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Abstract
Bayesian model based approaches for Phase I dose-finding studies are popular 

procedures to implement due to the efficiency of updating information sequentially 

after accruing information. Traditionally dose-finding studies for cancer treatments 

focus on the occurrence of a patient’s first dose limiting toxicity in the first cycle of 

therapy.

This thesis develops a Bayesian decision procedure featuring an Interval-Censored 

Survival model to incorporate information from multiple cycles of therapy. The use of 

data from multiple cycles of therapy should produce more precise estimates of target 

doses to recommend for further investigation in later phases of drug development, in a 

shorter amount of time.

An increasingly desired approach in dose-finding procedures is to provide 

personalised procedures to target therapy to individual tolerances. Features such as 

allowing intra-patient dose adjustments and incorporating baseline characteristics to 

investigate the underlying drug tolerance of population subgroups are investigated 

within the use of the Interval-Censored Survival Decision Procedure (ICSDP).

The inclusion of time-varying covariates is also possible when using the ICSDP, 

which is investigated through including lower grade toxicities as a marker for 

tolerance. Individual target doses can be estimated, but the analysis of dose limiting 

toxicities alone provides a population target dose to recommend for further 

investigation.

Results show the ICSDP as an efficient approach to use when observing a patient’s 

first dose limiting toxicity. Target doses are estimated with good precision, 

comparable to or better than existing designs for dose-finding, and are generally 

obtained in a shorter amount of time. Multiple target doses can be produced for 

different subgroups of the population when baseline characteristics are used and intra­

patient dose adjustments are possible between cycles. When using intra-patient 

adjustments based on observation of lower grade toxicities, personalised dose- 

escalations lead to estimates of individual target doses and a population target dose 

with good precision in a reduced amount of time.
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1. Introduction
Dose-escalation studies are carried out in Phase I of the drug development process as

the start of the clinical phase. The objective of these studies is to determine one or a

few dose levels of a new drug which are deemed safe enough to carry forward to

Phase II trials, where the efficacy of the drug is investigated. The definition of a safe

dose is one that does not exceed a certain safety level, usually defined as a proportion

of patients experiencing some level of toxicity, which can be translated to the

probability of a patient experiencing a toxic event. In particular, doses corresponding

to specific levels of safety are sought in order to focus later studies to specific dose

ranges. These doses are called target doses (TD). One particular TD is the maximum

tolerated dose (MTD), which is defined as the dose that causes the maximum tolerable

level of toxicity in subjects. Toxicity is defined as an adverse event that is experienced

alongside taking the new drug. There are different types of toxicity for drugs

associated with different therapeutic areas such as renal, cutaneous, gastro-intestinal

etc. There are also different levels of toxicity that can occur. These range from grades

1-5, 1 being mild toxicity and 5 being fatal. The specific grade of toxicity is relative to

the drug in question and the disease being targeted. For most relatively non-toxic

drugs, the interest lies in investigating very mild toxicities, so the dose-finding studies

can begin with healthy volunteers. However, when investigating particularly toxic

treatments such as cytotoxic treatments in cancer therapy which target rapidly

developing cells (such as tumour cells), it is assumed that there is an association

between toxicity and efficacy. Therefore some tolerated level of toxicity is required to

ensure the drug is working effectively, and it is simply not ethical to use healthy

volunteers. It would also not be informative to use healthy volunteers since the desired

effect of the drug (the effect on reducing tumour cell reproduction) would not be
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observable since the patients do not have the disease in the first place. The patients 

used for trials of these types of treatments would therefore be patients with the disease 

already, such as cancer patients. In other settings it may be more feasible to have 

healthy volunteers where the effect of the drug can be observed by changing levels of 

biomarker cells or hormones but if tumour cells are required to observe efficacy, only 

cancer patients themselves should be utilised.

Along with the main aim of establishing a safe dose, the safety profile of the drug is 

also investigated in Phase I. The pharmacokinetics (PK) of the drug (that is, how the 

drug moves around and through the body) are investigated here. This is often done by 

looking at how the concentration of the drug in the body changes with time. The 

pharmacodynamics (PD) of the drug are also investigated here (the effect the drug has 

on the body) by looking at receptors in the body and the effect of the drug on these 

receptors. These properties can even be used to initiate dose-finding procedures by 

using an appropriate dose-response model to predict a very safe dose for the initial 

dose.

The general idea of the dose-escalation procedure is to begin the study by allocating a 

dose to patients that is believed to be safe. This is often the lowest dose level available 

from a set of admissible doses determined by pre-clinical investigation. A pre-defined 

level of toxicity (Target Toxicity Level, TTL) is decided and a safe dose is allocated 

to the first cohort of patients. The cohort is followed up to see whether Dose Limiting 

Toxicities (DLTs) occur. A DLT according to the specifications laid out in the study 

specific protocol is generally a grade 3/4 toxicity which if observed leads to the 

current treatment being stopped (possibly adjusted or withdrawn). DLTs are defined in 

the study protocol to be disease specific. The definition of a DLT may not just be an 

occurrence of a grade 3/4 toxic event, but might include multiple occurrences of lower
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grade toxicities (LGTs). Based on the data from the first cohort, the dose to be 

allocated to the next cohort is determined and administered. This procedure continues 

until some stopping criterion has been reached. The stopping criteria typically consist 

of a safety criterion, a precision criterion and a maximum number rule. The safety rule 

stops the procedure if the recommended dose is associated with a probability of 

observing a DLT which is too high. The precision criterion stops the procedure when 

enough information (by way of DLTs) has been observed to conclude with sufficient 

confidence that a certain dose is the dose that corresponds to the TTL. This dose might 

be the MTD or it might be another TD that is deemed a suitable compromise between 

efficacy and safety.

Dose-escalation studies for cancer treatments are not quite as straightforward as for 

other treatments. First, the patient population must be cancer patients, as it is not 

ethical or useful to use healthy volunteers. The TTL is also quite difficult to establish 

as there are different grades and types of toxicity that can occur for a cancer patient. 

Toxicities which are deemed ‘dose-limiting’ (too high to warrant escalating to a 

higher dose) are defined and a TTL associated with these grades of events needs to be 

decided. The TTL that is decided is based on the assumption that in order to be 

effective, cytotoxic treatments are expected to cause some toxicity. Therefore the TTL 

is a compromise between safety and presumed efficacy. Discussion will also be 

required regarding the definition of what is considered dose-limiting. For example, 

whether it is just the occurrence of grade 3/4 toxicities or if it includes occurrences of 

LGTs. Grade 5 toxicities (death) may be included as dose-limiting but they may also 

be censored from the analysis. This would be defined in the protocol,. In these trials 

the initial dose for the allocation is usually the lowest dose, unless there is a lot of 

previous information about this drug (maybe from preclinical data). The escalation is
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then carried out under the same general algorithm as described previously. Patients are 

observed for DLTs, doses to be allocated to subsequent patients are decided based on 

data so far, and the trial continues until a stopping criterion is met.

Another aspect of cancer dose-escalation studies that differs from studies in general is 

that the treatment is normally administered in cycles of therapy with periods of no 

treatment between cycles. This prolongs the trial, so it is usually only the first cycle of 

therapy that is included in the escalation process. If the procedure waited for every 

patient to complete all cycles of therapy, it could be an unfeasibly long time before the 

next patient received their selected dose and the trial could last an impractically long 

time. Obviously there are some issues with this since a lot of information (particularly 

if there are many cycles of therapy) is being disregarded, and in the case of newer 

Molecularly Targeted Agents (MTAs), later toxicities may still need to be included 

(Postel-Vinay et.al. [1]).

Dose-finding studies for cancer therapies have been the source of investigation for a 

long period of time. Traditional rule-based designs, such as the 3+3 algorithm [2], are 

widely recognised and used. With these designs, doses are escalated sequentially until 

DLTs are observed and then a set of rules dictate how to proceed. They are, however, 

largely inefficient and usually produce estimates of recommended doses for later 

phases of investigation that are sub-therapeutic. Model-based designs have been 

developed which use a parametric model to describe the relationship between dose 

and response, where response is usually the probability of observing a DLT. Within 

these designs a set of stopping criteria as mentioned already, are implemented to stop 

the procedure either when the recommended TD is estimated with sufficient precision, 

a safety rule is breached or a maximum number of cohorts have been recruited.
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Existing designs however have traditionally only utilised information on the 

occurrence of DLTs from the first cycle of therapy. All patients are treated at the same 

dose and differences in patients’ tolerabilities, which might be related to patient 

specific covariates or tolerance markers are not considered. Chapter 2 presents the 

findings of a literature review on existing designs used in practice, and discusses the 

benefits and weaknesses of the different approaches.

This thesis develops a new procedure to incorporate data from later treatment cycles, 

by using an Interval-Censored Survival (ICS) model within a Bayesian Decision 

framework. The ICS decision procedure (ICSDP) approach involves looking at the 

occurrence of a patient’s first DLT. It models the probability that the first DLT occurs 

in each specific cycle via the probability of a DLT during that specific cycle, 

conditional on having no DLT in any previous cycle. In doing this the conditional 

properties of the ICS model allow multiple cycles of therapy to be used for analysis. 

This procedure therefore allows patients to contribute to the analysis for every cycle 

of therapy they have completed until the first occurrence of a DLT. Chapter 3 

discusses the motivation for adopting this method by conducting some exploratory 

data analysis on completed trials. Chapter 4 presents the methodology associated with 

the ICS model as well as aspects of the Bayesian Decision procedure, such as the 

choice of prior information and how to implement it, the calculation of the posterior 

distribution and the derivation of the stopping criteria. Chapter 5 investigates the 

advantages offered by this method by comparing this procedure to other existing 

procedures which incorporates just one cycle of therapy [4]. The procedure used for 

comparison is the logistic regression decision procedure (LRDP) which is described in 

detail in Chapter 2. Both are then also compared to a LRDP which considers multiple 

cycles of therapy as one fixed period of observation. This is a compromise to be
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considered when considering incorporating later cycles of therapy easily. The new 

ICSDP can also allow patients to change doses between cycles if the dose level that is 

believed to be closest to the estimated TD changes as a new cohort is recruited. This 

use of intra-patient dose adjustments is considered in Chapter 6.

The idea of personalised escalation procedures is an attractive idea and one that is 

becoming more popular in practice, one example is discussed in Babb and Rogatko 

[5]. The use of baseline covariates within the ICS model is a way to allow different 

categories of patients to be recommended different target doses. This is considered in 

Chapter 7. The adaptation of the existing procedure to allow for different categories of 

patients in the initiation of the escalation and the decision making process is 

discussed, along with some of the implications of allowing a range of doses to be 

recommended at the end of the trial.

Furthermore, an extension of using patient specific baseline characteristics is to allow 

covariates that reflect a patient’s reaction to the drug. Time-changing covariates are 

considered, such as the occurrence of LGTs, which act as a marker or indicator for an 

increased chance of a DLT. The chance of experiencing LGTs is likely to change 

dependent on the length of time in the study. Furthermore, the increase or reduction in 

prevalence of LGTs can be used to allow dose changes between cycles in order to 

ensure patients receive doses targeted to their specific tolerabilities. Issues that arise 

from allowing every patient to be recommended a different dose are considered and 

investigated in Chapter 8.

The results from all of the investigative Chapters (5, 6, 7 and 8) are summarised and 

reviewed in Chapter 9 and some conclusions and recommendations are offered for the 

design and conduct of Phase I dose-finding studies for cancer therapies.
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2. Literature Review of Existing 
Phase I Dose-Finding Procedures

Dose-finding procedures can be split into two different categories. The first focuses on 

using a system of rules to make escalation decisions, the so called rule-based designs. 

These designs are very simple to implement and are therefore very common. The 

second category assigns a parametric model to the relationship between dose and the 

probability of observing a DLT for a randomly chosen patient from the population 

(P(DLT)), and uses the model to analyse the observations to obtain predictions for 

which dose corresponds to the required TTL. These are therefore referred to as model- 

based designs.

This chapter looks in detail at some common procedures in both the rule-based and 

model-based categories. The methods and conduct of each procedure are described 

and some discussion of the benefits and shortcomings of these procedures are given.

2.1 Traditional Rule Based Designs
Rule Based Designs are often used for dose-finding in practice and are very popular 

because of the simplicity of the procedure. No models are used in the implementation, 

although the assumption that the probability of DLT increases with dose is still made, 

and it is very easy for clinicians to understand the logic.

2.1.1 3+3 Algorithm

The 3+3 algorithm [2] is a very simple procedure which is based on the idea that if a 

dose produces no more than an observed rate of DLTs of 33%, then it is the MTD.

The conduct of the trial is summarized by Berry et. al. [3] as follows:

1. A set of dose levels (in ascending order) is decided,
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2. The lowest dose level is administered to 3 patients,

a. If 0/3 patients experience a DLT, the procedure escalates one dose 

level for the next cohort of 3 patients.

b. If 1/3 patients experience a DLT, the next cohort of 3 patients is treated 

at the same dose level.

c. If 2/3 or 3/3 patients experience a DLT, the trial is aborted with no safe 

dose.

3. If the procedure escalates one dose level (as in step 2a), Step 2 is repeated with 

the next dose.

a. If 0/3 patients experience a DLT on the new dose, the procedure 

escalates one dose level for the next cohort of 3 patients.

b. If 1/3 patients experience a DLT, the next cohort of 3 patients is treated 

at the same dose.

c. If 2/3 or 3/3 patients experience a DLT on the new dose, the trial is 

stopped and the dose below the current dose is classed as the MTD.

4. If the procedure has repeated the same level in successive cohorts (2b or 3b);

a. If 0/3 patients experience a DLT, the procedure escalates one dose 

level for the next cohort of 3 patients.

b. If 1/3 patients experience a DLT on the repeated dose such that 2/6 

patients have experienced a DLT on that dose level, the next cohort is 

treated at the preceding dose level providing that only 3 patients have 

been treated at it. If 6 patients have been treated at the preceding dose 

level the trial is stopped and that lower dose is declared as the MTD.

c. If 2/3 or 3/3 patients experience a DLT, the trial is stopped and the 

previous dose is classed as the MTD.
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5. Continue until an MTD has been established.

This procedure tries to ensure that the dose classed as the MTD does not produce a 

probability of DLT greater than 0.33 (2/6) even though the true toxicity rate is not 

necessarily known.

While being cautious in design, the 3+3 algorithm is extremely inefficient, particularly 

when there are many dose levels and the starting dose (first dose level) is much lower 

than the true MTD. In the case of cancer treatments, the starting dose is nearly always 

the lowest dose, so it can be assumed that it is far below the true MTD (especially if 

there are many possible dose levels) and many patients will be treated at sub- 

therapeutic doses.

2.1.2 Rolling 6

The Rolling Six design is an extension of the 3+3 algorithm developed by Skolnik et.

al. [6], for the purpose of shortening the duration of pediatric Phase I trials. This

method was developed after extensive investigation into previous pediatric Phase I

trials conducted by Lee et. al. [7] suggested that on average 5.1 patients were treated

at each dose level. The general concept remains the same as for the 3+3 algorithm,

with dose escalation occurring when no DLTs have been observed in the three patients

at a specific dose level. If one of the three experiences a DLT, the dose is repeated for

another cohort of three patients. If two of the three experience a DLT, the dose is de-

escalated for the next cohort. The difference between the Rolling Six and the 3+3 is

that patients are continually accrued and suspension of accrual occurs after every six

patients as opposed to after every three patients. Therefore, two cohorts are observable

in any one observation period, possibly on different doses if the first cohort

experienced no DLTs or two DLTs. Since accrual is continuous, one patient is

recruited at a time, so if a patient in a cohort is not evaluable, a new patient can be
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added to this cohort to complete the cohort of three patients. This will then allow 

quicker evaluation of dose levels. The simulation study conducted by Skolnik et. al [6] 

showed that the Rolling Six shortened the length of Phase I trials in every scenario 

simulated, compared to the 3+3 design, due to the smaller number of times the trial is 

suspended between cohorts (every 6 patient rather than every 3).

Although the Rolling 6 method shortens the timeline of Phase I trials, the general 

method remains the same as for the 3+3. This suggests the method is very inefficient 

and many patients could still be treated at sub-therapeutic doses. In particular, the 

results shown in [6] suggest that there is a slight increase in the number of patients 

required to complete the trial. This is unethical, especially when many of these 

patients are treated at sub-therapeutic doses.

2.1.3 Other rule based designs

The other rule based designs tend to expand upon the traditional 3+3 (e.g. 2+4 etc.) 

and add extra steps to the procedure. For example, the initial dose could be calculated 

from PK and PD data for each patient and then escalated one dose level at a time. If 

DLTs start occurring then the rules associated with the 3+3 method can be 

incorporated. Another version is Accelerated Titration [8], where the 3+3 method is 

used but intra-patient (within a patient but between cycles of therapy) escalation can 

also occur. This involves allowing patients to change dose levels between successive 

cycles of therapy according to the accruing information from the overall study 

however the information from later cycles of therapy and potentially different doses 

may not be utilised in the analysis.

2.2 Model Based Designs
An alternative to a rule-based design is a model-based approach, which can be used to 

relate the probability of DLT to dose. This typically assumes an increasing probability
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of DLT with dose. The decisions (or rules) for escalating/de-escalating doses are made 

via the use of gain functions.

A Bayesian procedure is often used which relies upon prior information to initiate the 

escalation. The prior information is updated with every observation to produce 

posterior information about the parameters of the model, and in turn the dose 

corresponding to the TTL. This is called the Bayesian decision procedure (Whitehead, 

Brunier [9]) and it consists of five main components.

1. A parametric model is chosen to represent a monotonically increasing 

relationship between dose and probability of DLT.

2. A prior distribution is assigned to the parameter(s) of the model.

3. Once data have been obtained, analysis of the observed data and the prior 

information produces a posterior distribution for the parameter(s) of the 

model.

4. A set of possible actions is defined. In this case the actions relate to the choice 

of one of a set of possible dose levels (d(j), j= l  ....k) to allocate to the next 

cohort.

5. A gain function is required in order to choose between the actions.

There are maximum likelihood versions of these procedures which do not involve the 

use of prior information, resulting in just four steps. These are: choosing a model; 

analysing the observed data to obtain maximum likelihood estimates of the 

parameter(s); creating a set of possible actions and creating a gain function to decide 

between the actions. Such procedures start the escalation at the lowest possible dose 

and the doses are escalated one level at a time until a DLT is observed. Once there is 

heterogeneity in the observations of DLTs (i.e. both occurrences and non-occurrences

11



of DLTs), the likelihood can be constructed and maximised to obtain maximum 

likelihood estimates for the parameters, from which the TD associated for the relevant 

TTL can be calculated. There are different approaches to the model based designs 

with different models, different endpoints or different gain functions.

2.2.1 Continual Reassessment Method (CRM)

The Continual Reassessment Method (CRM) was developed in the early 1990s by 

O’Quigley et al. [10], and was one of the first Bayesian model based approaches to 

dose-finding.

For a set of discrete dose levels d{j), j  = the corresponding probability of DLT

can be defined as p u r j  = 1 ,...,&. Interest then lies in finding the dose that 

corresponds to a pre-specified TTL. This dose will be the T D ttl

As described in the previous section, there are five components to a Bayesian 

Decision Procedure.

The first is the model chosen to represent the dose-response relationship. For the CRM 

this is a one parameter model which is defined as:

?</)=/(*(/)> A

where x(j) is the function of the dose level d(J) given by:

XU ) = i { d U ) ) -

The function of the dose level can simply be a transformation of the dose, e.g. a log 

transformation. The function /  can be any suitable model that depicts the dose- 

response relationship. An example as discussed in [10] is the hyperbolic tangent 

function:
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The second step in the Bayesian Decision Procedure is to place a prior distribution on 

the parameter f t  which is defined with a density function g°(/?). The distribution 

associated with this density function is often a Normal distribution with mean 

parameter /?° and variance parameter cr^2. O’Quigley [10] uses an Exp{ 1) 

distribution.

The procedure begins by creating initial guesses p°U) for the probability of toxicity, 

p (J), associated with the different dose levels j  = 1, . . . , k , based on the prior 

distribution o fp . g°(p)  is usually fixed so that the prior probabilities are strictly 

increasing with dose, i.e. p °  < p 2° <... < p k°and the lowest dose corresponds to the 

TTL. The dose with p°{j) closest to the TTL (the lowest dose) is administered to the 

first cohort.

The third step of the Bayesian procedure is to compute a posterior distribution 

utilising information up to and including patient i for the parameter (3 . The Bayes

estimate of the parameter /?, is calculated by the following equation:

dG (/?)
Here, the derivative is the density function g° (/?) as described previously,dp
and Z((/?)is the Binomial likelihood given by:
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LAP) = {>-K * » P )T y'h=\
(2 . 1)

Yh = 1 if patient h has a DLT and 0 if not where h = 1,...,/. If patient h receives dose 

dh, then xh = £ ( d h).

For the hyperbolic tangent function, or indeed any function of the form

With this formulation, the values of x( j) are no longer required to conduct the 

procedure. The dose level d(j) that has p' (J) closest to the TTL, is administered to the 

next cohort.

The fourth and fifth steps of the procedure are to choose a set of actions, and a gain 

function to select the appropriate action. The set of actions are, as usual in model- 

based designs, the discrete set of dose-levels selected for administration. The gain 

function in this particular setting is to choose the dose d(]) that minimises the distance

between the P(DLT) at that dose level j  and the TTL. P(DLT) is calculated by

substituting into /  the Bayes estimate /?, (incorporating information from up to and

including patient /)  and the dose d(J).

The procedure will continue until some pre-specified safety criterion is breached or a 

precision criterion has been achieved. If neither of these stopping rules are 

implemented, the procedure will continue until the pre-determined sample size has 

been obtained. The final number of patients recruited is recorded as N  and the MTD is 

then the dose that would have been administered to patient N  +1.
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The issue with the basic CRM is that it can be quite unconservative. Although the 

prior distribution for the parameter /? can be fixed to administer the lowest available 

dose to the first cohort, after the first few observations the dose which seems to 

produce the number of toxicities closest to the TTL is chosen for administration to the 

next cohort. This could result in skipping many dose levels due to underestimating 

probabilities of toxicity based on few observations. A response to this is the two stage 

CRM which begins as a sequential dose allocation and only switches to the model 

based CRM once a DLT is observed. The sequence of doses is sorted into ascending 

order of probability of toxicity and the dose which corresponds to the lowest 

probability is administered first (as in most dose-finding procedures). If no DLT is 

observed at this dose, the next dose level up is administered to the next cohort. This 

continues for as long as there are no DLTs. Once a DLT occurs, the procedure 

switches to the model based method, where observations from each of the dose levels 

are analysed and a posterior distribution for the parameter is determined. This 

posterior distribution after / patients is used to produce an estimate for the parameter

which, when used with the different dose-levels in the modelp lU) = f ( x (j),/3t), is used

to find the dose that produces a probability of DLT closest to the TTL. The two stage 

design is a much slower and more conservative escalation and the issue with this is 

that patients are likely to be given sub-therapeutic doses early on in the trial.

Another version of the CRM is the CRML [11] which is the frequentist version of the 

CRM and is based on Maximum Likelihood. No prior beliefs are used with the CRML 

and doses are allocated solely on the outcomes of previous patients. This eliminates 

the subjectivity of using prior belief created by the physician, and patients are treated 

based completely on responses of other patients. The issue with this method is that 

both DLTs and non-DLTs need to be observed before the model can be fitted. This
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method is therefore often used in the two stage CRM, as once a DLT is observed and 

the allocation procedure switches to a model based approach, it switches to the CRML 

rather than the Bayesian CRM. So in the same way as for the CRM, the first dose 

administered to a cohort of patients, is just the lowest available dose. No prior 

information is used. The procedure allocates one dose level up for every cohort of 

patients until a DLT occurs. Once a DLT occurs, the binomial likelihood is 

constructed for all the observations so far. This likelihood (which is of the same form 

as the likelihood described in equation (2 . 1 )) is then maximised to obtain the 

maximum likelihood estimate (MLE) for f3. It is this MLE that is used, in place of the

Bayes estimate in the CRM, in the dose-response model p i(j) -  /Cx{y),/?,), with each

dose in the set of discrete doses. The dose which produces a probability of DLT 

closest to the TTL is the dose that is administered to the next cohort of patients.

All of the CRM procedures discussed so far generally only utilise information from 

one cycle of therapy. The responses of DLT are binary (DLT/no DLT) obtained 

during a fixed period of time. In cancer studies, patients receive cycles of therapy with 

rest periods between. If the trial were to wait for complete follow up after all cycles 

this could take an unfeasibly long time so often only the first cycle of therapy is 

observed, as it is generally believed that the majority of DLTs (if going to happen) 

will happen early on in the treatment. This clearly poses a problem when treatments 

are believed to cause late onset toxicity (maybe due to accumulation of drug in the 

body) or when there are many cycles of therapy (as lots of information may be 

disregarded). In response to this issue the Time-to-Event CRM (TITE-CRM) was 

created by Cheung and Chappell [12]. This method involves recruiting patients 

continually throughout the trial and the endpoint is whether a DLT has been observed 

by the end of the treatment period (all cycles). The procedure is the same as for the
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standard CRM however the construction of the likelihood is slightly different. At 

every assessment time, patients who had experienced a toxic event contributed an 

event to the likelihood (/(x ,,,/? )) , patients who had completed all cycles of therapy 

without experiencing an event contributed a non-event to the likelihood 

(l . Patients who were part way through their treatment schedule without

an event contributed a weighted non-event to the likelihood with the weight depending 

on how far through the schedule they were (1 - w hf  (xh, f i )). This weight ( wh for the

h‘h patient to enter the trial) could be something relative such as the number of days in 

the trial/total number of days in schedule. So the likelihood for the i patients who 

have entered the trial is of the following form;

l a p ) = riK/(̂ /?)},i c- ^ j i ^ p ) } u r > -h=\

When a patient has an event wh = 1 and Yh = 1, so the contribution to the likelihood 

reduces to the same as before, f ( x h,{3). When a patient has completed therapy, wh = 1 

and Yh = 0 , so the contribution to the likelihood is 1 -  f ( x h, ft).  Therefore, when all 

patients complete therapy or have an event, the likelihood reduces to the same 

Binomial likelihood as in equation (2.1). When no patients have completed therapy or 

experienced an event so far throughout the trial, the likelihood reduces to;

Aw=no-%/(*,,,/?)}■
h= 1

The motivation for this is that it is believed that the longer a patient lasts without a 

toxic event; the risk of them having a toxic event is reduced, so the contribution of a 

non-event to the likelihood should be larger for those who have lasted longer in the 

trial without an event than those very early on. This weighting scheme is based on the
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risk of a first DLT occurring and there being no accumulation of drug in the body. The 

likelihood is then used after every assessment either with the prior distribution to 

produce posterior estimates or maximised to produce maximum likelihood estimates 

(MLEs) of the parameter /?. The estimate is then used in the model function to find 

the dose with probability closest to the TTL. There are also other weight functions 

which can be used to change the shape of the weights with time. For example, an 

adaptive weighting scheme bases weights at each time on accrued observations of 

doses so far.

The different CRM procedures aim to solve many different issues that arise in 

different circumstances (e.g. treatments in different therapeutic areas) and the 

suggestion is that the particular CRM procedure used should be decided on a case by 

case basis. One main issue that arises with all procedures is the difficulty involved in 

computing the posterior estimates, as the Bayes Estimates of the posterior mean 

involve computing many complicated integrals at every assessment and this has to be 

done before any new patient can be allocated a dose. Although the CRML involves 

much easier computation, the Bayesian aspect is then lost, and possibly informative 

prior information is disregarded which may result in patients at the start of the trial 

being under or overdosed quite substantially.

The TITE-CRM is also the only version that incorporates use of later information.

However extensive exploratory analysis would be needed in order to find a weighting

scheme that truly represents how the drug works over. The weights are created in a

way that changes depending on how far through the trial a patient is (i.e. the risk of

having an event later is less than earlier, so the longer through the treatment period

that a patient has survived without a DLT, the larger the weight given to the partial

non-event). Cheung and Chappell [12] consider simple linear weights and adaptive
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schemes, but consider the former to be overly simplistic and the latter appears to be 

complicated to implement. The specification of the weights, which is required before 

the start of the study, so that partial non-events can be included effectively from the 

beginning, requires knowledge of the dose-response relationship during treatment 

cycles, and how it changes from one cycle to the next. This information is not usually 

available before starting an early phase trial.

2.2.2 Escalation With Overdose Control (EWOC)

One of the main issues with the one stage CRM is the possibility of allocating patients 

to a dose that is higher than the true MTD. The EWOC procedure [13] aims to combat 

this problem by choosing a dose that (according to the current posterior belief) has a 

certain probability (e.g. less than 0.5) of being higher than the MTD. This is achieved 

by obtaining the posterior cumulative distribution function (CDF) for the MTD, and 

choosing a discrete dose level that most closely corresponds to a certain quantile y/ 

(=0.5) of the CDF, i.e.

y / >P(MTD<du) |y ,) .

Where y ; consists of the responses observed so far, up to patient i .

Having the quantile less than 0.5 (often 0.25) ensures the probability of choosing a 

dose for the next cohort of patients that is higher than the MTD is less than 0.5. This 

suggests the model is more likely to choose a dose which is less than the MTD than it 

is to pick one that is greater than it. Choosing^ carefully also ensures that there is still 

some probability that the chosen dose is greater than the MTD, so the escalation 

should not be completely constrained to doses below the true MTD.
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The general procedure of the EWOC design is the same as for the CRM in the sense 

that a model is decided for the dose-response relationship. This could again take 

different forms but a common one is the logistic regression model with two 

parameters;

Prior information is used to decide the starting dose and again, is usually fixed so that 

the lowest dose is chosen to be administered first. The prior information in this 

procedure considers the lowest dose level d(l) and its prior expected probability of

toxicity, and also the dose that is believed to be the TDm  a priori and its relevant 

probability of toxicity (TTL) . The parameters in the model (e.g. a logistic regression 

model) are reparameterised in terms of the lowest dose (<̂ (1)) and its believed toxicity 

( p {])), the T D and TTL as shown below:

These two equations can then be solved to give prior estimates for the parameters of 

the model. Once the responses are observed for the first cohort of patients, the 

posterior cumulative distribution function (CDF) for the TD is calculated and the next

of the distribution. This dose level corresponding most closely to the specified 

quantile is administered to the next cohort, and the analysis is repeated to produce an

dose is chosen from the set of discrete doses and according to the specified quantile y/
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updated posterior CDF and a new dose for administration. This procedure continues 

until an estimate of the TD is produced with sufficient precision.

There is however, the issue that the doses allocated may never be greater than the true 

TD, or even reach the true TD, in which case the TD estimated at the end of the 

procedure may be a dose which is higher than any dose administered before. This is 

somewhat worrying as this extrapolation in estimating the TD assumes that the dose- 

response relationship stays the same for higher doses. If the modelled relationship 

were to change later on, i.e. the occurrence of late-onset toxicities increases the 

probability of toxicity over time, the estimation of this TD could be incorrect and the 

wrong dose may be carried forward to Phase II. Another issue is that very sub- 

therapeutic doses could be being administered. For example, if starting at the lowest 

dose and escalating after every set of observations, the model will identify a TD, 

which will most likely be smaller than the true TD due to the incorporation of the 

pessimistic prior information. Then the choice for the next dose will possibly be even 

smaller due to the probability of a lower dose being greater than the current estimated 

TD exceeding \f/ .

Once again this procedure only uses information from the first cycle of therapy. It 

seems that for this procedure in particular, it may be beneficial to use information 

from later cycles as an accumulation of drug could show how that drug works in 

higher concentrations without having to give a higher dose. Therefore the 

extrapolation of the estimate of the TD could be more accurate as there would be 

some information on the drug at higher concentrations.
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2.2.3 Bayesian Decision Procedure applied to a Logistic Regression Model

The simple decision procedure can be applied to a logistic regression model, which

will be referred to as the Logistic Regression Decision Procedure (LRDP). In the case 

of the CRM, Bayes estimates are produced for the model parameters. In this 

procedure, Bayesian modal estimates for the parameters are produced in conjunction 

with the gain function to choose the doses to be administered (Whitehead and 

Williamson [14]). The model is shown below;

Prior distributions are usually chosen so that for safety reasons the lowest dose is 

given to the first cohort (typically of size three) of patients. Whitehead and 

Williamson [14] consider the choice of independent Beta distributions for the 

probability of a DLT at two different doses. This considers the minimum and 

maximum doses, d(l) and d(k). The Beta prior for p (j), j = 1, k with parameters t° and

u°{l) can be thought of as prior pseudo-data comprising nQ(j) = tQ(j) + uQ(J) observations at 

dose d(j), where f{j) is the number of patients with a DLT and u°(J) is the number of 

patients who do not experience a DLT. The expected value of the Beta distribution

dose is selected for the first cohort of subjects, is set equal to the TTL. The value 

chosen for p Q(k) is one which would be deemed too high if observed in the actual 

escalation procedure. This produces a prior dose-response curve that shows high 

doses to be unsafe. After fixing p^and p ®k), the number of observations can be chosen 

to reflect the strength of the prior, and for each of the two dose levels is typically
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with parameters/(°y) and u°{)) is p Q(j) = * . To ensure that the lowest



chosen to be equal to the number of patients in a cohort. The number of DLTs tQ(j) can 

then be calculated as x p °{j). Relative to the data collected during the study, the 

amount of pseudo data is small.

The posterior distribution also takes a Beta form since it is conjugate with the 

Binomial data. Both prior and posterior modal estimates can be obtained by fitting a 

logistic regression model using maximum likelihood methods in standard statistical 

software.

The initial allocation of doses depends directly on the prior information, usually fixed 

so that the lowest dose available has a mean probability of DLT at the TTL and the 

highest dose has some higher probability (in the case where the TTL is 0.2, the higher 

dose is often given a probability of 0.5). This ensures that the first cohort is 

administered the lowest possible dose. The prior information is implemented by the 

use of pseudo-data, where the number of toxicities and the number of observations are 

the parameters from the Beta distribution. Table 2-1 demonstrates this.

Dose, d(j) n\j) t°1 (j)
0  0̂ / 0  

P(j) ~ t (./) / n (j )

^d) 3 0 . 6 0 . 2

d(k) 3 1.5 0.5

Table 2- 1: Pseudo-data for Logistic Regression Decision Procedure.

Logistic regression analysis is then conducted to obtain modal estimates (treating the 

prior/pseudo observations as true observations) and these estimates are used in the 

model to obtain modal estimates of the dose corresponding to the TTL. Different gain 

functions can then be used with these estimates to decide which dose to administer to 

the patients. In the initial step, the lowest dose is selected to administer to the first 

cohort for safety reasons regardless of whichever gain function is implemented. The
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added benefit of having pseudo-data for the highest dose is that when its incorporated, 

the model is unlikely to choose high doses early in the escalation (where the weight of 

the pseudo-data has more influence), as there is already some evidence that high doses 

produce high probabilities of toxicity.

There are two commonly used gain functions, although there are more variations. The 

first is the patient gain [9, 13] (which is similar to the gain used in the CRM) which 

minimises the difference between the TTL and the probability of DLT for different 

doses found from the model. This is defined as:

f  V
1Si(j) ~

Where p (j) is the current estimated probability of DLT at dose d{j) after / patients. 

The dose d(j) that maximises this gain (produces the highest g i(j)) is chosen to 

administer to the next cohort of patients.

When using the patient gain, all patients in a cohort are given the same dose since if 

one dose is believed to be best given the data so far, this is the same for all patients in 

the cohort.

Another example of a gain function is the variance gain. This involves finding the 

asymptotic subjective variance (i.e. the asymptotic variance calculated including the 

pseudo-data) of the estimate of the TD including the administrations of different 

possible doses for the next patient [14]. The next set of doses to be allocated is then 

based on the doses that will reduce the variance the most;
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varjlog ( T D ^ l )
Si(j) -

In this setting, TDrn is the dose that is believed to correspond exactly to the TTL and

T D ^l is the expected estimate of the TDrn after i patients, when incorporating the set

of doses J  for the next cohort of patients. The set of doses J  can consist of different 

doses since a combination of doses may reduce the variance more than administering 

one dose to the entire cohort. The TDrn is expressed in terms of the parameters of the

model and as the log transformed value since it is the log value of dose that is used in 

the model.

log {TDrrL) =
log

TTL
\ -TTL

- a

P
(2.3)

The asymptotic variance for the estimate of the log(TD) is calculated using equation 

(2.3) and the likelihood function as in equation (2.1) of the CRM, where the function 

/  is the logit link function as in equation (2.2). The likelihood for the calculation of 

the asymptotic variance includes extra expected observations from the set J  of 

different possible doses to be administered. This is then defined as:

var ( log (TD-jyl) j =

a io g ( ra JT, )Y
Slog(7Y>m ) aiog(r.D„, )'l da

(  da  ’ dfi ) ' 3 log (TDm )
sp )\

where I t x is the Expected Information Matrix found from twice differentiating the log- 

likelihood with respect to each parameter and taking the expectation of each element 

of the matrix. Only the elements involving the doses considered for administration in
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the next cohort are affected by taking the expectation, since the expected values of 

p u ) , /(/)and n(j) for those doses are included along with the observations from the

data so far. On replacing the parameters with the estimated values after the ilh 

observation, the set of doses that produce the smallest variance of the estimated 

log (77)m  ) (increases the gain, gi(J)) are allocated to the next cohort.

The patient gain is the more ethical gain function in the escalation procedure so this is 

what is usually used.

As with most dose-finding procedures, this method usually only incorporates 

information from the first cycle of therapy. As discussed with the CRM, in some 

therapeutic areas where late toxicities are common, this poses quite a problem. It 

would be unfeasible to wait until every patient has completed all cycles of therapy as 

this would result in an impractically long trial, however when there are many cycles of 

therapy it could be considered unethical to disregard all information after the first 

cycle of therapy and allocate doses based on just the first. This could result in 

allocating higher doses that would appear to be reasonably safe early in the treatment 

process but after an accumulation of dose could become dangerously toxic.

2.3 Overview
The traditional rule-based designs are extremely easy to follow, and clinicians 

understand the logic behind the rules. However they do not produce that much 

information about the actual dose-response relationship.

The CRM was the first of the model-based designs to be created and is therefore

widely known and recognised. The two-stage CRM in particular allows cautious

escalations until enough information is produced to safely move to the model-based

escalation and can even be moved to a maximum likelihood model approach (CRML).
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The extension of the CRM, the TITE-CRM, also allows inclusion of late occurring 

toxicities by way of weighting the likelihood contributions. The main issue with all of 

the CRM procedures (apart from the CRML) is that many complicated integrals need 

to be numerically calculated in order to obtain Bayes Estimates of the posterior mean. 

While this is still feasible through the use of MCMC approaches, it is not easily 

explainable or intuitive to non-statisticians, which may cause clinicians to opt for 

alternative, simpler approaches. The CRML does not have this issue but it is then 

questionable as to whether the slow start of this dose-escalation procedure is ethical, 

particularly when there are many possible dose-levels available. The converse of this 

is that by skipping the cautious escalation stage and using the one-stage CRM, the 

model is very unconservative, even when using pessimistic prior information. The 

one-stage CRM can easily allocate overly toxic doses early on in the procedure. The 

TITE-CRM would also need extensive exploratory investigation to find a weighting 

system that portrays the true effect of the drug over time.

The EWOC design aims to combat the CRM’s issues of allocating overly toxic doses 

early in the procedure by making it more likely to allocate a dose below the true TD 

than above it. This is quite effective if the main issue is simply not to expose patients 

to overly toxic doses especially when used in conjunction with pessimistic prior 

information. A TD is estimated including the use of the pessimistic prior, and a dose 

even lower than this is most likely to be chosen to be administered to the patients. The 

issue with this procedure arises when considering the effect of administering sub- 

therapeutic doses. Not only is it unethical to administer sub-therapeutic doses to 

patients (which in cancer trials, the patients are cancer patients themselves) but if there 

are many dose-levels to consider, the trial could take a very long time. There is also an 

issue that (especially if the quantile is not chosen well) the estimated TD at the end of

27



the trial may actually be higher than any dose administered throughout the study. 

Suggesting a dose for further (and larger) studies, that has not actually been tested, 

seems unethical. Extensive knowledge about the dose-response relationship would be 

required to ensure this extrapolation is safe.

The LRDP seems the safest method discussed in this review. By incorporating 

pessimistic prior information about both the lowest and highest doses, the early 

allocations are unlikely to overdose patients, and once the first few observations are 

obtained, it is also unlikely to underdose by too much. Logistic regression analysis is 

also very simple to carry out as there are many software packages that carry out this 

type of analysis easily. The main issue with this procedure is one that is common to 

most of the other procedures also, that is the inclusion of observations from just the 

first cycle of therapy in the analysis. Although it would be unfeasible to wait for a 

patient to complete the whole treatment, when there are many cycles of therapy it 

seems wasteful to disregard so much information.

Chapter 3 explores some existing data from 38 Phase I dose-finding studies to provide 

motivation for the development of a new procedure which is then discussed in Chapter 

4. A new model will be considered for the Bayesian Decision Procedure which allows 

the inclusion of later cycles of therapy and the derivation of the corresponding steps of 

the Bayesian decision procedure for this model will be presented.
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3. Investigating data trends in Phase 
I trials

3.1 38 Phase I Trials in Molecularly Targeted Agents
This chapter investigates the trends in occurrences of DLTs across treatment cycles,

and their association with different baseline characteristics such as age, gender and 

primary tumour type. This investigation is based on a dataset described in Postel- 

Vinay [1]. The dataset consists of 38 dose-finding trials that occurred at 2 different 

institutions, the Royal Marsden Hospital, UK and Institut Gustave-Roussy, France 

between January 2005 and July 2008. For all patients who participated in one of these 

trials, data were provided on age, gender, weight, height and tumour type. There was 

information on the treatment dose, the number of cycles of therapy each patient had 

received and for each occurrence of a toxic event, the grade of the event, the cycle in 

which it occurred, the family to which the toxicity belonged (renal etc.) and whether it 

was a DLT as defined by the protocol. Different drug types are investigated over these 

trials which have different mechanisms and routes of action, different schedules for 

administration, different numbers of dose levels and different MTDs.

Postel-Vinay et al. [1] investigate the rate of occurrence of toxicities for Molecularly 

Targeted Agents (MTAs). Many of the existing dose-finding procedures have been 

developed for the traditional chemotherapy where the MTD was deemed to be the 

most efficacious. The dose for investigation with MTAs may not be the maximum 

dose that is tolerated, but a biologically optimal dose which offers a similar efficacy 

profile to a higher dose but with a lower toxicity profile. The toxicity level of interest 

may then be redefined. Such a dose may then be administered for longer periods of 

time until the occurrence of disease progression or resistance, so the consideration of
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toxicities occurring in later cycles of therapy may need to be given more attention than 

they are in current procedures.

Since the trials in the investigation are based on different drugs with differing MTDs 

and dose levels, some kind of normalisation of the doses is needed. Every patient that 

participated in a trial has data about the dose of drug that they received and the MTD 

of the drug for that trial. A normalised dose can be created by dividing each patient’s 

dose by the MTD. For the 38 trials in the dataset, only 5 were on average 

administering the MTD to their patients (the average normalised dose was 1). 8  out of 

the 38 were administering on average a dose that was too high (the average 

normalised dose was >1) and 25 out of the 38 trials were administering doses that 

were lower than the MTD (the average normalised dose was <1). An average 

normalised dose of less than 1 is expected since escalation procedures all take some 

time to escalate to the required dose. Therefore many cohorts of patients would 

receive lower doses in the early stages of the procedure. Since the average normalized 

dose that is administered is expected to be less than 1 , those trials that administer an 

average normalized dose higher than 1 imply that in fact they are either escalating to 

too high doses very quickly, or they are administering doses that are much higher than 

the lower doses with great frequency, such that the low doses required for early 

escalation are not as prevalent in the calculation of the average.

3.2 Data cleaning
Initial investigation of the datasets highlighted some interesting points. First, there 

were other grade 3 or 4 toxic events that occurred but were not included as DLTs as 

they were not toxic events as specified by the trial protocol. Second, all events that 

were listed as DLTs occurred in the first cycle of therapy. This is not unusual as this is 

generally how dose-escalation studies are conducted. However, there were also some
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toxic events that occurred in cycle 1 , and were part of the family of specified toxic 

events to be called a DLT, but were not listed as a DLT. Furthermore, there were 

some patients who experienced DLTs in a cycle who were then seemingly not 

removed from the trial as they then proceeded to contribute further toxicities, 

including grade 3-4 toxicities, in later cycles also. While it is expected to continue to 

treat patients after their first DLT, although likely at a reduced dose, and continue to 

observe said patients for toxicities, this is for ethical and safety reasons rather than for 

use in the analysis. Therefore subsequent toxicities cannot be classed as DLTs. There 

were also patients that contributed more than 1 grade 3 or 4 toxic event to one cycle. 

Since the focus of this investigation is to consider a patient’s first occurrence of a 

DLT, some data cleaning needs to be conducted in order to obtain the data in a format 

relevant to this.

A new binary variable was created to include any grade 3 or 4 toxic event in any cycle 

of therapy as an event of interest. Since each trial had different drugs and doses, it can 

be assumed that different toxicities as specified in the protocol were recorded as 

DLTs. Therefore, looking at all grade 3 or 4 toxicities will give more of an overview 

as to the prevalence of severe toxicities. Furthermore, DLTs only occurred in cycle 1, 

so by looking at all grade 3 or 4 toxicities some insight can be gained into how 

toxicities occur over cycles. There were also some events that were listed as a DLT 

despite a grade 3 or 4 toxicity not occurring. In practice, DLTs are not necessarily just 

the occurrence of one grade 3-4 toxicity, but may be defined as multiple or recurrent 

incidences of lower grade toxicities. These have therefore been left as DLTs. This new 

variable therefore comprises all protocol specified DLTs and all other grade 3 or 4 

toxicities in all cycles. For this investigation, the new variable will be called DLT+ and
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will be assigned a value of 1 to all occurrences of a DLT+ and 0 for all other 

observations.

Once the DLT+ were defined, the patients who contributed more than 1 grade 3 or 4 

toxic event in multiple cycles had all but the first event removed as they should not 

have contributed to the analysis after experiencing an event of that grade. In order to 

make the overall dataset consistent with this, any cycles before the first occurrence of 

a DLT+ were assigned a non-event (DLT+=0) and any cycles after the first occurrence 

of a DLT+ were removed.

3.3 Occurrence of toxicities
Table 3-1 shows the number of patients who started each cycle along with the number 

of patients experiencing their first DLT+ in that cycle, and the corresponding 

percentages of the number of patients experiencing their first DLT+ in that cycle 

compared to the number of patients starting each cycle. The 7-10 category is the 

number of patients who started cycle 7 and likewise for 11-20. Any cycles after the 

2 0 th cycle were omitted since there were very few patients in these later cycles and it 

was unclear as to the time period that the events actually occurred in (anything from 

cycle 20 up to cycle 33).

