility of the random walk model to be tested, although further flume studies,
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especially meandering channel flows, would provide useful additional information 

under controlled conditions. The step in complexity which was made, in going from the 

study of the overbank flow to a complex environmental flow, could in this way be 

reduced. However, the course of the research was controlled by the data which was 

available at the time of writing, and the time restrictions of the research.

9.2.5 Summary and further discussion of chapter four.

The conclusions made in section 9.2.1 above are largely drawn from the 

observations which were made in chapter 4. The conclusions to be made about the 

different random walk models on an individual basis were discussed in chapter 4, but 

perhaps the most important observations come from viewing the modelling results 

collectively, for each flow.

Many of the random walk models were calibrated such that the particle 

distributions fitted the measured concentration distributions to within the estimated 

uncertainties for both of the channel flows. This demonstrates the flexibility of each 

individual model, but also it already indicates a certain degree of equality between all 

o f the models. There are three main observations to make at this stage; firstly, given 

that some of the models incorporate finer structure (such as autocorrelations or cross­

correlations) than the simple random walk (JUMP), and that this model is just as 

successful as its counterparts, there appears to be a redundancy in the incorporation of 

the additional information. Secondly, since the inclusion of the finer scale structure did 

not generally produce adverse effects on the models’ mixing characteristics, these 

could be incorporated in more complex models which require more detailed knowledge
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of the particle motion, such as sediment transport models. Thirdly, some of the models 

are based on different fluctuating velocity distributions (for example Gaussian as 

oppose to Gamma) and the resulting macroscale particle distributions are 

indistinguishable in terms of their closeness of fit to the data, since they lie within the 

uncertainty bounds of the data. This last observation might be expected, given that via 

the Central Limit Theorem, which states that in the limiting case, the trajectories of 

many particles undergoing random perturbations taken from any continuous 

distribution, approach a Gaussian distribution. However, this is only the case if the 

particles are undergoing random walks within a homogeneous medium. If the 

inhomogeneous velocity field is taken into account, then given two models for which, 

at each step the perturbation to the particle velocity is taken from different 

distributions, then there are no longer any physical grounds to suggest a collapse of the 

same ensemble trajectory for the two types of velocity distribution. Indeed, for the in­

bank flow, the model TURJ2 accounts for the inhomogeneous velocity field, and yet 

there are no discemibly different facets to the macroscale dispersion characteristics (to 

within the accuracy of the experiment) of this model as compared with other models 

which do not account for the inhomogeneity.

Although the reasoning in the above arguments is well founded in terms of the 

physics, it must be borne in mind that none of the models presented here represent the 

true trajectories of the fluid elements. This is an obvious observation for the simple 

random walk model, such as JUMP, since it cannot possibly account for the 

inhomogeneities, (work by Sawford and Borgas,1993, showed that this kind of model 

was inconsistent with Kolmogorov scaling theory for homogeneous turbulence) but it 

is also true of the more complex models such as the random walks based on a Markov
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sequence. A property of a Markov sequence is that although it is continuous in time, it 

is based upon an incremental equation (the Langevin equation) which is non- 

differentiable. Since the completely random part to the equation is instantaneous, in 

reality the equation would imply infinite accelerations (Legg and Raupach, 1985). 

Moreover, the Gaussian distributions used to model the distributions of the 

fluctuations were modelled without any degree of skewness, which is a necessary 

condition for the transfer of energy between scales (Legg and Raupach, 1985 ). 

However, the model would no longer be a Markov sequence if the fluctuations were 

taken from a non-Gaussian distribution (Sawford, 1985). It is therefore reasserted that 

the aim of these studies was not to search for the exact physical representation of the 

velocity perturbations at the individual fluid element scale, but more pragmatically, it 

was to search for the best representation of the velocity perturbations in the model 

which lead to the same macroscale distributions which were observed. Such an 

assertion has been made by many workers (for example Tampieri et al., 1992 ; 

Sawford, 1985).

