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ABSTRACT

THE ROLE OF SUPPRESSOR OF CYTOKINE SIGNALLING 3 IN 

REGULATING TOLL LIKE RECEPTOR-MEDIATED INTESTINAL 

EPITHELIAL HOMEOSTASIS AND REPAIR

Imtiyaz Thagia, MSc

The surface o f the alimentary tract is lined with a single layer o f intestinal epithelial 

cells (IEC) that functions as a barrier between commensal microflora and the 

underlying immune system. Maintenance o f IEC barrier, subsequent to injury or 

physiological damage is essential in maintaining homeostasis. IECs express Toll-like 

receptors (TLR) on their surface which are able to detect microbial ligands such as 

helminth proteins, Poly I:C, lipopolysaccharide and flagellin, recognised by TLR2, 

TLR3, TLR4 and TLR5, respectively. Recent evidence proposes TLR-induced 

inflammatory pathways are vital for mucosal homeostasis with dysregulated repair 

predisposing individuals to inflammatory bowel disease (IBD). In IBD, the expression 

o f suppressor o f cytokine signalling -3 (SOCS3), a negative feedback inhibitor o f 

inflammatory cytokines (TNFa, 1L-6) is enhanced. The aim of this study was to 

investigate the role o f SOCS3 on TLR-induced IEC responses associated with normal 

homeostasis and epithelial repair. SOCS3 over-expressing IEC were developed to 

assess its function on epithelial repair, gene and protein expression in response to 

microbial stimulation. Our results support previous data implicating TLR ligands 

being imperative for repair of damaged epithelial surfaces, and highlight a pivotal role 

o f SOCS3 in mediating TLR-induced epithelial repair. Our results then go onto 

indicate over-expression o f SOCS3 in IBD may perpetuate inflammation by promoting 

the production o f pro-inflammatory TNFa in response to commensal microflora. In the 

final part o f this study we show IEC become tolerant to commensal flora, protecting
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against incessant immune activation by commensals. In conclusion, these studies give 

credit to the hypothesis that SOCS3 influences microbial-induced IEC responses 

associated with normal homeostasis and epithelial repair. Furthermore, our data 

indicates SOCS3 expression must be tightly regulated permitting TLR-induced 

epithelial repair. The findings presented within this study offer a strong foundation for 

future in vivo studies on how SOCS3 impacts on intestinal disease.

3



ACKNOWLEDGEMENTS

I would like to thank my supervisors, Dr. Rachael Rigby and Prof. Roger Pickup for 

their guidance and supervision; I could not have done this without their support. My 

gratitude extends to Dr. Karen Wright for her advice and suggestions, and to all the 

members o f the Lancaster University Gastroenterology Research Group for their 

encouragement.

Most importantly, I would like to thank my dear parents Inayat and Sharifa, my 

siblings Seraz, Zenab and Kulsum and finally all my friends, whose patience and 

understanding have encouraged me throughout.

4



DECELERATION

I declare that this thesis was composed by myself and has not been submitted 

substantially the same form for the award of a higher degree elsewhere.

Imtiyaz Thagia MSc



CONTENTS PAGE

Title page......................................................................................................  1

Abstract........................................................................................................... 2

Acknowledgements.......................................................................................  4

Declaration.....................................................................................................  5

Contents......................................................................................................... 6

Table of Contents.........................................................................................  7

List of Figures.............................................................................................. 12

List of T ables...............................................................................................  17

General Introduction................................................................................. 19

Hypothesis....................................................................................................  85

A im s...............................................................................................................  86

M aterials......................................................................................................  89

M ethods......................................................................................................... 93

Results 1 ........................................................................................................ 11^

Results 2 ........................................................................................................ 137

Results 3 ......................................................................................................  162

Results 4 ........................................................................................................ 190

General Discussion and Future W ork....................................................  208

Bibliography.................................................................................................  216

Abbreviations...............................................................................................  273

6



TABLE OF CONTENTS



1. GENERAL INTRODUCTON...................................................................................19

1.1 The human digestive system..............................................................................20
1.1.1 Overview o f the human digestive system ........................................................20
1.1.2 Anatomy o f the colon.......................................................................................... 21
1.1.3 Microanatomy of the colon................................................................................ 22
1.1.4 Differentiation o f intestinal epithelial stem ce lls ........................................... 23
1.1.5 Organisation o f intestinal tissue........................................................................ 25
1.1.6 The role o f commensal flora in maintaining colonic physiology...............27

1.2 Interaction between intestinal epithelial cells and gut microbiota............31
1.2.1 Toll-like receptors and Toll-like receptor signalling.....................................31
1.2.2 TLR ligands........................................................................................................... 37
1.2.3 Establishment o f gut m icrobiota....................................................................... 46
1.2.4 Oral tolerance....................................................................................................... 49

1.3 Suppressor of Cytokine Signalling -  3 .............................................................51
1.3.1 Structure and function o f Suppressor o f cytokine signalling - 3 ................. 51
1.3.2 Role o f SOCS3 in mediating TLR signalling.................................................57
1.3.3 Role o f SOCS3 in proteosomal degradation................................................... 59

1.4 Tissue homeostasis and repair following damage......................................... 60
1.4.1 Intestinal epithelial homeostasis and repair following in ju ry ......................60
1.4.2 TLR signalling and intestinal epithelial regeneration................................... 63
1.4.3 TLR signalling in epithelial regeneration o f other tissues........................... 66

1.5 Role of microbes in intestinal diseases.............................................................67
1.5.1 Inflammatory bowel d isease..............................................................................67
1.5.2 Role o f microbes in colorectal cancer.............................................................. 70
1.5.3 Role o f microbes in necrotising enterocolitis..................................................74

1.6 Probiotics and prebiotics.................................................................................... 77
1.6.1 Probiotics............................................................................................................... 77
1.6.2 Prebiotics............................................................................................................... 80

1.7 Role of SOCS3 in intestinal disease..................................................................83

1.8 Hypothesis..............................................................................................................85

1.9 Aims.........................................................................................................................86

1.10 Specific Aims.........................................................................................................87

2. MATERIALS AND METHODS............................................................................. 88

2.1 Materials................................................................................................................89
2.1.1 Cell lines................................................................................................................ 89
2.1.2 TLR ligands.......................................................................................................... 90
2.1.3 A ntibodies.............................................................................................................91



2.1.4 Primers 92

2.2 Methods..................................................................................................................93
2.2.1 Cell culture.............................................................................................................93
2.2.2 Plasmid preparation for transfection................................................................. 95
2.2.3 Transfecting IECs with plasmid D N A ..............................................................98
2.2.4 Quantitative P C R ..................................................................................................99
2.2.5 SDS-PAGE and Western blotting....................................................................108
2.2.6 Proliferation assay...............................................................................................111
2.2.7 Wound healing assay.......................................................................................... 113
2.2.8 ELISA Assay........................................................................................................ 115
2.2.9 Immunocytochemistry........................................................................................116

3. GENERATION OF IECs OVER-EXPRESSING SOCS3............................... 117

3.1 Summary...............................................................................................................118

3.2 Introduction......................................................................................................... 119

3.3 Aim: To develop SOCS3 overexpressing IECs............................................120

3.4 Methods.................................................................................................................121
3.4.1 Generating transient SOCS3 overexpressing IEC.........................................121
3.4.2 Generating stable SOCS3-overexpressing IEC............................................. 123

3.5 Results...................................................................................................................128
3.5.1 SW480 and Caco-2 IEC were both shown to transiently overexpress 
SOCS3 m R N A ................................................................................................................. 128
3.5.2 SW480 IEC were shown to stably overexpress SOCS3 at both mRNA and 
protein levels.................................................................................................................... 130
3.5.3 Caco-2 IEC were shown to overexpress SOCS3 mRNA after forming 
m onolayers........................................................................................................................133

3.6 Discussion............................................................................................................ 134

4. SUPPRESSOR OF CYTOKINE SIGNALLING 3 (SOCS3) INFLUENCES 
MICROBIAL-INDUCED INTESTINAL EPITHELIAL RESTITUTION AND 
WOUND REPAIR.............................................................................................................137

4.1 Summary...............................................................................................................138

4.2 Introduction......................................................................................................... 139

4.3 Aim: Investigate SOCS3 overexpression on TLR-mediated wound repair 
............................................................................................................................... 141

4.4 Methods.................................................................................................................142
4.4.1 Assessment o f SOCS3 on TLR-induced IEC proliferation.........................142

9



4.4.2 Assessment o f TLR ligands and SOCS3 on epithelial wound repair 142
4.4.3 Assessing wound repair as a consequence o f direct TLR ligation or 
secondary effects o f induced cytokines....................................................................... 143
4.4.4 Assessment o f restitutional vs. proliferative wound repair......................... 143
4.4.5 Assessing proliferative inhibitor on TLR-mediated epithelial rep a ir  144

4.5 Results................................................................................................................... 145
4.5.1 SOCS3 overexpression limits LPS and ES induced IEC proliferation.... 145
4.5.2 LPS and Flagellin promote initial (restitutive) wound healing whereas T. 
muris promotes both restitutive and proliferative wound healing...........................147
4.5.3 Increased wound repair is due to direct TLR ligation, not secondary effects 
o f induced cytokines.......................................................................................................149
4.5.4 Mitomycin C (10pg/ml) is shown to inhibit proliferative wound repair .151
4.5.5 Flagellin may promote restitutive wound repair.......................................... 153
4.5.6 Flagellin is shown to promote proliferative wound repair...........................155
4.5.7 SOCS3 limits T. muris-induced wound repair................................................157

4.6 Discussion............................................................................................................ 158

5. SUPPRESSOR OF CYTOKINE SIGNALLING 3 (SOCS3) ENHANCES 
TOLL-LIKE RECEPTOR 5 (TLR5) INDUCED TNFa PRODUCTION IN 
INTESTINAL EPITHELIAL CELLS......................................................................... 162

5.1 Summary.............................................................................................................. 163

5.2 Introduction......................................................................................................... 164

5.3 Aim: To investigate whether SOCS3 influences IEC cytokine production
in response to microbial challenge.................................................................................168

5.4 Methods................................................................................................................ 169
5.4.1 Assessment o f TLR ligands and SOCS3 on cytokine and receptor 
expression.......................................................................................................................... 169
5.4.2 Assessment o f TLR ligands and SOCS3 on transcription factor expression 

169
5.4.3 Assessment o f TNFR2 protein expression...................................................... 170

5.5 Results...................................................................................................................171
5.5.1 TLR5 ligation is shown to promote TNFa mRNA expression...................171
5.5.2 TLR5 ligation had no effect on TGF|3 mRNA expression.......................... 172
5.5.3 TLR5 induces TNFa mRNA expression in a dose dependent manner.... 173
5.5.4 SOCS3 enhances TLR5 induced TNFa mRNA expression........................ 175
5.5.5 SOCS3 driven increases in mRNA do not appear to translate to increase in 
secreted T N F a.................................................................................................................. 177
5.5.6 SOCS3 overexpression had no significant effect on LPS or FLA induced- 
pSTAT3 expression......................................................................................................... 179
5.5.7 Flagellin does not induce NF-^B p65 expression........................................ 180

10



5.5.8 S0CS3 blocked TLR3, and TLR5-induced TN FR2.....................................181
5.5.9 Flagellin was shown to down- then up-regulate TNFR2 protein expression 

................................................................................................................................183

5.6 Discussion.............................................................................................................186

6. IEC SOCS3 MAY MEDIATE HYPO-RESPONSIVENESS TO
COMMENSAL MICROFLORA.................................................................................190

6.1 Summary................................................................................................................191

6.2 Introduction.......................................................................................................... 192

6.3 Aim: To investigate whether SOCS3 mediates IEC tolerance to TLR
ligation................................................................................................................................ 195

6.4 Methods................................................................................................................. 196
6.4.1 Assessment o f TLR ligand pre-treatment on SOCS3 and TLR receptor 
expression........................................................................................................................ 196
6.4.2 Assessment o f IEC differentiation status on SOCS3, TGFp and TNFa 
expression........................................................................................................................ 196

6.5 Results....................................................................................................................197
6.5.1 SOCS3 expression upregulated following treatment with L P S .................... 197
6.5.2 LPS pre-treatment attenuated IEC SOCS3 expression following LPS
stimulation....................................................................................................................... 198
6.5.3 TLR4 IEC expression attenuated response following pre- treatment with
LPS ............................................................................................................................... 199
6.5.4 Proliferating IEC express greater levels o f SOCS3 than differentiated IEC
following TLR4 ligation.................... ..........................................................................200
6.5.5 Proliferating IEC express greater levels o f TNFa than differentiated IEC
following TLR4 ligation.............................................................................................. 201
6.5.6 TGFp is upregulated in both proliferating and differentiated IEC following
TLR4 ligation...................................................................................................................202

6.6 Discussion........................................................................................................... 204

7. GENERAL DISCUSSION AND FUTURE W ORK........................................ 208

8. BIBLIOGRAPHY................................................................................................... 216

9. ABBREVIATIONS.................................................................................................273

11



LIST OF FIGURES

12



CHAPTER 1

Figure 1-1 Anatomy o f the human co lon ......................................................................... 21

Figure 1-2 Intestinal epithelial stem cells become increasingly differentiated while

migrating along the vertical axis o f the crypt....................................................................... 23

Figure 1-3 Diagram showing the mucosal layer o f the colon, comprising the

epithelium and the underlying lamina propria...................................................................... 26

Figure 1-4 Fermentation within the colon........................................................................ 29

Figure 1-5 TLRs are involved in the recognition o f microbial molecular patterns......

....................................................................................................................................................... 34

Figure 1-6 Cell membrane o f a Gram-negative bacterium ............................................ 39

Figure 1-7 The bacterial flagellum.................................................................................... 41

Figure 1-8 Diagram depicting the various domains o f the SOCS3 protein, sites o f

interaction and mode o f action ................................................................................................ 53

Figure 1-9 The molecular mechanism by which SOCS3 negatively regulates IL-6

signalling......................................................................................................................................56

Figure 1-10 Proposed mechanism by which SOCS3 targets signalling molecules for

proteosomal degradation by the proteasom e........................................................................ 59

Figure 1-11 Simplified model of repair of superficial epithelial cell injury within the

intestine........................................................................................................................................ 61

Figure 1-12 Average number o f deaths per year and age-specific mortality rates o f 

colorectal cancer, by sex, UK, 2008-2010 ............................................................................70

CHAPTER 2

Figure 2-1 Schematic representation o f the steps involved in the real-time SYBR-

Green reaction .......................................................................................................................... 101

Figure 2-2 Example o f a validation experiment for the SOCS3 primer in relation to

the RPLPO housekeeping gene........................................................................................... 106

Figure 2-3 Phase-contrast images o f Caco-2 monolayer's with images taken at (a) 0 

Hours (b) 24 Hours (c) 48 Hours after w ounding..............................................................113

13



CHAPTER 3

Figure 3-1 Diagram displaying the pBIG2i plasm id.....................................................121

Figure 3-2 GS50726 pIERESneo-Human_SOCS3 plasm id....................................... 124

Figure 3-3 Genetic sequence o f the GS50726 pIERESneo-Human_SOCS3 plasmid,

with the SOCS3 coding sequence highlighted.................................................................... 126

Figure 3-4 Relative increase in SOCS3 mRNA in SW480 SOCS3 transfected IEC in

relation to SW480 IEC which were transfected with the EV plasmid............................128

Figure 3-5 Relative increase in SOCS3 mRNA in Caco-2 SOCS3 transfected IEC in

relation to Caco-2 IEC which were transfected with the EV plasmid............................ 129

Figure 3-6 qPCR and western blots illustrating SOCS3 expression in SW480 

SOCS3norm and SOCS3hl IEC, with [3-actin used as a loading control for

im m unoblotting........................................................................................................................ 131

Figure 3-7 Relative increase in SOCS3 mRNA in Caco-2 SOCS3 transfected IEC in 

relation to Caco-2 IEC which were transfected with the EV plasmid then allowed to 

form monolayers for 7 days....................................................................................................133

CHAPTER 4

Figure 4-1 Effect o f ES, LPS and flagellin on proliferation o f SW480 IECs 

transfected with plasmid either containing the entire coding sequence for SOCS3 (S3)

or a control empty vector (EV) after 4 8 h ............................................................................ 146

Figure 4-2 Effect o f LPS, flagellin and ES treatment on wound healing o f Caco-2

monolayers................................................................................................................................ 147

Figure 4-3 Effect of LPS and flagellin indirect and direct treatment on wound

healing o f Caco-2 monolayers............................................................................................... 149

Figure 4-4 Effect o f hydroxyurea (10, 5 and 2pM ) and mitomycin C (10, 5 and

2pg/ml) treatment on wound healing o f Caco-2 monolayers.......................................... 152

Figure 4-5 Effect o f mitomycin C, LPS and flagellin treatment on wound healing o f

Caco-2 monolayers.................................................................................................................. 153

Figure 4-6 Effect o f mitomycin C, LPS and flagellin treatment on wound healing o f 

Caco-2 monolayers.................................................................................................................. 155

14



Figure 4-7 Effect o f LPS, flagellin and ES treatment on wound healing o f Caco-2 

monolayers after transfecting Caco-2 IEC with empty (EV) or SOCS3 vector (S3) 

plasm ids..................................................................................................................................... 157

CHAPTER 5

Figure 5-1 TLR5 and TNFR2 receptor signalling pathways, causing the expression o f

SOCS3 and its negative feedback mechanism on both signalling pathways................ 166

Figure 5-2 Fold-change in cytokine mRNA expression after TLR liga tion ............. 171

Figure 5-3 Fold-change in TGFp mRNA expression after TLR5 ligation................ 172

Figure 5-4 Fold-change in TNFa mRNA expression after TLR5 ligation.................173

Figure 5-5 Effect o f varying concentrations o f flagellin treatment (0.01, 0.1 and

lpg/m l) on the expression o f TNFa mRNA in SOCS3norm and SOCS3hl IEC 175

Figure 5-6 Effect o f flagellin treatment on TNFa secretion from SOCS3norm and

SOCS3hi IEC..............................................................................................................................177

Figure 5-7 Effect o f LPS and flagellin, treatment on STAT3 phosphorylation in

SOCS3norm and SOCS3hl IEC................................................................................................. 179

Figure 5-8 Effect o f LPS and flagellin, treatment on NF-^B p65 in SOCS3norrn and

SOCS3hi IEC..............................................................................................................................180

Figure 5-9 Effect o f flagellin, Poly I:C and LPS treatment on the expression o f

TNFR2 mRNA in SOCS3norm and SOCS3hi IEC............................................................... 181

Figure 5-10 Distribution o f TNFR2 in SOCS3norm IEC after exposure to flagellin

(O.lpg/ml) for 1, 2, 4, 6, and 12h using immunocytochemistry...................................... 184

Figure 5-11 Possible mode o f SOCS3 action in TLR5-induced TNFR2 signalling 

 188

CHAPTER 6

Figure 6-1 Effect o f LPS treatment (1, 2, 3, 4 and 6h) on SOCS3 mRNA expression

vs. No Treatment...................................................................................................................... 197

Figure 6-2 Effect o f LPS pre-treatment (6h) and subsequent LPS treatment (1, 2, 3, 

4 and 6h) on SOCS3 mRNA expression vs. No Treatment..............................................198

15



Figure 6-3 Effect o f LPS pre-treatment (6h) and subsequent LPS stimulation (1,2,

3, 4 and 6h) on TLR4 mRNA expression............................................................................199

Figure 6-4 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on

SOCS3 mRNA expression..................................................................................................... 200

Figure 6-5 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on

TNFa mRNA expression........................................................................................................201

Figure 6-6 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on

TGFp mRNA expression........................................................................................................202

16



LIST OF TABLES

17



Table 2-1 List o f manufacturers, product codes, molecular weight, source and

working dilution o f primary and secondary antibodies...................................................... 91

Table 2-2 Combination o f forward and reverse primer concentrations for

optimisation experiments for qP C R .....................................................................................105

18



1. GENERAL 
INTRODUCTON

19



1.1 The human digestive system

1.1.1 Overview of the human digestive system

The human digestive system is composed o f two groups o f organs; these are the 

gastrointestinal (GI) tract and the accessory organs. The GI tract or alimentary canal is 

a continuous tube that extends from the mouth to the anus through the thoracic and 

abdomino-pelvic cavities measuring between 5-7 metres in length. The organs o f the 

GI tract include the mouth, oesophagus, stomach and both the small and large 

intestines. The accessory digestive organs include the teeth, tongue, salivary glands, 

liver, pancreas and gallbladder. Teeth aid in the mechanical breakdown o f food, while 

the tongue facilitates with chewing and swallowing. The remainder o f the accessory 

organs do not come into direct contact with food, but produce or store secretions 

aiding the chemical breakdown of food (Snell 2003).

The GI tract contains food from the time it is ingested until it is digested and 

absorbed or eliminated from the body. Muscular contractions o f the wall o f the GI 

tract physically breakdown food by churning and propelling food from the oesophagus 

to the anus. Additionally, the contractions also help to breakdown food by mixing it 

with fluids secreted into the tract. Food is also chemically broken down by enzymes 

secreted by the accessory digestive organs and cells lining the GI tract (Snell 2003). 

Organic substrates, electrolytes (inorganic ions), vitamins and water are absorbed by 

epithelial cells lining the lumen of the GI tract, which subsequently pass into blood or 

lymph and circulate to cells throughout the body. The digestive tract and glandular 

organs discharge waste products into the lumen of the GI tract, which after mixing 

with the indigestible residues, are eliminated from the body (Martini 2006).
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1.1.2 Anatomy of the colon

The colon is the concluding section of the vertebrate digestive system measuring 

approximately 1.5 metres in length, 0.1 metres in diameter, and constituting almost 

one-fifth o f  the entire alimentary canal. The caecum operates as a valve connecting 

and permitting the passage of processed material between the small intestine and the 

colon. In humans, the colon is composed of four key segments; these are: the 

ascending colon, the transverse colon, the descending colon and finally, the sigmoid 

colon. The rectum is located at the end of the colon and faeces are stored here before 

they are eliminated from the body. Collectively, both the colon and the rectum are 

referred to as the large bowel; but they are more commonly denoted as the large 

intestine or the gut (Snell 2003).

Transverse colon 

—  Ascending colon

Descending colon — -

'  I mJ &
Cecum |

Sigmoid colon

Anatomy of the human colon, composed of four segments: the 

transverse, descending and sigmoid colon (Encyclopaedia Britannica

Figure 1-1 

ascending, 

2003)

/
/ aj €
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1.1.3 M icroanatomy o f the colon

The microanatomy of the colon is similar to that o f other structures within the 

digestive tract. Visualizing the layers of the gut radially inwards these are the:

■ Serosa -  or adventitia, the outermost layer of the colon. It is constructed from 

loose connective tissue coated with mucus to thwart friction damage and 

abrasion from other tissues and organs.

■ Muscularis extema -  comprising of an inner circular layer and an outer 

longitudinal layer o f smooth muscle. Both groups o f muscle work 

simultaneously to create a wavelike motion (peristalsis) moving waste material 

along the colon.

■ Submucosa -  comprising collagen and elastic fibers, this layer provides 

increased capacity and stretching for peristalsis. Blood, lymphatic vessels and 

nerves also form part of the submucosa.

■ Mucosa -  the inner most layer comprising the glandular epithelium, lamina 

propria, and the muscularis mucosae. The glandular epithelium forms tubular 

structures, called crypts. The lamina propria supports the epithelium and 

comprises reticular connective tissue with elastic and collagen fibers, plasma 

cells, lymphocytes, granulocytes, as well as lymphatics and capillaries. The 

muscularis mucosae consist of a thin layer o f smooth muscle between the 

mucosa and the submucosa (Feldman, Friedman et al. 2010).
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1.1.4 Differentiation o f intestinal epithelial stem cells

The luminal surface of the intestine is lined by a simple columnar epithelium, 

folded into a number of deep cavities or crypts of Lieberkiihn, and embedded in 

connective tissue. In healthy adults, colorectal epithelial cells undergo continual rapid 

renewal where cell loss is precisely balanced with cell proliferation (Kirkland and 

Henderson 2001; Potten, Booth et al. 2003). The continuous supply of new cells 

originates from undifferentiated multipotent stem cells, anchored at the base o f  the 

crypt.

Apical Surface

Direction of 
Migration

Zone o f  
Differentiation

Stem Cell Region

Spontaneous
Apoptosis

Zone of 
Proliferation

Lamina Propria

o o» Sub-mucosa
Muscularis externa

Figure 1-2 Intestinal epithelial stem cells become increasingly differentiated while 

migrating along the vertical axis of the crypt (Chell, Kadi et al. 2006)
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These cells undergo a stringent programme of proliferation and differentiation as 

they migrate from the base o f the crypt to the luminal surface yielding three epithelial 

lineages:

■ Goblet cells -  flat shaped cells that produce mucin protecting the epithelial 

surface and facilitating movement o f food along the GI tract.

■ Enteroendocrine cells -  located in the intestinal crypt comprising -1 %  o f the 

epithelial cell population. There are at least 15 subtypes, each secreting several 

peptide hormones which regulate the physiological and homeostatic functions 

o f the GI tract.

■ Absorptive cells -  also called colonocytes. These cells form the majority o f the 

intestinal epithelium. A microvillus brush border develops along the apical 

surface as the cells differentiate along the upper crypt increasing the surface 

area across which molecules and ions can be rapidly transported (Potten, Booth 

et al. 2003; Moran, Leslie et al. 2008; Stemini, Anselmi et al. 2008).
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1.1.5 Organisation o f intestinal tissue

The entire surface o f the colon is lined with a single layer o f intestinal epithelial 

cells (IEC) that form intracellular tight junctions, preventing macromolecules and 

microbes from passing transversely across while guarding against opportunistic 

infections and pathogens. The immune system of the digestive tract is often referred to 

as the gut-associated lymphoid tissue (GALT) functioning to protect the body from 

invading organisms (Mayer 2000). The GALT is the largest collection o f lymphoid 

tissues in the human body, due to the vast numbers o f lymphoid and quantities of 

immunoglobulins produced. This is principally due to the colossal antigen load to 

which these cells are continually exposed to (Mayer 2000; Chehade and Mayer 2005; 

Forchielli and Walker 2005). GALT comprises o f organised lymphoid tissues, such as 

mesenteric lymph nodes (MLN), Peyer’s patches (PP); and more diffusely dispersed 

lymphocytes in the crypt region of the intestinal lamina propria (Forchielli and Walker 

2005).

Figure 1-3 indicates that despite the epithelial surface, some bacteria are able to 

penetrate the IEC directly (1), whereas others use M (microfold) cells, which are 

positioned over lymphatic aggregates to contravene the barrier (2). Another newly 

discovered route o f Tuminal sampling’ uses uptake by dendritic cell (DC) projections 

that extend into the intestinal lumen (3) (Gewirtz and Madara 2001).
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Lymphocyte
follicles
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Epithelial

cell

Macrophages

Bacteria

Soluble
antigen

*• > Lumen

Dendritic
cell
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propria

Figure 1-3 Diagram showing the mucosal layer of the colon, comprising the 

epithelium and the underlying lamina propria (Gewirtz and Madara 2001)

DCs express tight junction proteins such as claudin 1, occludin and zonula 

occludens 1, allowing them to send dendrites outside the epithelium by opening tight 

junctions, while maintaining epithelium integrity. These DCs are then able to acquire, 

process, and exhibit antigens present within the lumen (Rescigno, Rotta et al. 2001; 

Rescigno, Urbano et al. 2001).
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1.1.6 The role o f commensal flora in maintaining colonic physiology

Traditionally the function o f the colon is to reclaim water and salts before they 

are eliminated from the body. By this phase o f the digestive process approximately 

90% o f water is reclaimed by the colon, leaving 1.5-2L in the faeces (Harrell and 

Chang 2006). However, over recent decades the importance o f the colon as a home to 

diverse microflora has been revealed. Commensal microflora has evolved making the 

colon a natural habitat with mutual benefits to both themselves and the host. The 

intestinal habitat o f a healthy adult harbours between 300-500 distinctive species of 

microflora; with species varying between individuals (Guamer and Malagelada 2003; 

Fava and Danese 2011). Prevalent genera o f commensals within the colon include 

Bacteroides, Bifidobacterium , Clostridium and Eubacterium. Whereas aerobes such as 

Enterobacter, Enterococcus, Klebsiella, Escherichia and Lactobacillus are among the 

subdominant genera (Pirzer, Schonhaar et al. 1991; Macpherson, Khoo et al. 1996; 

Guamer and Malagelada 2003). The number o f microbial cells within the gut lumen is 

about 10 times greater than the number o f eukaryotic cells in the entire human body 

(Bengmark 1998). The highest concentrations o f genera found in the lumen are similar 

to those found in colonies growing under optimal conditions over the surface o f 

laboratory plates, with concentrations peaking at 10n -1012 flora per gram o f luminal 

content (Guarner and Malagelada 2003; Abreu, Fukata et al. 2005). Almost 60% of 

faecal solid is comprised o f bacteria (Stephen and Cummings 1980). Fluctuations in 

the composition o f flora can be seen in cases o f acute diarrheal illness, antibiotic 

treatment and to a lesser extent dietary interventions, however; an individual’s flora 

composition usually remains stable (Brandtzaeg, Halstensen et al. 1989; Pirzer, 

Schonhaar et al. 1991; Guarner and Malagelada 2003).
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The traditional function o f the colonic microflora is the fermentation o f non- 

digestible dietary deposits and endogenous mucus. Examples o f such residues include 

large polysaccharides such as starch, pectin, cellulose and hemicelluloses (Cummings, 

Pomare et al. 1987). Oligosaccharides which have evaded the digestive process and 

unabsorbed alcohols and sugars are also exploited by gut flora. The outcome is the 

fabrication o f short-chain fatty acids which can be utilised by IEC (Guamer and 

Malagelada 2003; Cummings, Beatty et al. 2007). Putrefaction o f proteins and 

peptides by gut flora also generate short-chain fatty acids. Potential sources o f 

peptides include collagen and elastin from dietary sources, sloughed epithelial cells, 

lysed bacteria and enzymes. A drawback to this process is the generation o f a series of 

potentially toxic thiols, phenols, indols, ammonia, and amines all o f which are 

generally absorbed by gut flora (Macfarlane, Cummings et al. 1986; Smith and 

Macfarlane 1996). The overall outcome o f these processes is the reclamation of 

absorbable substrates and energy for the host, and a source o f energy and nutrients for 

microflora. The symbiotic relationship provides approximately 100 calories o f energy 

per day to the host (Smith and Macfarlane 1996; Guarner and Malagelada 2003; 

Munkholm 2003; Salminen, Bouley et al. 2007). Less traditional critical functions o f 

host microflora include mucosal immune modulation and stimulation o f epithelial 

repair and renewal.
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Figure 1-4 Fermentation within the colon (Guarner and Malagelada 2003)

The use o f antibiotics is shown to upset the ecological balance and permit the 

excessive growth of the commensal Clostridium difficile (C. difficile), a species with 

potential pathogenicity linked to pseudomembranous colitis (Waaij 1989). In vitro 

studies have shown that commensal flora compete with each other for attachment sites 

in the brush border o f IEC, preventing the attachment and subsequent invasion of 

pathogenic enteroinvasive bacteria (Bemet, Brassart et al. 1994). Additionally, these 

non-pathogenic floras compete for nutrient availability in ecological niches, limiting 

nutrient availability for pathogenic bacteria. Lastly, flora can also limit the growth o f 

pathogenic bacteria by secreting antimicrobial substances termed bacteriocins (Lievin, 

Peiffer et al. 2000; Guarner and Malagelada 2003; Manco, Putignani et al. 2010). The 

immune system is not ignorant to microflora, the secretion o f antibodies such as
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immunoglobulin A (IgA) and T-cells are capable o f interacting with our colonic 

microflora, limiting bacteria associating with the epithelium and penetration o f host 

tissue (Macpherson, Gatto et al. 2000; Macpherson, Geuking et al. 2005). These 

processes occur through a variety o f highly conserved innate immune receptors 

( 1.2 . 1).
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1.2 Interaction between intestinal epithelial cells and gut 
microbiota

1.2.1 Toll-like receptors and Toll-like receptor signalling

The intestinal immune system is highly evolved as its duel function protects the 

host from pathogenic organisms which could potentially cause infection, as well as 

coexistence with myriad commensal organisms. Studies have verified that microflora 

have an influential role in the preservation o f IEC homeostasis and that the host is able 

to recognise and respond to luminal flora (Lee, Mo et al. 2006; McCole and Barrett 

2007; Artis 2008). Mice bred in a germ-free environment display a decline in IEC 

proliferation in comparison to mice which have been colonised with conventional flora 

(Guamer and Malagelada 2003). Other studies demonstrate smaller specialised follicle 

structures, lower densities o f lymphoid cells, and depleted levels o f immunoglobulin 

within germ-free animal blood (Alam, Midtvedt et al. 1994; Abreu, Fukata et al.