Cycle #Patients % of total 
patients, n=445

#Patients with 
first DLT+

% of Patients 
entering cycle

1 445 1 0 0 % 38 8.5%
2 331 74.4% 14 4.2%
3 177 39.8% 8 4.5%
4 118 26.5% 3 2.5%
5 6 6 14.8% 3 4.5%
6 49 1 1 .0 % 1 2 .0 %

7-10 37 8.3% 0 -
1 1 - 2 0 15 3.4% 1 0.67%*

Table 3- 1: Patients experiencing their first DLT+ in each cycle. *average percentage
per cycle for 1 0  cycles.
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As can be seen, the number of patients who start each cycle of treatment decreases 

with every cycle, with the amount of reduction between cycles generally decreasing 

throughout the trial. More events tend to occur in early cycles so more patients do not 

proceed to the next cycle, whereas fewer events occur later so fewer patients need to 

stop treatment. The exception here is for patients proceeding from cycle 2 to cycle 3. 

The reduction in patients here is the largest with just over half of the patients entering 

cycle 2 proceeding to cycle 3. The proportion of patients who experience their first 

event in each cycle tends to decrease with cycle. When looking at the later cycles that 

have been grouped together, an average percentage per cycle is displayed as the 

percentage of patients experiencing DLTs+ divided by the number of cycles in the 

grouped category. The number of protocol specified DLTs that occur in cycle 1 is 26, 

which is just 5.8% of the patients starting cycle 1.

It can be seen that 60/68 first occurrences of DLTs+ occur in the first 3 cycles 

compared to 38/68 occurring in cycle 1. The proportion of first DLTs+ occurring in 

cycle 2 is approximately half of that in cycle 1. Later cycles also seem to have smaller 

proportions too suggesting the proportion of patients having first DLTs+ in each cycle 

decreases as patients last longer in a trial.

Of the 38 trials included in the dataset, some had very few observations of DLTs+ and 

often only had one type of response (no events). Most of the trials contributed some 

events and non-events but there was only one trial (Trial 64) that contributed a good 

amount of information. This trial is therefore looked into more closely.

Of the 35 patients in trial 64, 17 patients had events with 11 patients having protocol 

specified events and there were 14 DLTs in cycle 1. The trial had 121 patient cycles 

(121 cycles of therapy across the 17 patients) of information and 52 DLTs+ occurred
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in total. Since DLTs+ were defined as the first Grade 3 or 4 toxicity, this implies that 

several patients had more than one in the same cycle, likely of a different type. Focus 

therefore lies on the patients who experience a DLT+ rather than the number itself.

The breakdown of the trial and the events occurring throughout is shown in Table 3-2.

Cycle #Patients #Patients with 
first DLT+

Patients with 
DLT+ as % of 

Patients entering 
cycle

1 35 7 20.0%
2 26 4 15.4%
3 10 3 33.3%
4 6 1 16.7%
5 5 2 40.0%
6 3 - -

7-10 1 - -
11-20 0 - -

Table 3- 2: Trial 64 -  Patients experiencing their first DLT+ in each cycle.

As can be seen, over half of the patients who have a DLT+ experienced it after cycle 1. 

None occur in the very late cycles so these could be disregarded but over 80% occur 

within the first 3 cycles. The proportion of patients experiencing their first DLT+ is 

reasonably stable for the first 4 cycles with a sudden surge in the 5th.

Trial 64 shows similar trends to those shown in Table 3-1, however due to the small 

sample size a precise trend cannot be determined. Therefore the results from Table 3-1 

will be used to aid the choice of model parameter values in the simulations described 

in chapters 5, 6 , 7 and 8 . To generalise, the probability of a DLT occurring for patients 

who proceed to later cycles will be set to be half of the probability of a DLT in the 

previous cycle. The first 3 cycles of therapy will be considered.
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3.4 Covariate EDA

Investigation of some of the patient characteristics could provide insight into how a 

personalised dose allocation procedure could be used to give the dose that is best for 

each individual patient.

This part of the EDA will focus on the first occurrence of DLTs+ in different cycles of 

therapy for different levels of a factor representing patient groups. This will provide a 

general idea of the prevalence of toxic events for all cycles for different levels or 

categories of a covariate and will provide a more specific understanding of the pattern 

of toxic events across cycles for different levels or categories.

3.4.1 Age

The mean ages of all patients entering each cycle and also just patients who 

experienced their first DLT+ during the cycle are shown in Table 3-3.

Cycle, n Mean Age S.D Min Max
Cycle 1, n=445 56.10 12.49 18 8 6

n DLT+ _ 3 8 55.36 13.79 29 78
Cycle 2, n=331 56.11 1 2 . 2 1 18 8 6

n DLT+ _  j 4 57.79 8.31 40 71

Cycle 3, n=177 56.95 12.60 2 0 8 6

nD L T + = 8 50.13 13.11 32 6 8

Cycle 4, n=l 18 56.90 11.90 2 0 79
D L T+_'jn —3 62.67 5.51 59 69

Cycle 5, n= 6 6 57.61 12.77 25 79
n —5 60.00 4.58 56 65

Cycle 6 , n=49 57.71 12.77 25 79
nDLT+=l 60.00 - - -

Cycle 7-10, n=37 57.95 12.73 25 79
nD L T + = 0 - - - -

Cycle 11-20, n=15 55.13 12.56 27 73
nDLT+=l 62 - - -

Table 3- 3: Mean age of patients in each cycle for all patients, and patients with DLT+.

The mean age for all patients is quite consistent across cycles. For patients 

experiencing their first DLT+, the mean age is generally younger in the earlier cycles
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and slightly older in the later cycles. If focussing on cycles 1-3, it could be generalised 

that younger patients tend to have DLTs+.

A further way to investigate the effect of age on the occurrence of DLT+ is to look at 

the occurrences in various age categories. In the dataset, the following four age 

categories had been created <50, 51-58, 59-65, >65.

Table 3-4 shows the number of patients in each age category.

Age
Category

<50 51-58 59-65 >65

#Patients 
entering study

131 95 125 94

Table 3- 4: Num ?er of patients in each age category.

The number of patients in each age category differs slightly, but there are reasonably 

equal proportions in the first 2  categories compared to the last 2  categories.

Table 3-5 shows the number of patients in each age category starting each cycle, the 

number of patients experiencing DLTs+ in each cycle which is also displayed as a 

proportion of the total patients starting each cycle.

Cycle, n Age category <50 51-58 59-65 >65
Cycle 1, 
n=445

nDLT+_38

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

131
14

(10.7%)

95
5

(5.3%)

125
9

(7.2%)

94
1 0

(8 .8 %)

Cycle 2, 
n=331

nDLT+_i4

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

94
3

(3.2%)

76
3

(3.9%)

96
7

(7.3%)

65
1

(1.5%)

Cycle 3, 
n=177
DLT+_qn — 8

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

47
4

(8.5%)

35
1

(2.9%)

54
2

(3.7%)

41
1

(2.4%)

Cycle 4, 
n=l 18

„DLT+_o n —5

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

29
0

(0 .0 %)

28
0

(0 .0 %)

36
2

(5.6%)

25
1

(4.0%)

Table 3- 5: Mumbers of patients with their first 3LT+ in eac l cycle for different age
categories. *average percentage per cycle for 1 0  cycles.
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Cycle 5, 
n= 6 6

DLT+_on -3

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

16
0

(0 .0 %)

15
1

(6.7%)

2 1

2

(9.5%)

14
0

(0 .0 %)
Cycle 6 , 

n=49
nDLT+_i

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

1 2

0

(0 .0 %)

8
0

(0 .0 %)

16
1

(6.3%)

13
0

(0 .0 %)

Cycle 7- 
1 0 , n=37 
nD L T + = 0

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

9
0

(0 .0 %)

5
0

(0 .0 %)

13
0

(0 .0 %)

1 0

0

(0 .0 %)

Cycle 11- 
2 0 , n=15
nDLT+_i

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

6

0

(0 .0 %)

1

0

(0 .0 %)

5
1

(2 .0 %*)

3
0

(0 .0 %)

Table 3-5 cont.: Numbers of patients with their 1Irst DLT+ in each cycle lor different
age categories. *average percentage per cycle for 1 0  cycles.

Quite a high proportion of patients in the youngest age group experience their first 

DLT+ during the first 3 cycles, particularly compared to the oldest group. The 

youngest group have no events after cycle 3, whereas the older groups continue to 

have small numbers of events into later cycles. Generally the proportion of patients 

having their first DLT+ decreases over cycles for all age categories.

Based on the results from section 3.3, the investigation of the dose escalation 

procedures can be focused on the first 3 cycles of therapy. Therefore, the generalised 

pattern adopted from the investigation of age for use in this thesis is that younger 

patients have a higher chance of DLT than older patients, and the occurrence of DLTs 

decreases equally over cycles for the different age groups.

3.4.2 Gender

Comparing the occurrence of DLT+ for males and females regardless of when the 

toxic event occurred gives a general idea of the overall prevalence for each gender. 

The frequency table in Table 3-6 shows the number of male and female patients along 

with the number and proportion of those who had any level of toxic event.
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Gender Female Male
# Patients 190 255

# Pats with first DLT+ 
(% of total)

35(18.4%) 33(12.9%)

# Pats with first protocol DLT 
in cycle 1 (% of total)

14 (7.4%) 16(6.3%)

Table 3- 6 : Number of patients with a DLT+ and a protocol specified DLT for each
gender.

There are a slightly larger number of males included in the trials, but a smaller 

proportion of those experience DLTs+ when compared to females. When considering 

just the protocol specified DLTs in cycle 1, there are notably fewer events than when 

considering DLTs+ and they are more evenly spread across the genders.

Further investigation can be conducted to see if the time of occurrence of the first 

DLT+ is also different for males and females.

Cycle, n Gender Females Males
Cycle 1, #Patients 190 255
n=445 #Pats with 1st DLT+, 2 0 18

nDLT+_38 (% of pats in cycle) (10.5%) (7.1%)
Cycle 2, #Patients 137 194

n=331 #Pats with 1st DLT+, 7 7
nDLT+_i4 (% of pats in cycle) (5.1%) (3.6%)
Cycle 3, #Patients 71 106

n=177 #Pats with 1st DLT+, 4 4
nD L T + = 8 (% of pats in cycle) (5.6%) (3.8%)
Cycle 4, #Patients 50 6 8

n=l 18 #Pats with 1st DLT+, 1 2

nDLT+_3 (% of pats in cycle) (2 .0 %) (2.9%)
Cycle 5, #Patients 34 32

n= 6 6 #Pats with 1st DLT+, 1 2

nDLT+=3 (% of pats in cycle) (2.9%) (6.3%)
Cycle 6 , #Patients 26 23

n=49 #Pats with 1st DLT+, 1 0

nDLT+=l (% of pats in cycle) (3.8%) (0 .0 %)
Table 3- 7: dumber of patients with ~irst DLT+ in each cycle for each gender.

*average percentage per cycle for 1 0  cycles.
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Cycle 7-10, 
n=37 

nD L T + = 0

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

19
0

(0 .0 %)

18
0

(0 .0 %)
Cycle 11-20, #Patients 7 8

n=15 #Pats with 1st DLT+, 1 0

nDLT+=l (% of pats in cycle) (1.4%*) (0 .0 %)
Table 3-7 cont.: Number of patients with first DLT+ in each cycle for each gender.

*average percentage per cycle for 1 0  cycles.

Both males and females have generally a decreasing number of DLTs+ over cycles.

For the first 3 cycles, the proportion of patients in each cycle having DLTs+ is higher 

for females. Cycles 4 and 5 have a slightly higher proportion of male patients having 

DLTs+ but after cycle 5 males have no more DLTs+ whereas females continue to have 

DLTs until very late cycles of therapy.

Despite having a smaller number of female patients overall, more females are 

experiencing events for much longer. Both genders have a steadily decreasing number 

of DLTs+ over cycles.

By focusing again on the first 3 cycles of therapy, the results can be summarised as 

females have a higher chance of DLT than males with both groups having an equal 

reduction of DLTs with successive cycles.

3.4.3 Primary Tumours

The differences in occurrences of DLTs+ between age groups and genders could be 

due to the primary tumour that is being treated. As an example, treatments associated 

with breast or gynaecological tumours may cause more toxicities and are observed 

only in women. Furthermore, tumours occurring in older patients may not result in as 

many toxicities, perhaps due to a higher tolerance.

The occurrence of toxicities according to primary tumours can be investigated to try to 

aid understanding of the differences between age groups and gender but in reality 

would not be accounted for in the analysis of toxicities. Usually a specific trial would
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treat one certain type of tumour so differences between patients would not be due to 

tumour type. The understanding of tumour type toxicities for different groups of 

patients can be used to aid the design of the trial, deciding how long to observe 

patients for and perhaps what kind of toxicity to expect.

Table 3-8 shows the occurrence of toxicity for different primary tumours.

Tumour Type Number
of

patients

No. patients with 
DLT+ (% of total 

pats)

No. patients with 
DLTs (% of total 

pats)
Prostate 61 2 (3.3%) 1 (1.6%)
Sarcoma 49 6(12.2%) 4 (8.2%)

Breast & Gynaeco. 
(B&G)

40 5(12.5%) 3 (7.5%)

Central Nervous 
System (CNS)

7 - -

Urological 9 - -

Gastrointestinal (GI) 151 11 (7.3%) 7 (4.6%)
Thoracic 77 12(15.6%) 9(11.7%)

Melanoma 23 2 (8.7%) 2 (8.7%)
Other 28 - -

Table 3- 8: Numbers o:? patients, anc number with DLT+ and protocol specified DLTs
for each primary tumour type.

Firstly, since the sample sizes for the CNS and Urological tumour types are very small 

and neither produce DLTs or DLTs+, these can be hereafter excluded from further 

exploratory data analysis (EDA) as no information will be gained from them. The 

‘Other’ group will also be excluded since there is no information about the primary 

tumour and it can be assumed that multiple ‘other’ tumour types have been grouped 

together due to small numbers of patients.

The largest number of patients have a GI primary tumour, however quite a modest 

proportion of these patients actually have DLTs or DLTs+. The highest proportion of 

patients experiencing DLTs and DLTs+ occur for patients with thoracic tumours and 

the lowest proportion occurs for patients with prostate tumours. Breast and

40



Gynaecological, and Sarcoma primary tumours also have a slightly larger proportion 

of patients having DLTs.

The pattern in which the DLTs occur for each primary tumour type is shown in Table

Cycle, n Primary Prostate Sarcoma B&G
Cycle 1, 
n=445

nDLT+_38

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

61 
1 ( 1 .6 %)

49 
4 (8.2%)

40 
3 (7.5%)

Cycle 2, 
n=331 

nDLT+=14

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

48 
0  (0 .0 %)

38 
1 (2 .6 %)

30
4(13.3%)

Cycle 3, 
n=177
DLT+_qn —a

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

27 
1 (3.7%)

2 2  

1 (4.5%)
1 2

0  (0 .0 %)

Cycle 4, 
n=l 18
DLT+_on —3

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

2 0  

1 (5.0%)
18

1 (5.6%)
1 0

0  (0 .0 %)

Cycle 5, 
n= 6 6

DLT+_o n —5

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

1 0

0  (0 .0 %)
1 0

0  (0 .0 %)
6

0  (0 .0 %)

Cycle 6 , 
n=49

nDLT+=l

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

5
0  (0 .0 %)

7
0  (0.0%)

5
0  (0 .0 %)

Cycle 7-10, 
n=37

nDLT+_o

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

5
0  (0 .0 %)

4
0 (0 .0 %)

4
0  (0 .0 %)

Cycle 11-20, 
n=l 5

nDLT+=l

#Patients 
#Pats with 1 st DLT+, 
(% of pats in cycle)

4
0  (0 .0 %)

1

0  (0 .0 %)
1

0  (0 .0 %)

able 3- 9: Number of patients with first DLT+ in each cycle of occurrence for each
primary tumour type. *average percentage per cycle for 1 0  cycles.
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Melanoma GI Thoracic
Cycle 1, 
n=445

nDLT+_38

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

23
2

(8.7%)

151
7

(4.6%)

77
9

(11.7%)
Cycle 2, 

n=331
n DLT+ _  1 4

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

17
1

(5.9%)

1 1 0

5
(4.5%)

57
3

(5.3%)
Cycle 3, 

n=177 
nD L T + = 8

#Patients 
#Pats with 1 st DLT+, 
(% of pats in cycle)

9
0

(0 .0 %)

57
3

(5.3%)

32
3

(9.4%)
Cycle 4, 
n=l 18
DLT+_on -3

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

6

0

(0 .0 %)

34
0

(0 .0 %)

2 0

1

(5.0%)
Cycle 5, 

n= 6 6

DLT+_tn -3

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

4
0

(0 .0 %)

15
0

(0 .0 %)

15
3

(2 0 .0 %)
Cycle 6 , 

n=49
nDLT+=l

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

2

0

(0 .0 %)

14
0

(0 .0 %)

1 2

1

(8.3%)
Cycle 7-10, 

n=37 
nD L T + = 0

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

2

0

(0 .0 %)

9
0

(0 .0 %)

1 0

0

(0 .0 %)
Cycle 11-20, 

n=l 5
nDLT+=l

#Patients 
#Pats with 1st DLT+, 
(% of pats in cycle)

0

0

(0 .0 %)

2

0

(0 .0 %)

5
1

(2 .0 %*)
r'able 3- 9 cont.: Tvumber of patients with first DLT+ in each cycle of occurrence for

each primary tumour type. *average percentage per cycle for 1 0  cycles.

By splitting up by tumour type, it actually seems that the occurrence of DLTs+ 

generally decrease after cycle 1 , but then occur at a slightly increasing rate over 

subsequent cycles. Very few of the tumour types have patients with DLTs+ in the very 

late cycles, in fact only thoracic tumours have any after cycle 4.

Thoracic and Sarcoma tumour types have patients with a higher proportion of DLTs+ 

occurring in cycle 1-3 and some of the tumours only have patients with DLTs+ for the 

first 2 cycles. It should therefore be concluded that dependent on the tumour type 

investigated in the trial, the length of the observation period should be adapted along 

with the TTL.
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3.4.4 Interaction between Gender/Age and Primary Tumour Type

The EDA carried out for the gender covariate prompted the question as to whether the

occurrence of later DLTs for females could be to do with the type of tumour that was 

being treated. However, EDA for the primary tumour type shows this not to be the 

case. The only tumour type that is specific only to women is the breast or 

gynaecological tumour, and these only experienced DLTs in the first 2 cycles. The 

only tumour type in which patients experienced DLTs in the later cycles (as the 

females did) was the thoracic tumour, which is not specific to women. Furthermore, 

looking at tumour types specific to men such as the prostate tumour type does not 

provide any insight either since there are so few DLTs occurring for prostate cancer, 

and these only occur up until cycle 4. Therefore, there is not enough information to 

conclude that tumour type does has a confounding effect on the effect caused by 

gender to the time of the DLT.

When considering age also, there was very little difference between tumour type and 

age over cycles.

As discussed, in reality different tumour types would not be included in the same trial 

so would not be adjusted for within the analysis and escalation procedure. They can 

however be used in the decision process for designing the trial in order to consider 

what kind of toxicities would occur and when. This could aid the decision on the 

observation period for toxicities, and what TTL should be considered.

3.4.5 Family of Toxicity

The timing and seriousness of a DLT in a particular study may depend on the type 

(family) of toxicity being assessed. For example, certain types of toxicity (e.g. 

gastrointestinal: vomiting, diarrhoea etc.) may be more likely to occur particularly in 

early or late cycles, whereas another type (e.g. cutaneous: rash etc.) may be different,
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and furthermore, there may be a relationship between timing and seriousness, e.g. 

certain types of toxicity may be more toxic early on.

For this investigation, the occurrence of a DLT+ is not just a yes or no outcome, the 

actual family of toxicity is of interest. Therefore the first occurrence of each family of 

DLT+ is included. The sum of the number of patients with each family of toxicity may 

therefore be greater than the total number of patients experiencing any type of DLT+. 

Table 3-10 shows when these events occur.

Cycle, n Family Cutaneous GI Renal
Cycle 1, ^Pats with 1st DLT+, 13 31 7
n=445 % of n 2.9% 7.0% 1 .6 %

nDLT+_38 % of nDLT+ 34.2% 81.6% 18.4%
Cycle 2, ¥Pats with 1st DLT+, 3 14 1

n=331 % of n 0.9% 4.2% 0.3%
nDLT+_i4 % of nDLT+ 21.4% 1 0 0 % 7.1%
Cycle 3, ¥Pats with 1st DLT+, 3 4 3
n=177 % of n 1.7% 2.3% 1.7%

nD L T + = 8 % of nDLT+ 37.5% 50.0% 37.5%
Cycle 4, ¥Pats with 1st DLT+, 0 2 1

n=l 18 % of n - 1.7% 0 .8 %
nDLT+=3 % of nDLT+ - 66.7% 33.3%
Cycle 5, ¥Pats with 1st DLT+, 1 3 2

n= 6 6 % of n 1.5% 4.5% 3%
D LT+_-j n —5 % of nDLT+ 33.3% 1 0 0 % 66.7%

Cycle 6 , ^Pats with 1st DLT+, 0 0 1

n=49 % of n - - 2 .0 %
nDLT+=l % of nDLT+ - - 1 0 0 %

Cycle 7-10, ¥Pats with 1st DLT+, 0 0 0

n=37 % of n - . .

nD L T + = 0 % of nDLT+ - - -

Cycle 11-20, #Pats with 1st DLT+, 0 1 0

n=15 % of n - - -

nDLT+=l % of nDLT+ - 1 0 0 % -

Table 3- 10: Number of patients wit i a first DLT+ in each cycle for each type of
toxicity.

The family of toxicity that has the highest level of occurrence is the GI family and this 

is true for every cycle. The proportion of patients experiencing each type of toxicity in 

each cycle is generally quite consistent across cycles for cutaneous and renal toxicities
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and decreases with cycle for GI toxicities. Of the patients who do experience a DLT+ 

it is most likely to be a GI toxicity and the chance of a DLT+ being GI or cutaneous is 

quite consistent across cycles. Although the chance of a DLT+ being a renal toxicity is 

generally very low, it does tend to increase with cycles and a higher proportion of 

patients experiencing DLTs+ experience renal DLTs+ in later cycles than in earlier 

cycles.

As for primary tumour types, it is not reasonable to account for the type of toxicity 

occurring in the analysis since an exhaustive list of toxicities would not be feasible to 

adjust for, however, in accounting for which type is most likely and considering the 

severity and when they might occur can again aid the decision process of designing 

the trial and analysis plan.
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4. Methodology -  ICSDP
From the evidence produced in Chapter 3, a new model is proposed to incorporate 

data from later cycles of therapy within a Bayesian decision framework. This model is 

the Interval-Censored Survival (ICS) Model. This Chapter therefore presents a new 

Bayesian decision procedure which incorporates the use of the ICS model. This 

procedure is called the Interval-Censored Survival Decision Procedure (ICSDP).

4.1 The Interval-Censored Survival Model
The ICS Model is derived from the proportional hazards assumption as shown in 

Collett [15]. It has traditionally been used with analysing time-to-event outcomes in 

order to reduce bias associated with the uncertainty of the exact timings of events. For 

example, in the analysis of progression free survival (PFS), the event of disease 

progression is usually determined at scheduled visits and assessments. The exact time 

of progression is therefore unknown and assigned to the next scheduled assessment. 

When symptoms associated with progression arise, usually for control treatments, 

unscheduled visits and assessments occur which implies that progression can be 

detected earlier and the PFS is therefore obtained accurately. If a control treatment 

estimates the PFS accurately, the hazard associated with the control treatment is also 

estimated accurately. The occurrence of symptoms associated with progression may 

be suppressed for the experimental treatment and will therefore not be observed. The 

occurrence of progression may then not be observed until the scheduled assessment, 

which overestimates the PFS, which in turn, underestimates the hazard associated with 

the experimental treatment. The overall estimated hazard ratio (HR) will then be 

underestimated and the experimental treatment may look to perform better than it 

actually does. By allowing inclusion of observations at each interval, the uncertainty 

of the exact time of progression is localised to one specific period. This therefore
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reduces the bias observed when unscheduled assessments occur intermittently with 

scheduled assessments.

The idea of observing events occurring in different intervals can be directly related to 

the design of Phase I dose-finding trials. Traditionally, dose-finding studies observe 

the occurrence of a patient’s first DLT during one fixed period of time. Patients 

should remain on therapy after the first cycle of treatment, but only observations from 

the first cycle will be used for analysis. The observations are binary, either they had a 

DLT in cycle 1 or they did not, and it is therefore very easy to analyse these events 

over a fixed period of time, either with a model-based analysis or rule-based. The first 

cycle of therapy is also the cycle for which the first DLT for a patient is expected to 

occur with highest frequency, although they can be expected to occur at a decreasing 

rate of frequency over time. By only using one cycle of therapy for the analysis, the 

trials are often very short in time. To observe for multiple cycles of therapy would 

increase the duration of the trial and when observing binary responses, the same issue 

arises as described for analysing PFS. The time of DLT would not necessarily be 

captured if multiple cycles were combined to one fixed period of time, and the 

probability of DLT (P(DLT)) would be assumed to be constant for the whole time 

period. This may underestimate a patient’s chance of experiencing a DLT early in the 

treatment phase and overestimate it later on.

The ICS model now becomes attractive since it can look at a larger fixed period of 

time, and break it down into intervals, in this case cycles. The binary endpoint of 

whether a patient’s first DLT occurs or not is still utilised, however the endpoint is 

now whether a DLT occurred in a given cycle, and the occurrence of DLTs will now 

be dependent on the cycles that occur previously and a DLT not occurring. A patient 

will contribute information to the analysis for all cycles of therapy they complete, up
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to and including the cycle during which they have a DLT. By allowing patients to 

contribute information for every completed cycle of therapy, this model allows for 

non-informative withdrawal by including cycles up to the first DLT or withdrawal. 

Although dropouts before the occurrence of a DLT are not particularly expected in 

this phase of development, it is still an issue that should be considered since cancer 

patients may experience progression so therefore may be withdrawn, and since the 

sample size for Phase I trials is so small already.

For Phase I trials, interest lies in modelling the probability of a patient having their 

first DLT, on dose level d{j), j  = 1 denoted by p (j). Traditionally, this is the

probability of having a DLT during the first cycle of therapy. Interest may lie in 

assessing the probability of a DLT over s cycles of therapy, where each cycle of 

therapy 1,1 -  l,...,s , with s  being the maximum number of cycles, begins at time cM

and finishes at time c, with c0 = 0. Let p {]), be the probability of a patient

experiencing their first DLT on dose level d(j) during cycle / and p (/)f  be the

probability that no DLT occurs during the first s cycles, i.e. the complement of p (j)s.

The cumulative probability of an event occurring during the first / cycles for a patient 

on dose level d(j) can then be defined as:

/

m - \

Here, p (j)m for m = l,...,/are probabilities relating to mutually exclusive events. 

Therefore the sum from m = \,...,s + \ is equal to 1.

The ICS model is based on the probability of a DLT occurring during a given cycle 

conditional on the fact that there has been no DLT in previous cycles. The conditional
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probability of having an event in cycle / (after time cM) given that there has been no

where T{J) is the true time at which a DLT occurs on dose level d(J). The conditional 

probabilities can then be combined to calculate the unconditional probabilities of DLT 

p {j), for a given cycle / and dose level d(j) as follows:

It can be noted that;r0 ) i + 1  = 1 since it is assumed that if the patient remained on 

treatment after surviving the firsts cycles, at some point in the interval (c,,oo) a DLT 

would occur. This then explains why the unconditional probability of an event 

occurring in the interval (cv,oo) reduces as above. This arrangement of probabilities 

means that the likelihood can be constructed in terms of the conditional probabilities.

DLT in any interval prior to cycle I is defined as n(j)l = P(°t - 1  < T(J) < c, | T(J) > cM )

-  n ( j ) l  [ l  P { C I - 2 K  T ( j )  -  C l - 1 I T ( J )  >  C l - 2 ) ]  P { P ( i )  >  C I - 2  )

etc.

This can then be generalised to the following:

PU)i

n U)i
( i  -  n a)1) ( l  -  n U)2) ... ( l  -  

( !  -  1Tu n ) i 1 ~  n u)2) -  C1 -  7ro),/-2)(i -  n u i i - 1)

I = 1 

= 2 ,..., s 
I > s.
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k  .v+1 k  .v+1

flflA/)/ nfl[0 k (j\M/-2))",0  ^(yy-O^uv]
, / = l  / = 1  7 = 1  / = 1

= f i  > w  iw i  r i  o  -  ̂ (7)/ r w <4-1 >
7 = 1  /= 1

£ 5
1u■)/

= n n - o , / "  o -*<,*)
7 = 1  / = l

Here /(/)/ is equal to the number of toxicities observed on dose level d(J) during cycle 

/ and qU)l is equal to the number of patients who have completed I cycles of therapy 

without experiencing a DLT {n(j)l - f (y)/) ■

This is a Binomial likelihood so a generalised linear model can be used to model these 

probabilities. The link function for this generalised linear model can be defined from 

the proportional hazards assumption via the following mechanism (as seen in Collett

[15]).

Redefining the conditional probabilities in terms of survival probabilities is shown 

below;

71 a)i = p {ci-i < P(j) -  ci I > c>-\)
_ SU)(cl_y) - S u)(cl)

*5(7) (C/_,) ’

Where S{j)(c,) is the survival probability (i.e. the probability of ‘surviving’ the cycle 

without experiencing an event) associated with dose level ( j)  by the end of cycle /.

This can be simplified to:

SU){c,.x)

The proportional hazards assumptions is defined as;

S0-,(c() = [So(c,)]' ,
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Where r/{j) is the linear predictor of covariates associated with dose level d(j) such as

rj{j) -  6\og{d{j)) , and S0(c,) is the baseline survival function at the end of cycle I , i.e.

the survival probability associated with dose level </(0)at the end of cycle /. When the

dose is transformed, this transformation of this dose level d{0) will be equal to 0 , i.e. to

apply a log transformation to d(Q), d(0) will be equal to 1 such that once transformed is

equal to 0. Applying the proportional hazards assumption to the above rearrangement 

gives;

This link function is a complementary log-log link function, which includes a term 

that is dependent solely on the interval during which the event occurred. This is a 

factor with s levels which therefore allows separate intercept terms to be estimated for 

each cycle and therefore can allow for a differing dose-response relationship with 

time. The intercepts and the log(dose)-coefficient will all be log-hazard ratios 

comparing dose level d(J) to d{0).

Interest lies in estimating the dose that corresponds to a pre-defined probability of 

toxicity after 5  cycles of therapy. This can be defined as;

l o g ( —l o g ( l - / T (/ ) / ) )  =  770 ) + l o g  - l o g  A M (4.2)

= \ n  + ri

Vu) ( - Cs )

( n U ) i 5 = 1

.^COI + K 1 “  7rO')i)7rO')2} + ••• + ( ! -  n m ) ... ( l  -
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By putting in a rearrangement of the link function (in terms of;r(/)v) such that 

tjU) = 0\og p U)(cs) in terms of the parameters can be found to be;

Pu)(cs ) = ^ - Qxv{du ) \ r en ~ en

which can then be rearranged in terms of the dose;

d(j) =exp
log log(l-/?0)( 0 )

1 1 1 *1 1

e
(4.3)

On analysing the responses with the model described in equation (4.2), parameter 

estimates will be obtained. By replacing pU){cs) in equation (4.3) with the TTL and

including all the parameter estimates, the estimate of the TD associated with the TTL 

will be obtained. The derivation of rearrangement (4.3) is shown in Appendix 1.

4.2 Prior Information
Prior information is incorporated through the use of pseudo-data. Independent Beta 

distributions are placed on the conditional probabilities tt{j)X ~ Beta(t{j)l,qU)l) such

that the mean value of /r( / ) 1  is — — —  = . The parameters *(y)p«(/)1 are
hj)\+cl(j)\ n(j)\

calculated based on prior opinion for;r(/)1, i.e. the target dose is set to correspond to 

TTL=20% during cycle 1, by setting n(J)X = 3 and /r( y ) 1  =0.2 then

0̂)1 “  nU) 1 x nU) 1 ^  ‘

Prior belief is then placed on tt(j)I for cycles/,(/ = 2,..., 5 ). Chapter 3 suggests 

imposing the property of n(j)l halving for subsequent cycles, i.e. if /r(y)l =0 .2 , then 

;r(/)2=0.1, ;t(/)3=0.05 etc.. Beta distributions are then placed on n(J)l for/,(/ = 2,...,5 )
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, however these are dependent on the distributions for the preceding cycles. The 

parameter n(j), is the number of patients surviving cycle I - 1  without a toxicity:

nuv ~ n(/)/-i ~ tuv- 1 ,anc* therefore: t(j)l = 7r(j)l x«(/)/ • The distributions are independent 

between dose levels however.

Pseudo-data is required for the lowest and the highest possible dose levels but also for 

each of the cycles of therapy. The lowest dose level is used to correspond to the TD to 

ensure the lowest dose is administered to the first cohort, and the highest dose 

corresponds to a toxic dose to ensure the procedure does not escalate too quickly. The 

pseudo-data needs to be conditional on that for the previous cycle dependant on prior 

belief as to the occurrence of toxicity with time. Table 4-1 demonstrates a generic 

example based 3 cycles of therapy.

Dose, d(J) nuv nuv hjv = X7ru)>
d(l), cycle 1 wd)i n(\)\ (̂i)i
d([), cycle 2 " ( 1 ) 2  =  " ( 1 ) 1  _  *(1)1 U ( \ ) 2 ( 1 )2

c/(1), cycle 3 " ( 1 ) 3  =  " ( 1 ) 2  _  * (1 )2 ^ ( 1 ) 3 * 0 ) 3

d{k), cycle 1 "(*). U ( k ) \ *(*)!
d(k), cycle 2 n ( k ) 2  =  n ( k )  1 ~ * ( k )  1 U { k ) 2 *(*) 2
d{k), cycle 3 n ( k ) 3 =  n ( k ) 2  ~hk)2 n {k)2, * ( * ) 3

Table 4- 1: Pseudo-data for d(1)and d(k), conditional on previous cycles of therapy. 

The lowest dose is usually set to correspond to the TTL and the highest dose is set to 

correspond to a higher toxicity level. This will ensure that the lowest dose will be

administered to the first cohort (when using the patient gain) and the procedure will 

not escalate to high doses too fast.

These prior distributions are chosen as such since the Beta distribution is easily 

conjugate with the Binomial likelihood obtained from the binary data and aids to the
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simplicity of the procedure since more complicated approaches at eliciting prior 

distributions are not required.

4.3 Gain Function
The dose to be administered to the next cohort of patients depends on the gain 

function used in the procedure. The patient gain function would select the dose level 

d(j) that has closest p U)(cs) to the TTL and is defined below.

Where p i(/)(cs) is the estimate of the probability of a DLT in the first s cycles for dose 

level du) after / patients.

The variance gain function would select the set of dose levels ./that reduces the 

asymptotic variance of the estimated log transformed TD the most and is defined as in 

equation (4.4).

In this setting, TDrn is the dose that is believed to correspond exactly to the TTL and 

TDj^jl is the expected estimate of the TDni  after i patients when incorporating the set 

of dose levels J  for the next cohort of patients. The variance is calculated as follows:

where /^ ‘ is the Expected Information Matrix found from twice differentiating the log- 

likelihood with respect to each parameter and taking the expectation of each element
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of the matrix. The parameters are replaced with the estimated values after the i'h 

observation and the set of doses that produce the smallest variance of the estimated 

TDrn (increases the gain, g,( /)) are allocated to the next cohort. The set of doses J

can consist of different doses if it is found that a combination of doses to administer to 

the next cohort reduces the variance the most.

Regardless of the gain-function, the lowest dose is always administered to the first 

cohort. When the patient gain is utilised, the lowest dose will be selected by the gain 

function since the prior is set as such so that the lowest dose corresponds to the TTL. 

For the variance gain, the lowest dose is administered regardless of the outcome of the 

gain function since it is typical to start dose-escalation procedures with the lowest 

dose. The observations from the first cohort are then combined with the pseudo-data 

and analysed to obtain posterior estimates for all parameters. The gain function is then 

applied again to choose further doses to administer.

4.4 Escalation Features
In order to carry out the trial efficiently, it should only be continued until a precise 

enough estimate of the log transformed TDrn is produced. The precision is tested by 

computing the ratio of the exponentiated limits of the asymptotic credible interval (Cl) 

of the estimate of log(TD) after each new set of observations is accrued. Other 

methods of testing the precision could be used, such as looking at the standard 

deviation of the linear predictor. The asymptotic Cl does however allow some 

additional inference as to the range of the estimates at the current time, which simpler 

statistics may not. In order to calculate this Cl after i observations, the asymptotic 

variance of the estimate of log(7Dr// ) after i observations is required, which is defined 

as;
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var|log(rD :m )j = v ( iog(rz) m )) I0- '(e,yt, r 2,...,r,)V{\og(TDi:m) ) .

Here, Io~ \0 ,yv y2,—,7s) is the inverted observed information matrix, found by twice 

differentiating the log-likelihood (with respect to each of the parameters) and taking 

the negative values of each derivative. V (\og(TDrri)) is the first derivative vector of

log {T D ^  ) with respect to each of the parameters. For 3 cycles, the derivation of

/ 0-1(#,Xp/ 2>•••’/ * ) ls sh°wn in Appendix 2. The observed information matrix for 3 

cycles is displayed.

Io(0’r l>r2>-,rs) =
k

- 2 > ,  o o
7 = 1

0 0 - Z ^ d o g  dw )
7 = 1 7 = 1

0 0 - £ r , -Z ^ d o g r f , , ,)
,/ = ! 7 = 1

k k  k k

-£ /? ,( l° g ^ 0)) - I ^ d O g ^ , )
V 7 = 1 7 = 1 7 = 1 7 = 1 J

Where:

7  '°8(1 -  *(.,),)" 'o i (lo8d -  *<„i ))2 -  lo8d -  *o>.) {’ “ lo8d "  *< ,»)}R, =
*u>.2

2

„ logQ-^•(J> 2 ) ( l o g ( l  -  7T0->2 )) -  hmnuv  l°g(l -  ̂  j)2) {l -  '°g(l -  />;)}2
(̂7)2

„ nu»*u>3 2 log(l-7r())j ) - / 0)3 (log(l—7r(/)3)) - / (J)3«-(;)3 lo g (l-* (,)3){ l- lo g (l-* „„)}
"J 2

71 ,‘•(7)3

The determinant required to invert the matrix is;
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k  k  j  k \ 2 k  k

d e t ^ t f ^ I ^ X W + ^ + ^ l d o g ^ , ) 2)- Z^Jogdu) Z ^ Z ^
7=1 7=1 7 = ]  7=1 V  7 = 1  J  J  =  ] J = x

^  k  ^  k  k  ^  k  ''\ k  k

-  z * 2iog rf0 , z ^ Z ^ -  Z ^ i o g ^ o ,  Z * , I X
w =l J  ./=1 ./=1 v /=1 J  j =x ./=!

The current modal estimates (as calculated by using maximum likelihood methods but 

incorporating prior information) for each of the parameters are then included in the 

expression for the asymptotic variance in equation (4.5).

6  det

f  r  V 'det+X « ;S « )(Ifi,log rf(„ r
v  e y ' +  e Y i  +  e Y i , I  - I « ,  j

1 1e Yl  +  e Y2 +  e y '> j

■ (Z *3 Z  *1 l0§ dU) Z  R2 l0§ dU) )
[ e y ' + e y > + e r j )

log 4 „ I * , log 4  „ ) + je, X  /?, X  *,  l og rfOJ) ■-
e 1 + e 2 + e

e 2e

+ e r2 +
(Z ^ Z  r 2 '°g du) Z  lo§ du))+

f J T -  ^
v ^ '  + e y > + e y > ;

det+ X  Ri Z  ̂  (Z  * 2  !°g ̂ o)) 
-Z*2

e 2e

| ey1 + er2 +

^ e y> +  e y 2 +

(Z ^ Z  ̂  log </(,-) Z  ̂  ,0S ) " (Z  ̂ i Z  R> ,o§ d( /> Z  * 2  log 4,,)

f  r -------  V
e 3 ' d e t +  Z ^ . Z ^ 2  ( Z ^  l o g d U ) ) 2

K  e y ' +  e Y l  +  e y 3 ---
-- 1

M

( e *  + e r > + e ^

+ e' ~ P Vk ^  +e y> +  < r 2 +  e Yy

e y ' +  e Y l  +  e Y i

(4.5)

The extension of this variance to 5 cycles is shown in Appendix 4.

The square root of this variance is used to calculate the 95% Cl for the estimate of 

log (TDni ) using the following method:
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log (TD,m ) ± 1.96^var ( log(TDtil )J ,

where 1.96 is the 97.5th percentile of the standard Normal distribution.

These limits are then exponentiated to achieve a Cl on the real scale which will be 

strictly greater than 0. When the ratio of these limits fall below a pre-defined

threshold, the estimate of the TDm  is deemed accurate enough and the trial can 

terminate.

The difference between the asymptotic variance used for the precision criterion and 

for the variance gain is that for the precision criterion, only observed values from the 

trial so far are used within the expression for the variance. This then gives a variance 

value associated with what has occurred in the study so far and the current estimate of 

the TDrn . For the variance gain, the additional expected amount of observations for 

all possible sets of dose combinations are incorporated into the expression for the 

variance. This variance value therefore predicts which set of dose combinations will 

reduce the variance the most after the next cohort, so selects that combination 

accordingly for administration.

4.5 Proportional Odds Decision Procedure
An intermediate procedure could be considered to generalise the LRDP to include a 

proportional odds model which can then account for the occurrence of an event in 

different cycles, or indeed the occurrence of no event.

The probability of category 1 occurring, which is probability of a DLT occurring in 

cycle 1, is denoted as p (/)], the probability of category 2 (a DLT occurs in cycle 2), is

pu)2, category 3 is p ij)3( a DLT occurs in cycle 3) and the probability of category 4,
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which is the probability that a DLT does not occur in cycle I, 2 or 3, is pU)4. pU)4 is 

directly dependent on the other categories, so can be defined as 1 -  p u)X ~ p u)2 ~P(m •

The proportional odds model uses the cumulative relationship of an event occurring in 

the first I cycles at dose level ( j)  as defined below:

l + e x p (^ + /? lo g (J0)))

Therefore, the probability of each category occurring can be defined as:

P(j) i = Q(j) i

P ( . i ) 2  =  Q { j ) 2  ~ Q ( J )  1 

P ( J ) 3  =  0 ( 7 ) 3  “  0 ( 7 ) 2  

P ( j ) 4  =  ^  ” 0 ( 7 ) 3 *

Furthermore, unlike the ICS model, dropout between cycles is not accounted for here. 

Therefore further categories need to be defined for the event that a patient drops out 

after cycle 1 or after cycle 2. P(Surviving cycle 1 then drop out)= \ - Q { J ) X , P(Surviving

cycle 2 then drop out)= 1 -Q^i)2 • The likelihood for this model must incorporate all

eventualities and is shown below.

= T [ P u ) i ii" Pu)2j* P u p ij) Q~Pu)  i ~ P u n -  P u ^ ' 1 v - p ^ r j) ^ _ -P(/)i ~ P ( m ) u)
j = 1 <7=1 7 = 1

= r i a , ; w[(Qw2 - q„
7=1

/( , /( 5 and t(J)6 are the number of occurrences of patients surviving all cycles of

therapy, dropping out after surviving one cycle of therapy, and dropping out after 

surviving two cycles of therapy respectively.
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This likelihood is not of a standard form and therefore the existing procedure, which 

makes use of the fact that the Binomial likelihood is conjugate with a Beta prior 

distribution, is now no longer an easy one to use. The combination of a non-standard 

likelihood with any type of prior distribution would be a much more complex process 

and therefore not as attractive as the ICSDP that has been developed.

This approach will not be investigated further and focus will remain on using the ICS 

model. The ICS model naturally accounts for dropouts between cycles and produces a 

likelihood of a standard form which can then be combined with a conjugate prior to 

produce a tractable posterior distribution for the probability of a DLT.
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5. The Interval-Censored Survival 
Decision Procedure: A Simulation 
Study

5.1 A Comparison of 3 Designs

The first simulation study compares the LRDP (as described in Chapter 2) for the 

toxicities observed in the first cycle of therapy (LRDP1), the same LRDP for the 

toxicities observed in the whole trial and the ICSDP (as described in Chapter 4) for 

the toxicities observed in every cycle of therapy for the whole trial. In this instance the 

“whole trial” indicates 3 cycles of therapy. As has been shown in Chapter 3, the 

majority of events occur in the first 3 cycles, so it can be deemed suitable to focus 

investigation on these cycles. The LRDP3 is then the second design used for 

comparison.

Each of the models used in the different procedures consist of intercepts (one intercept 

for the LRDPs and an intercept for every ‘interval’ or cycle in the ICSDP) and the 

coefficient of log(dose). No other covariates (such as patient characteristics e.g. 

gender, age, biomarkers etc.) are included in these models.

5.2 Data Generation Scenarios

5.2.1 Introduction

In order to investigate the different procedures effectively, use of the procedures under 

different scenarios will be investigated. When the analysis model matches the scenario



used for data generation, the results should be good compared to the true results, 

whereas when there is a discrepancy between analysis and generation methods, the 

results should be than observed when the methods match. Since the procedures to be 

compared consist of different analysis models, 3 different data generation methods 

will be adopted. First, the data will be generated by the proportional odds (PO) model, 

which is a generalized version of the LR model, i.e. the LR model is the PO model 

with 2 categories. Second, via the ICS model and third, generation from an 

independent model, which is the PO model but with dose as a covariate rather than 

log(dose). Although the assumptions of this third generation model match those of the 

analysis model in the LRDP, due to the different scale of dose, the models are 

different since the parameters estimated are different. When log(dose) is incorporated, 

the parameters are log odds ratios (log-OR), whereas when dose is used, the 

parameters are odds ratios (OR).

5.2.2 Proportional Odds Model

Simulations performed by Zhou & Whitehead [16] based on data from Ferry et. al 

[19], use the Logistic Regression model with the logit link function as in equation 

(5.1) to generate the data:

log f  p X ci) A= a ]+ j3 log(d \  (5.1)
1-/>,(<*,)

Here p } (c,) is the probability of DLT for the dose on the continuous scale by the end

of cycle 1. The ‘standard’ scenario in [16] has been adopted for the generation in
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which a 1 = —11.8733 and /? = 1.7767, The dose-probability of toxicity curve is 

shown in Figure 5-1:

P ( D L T )  ■ *

* m m
m

1«B u(« <1111 «tM 17*>

Figure 5- 1: True Dose-Response Relationship used for Simulation 

This gives a TD2Q (the target dose corresponding to a 20% chance of DLT) for the

first cycle of therapy (c1) of 366mg/m2 as follows:

TD2 o = exp
log

0.2 
1 —  0.2  j

\  \  
+ 11.8733

1.7767
= 366

When considering multiple cycles of therapy, a higher probability of toxicity needs to 

be considered that incorporates the fact that the probability of toxicity will be 

decreasing with each cycle of therapy survived without a DLT. The overall probability 

of toxicity for dose d ] after 3 cycles is shown in equation (5.2):

Pj (C,) = p n  + P ,2 + Pj, = + *,20 -  +.> + *,30 -  XI -* } ,) , <5'2)

where p jt denotes the unconditional probability of a DLT on doseJ^ during cycle / 

andTzy denotes the conditional probability of a DLT on dose<7; during cycle / . As
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described in Chapter 3, at the target dose, set to be 366mg/m2,

^ 3 6 6 , 3  = 2  ^ 3 6 6 , 2  = ^  ̂ 3 6 6 , 1  • 0 °  assigning ;r3661 = 0.2 , the respective probabilities for

cycles 2 and 3 are 0.1 and 0.05 and therefore p 366(c3) = 0.316. A further assumption

made here is that there is no cumulative dose effect across cycles, that is to say that 

the probability of having a DLT in each cycle is conditionally independent.