Moving on to the stage of the research where the models were used to examine 

the evolution of the depth-averaged spread of the modelled tracer cloud with 

downstream distance, many of the models showed the same characteristically shaped 

curve, which if shifted along the ordinate, collapses to almost the same relationship. It 

is this behaviour which has essentially lead to the conclusions of equifinality in section 

9.2.1. These conclusions were consolidated in the remainder of the sensitivity analysis, 

in which the predicted and measured concentration distributions were shown to be in 

agreement for most of the models of the in-bank flow and several of the models for the 

overbank flow at the furthest measurement site downstream.
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The equifmality of these results would no doubt eventually be removed if more ^

and more accurate measurements were made, and this would help to elucidate several 

points. Firstly, it would establish which of the models used the best representation of 

the turbulent velocity perturbations. Secondly, it would help to define the limits of the 

applicability of the different random walk models, so that unsuccessful ones could be 

eliminated. However, unless in the hypothetical case, the measurements were free from 

uncertainty, an infinite variety of assumptions which might be made about the form of 

the velocity perturbations would need to be examined before conclusions could be 

drawn about the universality of the random walk models in general. This assertion can 

only be made in the absence of a complete analytical understanding of the Lagrangian 

statistics of an inhomogeneous, anisotropic turbulent flow field, which was not known 

at the time of writing.

9.2.6 Summary and further discussion of the field measurements on a reach of 

the River Lune (chapter five).

At the commencement of this study, an upland gravel bedded-river flow was 

chosen in preference to, for example, a mildly inhomogeneous lowland river flow, in 

order to test the feasibility of the application of the particle tracking model to a 

complex situation. This is an extension of a general aim of environmental system 

modelling, in which the behaviour of the complete system is examined, rather than 

breaking it down into simpler blocks, the behaviour of which can be examined in more 

detail. The interactions between all of the different flow processes in the most complex 

flow combine together to give a net behaviour which is different from the behaviour
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which would result if all of the different processes were isolated, and their individual 

effects were combined together.

The field studies which were reported in chapter five provided sufficient 

information with which to construct the particle-tracking dispersion model, which was 

described in later chapters. The acquisition of such information was not without 

mishap, and the problems which were encountered are summarised here, as an example 

of the difficulty involved in such studies of environmental systems. The three basic sets 

of measurements of velocity, turbulence and dye-tracer concentration each had 

problems associated with them, besides the logistical problems associated with taking 

the measuring equipment to the site. The velocity meters were originally calibrated 

incorrectly, (due to an incorrectly calibrated test flume) and later all had to be 

recalibrated. The turbulence meters were found to have larger offsets (by an order of 

magnitude) than expected, and a slight drift. The pump which drew water into the 

sample chamber of the fluorometer broke on one occasion and after repair it had a 

slightly different discharge. Several other tracer experiments (unreported) were carried 

out for the same reach, although these resulted in incomplete data sets.

Apart from the continuous geomorphologic changes to the river bed and banks, 

which were occurring over the duration of the study, a somewhat catastrophic 

landslide also took place between cross sections 4 and 6. Such events might be avoided 

in future experiments by carrying out all of the measurements in as short a period as 

possible. This was hindered to a large extent by the structure of this whole piece of 

research, since the model and the fieldwork were developed in tandem. Future 

investigations would have the benefit of the model having already been developed.
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9.2.7 Summary and further discussion of the analysis of the field measurements 

(chapter six).

The analysis of the velocity, turbulence and concentration measurements in 

chapter 6 centred around the estimation of uncertainties. This was clearly important 

given the complexity of the system understudy, and these uncertainties ultimately set 

the bounds to the accuracy of the modelling work. The uncertainties in the flow 

observables were generally larger (by a factor of -  2) than their equivalent in the flume 

studies. In part, this was due to the measurements on the river being less spatially 

intense, but the extent of the inhomogeneities in the natural flow, as oppose to the 

controlled engineering-flow probably had the greater influence. The uncertainties in the 

measurements of observables in the river flow could be reduced further by a yet more 

intense field campaign, involving repetition of measurements wherever possible. In 

particular, the depth-wise concentration measurements (especially at the first cross 

section, A l) were found to be critical to the estimation of the total mass flux.