2005).

Numerous papers have publicised that humans express pattern recognition 

receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs), 

especially those from pathogens, regulating the activation o f both innate and adaptive 

immune responses (Akira, Yamamoto et al. 2003; Takeda, Kaisho et al. 2003; Takeda 

and Akira 2004; Beutler 2009). Cross-talk between commensal microflora and the host 

is mediated by Toll-like receptors (TLRs) (Abreu, Fukata et al. 2005; Abreu 2010; 

Brown, Wang et al. 2011). TLRs are a cohort o f single membrane spanning protein 

receptors that together with the interleukin-1 receptor form a receptor superfamily, 

known as the ‘interleukin-1 receptor/Toll-like receptor superfamily’; but they are 

generally identified as Toll-IL-1 receptors (TIR) (Kluwe, Mencin et al. 2009).
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The link between TLRs and innate immunity was first identified in Drosophila. 

TLRs were initially recognised and classified as transmembrane receptors requisite for 

the establishment o f dorso-ventral polarity in the developing embryo (Hashimoto, 

Hudson et al. 1988). Toll signalling in Drosophila displayed notable resemblance to 

the mammalian interleukin-1 (IL-1) signalling pathway, triggering the transcription of 

nuclear factor kappa-1 ight-chain-enhancer of activated B cells (NF-^B), responsible for 

many features o f inflammatory and immune responses (Belvin and Anderson 1996). 

Based on these parallels, it was suggested that TLR-mediated pathways could 

potentially be implicated in regulating immune responses. This was evidently 

confirmed in mutant Drosophila deficient in distinct components o f the TLR signalling 

pathway. Mutant flies were found to be highly susceptible to fungal infection as they 

were unable to express drosomycin, an anti-fungal peptide (Lemaitre, Nicolas et al. 

1996).

TLRs are highly conserved from Drosophila to humans, both sharing analogous 

structural and functional patterns. They are structurally characterised by the presence 

o f a leucine-rich repeat (LRR) domain in their extracellular domain and a TIR domain 

in their intracellular domain (Rock, Hardiman et al. 1998). The LRR domain is 

separated from the transmembrane region by a carboxy-terminal domain. The TIR 

domain which spans about 200 amino acids, has contrasting degrees o f similarity 

among TLRs and is required for intracellular signalling (Akira, Yamamoto et al. 2003; 

Kawai and Akira 2009). TLRs contain three box sequences which are highly 

conserved among family members. Box 1 is believed to be the conserved sequence 

among all TLRs, whereas both boxes 2 and 3 contain amino acids essential for 

signalling (Carpenter and O'Neill 2007).
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TLRs are among the most investigated and described PRR, due to their ability to 

detect a variety o f pathogen associated molecular patterns (PAMPs). To date, 10 TLRs 

have been identified in humans, with each TLR having a specific set o f detectable 

ligands (Kawai and Akira 2007; Kumar, Kawai et al. 2009). The existence o f a large 

number o f TLRs enables the innate immune system to differentiate between PAMPs 

that are explicit to distinct microbial cohorts and instigate specific defence responses.
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Figure 1-5 TLRs are involved in the recognition o f microbial molecular patterns. 

Following the specific recognition of a microbial ligand by TLRs, various adaptor 

molecules are recruited to the TLR. This leads to the activation o f signalling pathways, 

the transcription o f inflammatory genes and the regulation o f innate and adaptive 

immune responses. Adapted from (Zhu and Mohan 2010)

Although each TLR detects specific ligands, many of the signalling pathways 

that mediate intracellular responses are shared by most TLRs. For example, all TLRs 

signal through one or two adaptor molecules, myeloid differentiation factor 88 

(MyD88) and TIR domain-containing adaptor-inducing interferon-p (TRIF). MyD88
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is part o f the signalling cascade o f all TLRs except TLR3, whereas TRIF only interacts 

with TLR3 and TLR4 (Kluwe, Mencin et al. 2009; Zhu and Mohan 2010; Brown, 

Wang et al. 2011; Lin, Li et al. 2011).

One o f the best described TLR signalling pathways is that o f the interaction o f 

TLR4 with its corresponding ligand lipopolysaccharide (LPS), an outer cell wall 

constituent o f Gram-negative bacteria (Takeuchi, Hoshino et al. 1999; Takeda and 

Akira 2004). Binding results in the conscription o f the adaptor signalling molecule 

MyD88 and TRIF within the cytoplasm o f the cell. The MyD88 adaptor molecule is 

then able to activate other molecules within the cell including protein kinases thus 

propagating the initial signal. Protein kinase IL-1 receptor-associated kinase (IRAK) is 

activated and phosphorylated by MyD88. This is then followed by the recruitment and 

activation o f TRAF6 [TNF (tumour necrosis factor) receptor-associated factor 6] 

(Buer and Balling 2003; Abreu, Fukata et al. 2005). Once the TRAF6 pathway has 

been activated; the MAPK (mitogen-activated protein kinase) pathway is also 

activated due to an evolutionary conserved signalling intermediate within the TLR 

signalling pathway (Abreu, Fukata et al. 2005).

The upshot o f this is the amplification o f the initial signal and ultimately the 

stimulation or suppression of genes that coordinate the inflammatory response (Buer 

and Balling 2003). Activation of TLR4, and other TLRs lead to the transcription o f a 

number o f pro-inflammatory cytokines such as IL-6, IL-8, IL-22 and tumour necrosis 

factor a  (TNFa) (Zhu and Mohan 2010). TLR4 has also been shown to induce cyclo- 

oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in both vitro and vivo studies; both 

being imperative for apoptosis and proliferation in response to intestinal mucosal 

injury (Fukata and Abreu 2007).
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As illustrated in Figure 1-5, the mechanism by which TLR5 propagates its signal 

is similar to that o f TLR4, but unlike TLR4, TLR5 does not require TRIF as an 

intracellular adaptor molecule to disseminate its signal (Kluwe, Mencin et al. 2009). 

Ligation o f TLR5 also consequents in the activation of NF-*B, driving the expression 

o f numerous pro-inflammatory genes, such as neutrophil chemo-attractant IL-8, thus 

functioning to protect the cell (Vijay-Kumar, Aitken et al. 2008; Kluwe, Mencin et al.

2009).

TLR3 ligates with double stranded ribonucleic acid (dsRNA) and recruits its sole 

cytosolic adaptor molecule TRIF, initiating downstream signalling (Hoebe, Du et al. 

2003; Leonard, Ghirlando et al. 2008). Subsequently, the transcription factors NF-*B 

and interferon regulatory factor (IRF)-3 are activated and induce the secretion o f 

interferon-p (IFN-p), as well as a number o f other inflammatory cytokines (Leonard, 

Ghirlando et al. 2008).

TLR2 appears to be capable of distinguishing a significant range o f microbes. 

This is somewhat due to its ability to form hetrodimers with TLR1 and TLR6. TLR2 

and TLR6 activate downstream effector molecules similar to the previously mentioned 

TLRs (Kawai and Akira 2007; Zhu and Mohan 2010). TLR27' and TLR6'7' mice are 

shown to have reduced levels o f IL-lp, TNFa and transforming growth factor-p (TGF- 

P), but elevated levels o f IL-4 and IL-6 in response to Mycobacterium tuberculosis (M. 

tuberculosis) (Sugawara, Yamada et al. 2003).
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1.2.2 TLR ligands

IEC express a cohort o f PRRs, termed TLRs, which are able to communicate and 

respond to microbes, such as bacteria, viruses, parasites and their structural 

constituents (Kawai and Akira 2007; Kumar, Kawai et al. 2009). For the purposes o f 

this study I shall be focusing on TLR2, TLR3, TLR4, TLR5 and TLR6 as these are the 

TLRs which are imperative for bacterial, viral and helminth detection.
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1.2.2.1 TLR4 signalling

Bacteria are a large cohort o f unicellular microorganisms typically a few 

micrometres in length. They can exist as different shapes from spheres (coccus) and 

rods (bacillus) to spirals. Escherichia .coli (E. coli) is a Gram-negative bacterium that 

is commonly found within the colon. Most strains o f this bacterium are harmless; but 

some strains can cause critical food-poisoning within humans such as 0157:H7 

(Simon and Gorbach 1984; Borriello, Welch et al. 1988). The innocuous strains form a 

constitute o f the normal gut flora and can aid the host by yielding vitamin K, or by 

occupying a niche thus averting the establishment of pathogenic bacteria within the 

colon (Prescott, Harley et al. 2002).

LPS is a large molecule formed from a lipid and a polysaccharide joined by a 

covalent bond, located on the outer membrane o f Gram-negative bacteria. LPS is 

fundamental to the bacterium because it protects and helps stabilise the membrane 

structure (Prescott, Harley et al. 2002). However, LPS is also an endotoxin to humans 

as binding to TLR4 promotes the secretion o f pro-inflammatory cytokines in many cell 

types (Song, et al., 1999).
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Figure 1-6 Cell membrane of a Gram-negative bacterium. The cell wall is 

composed o f two main structures: the internal membrane (cytoplasmic membrane) and 

the outer membrane. A thin peptidogylcan cell wall and a periplasmic space that 

contains substrate-binding enzymes separate the two membranes. (Prescott, Harley et 

al. 2002)

As well as detecting LPS. TLR4 is also able to detect a number o f other 

endogenous ligands such as High-mobility group protein B1 (HMGB1), fibronectin, 

hyaluronic acid fragments, antiphospholipid fragments and saturised fatty acids (Seki, 

Tsutsui et al. 2005)
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1.2.2.2 TLR5 signalling

Salmonella enterica (S. enterica) is a rod shaped flagellated, aerobic Gram- 

negative bacterium which has more than 2000 serovars or strains (Prescott, Harley et 

al. 2002). One o f these is Salmonella typhimurium (S. typhimurium), which can cause 

gastroenteritis within humans. This is caused by inflammation within the 

gastrointestinal tract and results in acute diarrhoea. Inept treatment of gastroenteritis 

kills between 5 to 8 million people world-wide each year, and is the principal cause of 

death among children under five (Simon and Gorbach 1984; Borriello, Welch et al. 

1988).

The bacterial flagellum is composed o f a filament that is attached to a molecular 

base (the basal body and hook complex). Flagellin, a protein with a mass o f between

30,000 and 60,000 daltons, arranges itself into a hollow cylinder to form the filament 

in the bacterial flagellum (Samatey, Imada et al. 2001; Smith, Andersen-Nissen et al. 

2003; Yonekura, Maki-Yonekura et al. 2003). The correct assembly o f the flagella 

filament is fundamental for bacterial motility (Berg and Anderson 1973).
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Figure 1-7 The bacterial flagellum consists of three parts, the basal body (within 

the cell envelope), the hook (blue) and the filament (yellow) constructed from multiple 

subunits o f flagellin, the TLR5 ligand (Beatson, Minamino et al. 2006)
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1.2.2.3 TLR3 signalling

Numerous studies have shown that TLR3 is implicated in the recognition o f viral 

dsRNA, produced during the replication cycle o f viruses (Kawai and Akira 2007; 

Beutler 2009). Rotavirus is a member o f the Reoviridae family, type III viruses that 

are characterised by their dsRNA (Arias, Isa et al. 2002). Rotavirus is highly 

pathological as it causes severe gastroenteritis, leading to an estimated 600, 000 to

870,000 deaths in young children every year in developing countries (Morris and Estes 

2001; Arias, Isa et al. 2002). Rotavirus evades host immune responses resulting in 

altering the functional activity o f IEC, leading to diarrhoea, generally considered to be 

linked to enterocyte obliteration (Rollo, Kumar et al. 1999). Zhou and colleagues 

(2007) have shown that genomic dsRNA from rotavirus, and its synthetic analogue 

polyinosinic:polycytidylic acid (Poly I:C), provokes severe mucosal damage o f the 

small intestine (Zhou, Wei et al. 2007). Ligation o f TLR3 expressing IEC with dsRNA 

are also shown to upregulate the secretion o f IL-15, causing an increase in intestinal 

epithelial lymphocytes (IELs) and augmenting the cytotoxicity o f IELs (Zhou, Wei et 

al. 2007). TLR3-deficient mice are shown to have a limited response to synthetic Poly 

I:C (Alexopoulou, Holt et al. 2001). These results imply that as well as dsRNA, its 

synthetic analogue poly I: C is able to cause a breakdown o f mucosal homeostasis 

when ligating with its complementary receptor TLR3.
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1.2.3.4 TLR2/6 signalling

Gastrointestinal nematode parasites cause some of the most prevalent human 

diseases world-wide. Infections tend to be chronic, with high rates o f reinfection after 

drug treatment. Trichuris trichiura (T. trichiura), the human whipworm currently 

infects more than 1 billion people globally (De Silva, Chan et al. 1997). Most o f our 

current understanding o f immune-regulatory mechanisms underlying resistance or 

susceptibility to T. trichiura infection has come from the laboratory Trichuris muris 

(T. muris), a parasite mouse model as both share similar cross-reactive antigens (Else 

and deSchoolmeester 2003). The parasite generally lives partially buried within the 

epithelium o f the large intestine, forming syncytial tunnels through which they move 

and feed. T. muris excretory/secretory proteins (ES) form a heterogeneous solution o f 

worm proteins containing substances that are shown to express structures bearing 

mannose and jV-acetylglucosamine residues; products recognised by colonic epithelial 

TLR (TLR2, TLR4 and TLR6) (deSchoolmeester, Martinez-Pomares et al. 2009). 

TLR2 is involved in the recognition o f a diverse array o f microbial molecules, 

representative o f a broad group of species such as Gram-positive and Gram-negative 

bacteria, as well as yeast and mycoplasma. TLR2 is able to recognise a number of 

components such as lipoteichoic acid, lipoprotein and peptidoglycan, all cell-wall 

components o f gram-positive bacteria as well as lipoarabinomannan from 

mycobacteria and zymosan from yeast (Takeuchi, Hoshino et al. 1999; Ozinsky, 

Underhill et al. 2000; Morr, Takeuchi et al. 2002). Unlike other TLR, TLR2 is able to 

form hetrodimers with TLR1 and TLR6 expanding the ligand spectrum enabling the 

innate immune system to identify diverse structures present in various pathogens 

(Farhat, Riekenberg et al. 2008).
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Numerous studies have demonstrated exposure to helminths prevent 2.4,6- 

trinitrobenzene sulfonic acid (TNBS)-type colitis (Khan et al., 2002; Elliot et al., 

2003; Moreels et al., 2004); suggesting helminth products promote mucosal healing in 

animal models o f colitis. Other studies have shown after exposure to T. muris, some 

mice strains expel the parasite and develop resistance (e.g. BALB/c and BALB/k). 

Whereas, other strains o f mice fail to expel the parasite permitting chronic infection. 

Numerous studies have also indicated resistance or susceptibility to T. muris is 

dependent upon T-helper 2 (Th2) and Thl immune responses, respectively (Else, 

Hultner et al. 1992; Else, Finkelman et al. 1994; Helmby, Takeda et al. 2001).

Mice infected with T. muris also display a profound increase in the rate o f 

epithelial cell turnover, termed ‘epithelial escalator’ during parasite expulsion (Cliffe, 

Humphreys et al. 2005). One study showed an almost doubling o f IEC proliferation, 

whereas only an insignificant elevation in IEC proliferation in mice which did not 

expel the parasite. This was most notable in IL-13'7' mice, which did not expel the 

parasite displaying a reduced rate of IEC turnover, similar levels to those observed in 

naturally susceptible wild-type mice (Bancroft, Artis et al. 2000). The expression of 

IFN-y produced in mice which do not naturally expel the parasites and initiate a Thl 

response acts not only to counter-regulate the potential protective Th2 response, but 

through the induction o f C-X-C m otif chemokine 10 (CXCL10), slows the turnover of 

IEC. In vitro studies have shown blocking CXCL10 increases IEC turnover rate, 

causing worm expulsion without altering the current Thl cytokine response generally 

observed in susceptible mice (Cliffe, Humphreys et al. 2005).

Studies have also shown IL-4, IL-9 and IL-13 all play an important role in 

parasite expulsion (Bancroft, McKenzie et al. 1998; Bancroft, Artis et al. 2000), 

whereas IFN-y is associated with chronic infection (Lee, Wakelin et al. 1983; Else,
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Finkelman et al. 1994). In vivo studies have shown that obstruction o f TNFa in normal 

resistant mice significantly delays worm expulsion for the duration o f treatment. 

Furthermore, knockdown of the TNFa receptor in mice does not allow parasite 

expulsion, initiating a predominant Thl response, indicating lack o f TNF signalling 

considerably modifies the phenotype o f the response (Artis, Humphreys et al. 1999).
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1.2.3 Establishment o f gut microbiota

All organs within the human body undertake a remarkable transition at birth, 

from an isolated intra-uterine environment to the drastically distinctive environment o f 

the outside world. This is also observed in the GI tract o f a foetus where up until birth, 

the GI tract is sterile. However, upon delivery and swiftly thereafter, there is a rapid 

transition to primary colonisation o f the neonatal GI tract, posing a critical challenge 

to the immune system o f the newborn. Studies have shown that the gut can be 

colonised by as much as 108 to 1010 bacteria per gram of faeces within the first few 

days o f birth (Bettelheim, Breadon et al. 1974; Bezirtzoglou 1997; Fanaro, Chierici et 

al. 2003). The GI tract is initially colonised by facultative aerobes. But after 

consuming all the oxygen, these bacteria create an anaerobic environment making it a 

favourable environment for strict anaerobic species, generally belonging to the 

Clostridium, Bacteroides and Bifidobacterium generas. As these anaerobes multiply, 

the facultative bacteria are no longer able to tolerate the environmental changes and 

consequently, decline in number (Adlerberth and Wold 2009; O'Toole and Claesson

2010). Studies have shown children born by vaginal delivery have higher levels of 

Bifidobacteria and lower levels of C. difficile compared to infants born by caesarean 

section (Grolund, Lehtonen et al. 1999; Penders, Thijs et al. 2006). Studies have also 

shown hospitalisation and prematurity are associated with increased counts o f C. 

difficile (Penders, Thijs et al. 2006). Other factors which influence the composition o f 

intestinal microbiota in neonates are modes o f infant feeding and hygiene measures 

(Orrhage and Nord 1999). The microbiota o f breast-fed children are dominated by 

Bifidobacteria, perhaps due to the presence o f Bifidobacteria growth factors in breast 

milk (Coppa, Bruni et al. 2004; Morelli 2008). Infants also have significantly lower 

levels o f C. difficile, E. coli, B. fragilis group species, and Lactobacilli than formula-
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fed infants (Penders, Thijs et al. 2006). However, after introduction o f solid foods and 

weaning, the microflora o f breast-fed infants become comparable to that o f formula 

fed infants (Penders, Thijs et al. 2006; Manco, Putignani et al. 2010).

Given the limited exposure to antigens in utero, the infant to a significant extent 

must depend upon the innate immune system for protection, as the innate immune 

system can direct the adaptive immune response (Janeway Jr and Medzhitov 2002; 

Firth, Shewen et al. 2005; Levy 2007). The GI tract o f the foetus and newborn also 

express TLRs on their IEC surface to detect the presence o f microbial components 

(Imler and Hoffmann 2001; Akira, Yamamoto et al. 2003; Doyle and O ’Neill 2006). 

Human small IEC are known to express basolateral TLR2 and TLR4 at 18 to 21 weeks 

after gestation (Fusunyan, Nanthakumar et al. 2001). Other studies have shown 

human and mouse tissue cultured foetal IEC express TLR4 and MyD88, with elevated 

NF-*B activation and production o f CXCL8 in comparison to adult IEC 

(Nanthakumar, Fusunyan et al. 2000; Lotz, Giitle et al. 2006). The robust 

inflammatory response to LPS could cause a significant risk after birth, when the 

newborn is rapidly being colonised by micro flora (Fanaro, Chierici et al. 2003; 

Penders, Thijs et al. 2006).

Exposure o f perinatal IEC to LPS has been shown to result in the loss o f IEC 

responsiveness to LPS. This was linked to down regulation in the expression o f 

IRAKI, a crucial intermediate of TLR4 signalling (Lotz, Giitle et al. 2006). Mice 

which were delivered vaginally, in comparison to caesarean mice, were more exposed 

to the mother’s microflora and quickly became unresponsive to LPS by down 

regulating the signal transduction protein IRAKI. However, mice which were 

delivered via caesarean and therefore had no previous exposure to gut flora, were 

shown not to downregulate IRAKI and remained responsive to LPS (Chassin, Kocur
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et al. 2010). The authors o f this study showed that the regulation o f IRAKI is 

mediated by microRNA mIR-146a, which is itself upregulated in response to LPS. 

This suggests upregulation o f mIR-146a in neonates is fundamental for protecting the 

gut from mucosal damage after induction o f large concentrations o f LPS when the gut 

becomes colonised. (Chassin, Kocur et al. 2010).

The developmental expression o f TLR4 in neonates is o f great importance as 

this may lead to necrotizing enterocolitis (NEC), an intestinal disease that ensues in 

preterm newborns (Jilling, Simon et al. 2006; Lin and Stoll 2006). Failure o f preterm 

neonates to correctly downregulate responses to LPS appears to significantly 

contribute to neonates susceptibility to NEC. Neonatal intestinal immunity can be 

radically altered by breastfeeding. It has been suggested that breast-milk helps mediate 

intestinal immunomodulation permitting sub-clinical infections that progressively 

inspires immunological memory while limiting inflammation (Newburg 2005; 

Newburg and Walker 2007). Human breast-milk also contains factors which influence 

TLR signalling, such as soluble TLR2, acting as a decoy receptor, competitively 

inhibiting signalling through membrane bound TLR2 (LeBouder, Rey-Nores et al. 

2003).

The innate immune system in newborns is highly immature, which results in 

increased susceptibility to numerous infections. However, the immune system o f the 

gut does allow the colonisation o f microflora building up tolerance and establishment 

o f mucosal homeostasis. Mechanisms by which IEC develop tolerance will be 

investigated in chapter 6.
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1.2.4 Oral tolerance

Miscellaneous interactions between the epithelium, GALT and microflora are 

implicated in sculpting the memory mechanism o f systematic immunity. Following 

antigen feeding, systematic administration o f the same antigen results in a reduced 

inflammatory response compared with unfed, control mice. This occurrence has been 

termed ‘oral tolerance’ (Higgins and Weiner 1988; Chen, Kuchroo et al. 1994). 

Microflora have also been implicated in oral tolerance, as this effect persists for 

several months in mice with conventional flora, whereas in germ-free mice systematic 

unresponsiveness persists for only a few days after ingesting the same antigen 

(Moreau and Gaboriau-Routhiau 1996). Germ-free mice orally administered with 

ovalbumin (OVA) as a tolerogen, before a systematic dose with OVA, show an 

abrogated Thl mediated immune response such as reduction o f IgG2a and IFN->>, 

while the Th2-mediated immune response is maintained generating IgE, IgGl and IL- 

4 against OVA. This aberration can be remedied after colonisation with conventional 

flora, such as Bifidobacterium , one of the predominant intestinal floras. This restores 

the susceptibility o f these Th2 responses to oral tolerance induction, but the process is 

only effective when such reconstitutions are performed in neonates, not in mice o f an 

older age (Sudo, Sawamura et al. 1997; Guamer and Malagelada 2003). The results 

from this study indicate intestinal microflora play a fundamental role in generating a 

Th2 immune response, and are altogether quite susceptible to the induction o f oral 

tolerance, perhaps influencing development o f the immune system at the neonatal 

stage.

Endotoxin shock is often a fatal consequence o f bacterial infection, that may 

occur when LPS enters the blood stream (bacteremia), causing a systemic
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inflammatory reaction. However, some studies have shown that moderate 

concentrations o f LPS do not induce TLR4-mediated responses in several human IEC 

lines such as HT-29, Caco-2 and NCM460 (Rakoff-Nahoum, Paglino et al. 2004; 

Rhee, Keates et al. 2004; Rhee, Kim et al. 2006), indicating IEC are able to tolerate 

higher exposure levels o f LPS than many other cell types. Potential mechanisms of 

this hyporesponsiveness include studies suggesting mouse intestinal crypt epithelial 

mICci2 cells harbour TLR4 at the golgi apparatus rather than at the cell surface. This 

consequently means LPS has to be internalised before the signal can be propagated, 

therefore receptors are shielded from direct interaction with the immense levels o f LPS 

within the lumen (Homef, Normark et al. 2003; van Aubel, Keestra et al. 2007).
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1.3 Suppressor of Cytokine Signalling -  3

1.3.1 Structure and function of Suppressor o f cytokine signalling - 3

Cytokines are known to regulate many physiological responses and conserve 

homeostasis; they do this by influencing proliferation, differentiation, and functional 

activity o f cells o f the immune system, as well as those o f most other tissues and 

organs. The kinetics and extent o f cytokine signalling via the Janus Kinase (JAK)/ 

signal transducer and activator o f transcription (STAT) pathway must be tightly 

controlled. The suppressor o f cytokine signalling (SOCS3) family comprising eight 

members, SOCS1 to SOCS7 and cytokine inducible SH2 (CIS); are a collection o f 

intracellular proteins, whose expression is induced in response to a wide range o f 

growth factors, cytokines and hormones (Alexander and Hilton 2004; Piessevaux, 

Lavens et al. 2008). SOCS proteins were initially identified as inhibitors o f the JAK- 

STAT signalling pathway, operating in a negative feedback loop (Endo, Masuhara et 

al. 1997; Krebs and Hilton 2001). This hypothesis was supported when SOCS I '7' mice 

succumbed to a multifaceted neonatal inflammatory disease, illustrated by the 

hyperactivation o f T-cells and hyper-responsiveness to IFN-y (Naka, Matsumoto et al. 

1998; Alexander, Starr et al. 1999; Marine, Topham et al. 1999). SOCS2'7' mice 

display enhanced growth, characteristic of a heightened response to insulin-like 

growth factor-1 (IGF-1) and/or growth hormones (Horvat and Medrano 2001). 

SOCS3'7' knockdown results in mid-gestation embryonic lethality due to placental 

insufficiency; mice are also found to display disproportionate erythropoiesis (Marine, 

McKay et al. 1999; Roberts, Robb et al. 2001). Furthermore, embryonic lethality can 

be rescued by substituting the SOCS3-deficient placenta with SOCS3+/+ placenta, 

signifying an essential role o f SOCS3 in placental development (Takahashi, Carpino et 

al. 2003).
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The S0CS3 protein is composed o f three domains, a variable N-terminal region, 

a central Src homology 2 (SH2) domain and a 40 amino acid carboxyl-terminal 

module, termed the SOCS box. The N-terminal domain contains an extended SH2 

subdomain (ESS) that aids the SOCS3 protein with substrate binding (Yasukawa, 

Sasaki et al. 2000; Alexander 2002; Kile, Schulman et al. 2002; Babon, McManus et 

al. 2006).

The kinase inhibitory region (KIR) o f the SOCS3 protein is located in the N- 

terminal, adjacent to the SH2 domain. The KIR domain contains a 12 amino acid 

region, which is proposed to act as a pseudo-substrate, binding to the catalytic cleft, 

thus blocking subsequent JAK enzymatic activity (Croker, Kiu et al. 2008). Although 

SOCS3 interacts with both JAK and receptor, a two-step model o f interaction has been 

proposed whereby the SOCS3-SH2 domain is first recruited to the cytoplasmic 

domain o f the receptor, this is followed by a subsequent bi-model binding to JAK 

through the KIR and SH2 domain resulting in a higher affinity interaction, thus 

impeding the enzymatic activity o f JAK (Krebs and Hilton 2001; Croker, Kiu et al. 

2008). Point mutations in KIR are show to abrogate the actions o f SOCS3 without 

affecting SH2 domain binding (Sasaki, Yasukawa et al. 1999; Yasukawa, Sasaki et al. 

2000).

Studies have identified two small regions at the N-termini and C-terminus o f the 

SOCS3-SH2 domain. These are termed N- and C-extended SH2 subdomain (N-ESS 

and C-ESS, respectively); both are required for phosphotyrosine binding (Sasaki, 

Yasukawa et al. 1999; Yasukawa, Sasaki et al. 2000; Croker, Kiu et al. 2008). The N- 

ESS forms a 15-residue alpha helix, which directs the phosphotyrosine-binding loop 

influencing its orientation. Conservation o f these important residues indicates N-ESS
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is highly likely to be a mutual structural feature among SOCS-SH2 domains (Babon, 

Yao et al. 2005; Babon, McManus et al. 2006; Croker, Kiu et al. 2008).

All SOCS proteins contain a 40 amino acid SOCS box motif, which in most 

cases, is located in the C-terminus of the protein. The SOCS box consists o f three a- 

helices packed together (Croker, Kiu et al. 2008; Piessevaux, Lavens et al. 2008).

KIR ESS SH2 SOCS box

Hi I I
/  ^  v/ ^

Interaction with: JAK Kinase domain Phospho-Tyr Elongin B C  SOCS Adaptors

1 1 /  \ X \ \
Mode of action: Inhibition kinase Competition SOCS Target SOCS Other

activity with STATs stabilisation degradation degradation signalling
pathways

Figure 1-8 Diagram depicting the various domains o f the SOCS3 protein, sites of 

interaction and mode o f action. Adapted from (Piessevaux, Lavens et al. 2008)

Receptor

Perturbations in SOCS3 are shown in several intestinal pathologies including 

inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a term used 

to describe a cohort of diseases in which there is chronic recurrent colonic 

inflammation within the bowel, Ulcerative colitis (UC) is a phenotype o f this, and is 

associated with an increased risk of developing CRC (Eaden and Mayberry 2000; 

Eaden, Abrams et al. 2001). Destruction of the epithelial layer can be caused by 

chronic inflammation. Cytokines released in response to inflammation stimulate the 

proliferation o f IEC to compensate for the loss of IEC. This chronically stimulated 

state o f the IEC layer may ultimately lead to the development o f UC-CRC (Sartor
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2006; Schottelius and Dinter 2006; Li, de Haar et al. 2010). There is considerable 

evidence to suggest cytokines, predominantly IL-6 directly stimulate the proliferation 

o f IEC (Schneider, Hoeflich et al. 2000). Elevated levels o f IL-6 have been detected in 

both serum samples and colonic biopsy specimens o f patients with UC, with levels of 

IL-6 correlating with disease severity (Chung and Chang 2003; Carey, Jurickova et al. 

2007). A mutation in the IL-6 receptor (IL-6R) is associated with an increased risk o f 

colon cancer in humans (Landi, Gemignani et al. 2006). In addition to the membrane 

bound IL-6R, IL-6 can also signal through soluble IL-6R, a process termed trans

signalling. Inhibitors o f soluble IL-6R are known to ameliorate IBD (Mitsuyama, 

Matsumoto et al. 2006). Typically, IL-6 binds to its corresponding membrane receptor, 

ligation initiates gpl30 dimerisation and activation o f JAK2 (Heinrich, Behrmann et 

al. 2003). This subsequently permits the activated JAK2 to phosphorylate the tyrosine 

reside on the cytoplasmic tail of the receptor, presenting a docking site for proteins 

with an SH2 domain, for instance, the STAT3 protein (Mitsuyama, Matsumoto et al.

2006). STAT3 is able to bind to the receptor where it is activated through 

phosphorylation through JAK, leading to homo-hetro-dimerisation o f STAT3 

(pSTAT3). Mice with mutated STAT3 binding sites are shown to have impaired 

healing after acute injury with dextran sulphate sodium (DSS) (Tebbutt, Giraud et al. 

2002). Mice with mutated binding sites on gpl30 are found to develop spontaneous 

gastric tumours associated with increased STAT3 (Judd, Alderman et al. 2004). The 

pSTAT3 hetero-dimers translocate to the nucleus, where they interact with specific 

DNA sequences and induce the transcription o f target genes (Krebs and Hilton 2001; 

Yoshimura, Naka et al. 2007; Li, de Haar et al. 2010).