The LR model is now generalised to the PO model based on 4 categories of outcomes, 

event in cycle 1, event in cycle 2, event in cycle 3, or no event.

log

log

log

(  P M )  ^

V i / y

A C2

(  Pj(Cl) ^

= a x + p\o%{dj),

= a 2 +/3\og(dj), (5.3)

= a 3 +/?log(d; ),
x~ p A c 3),

where Pj(c,) is the cumulative probability of DLT up to the end of cycle I on dos z d } 

for / = 1,2,3. The final category associated with the PO model is that a DLT does not 

occur. The probability associated with this is simply 1 — Pj(c3) .

The parameters «, and /? associated with the first equation in (5.3) are already 

defined. Replacing Pj(c3) in the third equation of (5.3) with 0.316, which is the TTL 

after 3 cycles of therapy at the target dose 366mg/m2, and keeping the log(dose) 

coefficient ( f t  = 1.7767), a 3 can be calculated.



This gives a 3 - 11.2594. Keeping the same log(dose) coefficient is suitable since the

LR model is a simplified version of the PO model (with 2 categories), therefore, 

extending the LR model to the PO model with more than 2 categories would require 

the same log-OR for the log(dose) coefficient to ensure proportional odds across 

categories is maintained.

The remaining intercept in equation (5.3), a 2, can be found to correspond to the 

probability of toxicity after 2 cycles. Given the relevant conditional probabilities, 

P i 6 6 ) = ^ 366il + ̂ 3 6 6 , 2  0 -  ̂ 3 6 6 ,,) = °*28 • Replacing Pj (c2) with 0.28 and keeping 

p  = 1.7767 allows the calculation of a 2 as follows:

which gives a 2 = —11.4317 .

The values for«p a 2,a 3and the dose response parameter/?, can be used to calculate 

the probability of DLT for each cycle. The overall occurrence of a DLT throughout 

the 3 cycles can be generated from /?(y)(c3) for each dose level j  = 1,..., A:through the

use of a Bernoulli random variable. The possible dose levels are (60, 120, 200, 300, 

420, 630, 945, 1400, 1700) as in [16, 19].

To generate the occurrence of a DLT in a specific cycle from the PO model, four 

categories are defined: 1 = first DLT occurs in cycle 1,2 = first DLT occurs in cycle 

2, 3 = first DLT occurs in cycle 3, 4 = no DLT occurs during the first three cycles.

f ,  (  °-28log --------- - a .

v y

65



The outcome category for a subject on dose d(j) is generated from a Uniform[0,l] 

distribution in the proportions p u)X, p {j)2, p (j)i, \ - / ? (/)3for categories 1-4 respectively.

For data generated under the PO model, the LRDPs should perform better than the 

ICSDP. To show the discrepancy between the data generation and the analysis models 

for the ICSDP, the relationship between the probability of toxicity and the conditional 

probabilities of toxicity for each cycle can be considered. The relationship between 

Pj, , the probability of toxicity in cycle / , and n ]{, the conditional probability of

toxicity in cycle / given that there is no toxicity up to and including cycle / -1  is as 

follows:

71 n = P n > n a  = — ~ = ---   > ' ">-n i s ~ ----- ---- ----- • (5-4)Fj' >2 1 13 1 - p , ( c 2) "  1 -_py(c,_,)

The PO model with parameters a x =-11.8733, a 2 = -11.4317, a 3 = -11.2594,

P  = 1.7767, the Pj (c3) can be found for some pre-specified dose levels d(J) for 

j  = 1,60,300,1500. These dose levels are chosen since the latter 3 are scaled equally. 

By doing this one would hope that any difference between dose levels would be 

consistent between dose 60 and 300, and 300 and 1500. Any deviation from this may 

indicate the model performs even worse when the dose increases. This implies that 

comparison of 300 to 60, and 1500 to 300 is equivalent. A dose of 1 will allow 

estimation of the intercept parameters by eliminating the log(dose) coefficient. The 

unconditional cycle probabilitiesp U)V p (J)2, p (})3are obtained by calculatingp U)(c^),

^(;)(e2)andp0 )(c3) s o tha tp 0)| = p 0 ,(c,), pw = pu)(c2) ~ p u)(ct) and 

p  = p {j)(c3) - p {j)(c2) . The conditional probabilities n{J)l can then be found from 

equation (5.4). The intercept terms for each cycle ( / , ,x 2,^3)can be from obtained
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from/r,, by using the complementary log-log link function

(log (-lo g  (l -  7ijt) j = yt + 6 log (d j ) j where d} = 1. The log hazard ratio (#) is then

calculated for each cycle and dose. The results from doing this are summarised in 

Table 5-1.

PO model: ax = -1 1 .8 7 3 3 , a2 =  -1 1 .4 3 1 7 , a3 = -1 1 .2 5 9 4 , /? = 1.7767

d=60 d=300 d=1500 d=l
P6o(A) = 0.0100  

P6o(c2) =  0 .0154  

P6o(c3) =  0.0183

P30o(ci )  =  0 .1494  

P300 (^2 ) =  0.2145  

P300 (*-3 ) =  0.2450

P i5oo(ci)  =  0.7450  

P i5oo(c2 ) =  0 .8176  

Pisoo(c3) =  0 .8499

Pl(Cl) = 0.000007  

P l(c3) = 0.000011  

P l(c3) = 0.000013

P{j) 1 P(j) ) ’ P(j)2 P(J) ) P(J) (C1 ̂  ’ P(J)1 ~ P(j) (C3 ) P(J)(C2 )
P6o,i =  0 .0100  

P6o,2 =  0 .0054  

P60,3 =  0.00 2 9

P3 0 0 4  =  0 .1494  

P3oo,2 =  0.0651  

P3oo,2 =  0.0305

Pisoo.i =  0 .7540  

P i5oo,2 =  0 .0726  

Pisoo,3 =  0.0233

Pl>1 = 0.000007  

Pi,2  = 0 .000004

p1(3 = 0.000002

Pj2 P(/)3 
Xjl=Pjl’ Xj 2 = . n ^ 0 )3  = .

 ̂ Pj\  ̂ P(J) 1 P(J) 2

7r60,i =  0.0100  

7*60,2 =  0.00 5 5 
7*60,3 =  0.00 2 9

7*300,1 =  0 .1494  

7*300,2 =  0.0765  

7*300,3 =  0 .0384

7*1500,1 =  0 .7540  

7*1500,2 =  0.2951  

7*1500,3 =  0.1344

7r1(1 =  0 .000007  

7*1,2 = 0.000004

7t1j3 =  0 .000002

ICS model: From ttu : y1 = -1 1 .8 6 9 6 , y 2 = -1 2 .4 2 9 2 , Y3 = -1 3 .1 2 2 4

Solve for G from: log(- log(l -  = y, + G log da)
1=1, G =  1 .7755  

1=2, G = 1.7656  

1=3, G = 1.7783

1=1, G = 1.7617  

1=2, 6 = 1.7354  

1=3, G =  1.7082

1=1, 0 = 1.6693  

1=2, G = 1.5559  

1=3, G = 1.5297

Table 5- 1: Checking the simulation met iod does not match the analysis methoc

It can be seen from Table 5-1 that#, the log(HR), is not constant across cycles or 

doses.

5.2.3 Interval-Censored

In order to simulate according to an ICS model, the data must be progressively 

simulated. So toxicities in the first cycle are generated according to a Bernoulli model 

with probability of toxicity n{J)X = p (J)l. Of the remaining patients who do not observe 

a toxicity in cycle 1, the next cycle’s toxicities are simulated with probability of
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P( )2toxicity, K{j)1 = -— -— , and the same for the final cycle. The remaining patients who
1 “  P(j) i

have not experienced a toxic event at dose level d(J), have toxicities generated for

cycle 3 with probability of toxicity, n,  .
1 - P o)I -A/)2

Values for;r0)/ are now found from the model based on the complementary log-log 

link function and are of the form:

7TjX = exp (-exp (fi +01og(</y))), tuj2 = exp(-exp(y2 + 01og (</,)))

Xj3 = exp(-exp(y3 +6>log(j/ ) ) ) .

In order to find appropriate parameter values, the previous scenario adopted from 

Zhou, Whitehead [16] allocates the doses 366 and 799 to a 20% and 50% chance of 

toxicity in cycle 1. Assuming the probability of toxicity halves at the target dose

1 1
(366mg/m ) such that /r366>3 = - ^ 366,2 = “ ^ 3 6 6 ,1 » 4 equations can be set up to provide 

the parameter values. These are:

log ( -  log (l -  ;r366 ,)) = log ( -  log (1 -  0.2)) = yx + 6 log (366), 

log ( -  log (l -  2)) = log ( -  log (1 -  0.1)) = y2 + 9 log (366),

log ( -  log (l -  ̂ 366 3)) = log ( -  log (1 -  0.05)) = y3 + 6 log (366), 

log ( -  log (l -  /r799,)) = log ( -  log (1 -  0.5)) = y, + 9 log (799).

(5.5)

The values obtained from solving these equations are yx = -10.0694, y2 = -10.8198, 

y3 =-11.5396 and 0 = 1.4518.

It is again important to show that the data simulated from this model does not have a 

constant log odds ratio (log OR) across doses (as it would for the logistic regression 

model) so that one can see how the logistic regression model works when the model
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assumption is incorrect. The approach utilised in section 5.2.2 is applied in reverse 

here. First the x (J)l are calculated for the dose levels (1,60,300,1500). The

unconditional probabilitiesp {j)l are then computed from rearranging equation (5.4).

Finally the p(J){ct) are calculated as in equation (5.2). The intercept terms for a x andor3

are calculated from the logit link function log ~ a i + P  l°g(^< /)) • The

intercept term a 2 is not of as much interest since the LRDP1 and LRDP3 analyse 

results after 1 and 3 cycles, so the log OR (/?) will only be estimated withc^ and«3. 

The results are summarised below.

ICS m odel: =  -1 0 .0 6 9 4 , y 2 =  -1 0 .8 1 9 8 , y 3 =  -1 1 .5 3 9 6 , 6  =  1.4518

d = 6 0 d = 3 0 0 d = 1 5 0 0 d = l

7t6o,i =  0 .0160  

7*60,2 =  0.0 0 76 

7*60,3 =  0.00 3 7

7*300,1 =  0.1540  

7*300,2 =  0.0759  

7*300,3 =  0.0377

7*1500,1 =  0 .8227  

7*1500,2 =  0.5581  

7*1500,3 =  0.3281

n lt l  =  0 .000042  

7t12 =  0 .000020  

7r13 =  0 .000009

Pj 2  P j l  
* i l = P , l '  * J 2 =  . ' * >  =

1 l - P , 2 ~ P f l

P60,i =  0.0160  

Vbo,2 =  0.0075  

P60,3 =  0.0037

P3oo,i =  0.1540  

P300.2 =  0.0897  

P300.2 =  0.04 82

P i5oo,i =  0 .8227  

P i5oo,2 =  0.0990  

P i5oo,3 =  0.0257

plit =  0 .000042

pa2 =  0 .000020

Pi,3 =  0 .000009

P ( j ) ( C 1 ̂  ~ P(J) 1 ’ P(J) ( C2  ̂ P(J)2 +  Ay)l ’ P( j ) ) P{j )2 +  P( j )  2 +  P{j )\

P6o (c i) =  0.0160  

P6o(ci) =  0.0235  

Peo(c3) =  0.0271

P30o(ci) =  0.1540  

P300  (*̂ 2 ) =  0.2437  

P300 (*̂ 3 ) =  0.2919

P i5oo(ci)  — 0.8227  

Pi5oo(c2 ) =  0 .9217  

Pisoo(c3) =  0 .9474

P l(Cl) =  0 .000042  

P i(c2) =  0 .000062  

P l(c3) =  0 .000071

Table 5- 2: Checking the simulation method does not match the analysis method.
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PO model: From P iC cO ,?^): aa = -10.0778, a3 = -9.5528

Solve for 0 from: log ^ } = a, +01ogd(y)

/ =  1,/? =  1 .4554  / =  1 ,0  =  1.4682 I =  1 ,0  =  1 .5878

Z =  3 ,0  =  1 .4586  / =  3 ,0  =  1 .5195  1 =  3 ,0  =  1 .7015

Table 5-2 cont.: Checking the simulation method does not match the analysis method.

As can be seen in Table 5-2, the log OR is not constant across doses or cycles.

5.2.4 Proportional Odds with dose as covariate

A further model used to check for robustness is the proportional odds model again, but 

this time using dose as a covariate rather than log-dose.

The generation of events according to the proportional odds model with dose as a

# 2
covariate rather than log-dose is similar to section 5.2.2. The doses 366 and 799mg/m

are set to correspond to probabilities of toxicity 0.2 and 0.5 respectively for the first 

cycle and the conditional probabilities halve at the dose 366 for successive cycles. 

Therefore the following equations allow solving for the intercept, ex, and the dose 

response param eter^:

These can be solved to give ex = -2.5575 and </> = 0.0032. The intercepts for the 

cumulative probability of toxicity up to cycle 2 and 3 are also found from including 

the value of^  in the following equations:
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log

log

P366 ( C 2 )

^366(̂ 3 )
.1_

= log

= log

0.28
1-0.28

0.316
1-0.316

= e2 + 366 x (0.0032),

= + 366 x (0.0032).

This gives e2 = -2.1157 and £3 = -1.9434.

To check that the interpretation of the parameter values is not consistent with either of 

the analysis methods, the P y fa )  for the doses (1,60,300,1500) are calculated from the

values for £x,£2,£3,(f>. First these can be used to calculate the intercept terms a ^ a 3 

associated with the PO model with log(dose) as a covariate, and then the log OR /? 

can be calculated associated with cycles 1 and 3, and across dose levels. The 

unconditional cycle probabilities p (j)l are also calculated as in equation (5.2) which

are then used to calculate the conditional probabilities n {J)l as in equation (5.4). These 

are then used to calculate the intercept terms f°r ICS model which are

then used to calculate #for each cycle and dose level.

Table 5-3 shows how the estimates change for the different models.

PO with dose.-fTi = -2 .5 5 7 5 ,  e2 = -2 .1 1 5 7 ,  e3 = - 1 .9 4 3 4 ,0  =  0 .0032

d=60 d=300 d = l500 d=l

Peo(Ci) =  0 .0859  

P e o fe )  =  0 .1 2 7 4  

p60(c3) =  0 .1479

P 3oo(ci )  =  0 .1684  

P 3 0 0  (^2 ) =  0 .2 3 9 4  

P3oo(c3) =  0 .2722

P i5oo(ci )  =  0 .9041  

Pisoo (^2 )  =  0 .9361  

P i5 oo(c3 ) =  0 .9457

=  0 .0722  

P l(c2) =  0 .1079  

P l(c3) =  0 .1256

PO with log(dose): From p ^ cO , p2 (c2) ,P i( c 3) : a 1 = -2 .5 5 3 4 ,  a2 = -2 .1 1 2 4 ,
a 3 =  - 1 .9 4 0 4

Solve for (3 from: log
PO)(q )

=  a , +  /? lo g d 0)

Table 5-3: Checking the simulation method does not match the analysis methods.
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1 =  1 , 0  =  0.0461 
1 =  3,13 =  0.0462

I =  1,(3 =  0.1677 
1 =  3(3 =  0.1678

I =  1,(3 =  0.6560 
I =  3,(3 =  0.6560

P(.i) 1 P ( j )  (C1) ’ P { i) 2 P(J) ( C2 ) P ( j ) ) ’ P { j )  3 “  P ( j )  (C3 ) P { j )  ( c 2 )

Pe o,i = 0.0859 
P60,2 = 0.0415 
P60,3 = 0.0205

P 300,1 = 0.1684 
P300,2 = 0.0710 
P3oo,3 = 0.0328

Pi5oo,i = 0.9041 
Pi5oo,2 = 0.0320 
Pi5oo,3 = 0.0096

p l t  =  0.0722 
Pi,2 = 0.0357 
p1)3 = 0.0177

P  j l  P u )  3 
^ > = / V ^ , 2 =  ' ^0)3 =

1 P j \  1 P ( j )  1 P(j)2

n 601 =  0.0859 
^60,2 = 0.0454 
6̂0,3 = 0.0234

^300,1 = 0.1684 
^300,2 = 0.0854 
^300,3 = 0.0431

^1500,1 = 0.9041 
^1500,2 = 0.3337 
^1500,3 = 0.1502

7Ti i = 0.0722 
n 12 =  0.0385 
7t13 = 0.0198

Interval-Censored:From n u :Y\  =  -2.5911,y2 = -3.2375,y 3 =  -3.9121
Solve for G from: log(- log(l -  tt0)/)) = yt + 6  log d0)

6 = 0.0442 
G = 0.0411 
G = 0.0413

G =  0.1579 
G =  0.1440 
6 = 0.1677

G =  0.4708 
G =  0.3194 
G =  0.2867

Table 5-3 cont.: Checking the simulation method does not match the analysis
methods.

The values for ft  are generally the same within dose levels across cycles, but are 

different across dose levels. The values for #are different across dose and cycles, with 

the difference across cycles increasing with dose.

5.2.5 Differences

Figures 5-2 to 5-6 show graphically the differences between data generated by one 

model and analysed by another. Each figure shows the dose-response curve for 1000 

generated trials of 60 patients for each of the dose levels (60, 120, 200, 300, 420, 630, 

945, 1400 and 1700) over 3 cycles. All of the generated data is then analysed by each 

possible models to estimate P(DLT) for doses on a continuous scale.

72



The dashed line represents the proportional odds model, either with 1 cycle or 3 cycles 

(defined on the graph). The solid line depicts the Interval-Censored Survival model 

and the dotted line displays the proportional odds model with dose as a covariate.
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Figure 5- 2: Data simulated by PO model with log dose for 3 cyc les , analysed
by ICS model for 3 cycles .
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Figure 5- 3: Data simulated by ICS model for 3 cycles , analysed by LR model
with log dose for 3 cyc les .
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Figure 5- 4: Data simulated by ICS model for 1 cyc le  and analysed by LR for 1
cycle  .
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Figure 5- 5: Data simulated by PO model with dose for 3 cy c les  , analysed by ICS

m odel and LR with log d ose for 3 cycles.
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Figure 5- 6: Data simulated by PO model with dose —  for 1 cycle, analysed by LR
for 1 cy c le  .

Figure 5-2 shows that when the data is generated by a PO model with log dose as a 

covariate (for 3 cycles), the ICS model should produce an estimate o f the TD that is 

slightly overestimated. Since the PO model assumes a common log odds ratio for 

different cycles, the estimate o f the TD when analysed by a LR model with one cycle 

should produce an accurate result.

Figure 5-3 shows that when the data is generated by an ICS model for 3 cycles, the 

estimate o f the TD when the data is analysed by the LR model with log dose for 3 

cycles is slightly underestimated. Figure 5-4 shows that when the first cycle (when 

generated by an ICS model) is analysed by the LR model with log dose for 1 cycle, 

the estimates are very accurate. This is because the ICS model generates sequentially 

with a probability o f DLT being 20% for the TD in cycle 1. This is the same 

probability under investigation for the true LR model with 1 cycle.

Figure 5-5 shows that when the generation method is a PO model with dose as a 

covariate for 3 cycles, the analysis methods are both incorrect and the estimates o f the 

TD are severely underestimated when analysed by the LR model with log dose for 3

75



cycles and the ICS model for 3 cycles, particularly for the LR model with log dose for 

3 cycles. Figure 5-6 shows the dose response curve when the analysis of the generated 

data is conducted by an LR model with log dose for 1 cycle. Again the estimate of the 

TD tends to be underestimated.

These figures show that the generation by the PO model with dose as a covariate is the 

biggest test of robustness since the analysis models are so severely mismatched. The 

ICS model does seem to fit the data generated by the PO model with dose as a 

covariate slightly better, at least the dose corresponding to the TTL of 31.6% is closer 

to 366mg/m when analysed by the ICS model rather than the PO model with 

log(dose). This is confirmed by Table 5-3, where the value for 0 ,  the log-HR as 

calculated for the ICS model, is closer to the true value of the log-OR = 0.0032) at

all dose levels and cycles than the log-OR is as calculated for the PO model. This 

suggests there is less change when the parameter inference changes from log-OR to 

log-HR, than vice versa. While another model could be investigated to use for the data 

generation that is equally biased for analyses by both the ICS model and PO model, 

the data generation scenarios chosen cover a variety of biases which favour different 

analysis models in different circumstances. Therefore acknowledging the expected 

differences within the results from the data generation scenarios adopted should give a 

wide enough overview of how the procedures adopting different analysis models fare 

under model misspecification.

5.3 Pseudo-data Prior Information

Prior information is created for the LRDP 1 based on the pseudo data used in Zhou, 

Whitehead [16] as shown in Table 5-4.
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Procedure,
TTL

Dose d(j) n 0Pan
, » dn d 
t(i) ~n(i) P(i)

LRDP1
TTL-0.2

dj 0.2 3 0.6

dk 0.5 3 1.5
Table 5- 4: Pseudo-data for the LRDP1

The first dose level ( d (]), 60mg/m2) is given /(1)° toxicities in «(1)°patients where 

t 0 /  .
(1) /  o is the required probability of toxicity under investigation. In [16], /(1)° = 0.6
/  W(D

and «(l)° = 3 give rise to a probability of DLT=0.2. Further pseudo data lets the highest 

dose level ( d(k), 1700mg/m2), correspond to a TD50 so t{k)° =1.5 and«(i)° = 3.

Analysing this cautious prior and using the patient gain causes the lowest dose level to 

be assigned to the first cohort (which is usually required in Phase I Trials). This 

simulation study investigates a TD20 for the first cycle also so the same pseudo-data 

in Table 5-4 is used for the LRDP1. This pseudo data corresponds to independent Beta 

priors being put on the probability of DLT for dose levels d(J), j  = 1 as described

in Chapter 4.2. Using this prior allows the data (which creates a Binomial likelihood) 

to be combined with the data easily since the prior is conjugate.

Similar pseudo data is created for the LRDP3. This simulation study investigates a

t °
TD31.6 after 3 cycles, so in this case - ^ t- = 0.316. This data is presented in Table 5-

" ( i )

5.

Procedure, Dose d(j) P u f a ) "(,) ' o ) = A > 3K )
TTL

LRDP3 di 0.316 3 0.948
TTL=0.316 dk 0.649 3 1.947

Table 5- 5: Pseudo-data for the LRDP3.
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For the lowest dose (60mg/m2),/(1)° = 0.948 while «(1)° remains at 3. For the highest

dose, data from the first cycle should cause a 50% probability of toxicity. The TD50 

in cycle 1 is the dose 799. Given the parameter values found for the PO model after 3 

cycles ( a 3 = -11 .2594 , = 1.7767), the dose 799 produces a probability of toxicity of

0.649. This overall probability is then assigned to the highest dose ( d{k)) of 

1700mg/m2. n(k)° is again set to 3 and t(k)° is found to be 1.947.

Pseudo data for the ICSDP is created in the same way but sequentially. The 

probability of toxicity for the first cycle for the lowest and highest doses ( j  = \ ,k  = 60, 

2  #

1700mg/m ) is set to be the same as for the logistic regression with one cycle 

corresponding to doses 366 and 799mg/m2. For cycle 1, «(])° = 3 , andf(1)° is the same

as for the logistic regression model for the first cycle ( /(1)1° = 0.6, tmk° = 1.5).

According to the ICS model, ;r366 3 = ^ /r366 2 = ^ 366,i where /r366a = p 266l = 0.2. These

then correspond to;r(1)10,7r(1)20 and;r(1)3° . Furthermore, /r799 I = p 199x = 0.5 which then 

corresponds to 7t{k)X .

/r^^0,;r(*)3 °can be found from the parameters obtained from the ICS model by solving

'  2

the equations (5.5) with the lowest and highest dose levels included (60, 1700mg/m ) 

rather than the true TD20,TD50 (366,799mg/m2). This produces the following

parameter values yx =-2.8877, y2° = -3.6381,y® = -4 .3579 and 6° =0.3389.

Based on these 7T( )/the pseudo-data in Table 5-6 is developed.
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Procedure,
TTL

Dose d(J) < ) / < )/ t0 TT0
*(j)l ~ nU)ln{j)i

ICSDP
TTL-0.316

d{{), cycle 1 0.2 3 0.6

d(l), cycle 2 0.1 2.4 0.24

d(l), cycle 3 0.05 2.16 0.108

d{k), cycle 1 0.5 3 1.5

d{k), cycle 2 0.2791 1.5 0.41865

d (k), cycle 3 0.1473 1.08135 0.1593

Table 5- 6: 5seudo-data for the ICSDP.

The number of patients in each cycle is now dependent on how many DLTs have 

occurred in the previous cycles, since the probabilities are conditional. So 

n(j)i = nU)J-\ ~ h m - 1  ’ where«(7)/ and/( -}/ are the number of patients and the number of 

toxicities on dose level d(j) during cycle /.  So the pseudo-data for k {j)X correspond to 

independent Beta distributions, but the distributions ;r( .)2, /r( .)3 are independent Beta

distributions across doses, but dependent on previous cycles. These values once again 

result in the escalation choosing the lowest available dose (60) for the first dose to be 

administered when using the patient gain function. While in the ICSDP the actual total 

number of observations is greater than for the LRDPs, given the increased observation 

period for the ICSDP the increased amount of prior information is expected.

5.4 Escalation Procedure

For each of the 3 procedures, the dose escalation procedure begins by analysing the 

pseudo data (PROC GENMOD in SAS with the ‘logit’ link function for the 2 LRDPs 

and the ‘cloglog’ link function for the ICSDP). This produces parameter estimates 

which are used within the respective link functions (equations (2.2) and (4.2)) to 

produce an estimate for the target dose (TD)  as in equation (2.3) or (4.3) for the 

LRDPs or ICSDP respectively, and p {j)(c3) for each dose level d(J) as in equation

(5.2). The dose level d(J) with p U)(c3) closest to the required probability of toxicity
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{TTL)  is administered, which is equal to the lowest available dose (60mg/m2). This is 

the patient gain as defined in Chapter 2, which will be used for this simulation study.

r

&>(j) ~
T T T - p lU){c,)

The dose that gives the highest gain is selected and administered to the next cohort of 

patients. The presence or absence of DLTs for each new patient is then observed and 

appended to the pseudo-data and analysed again. The model parameters are re- 

estimated from this analysis and used to recalculate p 0)(c3) for each dose level d(J). In

the perfect case, a new cohort will begin their first cycle of therapy at the same time 

the preceding cohort begins the second cycle of therapy, and the cohort prior to that; 

their third cycle of therapy. This is the method adopted for the simulation procedure 

here for simplicity, whilst in practice, it may be reasonable to assume that there is 

some difference between actual dates of therapy. This method is also adopted for all 

future simulations.

The procedure continues until one of three criteria is met. Either the safety rule is 

violated which is when the probability of toxicity associated with the chosen dose 

exceeds some threshold. For the TD20 this threshold is 0.3. The dose that corresponds 

to this probability of toxicity is found to be 495.659mg/m2 from the ‘standard’ 

scenario in [16]. Using this dose to calculate the probability of toxicity after 3 cycles 

(with a 3 = 11.2594 and /? = 1.7767) shows that the unsafe probability of toxicity is

0.4419. Therefore the safety rule for the procedures that are looking for the TD31.6 

(LRDP3 and ICSDP) will stop the trial if the dose to be administered has a probability 

of toxicity greater than 0.44. The other criteria are if the precision stopping rule is met
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or the trial has recruited 20 cohorts of 3 patients (20 cohorts is decided to be the 

longest a trial should be).

The precision stopping rule is associated with the ratio of the limits of the credible 

interval for the TD. Once this ratio is below a certain threshold (in this case 4), the 

estimate of the TD is deemed accurate enough for the escalation to stop. The credible 

intervals are calculated after every new cohort of information is recorded. For the 

LRDP1 this is after every cohort has completed their first cycle of therapy. For the 

LRDP3 this is after a cohort has completed 3 cycles of therapy and for the ICSDP this 

is after every cycle for every cohort of patients. The credible intervals for the log TD 

are calculated by finding the asymptotic variance of the data so far as defined in 

equation (4.5) in Chapter 4.4. The 2.5th and 97.5th percentile points of the Normal 

distribution with the mean being the current estimate of the log(TD) and the standard 

deviation being the square root of the asymptotic variance of log(TD) then form the 

credible interval limits. This is all done on the log scale to ensure that the final 

(exponentiated) estimates are all positive. Once the upper and lower limits of the 

credible interval are found they are exponentiated and the ratio of the two is taken. 

This ratio (R) is the value that is used for the stopping rule, if R is below a certain 

threshold (R=4) the escalation is deemed accurate enough to stop. 4 was selected after 

some investigation as it provided an estimate of the TD for the LRDP 1 within a 

clinically relevant range (366 ±(0.3 *366)) on average over 80% of the time and 

produced these results on average within 17 cohorts, which is less than the maximum 

of 20 cohorts.
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5.5 Results
Once the trial has completed, the estimate of the TD is recorded along with the length 

of the trial, defined as the cohort number of the last patient whose data was included 

in the estimation of the TD.

These simulated trials have been repeated 1000 times and the mean estimate of the 

TD is found along with the mean trial length for each procedure. The variability of the 

TD estimates is shown by the 95% reference range (2.5 and 97.5 percentiles of the 

estimated TD). The ratio of the reference range limits shows the precision of the 

estimates. The minimum and maximum values are also recorded to show the extreme 

values that the estimates may take.

The proportion of trials that produced an estimate within 30% of the true TD 

(366mg/m2) is also displayed. This interval is (256.2, 475.8). This was conducted to 

show the proportion of times the trial estimated a dose that was a balance between 

being efficacious and toxic.

5.5.1 Generated by the Proportional Odds Model with log(dose)
Results from the LRDP1, LRDP3 and ICSDP when the data are generated from a PO

model with log(dose) as a covariate.

Design LRDP1 LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 371.9 16.92 360.0 14.87 381.5 14.67

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(227.9,
554.1)

2.43

(232.2,
538.8)

2.32

(247.7,
575.3)

2.32
Min 169.4 8 1.3 1 178.4 8
Max 750.3 20 714.1 20 742.2 20

% in (TD+30%) 82.2 85.3 83.0
Precision Safety Max 

No.
73.5 0.0 | 26.5 89.6 0.1 10.3 93.5 0.0 6.5

Table 5- 7: Results from 1000 trials, generated by the PO model and escalated with
the patient gain. TD=366mg/m2.
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Table 5-7 shows that when the data are generated by the PO model with log(dose) as a 

covariate for 3 cycles, the best estimates of the TD are produced by the LRDP3, which 

is to be expected since the analysis models matches the generation model. The 

estimates produced by the ICSDP are slightly overestimated which is to be expected 

from Figure 5-2. The precision of the estimate is best for the LRDP3 and the ICSDP 

and the proportion of estimates within a 30% limit is highest for the LRDP3, but the 

ICSDP and LRDP1 also produce similar results. The precision associated with the 

estimates, which is shown by the ratio of the reference range limits, is similar for the 

LRDP3 and ICSDP but worst for the LRDP1 and the range of estimates is also larger 

for the LRDP1 than the ICSDP. The LRDP3 has an extreme minimum estimate (1.3) 

due to the occurrence of an event within cohort 1. Since no other information was 

known about the dose-response relationship then, the estimate of the TD produced 

was extremely low and the trial was stopped for safety. This actual event occurred in a 

later cycle which is why the other two procedures are not as affected by it. The 

LRDP1 did not observe this event and the ICSDP had other data on other doses to use 

with this occurrence so that it could be put into perspective.

The average number of cohorts was lowest for the ICSDP (14.67) due to the increased 

amount of information obtained. Although the average number of cohorts is quite low 

for the LRDP3, the actual average length of these trials would be 14.87 x 3 =  44.61 

cycles due to having to wait for 3 cycles before starting a new cohort. The length of 

the trials when using the ICSDP and LRDP1 is equal to the number o f cohorts 

included since each new cohort is recruited after every cycle. The LRDP1 required the 

most number of patients on average (16.92x3 = 50.76) and the design which requires 

the fewest number of patients is the ICSDP (14.67x3 = 44.01), but the LRDP3 is very 

similar (14.87x3 = 44.61).



The simulated trials stop mostly due to the precision rule (particularly for the ICSDP) 

with most others stopping due to reaching the maximum number of cohorts. The 

LRDP1 produced the largest number of trials continuing until the maximum cohort 

had been recruited (20 cohorts). Furthermore, of the 73.5% achieving precision, 

approximately 7% achieve precision after recruiting the 20th cohort, so actually over 

34% of the simulated trials last for the maximum amount of time. The ICSDP also has 

some trials achieving precision in the final cohort, but only approximately 3%, so less 

than 10% of the trials last the maximum amount of time. For the LRDP3, 

approximately 90% achieve precision, with approximately 3% achieving it in cohort 

20 so nearly 14% of trials last the maximum amount of time.

Although the analysis is done to compute a TD on the continuous scale, in reality the 

discrete dose levels would be recommended for further investigations. The 

distribution of these recommended dose levels are shown in Figure 5-7.
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Figure 5- 7: Distribution of recommended doses for different procedures when the 
data is generated by the PO model with log(dose), a) LRDP l, b) LRDP3, c) ICSDP
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Figure 5-7 cont: Distribution of recommended doses for different procedures when the 
data is generated by the PO model with log(dose), a) LRDP1, b) LRDP3, c) ICSDP

Doses 300 and 420 are nearly equally distant from the TD of 366 with 420 being 

slightly closer. Figure 5-7 shows that the ICSDP has the highest proportion o f dose 

levels recommended nearest the TD. The LRDP3 is the only procedure that 

recommends a dose that is not within 2 dose levels either side o f the true TD, and that 

dose is the lowest dose. The proportion of trials that estimated the true TD within a 

30% limit was greatest for the LRDP3, which was similar to the ICSDP. The LRDP1 

estimated within this limit least (82% of the time), explaining the larger range o f  

estimates and poorer consistency o f estimates. This is clear from Figure 5-7 since the 

dose levels 200 and 630 are concluded more frequently for the LRDP1, which are 

outside o f the 30% limit.
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To ensure 1000 simulations is enough to obtain a good idea of the performance of the 

procedures, particularly the ICSDP, the standard error associated with the mean 

estimated TD can be summarized for each procedure. This involves calculating the 

standard deviation of the estimated TDs and dividing by the square root of the number 

of simulated trials (n=1000). For the LRDP1, se = 2.805, for the LRDP3, se -  2.397 

and for the ICSDP, se = 2.647. These values are very small when compared to the 

mean estimated TDs, and very similar across procedures, suggesting that there is 

sufficient precision in the estimation of TDs from 1000 simulated trials for each of the 

procedures.

5.5.2 Generated by the Interval-Censored Survival Model
Results when the data are generated from the ICS model.

Design LRDP1 LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 371.3 17.13 354.1 14.80 371.2 15.02

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(217.7,
589.6)

2.71

(226.3,
523.6)

2.31

(243.2,
561.0)

2.31
Min 144.3 8 1.3 1 186.9 7
Max 994.6 2 0 683.7 2 0 690.4 2 0

% in (TD+30%) 78.5 83.4 85.5
Precision Safety Max 

No.
90.6 3.6 5.8 89.3 0.6 10.1 90.4 0.0 9.6

Table 5- 8 : Results from 1000 trials, generated by the ICS model and escalated with
'y

the patient gain. TD=366mg/m .

When data are generated from the ICS model, the LRDP1 and ICSDP produce almost 

identical estimates of the TD. However the precision of the ICSDP estimate is better 

and it is achieved on average over 2 cohorts earlier. This is down to the fact that the 

data generation model matches the analysis model. The LRDP1 produces similar 

estimates of the TD to the ICSDP since the ICS model generates data sequentially

based on a 20% chance of DLT in cycle 1 which is required for the LRDP1. Although
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there is some difference between the actual models (as shown in Figure 5-4), this 

difference is very small and simulation error could explain why the estimate is so 

good. The LRDP3 produces slightly worse estimates here. The precision of the TD 

estimates is again very good for the LRDP3 and the ICSDP, but the precision of the 

estimates produced by the LRDP1 is worse than when the data was generated by the 

PO model.

The average number of cohorts is largest for the LRDP1 (17.13) and has increased 

from when the data was simulated by the PO model. The average number of cohorts 

required for the LRDP3 is very similar to previously (14.80 vs. 14.67) and requires the 

fewest of the 3 procedures. The associated length of the trial would then be 14.80 x 

3 =  44.4 cycles compared to the other procedures which require one cycle per cohort. 

The ICSDP therefore takes the shortest amount of time (15.02 cycles) and requires 

fewer patients than the LRDP1 (15.02x3 = 45.06vs. 17.13x3 = 51.39).

The LRDP3 stops for precision the majority of the time but does stop for safety in a 

very few cases. The trials stop for precision most often for the LRDP1 however the 

ICSDP stops for precision almost the same amount (90.6% vs. 90.4%). However, 

nearly 30% of the 90.6% stopping for precision with the LRDP1 achieve precision 

after cohort 20 has been recruited. This suggests that over 35% of the trials actually 

last the maximum trial length. This is in contrast to the ICSDP, where of the 90.4% 

stopping for precision, only 3.1% achieve precision after cohort 20. Just over 12% 

therefore require lasting the maximum amount of time. The LRDP3 has very 

consistent results to when the data was simulated by the PO model with regards to 

stopping for precision or reaching the maximum cohort. The LRDP1 now has to stop 

for safety reasons nearly 4% of the time, the LRDP3 less than 1% and the ICSDP not 

at all.
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The distribution o f recommended dose levels at the end of each trial is shown in 

Figure 5-8.
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Figure 5- 8: Distribution of doses recommended for different procedures when the 
data is generated by the ICS model, a) LRDP1, b) LRDP3, c) ICSDP.

89



FREQUENCY C)
500 -

4 0 0  

3 0 0  

200 

100 

0
6 0  1 2 0  2 0 0  3 0 0  4 2 0  6 3 0  9 4 5  1 4 0 0  1 7 0 0

d o se le v e l MIDPOINT

Figure 5-8 cont.: Distribution of doses recommended for different procedures when 
the data is generated by the ICS model, a) LRDP1, b) LRDP3, c) ICSDP.

Figure 5-8 shows that the ICSDP is the only procedure that does not recommend a 

dose level outside o f the two dose levels that are either side o f the TD and 

recommends the two doses closest to the TD (300, 420) the most frequently. The 

LRDP3 is similar to Figure 5-7 and the only other dose recommended is the lowest 

dose (60). The LRDPl recommends up to three doses either side o f the true TD and 

therefore recommends the two doses closest to the TD least compared to the other 

procedures. This corresponds to the precision shown in Table 5-8. The range o f  the 

estimates is much larger for the LRDPl with fewer estimates lying within a 30% limit 

o f the true TD. The LRDP3 still has an extreme minimum estimate o f the TD due to 

the same reasons explained in section 5.5.1, and the proportion o f estimates in the 

30% limit o f the TD is reduced now for the LRDP3 (83.4% vs. 85.3%). The ICSDP
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has the highest proportion of estimates within a 30% limit (85.5%), which can be seen 

from Figure 5-8.

The standard errors associated with the mean estimated TDs are se = 3.050 for the 

LRDP1, se = 2.513 for the LRDP3 and se = 2.525 for the ICSDP. Once again these 

are similar to those observed when the data was generated by the PO model with 

log(dose) as a covariate and sufficiently small compared to the mean estimated TDs to 

conclude that 1 0 0 0  simulations is sufficient.

5.5.3 Generated by the Proportional Odds Model with dose

The simulations were repeated for the data generated by the PO model with dose as a

covariate to provide a bigger test for the different procedures since the data generation 

model does not match any of the analysis models. As can be seen in Figures 5-5 and 

5-6, all estimates are expected to be underestimated, particularly those from the 

LRDP3.

The results are shown in Table 5-9.

Design LRDPl LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 340.4 17.61 321.1 16.00 347.1 17.01

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(152.5,
553.2)

3.63

(1.3,
562.0)

419.4

(154.9,
576.6)

3.72
Min 52.6 3 1.3 1 6 . 6 3
Max 750.4 2 0 1250.4 2 0 1062.7 2 0

% in (TD+30%) 6 6 . 0 61.7 6 8 . 0

Precision Safety Max 
No.

64.1 17.3 18.7 60.3 6.0 33.7 62.4 0.1 37.6

Table 5- 9: Results from 1000 trials, simulated by the PO model with dose and 
escalated with the patient gain. TD=366mg/m2.

The results show that the ICSDP produces the best estimate of the TD although the 

precision is slightly better for the estimates produced by the LRDP 1. The results agree
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with Figures 5-5 and 5-6, with the best estimates being produced by the ICSDP 

although they are still underestimated. The LRDP3 produces much worse estimates.

The average number of cohorts required by the ICSDP is slightly higher compared to 

results in Table 5-7 and 5-8 (17.01 vs. 14,67, 15.02), but is still slightly less than that 

for the LRDPl (17.13). The ICSDP therefore leads to the shortest trial length, despite 

the LRDP3 requiring fewer cohorts (14.8 cohorts).

The precision associated with the estimates is best for the LRDPl with a similar result 

for the ICSDP, but is very poor for the LRDP3. The range of estimates for the LRDP3 

(1.34, 1250.36) is extremely large, explaining the lack of precision.

The LRDPl stopped due to safety reasons over 17% of the time. Figure 5-6 shows that 

the slope o f the curve for the LRDPl is much steeper than that for the true curve (PO 

with dose as a covariate). This suggests that lower doses correspond to a higher 

probability of DLT so the dose that is recommended by the model would cause less 

DLTs than expected (since the generation model has a lower P(DLT) for these doses). 

This would then cause the escalation to continue with an even higher dose level which 

might then be too toxic and cause the procedure to stop. Otherwise, the LRDPl 

stopped for precision 64.1% of the time, with over 27% of those achieving precision 

once cohort 20 had been administered, so over 45% of the trials reached the maximum 

trial length allowed. The LRDP3 also stops for safety reasons an increased amount 

(over 6%) and only 60.28% stop for precision. Of those 60.28% an extra 4% achieve 

precision once cohort 20 has been recruited so just under 40% of trials last the 

maximum length. The ICSDP stops for safety 0.1% of the time and stops for precision 

over 62% of the time. Nearly 6% of the 62% achieve precision after cohort 20 has 

begun so over 43% of the trials last the maximum amount of time. Figure 5-5 shows
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that the ICS curve is not as steep near the true TD as the LR curves. Combined with 

the addition o f extra information at each cycle, this stops the procedure from 

recommending doses that are too high even though the true dose-response relationship 

will produce slightly less DLTs at the recommended doses than expected.

The distribution o f recommended dose levels is shown in Figure 5-9.
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Figure 5- 9: Distribution of recommended doses for different procedures when the 
data is generated by the PO model with dose, a) LRDPl, b) LRDP3, c) ICSDP.

93



FREQUENCY
4 0 0

6 0  1 2 0  2 0 0  3 0 0  4 2 0  6 3 0  9 4 5  1 4 0 0  1 7 0 0

doselevel MIDPOINT

FREQUENCY C )
4 0 0  -

6 0  1 2 0  2 0 0  3 0 0  4 2 0  6 3 0  9 4 5  1 4 0 0  1 7 0 0

doselevel MIDPOINT

Figure 5-9 cont.: Distribution o f recommended doses for different procedures when 
the data is generated by the PO model with dose, a) LRDPl, b) LRDP3, c) ICSDP.
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All three procedures have a larger range of recommended doses, when the data 

generation model does not match the analysis model. The ICSDP still has the highest 

proportion of final recommendations given to the two doses closest to the TD which 

corresponds to the proportion of trials with TD estimates within a 30% limit of the 

true TD being highest for the ICSDP (68.0%). The proportion within a 30% limit is 

most reduced for the LRDP3 (61.7%) which corresponds to the distribution shown in 

Figure 5-9. Generally the shape of the distribution of recommended doses is similar, 

but the LRDP3 now recommends the dose 60 more often.

Under this extreme scenario, the ICSDP appears to be the best compromise for a 

procedure. The TD estimate is most accurate, with similar precision to that seen with 

the LRDPl and the trial length (1 cycle per cohort implies the trial would last 17.01 

cycles) is shortest again. The trials are also safer since the safety rule is hardly ever 

used, especially considering it is used so much more frequently in the other two 

procedures here.

The standard errors associated with the mean estimated TDs from each of the 

procedures are se = 3.361 for the LRD Pl, se = 4.351 for the LRDP3 and se = 3.564 for 

the ICSDP. While slightly inflated when compared to the previous data generation 

methods, these standard errors are still very small compared to the mean estimated 

TDs suggesting that while each of the procedures produce more variable results here, 

1000 simulations is still sufficient to conclude precision with the estimated TDs.

5.6 Discussion and Investigation of Results

It seems that the LRDPl is most susceptible to misspecification of the analysis model 

to the data generation model. Although the TD estimates remain quite consistent, the 

precision associated with them becomes worse, as does the expected number of
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cohorts required and the proportion of times the estimate is within a 30% limit of the 

TD. The reasons for stopping also change most for the LRDPl, with an increasing 

proportion of trials stopping for safety reasons as the data generation model deviates 

increasingly from the analysis model. The LRDP3 and the ICSDP produce quite 

consistent results with very slight improvements when the analysis model matches the 

data generation model. The main benefit of the ICSDP over the LRDP3 is in the actual 

length of time required to run the trial. Despite needing slightly fewer cohorts to 

achieve accurate and consistent estimates, the LRDP3 requires much longer due to the 

nature of having to wait for each patient to complete 3 cycles of therapy before 

enrolling the next cohort. This also creates an issue with some early cohorts since if an 

event happens in cohort 1 after cycle 1, no other information allows the procedure to 

continue and the drug is deemed unsafe. This does not happen with the ICSDP 

because the constant accrual of information from every cycle ensures that more 

information is obtained at once to allow perspective for the events that might occur 

(due to the random nature of simulation) on the very low doses.

5.7 Continuing the procedures to the maximum number of cohorts

Investigating the use of the procedures when the maximal amount of information is

obtained may provide further insight.
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Design LR]DPI LR]DP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean

estimate
367.3 2 0 360.0 19.94 362.1 2 0

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(216.7,
558.6)

2.58

(238.3,
506.6)

2.13

(218.8,
536.8)

2.45
Min 144.3 2 0 1.34 1 144.9 2 0

Max 994.5 2 0 628.1 2 0 777.1 2 0

% in 
(TD±30%)

82.3 89.7 80.0

Table 5- 10: Results from 1000 simulations by the ICS mode with the patient gain
2

and a fixed number of patients (20 cohorts of size 3). TD=366mg/m .

