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Abstract

Agent-based simulation is increasingly used to study systems in many areas of 

business and science nowadays. Agent-based simulation refers to simulations of sys­

tems that contain agent entities whose behaviour depends dynamically on the state of 

the system. This enables the agents to adapt their behaviour to changing conditions. 

For some applications, using agent-based simulation for prediction (rather than just 

for a better understanding) could be very powerful. For example, a company might 

wish to use a model of the population of their customers with word-of-mouth inter­

actions to predict the sales of their product or the effect of an advertising campaign. 

However, the problem is that agent-based models typically have a very large num­

ber of parameters and many of these cannot be measured directly or estimated with 

sufficient precision.

The result is that a wide range of sets of parameter values may give an acceptable 

fit and are therefore feasible values. However, they may give quite different predic­

tions. Therefore, simply choosing a single set of parameter values that produces a good 

fit may mean that the model results are incorrect and very misleading. The inverse 

problem has been studied in other areas of science including groundwater modelling 

(Brooks et al., 1994), but it appears that this issue has not yet been investigated for 

agent-based simulation.

In order to investigate the extent of this problem, in the research an agent-based 

consumer diffusion model was developed and treated as the real system. Selected 

output data from this model was used as measured values from the real world. In a 

pseudo-modelling exercise, this data was then used to calibrate agent-based models 

of the system, and a method similar to that of Brooks et al. (1994) was used to find 

the extent of the variations in predictions. The method had to be adapted since the 

model in this research is stochastic whereas the method had previously only been



applied to deterministic groundwater models.

In the model, a social network of individuals who interact with one another rather 

than a vast population of agents with many neutral contacts is represented. All 

agents are allocated to a diffusion social circle with a certain level of influence within 

the social network. These are constant attributes for that individual throughout the 

simulation. All agents initially have no knowledge or preference about the selected 

product. During the simulation, agents receive marketing communication messages 

(i.e. from company’s advertisements, supermarkets, online search results etc.) and 

contact each other to exchange their knowledge and preferences about the product. 

There has been very little agent based modelling of this situation and the mechanisms 

developed represent a potential theoretical structure for this application. Sensitivity 

analysis was carried out and the model appears to produce realistic behaviour.

The adapted method was applied to four experiments of different amounts of 

observed data (initial periods of 70, 105, 140 and 175 days) to find the range of 

predictions of total sales in each case. The total sales for the real system model were 

124 and the range of predictions for the four experiments were [58, 376], [79, 319], [91, 

277], [109, 187]. As expected, the prediction range narrows as more data is available. 

However, the range of predictions is very wide for all four experiments and therefore 

the model would have limited usefulness for predicting sales in this type of situation. 

In particular, choosing a single set of parameter values is not appropriate and could 

produce very misleading results.
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Chapter 1 

IN TR O D U C TIO N

1.1 INTRODUCTION

In recent years, agent-based (or individual-based) simulation has received a lot 

of attention. Agent-based simulation refers to simulations of systems that contain 

agent entities whose behaviour depends dynamically on the state of the system. This 

enables the agents to adapt their behaviour to changing conditions. In modelling such 

adaptive behaviour, agent-based simulation as a tool is commonly used in complexity 

science (Waldrop, 1993).

There is no standard definition of an agent. Some definitions list a set of prop­

erties, but a better approach is perhaps simply to say that an agent is an entity for 

which some cognitive process is modelled (Edmonds and Mohring, 2005). Usually, 

agents receive information from the environment (including other agents) and have 

internal rules that represent the cognitive decision process and determine how they 

respond. The rules can be a simple function of the inputs received or can be very 

complex incorporating various internal state parameters, which can include a model 

representing the agent’s worldview of some part of the environment (such as predic­

tions of other agents’ behaviour). An example of a framework for complex cognitive
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processes is the PECS model, which has a hierarchical structure with states for physic 

(physical body), emotion, cognition and social status as well as sub-components for 

each of these (Schmidt and Schneider, 2004).

In some cases, the rules governing the agents’ behaviour are fixed throughout the 

simulation, while in other cases, the rules can change to represent learning. The 

number of agents modelled can also vary from an individual agent through to a large 

population. Populations are usually heterogeneous with individual agents having dif­

ferent parameters or even quite different rules (e.g. different trading strategies in a 

stock-market simulation). Interactions between the agents are often a key part of 

the behaviour of the system. A very wide variety of applications have been stud­

ied using agent-based simulation, including stock markets, auctions, the spread of 

disease, ecosystems, military battles, crowd dynamics, sports games, transport, so­

cial behaviour, social networks, the development of technology, and consumer market 

behaviour (such as fads). For instance, the agents might represent stock brokers 

in stock markets, bidders in an auction, disease cells, autonomous characters in com­

puter games, vehicles in traffic, chunks of code in software, people in crowds, economic 

regimes, or plants and animals in ecosystems.

For some applications, using agent-based simulation for prediction (rather than 

just better understanding) could be very powerful. For example, a company might 

wish to use a model of the population of their customers with word-of-mouth inter­

actions to predict the sales of their product or the effect of an advertising campaign. 

However, the problem is that agent-based models typically have a very large num­

ber of parameters, and many of these cannot be measured directly or estimated with
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sufficient precision. The only other information available may be historical output 

data from the real system. Such data can be used to calibrate the model by finding 

parameter values that produce a good fit with the data. This is known as an inverse 

problem since it consists of using the outputs to determine the inputs. The problem 

is that there will usually be many solutions. There are two main reasons for this. 

The first is that there are often many parameters and few historical data values. The 

second is that any model that produces a good fit could be considered acceptable. A 

perfect fit is not expected because any simulation is a simplification of the real system 

and also there may be measurement errors in the historical data.

The result is that a wide range of sets of parameter values may give an acceptable 

fit and are therefore feasible values. However, they may give quite different predic­

tions. Therefore, simply choosing a single set of parameter values that produces a good 

fit may mean that the model results are incorrect and very misleading. The inverse 

problem has been studied in other areas of science including groundwater modelling 

(Brooks et al., 1994), but it appears that this issue has not yet been investigated for 

agent-based simulation. An important difference between agent-based simulation and 

groundwater modelling is that agent-based simulation models are stochastic where 

groundwater models are deterministic.

The complex non-linear nature of most simulation models means that there is no 

simple equation for the feasible values of the parameters. Therefore, methods used 

for tackling the inverse problem have involved running the simulation and deriving 

alternative predictions in some way from those runs.

Formally I can define in this context:
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• Calibration problem: The problem of obtaining the values of parameters that 

cannot be measured directly. This requires a calibration process using output 

data, which is an inverse problem.

• Inverse problem: Generally refers to problems where the answer is known but 

the question is unknown, and so knowledge of the answer is used to find the 

question. In this case, the process of using output data to determine model 

inputs, by finding parameter values that give model output that is (dose to the 

observed output values.

• Prediction problem: The problem of using a model to make predictions when 

there is uncertainty as to the parameter values. The different parameter values 

that give a good fit can produce a wide range of predictions and so the process 

of making predictions needs to take this into account.

This research sets out an approach, which is explained in the following chapters, 

to investigate these problems further for agent-based simulation by developing a con­

sumer word-of-mouth model and searching for the range of predictions that arise from 

alternative acceptable calibrated parameter values.

1.2 RESEARCH OBJECTIVES

1.2.1 M ain  O bjective

The main objective of the research is to investigate the effect of obtaining the 

parameter values of an agent-based model by calibration when using the model for 

prediction, by:
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• developing and implementing a method based on previous research for obtaining 

an acceptable range of predictions from the alternative acceptable calibrations.

• comparing the range of predictions for different scenarios of the data available 

for calibration.

1.2.2 Secondary O b jectives

The system studied in the research is consumer word-of-mouth (WOM) inter­

actions. Few agent-based models have been built of this situation and there is no 

consensus as to the best way to model the agents or the interactions. Therefore, a 

secondary objective is to contribute towards modelling in this area by:

• developing a new agent-based WOM consumer model

• investigating the relationships between the parameters and the model output

• assessing whether the model produces realistic output.

1.3 BRIEF OVERVIEW OF APPROACH

The approach used was to develop an agent-based model and to treat this model 

as the real system. Output data from this model could then be taken as measured 

values from the real world and, in a pseudo-modelling exercise, used to calibrate an 

agent-based model of the system. The advantage of such a pseudo-modelling exercise 

is that the “real system” is completely known. Consequently, the model’s predictions 

can be compared with the “true” future values, and the precise differences between 

the model and the real system are also known.
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1.4 THESIS STRUCTURE

Figure 1.1 shows the structure of the thesis and how the chapters contribute to the 

problem being investigated. Chapters 2, 3 and 4 set the work in context by reviewing 

previous literature, while Chapter 5 set out the research methodology. Chapter 6 ex­

plains how the model used in the research works. Chapter 7 describes experiments, to 

understand the behaviour of the model, including sensitivity analysis. Chapter 8 de­

scribes the implementation of the calibration method. Finally, Chapter 9 summarises 

the contents of the thesis and describes possible future research.
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The following sections give an overview of each chapter.

C hapter 2

Chapter 2 provides a context for the rest of the thesis and discusses a range of 

ideas relevant to the validation of agent-based models. It defines complexity, complex 

adaptive systems and agent-based simulation (ABS). It identifies the main theoretical 

and methodological perspectives of ABS, and reviews recent work and key themes of 

discussion and debate in this field. In addition, this chapter reviews currently used 

agent-based simulation software packages and provides a brief introduction to each 

one.

C hapter 3

Chapter 3 reviews relevant literature on the calibration issue in agent-based sim­

ulation models, which is the main research topic of the thesis. The chapter defines 

ABS model validation and verification, prediction in agent-based simulation, the in­

verse problem, the parameter identification problem, and best-fitting parameters. It 

introduces some existing calibration methods, namely the Bayesian MCMC based 

method and the range prediction method. It also discusses current model-calibrating 

methods. To conclude the chapter, two applications using an ABS model for predic­

tion are introduced.

C hapter 4

Chapter 4 reviews the existing agent-based models that have been used to inves­

tigate marketing phenomena, including the widely cited PECS model, the intelligent



customer relationship management (iCRM) model from BT and the J-pop agent-based 

prediction model. It also briefly introduces the classic 1969 Bass diffusion model, 

which has now become the fundamental theoretic frame of most diffusion models. 

The chapter concludes with a discussion of the advantages and disadvantages of each 

of the above models.

C hapter 5

Chapter 5 illustrates the research methodology used in the research through a 

step-by-step simulation modelling plan for the research. In the end of the chapter, it 

gives a discussion of the advantages and disadvantages of the approach used in the 

research.

C hapter 6

Chapter 6 describes the model (an agent-based consumer word-of-mouth model) 

used to conduct the research. It introduces the model’s structure (including agents’ 

environments, agents’ attributes and how agents’ interactions will change one an­

other’s attributes), the model’s parameters and the model’s procedure. It also details 

the model’s validation and verification, and describes a manual simulation and an 

Excel-based formulation used to verify the model.

C hapter 7

Chapter 7 describes some experiments conducted to understand the way the model 

behaves. It starts with the model output study to give a general idea of how the 

model behaves, followed by sensitivity analysis. Sensitivity analysis was conducted
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to investigate the impacts of various parameters, including the probability of losing 

knowledge at the end of each simulation day, the probability of an agent talking to 

agents from the same group, the probability of an agent receiving outside marketing 

information, the mean in the normal distribution of an agent’s buying criterion and 

the mean in the normal distribution of an agent’s unbiased true preference. An 

experiment on the knowledge and preferences of the outside marketing sources were 

also undertaken. Additionally, the number of agents in each group was varied.

C hapter 8

Chapter 8 demonstrates the step-by-step implementation of the calibration method 

used in the research on the agent-based WOM model. By adopting a similar method 

to that of Brooks et al. (1994) for searching for parameter sets that fit the model, the 

model used in the research shows a big prediction range in a variety of scenarios. It 

concludes that a calibrated model can still produce a big range of prediction and a 

careful calibration is needed to qualify the use of agent-based simulation models for 

prediction .

C hapter 9

Chapter 9 summarises the contents of the thesis and discusses the results of ex­

periments, how these met the objectives of the research as set out in Chapter 1, the 

limitations of the model used and future areas of research.
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Figure 2.1: Contents of Chapter 2

This chapter provides a context for the rest of the thesis and discusses a range 

of ideas relevant to the validation of agent-based models. It defines complexity, the 

complex adaptive system and agent-based simulation (ABS). It identifies the main 

theoretical and methodological perspectives of ABS and reviews recent work and key 

themes of discussion and debate in this field.
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Section  2.1 gives an introduction to the world of complexity and complex adap­

tive systems, which highlights the point that agent-based simulations are suitable for 

studying complex adaptive systems.

Section  2 .2  describes the key features that an agent should have and explains the 

procedure of agent-based simulation as a modelling technique. It also compares agent- 

based simulation with traditional simulation. Section  2 .3  introduces the graphical 

representation methods for the ABS model (e.g. ERA and UML). It also summaries 

the main ABS modelling tool kits.

2.1 Introduction to the World of Complexity

2.1.1 W h at is C om p lex ity?

2.1.1.1 C om plexity

Nowadays, complexity is a fashionable and popular topic. Generally speaking, 

complexity theory attempts to answer the questions that in the past have been con­

sidered as impossible tasks because of the lack of advanced techniques, computational 

power and associated complexity. However, with the development of experimental 

technology and computational power, scientists have been able to study certain as­

pects of the complex world, and complexity theory has been applied to a variety of 

existing domains, such as stock markets, auctions, the spread of disease, ecosystems, 

military battles, crowd dynamics, sports games, transport, social behaviour, social 

networks, the development of technology, and consumer market behaviour (such as 

fads), though it is still not well-defined.
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2.1.1.2 Fingerprints of The Com plex

The following are a few of the most important “Fingerprints of the complex” 

recognized by Casti (1997):

• Instability: Complex systems tend to shift between many possible modes of 

behaviour, and the whole system can be affected dramatically by small changes 

(such as the “tipping point”).

• Adaptability: Agents in the complex system are sometimes able to change 

their decision rules on the basis of partial information about the entire system.

• Irreducibility/Em ergence: The complex system should be studied as a uni­

fied system. In other words, the behaviour of the system is determined by 

interactions among agents, so that it cannot be studied by looking at agents 

in isolation. Therefore, complex systems produce surprising outputs/behaviour. 

In other words, system behaviour patterns and properties cannot be predicted 

easily via individuals’ rules of behaviour.

• Memory: Complex adaptive systems have memory, which is distributed through­

out the whole system instead of being located at a specific place. The whole 

system behaviour is related to the system history.

• Connectivity: The complex system’s elements are connected and interactive. 

W hat makes a system a system and not simply a collection of elements are the 

connections and interactions of the individual components of the system, as well 

as the effect of these linkages on the behaviour of the components.
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Among the above fingerprints of the complex, Casti (1997) argues that the most 

distinguishing single feature of the complex system is “emergent behaviour” . The 

appearance of the “emergent behaviour” is related to the whole system history be­

haviour and mainly due to the interaction between system parts. However, the system 

output is not usually predictable by analyzing separate system parts.

From the late 20th century, researchers began to explain this “emergent behaviour” 

as the result of non-linear world around us. In the nonlinear systems, it was found 

that capturing the exact rules/equations of their behaviour is sometimes of little 

help in predicting system outcomes. Real-world systems, especially those involv­

ing people, are generally too nonlinear to predict (Lucas, 1999). Researchers have 

found that the traditional theory was limited in terms of interpreting such Complex 

Adaptive Systems (CAS). They define the essence of CAS that they self-organise to 

improve/optimize the objective function and the system behaviour depends on the 

interactions of system parts (Lucas, 1999; Casti, 1997). Furthermore, Casti (1997) 

summarizes a number of characteristics he describes as the “Key Components” of 

CAS, namely:

• M edium -sized number of agents: The number of agents must be neither 

so small that all their interactions could be worked out very easily, nor so large 

that statistical aggregation methods could answer most kinds of questions about 

the system.

• Intelligent and adaptive agents: Agents are intelligent and autonomous;
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they are capable of responding to external changes with the help of in-built be­

haviour rules and forming their self-maintaining systems with internal feedback 

paths.

• Local information: No agent has perfect information about the whole system. 

The agent only has “local” or “partial” information. In other words, there is no 

agent in the system who knows what every other agent is doing. Therefore, in 

the system, agents are making their decisions based on limited information.

We can take ecosystems as a typical example to examine the above key points 

of CAS. In an ecosystem, the system patterns emerge from “localized interactions 

and selection processes acting at lower levels. An essential aspect of such systems 

is nonlinearity, leading to historical dependency and multiple possible outcomes of 

dynamics” (Levin, 1998). In other words, in ecosystems, knowing a single species 

behaviour rule does not help with predicting the whole system emergent pattern. Such 

patterns arise from the interactions between species and are related to the system’s 

previous status/pattern.

2.1 .2  T ip p in g  P o in ts

Gladwell (2002) brought the term “tipping point” into CAS to describe the afore­

mentioned “emergent behaviour” in a social context. The tipping point is a sociolog­

ical term that refers to “the moment when something unique becomes common.” For 

instance, a tipping point could refer to the moment of an epidemic outbreak (e.g. the 

dramatic moment in an epidemic when everything changes all at once), boiling point, 

critical mass etc. In order to define “tipping point” further, Gladwell (2002) identifies
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the following five key concepts of tipping point:

The Law of the Few Among the whole population, there are some people with 

much higher influence than others. Also, these people are willing to spread the 

information of social phenomena through a population. Without their aid, the 

“tipping point” is unlikely to occur.