SOCS3 is transcribed by the IL-6/pSTAT3 pathway and serves as a major 

negative feedback inhibitor o f the JAK/STAT signalling cascade (Suzuki, Hanada et
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al. 2001; Li, de Haar et al. 2010). STAT3 activates the transcription o f Socsim RNA 

by binding to the promoter region o f the Socs3 gene (Aman and Leonard 1997; Starr, 

Willson et al. 1997). SOCS3 then translocates out o f the nucleus where it inhibits 

signalling by binding to STAT3 no longer allowing it to bind to the receptor (Schmitz, 

Weissenbach et al. 2000). SOCS3 also inhibits signalling by binding to 

phosphotyrosine sites on the cytoplasmic domain o f the receptor and blocking STAT3 

recruitment to the receptor. The mechanism of SOCS3 action was established by 

investigating the primary SOCS3-binding sites within the gpl30 signalling pathway 

(Nicholson, Willson et al. 1999). This was achieved by establishing the affinity to 

which SOCS3 binds to several phosphopeptides derived from the JAKs, STATs and 

the gpl30 subunit o f the IL-6R. It was discovered that SOCS3 binds with highest 

affinity to a phosphopeptide in an area surrounding Y757 within the gpl30, while 

exhibiting weaker binding affinity to STAT3. Furthermore, when Y757 is mutated to 

phenylalanine the inhibition o f SOCS3 on gpl30 is greatly reduced (Nicholson, 

Willson et al. 1999; Schmitz, Weissenbach et al. 2000).
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Figure 1-9 The molecular mechanism by which SOCS3 negatively regulates IL-6 

signalling. Adapted from (Yoshimura, Naka et al. 2007)

56



1.3.2 Role o f  SOCS3 in mediating TLR signalling

SOCS3 appears to influence secondary effects o f LPS by modulating cytokine 

signalling, but may also play a role in direct regulation o f TLR signalling. The 

majority o f studies determining the role o f SOCS3 in TLR signalling have focussed on 

immune cells (Yoshimura, Ohishi et al. 2004; Qin, Roberts et al. 2007; Yoshimura, 

Naka et al. 2007). Macrophages stimulated with LPS trigger the production o f 

numerous cytokines including IL-6 and IL-10; all o f which upregulate the expression 

of SOCS3. These cytokines influence the LPS response in either a positive or a 

negative manner (Dimitriou, Clemenza et al. 2008).

Studies have shown SOCS3 is a key regulator o f the opposing actions o f 

cytokines in macrophages. IL-6R and IL-10R signalling pathways both involve JAK- 

STAT3 signalling (Yoshimura, Ohishi et al. 2004). IL-6 is a pro-inflammatory 

cytokine and plays a functional role in many inflammatory diseases. Whereas IL-10 is 

an immunoregulatory cytokine, which has anti-inflammatory properties (Dimitriou, 

Clemenza et al. 2008). Although both cytokines exhibit opposite effects, both require 

the transcription factor STAT3 for functional activity (Takeda, Clausen et al. 1999).

SOCS3 binds to phosphorylated Y759 on the IL-6R subunit gpl30, thus 

uncoupling IL-6 mediated STAT3 activation (Nicholson, De Souza et al. 2000; 

Yasukawa, Ohishi et al. 2003). In contrast, SOCS3 does not bind to IL-10R. 

Yasukawa and colleagues (2003) showed that macrophages lacking the SOCS3 gene 

or possessing a mutation in the gp 130 binding site cause prolonged STAT3 activation 

and an anti-inflammatory response similar to that observed in response to IL-10 

(Yasukawa, Ohishi et al. 2003). Therefore, SOCS3 is vital in defining the dichotomous 

effects o f LPS-induced IL-6 and IL-10 responses in macrophages. However, the exact
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mechanism by which S0CS3 function results in differential STAT3 activity remains 

unclear.

Taken together, these studies indicate SOCS3 may not directly target TLR 

signalling intermediates in immune cells, but may influence secondary effects o f TLR 

signalling by modulating cytokine signalling in macrophages. In the subsequent 

chapters I will investigate the role o f SOCS3 in regulating TLR-mediated intestinal 

epithelial homeostasis and repair.
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1.3.3 Role o f SOCS3 in proteosomal degradation

Zhang and colleagues (2008) have suggested that SOCS3 may also promote the 

degredation o f specific signalling proteins. They had suggested that the SOCS box, 

located at the C-terminal of SOCS3, acts as an adaptor molecule that recruits activated 

signalling molecules to the proteosome (Zhang, Farley et al. 1999). SOCS3 associates 

with a complex containing elongins B and C (elongin BC) via the SOCS box 

(Kamura, Sato et al. 1998; Zhang, Farley et al. 1999). This subsequently allows cullin- 

2 to associate with elongin BC to form the E3 ligase scaffold. As SOCS3 contains an 

SH2 domain that interacts with tyrosine-phosphorylated signalling molecules, SOCS3 

then acts as an adaptor that facilitates ubiquitination and subsequent degredation o f the 

associated signalling molecule (Krebs and Hilton 2001; Babon, Sabo et al. 2008; 

Linossi and Nicholson 2012).

Proteasome

Cullin-2

Elongin B 

Elongin C

SH2 SOCS box

Figure 1-10 Proposed mechanism by which SOCS3 targets signalling molecules for 

proteosomal degradation by the proteasome (Krebs and Hilton 2001)
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1.4 Tissue homeostasis and repair following damage

1.4.1 Intestinal epithelial homeostasis and repair following injury

The mucosal surface epithelial cells o f the alimentary tract are highly 

proliferative with complete turnover every 4-5 days (Tsujii and DuBois 1995). The 

proliferative compartment is localised to the crypt region and is separated from a 

gradient o f increasingly differentiated epithelial cells along the functional villus 

compartment (Dignass 2001). The integrity o f the mucosal surface o f the colon is 

essential in forming a barrier between the diverse immunogenic and noxious 

compounds present within the gastrointestinal lumen and the underlying mucosal 

immune system (Sturm and Dignass 2002). Damage or impairment o f the intestinal 

surface barrier is observed in the course o f a number o f diseases, and these may lead to 

an increased infiltration and immunological intolerance o f luminal contents, leading to 

inflammation and disequilibrium of homeostasis o f the host. Thus, rapid resealing o f 

the mucosal surface, subsequent to injury or damage is essential in maintaining 

conventional homeostasis (Rakoff-Nahoum, Paglino et al. 2004; Ben-Neriah and 

Schmidt-Supprian 2007).

Numerous studies have demonstrated the potential o f the intestinal epithelium to 

rapidly re-establish itself after extensive damage (Feil, Wenzl et al. 1987; 

McCormack, Viar et al. 1992; Nusrat, Delp et al. 1992). The continuity o f the 

epithelium is re-established by at least three distinctive phases. Firstly, the epithelial 

cells neighbouring the damaged surface migrate into the denuded area, 

dedifferentiate form pseudopodia-like structures, re-organise their cytoskeleton and 

then re-differentiate after closure o f the damaged wound. This process is termed 

restitution and can arise within minutes to hours after injury in both in vitro and in
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vivo. Restitution is followed by the second phase proliferation; this is when IEC divide 

to replenish the reduced cell numbers. Thirdly, the undifferentiated epithelial cells 

mature and differentiate to maintain the functional activity o f the epithelium (Dignass 

2001; Dignass, Baumgart et al. 2004; Sturm and Dignass 2008).
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Figure 1-11 Simplified model of repair of superficial epithelial cell injury within the 

intestine (Dignass 2001)

The illustration provides a simplified model of repair to better understand the 

physiology and pathophysiology of intestinal epithelial wound repair. However, the 

three distinctive phases do overlap and moreover, additional repair mechanisms that 

involve inflammatory processes may also be requisite as a result of deeper lesions or 

penetrating injuries (Dignass 2001).

The repair o f the intestinal surface barrier is regulated by a broad spectrum of 

structurally distinct regulatory peptides, non-peptide factors, extracellular matrix 

factors and direct cell-cell interactions. Cytokines and growth factors have both been
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shown to play a role in regulating differential epithelial cell functions to conserve 

habitual homeostasis and integrity o f the intestinal epithelium. Epidermal growth 

factor (EGF), TGF-a, and TGF-p to name a few have been shown to enhance 

epithelial cell restitution (Podolsky 1997; Wilson and Gibson 1997). Other compounds 

such as short-chain fatty acids, phospholipids and adenine nucleotides, have also been 

shown to modulate intestinal epithelial repair mechanisms. Some o f these factors are 

released by injured or dying IEC, whereas others reach the intestinal mucosa via the 

intestinal lumen or bloodstream (Wilson and Gibson 1997; Dignass 2001; Sturm and 

Dignass 2002; Dignass, Baumgart et al. 2004).
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1.4.2 TLR signalling and intestinal epithelial regeneration

In addition to their role in mammalian host defence from adverse microbes, TLRs 

are also involved in several features o f mammalian homeostasis such as development, 

the recognition o f cellular tissue injury, tissue repair and regeneration (Zhang and 

Schluesener 2006; Rakoff-Nahoum and Medzhitov 2008). Other studies have 

demonstrated that TLR signalling is essential for maintaining tissue integrity and 

repair o f damaged tissue in models o f chemical, radiation and colonic injury (Fukata, 

Michelsen et al. 2005; Rakoff-Nahoum and Medzhitov 2008). Studies in wound 

healing models have shown that the absence o f TLR4 had notable consequences on 

both the inflammatory and repair phases o f lesions (Mollen, Anand et al. 2006). This 

can be supported by both Rakoff-Nahoum (2004) and Abreu (2005) who have both 

indicated that mice deficient in TLR4 or MyD88 are at an increased risk o f epithelial 

injury following the application o f DSS (Rakoff-Nahoum, Paglino et al. 2004; Abreu, 

Fukata et al. 2005). Similarly, gut-sterilised mice exhibit a promotion in intestinal 

injury and DSS-induced death as MyD88-defecient mice inferring PAMPs from 

intestinal microbiota stimulate cytoprotective pathways to prevent epithelial injury 

(Rakoff-Nahoum, Paglino et al. 2004; Kluwe, Mencin et al. 2009). Studies have also 

shown germ-free mice have a reduced rate o f crypt cell production, with crypts also 

containing fewer cells than mice colonized with conventional flora; indicating 

commensal flora effect IEC proliferation and subsequent repair (Alam, Midtvedt et al. 

1994).

Numerous studies have shown the importance of TLR5 signalling to be 

paramount for maintaining tight junction assembly and cytoprotection within IEC 

layers (Jones, Edwards et al. 2004; Otte, Cario et al. 2004; Vijay-Kumar, Sanders et al.
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2007). Vijay-Kumar and colleagues (2008) had shown that mice systematically 

injected with purified flagellin do not display the clinical features o f inflammation. 

Furthermore flagellin is shown to shield mice against pathological, chemical and 

ionizing radiation (Vijay-Kumar, Aitken et al. 2008). More recent studies have also 

supported the role o f flagellin pre-treatment in protecting the intestinal mucosa from 

injury resulting from irradiation-induced apoptosis (Jones, Sloane et al. 2011).

Numerous studies have demonstrated that exposure to helminths prevents TNBS- 

type colitis (Khan et al., 2002; Elliot et al., 2003; Moreels et al., 2004); suggesting 

helminth products promote mucosal healing in animal models o f colitis. Colitis is 

supressed by inhibiting inflammatory cytokines, such as TNFa and IL-12 or 

stimulating the secretion o f immunoregulatory cytokines such as TGF-P and IL-10 

(Elliott, Summers et al. 2007; Ruyssers, De Winter et al. 2008).

Looking at the molecular mechanism coupling TLR signalling to epithelial 

homeostasis, it has been shown that stimulation of epithelial TLR induce the activation 

o f a group o f receptors with tyrosine kinase activity. Notably, all four members o f the 

epidermal growth factor receptor (EGFR) family, including ErbB-1, ErbB-2, ErbB-3 

and ErbB-4 display elevated phosphorylation levels (Shaykhiev, Behr et al. 2008). 

EGFR is known to play a predominant role in mediating wound healing induced by 

TLR ligation in IEC, since specific obstruction of the receptor tyrosine kinase (RTK) 

associated TLR completely abolishes the effect o f ligation on epithelial migration and 

repair (Rakoff-Nahoum, Paglino et al. 2004).

In addition to recognising PAMPs, TLR are also able to recognise damage- 

associated molecular patterns (DAMPs), a group o f endogenous molecules released 

from injured or inflamed tissue; implying TLR may also appear to regulate
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inflammatory responses during the wound healing process. Such DAMPs that are able 

to ligate with TLR include hyaluronan, HMGB1, S I00 protein 60 and heat shock 

proteins (Miyake 2007; Kluwe, Mencin et al. 2009). However, there is still on-going 

debate with respect to some endogenous ligands, as many of these have either been 

purified in bacterial systems or have a high affinity to bacterial products, such as LPS, 

which proposes that the bacterial products rather than the suggested ligands 

themselves mediate their TLR-activating effect (Tsan 2007; Kluwe, Mencin et al. 

2009).

Previous studies have demonstrated that flagellin treatment is also a potent 

activator o f host defence/cytoprotective gene expression in IEC (Zeng, Carlson et al. 

2003; Zeng, Wu et al. 2006). Research conducted by Vijay-Kumar (2008) and 

colleagues have demonstrated that clinical features, such as loss o f body weight, 

shortening o f the colon and robust inflammation in mice induced by the ingestion of 

DSS were all greatly abrogated by a single administration o f flagellin upon initial 

exposure to DSS indicating flagellin can protect the gut from chemical injury (Vijay- 

Kumar, Aitken et al. 2008).
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1.4.3 TLR signalling in epithelial regeneration o f other tissues

The involvement o f TLRs in the regeneration o f other tissues has also been 

studied recently. Shaykhiev and colleagues (2008) had found that Staphylococcus 

aureus (S. aureus) signals via TLR2 and TLR5, both signalling pathways triggering a 

cohort o f non-immune lung epithelial cell responses including cell migration, 

proliferation, wound repair, and survival o f epithelial cells (Shaykhiev, Behr et al.

2008). Jiang and colleagues (2005) had shown that TLR signalling is required for liver 

regeneration after partial hepatectomy; with other studies exhibiting the significance o f 

TLR signalling displaying protection from bleomycin- and hyperoxic-induced liver 

injury (Jiang, Liang et al. 2005; Seki, Tsutsui et al. 2005). In the central nervous 

system, TLR have also been shown to coordinate the protective responses after axonal 

and crush injuries o f the brain and spinal cord (Babcock, Wirenfeldt et al. 2006; 

Kigerl, Lai et al. 2007; Kim, Kim et al. 2007).
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1.5 Role of microbes in intestinal diseases

1.5.1 Inflammatory bowel disease

The ability o f the host to initiate an inflammatory response following injury or 

exposure to foreign antigens is imperative for host homeostasis and survival. 

However, a continually heightened immune response such as that perceived in chronic 

inflammatory conditions severely weakens host organ activity, eventually leading to 

disease progression (Medzhitov 2008). IBD refers to chronic inflammation that affects 

the GI tract (Barbosa and Rescigno 2010; Maloy and Powrie 2011). There are two 

principal clinical forms o f IBD, Crohn's disease (CD) characterised by transmural, 

patchy inflammation generally affecting the ileum and the colon, but can occur 

anywhere within the GI tract; and ulcerative colitis (UC) which is more superficial 

with pathology restricted to the colonic mucosa (Podolsky 1991; Hanauer 2006; 

Strober, Fuss et al. 2007). Manifestations o f both diseases include abdominal pain, 

diarrhoea rectal bleeding, and malnutrition. Studies have shown that the incidence of 

CD is 8/100, 000 and UC 11/100, 000 within the UK population (Garcia Rodriguez, 

Gonzalez-Perez et al. 2005).

The exact aetiology o f IBD remains undecided, but three distinct categories are 

known to contribution to disease pathology; these have been identified as: the host 

immune system, genetic factors and environmental factors such as the gut microbiota 

(Baumgart and Carding 2007; Hill and Artis 2009). Swidsinski and colleagues (2007) 

have shown that the colonic mucus layer o f patients with IBD is greatly reduced, and 

unevenly distributed in patients with colitis, leaving significant areas o f the epithelium 

exposed to luminal contents (Swidsinski, Loening Baucke et al. 2007). This may be 

attributed to a decline in the population o f goblet cells as observed in the colonic 

epithelium of patients with UC (Kolios, Valatas et al. 2002).
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Patients with IBD have also been reported to exhibit less diversity in microflora, 

possibly associated with a relatively lessened proportion o f protective bacteria. The 

molecular-phylogenetic classification o f colonic microflora permitted the 

identification o f phyla selectively depleted in biopsy specimens o f IBD patients, 

namely the Firmicutes group (Manichanh, Rigottier-Gois et al. 2006; Sokol, Pigneur et 

al. 2008). A number o f other studies have shown Yersinia enterocolitica (Y. 

enterocolitica) and other species of Yersinia are associated with CD (Lamps, 

Madhusudhan et al. 2003; Saebo, Vik et al. 2005; Zippi, Colaiacomo et al. 2006). 

Overall, at least 18 different bacterial species or genera have been implicated in CD 

(Man, Kaakoush et al. 2011).

TLR play a major role in the detection o f microbiota, additionally stimulation o f 

these receptors is requisite in maintaining intestinal epithelial homeostasis, often 

interrupted in IBD (Fukata and Abreu 2007; Danese and Mantovani 2010). Studies 

have shown mutations in TLR4 are associated with CD and UC (Fukata, Michelsen et 

al. 2005). Other studies have shown that TLR4 is upregulated in IEC o f active UC and 

CD patients (Cario and Podolsky 2000). TLR4 signalling induces COX-2, PGE2 and 

reactive oxygen species (ROS) fundamental for the development o f CRC and colitis 

associated cancer (CAC) (Gupta and DuBois 2001; Fukata 2006; Wang and DuBois

2009). Several studies have also found that polymorphisms in TLR4 (D299G) are 

associated with increased risk of both UC and CD (Franchimont, Vermeire et al. 2004; 

Torok, Glas et al. 2004; Gazouli, Mantzaris et al. 2005; Ouburg, Mallant-Hent et al. 

2005).

Numerous studies have demonstrated flagellin is endotoxic to humans as binding 

to TLR5 instigates the transcription of pro-inflammatory genes, which may play a role 

in triggering acute flares of inflammation in IBD (Kluwe, Mencin et al. 2009). The

68



implication o f flagellin in IBD, has been supported by polymorphisms in TLR5 

negatively correlating with CD and commensal-derived flagellin being identified as a 

dominant antigen to this disorder (Erridge, Duncan et al. 2010).

A number o f studies have shown that the expression profile o f other TLRs, such 

as TLR2, TLR3 and TLR8, are dissimilar between IEC of patients with CD and non- 

IBD controls (Cario and Podolsky 2000; Szebeni, Veres et al. 2008; Steenholdt, 

Andresen et al. 2009). Taken together, emerging evidence suggests that defective TLR 

sensing o f microbial components may lead to susceptibility to CD and UC.

IBD is sometimes described as a dysregulated immune response to commensal 

microflora in genetically susceptible individuals. Numerous studies have shown that 

there is a strong relationship between inflammation and progression to colon cancer, 

as observed in patients with IBD (Itzkowitz and Yio 2004; Yang and Pei 2006). The 

severity o f inflammation correlates with the risk of cancer in IBD patients (Itzkowitz 

2002; Rutter, Saunders et al. 2004). Mouse models of IBD have shown commensal 

flora are required for the initiation of colitis and the promotion o f dysplasia or cancer 

(Sellon, Tonkonogy et al. 1998; Itzkowitz and Yio 2004). Conversely, germ-free rats 

are less prone to dysplasia and cancer following exposure to carcinogens (Reddy, 

Narisawa et al. 1976; Laqueur, Matsumoto et al. 1981).
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1.5.2 Role o f microbes in colorectal cancer

Colorectal cancer is one o f the most common causes o f cancer morbidity and 

mortality within the western world; with 36, 500 new cases being diagnosed each year 

within the UK. Almost three quarters of these cases arise in individuals over the age of 

75 (UK 2013).
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Figure 1-12 Average number of deaths per year and age-specific mortality rates of 

colorectal cancer, by sex, UK, 2008-2010 (UK 2013)

Over the last few decades there has been a steady increase in the incidence o f 

colon cancer within the western world (Slattery 2000; Giovannucci 2002). This may 

be attributed to changes in diet and the types o f bacteria that reside within our gut 

(Munkholm 2003). Although there is no recognised bacterial pathogen for human 

colorectal cancer; some bacteria have been shown to cause infection which may herald
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cancer. Streptococcus bovis (S. bovis) is an element o f the human enteric flora and 

patients with colon cancer have an increased faecal carriage o f S. bovis in contrast to 

healthy patients or those with non-malignant enteric disease. It has been suggested that 

S. bovis carriage maybe associated with the promotion o f intestinal carcinogenesis 

(Klein, Warman et al. 1987; Ellmerich, Scholler et al. 2000; Biarc, Nguyen et al. 

2004).

The role o f microbes in mediating an anti-tumour effect was first recognised in 

the 18th when Deidier observed a positive correlation between infection and remission 

o f malignant cancers (Garay, Viens et al. 2007). Coley (1894) then went further by 

showing microbial products showed significant tumour regression and even cure in a 

large group o f patients (Coley 1894). A recent study has shown that both TLR4 and 

MyD88 play a crucial role in anti-tumour responses following irradiation and 

chemotherapy (Apetoh, Ghiringhelli et al. 2007). TLR4 A mice are shown to have 

significantly larger tumours following oxaliplatin therapy or irradiation than control- 

mice, with both types displaying similar levels o f growth in the absence o f treatment 

(Apetoh, Ghiringhelli et al. 2007). It has been suggested that there are a number o f 

mechanisms through which TLR agonists mediate their anti-tumour activity. TLR 

agonists are shown to directly kill both tumour cells and ancillary cells located in the 

tumour microenvironment (Andaloussi, Sonabend et al. 2006; Salaun, Coste et al. 

2006; Rakoff-Nahoum and Medzhitov 2008). TLR activation can also lead to tumour 

regression by increasing vascular permeability, recruitment o f leukocytes, activation 

o f natural killer- (NK-) and cytotoxic T-cells, and increasing the "sensitivity o f tumour 

cells to assisted killing through TNFa, TRAIL and perforin/granzyme B (Smyth, Dunn 

et al. 2006; Akazawa, Ebihara et al. 2007; Garay, Viens et al. 2007).
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Studies have shown that TLR ligands enhance the growth o f adoptively 

transferred tumours (Harmey, Bucana et al. 2002; Luo, Maeda et al. 2004; Sfondrini, 

Rossini et al. 2006; Huang, Zhao et al. 2007). A spontaneously metastasising 

mammary adenocarcinoma cell line was first injected into a mouse model and LPS 

was then systematically injected into the mouse. The results showed LPS 

administration increased both migration and invasion to secondary locations (Harmey, 

Bucana et al. 2002). A similar model, but using a colonic adenocarcinoma cell line, 

showed intraperitoneal injection o f LPS displayed an increase in proliferation and a 

decrease in apoptosis o f metastatic tumours (Luo, Maeda et al. 2004). Other studies 

have shown TLR4 expression is strongly upregulated in the epithelial compartment of 

tumours o f patients with UC and colon cancer, as well as in murine models o f 

inflammation-associated bowel cancer (Fukata, Chen et al. 2007). Furthermore, 

TLR4'7' mice display overwhelmingly reduced dysplasia, number and size o f tumours 

(Fukata, Chen et al. 2007). Similar findings have also been reported in a study which 

explored the role of Myd88 in colon cancers. MyD88 deficiency was found to lessen 

carcinogenesis in ApcMin/+ mice, a non-inflammatory model o f colon cancer as well as 

in azoxymethane (AOM) models. The study also showed MyD88-deficiency depicted 

a reduction in size and number of polyps. Additionally, although polyps showed 

parallel levels o f proliferation between MyD88 and wild-type mice, higher levels of 

apoptosis was observed in polyps o f the MyD88- deficient mice in comparison to 

control mice (Rakoff-Nahoum and Medzhitov 2007).

Rhee and colleagues (2008) investigated whether TLR5 signalling inspires 

innate immune responses in regulating anti-tumour activity in mouse xenograft models 

o f human colon cancer. They showed blocking TLR5 dependent signalling 

significantly promoted tumour growth and impeded tumour necrosis whereas ligation
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o f TLR5 with its ligand flagellin drastically regressed tumour progression. Indicating 

engagement o f TLR5 with flagellin elicits inhibitory activity against human colon 

adenocarcinoma cells (Rhee, Im et al. 2008).
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1.5.3 Role o f microbes in necrotising enterocolitis

Necrotising enterocolitis (NEC) is among the most common and distressing 

diseases in neonates. NEC was first described over a century ago, but the disease has 

still remained an enigma. Pathogenesis o f NEC is still unconfirmed; treatment is 

problematic and regularly proves ineffective; with no successful prevention approach 

agreed upon. An epidemiological study conducted by Rees and colleagues (2010) had 

shown that NEC prevalence decreases significantly with increasing birth rate and 

increasing gestation (Rees, Eaton et al. 2010). There are a multitude o f NEC-like 

conditions with a diverse presentation of symptoms. However, the most characteristic 

signs and symptoms of ‘classical’ NEC in preterm infants include abdominal 

distension, feeding intolerance and bloody stools 8 to 10 days after birth (Neu and 

Walker 2011).

The pathophysiology of NEC remains poorly understood. However, 

epidemiological studies strongly indicate a multifactorial cause (Claud and Walker 

2001). Immature intestinal motility and digestion could possibly predispose preterm 

infants to NEC. Animal and human foetal studies have suggested that the development 

of GI motility commences in the second trimester, but matures in the third trimester 

(Sase, Lee et al. 2005; Sase, Miwa et al. 2005). Studies have shown premature infants 

have immature motility patterns when compared with full-term infants, although 

enteral feeding can mature these responses (Berseth 1989; Ittmann, Amamath et al. 

1992; Al Tawil and Berseth 1996; Lin and Stoll 2006). Studies in animal models of 

NEC and human foetal-cell cultures have proposed that foetuses and preterm infants 

have a disproportionate inflammatory response to microbial flora (Otte and Podolsky 

2004).
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Another hypothesis suggested to initiate NEC is the inappropriate initial 

microbial colonisation o f the GI tract in preterm infants, predominantly since NEC 

occurs about 8 to 10 days after birth, at a time when anaerobic bacteria have colonized 

the intestinal lumen (Claud and Walker 2001). Additionally, experimental NEC does 

not transpire in germ-free animals (Morowitz, Poroyko et al. 2010). The evaluation of 

faecal microflora from unaffected preterm infants and infants suffering from NEC has 

shown that the ailment is associated with both unusual intestinal microbial species and 

a global reduction in the diversity of microbiota (Vollaard and Clasener 1994; Wang, 

Hoenig et al. 2009; Mshvildadze, Neu et al. 2010). The reduction in microbial 

diversity and alteration in microbial species may limit colonisation resistance, making 

the infant more susceptible to colonisation by hospital-acquired pathogens that can 

cause intestinal inflammation. Additionally, commensal flora as well as pathogens 

have been shown to elicit a disproportionate inflammatory response as compared with 

mature enterocytes (Claud, Lu et al. 2004). The disparity in responses appears to be 

arbitrated to a developmental immaturity in the expression o f f B  (a molecule that 

impedes N F - k B  activated cytokines) (Claud, Lu et al. 2004; Neu and Walker 2011).

Numerous strategies have been proposed for the prevention o f NEC. These 

approaches include using enteral antibiotics; withholding enteral feeding and feeding 

infant milk expressed from mothers (Neu and Walker 2011). A recent study reported 

probiotics decrease the incidence o f NEC, but not mortality from NEC. Another newly 

proposed preventative strategy for NEC is to supplement feeding with prebiotics, or 

nutrients that have the potential to enhance the growth o f beneficial intestinal 

microflora (Gibson, Probert et al. 2004). The efficacy o f prebiotics as a preventative 

measure for NEC is still unclear because prebiotics enhance the proliferation of 

endogenous flora, such as Bifidobacteria. However; they demand appropriate
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preliminary colonisation o f the gut, that which is lacking in NEC infants (Moro, 

Minoli et al. 2002).
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1.6 Probiotics and prebiotics

1.6.1 Probiotics

The term probiotic refers to ‘a live microbial food ingredient that is beneficial to 

health’ (Salminen, Bouley et al. 1998). Examples o f probiotics include selected lactic 

acid bacteria (LAB) such as Lactobacillus, Streptococcus and Bifidobacterium  which 

can be ingested in fermented milk products or as a supplement (Rafter 2003; Rijkers, 

Bengmark et al. 2010). The health-promoting benefits credited to probiotics are 

widespread, and include serum cholesterol reduction, the improvement o f constipation 

and alleviation o f symptoms due to lactose intolerance (Rafter 2003).

In addition to these favourable effects, several experimental observations have 

also implied a potential protective effect of LAB against the progression o f colon 

tumours (Sanders 1994; Brady, Gallaher et al. 2000; Wollowski, Rechkemmer et al. 

2001). In animals, LAB ingestion was shown to block carcinogen-induced pre

neoplastic lesions and tumours (Goldin, Gualtieri et al. 1996; Challa, Rao et al. 1997; 

Rowland, Rumney et al. 1998). Additionally, direct evidence for anti-tumour 

properties o f LAB have been attained using pre-implanted tumour cells in animal 

models. Studies indicate feeding cultures containing LAB or fermented milk inhibits 

the growth o f tumour cells injected into mice (Kato, Kobayashi et al. 1981). In 

addition to a probable role in the prevention o f cancer, probiotics have also been 

suggested to boost the immune system and impede the growth o f existing tumours 

(Geier, Butler et al. 2006). Probiotics containing LAB are shown to increase the 

survival rate o f mice injected with tumour cells, correlating with an increase in the 

number o f NK cells, T cells, MHC class 11+ cells and CD4-CD8+ T cells (Lee, Kim et 

al. 2004).
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Epidemiological studies looking at the association between fermented milk 

products and colorectal cancer have found that the consumption o f large quantities of 

dairy products containing Bifidobacterium and Lactobacillus may correlate with lower 

incidence o f colon cancer (Shahani and Ayebo 1980). In a two population-based case 

study o f colon cancer, an inverse relationship was observed for yogurt when the study 

was adjusted for possible co-founding variables (Peters, Pike et al. 1992). In another 

case-control study, an inverse relationship was observed again between the 

consumption o f yogurt and risk o f colon adenomas in both males and females 

(Boutron, Faivre et al. 1996).

There have been a number o f clinical trials that have demonstrated that probiotics 

improve health in patients with IBD for both CD and UC patients (Venturi, Gionchetti 

et al. 1999; Guslandi, Mezzi et al. 2000; Kruis, Fric et al. 2004; Tursi, Brandimarte et 

al. 2004; Furrie, Macfarlane et al. 2005; Karimi, Pena et al. 2005). Guslandi and 

colleagues (2005) had shown that patients given Saccharomyces boulardii (S. 

boulardii) as a probiotic displayed relapse in only 6% o f CD patients vs. 38% of 

patients given conventional treatment only (Guslandi, Mezzi et al. 2000). Another 

study showed probiotic treatment given to UC patients was just as effective as 

conventional treatments (mesalazine and balsalazide) in maintaining remission (Kruis, 

Fric et al. 2004; Tursi, Brandimarte et al. 2004). Other studies have also noted the anti

inflammatory properties o f probiotics; such as improvement o f clinical appearances o f 

chronic inflammation in patients, decreases in TNFa, improvement o f histology in 

TNBS models o f rat colitis, reduction in the number o f activated T-lymphocytes in the 

lamina propria o f CD mucosa and reduced production o f pro-inflammatory cytokines 

to name a few (Sheil, McCarthy et al. 2004; Furrie, Macfarlane et al. 2005; Peran, 

Sierra et al. 2007). Probiotics have also been shown to decrease luminal pH in patients
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with CD thus antagonising pathogenic bacteria; as well as promoting the production of 

peptides that inhibit a broad range o f pathogens such as Staphylococcus, 

Enterococcus, Listeria, Bacillus and Salmonella (Venturi, Gionchetti et al. 1999; 

Flynn, van Sinderen et al. 2002).
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1.6.2 Prebiotics

A prebiotic was first defined as ‘a non-digestible food ingredient that 

beneficially affects the host by selectively stimulating the growth and/or activity of 

one or a limited number o f bacteria in the colon, thus improving host health (Gibson 

and Roberfroid 1995). Since its introduction, there have been a number of 

oligosaccharides and polysaccharides that have claimed to have prebiotic activity, 

without due consideration to the criteria required. Not all carbohydrates are prebiotics, 

and clear criteria need to be recognised for the classification o f foods as prebiotics. 

These criteria are:

(1) Resistance to gastric acidity, hydrolysis by mammalian enzymes and 

gastrointestinal absorption;

(2) Is fermented by intestinal microflora;

(3) Selectively stimulates the growth and/or activity o f intestinal bacteria 

associated with health and well-being.