Table 5-10 shows the results from continuing all procedures until 20 cohorts of 

patients have completed the trial. All of the mean estimates of the TD are closer to the 

true TD of 366 than in Table 5-8. Compared with the LRDPl the ICSDP has greater 

precision, there are slightly fewer estimates within a 30% limit of the true TD, but the 

range of the estimates is not as extreme. The LRDP3 still has one occurrence where 

the trial stopped for safety after observing one cohort. The ICSDP performs slightly 

worse than in Table 5-8, which is due to the asymptotic variance for the ICS model. 

This variance relies on information from the number of patients administered to a 

given dose level as well as the number of toxicities observed at that dose. After the 

precision of the TD estimate satisfies the precision stopping criterion, if the escalation 

continues, more doses may be administered. When these doses are ones that have been 

slightly underrepresented previously, the inclusion of these additional data can cause 

the asymptotic variance to increase once again. In many cases, the ratio of the credible 

interval may then creep back above the threshold for which precision is claimed, even 

if the precision stopping criterion has previously been met. In this case, the final
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estimate of the TD is no longer deemed as precise as if the trial stopped when 

precision was first achieved, and the variability across the trials is therefore increased.

5.8 Considering the effect of censoring

The effect of censored data on the performance of the dose escalation procedures is an 

important consideration. A natural benefit o f the ICS model is its ability to limit the 

effect of non-informative censoring due to the fact that only the cycles of information 

after the occurrence of censoring are lost. The cycles of therapy prior to the 

occurrence of censoring are still analysed and contribute to the estimation of the TD. 

One can incorporate non-informative censoring into the simulated datasets to 

investigate how the different procedures react.

Furthermore, it may also be appropriate to consider the effect of informative 

censoring. Informative censoring could arise due to the fact that patients who are 

likely to experience a DLT may be more likely to withdraw prior to experiencing this 

DLT due to intolerance to the investigational drug. This intolerance could manifest 

itself in the way of an increased occurrence of lower grade toxicities (LGTs) in cycles 

prior to the cycle that a DLT may actually occur in. Patients who experience a large 

number of LGTs in early cycles may be more likely to cease treatment after these 

cycles and therefore would not contribute a DLT from a later cycle to the analysis, 

even though they may be more likely to experience one.

Non-informative censoring is easy to implement through the use of a Bernoulli 

random variable. If it can be assumed that all patients have a 10% chance o f being 

censored in each cycle, a Bernoulli random variable can be simulated with a 

probability of 0.1 for each patient and each cycle. If a patient is censored in cycle 1, 

cycles 2 and 3 will also be missing, however if a patient is censored in a later cycle,
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earlier cycles will still contribute, so there will be a lower proportion of censored 

observations than of censored patients.

The expected magnitude of censoring for the ICSDP is displayed in Table 5-11.

1 0 % censoring 
in cycle 1 .

1 0 % censoring 
in cycle 2 .

1 0 % censoring 
in cycle 3.

Total loss

# starting ni=60 n2=43 n3=34
#censored n , c = 6 n2 c=4.3=>5 n3 c=3.4=>4 15 patients

Total #cycles 
lost to follow 

up

3mc=18 2 n2 c=T0 n3c=4 36 cycles

E(#DLTs) at 
TD

n , U L 1 = 1 2 n2 UL1 =4.3 L)L 1_i >1n 3  —1 ./

#DLTs
censored,
observed
#DLTs

n ,UL1 ’c= 1 . 2  

m DLT= 1 2 - 1 . 2  

= 1 0 .8 = > 1 1

n2 UL1 ’c=0.43 
n2 DLT=4.3-0.43 

=3.87=>4

n3UL1’c=0.17
N3DLT=1.7-0.17

=1.53=>2

1.8 DLTs

Observed 
P(DLT) at TD

10.8/60=18% 3.87/43=9% 1.53/34=4.5%

Table 5-11: Effect of non-informative censoring

A total of 15 patients would be expected to be censored throughout the trial which 

would also be true for the LRDP3. This is 25% of the patients who started treatment. 

For the LRDPl, clearly just 10% are censored since only the patients in the first cycle 

are affected by censoring.

The maximum number of patient cycles one would expect to see at the target dose for

the ICSDP is 60+48+43=151, when considering the patients who withdraw to the

occurrence of DLTs. When 36 patient cycles are censored, this corresponds to

approximately 2 1 % of cycles being censored, which is slightly less than the number of

patients. One would then expect the ICSDP to perform slightly better than the LRDP3

when considering non-informative censoring since if a patient is censored, all

information is lost, therefore the number of missing observation periods is the same as

the number of missing patients so would correspond to 25% of lost information. The

LRDPl should not be too affected, since only 10% of observations in the first period
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will be missing (6/60), however since the ICSDP still contains more data from later 

cycles, one would expect the information obtained overall to be less. There will be an 

expected 115 patient cycles worth of information at the target dose for the ICSDP as 

opposed to 54 patient cycles for the LRD Pl.

The effect on the observed conditional P(DLT) at the TD is also reduced by 10% for 

all cycles, suggesting that observations at the TD will only correspond to 18% chance 

of DLT in cycle 1, 9% in cycle 2 and 4.5% in cycle 3. This corresponds to an overall 

chance of DLT of 28.7%, which is slightly less than 10% smaller than 31.6%. 

P(DLT)=0.18 in cycle 1 is 10% less than the expected 0.2, therefore the estimation 

may be less biased for the procedures looking at longer periods of time.

For informative censoring, only the patients who experience DLTs should be 

censored. In order to get a comparable rate of censoring to non-informative censoring 

in order to compare, it should be considered that only (on average) 31.6% of patients 

will experience a DLT over 3 cycles. In order to observe a rate of 10% overall for 

each cycle, approximately 1/3 of patients who have DLTs should be censored. Since 

the patients who are censored come from the subset of patients who have events, there 

are less missing cycles expected. Only the single observation of the actual event in 

that cycle is now missing since the cycles after the occurrence of DLT are not 

observed in the first instance. So there is only one missing cycle per patient.
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30% censoring 
of DLTs in 

cycle 1 .

30% censoring 
of DLTs cycle 

2 .

30% censoring 
of DLTs cycle 

3.

Total Loss

# starting N,=60 N2=43 N 3=34

E(#DLTs) at 
TD

N iul1=12 N 2 u l 1 =4.3 N 3 u l 1 =1.7

#DLTs
censored,
observed
#DLTs

n,UL,’c=3.6 

N ,DLT= 12-3.6 

=8.4

n ,ULI’c=1.29

N2dlt=4.3-1.29

=3.01

n3UL1’c=0.51 

N3DLT=1.7-0.51 

=1.19

5.4 DLTs

Observed 
P(DLT) at TD

8.4/60=14% 3.87/43=7% 1.53/34=3.5%

Table 5- 12: ElTect on informative censoring.

A total o f 5.4 events are censored here, rounded to 6 . This implies 6  cycles of therapy 

are missing which is approximately 4% of the maximum number of cycles expected at 

the TD. The ICSDP will therefore only lose 4% of patient cycles worth of 

information. 6  events being censored corresponds to 6  patients being censored, 1 0 % of 

the total number starting treatment in cycle 1. The LRDP3 therefore loses 10% of 

information which is higher than for the ICSDP. In the LRDPl, 3.6 (rounded to 4) out 

of the possible 60 observations will be missing, approximately 7% of patient cycles, 

again higher than that for the ICSDP.

The observed conditional P(DLT) at the TD is 30% lower for each cycle. This 

suggests that the estimated TD will be higher than required. This reduction in 

conditional probabilities corresponds to an overall P(DLT) equal to 22.8%, which is 

less than 30% lower than 31.6%. The ICSDP and LRDP3 should be less biased than 

the LRDPl.
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5.8.1 Results for Non-informative Censoring
Results from the three procedures incorporating 10% non-informative censoring.

Design LRD Pl LR1DP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 365.5 17.39 357.0 15.45 369.7 16.81

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(203.9,
592.6)

2.91

(224.9,
536.4)

2.39

(241.8,
556.6)

2.30
Min 3.6 1 1.3 1 190.0 8

Max 1199.1 2 0 836. 1 2 0 752.3
% in (TD±30%) 75.8 83.4 85.7

Precision Safety Max 
No.

67.7 1.0 31.3 85.3 0.3 14.4 77.9 0.0 22.1

Table 5-13: Results rom 1 0 0 0  trials, simu ated by the ICS mode and escalated with
• • 9the patient gain with 10% non-informative censoring. TD=366mg/m .

Table 5-13 shows that the mean estimates for the TD are very similar to those in Table 

5-8, suggesting that non-informative censoring is not affecting the analysis very much. 

The precision of the estimates is slightly worse for the LRDPs and also the proportion 

of estimates within a 30% limit of the true TD is also reduced. The trials are also 

stopping less frequently for precision for all procedures, which is to be expected due 

to a decreased amount of information. The average trial length is also slightly longer 

for all procedures with the difference between the LRDPl and ICSDP slightly 

reduced.
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5.8.2 Results for Informative Censoring
Results from the three procedures with 10% informative censoring.

Design LR1DPI LRJDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 455.0 16.76 431.8 15.12 457.3 14.73

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(254.9,
730.1)

2 . 8 6

(267.8,
627.6)

2.34

(292.3,
675.4)

2.31
Min 3.63 1 1.34 1 213.4 7
Max 1225.9 2 0 946.0 1 0 1032.9 2 0

% in (TD±30%) 58.0 67.2 58.3
Precision Safety Max 

No.
75.7 0.2 24.1 87.9 0.3 11.8 88.7 0 11.3

Table 5- 14: Results fom 1 0 0 0  trials, simu ated by the ICS mode and escalated with
2

the patient gain with 10% informative censoring. TD=366mg/m .

The mean estimates of the TD are now much worse than observed in Table 5-7. They 

are a lot larger than they should be and this is due to the fact that approximately one 

third of all DLTs that should occur are not observed. This then decreases the hazard 

associated with the drug and a higher dose appears to be tolerated at the TTL. The 

proportion of estimated TDs within a 30% limit of the true TD is also reduced since 

the point estimates are generally much higher. These differences are consistent across 

procedures, suggesting that informative censoring is not more of a problem for any 

one procedure. A comparison of the actual procedures still maintains that the ICSDP 

produces comparable results with the LRDPl but has greater precision and finishes in 

a much shorter period of time, with trials stopping for precision more frequently.

5.9 The effect of incorrect assumptions in the trial design

To investigate the ICSDP in a more challenging setting, and perhaps a more realistic

scenario, some of the underlying assumptions can be tested. The main assumption for 

the data generation is that, at the true target dose, the probability of a DLT halves 

conditionally for successive cycles. Currently this is reflected in the procedure through
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the implementation of the pseudo data and also through defining the TD as the 

TD31.6. 31.6% is calculated from combining n 1 3 6 6  =  0.2,7r2(366 =  0.1 and 7 r3 3 6 6  = 

0.05 which is a direct result of the halving property. In reality the data may occur with 

this property but it cannot be predicted.

A further investigation is to be conducted where the ICSDP looks for a TD 

corresponding to a different level of toxicity despite the data being generated with the 

target dose of 366mg/m2 and the conditional probabilities halving over cycles. This 

data generation method implies that the TD of 366mg/m2 corresponds to a TTL of 

31.6%.

When the conditional probabilities are mis-specified in the design phase, the 

procedure will be initiated with incorrect assumptions and a dose that is not 

necessarily the true TD will be investigated.

Table 5-15 shows the unconditional probabilities in the data generation model at the 

TD and compares to some alternative values that may be assumed when designing the 

trial. The reason for the choice of values will be given in the section 5.9.1, 5.9.2.

Ptd,\ nm,\ P m ,2 ’ ̂ TD,2 P m ,3 ’ ̂ TD,3 p 1D(c3) = TTL

Data
Generation

0 . 2 0.08, 0 . 1 0.036, 0.05 0.316

Trial Design 1 0 . 2 0.09, 0.1125 0.04, 0.0563 0.33

Trial Design 2 0.15 0.128, 0.15 0.108, 0.15 0.386

Table 5-15: Possible probability differences

Table 5-15 shows that when mis-specifying the assumptions based on how the 

P(DLT) changes over cycles can dramatically change the target toxicity level 

investigated. This is reiterated when looking at the range within 30% of the true TD. 

For a TTL of 31.6, the TD=366 mg/m 2  and 30% ± T T D =(256,476). For a TTL of
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33%, the TD=380 mg/m 2  and the 30% range is (266,494). For a TTL of 38%, the 

TD=435 mg/m 2  and the 30% range is (304,566). While the 30% range for the TD38 

still contains the TD31.6 (366mg/m2), it now doesn’t contain the lower quartile of the 

30% range associated with the TD31.6, so doses that would still be clinically 

meaningful would not be if the wrong TTL were investigated.

5.9.1 Investigating a TD33

The first scenario is Table 5-15 shows the assumptions that lead to a study 

investigating a TD33. A 33% chance of DLT is a simple choice of probability to 

investigate, since in rule-based dose-finding studies it is often a dose corresponding to 

1/3 chance o f DLT that has traditionally been investigated. Based on the true data 

generation parameters the dose that corresponds to a TTL of 33% is 380. The ICSDP 

should be able to estimate doses from the entire dose-response relationship so the test 

will be whether the estimated TD corresponds to the true TD33 of 380.

The error in assumptions will have most effect on the estimation of the TD33 when 

setting up the pseudo-data. The TD33 can be split into unconditional probabilities of 

20% for the first cycle, 9% for the second cycle and 4% in the third cycle. This then 

corresponds to the conditional probabilities of =  0.2, 7t2  =  0.1125 and n 3 =  

0.0563 and the pseudo data will be presented as shown in Table 5-16.

Dose d{j) n uv nuv
V, 0  -n- 0

hj)i ~ nu)t^u)i
ICSDP 

TTL—0.33
d(l), cycle 1 0 . 2 3 0 . 6

dw , cycle 2 0.1125 2.4 0.27

d(l),  cycle 3 0.0563 2.13 0.1199

d(k), cycle 1 0.5 3 1.5

d(k),  cycle 2 0.3098 1.5 0.4647

d(k), cycle 3 0.1647 1.0353 0.1705

Table 5- 16: Pseudo-data for a procedure ooking for the TD33.
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The results for this procedure are shown in Table 5-17. Here the clinically relevant 

range based on 30% of the true TD (TTD=380) is (266,494).

Design ICSDP
Variable TD 3 3 No. of 

Cohorts
Mean estimate 395.5 14.18

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(276.4,
587.7)

2.13
Min 257.17 8

Max 802.2 2 0

% in (TD+30%) 8 8 . 0

Precision Safety Max 
No.

93.0 0.0 7.0

Table 5- 17: 100 simulations investigating a TD33. TD=380mg/m2.

The true TD33 is 380, and the estimate here after just 100 simulations is very good. 

The precision of this estimate is also very good. A very high proportion of trials stop 

for precision with a high proportion of trials estimating within the clinically relevant 

range.

5.9.2 Investigating a TD38.6

The true target dose of 380 and the TTL of 33% is very similar to that for the TD31.6 

so an even larger deviation can be considered which corresponds to completely 

incorrect assumptions such as a constant conditional probability of DLT over cycles. 

The assumption of a non-decreasing chance of DLT over cycles may be implemented 

where tc1 =  0.15 =  n 2 =  7r3. As shown in Table 5-15, this corresponds to an overall 

TTL of 0.386. Based on the true data generation model, the dose corresponding to this 

TTL is 435mg/m2. The pseudo data is then as shown in Table 5-18.
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Dose d(j) K m Km hm ~ n(mnu)i
ICSDP

TTL=0.386
d(l), cycle 1 0.15 3 0.45

d(l), cycle 2 0.15 2.55 0.3825

d{l}, cycle 3 0.15 2.1675 0.3251

d(k), cycle 1 0.5 3 1.5

d{k), cycle 2 0.5 1.5 0.75

d(k), cycle 3 0.5 0.75 0.375

Table 5- 18: Pseudo-data for procedure ooking for TD38.6.

The results for this procedure are shown in Table 5-19. Here the clinically relevant

range based on 30% of the true TD (TTD=435) is (304,566).

Design ICSDP
Variable TD 3 8 6 No. of 

Cohorts
Mean estimate 432.8 11.34

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(268.0,
608.3)

2.27
Min 20.2 2
Max 792.6 20

% in (TD+30%) 89.0
Precision Safety Max 

No.
93.0 6.0 1.0

Table 5- 19: 100 simulations investigating a TD38.6. TD=435mg/m2. 

Compared to the true TD of 435, this estimate is again produced very well with just 

100 simulations. The precision of the estimate and the proportion of estimates in the 

clinically relevant range is again very good. Although there are a high proportion of 

trials stopping for precision here, there is also a noticeable amount of trials stopping 

for safety. This is to be expected, since the safety stopping rule dictates that if the dose 

to be administered is >0.44, the trial should stop for safety. Compared to 31.6% and 

33%, p>0.44 is quite far away from the TTL (>11%), however compared to this 

procedure it is only just over 5% away from the TTL. Therefore repeating the 

procedure with a slightly higher safety probability should be recommended. The



safety probability is set to 0.5 now since this is again just greater than 11% from the 

TTL of 38.6% so a more comparable procedure should be produced. These results are 

shown in Table 5-20.

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 435.2 11.52

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(284.6,
608.3)

2.14
Min 252.7 7
Max 728.4 2 0

% in (TD+30%) 89.0
Precision Safety Max 

No.
98.0 - 2.0

Table 5- 20: 100 simulations investigating a TD38.6 with safety stopping rule p=0.5.
TD=435mg/m2.

The estimates here are much improved with better precision and no occurrences of 

stopping for safety.

In all o f these additional procedures, the expected number of cohorts required is less 

than for the TD31.6 and the estimates seem to be produced better with increased 

precision. This is to be expected with procedures analysing binary observations since 

a probability closer to 0.5 is closer to the expected value of the binary endpoint. All 

observations of 0 (no DLT) and 1 (DLT) therefore have more of an equal contribution 

to the estimation of a dose corresponding to the TTL, so there is a maximal use of the 

information in the analysis of the data.

5.10 Conclusions

The best estimate of the target dose is generally produced the LRDPl or the ICSDP 

and are within 30% of the true TD most often for the ICSDP.
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However, in all possible circumstances, the ICSDP requires fewer cohorts than the 

LRDP 1 and therefore is a shorter procedure. The LRDP3 always requires the fewest 

number of patients but due to the nature of having to wait for each cohort to finish 3  

cycles of therapy before escalating, these designs will always take the longest to 

conduct.

The trials stop for precision most often for the ICSDP. The occurrences of safety 

stopping occur increasingly for the LRDPs as the data generation method deviates 

further from the analysis method. This is particularly true for the LRDPl whereas this 

hardly ever occurs for the ICSDP.

The ICSDP is the most robust design, as determined as a compromise of good 

estimation of the TD and few cohorts, and has shown consistent results which are 

largely invariant to misspecification of the data generation model. It combines the 

benefits of both of the other designs by using all cycles so requiring less patients, and 

also escalating after every 1  cycle so the length of these trials are generally shorter 

with the same number of cycles as cohorts. The estimates are usually very good, if not 

the best of the three designs, and are generally produced with the best precision. It 

seems therefore that the best design o f the three is the escalation by the ICSDP.

The patient gain function is the most ethical gain function to use in the setting of dose- 

finding trials in cancer treatments. Further gain functions will be explored for the 

ICSDP in Chapter 6  to investigate whether using the patient gain due to ethics is 

detrimental to the estimation of the TD. Chapter 6  will also investigate the 

incorporation of intra-patient dose adjustments into the ICSDP.
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The ICSDP can also produce good estimates of target doses corresponding to different 

TTLs even when the assumptions are mis-specified and implemented in the pseudo­

data.
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6. Simple variations on the ICSDP
Chapter 5 showed the efficiency and effectiveness of using the ICS model within a 

Bayesian Decision Procedure. The realistic use of the procedure in the cancer setting 

is to use the patient gain function since it is ethical to treat cancer patients (who are 

usually the subjects in dose-finding trials for cancer therapies), however there are 

other gain functions that could be considered. The first part of this chapter will 

investigate the use of some other gain functions, to see whether restricting the 

procedure to the use of the patient gain is actually detrimental to the overall 

procedure.

Furthermore, an attraction of the ICSDP is that analysing data at the end of every 

cycle not only allows dose escalations to proceed as fast as when only one cycle of 

therapy is observed, but may also allow the opportunity for patients to change doses 

between cycles. This should prevent extended exposure to under/overdosing, since 

doses can change to what is currently believed to be the TD rather than what was 

believed when less information was known. This may also allow quicker convergence 

to the final determined TD estimate since the dosing will become more targeted. The 

second part of this chapter investigates utilising intra-patient adjustments within the 

standard ICSDP with the patient gain to investigate whether estimation of the TD can 

be improved upon.

6.1 Investigating the use of the variance gain function
The variance gain function discussed by Whitehead and Brunier [9] and described in

section 4.3 of this thesis is defined as:

(
g
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where T D ^  is the estimate of the TD corresponding to the TTL after the ith

observation, incorporating a set of doses J  that can be administered to the next 

cohort. This set can consist of different dose levels for each patient in a cohort, as a 

combination may reduce the variance the most. The combination that minimises the 

variance of the estimated log(TD) given the current parameter estimates, and therefore 

maximises this gain, is administered.

The variance term calculated for this gain function is the expected asymptotic variance 

of the estimate of log ( T D ^ }  after i observations. This involves using the delta 

method as described in Chapters 2.2.3 and 4.3.

var |log  ) j = V (log (TDm  ))T I f '  (<p)V (log (TDul )) , (6.1)

where is the Expected Information Matrix found from twice differentiating the log- 

likelihood with respect to each parameter and taking the expectation of each element 

of the matrix. <p is the vector of parameters used in each procedure. For the LRDPs it 

consists of «, or a 3 and /?, for the ICSDP it is 0 ,yx,y 2 and y3. The derivation of the

asymptotic variance for the LRDP is given in [14]. This expected asymptotic variance 

uses the expected observations for the set of doses J  with the current estimates of the 

parameters, along with the observed observations so far in the likelihood, to determine 

which set of doses would reduce the variance the most. The set o f doses that reduces 

the expected asymptotic variance the most is administered to the next cohort.

The same set of simulation studies as described in section 5.2-5.5 are repeated here

with the variance gain function used for escalation rather than the patient gain

function. Data is generated from the PO model, the ICS model and the PO model with

dose as a covariate (rather than log(dose)).
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The pseudo-data also remains the same as described in Chapter 5. Since the variance 

gain function does not necessarily lead to the lowest dose being administered to all 

patients in the first cohort, the first cohort is forced to receive the lowest dose for 

safety reasons, and the pseudo-data is subsequently used to control how quickly the 

escalation proceeds to the estimated TD.

The same stopping criteria are also implemented. The procedure will continue until 

either a precision rule is achieved (the ratio of the exponentiated asymptotic credible 

interval limits for the estimate of log(TD) is <R, R=4), a safety rule is breached 

(P(DLT)>0.44 for the procedures with 3 cycles, P(DLT)>0.3 for the LRDP1) for a 

dose selected to administer) or the maximum number of patients have been recruited 

(20 cohorts=60 patients). The asymptotic credible interval is that obtained from the 

observed asymptotic variance of log(TD). That is the observed asymptotic variance 

obtained by using the delta method (as in Chapter 4.4) with current estimates of the 

parameters and using just the observed data from the trial so far in the likelihood, 

including the pseudo-data.

Once the procedure has ceased due to one of the stopping criteria, the estimated TD is 

outputted along with the number of cohorts required to achieve it, and the stopping 

reason. For all of the simulated trials, the average estimated TD is produced along 

with a reference range displaying the 2.5th and 97.5th percentiles of the estimated TDs 

from all of the simulations, and the ratio of the 97.5th percentile to the 2.5th percentile 

is calculated to show the precision of the estimates. The proportion of trials producing 

an estimated TD within a clinically meaningful range o f the True TD (TTD ±30%) is 

then displayed along with the percentage of trials stopping for each criterion.
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Since the use of the variance gain is not particularly ethical due to the focus on 

estimating the dose-response relationship rather than dosing patients at the believed 

target dose, and this investigation is being conducted for information purposes, only 

100 simulations have been conducted. This should highlight any major differences 

between the procedures, but the precision of the estimates may not be quite as good.

6.1.1 Generation by the Proportional Odds model with log(dose)
Results for the LRDP1, LRDP3 and ICSDP when the data is generated by the

Proportional Odds model with log(dose) as a covariate is shown in Table 6-1.

Design LR]DPI LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 204.3 2.84 287.3 6 . 6 6 153.6 1

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(142.8,
242.7)

1.70

(135.3,
469.1)

3.47

(24.4,
160.4)

6.58
Min 142.8 2 1.3 1 24.4 1

Max 268.6 15 563.3 17 160.4 1

% in (TD+30%) 2 . 0 50.0 0 . 0

Precision Safety Max 
No.

1.0 99.0 0.0 28.0 72.0 0.0 0 . 0  1 0 0 . 0  0 . 0

Table 6 - 1: Results from 100 trials, simulated by the PO model and escalated with the
2

variance gain. TD=366mg/m .

Table 6-1 shows that when the data are generated by the PO model with log(dose), the 

TD estimates are very poor for all procedures, particularly for the ICSDP. The LRDP3 

produces the best result and stops for precision 28% of the time, but stopped for safety 

in the remaining trials. The average number of cohorts is also extremely low with the 

majority, or all in the case of the ICSDP, of the trials stopping for safety after the first 

cohort has been observed since the doses selected for the second cohort were deemed 

to be unsafe. This explains why the mean trial length and the mean TD estimate are so 

small, as very few of the trials lasted long enough trial to obtain a sensible estimate 

since they stopped for safety very early. The precision measured by the ratio of the
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97.5/2.5 percentiles is not particularly useful here since the estimates are so 

underestimated due to early stopping.

The asymptotic variance is reduced the most when high and low doses are 

administered. This explains why the majority of trials stopped for safety since very 

high doses would have been attempted to be administered. It can also be assumed that 

for trials that did not stop for safety, only very low doses were administered in order 

to obtain as much information about the model and produce good estimates.

In order to investigate this further, the same results were looked at with all the trials 

that were stopped for safety removed. The results are shown in Table 6-2.

Design LRIDPI LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
n 28 0

Mean estimate 213.9 15 353.3 11.43 - -

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(220.5,
501.2)

2.27
Min 213.9 15 220.5 8 - -
Max 213.9 15 563.3 17 - -

% in (TD+30%) 0 . 0 85.7 -
Table 6 - 2: Results from 100 trials simulated by the PO model and escalated with the

 ̂ 2 
variance gain without trials stopped for safety. TD=366mg/m .

The only interpretable results here are for the LRDP3. Here the estimated TD and its 

precision, along with the proportion of trials within a clinically meaningful range and 

the average number of cohorts is much better and very comparable to those obtained 

in Chapter 5, in Table 5-7. However there are still very few simulations contributing 

to this summary.
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To make the use of the variance gain more appropriate it can be utilised in such a way 

that only doses that produce probabilities of toxicity (according to the current model) 

that are below the safety threshold are part of the set for the variance gain to choose 

from. The corresponding results from that simulation are shown in Table 6-3.

Design LRDP1 LR10P3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 350.8 15.08 344.6 12.66 353.8 14.16

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(224.4,
551.0)

2.46

(208.4,
581.9)

2.79

(192.2,
532.0)

2.77
Min 202.7 9 1.3 1 178.7 9
Max 616.6 20 584.2 20 627.1 20

% in (TD+30%) 81 82 87
Precision Safety Max 

No.
89 0 11 98 1 98 0 2

Table 6- 3: Results from 100 trials, simulated by the PO model and escalated with the
2

variance gain for permissible doses. TD=366mg/m .

All o f the estimates are slightly underestimated when compared to the corresponding 

procedures with the patient gain, shown in chapter 5, Table 5-7. This can be put down 

to the fact that a restriction is imposed on the choice of doses but it is not necessarily 

the dose closest to the believed TD that is selected. The dose selected is from the 

restricted set but maximises the information, so is likely to be from the low end of the 

range. Little information about higher doses is therefore obtained so the estimation of 

the TD is skewed to the lower doses. The precision of all estimates is slightly worse 

also. The average number of cohorts required is slightly lower for all procedures and 

the proportion of trials stopping for precision is increased for all.

There is also an instance here where the safety rule is used in the LRDP3 despite the 

variance gain being only for permissible doses. In this case, an event occurred at the 

lowest dose in cycle 3 for a patient in cohort 1. This caused the estimated TD to be
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very low and the estimated probability o f a DLT was over the safety threshold for 

even the lowest dose. Therefore, no dose was permissible and the safety rule stopped 

the trial. This DLT did not affect the other procedures since it was not observed in the 

LRDP1, and the ICSDP had a lot more information obtained at the time o f this event, 

so the impact was limited to one cycle for that patient, rather than all the information 

for that patient.

The distribution o f doses recommended at the end o f the trial is shown in Figure 6-1.

FREQUENCY 
6 0

5 0

4 0

3 0

20

10

0

Figure 6- 1: Distribution of recommended doses for different procedures when the 
data is generated by the PO model with log(dose), a) LRDP1, b) LRDP3, c) ICSDP.
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Figure 6-1 cont.: Distribution o f recommended doses for different procedures when 
the data is generated by the PO model with log(dose), a) LRDP1, b) LRDP3, c)

ICSDP.
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The number of recommended doses is much more clustered around the true TD of 366 

for the ICSDP than for the other two procedures.

6.1.2 Generated by the Interval-Censored Survival model
Results for the three procedures when the data are generated by the ICS model are

shown in Table 6-4.

Design LR1DPI LRDP3 ICSDP
Variable TD2 0 No. of 

Cohorts
TD31 6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 203.4 3.2 271.6 6.16 155.0 1

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(142.8,
260.4)

1.82

(135.0,
479.4)

3.56

(24.4,
160.4)

6.58
Min 142.8 2 114.5 3 24.4 1

Max 268.8 13 509.9 14 160.4 1

% in (TD+30%) 1 . 36 0

Precision Safety Max 
No.

0  1 0 0  0 25 75 0 0  1 0 0  0

Table 6 - 4: Results from 100 trials, simulated by the ICS model and escalated with the
# 2

variance gain. TD=366mg/m .

Table 6-4 shows the results when the data is generated from the ICS model. Removing

the trials that were stopped due to the safety rule is shown in Table 6-5.

Design LRDP1 LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
n 0 25 0

Mean estimate - - 294.7 10.52 155.0 1

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(201.9,
402.4)

1.99

(24.4,
160.4)

6.58
Min - - 201.9 8 24.4 1

Max - - 402.4 14 160.4 1

% in (TD+30%) - 60.0 0

Table 6 - 5: Results from 100 tria s, simulated by the ICS model and escalatec with the
variance gain without trials stopped by the safety rule.
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Again the results are only interpretable for the LRDP3 which are more comparable to 

the patient gain, as shown in Chapter 5, Table 5-8. These are slightly worse than in 

Table 6-2 since there is the added discrepancy between the data generation and 

analysis models.

The results of investigating the variance gain but for permissible doses only are shown 

in Table 6 -6 .

Design LRDP1 LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 346.2 15.11 336.5 11.79 346.4 13.30

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(181.8,
523.4)

2.88

(203.6,
528.6)

2.60

(214.8,
515.2)

2.40
Min 159.7 9 199.6 8 191.7 9
Max 616.6 2 0 605.4 2 0 590.0 2 0

% in (TD+30%) 75.0 67.0 87.0
Precision Safety Max 

No.
84 0 16 99 0 1 98 0 2

Table 6 - 6 : Results from 100 trials, simulated by the ICS model and escalated with the 
variance gain for permissible doses. TD=366mg/m .

These results are once again comparable to those obtained in Table 6-3. All TD 

estimates are better than with the traditional variance gain but are underestimated 

when compared to the patient gain (Table 5-8) due to the restricted choice of doses for 

administration. Compared to Table 5-8, the precision is again worse. The average 

number of cohorts is less for all procedures with a higher proportion of trials stopping 

for precision, apart from for the LRDP1.

The distribution of the recommended doses is shown in Figure 6-2.
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Figure 6- 2: Distribution of dose recommendations for different procedure when the 
data is generated by the ICS model, a) LRDP1, b) LRDP3, c) ICSDP.
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Figure 6-2 cont.: Distribution of dose recommendations for different procedure when 
the data is generated by the ICS model, a) LRDP1, b) LRDP3, c) ICSDP.

Once again, the number o f recommended doses is more variable with the LRDPs than 

with the ICSDP. The ICSDP is much more clustered around the two doses closest to 

the true TD o f 366.

6.1.3 Variations of the variance gain
This section considers how the variance gain function would perform when not 

restricted by the safety rule. Some further investigation into the use o f the variance 

gain for permissible doses is also conducted.

Tables 6-7 and 6-8 show the results obtained when the data is simulated by the PO and 

ICS models respectively.
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Design LRDP1 LR]DP3 ICSDP
Variable TD2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 361.6 14.22 343.6 11.9 330.4 19.77

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(208.4,
529.2)

2.54

(185.7,
506.0)

2.73

(192.1,
502.2)

2.61
Min 185.6 9 174.3 8 176.3 14
Max 819.6 2 0 556.6 2 0 576.6 2 0

% in (TD+30%) 75 79 6 6

Precision Safety Max 
No.

1 0 0  0  0 1 0 0  0  0 8  0 | 92

Table 6 - 7: Results from 100 trials, simulated by the PO model and escalated with the 
unrestricted variance gain. TD=366mg/m2.

Design LRDP1 LRIDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 348.2 14.19 336.0 11.36 316.4 14.16

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(2 0 0 . 1 ,
538.9)

2.69

(206.8,
511.5)

2.47

(181.1,
528.3)

2.92
Min 127.7 8 149.9 8 174.6 8

Max 629.0 2 0 594.5 2 0 655.5 2 0

% in (TD+30%) 77.5 80.3 53
Precision Safety Max 

No.
1 0 0  0  0 1 0 0  0  0 98 0 2

Table 6 - 8 : Results from 100 trials, simulated by the ICS model and escalated with the
2

unrestricted variance gain. TD=366mg/m .

The TD estimates produced by the unrestricted variance gain are clearly much better 

than when the variance gain was used with the safety stopping rule. The estimates are 

closer to the true TD with reasonable precision. The ICSDP does not perform as well 

here. The estimates are lower than the other procedures with fewest estimates within 

the 30% limit of the true TD. When the data is generated by the PO model, the 

required number of cohorts is very large for the ICSDP and the majority of trials stop 

for reaching the maximum number. This is largely down to the fact that the precision 

stopping rule is based on the asymptotic variance of the log(TD) estimate, which
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depends very heavily on the data obtained so far for the ICS model, including the 

occurrence of DLTs, which the asymptotic variance for the PO model does not. When 

the data is generated from a different model, the observations do not necessarily occur 

in accordance with the predicted probability of the event. The variance includes the 

occurrence of toxicities and the estimated probability of DLT, when there is 

discordance between the two values, the variance does not reduce as quickly. When 

the data generation model does match, more data contributes to the variance 

calculation in accordance with the expected probabilities estimated by the model. The 

LRDP1 produces very reasonable results, albeit not as good as those obtained when 

using the patient gain (chapter 5, Table 5-7, 5-8).

The main issue with the unrestricted gain function is that it is unethical to allow a 

procedure to solely dictate which doses are administered to patients. In order to see 

why this escalation procedure is not ethical, one of the simulation trials can be 

considered in detail. Table 6-9 shows the dose recommendations for cohort 2 together 

with the probability of toxicity estimated after the observations of cohort 1 are 

obtained. Different doses are administered in some cases to the patients within the 

same cohort since the variance gain allows a combination of different dose levels to be 

administered if it should reduce the variance more.

LRDP1, Cohort 2 LRDP3, Cohort 2 ICSDP, Cohort 2
Patient 4 d=1400, p=485 d=945, p=0.593 d=120, p=0.280
Patient 5 d=1400, p=0.485 d=945, p=0.593 d=630, p=0.526
Patient 6 d=1700, p=0.500 d=945, p=0.593 d=1700, p=0.704

Table 6- 9: Dose administrations recommended for cohort 2 when escalated by the
unrestricted variance gain and simulated by the ICS model.

The number of times each dose is allocated as well as how early in the trial each dose 

is administered for the first time is shown in Table 6-10 as found from both LRDPs 

and the ICSDP escalations.
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Number of patients receiving dose

Earliest this dose is seen

Dose LRDP1, precision 
achieved after cohort 8

LRDP3, precision 
achieved after cohort 9

ICSDP, precision 
achieved after cohort 20

60 - - 16

Cohort 5
120 - - 2

Cohort 2
200 3 1 1

Cohort 2 Cohort 2 Cohort 3
300 3 6 2

Cohort 5 Cohort2 Cohort 5
420 6 8 7

Cohort 3 Cohort 7 Cohort 7
630 6 3 9

Cohort 3 Cohort 5 Cohort 2
945 - 3 1

Cohort 3 Cohort 3
1400 2 3 15

Cohort 4 Cohort 6 Cohort 6
1700 1 - 4

Cohort 4 Cohort 2
Table 6- 10: Administration of doses in one simulated trial (escalated with the

unrestricted variance gain and data generated by the ICS model) when the safety rule 
is not used, excluding cohort 1 and pseudo-data.

As expected, the variance gain is exploring very high doses very early on in the 

escalation procedure in order to obtain more information about the model. This is 

particularly evident with the ICSDP, where patient 6 (in cohort 2) is given the highest 

dose possible and some of the middle doses, are rarely explored, particularly 300. The 

reason this was more extreme in this case is because of the extra terms in the 

asymptotic variance function which depend directly on the number of toxic events and 

the probability of toxicity for different doses. Very high and low doses minimise the 

variance so these are the doses chosen most often (dose 60 is chosen 16 times and 

1400, 15 times). This also explains the reasoning for the increased number of cohorts



required to complete the trial. Since fewer doses are chosen for exploration, more 

patients on the high and low doses are needed to produce the precision of results 

required.

With the LRDPs, one of the doses near the true TD is explored quite early, but the 

other is not until some time later in the escalation procedure (in the LRDP1 dose 420 

is seen in cohort 3 but dose 300 is not seen until cohort 5, in the LRDP3 dose 300 is 

seen in cohort 2 but dose 420 is not seen until cohort 7). Clearly the administration of 

overly toxic doses so early on in the procedure is not ethical, particularly when the 

safety of the drug is not known at all and the purpose is to determine the TD safely.

So although the overall output from the trial is quite insightful, the trial is unethical. 

The trial also depends greatly on the model and few doses are explored around the 

true TD. This dependence would not be popular with clinicians as it eliminates the 

need for adapting doses to specific patient needs, particularly when a DLT might 

occur. The unrestricted variance gain function appears to work better for the LRDPs 

than the ICSDP, but the ethics are still unacceptable, regardless of what model is used.

The variance gain for permissible doses only, which allows the variance gain to only 

choose between doses that are deemed to be safe (as shown in Tables 6-3 and 6 -6 ), 

provides much better results than using the variance gain alone (Tables 6-1 and 6-4). 

In reality, this is the way the variance gain would most likely be used since, as shown, 

it is neither safe nor ethical to allow a procedure to administer unsafe doses to 

extremely ill patients (since patients in dose-finding trials for cancer treatments are 

actual cancer patients). Although the TD estimates using the restricted variance gain 

(for permissible doses only) are better than those obtained by the original variance 

gain, they are not better than those obtained from using the patient gain (Tables 5-7, 5-
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8 ) since they are further from the true TD and have greater variability. The required 

number of cohorts is generally slightly less however, and the proportion of trials 

stopping for precision is generally increased. One could maintain however that the 

idea of allocating doses that are not necessarily closest to the currently believed TD is 

still not ethical, despite the fact that all doses are now believed to not be toxic. In 

particular, as seen in the unrestricted variance gain, the procedure chooses doses at 

either end of the dose range more frequently to increase information about the dose 

response relationship. This is still true for the restricted dose range, so the dose levels 

near the target dose are still less likely to be administered than the lowest dose level 

and highest safe dose level.

One of the main attractions of using the variance gain is that the variance of the 

estimated TD should be reduced since the range of doses administered is larger. 

However this benefit is not particularly seen here. There could however be some issue 

with the way the precision is determined in each method (patient gain and variance 

gain for permissible doses) and whether it is valid to directly compare the two. With 

the variance gain, the precision (directly related to the asymptotic variance) is much 

better earlier on, after multiple administrations of one particular dose are observed and 

when doses at either end of the dose range are administered. The precision may then 

seem to be at the required level to cease the escalation, but the trial may actually not 

have had enough time to converge to a reasonable estimate and may also not have 

actually administered a dose near to the estimate it is producing. Also, in the restricted 

variance gain, there are much fewer doses for the procedure to choose between, so all 

contributions to the variance calculation are much more concentrated around a few 

doses and therefore reduction of the variance occurs much quicker.
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In order to compare the results from the patient gain function and the variance gain 

function for permissible doses better, the same (average) number of cohorts that was 

observed when escalating with the patient gain for each procedure, is used as a 

stopping rule for the variance gain function for permissible doses instead of the 

precision rule. That is, when the trial reaches the same number of cohorts as was seen 

to be the average for the results by the patient gain function (as in Table 5-7), the trial 

will stop and estimate the TD then. Whether the ratio of the Cl falls below a certain 

level (R<4) by the time the trial reaches the specified cohort will be recorded. The 

average estimate of the TD can then be computed and compared to the results of the 

patient gain. These results are shown in Table 6.11 where the data is simulated by

both the PO model and the ICS model.

Design LR1DPI LRIDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
Mean estimate 342.4 17 346.0 15 342.5 15

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(220.3,
531.6)

2.41

(199.4,
508.3)

2.55

(164.1,
528.7)

3.22
Min 166.1 183.1 130.8
Max 546.0 591.7 583.3

% in (TD±30%) 84 91 77
% with R<4 74 82 56

Table 6-11: Results from 100 trials, simulated by the PO model and escalated with 
the variance gain for permissible doses, until the same average number of cohorts as 

in the patient gain (Table 5-7) have been recruited.

Compared to Table 6-3, the LRDPs produce similar estimates of the TD but with 

better precision and a higher proportion of trials obtaining a TD within a 30% limit of 

the true TD. The proportion of trials achieving precision by this cohort is still quite 

high, although not as high as in Table 6-3. The ICSDP produces similar estimates here 

to the LRDP designs and also to the ICSDP in Table 6-3, but with worse precision and
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the proportion of trials estimating a TD in a 30% limit of the true TD is smaller than in 

Table 6-3. The proportion of trials achieving precision at this cohort is less than that 

for the LRDPs, and also substantially smaller than the number of trials stopping for 

precision in Table 6-3.

Design LR1DPI LRDP3 ICSDP
Variable TD 2 0 No. of 

Cohorts
TD 3 1  6 No. of 

Cohorts
TD 3 1 . 6 No. of 

Cohorts
Mean estimate 342.9 17 335.6 15 301.4 14.96

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(192.3,
493.6)

2.57

(209.7,
471.8)

2.25

(175.6,
486.0)

2.77
Min 181.1 184.5 170.2 1 1

Max 544.5 601.0 560.1 15
% in (TD+30%) 81 85 67

% with R<4 71 8 8 72
% safety stops 0 0 1

Table 6 - 12: Results from 100 trials, simulated by the ICS model and escalated with 
the variance gain for permissible doses until the same average number of cohorts as in 

the patient gain (Table 5-8) have been recruited.

When simulating by the ICS model, the results are similar to those in Table 6-11. The 

ICSDP is noticeably worse here when compared to Table 6 -6 . There is one occurrence 

here of a safety stop which explains why the estimate is quite obviously smaller.

There is however, still a high proportion of trials achieving precision at the specified 

cohort for all procedures, however it is not as high as for the number of trials stopping 

for precision in Table 6 -6 . In each procedure, the average number of cohorts required 

to achieve precision for the variance gain with permissible doses (Table 6 -6 ) was 

lower than the cohort this investigation forced the escalation to continue to, with a 

very high proportion of trials stopping for precision. By forcing the procedures to 

continue for longer allows the procedure to experiment with more doses, so the 

variance has the ability to increase again. The estimates are worse when forced to 

continue and precision is not concluded as frequently. When comparing these results
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to those found when escalating with the patient gain alone (Table 5-8), the results are 

still not as good.

It seems then that the idea that the precision criterion is different for the patient and 

variance gain escalations may not actually be an issue. Although the variance gain 

seems to allow trials to stop earlier than the patient gain due to the direct link between 

the gain function and the precision criterion, forcing trials to continue for longer 

actually causes a detrimental effect to the estimates of the TD.

6.1.4 Conclusions
When using the simple variance gain, the LRDP3 produces the best estimates of the 

TD, which is better when the analysis model matches the data generation model. 

However, the variance gain produces very poor estimates and causes early termination 

of the trial very often due to trying to administer overly toxic doses, the trials that are 

not stopped for safety reasons generally administer very low doses. Administering 

very low doses in order to estimate the TD is not an ethical approach. Although toxic 

doses are not administered, administering sub-therapeutic doses is still not 

appropriate. Looking at an unrestricted variance gain increases understanding in this 

procedure but is unethical to use. The estimates are much better and more comparable 

to those obtained from the patient gain but with obviously fewer number of cohorts 

required to achieve them. Since the variance is derived from the likelihood function 

for the model, it depends on the expected probability of toxicity for each dose. The 

variance is therefore minimised when observations are obtained for doses with 

particularly low and high probabilities of DLT since knowledge of the dose-response 

relationship is required for the lower tail and therefore the upper tail too in order to 

understand the full model. Very high doses are therefore allocated very early on in the 

escalation procedure which is not at all ethical. Using a variance gain function for
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permissible doses only does combat the problem of stopping early for safety and also 

produces more reasonable estimates of the TD, but these estimates are still not as good 

as those obtained by using the patient gain. The precision of the estimates is not 

particularly increased when using the variance gain which should be the main benefit 

o f using the variance gain. The main advantage is the reduction in cohorts required 

and an increase in trials stopping for precision, however there is still the ethical 

consideration that the doses administered aren’t the closest to the current estimated 

TD.

When comparing the use of the precision criterion for the different gain functions, it 

appears that the use of the variance gain does encourage trials to stop earlier. If these 

trials are forced to continue for longer, the estimates are not as good, as the procedure 

then begins to experiment with other doses in order to increase knowledge of the 

model so the estimates of the TD become more variable.

The variance gain, and its variations, seems to perform better for the LRDPs so for the 

ICSDP, it can be concluded to use the patient gain.