The Stickiness Factor Messages about the new ideas or products must be found 

attractive or interesting by others (i.e. easy to remember, attractive for people 

to move to action.).

The Power of C ontext Gladwell claimed that human beings are more sensitive to 

their environment than they seem to be. The context changes can sometime tip 

an epidemic unexpectedly.

The M agic N um ber 150 Some researchers suggest 150 is the maximum number of 

people which an individual can have social relationships with (Dunbar’s num­

ber1).

The N ew  Product Cycle In an adoption innovation model (Figure 4-2), Rogers 

(1962) presented a bell curve of adaptation to a new phenomenon. When a new 

product was put into the market, the adopters were categorized into five groups 

based on their attitudes to the new product, namely: innovators, early adopters,

early majority, late majority, and laggards. According to Roger’s research, the

*Dr. Robin I. M. Dunbar: an evolutionary psychologist at the University of Liverpool School of 
Biological Sciences. The Dunbar’s Number is still a conjecture, supported only by statistical and 
anecdotal evidence. But some researchers (sociologists, anthropologists, managers and, even some 
online game designers) have already used the number as proven fact.
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majority adopters are “early majority and late majority” which accounted for 

64 % of the population.
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Figure 2.2: Rogers adoption innovation curve (Rogers, 1962)

2 .1 .3  W h y  is A gen t-b ased  S im ulation  Su itab le  to  S tu d y  C A S?

The aim of simulation in general, is to gain insight into the systems that people 

do not completely understand. Agent-based simulations enable and aid the under­

standing of complex systems. Agent-based simulations are suitable for the study of 

CAS because the model is based on simple rules or algorithms by which the agents 

within a population behave, instead of the almost impossible task of building a mass 

detailed model where all interactions between agents and their effects are mapped 

out. Furthermore, three main reasons for adopting agent-based simulation to study 

CAS are:

• Medium number of agents: As mentioned above, with medium-sized numbers 

of agents, statistical analysis techniques do not work well.
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• Complex interactions: Because of the complex and sometimes nonlinear, and 

discontinuous interactions between the heterogeneous agents, the behaviour of 

the system as whole is difficult to predict based on individual’s behaviour. Tra­

ditional analytic techniques cannot cope with the complex interactions of CAS 

(Bonabeau, 2002a). That is also one reason why analytical tools have not been 

widely used in social science before.

• Intelligent and adaptive agents: When agents exhibit complex behaviour includ­

ing learning and adaptation, they can be more easily represented as computer 

programs than with other traditional methods.

These features will be explained more with applications in Section 2.2.4-

2.2 Agent-based Simulation as a Young Field

Agent-based simulation is still a young and rapidly growing field. This section 

presents the findings of an extensive review of ABS literature. It also introduces some 

ABS applications to provide a general idea of how and in which fields ABS could be 

applied.

2.2 .1  M u lti-A gen t S ystem s (M A S)

The agent concept was originally developed from MAS (multi-agent system). A 

multi-agent system is usually considered as a collection of “solving systems capable of 

autonomous reactive, pro-active, social behaviour” (Lomuscio, 1999). These solving 

systems work together to find the solution (Durfee et al., 1989). In this context, 

MAS are not models but problem-solving methods (O’Sullivan and Haklay, 2000).
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Recently, MAS has been given a more general meaning. It refers to all systems which 

involve agents (as defined in the following section) (Jennings and Wooldridge, 1998). 

And the study of MAS focuses on systems in which many intelligent agents interact 

with each other.

2.2 .2  W h at is an A gent?

Recently, agent-based simulation has become a commonly used term in the simu­

lation literature. However, agreement on the precise definition of agent-based simu­

lation has been difficult to achieve. Edmonds and Mohring (2005) gave the definition 

of an agent as an entity for which some cognitive process is modelled. Tunce (2001) 

defines agent-based simulation as the “use of agents for the generation of model be­

haviour in a simulation study”. Reynolds (web page) says that “agent-based models 

are simulations based on the global consequences of local interactions of members of 

a population” . Actually, none of these definitions contributes much towards a better 

understanding of agent-based simulation. However, Dickie (2002) tells us more about 

agent-based simulations; he states that “in agent-based simulation models, an entity’s 

behaviour is generally modelled as a set of goals or actions. Agents control their own 

destiny, or in other words change their state based on their knowledge of the envi­

ronment in which they are placed” . From these different definitions of agent-based 

simulation, it is clear that the key to agent-based simulation is the agent notion. Such 

individuals (agents) might represent vehicles in traffic, plants and animals in ecosys­

tems, chunks of code in software, autonomous characters in computer games, people 

in crowds or economic regimes.
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In agent-based modelling, several authors have tried to identify the key aspects of 

an agent. Holland (1995) defines agents as “rule-based input-output elements whose 

rules can adapt to an environment” . Dickie (2002) says that the character of an agent 

is that once an agent’s knowledge has been built, the “behavioural mechanism acts 

on its degrees of freedom” . An agent’s degrees of freedom are the state variables the 

agent is able to affect. An agent’s behaviour is a function that takes knowledge as an 

input, and outputs changes to the agent’s degrees of freedom. A more comprehensive 

definition of an agent is given by Weiss (1999). He states that an agent is “a compu­

tational entity that can be viewed as perceiving and acting upon its environment and 

that it is autonomous in that its behaviour at least partially depends on its own ex­

perience” . Rocha (1999) takes the view that the distinctive characteristic of agents is 

their autonomy, which means that an agent has the ability to act and make decisions 

without being controlled. Moreover, Schmidt (2000) and Holland (1995) review the 

features of agents, which will be discussed in the following parts:

Schmidt (2000) reviews the features of agents as the following aspects:

1. Autonomous behaviour: “Every agent is characterized by autonomous behaviour” , 

e.g. an intelligent agent behaves autonomously without external control.

2. Individual world-view: Every agent perceives its surrounding external world 

according to its own model. This so-called conceptual model describes the 

intelligent agents’ view of the outside world, and it is generally incomplete and 

frequently even incorrect.

3. Communicative and cooperative capacity: There is information to share and to
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exchange between intelligent agents and their environment, which may consist 

of other intelligent systems and even other intelligent agents. Thus, intelligent 

agents exchange information with the external environment and with other in­

telligent agents in order to build up their own world view. In addition, the 

possibility of communication with other intelligent agents is the “precondition 

of common action in pursuit of a goal” .

4. Intelligent behaviour: Agents are able to learn from the environment, as they 

have the capacity of “logical deduction” . Therefore, intelligent agents can be 

used in unknown environments.

5. Spatial mobility: Intelligent agents are sometimes but not always required to 

display spatial mobility. (Spatial mobility is not included in the model in this 

research.)

On the other hand, Holland (1995) defines seven “basics” or characteristics of 

agents:

1. Aggregation.

• Categorization (agent-level): In order to cope with their environments, 

agents group things with common characteristics and ignore differing char­

acteristics.

• Large-scale behaviour (multi-agent level): The collective behavioural pat­

terns emerge from the aggregation of the individual agents’ behaviour.

2. Tagging. Agents need to be individualized according to their identities.
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3. Nonlinearity. In a multi-agent system, the integration or aggregation of agents 

is often non-linear. Thus, the resulting behaviour cannot be linearly predicted 

by decomposing the behaviour of individual agents.

4. Flows. The ABS relies on the connections (e.g. the flow and transfer of infor­

mation, interactions etc.) between agents.

5. Diversity. Because MAS are designed to play different roles, multi-agent systems 

are typically heterogeneous. However, the agents’ behaviours may be identified.

6. Internal Models. Every agent has its own internal model. The internal model 

organizes the individual agent’s behaviour rule and can also enable agents to 

anticipate the expected inputs from their environment.

7. Building Blocks. Agents are built with simple components which make the 

coded construction easier. Therefore, model users can recombine the agents to 

produce a new agent with different behaviour and models.

Holland’s basics give more emphasis to the emergence of large-scale behaviour or 

a multi-agents level (points 1,3,4,5), whereas Schmidt only mentions group behaviour 

in one point (point 3). Holland’s basics are more comprehensive than Schmidt’s and 

his paper also considers each part in great detail and has been widely cited. However, 

Schmidt’s characteristics and Holland’s basics share some common features; on one 

hand, they both agree that agents have their own internal models, i.e. they both 

have individual views of the world and rules of behaviour; on the other hand, they 

believe that agents are intelligent. Overall, agent-based simulation can be described
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as a simulation based on the global consequences of local interactions of autonomous 

intelligent members of a population (Reynolds, 1999a). In addition, an agent is an

individual with a set of characteristics or attributes, a set of rules governing agent

behaviours or decision-making capability, protocols for communicating responses to 

its environment and that interacts with other agents in the system.

2.2 .3  A B S  V s T raditionally  S im ulation

Is agent-based simulation some new, fancy way of doing analysis? Is agent-based 

simulation just old wine in a new bottle? Although agent-based simulation is some­

times presented as if it were a new type of modelling, many “traditional” simulations 

feature some adaptive agent behaviour. For example, a simple queueing simulation 

may include a rule that customers (the agents) will not, with some probability, join 

the queue if its length exceeds a certain value, or that customers leave the queue if 

they have to wait too long.

In order to compare traditional simulation and ABS, the main typical character­

istics (with some exceptions) are considered to be:

Typical characteristics of traditional simulation (examples: production line, call 

center, hospital, transport system):

1. The systems is one of queues and processes and so the main elements are the 

processors, the queues and the processed elements.

2. The range of behaviour of the processors is processing time and the next desti­

nation.
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3. The item being processed (e.g. parts, customers, vehicles) is often passive al­

though it may have heterogeneous characteristics.

4. The connections between the processors and queues (the flows through the sys­

tem) are designed (top down) in the real system and so are focused in the 

simulation.

5. The stochasticity occurs in the arrivals of the element being processed, the 

processing times and sometimes the characteristics of the processed element, 

and the rules of the processed element.

6. Typical outputs of interest are throughout, queueing time and resource usage.

Typical characteristics of agent-based simulation (examples: stock market, auc­

tion, consumer market, military battle, crowds and epidemics):

1. The system is one of interacting agents and so the main elements are the agents 

and the environment.

2. There is a variety of behaviour of agents depending on current circumstances.

3. The agents have heterogeneous characteristics and rules of behaviour.

4. The agents’ characteristics may change during the simulation (e.g. a change in 

strategy, an increase in knowledge, become ill or die).

5. The interactions between the agents are not designed but are unpredictable and 

are therefore modelled using random numbers.
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6. The stochasticity occurs in the characteristics of the agents and their rules, the 

interactions between the agents and the interactions between the agents and the 

environment.

7. The item that passes between the agents (information, opinions, disease) is often 

intangible and its impact on the receiver depends upon the characteristic of the 

receiver.

8. Typical outputs of interests are aggregated agent behaviour (e.g. number of 

purchases, number of agents in different states) or the state of the environment 

(e.g. market price).

We can view both traditional and agent-based simulations as consisting of entities 

that remain in the system throughout the simulation and interactions between the 

entities through elements that between them. Viewed in this way, the corresponding 

entities remaining in the simulation are the processing entities and queues in tra­

ditional simulation (e.g. machines, servers), and the agents in ABS. Moreover, the 

elements passing through the connections between the entities are of a different nature 

as highlighted in the above list of characteristics. In traditional simulation, it is often 

a physical element that passes from one entity to the next without altering the enti­

ties (although sometimes information can be passed). The physical element usually 

follows a route through the system. In ABS, the agents exchange elements that alter 

their characteristics and the elements are just involved in separate transactions rather 

than following a route between several agents.

An interesting comparison is between a traditional call centre model and an agent
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based consumer model (where consumers exchange information and opinions about a 

product and ultimately purchase the product). Because in both cases, the elements 

remaining in the system are human beings and the systems centre around conversa­

tions. However, in the call centre, the conversations between the customer and the 

operator are modelled as simply a processing task which does not alter the character­

istics of the customers or operators. The important data is the distributions for the 

call inter-arrival times and the processing times. In the consumer model, the precise 

time at which the conversations between the agents take place and the length of time 

of the conversations are not important. Instead it is the number of conversations and 

the way they affect the characteristics of the agents that matters.

Complexity and unpredictability in simulation behaviour usually arises mainly 

from the stochasticity. In traditional simulation, the most, significant aspect is typ­

ically the time taken by the processed element as it passes through the system (i.e. 

arrival time and processing time). There can also be stochasticity in the characteris­

tics and rule of the processed element. In agent-based simulation, the most significant 

aspect is typically the characteristics of the agent and the interaction between the 

agents. Therefore, the site of the stochasticity is different being related mainly to the 

processed element in traditional simulation (the characteristics and time) but being 

related mainly to the entities remaining in the system (i.e. the agent) in ABS.

In terms of applications, the systems studied by traditional simulation are often 

designed by an organisation to accomplish a particular task and they have a lot of 

control over the system. By contrast, the systems studied by ABS are often envi­

ronments in which humans (or animals) can interact freely (within the rules of the
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environment). In such a situation, if there is an organisation with an objective (e.g. 

a company wants to maximise sales in the consumer market), then they have very 

limited control or influence over the system.

Overall, there are some differences between traditional simulation and ABS in the 

amount of control exerted on the real system, on the nature of the elements modelled 

and the way they interact, on the site of the stochasticity in the model and in the 

aspects of interest. It is arguable how fundamental these differences are although I 

would not consider them great enough for ABS to be considered as a new paradigm.

One of the causes of the greater use of agent-based simulation is that increasing 

computing power now makes such simulations feasible. There is also an appreciation 

that for some systems an agent-based approach may be necessary in order to capture 

the dynamics of the system.

2 .2 .4  O verview  o f A B S  A p p lication  A reas

Quite a lot of research has recently been undertaken to apply agent-based sim­

ulations in various fields, including psychology and cognitive science, ecology and 

environment, economics and industry. Accordingly, there are a huge number of ap­

plications in the literature. For instance, the academic paper and book search-engine 

“google scholar” returned 5,780 results for the search phrase “agent-based simulation” 

(last access date 06/10/2007). Therefore, in this section, some examples will only be 

described at a level of detail intended to give an impression of the scope of the ap­

plication areas. More details and examples can be found by consulting the literature 

cited. The literature that is most important to the research will be introduced in
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detail in the following chapters.

A comprehensive annotated list of ABS application areas is provided by Reynolds 

(1999a), as summarized in Table 2.1. Consulting Reynolds’ (1999) list and other liter­

ature, we can take the following four general topic areas to introduce a few examples 

of the application of the ABS model (see Table 2 .2  and the following subsections).

Table 2.1: Summary of general ABS model area derived from Reynolds (1999a)
A nim ation and Interac­
tive M ultim edia

Animation and Interactive Multimedia

Traffic and Vehicle sim ­
ulations

Traffic and vehicle simulations

Econom ics Economics

M odelling Humans 
and Artificial Societies

Human crowds: motion and psychology
Interpersonal communication
Sociology
Artificial societies
Anthropology
Emotion

Ecology and Biology

Non-species-specific models and other topics
Bacteria
Marine invertebrates
Forests
Insects
Birds
Mammals
Fish
Mixed ecosystems

2.2.4.1 M ovem ent Patterns

Boids (a contraction of bird and android) simulation (Reynolds, 1987) is one of 

the earliest examples of applying an agent-based approach to a situation that was 

previously considered very difficult (O’Sullivan and Haklay, 2000). Reynolds tries to 

simulate the flocking behaviour of birds and other flocking animals, and to find the
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Existing ABS application areas

Movements ABS 
models

Economics ABS 
models

Sociological ABS 
models

Military ABS 
models

Table 2.2: The existing ABS application areas

rules for general agents (boids) to produce behaviour that appears realistic compared 

to the flocks, herds and schools of different animals in the real world. More agent- 

based models that are aiding researchers investigating biological phenomena can be 

found in Levy (1992), Resnick (1994) and Westervelt and Hopkins (1999).

Similar to the “Boids” model, a number of ABS models have been applied to the 

study of human movement (Bonabeau, 2002a), such as:

Pedestrian and crowd behaviour The “STREETS” model of people’s shopping 

behaviour by Schelhornet al. (1999) and the “SIMSTORE” (www.simworld.co.uk) 

model of customers behaviour in a real British supermarket (the Sainsbury’s 

store at South Ruislip in west London) by Venables and Bilge (1998).

Evacuation Fire escape simulation by Still (1993) and Helbing et al. (2000). They 

tried to simulate the evacuation of a public space (stadium, station, city etc.) 

using agent-based simulations to capture interactions between people. Brailsford 

and Stubbins (2006) simulated the normal operation and emergency evacuation 

of a building in Southampton University. It was created by a combination of 

standard discrete event simulation (DES) using the package Simul8 and a social

http://www.simworld.co.uk
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force simulation software package called “Pedestrian Escape Panic” .

Flows These models are based on the work of Helbing (1992), Helbing and Molnar 

(1997), and Batty et al. (1999) to produce outputs that seem to match var­

ious observed human behaviours, like “lanes” on busy pavements. Examples 

include the “ResortScape” model of a theme park by Axtell and Epstein (1996) 

and “TRANSIMS” that simulates real time movements of every pedestrian and 

vehicle through a large metropolitan area transportation network by the Los 

Alamos National Laboratory (LANL). Other examples include vehicle routing 

models by Schreckenberg (2002) and Dia (2002).