Common prebiotics include inulin, oligosaccharides, lactulose and resistant 

starch. Dietary fibre has also been shown to convey prebiotic responses (Lim, 

Ferguson et al. 2005). Numerous studies have suggested colonic microflora are a risk 

factor for colon cancer. However, modifying the metabolic activity or composition of 

colonic microflora through the use of prebiotics could be a preventative measure in 

reducing the prevalence o f colorectal cancer. Mechanisms by which prebiotics may 

bestow beneficial effects include detoxification o f exogenous carcinogens, decreasing 

luminal pH, improving solubility of and uptake o f ions, namely magnesium, calcium 

and iron; and modulation o f immune responses (Lim, Ferguson et al. 2005).
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Numerous studies have looked at the protective effects o f prebiotics, namely 

fructooligosaccharides and inulin on colon cancer. Femia and colleagues (2002) had 

reported that the expression o f genes involved in colon carcinogenesis - Glutathione S- 

transferase (GST) and GST placental enzyme pi type, were lowered when rats were 

fed with prebiotics individually, and in combination with Bifidobacterium lactis (B. 

lactis) B bl2 and Lactobacillus rhamnosus (L. rhamnosus) (Femia, Luceri et al. 2002). 

Additionally, inducible nitric oxide synthase (iNOS), found to play a significant role in 

colon tumour growth was also reduced in tumours o f mice fed with prebiotics (Ahn 

and Ohshima 2001). COX-2, an enzyme generally upregulated in cancer, is also found 

to be increased in the tumours o f control rats but not in those fed with prebiotics 

(DuBois, Radhika et al. 1996; Ahn and Ohshima 2001).

Numerous studies have observed the effect o f prebiotics on experimental colitis 

(Ewaschuk and Dieleman 2006; Geier, Butler et al. 2007). Inulin and lactulose have 

both been shown to attenuate inflammation in IL-10”/_ mice and DSS-induced colitis 

respectively (Madsen, Doyle et al. 1999; Videla, Vilaseca et al. 2001; Ewaschuk and 

Dieleman 2006). Another study, again using lactulose showed a dose-dependent 

positive effect o f lactulose on DSS-induced colitis in rodents, including improvement 

in areas o f colonic ulceration, reduced diarrhoea, increased body weight, and a 

reduction in myeloperoxidase activity and microscopic colitis (Rumi, Tsubouchi et al. 

2004). In another experiment of TNBS-induced colitis, rats which were fed for two 

weeks with lactulose prior to the induction of colitis had reduced myeloperoxidase 

activity, colonic TNFa and leukotriene B production (Camuesco, Peran et al. 2006). 

Some studies have explored the use of an insoluble mixture o f hemicellulose-rich 

dietary fibre and glutamine-rich protein termed germinated barley foodstuff (GBF) on 

epithelial repair. Fukudo and colleagues (2002) had discovered that feeding GBF to

81



rodents with DSS-induced colitis significantly reduced colonic inflammation scores 

and increased butyrate concentrations in cecal contents o f rodents (Fukuda, Kanauchi 

et al. 2002). Another study in rodents with DSS-induced colitis also observed similar 

results, and further concluded that the dietary fibre component rather than the protein 

component o f GBF is responsible for the beneficial effects o f GBF (Kanauchi, 

Mitsuyama et al. 2003).

There have been a number o f prebiotics investigated in clinical trials, primarily 

in UC patients (Ewaschuk and Dieleman 2006; Geier, Butler et al. 2006; Geier, Butler 

et al. 2007). GBF has been shown to lower the severity o f UC both clinically and 

endoscopically (Bamba, Kanauchi et al. 2002). GBF has also been found to prolong 

the period o f remission in UC and stimulate the growth o f Bifidobacterium  and 

Eubacterium  (Kanauchi, Suga et al. 2002; Kanauchi, Mitsuyama et al. 2003; Hanai, 

Kanauchi et al. 2004).
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1.7 Role of SOCS3 in intestinal disease

Chronic inflammation, that which is observed in IBD has been associated with 

an increased risk o f developing CRC (Eaden and Mayberry 2000; Eaden, Abrams et 

al. 2001; Li, de Haar et al. 2012). Numerous studies have begun to unravel the core 

mechanisms that may drive the development o f IBD-CRC (Breynaert, Vermeire et al. 

2008; Brackmann, Aamodt et al. 2010; Saleh and Trinchieri 2010). The activation o f 

the immune system in IBD triggers the production of mediators that promote the 

destruction o f the epithelium further enhancing inflammation. Other inflammatory 

mediators secreted by immune cells or IEC themselves augment wound-repair by 

encouraging IEC proliferation. It is a combination o f these events which leads to the 

development o f IBD-CRC (Eaden 2004; Sartor 2006).

Studies have uncovered the molecular mechanism of intracellular signalling 

pathways o f inflammatory cytokines such as TNFa and IL-6, implying signalling 

transpires through the JAK-STAT signalling pathway (Krebs and Hilton 2001; 

Yoshimura, Naka et al. 2007; Li, de Haar et al. 2010). SOCS3, a natural endogenous 

regulator o f inflammatory mediated signalling has been shown to limit transcription 

factor activation/translocation in response to inflammatory stimuli (Sasaki, Yasukawa 

et al. 1999; Suzuki, Hanada et al. 2001; Jamicki, Putoczki et al. 2010; Li, de Haar et 

al. 2012). Therefore; SOCS3 provides a self-regulating mechanism to control 

inflammation within IEC.

There is compelling evidence to support the role o f SOCS3 in IBD, as increased 

expression o f SOCS3 is detected in mouse models o f inflammation (Suzuki, Hanada et 

al. 2001). Furthermore, inflamed biopsy specimens o f UC patients express greater
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levels o f SOCS3 mRNA than non-inflamed biopsies (Miyanaka, Ueno et al. 2007; Li, 

de Haar et al. 2010).

Studies investigating the progression from UC-CRC have shown that the 

numbers o f SOCS3-positive IEC are significantly reduced during UC-CRC in 

comparison to patients with UC. With reduced expression o f SOCS3 also detected at 

dysplastic and cancerous regions o f the colon (Li, de Haar et al. 2010). The decline in 

SOCS3 expression is due to epigenetic regulation via enhanced DNA methylation (Li, 

de Haar et al. 2010; Li, Deuring et al. 2012).

STAT3 has already been demonstrated to have a stimulatory effect on cell 

survival and proliferation (Grivennikov and Karin 2010). Therefore, restricting 

SOCS3 may be associated with the development o f cancer. Numerous studies have 

supported the role of SOCS3 as a tumour suppressor, for example targeted deletion of 

SOCS3 in IEC promotes tumour incidence and growth in the colon; with methylation 

silencing o f SOCS3 shared in multiple tumour types (Ogata, Chinen et al. 2006; 

Rigby, Simmons et al. 2007). In vitro studies have shown that SOCS3 is a potent 

suppressor o f proliferation in both transformed and non-transformed IEC lines (Rigby, 

Simmons et al. 2007).

Taken together, SOCS3 is a critical regulator of cytokine signalling and the 

subsequent immune response. Since, SOCS3 regulates the activity o f a number o f 

cytokines linked to IBD and cancer, SOCS3 also plays a fundamental role in the 

promotion o f these diseases.
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1.8 Hypothesis

“SOCS3 impacts on TLR-induced intestinal epithelial responses associated with 

normal homeostasis and epithelial repair”.
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1.9 Aims

To investigate the above hypothesis (1.8) we aimed to determine:

1. Whether SOCS3 influences microbial-induced epithelial wound repair.

2. Whether SOCS3 influences IEC cytokine production in response to microbial 

challenge.

3. Whether SOCS3 mediates IEC tolerance to TLR ligation
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1.10 Specific Aims

1. To address whether SOCS3 influences microbial-induced epithelial wound 

repair; we aimed to:

A) Determine the effect o f TLR ligands on epithelial wound repair in a model 

system

B) Determine the effect o f SOCS3 on epithelial wound repair.

2. To investigate whether SOCS3 influences IEC cytokine production in response 

to microbial challenge; we aimed to:

A) Identify cytokines upregulated in response to microbial stimulation

B) Determine the effect o f SOCS3 on microbial-induced cytokine production 

and signalling.

3. To investigate whether SOCS3 mediates IEC tolerance to TLR ligation; we 

aimed to:

A) Monitor TLR and SOCS3 expression levels in IEC following TLR ligation.

B) Assess SOCS3 and cytokine expression in a model o f conventional and 

disrupted IEC monolayers
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2. MATERIALS AND 
METHODS

88



2.1 Materials

2.1.1 Cell lines

For the purposes o f this study, colon adenocarcinoma cell lines were purchased 

from the European Collection o f Cell Cultures (ECACC). The cell lines used as part of 

this study were:

■ The human colorectal cancer SW480 epithelial cell line derived from a 

grade 3-4 colon adenocarcinoma. SW480 IEC were chosen as they are 

epithelial like in morphology and have extensively been used as an in 

vitro model to investigate cell signalling in colorectal studies.

■ The human colorectal cancer Caco-2 epithelial cell line derived from a 

grade 2 colon adenocarcinoma. In vitro, Caco-2 IEC undergo a process 

o f spontaneous differentiation leading to the formation o f an IEC 

monolayer. These monolayers express several functional and 

morphological features of mature enterocytes. The characteristic features 

o f Caco-2 IEC forming monolayers will be used as an in vitro model to 

investigate epithelial wound repair.
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2.1.2 TLR ligands

Lipopolysaccharide (LPS) from E. coli (Sigma Aldrich)

Flagellin (FLA) from S. typhimurium (InvivoGen)

Poly I:C HMW (InvivoGen)

T.muris excretory/secretary proteins (ES) (gift from Kathryn Else, University of 

Manchester)
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2.1.3 Antibodies

Antibody Manufacturer Product
code

Molecular
weight
(kDa)

Source Working
dilution

B-actin Cell Signalling 
Technologies

4967 45 Rabbit 1:1000

SOCS3 Cell Signalling 
Technologies

2923 26 Rabbit 1:1000

pSTAT3 Cell Signalling 
Technologies

9145 79, 86 Rabbit 1:1000

STAT3 Cell Signalling 
Technologies

9139 79, 86 Mouse 1:1000

NF-kB Cell Signalling 
Technologies

3037 65-80 Rabbit 1:1000

Alexa Fluor® 
488 Donkey 
Anti-Rabbit 

IgG

Life Technologies A21206 1:200

rabbit IgG- 
HRP

Santa Cruz sc-2030 1:5000

mouse IgG- 
HRP

Santa Cruz sc-2031 1:5000

Table 2-1 List o f manufacturers, product codes, molecular weight, source and 

working dilution o f primary and secondary antibodies
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2.1.4 Primers

Primers were designed and checked for specificity using the National Centre for 

Biotechnology Information (NCBI). The primer sequences used to amplify genes 

were:

RPLPO (142bp) Forward: GC A AT GTT GC C AGT GTCTG and Reverse: 

GCCTTGACCTTTTCAGCAA

SOCS3 (119bp) Forward: TCGATTCGGGACCAGCCCCC and Reverse:

T GCT GT GGGT GACCATGGCG

TNFa (82bp) Forward: AGGTTCTCTTCCTCTCACATAC and Reverse:

ATCATGCTTTCAGTGCTCATG

TNFR2 (221 bp) Forward: G AGT GGT G A ACTGT GT CAT G A and Reverse:

GAGCTCGGCGCTGTGATC;

TLR4 (134bp) Forward: GC C CT GCGT GG AGGT GGTT C and Reverse:

AGCTGCCTAAATGCCTCAGGGGA

TGFp (131 bp) Forward: GTCACCGGAGTTGTGCGGCA and Reverse:

CGGCCGGTAGTGAACCCGTT
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2.2 Methods

2.2.1 Cell culture

2.2.1.1 Culturing cell lines

The human colorectal cancer SW480 epithelial cell line was maintained in 

Leibovitz growth medium (Gibco) supplemented with 10% foetal bovine serum (FBS) 

(Life Technologies), 50 units/ml o f penicillin and streptomycin (Sigma Aldrich) and 

0.11 mg/ml o f sodium pyruvate. Cells were allowed to differentiate under an 

atmosphere o f 100% air at 37°C in a humidified incubator (incu safe).

The human colorectal cancer Caco-2 epithelial cell line was maintained in 

Minimal Essential Medium-MEM (Gibco) supplemented with 10% FBS, 50 units/ml 

o f penicillin and streptomycin, and 1% MEM Non-Essential Amino Acids (Gibco). 

Cells were allowed to differentiate under an atmosphere o f 95% (v/v) air-5% CO2 at 

37°C in a humidified incubator (incu safe).

2.2.1.2 Trypsinisation of cells

To maintain cell growth, cells were routinely passaged once cells had reached 

70-80% confluence to prevent cells from becoming over-confluent and terminally 

differentiated. In order to split cells, either for passaging or seeding for subsequent 

experiments, medium was removed from flask and cells were washed three times with 

Dulbecco's Phosphate-Buffered Saline (DPBS) without Ca2+ or Mg2+ (Gibco). 

Trypsin-EDTA (IX ) with Phenol Red (Gibco) was then added to the flask (0.5mls 

Trypsin per T25 flask). Cells were incubated with trypsin for 6 minutes at 37°C, to 

allow cells to detach from flask. Once cells were no longer adherent, 5mls o f growth
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medium was added to inactivate trypsin. Cells were then pipetted gently to create a 

single cell suspension and allow for an accurate cell count using a haemocytometer. 

Cells were then seeded into a new T25 flask containing 6mls o f new growth medium 

at the required density, depending upon when cells would next be passaged. For the 

purposes o f our experiments, cells were only used between passage 20 and 50, to 

reduce divergence from parent lines.

2.2.1.3 Frozen cell stocks

To reduce divergence from parent cell lines, cells were frozen down for future 

use after 5-6 passages. To create a frozen stock, the cell suspension was transferred to 

a 15ml centrifuge tube and centrifuged at 1000 RPM for 5 minutes to form a pellet. 

The medium was removed and the pellet resuspended in 1ml o f appropriate medium 

containing 40% FBS and 10% Dimethyl sulfoxide (DMSO) (Sigma Aldrich). The cell 

suspension was immediately transferred to a 1.8ml polypropylene cryo-vial and stored 

in a NALAGENE Freezing container filled with isopropanol overnight at -80°C to 

allow gradual freezing before being transferred to liquid nitrogen (-180°C) for long 

term storage.
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2.2.2 Plasmid preparation for transfection

2.2.2.1 Transforming E.coli with the GS50726 pIERESneo- 

Human_SOCS3 plasmid

The GS50726 pIERESneo-Human_SOCS3 plasmid was transformed into E. coli 

using the One shot ®OmniMAX™-Tl Chemically competent E. coli kit (Life 

Technologies). To do this, one vial o f the OneShot®OmniMAX™-Tl chemically 

competent E. coli was thawed slowly on ice. Five microlitres o f the GS50726 

pIERESneo-Human_SOCS3 plasmid was then added to the vial and mixed gently. The 

vial was incubated on ice for 30 minutes. Cells were heat-shocked at 42°C for 30 

seconds without shaking. Cells were again placed on ice for 2 minutes. Two hundred 

and fifty microlitres o f pre-warmed S.O.C Medium was then added to the 

transformation.

2.2.2.2 Clone selection using LB plates

The transformation was streaked on an LB plate containing 50pg/ml of 

ampicillin (Sigma Aldrich). Care was taken not to streak too much transformed 

bacteria on plate as it may not be absorbed into the medium. Plate was then incubated 

upside down at 37° for 16-24h. As the SOCS3 plasmid also contains an ampicillin 

resistance cassette, E. coli which had acquired the SOCS3-plasmid will selectively 

grow on the LB plate forming a single cell clone.
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2.2.23 Amplification o f clone

Using a sterile loop, a single clone was transferred into a 25ml universal tube 

containing 5ml o f LB Broth (Life Technologies) with ampicillin at a final 

concentration o f 50pg/ml. Universal tube was incubated at 37°C overnight in a 

shaking incubator.

2.2.2.4 Isolation of plasmid DNA

The illustra plasmidPrep Mini Spin Kit (GE Healthcare) was be used to extract 

and purify the plasmid DNA, with DNA eluted in 15pl o f elution buffer.

2.2.2.5 Linearisation of plasmid DNA

The NanoDrop (Thermo Scientific) was used to determine the concentration and 

purity o f extracted DNA. Following on from this, a reaction mixture containing the 

Ahd I restriction enzyme (NEB) was used to linearise the plasmid, incubating at 37°C 

overnight. To do this, 5pl o f NEB Buffer 4, 0.5pl o f BSA, 3pl o f enzyme and plasmid 

were added together. dH20 was then added to bring the total volume to 50pl, mixture 

was incubated at 37°C for 16h. The mixture was then incubated at 65°C for 20 

minutes the following day to stop the reaction. Some of the plasmid was retained 

before linearisation so DNA could be electrophoresed on an agarose gel to confirm 

plasmid had been linearised.
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2.2.2.6 Ethanol precipitation

Ethanol precipitation was carried out to purify DNA from the aqueous solution 

by adding ethanol as an anti-solvent. Five microlitres o f 3M sodium acetate and 1 lOpI 

of neat ethanol was added to the tube, and mixed gently. The tube was then incubated 

at -20°C for 90 minutes. After 90 minutes, the tube was centrifuged in the cold room 

(4°C) at full speed for 20 minutes. Three hundred microlitres o f 80% ethanol was then 

added to the tube, again in the cold room. The tube was then centrifuged at full speed 

for 5 minutes in the cold room. The supernatant was removed from tube in the culture 

hood, and the DNA pellet was resuspended in 30pl o f autoclaved dfhO  and stored on 

ice until further use.

2.22.1 Confirming plasmid has been linearised

Concentration and purity o f plasmid-prep was again established using the 

NanoDrop. DNA was reconstituted to lpg/fil, and aliquoted in 20pl volumes in 

labelled eppendorf tubes and stored at -20°C until further use. Both uncut and 

linearised plasmids were electrophoresed on an agarose gel with a lOObp ladder to 

confirm plasmid had been linearised.
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2.2.3 Transfecting IECs with plasmid DNA

Lipofectamine™ 2000 (Life Technologies) transfection reagent was used to 

transfect IEC with plasmid DNA. On the day before transfection, cells were plated in 

the appropriate medium without antibiotics such that they would be 80-90% confluent 

at the time o f transfection. For each transfection sample, DNA was diluted in the 

appropriate amount o f medium without serum. Lipofectamine was mixed gently 

before use and diluted in the appropriate amount o f medium without serum. Both 

solutions were mixed gently and incubated for 5 minutes at room temperature (RT). 

After 5 minutes, the diluted DNA and Lipofectamine were combined, mixed gently 

and incubated for 20 minutes at RT to allow complex formation to occur. The DNA- 

Lipofectamine complexes were then added to each well/flask containing cells and 

medium without serum and incubated at 37°C for 5h. After 5h, medium was removed 

from wells/flask to avoid reagent cytotoxicity and replaced with fresh complete serum 

containing medium.
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2.2.4 Quantitative PCR

2.2.4.1 RNA extraction

r-pi (K)
Total RNA from each sample was extracted using the TRI Reagent RNA 

Isolation Reagent (Sigma Aldrich) method; briefly, 1ml o f TRI regent was used to lyse 

adherent cells. After addition o f reagent, the pipette tip was used to scrape the base of 

the well, and pipetted up and down a few times to form a homogenous lysate. The 

lysate was then incubated for 10 minutes at RT to permit the complete dissociation of 

nucleoprotein complexes. 0.2mls o f chloroform was added for each 1ml o f TRI 

reagent used for the initial homogenisation. The lysates were left at RT for 10 minutes. 

Samples were then centrifuged at 12,000g for 15 minutes at 4°C. The resultant 

aqueous phase was carefully removed and transferred to a new tube. The RNA was 

then precipitated from the aqueous phase by mixing with 0.5mls of isopropyl alcohol 

(Sigma Aldrich) per 1ml of TRI reagent used in initial homogenisation. Samples were 

mixed and incubated at RT for 10 minutes to allow RNA to precipitate. Samples were 

then centrifuged at 12, OOOg for 10 minutes at 4°C, to pellet the RNA. The supernatant 

was removed and the RNA pellet was washed by adding 1ml of 75% ethanol (Fisher 

Scientific). Samples were vortexed and centrifuged at 7, 500g for 5 minutes at 4°C. 

Supernatant was again removed and samples were washed a second time as before in 

75% ethanol. The RNA pellet was allowed to dry for 10 minutes at RT before 

resuspending in 20|ul o f RNase free-water (Life Technologies).
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2.2.4.2 Examining concentration and purity o f extracted RNA

The RNA concentration and purity (260/280) were determined by measuring the 

absorbance o f the sample using the NanoDrop 2000. To confirm the quality o f RNA, 

0.5mg of each sample was run on a 1% non-denaturing agarose gel in TBE (Tris 

Borate Ethylenediaminetetracetic acid EDTA) containing a lx  solution o f GelRed™ 

Nucleic Acid Gel Stain and bands visualized under UV light. For good quality RNA, 

two bands should be present, representing the ribosomal 18S and 28S RNA. Samples 

with degraded RNA were signified with an unspecific smear on the gel instead o f two 

distinct bands, which were then excluded from subsequent steps.

2.2.4.3 cDNA synthesis

Two micrograms of RNA was then reverse transcribed into cDNA using the 

Enhanced Avian RT First Strand Synthesis Kit (Sigma Aldrich). One microlitre of 

oligo dT (Fisher Scientific) was added to 2pg of RNA to be reverse transcribed. The 

total volume was made up to 1 O j l i I  using nuclease-free water. The mixture was 

incubated at 70°C for 10 minutes before being placed on ice for 5 minutes. Two 

microlitres o f lOx M-MLV Reverse Transcriptase Buffer, lp l o f dNTP (lOmM) 

(Sigma Aldrich), lp l of M-MLV Reverse Transcriptase enzyme and 6pl o f nuclease- 

free water were then added bringing the total volume to 20(il. The samples were 

briefly centrifuged before being incubated at 42°C for lh  and 80°C for 10 minutes to 

denature the M-MLV reverse transcriptase enzyme. The samples were then stored at - 

20°C for future use.
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2.2.4.4 Relative Quantitative Real Time PCR

2.2.4.4.1 Basic principle of SYBR Green I based QPCR

Relative Quantitate Real time PCR was performed using the SYBRK Green 

JumpStart™ Taq ReadyMix™ (Sigma Aldrich). The diagram below represents a 

schematic representation of the steps involved in the real-time SYBR-Green reaction.

slrrirrirnr'm i  i n  s in  mu i n Double stranded DNA

i m w w w w 3'

mm linn iiiia mill mm;
Two single stranded DNA 

templates

5’

m o o
,  T 1

3’

SYBR Green

mf£,—
M i l

SYBR Green I

3'

DNA polymerase 

SYBR Green

Nucleotides

Figure 2-1 Schematic representation of the steps involved in the real-time SYBR- 

Green reaction (Sigma Aldrich)
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Double stranded DNA is denatured by heating to 94°C. During this period, the 

double-stranded DNA helix separates into two single-stranded DNA templates. The 

temperature then falls to 60°C during which the DNA polymerase enzyme anneals to 

the DNA strands and extends the sequence specific primers with the incorporation of 

nucleotides that are complementary to the template yielding a double-stranded DNA 

complex. The SYBR Green I is then able to bind to the newly synthesised double

stranded DNA complexes and fluoresce. The fluorescence accumulates as the cycling 

o f the PCR continues and is measured at the end o f each cycle. The intensity of 

fluorescence generated by the SYBR Green I above the background level or cycle 

threshold (Ct value) is measured and used to quantify the amount o f newly generated 

double-stranded DNA strands. After repeated cycles of denaturing, annealing and 

extension, approximately 40 times, the Ct is used to measure gene expression (Sigma 

Aldrich).

2.2.4.4.2 SYBR Green I data parameters

To detect gene expression between test samples based on the number o f cycles 

passed before possible detection of fluorescence, the baseline and the threshold must 

first be set. The baseline is the noise level in the early cycles where there is no 

detectable increase in fluorescence due to amplification products. The threshold is an 

adjustable value above the background but significantly below the plateau o f the 

amplification plot. The threshold is usually placed within the linear region o f the 

amplification, and is usually determined by the computer software. The Ct for a given 

amplification curve is defined as the cycle number at which the fluorescence generated 

within a particular reaction surpasses the defined threshold and signifies a point at
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which there is a significant increase in detectable product. The fewer number o f cycles 

required to reach the detectable level o f fluorescence, indicates a greater initial copy 

number o f the target nucleic acid.

2.2.4.4.3 Endogenous control reference gene

This is a gene whose expression level does not differ between samples, such as 

housekeeping genes. The use of a reference gene or endogenous control is important in 

order to standardise the quantity and monitor the quality o f cDNA added to each 

reaction. Initially, three housekeeping genes RPLPO, 18S and GAPDH 

(Glyceraldehyde-3-phosphate dehydrogenase) were tested for this study. Validation 

experiments indicated RPLPO was the best housekeeping gene to determine the 

relative levels of gene expression. Hence, RPLPO was used as an internal reference 

gene for this study.

2.2.4.4.4Calculating relative gene expression

The Ct number for both the gene of interest and the housekeeping gene were 

verified for each sample. This would permit the expression o f the gene o f interest to be 

normalised to the endogenous housekeeping gene. The comparative method, 

sometimes called the 2~AACt method, was used for calculating the relative gene 

expression. This involved comparing the ACt of the samples with a non-treated 

sample. This involved calculating the AACt, by subtracting ACWtreated from the 

ACtsampie- Changes in C, values for the gene of interest were normalised relative to 

RPLPO. In all experiments, gene expression was expressed as fold-change relative to 

no treatment control.
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2.2 A A. 5 Primer design

Primers for genes were designed from sequences in the Genebank database. The 

forward and reverse sequences o f the primers for each gene are shown in section 2.1.4. 

All primers sets were designed such that the PCR product size was a maximum of 250 

base pairs and primers only spanned exon-exon junctions. However, it was later 

discovered that TNFR2 primers might be amplifying residual genomic DNA as they 

were buried in one exon. Therefore, TNFR2 primers were validated for subsequent 

experiments. All primer sets were tested by BLAST searching to ensure primers did 

not bind to other sequences and that primer dimers were not formed. Primer sequences 

were then sent to Sigma Aldrich for production. An attempt was made to design TNFa 

primers, but this proved unsuccessful. Primers were therefore purchased from 

Primerdesign. RPLPO was selected as a housekeeping gene because in preliminary 

experiments, mRNA expression o f RPLPO did not change following treatment.

2.2.4.4.6Primer concentration optimisation for qPCR

Before primers could be used to detect gene expression for qPCR, they first had 

to be optimised to determine the concentration o f forward and reverse primers that 

produced the smallest Ct number with the highest fluorescent signal. For the purpose 

o f these experiments, the real time PCR reactions were initially performed with lp l o f 

cDNA template and different combinations o f forward and reverse primer 

concentrations as depicted in table 2-2.
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500nM Forward 

500nM Reverse

500nM Forward 

1 OOOnM Reverse

500nM Forward 

1500nM Reverse

lOOOnM Forward 

500nM Reverse

lOOOnM Forward 

1 OOOnM Reverse

lOOOnM Forward 

1500nM Reverse

1500nM Forward 

500nM Reverse

1500nM Forward 

1 OOOnM Reverse

1500nM Forward 

1500nM Reverse

Table 2-2 Combination o f forward and reverse primer concentrations for 

optimisation experiments for qPCR

Primer optimisation was performed for all primers with experiments indicating 

the optimum combination of primer concentrations for the quantitate amplification of 

RPLPO, SOCS3, TNFR2, TLR4 and TGFP to be lOOOnM forward and lOOOnM 

reverse for each gene.

2.2.4.4.7 Primer validation

For the AACt calculation to be valid, the amplification efficiencies o f the target 

and the endogenous reference genes must be roughly the same. This can be established 

by observing how ACtsampie varies with template dilution. The ACt is plotted against 

the logarithm (log) o f the template amount. If the gradient o f the cDNA dilution versus 

ACt is near to 0 (<0.1) then this indicates the amplification o f the housekeeping and 

the target genes are comparable.

To validate primers, cDNA was diluted 1 in 2 as a serial dilution. Six dilutions 

were performed ranging from lOOng to 3.125ng. The same cDNA was used for all 

validation experiments for all genes o f interest.
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Figure 2-2 Example o f a validation experiment for the SOCS3 primer in relation to the

RPLPO housekeeping gene

Figure 2-2 shows the variation of ACt value for SOCS3 in relation to RPLPO 

housekeeping gene when template input is diluted. The x-axis depicts the logio o f the 

cDNA added, whereas the y-axis depicts the ACt value. For the 2 'AACt method to be 

valid, the amplification efficiencies of SOCS3 and RPLPO must be equal in the range



o f template input used. This is confirmed when the slope value is less than 0.1. The 

slope value for RPLPO was -3.1324 and SOCS3 was -3.158. The ACt values for 

SOCS3 in relation to RPLPO are therefore acceptable when the range o f cDNA is 

between 100 and 3.125ng.

Validation experiments were also performed for TNFR2, TLR4 and TGFp 

primers in relation to RPLPO as the internal reference gene; the ACt values were 

acceptable when the range o f cDNA was between 100 and 3.125ng.

2.2.4.4.8 SYBR Green I cDNA amplification reaction

Relative Quantitate real-time PCR was performed in a 15pl reaction volume in a 

96-well plate in the C l000 Real Time Thermocycler (Bio-Rad). The mixture was 

prepared according to the following recipe:

7.5pl 2x SYBR Green I Mastermix

1.5 |l i1 (10pM) Forward primer Final concentration o f lOOOnM

1.5pl (1 OpM) Reverse primer Final concentration o f 1 OOOnM

1 pi o f cDNA

H2 O (Nuclease free water) to 15pl

The concentrations o f primers were used according to the optimised experiments 

(section 2.2.4.4.6). Cycling conditions were 94°C for 2 minutes, 40 x 94°C for 15 

seconds and 60°C for 1 minute. No Template Control (NTC) were always included in 

each real-time PCR run to ensure amplification was not due to reagent contamination.
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2.2.5 SDS-PAGE and Western blotting

2.2.5.1 Preparation of lysates and electrophoresis

The Abeam method of SDS-PAGE and western blotting was used to determine 

protein expression levels. Following treatment, the 6-well cell culture dish was placed 

on ice and washed once with ice-cold Phosphate Buffered Saline (PBS) (Gibco). It 

was important to remove as much PBS after washing, as this would dilute the lysis 

buffer. Wells were then lysed with 50pl o f ice-cold lysis buffer (50mM Tris-HCL 

pH7.5, 150mM NaCl, 1% Nonidet P40, 10% Glycerol and 5mM EDTA) containing 

phosphatase inhibitor (Sigma Aldrich) and protease inhibitor (Sigma Aldrich). 

Adherent cells were scrapped off the base o f the plate using a pipette; the cell 

suspension was then gently transferred to a pre-cooled tube and centrifuged at 12,000 

RPM for 20 minutes at 4°C. Tubes were removed from centrifuge and placed on ice, 

supernatant was aspirated to a fresh tube and placed on ice, discarding pellet.

2.2.5.2 Determining protein concentration

Before performing immunoblotting, it was necessary to determine the 

concentration o f protein present in the samples to be tested. Bradford reagent (Sigma 

Aldrich) was used to determine protein concentration o f samples; this involved a 

coloumetric assay for measuring total protein concentration. Briefly, 6 protein 

standards o f between lOOpg and 0 were generated in duplicate using BSA in a final 

volume o f lOOpl. Five hundred microlitres o f Bradford reagent was then added to 

standards and samples, and incubated at RT for 5 minutes. After 5 minutes, 

absorbance o f standards and samples were measured at 595nm. A standard curve was
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then generated by plotting the 595 nm values (y-axis) versus their concentration in 

pg/ml (x-axis). The standard curve was then used to determine the unknown sample 

concentration. Protein aliquots o f 25pg were generated and boiled at 95°C for 10 

minutes with 4x Sample buffer (Life Technologies) and 2-Mercaptoethanol (Sigma 

Aldrich).