6.2 Incorporating intra-patient adjustments
The results from Chapter 5 show that incorporating as much information as possible 

from later cycles of therapy aids the escalation procedure, with shortened trials while 

maintaining the same level of precision of the estimated TDs. The patient gain is the 

most ethical gain function to use in the setting of Phase I escalation trials where the 

main interest is the safety profile of the drug. Furthermore, in section 6.1, the expected 

benefits of using another gain function such as the variance gain (the benefits being 

better precision o f estimates) were unfounded and the allocation of doses that were not 

currently believed to be closest to the true TD suggested that other variations on the 

variance gain functions were not reasonable for use in the Phase I setting.
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Building upon these results, further investigation of the ICSDP is now conducted in 

order to produce more ethical designs. Such designs may allow dose changes between 

cycles, dependant on the occurrence or not of DLTs. In particular, results from 

Chapter 5 suggest that more information, obtained sooner, produces a better escalation 

procedure. A natural extension then is to incorporate intra-patient adjustments 

(escalation/de-escalation), allowing the administered dose to be changed between 

cycles in order to allocate a dose that is deemed most ethical to administer at the 

current time. Rather than just starting new cohorts on the currently believed TD, all 

patients still in the trial will change their dose between cycles to also be on the 

currently believed TD. Theoretically, this should cause more patients to be treated at 

the currently believed TD and would avoid excessive over/under-dosing. The main 

issue with all patients being treated at the same dose is that the knowledge of the 

model across the dose range may be more limited than previously, so one may expect 

a trial to last longer than seen previously since it may take longer to achieve the 

precision required to cease the trial. Despite this expected increase in the length of the 

trial, the ethical nature of allowing patients to be treated at doses that are currently 

believed to be the target doses is something that should be considered.

An intra-patient escalation procedure will be conducted using the ICSDP with the 

patient gain and the results compared to the equivalent simulated trials from Chapter 

5.

6.2.1 The ICSDP incorporating adjustments

To allow for the changing of doses between cycles, the existing simulated datasets as 

generated by a PO model and also an ICS model in Chapter 5 were used. This was 

done to again check the robustness of escalating according to an ICSDP. The PO 

model with dose as a covariate is not used here since the extreme test o f the ICSDP
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has been conducted in Chapter 5, so these comparisons are simply to provide slightly 

more insight into the new procedure.

The pseudo-data is of the same form as in chapter 5 and the stopping criteria remain 

the same. The precision rule, based on the ratio of the exponentiated asymptotic 

credible interval limits of the estimate of log(TD) (R<4), the safety rule, P(DLT)>0.44 

for the dose chosen to administer, or the maximum number of cohorts are recruited, 20 

cohorts of 3 patients.

The gain function to decide which dose to administer to new cohorts reverts back to 

the patient gain now. Despite the good performance of the restricted variance gain 

function (for permissible doses only), the ethical consideration that the dose believed 

to be closest to the true TD should be administered to patients is most important here. 

The results from the using the patient gain were not inferior to those with the 

restricted variance gain so there is no detrimental effect on estimation when using this 

gain function. In fact the patient gain is now used between cycles too, to decide 

whether doses administered in one cycle to a cohort should be changed for the next 

cycle given the current estimates of the parameters. The use of the patient gain 

function with the pseudo-data again forces the trial to administer dose 60 to the first 

cohort, and cohort 1 is fixed to remain on dose 60 for safety purposes. Therefore, 

intra-patient adjustments between cycles are first allowed when cohort 2 enter cycle 2.

The whole procedure is repeated 1000 times in order to obtain a mean estimate of the 

TD as determined by the end of the trial, and a mean estimate of the length of the trial. 

The precision of these estimates are investigated through looking at the reference 

range, the 2.5th and 97.5th percentiles, of the estimated TDs. Furthermore, the 

proportion of trials that produced an estimate within ±30%  of the true TD (366mg/m )
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which is (256.2,475.8), is recorded to consider how often the trial was estimating a 

dose within a clinically defined balance of efficacy and safety. The proportion of trials 

stopping for each criterion is also presented.

6.2.2 Results

The results for the ICSDP incorporating intra-patient adjustments are displayed in 

Table 6-13 when the data is generated by the PO model or ICS model, along with the 

corresponding results from Tables 5-5 and 5-6 without intra-patient adjustments.

Design with 
adjustments

ICSDP 
PO sim.

ICSDP 
ICS sim.

Variable TD 3 1  6 No. of 
Cohorts

TD 3 1  6 No. of 
Cohorts

Mean estimate 408.2 14.78 404.5 14.99

(2.5, 97.5) percentiles 
of estimates

97.5/2.5

(254.0,
628.6)

2.47

(244.3,
629.1)

2.57
Min 190.3 7 2.7 7
Max 805.6 2 0 906.3 2 0

% in (TD±30%) 74.6 74.2
Precision Safety Max.

No.
72.3 18.3 9.4 72.9 17.1 10.0

Table 6-13: Results from 1000 trials simulated by PO model or ICS model, escalated
2

with patient gain, allowing intra-patient adjustments and not. TD=366mg/m .
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Design without 
adjustm ent

ICSDP 
PO sim.

ICSDP 
ICS sim.

Variable TD 3 1 . 6 No. of 
Cohorts

TD 3 1  6 No. of 
Cohorts

Mean estimate 381.5 14.67 371.2 15.02

(2.5, 97.5) percentiles 
of estimates

97.5/2.5

(247.7,
575.3)

2.32

(243.2,
561.0)

2.31
Min 178.4 8 186.9 7
Max 742.2 20 690.4 20

% in (TD±30%) 83.0 85.5
Precision Safety Max.

No.
93.5 0.0 6.5 90.4 0.0 9.6

Table 6-13 cont.: Results from 1000 trials simulated by PO model or ICS model, 
escalated with patient gain, allowing intra-patient adjustments and not.

TD=366mg/m2.

Allowing intra-patient adjustments results in worse estimates of the TD which are 

overestimated. The precision of the estimates are also worse now. The proportion of 

trials that produce an estimate within a 30% limit of the true TD is nearly 10% less 

than before for both data generation models. The average trial length is quite 

comparable however, but fewer trials stopped due to precision compared to before 

with over 17% of trials for both data generation models now stopping for safety 

reasons as opposed to none that stopped in the original procedures.

6.2.3 Investigation of Results

The decrease in precision of the estimated target doses is reasonable in this case since 

fewer doses are being experimented with simultaneously. Since all patients in the trial 

are on the same dose, fewer observations on different doses occur, allowing less 

information to be obtained on the overall dose-response relationship.

The poor precision of the mean estimated TD needs some investigation. One would 

think that assessing and adjusting patients’ doses more frequently would allow more 

chance to get to the true TD. Figure 6-3 shows the distribution of estimated TDs for
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the ICSDP with intra-patient adjustments (blue) and without adjustments (red) when 

data are generated from the PO model. Figure 6-4 shows the estimated TDs when the 

data are generated from the ICS model. The dose values corresponding to 366±30%  

are displayed for reference.

Distribution of estim ated TD31.6, with intra-patient adjustm ents
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Figure 6- 3: Histograms to show the distribution of the estimated TDs when simulated
by PO model.
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Distribution of estimated TD31.6, with intra-patient adjustments
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Figure 6- 4: Flistograms to show the distribution o f the estimated TDs when simulated
by ICS model.

Figures 6-3 and 6-4 show some interesting features. Both histograms produced by the 

escalation with no intra-patient adjustments are skewed further to the lower doses and 

are also more concentrated around the true TD (366mg/m2). This is particularly 

evident when looking at the trials where the data was simulated by the ICS model. The 

histograms produced from the intra-patient escalations show that the variability o f the 

estimated doses is quite high, with lower and higher doses being selected as the TD
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much more often. There is also not as much of a peak around the true TD (366mg/m2). 

This therefore explains the precision issue. The minimum and maximum estimated 

TDs are much more extreme and there is a wide range of frequently selected TDs in 

the middle range of the doses. This results in lower precision.

Although the issue with the large variability of the estimates is understood, the issue 

with the precision of the TD is not. It seems that the poor precision would be related to 

the fact that many trials are stopping for safety reasons later in the trial. When looking 

at the variance gain, trials usually stop for safety because multiple events have been 

observed on low doses so no dose is deemed safe. This therefore causes the estimates 

to be lower. The estimates produced here however are higher. This is because there 

are fewer observations on low doses, since all patients escalate together. Therefore, 

faster escalation to higher doses is permitted. If there are not many events occurring 

during the multiple administrations of a higher dose then even higher doses are 

suggested to be administered. This suggests that this estimate would be higher than it 

should be. A closer look into one trial can investigate this further.

When the data was simulated by the ICS model, one particular study had an estimated 

target dose of 640.944 which would have resulted in the dose 630 being recommended 

for further investigation at Phase II. The trial also stopped for precision reasons so it 

was believed that this estimate was an accurate estimate of the target dose. The 

required number o f cohorts to achieve this estimate was just 11. Table 6-14 shows the 

actual doses that were administered together with the number of DLTs observed.
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C ohort and Cycle Dose No. Patients No. DLTs
Cohort 1, Cycle 1,2,3 60 3 (9 observations) 0

Cohort 2, Cycle 1 2 0 0 3 0

Cohort 3, Cycle 1 300 3 0

Cohort 2, Cycle 2 300 3 0

Cohort 4, Cycle 1 420 3 1

Cohort 3, Cycle 2 420 3 0

Cohort 2, Cycle 3 420 3 0

Cohort 5, Cycle 1 630 3 2

Cohort 4, Cycle 2 630 2 0

Cohort 3, Cycle 3 630 3 0

Cohort 6 , Cycle 1 420 3 0

Cohort 5, Cycle 2 420 1 0

Cohort 4, Cycle 3 420 2 0

Cohort 7, Cycle 1 420 3 0

Cohort 6 , Cycle 2 420 3 0

Cohort 5, Cycle 3 420 1 0

Cohort 8 , Cycle 1 630 3 1

Cohort 7, Cycle 2 630 3 0

Cohort 6 , Cycle 3 630 3 0

Cohort 9, Cycle 1 630 3 0

Cohort 8 , Cycle 2 630 2 0

Cohort 7, Cycle 3 630 3 0

Cohort 10, Cycle 1 630 3 0

Cohort 9, Cycle 2 630 3 0

Cohort 8 , Cycle 3 630 2 0

Cohort 11, Cycle 1 945 3 2

Cohort 10, Cycle 2 945 3 1

Cohort 9, Cycle 3 945 3 0

Table 6-14: One trial, data simulated by ICS model, escalated with intra-patient
adjustments.

As can be seen, the dose escalates very quickly, to dose 630 by cohort 5. This is 2 

dose levels higher than the true TD of 366 since the nearest dose levels are 300 or 420, 

and 630 is then above the higher of the 2 closest levels. There are very few 

observations on low doses: in total 18 cycles of therapy were spent on doses below the 

true TD, out of the total 82 patient cycles of therapy observed. Clearly this does not 

give much chance to observe any possible events that may occur on low doses, so 

immediately the estimates are likely to be higher than the true TD. 33 patient cycles 

were observed for dose 630 and 22 patient cycles for dose 420. This large number of 

observations for these particular doses contributed to the fast reduction in the
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asymptotic variance and convergence to 630. Since 6  out of the 9 possible doses were 

administered to at least one cohort, some information was obtained throughout most 

of the dose range and therefore contributed to the estimation of the overall dose- 

response relationship. In fact once the dose 945 had been observed, the ratio of the 

asymptotic credible interval fell from 7.835 to 3.188 which was then deemed accurate 

enough to stop the trial. In order to investigate this reduction in variance further, a 

comparison can be made to the escalation procedure that doesn’t allow intra-patient 

adjustments.

For two trials (one escalated with intra-patient adjustments and one not), the 

asymptotic variance of the log(TD) estimate was calculated. Table 6-15 shows the 

results for cohorts 3 and 4. Cohort 3 is the first cohort to be entered where any intra­

patient adjustments could be observed, which would occur for the second cycle of 

cohort 2, and cohort 4 then shows further deviations. Up to cohort 3 all the dose 

allocations and observations were exactly the same for both procedures since cohort 1  

is administered the lowest dose without dose adjustments and cohort 2  is subsequently 

allocated the same dose in both procedures, assuming that no DLTs are simulated on 

the lowest dose. The two simulated trials had similar escalations so that they could be 

compared directly.

Last Cohort 
Observed

No Intra-Patient Escalation Intra-Patient Escalation

TD var TD var
3

New dose=300 
No DLTs

496.455 0.7273 490.817 0.6975

4
New dose=420 
1 DLT for new 
cohort in cycle 

1  (same for 
both)

486.142 0.57417 520.939 0.47842

Table 6-15: Comparing Intra-Patient Escalation to No Intra-Patient Escalation.
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Before cohort 3, the estimated target dose was the same for both escalations due to 

cohort 2  being allocated dose 2 0 0 , and cohort 1  remaining on dose 60 for safety 

reasons. Therefore the dose to be allocated to cohort 3 was 300 for both escalations. In 

the Intra-Patient adjustment escalation, cohort 2 had their dose changed to 300 also, 

but in the original escalation procedure, cohort 2 remained on dose 200. No 

observations of DLTs were observed in either procedure which resulted in the 

estimated target doses shown above with corresponding variances. The estimated TD 

is higher for the original escalation (without adjustments) procedure but with larger 

variance. Both procedures however did result in the dose 420 being allocated to cohort 

4. In the original escalation procedure, only cohort 4 are administered this dose, cohort 

2 remain on dose 200 for their third cycle and cohort 3 remain on dose 300 for their 

second cycle. In the Intra-Patient procedure, cohorts 2, 3 and 4 are all administered 

dose 420 for their third, second and first cycles respectively. A DLT was observed on 

dose 420 for cohort 4 during cycle 1 which was common for both procedures. No 

other DLTs were observed. This resulted in the estimated TD and variance shown in 

Table 6-15. Here, the Intra-Patient escalation now has a much higher TD but with 

much lower variance. Since there are still multiple administrations on dose 420 in the 

Intra-Patient escalation, albeit during later cycles, where no DLT occurred, the DLT 

that did occur is not as influential. In the original escalation, 1/3 of the administrations 

of dose 420 resulted in a DLT hence a larger influence on the estimated TD. These 

estimates then result in different administrations for cohort 5. For the original 

escalation, dose 420 would be administered again, but for the Intra-Patient escalation, 

dose 630 would be administered. Although the estimated TD for the Intra-Patient 

escalation is nearer to dose 420, due to the dose-P(DLT) curve becoming steeper 

around the middle doses (doses that correspond to P(DLT)=0.5 which are
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630,945mg/m2), the new estimated probability of toxicity of dose 630 is closer to 

0.316 than that for dose 420. The dose allocation is based on the probabilities 

associated with dose rather than dose itself, which is why 630 is allocated rather than 

420. The TD estimates from the large simulation study were on average higher for the 

Intra-Patient escalation than the original and this may suggest why. The observations 

affect the estimation of the TD differently for the ICSDP with adjustments compared 

to the ICSDP without adjustments, due to the large differences seen in the dose 

administrations early on in the trial. Any DLTs that occur for higher doses early in the 

ICSDP with intra-patient adjustments do not have as much of a negative effect on the 

estimate as they should since there are also many observations of non-DLTs on the 

same higher doses. The variance reduces much more quickly for the Intra-Patient 

escalation since multiple administrations are seen simultaneously for a number of the 

dose levels. With this increased reduction in variance, the precision rule is achieved 

much sooner whilst the estimated TD is still higher than it actually should be.

6.2.4 Imposing restrictions on the intra-patient adjustments

This section looks at possible improvements to the procedure incorporating intra­

patient adjustments. One example could be to investigate whether a compromise can 

be found to avoid sub-therapeutic dosing by allowing early cohorts some intra-patient 

adjustments, but stopping these between cycle adjustments once the higher doses 

begin to be repeated.

This is investigated by allowing a fixed number of cohorts (e.g. 3) to experience intra­

patient escalation, then stopping the intra-patient adjustments once the next cohort 

begins (e.g. cohort 4). In actual fact this only allows three occurrences of a dose- 

adjustment (for cohort 2 entering cycle 2, cohort 3 entering cycle 2 and cohort 2 

entering cycle 3). However, looking at table 6-3 suggests it may not be appropriate to
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allow adjustments after cohort 4 begins, since this is when the estimates of the TD 

begin to converge more rapidly since the variance reduction begins to speed up.

The simulations are set up in exactly the same way as before (for with intra- and

without intra-patient adjustments). Cohort 1 always remains on the lowest dose

2 • •(60mg/m ) for safety reasons. Patients in cohort 2 and 3 are then allowed to have their

doses adjusted between cycles. Once cohort 4 begins, intra-patient escalation is no 

longer allowed and patients remain on their existing doses for the remainder of their 

participation in the trial. Only 100 simulations are conducted for this scenario since 

the use of this idea is more investigative than realistic so very precise results are not 

essential. However, any major deviations between procedures should still be apparent.

Based on Table 6-15, if no DLTs have been observed by the time the procedure 

reaches cohort 4 the dose to be administered would be 420mg/m2. This is the closest 

dose level to the true TD (366mg/m2) but slightly higher, implying that lower dose 

levels to this would be subtherapeutic and the idea is to minimise the time that patients 

spend on these doses.

These results are shown in Table 6-16.
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Design ICSDP 
PO sim.

ICSDP 
ICS sim.

Variable TD 3 1  6 No. of 
Cohorts

TD 3 1  6 No. of 
Cohorts

Mean estimate 403.1 15.29 389.2 15.12

(2.5, 97.5) percentiles 
of estimates

97.5/2.5

(263.5,
614.6)

2.46

(265.9,
568.7)

2.14
Min 233.7 7 236.4 1 0

Max 803.2 2 0 624.5 2 0

% in (TD±30%) 74.0 83.0
Precision Safety Max.

No.
87.0 2.0 11.0 85.0 5.0 10.0

Table 6 - 16: Results from 100 trials simulated by PO model and ICS model, escalated 
with patient gain, allowing intra-patient escalation until cohort 4 begins.

The results shown in Table 6-16 are very similar to the original investigation with the 

ICSDP from Chapter 5 as shown again in Table 6-13, where no adjustments are 

allowed, since only three adjustments are allowed here. Even with just 3 adjustments, 

the trial lengths are slightly increased and the TD estimates are marginally higher. So 

there appears to be no gain by allowing even very few adjustments and it seems that 

the estimates increase due to the reduced number of observations on the lower doses.

Therefore, it seems that, although it may seem unethical to keep patients on 

subtherapeutic doses early in the trial, the observations obtained from these low doses 

are essential in ensuring the model does not overestimate the TD.

Since the trial lengths were slightly shorter when allowing intra-patient adjustments 

throughout the trial, the method before could be reversed so that the first 3 cohorts 

(those on low/subtherapeutic doses) are not allowed to escalate between cycles, but 

once the dose has escalated to a higher dose safely, then intra-patient adjustments can 

be incorporated.

The results for this investigation are shown below in Table 6-17.

144



Design ICSDP 
PO sim.

ICSDP 
ICS sim.

Variable TD 3 1  6 No. of 
Cohorts

TD 3 1  6 No. of 
Cohorts

Mean estimate 425.1 15.25 410.6 14.81

(2.5, 97.5) percentiles 
of estimates

97.5/2.5

(251.9,
701.1)

2.78

(231.6,
622.1)

2.69
Min 241.9 8 211.4 9
Max 862.3 2 0 758.1 2 0

% in (TD±30%) 63.0 6 8 . 0

Precision Safety Max.
No.

70.0 19.0 11.0 73.0 18.0 9.0

Table 6-17: Results from 100 trials simulated by PO model and ICS model, escalated 
with patient gain, allowing intra-patient escalation after cohort 5 begins.

The results here are worse than when the intra-patient adjustments were allowed for 

the entire trial. This suggests that allowing intra-patient adjustments after the first few 

cohorts is even more detrimental to the estimation of the TD.

6.2.5 Conclusions

Incorporating intra-patient adjustments is an attractive feature and has been shown to 

aid convergence of the target dose, but when there is no new information or different 

information between cycles, the convergence is solely reliant on the dose initially 

administered since no additional information (such as time-changing covariates) is 

accruing and the dose is not permitted to change. An increased number of 

observations on single doses causes fast convergence of the estimated TD and a fast 

reduction of the variance of the estimate. This is often premature and the TD is 

overestimated very quickly. The suggestion of allowing just the first few cohorts to 

escalate between cycles to avoid sub-therapeutic dosing is a better approach than 

allowing adjustments throughout the trial or for later cohorts, but these results are still 

not as good as when no adjustments are incorporated.
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It may be beneficial to use intra-patient escalation in further investigations, when there 

is new and accruing information available for each cycle. For example, if a marker is 

measured at the end of each cycle, it may provide information as to the level of 

response (probability of toxicity) that each patient is currently subject to. If the marker 

level changes, for whatever reason (due to the treatment or disease), the dose to be 

allocated to the next cycle may need to be adjusted accordingly.

Markers can be included as time-changing covariates, along with other baseline 

covariates (e.g. age, gender etc.), and a function of these covariates along with the pre­

specified probability of toxicity would correspond to a patient-specific TD that could 

be generalised for the population, or a sub-group of the population and taken forward 

for recommendation at Phase II. These ideas are considered in Chapters 7 and 8 .

146



7. Including Baseline Covariates into 
the Escalation Procedure

7.1. Introduction

After investigating the feasibility of intra-patient adjustments, the use of patient 

characteristics in the model is an important point to consider. As discussed, including 

more information about patients should improve the precision of the model and TD 

estimates as well as producing personalised TD estimates. By using patient 

characteristics, a more personalised dose-escalation procedure can be created which 

will be more ethical since the tolerability of the drug may differ across subgroups of 

patients, and this will need to be considered within the dose allocation methods. 

P(DLT) would now correspond to a randomly chosen patient from a subgroup of the 

population. Examples of patient characteristics include the presence and/or value of a 

known biomarker, or simpler ones such as age and gender. Age and gender are 

focused upon in this chapter.

As shown in Chapter 3, age and gender seem to have an effect on the chance of DLT. 

In particular, females have a higher chance of DLT than males, and younger patients 

are also more at risk than older patients. This will therefore form the basis for a new 

simulation study in which DLTs are simulated for patients dependent on their age and 

gender as well as dose. The ICSDP with the patient gain will again be used for the 

escalation procedure. The occurrence of DLTs can no longer simply be simulated by a 

model which just incorporates dose and cycle, so more personalised simulations need 

to be considered where different TDs for different patients will be produced.
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7.2. Data Generation Methods

7.2.1 Covariates

Chapter 3 showed that a higher proportion of females than males experienced DLTs, 

particularly in cycles 1 and 2. The probability of a DLT then decreased with each 

cycle reasonably constantly for both males and females. The pattern adopted for 

generating the data is therefore based on females having a higher starting chance of 

toxicity, but with the probability of DLT halving for successive cycles for both males 

and females, as in the simulation studies in Chapters 5 and 6 .

In the Postel-Vinay dataset [1] as explored in Chapter 3, patients had been categorised 

into four age groups, <50, 51-58, 59-65 and >65 years. There were reasonably equal 

numbers of patients in each category, particularly comparing the first 2  age groups to 

the second 2 age groups. Furthermore, the mean age of patients experiencing toxicities 

within each cycle varied between 50 and 63, so these four age groups seem 

appropriate. There was not a particularly clear pattern between the occurrence of DLT 

and age, however there did appear to be some relationship. The youngest group (in the 

first 3 cycles) nearly always experienced the highest proportion of DLTs and this 

proportion decreased with cycles. Apart from the first cycle, the oldest group 

generally had the lowest proportion of patients experiencing DLTs and this again 

decreased with each cycle but by a smaller proportion. The middle two age groups had 

a probability o f DLT generally between the youngest and oldest but this probability 

was reasonably constant across cycles. For simulation purposes, the difference in the 

reduction between cycles has been ignored since it is very small and is not consistent 

across age groups. In order to include this, an interaction between age and cycle would 

need to be incorporated which would involve the use of time-dependent covariates 

which is outside the scope of the simulation study in this chapter. The inclusion of
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time-dependent covariates will be considered in Chapter 8 . The purpose of this 

simulation study is to show how baseline covariates are used in the dose-escalation 

procedure to produce a personalised estimate of the TD for subgroups of patients. 

Furthermore, the age categories have been simplified into two categories, <55 and 

>55. This simplification has been incorporated since the EDA from chapter 3 suggests 

that there were reasonably similar proportions of patients <55 and >55, and 

furthermore, the trend in P(DLT) was notably different between the lowest and 

highest age group, whereas the groups in the middle of the range had little difference. 

Therefore, the split at age 55 should reflect the difference in P(DLT) between younger 

and older patients. In order to incorporate more categories, the model would again 

become increasingly complex. The younger patients have been given a higher chance 

of experiencing a DLT, with the proportions experiencing a halving P(DLT) for 

successive cycles for all patients.

Since there was not as much of an obvious pattern in occurrence o f DLTs across age 

groups as between males and females, the change in the probability of DLT between 

those aged <55 and those aged >55 was chosen to be smaller than that between males 

and females.

Based on the general pattern of DLTs across age and gender groups, a system of

simultaneous equations for specific DLT probabilities and doses are created to obtain

values for each of the parameters used for data generation (cycle parameters for ICS

model, intercept for logistic regression model, log(dose) coefficient, age and gender

parameters for both models). This is done for the “average” patient at dose 366mg/m

for cycles 1, 2 and 3. The “average” patient can be considered to be a patient who has

the average value of the coded levels of the factor. In this case, there are 2 factors with

2 levels (age, <55 and >55, and gender, male and female). When the levels are coded
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as 0, 1 (0=male, l=female, 0 = <55, 1= >55), then if 50% of the patients are male and 

50% are <55 the average patient will have value an expected value of 0.5 for each 

factor. Coding as 0 and 1 is the standard way to present factors with 2 levels. However 

in coding in this way, the baseline patient will be the patient with a value of 0 for both 

factors, which corresponds to a young male. It may be more appropriate to have the 

baseline patient as some kind of “average” patient rather than one specific type of 

patient. In order that the “average” patient has covariate values of 0 so to correspond 

to the baseline patient, the factor levels can be coded as -0.5, 0.5 (-0.5=males, <55, 

0.5=females, >55).

Changing the coding values will change the intercept terms of the models. An 

investigation will be conducted to determine whether this difference actually causes 

an effect in the calculation of asymptotic credible intervals.

The dose of 366mg/m2 is the target dose corresponding to a probability of a first 

DLT for the “average” patient in the first, second and third cycles of 0.2, 0.08 and 

0.036 respectively (0.316 over 3 cycles). This corresponds to the conditional 

probabilities for each cycle of 0.2, 0.1 and 0.05, as in previous investigations. A dose 

o f 799mg/m2 corresponds to a probability of DLT in the first cycle of 0.5 for the 

“average” patient. The probabilities of a DLT at 366mg/m2 in cycle 1 for the four 

subgroups of patients are calculated by applying a 20% reduction (approximately) in 

probability of DLT between females and males and a 10% reduction (approximately) 

between those aged <55 and those >55 (i.e. if the P(DLT)=0.2 for females, then 

P(DLT)=0.2-(0.2*0.2)=0.16 for males, and if P(DLT)=0.2 for <55s, then 

P(DLT)=0.2-(0.1*0.2)=0.18 for >55s). The actual probabilities used in the simulation 

are shown in Table 7-1, ordered by the least at risk to the most at risk. The TDs and

the closest discrete dose levels are also displayed.
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P(DLT in cycle 1 on dose 366)
=  n l  ,366,a,a  = P 3 6 6 ,a ,fl(c l )

TD31.6 d(J) « 7D31.6

Old Male (a=l or 0.5, g=0 or -0.5) = 0.17 408.12 420
Young Male (a=0 or -0.5, g=0 or -0.5) = 0.19 380.08 420

Old Female (a=l or 0.5, g=l or 0.5) = 0.21 352.44 300
Young Female (a=0 or -0.5, g=l or 0.5) = 0.23 328.24 300
able 7- 1: Probability of DLT (rounded to 2dp) and TD31.6 for each category in

cycle 1.

As can be seen, the TDs for all four subgroups still lie in the interval of (300,420) as 

the original TD of 366 did. However, each TD is now closer to one of the two discrete 

dose levels of 300 or 420.

7.2.2 PO Model

The proportional odds model is of the same form as described in Chapter 5, but now 

incorporates the covariates into the logit link function as follows:

log = a l +£a + v g  + f i  log(</0)), (7.1)

where a = 0,1 or -0.5,0.5 for the age category, and g  = 0,1 o r-0.5,0.5 for the gender 

category.

The system of equations that require solving to obtain parameter values for the PO 

model (as in equation (7.1)) are shown below. When coded -0.5, 0.5, the following 

equations are used:
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log

log

log

log

(  (  N \
-P.366,0,0 Vgl)

1 ~ Pi66,0,0 (C\)

/

7*366,0,0 ( ^ 2 )

1 ~ P366,0,0 (C2 )

7*366,0,0 ( g 3 )

1 ~ Pl66,0,0 (C3 )

7*799,0,0 ( g l )

1 ~  7*799,0,0 ( C1)

log P366 ,-0,5,05 (* ,)

log

1 7 *3 6 6 ,-0 .5 ,0 5 (^1 )

7*366,0.5,-0.5 ( C1)

1 7*366,0.5,-0.5 ( Cl )

= log 

= log 

= log 

= log 

= log 

= log

0.2

1 —  0.2  ^

0.28 " 
1 — 0.28 v

0.316
1-0.316

= a, + p  log(366),

= a 2 + /?log(366),

= a 3 + /?log(366),

0.5
U -0 .5

0.23
1-0.23.

0.17
U -0 .1 7

= a x + /?log(799),

= a, -  0.5£ + 0.5v + p  log(366),

= a x + 0.5£ -  0.5v + p  log(366).

Here, ^corresponds to the parameter associated with age, and v the parameter 

associated with gender. The parameter values are shown in table 7-2.

a 2 « 3 £ V P

-11.8673 -11.4254 -11.2532 -0.1166 0.2394 1.7756

Table 7-2: Parameter values when covariates are coded -0.5, 0.5.

These parameter values can then be used to calculate the cumulative probability of 

toxicity for each cycle for the different subgroups for different doses also. These 

probabilities are displayed in Table 7-3.

Subgroup P366,a,g (^1) P366,a,g (C2 ) P366,a,g (C3 ) Pl99,a,g (C\)
Old Male 0.17 0.25 0.28 0.45

Young Male 0.19 0.27 0.30 0.48
Old Female 0.21 0.29 0.33 0.52

Young Female 0.23 0.32 0.36 0.56
"able 7- 3: Cumulative probabilities of DLT for each subgroup for each cycle. 

When the covariates are coded 0, 1 the baseline patient is now the young male rather 

than the “average” patient. Therefore, the probabilities calculated for the young male 

at dose 366 in cycles 2 and 3, and at dose 799 in cycle 1, from the previous system of 

equations are used within equation (7.1) with covariate values 0 or 1.
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log

log

log

log

log

P'366,0,0 (Cl)

1 _  7*366,0,0 ( Cl )  j

7*366,0,0 ( g 2 )  ^  

1 ~  7*366,0,0 ( C2 )

7*366,0,0 ( g 3 )

1 _  7*366,0,0 ( C3 )

7*799,0,0 ( ^ )

1 _  7*799,0,0 ( C1)

^  7*366,0,1 ( g l )

1 “  7*366,0,1 ( C1)

7*366,1,0 ( Cl )

1 _  7*366,1,0 ( C1)

= log

= log

= log

0.19

1 - 0 . 1 9 ,

0.27
U -0 .2 7 ,

0.30
1-0.30

= log

= log

= log

0.48
1-0.48

0.23
1-0.23

0.17
U -0 .1 7

= a x+ p  log(366),

= a 2 + /?log(366),

= a 2 + /?log(366),

= a 1+y91og(799),

= a x+v + p  log(366),

= a x+£ + p  log(366).

The parameter values obtained by solving these equations are given in Table 7-4 and 

these correspond to the same probabilities of toxicity for each subgroup as shown in 

Table 7-3.

«1 «2 « 3 V P

-11.9286 -11.4868 -11.3146 -0.1166 0.2394 1.7756

'able 7- 4: Parameter values when covariates are coded 0, 1.

The age and gender of each patient are simulated by two Bernoulli random variables 

with p  = 0.5 to represent the notion of equal proportions in each subgroup. Equation

(7.1) is used with the parameter values from Table 7-4 to obtain the cumulative 

probabilities of DLT for each subgroup for each dose level and cycle, required for 

simulating DLTs:

expCof! + ft? + v g  + P  log (d{J)))
P(j),a,g Cl j + exp^  + g a  +  V g  +  fJ l0g(d )) ’

P ( j \ a , g ( Cl )  ~

exp (a2 +^a + v g  + P  log(</(y)))

1 + exp(a2 +£a + v g  + P  log (d(J)))

exp(cr3 + %a + v g  + P  log (d{J)))
Puu.g 3 J +  e X p ( a  + jja + Vg + p  l o g ( J  ) )
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The method used in Chapter 5.2.2 to generate a DLT (from a Bernoulli distribution) 

and its corresponding cycle (from a Uniform[0,l] distribution) is adopted here again.

7.2.3 ICS Model

For the ICS model the additional covariates are incorporated into the complementary 

log-log link function as follows:

log(- log(l -  7r{j)lag )) = y1+%a + v g  + 0  log(d0)), (7.2)

where *s conditional probability of toxicity for each cycle I on dose d{j)

with covariate values a and g . The system of equations to be solved when the

covariate values are coded -0.5, 0.5 are:

log(— log(l -  ̂ 366il>0>o)) = log(- log(l -0 .2  )) = yx+6  log 366,

log(— log(l -  ̂ 366j2,o,o)) = “  0.1)) = y2 + 0  log 366,

log(- log(l -  ̂ -366 3  0 ,0 )) = log(- log(l -  0.05)) = y3 + e  log 366,

log(- log(l -  k 199x o,o)) = log(- log(l -  0.5)) = yx + G log 799,

log(— log(l -  ̂ "3661,_o 5,0 5 )) = log(- log(l -  0.23)) = y{ -  0.5^ + 0.5v + 6 log 366,

log(— log(l -  ̂ 366,,,0.5,-0 .5)) = log (-  l°g(l -  17)) = 7\ + 0.5£ -  0.5 v + G log 366.

This leads to the parameter values displayed in Table 7-5.

Yi Y2 y3 V 9

-10.0694 -10.8198 -11.5396 -0.1033 0.2129 1.4518

Table 7- 5: Parameter values when covariate values are coded -0.5, 0.5.

Table 7-6 shows the conditional probabilities and overall probability of DLT for each 

subgroup calculated from substituting the parameter values in Table 7-5 into equation

(7.2).

Subgroup P j , a , g ( C3 )
Old Male 0.17 0.09 0.04 0.28

Young Male 0.19 0.09 0.05 0.30
Old Female 0.21 0.11 0.05 0.33

Young Female 0.23 0.12 0.06 0.36
Table 7- 6: Conditional probabilities of DLT for each subgroup for each cycle.
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When the covariate values are coded 0 or 1, the baseline patient is a young male 

patient. The system of equations to be solved are:

log(— log(l -  ̂ 366ilo,o)) = log(- log(l -  0.19)) = yx + e  log 366, 

log(— log(l -  7T366 2>oo)) = log( log(l -  0.09)) = y2 + 6  log 366, 

log(— log(l -  n366 3 0>0)) = log(— log(l -  0.05)) = y3 + 6  log 366, 

log(- log(l -  tt799 , o o)) = log(— log(l -  0.48)) = yx + 0 log 799, 

log( log(l -  7T366, o,)) = log(— log(l -  0.23)) = + v + 6 log 366,

log(— log(l -  7T366 , , o)) = log(— log(l -  0.17)) = yx + % + e  log 366.

This leads to the parameter values shown in Table 7-7.

Yx Yi 73 4 V e

-10.1242 -10.8746 -11.5944 -0.1033 0.2129 1.4518

Table 7- 7: Parameter values when covariate values are coded 0, 1.

The DLTs are simulated progressively for each cycle for each patient given their 

covariate values and dose levels as in Chapter 5.2.3.

7.3 Pseudo-data

In order to initiate the procedure, pseudo-data needs to be used. Since there are 

different categories of patients, pseudo-observations need to be incorporated for all 

categories. The pseudo-data is based on the assumption that there is no difference in 

the probability of DLT between different categories of patients, so that all incoming 

patients will be treated the same until observations are analysed in conjunction with 

the covariate values. The pseudo-data is set up similarly to the situation without 

covariates. The same set of independent Beta distributions are assigned to the 

probability of DLT in cycle 1 for the lowest and highest dose levels (J) = \ ,k  , as 

shown in Table 5-4 for each subgroup. Beta distributions are also assigned to the 

probability of DLT for subsequent cycles, but the parameters for these distributions 

are dependent on the number of toxicities observed in earlier cycles. Table 7-8 shows 

the calculated probabilities of DLTs for each cycle for each category of covariates for
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several different doses from the ICS model used to generate data for the simulation. 

The doses displayed are 366, 799 and the discrete dose levels surrounding these. For 

reference the dose levels 60 and 1700 (lowest and highest dose levels) are displayed 

also to show just how pessimistic the prior information is by assigning the lowest and 

highest dose levels to the P(DLT) associated with the true TD and the true 50% toxic 

dose.

Dose dj

60 300 366 420 799 1700
Old Male 

Young Male 
Old Female 

Young Female

0.0137
0.0152
0.0169
0.0187

0.1330
0.1464
0.1619
0.1778

0.1735
0.1904
0.2100
0.2300

0.2076
0.2274
0.2501
0.2732

0.4467
0.4812
0.5192
0.5560

0.8298
0.8597
0.8882
0.9119

^j,2,a,g Old Male 
Young Male 
Old Female 

Young Female

0.0065
0.0072
0.0080
0.0089

0.0652
0.0720
0.0800
0.0883

0.0860
0.0949
0.1053
0.1161

0.1040
0.1147
0.1271
0.1399

0.2438
0.2664
0.2923
0.3184

0.5667
0.6044
0.6446
0.6825

Old Male 
Young Male 
Old Female 

Young Female

0.0032
0.0035
0.0039
0.0043

0.0323
0.0357
0.0398
0.0440

0.0428
0.0474
0.0527
0.0583

0.0521
0.0576
0.0640
0.0707

0.1272
0.1400
0.1549
0.1703

0.3344
0.3633
0.3957
0.4279

Pm A c3 ) Old Male 
Young Male 
Old Female 

Young Female

0.0232
0.0257
0.0286
0.0316

0.2157
0.2348
0.2596
0.2834

0.2769
0.3020
0.3304
0.3591

0.3270
0.3554
0.3873
0.4191

0.6348
0.4727
0.7046
0.7511

0.9509
0.9647
0.9760
0.9840

Table 7- 8: Probabilities of DLTs associated with different doses and dose levels from
ICS data simulation model.

The pseudo-data incorporated is shown in Table 7-9.

Covariate
Category

Dose d(j) _ 0
71 (j) n (i)°

J*11

ICSDP
TTL=0.316

For each 
category 

a=0,l, g=0,l 
a=-0.5,0.5, 
g=-0.5, 0.5

d(i), cycle 1 0.2 3 0.6

d(j), cycle 2 0.1 2.4 0.24

d(i), cycle 3 0.05 2.16 0.108

d(k), cycle 1 0.5 3 1.5

d(k), cycle 2 0.2791 1.5 0.41865

d(k), cycle 3 0.1473 1.08135 0.1593

Table 7- 9. Pseudo-data for all categories of patients
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The pseudo-data is the same as in Table 5-6, but is now repeated for each subgroup so 

there is four times the amount of pseudo-data implemented compared to in Section 5- 

3. It can clearly be seen that the pseudo-data is likely to be very influential, since there 

are 12 pseudo-patients starting each dose level, and 24 pseudo-patients in total. Since 

there will only be a maximum number of 60 patients recruited, the minimum 

contribution the pseudo-data will provide is 24/84 « 29% of the overall information. 

This amount will increase as the observed number of patients reduces, i.e. if the 

precision rule stops the trial after 15 cohorts, only 45 patients will have been recruited 

so the pseudo-data will then account for 24/69 « 35% of the total information. The 

amount of pseudo-data to use will be investigated in later parts of this chapter.

7.4 Escalation Procedure

Once the patient characteristics and observations have been generated, the simulated 

escalation procedure can be carried out.

In order to begin the procedure in the same cautious fashion as has been conducted 

previously, pessimistic prior information needs to be used to initiate the dose 

allocation. This prior information is incorporated once again via the use of pseudo­

data as described in Table 7-9. The lowest dose is set to correspond to the target 

toxicity level for all categories o f patients. In doing this, all patients in the first cohort 

will be allocated the lowest dose possible, regardless of covariate values. In reality, 

there may be some prior belief as to how the tolerance of the drug may differ for 

different categories of patients so different starting doses could be adopted for 

different subgroups. However, a common safety measure is to force all patients to 

start at the lowest dose so this is the approach adopted here. Allowing for a covariate 

effect in the formulation of the pseudo-data will be incorporated in a later 

investigation to see whether final estimates of the TD are improved. A point for
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consideration with regards to the pseudo-data is how much to include. Previously, 3 

patients per dose level were used. Since there are now 4 subgroups of patients, all with 

a potentially different dose-response relationship, pseudo-data for each subgroup 

needs to be included. In the first instance, the existing method will be carried forward 

and 3 patients will be included for each category on each dose level as shown in Table 

7-9. This is likely to be too much prior information since this will correspond to 24 

patients worth of data in the prior. Since the maximum number of patients is set at 60 

(20 cohorts of 3 patients) the inclusion of 24 patients in the prior information is going 

to be very influential since it will correspond to a minimum of 24/84 patients worth of 

information. This suggests that a minimum of nearly 1/3 of the information will be 

provided by pseudo-data. In section 7-5, different amounts of pseudo-data will be 

investigated, as will the exclusion of the pseudo-data from the final analysis and 

estimation of the TD once the trial has stopped.

Once the first cohort has been allocated the lowest dose for their first cycle, the 

observations of DLTs (including the pseudo-data) are analysed by the ICS model with 

age and gender specified as covariates. The procedure can be extended to include 

more covariates and continuous variables as well as factors. The parameter estimates 

obtained are then used along with the recorded number of patients and toxicities on 

each dose/cycle/age category/gender to produce estimates of the TDs for each 

subgroup.

In the case of no covariates the asymptotic variance of the estimate of log(7Dr/y) ,  

where TTL = 0.316, was used to produce a Credible Interval (CIu^CIl) for 

log (7Dr// ) which was then exponentiated to obtain a Cl for TDrn . The ratio (R) of 

the exponentiated limits (CIu:CIL) was then used as the precision criterion by which
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the trial can be stopped. In the presence of covariates, the estimate oflog(rZ)7TL) is

different for each category of patients, and this would result in a different asymptotic 

variance, Cl and R for each category. One would then not be able to stop the trial 

based on one precision criterion. Instead, a set of precision criteria would have to be 

developed, all of which would have to be met in order to stop the trial for precision. 

Also, to find the asymptotic variance using the delta method as has been done so far, 

inversion of a 6x6 matrix{ lE ( / , , / 2,y3,€ fv ,0 ))  along with pre and post-multiplication

by a 1x6 gradient vector of log( T D ^ )  would have to be conducted. This is not a

straightforward calculation which will only become increasingly complicated as more 

covariates are incorporated. Furthermore, this calculation will have to be computed for 

every subset of the population with a different combination of covariates.

In order to include covariates in the model, an amendment to the precision stopping 

criterion has been considered which makes the procedure more straightforward. The 

calculation of log( T D ^ )  from the ICS model with covariates is given by:

One can note from this expression that the estimate of log(7D7Ti) is dependent on the 

values of the covariates (a , g ). However, if one were to rearrange this expression, it 

can be made into a function of log(TDm ) that is invariant to what set of covariates are 

used.

(
log(l -  TTL)

v
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log{TDrn ) = 1  log (-log (l- TTL))-  — \og(ier' + e* + eM e< V *),
0 0 ^  '

log (TDm  ) = ~  log(- log(l -  7T£)) - 1  log (eh + e* + <. f t ) - I l o g ( e*™'‘ ), 

log (TDm  ) + = i  log(- log(l -  TTL)) -  i  log (e" + e* +er') ,

f (\o%(t d 1tl))=  l o g ,

= 1  log(- log(l -  77Z)) - 1  log (e'/| +en +er') .

(7.3)

The delta method can then be applied to this function F ( log (7Z)r/y)) to obtain an

asymptotic variance for the function. Since this will not change dependent on which 

combination of covariates are used, only one Cl and R need to be used for the 

precision criterion. The specific estimate of log ( T D ^ )  for each set o f patients can

then be found by subtracting r̂om function depending on values of a

and g .

Using the function F (lo g (7 ,D7TA)) as in equation (7.3) also makes the computation of 

the asymptotic variance much simpler. Although I E (y1,y2,y3,£ ,i ',# )  is still a 6x6 

matrix which needs inverting, the gradient vector is now of the function

F ( log (TDjjb)}w h e r e = 0 (where F  is the functionF (lo g (T D ^ )) in equation

(7.3)) so the asymptotic variance of F  (log (TDm  )) is of the same form as the

asymptotic variance of log(JZ)77I) in the case of no covariates. The expression for the

resulting variance is shown in Appendix 5. This simplification is particularly attractive 

when considering the fact that many covariates could now be included in this model 

without the expression of the asymptotic variance becoming too complicated. One
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concern that may arise with the use of this function F  when coding either 0, 1 and - 

0.5, 0.5, is that the function with covariate values equal to 0 actually corresponds to a 

slightly different dose. When coded as 0, 1, the estimate of F  corresponds to the TD 

for the young males (380mg/m2), whereas when coded as -0.5, 0.5, the estimate 

corresponds to the TD for the ‘average’ patient (366mg/m2). Since the function with 

covariate values equal to 0 corresponds to different doses when coded differently, the 

Cl may be slightly different and therefore the ratios of the Cl limits may be slightly 

different. The estimated TDs are very similar however, and therefore any difference in 

the values of R should be very minimal if present at all. A simple test for this would 

be to analyse just the pseudo-data and compare when the values are coded as 0,1 and - 

0.5, 0.5. Since the pseudo-data incorporated in Table 7-9 contains no prior belief of a 

covariate effect, the function F  is not dependent on coding values since the values of 

£ and v  are equal to 0. The pseudo-data can be extended however to incorporate a 

prior covariate effect (details will be given later in section 7.7) where the dose of 60 is 

set to correspond to each subgroup’s true target toxicity level associated with the dose 

366mg/m2. When this is incorporated, the prior parameters associated with this 

pseudo-data are found to be

y, =-2 .8880, y2 = -3.6386,y3 =-4.3574,<9 = 0.3390,£ = -0 .1305and v = 0.2131 when

coded -0.5, 0.5, and yx = -2 .9429,y2 = -3.6935,y3 = -4 .4122 ,0  = 0.3390,£ = -0.1305

and v  = 0.2131 when coded 0, 1. These values correspond to a TD (associated with a 

TTL o f 0.316) of 60mg/m2 for the average patient (with covariate values set to 0) 

when coded -0.5, 0.5, and 71 mg/m2 for the baseline patient (with covariate values set 

to 0) when coded 0, 1. The respective CIs are [10.74, 335.09] when coded -0.5, 0.5 

with a ratio of 31.19 and [12.63, 393.76] with a ratio of 31.17. There is a difference in 

ratios, however it is very minor. Analysis of just the pseudo-data should produce a
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relatively large variance, so any difference here is likely to reduce once data are 

observed and included. Therefore any difference should reduce further, and this will 

be looked at when investigating the full escalation procedures.

Once the estimate o fF  is obtained, the individual estimates of p ^ ag (<?3) given a

patients covariates of a and g  are obtained and used in the patient gain function to 

show which dose would be best to allocate to patients based on their covariate values. 