Additional future experimentation could include an analysis of the secondary 

velocity measurement technique. The vector addition technique which was used to 

measure the secondary flows in this study, could be compared with direct 

measurements made using the two-channel E.C.M. at different sites in the river.
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9.2.8 Summary and further discussion of the construction and the sensitivity 

analyses of the different random walk models applied to the reach of the River 

Lune (chapters seven and eight).

Chapter 7 described the construction of the computer model of the flow and 

dispersion characteristics in the reach, based on the analysed data. Essentially, this 

comprised interpolation between measurement sites of depths, distances and velocities. 

Some of the data was collected for flows with different stages, which requires further 

interpolation or rescaling. These rescalings represent further approximations, but also 

made the model more flexible for future work, such as the analysis of different stage 

flows.

The model reproduced the measured relative mass flux distributions of the 

tracer to within the estimated experimental uncertainties, and was therefore successful 

to within the accuracy of the experiment. Classically, there is a problem with this 

conclusion, since the solution provided by the particle tracking model is non-unique. 

For example, many different random walk models, based on slightly different 

assumptions about the nature of the velocity perturbations, could be used to reproduce 

the observed behaviour to within the large uncertainties. The non-uniqueness problem 

could be investigated by testing the different models against consistency criteria. For 

example, the models could be tested against another data set from a different tracer 

experiment. To some extent, such testing was carried out in the models of the flume 

flows, although these flows were less complex. However, it was evident, even under 

these relatively high resolution measurements in the flume, that a non-uniqueness or
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equifmality between models existed. Logistically, it would be difficult to carry out 

measurements on the river with the same accuracy as in the flume, let alone even more 

accurate measurements, which the results of this study suggest are required to 

distinguish between the macroscale behaviour of different models. However, although 

the non-uniqueness property is undesirable in a physical model, it appears to be 

characteristic in modelling environmental systems subject to uncertainty in 

observations and boundary conditions. Some of the empirical models developed here 

have been shown to give the correct macroscale dispersion behaviour to within 

experimental accuracy. Other models which were investigated which did not collapse 

the data to within the uncertainties have also been rejected.

The uncertainties in the mass fluxes were carefully estimated once again in 

chapters 7 and 8. Although these were derived from the propagation of experimental 

measurement errors in the flow observables, no account was directly taken of random 

or systematic errors which can be attributed to the approximation of the model 

4 architecture ’ (geometry and structure) to the real system. This type of error was 

estimated during different parts of the model construction (for examples, in the 

construction of the streamtube boundaries or in the approximation to the curvature in 

the downstream direction), and was minimised as far as possible, so that it was smaller 

than the uncertainties in the measurements of the different flow observables. In this 

way, the uncertainties which were estimated for the modelled flow observables were 

considered to be of at least the correct order. However, it is recognised that there 

could be systematic dependencies of uncertainties in the modelled flow observables 

with the model architecture, which could give rise to an underestimation of the error 

associated with the modelled flow observables. This could be investigated to some
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extent, if the model was used on different data sets, and it consistently reproduced the 

mass flux distributions to within the estimated uncertainties. There could also be 

dependencies of the physically based parameters (such as the lengths of the random 

displacements and the time intervals between them) on the particular flow conditions. 

This could also be investigated to some extent, if the model was used on detailed data 

sets for different flows within the same reach, and it consistently reproduced the mass 

flux distributions to within the estimated uncertainties.

In the final analysis, the transverse dispersivity coefficient for the second sub­

reach was estimated as being approximately the same as that for the first sub-reach. In 

this case, it might be asserted that the model could have been used in a more predictive 

sense for the second sub-reach, rather than carrying out further calibration. However, 

despite the similar sizes of the coefficients of dispersivity for the two sub-reaches, 

these are derived from a combination of length and time scales within each sub-reach. 