2.2.5.3 Western blotting technique

Proteins were run alongside the Precision Plus Protein™ All Blue Standard 

(Bio-Rad) to monitor electrophoretic separation and molecular weight sizing o f 

separated proteins on a 10% SDS-PAGE gel at 40mA for lh. Proteins were 

subsequently electro-transferred onto a nitrocellulose membrane (Macherey-Nagel) 

using the semi-dry Trans-Blot® Turbo™ Transfer system (Bio-Rad) using lOx Fast 

Transfer Buffer (Life Technologies) for 30 minutes. The membrane was treated with 

3% bovine serum albumin (BSA) (PAA) in TBST (Tris Buffered Saline-Tween) for lh 

at RT, then incubated with primary antibody (SOCS3, 1:1000, Cell Signalling 

Technology, Rabbit, 26kDa), (P-actin, 1:1000, Cell Signalling Technology, Rabbit, 

45kDa), (NF-*B, 1:1000, Cell Signalling Technology, Rabbit, 65-80kDa), (pSTAT3, 

1:1000, Cell Signalling Technology, Rabbit, 79, 86kDa) or (STAT3, 1:1000, Cell 

Signalling Technology, Mouse, 79, 86kDa) overnight at 4°C. Membrane was then 

washed three times for 10 minutes in TBST and incubated in anti-rabbit IgG-HRP 

(Santa Cruz, 1:5000) or anti-mouse IgG-HRP (Santa Cruz, 1:5000) conjugated 

secondary antibody for lh at RT. The membrane was again washed three times in 

TBST and once in TBS, 10 minutes for each wash. The Pierce® ECL Western Blotting 

Substrate kit (Thermo Scientific) was then used to detect Horseradish peroxidase
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(HRP), this was later detected and quantified using the ChemiDoc XRS imaging 

system (Bio-Rad). Western blots were carried out in a minimum of three independent 

experiments.

To blot for loading control (p-actin) or normalise pSTAT3 expression to total 

STAT3 expression, primary antibody was removed from probed membranes using 

mild stripping buffer (1.5% glycine, 1% SDS and 1% Tween-20) for 10 minutes two 

times at RT, before being washed two times for 10 minutes each in PBS and two times 

for 5 minutes each in TBST. Consequently, membranes were ready to be blocked in 

3% BSA in TBST then probed with the next primary and secondary antibody as 

described above.

Protein expression levels were again quantified through densitometry using the 

ChemiDoc XRS imaging system.

110



2.2.6 Proliferation assay

The CyQUANT® Cell proliferation Assay kit (Molecular Probes, Invitrogen) 

which includes the CyQUANT® GR dye and cell lysis buffer were used to determine 

the proliferation capabilities o f cells after treatment with microbial ligands. The 

CyQUANT method works by incorporating the fluorescent dye into total DNA, which 

correlates directly to the number o f cells in culture.

Stock cell densities were determined by visual counting using a haemocytometer 

and Trypan blue (Sigma Aldrich). Cells were then resuspended in medium and plated 

in 24-well culture plates at a concentration o f 25,000 cells per well in 500pl volumes; 

and incubated overnight at 37°C, thus allowing cells to adhere to the well surface. 

Following microbial stimulation, no treatment cultures were also included allowing 

comparison; plates were harvested after 48h by removing growth medium and freezing 

plates at -80°C.

To establish the number o f cells; a standard calibration curve o f known cell 

number was constructed. A cell suspension 2 x 106 cells was centrifuged (Harrier 

18/80) for 5 minutes at 1000 RPM. The suspension was carefully removed and the 

pellet frozen for lh  at -80°C. The dye in cell lysis buffer was made up immediately 

prior to reading plates by diluting the dye stock solution 20-fold in cell lysis buffer; 

followed by diluting this solution 20-fold in distilled water. The pellet was thawed at 

RT and 1.6mls o f the dye/lysis buffer was added to the pellet, and the lysate 

resuspended by brief vortexing, to generate a suspension o f 1.25 x 106 cells/ml. A cell 

dilution series ranging from 500,000 to 10,000 cells was formed in duplicate in a 24- 

well cell culture plate with the dye/lysis buffer cell suspension mixture in final 

volumes o f 400|il per well. A 400pl control well with no cells (dye/lysis buffer only) 

was also prepared and the plate was incubated in darkness for 4 minutes at RT. The
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plate was then read by measuring fluorescence using a plate-reader with

excitation/emission maxima: 480/520nm for dye bound to nucleic acids (WALLAC

2 •VICTOR 1420 Multicaler). A standard calibration curve was generated by plotting

measured fluorescence values versus cell number from the standard curve as described 

previously. Four hundred microlitres o f dye/lysis buffer was added to each well o f the 

sample plate, and incubated in darkness for 4 minutes at RT, absorbance readings for 

sample plate was then obtained (WALLAC VICTOR2 1420 Multicaler).

To evaluate cellular proliferation in response to treatment; values had been 

expressed as percentage change in cell number relative to no treatment controls for 

treatment.
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2.2.7 Wound healing assay

An in vitro wound healing assay was performed using the modified method as 

described by Han and colleagues (2000). Four reference lines were drawn horizontally 

across the outer bottom of a 24-well cell culture plate. Caco-2 cells (2 x 105 cells/well) 

were then seeded at 80-90% confluence and allowed to form monolayers for 7 days at 

37°C. After 7 days, linear wounds were made with a sterile lOpl plastic pipette tip 

perpendicular to lines drawn on the bottom of the plate. To remove floating cells, cells 

were washed three times in PBS. Cells were then treated as required; with no 

treatment controls also included to allow comparison. Medium and treatment within 

wells was replaced with freshly prepared medium and respective treatment after 24, 48 

and 72h with the no treatment wells also replaced with complete medium to remove 

floating cells, replenish nutrients and restore treatment levels.

Figure 2-3 Phase-contrast images of Caco-2 monolayer's with images taken at (a) 0 

Hours (b) 24 Hours (c) 48 Hours after wounding (xlO magnification)

Images of wounds were obtained using the confocal microscope (Leica 

DMIRE2 inverted microscope) at lOx magnification using standard protocols at the 

predetermined location at various times after wounding. To attain an accurate
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determination o f wound repair in response to ligand treatment, the area o f the acellular 

region was measured using ImageJ and data calculated as % wound healed Vs. Oh.

To investigate the effect o f SOCS3 overexpression on wound repair, IEC were 

transfected with the pBIG2i plasmid either containing the entire coding sequence for 

SOCS3 (S3) or empty vector (EV) control. To establish levels o f SOCS3 after 

monolayers have formed (i.e. 7 days), Caco-2 IEC were seeded in a 24-well culture 

plate at 2 x 105 cells/well in 1ml of medium without antibiotics such that they were 80- 

90% confluent minimising post-transfection proliferation and ready to be transfected 

the next day. Caco-2 IEC were then transfected with 1 pg o f EV or S3 plasmid as 

described in section 2.2.2. After 7 days, total RNA was extracted, cDNA generated 

and SOCS3 mRNA expression levels monitored in triplicate between EV and S3 

cultures as described previously (section 2.2.4)
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2.2.8 ELISA Assay

Supernatant collected from IEC which had previously been treated with TLR 

ligands was used for the quantitative measurement o f hTNFa in a sandwich ELISA 

format using the Human TNFa ELISA Development Kit purchased from PeproTech 

(900-K25).

To prepare plate, capture antibody was diluted with PBS to a concentration of 

lpg/m l, lOOpl o f this solution was used to coat each well o f an ELISA plate, and 

sealed overnight at RT. The following day, liquid was aspirated from wells and 

washed 4 times in wash buffer (0.05% Tween-20 in PBS) with plate inverted and 

blotted on paper to remove residual buffer. The TNFa standard was then prepared 

from 1.5ng/ml to zero in diluent (0.005% Tween-20, 0.1% BSA in PBS). One 

hundred microlitres o f standard or sample was immediately added to each well in 

duplicate and incubated at RT for two hours. After 2h, plate was washed as before 

then incubated with lOOpl o f detection antibody in diluent to a concentration of 

0.5pg/ml for 2h at RT. Wells were again aspirated and washed as previously 

described. Avidin Peroxidase was diluted 1:2000 in diluent, lOOpl was added to each 

well and incubated for 45 minutes at RT. Wells were again washed as before, lOOpl 

o f ABTS liquid substrate solution (Sigma Aldrich) was then added to each well and 

incubated at RT for colour development before reading ELISA plate at 405nm with 

wavelength correction set at 650nm. Experiment was repeated three times with data 

pooled together and a student t test used to determine statistical effect in contrast to no 

treatment with p<0.05.
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2.2.9 Im m unocytochem istry

C overslips were sterilized with ethanol, and carefully placed in each well o f  a 

12-well plate. IEC were then seeded onto coverlsips at 1 x 105 lEC/w ell and allowed 

to adhere. Follow ing TLR treatm ent, medium  was rem oved and IEC w ere w ashed 3 

tim es for 5 m inutes each in 1ml o f  PBS. IEC were then incubated in 1ml o f 

ethanohm ethanol for 10 m inutes at -20°C. IEC were again w ashed as before and 

blocked in 1ml o f  2%  BSA in PBS-Tween-20 for 30 m inutes at RT. IEC w ere w ashed 

in PBS, and incubated with 500pl o f primary antibody ((A nti-H um an sTNF Receptor 

Type II(Peprotech 500 -P 168)) at 0.5pg/m l in blocking solution at 4°C overnight. IEC 

were washed in PBS. then incubated with Alexa Fluor®" 488 Donkey A nti-R abbit IgG 

secondary antibody (Life Technologies, 1:200) for lh  at RT in the dark. Secondary 

antibody solution was then decanted and IEC washed as described previously. To 

counterstain IEC, wells were incubated with 500pl o f  propidium  iodide (Life 

Technologies, P3566, 1:3000 in PBS) for 1 minute, then washed once w ith PBS. 

C overslips were then m ounted onto slides and sealed with nail varnish to prevent 

drying and m ovem ent under m icroscope. Slides were stored in the dark  at 4°C  ready to 

be viewed using the Zeiss LSM 510 M eta Confocal M icroscope.
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3. GENERATION OF 
IECs OVER

EXPRESSING SOCS3
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3.1 Summary

To determine the role of SOCS3 in IEC replenishment and repair, we initially 

wanted to generate an in vitro model system. This enabled the investigation o f the role 

o f SOCS3 in mediating cellular responses and epithelial repair following microbial 

induced TLR signalling. We used models of transient and stable IEC transfection.

We were successfully able to overexpress SOCS3 in both SW480 (8.2) and 

Caco-2 (5.9) IEC. Transient transfection has its disadvantages in that cells only

overexpress the inserted gene for a limited period. Cells are therefore required to be

transfected for each experiment which could result in experimental variation in terms 

o f levels o f gene expression.

Stable transfection involves DNA to be integrated into the host genome therefore 

cells continue to express traits caused by the genetic material, even after many 

generations o f cell division. SW480 IEC were successfully transfected, resulting in a 

12-fold increase in mRNA and a 25% increase in SOCS3 protein expression in 

comparison to SOCS3nomi IEC. However we were unable to stably transfect Caco-2 

IECs. To investigate the effect of SOCS3 on TLR-mediated wound repair, IEC were 

transfected and monolayers allowed to form for 7 days. SOCS3 mRNA expression

levels were then tested before wounding. qPCR data showed Caco-2 IEC were

successfully transfected with SOCS3 mRNA expression 5.3 times greater in SOCS3 

transfected cultures than empty vector control cultures.

In the following chapters, both transient and stable IEC (SW480 and Caco-2) 

will be used in conjunction with control (EV or SOCS3norm) IEC to investigate the role 

o f SOCS3 in mediating cellular responses following microbial-induced TLR 

signalling.
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3.2 Introduction

Studies have begun to investigate the mechanisms that push the development of 

IBD (Breynaert, Vermeire et al. 2008; Saleh and Trinchieri 2010; Li, de Haar et al. 

2011; Li, de Haar et al. 2012). The activation of the immune system in IBD initiates 

the production o f mediators that promote the destruction of the epithelium further 

augmenting inflammation. Studies have uncovered the molecular mechanism of 

intracellular signalling pathways of inflammatory cytokines such as TNFa and IL-6. 

Binding o f these inflammatory cytokines to their corresponding receptors activates 

JAK2; subsequently permitting the phosphorylation of the transcription factor STAT3 

(Mitsuyama, Matsumoto et al. 2006; Croker, Kiu et al. 2008). The pSTAT3 then 

translocates to the nucleus, where it interact with specific DNA sequences and induces 

the transcription o f target genes (Krebs and Hilton 2001; Yoshimura, Naka et al. 2007; 

Li, de Haar et al. 2010).

SOCS3 is a natural endogenous regulator of inflammatory cytokine-mediated 

signalling, and has been shown to block TNFa-induced NF-*B translocation and IL-6 

induced STAT3 phosphorylation (Rigby, Simmons et al. 2007). SOCS3 inhibits 

signalling through the JAK/STAT signalling pathway by inhibiting both JAK kinase 

and STAT phosphorylation (Sasaki, Yasukawa et al. 1999; Li, de Haar et al. 2012).

Suzuki and colleagues (2001) have shown that SOCS3 expression is upregulated 

in both animal and human intestinal inflammation (Suzuki, Hanada et al. 2001). There 

is also compelling evidence to support the role of SOCS3 as a tumour suppressor in 

the intestine, with studies showing targeted removal of SOCS3 encouraging tumour 

incidence and growth in the bowel; and methylation silencing o f SOCS3 shared in 

multiple tumours (Ogata, Chinen et al. 2006; Rigby, Simmons et al. 2007). In human
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lung cancer cells, restoring SOCS3 expression decreased STAT3 activation and 

reduced tumour growth (He, You et al. 2003).

Numerous studies have shown that commensal bacteria are recognised by IEC 

which express TLRs (Abreu, Fukata et al. 2005; Kawai and Akira 2007; Beutler 

2009). Studies have shown that TLR signalling plays a fundamental role in the 

maintenance o f intestinal epithelial homeostasis, with commensal flora and TLR 

signalling protecting from intestinal epithelial injury. Conversely, germ-free mice also 

have a lower incidence of tumour burden within the colon (Rakoff-Nahoum, Paglino 

et al. 2004).

As evidence also supports TLRs as imperative mediators o f mucosal 

homeostasis, repair o f damaged tissue and protection against the development o f colon 

cancer; this project seeks to investigate the dual and perhaps integrated role o f SOCS3 

and TLRs in mediating intestinal epithelial homeostasis and repair following damage.

The aim of the first section was to develop IEC which constitutively overexpress 

SOCS3; enabling me to investigate the role of SOCS3 in mediating cellular responses 

and epithelial repair following microbial induced TLR signalling.

3.3 Aim: To develop SOCS3 overexpressing IECs
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3.4 M ethods

3.4.1 Generating transient SOCS3 overexpressing IEC 

3 A A A  SOCS3 vector containing pBIG2i plasmid

The plasmid (pBIG2i) either containing the entire coding sequence for SOCS3 

(S3) or a control empty vector (EV) was a gift from Dr. Richard Furlenetto. The S3 

plasmid had previously been used to overexpress SOCS3 in IEC lines (Rigby, 

Simmons et al. 2007).

Hind 111
(529)

Hind III
(3574)

SOCS3 cassette inserted 
at the EcoRl site

Ampr pB42AO
6.45 kb

MCS 1 
IfeoHJ 18 S3) I
XIlO 1 (852)

Hind III (ae8)

Hind 111 (H75)

Figure 3-1 Diagram displaying the pBIG2i plasmid

The diagram above displays the pBIG2i plasmid, either containing the entire 

coding sequence of hSOCS3 cloned into the EcoRI site (S3) or a control empty vector 

(EV).
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3.4.1.2 Transient transfection using the SOCS3 vector containing pBIG2i 

plasmid

SW480 and Caco-2 IEC were seeded in 24-well culture plates at 2 x 105 

cells/well in 1ml of medium without antibiotics such that they were 80-90% confluent 

minimising post-transfection proliferation and ready to be transfected the following 

day. IECs were then transfected with 1 pg of plasmid (pBIG2i) either containing the 

entire coding sequence for SOCS3 (S3) or a control empty vector (EV) using the 

method described in section 2.2.3. To validate overexpression o f SOCS3, mRNA 

expression was compared between S3 and EV plasmid transfected IEC.

122



3.4.2 Generating stable S0CS3-overexpressing IEC

3.4.2.1 GS50726 pIERESneo-Human_SOCS3 plasmid

The GS50726 pIERESneo-Human_SOCS3 plasmid, which contains the SOCS3 

gene, was cloned into the Eco RV digested pIERESneo plasmid. The plasmid was 

purchased from Epoch Life Sciences. The pIERESneo contains the internal ribosome 

entry site (IRES) o f the encephalomyocarditis (ECMV) allowing the translation o f two 

open reading frames from one mRNA. The expression cassette of pIERESneo contains 

the human cytomegalovirus (CMV) major intermediate early promoter followed by a 

multiple cloning site (MCS), a small intron known to enhance the stability o f mRNA, 

the neomycinphosphotransferase (NPT II) gene, and the polyadenylation signal. Upon 

arrival, the plasmid was resuspended in 20jnl of autoclaved dH20 then stored on ice.
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M m  1 161 
Bpu101179 

I M i/1 206 
11,Mu 1228

Nde I 483 
•S'wt/BI 588

.fi?/Eli 926

GS50726 p IR E S neo-H um aiT S d®

5968 bps
4000 2000

Sty I 5847

/Jv//I 5412

zl/fc/I 5040

Bst 110713771 
X h oI 3714

&/1 3448;
ATwI 3436

tfvrll 3272 
Ziv.vHII 3154

Bpu 11021 1166 

API 1256

JCcml 1382

N oll 1633 
Eco RI 1648 
Bam HI 1657 
Bst XI 1677 

Sac11 1811 
OH I 1911 

Nsil 1987 
Ppu 101 1987 

Bln I 2162

, />m/I 2325 
Aarl 2340 

D raIII 2369 
Bir I 2552 

|S/waI 2596 
A’w al 2596 

flftcl2756 
A as 1 2756 
War I 2756 
S/a I 2756

Figure 3-2 GS50726 pIERESneo-Human_SOCS3 plasmid

Base sequence of the GS50726 pIERESneo-Human_SOCS3 plasmid which 

contains 5968 base pairs

G A C G G A T C G G G A G A T C T C C C G A T C C C C T A T G G T C G A C T C T C A G T A C A A T C T G C T C T G A T G C C G C A T A G T

T A A G C C A G T A T C T G C T C C C T G C T T G T G T G T T G G A G G T C G C T G A G T A G T G C G C G A G C A A A A T T T A A G C T A

C A A C A A G G C A A G G C T T G A C C G A C A A T T G C A T G A A G A A T C T G C T T A G G G T T A G G C G T T T T G C G C T G C T T C

G C G A T G T A C G G G C C A G A T A T A C G C G T T G A C A T T G A T T A T T G A C T A G T T A T T A A T A G T A A T C A A T T A C G G

G G T C A T T A G T T C A T A G C C C A T A T A T G G A G T T C C G C G T T A C A T A A C T T A C G G T A A A T G G C C C G C C T G G C T

G A C C G C C C A A C G A C C C C C G C C C A T T G A C G T C A A T A A T G A C G T A T G T T C C C A T A G T A A C G C C A A T A G G G A

C T T T C C A T T G A C G T C A A T G G G T G G A C T A T T T A C G G T A A A C T G C C C A C T T G G C A G T A C A T C A A G T G T A T C

A T A T G C C A A G T A C G C C C C C T A T T G A C G T C A A T G A C G G T A A A T G G C C C G C C T G G C A T T A T G C C C A G T A C A

T G A C C T T A T G G G A C T T T C C T A C T T G G C A G T A C A T C T A C G T A T T A G T C A T C G C T A T T A C C A T G G T G A T G C

G G T T T T G G C A G T A C A T C A A T G G G C G T G G A T A G C G G T T T G A C T C A C G G G G A T T T C C A A G T C T C C A C C C C A

T T G A C G T C A A T G G G A G T T T G T T T T G G C A C C A A A A T C A A C G G G A C T T T C C A A A A T G T C G T A A C A A C T C C G

C C C C A T T G A C G C A A A T G G G C G G T A G G C G T G T A C G G T G G G A G G T C T A T A T A A G C A G A G C T C T C T G G C T A A

C T A G A G A A C C C A C T G C T T A C T G G C T T A T C G A A A T T A A T A C G A C T C A C T A T A G G G A G A C C C A A G C T T G G T

A C C G A G C T C G G A T C G A T A T C G C C A C C A T G G T C A C C C A C A G C A A G T T T C C C G C C G C C G G G A T G A G C C G C C

C C C T G G A C A C C A G C C T G C G C C T C A A G A C C T T C A G C T C C A A G A G C G A G T A C C A G C T G G T G G T G A A C G C A G
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T G C G C A A G C T G C A G G A G A G C G G C T T C T A C T G G A G C G C A G T G A C C G G C G G C G A G G C G A A C C T G C T G C T C A

G T G C C G A G C C C G C C G G C A C C T T T C T G A T C C G C G A C A G C T C G G A C C A G C G C C A C T T C T T C A C G C T C A G C G

T C A A G A C C C A G T C T G G G A C C A A G A A C C T G C G C A T C C A G T G T G A G G G G G G C A G C T T C T C T C T G C A G A G C G

A T C C C C G G A G C A C G C A G C C C G T G C C C C G C T T C G A C T G C G T G C T C A A G C T G G T G C A C C A C T A C A T G C C G C

C C C C T G G A G C C C C C T C C T T C C C C T C G C C A C C T A C T G A A C C C T C C T C C G A G G T G C C C G A G C A G C C G T C T G

C C C A G C C A C T C C C T G G G A G T C C C C C C A G A A G A G C C T A T T A C A T C T A C T C C G G G G G C G A G A A G A T C C C C C

T G G T G T T G A G C C G G C C C C T C T C C T C C A A C G T G G C C A C T C T T C A G C A T C T C T G T C G G A A G A C C G T C A A C G

G C C A C C T G G A C T C C T A T G A G A A A G T C A C C C A G C T G C C G G G G C C C A T T C G G G A G T T C C T G G A C C A G T A C G

A T G C C C C G C T T G A T T A C A A G G A T G A C G A C G A T A A G T A A G A T A T C T G C G G C C G C G T C G A C G G A A T T C A G T

G G A T C C A C T A G T A A C G G C C G C C A G T G T G C T G G A A T T A A T T C G C T G T C T G C G A G G G C C A G C T G T T G G G G T

G A G T A C T C C C T C T C A A A A G C G G G C A T G A C T T C T G C G C T A A G A T T G T C A G T T T C C A A A A A C G A G G A G G A T

T T G A T A T T C A C C T G G C C C G C G G T G A T G C C T T T G A G G G T G G C C G C G T C C A T C T G G T C A G A A A A G A C A A T C

T T T T T G T T G T C A A G C T T G A G G T G T G G C A G G C T T G A G A T C T G G C C A T A C A C T T G A G T G A C A A T G A C A T C C

A C T T T G C C T T T C T C T C C A C A G G T G T C C A C T C C C A G G T C C A A C T G C A G G T C G A G C A T G C A T C T A G G G C G G

C C A A T T C C G C C C C T C T C C C T C C C C C C C C C C T A A C G T T A C T G G C C G A A G C C G C T T G G A A T A A G G C C G G T G

T G C G T T T G T C T A T A T G T G A T T T T C C A C C A T A T T G C C G T C T T T T G G C A A T G T G A G G G C C C G G A A A C C T G G

C C C T G T C T T C T T G A C G A G C A T T C C T A G G G G T C T T T C C C C T C T C G C C A A A G G A A T G C A A G G T C T G T T G A A

T G T C G T G A A G G A A G C A G T T C C T C T G G A A G C T T C T T G A A G A C A A A C A A C G T C T G T A G C G A C C C T T T G C A G

G C A G C G G A A C C C C C C A C C T G G C G A C A G G T G C C T C T G C G G C C A A A A G C C A C G T G T A T A A G A T A C A C C T G C

A A A G G C G G C A C A A C C C C A G T G C C A C G T T G T G A G T T G G A T A G T T G T G G A A A G A G T C A A A T G G C T C T C C T C

A A G C G T A T T C A A C A A G G G G C T G A A G G A T G C C C A G A A G G T A C C C C A T T G T A T G G G A T C T G A T C T G G G G C C

T C G G T G C A C A T G C T T T A C A T G T G T T T A G T C G A G G T T A A A A A A A C G T C T A G G C C C C C C G A A C C A C G G G G A

C G T G G T T T T C C T T T G A A A A A C A C G A T G A T A A G C T T G C C A C A A C C C G G G A T A A T T C C T G C A G C C A A T A T G

G G A T C G G C C A T T G A A C A A G A T G G A T T G C A C G C A G G T T C T C C G G C C G C T T G G G T G G A G A G G C T A T T C G G C

T A T G A C T G G G C A C A A C A G A C A A T C G G C T G C T C T G A T G C C G C C G T G T T C C G G C T G T C A G C G C A G G G G C G C

C C G G T T C T T T T T G T C A A G A C C G A C C T G T C C G G T G C C C T G A A T G A A C T G C A G G A C G A G G C A G C G C G G C T A

T C G T G G C T G G C C A C G A C G G G C G T T C C T T G C G C A G C T G T G C T C G A C G T T G T C A C T G A A G C G G G A A G G G A C

T G G C T G C T A T T G G G C G A A G T G C C G G G G C A G G A T C T C C T G T C A T C T C A C C T T G C T C C T G C C G A G A A A G T A

T C C A T C A T G G C T G A T G C A A T G C G G C G G C T G C A T C G T A C T C G G A T G G A A G C C G G T C T T G T C G A T C A G G A T

G A T C T G G A C G A A G A G C A T C A G G G G C T C G C G C C A G C C G A A C T G T T C G C C A G G C T C A A G G C G C G C A T G C C C

G A C G G C G A T G A T C T C G T C G T G A C C C A T G G C G A T G C C T G C T T G C C G A A T A T C A T G G T G G A A A A T G G C C G C

T T T T C T G G A T T C A T C G A C T G T G G C C G G C T G G G T G T G G C G G A C C G C T A T C A G G A C A T A G C G T T G G C T A C C

C G T G A T A T T G C T G A A G A G C T T G G C G G C G A A T G G G C T G A C C G C T T C C T C G T G C T T T A C G G T A T C G C C G C T

C C C G A T T C G C A G C G C A T C G C C T T C T A T C G C C T T C T T G A C G A G T T C T T C T G A G G G G A T C A A T T C T C T A G A

G C T C G C T G A T C A G C C T C G A C T G T G C C T T C T A G T T G C C A G C C A T C T G T T G T T T G C C C C T C C C C C G T G C C T

T C C T T G A C C C T G G A A G G T G C C A C T C C C A C T G T C C T T T C C T A A T A A A A T G A G G A A A T T G C A T C G C A T T G T

C T G A G T A G G T G T C A T T C T A T T C T G G G G G G T G G G G T G G G G C A G G A C A G C A A G G G G G A G G A T T G G G A A G A C

A A T A G C A G G C A T G C T G G G G A T G C G G T G G G C T C T A T G G C T T C T G A G G C G G A A A G A A C C A G C T G G G G C T C G

A G T G C A T T C T A G T T G T G G T T T G T C C A A A C T C A T C A A T G T A T C T T A T C A T G T C T G T A T A C C G T C G A C C T C

T A G C T A G A G C T T G G C G T A A T C A T G G T C A T A G C T G T T T C C T G T G T G A A A T T G T T A T C C G C T C A C A A T T C C

A C A C A A C A T A C G A G C C G G A A G C A T A A A G T G T A A A G C C T G G G G T G C C T A A T G A G T G A G C T A A C T C A C A T T

A A T T G C G T T G C G C T C A C T G C C C G C T T T C C A G T C G G G A A A C C T G T C G T G C C A G C T G C A T T A A T G A A T C G G

C C A A C G C G C G G G G A G A G G C G G T T T G C G T A T T G G G C G C T C T T C C G C T T C C T C G C T C A C T G A C T C G C T G C G

C T C G G T C G T T C G G C T G C G G C G A G C G G T A T C A G C T C A C T C A A A G G C G G T A A T A C G G T T A T C C A C A G A A T C

A G G G G A T A A C G C A G G A A A G A A C A T G TG A G C A A A A G G C C A G C A A A A G G C C A G G A A C C G TA A A A A G G C C G C

G T T G C T G G C G T T T T T C C A T A G G C T C C G C C C C C C T G A C G A G C A T C A C A A A A A T C G A C G C T C A A G T C A G A G

G T G G C G A A A C C C G A C A G G A C T A T A A A G A T A C C A G G C G T T T C C C C C T G G A A G C T C C C T C G T G C G C T C T C C

T G T T C C G A C C C T G C C G C T T A C C G G A T A C C T G T C C G C C T T T C T C C C T T C G G G A A G C G T G G C G C T T T C T C A

A T G C T C A C G C T G T A G G T A T C T C A G T T C G G T G T A G G T C G T T C G C T C C A A G C T G G G C T G T G T G C A C G A A C C

C C C C G T T C A G C C C G A C C G C T G C G C C T T A T C C G G T A A C T A T C G T C T T G A G T C C A A C C C G G T A A G A C A C G A

C T T A T C G C C A C T G G C A G C A G C C A C T G G T A A C A G G A T T A G C A G A G C G A G G T A T G T A G G C G G T G C T A C A G A

G T T C T T G A A G T G G T G G C C T A A C T A C G G C T A C A C T A G A A G G A C A G T A T T T G G T A T C T G C G C T C T G C T G A A

G C C A G T T A C C T T C G G A A A A A G A G T T G G T A G C T C T T G A T C C G G C A A A C A A A C C A C C G C T G G T A G C G G T G G
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T T T T T T T G T T T G C A A G C A G C A G A T T A C G C G C A G A A A A A A A G G A T C T C A A G A A G A T C C T T T G A T C T T T T C

T A C G G G G T C T G A C G C T C A G T G G A A C G A A A A C T C A C G T T A A G G G A T T T T G G T C A T G A G A T T A T C A A A A A G

G A T C T T C A C C T A G A T C C T T T T A A A T T A A A A A T G A A G T T T T A A A T C A A T C T A A A G T A T A T A T G A G T A A A C

T T G G T C T G A C A G T T A C C A A T G C T T A A T C A G T G A G G C A C C T A T C T C A G C G A T C T G T C T A T T T C G T T C A T C

C A T A G T T G C C T G A C T C C C C G T C G T G T A G A T A A C T A C G A T A C G G G A G G G C T T A C C A T C T G G C C C C A G T G C

T G C A A T G A T A C C G C G A G A C C C A C G C T C A C C G G C T C C A G A T T T A T C A G C A A T A A A C C A G C C A G C C G G A A G

G G C C G A G C G C A G A A G T G G T C C T G C A A C T T T A T C C G C C T C C A T C C A G T C T A T T A A T T G T T G C C G G G A A G C

T A G A G T A A G T A G T T C G C C A G T T A A T A G T T T G C G C A A C G T T G T T G C C A T T G C T A C A G G C A T C G T G G T G T C

A C G C T C G T C G T T T G G T A T G G C T T C A T T C A G C T C C G G T T C C C A A C G A T C A A G G C G A G T T A C A T G A T C C C C

C A T G T T G T G C A A A A A A G C G G T T A G C T C C T T C G G T C C T C C G A T C G T T G T C A G A A G T A A G T T G G C C G C A G T

G T T A T C A C T C A T G G T T A T G G C A G C A C T G C A T A A T T C T C T T A C T G T C A T G C C A T C C G T A A G A T G C T T T T C

T G T G A C T G G T G A G T A C T C A A C C A A G T C A T T C T G A G A A T A G T G T A T G C G G C G A C C G A G T T G C T C T T G C C C

G G C G T C A A T A C G G G A T A A T A C C G C G C C A C A T A G C A G A A C T T T A A A A G T G C T C A T C A T T G G A A A A C G T T C

T T C G G G G C G A A A A C T C T C A A G G A T C T T A C C G C T G T T G A G A T C C A G T T C G A T G T A A C C C A C T C G T G C A C C

C A A C T G A T C T T C A G C A T C T T T T A C T T T C A C C A G C G T T T C T G G G T G A G C A A A A A C A G G A A G G C A A A A T G C

C G C A A A A A A G G G A A T A A G G G C G A C A C G G A A A T G T T G A A T A C T C A T A C T C T T C C T T T T T C A A T A T T A T T G

A A G C A T T T A T C A G G G T T A T T G T C T C A T G A G C G G A T A C A T A T T T G A A T G T A T T T A G A A A A A T A A A C A A A T

A G G G G T T C C G C G C A C A T T T C C C C G A A A A G T G C C A C C T G A C G T C

Figure 3-3 Genetic sequence o f the GS50726 pIERJESneo-Human_SOCS3 plasmid, 

with the S0CS3 coding sequence highlighted.
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3.4.2.2 Generation of stable SOCS3hlIEC

IECs (1 x 106) were seeded in a T25 flask in growth medium (without 

antibiotics). Twenty four hours later cells were transfected with 4pg o f GS50726 

pIERESneo-Human_SOCS3 plasmid (2.2.3). After 5h, medium was replaced with 

serum-containing media and antibiotics to avoid cytotoxicity to cells. After two days, 

IEC were trypsinized, and sub-cultured with selection media containing 0.3, 0.4 or 0.5 

mg/ml o f G418 (Neomycin) antibiotic. A control experiment where non-transfected 

IEC (SOCS3norm) are incubated with selection media containing 0.3, 0.4 or 0.5 mg/ml 

o f G418 antibiotic was also included.