2.2.4.2 Econom ic A gent-based M odels

Dynamism is the main feature of financial markets. A large amount of interact­

ing agents with individual behaviour rules (aimed at profit maximization) leads to 

the emergence of phenomena that make it difficult to make predictions in financial 

markets. Nearly forty years ago, the prevailing theory of the markets was presented 

by Fama (1970), who claimed that markets can be efficient based on the assumption 

of fully rational behaviour of all participating agents. However, such an efficient fi­

nancial market theory has been questioned by complex market dynamics. From the 

observation of market behaviour, the market does not always reaches an equilibrium, 

as indicated in the traditional theories, and an agent’s behaviour is not completely 

rational. Therefore, as instigated by the pioneering work of Anderson et al. (1988) 

and Arthur et al. (1997), more and more researchers have been applying ABS in
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economics in the last few years because ABS models allow for heterogenous and lim­

ited rational/irrational behaviour. Examples include a financial market model that 

exhibits realistic trading features by Raberto et al. (2001), and an agent-based eco­

nomic ‘laboratory’ (N-ABLE) for analysing the economic factors by Schoenwald and 

Barton (2004).

2.2.4.3 Sociological Agent-based M odels

A very prominent example in which agents are used to simulate artificial social 

systems is given by the Sugarscape experiments carried out by Epstein and Axtell 

(1996). In this well-known model, agents were given different rules of behaviour and 

the system was then run forward in time to see what macroscopic social structures 

emerged. It demonstrated well how simple rules of agents could produce complex 

whole population behaviours that were not predictable by individual agent’s behaviour 

rules.

H ealthcare m odel Brailsford et al. (2006) discussed some of the issues involved in 

simulation models which have human factors involved. Besides, they reviewed 

two health-care models for screening different diseases which attempted to in­

corporate human behaviour.

N A SD A Q  stock market m odel The NASDAQ2 stock market model was built by

the Bios Group in 1998. The model was built to investigate the impact of

two proposed small regulatory changes. The simulation results indicated that a

reduction in the market’s tick size will reduce the market’s ability to adjust the

2NASDAQ: the National Association of Security Dealers Automated Quotation



31

price.

On-line auction m odel Mizuta and Steiglitz (2001) built an on-line auction model. 

The model was developed based on a Vickrey auction (sealed-bid mechanism and 

the bidder with second-high-price wins, Vickery (1961)).

Two different types of bidders were identified as “early bidder” and “sniper 

bidder” . The characteristic of the early bidder is “watch/modify/bid” and the 

sniper bidder is “wait/bid” . Such dynamic auction behaviour cannot be easily 

described in the usual theoretical models; therefore, agent-based simulation was 

used. The model output shows that compared to sniper bidders, early bidders 

can win at a lower price but with a lower probability on average.

2.2.4.4 M ilitary A gent-based M odels

It is clear that there are always risk and cost factors involved in military simu­

lation models. In addition, most military models involve the interactions of many 

submodules. Pew and Mavor (1998) gave an overview of the models applying ABS 

in the military. Ramaswamy et al. (2001) developed an java-based ABS model to 

detect and resolve interference in naval radar units. Each agent (a naval radar unit) 

in the model has its own strategy in identifying target ships. They also addressed 

the implementation and evaluation of interference diction and resolution problems. 

Schreckenberg et al. (2001) described how agent-based simulations could be used in 

the Air Force with the help of the AMBR (agent-based modelling and behavioural 

representation) program. The AMBR program developed new approaches to simulate 

intelligent behaviour and applied the knowledge derived to enhance the modelling and
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simulation capability of the Air Force.

2.3 Review of ABS Tools

2.3 .1  G raphical Tools for A B S  M odel B u ild in g

A good graphical representation of the model structure can be very helpful in 

building the model. The diagram can represent the architecture of the model at a 

very high level of abstraction, while the logic of a single agent’s behaviour will not 

normally be represented.

Unfortunately, ABS is not provided with a rich and well-defined set of diagrams 

to visually describe the internal logic of the model. There are a few attempts to 

graphically represent an agent-based model, the most widely cited one being the 

ERA (Environment Rules Agents) scheme introduced by Gilbert and Terna (2000). 

The ERA diagram highlights the type of agents involved in the simulation model 

and the way their “mind” is implemented, as shown in Figure 2.3. In particular, the 

ERA scheme is a methodology to separate the agent as a player from its mind, whose 

choices are determined by a rule master. The rule master can eventually have its 

rules changed by a rule maker. The rule master represents the adaptive proxy for the 

model, while the rule maker represents the evolutionary one.

The Unified Modelling Language (UML) is another promising graphical language 

to represent ABS models. UML is an open and extensible paradigm, and it is actu­

ally evolving towards software agent representation (AUML, 2003). It is a generally 

accepted, diffused and extensible modelling language that can be adapted for agent- 

based simulation models.
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Figure 2.3: The Environment-Rules-Agents framework to build agent-based compu­
tational models (Gilbert and Terna, 2000)

2.3 .2  Tools for A B S

The first question people usually ask about building an ABS model is “What 

language/software should I use?” . Building a computer simulation model requires a 

high level of skill in computer programming. It is also important to test the code 

carefully, because the unexpected model outcomes might be caused either by code 

bugs or by the emerging properties of the model.

There are some open source software packages that have been developed to help 

with ABS model building. However, many of these are still under development and 

in the beta stage. The general impression of the ABS software scene presented is still 

one of infancy, though there are quite a few ABS communities (such as the Santa Fe 

Institute) and academics involved, the software packages still feel like early versions of 

the final products. Moreover, researchers and academics working in the field of ABS
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still often prefer to develop and code their own models (for instance, in this research, 

I experimented with some ABS software, but eventually decided to build the model 

from scratch) rather than rely on a third-party ABS software for the following reasons 

(Parker, 2001):

1. The conceptualisation of an ABS model is straightforward, which leads some to 

believe that it would be simple to construct from scratch.

2. It is time-consuming to learn third party software, especially when the software 

package is not well developed.

3. For validating and verifying the model, the researcher might find it is difficult 

to trace how the model works because some details of the working of the model 

are hidden from the developer by some software packages.

2.3.2.1 Three A BS Tools Groups

The ABS tools are divided into three main groups (Sonnessa, 2005):

• Language-specific m odelling environm ents such as some commercial or 

freeware packages (i.e. Starlogo, Netlogo, Anylogic etc.). The Starlogo and 

Netlogo environments represent integrated applications, which provide the user 

with a language specifically designed to model spatial agent-based environments. 

This approach has two main advantages. First, they are easy to use, since the 

language provides a reduced set of instructions and hides the technicalities from 

the final user. Second, the modelling environment comes with a ready to use 

two-dimensional space, dramatically reducing the code-typing and the design
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time. The close dependence on the spatial representation is an advantage but, 

at the same time, also a great limitation on the tools’ flexibility.

• Open source libraries or frameworks, based on standard programming 

languages such as Java, Object C and C + +  (e.g. Swarm) and that require a 

high level of programming skills. The open source libraries are a set of functions 

offering tools in the middle between basic programming languages (C, C ++, 

JAVA ) and closed packages for simulation; they help programmers to develop 

their own software, with the help of a well-defined protocol and powerful tools 

to deal with agents’ behaviours, interactions and time sequences. The users’ 

simulation models are stand-alone programs that are written using the features 

provided by those libraries.

• Com puter network-based architectures, particularly used to enable mo­

bile autonomous agents (MAS). More and more ABS modelling packages tend 

to embed such functions. Within this category, the most important network- 

based frameworks are Cougaar and JADE. These frameworks are designed to 

create network services used by autonomous agents to perform some particu­

lar goals or to coordinate with other agents in the network, according to the 

Distributed Artificial Intelligence paradigm (DAI). Such kinds of architectures 

are not specifically designed for simulation, but by defining an appropriate time 

manager, it is possible to simulate virtual environments populated by intelli­

gent agents. Obviously this kind of platform cannot represent a general purpose
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simulation environment, since they are particularly complex in the model’s im­

plementation and require a network of computers to perform a simulation run.

2.3.2.2 A B rief List of ABS Tools

Table 2 .3  is a brief review of some of the most frequently used agent-based simu­

lating software. More details of the ABS tools can be found in A ppendix  A.

_________________ Table 2.3: Summary of ABS tools_________________
C ategory Exam ple Packages

Open Source ABLE, Cougaar, Ecolab, JADE, JAS, MASON, Repast, 
Simpy, SWARM, ZEUS

Freeware Ascape, NetLogo, Starlogo
Propietary Agentsheets, Any logic

Among the above ABS software packages, “SWARM” is the most well-known 

toolkit for ABS (Minar et al., 1996). The “SWARM” package was developed at the 

Santa Fe Institute (SFI). The advantages of this software have been shown in its use 

for various applications. The examples include game theory (Axelrod, 1984), epi­

demiology (Bagni et al., 2002), biology (Kauffman, 1993), and financial applications 

(Terna 2000 and LeBaron, 1996). The disadvantages of the package include:

1. It requires high programming skills in either Object C or Java,

2. It is Unix operation system-based, and therefore not very friendly to Microsoft 

Windows users, and

3. In the model validation phrase, it is difficult to trace how the model works due 

to the fact that some details of the workings of the model are hidden from the 

developer by Swarm libraries.
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2.4 Summary

Agent-based simulation has attracted much interest lately, but an agreement on 

the definition of an agent has not yet been achieved. The simplest viewpoint is 

that an agent is an entity for which some cognitive process is modelled (Edmonds 

and Mohring, 2005). The cognitive processes here refer to obtaining and storing 

knowledge, and putting it to use. To some extent, ABS is a new simulation approach 

and with the benefit of much-increased computing power, it enables new types of 

simulations to be investigated. So far, it has been widely applied in many areas such 

as military, economics, sociology and movement patterns.
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Figure 3.1: Contents of Chapter 3

This chapter provides the literature review for the calibration issue in agent-based 

simulation models, which is the main research topic. It defines ABS model valida­

tion & verification (V&V), prediction in agent-based simulation, calibration and the

38
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inverse problem. Section 3.1 discusses the main theories and techniques of validation 

that are available to modellers when applying simulation using the agent-based ap­

proach. According to the purpose of the model (e.g. descriptive or predictive), there 

are different methods with which to validate the model. Different model types have 

different requirements for data, and there are difficulties in ABS model validation and 

prediction, which are explained in Section 3.2. Section 3 .3  introduces and remarks 

on the existing calibration procedures (i.e. MCMC based method and the Brooks 

et al. (1994) method). The research approach taken in this research is derived mainly 

from the second method. Section 3 .2 .3  describes and reviews the existing ABS pre­

diction models. It also explains how the thesis contributes to these discussions in 

terms of developing a simple, practical methodology that can help ABS users to make 

predictions.

3.1 REVIEW OF VERIFICATION & VALIDA­
TION (V&V) OF ABS

This section reviews the V&V of agent-based simulation, starting from a general 

introduction of model validation and verification and followed by the principles and 

the techniques of model V&V.

3.1 .1  In trod u ction  to  V & V

Verification and validation (V&V) are essential parts of the model development 

process if models are to be accepted and used to support decision-making. However, 

it is important to remember that validation does not imply verification, nor does ver­

ification imply validation. Basically, models must be matched against the phenomena
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being modelled and checked for errors at each stage of use. In addition, an easy and 

commonly used expression to clarify model verification and validation is: verification 

- building the m o d e l  r i g h t ; validation - building the r i g h t  m o d e l .

Verification This is the process that makes sure the model does what it is intended 

to do from an operational perspective. Model verification is like debugging in 

programming. Models, especially simulation models, are often large computer 

programs. Therefore, all techniques that can help develop, debug, or maintain 

large computer programs are also useful for models.

V alidation This ensures that the model meets its intended requirements in terms 

of the methods employed and the results obtained. In other words, validation 

tests whether the model could reproduce system behaviour with enough fidelity 

to satisfy the analysis objectives.

3.1 .2  P rin cip les o f V & V

There has been a lot of work done in the research of simulation V&V (for example, 

Banks et al., 1988; Balci, 1995; Sargent, 1998; Brooks, 2001; Pidd, 2004). Some general 

accepted views on the V&V principles are as follows:

• All models are the simplification of the real system, therefore, it is impossible 

to claim that a model is 100% correct.

• The result of a model V&V is subject to the study/project objective. In other 

words, a V&V test may have completely different implications under different 

research objectives. For instance, comparing a model which is designed for
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a better understanding of the real system with a model which is designed for 

making accurate future prediction, a V&V test may focus on whether the model 

could reproduce a certain phenomenon in the first case while the latter case may 

focus on whether the test results could match the historical data.

• In general, V&V is the process of testing the model. It is the process for model 

builders/users to build up their confidence in using the model (i.e. better un­

derstanding of the real situation or to make predictions). Therefore, the V&V 

result should provide the model users with enough confidence in using the model 

for a specific project.

Particularly, one of the widely cited authors is Balci (1995), who has done a substan­

tive work in simulation V&V research. Balci set out 15 principles for model VV&T 

(validation, verification and testing, Balci, 1995, 1998):

“ Principle 1: The VV&T must be conducted throughout the entire life cycle of 

a simulation study;

Principle 2: The outcome of simulation model VV&T should not be considered 

as a binary variable where the model is absolutely correct or absolutely incorrect;

Principle 3: A simulation model is built with respect to the study objectives and 

its credibility is judged with respect to those objectives;

Principle 4: Simulation model VV&T requires independence to prevent devel­

oper’s bias;

Principle 5: Simulation model VV&T is difficult and requires creativity and 

insight;
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Principle 6: Simulation model credibility can be claimed only for the prescribed 

conditions for which the model is tested;

Principle 7: Complete simulation model testing is not possible;

Principle 8: Simulation model VV&T must be planned and documented;

Principle 9: Type I, II, and III errors must be prevented;

Principle 10: Errors should be detected as early as possible in the life cycle of a 

simulation study;

Principle 11: Multiple response problem must be recognized and resolved prop­

erly;

Principle 12: Successfully testing each submodel does not imply overall model 

credibility;

Principle 13: Double validation problem must be recognized and resolved prop­

erly;

Principle 14: Simulation model validity does not guarantee the credibility and 

acceptability of simulation results;

Principle 15: Formulated problem accuracy greatly affects the acceptability and 

credibility of simulation results.”

3.1 .3  V & V  Techniques

In addition, Balci (1998) specified 75 different techniques, which were categorized 

into “informal, static, dynamic, symbolic, constraint and formal techniques” (details 

can be found in the cited paper). Similar to Balci’s 75 techniques, but in more general 

terms, other authors commenting on V&V techniques include Sargent (1998), Banks
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et al. (1988), and Adrion et al. (1982).

Particularly, regarding the model validation, methods are commonly categorized 

as “black box” validation and “white box” validation (for example, Pidd, 2004).

Black box validation When using a black box method, the model output is com­

pared with historical data to check whether it matches the historical data. In 

other words, only model input and output are examined and what happens 

inside the model is ignored.

W hite box validation In a white/open box validation, both the elements and the 

rules in the model are compared with the real system. In addition, the model 

assumptions and input distributions are also assessed. Compared with the black 

box method, the white box method looks into the inside of the model instead 

of only looking at the model input and output.

There are some commonly recognized issues about these two validation methods 

in the general simulation literature. Issues associated with “black box” validation 

include: first of all, the real world data may not be available (i.e. there is no such 

data in the real world as the model may simulate something not existing yet or there 

have been difficulties to collect such data). Secondly, there might be errors with the 

data collected. Thirdly, even if there are enough data, it is effectively only one sample 

from a distribution. We do not know the relative position of the sample collected 

compared with the whole population of alternative possible histories of the system. 

For instance, as shown in Figure 3 .2 , if the data is used for validation is effectively an 

extreme sample, the result could be very misleading. Finally, since all models are a
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simplification of the real world, which leads to a question of “how close is close enough 

to the real world” . The answer is subjective and needs to be answered with reference 

to the objectives (rather than simply using the outcome of a statistical test). Issues 

associated with “white box” validation are that the result of white box validation 

depends on the model tester’s knowledge of the real world. And therefore, different 

testers might have different validation results. In other words, it is subject to model 

tester’s perspectives of the world.

Sam ple collected

Real data distribution

Figure 3.2: Issue with black box validation

3 . 1 . 4  V & V  f o r  A B S

A very important issue of ABS modelling is the validation of simulation models. 

In recent years, with more and more ABS applications being developed, researchers 

have become aware of the importance of validation issues in ABS. There are some 

discussions of ABS validation in the literature (for example, Moss, 2000; Hoog, 2004; 

Brown et al., 2005). However, very few papers among them have referred to the general 

simulation literature in the sense that they seem to be unaware of the aforementioned 

V&V methods and debate. Taking Moss (2000) as an example, he argued that the
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issue of validation depends on the point of view of the modeller, namely whether he 

or she has in mind a predictive or a descriptive model (Moss, 2000):

Validated
Predictively Bench Mark

Validated
Descriptively

Bench Mark

ABS Model 
Validation

Present data 
generating 

process 
correct?

Present output 
behaviour 
correct at 

macro-level?

Figure 3.3: ABS model validation (Derived from Moss, 2000)

Hoog (2004) summarized and explained Moss’s arguments further as follows:

V alidation as prediction a simulation model is considered realistic/valid if its pre­

diction/outputs match the real historical data sufficiently closely. A model has 

been validated predicatively if “the stylized facts at the macro-level match” .