The relatively short time scales in the second sub-reach were representative of the 

behavioural aspect of the flow in this riffle section, whereas the longer time scales in 

the first sub-reach were synonymous with the presence of the slow moving ‘deadzone’ 

near to the right bank. The similarity in the sizes of the transverse dispersivity 

coefficients, might be explained by the presence of relatively strong turbulent mixing 

(and weak secondary advective mixing) in the riffle section, off-setting the relatively 

strong secondary advective mixing (and weak turbulent mixing) in the pool section.

The use of streamtubes, and mass flux distribution analysis in the river 

modelling work was suggested as an essential prerequisite to the use of random 

particle tracking models in systems with non-uniform geometry and flow. This also has
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the advantage that the model results can be cross-validated to some extent using 

solutions to the streamtube or partial cumulative discharge diffusion equation.

The success of the model in reproducing the observed macroscale dispersion 

characteristics to within the accuracy of the experiment, and with regard for the 

differences between the natural and modelled system, consolidates the conclusions 

which were made in section 9.2.1. The statement that the combined effect of the huge 

range of dynamically significant scales of motion embodied by the Navier-Stokes 

equation on the macroscale dispersion characteristics of a passive tracer can be 

modelled using the relatively simple random walk model, can only be made for the 

macroscale, which has not yet been strictly defined for the river flow. Given that the 

largest scales of motion which are important to transverse mixing are due to the 

secondary currents, and since the effect of these have been lumped into the model’s 

effective dispersivity coefficient, it is reasonable to assume that these scales define an 

absolute minimum to the macroscale. Given that the decorrelation time scale in the 

transverse direction, T2 which was measured by the two-channel E.C.M. was on 

average -1.2 seconds (reach averaged value from measurements), then a length scale 

associated with the downstream direction can be estimated from the dimensional 

construct, [ <U>T2 ] ,  where <U> is the ensemble average downstream velocity ( <U> 

-  0.25ms'1). This gives approximately 0.3m as the minimum downstream length scale. 

The enhanced mixing of the tracer due to secondary circulation is essentially being 

modelled as a stochastic process, so for statistical stability in the result, at least 10 

times this minimum length scale gives a representative resolution of approximately 3m, 

defining the order of magnitude of the macroscale discussed above. This length scale is 

smaller, by a factor of 3-4, than the resolution at which the mass fluxes were examined

330



in the downstream direction in this experiment. It also implies, that should the 

experiment be repeated with more spatially intensive measurements, then it should not 

be expected that the random walk models could reproduce facets in the measured 

concentration (mass flux) distributions to a smaller scale than ~3m.

9.3 Suggestions for extension of current work.

The above conclusion about the random walk, particle tracking model’s ability 

to model the macroscale mixing characteristics of a passive tracer, also raises the 

question as to whether it would be possible to model the net effects of momenta 

transfer between ‘fluid elements’ in order to model the hydrodynamics as well as the 

tracer dispersion using random walk techniques. The modelled tracer particle motion is 

a representation of a marked fluid element in turbulent motion, and since each element 

carries momentum as well as mass, it would seem a natural step forward to include the 

transport and exchange of momentum in particle tracking models of environmental 

flows. This would hopefully provide a more satisfactory description of the mean, as 

well as the fluctuating velocity field, than the linear interpolation methods which were 

used in the current model. The linear interpolations cannot properly account for the 

inhomogeneities which are present at smaller scales than the resolution of the 

measurements.

In the Reynolds averaged advection diffusion equation, the mass transfer 

corresponding to terms such as u'i c'j , are modelled using an eddy diffusivity, which

relates this product to the mean concentration gradient. Similarly, in low order (up to 

second order) closure models of the RNS equations, the momentum transfer
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corresponding to terms such as u'i u'j , is again generally related via the gradient flux

hypothesis, to the mean velocity gradient. Both forms of transport can equivalently be 

modelled using random walk models, and the following section explores the concept of 

a momentum transport model.