The next cohort is then allocated the relevant doses (depending on what covariate 

values they have) and the next cycle for the first cohort is kept on the same dose. No 

intra-patient escalation has been allowed for this dose escalation procedure, as the 

investigation allowing intra-patient adjustments produced negative results when there 

is additional information accruing, other than the occurrence or not of DLTs. Since the 

covariates to include here are baseline characteristics, they will not change between 

cycles so there is no added benefit of allowing between cycle adjustments. Intra­

patient adjustments will be considered again in Chapter 8 when considering the 

inclusion of time-dependent covariates. However, since different patients are allocated 

different doses, the information on the drug-response relationship should still be very 

good, even if there are more covariates to consider.

The dose escalation procedure will again continue until a stopping criterion is 

achieved (either safety, precision or a maximum number of patients). Estimates of the 

patient specific TD and the length of each trial will be obtained, along with the 

proportion of TD estimates that are within a 30% limit of the true TD (for each 

subgroup). The standardised value of the patient specific TD estimate compared to the
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TDtrue patient specific TD
v

is also presented to see how close this value is

to 1.

The first investigation, concerns the difference in coding of the age and gender 

covariates. The results can be compared in terms of the TD estimates, the length of the 

trial, the average values of R at the end of the trial and the stopping reasons. This can 

then be used to decide how to code the covariates.

Further investigations will then be considered, as discussed previously, to determine 

the role of pseudo-data in the escalation procedure, i.e. how much to use, whether to 

incorporate a covariate effect, whether to use it in the analysis for the final TD 

estimate, and also how it is created.

Once a final decision has been made as to how to incorporate the covariate values and 

the pseudo-data, a large simulation study will be conducted to confirm the results of 

this personalised ICSDP.

7.5 ICSDP with baseline covariates

7.5.1 Results

The first investigation starts with 3 patients per subgroup per dose in the pseudo-data, 

a total of 24 patients. This seems unreasonable to do in practice since the maximum 

number of patients in a trial is only 60 therefore by adding this amount of prior 

information is likely to overwhelm the results. However, since the initial investigation 

is simply to compare the coding procedure, it is used here. The comparisons between 

coding values are based on 100 paired datasets. The datasets are generated by both the 

PO and ICS models with covariate values coded either as 0,1 or -0.5,0.5. Once 

generated, the dataset is duplicated and the covariate values are reassigned to the
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coding values that were not used for generation, i.e. the data generated by the PO 

model with covariate values coded as 0, 1, is duplicated and the repeated dataset has 

the covariate values recoded to -0.5, 0.5. The comparisons to be considered are then 

within generation procedure (between the paired datasets e.g. PO generated with 0,1, 

analysed by 0,1 or -0.5, 0.5), within data generation model (e.g. PO generated with 0,1 

to PO generated with -0.5,0.5) and across data generation models but within coding

generation (e.g. PO generate with 0,1 to ICS generated with 0,1).

Simulated from IC with 
covariate values 0 , 1 .

Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old Female 
352.44

Mean Estimate of TD31.6 369.66 369.42 341.55 344.16

/ t d 31.6
0.973 0.905 1.041 0.976

Mean R 3.8 818255
Mean number of Cohorts 16.09

Use of Stopping Rules Precision Safety Maximum No.
99% - 1%

Covariate values coded -0.5, 0.5.
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.11

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 369.66 369.42 341.55 344.16

7^31.6/
/ t d 31'6

0.973 0.905 1.041 0.976

Mean R 3.8817698
Mean number of Cohorts 16.09

Use o f Stopping Rules Precision Safety Maximum No.
99% - 1%

Table 7- 10: Results from 100 trials simulated by ICS model with covariate values 0, 1
or -0.5, 0.5.
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Simulated from IC with 
covariate values -0.5, 0.5.

Covariate values coded 0,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 352.18 365.23 299.52 314.35
t d 31_6/

/T D 31.6
0.927 0.895 0.913 0.892

Mean R 3.909659
Mean number of Cohorts 16.16

Use of Stopping Rules Precision Safety Maximum No.
96% - 4%

Covariate values coded -0.5, 0.5.
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 352.18 365.23 299.52 314.35
f b 31'6/

/ t d 31'6
0.927 0.895 0.913 0.892

Mean R 3.9096895
Mean number of Cohorts 16.16

Use of Stopping Rules Precision Safety Maximum No.
96% - 4%

Table 7- 10 cont.: Results from 100 trials simulated by ICS model with covariate
values 0, 1 or -0.5, 0.5.

Simulated from PO with 
covariate values 0 , 1 .

Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 369.45 377.69 334.17 345.54
TD31.6/

/ t d 31'6
0.975 0.933 1.009 0.977

Mean R 3.8968865
Mean number of Cohorts 15.64

Use of Stopping Rules Precision Safety Maximum No.
98% - 2%

Table 7-11: Results from 100 trials simulated by PO model with covariate values 0, 1
or -0.5, 0.5.
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Covariate values coded -0.5, 0.5.
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 369.45 377.69 334.17 345.54
1.6 /  

/ t d 31'6
0.975 0.933 1.009 0.977

Mean R 3.8968472
Mean number of Cohorts 15.64

Use of Stopping Rules Precision Safety Maximum No.
98% - 2%

Simulated from PO with 
covariate values -0.5, 0.5.

Covariate values coded (u .

Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 358.10 371.60 334.35 341.86
n>31j

/ t d 31.6
0.945 0.918 1.010 0.967

Mean R 3.8936099
Mean number of Cohorts 15.99

Use of Stopping Rules Precision Safety Maximum No.
98% - 2%

Covariate values coded -0.5, 0.5.
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 358.10 371/60 334.35 341.86

/ t d 31'6
0.945 0.918 1.010 0.967

Mean R 3.8935741
Mean number of Cohorts 15.99

Use of Stopping Rules Precision Safety Maximum No.
98% - 2%

Table 7-11 cont.: Results from 100 trials simulated by PO model with covariate values
0, 1 or -0.5, 0.5.

The results for each pair of corresponding simulations (when the coding in the 

generation model matches the coding in the data analysed) are identical except for the 

value o f R (Tables 7-10 and 7-11). The difference in R values can be put down to the 

fact that the credible interval is based on the function F. When the covariate values are 

coded -0.5, 0.5, F  takes a lower value than when coded by 0, 1. The variance of this
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function takes a lower value due to some of the terms in the variance depending on F  

with the rest being invariant to the change of covariate values. The credible interval 

limits are then slightly closer to the mean estimate of F  and therefore the ratio of the 

limits is less. This difference, however, is only noticeable at 5 decimal places. It never 

results in a difference in the use of the precision stopping rule so the different values 

of R do not appear to affect the procedure.

Since there is no evidence of a difference in the results when the covariate values are 

coded 0, 1 or -0.5, 0.5, further investigations continue with the 0, 1 coding. Although 

it may be statistically intuitive to think of the baseline patient as the “average” patient, 

clinically it may be difficult to justify comparing subgroups of patients to hypothetical 

patients.

The differences between generating data either with parameters corresponding to 

coding values 0, 1 or -0.5, 0.5, can be put down to the random nature of simulation 

and the fact that there are only 100 simulations. While fixing a seed in the generation 

of the data would make the procedures exactly comparable, the random nature of the 

data generation across procedures does indicate the overall stability of each procedure 

and will highlight any obvious trends that occur due to the different methods.

The values o f R remain fairly similar within data generation model but across 

covariate coding values used for generation, as do the average trial length and the 

reasons for stopping. Similar trends do appear in the TD estimates, namely that they 

are generally underestimated, apart from those for young females which have the 

lowest true TD. The TD for young females tends to be overestimated apart from in 

one simulation scenario, which could be due to random chance. The difference
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between data generation models is also quite minimal, suggesting the ICSDP is still 

quite robust to model misspecification, as in Chapter 5.

The pessimistic pseudo-data used for the prior information is quite heavy and 

therefore becomes quite informative. This has caused the estimates to generally be

lower than they should be. Comparisons of the true DLT probabilities for dose levels

2 260mg/m and 366mg/m (Table 7-8) shows that by setting dose 60 to correspond to 

the true TD in order to initiate a safe escalation, imposes very pessimistic information. 

This therefore explains the underestimation of the target doses since the pseudo-data is 

so heavily weighted, and therefore informative. The mean estimated TDs for the 

subgroups of patients all lie in a much smaller range than their true TDs. The pseudo­

data was set in such a way that there was no covariate effect and all patients were 

treated the same. Since this prior was so informative, this trend has continued 

throughout the analyses and is still quite apparent in the final estimates.

7.5.2 Removing the pseudo-data from the final analysis

The final TD estimates could be recalculated without the pseudo-data included. In

practice this may be an attractive option to consider since the pseudo-data is only set 

to initiate a cautious escalation. It does not depict actual belief so it may be 

appropriate to remove it once useful and insightful data has been obtained.

Initially, the pseudo-data was removed from the final dataset for each trial and the

data was reanalysed stratified by trial. The calculation of the asymptotic variance

however was not possible. The inclusion of the pseudo-data not only ensures that the

escalation begins cautiously by putting a high DLT probability on the lowest dose, it

also puts a slightly lower probability of DLT than may actually be true on the highest

dose. The true overall probability of DLT for the highest dose for the baseline patient

is -0.97. Also, the conditional probability of DLT for the first cycle is -0.87. Since
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the escalation rarely reaches these high doses, when events occur at the slightly lower 

doses, the probabilities for the higher doses are exaggerated. This is particularly 

extreme when the pseudo-data is removed since there are no lower probabilities 

associated with the high doses included. This then causes the estimate of the 

conditional probabilities (particularly for cycle 1) to be equal to 1. On calculating the 

asymptotic variance, there are terms included that require taking the natural logarithm 

of 1 -  7r{j)l a g . When = 1, this logarithm tends to negative infinity hence the

calculation of the variance is not possible.

In order to combat this, the pseudo-data associated with just the baseline patient 

(young male, age and gender covariate values = 0) can be left in. This ensures there is 

some extra information put onto the highest dose so that the estimated probability of 

toxicity does not tend to 1.

Some of the results from Tables 7-10 and 7-11 are shown again in Table 7-12, this 

time reanalysed after the trial has stopped with only the pseudo-data for the baseline 

patient.

Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 412.497 603.910 432.603 774.220
t d 31J

/T D 31m6
1.085 1.480 1.318 2.197

Mean R 3.961
Mean number of Cohorts 16.16

Use o f Stopping Rules Precision Safety Maximum No.
96% - 4%

Table 7-12: Some results from Tables 7-8 and 7-9 reanalysed without the pseudo­
data.
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Simulated from PO. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 
408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 424.872 698.287 497.226 843.171

/T D 31m6
1.121 1.726 1.502 2.384

Mean R 4.0716
Mean number of Cohorts 15.99

Use of Stopping Rules Precision Safety Maximum No.
98% - 2%

Table 7-12 cont.: Some results from Tables 7-8 and 7-9 reanalysed without the
pseudo-data.

As can be seen, the TD estimates are now much worse than previously when the 

pseudo-data was included. When simulated by the ICS model, the estimate for the 

baseline patient (young male) is now on average overestimated by the same amount it 

was underestimated before. The TDs for the other subgroups are now largely 

overestimated, particularly for the category where there is strictly no pseudo-data 

information (old female, age and gender covariate values = 1). The same trend is seen 

when the data is simulated by the PO model. However, now even the TD for the 

baseline patient is overestimated by more than it was underestimated before. The 

mean R value is slightly increased, indicating a reduction in precision, and in the case 

where the data is simulated by the IC model, the average R value is greater than the 

precision cut-off point.

These results suggest that including the pseudo-data in the final estimates is important 

for multiple reasons. Firstly, not including any pseudo-data results in the mathematical 

issue of the calculation of the asymptotic variance being impossible, so some pseudo­

data should be included to ensure that the high doses, that are unlikely to actually be 

experimented with, do not have exaggerated probabilities of DLT. Secondly, only 

including pseudo-data for certain subgroups of patients results in large overestimation

of results and a reduction in the precision of these results. Since so few patients in
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each subgroup are actually seen, not including any prior information about certain 

combinations of covariates again exaggerates results that could be obtained due to 

random coincidence.

7.6 Investigating the amount of Pseudo-data to use

Since it has been concluded that some pseudo-data should be included for all covariate

combinations, the question is then how much pseudo-data should be included? Clearly 

including n=3 pseudo-patients for each patient subgroup (in this case 4 subgroups) is 

too much and is generally resulting in an underestimation of the TD estimates. The 

fact that the informative pseudo-data depicts no difference between the subgroups of 

patients also results in the final estimates spanning a much smaller range of doses than 

is actually true.

The next investigation then is to incorporate the same number of pseudo-patients as 

was used in the case of no covariates, i.e. n=3 pseudo-patients per dose, but to split 

these 3 patients between the subgroups. This will result in each of the 4 categories 

having n=3/4 patients starting cycle 1 on each dose.

7.6.1 Results from n=3/4 pseudo-observations per covariate category per dose
Changing the amount of pseudo data to correspond to 3 per dose level gives the

following results.
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Simulated from IC. Covariate va ues coded 0,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 371.53 423.67 314.70 333.24
TD31_ J

/ t D31'6
0.978 1.038 0.959 0.946

Mean R 523.146
Mean number o f Cohorts 9.93

Use of Stopping Rules Precision Safety 1 Maximum No.
93% 7%

Simulated from PO. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 410.25 429.75 349.25 363.36

/T D 31.6
1.083 1.062 1.055 1.028

Mean R 5.081
Mean number of Cohorts 10.73

Use of Stopping Rules Precision Safety Maximum No.
98% 2% -

Table 7-13: Results from 00 trials simulated by ICS or PO mode s with n=3/4 per
category for pseudo-data.

Table 7-13 shows the results with n =3/4 pseudo-patients per subgroup per dose.

These results are somewhat different to what was found when n=3 pseudo-patients per 

subgroup per dose were used. The main point to note is the fact that the R values are 

bigger (particularly noticeable when simulated by the IC model) and the safety rule is 

used here. The TD estimates across the subgroups are more widely spread, but they 

are not more accurate. Generally the estimated target doses are larger than before, 

although those for females are less when data are simulated from the ICS model. The 

results from the escalations when the data is simulated by the ICS model have a 

particularly large average R value. This is due to the fact that in seven instances, the 

safety rule had to be used. O f these 7 trials, 4 of them did not proceed to cohort 2 

since an event was randomly generated in cycle 1 for a patient in cohort 1 (dose 60) 

and because such little information was used a priori, this event overrode the prior
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information and suggested that even the lowest dose was unsafe. In one of these 

instances, the value of R that was computed was equal to 2072.31, the other 3 gave 

similar R values, which explains why the average R value is so skewed. The other 3 

times the safety rule was used occurred after cohort 3 and after cohort 4 where again 

low doses were still being administered and the first inclusion of a new subgroup 

resulted in a DLT in that subgroup. This again overrode the limited prior data and 

suggested that even the lowest doses were too toxic for that new subgroup. Because of 

the small amount of information, the precision of the estimates obtained was very 

poor, hence the extremely large average reference range ratio. This also explains the 

very low average number of cohorts since several stopped so early and skewed the 

results. When the data was simulated by the PO model, fewer events occurred on low 

doses. This is due to the random nature of simulation and therefore the safety rule was 

used less frequently. This explains the lower value of R and the slightly higher 

average number of cohorts.

In order to investigate how well the rest of the trials actually performed when the early 

events did not occur on low doses, the trials where the safety rule stopped them have 

been removed.

Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 392.47 412.73 335.885 348.44

7^31.6/
/ t d 31'6

1.033 1.011 1.0233 0.989

Mean R 3.763
Mean number of Cohorts 10.53

Table 7- 14: Results from 93 trials when generated by ICS, 98 when generated by PO. 
With n=3/4 per subgroup per dose for pseudo-data without trials that stopped for

safety.
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Simulated from PO. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 398.52 434.44 353.39 368.57

/T D 31.6
1.049 1.065 1.077 1.046

Mean R 3.704
Mean number of Cohorts 10.89

Table 7-14 cont.: Results from 93 trials when generated by ICS, 98 when generated by 
PO. With n=3/4 per subgroup per dose for pseudo-data without trials that stopped for

safety.

When data were simulated by the ICS model, the removal of the 7 trials which 

stopped for safety produced better estimates compared to previously and also 

compared to when n=3 pseudo-patients were used per subgroup (Table 7-14). When 

data were simulated by the PO model, the removal of the 2 trials which stopped for 

safety the estimates remain very similar to before. The mean R o f the estimates are 

much improved though and the average number of cohorts required to meet the 

precision stopping criterion is largely reduced. It would seem that using less prior 

pseudo-data does create better results overall, but the issue remains that when events 

do happen earlier, the use of such little prior information causes the trial to stop for 

safety. This can happen if the first observation for a specific subgroup of patients 

happens to be an event, since the only other information for that patient is now of 

much less weight. The fact that the pseudo-data corresponds to less than 1 observation 

could be the reason for this. If there were at least the same amount of patients in each 

subgroup in the pseudo-data as in the first set of observations, the pseudo-data may 

not be overridden so quickly. Consideration is now given to include at least one 

pseudo-observation per subgroup per dose. In this setting that would correspond to 4 

pseudo-patients per dose level which is still much less than the original idea of 3 per
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subgroup per dose, resulting in 12 pseudo-patients per dose level, and similar to the 

idea of 3 per dose-level overall.

7.6.2 Results from n=l pseudo-observations per covariate category per dose
Using 1 pseudo observation per patient subgroup per dose level gives the following

results.

Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 402.93 403.53 350.02 355.74
™ 3 1 . 6 /

/T D 31_6
1.060 0.989 1.066 1.009

Mean R 10.171
Mean number of Cohorts 12.11

Use of Stopping Rules Precision Safety Maximum
No.

98% 2% -

Simulated from PO with 
covariate values 0 , 1 .

Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 384.64 432.54 335.47 361.15

n w
/T D 31.6

1.015 1.069 1.013 1.021

Mean Estimate of R 4.667
Mean number of Cohorts 12.28

Use of Stopping Rules Precision Safety Maximum
No.

99% 1% -
Table 7-15: Results from 100 trials simulated by ICS or PO models with n=l per 

subgroup per dose for pseudo-data.

The results from using one patient per subgroup seem much better (Table 7-15). The 

use o f the safety rule is observed much less here, suggesting that having one patient 

per covariate category does indeed stop the random occurrence of early DLTs 

overriding any cautious pseudo-data that has been included. There are still some 

occurrences of the safety rule being used which is to be expected if more than one
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DLT occurs for one covariate category early on. This is very infrequent though. The 

TD estimates are generally similar to those found when using n=3/4 per subgroup for 

the pseudo-data but slightly better. The only result that seems worse from these results 

is the average number of cohorts required. This is slightly larger here, but the only 

reason that it is larger is because the trials that stopped for safety very early on due to 

early occurrences of DLTs no longer stop for safety so early. When compared to 

Table 7-14, using n=3/4 pseudo-patients per subgroup per dose but without the safety 

stops, the required number of cohorts is more similar, however it is still slightly larger 

here. This is due to the fact that slightly more pseudo-data implies that the model will 

not converge to the expected parameter estimates quite as quickly, and therefore not 

produce TD estimates that are good in such a quick time.

The results from using 1 pseudo-patient per subgroup per dose are much more 

promising. There is still the issue though that some trials are stopping for safety due to 

the overriding of the pseudo-data early on. One might want to use slightly more than 

one pseudo-patient per subgroup per dose. However, since one does not want to use 

too much pseudo-data due to the fact the estimates do not converge properly, it can be 

suggested to use 1.5 patients per subgroup per dose. This should still recommend that 

if one DLT occurs for a low dose early on, the pseudo-data is still more informative 

than the observed data so lower doses should still be administered. If more than one 

DLT is observed, although the data is now more informative, the pseudo-data still has 

some substantial weight rather than contributing just half of the information. This 

should therefore reduce the extreme probability of a DLT occurring for the lowest 

doses and reduce the chance of the safety rule stopping the trial for fear of the lowest 

dose being too toxic.
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7.6.3 Results from n=1.5 per covariate category per dose
Using more than 1 pseudo-observation per patient subgroup gives the following

results.

Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 386.71 390.15 350.84 363.94
t d 31,6/

/ t d 31'6
1.017 0.956 1.069 1.033

Mean R 5.2 13
Mean number of Cohorts 13.87

Use of Stopping Rules Precision Safety Maximum
No.

97% 1% 2%
Simulated from PO with 

covariate values 0 ,1 .
Covariate values coded 0,1.

Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 394.30 401.57 361.60 352.58

/T D 31-6
1.041 0.992 1.092 0.997

Mean Estimate of R 3.8153
Mean number of Cohorts 14.21

Use of Stopping Rules Precision Safety Maximum
No.

98% 0% 2%
Table 7- 16: Results from 00 trials simulated yy ICS or PO models with n=1.5 per

subgroup per dose for pseudo-data.

The results from the investigation with n=1.5 pseudo-patient per subgroup per dose 

shows that this does generally eliminate the problem of the safety rule causing the 

escalation procedure to cease very early on (Table 7-16).

The TD estimates here are generally very similar to when less pseudo-data was 

incorporated. However, the compromise of requiring slightly more cohorts is again 

apparent. Particularly when compared to Table 7-14. Again this is due to the increased
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amount of pessimistic prior information included which reduces the speed of the 

parameter convergence to the expected parameter values.

There is still one occurrence of a safety stop but this is due to one of the most at risk 

subgroups experiencing a DLT in the first cycle of the first cohort. The first cohort 

contained patients from two different categories (1 older female, 2 younger males).

The older female category is more at risk than the younger males and experienced a 

DLT during their first cycle whilst the younger males did not. The second cohort then 

were recruited and consisted of 1 older male, 1 younger female and 1 older female. By 

the second cohort, the only observations for the older male and younger female 

subgroups are from the pseudo-data. The observations from cohort 1 do increase the 

probability of a DLT for these categories, but the pseudo-data is still informative 

enough to ensure that the lowest dose still seems safe. However, for the older females, 

the observed DLT at the lowest dose suggests that it is not safe enough for this 

subgroup.

These results suggest that using n=l .5 for the pseudo-data does stop the safety rule 

from being used too easily early on in the trial, however on the occasion when there is 

an observed event on the only patient within a covariate category (e.g. older female) 

during the first cycle of the first cohort, should a patient in the second cohort be in the 

same covariate category then there is not enough information to suggest that the 

lowest dose is actually safe.

This is not unreasonable however, as in earlier investigations when no covariates were 

incorporated, trials still occasionally stopped for safety reasons early on when a DLT 

randomly occurred on a low dose.
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The average length of the trial is also quite short. Although some compromise has had 

to be reached in order to ensure the trials do not stop for safety too often, the average 

number of cohorts is still similar to previous investigations despite the fact that there 

is slightly more prior information per dose level which could slow down the parameter 

convergence.

7.6.4 Conclusions

Using n=1.5 pseudo-patients per subgroup per dose level is suitable to implement as it 

produces reasonable TD estimates which are specific to each subgroup, even when no 

prior knowledge o f a differing risk between covariate categories is known. It also 

provides enough prior information to ensure that early observations of DLTs do not 

override the pseudo-data and stop early for safety reasons unless completely necessary 

(i.e. when a DLT occurs in cycle 1 of cohort 1 and no other observations for that 

category are obtained).

The remaining question is then whether it is ethical to treat all patients, regardless of 

their baseline covariates, at the same initial dose level.

7.7 Investigating the Inclusion of a Prior Covariate Effect

This investigation looks at including a covariate effect in the pseudo-data, so that

patients could start the escalation at different doses which may not necessarily be the 

lowest dose, dependent on their covariate levels.

In order to incorporate this, some thought needs to go into how the first dose should 

be allocated. The most at risk subgroup investigated is that of the younger females. 

Given the actual simulation parameter values, the probabilities of DLT at dose 

366mg/m2 and the closest available dose levels for the different patient subgroups are 

shown in Table 7-17.
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P(DLT)
Covariate category 300 366 420

Young Female 0.2834 0.3591 0.4191
Old Female 0.2596 0.3304 0.3873
Young Male 0.2348 0.3020 0.3554

Old Male 0.2157 0.2769 0.3270
Table 7-17: P(DLT) at various doses for each covariate category

The dose level 300 produces a probability of DLT closest to 31.6% for the female 

patients, whereas the dose level 420 produces the probability of DLT closest to 31.6% 

for the male patients. This therefore implies that different dose levels may well be 

required to be administered to different categories of patient.

In order to incorporate a covariate effect in the pseudo-data, the pseudo-data can be 

set so that the lowest dose 60mg/m2 corresponds to the probability of DLT at dose 366 

as shown in Table 7-17. However, given the parameters associated with the pseudo­

data, the doses that would correspond to P(DLT)=0.316 would suggest that the 

females require a dose level below the lowest dose which is not feasible. Therefore, 

the dose to be administered to the first cohort should correspond to the highest 

P(DLT)=0.3591. This would ensure that the young female subgroup would be 

allocated the lowest dose 60 and the less at risk subgroups are then able to receive a 

slightly higher dose.

The system o f equations associated with the relevant pseudo-data is shown in equation

(7.4).

log(— log(l -  /r366 j o,o)) = log(- log(l -  0.19)) = Yx + 0  log 60 

log(— log(l -  ̂ 366>2,o,o)) = !°g(- log0 -  °-09)) = Yi + e  log 60 
log(- log(l -  ̂ 366,3 ,o,o)) = log(- log(l -  0.05)) = y3 + 0 log 60 

log(— log(l -  ̂ 799,,,o,o)) = log(— log(l -  0.48)) = y, + 0 log 1700 

log(- log(l -  /r366 , 0 ,)) = log( log(l -  0.23)) = yx + v + 9  log 60 

log( log(l - /z-366 ,, o)) = log(-log(l -0 .17)) = yx + £ + 0 log60
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This calculates the relevant parameter values based on the existing P(DLT)s at dose 

2 9
366mg/m as calculated in previous chapters. Those parameters are shown in Table 7- 

18.

y  i Y 2 Y3 e V

-2.9425 -3.6929 -4.14127 0.3389 -0.1033 0.2129
Table 7- 18: Parameter values associated wit i the pseudo-c ata

According to these parameters, the doses that have probability closest to 

P(DLT)=0.3591 are d=60mg/m2 for females and d=120mg/m2 for males irrespective 

of age.

Table 7-19 shows the pseudo-data that was implemented, based on the parameter 

values in Table 7-18, to initiate these dose escalations.

Covariate
Category

Dose d(j) u710)
b

n 0) *0) ~n (i) nQ)

ICSDP
TTL=0.3591

a=0, g=l 
a=-0.5 g=0.5

d(i), cycle 1 0.23 3 0.69

d(i), cycle 2 0.1161 2.31 0.2682

d(i), cycle 3 0.0583 2.0209 0.119

d(k), cycle 1 0.556 3 1.668

d(k), cycle 2 0.3184 1.332 0.4241

d ^  cycle 3 0.1704 0.9079 0.1546

ICSDP
TTL=0.3591

a=l, g=l 
a=0.5 g=0.5

d(J), cycle 1 0.21 3 0.63

d(i), cycle 2 0.1053 2.37 0.2496

d(ij, cycle 3 0.0527 2.1204 0.1117

d(k), cycle 1 0.5192 3 1.5576

d(k), cycle 2 0.2923 1.4424 0.4216

d(k), cycle 3 0.1549 1.0208 0.1581

Table 7- 19: Pseudo-data for all subgroups of patients with a prior covariate effect
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ICSDP
TTL=0.3591

a=0, g=0 
a=-0.5 g=-0.5

d(i), cycle 1 0.1904 3 0.5712

d(i), cycle 2 0.0949 2.4288 0.2305

d(i), cycle 3 0.0474 2.1983 0.1042

d(k), cycle 1 0.4812 3 1.4436

d(k), cycle 2 0.2664 1.5564 0.4146

d(k), cycle 3 0.14 1.1418 0.1599

ICSDP
TTL=0.3591

a=l, g=0 
a=0.5 g=-0.5

d(i), cycle 1 0.1735 3 0.5205

d(ij, cycle 2 0.0860 2.4795 0.2132

d(i), cycle 3 0.0428 2.2663 0.097

d(kh cycle 1 0.4467 3 1.3401

d(k), cycle 2 0.2438 1.6599 0.4047

d(k), cycle 3 0.1272 1.2552 0.1597

Table 7-19 cont.: Pseudo-data for all subgroups of patients with a prior covariate
effect

Extra data was generated for the males for the first cohort at dose 120mg/m and these 

were allocated to the first cohort.

The results of 100 trials with this pseudo-data are shown in the next section. While 

n=3 is shown for the pseudo-data here, the conclusion from the previous section 

suggest n=l .5 is much more appropriate so it will be adapted to correspond to n=l .5 

for cycle 1.

7.7.1 Results
Incorporating a prior effect between patient subgroups in the pseudo-data gives the 

following results.
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Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 391.02 401.01 332.352 342.05

/T D 31.6
1.029 0.983 1.013 0.971

Mean R 5.143
Mean number o f Cohorts 13.62

Use of Stopping Rules Precision Safety Maximum
No.

96% 3% 1%
Simulated from PO. Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 393.10 415.15 334.47 357.53
t d 31_6/

/ t d 31'6
1.037 1.026 1.010 1.011

Mean R 4.254
Mean number o f Cohorts 13.77

Use of Stopping Rules Precision Safety Maximum
No.

97% 1% 2%
Table 7- 20: Results from 100 trials simulated by ICS or PO models with covariate 

values 0, 1 with n=l .5 per subgroup per dose with a prior covariate effect for pseudo­
data.

These results are similar to the results obtained without using the prior covariate effect 

in the pseudo-data (Table 7-20). However, the main issue here is the fact that there are 

an increased number o f trials having to stop for safety again.

Since a different dose level is suitable for different subgroups of patients from the 

beginning but with little observed information, if more patients at a certain level of a 

factor (e.g. males) have been observed then the dose to allocate to the other level of 

the factor (e.g. females) may be increased without the relevant support. Since females 

tolerate a lower dose than males, this then causes trials to stop early for safety reasons.

To investigate this more, the same procedure (with a prior covariate effect) is used but 

this time with a larger amount of pseudo-data for each category again. This may not
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be reasonable to do in practice, however to investigate the reason for the safety stops it 

is necessary.

7.7.2 Results with an increased amount of pseudo-data
Simulated from IC. Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 370.13 406.40 305.07 335.76

/ t d 31'6
0.974 0.996 0.929 0.9527

Mean R 3.8111
Mean number of Cohorts 15.77

Use of Stopping Rules Precision Safety Maximum
No.

98% - 2%
Simulated from PO. Covariate values coded 0 ,1 .

Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD 31.6 376.09 398.46 317.86 328.93
t d 31'6/

/ t d 31_6
0.992 0.9847 0.960 0.930

Mean R 3.8,36
Mean number of Cohorts 15.45

Use of Stopping Rules Precision Safety Maximum
No.

99% - 1%
Table 7- 21: Results from 100 trials simulated by ICS or PO models with covariate 
values 0, 1 with n=3 per subgroup per dose and a prior covariate effect for pseudo­

data.

These results show that the estimated TDs are not as good as when there is less prior 

data included, even though there are no trials stopping for safety (Table 7-21).

Here the prior covariate effect is particularly influential. This causes the estimates to 

be lower than they should be, particularly for the patients who have a much lower 

target dose since such a heavy pessimistic prior is placed on those particular patients. 

As before when there was too much pseudo-data, the actual patients observed meant
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that there was likely to be less observations for some categories of patients than 

pseudo-data.

7.7.3 Conclusions

It can be concluded that a prior covariate effect should not be implemented even if 

there may be some belief to suggest there will be a difference in drug tolerability for 

different subgroups of patients. When there is the same amount of pseudo-data as 

concluded before, the occurrence of stopping for safety is once again increased. Since 

there is particularly sceptical information on a certain type o f patient, if those patients 

are observed to have experienced a DLT very early along with patients from another 

subgroup that don’t, the prior effect is magnified and the trial is forced to stop if 

another patient o f the most at risk categories is recruited.

7.8 Overall Conclusions

The conclusions from including baseline covariates are positive. It is possible to 

conduct personalised escalation procedures for different types of patients and 

conclude a target dose that is suitable for each type of patients when a difference in 

tolerability is apparent in different categories of patients.

In order to conduct the procedure, it should be suggested to begin with that there is no 

covariate effect acknowledged and all patients should enter the dose-escalation 

procedure with what is believed to be an equal chance of experiencing a DLT. Only if 

a difference in tolerability becomes recognised through the observed patients should a 

covariate effect be concluded. This is easily achievable due to the rearrangement of 

the link function used in this chapter allows the estimation of the TD with no covariate 

values which is then transformed to the subgroup specific TD. If it is deemed that no 

covariate effect is present, the TD without any covariate values can be concluded as 

the population TD.
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The prior knowledge used to initiate the procedure should be enough to keep the 

escalation cautious to begin with, but not so much that the difference in target dose is 

not noticeable by the end of the trial. Therefore, it is proposed to use more than one 

pseudo-patient per covariate subgroup, specifically 1.5 pseudo-patients. When there is 

2 or greater patients, it can take a long time for the observable data to obtain the same 

weight as the pseudo-data since there may be multiple combinations of covariate 

categories to recruit from. However, when there is only 1 pseudo-patient, the first 

observation of a patient from a certain covariate category can outweigh the sceptical 

prior information and the procedure may escalate too fast, recommending a dose that 

is too toxic for a certain patient.

The procedure producing the results in Table 7-16, the ICSDP using coding values of 

0, 1 for the factor levels and having 1.5 patients per covariate category per dose in the 

pseudo-data, is repeated 1000 times to obtain some more precise results.

Simulated from IC. Covariate values coded 0 ,1 .
Subgroup 
True TD

Young
Male

380.08

Old Male 

408.12

Young
Female
328.24

Old
Female
352.44

Mean Estimate of TD31.6 366.70 397.11 327.63 351.94
TD31J

/T D 31.6
0.967 0.981 0.989 0.995

Mean Estimate of R 5.567
Mean number of Cohorts 14.03

Use of Stopping Rules Precision Safety Maximum No.
96.8% 1.7% 1.5%

Table 7- 22: Results from 1000 trials simulatec by ICS or PO mode s with n=l .5 for
pseudo-data.

The results here are consistent with those in Table 7-16 with the estimates all being 

estimated very well in quite a short amount of time.

186



7.9 Remarks

The results of this chapter are very promising in showing how the ICSDP can be 

developed to include personalised dose-escalation procedures for different subgroups 

of patients. This simulation study considered four subgroups created by two factors at 

each of two levels however the methodology could be used for any number of 

subgroups.

A natural extension of this work would be to consider continuous covariates for 

inclusion in the development of personalised dose-escalation procedures. For 

example, age to the nearest year on a continuous scale could be included. To include a 

continuous covariate, it would be necessary to define a relationship between the 

continuous variable and P(DLT), e.g. a linear term in the complementary log-log link 

function. If age were to be included as a linear term, the pseudo-data could be created 

by using the model to obtain a P(DLT) at two given covariate values, e.g. age=40, 60. 

This was not possible with the data investigated in Chapter 3 since the covariate data, 

specifically age, was quite clustered around a small range (50-60) with a few 

exceptions. Furthermore, the differences in drugs and doses administered across the 

38 trials made it inappropriate to develop assumptions regarding P(DLT), which is 

why the general trend of occurrence of first DLTs was utilised, but applied to a 

general setting of P(DLT)=20% for cycle 1.

The amount of pseudo-data may need some investigation when using continuous 

covariates, since it will not directly relate to specific subgroups. However, a good 

starting point would be to ensure that slightly more than 1 pseudo observation per 

covariate value per dose be included to ensure that the pseudo-data is not overridden 

too quickly.
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The inclusion of continuous covariates will be considered in chapter 8, when the use 

of time-dependent covariates which can act as a marker for a patient’s tolerance to the 

drug are explored. The approach for incorporating continuous covariates into the 

pseudo-data will therefore be described and discussed then.

1 8 8



8. Allowing For Lower Grade 
Toxicities in the Analysis of DLTs

The work conducted so far suggests that including information from later cycles 

enables the dose-escalation procedures to be shorter with generally more accurate and 

precise estimates of the TD. Incorporating baseline covariates to represent patient 

characteristics, such as gender and age, allows patients to receive personalised dose 

administrations. When used with the ICSDP to allow later cycles of therapy to be 

included, this still produces accurate and precise TD estimates in a short amount of 

time, suggesting that increasing flexibility to allow for differences between patients is 

not detrimental to the procedure.

The next stage is to consider if occurrences of toxicity which are less serious than 

DLTs, might be of use in the dose-escalation procedure. Although the requirement of 

the dose-escalation studies are to define a target dose which corresponds to a tolerable 

amount of dose limiting toxicities, one should still acknowledge the fact that lower 

grade toxicities (LGTs) occur more frequently. In fact, if LGTs (specifically grade 2) 

happen too frequently, clinicians may be encouraged to deescalate the dose or stop the 

patient from participating in the trial due to intuition that if multiple LGTs are 

occurring, the chance of a DLT is increased. P(DLT) now corresponds to a randomly 

chosen patient from the population but is adjusted based on the observations of LGTs 

as a marker for their tolerance.

8.1 Motivation
Investigation of the relationship between the occurrence of LGTs and the occurrence 

of DLTs was explored using data from a Phase I dose-escalation trial conducted at 

The Christie Hospital [17]. This Phase I study recruited patients with Hodgkin
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Lymphoma in order to determine the MTD, and data on grades 1, 2 and 3/4 toxicities 

were recorded for the first 3 cycles of therapy. It has been identified by the German 

Hodgkin Study Group (GHSG) that an increased rate of grade 3/4 toxicities was 

associated with an improved outcome. Therefore dosing was recommended based on a 

dose corresponding to a certain level of toxicity rather than body surface area, as had 

been previously recommended. Levels of known biomarkers have been linked with 

tumour response and toxicity, so an exploratory aim of this study was to conclude 

some relationship between the biomarker and probability of toxicity (considering 

multiple levels of toxicity) to allow personalisation of future dosing, based on baseline 

levels o f the biomarker.

The Christie dataset was used rather than the Postel-Vinay [1] dataset since a 

relationship between the number of LGTs and the occurrence of DLTs was to be 

investigated and quantified. With the Postel-Vinay dataset there was little information 

regarding the specifics of each study and there was likely to be a different relationship 

for each study. For the Christie study, more information was known and a specific 

relationship could be derived. However, the patterns of occurrences of DLTs over 

time obtained from the Postel-Vinay dataset (halving with successive cycles) are still 

used in the simulation study presented in this chapter, since they have been obtained 

from a much larger dataset.

The aim of the Christie study was to investigate the levels of a biomarker at different 

stages o f therapy to see if there was a relationship between the occurrence of toxicity 

(mainly Gr3/4) and the level o f the biomarker. Not all grade 3 toxicities were dose 

limiting according to the protocol.

190



To investigate the relationship between LGTs and DLTs, data from the first three 

cycles of therapy for each patient are used. If a grade 3 toxicity occurred that was 

specified in the protocol as not dose limiting, the toxicity was left as a non-DLT. If 

however a grade 3 toxicity occurred that was not excluded as a DLT in the protocol, 

yet it had not been recorded as a DLT, it was included as a DLT. If a DLT occurred in 

cycle 1 or 2, any further information from the relevant patient was disregarded as 

interest is still in the occurrence of the first DLT.

Table 8-1 shows the number of DLTs occurring in each cycle in the dataset.

Cycle # of first DLTs/n patients
1 2/22=0.09
2 3/20=0.15
3 3/17=0.18

Table 8- 1: Number of patients with their first DLT in each cycle.

There is a slightly increasing rate of occurrence of a first DLT with cycle which is 

somewhat contradictory to what was found with the Postal-Vinay dataset. However 

this is a very small trial (n=22 patients) so it may not be completely reliable.

The dataset can then be split into two subsets, the patients who experienced a DLT in 

a given cycle and those that did not. Table 8-2 shows the total and average number of 

LGTs per patient in each subset in cycles prior to the specific cycle investigated. The 

observed number presented for cycle 2 are those observed during cycle 1, and 

presented for cycle 3 are those observed during cycle 1 and 2.

DLT occurred No! )L T  occurred
Cycle n LG before n LG before

1 2/22 - 20/22 -

2 3/20 54, 18/patient 17/20 194, 11.4/patient
3 3/17 76, 25.3/patient 14/17 323, 23.1/patient

Table 8- 2: Numbers o f LGTs for patients in cycles prior to the cycle of interest. For 
patients that did and did not experience a DLT in the specified cycle.
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As can be seen, on average there is a higher number of LGTs occurring prior to the 

specified cycle for a patient who experienced a DLT when compared to a patient that 

survived the cycle without a DLT.

The LGTs (grade 1 and 2) have been grouped into one category since there are very 

few occurrences o f grade 2 toxicities. When looking at grade 1 toxicities alone, there 

is a similar trend, where patients who experience a DLT in cycle 2 have on average

17.3 grade 1 toxicities prior to cycle 2 and those who don’t experience a DLT in cycle 

2 have on average 8.8. For cycle 3 the number of grade 1 toxicities prior to cycle 3 is 

20 for patients who experience a DLT as opposed to 19.1 for those who don’t.

It may be more reasonable to look at the number of LGTs occurring up until the 

occurrence of a DLT, as this includes LGTs that occur in the same cycle as a DLT but 

observed before it. Since the dates of all occurrences of toxicities are known, this is 

achievable.

DLT occurred No )LT occurred
Cycle n LGTs before (inc.same 

cycle)
n LGTs before 

(inc.same cycle)
1 2/22 16, 8/patient 20/22 249, 12/patient
2 3/20 77, 25.7/patient 17/20 409, 20.5/patient
3 3/17 116, 38.7/patient 14/17 543, 31.2/patient

Table 8- 3: Numbers o 'previous LGTs for patients that did and did not experience a
DLT in a given cycle. Including LGTs that occurred in the same cycle.

Apart from the first cycle, the differences are magnified here. On average, many more 

LGTs occur previously for those patients experiencing a DLT than those who do not 

experience one. Clearly the comparison of patients experiencing DLTs to patients not 

experiencing them is biased due to the difference in follow up time. Therefore, 

patients who do not have a DLT are followed-up for LGTs over a longer period of 

time and so one might expect them to experience more. Evidently this is not the case.
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Since the trends are similar when looking at LGTs occurring in cycles prior to the 

cycle of interest, and LGTs occurring right up to the time of the DLT or end of the 

cycle of interest, it can be concluded that an increased chance of a DLT is associated 

with a larger number of prior LGTs.

In order to simulate a realistic dataset with regards to occurrences of LGTs, some 

understanding of this relationship is required. Table 8-4 shows the number of LGTs 

(split also into grade 1 (G l) and grade 2 (G2) toxicities) in each cycle.

Cycle G l G2 LG (G1+G2)
1, n=22 215, 9.8/pat 49, 2.2/pat 265, 12.0/pat
2, n=20 198, 9.9/pat 40, 2/pat 238, 11.9/pat
3, n=17 186, 10.9/pat 74, 4.4/pat 260, 15.3/pat

able 8- 4: Occurrence of LGTs in each cycle.

Table 8-4 suggests that there is a constant rate of occurrence of LGTs for the first 2 

cycles which increases slightly for the last cycle. Since there is no obvious pattern, 

one could conclude for simplicity’s sake that the rate of occurrence of LGTs remains 

constant throughout all three cycles of therapy.

8.2 Methodology
It is proposed to include the occurrence of LGTs as a way of predicting the occurrence 

of a DLT, specifically as a covariate. Patients should be able to deescalate between 

dosing cycles if more than the expected number of LGTs occurs or perhaps escalate 

further if they appear to be tolerating the drug better than expected.

Since the effect on the chance of DLT will change dependant on which cycle of 

therapy a patient is in and how many occurrences of LGTs they experience, the 

covariates relating to LGTs will be time-dependant. The covariates will only change 

between cycles though, which should not affect the proportional hazards assumption
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adopted for the use of the ICS model. The argument used for the use of the piecewise 

Cox model to retain proportional hazards applies here also.

The piecewise Cox model assumes that covariates which differ in different periods of 

time can be still utilized if the proportional hazards assumption is still maintained 

within the different time periods. This theory can be extended to the ICS model, since 

the time periods are just the intervals, provided the covariates only change between 

intervals.

This is the case when looking at the number of LGTs in preceding cycles. The number 

of observed LGTs changes dependent on which cycle of therapy a patient is in but is 

considered to be constant throughout the cycle. This is an acceptable approach to take, 

since although the number of LGTs will change throughout the cycle, the dose 

adjustments and analysis can only occur at the end of each cycle. So it can be assumed 

for analysis purposes that the number observed previously, does not change 

throughout the cycle. Therefore the proportional hazards assumption is maintained 

within cycle and the ICS model assumptions can be upheld in this setting.

8.3 Simulation Methods
In order to simulate the occurrence of DLTs, the number of LGTs needs to be 

simulated first. As one would expect the probability of a DLT to increase with an 

increase in dose, it can be assumed that a higher number of LGTs will also occur with 

an increase in dose. It is reasonable to assume that as the mean number of LGTs 

increases with dose, so does the variance. Therefore, it is proposed that the number of 

LGTs in a cycle for a patient on dose level d{j)(LG (j)) follows a log-normal

distribution as shown:
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log(ZG; )~ J v ( lo g (£ G ,) ,« /2).

From Table 8-4 it can be seen, that on average, the number o f LGTs per patient per 

cycle occurring throughout the study is approximately 13 (12 in cycles 1 and 2, 15 in 

cycle 3). Since it can be assumed that the average dose throughout the trial is the TD, 

the average number of LGTs can be assumed to occur at the average dose, the TD. 

Therefore, in the simulation study, the rate at which toxicities occur according to dose 

are calculated based on a TD of 366mg/m2. That is:

LG j = X d i,

13 = /l366,

X = 0.0355.

The mean numbers of LGTs for each discrete dose level are then calculated and 

displayed in Table 8-5.

d(j) 60 120 200 300 420 630 945 1400 1700

LG(j> 2.13 4.26 7.10 10.65 14.91 22.37 33.55 49.70 60.35

log(ZG(,)) 0.76 1.45 1.96 2.37 2.70 3.11 3.51 3.91 4.10

Table 8- 5: Mean number of LGTs for each dose.

In order to determine an appropriate value for the standard deviation (sd ) of the log-

Normal distributions, the observed standard deviation of the number of LGTs from the

Christie data is used. This is assumed to be the standard deviation associated with the 

target dose (366mg/m2). Based on the properties of the Normal distribution, 95% of 

LGTs at the TD occur within 2 standard deviations of the average number of LGTs. 

From the Christie data, a standard deviation of 3 was found to correspond to the 

average number of LGTs observed. This therefore implies that 95% of LGTs occur in 

the interval (13 ± 6) = (7,19). Based on the log scale, when a standard deviation o f 0.2
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is used, the 95% interval is (2.1649, 2.9649) which corresponds to an interval on the 

original scale o f (8.71, 19.39) which is reasonably similar to that observed from the 

EDA. Therefore the standard deviation to be used for all doses on the log scale is set 

to 0.2.