The highest concentration of G418 antibiotic which kills SOCS3norm IEC while 

allowing the SOCS3hl IEC to survive indicates the SOCS3hl IEC have acquired the 

plasmid and are therefore antibiotic resistant to the G418.

3.4.2.3 Confirmation of SOCS3 overexpression

To validate overexpression of SOCS3, protein and mRNA levels were measured 

in SOCS3norm and SOCS3hl IEC using qPCR and Western blot respectively. Once 

overexpression o f SOCS3 was confirmed; IECs were continually incubated with the 

highest concentration of G418 antibiotic at which SOCS3-transfected IEC (SOCS3hi) 

were able to survive while killing the SOCS3norm IEC.
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3.5 Results

3.5.1 SW480 and Caco-2 IEC were both shown to transiently 

overexpress SOCS3 mRNA

The expression of SOCS3 mRNA was normalised relative to RPLPO 

(housekeeping gene) mRNA, and results displayed as relative increase in SOCS3 

plasmid transfected SW480 IEC vs. EV plasmid transfected SW480 IEC. A student t 

test was used to determine if there was a significant difference in contrast to EV 

transfection.

SW480

Uo
. s
0w

U1
•w
J53
PP

8 -

6 -

4 -

2 -

EV pBIG2i plasmid SOCS3 pBIG2i plasmid

Figure 3-4 Relative increase in SOCS3 mRNA in SW480 S0CS3 transfected IEC 

in relation to SW480 IEC which were transfected with the EV plasmid. Results 

indicate an 8.2 relative-increase in SOCS3 mRNA expression in SOCS3 transfected 

IEC (p <0.01) (n=3).
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Data from figure 3-4 suggest that the transfection process was successful as 

SW480 IEC transfected with the SOCS3 plasmid significantly showed an 8.2 (±1.3) 

relative-increase in SOCS3 mRNA expression in comparison to SW480 IEC which 

were transfected with the EV plasmid (p <0.01).
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Figure 3-5 Relative increase in SOCS3 mRNA in Caco-2 SOCS3 transfected IEC 

in relation to Caco-2 IEC which were transfected with the EV plasmid. Results 

indicate a 5.9 relative-increase in SOCS3 mRNA expression in SOCS3 transfected 

IEC (p <0.01) (n=3).

Data from figure 3-5 suggests that the transfection process was successful as 

Caco-2 IEC transfected with the SOCS3 plasmid showed a 5.9 (±1.2) relative-increase 

in SOCS3 mRNA expression in comparison to Caco-2 IEC which were transfected 

with the EV plasmid (p <0.01).

129



3.5.2 SW480 IEC were shown to stably overexpress SOCS3 at both 

mRNA and protein levels

Selection media containing 0.4mg/ml was found to be the highest concentration 

o f G418 antibiotic at which SOCS3-transfected SW480 (SOCS3hl) were able to 

survive while killing the SW480 SOCS3norm IEC. Selection media containing 

0.5mg/ml was found to be the highest concentration of G418 antibiotic at which 

SOCS3-transfected Caco-2 (SOCS3hl) were able to survive while killing the 

SOCS3norm IEC. To validate overexpression of SOCS3, mRNA and protein levels 

were measured in both SW480/Caco-2 SOCS3nomi and SOCS3h' IEC. The expression 

o f SOCS3 mRNA was normalised relative to RPLPO mRNA, and results displayed as 

relative expression vs. SOCS3norm IEC. SDS-PAGE and western blotting was also 

used to measure SOCS3 protein expression with expression normalised to p-actin. A 

student t test was then used to determine if there was a significant difference in 

contrast to SOCS3normIEC.
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Figure 3-6 qPCR and western blots illustrating SOCS3 expression in SW480 

SOCS3norm and SOCS3hi IEC, with {3-actin used as a loading control for 

immunoblotting. SOCS3 is shown to be overexpressed at both mRNA and protein 

levels in SOCS3hi SW480 IEC (p <0.01) (n=3)

SW480 SOCS3hl IEC depicted a 12 (±2) fold increase in SOCS3 mRNA in 

comparison to SOCS3nom1 IEC. Immunoblotting also showed a 25% (±9%) increase in 

SOCS3 protein expression when compared to SOCS3norm SW480 IEC (Figure 3-6). 

Once overexpression of SOCS3 was confirmed; SW480 SOCS3hl IEC were 

maintained with 0.4mg/ml of G418 antibiotic.
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S0CS3 expression was also measured in SOCS3nonT1 and SOCS3hl Caco-2 IEC. 

RT-PCR data showed a decrease in mRNA expression (0.53±0.19) however; 

immunoblotting data showed a negligible increase in SOCS3 protein expression 

(2±15%) in comparison to SOCS3norm IEC indicating transfection was not successful 

(data not shown).
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3.5.3 Caco-2 IEC were shown to overexpress SOCS3 mRNA after 

forming monolayers

Caco-2 IEC were transfected and allowed to form monolayers for seven days. 

SOCS3 mRNA expression levels were then monitored before wounding to ensure 

Caco-2 IEC were still overexpressing SOCS3 (section 4.5.7). The expression of 

SOCS3 mRNA was normalised relative to RPLPO (housekeeping gene) mRNA, and 

results displayed as relative increase in SOCS3 plasmid transfected Caco-2 IEC vs. 

EV plasmid transfected Caco-2 IEC. A student t test was then used to determine if 

there was a significant difference in contrast to EV transfection.
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Figure 3-7 Relative increase in SOCS3 mRNA in Caco-2 SOCS3 transfected IEC 

in relation to Caco-2 IEC which were transfected with the EV plasmid then allowed to 

form monolayers for 7 days. Results indicate a 5.2 relative-increase in SOCS3 mRNA 

expression in SOCS3 transfected IEC (p <0.01) (n=3).
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3.6 Discussion

SOCS3 is a natural endogenous regulator of inflammatory cytokine mediated 

signalling within IEC and SOCS3 elicits its effects by inhibiting signalling through the 

JAK-STAT3 pathway (Suzuki, Hanada et al. 2001; Rigby, Simmons et al. 2007). 

There is overwhelming evidence to support the role o f SOCS3 as a tumour suppressor 

within IECs, as targeted deletion of SOCS3 promotes tumour incidence and growth 

within the colon (Ogata, Chinen et al. 2006; Rigby, Simmons et al. 2007).

To examine the upregulation of SOCS3; actively dividing SW480 and Caco-2 

IECs were transiently transfected with either SOCS3 pBIG2i plasmid (S3) or a control 

empty vector (EV) pBIG2i plasmid to ensure plasmid uptake. Relative SOCS3 

mRNA levels were then compared to IECs which were transfected with EV plasmids. 

SW480 IECs were successfully transfected as SW480 S3 transfected IEC showed an 

8.2 fold increase in relative expression of SOCS3 mRNA in comparison to SW480 EV 

transfected IEC cultures. Caco-2 IECs were also successfully transfected with the 

SOCS3 pBIG2i plasmid with Caco-2 S3 transfected IEC showing a 5.9 fold increase 

in relative expression of SOCS3 mRNA in comparison to Caco-2 IECs which were 

transfected with the EV pBIG2i plasmid. These results confirm that both SW480 and 

Caco-2 IECs can successfully be transfected with the SOCS3 pBIG2i plasmid yielding 

an increase in SOCS3 mRNA expression in comparison to the EV control. Other 

groups have also used the SOCS3 containing pBIG2i plasmid to transiently transfect 

Caco-2 and IEC6 IEC and constitutively overexpress SOCS3. (Rigby, Simmons et al. 

2007).

During transient transfection, foreign DNA is delivered into the nucleus but is 

not integrated into the host genome, thus the new gene will not be replicated following
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cell division. The downside to transient transfection is that cells will only express the 

transiently transfected gene for a finite period, after which the foreign gene is lost 

through cell division. Being able to transiently upregulate SOCS3 will be good for 

short term experiments e.g. proliferation and signalling. However, it is not good for 

long term experiments e.g. wound healing (Wurm 2004; Recillas-Targa 2006; Kim 

and Eberwine 2010). Therefore, cells would have to be repeatedly transfected which 

could result in experimental variation in terms of levels of gene expression. Stable 

transfection is another technique whereby foreign DNA is delivered to the nucleus by 

passage through the nucleus and nuclear membranes. The foreign DNA is then 

integrated into the host genome with cells continuing to express traits caused by the 

genetic material, even after many generations of cell division (Recillas-Targa 2006; 

Kim and Eberwine 2010). To overcome variation between transient experiments, 

efforts were made to generate IECs which were stably overexpressing SOCS3.

Actively dividing SW480 and Caco-2 IECs were stably transfected with 

GS50726 pIERESneo-Human_SOCS3 plasmids (SOCS3hi). To validate 

overexpression, relative SOCS3 mRNA and protein expression levels were compared 

to IECs which had not been transfected with the SOCS3 overexpressing plasmid 

(SOCS3norm). Results indicated SW480 IECs were successfully transfected as SW480hl 

IECs significantly expressed a 12 fold-increase in relative expression o f SOCS3 

mRNA in comparison to SW480norm IECs cultures. Protein expression o f SOCS3 was 

also verified, and SW480hl IEC expressed a 25% fold-increase in SOCS3 protein 

expression in comparison to SW480nornl IEC cultures. Efforts were also made to stably 

transfect Caco-2 IECs. However, this proved unsuccessful as SOCS3hl IECs did not 

show a significant overexpression of SOCS3 in comparison to SOCS3norm IECs. Caco-
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2 S0C S3hl IEC showed a 0.53 fold-decrease in SOCS3 mRNA and a 2% increase in 

SOCS3 protein expression in comparison to SOCS3norm IECs.

To evaluate SOCS3s role in TLR-induced wound repair, Caco-2 IEC would 

have to be transiently transfected, monolayers allowed to form then SOCS3 levels 

monitored to ensure IEC were still overexpressing SOCS3 before wounding. Results 

indicated that Caco-2 IEC transfected with the SOCS3 pBIG2i plasmid were still 

overexpressing SOCS3 (5.2) in comparison to Caco-2 IEC which were transfected 

with the EV pBIG2i plasmid.

Results indicate IEC can be transfected to upregulate the expression of SOCS3. 

In the following chapters, both transient and stable IECs (SW480 and Caco-2) which 

overexpress SOCS3 will be used to investigate the role of SOCS3 in mediating 

cellular responses following microbial-induced TLR signalling.
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4.1 Summary

TLR signalling is imperative for repair of damaged tissue with microbial 

signalling inducing cell migration, wound repair and proliferation o f IEC. SOCS3, a 

mediator o f cytokine signalling is upregulated in both animal and human models of 

inflammation. Conversely, lack of epithelial SOCS3 promotes proliferation and 

tumourgenesis in the colon.

In these studies we have used model human SW480 and Caco-2 cell lines over

expressing SOCS3 (described in Chapter 3) to develop an in vitro model and assess 

SOCS3 and TLR ligands on epithelial wound repair. Additionally, the role o f SOCS3 

on TLR-induced IEC proliferation was also assessed.

Proliferation data indicates that SOCS3 limits LPS and T. muris 

excretory/secretory protein (ES) induced proliferation. Wound healing data implies ES 

promotes both proliferative and restitutive wound repair, whereas LPS and flagellin 

only promote restitutive wound repair in our model. This could be due to ES ligating 

with multiple TLR (TLR2, TLR4 and TLR6) whereas LPS (TLR4) and flagellin 

(TLR5) binding exclusively to a single receptor. It was also established wound repair 

was due to direct TLR ligation not secondary effects of induced cytokines. Data from 

this study also indicated SOCS3 was shown to limit T. muris induced wound repair.

In conclusion our results support previous data implicating the role o f TLR 

ligands being imperative for the repair of damaged epithelial surfaces, and highlights a 

pivotal role o f SOCS3 in mediating TLR-induced epithelial repair.
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4.2 Introduction

The integrity o f the intestinal epithelium is pivotal as this establishes a barrier 

that separates the luminal contents with its immunogenic, noxious compounds and 

commensal flora from the underlying immune system (Sturm and Dignass 2002). 

Injury or impairment o f the intestinal surface barrier is perceived in the course o f a 

number o f diseases, which may consequently result in an elevated penetration of 

luminal contents, leading to inflammation and disequilibrium o f the homeostasis o f the 

host. Therefore, rapid repair of the epithelium following injury or damage is 

imperative to conserve normal homeostasis (Rakoff-Nahoum, Paglino et al. 2004; 

Ben-Neriah and Schmidt-Supprian 2007). Chronic relapse and remittance of 

inflammation causes damage to the intestinal epithelium, a hallmark o f IBD (Hanauer 

2006).

The continuity of the surface epithelium following injury is re-established by 

three distinctive phases (Wilson and Gibson 1997; Dignass 2001). Firstly, restitution 

where IEC migrate into the damaged area, this can arise within minutes to hours after 

injury. Restitution is followed by proliferation where IEC divide to replenish reduced 

cell numbers. Thirdly, differentiation where IEC mature and differentiation to 

maintain the functional activity of the epithelium (Dignass 2001; Dignass, Baumgart et 

al. 2004).

IECs are able to communicate with microbes in the colon via a cohort o f pattern 

recognition receptors termed Toll-like receptors (TLR). TLRs are involved in several 

features o f mammalian homeostasis such as recognition o f cellular tissue injury, 

proliferation, tissue repair and regeneration, all fundamental for healing (Schottelius 

and Dinter 2006; Zhang and Schluesener 2006; Rakoff-Nahoum and Medzhitov 2008).
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TLR signalling has also been shown to be imperative for repair o f damaged tissue 

following chemical, radiation and colonic injury (Fukata, Michelsen et al. 2005; 

Rakoff-Nahoum and Medzhitov 2008).

Wound healing models have shown that the absence o f TLR4 had notable 

consequences on both the inflammatory and repair phases of lesions (Mollen, Anand 

et al. 2006). This can be supported by other researchers which have demonstrated that 

mice deficient in TLR4 expression are at an increased risk o f injury following DSS 

induced mucosal injury (Rakoff-Nahoum, Paglino et al. 2004; Abreu, Fukata et al.

2005). Microbial signalling via TLR5 within human epithelial cells induce a series of 

non-immune epithelial responses including cell migration, wound repair and 

proliferation (Shaykhiev, Behr et al. 2008). Numerous studies have also demonstrated 

that exposure to helminths prevents TNBS-type colitis (Elliott, Summers et al. 2007; 

Ruyssers, De Winter et al. 2008; Motomura, Wang et al. 2009); suggesting helminth 

products promote mucosal healing in animal models of colitis. These studies indicate 

microbes play a pivitol role in miantaining mucosal homeosis and restoration of 

epithelial integrity following damage.

Following tissue injury, TLRs are also able to activate numerous intracellular 

signalling molecules with one of these being NF-*B (Barnes and Karin 1997). N F-aB  is 

important because several inflammatory cytokine genes implicated in the pathogenesis 

o f IBD including TNF-a, 1L-6 and IL-12 are all known to contain an NF-*B binding 

site and have been shown to be transcriptionally regulated by NF-*B (Barnes and 

Karin 1997; Schottelius and Dinter 2006). The bacterial components LPS, an outer cell 

membrane constituent o f Gram-negative bacteria, derived from E. coli and flagellin a 

major constituent o f the flagellum of the Gram-negative bacterium S. typhimurium 

were both chosen as both exist as part of the normal flora within the human colon.
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Helminth products from T. muris were also chosen as exposure to helminth products 

are shown to prevent TNBS-type colitis (Khan, Blennerhasset et al. 2002; Elliott, Li et 

al. 2003).

SOCS3 a natural endogenous regulator of inflammatory cytokine-mediated 

signalling is upregulated in both animal and human intestinal inflammation (Suzuki, 

Hanada et al. 2001). Additionally, elevated levels o f SOCS3 mRNA expression have 

been detected in inflamed biopsies of patients with UC compared to non-inflamed 

biopsies (Miyanaka, Ueno et al. 2007). Lack of epithelial SOCS3 promotes 

proliferation and tumourgenesis in the colon (Rigby, Simmons et al. 2007) and 

conversely, SOCS3 overexpression can hamper skin epithelial wound healing, 

enhancing inflammation (Ivory, Wallace et al. 2008; Linke, Goren et al. 2009). In 

vivo studies have shown SOCS3 overexpression limits proliferation o f IEC and colon 

cancer cell lines (Rigby, Simmons et al. 2007).

Conclusively, these studies suggest that although SOCS3 may have a significant 

anti-tumourgenic role, inhibiting inflammation-associated CRC (Rigby, Simmons et 

al. 2007) SOCS3 may also inhibit repair and restitution o f the epithelial barrier 

associated with UC. This section aims to develop an in vitro model to investigate the 

function o f SOCS3 overexpression on TLR-mediated epithelial wound healing.

4.3 Aim: Investigate SOCS3 overexpression on TLR-mediated 
wound repair
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4.4 Methods

4.4.1 Assessment of SOCS3 on TLR-induced IEC proliferation

SW480 IEC were seeded overnight then transfected. Cells were then treated with 

1 pg/ml LPS, 1 pg/ml flagellin or 1Opg/ml T. muris excretory/secretary products (ES) 

(gift from Kathryn Else, University of Manchester) for 48h.Concentrations were 

selected because these concentrations were identified as having optimal effects on 

wound healing. Cell number was determined using method described in section 2.2.6. 

To evaluate cellular proliferation in response to treatment; values had been expressed 

as percentage change in cell number relative to no treatment controls for treatment.

4.4.2 Assessment of TLR ligands and SOCS3 on epithelial wound repair

Caco-2 IEC were seeded at 80% confluence to minimise post-transfection 

proliferation and minimise loss of SOCS3 overexpression. IEC were transfected, and 

monolayers allowed to form for 7 days. Monolayers were scored then treated with 

lOpg/ml LPS, lpg/m l flagellin or either 10 or 5pg/ml o f ES. Confocal imaging was 

carried out at 0, 6, 24, 48 and 72h (x 10 magnifications) post wounding. Ligand 

containing media was replaced prior to measurements taken at 24h, 48h and 72h to 

remove floating cells, replenish nutrients and restore treatment concentrations. The 

area o f the acellular region was measured using ImageJ and data calculated as % 

wound healed Vs. Oh.

142



4.4.3 Assessing wound repair as a consequence of direct TLR ligation or 

secondary effects of induced cytokines

Caco-2 cells were treated with LPS (lOpg/ml) or flagellin (lpg/m l). After 24, 48 

and 72h, supernatant was collected and centrifuged to remove floating cells. 

Monolayers were scored, washed and treated with either freshly prepared medium 

containing TLR ligands or supernatants collected from cells treated with ligands for 

24h. Photomicrographs of wounds were taken at 0, 6, 24, 48 and 72h (at xlO 

magnification) post wounding. Media, ligands and supernatant were replaced prior to 

measurements taken at 24, 48 and 72h to remove floating cells, replenish nutrients and 

restore treatment concentrations. The area of the acellular region was measured using 

ImageJ and data calculated as % wound healed Vs. Oh.

4.4.4 Assessment of restitutional vs. proliferative wound repair

Immediately following wounding, Caco-2 monolayers were treated with varying 

concentrations o f hydroxyurea (10, 5 and 2pM) to limit restitution or mitomycin C 

(10, 5 and 2pg/ml) to limit proliferative wound repair. Photomicrographs o f wounds 

were taken at 0, 6, 24, 48 and 72h (at xlO magnification) post wounding. Inhibitor- 

containing media was replaced prior to measurements taken at 24, 48 and 72h to 

remove floating cells, replenish nutrients and restore inhibitor concentrations. The area 

o f the acellular region was measured using ImageJ and data calculated as % wound 

healed vs. Oh.
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4.4.5 Assessing proliferative inhibitor on TLR-mediated epithelial repair

Immediately following wounding, Caco-2 monolayers were treated with LPS 

(1 Ojng/ml) or flagellin (lpg/m l). A second set of wells were also treated in a similar 

manner but with the addition of mitomycin C (10pg/ml). Photomicrographs o f wounds 

were taken at 0, 6, 24, 48 and 72h (at xlO magnification) post wounding. TLR 

ligand/inhibitor-containing media was replaced prior to measurements taken at 24, 48 

and 72h to remove floating cells, replenish nutrients and restore TLR ligand/inhibitor 

concentrations. The area of the acellular region was measured using ImageJ and data 

calculated as % wound healed vs. Oh.

Experiment was repeated again, but photomicrographs o f wounds were taken at 

0, 4, 8, 12, 16, 20 and 24h (at xlO magnification) post wounding. The area o f the 

acellular region was measured using ImageJ and data calculated as % wound healed 

vs. Oh.
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4.5 Results

4.5.1 SOCS3 overexpression limits LPS and ES induced IEC 

proliferation

To evaluate cellular proliferation in response to ligand treatment; values have 

been expressed as percentage change in cell number relative to no treatment controls 

for treatment. The bar graph shows the percentage change in cell proliferation when 

human SW480 IECs were transfected with EV or SOCS3 over-expressing plasmids 

then incubated with ES (lOpg/ml), LPS (lpg/m l) or flagellin (lpg/m l) for 48h. An 

unpaired student t test was used to determine if there was significant effect in contrast 

to no treatment controls with p <0.05.
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Figure 4-1 Effect of ES, LPS and flagellin on proliferation of SW480 IECs 

transfected with plasmid either containing the entire coding sequence for SOCS3 (S3) 

or a control empty vector (EV) after 48h. * = indicates a significant change Vs. No 

Tx (p <0.05) (n=4)

From the bar chart we can conclude that both ES (8%) and LPS (21%) were 

shown to significantly promote IEC proliferation in comparison to no treatment, 

however this was no longer observed after treatment in SOCS3 overexpressing IEC as 

p >0.05. Flagellin was shown to have no significant effect on cell proliferation, even in 

SOCS3 overexpressing IEC.
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4.5.2 LPS and Flagellin promote initial (restitutive) wound healing 

whereas T. muris promotes both restitutive and proliferative wound 

healing.

To attain an accurate determination of wound repair in response to ligand 

treatment, the area of the acellular region was measured using ImageJ and data 

calculated as % wound healed vs. Oh, a student t test was then used to determine if 

there was a significant effect in contrast to no treatment controls.

* p < 0.05 Vs. No Tx
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No Tx LPS Flagellin ES ES
lOpg'ml lpgml 1 Ofjg'ml 5|ig'ml

Figure 4-2 Effect of LPS, flagellin and ES treatment on wound healing of Caco-2 

monolayers. * = indicates a significant change Vs. No Tx (p <0.05) (n = l6)

Figure 4-2 depicts treatment with LPS (lOpg/ml) had a 2% significant increase 

in wound repair after 6h as p <0.05. A significant increase in wound repair was also 

observed when Caco-2 monolayers were scarred then treated with flagellin (lpg/m l)
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after 6 and 72h, with repair 4 and 3% greater respectively than no treatment cultures. 

A 2 and 9% significant increase in wound repair was also observed after treatment 

with ES (10pg/ml) after 6 and 72h as p < 0.05. Treatment with ES (5pg/ml) was 

shown to promote wound repair by 6, 15, 17 and 27% respectively for all time points 

as p <0.05.
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4.5.3 Increased wound repair is due to direct TLR ligation, not secondary 

effects o f induced cytokines.

In figure 4-2 data indicated that TLR ligation promotes epithelial wound repair. 

To confirm wound repair is due to direct TLR signalling and not a secondary effect of 

TLR ligation, scored monolayers were treated with either freshly prepared medium 

containing TLR ligands or supernatants collected from cells treated with ligands. 

Again, the acellular region was measured using ImageJ and data calculated as % 

wound healed Vs. Oh, a student t test was then used to determine if there was a 

significant effect in contrast to direct treatment.
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Figure 4-3 Effect of LPS and flagellin indirect and direct treatment on wound 

healing o f Caco-2 monolayers * = indicates a significant change Vs. Direct Tx (p 

<0.05) (n=4)
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The bar graph in figure 4-3 indicates that supernatant collected from IEC which 

had previously been treated with LPS (lOpg/ml) as having an 18% significant 

decrease in wound repair at 48h in comparison to IEC which were directly treated with 

medium containing LPS. A 3 and 17% significant decrease in wound repair was also 

observed 6 and 72h after treatment with supernatant which had previously been treated 

with flagellin (lpg/m l) in comparison to direct flagellin stimulation.
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4.5.4 Mitomycin C (10pg/ml) is shown to inhibit proliferative wound 

repair

Data from figure 4-2 indicates TLR signalling helps mediate wound healing. To 

determine whether TLR signalling encourages restitutive or proliferative wound repair 

Caco-2 monolayers were wounded then treated with varying concentrations of 

hydroxyurea (10, 5, and 2pM) to inhibit restitution or mitomycin C (10, 5 and 2pg/ml) 

to limit proliferative wound repair. Hydroxyurea works by inactivating ribonucleotide 

reductase, blocking the synthesis of deoxynucleotides, inhibiting DNA synthesis and 

inducing cell death in S-phase. Mitomycin C is an inter-strand cross-linking, 

alkylating agent that targets guanine nucleoside in the 5'CpG-3 sequence. To attain an 

accurate determination of wound repair in response to inhibitor treatment, the area of 

the acellular region was measured using ImageJ and data calculated as % wound 

healed Vs. Oh, a student t test was then used to determine if there was a significant 

effect in contrast to no treatment controls.
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Figure 4-4 Effect of hydroxyurea (10, 5 and 2pM) and mitomycin C (10, 5 and 

2|ag/ml) treatment on wound healing of Caco-2 monolayers. * = indicates a 

significant change Vs. No Tx (p <0.05) (n=4)

To identify the inhibitor which had the greatest inhibitory effect and its optimum 

effective inhibitory concentration on IEC wound repair, values have been expressed as 

% wound healed Vs. Oh. The experiment was repeated 4 times (n=4) with all results 

pooled together. The bar graph in figure 4-4 indicates mitomycin C at 10pg/ml had the 

greatest inhibitory effect on proliferative wound repair at 24, 48 and 72h post 

wounding with repair 2, 31 and 67% respectively significantly less than wounds which 

had not been treated with mitomycin C.

152



4.5.5 Flagellin may promote restitutive wound repair

Data from figure 4-4 indicated that treatment with mitomycin C at 10|ig/ml had 

the greatest inhibitory effect on epithelial wound healing. To investigate the effect of 

mitomycin C on TLR-mediated wound repair, monolayers were scored then treated 

with LPS (lOpg/ml) or flagellin (lpg/ml), a second set of cultures were treated in a 

similar manner but with the addition of mitomycin C. The acellular region was 

measured as before and data calculated as % wound healing Vs. Oh, a student t test 

was then used to determine if there was a significant effect in contrast to cultures 

which were only treated with mitomycin C.
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Figure 4-5 Effect of mitomycin C, LPS and flagellin treatment on wound healing 

o f Caco-2 monolayers. * = indicates a significant change Vs. No Tx + mitomycin C 

Tx (p <0.05) (n=3)
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To evaluate TLR-mediated wound healing in response to mitomycin C 

(10|ag/ml) treatment, values were expressed as % wound healed Vs. Oh. The 

experiment was repeated 3 times (n=3) with all results pooled together. From figure 4- 

5 we can conclude that treatment with mitomycin C (lOpg/ml) and TLR ligands (LPS 

and flagellin) had no significant effect in wound repair in comparison to cultures 

which were only treated with mitomycin C. However, data hints treatment with 

flagellin (lpg/m l) may promote restitutive wound repair at 24h (p= 0.06) as repair was 

8% greater in flagellin-treated cultures than cultures which had only been treated with 

mitomycin C.
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4.5.6 Flagellin is shown to promote proliferative wound repair

Data from figure 4-5 indicated treatment with mitomycin C (lOpg/ml) 

significantly inhibited flagellin (lpg/ml) induced wound repair at 6h with repair 6% 

significantly lower in mitomycin C (lOjig/ml) treated cultures. To further investigate 

the effect o f mitomycin C (lOpg/ml) on TLR-mediated proliferative repair (0-24 h) the 

acellular region was measured every four hours and data calculated as % wound 

healed Vs. Oh, a student t test was then used to determine if there was a significant 

effect in contrast to cultures which were only treated with mitomycin C.
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Figure 4-6 Effect o f mitomycin C, LPS and flagellin treatment on wound healing 

o f Caco-2 monolayers. * = indicates a significant change Vs. No Tx + mitomycin C 

Tx (p <0.05) (n=3)

From figure 4-6 we can conclude that treatment with flagellin (lpg/m l) and 

mitomycin C (lOpg/ml) was shown to significantly promote wound repair by 5, 4, 4 

and 7% at 12, 16, 20 and 24h respectively post wounding in comparison to cultures
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which had only been treated with mitomycin C (lOpg/ml) as p<0.05. Treatment with 

LPS (l|ig /m l) and mitomycin C (lOpg/ml) had no significant effect on wound repair 

in comparison to cultures which had only been treated with mitomycin C (lOpg/ml).
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4.5.7 SOCS3 limits T. mwra-induced wound repair.

To evaluate SOCS3s role in TLR-induced wound repair, Caco-2 IEC were 

transfected with SOCS3 over-expressing plasmids or empty vector (EV) controls. 

Again, the acellular region was measured using ImageJ and data calculated as % 

wound healed Vs. Oh, a student t test was then used to determine if there was a 

significant effect in contrast to EV plasmid transfected lECs.
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Figure 4-7 Effect of LPS, flagellin and ES treatment on wound healing o f Caco-2 

monolayers after transfecting Caco-2 IEC with empty (EV) or SOCS3 vector (S3) 

plasmids. * = indicates a significant change vs. Empty vector (P <0.05) (n=9)

Overexpression of SOCS3 had no significant effect on flagellin-induced wound 

repair at all times (p>0.05). Likewise, over-expression of SOCS3 had no significant 

effect on LPS-induced wound repair. However, SOCS3 limited ES- induced wound 

repair at 6 and 72h by 8% and 16% respectively, as p <0.05.
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4.6 Discussion

Previous studies have demonstrated germ free mice are more susceptible to 

DSS-induced intestinal injury inferring intestinal microbiota stimulate cytoprotective 

pathways to promote epithelial repair (Rakoff-Nahoum, Paglino et al. 2004; Kluwe, 

Mencin et al. 2009). Conversely, germ-free mice also have a lower incidence of 

tumour burden within the colon (Rakoff-Nahoum, Paglino et al. 2004). Mounting 

evidence suggests that TLR signalling is involved in maintaining intestinal 

homeostasis (Rakoff-Nahoum et al., 2008, Zhang et al., 2006, Fukata et al., 2005). T. 

muris excretory/secretory protiens (ES) form a heterogeneous solution o f worm 

proteins containing substances that are able to ligate with multiple TLR (TLR2, TLR4 

and TLR6) (deSchoolmeester, Martinez-Pomares et al. 2009) whereas LPS (TLR4) 

and flagellin (TLR5) bind exclusively to a single receptor. TLR2 has been shown to 

heterodimerize with TLR1 and TLR6 (Ozinsky, Underhill et al. 2000; Takeuchi, 

Kawai et al. 2001; Morr, Takeuchi et al. 2002) to expand the ligand spectrum and 

permit the immune system to identify numerous structures of bactererial lipopeptides 

in various pathogens (Farhat, Riekenberg et al. 2008). Here, we demonstrate TLR 

ligation promotes both proliferative and restitutive wound repair. LPS and flagellin are 

shown to promote restitutive healing whereas ES is shown to promote both restitutive 

and proliferative types of wound healing. This could be due to ES ligating with 

multiple TLR whereas LPS and flagellin binding exclusively to a single receptor.

According to the hygiene hypothesis, lack of exposure to intestinal parasites such 

as helminths, negatively effects immune development, which may predispose 

individuals to immunological diseases later in life. This is a proposed rationale for the 

high incidence o f IBD in industrialized countries compared with developing countries
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(Talley et al., 2011). Several studies exploring the therapeutic potential o f helminth 

infection on IBD have been conducted; with positive findings indicating the potential 

use o f helminths as a therapeutic tool (Ruyssers et al., 2008, Weinstock et al., 2005, 

Weinstock et al., 2009). Treatment with living helminths, however, may have its 

disadvantages such as continual infection or invasion of parasite to other host tissues, 

where they may cause pathology. Therefore, treatment with immunologically active 

helminth proteins might overcome complications of therapies associated with living 

parasites. Both in vivo infection to helminths and in vitro exposure to ES stimulate 

colonic epithelial cells to produce IFN-y, TNFa and CCL2 mRNA and protein 

(deSchoolmeester et al., 2006; Artis et al., 2008; Cruickshank et al., 2009).