V alidation as description a simulation model is considered realistic/valid if it de­

scribes phenomena and actual social processes associated with the individual 

agents, such as “beliefs, desires and trust” . A model is validated descriptively if 

it provides a “correct representation of the data-generating process” . In other 

words, the model’s individual behaviour is considered realistic at the micro­

level. Moreover, this process is considered more subjective compared with the 

predictive validation process.

Based on the above two statement, Hoog (2004) suggested a joint criterion for ABS 

model validation: validated both descriptively at a micro-level and predictively at a
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macro-level. However, the prediction in Moss and Hoog’s explanation differs to the 

general simulation literature. It emphasizes more whether the model could reproduce 

a pattern rather than a real specific project related prediction (e.g. aggregated sales 

prediction). In fact, we could take their predictive and descriptive validation methods 

as both methods applying for a model that is aiming for a better understanding of the 

real system rather than for a model that is aiming for a real prediction. In addition, 

Hoog (2004) mentions that, in ABS models, various parameters might produce the 

same output/phenomenon. However, he considered exactly specifying the individ­

ual agents as unimportant and therefore, he tended to ignore the difference between 

agents’ parameters as long as the model output match the phenomenon pattern. In 

fact, when using an ABS model for prediction, this could be very problematic as a 

model that has passed black-box validation can produce seriously misleading results 

(Brooks et al., 1994). Such problems are often referred to as the parameter identifi­

cation problem/inverse problem, which will be introduced in the following sections.

3.2 ABS MODEL PREDICTION

As discussed in Chapter 2 , so far, ABS has been widely applied in many areas such 

as military, economics, sociology and movement patterns. In most of these applica­

tions, ABS was used as an understanding tool rather than a prediction tool. However, 

for some applications, using ABS for prediction (rather than just better understand­

ing) could be very powerful. For example, a company might wish to use a model of 

the population of their customers with WOM interactions to predict the sales of the 

product or the effect of an advertising campaign. Or a broadcasting company may be
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interested in consumers’ opinions on their newly launched TV programme. Moreover, 

there is a trend that the use of ABS is moving towards to prediction, especially in 

a business context. However, due to the difficulties of undertaking V&V on an ABS 

model, using an ABS model to predict the future is problematic. Some researchers 

have been aware of the issues. For instance, a recent special issue discussed the vali­

dation issues in ABS and debated the difficulties in using ABS models for prediction 

(Brown et al., 2005). But they did not reference the general simulation literature such 

as “white box” and “black box” validation. In general, they appear to have a relaxed 

view of model validation in the sense that they would recognize a model as a vali­

dated model if its output could match the general pattern in the real system/reference 

system. To some extent, a “white box” validation (model output matches a general 

pattern) might be enough for the descriptive use of models. However, regarding the 

predictive use of models, the validation criterion becomes more critical as the model 

needs to be able to predict a specific system rather than general pattern. This section 

will discuss this issue further.

3.2 .1  D ifficu lties In U sin g  A B S For P red iction

The difficulties in using ABS for prediction are mainly in the difficulties of knowing 

what the model parameters should be. Agent-based models typically have a very large 

number of parameters, and many of these cannot be measured directly or estimated 

with sufficient precision. The only other information available may be historical out­

put data from the real system. Such data can be used to calibrate the model by 

finding parameter values that produce a good fit with the data. This is known as an
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inverse problem (see Section 3.2.2) since it consists of using the outputs to determine 

the inputs. The problem is that there will usually be many solutions. There are two 

main reasons for this. The first is that there are often many parameters and few 

historical data values. The second is that any model that produces a good fit should 

be considered acceptable. A perfect fit is not expected, because any simulation is a 

simplification of the real system and there may also be measurement errors in the 

historical data.

The result is that a wide range of sets of parameter values may give an acceptable 

fit and are therefore feasible values. However, they may give quite different predic­

tions. As shown in Figure 3.4, Model 1, Model 2, Model 3 and Model 4 are all used to 

model real systems but with different parameters set. They produce outputs that will 

be used to compare with historical data. If this produces a good fit, then the model 

will be accepted by the modeller, as in Figure 3.4, Model 2, Model 3 and Model 4 

are accepted, while Model 1 is refused due to a bad fit. In the next step, Model 2, 

Model 3 and Model 4 are used to make predictions. This results in different solutions 

(different size of solution circle in the graph represents different solutions).

3 .2 .2  Inverse P rob lem

The inverse problem can be described as a problem where the answer is known 

but the question is unknown. In other words, inverse problems are the determination 

of the present state of the system from the future observations or the identification of 

the parameters from observations of the evolution of the system.

The reason that inverse problem arises in agent-based modelling is that most
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Figure 3.4: Difficulties using ABS to make predictions

agent-based models follow a comparison-validation approach that compares simulation 

outcomes with observed data. Therefore, it is unavoidable that, even if the model 

passes black-box validation tests and is able to produce outputs that are close to real 

historical data, the model is not necessarily validated.

3 . 2 . 3  E x i s t i n g  A B S  M o d e l s  U s e d  F o r  P r e d i c t i o n s

Certainly, prediction is a possible and an important function of an ABS model. 

However, some complex adaptive systems (CAS) exhibit chaos, which make a great 

practical difficulty in any long-term predictions. Unfortunately, after an extensive 

search of the literature regarding using ABS models to make predictions, only two
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practical cases could be found. Using ABS models to make predictions is still in its 

infancy. In this section, the two cases found in the literature are presented, and each 

one’s merits are discussed.

3.2.3.1 Forecasting H its in the J-pop (popular music in Japan) Market 
(M akoto, 2000)

Oricon (a data provider in entertainment), Hakuhodo (an advertising agency) 

and PriceWaterhouse-Coopers built a multi-agent simulation model to forecast hits 

of J-pop. They followed the methodology in “How Hits Happen” (Farrell, 2000). 

In the model, there were 75,000 ‘synthetic consumers’ (agents), who are exposed to 

media over time, share information about J-pop with each other, and make a decision 

whether to buy or not.

Prediction O bjective The objective of their project is to predict and design a hit 

in the J-pop market.

A gents’ A ttributes There are 75,000 agents in the model, which represent con­

sumers in the J-pop market. Agents receive information about a new CD 

through mass media, store, and word-of-mouth (WOM). In addition, their char­

acteristics include their attitudes to the artist, their influences on their social 

network and their limited budgets.

Param eters In the model, there are five main parameters that influence agents’ 

purchasing behaviours:

1. The artist’s characteristic. This parameter is derived from Hakuhodo’s (the 

advertising agency) data base. Hakuhodo conducted a consumer research
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project named “the artist power survey”, which measures an artist’s char­

acteristics by “quality of a song” , “whether the melody is easy to learn” 

and “appearance” , etc. For the new artists who were not part of the survey, 

judgements by experts were used in the model.

2. The released planned CD retail expectation degree, which can be obtained 

by Oricon from a national retail store panel. These data show the expec­

tation of the store promotion, music trend prediction etc.

3. The number of airing times on radio. Music and media companies keep 

records on whether a radio station of a main city broadcasted the songs in 

a certain album. These data reflect the evaluation for a song according to 

DJs and were used in the model as a standard to express the degree of a 

prior campaign for an audience.

4. Television, commercial exposure [accumulation audience rating]. Similar to 

other new products, the campaign for the CD using TV commercials.The 

music may be used by a commercial for a product apart from a CD, which 

to widens the recognition of the song.

5. A tie-in with a TV programme, when the audience rating of a song in 

the J-pop market is used as a theme music of a TV programme as well. 

Cooperation with a popular programme (as measured by family viewing 

rate) may improve the recognition degree of a song very much.

R esults The model could predict a hit phenomenon to some extent. The model 

validity was tested using the data of CDs released in the first quarter of 1999.
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The model has a satisfactory prediction.

In addition, this project also provided diagnostic information and could serve as 

a ‘flight simulator’ in the entertainment industries. Overall, this paper is considered 

as the most relevant literature to the thesis. Unfortunately, Mr Makoto has left the 

company and is not able to disclose any more information about the project.

3.2.3.2 UK  Pay-TV  Subscriber M odel (Twom ey and Cadman, 2002)

In 2001, Beaufort1 was sponsored by NTL 2 to build an ABS of the potential UK 

pay-TV subscriber market. There has been a dramatically change in the cable TV 

market over the last few years. Unlike the USA, the UK cable market is dominated 

by very few cable operators. This prevents any possibility of cross-sectional analysis 

across cable companies. Beaufort starts the project with a very simple subscriber 

behaviour model. The model can then be extended to consider more sophisticated 

behaviours.

Prediction O bjective The objective is to build a scenario tool for investigating 

“what-if” questions to changes in regulatory and other market conditions. In 

addition, predicting the demand when price, package-content and package-size 

changes is also of interest.

A gents’ A ttributes These refer to an agent’s sex, age, marital status, channel pref­

erences and social grade. These data were obtained from monthly surveys of

B eaufort International Ltd, London, UK. The group principal activity is providing management 
consultancy services.

2NTL is the UK’s largest cable television operator
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existing and potential subscribers. Besides, a bench mark of consumers’ dis­

satisfaction when being required to purchase unwanted channels (as part of a 

package) was set based on the survey data. In addition, agents were given a 

simple decision-making rule, which included the “aggregation of utilities offered 

by the package of channels and comparing it with the price” .

Param eters There are three main parameters that influence an agent’s preference 

and corresponding subscriber behaviour: channel price, package-content and 

package-size.

R esults As this model is part of a business consultancy project, no further project 

results were disclosed by its authors.

3.2.3.3 D iscussion

Apparently, due to the complexity involved in agent-based modelling, applying 

agent-based simulation in prediction has not yet been well-developed. One of the 

main reasons could be that agent-based modelling tries to model a cognitive process 

which makes data collection extremely difficult when deciding upon parameter values 

for the model. Relatively easy data-collection compared with other systems in the 

cases of Makoto (2000) and Twomey and Cadman (2002) helped them to develop their 

models although it is unclear exactly how good that are for prediction. For instance, 

in the Makoto (2000) model, the artist’s characteristics, the released planned CD 

retail expectation degree, television and commercial exposure and TV programme 

audience rating of the song in the J-pop market were data that was available.
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3.3 CALIBRATING MODELS

There are some approaches found in the literature regarding model fitting. Two 

representative approaches (namely, the MCMC based method and Brooks et al. (1994) 

method) and the relevant literatures will be reviewed in this section.

3.3 .1  M arkov C hain M onte Carlo (M C M C ) B ased  C alibrat­
ing M eth od

3.3.1.1 A B rief Introduction To M CM C

The basic idea behind MCMC is to draw a sample from the full posterior distribu­

tion, and then make inferences using the sample as a representative of the posterior 

distribution. For instance, we could calculate the sample mean and variance of the 

parameter from the sample.

It was developed as a stochastic simulation method by Metropolis et al. (1953) 

in the 1950s, and later refined and extended by Hastings (1970), Geman and Geman 

(1984), Gelman Rubin (1992), and Brooks (1998) (among others). More details about 

MCMC and related topics can be found both in the paper written by Liu (1999), which 

is considered to be a very comprehensive review paper of the MCMC method, as well 

as a MCMC sampling book written by Gilks et al. (1996). The MCMC method could 

be implemented in many ways. The most general one is the Metropolis-Hastings 

algorithm, developed by Metropolis et al. (1953) and further expanded by Hastings 

(1970). The core part of MCMC is how to construct a Markov chain by choosing a 

transitional probability so that it will finally converge to the equilibrium/stationary 

distribution ir(x).
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The general idea is considering the ratio of the marginal distribution at time t  +  1 

and t , and accept x t+i =  x new with a probability proportional to the ratio, p accept; 

and x t+i =  x t with 1 — p aCcePt • Here x new is a random value proposed at time t +  1. 

The process can be described as the following steps:

Step 1 Start with x°, then iterate;

Step 2 Propose x new from a proposal distribution q ( x \ x new);

Step 3 Calculate ratio p aCcePt =  ; If the ratio> 1 then use Paccept =  1

Step 4 Determine the new value at time t  +  1 randomly (usually using a random 

number generator) where x t+1 =  x new with probability p aCcePt and x t+x =  x l 

with probability 1 -  p accePt

After the above steps, run the chain until stationary and samples from the equilib­

rium /stationary distribution ir(x) can be used to find uncertainty around the outputs 

of interest.

3.3.1.2 Applying M CM C when F itting Sim ulation M odels

Generally, in terms of Bayesian statistics, the parameter values of a model are 

treated as random variables, and the aim is to find the posterior distribution tt(x ) 

of them. The posterior distribution refers to a probability distribution associated 

with model parameter values. In addition, it depends on two types of information, 

namely, the prior distribution and the likelihood function. The prior distribution 

represents what we know about the parameters (our expectation of the parameter 

distribution), and the likelihood function represents how well the model fits the data
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(i.e. an objective function determining the distribution of the data being compared 

with the model output). Once these two factors have been defined, MCMC sampling 

plays its role. A Markov Chain which has the posterior probability distribution will 

be constructed. After a burn-in period, the samples generated from the Markov chain 

can be treated as coming from the posterior distribution. Based on such samples, the 

mean, variance and other statistical data can be calculated to find the uncertainty 

around outputs of interest.

3.3.1.3 Applications

The MCMC method has been used in fitting simulation models by several liter­

atures (see Beven and Binley, 1992; Young et al., 1996; Chick, 1997; Nelson et al., 

1997; Inoue and Chick, 1998; Andradttir and Bier, 2000; Currie, 2006, for examples). 

The representative examples are considered as follows:

• An A gent-based Economics M odel (Sallans et al., 2003): Sallans et al. 

(2003) studied a discrete-time agent-based economic model. Sallans’ model 

consists of three types of agents, namely, consumers, production firms, and 

financial traders, who operate in both a consumer market and a financial equities 

market. They introduced an innovative technique based on MCMC to validate 

the model, and used it to investigate the model parameter set, which would lead 

to a realistic model behaviours.

The research was set out with the question “How good is a simulation?” and 

defined a good simulation as a simulation that can reproduce stylized features of 

real markets. These “good simulations” were transferred into an energy function
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to maximize the expected value of the profit and minimize the parameters’ 

autocorrelations. The objective was to find parameter regimes where behaviour 

is good by sampling from the vector of simulation parameters 9 subjected to the 

negative energy function E(0):

P E(6) =  e x p { - E ( 9 ) } / Z

Again, as introduced in Section 3.3.1.1, Metropolis et al. (1953) algorithm is 

used to produce the stationary distribution P e {9).

This method enabled the large parameter spaces to be explored efficiently, so 

that the parameter set that leads to the reproduction of empirical phenomena 

can be found. To achieve this, Sallans et al. intersect parameter values his­

tograms from the MCMC simulation runs to find common parameter settings.

• GLUE M ethod: The generalized likelihood uncertainty estimation (GLUE) 

techniques by Beven and Binley (Beven and Binley, 1992; Beven et al., 2000; 

Beven, 2000) are focused on prediction range. GLUE is an extension of the 

generalized sensitivity analysis (GSA, Hornberger and Spear, 1981; Spear et al., 

1994). The GLUE technique is a more generalised method of choosing parameter 

sets from the whole range of possible parameters with a subjective likelihood of 

different parameter set. The approach obtained a range of predictions weighted 

by likelihood. In addition, the predictions can be compared with the observed 

behaviour. The likelihood measures how well the model and its associated pa­

rameter set fits the observed system behaviour.
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• Currie (2006) M ethod: Currie (2006) applied the MCMC in fitting deter­

ministic dynamic models and demonstrated the methodology with an example 

of a dynamic model of tuberculosis (TB) and human immunodeficiency virus 

(HIV). In her method, she considered all available sources of information: prior 

knowledge of the model parameter values (system experts or existing literature 

can usually provide information on the model parameter values) and data cor­

responding to the model output (data from a real system that the model output 

is meant to represent).

3.3.1.4 M erits Of The M ethod

The flexibility is a major advantage of the MCMC approach. It is straightforward 

to fit realistic models to complex data sets, which may have missing observations, 

measurement errors, multiple endpoints, or correlation structures (Dunson, 2001). 

Other advantages include:

Incorporation of prior information The MCMC approach is based on Bayes rule, 

which provides a rigorous way to incorporate data and prior information. In this 

method, the prior distribution and the likelihood of data are combined to gain 

a posterior distribution. This contains all the available information. Hence, it 

outperforms traditional methods in many cases.

C om putation The ease in the computation of complex models. Briefly, MCMC 

algorithms generate a sequence of correlated samples through the time. The 

samples simulated at the same time are independent of each other. Once the 

distribution has converged to the target distribution , the samples generated by
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MCMC could be remained, which can provide researchers the posterior distri­

bution of interest (Dunson, 2001).

Capture dynam ically information Due to the nature of the MCMC, it stores a 

lot of information dynamically during the run. Such information can be used 

for future analysis.

3.3.1.5 Drawbacks Of The M ethod

E xpensive/T im e-consum ing A widely discussed drawback of the MCMC method 

is that running the full MCMC algorithm is very time-consuming. The Markov 

chain needs a very long burn-in and thinning period to make it converge to the 

equilibrium distribution. In addition, the variance of the estimator obtained 

from MCMC is usually high due to the correlated samples.

D ata Validity The MCMC approach is very much dependent on the prior distribu­

tion, which is normally estimated by the modeller/field experts. Therefore, this 

will have a large influence on the sampling result.