The number of LGTs that occur is then simulated from the log-Normal random 

variable for each cycle for each patient dependent on the dose administered. In the 

first simulation study it is assumed that there is a constant rate of occurrence for LGTs 

across cycles. This may not be appropriate in reality due to a reducing tolerance due to 

a prolonged exposure to the drug, but it is assumed here based on the data in Table 8- 

4. Once the number of LGTs has been generated for each cycle for each patient, the 

occurrence of a DLT can then be simulated. There are two approaches to this part of 

the simulation. First, interest lies in whether the inclusion of a time changing covariate 

aids the estimation of the probability of a DLT. Therefore, a model based on two time- 

dependent covariates (the number of LGTs during the first and second cycles) is used. 

Only the number o f LGTs in cycles 1 and 2 are generated since these are the 

covariates that will allow adjusting doses after cycle 1 and after cycle 2 and there are 

only 3 cycles observed for DLTs. The model is given in equation (8.1).

l°g(— l°g0 — ̂ i,(j),LGU)X,LGun) ) = Yi + + L G ^ 2<j  + O\og(d^ ). (8.1)

When / = 1, LGij)X,LG(j)2 = 0 , since the number of LGTs in cycle 1 and 2 have not

yet been observed. When 1 = 2, LG(J)1 = 0 , since the number of LGTs in cycle 2 have

again, not yet been observed. The probability of a DLT associated with each cycle 

only depends on the LGTs in cycles strictly prior to the current cycle.

Second, since the number of LGTs have been generated to depend on dose also,

interaction terms between the number of LGTs during the first and second cycles and
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dose could be incorporated into the model to produce more appropriate values for the 

probability of a DLT. This is given by:

lo g ( - lo g ( l - ^ a)l0(]|1Gu!))

= ri + LG(j)]n  + LGU)2<j + 0\og(dU)) + kLG(j)] log(d(j)) + rLG{j)2 log(d{j)).

Again, when / = 1, LGU)X,LG(J)2 = 0 , and when I = 2,LG{j)2 = 0 .

The analysis model used for the dose adjustments between cycles in the dose- 

escalation procedure will be the same as model (8.1). Therefore, the data generation 

using model (8.2) will test the robustness of the procedure when there is inconsistency 

in the data generation and analysis models. There will be some investigation into 

using model (8.2) for the analysis also to see if the additional interaction terms aid the 

precision of the estimates.

In order to obtain suitable values for the parameters in the generation models, some 

assumptions have been made. For the generation based on model (8.1), at the average 

number of LGTs at the TD of 366, the same DLT probabilities will be set as in the 

simulations of Chapter 5and 6. This will correspond to the following equations:

log(- log(l -  n x 366)) = log(— log(l -  0.2)) = + 6  log(366),

lo g (-lo g (l-/r , 799)) = log (-log (l-0 .5 )) = yx +<91og(799), 

log(-log(l -7T2 366;/.6>13)) = log(-log(l -0 .1)) = y2 +13// + <91og(366),

1 0 g ( -  l 0 g ( l  -  ^3,366,Z,Gl=13,LG2=13 »  =  l o g ( “  l o g 0  "  0 *0 5 ) )  =  ^ 3  +  1 3 /“  +  1 +  61 bg(366).

There are not enough equations to solve for the number of parameters however so 

further assumptions need to be made. When the number of LGTs observed in cycle 1 

is 18 (nearly 50% more than the average number of 13), the probability of DLT will 

increase by 50% in cycle 2 to 0.15. When the number o f LGTs observed in cycle 2 is 

18, the probability of DLT in cycle 3 will increase by 50% to 0.075. This corresponds
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to the complete system o f equations that needs to be solved to obtain values for all 6 

parameters:

log(— log(l -  /r, 366)) = log(- log(l -  0.2)) = yx+0  log(366), 

log(- log(l -  n x 799)) = log(— log(l -  0.5)) = yx + e log(799), 

log(— log(l -  =13»  = log(- log(l -  0.1)) = y2 +13// + 0  log(366),

log(- log(l -  7T2 366 /Gi=18)) = log(- log(l -  0.15)) = y2 +18// + 6  log(366), ^

log(-log(l - ^ 3 366 /G=13 iG2=13)) = log(-log(l -0 .05)) = y3 +13/i +13<r + # log(366), 

lo g ( - lo g ( l-^ 3 366 /G=13 /G2=18)) = lo g ( - lo g (l-0.075)) = y3 +13/i + 18o- + 6»log(366).

Solving these equations result in the parameter values shown in Table 8-6.

Yx Yi 6 M <7

-10.0691 -11.9469 -13.7548 1.4518 0.0867 0.0837
Table 8- 6: Parameter values from model (8.1) used for simulation.

Note, that the intercept terms are much more different across cycles than in Chapter 5 

because now they represent the effect when log(dose)=0, and there are no LGTs in 

cycle 1 and/or cycle 2.

Also, separate covariates have been included for the number of LGTs occurring in 

cycles 1 and 2. If a single covariate was used which was set equal to the total number 

of LGTs experienced so far, this value would change from one cycle to the next. This 

would not easily account for the fact that different doses may have been administered 

in different cycles and therefore a different number of LGTs would be expected in 

each cycle. In this setting, the values o f the covariates do not change from one cycle to 

the next. Instead, additional covariates are included in later cycles. By including the 

covariates in this way, not only is the proportional hazards assumption maintained 

within cycle and the methodology of the piecewise Cox model still valid, but also the 

individual dose in each cycle and corresponding number of LGTs can be accounted 

for.
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A similar system of equations can be used to solve for the parameter values when the 

interaction model as in (8.2) is used for generation. Two additional equations are 

needed, and those relating to the dose 799mg/m2 in cycle 2 and 3 are included in a 

similar way to that in Chapter 5. The DLT probabilities are the same as in the setting 

where LGTs are not included, but at the dose of 799 they are associated with a higher 

number o f LG toxicities than the average of 13. Given X = 0.0355, the number of 

LGTs expected at dose 799 is 28. The following system of equations are obtained:

lo g (- lo g (l- /r1 366)) = log(- log(l -  0.2))

= yx +01og(366), 

log(—log(l - x x 799)) = log(-log(l -0 .5 ))

= Y\ +#log(799), 
log (-log (l- n 2 366 /Gi=13)) = log(-log(l -0 .1))

- y 2 +13// + 01og(366) + jd31og(366), 

log (-log (l-^ -2 366 LGi=18)) = log(— log(l — 0.15))

= y2 + \S/j  + 0  log(366) + k \ 8 log(366) 

log(- log(l -  ̂ 2,799,LGi=28)) = log(— log(l -  0.2791))

= y2 + 28/i + 6  log(799) + *28 log(799),

l0g(— l0g(l — ̂ 2,366,LGi =13, LG2 =13 )) — ^°§(— — 0.05))
= y2+\3ju + \3cr + 0 log(366) + k \  3 log(366) + r l  3 log(366), 

log(-log(l - ^ 3 366 /Gi=13 /G2=18)) = log(-log(l -0.075))

= y2+\3ju + \%<7 + 6  log(366) + k \ 3 log(366) + r l 8 log(366), 

lo g (-log (l-^ -3 799 LGi=18iG2=28)) = log(- log(l -  0.1473))

= y3 + 28// + 28o- + 0 log(799) + fc2S log(799) + r28 log(799).
(8.4)

The values for the parameters are shown in Table 8-7.

Yx Yi 73 e M cr K r

-10.0691 -11.9477 -13.7560 1.4518 0.4362 0.4249 -0.0592 -0.0578
Table 8- 7: Parameter values used for generation when an interaction is included as in

model (8.2).
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Since the aim of this investigation is to adjust each patient’s dose between cycles 

depending on the number of LGTs in previous cycles, the simulated dataset should 

reflect the fact that patients may receive different doses in different cycles.

The occurrence of a DLT can be simulated for each dose for each patient for cycle 1 

by using the Binomial distribution with P(DLT) = n KJ). If a DLT is simulated, no

further cycles need to be simulated since the patient would not contribute any further 

to the analysis, although in reality they may still receive treatment at an adjusted dose. 

If a DLT is not simulated, the dose to be administered to cycle 2 is any of the possible 

dose levels. n 2 {y)LG is calculated for each dose level in cycle 2 and the number of

LGTs observed in cycle 1. Since the number of LGTs in cycle 1 is dependent on the 

dose in cycle 1, inclusion of this raw number of LGTs for the calculation of n 1Xj)LG

could bias the result. For example, if a patient moves from dose 60 to dose 200, the 

observed number of LGTs is associated with dose 60 in cycle 1. If this is used in the 

calculation for n 2 {j) then it would suggest that a lower than expected number of

LGTs occurred for dose 200 and therefore 7i2(j)LĜ would be lower than it should be.

In order to combat this, standardisation of the number of LGTs can be used to convert 

the number observed to the relevant scale for the new dose. This involves multiplying 

the raw number of LGTs by a constant which is the ratio of the new dose compared to 

the dose received in cycle 1. This approach seems appropriate due to the method of 

calculation for the average number o f LGTs at each dose level. Suppose that dh and

dj are two dose levels where j , h  e  1 Then
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When j  — h,  the standardisation factor reduces to 1 so the number of LGTs remains 

the same. This therefore suggests that the number of toxicities observed in an earlier 

cycle at a different dose can be used to directly estimate the number that would have 

been expected to occur at the new dose. A Binomial distribution is again used with

P(DLT) = 712 , where LG\ is the standardised number of LGTs that occurred in

cycle 1 for the new dose for cycle 2. Again, if a DLT is simulated no further cycles 

need to be simulated. If a DLT is not simulated in cycle 2 each of the possible dose 

levels can be administered to cycle 3. ;r3 {j)LGi LGi is calculated for each new dose level 

as well as the number of LGTs in cycle 1 and 2 which are both standardised to put 

them onto the relevant scale for the new dose in cycle 3. 71̂  ^  LĜ LG} is then used to 

simulate a DLT from a Binomial distribution.

The data can be recorded such that the first cycle only includes information on the 

current dose, the number of LGTs observed and the occurrence of a DLT. For the 

second cycle, the current dose, the dose administered to cycle 1, the number of LGTs 

observed in cycle 1 and 2, plus the standardised number of LGTs for cycle 1, and the 

occurrence of a DLT can be recorded. For cycle 3, the current dose, the doses 

administered to cycles 1 and 2, the number of LGTs observed in cycles 1 and 2 plus 

the standardised numbers, and the occurrence of a DLT is recorded. In doing this, 

when the relevant information is extracted from the dataset for contribution to the



escalation procedure, there are 9 possible doses to choose from for cycle 1. In cycle 2, 

there are 81 possible combinations of doses from cycle 1 and cycle 2, and in cycle 3 

there are 729 possible combinations of doses from cycle 1, 2 and 3. This is excluding 

cohort 1 as all three cycles of cohort 1 will remain on the lowest dose for the same 

safety reasons as set out in previous investigations. By creating the data in this way, 

the DLT simulated in later cycles reflects the number of LGTs observed at different 

doses in different cycles. The overall probability of DLT across 3 cycles is given by

+ (1 - ^ U |X 1 - * 2,;2.«;iK u w -g ,./.g ! which will depend 

on the different doses and number of LGTs for each cycle. Here, ( j) ,  represents the 

dose level administered in cycle I .

8.4 Escalation Procedure
In order to incorporate LGTs into the model used for escalation purposes and also in 

the model for the final analysis once the procedure has stopped, there are some 

complications involved. First, the model would require a minimum of 6 parameters 

including three parameters corresponding to cycles, a log(dose) coefficient parameter 

and two covariate parameters. The covariates will consist of at least two linear terms 

for the number o f LGTs occurring in previous cycles (cycle 1 and 2) and potentially 

two corresponding LG*dose interaction terms. This would be very computationally 

intensive in terms of computing the asymptotic variance of the estimated TD used for 

the calculation o f the asymptotic credible interval required for the stopping criterion 

and would become even more complex should additional baseline covariates be 

incorporated or additional cycles be considered since the inversion of an «x«m atrix  

is required. Second, since the covariate contribution for each cycle would be different, 

the terms would not factorise in the link function as they did when using baseline
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covariates. The formula used to solve for the TDrrL is based on equation (8.1), the 

model without the LG*dose interaction term, and is shown in equation (8.5).

TTL = 1 -  exp exp (y, + 0 log (TDjtl ))) exp
f f f

- exp Y2+HLGx

V V V

TDm

l U ) i

exp -exp
77) 77)

r3 + m lg , — ^ + cjlg2 +e  log (tdul )
“ (7)1 “ (7)2

' J J
w

= 1 -  exp t d t t l  j “ exp (y,) -  exp
f  \  /

y2 + f*LGx — —  -  exp
(7)1 y

TDt TDrr3+ML G , ^ -  + c7LG2- ^
“ (7)1 (7)2 J

(8.5)

When rearranging for the baseline covariate investigation the following expression is 

obtained as in equation (7.3),

log (TDjn ) = “  l°g(_ l°g(l ~ TTL)) -  i  log (e* +e» + ̂ ) ~ l o g ( e fa+yg).
9 9

Here it can be seen that the covariates can be factorised out since they are constant in 

each cycle. This kind of rearrangement in terms of the lower grade toxicities is shown 

in equation (8.6).

log (TDrfl ) = i  log ( -  log (1 -  TTL)) -  i  log j -  exp ( yl) -  exp y2 + /.iLG,

■exp

TD
1  T T L

‘(7)1 J
\

TD TD
y3 + juLG1 + ctLG2

^(7)1 ^ (7 )2  J

(8.6)

As can be seen, the right hand side of equation (8.6) does not factorise into two parts, 

one dependent on cycle and one on covariates, since the covariates are dependent on 

cycle now and do not have the same value in every cycle.
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The TD and the corresponding asymptotic variance o f its estimate would therefore be 

different for each patient, and dependant on the covariate values on a continuous 

scale. This is not a feasible approach for Phase I studies, since it is required to 

conclude one or a few dose levels which corresponds to the TTL to take forward to 

Phase II for further investigation.

Furthermore, is on both sides o f the equation but on different scales. 

log(7D m ) is defined on the left, whereas 7Dm  on the linear scale is on the right hand

side since it is used for scaling the number o f LGTs observed on a potentially different 

dose. There is no analytical way to solve this, so an iterative type o f approach would 

have to be utilized to find the solution. The true TDs calculated in this way for each 

individual subject given the relevant number o f LGTs for each dose permutation over 

three cycles is shown in Figure 8-1.

t to  m  » o  m  m  mo m  m  wo * o  mo m  m  m  m  « o  m  « »  «o

twottt MOPOINT

Figure 8- 1: Distribution o f true Individual TDs.

The TD for a subject with LG1 = 13 and LG2 = 13 is 366mg/m2. The average TD 

across all o f the subjects is close to 366 mg/m2.
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A different approach is therefore considered here for the escalation procedure. This 

involves using the LGTs for intra-patient dose adjustments within the dose-escalation 

procedure in order to make personalised escalation schemes. However, only the 

observations of DLTs or no-DLTs are used for the analysis when it comes to 

administering doses to new cohorts and for the estimation of one overall TD and its 

asymptotic credible interval. This model is the same as in Chapter 4, equation (4.2).

As with the other procedures, the escalation will begin with the use of pseudo-data as 

prior information. The same total amount of pseudo-data per dose level will be used as 

before (n=3 as in Chapters 5 and 6) but with the inclusion of different numbers of 

LGTs to reflect the effect on P(DLT) when there is an increasing amount of LGTs.

The systems of equations (8.3) and (8.4) are used to calculate the data generation 

parameter values, with and without the LG*dose interaction, and can be used to 

construct pseudo-data to depict the relationship between the increase in LGTs and 

P(DLT) and also the increase in dose with P(DLT).

The pseudo-data with P(DLT) calculated from equation (8.1) (no LG*dose interaction 

in calculation of P(DLT) is shown in Table 8-8. The P(DLT)s are based on the 

expected number of LGTs at the TD (366mg/m2)=13, and an increased amount of 

LGTs of 18. Since there is no interaction between dose and LGTs, the expected 

number of LGTs at the TD is the expected number at all doses. Therefore the 

/r/(7 99)/Gi lG is calculated with an expected number of LGTs of 13 and an increased

number of 18.
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O bs.# Dose, d {j) #LG,
tox.

#l g 2
tox.

7T°H  / ) , I X ^  , l . ( i 2 < )/ 7r°
' ( / ) /  -  n i ( l ) j . ( i yj x ; 2 n ( i ) i

-6 d (i) cycle 1 0 0 0.2 1 0.2

d (])cycle 2 13 0 ±0.2=0.12
1-0.2=0.8 0.08

d {])cycle 3 13 13 ±0.1=0.052
0.8-0.08=0.72 0.036

-5 d (]) cycle 1 0 0 0.2 1 0.2

d (l) cycle 2 13 0 0.1 1-0.2=0.8 0.08

c/(l) cycle 3 13 18 0.075 0.8-0.08=0.72 0.054

-4 d {]) cycle 1 0 0 0.2 1 0.6

d (]) cycle 2 18 0 0.15 1-0.2=0.8 0.12

d 0)  cycle 3 18 18 0.1133 0.8-0.12=0.68 0.077

-3 d (k) cycle 1 0 0 0.5 1 0.5

d (k) cycle 2 13 0 0.2791 1-0.5=0.5 0.1396

d (k) cycle 3 13 13 0.1473 0.5-
0.1396=0.3604

0.0531

-2 d (k) cycle 1 0 0 0.5 1 0.5

d {k) cycle 2 13 0 0.2791 l-0.5=0.5 0.1396

d (l )  cycle 3 13 18 0.2151 0.5-
0.1396=0.3604

0.0775

-1 d ( i )  cycle 1 0 0 0.5 1 0.5

d (k) cycle 2 18 0 0.3964 1-0.5=0.5 0.1982

cycle 3 18 18 0.3117 0.5-
0.1982=0.3018

0.0941

Table 8- 8: Pseudo-data for the implementation of LGTs into the initiation of the 
ICSDP with no LG*dose interaction.

The pseudo-data with P(DLT) calculated from equation (8.2) (with LG*dose 

interaction in calculation of P(DLT) is shown in Table 8-9. P(DLT) at the true TD 

(366mg/m2) with the expected number of LGTs (13) and an increased number of 

LGTs (18) are allocated to the lowest dose (60mg/m2). P(DLT) at the 50% toxicity 

level (TD50, 799mg/m2) at the expected number o f LGTs (28) and an increased 

number o f LGTs (40) are allocated to the highest dose (1700mg/m2). 40 is chosen as 

the larger number of LGTs since it is near but less than the upper 97.5% percentile of 

the log-Normal distribution for the mean number of LGTs associated with the 

TD50=799, as 18 is for the TD=366. Although the expected number of LGTs at the
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true TD50 (799mg/m2) is actually 28, the value of 18 is chosen to correspond to the 

expected value of LGTs, and 25 is chosen for a high number of LGTs at the TD50. 

This still imposes an increasing amount of LGTs with dose, but does not assume that 

the true relationship with LGTs and dose is known.

Obs.
#

Dose, d (J) #LGi
tox.

#l g 2
tox.

7T°l( j)J&\ ,lg2 < ) / 7T° n°1{J)I ~

-6 d (X) cycle 1 0 0 0.2 1 0.2

d {X) cycle 2 13 0 i<).2=0.12
l-0.2=0.8 0.08

d (X) cycle 3 13 13 -0.1=0.052
0.8-0.08=0.72 0.036

-5 d {X) cycle 1 0 0 0.2 1 0.2

d {X) cycle 2 13 0 0.1 1-0.2=0.8 0.08

d (X) cycle 3 13 18 0.075 0.8-0.08=0.72 0.054

-4 d {X) cycle 1 0 0 0.2 1 0.6

d {X) cycle 2 18 0 0.15 l-0.2=0.8 0.12

d (x) cycle 3 18 18 0.1133 0.8-0.12=0.68 0.077

-3 d (k) cycle 1 0 0 0.5 1 0.5

d {k) cycle 2 18 0 0.2791 1-0.5=0.5 0.1396

d {k) cycle 3 18 18 0.1473 0.5-
0.1396=0.3604

0.0531

-2 d w  cyde 1 0 0 0.5 1 0.5

d (k) cycle 2 18 0 0.2791 1-0.5=0.5 0.1396

d (k) cycle 3 18 25 0.2236 0.5-
0.1396=0.3604

0.0805

-1 d {k) cycle 1 0 0 0.5 1 0.5

d w  cycle 2 25 0 0.4151 1-0.5=0.5 0.2076

d (k) cycle 3 25 25 0.3375 0.5-
0.1982=0.3018

0.0941

Table 8- 9: Pseudo-data for the implementation of LGTs into the initiation of the 
ICSDP with LGT*dose interaction.

8.5 Scenarios
There are a number of different elements included in this procedure. Firstly there is 

the generation of the LGTs. The LGTs are generated as increasing with dose 

independently for each cycle. The extension to this is to generate the number of LGTs 

in cycle 2 dependent on the number in cycle 1. This is done by allocating the mean of

207



the log-Normal distribution for the generation of LGTs for cycle 2, as the number of 

LGTs observed in cycle 1. The number observed in cycle 1 is scaled dependent on the 

dose in cycle 1 to the dose in cycle 2.

Second, there is the model used for generating the DLTs. There may be an interaction 

term for LGTs and dose in the calculation of P(DLT) or not.

Next is the use of the pseudo-data. The number of LGTs may be assumed to be 

increasing with dose or not (Tables 8-8 or 8-9).

Then there is the model used for the intra-patient dose adjustments, incorporating the 

number of LGTs in cycle 1 and 2 to make decisions on which dose a patient should 

receive in the next cycle. This could incorporate the interaction term or not.

Finally there is the model used for the overall analysis of DLTs, which does not 

depend on the number of LGTs, and is used to allocate the dose for cycle 1 of the next 

cohort, and also for the precision criterion of the stopping rules. This model is the 

model used in Chapter 4 (equation (4.2)).

Different combinations of these elements can be incorporated to investigate the 

robustness of the procedure when different assumptions are made.

Table 8-10 shows the different scenarios to be investigated, including which choice of 

each element is adopted.
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Scenario Generation of 
LGTs

Generation of 
DLTs

Pseudo-data Intra-Patient
Analysis

Model
1 Cycle 1 indep. 

Cycle 2. LGTs 
incr. with dose.

Interaction of 
LGTs and dose 

in P(DLT). 
Equation (8.2)

Incr. LGTs with 
dose. Table 8-9.

No Interaction 
in P(DLT). 

Equation (8.1)

2 Cycle 1 indep. 
Cycle 2. LGTs 
incr. with dose.

Interaction of 
LGTs and dose 

in P(DLT). 
Equation (8.2)

Incr. LGTs with 
dose. Table 8-9.

Interaction in 
P(DLT). 

Equation (8.2)

3 Cycle 1 indep. 
Cycle 2. LGTs 
incr. with dose.

Increasing 
LGTs with 
dose. No 

Interaction of 
LGTs and dose 

in P(DLT). 
Equation (8.1)

Incr. LGTs with 
dose. Table 8-9.

No Interaction 
in P(DLT). 

Equation (8.1)

4 Cycle 1 indep. 
Cycle 2. LGTs 
incr. with dose.

Interaction of 
LGTs and dose 

in P(DLT). 
Equation (8.2)

LGTs not incr. 
with dose. 
Table 8-8.

No Interaction 
in P(DLT). 

Equation (8.1)

5 Cycle 2 
dependent on 

Cycle 1. LGTs 
incr. with dose.

Interaction of 
LGTs and dose 

in P(DLT). 
Equation (8.2)

Incr. LGTs with 
dose. Table 8-9.

No Interaction 
in P(DLT). 

Equation (8.1)

6 Cycle 2 
dependent on 

Cycle 1. LGTs 
incr. with dose.

LGTs not 
included in 

P(DLT). 
Equation (4.2)

Incr. LGTs with 
dose. Table 8-9.

No Interaction 
in P(DLT). 

Equation (8.1)

7 Cycle 2 
dependent on 

Cycle 1. LGTs 
incr. with dose.

LGTs not 
included in 

P(DLT). 
Equation (4.2)

LGTs not incr. 
with dose. 
Table 8-8.

No Interaction 
in P(DLT). 

Equation (8.1)

Table 8- 10: Scenarios for investigation.

Scenario 1, is the basic ICSDP incorporating LGTs. This will incorporate a dose*LG 

interaction in the data generation to reflect the increasing number of LG toxicities 

with dose in the calculation of P(DLT). The analysis model used for intra-patient 

adjustments in the procedure will not incorporate this interaction term. The pseudo­

data will also reflect the concept of an increasing number of LGTs with dose and their
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interaction. Scenario 2 is the same as Scenario 1 , but includes the interaction term in 

the analysis model for intra-patient adjustments. This is done to look at the procedure 

under perfect conditions, where the analysis model matches the generation model 

perfectly. The pseudo-data will also reflect the increasing rate of LGTs with dose and 

the interaction in the calculation of P(DLT). The dataset generated for these two 

instances will have the number of LGTs occurring in cycle 2, independent of those 

that have occurred in cycle 1 .

The next part of the investigation will look at how the procedure performs when there 

are further discrepancies between the data generation and analysis.

In Scenario 3, the dataset will not incorporate LG*dose interaction in the calculation 

of P(DLT), nor will the analysis model for the intra-patient adjustments. The pseudo­

data does increase with dose and there is also an increasing rate of occurrence of 

LGTs with dose. This may then suggest that P(DLT) increases with dose and the 

number of LGTs linearly, without taking into account the expected increase in LGTs 

with dose despite the fact that the procedure will begin by allowing the LGTs to 

increase with dose.

Some further investigation into the pseudo-data will be incorporated in Scenario 4. 

The rate o f occurrence of LGTs does not increase with dose in the pseudo-data. 

However it will increase in the data generation methods, and there will be a LG*dose 

interaction in the calculation of P(DLT). The analysis model will also still not include 

an interaction term.

The next focus of these investigations will be to try to make the generated data even 

more realistic. In Scenario 5 the dose*LG interaction terms are included in the 

calculation of P(DLT). There will also be a relationship between the number of LGTs

210



in cycle 2 and 1. It seems reasonable that, since LGTs can be considered as an 

indicator for tolerance, the occurrence of LGTs in subsequent cycles would depend on 

the occurrence of LGTs observed before.

Based on the inclusion of some dependence between LGTs in cycles 1 and 2, some 

further assumptions can be tested. If a relationship between dose and LGTs is 

apparent, this relationship between dose and LGTs may prompt assumptions that there 

is a relationship between LGTs and P(DLT). If this assumption is erroneous, the 

procedure should be able to detect no relationship and allowing for intra-patient 

adjustments based on LGTs should not be beneficial, as in Chapter 6 . Scenario 6  uses 

the data generated as in Chapter 5, where P(DLT) is calculated based on cycle and 

dose only. No relationship between LGTs and P(DLT) is incorporated despite a 

relationship between LGTs and dose. All subjects therefore have the same individual 

TD of 366. The procedure will still be conducted such that the model with LGTs will 

be used for the intra-patient adjustments despite no relationship, and a relationship 

between LGTs and P(DLT) will be included in the pseudo-data also. Finally, in 

Scenario 7, the pseudo-data can also be adapted to depict no relationship between 

LGTs and P(DLT) despite an increasing rate of LGT occurrence with dose. This 

investigates how the procedure performs with no initial suggestion of LGT and 

P(DLT) relationship.

For all scenarios, the model used to analyse the occurrence of DLTs alone is that used 

in Chapter 5, defined in equation (4.2).

8.6 Results
The results presented are initially the same as in previous chapters. The mean 

estimated TD (corresponding to the overall P(DLT)) along with the 95% reference 

range and the ratio of the reference range limits is calculated. The average number of
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cohorts required to achieve the estimate of TD is presented along with the minimum 

and maximum number of cohorts observed. The percentage of trials stopping for each 

of the stopping criteria is also shown.

Furthermore, individual TDs are estimated after the trials have stopped based on the 

precision of the overall TD. The individual TDs are estimated through an iterative 

procedure where the dose (from 1 to 1700) producing p jIJG IX} (c3) closest to 0.316

given the observed number of LGTs is concluded to be the patient specific TD. The 

mean individual TD across all patients in all simulated trials is displayed. The 

estimated individual TD is divided by the true individual TD, calculated from 

parameter values obtained from equation (8 . 1 ) or equation (8 .2 ) depending on which 

was used for the data generation. The average ratio over all patients and simulations is 

then presented. Furthermore, the estimated individual TD can be divided by the 

overall estimated TD (associated with DLTs). This is again averaged over all patients 

and all simulations. The estimated overall TD for a given trial is divided by 366 (the 

true population TD) and averaged over all simulations and finally the individual 

estimated TD is divided by 366 and averaged over all patients and simulations.

8.6.1 ICSDP incorporating LG toxicities
The results from incorporating the occurrence of LGTs into the ICSDP when an 

interaction term is included in the data generation model, but not the analysis model 

(Scenario 1) are shown in Table 8-11.
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Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 323.58 13.73

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(205.3,
482.4)

2.35
Min 155.37 8

Max 618.18 19
% in (TD±30%) 82.1

Precision Safety Max 
No.

1 0 0 . 0  0 . 0  0 . 0

Table 8-11: Results from Scenario 1, 1000 trials simulated by the ICS model. 

When incorporating the interaction between dose and LGTs into the calculation of 

P(DLT) for the data generation, the estimated TD associated with DLTs is somewhat 

lower than the true 366. However, the variability of this estimate is very good with a 

very high proportion of trials producing an estimate of the TD within a 30% limit of 

the true TD. The expected number of cohorts required is very low and much less than 

the original ICSDP (Table 5-8). Also here, it is very important to note that all of the 

trials stop for precision suggesting that targeting doses to patients’ individual needs 

aids the estimation of the dose-response relationship, possibly because so many 

different dose levels are investigated.

Table 8-12 displays a summary of the individual TDs as estimated at the end of the 

trial. The individual TDs are compared to the TD associated with DLTs (data analysed 

without LGTs) and also the true individual TDs.
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Explanation Mean from 1000 
trials

Interpretation

TDt Mean estimated 
individual TD per trial

365.40

TD Mean Estimated TD 
associated with DLTs

323.58

( ’■ % , )

Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.14 >1 - Individual TDs are 
higher than TD 

associated with DLTs

Estimated individual 
TD as a proportion o f  
the true individual TD

0.994 ~1 - Estimated 
individual TDs are very 

near to true TDs

( m / 3 « )
Estimated individual 
TD as a proportion o f  

366

0.998 ~1 - Estimated 
individual TDs are very 

near to 366

( n / 3 M )

Estimated TD associate 
with DLTs as a 

proportion o f  366.

0.884 <1 - Estimate TD  
associated with DLTs 

are less than 366.

Table 8 - 12: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 1.

As can be seen, the mean individual TD for a trial when averaged across the 1000 

simulations is almost exactly the 366 as used for simulation, and this is confirmed 

when comparing the mean estimate of the individual TD to 366. Furthermore, the 

individual TD mean estimate compared to the true individual TD estimate is almost 1 

suggesting that including LGTs in the estimation of individual TDs is extremely 

effective and can be used to estimate a TD for an individual person very efficiently.

The individual TD as a proportion of the TD associated with just DLTs, along with

comparing the mean individual TD to the overall TD shows that the overall TD

associated with just the DLTs is much less. Since there are different TDs associated

with different tolerabilities the overall TD underestimates the TD in order to be

acceptable for those patients with lower tolerabilities. Some explanation for the

reduction in the estimates could be a result of the specific dose levels administered.

Since the dose range is not spread equally, it is much more likely to move between

lower doses since the P(DLT) associated with each of these doses is not too different.
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If the P(DLT) changes for the current dose administered, it is likely to not change too 

much so a dose near to the current dose will likely be administered for later cycles. If 

the nearest dose level to that currently being used is some distance away, it may be 

that the dose with P(DLT) nearest to the TTL will still be the same dose, even if it is 

now believed to be too toxic or sub-therapeutic. If patients are then kept on lower 

doses than are perhaps suitable, it is more likely that DLTs will be observed on the 

lower doses. The estimates of the TD will then be skewed towards this end. To 

quantify this, the differences between doses (in mg/m2) and P(DLT) (where P(DLT) is 

calculated by the equation (4.2)) for adjacent dose levels are shown in Table 8-13.

Dose 60 120 200 300 420 630 945 1400 1700
E(P(DLT)

)
0.03 0.07 0.15 0.25 0.37 0.57 0.78 0.93 0.97

mg/m"
diff.

60 80 100 120 210 315 455 300

P(DLT)
diff

0.04 0.08 0.10 0.12 0.20 0.21 0.15 0.04

Table 8-13: Differences in mg/m and P(DLT) between adjacent dose levels. 

As can be seen, it would be a much larger jump to adjust doses upwards for doses 

from 420mg/m2. Although the differences between P(DLT) level off at the high doses, 

these doses are particularly toxic anyway where one would expect to observe a DLT 

so the likelihood of adjusting to a higher dose here is very low. One could produce 

LGTs to suggest their P(DLT) at dose 420 is lower than 37%, but since the next dose 

(630) has on average a 20% higher chance of DLT, the reduction may not be enough 

to suggest adjusting to a dose that much higher. Therefore a subject may remain on the 

dose for which they are less likely to observe a DLT. If a DLT does still occur on this 

lower dose, since there is still a reasonable probability of this happening, then despite 

the number of LGTs observed, this will lead to underestimation of the true probability 

of DLT.
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Considering intermediate dose levels for the higher doses may combat this 

underestimation. However, it is not always feasible to suggest that these doses would 

be made/administered at multiple higher doses since they would be believed to be too 

toxic anyhow. It is reasonable however to recommend a slightly lower dose than the 

true maximum tolerated dose for further investigation. Later phases of development 

often use slightly lower doses than the MTD in order to demonstrate efficacy in doses 

that have an even lower chance of toxicity, so this is an acceptable compromise to 

accept for enabling targeted dosing of patients and reducing the chance of over/under­

exposure.

In order to investigate whether there is an issue with regard to allowing an interaction 

term for LGTs and dose in the calculation of P(DLT) in the generation of the data, but 

escalating between cycles according to the model without interaction, the inclusion of 

the interaction in the escalation model is investigated (Scenario 2). Since this is just an 

investigative scenario, only 1 0 0  simulations will be performed.

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 261.84 19.97

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(189.3,
354.4)

1.87
Min 77.63 18
Max 400.78 2 0

% in (TD+30%) 52.0
Precision Safety Max 

No.
5.0 0.0 95.0

Table 8 - 14: Results from Scenario 2, 100 trials simulated by the ICS model. 

As can be seen there is a large reduction in the mean estimate of the TD with a very 

large increase in the average number of cohorts observed. This is due to the fact that 

more parameters have to be estimated. This causes a much slower escalation. With



patients escalating between cycles more slowly, the accrued dose information that is 

obtained across cycles is not as informative, so for the analysis of DLTs alone more of 

the lower doses are observed with greater variability in each cycle, causing the 

estimation of the TD associated with just DLTs to be worse.

The individual TDs are summarised in Table 8-15.

Explanation Mean from 1000 
trials

Interpretation

TDt Mean estimated 
individual TD per trial

345.14

¥5 Mean Estimated TD 
associated with DLTs

261.84

( ’% , )

Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.33 >1 - Individual TDs are 
greater than TD 

associated with DLTs

Estimated individual 
TD as a proportion o f  
the true individual TD

0.918 <1 - Estimated 
individual TDs are less 

than true TDs

( r e ' / 3 6 6 )
Estimated individual 
TD as a proportion o f  

366

0.943 <1 - Estimated 
individual TDs are less 

than 366

( n > /3 6 6 )

Estimated TD associate 
with DLTs as a 

proportion o f  366.

0.715 « 1  - Estimated TD  
associated with DLTs 

are much less than 366.

Table 8-15: Mean estimates associated with individual target coses after 1 0 0  trials
from Scenario 2.

The individual estimated TDs are fairly good in comparison with those from Scenario 

1 (Table 8-12). The matching of the data generation model and analysis model implies 

that the personalized procedures are very effective. However the individual TDs are 

not estimated any better than in Table 8-12, potentially due to the increased number of 

parameters required to be estimated. This combined with the obviously lower overall 

TD suggests that using the interaction in the analysis model is not beneficial.
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8.6.2 Testing the procedure when there are contradictions between data 
generation and analysis

Allowing for no interaction between dose and LGTs in the calculation of P(DLT) in

the data generation, despite an increasing rate of LGTs with dose and the interaction 

incorporated in the pseudo-data, Scenario 3, produces the results in Table 8-16.

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 312.21 13.54

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(208.9,
450.8)

2.16
Min 157.14 9
Max 561.44 2 0

% in (TD±30%) 81.1
Precision Safety Max 

No.
99.7 0.0 0.3

Table 8 - 16: Results from Scenario 3, 1000 trials simulated by the ICS model.

The estimate of the TD is somewhat lower than the true 366 but with good precision. 

The expected number of cohorts required is very low and much less than the original 

ICSDP. A very high proportion of trials stop for precision and a large number of 

estimates lie within a 30% limit of the true TD.

The TD estimate itself is lower than in Table 8-11 (Scenario 1), but this is due to the 

fact that the interaction between dose and LGTs is not considered in the calculation of 

P(DLT). LGTs are simulated at a much greater rate when the dose is higher but this is 

not considered in the calculation of P(DLT) from the complementary log-log link 

function. So when a higher number of LGTs occur at a higher dose, the effect on 

P(DLT) is 2-fold. It increases once with the dose and again with the number of LGTs. 

Therefore DLTs will be simulated with a higher probability than is reasonable. When 

DLTs are analysed independently at the end of the escalation, the estimated dose that 

corresponds to the TTL is lower than expected.
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Some summary results for the individual TDs are shown in Table 8-17.

Explanation Mean from 1000 
trials

Interpretation

TDt Mean estimated 
individual TD per trial

356.81

TD Mean Estimated TD 
associated with DLTs

312.21

( r a ' / r a )

Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.154 >1 - Individual TDs are 
greater than TD 

associated with DLTs

( r e ' / n > , )

Estimated individual 
TD as a proportion o f  
the true individual TD

0.970 -1  - Estimated 
individual TDs are very 

near to true TDs

( r a ' / 3 6 6 )
Estimated individual 
TD as a proportion o f  

366

0.975 ~1 - Estimated 
individual TDs are very 

near to 366

( ” >/3 6 6 )

Estimated TD associate 
with DLTs as a 

proportion o f  366.

0.853 <1 - Estimate TD 
associated with DLTs 

are less than 366

Table 8 - 17: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 3.

These results show that the average individual TD is very close to the true 366 despite 

the overall TD associated with DLTs being so low. The ratio of the estimated 

individual TDs compared to the overall TD associated with DLTs confirms that the 

individual TDs are generally larger. The ratio of the estimated individual TDs 

compared to the true individual TDs show that the estimated individual TD is very 

close to the subject’s true TD, suggesting that allowing personalised escalations is 

very efficient at targeting therapy to suit a specific subject even when a dose*LG 

interaction is not used in the calculation of P(DLT).

The next investigation involves using pseudo-data that does not necessarily match the 

generation of the data (Scenario 4). Although the data reflects an increasing rate of 

LGTs with dose and the interaction is incorporated in the calculation of P(DLT), this 

is not incorporated in the pseudo-data or analysis model. Suggesting the assumptions



made about the data, prior to commencing the procedure, are inconsistent with the 

observed data.

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 345.26 14.14

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(218.31,
526.37)

2.411
Min 172.55 8

Max 719.30 19
% in (TD±30%) 83.8%

Precision Safety Max 
No.

1 0 0 % 0 % 0 %

Table 8 - 18: Results from Scenario 4, 1000 trials simulated by the ICS model.

The results in Table 8-18 are actually better than the first investigation (Scenario 1, 

Table 8-11) where an increase in dose results in an increasing rate of LGTs in the 

pseudo-data (Table 8-9). In this scenario, there is no suggestion of an interaction 

between LGTs and dose in the calculation of P(DLT) in the pseudo-data. The model 

used for analysing the DLTs does not incorporate the occurrence of LGTs so when 

there is no difference across dose levels in the pseudo-data, the parameter estimates 

converge more quickly, despite the increasing rate of LGTs with dose in the data 

generation model. Therefore the estimated TD associated with DLTs is closer to the 

true value of 366. It is still slightly underestimated due to the increasing rate of LGTs 

not being reflected in the occurrence of DLTs, so P(DLT) increases linearly with dose 

and LGTs. A lower dose would therefore be tolerated.
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Explanation Mean from 1000 
trials

Interpretation

TD t Mean estimated 
individual TD per trial

361.62

TD Mean Estimated TD 
associated with DLTs

345.26

("/«,)
Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.0703 >1 - Individual TDs are 
greater than TD 

associated with DLTs

Estimated individual 
TD as a proportion o f  
the true individual TD

0.983 ~1 - Estimated 
individual TDs are very 

near to true TDs

Estimated individual 
TD as a proportion o f  

366

0.988 ~1 - Estimated 
individual TDs are very 

near to 366

("Vsm)
Estimated TD associate 

with DLTs as a 
proportion o f  366.

0.943 <1 - Estimate TD  
associated with DLTs 

are less than 366

Table 8- 19: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 4.

The results associated with restricting the pseudo-data (as in Table 8-8) show that the 

mean individual TD is very near the true value of 366. Here it is not quite as good as 

in Table 8-12 since the interaction between dose and LGTs is not incorporated in the 

pseudo-data despite being incorporated in the data generation. Not allowing the 

interaction of the rate of LGT occurrence and dose in the pseudo-data slows down the 

convergence of the parameter estimates associated with the LGTs in the intra-patient 

escalation model (equation (8.1)). The individual TDs are still estimated very well 

though. The ratio of the estimated individual TD compared to the estimated DLT TD 

is closer to 1, suggesting that the two estimates are more similar. This is an attractive 

feature since it suggests that the overall DLT TD is estimated closer to the individual 

TD, so it becomes more reasonable to allow the analysis of just DLTs in order to 

predict a population TD. In reality, the reason for this is because the estimation of the 

DLT TD is better due to the matching assumptions in the pseudo-data and the analysis
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model used for intra-patient adjustments. The individual TD is also estimated slightly 

worse due to the mis-matching, resulting in a narrower gap between the different TDs.

The overall DLT TD is estimated better when the pseudo-data doesn’t impose too 

many relationships between LGTs and dose as the parameter estimation is less 

restricted. So if the focus is indeed to obtain an overall DLT TD to recommend for 

further investigation, it may be useful to incorporate this feature.

8.6.3 Making the data more realistic and further testing of assumptions
The results in Table 8-20 are from Scenario 5 which show how the procedure

performs when an interaction between LGTs and dose is included in P(DLT) for the 

data generation and the pseudo-data, and the number of LGTs occurring in cycle 2 

depends on the number occurring in cycle 1. This dependence of LGTs in cycle 2 and 

1 depict a more realistic relationship.

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 321.80 14.03

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(206.4,
478.3)

2.317
Min 146.56 9
Max 628.17 2 0

% in (TD+30%) 82.9%
Precision Safety Max 

No.
99.1% 0% 0.91%

Table 8 - 20: Results from Scenario 5, 1000 trials simulated by the ICS model. 

Table 8-21 shows the corresponding individual TD results.
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Explanation M ean from 1000 
trials

Interpretation

TDt Mean estimated 
individual TD per trial

368.94

TD Mean Estimated TD 
associated with DLTs

321.80

(ra'/r0)
Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.157 >1 - Individual TDs are 
greater than TD 

associated with DLTs

Estimated individual 
TD as a proportion o f  
the true individual TD

1.010 ~1 - Estimated 
individual TDs are very 

near to true TDs

(re,/“ ‘)
Estimated individual 
TD as a proportion o f  

366

1.008 ~1 - Estimated 
individual TDs are very 

near to 366

(n>/36t)
Estimated TD associate 

with DLTs as a 
proportion o f  366.

0.879 <1 - Estimate TD  
associated with DLTs 

are less than 366

Table 8- 21: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 5.

The results in Table 8-21 are very similar to those obtained in Table 8-12, since the 

only difference is the number of LGTs in cycle 2 which will be a very minor change. 

The next set of results show how the procedure would work if the assumption of 

LGTs affecting the P(DLT) is made erroneously, based on an increasing relationship 

of LGTs with dose.

The data is generated with an increasing rate of LGTs with dose, but the calculation of 

P(DLT) is as in equation (4.2) and does not contain LGTs, so all patients have an 

equal individual TD of 366mg/m2. The pseudo-data here is set to reflect the 

misspecified assumption of increasing P(DLT) with increasing number of LGTs 

(Table 8-9).
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Design ICS!OP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 340.20 13.95

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(2 1 1 .8 ,
501.4)

2.368
Min 171.13 8
Max 660.45 20

% in (TD±30%) 83.06
Precision Safety Max 

No.
97.96% - 2.04%

Table 8- 22: Results from Scenario 6, 1000 trials simulated by the ICS model. 

These results produce very reasonable estimates for the TD with good precision and a 

high proportion in a clinically meaningful range o f the true TD, and with again quite 

few cohorts on average. The proportion of trials stopping for precision is nearly 

100%, with very few stopping due to reaching the maximum cohort. The individual 

results are shown in Table 8-23.

Explanation Mean from 1000 
trials

Interpretation

TDt Mean estimated 
individual TD per trial

372.72

75 Mean Estimated TD  
associated with DLTs

340.20

(r6,/nl)
Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.103 >1 - Individual TDs are 
greater than TD  

associated with DLTs

Estimated individual 
TD as a proportion o f  
the true individual TD

1.032 ~1 - Estimated 
individual TDs are very 

near to true TDs

( r o ' / 3 6 6 )
Estimated individual 
TD as a proportion o f  

366

1.018 ~-l - Estimated 
individual TDs are very 

near to 366

( " V s m )
Estimated TD associate 

with DLTs as a 
proportion o f  366.

0.930 <1 - Estimate TD  
associated with DLTs 

are less than 366

Table 8- 23: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 6.
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The average estimated individual TD is slightly larger than the true 366 but is still 

quite close, as shown by the average ratio of the estimated individual TD to the true 

individual TD.

Although there should be better estimation of the individual TD since all patients have 

the same TD, the reason for the estimate not being better can be put down to the fact 

that there is still an allowance for patients to change doses between cycles due to their 

observed number of LGTs, which does increase with dose. Since the data associated 

with LGTs outweighs the amount of information obtained on DLTs for different 

doses, it seems the model still relies on the occurrence of LGTs as an indicator for 

P(DLT). Indirectly, an increase in LGTs implies a reduced tolerance to higher doses, 

which then implies a higher P(DLT) for each dose level, so although the LGTs do not 

directly affect the calculation of P(DLT), there is some confounding relationship with 

dose. This may be more apparent due to the inclusion of a relationship between LGTs 

and P(DLT) in the pseudo-data.

Table 8-24 shows the results when the assumption is removed from the pseudo-data as 

in Table 8 -8 .

Design ICSDP
Variable TD 3 1  6 No. of 

Cohorts
Mean estimate 341.38 13.61

(2.5, 97.5) 
percentiles of 

estimates 
97.5/2.5

(211.9,520.8)
2.458

Min 141.20 8

Max 757.92 2 0

% in (TD±30%) 83.23%
Precision Safety Max 

No.
97.46% 0% 2.54%

Table 8 - 24: Results from Scenario 7, 1000 trials simulated by the ICS model.
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The average TD is marginally better when removing the relationship between LGTs 

and P(DLT) in the pseudo-data. And it is also achieved in a slightly shorter time, due 

to the quicker convergence o f parameters when not pre-specified to correspond to 

pessimistic observations, but the estimates are produced with slightly worse precision. 