9.3.1 Towards a particle tracking model of flow in a natural channel.

The concept of a particle tracking, momenta exchange model comes from a 

larger class of models which are generally termed particle-particle (PP) models, which 

are generally used to solve many-body problems (Zannetti, 1990b). The motion of 

systems comprising three or more interacting particles, despite their being governed by 

the relatively simplistic Newtonian laws of motion (dealing with systems neither subject 

to quantum, nor relativistic effects), cannot generally be determined analytically, due 

to the non-linearity of the interactions. However, in PP models, the combination of the 

forces acting on any one particle (whether the forces be gravitational, electrostatic, 

etc.) within a system of particles can be evaluated instantaneously from the relative 

positions of all the other particles, and the resulting motion of each particle can then be 

evaluated by the integration of Newton’s second law of motion, given by equation 9.1 

(see Sugimoto, 1993):

(9.1)
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where Uj is the velocity of particle j, and there are (N-l) particles of mass m, exerting a 

force Fi on particle j. The integral is then approximated by a summation over the 

accelerations between a discrete time step At in practice.

Such models find useful application in areas such as planetary physics, vortex 

dynamics and molecular dynamics. The models of many particle systems are by their 

nature multiple task-orientated, and lend themselves well to parallel computing. 

Further, task specific computer chips have been designed (Sugimoto, 1993), with the 

sole purpose of evaluating the force between two particles, given the particle 

separation. This type of technology reduces the cost of making such calculations, and 

makes research into PP models more feasible.

Returning specifically to fluid motion, there are many ways of building 

microscale models which lead to a given set of continuum equations, such as the 

Navier-Stokes equations (Frisch et al., 1986). The macroscopic motion of a fluid can 

theoretically be modelled from the interactions between particles at the molecular 

scale, for which the inter-particle forces of attraction due to electromagnetic and 

nuclear forces are well understood (Rapaport and Clementi, 1986), and all that is 

required to study the macroscale fluid motion are a sufficient number of modelled 

particles. However, such models require many thousands of particles to even model a 

few thousand atomic distances (Rapaport and Clementi used 100000 particles to model 

a flow of dimension 1000 A), and the relative motions are updated with a time step 

which is ~ 1/100th of the average time it takes for a particle to travel a distance the 

length of the mean free path. In the above study, turbulent like structures such as 

eddies and periodic eddy shedding were observed around a cylindrical object in the 

flow field. However, there is little chance in the near future of scaling up the
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computing power necessary to model flows on an environmental scale using molecular 

dynamics.

A different approach to building up macroscale flow from microscale 

interactions was taken by Frisch et al.(1986), with a lattice-gas automata model. 

Models of this sort have a completely discretised phase space, and are based around 

particle motion along a regular lattice, for which the time interval between interactions 

is compatible with the time it takes the particles to travel the mean free path length. 

The particles interact at the nodes of the lattice space, in accordance with semi­

heuristic rules which conserve angular and linear momentum. Frisch et al.’s model, 

which was based on a 2d hexagonal lattice, was found to be consistent with the 

Navier-Stokes equations in the continuum limit (under low Mach numbers). Such 

models can be used to study flows having a Reynolds numbers which is limited by the 

ratio of the overall lattice size to the to the spacing in the lattice. However, it is 

difficult to envisage how inhomogeneous or anisotropic media could be represented 

using this framework. Further, the more complicated features that are added to the 

flow, the number of possible states which can occur per node increases dramatically, 

making an extension to complex flows difficult (Hoogerbrugge and Keolman, 1992)

Finally the most promising approach relevant to the kind of flow modelling 

investigated in this study, is a combination of the two models described above, which 

incorporated the flexibility of the grid-free molecular dynamics method, and the larger 

scales of motion represented by the particles in the lattice gas automata model.