3 .3 .2  B rooks et al. (1994) M eth od

Brooks et al. (1994) describe an approach to find the range of predictions of a 

groundwater model from alternative calibrations that were applied to an existing 

model of the Birmingham aquifer (Greswell et al., 1994). The aquifer was represented 

in the model by dividing it into rectangular cells. Each cell required geological pa­

rameters for the storage coefficient, S, and transmissivity, T. Recharge values, R, for 

the overall input of water to the cell from rainfall and other sources (such as water
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mains leakage) was also required. For cells containing part of a river, the streambed 

conductance, L, had to be specified. Abstraction of water from the wells was another 

important part of the model. Groundwater measurements were available at 12 sites 

for certain years although there were few readings before 1970 (m ).

The fitness F  of the model was measured using a weighted sum of the squared 

differences of the model values compared to the historical values (m ),  and a cut-off 

value was chosen as the criterion for a good fit. The objective of the original study was 

to predict groundwater levels for 2020, and in particular to identify areas of shallow 

groundwater where the water is close to the surface. Based on this objective an overall 

prediction measure, W, was devised of the extent of the model prediction of shallow 

groundwater for 2020. The simplex method (Nelder and Mead, 1965) was then used 

for searches for the local minima of the chosen functions (f ( W , F )). The searches 

were to find the global maximum and minimum W values subject to a satisfactory F 

value across the parameter space (R,S,T,L).

The results were a considerable difference between the best and worst case pre­

diction values W  which all give a good fit. They therefore suggested using a single 

point prediction could be misleading in these circumstances. Instead, the appropriate 

approach is to take account of the alternative feasible calibrations and to evaluate, in 

some way, the different predictions they produce.

This method can be described in general terms as the following algorithm:

1. Define the parameter space of the range of values of the uncertain parameters.

2. Define a fitness measure, F , that measures how well the model matches the
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observed data and set a cut-off value for an acceptable fit for the project.

3. Define a prediction measure, W ,  that measures the output of interest for the 

project.

4. Use an optimisation method on the parameter space to find the maximum and 

minimum W  values for those points that give an acceptable fit. These maximum 

and minimum W  values give the prediction range.

3.3 .3  R em arks On T he E xistin g  M odel C alibrating M eth od s

Comparing the GLUE/MCMC methods to the Brook’s method, the main advan­

tage of the Brook’s method is that it focuses just on finding the range of predictions, 

which simplifies the search problem. This reduces the number of model runs required 

and enables it to be applied even when there is little information about the parameter 

values and when there are a large number of parameters. The main advantage of the 

GLUE/MCMC method approaches is that they provide more detailed information 

about the distribution of model outputs.

3.4 SUMMARY

Verification &; Validation is very important for ABS modelling. The object of 

ABS model verification and validation is to balance these two impulses: the desire 

for the accuracy of prediction and the accuracy of the process (Brown et al., 2005). 

In general, ABS model V&V can be described as the process of answering questions 

such as “Can the model reproduce past behaviour?” and “Are the mechanisms and 

parameters of the model correct?” In some cases, even the first question is answered
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as yes, the model can reproduce past behaviour, the second question may still remain 

unsolved. For instance, even the model can reproduce the history data but with quite 

different structures (parameters). If that is the case, the impact of using such a model 

to make prediction remains a mystery. Moreover, agent-based models typically have 

a very large number of parameters, and many of these cannot be measured directly or 

estimated with sufficient precision. These inevitably make difficulties in using ABS 

models for prediction.

However, for some applications, using agent-based simulation for prediction (rather 

than just better understanding) could be very powerful. More and more researchers 

have been aware of such model identification problems in other areas and have tried 

to overcome them through different model-calibrating methods. For instance, some 

have tried to find the parameter region that can produce fit output and produce the 

possible prediction range with a certain confidence level (Brooks et al., 1994) and 

some take the MCMC based approaches which focus on giving the model prediction 

with an associated probability (Beven and Binley, 1992; Beven et ah, 2000; Beven, 

2000; Sallans et ah, 2003; Currie, 2006).

Due to the complexity involved in ABS modelling, applying an ABS model in 

prediction has not yet been well-developed. Only two practical cases were found after 

a thorough search: Makoto (2000) successful Japanese J-pop CD sales market, and 

Twomey and Cadman (2002) UK pay-TV subscriber simulation. Hence, the use of 

an ABS model for prediction is still in its infancy. There are a great deal of questions 

left open for scholars.



C hapter 4

AGENT-BASED M A RK ETIN G  
DIFFUSION MODELS

C H A P T E R  O V E R V I E W

ABS for Marketing

Diffusion Models

Bass 1969 
Model

Extensions to Bass Model

Generalised Bass 
Model

Successive
Generation

Agent-based Diffusion Models

iCRM Model
Human Network 

Study
Remarks on ABS 
Diffusion Models

Figure 4.1: Contents of Chapter 4

This chapter starts with a general review of the existing agent-based models that 

are used to investigate marketing phenomena including the widely cited PECS model, 

the intelligent customer relationship management (iCRM) model from BT (British

63
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Telecom), and the J-pop agent-based prediction model. Section 4-2.1 then briefly in­

troduces the classic 1969 Bass diffusion model (which has now become the fundamental 

theoretical frame of most diffusion models) and the main Bass model extensions. In 

addition, Section 4-2.3  gives a discussion of the advantages and disadvantages of the 

Bass diffusion model. Section 4-3  reviews two representative ABS diffusion models 

and debates the limitations in existing ABS diffusion models.

4.1 ABS FOR MARKETING

Agent-based modelling simulates complex marketing systems as swarms of agents 

(i.e. consumers, companies, economies). With the development of complex marketing 

system theories, scholars have realized the unique importance of autonomous agents 

for the modelling of human behaviour, and researchers have begun to adopt ABS in 

social science research (e.g. Bassu and Pryor, 1996; Bonabeau, 2002b; Janssen and 

Jager, 2000). In the classical human-behaviour simulation models, human beings are 

often modelled as rational decision makers with perfect information. However, these 

“classical” approaches are questioned more and more for being restricted to limited 

cognitive aspects (for instance, in such a model, human behaviour is reduced to cog­

nitive abilities and cognitively controlled actions). At the same time, more complex 

theories about human behaviour come into the foreground in psychology. In contrast 

to the classical approaches, the latter also takes physical and emotional influences and 

social environments and social interactions into account (Dorner, 1999). Accordingly, 

there are increasing demands for more human-like agents in human behaviour sim­

ulation modelling. Fortunately, more and more researchers have been aware of the
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important role of agent-based models in modelling complex human behaviour. For 

instance, Urban and Schmidt (2000) introduced the PECS (Physical conditions, Emo­

tion, Cognition, Social Status) reference model and from it developed some case stud­

ies. They claimed that the PECS reference model can provide a domain-independent 

model architecture to help scholars build human-like agents. However, this is a newly 

emerging subject, and there is still a great deal of work that needs to be conducted in 

applying agent-based simulation methods to marketing. In fact, most of the existing 

agent-based social science models are designed as a learning tool rather than as a 

predictive tool. The examples are described as follows:

• Container World project. This project delivered three agent-based models (the 

International Trade Model, the UK Competition Model and the Inland Distri­

bution Model) designed to be used together. Container World was developed to 

provide strategic decisions in a continually changing world.

• iCRM model (intelligent Customer Relationship Management). iCRM tool uses 

an agent-based model to illustrate how iCRM investments can influence a tar­

geted customer population. The model results provided the business decision 

makers with a clearer view of potential returns on such investments. This model 

takes into account the communication (customers exchanging their experiences) 

between members of a social network and also the powerful influence of WOM 

on the adoption of products and services. (Baxter et al., 2003)

• Bonabeau (2002b) built an agent-based model to simulate the decision-making 

process. The model simulates the “connections between consumer preferences,
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traits, constraints on purchase decisions, and apparel products.”

• Bassu and Pryor (1996) conducted a project called “Aspen” . They built an 

agent-based model to simulate the United States economy. In the model, they 

built more than 10000 agents representing various economic players (i.e. com­

panies, banks, stock exchanges and households).

• Janssen and Jager (2000) built an agent-based model to analyze the effects 

of uncertainty and satisfaction on consumer behaviour. Their model included 

around 20 consumers (agents) and several other cognitive components.

• Brannon (1994) built InfoSumers which is a multi-agent simulator to simulate 

the diffusion of innovation in the clothing fashion market. In his model, the 

influence of interactions between suppliers and consumers in the textile market 

played an important factor in spreading the diffusion of innovation.

• Said et al. (2002) presented the CUBES (Customer Behavior Simulator) mod­

elling approach based on interactions between virtual market actors and ele­

mentary behavioural attitudes in a competitive context .

4.2 DIFFUSION MODELS

“Diffusion” is the process by which a new idea or a new product becomes widely 

accepted by the market and the notion of diffusion is essentially a form of communi­

cation. In general, the diffusion of information can be divided into two types. One is 

Word-Of-Mouth (WOM) communication which relies on social networks constructed 

on human relationships. In WOM communication, information can be spread over a
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social community such as a college or a company. In addition, communication in this 

category can also be divided into two subcategories: face-to-face contacts and some 

sort of new type of communication brought about by technology (i.e. information 

on the internet, telecommunication, etc.). The other diffusion of information type 

is mass communication, where information can be spread to numerous people at the 

same time. For instance, TV and broadcasting are forms of mass communication 

(Tanimoto and Fujii, 2003).

In terms of diffusion modelling, the Bass diffusion model proposed by Frank Bass in 

1969 was general recognized as the standard for analysing the growth of new consumer 

durable products in the marketing literature, which will be introduced briefly in the 

following section.

4.2 .1  B ass (1969) D iffusion M odel (B M )

The Bass diffusion model is concerned with the time of first-adoption of new 

consumer products. Rogers (1962) classifies adopters of innovations into various cat­

egories (as shown in Figure 4-2), based on the idea that certain individuals are in­

evitably more open to new products than others.

The Mathematical intuition behind the concept has been proposed by Bass (1969). 

One of the fundamental formulas is the Bass formula, which characterizes the spread 

of a new product in a market (Bass, 1969). Basically, the Bass diffusion model assumes 

a linear relationship between the probability of a particular individual adapting the 

product and the number of previous adopters, that is:

P ( t )  = p + ( q / m ) Y ( t )  (4.1)
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Figure 4.2: Rogers adoption innovation curve(Rogers, 1962)

where

P ( i )  =  1 _  F ^  and Y { t )  =  m F ( t ) (4.2)

denote the probability of adoption conditional on those not yet adopting at time t 

and the number of buyers up to time i, respectively, where:

f ( t ) is the likelihood function of adoption at time t\

F ( t ) =  f*  f ( s ) d t  is the cumulative function of the f ( t );

m  is the market potential, which is the total number of consumers who eventually 

will adopt the product. In other words, it is the upper market limit.

Thus Equation (4-1) becomes

Note that the parameter p  and q can be interpreted as following:

p  is the coefficient of innovation (external influence). It is used to measure the likeli­

hood that a consumer who is currently not using the product will start using it

(4.3)
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due to the influence of mass media or other factors;

q is the coefficient of imitation (internal influence); It is used to measure the likelihood 

that a consumer who is currently not using the product will start using it due 

to the influence of WOM or the influence of people who have used the product 

(Bass, 1969).

Typical values of p  and q (Bass et al., 1995) are the following:

• The average value of p  has been found to be 0.03;

• The average value of q has been found to be 0.38.

Accordingly, the sales at time t is S ( t )  =  m f ( t ), which can be written as

S ( t ) =  p m  +  (q -  p ) Y (t ) -  q / m [ Y (f)]2. (4.4)

The S ( t )  can be solved analytically in terms of p  and q, and hence the time of peak 

sales t*\

M 2)
t* =  (4.5)

(p +  q)

In practice, the Bass diffusion theory is easy to apply since parameters p  and q are 

broadly studied in many markets and therefore, an indicative value can be obtained 

from literature (see Bass, 1969; Bass et al., 1994). Particularly, it is useful for a first 

assessment when no further details are available. Besides, there are two special cases 

of the Bass diffusion model by manipulating parameters p  and q:

• when q =  0, the model reduces to the exponential distribution.

• when p  =  0 the model reduces to the logistic distribution
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However, attention must be paid, since the above standard model is only one of many 

diffusion models.

4.2 .2  E xten sion s to  B ass (1969) D iffusion  M od el

Since Bass published his diffusion model in 1969, it became broadly influential 

in marketing and management science. Many variations have been developed based 

on it (see Mahajan et al., 1990a, for a complete review). These extensions are either 

claiming further precision or being applied in specific circumstances. Two widely cited 

Bass diffusion model extensions will be presented in the following sections. One is to 

generalise the Bass model to include marketing and the other extends the Bass model 

to the study of repeat-purchasing products.

4.2.2.1 Generalized Bass M odel (GBM )

The most basic diffusion fits very well on a range of new products and technology 

innovations. However, the model didn’t consider decision variables such as pricing 

and advertising. By taking these variables into account, Bass et al. (1994) introduced 

a generalised Bass model, simply adding one more component “x ( t ) ” into Equation

(4.3):

Y - f JT) =  (p  +  (4.6)

where /(£), F ( t ) ,  p  and q are defined in the same way as they are in Equation  (4.3), 

and x ( t )  is known as “current market effort" to reflect the current effect of dynamic 

marketing variables on the conditional probability of adoption at time t  (Bass et al., 

1994), e.g. a function of percentage change in price. Note that if x( t )  is constant, 

then the GBM is essentially equivalent to BM, this also explains why the BM works
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well without considering the decision variables. Similarly, the GBM has a closed-form 

solution which can be easily used.

4.2.2.2 Successive Generations

In the case that some products succeed one another in generations (i.e. technology 

products, computer games), Norton and Bass (1987) extended the model to sales of 

products with repeat-purchasing. Their model focuses on the substitution effect that 

a consumer who bought an old product is likely to buy one in the new generation to 

replace it.

The model can be fitted to a number of generations simultaneously, a multiple- 

generation example can be found in Norton and Bass (1987). They used this kind of 

model to capture a series of generations of innovation. The most innovative part of 

the model is to consider both the diffusion and substitution process at the same time 

while the Bass model can only deal with the diffusion process.

4 .2 .3  R em arks

The Bass model has been widely influential in marketing and management science. 

In 2004, the Bass model was selected as one of the ten most frequently cited papers 

in the 50-year history of Management Science.1

Up to now, there have been more than 850 papers published on the applications, 

refinements, and extensions to the Bass model. Applications (by Bass and his col­

leagues) include predictions of uptakes of satellite television, satellite telephone, new

LCD projectors, wireless phone, satellite radio, wireless internet (2.5g and 3g) and

1 Comments on “A New Product Growth Model for Consumer Durables: The Bass Model,” 
Management Science, 50, No. 12, December 2004, pp. 1833-1840
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many other technology forecasts.

4.2.3.1 M erits

The Bass diffusion model certainly has many merits as a heavily cited diffusion 

framework. Firstly, the model is a simple one, with only three parameters that can 

be easily estimated (m ,p ,q ). Secondly, the model fits the trend in the sales growth 

of new products very well. Thirdly, the possibility of attaining a clear solution is 

very important, since the model gives a clear prediction that is proved to fit some 

phenomena (especially uptake peak) well, in contrast to the fact that a single solution 

to many marketing equations (i.e. the need to solve repeat integrals etc.) cannot 

be achieved. In particular, the model may be most appropriate for certain products 

with low prices (movies, books, music) or for products with very high benefits (agri­

cultural and medical innovations) (Golder and Tellis, 1998). In the latter cases, the 

product adoptions depend primarily on diffusion of knowledge, social acceptability or 

popularity.

4.2.3.2 Lim itations

However, the assumptions on which this model is based limit its applicability. 

There are three well-known drawbacks of the Bass model:

• It does not include marketing variables that could influence new product diffu­

sion and sales (Golder and Tellis, 1998). For instance, price, customer afford 

ability and advertising, which are believed by many researchers to change the 

model’s curve.

• The model’s parameters are unstable. When new observations are added, these
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parameters can fluctuate substantially from year to year. For example, there 

are large fluctuations prior to the first peak in sales (Van den Bulte and Lilien, 

1996).

• As a result of this instability, the model’s forecasts are not accurate, unless the 

entire growth history is included. The model’s forecasts are inaccurate before 

the sales peak and especially prior to the point of inflection (Mahajan et al., 

1990b).

• It does not include uncertainty. In other words, due to the complexity theory, 

introduced in the previous chapter, the world is full of uncertainty. Randomness 

becomes an important factor in modelling, especially in modelling phenomena 

involved human behaviour. The area of diffusion certainly includes a large 

variety of human behaviours, and these behaviours are not necessarily logical.

Subsequent research has made progress, especially in extending the Bass model 

to include marketing variables and randomness. However, the extensions have come 

at the cost of simplicity: the new models are far more complex than the simple 

Bass model as shown in previous section. Therefore, the agent-based simulation can 

play its role by having new variables while keeping the model simple. The benefits 

of ABS modelling over other modelling techniques can be captured in the following 

statements:

• The ABS model can exhibit any particular behaviour as a result of interactions 

between its elements where the system behaviour may not be predicated by 

analysing individual behaviour (Hood, 1998).
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• The ABS model captures emergent phenomena (Bonabeau, 2002b).