The proportion of TDs in the 30% limit of the true TD is almost identical as to when 

the relationship was specified in the pseudo-data, as is the proportion of trials stopping 

for precision and due to reaching the maximum cohort.

Explanation Mean from 1000 
trials

Interpretation

T D l Mean estimated 
individual TD per trial

380.26

75 Mean Estimated TD 
associated with DLTs

341.38

( " ■ / « , )
Estimated individual 
TD as a proportion o f  

TD associated with 
DLTs

1.118 >1 - Individual TDs are 
greater than TD  

associated with DLTs

( r i v ™ . )
Estimated individual 
TD as a proportion o f  
the true individual TD

1.055 ~1 - Estimated 
individual TDs are very 

near to true TDs

( f I ' / 3 6 6 )
Estimated individual 
TD as a proportion o f  

366

1.039 ~1 - Estimated 
individual TDs are very 

near to 366

( n > / 3 6 6 )
Estimated TD associate 

with DLTs as a 
proportion o f  366.

0.933 <1 - Estimate TD 
associated with DLTs 

are less than 366

Table 8- 25: Mean Estimates associated with individual target doses after 1000 trials
from Scenario 7.

Table 8-25 shows that the results for the estimated individual TDs are actually slightly 

worse here which is surprising since the pseudo-data starts the procedure assuming 

that all patients have the same TD regardless of the number of LGTs. One can assume 

that since there is still a confounding effect of LGTs and P(DLT) through dose, the 

procedure still attempts to determine a relationship, but now there is no initial 

suggestion for this it does so with less targeted precision than before.
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8.7 Conclusions
The investigation into incorporating LGTs into the dose escalation procedure, but 

analysing and making decisions based on just the occurrence of DLTs is very 

promising.

The basic assumption used implies that P(DLT) increases with dose and LGTs, and 

accounts for the fact that a different rate of LGTs will occur for different doses. The 

model used for analysis and intra-patient escalation purposes, is the model with the 

number of LGTs incorporated, but without the LGT and dose interaction, despite the 

data being generated with an interaction. This model is easier to implement and 

understand which is critical when suggesting using this model in practice. When 

incorporating the interaction term in the analysis model for intra-patient adjustments, 

the results are not improved, suggesting the more complicated model is not necessary 

to implement. The model used for determining an overall TD is the model without 

LGTs, as in Chapter 5. The results from implementing these basic assumptions show 

that the overall TD (associated with DLTs) can be produced quite well, although 

usually underestimated. The individual TDs however can be predicted extremely well. 

These estimates are obtained in a shorter amount of time than seen in previous 

investigations of the use of the ICSDP and generally with higher precision, resulting 

in a larger amount of trials stopping for precision and producing results within a 

clinically meaningful range.

When investigating scenarios that conflict with the basic assumptions, very few 

differences arise. When the data is generated with no interaction term, the results for 

the overall TD are generally worse, since a higher expected number of LGTs are 

observed with increasing doses, but this is not taken into account when calculating 

P(DLT), so there is a detrimental effect and the estimated TD is lower.
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When the pseudo-data doesn’t implement a relationship on the occurrence of LGTs 

with dose and therefore no interaction with dose in the calculation of P(DLT), despite 

the data being generated with such an interaction, the results are better for the overall 

estimated TD, but marginally worse for the individual estimated TDs. The overall TD 

is estimated better due to the improved escalation procedure found from the matching 

assumptions between pseudo-data and analysis model, but the individual TDs do not 

reflect the actual individual tolerance as well, although still produces very good 

results.

When a more extreme assumption is violated, that being that there is no relationship 

between LGTs and P(DLT) in the data, despite dose having a relationship with both 

variables, the results are still reasonably robust. The overall TD is still produced very 

well with very good precision and in a similar amount of time also. The individual 

TDs are estimated slightly worse now, due to the added complexity of estimating 

parameters for which there is prior suggestion to estimate, but no evidence to support 

it. Looking at the results from a greater perspective they are still estimated very well. 

The ability to conclude that LGTs do not affect P(DLT) is not achieved here, but this 

is down to the confounding relationship of an increasing rate of LGTs with dose, and 

an increasing P(DLT) with dose.

It seems that the best scenario would be to match the assumptions incorporated in the 

pseudo-data, to those used for the analysis models, i.e. no interaction of LGTs with 

P(DLT), so no increasing rate of LGTs with dose. Even when the data itself does not 

match these assumptions as such, the procedure is robust enough to provide good 

results, which are then enhanced due to the matching assumptions.
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A final point to consider is the fact that in general, the average estimated individual 

TD is much closer to the true population TD of 366 than the TD associated with 

analysing DLTs alone. While the analysis of just DLTs is important to include for the 

stopping criteria and also to allocate a dose to new, incoming cohorts of patients, once 

the trial has stopped it would be appropriate to analyse all information for each patient 

with the model incorporating LGTs as in equation (8.1). The average individual TD 

can then be calculated as the dose to recommend for further investigation. This is a 

very efficient use of the data which incorporates more information regarding the 

overall tolerance of the drug.
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9. Conclusions and Remarks
9.1. Overall Conclusions

Comparison of the ICSDP to an existing method (LRDP1) and a compromise between 

the existing method and one which incorporates more cycles of therapy (LRDP3), 

shows that the ICSDP performs better overall than either of the other two. The TD 

estimates are usually either comparable or better than those from the other procedures 

and this estimation is largely invariant to model misspecification. The main benefit of 

the ICSDP however, is that it generally requires fewer cohorts to obtain these 

comparable estimates, leading to a shorter trial. The trials are also more likely to stop 

for precision of the estimated TD than those using the other procedures and very 

rarely stop for safety reasons. The ability to cope with non-informative censoring is 

one of the original benefits of the use of the ICS model, and this is confirmed in the 

setting of Phase I dose-finding studies. Informative censoring, due to patients being 

more likely to withdraw when near to experiencing a DLT due to perhaps the 

occurrence o f lower grade toxicides, affects all procedures similarly due to the 

reduced amount of information on how dose affects the chance of DLTs. The results 

produced by all procedures are still biased and will recommend doses that are too 

high. This is a different issue that would need further investigation to that conducted 

in this investigation.

The patient gain function is the most ethical one to use with the ICSDP. Since patients 

are being treated at what is believed to be the TD, the estimate of the TD will 

converge to the true TD when dosing is concentrated around this estimate (Shen and 

O’Quigley [18]). When compared to other gain functions that aim to maximise 

information (e.g. the variance gain function), the reduction in information is not so
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great for the patient gain function. It is more important to consider the welfare of the 

subjects receiving the treatment, which in this case are cancer patients.

One of the attractions of using the ICSDP is the ability to change doses between 

cycles for a patient (intra-patient dose adjustments). It is an ethical approach since 

patients would not be exposed for too long to a dose that is deemed sub-therapeutic or 

overly-toxic. However, when no additional information is known about the patient 

when progressing to later cycles, the incorporation o f intra-patient adjustments makes 

estimation of the TD much worse. More patients being dosed at the same dose level at 

any one time encourages the estimates of the TD to converge much quicker. However 

fewer doses will actually have been used over multiple time-points, so the precision of 

these estimates is very reduced. The idea of intra-patient dose adjustments should be 

considered when information is accrued with time, such as the occurrence of LGTs in 

earlier cycles.

Including covariates that will result in different target doses for each patient is a 

difficult concept to consider, especially since this is the first phase of clinical 

investigation so the main aim is to provide a dose, or a few doses, to recommend for 

later investigation. In practice, a TD can be created for each individual patient, but this 

is only useful when the probability of a DLT is affected by the value of the covariate. 

Baseline covariates that will not change and are known before a patient is 

administered the drug can be taken into consideration when dosing. It has been shown 

that incorporating such covariates into the ICSDP is possible, and the procedure can 

be adapted to produce multiple recommended doses.

The main issue that arises when attempting to produce multiple TDs is the 

construction of the pseudo-data. When just one TD is to be estimated, the equivalent
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of two cohorts worth of information (1 cohort at both the lowest and the highest 

doses) can be incorporated, which results in less than 10% of the total information 

accrued if the trial were to reach its maximum size. However, when multiple TDs are 

being estimated, 2 cohorts worth for each subgroup will overwhelm the data and 

prevent proper convergence of the TD estimates. More than one pseudo-observation 

should be included at each dose level for each subgroup associated with a different 

TD, in order to ensure the first few observations do not cause the escalation to either 

proceed at an unsafe rate, if no events are observed for the most at risk subgroup, or to 

stop for what is claimed to be safety reasons due to a random occurrence of an event 

during the first administration to a subgroup at the lowest dose.

While estimating different TDs for patients with certain baseline characteristics is a 

reasonable procedure to undertake, one cannot predict an individual patient’s 

underlying tolerance to the investigational drug. While there may be some relationship 

between the drug being administered and perhaps the presence of a biomarker or 

another current medical condition, these may not be known or present at the onset of 

treatment. Therefore it is not possible to dose different patients at different doses to 

suit their underlying tolerability at the start of treatment. However, the ability to 

incorporate intra-patient dose adjustments, in order to ensure safe escalations that are 

suited to each patient, is desirable. The most effective way of incorporating intra­

patient adjustments into the ICSDP is to allow adjustments between cycles based on 

accruing information in each cycle, but estimating the TD at the end of the trial to 

correspond just to the occurrence of DLTs in the entire population. Different patients 

will, in reality, require different TDs, and this may be indicated by the value of a 

tolerance marker. However, it may be appropriate to recommend a population 

average TD for further investigation, as dose-titration may be considered later on if a
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significant difference in tolerance arises. There are different events or measurements 

that could be considered as a marker for tolerance, such as the occurrence of LGTs, 

some pharmacokinetic measure depicting the exposure of the drug, or a 

pharmacodynamic event which can be related to efficacy. The inclusion of LGTs is 

however one of the easiest to implement since all toxicities of all grades are recorded 

at every evaluation for each patient as a standard safety assessment, and so are readily 

attainable.

On including LGTs into the between cycle escalations for patients, it has been shown 

that the trial lengths can be decreased further, since each patient is being dosed at 

doses most suited to them so the dose corresponding to the required TTL is more 

precise. Escalating the doses between cohorts based on the estimated TDs associated 

with the occurrence of just DLTs (without LGTs) is very effective and requires no 

additional complexity in the procedure. Once the trials have stopped, the average of 

the population’s individual TDs produces even better estimates than when analysing 

the data for just DLTs and obtaining a single TD. Furthermore, some idea can be 

gained on the effect of LGTs on the prediction of DLTs which can then be used in 

later phases of development to aid dosing decisions when LGTs occur.

9.2. Extensions and Further Work

While many possible scenarios have been investigated within the scope of each 

comparison, there are possible extensions and further comparisons that could have 

been considered for each chapter.

The inclusion of three cycles in the simulations of the ICSDP was based on the data 

from Postel-Vinay [1]. The Christie data [17] also only investigate for 3 cycles even 

when considering LGTs and looking at biomarker values, which suggests that 3 may
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be sufficient. Also, if the suggestion of P(DLT) halving with successive cycles is 

appropriate, one would expect cycles after cycle 3 to contribute very few occurrences 

of DLTs. While the use of 3 cycles is justified in this thesis, some further investigation 

could be conducted to compare the use of the ICSDP with differing numbers of cycles 

to determine an optimal number of cycles to observe.

The scenarios investigated were based on the assumption that the probability of a 

patient’s first DLT in each cycle was conditionally independent on P(DLT) in earlier 

cycles and consistently decreasing. It may be appropriate to consider the possibility 

that the probability of a patient’s first DLT may increase with cycle due to an 

accumulation of dose. This could be investigated by including a cumulative dose term 

in the link function for the ICS model. However, there may be the possibility of an 

increased tolerance with time, so some compromise of decreasing P(DLT) with time, 

but increasing P(DLT) due to dose accumulation could be investigated. The 

cumulative dose term will be a time-changing covariate, so the methods in Chapter 8 

would have to be applied to investigate this, and o f course more parameters would 

require to be estimated. This may discourage the inclusion of further covariates which 

would then require more parameters still.

Prior information has been incorporated through the use of pseudo-data, which 

combines easily with the binary observations from the trial. Further investigation 

could be undertaken concerning the inclusion of prior information through the 

traditional method of meta-analytical priors, which use existing data to place a 

distribution on the parameters of the model which reflect current belief associated 

with the drug. This does however detract from the simplicity of the ICSDP and may 

be more complicated to implement.
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The inclusion of baseline covariates could be extended to the inclusion of continuous 

covariates as discussed in Chapter 7. A TD to recommend for further investigation 

could be recommended as a function of the covariates such that a decision on dosing 

could be made based on the specific patient’s characteristics at the start of the trial.

The results from Chapter 8 could be combined with the inclusion of baseline 

covariates to determine whether different doses are appropriate to administer at the 

start of treatment while allowing dose adjustments based on time changing covariates. 

Further investigation into the effect o f time-changing covariates across baseline 

characteristics could also be investigated. For example the presence of characteristic 

specific markers, such as hormone levels which have been related to particular 

cancers, could fluctuate in response to the drug which could provide early indications 

of efficacy or toxicity. Those markers may have a different level of prevalence in 

different patients, females to males for example, so the effect on P(DLT) may be 

different for those patients, and therefore interaction terms between the time-changing 

covariates and the baseline characteristics may need to be included.
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10 .Appendices
Appendix 1: 
Rearranging the complementary log-log link function in terms of the 
TD for s  cycles.
The link function for the conditional probability is defined as:

TCjj = 1 -  exp ( -  exp [yl + 0  log d}))

log ( -  log (l -  T T j j ) )  =  yt +  0 log d j

The probability after s cycles redefined through the link function is:

P j ( C s )  =

l- e x p ( -e x p (y , +01og£/y)) +

exp(-exp(y j + <91og£// ) ^ l - e x p ( - e x p ( y 2 + 01og*/y)) +

+ exp( -  exp (y, + 0 log dj  ))• • • exp (-ex p  (yv_, + 0 log ) ) [l -  exp (-ex p  [ys + 0 log d})) 

= 1 -  {exp ( -  exp (y, + 0 log d j )) • • • exp ( -  exp (ys_{ + 0 log d j )) exp ( -  exp (y, + 0 log d} ) ) | 

= 1 -  exp ̂ d f  [ -  e *  er*~x -  eXs J J .

The TD can be defined by rearranging the expression for the TTL as follows:

TTL = 1 -  exp \TDe [ - e *  • • •-£?'- ]}

iog ( r o )  = i log
-lo g ( l-7 7 Z )

f 1 — +eXs



Appendix 2: 
Deriving the asymptotic variance for the complementary log-log link 
function for 3 cycles
Given p p = /r /3(l —/r/2)(l — the likelihood (Z,) is:

k 3+1

* - m w/=I /=|

7=1 /=1

7=1 /=1

where g0)/ = n{J)j - t {j)l, the number of subjects on dose level ( j )  during cycle / who 

did not experience a DLT. L is then expressed through the link function as follows:

£ /

^ = n  ( 1 -  exp ( -  exp # !°g du)) ) ) 1 (exp ( - exp ( r ,+ 0 io g ^ ( 7 ) ) ) ) 0,1
7=1

( l - e x p ( -e x p (y 2 + 01ogd(/)) ) ) (y)2 (ex p (-ex p (y 2 + <91og</(/)))J?(y)2 

( l - e x p ( - e x p ( /3+ ^ lo g J 0)) ) ) 'y>3 (ex p (-ex p (y 3+<91ogd(7))))*(y,\

Taking the natural logarithm gives the expression for the log-likelihood.

* = lo g ( l-e x p ( -e x p ( /,  + 01ogrfw ) ) ) - ? w , (exp(r, + 01ogrf(/)))
7=1

exp( eXp(^2 (̂7)2 (eXP(^2 ^ ^ ( 7 ) ) )

t(j)3 log (1 -  exp ( -  exp (y3 + 6  log d{J)))) -  q(J)3 (exp (y3 + 6  log d{J)))

Differentiating with respect to each parameter:
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d t  i  ' o ) i ( - exp( - exp( / , +6 ' l ogr f0 ) ) ) ) ( - e x p ( r l+^logrf(/)))
—  = L ------------------:--------7------- 1 ^ ---------------------?(„, exp(r ,+6' logrf(;))

I - exp( - exp l x ,  +6>\ogdl/ i )jSy i y=i

‘ log ( l .2 p o )i w(/)i ( '( /d  + ?(y)i)}
7=1 K{j) 1

d( ^ ?0 )2 ( - exp ( - exP ( r 2 + ̂  log t/(;)))) ( -  exp ( ^ ; log )) 

5r 2 /-i I -ex p (-ex p (V , + 6Uogtfl;)))

i ,  t f
Z  { (y)2 ^ (7)2 \  (y)2 + 9(y)2 j)
7=1 (7)2

c^_ _ '<„3 ( -  exp ( -  exp (y3 + 9 log du)))) ( -  exp ( / ,+ 0  log du)))

1 -  exp ( -  exp ( / 3 + 6 log du >))

‘ lo g ( l - j r (;)3) ,  ,
“ X  {^(7’)3 ^(7)3 (* 0 )3  + ^ (7 )3 )j

"^(7)2 exp(^2+6»logJ0))

C7'C

s h  /-I
- ^ “ P ^ + ^ l o g ^ o ) )

7=1 ^(7)3

*<7 )i ( exP ( - exP (/I + <9 log <̂ (7 ) ) ) ) ( - exP ( r  1 +<? log du,}))
log d.

d ^ _ Y

d 6 ~ h

+ log d.(7)

+ logd.(7)

di_
36 = 2 > g «

7=1

1 -  exp ( - exp ( /, + <9 log </(y)))

“ 9(7)1 exp ( /l  + ^ l0 g ^ (7))}

h 7 ) 2  ( - exp ( - exp (^2 + 6 log d{ ) ) ) ( - exp (y  2+6 log d{y})) 

1 -  exp (-ex p  (y2 + 0 log d(j)))

“ 9(7)2 ex p (r2 + 01ogrfO))}

hj)z ( - exp( - exp(y3 + e log d{j)) ) ) ( - e x p (y  3+ 6 log d(j))) 

1 -  exp ( -  exp (y3 + 9  log d(j)))

“ 9(7)3 ex p (r3 + 01og</(7))} 

_ lQg0 ( ^  + 9(7)! )j
(7)1

_ l°g (l x w  ) | , „  ( , + q )} _ log(* V 1  {, u), - x u)3 (/(,)3 + qw  )}
n(i)2 0 )3

Differentiating again:
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d2i  _ d2i  _ d2i  
dy f i r  2 dr  f i r 3 d r f i r 2

= o

d2?. ^  hj) i

dr = ! ■
1 7=1

( -e x p (r , +<91ogc/0)) ) ( -e x p (-e x p (x 1 +(91ogt/0)) ) ) ( - e x p ( r1 +6»log4;))) 

l - e x p ( - e x p ( r ,+ ^ lo g ^ (/)))

+
'o „ e x p (r ,+ ^ lo g rf0 )) ,  .

- ”o)iexp (y i+6l|og < ,)J
l - e x p ( - e x p ( f t  + 0 lo g d O)))

_ - ^ ( ' o g Q - ^ n ) ) '  ~ >u>1̂ 0)1 lQg 0 - *wi ) { • - 10§ ( ' -*</>.)} + ”<,>.*<, >i2 lo8 (’ -*<,).)= X
7=1 7T,

(7)1

d2l  _ ^ tu)2

2 ~ h ~ ~

( - e x p ( f t  + 0log</,y)) ) ( - e x p ( -e x p ( f t  + 01ogrfw ) ) ) ( -e x p ( f t  + 01ogrf(„ ) )

dy. 1 -  exp ( -  exp ( f t  + 6  log d lJt))

h i ) ^ { r i +eXoi d ii)) t a . . \
+ )--------1------- ? m  b W ~ " ('>2 exp V 1 + S < '■>)1 -  exp (-e x p  ( f t  + 0  log dw ) J

^ - ' ( ^ ( M ' - ^ / b ) ) -'u»*un  log (' - ^<./)2){l - 'og(' -^(>>2)} + ” </)2?r<y)22 log(1 - ^ , 2)I
7=1 71.(7)2

dr = ! •
3 7=1

I
7=1

( -  exp (ft + 0 lQg d(j))) (~ exP ( -  exP (ft + £ l° g < J1)))(-ex p  ( f t  + 0 log rf(/))) 

1 -  exp ( -  exp ( f t  + e  log d{j)))

'a ,3ex p (ft+ ^ lo g rf0)) , .
 1  i m  7 i r ,' w CXP' r] +^ ° & dw )I — exp ( -  exp ( f t  + 6 log dt j)) j 

- ‘urs (log(l -  * ( J)3)) - tm x w3 log (l -  {l -  log(l -  ;r0)3)} + nw n w 2 log(l

n.(7)3
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pp p /•
= S ' ° 8 4 „dO 7 = 1

(̂ /)! (~ exP ( ^ 1  + ^  lo§ dp ))) (~ exP (~ exP (/i + 0  l°g d{j)))) ( -  exp (/, + 0  log d(j))) log d(j)

1 -  exp (-ex p  (yx + 0  log d(j)))

, (̂7 )i (exp (x ! + # log d(J))) log d(J)
+   -----------7----------7------------------------------  W(7)1 e x P V x  + 9 l° g 'd U ) ) J lo §  ( j )1 -  exp( - exp[yx + 0 log d(J})J

+ ^ )2(-exp(;K2+<91ogJ0)) ) ( -e x p (-e x p (x 2 +6>log J (y)) ) ) ( - e x p ( /2+6>log^0)))lo g ^ (7)

1 -  exp ( -  exp (y2 + 0  log d(J)))

, (̂7)2 (eXP ( 7 ^ 2  + ^10g^(y)))lOg^O) ( , i / n   ̂ J
+  -------- 7 ------- 7    " - TV- -  nU)2 exp(y2 + 0  log d{j))) log d{

1 -  exp( - exp[y2 + 0 log d{j)) J

+r(7)3(-exP (^+ < 9 1 o g ^ o )))(-ex p (-ex p (^+ 6 > lo g J0))))(-e x p (/3  + 6>logJ0)) ) lo g J

(7)

+

1 -  exp (-ex p  (r ,  + 9  log d{)]))

< ■ ( , > 3 (ex p (r3 + ^  log e/(;>)) log
 -------- 7------- 7--------------. u  -"0)3l exP( h  + e 'OS'du>j ) ' ° g dM r

1-exp  -ex p  r 3 + ^logrf0))

a2' = i ( ' o g d j80 7=1

(7)1 ( lo g ( l-* o ) l) )  - t u)llr(,„ log(l - * o „ ){ l  - l o g ( l - * (/)1)} + nfnlx fl)l2 lo g ( l- /ru „)

7T,
(7)1

+
- ' 0 , 2  ( l ° g ( l  - % » ) )  lQg 0 -  nw ) {] -  ‘° g 0  - nw )} + % n ’r(,)22 ! ° g 0  ~ )

n
7 2

~‘w  ( log ( 1  -  * 0 ) 3 ) )  - h , , 3 * 0 ) 3  log (l -  * 0 ) 3  )  (l -  log(l -  * ( 3 ) 3  ) }  +  " o w W  M ' -  " ( / ) 3  )

( 7 ) 3

2/7 kd zi
dyxd6  ,=1= Z lQg J (U)

(7)1
( -e x p (r , +<91og^0)) ) ( -e x p (-e x p (r ,  + ^ lo g ^ (y)) ) ) ( - e x p ( /1 +<91og J (/)))

+

l - e x p ( - e x p ( / ,  + <91og</0))) 

(exp (^, + 0  log d{j)) j

1 i \  +o\ {J)< T x i~ " 0)1 (e x p +  6 logd{J)^1 -  exp ( - exp [yx + 0  log d(J))J
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d2e *
dy.8Q = Z log rfO>

-<(J)i ( |o g (1-^ r,,)i)) ~ '(j),*,,), log(l ~ * (y),){I ~ log(l - * (p .)} + «(j),*,j,,2 log (l-7 r0)l)

d2f. 4 -
X= 2 > g rf<,>dy2dO J=l

hm  ( - exp ( r 2 + ^ lo g 4 y)) ) ( -e x p ( -e x p (^ 2 +6>log^(y)) ) ) ( -e x p (^ 2 + <91og</(, }))

1 -  exp ( -  exp (y2 + 0  log d(J)))

. '0 , 2  (ex p (r2+01og </<„)) , ^
1--------- 1---------7 m— e x p(l ' ! + eioS du>))1 -  exp ( - exp [y2 + 6  log d{J)) j

2 o kd ‘i
dy2dO M

(̂7)2 (^°g ^(j )2 )) ~ h j ) 2 K {j)2 °̂g ^(j )2 ) {̂  °̂g (l ^(j )2 )} ^(j)2^(j )2 l°g 0 “  ̂ 0)2 )

^(»22

d i  V l  A— -  = 2 j 0%dU)*
dy3dO %

^ ( ./ ) 2  ( -e x p (^ 2 +<91og^(/)) ) ( - e x p ( - e x p ( r2 + <91ogc/(y))))(-exp(;K 2 + <91og</0)))

+

1 -  exp (-ex p  (y2 + 6 log d(J)))

'o ,2(exp(n+ 01og< /(„ ) )  i , , a , ,
 --------7------- , r u ~ ”w  (exp ( 7 * 2  + ^ lo g  du)))
1 -  exp ( -  exp [y2 + 6  log d(J))J

d 2 £  - V l  A
5r ,<5<? “ 0>

" ' < 2 ) 3  ( l0g (1 - *-( , , 3  ))2 - ' < „ 3 * ( . „ 3  lOg(l -  *u)3 ) {l -  lOg (l ~  * 0 ) 3  ) }  + " O B * , ; ) , 2  lOg ( l - * - 13) 3 )

^0)3

Letting;

0)1 “

«■(/,I2'ogl1- " , , ).)-'(/)> ( log (l-" o ) .)j  lo g ( l -* ( / ) ,) { l- 'o g ( l- * „ „ )}

*o>,2
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(̂7)2 ~
lQg(l - ^ 0 )2 ) - '( - ) 2  (log (' - ^ - ( ; >2))  ~ h j > 2 ^ , ) 2  I o g ( l - 7 r ( , )2) { l - l o g ( l - 7 r )J)2)}

7r(j)2

|o g (1- ^ , 3 ) - ^ , 3( l o g ( l - ^ „ 3)): - / 0 ,3^u ,3lo g ( l - ^ 0)3) { l - l o g ( l - ^ J,3)}
C./ )3

Ĉ7)32

2nd derivative Matrix is then defined as;

i x ,
7=1

0 0 X « ,„ ,( lo g 7 0))
7=1

k k
0 X  (̂7)2

7=1
0 I X j O o g r f , , , )

7=1
k k

0 0 3 ^ i^ 7 ) 3(l0g^(7))
7=1 7=1

k k k k
2 X „ ( W  Z ^ m O o g ^ )  iX is O o g '/y )  Z ^ l l + ^ + ^ ^ X 'O g ^ O ) )

V 7=1 7=1 7=1 7=1

The Observed Information Matrix is the negative of the 2nd derivative matrix;

Io { r v r 2^ r ^ )  =
r

X X ,
7=1

0 0 - X i?(/)l(1° g J (7))
7=1

0 “ X  (̂7)2
7=1

0 -X ^ 7 )2 ( l0g^(7))
7=1

0 0 - 2 X ) 3 -X ^ 7 )3 ( l0g^(7))
7=1 7=1

■ Z ^ ;) i( log rfy) _ 2 X )2 (*  ° g rf/)  - Z ^ y ) 3 ( log ^ )  " I X t i  + + ^ y)3 )(log
V 7=1 7=1 7=1 7=1

The Expected Information Matrix: I E = E \ jo

The determinant of this matrix required to invert this matrix is given by the following 
expression;
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det + ^(y) 2  + ^y)3)0oS^(y))
7 = 1  7 = 1  7 = 1  7 = 1

A2 * ^ 2  k

H RU)>%dU) Z ̂(7)2 Z ̂(7)3 Ẑ(7)2 logrf<,) ZXiE*.( 7 ) 3
V 7=1 y 7=1 7=1

f  k  A 2 £  *

Z ̂(7)3 (̂7) Z ̂( /)1 Z ̂(
V  7 = 1 y 7=i 7=i

7 ) 2
V  7 = 1  y  7 = 1  7 = 1

The inverted Expected Information Matrix is shown in Appendix 3.

Replace d(j) with TD and rearrange the complementary log-log link function in terms 

oflog(7D )as shown in Appendix 1.

The first derivatives oflog(TD) with respect to each of the parameters are;

dlog(7X>) 1 1 pr\ -
en

dyx e (en + ef2+ en ) ’ e{er' + en + en )

5 log (TD) i 1 _ er,

dy2 e [en + <f2+ e* ) _ e { e r' + en + eh )

5 log (TD) i 1 - er’
dy3 6 (e* + *f2+ en ) " e ( e r' + er' + er>)

a l° g ^  = - ^  log( -  log(l -  p,  (c3))) + T  log (e» +er'-+e'>)

= " \  l0g (" *0g ̂  ~ P/ ^  ̂ ~ \ l0§ + +  ̂ ) 

= - I l°g (7 -D )

The first derivative vector of log (TD) :

v ( io g ( r o ) ) '  = - i
en +eXl +er3 ’ er' +eYl +en en +e/2 +er:i

.log (TD)

The asymptotic variance o flog (rD ) is given by;

v ( io g ( r z ) ) ) '/ £- '( y „ / 2>r 3̂ ) v ( i o g ( r o ) )
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The asymptotic variance is then defined as;

0 1 det yeri +en +en y

-2

/

Y\0Yiene

(eY' +er> + eY' f
- 2

+ eYl +en )
+ 2

en log(7D) >

+
?Y2 \

Ker' + eY> + eY> ,

+

-2

3̂

.ft**

(eri + eYl + eYi)
- 2

Y2 „Y)e/2e
+ 2

e log (TD)

y eY' +eYl +eYi j

(<?" +eY2 + er>)

det+ ( - i ; ^ (J)l) ( - i : ^ w ) ( - z ; =l ^ ,3  lo g y )

ver' +eY> +eY* J 

2 A

-2
y (eY'+ e Y2+eY>)

- 2
YlnYsen e

[eY] +eYl +en )
+ 2

(  en log (TD)
y eYl + eYl + en y
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Appendix 4:
Extending the asymptotic variance for the complementary log-log link 
function to s  cycles
As in Appendix 2, let:

^(/)/ “
Kuv

For cycle /, / = l , . . . ,s ,

Io (y{,...,ys_l,y s,0) = IE(yl,...,ys_l,y s,0) =
k

X  ^( /) i o o X  ^o)i ^(j)
7 = 1  7 = 1

k k

0 “ S ^(/)2  0 ” X^(7)2 *°§^(7)
7 = 1  7 = 1

( 7 )

l°g d(j) X^(7)2 ^°§^(/) ■” 2 j^ (7 )^ 0§^(7) S(*°S^(7))
7 = 1  7 = 1  7 = 1  7 = 1  ' = >

log(7D) is defined as:

log ( r z ) )  = ^  log ( -  log (l -  m ) )  -  -t log f  •
t f  U  \ i =\ J

Differentiating with respect to each parameter gives:

aiog(77)) =  e* . fo r /  = l , - ,J

dy‘ o n l y

8 l0g g ~ = ~ w :108 ( ~ :log11 ~ Pj ^  ^ + ¥ log (eri +er + - + e "‘ )

= -  ̂  {^lc,g ( - log (! -  /», (c.))) -  ̂ log (en + e,,! + -+ ^̂ )}

= - i lo g (7 D ) .

Therefore:
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v ( io g ( r o ) ) 7 = - I , log (TD)
z i y  z , > *  z , > '

The determinant required to invert the information matrix is defined as:

det =
s  I  k

n
/=! 0=> j

Z 0°g</,)2 2Xv -Z
,/=i I v/=i yj /=i

* V r k \
log rfU> n  z ^

V y =1 /  / e ( l , . y ) \ / \ .  7 = 1  )

The asymptotic variance is then derived: 

var(log(TD)) =

1
O1 det Z/=i T , . / -  J z ;

-2 z

+2 log (TD)

V «/=i 

(

i e ( \ , s ) \ l

J,

Z-(/=i
ft

v^/=i y

f

det+( Z - . A v log rf</>) F L a . , ) '/(]!* -!*o><) 

“ Z U y y

z ^ ) , |ogrf0 , z ^ y ) / |og rfo) n  z ^ 7 >
=i 7 = 1 ue(l,j)\/,/ y  7=1

-(log(rn)) s  (  k  \

n  s ^ (7 v
/=1 V  7 = 1  J
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Appendix 5:
Deriving the asymptotic variance for the complementary log-log link 
function for 3 cycles with 2 covariates
The probability of DLT during a given cycle / on dose level ( j ) , for a patient with 

covariates a and g  :

P(j),a,g,l ~~ (̂j),a,g,l (l ^UXo,g,\)'

The overall probability of DLT after 3 cycles on dose level ( j ) .

P(j\a,g (C3 ) “  K{j\a,g\ + K(j),a,g2 (l “  **(]),•>*• ) + ̂ 0 )^ 3  0  “  n (j\a,gl ) 0  “  K(j\a,g\)

= 1 -  exp [ -  exp (y, + %a + vg  + 6 log d{j)) -  exp (y2 + %a + v g  + 0 log d{J))

-  exp (y3 + %a + v g  + 0 log d(J))]

log(l - P{J),a,g (c3)) = exp(g a )exp(v g ) exp( 0 logd(J))

[ -  exp (yx) -  exp (y2) -  exp (y3)]

The dose corresponding to a given probability is defined as:

l ° g ( * - / W ( C3)) ^

exp

log
e4aev* —er' —eYl —en -i /

6
= dO')

log •°g(1 _ / W ( c3))
e{V * —eh —eri —en

J y

6

The likelihood (T) is defined as:

L = i \ i \ P u ) a J M
7=1 l=\

=n r i o  - r
QU'ta-gJ

7 = 1  /= 1

i = n n ( i ' exp ( " expf c + ^ + i /g ^ iog^ ) ) ) ) (;' *
7=1 /=1

(exp(-exp(y , + ^ a  + vg  + ̂ lo g d (y)))) 

The log-likelihood is defined as:
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1 = l0 g (' _ e x p (_ e x p (^  exp (r , + ^ l° g ^ (J))

For cycle / = 1,2,3, the derivatives with respect to each parameter are: 

d i  i  W ' ( - eXP ( - eXP ( ^ + ^ l0 g ^ ;) ) ) )  , _  , .

w r %

^  h j ) a , g , l  _  ;Z"(7)o,j?./)̂ 0§(^ _ / , / \\
= L -------------------- ------------------------------

-/=> 7 l ( j ) a , g , l

^  hj)a,gJ ~ nU)a,gj) , i„„/i _ \
= 2 . ------------ 1-----------------+  n U ) a , g J  lQg i 1 "  >W*./ )

V=1 n ( j ) a , g J

y=! 1 -  exp ( -  exp (y, + + vg + <9 log </(y) j j

*  3^  ̂  ' (7>,*,/ ( -  exp ( -  exp (y, +^a + vg  + 6 log d{j)))) ( -  exp [y, + $a + vg + 6  log d( J )) a

/=i /=i l - e x p ^ - e x p ^ + £ t f  + vg + <91og</(/)))

-^(y)a,g,/ exP ( // + + v 8  + 0  log d (J.}) a

a* * 3  iog( i - / r 0 > g /)r  .
a t -  2 j 2 j  ^  [  ( / > ’«•' g,I \  (j)a,g,l +<J(j)a,g,I )J
d$ 7=1 M  *V )a,gj

= X  2  _<7 I  + a n (j)°,gJ I 1 ”  K U)a,gJ )
7=1 /=1 (j)a,g,l

= Z  2 >  t(J>̂ ' eXP r̂ i+ ^a + Vg + d '°Sd<j l- - a % M exp(r , +4a + vg + 0 logdu)) 
7=i m l - e x p J - e x p ^ + ^  + vg + ̂ o g r f^ J J

d£__
dv

±  ^  W . /  ( "  exP ( "  exp ( y ,  + <5 a  + vg + 6  log d(j)))) ( -  exp (y, + £ a  + vg + G log d(J))) g  

7=i /=i l- e x p ( -e x p (y / +<^a + vg  + <91ogJ0)))

- 4(7>.*,/ exP (ft + $a + v 8  + 9  lo§ d U )) 8
di , * 3  i o g ( i - ^ 0>g>/)r .  / ,  \-i
-3 8  ^ (j)a,g,l ^(. i )a,g, l \  (j)a,g,l Q(j)a,gJ )J
0  V y=1 /=1 ^ (y)flg>/

g = i t  iog rf0) | _  iog0  .)os f ^  + w ) ] | .
dU 7=1 /=! [  ;r(7)«.«./ J
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For / = 1,2,3, the second derivatives are:

k

a2e 2 ! '  “  
 =  ./= !

t „ri+4a+vx+0\ogdu) ( -exp(ft+£a+vg+0\ogdu))\(  y,+̂a+vg+0\ogdu) \
\ j ) a>gj y e  J \ ~ e  )

j” j _ eri+̂ +yg+0\ogdu) “J2

j,+£a+vg+0\ogdU)
(j)a,gJ , „ „ri+ta+vg+0logd(n+ lin ± z jl_____________+n e

|  _ -expfa+Jja+vg+eiogd̂ ) (J)a>g’1

_ j ,  - 1<»*.SJ ( lQg Q -  )) -  '(/) lQg 0  ~ * W / ) {* -  '°g 0  -  n U » * J  )}

>=' n ()-)a,g,l

+ n U ) a , g J ^ U ) a , g . l  1 ° §  0  ~  7rV ) a . g . l  )

n 2\j)a’gj

d2i  d2t  d2i  _
dyxdy2 dy,dy3 dy ,dy2

d2t

d ?

* 3 ( - e -" p("t^ l08‘'u') ) a ( - e x p ( r , + S a + v g + 0k>gdin))
=ZI>------------ -—7=1 1=1 l - e - exp( ft +4a+vg+dlog d{

two.i j ex'!, { r , * ^  + vg+0\o% di ) )a  . \
+a ------------x_ e-av(r, ^ e w w)----------------anw ^  ex PO', +  +  *g  +  0  log d0) )a

h j M  ( ‘Ogt1 -^ 0 )^ g./))(1- ^ 0 ) o.K./)1°g ( l-^ 0 > a.s./)^ 2

7=1 /=1 ^(j)a,g,l

+
jr 2 7V 2/lU)a,gJ “UfogJ

= ~ W / a2 ( :lo8 0  ~ )) ~ W A w  lo8 0  -  nu y * i  ){1- ,° g ( l -  )}
71. 2

+  ■

TV 2JLU)a,gJ
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d2i  _  
d v 2 ~

= X 2 .s --------------------—
;=1 /=1

_ 2
|  _  -exp^+^a+i/g+fllog^,,'

+ g  ^ ^  e x p  ( r , +  + v g  +  6> | q 8  ^ )  g

4 ,  '(;)..,./ ( 1lpg  Q ~  * (o - . * J  ) ) ( ’ ~  )  lQg ( ‘ ~  *( ) S 2

7=1 ‘=1 ~ K (j)a,gJ

+ h j ) a , g j  (  l ° s O  ^ 0 ) ^ . ' ) ) ^  ^ U f a g J  n U ) a , g , l {  l ° s ( l  ^ ( y K g , / ) ) #  K U ) a , g J

2 2 
( j ) a , g J  ( j ) a , g j

= £  £  ~hl)-.«./g2 Q°g 0  -  * W . /  ) j -  h ^ j g ^ U M  M 1-  * W / ) {l -  log (l -  > W . ()}
*T/ 27=1 /= 1  ' l ( j ) a . g J

n(j)a,gJ& n U)a,gJ ^°g(^ ^0>,g,/)+ ■
*T/ 2U ) a , g , l

For / = 1,2,3

s -

^_e~exp(n+4a+vg+0\ogdu)) ̂ _ ^ r,+̂a+vg+0logdu)  ̂̂2 yi+4o+vg+0\ogdU) ( _̂ -exp(n+4a+vg+0\ogdu))^ l_ ^ /+£a+v'g+<91ogc/(
0  Z  k  ( j ) a > g J

1 - e
-exp^+^+yg+tflogc/.U~>)

r̂i+4wg+0\of.d{j )

■ hj)a,gJe_________—+ w „^+̂ +l/̂ 1°g‘y(»fl

l - e  ' '

^ - W ^ a ( l° g ( 1- ,r(y)..«.<))2- W «.<” '(y)».gJ log (1- ,r(y)...«./)a {1~ log (1~ ,r(/)».<rj)}
71 27=1 (j)o,gJ

+
n U ) a , g J K ( j ) a , g J  ;r( ; > ,g , / )

7T 2

d 2l  *
d y f i v 1 -

7=1

/  _ y / + ^ + ‘/ g + 0 1 o g ‘/ (y ) /  - e x p l ^ + ^ + v ' g + f i ' l o g ^ ^ )  \  j  r i + t a + v g + 0 i o g d { j )  \

*(7>,g.  ̂ \ * ){ ^ J£

1 - e
-exp(ft + 4 a + v g + 0 l o g d {U)>

■ hj)a,gde_______ £ , r/+̂ +̂ +»loĝ (;)
-expf//+<0+,s’̂ l08‘/(y)) U)a<gJ *

1 - g  '
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_  X"* ^■/)a .K./ ^ 0 ° ^ 0  t ( j ) a , g j ^ ( j ) a , g j  ^ ° § Q  7r( j ) a , g , l )  S  f ° g ( l  ^ O R t f , / ) }
= i

7 = 1 77,

+
77,

( j ) a . g J

d2e
d@ v

k 3

I I
7 = 1  /=i

<>g
( l° s ( 1_ Xu m  ) j -  W .<  los ( 1_ )*<,»,*./ ( 1  -  log ( 1  -  ))

n,( J)a,g, l

+ n ( j ) a , g J  ^ ° g ( l  K ( j ) a , g , l ) n ( j ) a , g J

71,( 7 )a,g, l

For / = 1,2,3

d2e
dy,d6

Z lo g ^ ,(7)
7=1 77,( j ) a , g J

+
71,

d 2l
d6d%

k 3

I I « I o g < 7 (
7 = 1  /= 1

( 7 )

- > 0 M  ( log ( ' - y  )) - h j ^ U M  loS (> - > W / ) { ! "  lo8 0 "*(,)<■.*.<)}
77,

+
n ( j ) a , g j n ( j ) a , g j  ^ ° g ( l  n ( j - ) a , g , / )

77,( j ) a , g j
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d 2l
dOdv

Z Z s l°g</)
7=1 /=!

- W *  ('°g 0  " 'W . ' ) )  ~ W ' ^ W '  M 1 - |og ( l " 'w O }

nU)a.S.l'lU)a,gJ M '  _ *U».SJ ) 1
71 2

d2i  
dO2 ~

Z Z O ° g rfu>)3
7= 1 /= 1

- W / W / 1°g (1- 'W » j ) { 1- |°g (1- ,W > )}

nU)°.t/!tU)‘:.sJ *°g 0  -  KU)c.sJ ) 1
71, 2

Letting:

„  _  l ° s ( l  _ ; r ( y > , i ? , i  ) - / ( / ) a . g . i  ( l ° s ( l  ”  K U ) a . 8 . '  ) )

J “  _ 2
(̂7)0. *.1

OKg.i |og ( ' -  > w i  H 1 -  '°g (• -  )}
«■ 2 O'Kff.l

R,
n {j)c,g,2n {j)a,g,2 l ° g ( l  n { j )a ,go )  ( l ° g  ( l  ^ ( 7 ) ^ , 2 ) )

(j)o,g,2 2
U)a<g*2

hj)a,g,  2

n  2
/ l U ) a , g ,  2

R,
n (j )a,g2n (j)a,g,2> 1° g (1 ;r (y)<»,g,3)  *(/)«.g.3 ( l ° g ( l  ^ ( v K g . s ) )

(7>,£,3 _  2
JtU)a.g,3

, ^ 0 ) ^ .3  l0§ I 1 -  ̂ >,*.3 ) {l -  (l -  ̂ (y>,g,3 )}hj)a,g

71 2
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The asymptotic variance of the function of log (77)) is: 

var \o%{TD) + - a+̂ ' ^

v f i o g ( 7 i > ) + ^ i ^ l  / t.- '( r t , r2>y3^ , ^ v ) v f i o g ( r D ) + ^ i ^
\  V  J  \  V

Where differentiating with respect to ( )  gives the gradient vector of 

v^ iog(r£> )+ ^ ^

iog ( r o ) + %a + vg  
0 er' + eri +er3 er' +er2 +er3 er' +er2 -\-en

, io g ( r e > ) ,o ,o

Pre and post multiplying I f '  (y , ,y2, y , , 6 , f v )  by V flog (TD) + *  v g  j  is

equivalent to pre and post multiplying I E~] (as Appendix 3) by

e* +eri +eH V  + e* +eYi V 1 + ^ 2 + en
,log(77))

\
, which therefore reduces

k i i
the variance to the same as in Appendix 2, with ^ R (j)a , = in the

7 = 1 7 = 1  o = 0  g = 1

setting of 2 factors with 2 levels each. 

The variance is defined as:
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62 det

y eY'+ e y>+ey' y

det+
* 1 1 \ (  k 11 k \ \ V ^

- Z Z i X *  - Z Z 2 X > 3  - Z Z Z X ) ! 10̂ .7=1 o=0 g=0 J \  7=1 o=0 g=0 yy J=1 a=0 g=0
f  * 1 1 ^

- 1 z z * < 3 > .
V 7=1 o=o 8 =o y

-2
0*1

\
ene - 2

(er ,+ e r j + e rj) J I (<?" + e* + e * )

,/i
+ 2

log ( r z ) )

 ̂er' + eYl + er3 j

+
( en \  

v ey' + eYl + en y

det+ -z s z ^ J - iz z ^ lf - tz z ^ io s^ ,
V 7=1 0=° 8=0 J y 7=1 °=0 g=0 )  v 7=1 0=0 g=0__________

(  k \ \ 'N
-ZZZ*,,,

V 7=1 0=0 g= 0  y

v 2 \

-2
(

- 2
+eYl +ey' ) (

r2 „r3e,Le

I e* + e 2̂ + e Yi

+
,r3 A

ey' +eYl +ey3

* i i
v

^e t+ [ " Z Z Z ^ O ) l  " Z Z Z ^ ( 7 ') 2  f ~ S X X ^ 7 ) 3  ^°S^(7)
 V 7=1 0=0 g=0 y V 7=1 0=0 g=0 J V 7=1 0=0 g=0________________

y

+ 2

k 1 1

er2 log(7Z>)
 ̂en + eYl + eYy y

* i i 'N

v /=1 a=0 g=0 y

-2
./i „r3

+eYl +eYi)
- 2 e,2£

+ 2
^ er' log ( r /) )

vv / y
* i i * 1 1

v er‘ + er2 + er3 y

A 1 1
-(MrotfZZZ^ZZZ^ZZZ^

7 = 1  o = 0  g = 0  7 = 1  o = 0  £ = 0  7 = 1  a = 0  g = 0
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