These cytokines and chemokines then have the potential to recruit and activate 

immune cells including dendritic cells (DC) from the colonic lamina propria to the 

epithelial layer directing the appropriate immune response. Mice resistant to T.muris 

infection have significantly increased levels of epithelial-derived chemokines 

compared with susceptible mice (Cruickshank et al., 2012), allowing for a more rapid 

recruitment and localisation of colonic DC to the epithelium following infection in 

comparison with susceptible mice. These results provide further evidence that IEC are 

the initial responders and are critical in determining the ensuing immune response, as 

well as maintaining barrier function. Our studies show the direct effect o f TLR ligation 

on IEC; indicating increased wound repair is due to direct TLR ligation, and not 

secondary effects of TLR-induced cytokines, supporting previous studies that IEC 

directly respond to ES. However, we cannot guarantee that there will not be any TLR 

ligands in the supernatant collected from IEC which were previously treated with TLR 

ligands, but TLR-induced cytokines should be present.
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In vitro studies have shown that SOCS3 is a potent supressor o f proliferation in 

both transformed and non-transformed IEC lines (Rigby et a l ,  2007). Furthermore, 

other studies have shown that SOCS3 overexpression can hamper skin epithelial 

wound repair (Ivory et al., 2008, Linke et al., 2010, Linke et a l, 2010B). Our results 

expand upon previous studies where SOCS3 limited spontaneous proliferation o f IEC 

(Rigby, 2007) by demonstrating SOCS3 can also limit microbial-induced proliferation 

and wound repair and support previous studies showing SOCS3 limits cytokine- 

induced and spontaneous IEC proliferation (Rigby, 2007).

Normal gut homeostasis is likely to be due to maintenance o f TLR signalling 

and regulation of these signalling pathways may be dependent on oscillatory 

behaviour o f regulatory molecules such as SOCS3 (Yoshiura et a l, 2007) as without 

this regulatory behaviour, TLR signals are likely to induce pathological states. The 

regulation o f SOCS3 levels may subsequently influence IEC turnover or repair o f 

epithelium following injury. For example, targeted deletion o f SOCS3 in IEC 

promotes tumour incidence and growth in the colon (Rigby, 2007); with methylation- 

silencing o f SOCS3 shared in multiple tumour types (Ogata et al., 2006). 

Unconditional cell proliferation could be due to SOCS3 no longer providing a negative 

feedback mechanism in response to perpetual TLR ligation within the intestine. 

SOCS3 levels are comparatively low in the colon of germ-free mice (Rigby, 

unpublished data), presumably as TLR signalling which would normally initiate the 

expression of SOCS3, no longer present. On the other hand; the overexpression of 

SOCS3 observed in IBD (Suzuki et al, 2001) is likely to be limiting microbial-induced 

wound repair. This is supported by the fact that germ-free mice show severe mortality 

and morbidity when given DSS because of defective epithelial repair responses,
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indicating controlled microbial stimulation is essential for intestinal homeostasis 

(RakoffNahoum et al 2004).

In conclusion, our results support previous data implicating the role o f TLR 

ligands being imperative for the repair of damaged epithelial surfaces, and highlight a 

pivotal role o f SOCS3 in mediating TLR-induced wound repair.
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5.1 Summary

The homeostatic influence of microflora on IEC turnover occurs in a highly 

regulated environment whereby signals from the microflora are regulated and 

processed by IEC. Breakdown in this regulated network o f interactions is implicated in 

the onset of intestinal diseases such as IBD and CRC.

Ligation of TLR causes the activation of NF-*B, consequently influencing the 

expression o f a number of inflammatory cytokine such as TNFa, IL-6 and IL-8. 

SOCS3, an endogenous modulator of epithelial turnover acts as a regulator o f 

inflammatory cytokine-mediated signalling by restricting TNFa-induced NF-*B 

translocation and IL-6 induced STAT3 phosphorylation. TNFa signals through its 

transmembrane receptor TNFR2, with TNFR2 expression upregulated in IBD and 

AOM/DSS models of colitis associated cancer.

These studies aimed to assess the effects of IEC-derived SOCS3 upon cytokine 

responses following TLR stimulation Our results indicate activation o f TLR5 

signalling pathways significantly increased the expression of TNFa and not TGFp 

mRNA in IEC compared with TLR3 and TLR4, in a dose dependent manner; and that 

SOCS3 further enhances the production of TLR5-induced TNFa mRNA. Increases in 

TNFa protein in the supernatant were not detectable possibly due to secreted TNFa 

either binding to its receptor, or protein destruction through SOCS3 driven 

proteasomal degradation. Our results also show TLR5 ligation significantly promotes 

TNFR2 mRNA expression within IEC but SOCS3 limits TLR5-induced TNFR2 

mRNA expression. These results may indicate increased expression o f SOCS3 in IBD 

may perpetuate ‘inflammation’ by promoting the production o f TNFa in response to 

bacteria through down-regulating expression of TNFR2 on IEC.
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5.2 Introduction

Intestinal epithelial cells (IEC) lining the human colon are in perpetual 

communication with commensal microflora. This host-commensal relationship is 

known to contribute to preserving the steady-state equilibrium necessary for gut 

physiology and fortification against damage and invasion (Barbosa et a l, 2010, 

Shaykhiev et al., 2008). The homeostatic influence of microbiota with IEC occurs in 

an actively regulated environment, dictated both by signals from the microbiota, and 

by the fine-tuned regulatory activity of IEC and IEC-conditioned components o f the 

immune system. Failure of this regulated network of interactions is implicated in the 

onset o f IBD (Barbosa et al., 2010). Damage to the intestinal barrier is a hallmark of 

IBD, a cohort o f diseases in which there is chronic relapse and remittance of 

inflammation within the bowel, characteristic of both UC and CD (Hanauer, 2006).

IEC are able to converse with microbes in the colon via a cohort o f pattern 

recognition receptors termed Toll-like receptors (TLR). The detection o f microbial 

ligands such as Poly I: C, LPS and flagellin are recognised by TLR3, TLR4 and TLR5 

respectively (Abreu et al., 2005). The core mechanism through which TLR5 signals is 

similar to that of other TLR. Ligation of TLR5 by flagellin leads to the activation of 

MAP kinase and NF-*B, influencing the expression of a number o f pro-inflammatory 

cytokines such as TNFa, IL-6 and IL-8 (Vijay-Kumar et al., 2008). As well as 

maintaining mammalian host defence from hostile microbes, TLR are also responsible 

for several aspects of mammalian homeostasis for example development, recognition 

o f tissue injury, tissue repair and renewal (Rakoff-Nahoum et a l, 2008, Zhang et a l,

2006). Studies have demonstrated the importance of TLR5 signalling to be imperative 

in conserving intact epithelial barrier function, with TLR5 knock-out mice exhibiting
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deficient repair following injury and development o f spontaneous colitis (Li et al., 

2010, Vijay-Kumar et al., 2007). Colitis is supressed by inhibiting inflammatory 

cytokines (TNFa and IL-12) or stimulating the production o f immunoregulatory 

cytokines (TGF0 and IL-10) (Elliott, Summers et al. 2007; Ruyssers, De Winter et al. 

2008).

Germ-free mice and mice deficient in MyD88, an adaptor molecule crucial for 

TLR signalling given DSS to induce intestinal injury display increased colonic 

bleeding and epithelial injury compared to control animals (Rakoff-Nahoum et al., 

2004). TLR2 and TLR4 knockout mice also have a reduced capacity to repair colonic 

mucosa, compared with wild-type controls upon DSS administration, though not to the 

same extent as MyD88_/' mice (Rakoff-Nahoum et al., 2004). MyD88'A mice 

administered with AOM a model used to simulate intestinal colonic tumourgenesis are 

shown to have a lower incidence of tumour formation in comparison to wild-type 

control mice. Signifying MyD88-dependent signalling pathways are necessary in 

contributing to carcinogen-induced colonic tumourgenesis (Rakoff-Nahoum et al.,

2007).

Suppressor of cytokine signalling-3 (SOCS3), an endogenous modulator of 

epithelial turnover is enhanced in IBD (Suzuki, 2001; Karin et al., 2005, Rakoff- 

Nahoum et a l, 2006). SOCS3 acts as a regulator of inflammatory cytokine-mediated 

signalling by restricting TNFa-induced NF-*B translocation and IL-6-induced STAT3 

phosphorylation (Rigby et al., 2007). There is much evidence to support the role of 

SOCS3 as a tumour suppressor in the intestine, for example targeted deletion of 

SOCS3 in IEC promotes tumour incidence and growth in the colon; with methylated 

silencing o f SOCS3 shared in multiple tumour types (Rigby et a l, 2007, Ogata et a l,
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2006). In vitro studies have depicted SOCS3 as a potent suppressor o f proliferation in 

both transformed and non-transformed IEC lines (Rigby et a l, 2007).
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Figure 5-1 TLR5 and TNFR2 receptor signalling pathways, causing the expression 

o f SOCS3 and its negative feedback mechanism on both signalling pathways (Luo, 

Maeda et al. 2004; Croker, Kiu et al. 2008; Onizawa, Nagaishi et al. 2009).
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It has been well documented that levels of TNFa are elevated in serum and 

intestinal mucosa of patients with IBD, with neutralisation o f TNFa associated with 

improved health, particularly in patients with CD (Stillie and Stadnyk 2009, Van 

Dullemen et a l, 1995, Sandbom et a l, 2004). This supports the role o f anti-TNFa 

therapies in their effectiveness in treating patients with IBD.

TNFa is a key regulator of inflammation, signalling through two transmembrane 

receptors TNFR1 and TNFR2. Ligation of TNFR2 permits binding o f TRAF2 to the 

receptor, subsequently TRAF3, cIAPl and cIAP2 all form a signalling complex. This 

complex induces the activation of the transcription factors AP-1 and NF-*B through 

MAPK and IKK respectively. TNFR2 trimerization and activation also leads to NF-*B 

activation through NIK (Hauer, et a l, 2005; Cabal-Hierro and Lazo, 2012). TNFR1 

(p55) is expressed on almost all cell types, with activation leading to the induction of 

both proliferative and apoptotic processes (Chan et a l, 2000; Grell et a l, 2012). 

Alternatively, TNFR2 (p75) activation leads to transcriptional activation o f genes 

linked to cell proliferation and survival (Wallach et a l, 2005; Cabal-Hierro and Lazo, 

2012). TNFR2 can be proteolytically cleaved, making it a soluble antagonist of TNFa 

(Stillie and Stadnyk 2009). Studies have also shown that TNFR2 is upregulated in IBD 

and AOM/DSS models of inflammation-associated cancer (Hernandez et a l, 2000; 

Mizoguchi et a l, 2002; Onizawa et a l, 2009). TNFa and IL-6 act together, but neither 

alone to induce TNFR2 expression on colon cancer cells (Mizoguchi et a l, 2002).

TGFJ3 produced by most immune cells is a potent regulator o f proliferation and 

differentiation o f most immune cells (Chen 2006). Studies have proposed TGFJ3 

functions as a negative regulator of TLR4-induced macrophage activation; with mice 

lacking TGF0 associated with LPS hyperresponsiveness, subsequently leading to 

overexpression of pro-inflammatory cytokines (Comalada, Cardo et al. 2003;
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McCartney-Francis, Jin et al. 2004). Activation o f TLR4 signalling and its 

downstream components without negative regulation of TGF(3 may therefore promote 

abnormal immune responses and contribute to unregulated inflammation.

5.3 Aim: To investigate whether SOCS3 influences IEC cytokine 

production in response to microbial challenge
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5.4 Methods

5.4.1 Assessment of TLR ligands and SOCS3 on cytokine and receptor 

expression

SW480 SOC3norm and SOCS3hl IEC were seeded in a 24-well plate at 2 x 105 

cells/well. IEC were allowed to proliferate for 48h before serum-starving overnight. 

IEC were then treated with varying concentrations o f LPS (0.1, 1 and lOpg/ml), 

flagellin (1, 0.1 and 0.01pg/ml) and poly I:C (O.lpg/ml), for 2h. TNFa, TGF0 and 

TNFR2 mRNA expression levels were then measured using QPCR.

Following treatment, supernatant was collected and TNFa levels measured using 

an ELISA assay.

5.4.2 Assessment o f TLR ligands and SOCS3 on transcription factor 

expression

SW480 SOCS3norm and SOCS3hi IEC were seeded in a 12-well plate at 4 x 105 

cells/well. IEC were allowed to proliferate for 48h before serum-starving overnight. 

IEC were then treated with varying concentrations o f LPS (10, 1 and O.lpg/ml) and 

flagellin (1, 0.1 and O.Olpg/ml) for 2h. STAT3 phosphorylation and NF-*B expression 

were then measured using SDS-PAGE and western blotting. Values will be expressed 

as fold-change in transcription factor protein expression vs. no treatment ± standard 

error o f the mean (SEM).
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5.4.3 Assessment o f TNFR2 protein expression.

SW480 IEC were seeded in a 12-well plate at 1 x 105 cells/well and allowed to 

adhere overnight to coverslips. IEC were then treated with flagellin (O.lpg/ml) for 1, 

2, 4, 6, and 12h with no treatment controls also included to allow comparison. 

Immunocytochemistry was then used to observe distribution o f TNFR2, with IEC 

TNFR2 expression visualised using the Zeiss LSM 510 Meta Confocal Microscope.
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5.5 Results

5.5.1 TLR5 ligation is shown to promote TN Fa mRNA expression

Inflammatory TNFa and regulatory TGFp cytokine mRNA expression were 

assessed in response to TLR ligand treatment. Expression was normalised to RPLPO 

mRNA, and results displayed as fold-change in cytokine relative to no treatment. A 

student t test was used to determine statistical difference in contrast to no treatment 

with p <0.05.

1 6 1 *p<0.05 
I I TNFa 
I ITGFfi

OJu

Flagellin 0.1 jug/nilPoly (I:C) O.lpg/ml

Figure 5-2 Fold-change in cytokine mRNA expression after TLR ligation (* = p  

<0.05 vs. No Tx) (n=3)

Data from Figure 5-2 indicate treatment with flagellin, but not poly I:C or LPS 

caused a significant increase in TNFa mRNA expression (6.4). No significant 

increases in TGFp mRNA expression were observed after ligation o f TLR3, TLR4 or 

TLR5.
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5.5.2 TLR5 ligation had no effect on TGFp mRNA expression

TGFp mRNA expression was observed when IEC were treated with varying 

concentrations o f flagellin (0.01|ig/ml O.lpg/ml and lpg/m l) for 2h. Figure 5-3 shows 

fold-change in TGFp mRNA expression relative to no treatment. An unpaired student t 

test was used to determine if there was significant effect in contrast to no treatment 

controls with p <0.05.
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Figure 5-3 Fold-change in TGFp mRNA expression after TLR5 ligation. (*  = p 

<0.05 vs. No Tx) (n=3)

From figure 5-3 we can conclude that all concentrations o f flagellin (0.01, 0.1 

and 1 pg/ml) had no effect on TGFp mRNA expression as p >0.05.
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5.5.3 TLR5 induces TN Fa mRNA expression in a dose dependent

manner

TNFa mRNA expression was observed when IEC were treated with varying 

concentrations o f flagellin (O.Olpg/ml O.lpg/ml and lpg/m l) for 2h. Figure 5-4 shows 

fold-change in TNFa mRNA expression relative to no treatment. An unpaired student t 

test was used to determine if there was significant effect in contrast to no treatment 

controls with p <0.05.

1 2  —i
*p<0.05

FLA 0.01 (ig/ml FLA 0.1 pg/ml FLA 1 fig/ml 

Figure 5-4 Fold-change in TNFa mRNA expression after TLR5 ligation. (* =  p 

<0.05 vs. No Tx) (n=3)

From figure 5-4 we can conclude that O.lpg/ml o f flagellin significantly 

promotes TNFa mRNA expression in IEC (6.4 ± 1.6, p <0.03) when compared to no
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treatment control. Additionally, treatment with lpg/m l o f flagellin was also shown to 

significantly promote TNFa mRNA expression in IEC (8.7 ± 1.8, p <0.01) when 

compared to no treatment control. Treatment with the lowest concentration o f flagellin 

(0.01 (ng/ml) hinted o f an increase in TNFa mRNA expression in IEC (4.0 ± 1.1, p = 

0.06).
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5.5.4 SOCS3 enhances TLR5 induced TN Fa mRNA expression

To establish how SOCS3 affects 1EC TLR signalling, TNFa mRNA expression 

was measured after SOCS3norm and SOCS3hl IEC were treated with varying 

concentrations flagellin for 2h. Figure 5-5 shows fold-change in TNFa mRNA 

expression relative to no treatment. An unpaired student t test was used to determine 

statistical effect in contrast to SOCS3norm IEC with p <0.05.
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Figure 5-5 Effect o f varying concentrations o f flagellin treatment (0.01, 0.1 and 

lpg/m l) on the expression o f TNFa mRNA in SOCS3norm and SOCS3hl IEC (* =  p 

<0.05 vs. SOCS3nomi IEC (n=5).

From figure 5-5 we can conclude that SOCS3 overexpression enhanced the 

mRNA expression o f TNFa in a dose dependent manner after TLR5 ligation. 

Treatment with the lowest concentration o f flagellin (O.Olpg/ml) showed a 3.8 fold-
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increase in TN Fa mRNA expression in SOCS3hl IEC in comparison to SOCS3norm 

IEC. Fold-increases o f 3.2 and 3.7 were also observed in SOCS3hl IEC in comparison 

to SOCS3norm IEC after treatment with 0.1 and lpg/m l o f flagellin respectively.
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5.5.5 SOCS3 driven increases in mRNA do not appear to translate to 

increase in secreted TNFa

Data from figure 5-5 indicates SOCS3 overexpression enhances flagellin- 

induced mRNA expression. To determine if increases in TN Fa mRNA translated into 

secreted protein, soluble TNFa was detected in the supernatant. Figure 5-6 shows 

TNFa secretion after SOCS3norm and SOCS3hl IEC were treated with varying 

concentrations o f flagellin. An unpaired student t test was used to determine statistical 

effect in contrast to SOCS3norm IEC with p <0.05.
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Figure 5-6 Effect o f flagellin treatment on TNFa secretion from SOCS3r 

SOCS3hl IEC ( * =  p <0.05 vs. SOCS3norm IEC) (n=6).

and

Modest increases in sTNFa were detected by ELISA, but increases in secreted 

protein were nowhere near as marked as increases in mRNA, leading us to speculate 

that increases in TNFa mRNA were not reflected in the secreted form maybe due to
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either rapid binding to membrane receptor or post-translational regulation, possibly 

regulated by SOCS3.
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5.5.6 SOCS3 overexpression had no significant effect on LPS or FLA 

induced-pSTAT3 expression

To observe the effect o f TLR ligation and SOCS3 status on the phosphorylation 

o f STAT3, SOCS3norm and SOCS3hl IEC were treated with varying concentrations of 

LPS and flagellin for 2h. Figure 5-7 shows fold-change in TLR-induced pSTAT3 

expression in SOCS3norm and SOCS3hl IEC in comparison to no treatment. An 

unpaired student t test was used to determine statistical effect in contrast to SOCS3norm 

IEC with p <0.05.
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Figure 5-7 Effect o f LPS and flagellin. treatment on STAT3 phosphorylation in 

SOCS3norm and SOCS3hl IEC ( * =  p <0.05 vs. SOCS3norm No Tx) (n=3).

From figure 5-7 we can conclude that SOCS3 overexpression had no significant 

effect on LPS or flagellin induced pSTAT3 expression as p >0.05.
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5.5.7 Flagellin does not induce NF-*B p65 expression

To observe the effect o f TLR ligation and SOCS3 status on NF-JB p65 

expression, SOCS3norm and SOCS3hl IEC were treated with varying concentrations of 

LPS and flagellin for 2h. Figure 5-8 shows fold-change in TLR-induced NF-^B p65 

expression in SOCS3norm and SOCS3hl IEC in comparison to SOCS3norm no treatment. 

An unpaired student t test was used to determine statistical effect in contrast to 

SOCS3norm no treatment IEC with p <0.05.

* p <  0.05 
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Figure 5-8 Effect o f LPS and flagellin, treatment on NF-*B p65 in SOCS3nomi and 

SOCS3hi IEC. ( * =  p <0.05 vs. SOCS3norm No Tx) (n=3).

Figure 5-8 shows that LPS (10|ig/ml) caused an increased in NF-*B p65 

expression (1.6 ± 0.2,/? <0.04) in SOCS3norm IEC; with SOCS3-overexpression again 

causing an increase in NF-*B p65 expression (1.34 ± 0.14, p  <0.05) after LPS 

stimulation (O.lpg/ml). All concentrations o f flagellin (0.01, 0.1 and lfig/ml) were 

shown to have no significant effect on NF-*B p65 expression.
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5.5.8 SOCS3 blocked TLR3, and TLR5-induced TNFR2

SOCS3 overexpression was shown to enhance TLR5-induced TNFa mRNA 

expression in IEC; however this was not translated to secreted protein possibly due to 

TNFa binding to its receptor TNFR2. To establish how SOCS3 affects TNFR2 

transcription in response to varying concentrations o f flagellin, Poly I: C and LPS, 

SOCS3norm and SOCS3hl IEC were treated for 2h. An unpaired student t test was used 

to determine statistical effect in contrast to no treatment SOCS3norm IEC with p <0.05.
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Figure 5-9 Effect o f flagellin, Poly I:C and LPS treatment on the expression o f 

TNFR2 mRNA in SOCS3norm and SOCS3h' IEC (*  = p <0.05 vs. SOCS3norm No Tx) 

(n-6).

Results from figure 5-9 indicate that in SOCS3norm IEC treatment with most 

concentrations o f flagellin (0.1 and lpg/m l) and Poly I:C (O.lpg/ml) were shown to 

significantly enhance TNFR2 mRNA expression by 3.0, 2.9 and 2.9 respectively, as p

181



<0.05. However, overexpression in TNFR2 mRNA expression in response to TLR3 

and TLR5 ligation were no longer observed in SOCS3hl IEC.
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5.5.9 Flagellin was shown to down- then up-regulate TNFR2 protein 

expression

Data from figure 5-9 indicated TLR5 ligation increased TNFR2 mRNA 

expression. To determine whether TLR5 ligation also induced the expression o f 

TNFR2; immunocytochemistry was used to observe TNFR2 expression in SOCS3norm 

IEC after treatment with flagellin for 1, 2, 4, 6, and 12h.
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Figure 5-10 D istribution o f  TNFR2 in SOCS3norm IEC after exposure to flagellin 

(O .lpg/m l) for 1, 2, 4, 6, and 12h using imm unocytochemistry. Green represents 

TNFR2, Red represents propidium  iodide (n=3).
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From figure 5-10 we can conclude that baseline levels o f TNFR2 show 

distribution o f receptor at both cytoplasmic and membrane locations. Treatment o f 

IEC with flagellin (O.lpg/ml) depicted a down-regulation in TNFR2 distribution at 

both cytoplasmic and membrane locations after 1 and 2hrs. Cytoplasmic and 

membrane TNFR2 protein expression steadily began to increase again back to no 

treatment levels after stimulating with flagellin for 4, 6 and 12h; with greatest levels o f 

TNFR2 at both cytoplasmic and membrane locations observed 12h post-stimulation.
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5.6 Discussion

TLR signalling pathways have been shown to be important activators o f NF-*B, 

influencing the expression o f a number o f ‘pro-inflammatory’ genes such as TNFa, 

IL-6 and IL-8 (Vijay-Kumar et a l, 2008) essential for immunity and tissue repair. 

However, if persistently activated, excessive levels o f these cytokines can lead to 

certain pathologies. TGFp is an immunoregulatory cytokine regulating proliferation, 

differentiation and function o f both immune and non-immune cells (Hartsough and 

M ulder 1997; Letterio and Roberts 1998; Yue, Sun et al. 2004). Studies have shown 

TGFp is a potent inhibitor o f DC activation. TGFp-conditioned myeloid DCs appear 

to be tolorogenic as they do not respond to microbial stimuli and protect mice against 

lethal LPS-induced inflammation (Neurath, Fuss et al. 1996). Our studies indicate 

TLR4 or TLR5 ligation has not effect on TGFp mRNA expression. Here, we also 

demonstrate that TLR ligation with flagellin and not Poly I:C or LPS causes an 

increase in TN Fa mRNA expression. Moreover, SOCS3 enhances TLR5 induced 

TNFa in a dose dependent manner.

Increases in TNFa mRNA upon flagellin stimulation did not appear to translate 

to increases in secreted TNFa. This led us to hypothesise that this was perhaps due to 

TNFa binding to its receptor. Numerous studies have shown that TNFa signals 

through two transmembrane receptors TNFR1 and TNFR2. In vitro studies using 

colonic IEC have demonstrated that stimulation with TNFa causes an upregulation o f 

both TNFR2 mRNA and sTNFR2 protein (Hamilton, Simmons et al. 2011). Other 

studies demonstrate TNFR2 can be proteollytically cleaved making it a soluble 

antagonist o f TNFa (Stillie and Stadnyk 2009). This suggests a possible rationale that 

although sTNFa maybe secreted upon flagellin stimulation; TNFa may not be
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detectable by the ELISA assay as sTNFR2 could act as a decoy receptor. Alternatively 

it could also be due to a post-translational regulatory mechanism.

SOCS3, an endogenous negative feedback inhibitor o f inflammatory cytokine- 

mediated signalling is shown to limits transcription factor activation/translocation in 

response to inflammatory stimuli within IEC. Examples o f inhibitory effects include 

TNFa-induced NF-*B translocation and IL-6 induced STAT3 phosphorylation (Rigby, 

Simmons et al. 2007; Li, de Haar et al. 2010). There is overwhelming evidence to 

support the role o f SOCS3 as a regulator o f intestinal epithelial homeostasis, including 

IEC overexpression in IBD (Suzuki, Hanada et al. 2001), targeted deletion o f IEC 

SOCS3 promoting tumour incidence and growth (Rigby, Simmons et al. 2007); and 

epigenetic silencing o f SOCS3 observed in intestinal tumours (Li, de Haar et al. 2012; 

Li, Deuring et al. 2012).

Toll-like receptors have been shown to influence IEC turnover through 

promoting phosphorylation o f STAT3 and activating NF-*B regulating the 

transcription o f several hundred genes with kB binding sites (Suzuki, Hanada et al. 

2001; Ghosh and Karin 2002; Abreu, Thomas et al. 2003). Our results indicate 

SOCS3 overexpression had no effect on TLR4 or TLR5 induced-STAT3 

phosphorylation and that TLR4, but not TLR5 signalling promoted NF-*B activation, 

although SOCS3 had little effect on TLR4 induced NF-*B in our system.

TNFR2 activation leads to transcriptional factors triggering genes linked to cell 

proliferation and survival (Rodriguez-Vita and Lawrence 2010; Hamilton, Simmons et 

al. 2011). Studies have shown that TNFR2 is upregulated in IBD and AOM/DSS 

models o f inflammation associated cancer (Crespo, Cayon et al. 2001; Mizoguchi, 

Mizoguchi et al. 2002; Onizawa, Nagaishi et al. 2009). Hamilton and colleagues 

(2011) have shown that overexpression o f SOCS3 decreases cytokine induced TNFR2
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expression, limits proliferation o f colon cancer cells and decreases anchorage- 

independent growth o f colon cancer cells, even cells overexpressing TNFR2 

(Hamilton, Simmons et al. 2011). Our results indicate that both TLR3 and TLR5 

ligation show increases in TNFR2 mRNA expression, with SOCS3 limiting this 

upregulation. The limiting effect o f SOCS3 on TNFR2 expression could account for 

the increase in TNFa, or equally the increase in TNFa could account for limitation of 

TNFR2 upregulation. IHC data indicates TLR5-induced TNFa causes a rapid 

downregulation o f TNFR2, and expression is restored to habitual levels by 6h post 

treatment, indicating overexpression o f TNFa may negatively inhibit its receptor, 

limiting unwarranted signalling.

TNFR2Flagellin

JNF,

TLR5

Ubiquiti nation

SOCS3

.IN F .

NF-kB

TNFa

Figure 5-1 1 Possible mode of SOCS3 action in TLR5-induced TNFR2 signalling
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The dual roles o f SOCS3 in cancer and inflammatory diseases have been 

recognised. Our findings indicate SOCS3 may perpetuate microbial-induced TNFa 

which may drive mucosal inflammation, thus promoting pathological symptoms o f 

UC. Furthermore, as silencing o f SOCS3 promotes cancer, SOCS3 limitation o f 

microbial-induced TNFR2 may be one mechanism by which SOCS3 limits tumour 

formation, but promotes pro-mitotic inflammation.
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6. IEC SOCS3 MAY 
MEDIATE HYPO- 

RESPONSIVENESS TO 
COMMENSAL 
MICROFLORA
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6.1 Summary

Innate immune interactions o f IEC with microbial constituents drive the 

expression o f pro-inflammatory genes, and secretion o f cytokines which subsequently 

activate the adaptive immune response. The intestinal epithelium regulated 

inflammatory signalling relative to immune cells generates ‘tolerance’ to commensal 

flora. Breakdown o f tolerance to commensal flora is associated with the pathogenesis 

o f IBD and NEC.

These studies aimed to assess whether SOCS3 mediates IEC tolerance to TLR 

ligation and assess in what way differentiation status o f IEC affects cytokine, and 

SOCS3 expression. Our results indicate pre-treatment with LPS is shown to attenuate 

LPS-induced SOCS3 and TLR4 expression, suggesting IEC become tolerant or 

hyporesponsive to successive stimulations o f LPS. An in vitro model was developed to 

assess TLR4-induced SOCS3 and cytokine expression in conventional (differentiated) 

and damaged (proliferating) IEC monolayers. Our results show damaged monolayers 

express greater levels o f LPS-induced SOCS3 and TNFa than conventional 

monolayers, parallel to observations in IBD. However; TGFp is shown to be 

upregulated in both damaged and conventional monolayers following TLR ligation, 

supporting its role as an TLR-induced immunoregulatory cytokine. These results 

suggest IEC become tolerant to commensal flora, protecting against incessant immune 

activation by commensals. Furthermore, expression o f microbial-induced 

inflammatory cytokines and their regulator, SOCS3 are influenced by epithelial 

integrity.

191



6.2 Introduction

The intestinal epithelium serves as a physical barrier that separates luminal 

microflora and food antigens from the internal milieu. As well as constituting a barrier 

to luminal contents, IEC are active contributors to the intestinal innate immune 

response, responding to signals from both the luminal (apical) and lamina propria 

(basolateral) environments (Madara 1997; Hecht 1999). Interaction o f  IEC with 

pathogenic bacteria provoke the expression o f pro-inflammatory genes, and secretion 

o f cytokines and chemokines, recruitment o f inflammatory cells, and subsequent 

activation o f the adaptive immune system (Jung, Eckmann et al. 1995; M adara 1997; 

Kim, Eckmann et al. 1998; Elewaut, DiDonato et al. 1999). The innate immune 

responses o f IEC have evolved restricting infection by luminal pathogens. IEC are 

able to detect molecules associated with pathogens via a cohort o f pattern recognition 

receptors termed Toll-like receptors (TLR). The detection o f microbial ligands such as 

lipopolysaccharide (LPS) is recognised by TLR4 (Abreu, Fukata et al. 2005; Kawai 

and Akira 2007; Beutler 2009). Stimulation o f TLR influences the expression o f a 

number o f pro-inflammatory cytokine such as TNFa, IL-6 and IL-8 (Kawai and Akira 

2007; Beutler 2009).

Although none o f the TLR microbial ligands are unique to pathogens, with many 

also common to non-pathogenic organisms, this proves an enigma to the intestinal 

epithelium which is constitutively exposed to vast numbers o f microbes and their 

products (Rakoff-Nahoum, Paglino et al. 2004). Despite this, under physiological 

conditions, the intestinal epithelium does not appear to activate the pro-inflammatory- 

signalling cascade in response to commensal flora. Therefore, mechanisms must exist 

to regulate the intestinal immune system between mucosal defence from adverse

192



microbes and ‘tolerance’ to commensal flora. Idiopathic IBD is described as chronic 

intestinal inflammation in the absence o f identified bacterial pathogens.

Studies have shown that several microbial components trigger innate immune 

responses and can incite endotoxin shock-like symptoms in experimental animals. 

However, these microbial components also generate tolerance following successive 

stimulation, conceivably safeguarding the host from dysregulated immune responses 

(Biberstine, Darr et al. 1996; Zeisberger and Roth 1998).