•  Natural representations: the ABS model provides a natural description of a 

system. Because between the “target system” and the model representation, 

there is a simple, structural correspondence which makes the model easy to 

understand.

• ABS modelling is flexible: ABS models include the communication among 

agents. Agents are able to communicate with each other to share the prod­

uct information. Sometimes, agents can imitate other agents in the population. 

Specific marketing company’s can be included as a particular characteristic of 

the target population. Usually, traditional mathematical models are not able 

to cover such features because the complicated changing social networks make 

equation-based models too complex to be solved (Bonabeau, 2002b).

4.3 AGENT-BASED DIFFUSION MODELS

ABS has its merits (see Chapter 2)  in the cases where people are influenced by 

their social context (what other people do in their social network). However, due to 

the nature of the variables (cognitive process) and the difficulty in parameter mea­

surement, there are very few business applications. In fact, some academic attention 

has been given to applying agent-based simulations to diffusion situations that can be 

treated as a complex adaptive system. For example, Farrell (1998) and his colleagues 

developed a world with virtual agents to predict how and when hits happen. Working 

for Twentieth Century Fox, they modelled how a movie such as Ti tanic  captivates
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the public and breaks box-office records worldwide. Two representative papers will 

be introduced in this section.

4.3 .1  T h e iC R M  M odel (B axter  et al., 2003)

Baxter et al. (2003) built a generic model to allow companies to investigate the 

impacts of customer relationship management (CRM) strategies, with the aim of 

achieving better understanding through the comparison of scenarios rather than mak­

ing specific predictions. The model has 500 agents, connected in a way that mimics 

a social network. The agents have perception values for the price and quality of a 

product, values that change based on interactions with other agents, their experience 

of the product and external factors (marketing, competition, CRM). The product 

is a repeat-purchase product (such as a subscription service), and each agent has a 

threshold value for the total of their price and quality perceptions, above which they 

purchase the product. Word-of-mouth interactions about the product between the 

agents become less frequent the longer they use the product, and there is also a loss 

of perception at each time-step to represent the effect of the competition. Customers 

may therefore be gained and lost as their perception values change.

Table 4.1: Key Components

M odel C om plexity 500 customers (heterogeneous agents with their 

own interpretations of the products attributes), 

single product (two parameters: price and qual­

ity)

Continued.
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V alidation Not mentioned in the paper

Social Network  

Structure

Small-world model (Newman, 2003): define the de­

gree of grouping within a network by the clustering 

coefficient C.

Theory Framework Multiple-stage decision process (Rogers, 1962):

Acquisition An agent receives information that 

will change their perception of the product 

through inter-agent communication and ex­

ternal factors.

Decision If agents’ perceptions are sufficiently 

high, agents make the choice of adopting the 

product.

Im plem entation The explicit act of adoption or 

rejection (for repeat-purchase model use).

Confirmation An agent’s parameters are up­

dated based on a study of the product or 

service.

A gents D ecision  

R u le / U tility  Func­

tion

Since the model is a real business project, no de­

tailed information regarding model equations can 

be found. In general, the agents in the model 

follow the rule that when an individual has a 

combined perception which exceeds their internal 

threshold it will adopt (or readopt) the product on 

offer.

R unning of the  

Sim ulation

Start of the simulation: not mentioned in the pa­

per; end of the simulation: 280 weeks.

Continued.
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Conclusions This is an illustrative model that can be used to

compare the impact of different CRM strategies

both in terms of market share and financial per­

formance.

4.3 .2  D iffusional C haracteristics o f In form ation  on A  H um an  
N etw ork  S tu d y  (K jim a and H irata, 2004)

Kjima and Hirata (2004) looked at the effect of different network structures, al­

though the precise size and structure of the networks used is unclear. They used an 

SIR (susceptible /  infected /  removed) approach, based on disease transmission, for 

passing information between agents. The purchasing decision depended on the agent’s 

enthusiasm for the product, which is a function of the utility of the product for the 

agent, the reliability of the information and the agent’s attitude to risk.

Table 4.2: Key Components

M odel C om plexity N/A2

Validation N/A

Social Network  

Structure

Bipartite Network instead of traditional network. 

Each agent belongs to at least one group, which 

is his/her primal group (see Figure^.S for more in­

formation).

Continued...

2 Not available from the paper published
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Theory Framework SIR model (Kermack and McKendrick, 1927):

I infected agent: an agent who knows the infor­

mation and is willing to let others know it.

S susceptible agent: an agent who has not been 

infected but can be infected through interac­

tion with an I-agent.

R removed agent: an agent who stops diffusing 

information after a certain period.

A gents Decision  

R u le / U tility  Func­

tion

The utility function of an agent is decided by the 

product’s attributes (k),  the value of the product 

with respect to its attributes (z^), the risk attitude 

(r*) of agent i and the reliability of information

( ip ) .

EV  =  -  b w
k

Running of the  

Sim ulation

Start of the simulation: seeding way; end of the 

simulation: when all the agents become S or R.

Conclusions Some unique and interesting insights:

1. The cohesiveness of each group makes a large 

influence on the process.

2. It is easier for word-of-mouth to prevail in an 

oligopolistic society than in a mosaic society.
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Figure 4.3: Bipartite network model

4 .3 .3  R em arks on th e  A B S D iffusion M od els

In the context of the ABS model in marketing, agents are designed to reproduce 

their real-life counterparts. However, in different ABS models, the agents usually have 

different degrees of detail incorporated.

4.3.3.1 Elem ents of ABS diffusion models

In most cases, an agent in an ABS diffusion model usually consists of the following:

A ttributes Generally speaking, agents’ attributes include their age, sex and prefer­

ences.

Behaviour Rules Behaviours based on decision-making algorithms (e.g. utility 

maximization). In general, agents adopt the product or services on offer when 

their perception is greater than the set-up buying criterion (the buying criterion 

is decided by different agents’ assumptions).

Social Network It is agreed that the social network is not completely random. Peo­

ple are segmented into social groups. Different people have different influences 

on the social network with which he/she is associated.
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Figure 4-4 represents a random social network, where all individuals are connected 

randomly, while Figure 4-5 represents a segmented social network, where individuals 

are clustered into different groups with connections with different groups.

Figure 4.4: Random social network Figure 4.5: Small social network

In addition, uncertainty should also be included to represent the fact that con­

sumers in the market do not necessarily behave rationally. In other words, they are 

not always aiming to optimize their benefits.

4.3.3.2 L im its of ABS diffusion m odels

An interesting observation found was that if the ABS diffusion model is used for 

predicting, it is not very successful, as it is used for achieving better understanding of 

the situation or the results are only treated as illustrative. For instance, the Farrell 

(1998) model was not very successful in contrast with the Baxter et al. (2003) iCRM 

model in the sense that the Farrell (1998) model could not predict when the hits hap­

pen. Predicting hits might be the most difficult thing to do, while understanding how 

hits happen is comparably easier (Farrell, 1998). And the Baxter et al. (2003) iCRM 

model enables decision-makers to understand the impact of their CRM strategies.
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This is due to the fact that ABS diffusion models are normally based on numerous 

assumptions and simplifications. Since ABS diffusion models model the cognitive 

process, which is very difficult to validate and define, many of the parameters are 

therefore difficult to measure in real life, as stated in the previous chapter.

4.4 SUMMARY

ABS models have been widely used in the area of marketing, and researchers have 

paid more attention to applying ABS diffusion models in the market. In contrast to 

the traditional equation-based diffusion models (Bass, 1969, diffusion model and its 

extensions), an agent-based diffusion model has more advantages in terms of adding 

risk, randomness and heterogenous individual attributes into the model. It also gives a 

better understanding of the situation by providing the decision-makers with a platform 

on which different experiments can be tested.

However, ABS diffusion models do not perform well in making predictions (e.g. 

Farrell, 1998). This is mainly due to the difficulties in the measurement of numerous 

parameters. This is not be compared to Bass (1969) diffusion model and its extensions, 

in which only three or four parameters are required for a reasonably new product- 

adopting rate prediction.



Chapter 5 

RESEARCH M ETHODOLOGY

CHAPTER OVERVIEW

This chapter introduces the methodology used in the research. It describes how the 

research has been conducted. A discussion of the merits and limits of the methodology 

is also provided at the end of the chapter.

5.1 METHODOLOGY

The aim of the research is to investigate the calibration problem for an agent-based 

simulation, which should give an indication of the limitations of using such models 

for prediction. An alternative viewpoint is that the study may indicate the amount 

of data required to produce a narrow range of predictions.

The approach devised is to develop an agent-based model (in this case, a consumer 

diffusion model) and to treat this model as the real system similar to the simulated 

reference map in Brown et al. (2005) as introduced in Chapter  3. Selected output data 

from this model will be used as measured values from the real world. In a pseudo­

modelling exercise, this data will then be used to calibrate agent-based models of the 

system, and a method similar to those of Brooks et al. (1994) will be used to find the
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extent of the variations in predictions.

The research methodology can be summarized by the following three steps.

5 . 1 . 1  A  F l o w  C h a r t  o f  T h e  M e t h o d o l o g y

Figure 5.1 illustrates the methodology used in the research.

T h is  m o d e l  w ill b e  
t r e a t e d  a s  a  ‘re a l  
s y s t e m ’ in  t h e  
r e s e a r c h

T h e  r e s u l t  w ill b e  
t r e a t e d  a s  t h e  d a t a  
o b s e r v e d  f ro m  
a  ‘re a l  s y s t e m ’

F itt in g  p a r a m e t e r s  t o  t h e  
s e c o n d  m o d e l  to  
r e p r o d u c e  o b s e r v e d  d a t a  
f ro m  t h e  ‘r e a l  s y s t e m ’ to  
f in d  th e  r a n g e  o f  
p r e d i c t i o n s  t h a t  c a n  b e  
o b ta in e d  f ro m  p a r a m e t e r s  
t h a t  fit o b s e r v a b l e  d a t a .

B u ild  t h e  m o d e l,  w h ic h  it is  
b e l ie v e d  is  p la u s ib le .  C h o o s e  t h e  

p a r a m e t e r s  f o r  t h e  m o d e l

R u n  t h e  m o d e l  w ith  p a r a m e t e r s  
f o u n d  f ro m  S t e p  1

M im ic  t h e  p r o c e s s  o f  m o d e l l in g  th e  
‘re a l  s y s t e m ’ a n d  u s e  t h e  s e c o n d  

m o d e l  t o  m a k e  p r e d ic t io n

Figure 5.1: Flow chart of the proposed methodology

Step 1 Build the model that is believed to be plausible and choose parameters for it.
\

The parameters chosen should make the model produce a reasonable result that 

can be accepted by field experts. Then, undertake multiple replications and see 

how much variation there is in the results. Presumably, the larger the population 

size, the smaller the effect of the randomness. Next, choose a population size 

so that the randomness effect is acceptably small. After all this, the model will 

be treated as the “real” system in the research. This model is referred to as 

Modelreai_SyStem in the later descriptions.
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Step 2 Run M o d e l reai_system with the parameters found from the previous step, and 

record the output from it. The result will be treated as data observed from the 

“real” system.

Step 3 Mimic the process of modelling the “real” system using a second model 

{ M o d e lpre(nction) with the aim of the modelling project to make a prediction. 

Next, fit the parameters to Modelprediction to reproduce the observed data from 

the “real” system in order to find the range of predictions that can be obtained 

from parameters that fit the observable data.

5.2 CHOICE OF MODEL FOR THE RESEARCH

For the following reasons, a model of the adoption of a new product is chosen for the 

research. First of all, due to the features of this situation (traditionally modelled by 

the Bass diffusion model introduced in Chapter  4 ), scholars are becoming aware of the 

advantages of applying an agent-based simulation model in such a situation. Second, 

during the research, a marketing expert was available for consultation, which was 

useful as the field expert’s opinion helped to assess whether the model was plausible 

and realistic.

5.3 ADVANTAGES OF THE METHODOLOGY

The main advantage of such a pseudo-modelling exercise is that the real system 

is completely known. Consequently, the models’ predictions can be compared with 

the “true” future values, and the precise differences between the models and the real 

system are also known, because the real system is designed by the modeller. The
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modeller has a full understanding of the model’s structure. For instance, equations 

used in the model can be assumed to be correct.

This enables the research to isolate the effect of having to determine the parameter 

values by calibration. Since the structure of the “real system” and the model are 

identical the variance in predictions is entirely due to the calibration issue. If a real 

world system was modelled then the model structure would not match that of the 

real system (which, in any case, cannot be fully known) and it would not be possible 

to separate the effects of the differences in structure from the effects of calibration.

A further advantage of this approach is that it does not require the collection of real 

data, which can be difficult and time consuming. There are often also confidentiality 

problems in obtaining sales data.

5.4 DISADVANTAGES OF THE METHODOL­
OGY

The main potential disadvantage of the methodology is that the model used as 

the “real system” may not be realistic. If a real system was used then calibration 

tests could be applied to the model to assess its realism. However, our assessment can 

be made (in this case of M o d e l reai_system) by obtaining the opinions of a marketing 

expert.

5.5 DIFFERENCE IN THE METHODOLOGY TO 
THE PREVIOUS GROUNDWATER STUDY

Compared to the deterministic groundwater models, an additional problem for 

agent-based simulations is stochasticity. This is because heterogeneous populations
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are being modelled and therefore information for each individual in the real population 

will not usually be available. Instead, the model represents a typical population, 

and multiple replications are thus required to take account of the variations across 

possible populations. In particular, this means tha t a good fit with the historical data 

requires comparing the measured values against the range of values from the multiple 

replications, and predictions also need to be produced using multiple replications.



C hapter 6 

A G E N T -B A S E D  C O N SU M E R  
M O DEL

C H A PTER  OVERVIEW

This chapter explains the agent-based consumer model used in this research. It 

describes the model’s background, the conceptual model, the model’s structure and 

the final param eters decided upon in the model. It also details the model validation 

and verification. It describes a manual simulation, and an Excel-based formulation 

test to verify and validate the model.

6.1 MODEL OVERVIEW

The application chosen for the research was a consumer word-of-mouth (WOM) 

model. The reasons for choosing this application were that:

•  It is a situation in which agent behaviour is of importance.

• The ability to predict the future behaviour of the system would be very useful 

with significant potential commercial benefits.

•  There has been very little agent based modelling of this situation and so the
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model itself may contribute towards the development of theory and a better 

understanding.

• It is a common phenomenon which enabled me to use my own experience in 

developing the model. Input was also available from Mr Richard Meek in the 

marketing department.

The following assumptions have been made regarding the type of situation being 

modelled:

• The type of product is one with a short life-cycle, with a high likelihood of 

information and opinions being passed on between consumers by word-of-mouth.

• It is purchased as a one-off item (rather than a repeat purchase).

•  Examples would include a computer game, a music album or a cinema ticket 

for a particular film.

• The population represented might be school or university students.

In the simulation model, a social network of individuals who interact with one 

another rather than a vast population of agents with many neutral contacts is rep­

resented. All agents are allocated to a diffusion social circle with a certain level of 

influence within the social network. All agents initially have no knowledge or pref­

erences about the selected product. During the simulation, agents receive marketing 

communication messages (i.e. from company’s advertisements, supermarkets, online 

search results etc.) and contact each other to exchange their knowledge and prefer­

ences about the product.



89

The model is run on a daily basis. At the start of the simulation, all the agents 

have no knowledge and no preferences about the product, since it is a new product. 

However, the company conducts an initial marketing campaign, and the agents may 

also see the product in the shops or read about it in the media. These interactions 

enable the agents to gain knowledge and change their preference in the initial stages 

of the simulation. The limited time of the campaign is modelled according to the 

probability of receiving outside information being reduced linearly down to 25% of 

the initial value over a period of 75 days.

The scenario investigated in the research was th a t the current time is several 

weeks after the product was launched (10 weeks for the first experiment, but this 

time was varied in subsequent experiments). D ata for the to tal sales to date are 

available. The company wishes to predict the to tal sales of the product, the model 

should therefore match the sales to date and forecast the final sales. The key output 

variable is therefore sales.

The main output value of interest for the model is the number of purchases of the 

product in the population after the simulation period. Values up to a certain point 

(representing the time at which the modelling project is carried out) from the original 

model will be the historical data. The objective of the model will be to predict future 

sales.

6.2 MODEL DESCRIPTIO N

The following terms are used in this section:

• Characteristic: refers to aspects of the nature of the agent th a t are believed to
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exist in the real system such as the amount of influence the agent has within 

its social circle. They are assumed not to change during the simulation and are 

represented in the model using fixed attributes.

•  A ttribute: Variables attached to each agent. Fixed attributes are used to model 

characteristics. Variable attributes model changing views of the product.

• State: Refers to the values of an agent’s attributes at a certain time point.

6 .2 .1  A g e n ts ’ A ttr ib u te s

The model contains a heterogeneous population of consumers (the agents). There 

is a lack of empirical data and no consensus in the literature on how consumers 

interact, on what happens when they interact or on what the im portant features and 

attributes are. Therefore, the attributes of the agents and the interactions between 

agents are based on our subjective views of the factors tha t are seen as im portant in 

the real world, whilst also trying to keep the model’s structure as simple as possible.

A g en t’s v iew s o f th e  product In the model, each agent has two variable attributes 

whose values change as agents interact with each other and the environment or 

buy the product.