This approach was used recently by Hoogerbrugge and Keolman (1992), 

whereby particles which are representative of fluid elements exchange momenta in 

accordance with physically based rules. Essentially, in Hoogerbrugge and Keolman s
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model, the particle interaction (or exchange of momenta) comprised two parts, a 

‘damping term’, dependent on the relative momenta of the interacting particles, and a 

‘heating up’ term, which was a noise component. These two terms represent the 

effects of viscosity and pressure fluctuations, respectively. Both of these terms were 

weighted with a non-dimensional weighting function, which was dependent on the 

particles’ separation.

These authors found that with relatively few particles, the average coarse 

grained dynamics of the particles were at a first approximation concordant with the 

Navier-Stokes equations. Further, the one particle velocity distribution over time 

demonstrated a Maxwell/Boltzman distribution, and the equations of state for pressure 

was closely matched for particle number densities (defined by Ni/r^, where Ni is the 

number of particles in the system, and rc is the distance over which particles can 

interact). The model also gave a constant viscosity similar to that of a Newtonian fluid. 

Moreover, for the specific case of flow around a cylinder in a rectangular duct, the 

model was shown to be able to reproduce the drag force on the cylinder in accordance 

with measurements.

These observations are promising for the future application of PP models to the 

modelling of environmental flows. Towards the end of this piece of research one such 

PP model was investigated, and some of the problems encountered during the short 

investigation are outlined below.
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9.3.2 Some preliminary investigations into Particle Particle models: a suggestion 

for the direction of future work.

A simple PP algorithm was constructed on a parallel transputer system, in 

which thousands of particles exchanged momentum with each other and the bed in an 

(invented) open channel flow. The momentum exchange rules were derived from the 

shear stresses associated with a logarithmic vertical velocity profile, incorporating an 

eddy viscosity based on PrandtTs mixing length theory. These interactions were made 

proportional to local flow parameters, such as the positions and velocities of local 

particles. The precise form of the discretised interactions were not known, and the 

strength of the interactions was varied with the use of variable parameters which were 

multipliers to the interaction strength. These parameters were adjusted until the 

perturbations to the particle velocities at each time step were of the correct order of 

magnitude (of the order u*, for example, see Zannetti, 1990b). A similar process was 

carried out for particles interacting with the bed. The discontinuity in the velocity 

gradient at the water surface was attempted to be accounted for through the use of 

image particles which exerted an equal and opposite force on particles close to the 

surface, to that which was exerted on them from particles below. The vertical velocity 

distribution was then investigated following many interactions (time steps).

These preliminary investigations indicated that the stability of the logarithmic 

distribution was sensitive to the form of the boundary interactions at the bed and at the 

surface, and that these require further investigation before the equilibrium state can be 

maintained for a long period of time.
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The research aimed primarily to demonstrate that a simple macroscale 

(logarithmic) velocity distribution and an energy balance could be maintained by 

particles which exchange momenta in accordance with rules which are functions only 

of local flow variables. If this could be achieved, then given the initial and boundary 

flow conditions, the particles could be made to ‘self assemble’ into the correct 

macroscale distribution, following an adjustment period. If these interaction rules could 

then be shown to give stability for a variety of conditions, then the PP model would be 

a useful tool in the investigation of both the hydrodynamics and tracer dispersion in 

complex environmental flows.

9.4 Summary.

This chapter has discussed the conclusions which can be drawn from the 

studies of the random walk, particle tracking technique in the first eight chapters. It has 

been demonstrated that the a simple, flexible and semi-empirical approach to tracer 

dispersion modelling can be effective in the understanding of the mixing characteristics 

of a complex environmental flow. Further, an extension to of the use of particle 

tracking techniques has been suggested as a promising area of research in the 

modelling of the hydrodynamics of environmental flows.

This thesis has worked towards the development of a set of flexible computer 

modelling techniques that would allow the prediction (especially near and mid-field) of 

flow and transport of solutes in natural channels of complex geometry. These 

techniques, while partially empirical in nature, and allowing for equifinality in the
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underlying description, have the potential to reflect the large scale flow structures such 

as ‘deadzones’, and secondary currents that are so important to the mixing 

characteristics in real (rather than laboratory) channels, and to do so in a 

computationally feasible way.
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