The transition from a sterile inter-uterine environment to a world that is rich in 

microbial antigens elevates the risk o f microbial infection due to the immaturity o f the 

immune system in newborns. The newborn faces a multifaceted array o f 

immunological demands, including fortification against infection and avoidance o f 

harmful inflammatory immune responses. One o f the tolerance mechanisms proposed 

is that shortly after birth, TLR4 is down regulated in the neonate intestine, presumably 

resulting in the “hyporesponsive” nature o f IEC (Levy 2007). Cario and colleagues 

(2000) had previously demonstrated that TLR4 is sparsely expressed on human IEC. 

However, TLR4 expression is up-regulated in both CD and UC. TLR5 remains 

unaffected, indicating IBD is associated with dysregulated TLR4 expression (Cario 

and Podolsky 2000). Other researchers have shown that TLR4 is primarily expressed 

on the surface o f IEC, but can become internalised making it less responsiveness to 

LPS (Abreu, Vora et al. 2001; Abreu, Fukata et al. 2005).

Necrotising enterocolitis (NEC) is one o f the most common and distressing 

gastrointestinal emergencies in neonates. The exact pathogenesis o f NEC is still 

unconfirmed, however one hypothesis suggests that NEC occurrence may be due to 

inappropriate initial microbial colonisation or the naivety o f the under-developed
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immune system o f the gastrointestinal tract in newborns, as NEC arises 8-10 days after 

birth (Claud and Walker 2001). Intestinal samples o f NEC neonates are shown to have 

increased pro-inflammatory cytokines, suggesting these mediators play a part in NEC 

development. Another study has depicted rat models o f NEC overexpressing TLR2, as 

well as NF-*B in IEC correlating with severity o f mucosal damage (Martin and Walker 

2006; Schultz, Bonnard et al. 2007). Additionally, IEC expression o f TLR and 

cytokines precedes histological injury in experimental NEC (Liu, Zhu et al. 2009). 

NEC is also associated with increased expression o f TLR4 in the intestinal mucosa 

(Leaphart, Cavallo et al. 2007). These findings demonstrate the critical role o f TLR 

expression in the development o f NEC.

Endotoxin shock is often a fatal consequence o f bacterial infection, that may 

occur when LPS enters the blood stream (bacteremia), causing systemic inflammatory 

reaction. Although, some studies have indicated modest concentrations o f LPS do not 

induce TLR4-mediated responses in several cell lines, suggesting IEC are more 

tolerant to LPS than other cell lines.

Transforming growth factor-p (TGFP), is produced by most immune cells, and is 

a potent regulator o f proliferation and differentiation o f immune cells (Chen 2006). 

TGFp is shown to negatively regulate TLR4-induced macrophage activation. 

Furthermore, mice lacking TGFp display elevated levels o f TLR4 mRNA expression 

and are LPS hyperresponsive, subsequently expressing increased levels o f pro- 

inflammatory cytokines (Comalada, Cardo et al. 2003; McCartney-Francis, Jin et al. 

2004).

Hamilton and colleagues (2009) had shown that the helminth Fasciola hepatica 

(F. hepatica), the causative agent o f fasciolosis is evolving as a significant disease in
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humans (Mas-Coma, Bargues et al. 1999). The F. hepatica tegumental antigen 

(FhTeg) renders dendritic cells hyporesponsive to TLR activation. Furthermore, 

FhTeg is also shown to suppress LPS induced NF-*B activation in dendritic cells 

(Hamilton, Dowling et al. 2009). Other studies have gone on to demonstrate that 

FhTeg’s inhibitory effects on TLR4 signalling are not only limited to the suppression 

o f NF-*B activation, but also MAPK, an important intermediate in TLR4 signalling 

(Vukman, Adams et al. 2013). FhTeg is also shown to induce the expression o f 

SOCS3 in mast cells, impairing ability to drive Thl immune responses, a characteristic 

feature o f Fasciola infection (Vukman, Adams et al. 2013). The upregulation o f 

SOCS3 following pre-treatment with FhTeg could provide a rationale for the 

hyperresponsiveness o f LPS-induced cytokine secretion.

Conclusively, these studies suggest that neonatal IEC become hyporesponsive to 

microbial-induced TLR signalling following birth. Since aberrations o f TLR and 

inflammatory cytokine expression are associated with NEC development; this chapter 

aims to investigate the potential role o f SOCS3 as a mediator o f hyporesponsiveness to 

TLR ligation. Furthermore, SOCS3 and cytokine expression levels will also be 

assessed in a model o f conventional and disrupted IEC monolayers.

6.3 Aim: To investigate whether SOCS3 mediates IEC tolerance to 

TLR ligation
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6.4 Methods

6.4.1 Assessment of TLR ligand pre-treatment on SOCS3 and TLR 

receptor expression

These experiments utilised the Caco-2 IEC which were seeded in 12-well plates 

at 2 x 105 cells/well and allowed to adhere overnight. IEC were either pre-treated with 

LPS lOpg/ml for 6h, or left in complete medium, then subjected to a subsequent 

lOpg/ml LPS treatment for varying time points (1, 2, 3, 4, and 6h), or not. SOCS3 and 

TLR4 mRNA levels were then measured using qPCR. Experiment was repeated 3 

times (n=3) with all results pooled together.

6.4.2 Assessment o f IEC differentiation status on SOCS3, TGFp and 

TNFa expression

Proliferating Caco-2 cells which had been seeded overnight, and Caco-2 cells 

which had been allowed to differentiate for 7 days were treated with 1 pg/ml LPS for 

2h. SOCS3, TGFp and TNFa mRNA levels were then measured using qPCR. 

Experiment was repeated 3 times (n=3) with all results pooled together.
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6.5 Results

6.5.1 SOCS3 expression upregulated following treatment with LPS

To evaluate the effect o f treatment with LPS on the expression o f SOCS3 in 

proliferating IEC, SOCS3 mRNA was assessed. A unpaired student t test was used to 

determine if there was significant effect in contrast to No Tx with p <0.05.

63 421
Incubation (II)

Figure 6-1 Effect o f LPS treatment (1, 2, 3, 4 and 6h) on SOCS3 mRNA 

expression vs. No Treatment. A unpaired student t test was used to determine 

significant effect in contrast to no treatment cultures. * = indicates a significant 

change Vs. No Tx IEC cultures (p <0.05) (n=3)

In figure 6-1 we can conclude that SOCS3 mRNA expression showed fold- 

increases o f 4.2, 5.1, 4.0 and 2.8 following stimulation with LPS for 1, 2, 3, 4 and 6h 

respectively, in comparison to no treatment cultures.
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6.5.2 LPS pre-treatment attenuated IEC SOCS3 expression following 

LPS stimulation.

To evaluate the effect o f pre-treatment with LPS on the expression o f SOCS3 in 

proliferating IEC, SOCS3 mRNA was assessed. A student t test was used to determine 

if there was significant effect in contrast to Naive IEC with p < 0.05.
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Figure 6-2 Effect o f LPS pre-treatment (6h) and subsequent LPS treatment (1, 2, 

3, 4 and 6h) on SOCS3 mRNA expression vs. No Treatment. A student t test was used 

to determine significant effect in contrast to pre-treated cultures with p <0.05. * =

indicates a significant change Vs. pre-treated cultures (p <0.05) (n=3)

Figure 6-2 shows that pre-treatment with LPS for 6h was shown to attenuate 

SOCS3 mRNA transcription by 48, 68 and 62% at 2, 3 and 4h respectively, in 

comparison to naive cells.
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6.5.3 TLR4 IEC expression attenuated response following pre- treatment 

with LPS

To evaluate the expression o f TLR on proliferating Caco-2 IEC which had either 

been pre-treated with 10(ig/ml LPS or not, then treated again with LPS for varying 

periods, values have been expressed as relative increase in TLR4 mRNA vs. No 

Treatment. A student t test was used to determine if there was significant effect in 

contrast to Naive IEC with p <0.05.
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Figure 6-3 Effect o f LPS pre-treatment (6h) and subsequent LPS stimulation (1, 2, 

3, 4 and 6h) on TLR4 mRNA expression. * = indicates a significant change Vs. pre

treated cultures (p <0.05) (n=3)

From figure 6-3 we can conclude that pre-treatment with LPS for 6h was shown 

to inhibit TLR4 mRNA expression by 50 and 58% at 1 and 2h respectively, in 

comparison to naive cultures which were also treated with LPS for 1 or 2h with p 

<0.05.
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6.5.4 Proliferating IEC express greater levels o f SOCS3 than

differentiated IEC following TLR4 ligation

To evaluate SOCS3 expression in differentiated and proliferating Caco-2 cells in 

response to lpg/m l LPS treatment, values have been expressed as relative increases in 

SOCS3 mRNA vs. proliferating No Treatment IEC. A student t test was used to 

determine if there was significant effect in contrast to No Tx with p <0.05.
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Figure 6-4 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on 

SOCS3 mRNA expression. * = indicates a significant change Vs. No Tx IEC (p 

<0.05) (n=3)

From figure 6-4 we can conclude that treatment with LPS for 2h depicted a 4.6 

fold-increase in SOCS3 mRNA expression in proliferating IEC in comparison to no 

treatment IEC cultures. Treatment with LPS for 2h was shown to have no significant 

effect on SOCS3mRNA expression in differentiated IEC.

200



6.5.5 Proliferating IEC express greater levels o f  TN Fa than differentiated

IEC following TLR4 ligation

To evaluate TNFa expression in differentiated and proliferating Caco-2 cells in 

response to lpg/m l LPS treatment, values have been expressed as relative increases in 

TNFa mRNA vs. proliferating No Treatment IEC. A student t test was used to 

determine if there was significant effect in contrast to No Tx with p <0.05.
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Figure 6-5 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on 

TNFa mRNA expression. * = indicates a significant change Vs. No Tx (p <0.05) 

(n=3)

From figure 6-5 we can conclude that proliferating IEC showed a 7.4 fold- 

increase in TNFa mRNA expression in comparison to no treatment IEC cultures. 

Treatment with LPS for 2h was shown to have no significant effect o f TNFa mRNA 

expression in differentiated IEC.
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6.5.6 TGFp is upregulated in both proliferating and differentiated IEC 

following TLR4 ligation

To evaluate TGFp expression in differentiated and proliferating Caco-2 cells in 

response to lpg/m l LPS treatment, values have been expressed as relative increases in 

TGFp mRNA vs. differentiated No Treatment IEC. A student t test was used to 

determine if there was significant effect in contrast to No Tx with p < 0.05.

Figure 6-6 Effect o f Caco-2 IEC differentiation status and LPS treatment (2h) on 

TGFp mRNA expression. * = indicates a significant change Vs. No Tx (p <0.05) 

(n=3)

From figure 6-6 we can conclude that treatment with LPS for 2h depicted a 4.5 

fold-increase in TGFp mRNA expression in proliferating IEC in comparison to no 

treatment IEC cultures. Treatment with LPS for 2h was also shown to depict a 2.7

* p<0.05
□  No Tx
□  LPS lgg/m l

Proliferating Differentiated
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fold-increase o f TGFp mRNA expression in differentiated IEC in comparison to no 

treatment IEC cultures.
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6.6 Discussion

Previous studies have demonstrated that the gut can be colonized by as much as

8 1 0 *10 to 10 microflora per gram of faeces within the first few days o f birth (Bettelheim, 

Breadon et al. 1974; Bezirtzoglou 1997; Fanaro, Chierici et al. 2003). Recognition o f 

these microbial components such as LPS by TLR4 results in the expression o f a 

number o f pro-inflammatory genes such as TNFa, IL-6 and IL-8 (Vijay-Kumar, 

Aitken et al. 2008). However, if persistently activated, excessive levels o f these 

cytokines may initiate certain pathologies such as IBD and NEC. Failure o f pre-term 

neonates to correctly down-regulate responses to LPS appears to significantly 

contribute to neonates susceptibility to NEC (Jilling, Simon et al. 2006; Lin and Stoll

2006). Nevertheless, in most cases microflora do not typically elicit an inflammatory 

response from IEC.

The mechanisms by which IEC are protected against incessant immune 

activation by commensals and LPS is o f great importance. Studies by Levy (2007) 

have shown that following birth, neonates down-regulate the expression o f IEC TLR4, 

resulting in the “hyporesponsiveness” nature o f IEC (Levy 2007). Our results also 

indirectly support these findings by indicating that IEC down-regulate the expression 

o f TLR4 mRNA following successive treatments o f LPS, with IEC developing LPS 

tolerance.

SOCS3, inhibits TNFa-induced NF-*B translocation and IL-6 induced STAT 

phosphorylation (Rigby, Simmons et al. 2007; Li, de Haar et al. 2010). There is much 

evidence to support the role o f SOCS3 as a governor o f IEC homeostasis. SOCS3 is 

upregulated in IBD (Suzuki, Hanada et al. 2001) and targeted removal o f SOCS3 is 

shown to encourage intestinal tumour incidence and development (Rigby, Simmons et
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al. 2007). Baetz and colleagues (2004) have shown that LPS induces the expression o f 

SOCS3 in macrophages (Baetz, Frey et al. 2004). Our results mirror these findings by 

demonstrating stimulation with LPS promotes the expression o f SOCS3 mRNA in 

IEC. Furthermore, our results also indicate pre-treatment with LPS attenuates LPS- 

induced SOCS3 mRNA expression. SOCS3 mRNA expression following LPS 

stimulation suggests it is oscillatory in behaviour. Other studies have also depicted 

similar findings with SOCS3 mRNA expression oscillating with peaks at 50 and 70 

minutes after serum stimulation. Moreover, western blot analysis also showed SOCS3 

protein expression displaying oscillations with peaks at 2 and 4h after serum 

stimulation, indicating a delay o f about lh  between mRNA and protein synthesis 

(Yoshiura, Ohtsuka et al. 2007). It is worth noting that the reduction o f SOCS3 mRNA 

expression following pre-treatment could entirely be due to down-regulation o f 

signalling only at the receptor level and not down-regulation o f both TLR4 and 

SOCS3.

Epithelial homeostasis, that which is the physiological equilibrium o f IEC 

proliferation, differentiation and apoptosis, is fundamental for the growth and 

maintenance o f complex tissues. However, there are a number o f instances when this 

delicate equilibrium is pathologically disrupted, leading to distorted epithelial 

architecture, a loss o f epithelial barrier function, and in severe cases- tumourgenesis 

(Rakoff-Nahoum, Paglino et al. 2004; Artis 2008; Maloy and Powrie 2011; Koch and 

Nusrat 2012). A distinguishing feature o f IBD is that the rate o f IEC proliferation and 

apoptosis is enhanced, correlating with disease severity (Serafini, Kirk et al. 1981; 

Sipos, Bela Molnar et al. 2005). Pathologically heightened IEC apoptosis in IBD is 

thought to potentiate the epithelial barrier defect, permitting the translocation o f 

luminal antigens exuberating the inflammatory immune response (Koch and Nusrat
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2012). Differentiation o f IEC is also affected during chronic colitis to such a degree, 

that mucin depletion has been proposed as a possible diagnostic marker for UC 

(McCormick, Horton et al. 1990). The JAK-STAT3 signalling pathway is regulated by 

SOCS3 and has been identified as a key regulator o f inflammatory cytokines (Rigby, 

Simmons et al. 2007; Li, de Haar et al. 2010). To analyse LPS-induced SOCS3 and 

inflammatory cytokine expression in conventional and damaged monolayers, an in 

vitro model was developed where IEC were either allowed to differentiate and form 

monolayers for 7 days (conventional) or seeded the day before where IEC were 

proliferating, signifying loss o f barrier integrity (damaged) as observed in IBD.

Our results (Fig 6.4) indicate that LPS stimulation promotes a 4.6 fold-increase 

in expression o f SOCS3 in proliferating IEC, indicating proliferating IEC are 

responsive to LPS. LPS did not induce SOCS3 expression in differentiated cells, 

possibly due to polarisation o f Caco-2 cells in monolayers, and limited apical exposure 

to LPS. Further evidence to suggest that differentiated Caco-2 IEC are less responsive 

to TLR stimulation can be seen in Figures 6.5 and 6.6.

TNFa, is upregulated in inflammatory disorders, and has developed as a key 

therapeutic target for IBD (Ghosh 2005; Sfikakis 2010). Numerous studies within 

macrophages have shown TNFa signalling transpires through NF-*B and MAPK. 

Studies have also shown TNFa increases IEC apoptosis and antigen sampling. 

Conversely, it also limits IEC proliferation and barrier function (Soderholm, Streutker 

et al. 2004; Wang, Graham et al. 2005; Kolinska, Lisa et al. 2008; Nava, Koch et al.

2010). Our results (Fig 6.5) indicate TLR ligation promotes a 7.4 fold-increase in 

TN Fa expression in proliferating IEC; however TLR4 ligation had no impact on TNFa 

in differentiated IEC. This emulates observations in IBD where loss o f barrier integrity 

causes an upregulation o f TNFa.
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TGFp, an immunoregulatory cytokine has beneficial effects on epithelial 

homeostasis by rescuing epithelial barrier function in the presence o f IFN-y (Planchon, 

Martins et al. 1994). Other studies have suggested rather than moderating the junctions 

o f epithelial cells directly, TGFp protects the epithelium by preventing the expression 

o f inflammatory cytokines following microbial challenge (Jarry, Bossard et al. 2008). 

Our results (Fig 6.6) indicate TLR4 ligation promotes a 4.5 fold-increase in TGFp in 

proliferating IEC; with a fold-increase o f 2.7 in TGFp also observed in differentiated 

IEC following TLR4 ligation. Data supports the role o f TGFp as an immunoregulatory 

cytokine limiting expression o f other inflammatory cytokines following microbial 

challenge. Furthermore, a greater increase in TGFp expression is detected in 

proliferating IEC than differentiated IEC possibly due to polarisation o f Caco-2 cells 

in monolayers, limiting apical exposure to LPS

Conclusively, our results indicate IEC become hyporesponsive following 

successive stimulations with LPS, making IEC tolerant to LPS and protected against 

incessant immune activation by commensals and LPS. Furthermore, cytokines and 

their endogenous feedback inhibitor, SOCS3 vary in expression levels conditional to 

differentiation status and juxtaposition o f IEC during TLR4 ligation.
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7. GENERAL 
DISCUSSION AND 
FUTURE WORK
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IEC are able to communicate with microflora in the colon via a cohort o f pattern 

recognition receptors, termed TLR. Numerous studies have demonstrated that TLR 

through interaction with commensals and their products play a pivotal role in inducing 

tissue regeneration following injury (Rakoff-Nahoum, Paglino et al. 2004; Rakoff- 

Nahoum and Medzhitov 2007). Conversely, TLR knockdown or germ-free mice 

display overwhelmingly reduced dysplasia, number and size o f tumours (Fukata, Chen 

et al. 2007). Taken together, these studies indicate controlled microbial stimulation via 

TLR are essential for intestinal homeostasis. SOCS3 is also key in regulating intestinal 

homeostasis indicated by its irregular expression in mouse models o f inflammation 

(Suzuki, Hanada et al. 2001; Li, de Haar et al. 2011). Furthermore, studies have also 

depicted SOCS3 as a tumour suppressor, including in the colon (Rigby, Simmons et al.

2007).

Several studies have investigated the effect o f TLR ligation and SOCS3 

expression o f immune cells such as dendritic cells and macrophages (Krutzik, Tan et 

al. 2005; Liu, Zhang et al. 2008; Posselt, Schwarz et al. 2011; Shibata, Motoi et al.

2011). TLR ligation is shown to promote both cytokine and chemokine production in 

dendritic cells, with SOCS3 influencing cytokine production (Alexander and Hilton 

2004; Strengell, Lehtonen et al. 2006; Barr, Brown et al. 2007; Yoshimura, Naka et al. 

2007; Liu, Zhang et al. 2008), but our study is novel in that no other study to date has 

assessed the innate immune roles of TLR and SOCS3 in IEC. IEC form the first point 

o f contact between commensal microflora and the underlying immune system, thus 

our study focussed on microbial-induced TLR signalling in IEC as this is likely to 

present a pivotal interaction with regard to the ensuing immune response.

As numerous studies substantiate TLR signalling as imperative mediators o f 

mucosal homeostasis, repair o f damaged tissue and fortification against the occurrence
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o f bowel cancer; this project aimed to investigate the duel and perhaps integrated roles 

o f SOCS3 and TLR in mediating epithelial repair following damage. In chapter 3, IEC 

models which constitutively overexpressed SOCS3 were developed enabling the role 

o f SOCS3 in mediating cellular responses and epithelial repair following microbial 

induced TLR signalling to be explored.

To address these issues, stable SOCS3 transfections which involved DNA 

integrating into the host genome by recombination were developed, making IEC 

continually overexpress SOCS3. Both transient and stably transfected IEC (SW480 

and Caco-2) were then used to investigate the role o f SOCS3 in mediating cellular 

responses following microbial-induced TLR signalling.

In vitro wound healing models show that following injury, IEC migrate into the 

damaged area (restitution), this is then followed by proliferation and differentiation to 

preserve the functional activity o f the epithelium (Dignass 2001; Dignass, Baumgart et 

al. 2004). TLR signalling is essential for maintaining tissue integrity and repair o f 

damaged tissue in models o f colonic injury (Fukata, Michelsen et al. 2005; Rakoff- 

Nahoum and Medzhitov 2008). Furthermore, TLR knockdown and germ-free animals 

depict deficient repair o f damaged tissue (Rakoff-Nahoum, Paglino et al. 2004; Abreu, 

Fukata et al. 2005; Kluwe, Mencin et al. 2009). Chapter 4 involved developing an in 

vitro model o f wound repair, permitting investigations on the role o f SOCS3 on TLR- 

mediated wound healing. Our data supports other studies indicating microbial-induced 

TLR signalling is fundamental for epithelial repair following injury. Furthermore, 

novel findings in this study provide a direct link between TLR and inadequate repair 

mechanisms by indicating SOCS3 plays a pivotal role in inhibiting microbial-induced 

proliferation and epithelial repair. These findings provide a rationale for the
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pathogenesis o f IBD, indicating aberrations in SOCS3 expression limit microbial- 

induced wound repair.

Helminth products were shown to promote both proliferative and restitutive 

repair, whereas LPS and flagellin only enhanced restitutive repair. A plausible 

explanation for this observation could be helminth-derived ES proteins contain 

substances that are able to ligate with multiple TLR (TLR2, TLR4 and TLR6) 

(DeSchoolmeester, Martinez-Pomares et al. 2009). Further studies would use anti- 

TLR2, TLR4 and TLR6 antibodies to block distinct TLR signalling pathways 

permitting further investigation o f SOCS3 on ES-induced epithelial repair. Immune- 

mediated diseases such as IBD are increasingly prevalent as populations adopt highly 

clean lifestyles (Elliott, Summers et al. 2007). Helminths interact with both host innate 

and adaptive immune responses activating immune-regulatory pathways dampening 

later pathways that drive aberrant inflammation (Weinstock and Elliott 2009). 

Helminth exposure can avert TNBS-induced colitis by suppressing inflammatory 

cytokines (TNFa, IL-12) or promoting the production o f immune-regulatory cytokines 

(TGFp, IL10) (Khan, Blennerhasset et al. 2002; Hunter, Wang et al. 2005). Our 

studies indirectly support other studies, suggesting exposure to helminths or their 

products can prevent or reverse colitis in animal models o f IBD. Clinical trials are 

already underway exploiting helminths as therapeutic agents to treat immune-mediated 

diseases. Principle characteristics for an ideal therapeutic helminth include, not 

multiplying within the host, have no pathogenic potential, self-limiting colonisation in 

humans and does not alter behaviour in patients with depressed immunity. T. suis is 

shown to be a safe and effective therapy in early studies o f IBD (Summers, Elliott et 

al. 2005; Reddy and Fried 2009).
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The use o f probiotics in improving health in patients with UC have also been 

demonstrated (Venturi, Gionchetti et al. 1999; Guslandi, Mezzi et al. 2000; Kruis, Fric 

et al. 2004; Tursi, Brandimarte et al. 2004; Furrie, Macfarlane et al. 2005; Karimi, 

Pena et al. 2005). One study depicting probiotics having anti-inflammatory properties 

such as, improving appearances o f chronic inflammation, decreasing TNFa and 

improving histology in TNBS models o f rat colitis (Sheil, McCarthy et al. 2004; 

Furrie, Macfarlane et al. 2005; Peran, Sierra et al. 2007). Our findings support these 

studies demonstrating microbial-induced TLR signalling is beneficial for epithelial 

wound repair. Further studies should be carried out in SOCS3 knockdown IEC, to 

ascertain whether reciprocal findings are attained, i.e. SOCS3 knockdown promoting 

TLR-induced epithelial repair.

The influence o f commensal microflora on IEC occurs in an environment that is 

highly regulated. Cessation in this controlled network o f interactions is associated with 

the onset o f IBD and cancer. Levels o f TNFa are elevated in serum and intestinal 

mucosa o f patients with IBD, with neutralization o f TNFa associated with improved 

health, particularly in patients with CD (Stillie and Stadnyk 2009, Van Dullemen et 

al., 1995, Sandborn et al., 2004). The fifth chapter o f this study involved assessing the 

effects o f IEC-derived SOCS3 upon cytokine responses following TLR stimulation. 

SOCS3 was shown to enhance microbial-induced TNFa mRNA expression. However, 

only mild increases in secreted TNFa protein were observed. Studies have suggested 

SOCS3 acts as an adaptor that facilitates ubiquitination and subsequent degredation o f 

the associated signalling molecule (Krebs and Hilton 2001; Babon, Sabo et al. 2008; 

Linossi and Nicholson 2012). Therefore, although the TNFa is transcribed (mRNA) 

and translated (protein) SOCS3 may degrade TNFa before it is secreted in the 

supernatant. Another plausible explanation could be that TNFa binds to its receptor,
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and is therefore no longer detectable in the supernatant. Western blotting has already 

been used to show SOCS3 blocks insulin signalling by ubiquitin mediated degradation 

o f insulin receptor substrates 1 (IRS 1) and IRS2 (Rui, Yuan et al. 2002). Further 

studies would also use this technique to investigate ubiquitination o f TN Fa following 

TLR ligation.

Our studies provide further evidence that SOCS3 plays a pivotal role in normal 

homeostasis and epithelial repair by demonstrating an impact on microbial induced 

intestinal epithelial responses. Moreover, the findings also support the role o f anti- 

TN Fa therapies such as infliximab, adalimumab and certolizumab being beneficial for 

mucosal healing and treating patients with IBD (Rutgeerts, Van Assche et al. 2004; 

Ghosh 2005; Assche, Vermeire et al. 2010). These findings also suggest a role o f 

modulating mucosal SOCS3 levels as a therapy, reducing secondary TNFa levels. 

Further studies should investigate the effect o f TLR ligation on TN Fa expression in 

SOCS3 knockdown IEC to determine whether observations are reciprocal to findings 

in SOCS3 overexpressing IEC.

The mechanism by which IEC are sheltered from incessant immune activation 

by commensal flora is o f great importance. Failure o f neonates to correctly 

downregulate responses to LPS appear to radically contribute to the development o f 

NEC (Jilling, Simon et al. 2006; Lin and Stoll 2006). Other studies have shown that 

following birth, neonates downregulate the expression o f IEC TLR4 becoming 

“hyporesponsive” to LPS (Levy 2007). Our findings also support other studies by 

indicating IEC become hyporesponsive to microbes by downregulating TLR4 

expression to LPS. Further studies should investigate the hyporesponsive nature o f 

other TLR, such as TLR2, TLR3 and TL5 following ligation with their respective 

ligands.
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LPS induces expression o f SOCS3 in macrophages (Baetz, Frey et al. 2004), 

data within this study also showed similar findings but in an IEC model. Furthermore, 

results also indicated pre-treatment with LPS attenuated LPS-induced SOCS 

expression making IEC hyporesponsive to LPS. An interesting observation in this 

experiment was the time-course expression profile o f SOCS3 following LPS 

stimulation, with results depicting an oscillatory pattern upon TLR4 ligation. Other 

researchers have also suggested SOCS3 behaves in a wavelike motion following 

TLR4 ligation (Yoshiura, Ohtsuka et al. 2007). Future studies would investigate the 

oscillatory behaviour o f SOCS3 further by observing SOCS3 protein expression 

following LPS stimulation. Furthermore, it would also be interesting to determine 

whether activation o f other TLR signalling pathways exhibit this SOCS3 oscillatory 

behaviour.

Regulation o f cytokine expression is important as they effect mucosal 

homeostasis, with dysregulated expression o f cytokines implicated in the onset o f 

intestinal diseases (Planchon, Martins et al. 1994; Ghosh 2005). Differentiated IEC 

which had formed monolayers were used as a model o f normal homeostasis, whereas 

proliferating IEC were used as a model to signify loss o f barrier integrity, 

characteristic o f IBD. TLR4 stimulation was shown to upregulate SOCS3 and TNFa in 

proliferating IEC; emulating observations in IBD. This indicates improper barrier 

integrity, absent in IBD elevates expression of SOCS3 and TNFa following microbial 

stimulation.TLR4 ligation was shown to promote TGFp expression in both normal and 

damaged models, supporting its role as an immuno-regulatory cytokine limiting 

expression o f other cytokines following microbial challenge. Further studies would 

assess the effect o f other TLR on SOCS3 and cytokine expression in our model o f 

normal and damaged epithelium.
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In conclusion, the work presented within this thesis suggests that SOCS3 does 

impact on TLR-induced intestinal epithelial responses associated with normal 

homeostasis and epithelial repair. Furthermore, our data supports other data indicating 

SOCS3 oscillates in expression, with overexpression impeding TLR-induced epithelial 

wound repair. The oscillatory expression o f SOCS3 must be tightly regulated allowing 

microbial-induced epithelial repair. Aberrations in the oscillatory expression o f 

SOCS3 are associated with pathological states, such as continual overexpression in 

IBD or silencing in cancer. SOCS3 overexpression is also shown to enhance the 

expression o f TNFa, a pro-inflammatory cytokine further enhancing inflammation. 

Future studies should be carried out generating SOCS3 knockdown IEC allowing 

investigation o f SOCS3 on TLR-induced IEC proliferation and epithelial wound 

repair. Additionally, primary or non-cancerous cell lines such as HIEC would also be 

used to generate SOCS3 overexpressing and knockdown IEC. The findings presented 

within this study provide a good foundation for future in vivo translational studies on 

how SOCS3 impacts on intestinal disease.
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DC Dendritic cell
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DNA Deoxyribonucleic acid
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dsRNA Double stranded RNA

DSS Dextran sulphate sodium

ECACC European Collection o f Cell Cultures

ECMV Encephalomyocarditis

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

ES Excretory/secretory

ESS Extended SH2 subdomain

EV Empty vector

FBS Foetal bovine serum

GALT Gut-associated lymphoid tissue

GAPDH Glyceraldehyde-3-phosphate



GBF Germinated barley foodstuff

GI Gastro-intestinal

GST Glutathione ^-transferase

HMGB1 High-mobility group protein B1

IBD Inflammatory bowel disease

IEC Intestinal epithelial cells

IELs Intestinal epithelial lymphocytes

IFN-P Interferon-p

IgA Immunoglobulin A

IGF-1 Insulin-like growth factor-1

IL-1 Interleukin-1

IL-6R IL-6 receptor

iNOS Inducible nitric oxide synthase

IRAK IL-1 receptor-associated kinase

IRES Internal ribosome entry site
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JAK Janus Kinase
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MAPK Mitogen-activated protein kinase
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MEM Minimal Essential Medium
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MyD88 Myeloid differentiation factor 88
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NEC Necrotizing enterocolitis

NF-fcB Nuclear factor kappa-light-chain-enhancer o f activated B cells

NK Natural killer

NPT II Neomycinphosphotransferase
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PAMP Pathogen associated molecular patterns

p g e 2 Prostaglandin E2

Poly I:C Polyinosinic:polycytidylic acid

PP Peyer’s patches

PRR Pattern recognition receptor

QPCR Quantitate polymerase chain reaction

RNA Ribonucleic acid

ROS Reactive oxygen species

RT Room temperature

RTK Receptor tyrosine kinase

S3 SOCS3 vector

SH2 Src homology 2

SOCS Suppressor o f cytokine signalling

STAT Signal transducer and activator o f transcription

TBST Tris Buffered Saline-Tween

TGFa Transforming growth factor-a

TGF-p Transforming growth factor-p

Th-2 T-helper 2

TIR Toll-IL-1 receptor

TLR Toll-like receptor

TNBS 2,4,6-trinitrobenzene sulfonic acid

TNF Tumour necrosis factor
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TRAF6

TRIF

TNF receptor-associated factor 6

TIR domain-containing adaptor-inducing interferon-p