• K now ledge ( K ) \  knowledge  here represents an agent’s knowledge about 

the chosen product. It concerns the factors about the product. In other 

words, it is how much information the agent has about the product, defined 

as a figure ranging from 0 to 100. An agent with knowledge 0 means tha t 

the agent does not have any knowledge about the product at all, while an
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agent with knowledge 100 means tha t the agent has complete information 

about the product.

• P reference (P): preference  is the agent’s desire for the product. It implies 

how much the agent likes or dislikes the chosen product. It is shown as a 

figure ranging from —100 to 100. An agent with preference —100 means 

tha t the agent does not like the product at all and an agent with preference 

100 indicates tha t the agent likes the product very much.

A g en t’s C haracteristics The agents also have three fixed characteristics, assigned 

at the beginning of the simulation, which are all selected at random from prob­

ability distributions. These do not change during the simulation.

•  Influence ( /) :  this represents an agent’s social standing within the popu­

lation. Each agent is assigned an influence status, which cannot be changed 

for a particular product over the lifetime of the simulation. An agent with 

a high influence value means tha t their opinions have considerable weight 

in the conversations about the product. Influence can be any value between 

0 and 20.

•  U nbiased  true preference (U):  This param eter is introduced to repre­

sent the preference tha t an agent would have for the product with complete 

knowledge but with no peer pressure. It represents the underlying attrac­

tiveness of the product to the agent. In the model, unbiased true preference 

is a normally distributed value in the range [—95, —35] and [35,95].

•  B u y in g  criterion (B ): This is the preference value at which an agent
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buys the product. It represents varying attitudes regarding purchasing 

behaviour from cautious to free spending (some agents need less preference 

before they make a purchase than others). Agents buy when P > P ^ y .

6 .2 .2  E n v iro n m en t A ttr ib u te s

The environment communicates with agents in various ways and this is modelled 

in a similar way to inter-agent communications, with the environment having knowl­

edge, preference and influence attributes, although these do not change during the 

simulation.

6 .2 .3  In tera c tio n s  in  th e  M o d e l

D iffu s io n  S o c ia l  
C irc le

'Company'’
marketing
m essages

D iffu s io n  S o c ia l  
C ir c le

In d iv id u a l } 
p r o d u c t  | 
r e v ie w s  I

D if fu s io n  S o c ia l  
C ir c le

Figure 6.1: Interactions in the model

The interactions simulated in the model are conversations between agents about 

the product, and interactions between agents and the environment regarding the
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product (for instance, agents seeing adverts, reading product reviews or seeing the 

product in the shops). Another interaction in the model is agents buying the product 

and in this case, agents experiences of the product through using it. The strength of 

all these interactions will depend on the relative influence of the two communicating 

parties.

6 .2 .4  R u le s  on  C o n ta ct

Notation:

In a single conversation where agent [a] contacts agent [b].

• K™ew is agent [a]’s knowledge after the conversation.

•  K ° ld is agent [a] ’s knowledge before the conversation.

• Kb  is agent[b]’s knowledge.

•  p™ew is agent [a] ’s preference after the conversation.

• P ° ld is agent [a]’s preference before the conversation.

•  P b is agent[b]’s preference.

• Ib and I a stand for agent [b] and agent [a] ’s influence values respectively.

•  Ua is agent [a]’s unbiased true preference.

•  N a is the number of purchases agent [a] has made (including the current pur­

chase). N  is introduced for repeated purchase behaviour.

•  a  is a random number between 0.01 and 0.15.
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/ '  In te ra c tio n s

# /(Ka.Kb.Pa.Pb.ta.lb)

f  P r e f e r e n c e
/(U. AK) 

-C h a n g e s —

Figure 6.2: How agents change their knowledge and preferences

As shown in Figure 6 .2 , there are two ways for an agent to change its knowledge 

and preference. Agents gain knowledge from the interactions, which is a function of 

how much knowledge they know about the product and how much the other party 

knows about the product, using E qu a tion  6.1. In addition, agent may forget some 

knowledge according to a random percentage. The agent’s preference can be changed 

by the change of their knowledge; this is represented as a function of the change 

in knowledge and their unbiased true preference, using E qu a tio n  6.3. Additionally, 

the agent’s preference can be changed by peer pressure, this is a function of the 

difference in knowledge, influence and preference between two parties, using E qu a tion  

6 .4 ■ Moreover, E quation  6 .3  applies every time there is a change in knowledge (i.e. 

after talking to another agent, after buying the product or if the agent loses knowledge 

at the end of each day).

Fixed equations are used for each of these interactions, and the forms of the 

equations for agent a  interacting with agent /  environment b are as follows:
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Change in knowledge due to the interaction:

K ™  =  K ,d +  a  x Kfy x (1° ° 1Q(f “M) (6.1)

It is assumed th a t in absence of peer pressure:

K
P r e f e r e n c e  =  U  x (6.2)

Based on this underlying assumption, the effect on preference of the change in 

knowledge is:

Tsnew    r/'old  o n
ynew r>old \ /

P T  =  P°aLd +  Ua x  ( -a—  « - ) X ( - ) (6.3)
100 20 +  | P £ ld -

The effect on preference of peer pressure is:

P T W =  +  «  x  ( H  -  Pa01*) x  0 “  +  % - *  x (1 0 + 2JQ ~ /a) (6.4)

W hen an agent’s P  (preference) reaches Pbuy, the agent buys the product, and 

equations (6 .5 )  and  (6 .3 )  apply.

N .  x +  100
K ‘  — K T l —  ( 6 ' 5 )

(T h e  s i tu a t io n  m odelled  in this research is a on e-off  purchase  an d  so N a =  1 here.)

In each of these interactions, the agents may increase their knowledge, K , repre­

senting gaining information about the product (E qu a tion  6.1). The change in knowl­

edge depends on the existing knowledge of both parties. The gain in knowledge is the 

proportion of knowledge not known by the agent multiplied by the knowledge of the 

other party  multiplied by a random proportion a .  For example, if the agents knowl­

edge is 70, then they will gain a random proportion of 0.3 x a  of the other party ’s
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knowledge. This is based on the assumption tha t even if the other party knows less 

than the agent they will still probably have some different knowledge.

Whenever an agent’s K  value changes, this changes its P  value as a function of 

the U  value (E qu a tion  6.3). The underlying assumption is E qu a tio n  6 .2  is absence of 

peer pressure (i.e. a linear relationship between P  and K ). Therefore, an increase in 

knowledge increases the preference by a proportion of the U  value (with an adjustment 

to take account of existing peer pressure).

The preference, P , will also change, due to the influence of the preference of the 

other agent (peer pressure) or the environment (e.g. an opinion in a magazine review) 

(.E qu a tio n  6-4)- The strength of both of these interactions depends on the relative 

knowledge and influence of the two parties.

The agent buys the product when its preference, P , reaches its buying criterion, B .  

This increases the knowledge of the product by of the current lack of knowledge 

(E q u a tio n  6.5). As is the case with any change in knowledge, E qu a tio n  6 .3  is then 

used to change the agent’s preference.

Interactions with the outside environment regarding the product are split into two 

types (F igure 6.1): information from the company and information from independent 

sources. These interactions use E quations  6.1, 6 .3  and E qu a tio n  6.4 to change the 

agent’s K  and P  in exactly the same way as interactions with other agents.

The population is divided into groups (representing social groupings), and each 

agent has a much higher probability of talking about the product to other agents 

within the group than to other agents outside the group. Agents also have a proba­

bility of losing some knowledge each day.
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6 .2 .5  R em a rk s on  E q u a tio n s in  th e  M o d e l

In this subsection, the equations used in the model will be explained in more detail.

6.2.5.1 Equation 6.1

K ™ w =  K ° ld +  a  x  K b x  (10°-K°ald)

This equation models tha t when an agent exchanges information with other agents or 

receives marketing information, it will gain knowledge. The agent’s new knowledge 

equals to the agent’s old knowledge K old plus a random proportion of the other party ’s 

knowledge times the lack of knowledge this agent used to have.

6.2.5.2 Equation 6.3

pnew _  pold I TT w ( K a - K * \  ( 20 \
P a  - P a  +  U a  x  (  10 0  )  X

The above equation implements how an agent’s preference changes when its knowledge 

changes, whether it goes up (gain knowledge) or down (lose knowledge).

j y n e w  fso ld .  . /* i i i i i
Ua x  ( a-~100 ° ) represents the increase in preference the agent would have in the 

absence of peer pressure based on the absolute value of the current peer pressure effect

being equation  6 .2  ( P r e f e r e n c e  =  U  x  ^ ) .

IP old — — I is the difference between what the agent’s preference should be
I CL 1 0 0  I

based on the agent’s unbiased true preference and current knowledge and what it 

actually is.

 — ij- was put into the equation to reduce the change in preference if
20+\P°ld- - a*ffi~\

there is peer pressure. This is based on the assumption th a t the impact of a change in 

knowledge will be lower if the agent is subject to peer pressure (i.e. the peer pressure 

will eliminate some of the effect of the change in knowledge).
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6.2.5.3 Equation 6.4

p n e w    p o l d  i v  ( p  _  p o l d \  v  (1°°+ K £ ld- K a) (10+ I b- I a)
a a t  U  X { r b  a ) x  200 20

This equation is used for an agent to change i t ’s preference when making contact 

with other parties. The agent’s new preference after a conversation with other parties 

equals the agent’s old preference plus a random proportion of a measurement that 

takes into account the difference between two contacting parties’ preferences, influ­

ences and knowledge. In general, this equation represents the fact th a t an agent’s 

preference is changed by peer pressure.

Pb — P ° ld is the difference between two parties’ preferences.

1QQ+̂ o  ~Ka is a ratio between 0 and 1 depending on the difference in knowledge 

(the greater the extra knowledge of the other party, the greater the effect tha t their 

preference has).

*~ 20~~  *s use<̂  reflect impact of the relative difference of the two parties. 

Since lb and I a are numbers from 0 to 20, the maximum value for this part of the 

equation will be 1.5. Such a ratio implies that, if an agent has an extremely high 

influence, this agent tends to have a big effect on changing the opinion of an agent 

with an extremely low influence.

6.2.5.4 Equation 6.5

K new _  N a x K ° ld+100 
® N a+ 1

This equation reflects the impact of the latest purchase on an agent’s knowledge. 

In real life, it represents the fact tha t an agent gains more knowledge after they start 

using the product. Agents in the model were limited to one purchase only (in this case,
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N a =  1 and the equation transforms to K™ew =  - - -  £-1-00) but the general equation also 

shows how the model should be for repeat purchase (with each subsequent purchase 

having less of an effect).

6 .2 .6  M o d e l Im p le m en ta tio n

Algorithm in pseudo code:

SET UP AGENTS’ ENVIRONMENT
//environment:individual 
//source and company source 

SET UP AGENTS’ ALLOCATION MAP
//assign agents’ social group 

INITIALIZE AGENTS’ ATTRIBUTES
//set up agent’s initial unbiased preference,
//influence,other probabilities etc.

FOR i=0, i<730, i++
//730 simulation days

{
FOR EACH AGENT 
{
AGENT RECEIVES INFORMATION FROM ENVIRONMENT

//initially, agents obtain their knowledge and 
//preference from the environment 

UPDATE AGENT’S STATUS
// change agents’ preference,
//knowledge and purchase status

>
FOR EACH AGENT 
{
AGENT CONTACTS OTHER AGENTS IN SAME GROUP

//agents choose other agents from the same group with a given 
//probability to talk 

UPDATE AGENT’S STATUS
// change agents’ preference,
//knowledge and purchase status

}
FOR EACH AGENT 
{
AGENT CONTACTS OTHER AGENTS FROM OTHER GROUPS

//agents choose other agents from different groups with a given 
//probability to talk
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U P D A T E  A G E N T ’ S  S T A T U S

// change agents’ preference,
//knowledge and purchase status

>
F O R  E A C H  A G E N T  

{
A G E N T  L O S E S  K N O W L E D G E  

U P D A T E  A G E N T ’ S  S T A T U S

// change agents’ preference,
// knowledge and purchase status

>
>

P R O D U C E  O U T P U T

//record how many agents bought the product during the simulation

To implement the above pseudo code, C + +  is applied. Figure 6 .3  shows how 

the objects (AGENT and SOURCE INFORMATION) work and provides a list of 

methods of the above objects:

O b jec t: S O U R C E  IN FO R M A TIO NO b jec t: A G E N T

D ecide th e  type of so u rc e

R ec e iv e  inform ation

U pdate  s ta tu s

R an d o m  conve rsa tion  to  a g e n ts  from  o th e r

C alled by o b jec t (ag en t)U pdate s ta tu s

L ose know ledge

U pdate  s ta tu s

C om pany

G e n e ra te  
K (know ledge) 
P (p  re fe ren ce) 

((influence)

G e n e ra te
K (know ledge)
P (p re fe ren ce)

l(influence)

C o n tac t o the r a g e n ts  in the s a m e  g roup 
Function: void con tact(in t iterator, int p i .  int p2)

G en e ra te  initial s ta tu s  
Function: void se tR andom R ela tionsh ip s(); 
Function: void setln itialsta tus();

Figure 6.3: Objects: agent and source information
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6 .2 .7  D e fa u lt  P a ra m eters

Having constructed the model structure as described in the previous sections, the 

next stage in the modelling involved choosing the values for the parameters. The 

model with the default param eters is the “real system” , and therefore the parameters 

were adjusted until the model showed plausible behaviour.

After a preliminary study of the model and discussion with a field expert (Mr. 

Richard Meek, who is an expert in the marketing field), the param eters were chosen, 

which result in 4.9% of the whole population buying the product in the first 70 

simulation days (which was designed to  reflect an advertisement campaign launched 

for the new product) and 24.7% of the population buying the product at the end of 

the whole simulation period, which are believed to be reasonable. The param eters are 

shown in Table 6.1.

Table 6.1: List of default param eters

P aram eter V alue P aram eter V alue

P m ean-positive 75 Ustdev .positive 15

P m ea n .n eg a tive -75 P stdev .positive 15

P ta lk -to  s a m e  .group 10% P positive .U  value 90%

P m e a n 65 P s td e v 10

P re c e iv e .in f  o rm a tio n .M  IN 0% P re c e iv e .in f o rm a tio n .M  A X 25%

PloseJznowledge 1% P  c o m p a n y  . m a r k e t i n g . i n f r o m a t i o n  
o u t s i d e - i n  f  o r m a t io n

80%

Im ea n .a g en t 10 1stdev .agents 3

I  company .M I  N 0 I  com pany-M A X 5

Im ea n .in d ep a n d en t 10 I stdev .indepandent 3

C  o m p a n y - k n o w le d g e mean 60 C o m p a n y - k n o w le d g e  stdev 15

C  o m p a n y  . p r e f e r  en cemean 60 C o m p a n y - p r e f e r e n c e  s tdev 15

Continued.
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I n d e p e n d e n t  .k n o w le d g e mean 40 I n d e p e n d e n t .k n o w le d g e  stdev 15

I n d e p e n d e n t - ( + ) p r e f e r e n c e mean 65 I n d e p e n d e n t . ( + ) p r e f e r e n c e stdev 10

I n d e p e n d e n t .% p OSitiVe_preference 90% R andom -coeff ic ien t 0.1 ~  0.15

I n d e p e n d e n t - ( —) p r e f e r e n c e mean -65 I n d e p e n d e n t_(—) p r e f e r e n c e stdev 10

P o p u la t io n 500 Sim u la t io n  len g th (days) 730

R a n d o m  con versa tion 5 R a n d o m  Seed 3

Agents group size from 2 to 8 (based on binomial distribution)

Notes:

• The U  (unbiased preference) value and B  (buying criteria) value follow nor­

mal distribution with mean and standard deviation given in Table 6.1. The 

Um ean .negative  param eter refers to the proportion of the population having neg­

ative U  values (i.e. dislike), with the probability of an agent having a negative 

U  value being 10%.

• The probability of the independent source having a negative preference is 20%.

• The number of random conversations each day refers to the to tal number of 

conversations outside the social groups in the population (i.e. five pairs of 

agents are picked at random from the population).

•  The probability of agent receiving products’ message from independent media 

or company’s side follows uniform distribution between P re c e iv e .in f o rm a tio n .M  I N

and P rece ive .in fa rm a tio n .M A x • The percentage of messages from the company in

all outside information is P c o m p a n y .m a r  k e t i n q . i n f r o m a t i o n  .
o u t s id e ^ in  f o r m a t i o n

•  The agent’s influence value follows normal distribution N  i^Im ean-agenti ^s td ev .a g en ts)  

while the influence value of the company’s messages follows uniform distribution
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between I COm p a n y .M iN  and I  company . m a x -  The influence value of the information 

from independent media follows normal distribution.

The company’s knowledge and preference follow normal distribution.

The population is divided into groups, sized between 2 and 8 as shown in Figure

6.4 • A binomial distribution (B inom ia l(7, 0.5)) is used for the probabilities of

the different group sizes, as it is considered to provide suitable values: for x

between 2 and 8, the probability of group size x  =  ^ ~ ll7’Q'3) , where b(x, 7,0.5)
E 6(<,7,0.5)
i = 1

is the binomial probability of x  successes from 7 trials with probability of success 

0.5.

Group Size Distribution

0.3

0.25

0.2

|  0.15 
o 
£

o.i

0.05

0

Group size

Figure 6.4: Group size distribution



104

6.3 MODEL VERIFICATION & VALIDATION

6 .3 .1  M o d e l V erifica tion

Verification is the process of making sure tha t the model does what it is intended to 

do from an operational perspective. The best strategy to identify bugs is to examine 

carefully behaviour rules and the internal data  of the agents and then to verify agents’ 

exact behaviour. Therefore, a manual simulation and an Excel-based simulation were 

carried out in order to verify the model.

6 .3 .1 .1  M anual S im ulation

First of all, I examined the internal behaviour and data  of the agents and verified 

agents’ exact behaviour. This process is easy to conduct with a high-level development 

library (e.g. Microsoft Visio Studio dot Net: C + + ). During the model’s implemen­

tation phase, a large number of breakpoints were inserted into the source code. The 

model was then run in “debug” mode. Therefore, a separate window of each variable’s 

changes could be monitored to make sure the model performed correctly. Once the 

model was able to be compiled with no error messages, and all warning messages were 

carefully examined, a manual simulation was carried out.

Due to the time difficulties in performing the manual simulation, the number of 

agents was fixed to 10. Additionally, only the first 10 days of the simulation were 

run. The knowledge and preference of each agent for each day were compared to 

the simulation results from the computer model. The initial param eters and random 

numbers used were from the computer model.

The results of the manual simulation matched the results gained from running the
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computer model, indicating tha t the computer model was running correctly for this 

scenario.

6.3 .1 .2  E xcel S im ulation

In order to test the model’s algorithms (equations used in the model), a simulation 

in Excel was carried out after the manual simulation. Due to the complexity of 

the simulation, it was not possible to undertake a comprehensive simulation using 

Excel with 500 agents th a t included every single detail. Therefore, the simulation 

using Excel was limited to two agents with fixed knowledge, preference, unbiased true 

preference. And the computer model output matched the Excel results.

6 .3 .1 .3  ST R E SS Test

A number of extreme values were used as model inputs to examine how the model 

behaved in extreme circumstances.

Table 6.2: List of extreme param eters and tests’ results

Param eter V alue tested P re-exp ecta tion R esu lt

Um ean.positive -100 Very fe w  agents  buy the produ c t Yes

Um ean .positive 100 Very high percen tage o f  the p o p u ­

lation  buys the produ c t

Yes

Plose.know ledge 0 A gen ts  end  up w ith  v e ry  high 

knowledge

Yes

P lose.know ledge 100 N o purchases were m a d e Yes

p
r  ta lk  .to .sam e .group 100 S im u la t io n  ends up w ith  clearly  

clustered group preferences

Yes

Continued.
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p
talk J.o s a m e  -group 0 S im u la tion  ends up w ith  ran­

d om ly  d is tr ibu ted  a g e n ts ’ p re fe r ­

ences

Yes

P re c e iv e jin f orm ation 0 N o  agents buy the p rodu ct Yes
p
r  re c e ive .in f orm ation 100 Very high percen tage o f  the p o p u ­

la tion  buys the p rodu ct

Yes

P m e a n 100 N o agents buy the produ c t Yes

B m e a n 0 A lm o s t  every  agent buys the p ro d ­

uct

Yes

As shown in Table 6 .2 , the model produced the results expected for extreme cir­

cumstances, thus adding to the confidence tha t the model does what it is intended to 

do.

6 .3 .2  M o d e l V a lid a tio n

The main objective of model validation is to test whether the model reproduces 

system behaviour with enough reliability to satisfy the project objectives. As far as 

this model is concerned, as described in the methodology chapter (C h a p te r  5), the 

main objective of the model is to build up a platform th a t can produce plausible 

marketing behaviour. Additionally, it is not a real case simulation, but a simulated 

marketing world simulation.

As mentioned in S ection  6 .2 .7 , a marketing expert1, Mr Richard Meek, had some

*Mr Richard Meek, Lecturer (part time) in the Marketing Departm ent, Management School, 
Lancaster University, UK
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input in the model design phrase by explaining current marketing theory. He con­

tributed to  the validation of the model by confirming th a t the model produced rea­

sonable behaviour from a marketing expert’s point of view, which is the main aim of 

the model.

The model is therefore believed to be able to satisfy the original design require­

ment, due to the fact tha t it can produce plausible marketing behaviour.

6.4 O U TPU T VALUES

6 .4 .1  M ain  O u tp u t F ile  F orm at

The output file in Table 6 .3  gives the main results from running the model. It 

records the total number of sales each day for the whole population (for each run if 

multiple replications are carried out).

Table 6.3: Example of main model output file

Sales Rurii Ruri2 R u n s Runiooo Average

D a y i

D a y jz t

6 .4 .2  D e ta ile d  O u tp u t F ile  F orm at

This output file is for detailed model investigation as shown in Table 6.4• This 

output file records the individual values for the agents on each day of the simulation 

for a single run. The first three rows record selected fixed a ttribu te  values. The 

remainder of the file records the values for knowledge and preference at the end of 

each day, as well as whether the agent bought the product on th a t day.
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Table 6.4: Example of model detailed output file

A g e n t \ A g e n t2 A g e n ts A g e n t 500

Group number

Unbiased T preference

Buy criterion

D a y i Knowledge

Preference

Purchase

Day73Q Knowledge

Preference

Purchase

6.5 SUM M ARY

This chapter has introduced the model structure used in this research. It has given 

a general idea of how the basic model works. Section  6.1  has provided an overview of 

the model. It has described the background and assumptions of the model. Section

6 .2  has introduced the agents’ attributes, environment, agents’ contact rules, etc. 

Moreover, in Section  6 .2 .4 , the equations used in the model have been described 

in detail. S ec tion  6 .2 .7  has described how the default param eters were chosen and 

has given a list of the default parameters. The basic model with default param eters 

will be treated as the “real world” , and the data  collected from it will be treated 

as “real” data  for future calibration use. S ection  6 .3  has described the verification 

& validation of the model. Regarding model verification, a manual simulation along
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with a simulation in Excel were conducted to test whether the model did what it was 

designed to do. Additionally, the model was tested with various extreme values to 

check how it had performed in extreme circumstances. Regarding model validation, 

consultation of a marketing expert played an im portant role. His opinion contributed 

to the assessment of whether or not the model had produced a reasonable output. 

Both the verification and the validation results were positive. The confidence in the 

model was confirmed, thus allowing further experiments to  be undertaken as outlined 

in the next chapter.



C hapter 7 

M O DEL B E H A V IO U R

CH A PTER  OVERVIEW

This chapter describes the initial experiments th a t were conducted. It starts with 

the model output study to give a general idea of how the model behaves followed 

by sensitivity analysis of the different parameters. Sensitivity analysis has been con­

ducted to investigate the impacts of changes in the following parameters: the prob­

ability of losing knowledge at the end of each simulation day, the probability for an 

agent to talk to agents from the same group, the probability for an agent to receive 

outside marketing information, the mean in the normal distribution of an agent’s 

buying criterion and the mean in the normal distribution of an agent’s unbiased true 

preference. In order to investigate the model dynamics, an experiment on the outside 

marketing sources’ knowledge and preference has also been conducted. At the same 

time, the agents’ group number has been tested.

110
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7.1 MODEL BEHAVIOUR - BEHAVIOUR OF “REAL  
SYSTEM ”

After the model was built, a few tests were conducted to examine if the model can 

produce plausible, realistic results.

The model was run with 500 agents, which represents a small community such 

as a school. The run length was 730 days (2 years). The model with the default 

param eters was run 1000 times and this was assumed to represent the to tal population 

(i.e. 1000 schools). The average of these 1000 replications therefore represents the 

true behaviour of the real system. The results gained were treated  as real values 

observed from the real system in the later calibration phase.

7 .1 .1  S a les D is tr ib u tio n

Figure  7.1 shows the product life cycle of sales per day for 1000 replications and 

Figure 7 .2  shows the same data  as cumulative sales. The highest sale appears around 

the 70th day when the average sales reach 1.318. There is quite a long tail with even 

a few sales taking place in the second year. This pattern  accords with a typical new 

product launch pattern  and it is therefore believed to be realistic.

The average total number of sales per replication is 123.591 (24.7% of the pop­

ulation of 500). There is considerable variability across the replications. F ig u re ! .3  

shows the distribution of total sales for the 1000 replications and Figure 7.4 shows the 

distribution of the first 10 weeks sales for the 1000 replications. Total sales appear to 

be approximately normally distributed.
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7 .1 .2  P eer  P ressu re

Various additional analysis were carried out to get a better understanding of the 

behaviour of the model. In this section, the model is run one time but with much 

more detailed output. For instance, the output result includes each agent’s knowledge 

and preference as well as each agent’s group number and purchase status.

The effect of peer pressure was examined by plotting the proportion of the group 

tha t purchased the product for all the groups in one run of the model. As mentioned 

in the previous Chapter, the group size varies between 2 and 8 and in this run, it 

happens to be 100 groups. The results for preference and purchase rate are shown in 

Figure  7.5  and Figure  7.6.

Peer pressure is represented by the tight grouping of preference values in Figure  

7.5, which shows each agents’ preference in the end of a simulation. People from the 

same group tend to have similar preference. However, it is not realistic in the sense 

tha t people in real world would not have exact the same preference.

In Figure  7.5, peer pressure is evidenced by the relatively high proportion of ex­

treme values. Many groups had 100% uptake meaning tha t all group members bought 

the product, and many groups had 0% uptake indicating th a t no purchases were made 

among the whole group.

7.2 SENSITIVITY ANALYSIS

“Sensitivity analysis studies the relationships between information flowing in and 

out of a model” (Saltelli and Scott, 2000). In general, sensitivity analysis is used 

to obtain a better understanding of model behaviour by looking at how much effect
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each input param eter has on the model output. Moreover, to some extent, sensitivity 

analysis could also be used as a model verification test, a white box validation. In 

such cases, sensitivity analysis can help to measure if the model behaves in realistic 

way (the way as we would expect). If not, it may indicate error in building the model 

or th a t the conceptual model is not realistic.

Sensitivity analysis was carried out for all the main param eters as explained in 

following sections. The outputs of interest are the first 10 weeks sales and the total 

sales. In each experiment, the model was run 100 times and the average results for 

the 100 replications were plotted.

7 .2 .1  E x p er im e n t P a ra m eters

All experiments in the following sections will use the default param eters set (shown 

again in Table 7.1), though the param eter which needs to be tested will vary in each 

experiment.

Table 7.1: List of default param eters

P aram eter

U m ean  .positive  

U m ean-negative  

P ta lk -to  .sam e .group  

P m e a n

P re c e iv e .in f  o rm a tio n .M  I N

P lose.know ledge

7-mean.agent

' company .M I N

Lm ean.indepandent

V alue P aram eter V alue

75 U stdev .positive 15

-75 U stdev-positive 15

10% P positive .U  value 90%

65 P s td e v 10

0% P re ce iv e -in f o rm a tio n .M  A X 25%

1% P  c o m p a n y  . m a r  k e t i n g - i n  f  r  o m a t i o n  
o u t s id e  j i n f  o r m a t io n

80%

10 1 stdev.agents 3

0 7 company .M A X 5

10 7 stdev .indepandent 3

Continued.
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C  o m p a n y  _.knowledgemean 60 C  o m p a n y - k n o w le d g e  stdev 15

C  o m p a n y - p r e f e r e n c e mean 60 C  o m p a n y - p r e f e r e n c e stdev 15

Independent-know ledge-m ean 40 I n d e p e n d e n t - k n o w le d g e stdev 15

I n d e p e n d e n t - ( - \ - ) p r e f  e r e n c e mean 65 I n d e p e n d e n t - ( - \ - ) p r e f e r e n c e stdev 10

I n d e p e n d e n t  jyopOSitivejpref erence 90% R an dom -coeff ic ien t 0.1 ~  0.15

I n d e p e n d e n t_(— ) p r e f e r e n c e mean -65 I n d e p e n d e n t_(—) p r e f e r e n c e stdev 10

P o p u la t io n 500 S im u la t io n  length (days) 730

R a n d o m  con versa tion 5 R a n d o m  Seed 3

Agents group size from 2 to 8 (based on binomial distribution)

7 .2 .2  E x p er im e n t 1 -  P l o s e - k n o w l e d g e

O bjective: Experiment 1 is the sensitivity analysis of the percentage of losing 

knowledge at the end of each simulation day. The expectation was th a t the more 

knowledge an agent loses each day, the slower the agent builds up its knowledge and 

consequently, the lower product uptake percentage in the whole population.

7.2 .2 .1  P aram eters U sed  in T he E xperim ent

In this experiment, the percentage of losing knowledge at the end of each simula­

tion day(Plose.knowledge) was changed from 0% to 5% with 0.50% increments.

7.2 .2 .2  R esu lt

From Figure  7.7, a negative relationship between the sales and percentage of losing 

knowledge can be observed. In addition, the to tal sales as well as sales for first 10 

weeks are sensitive to the percentage of losing knowledge in the range of [0% ~  

2%]. The reason behind it is the fact tha t if an agent loses a high percentage of its 

knowledge at the end of the simulation day, it will be very difficult for the agent to 

build up its knowledge. Consequently, it will slow down the spread of the knowledge
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Figure 7.7: Sensitivity analysis of the percentage of losing knowledge

in the population. Accordingly, this leads to a very slow increase of agent’s preference 

(because: P™ew = P°ld +  a  x (Ph -  P °ld) x (1°°+^ 0 ~K-a-  x (10+̂ ~ /o), a small A K  will 

lead to a small P). The simulation, therefore, ends up with very few agents buying 

the product.

7 . 2 . 3  E x p e r i m e n t  2  -  P t a l k - t o s a m e - g r o u p

O bjective: Experiment 2 is the sensitivity analysis of the probability for an 

agent to talk  to agents from the same group. The likely effect here is th a t the more 

probability for an agent to talk to agents from the same group, the more similar the 

group behaviour.
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7.2.3.1 P aram eters U sed  in T he E xperim ent

In this experiment, the probability for an agent to talk to agents(P ta ik -to sa m e-g ro u p )  

from the same group was changed from 0% to 100% with 5.00% increments.

7.2 .3 .2  R esu lt

200
180
160
140</>

I 120 
100<n .2

O Q. 
U) 0) «  »-

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%

Probability talk to agents from the same group

-a-  10 weeks -"-to ta l sales

Figure 7.8: Probability for agent to talk to agents from the same group

From Figure 7.8, there is clearly a positive relationship between the sales and the 

probability for an agent to talk to agents from the same group for the lowest values 

of the probability. When PtaikJosame.group is greater than  25%, the to tal sales tends 

to be constant but as the probability increase more agents make the purchase within 

the first 70 days. Another interesting observation is the upper limit of the to tal sales. 

In other words, while Ptaikjtosame-group changes from 25% to 100%, the to tal sales 

stay in a stable range and do not go over 190. In practice, this indicates th a t if the
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social circle (social group) is fixed, increasing the probability for them  to exchange 

information about the product only improves the sales up to a certain point. After 

this point, the probability for consumers to talk about the product will no longer be 

a crucial factor but will make the purchases occur more during the early stage of the 

new product.

7.2 .3 .3  E xpansion  - P eer P ressure Test

In order to investigate the peer pressure further, this experiment was expanded 

by looking at the proportion of groups where all those in the group purchase (i.e.

the num ber o f group in  which all group m em bers purchased \  
the total num ber of groups '

0.14

A
o 0.12

©

8 °-1 
£
£
Q. 0.08a3s
®  0.06  
© 
o 
£
5  0.04  
©
£

0 0.02

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P ro bab ility  fo r  a n  a g e n t  to  ta lk  to  o th e r  a g e n ts  fro m  th e  s a m e  g ro u p

Figure 7.9: The group uptake percentage

In Figure 7.9, the x  axis is P t a i k . t o . s a m e . g r o u p  which was changed from 0% to 100% 

with 10% increments. The y axis is the whole group uptake rate. There is clearly a
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positive correlation between them. This indicates tha t the more chance for the agents 

to talk to the other agents in the same group, the stronger peer pressure is in the 

group, which leads to the similar behaviour in the group.

7 .2 .4  E x p er im e n t 3 — Pcompany-marketing-in f rom ation
out side-in form ation

O bjective: Experiment 3 is the sensitivity analysis of the probability for an agent 

to receive outside marketing information. The expected effect here is th a t the more 

probability for an agent to receive outside marketing information, the more chance 

for the agent to gain a high knowledge of the product. Therefore, the agents’ uptake 

behaviour will be decided more by the initial unbiased true preference value.

7.2 .4 .1  P aram eters U sed  in T he E xperim ent

In this experiment, the probability for an agent to receive outside marketing 

inform ation(PcomPaniy.marfcetinq-infromation) was changed from 0% to 100% with 5.00% in-
o u t s i d e ^ i n  f o r m a t i o n

crements. This was done with a fixed probability rather than  the uniform distribution 

of the default parameters.

7.2 .4 .2  R esu lt

From Figure 7 .10 , a smooth line for the first 10 weeks of sales can be observed 

while the line of to tal sales starts with a sharp increase when the probability for agent 

to receive outside marketing information changes from 0% to 10%. W ith a value of 

0% there is no outside information and so the agents are unable to gain knowledge 

or preference and so there are no sales. A probability of 5% is significant to generate 

about 100 sales although it takes a longer time for the agents to gain knowledge and 

so there are very few sales in the first 10 weeks. As the probability increases, total
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Figure 7.10: Probability for agent to receive outside marketing information

sales increases approximately linearly. However, even with a probability of 95% the 

to tal sales are only 200. This is because the probability reduces during the first 70 

days to represent the initial advertising campaign and therefore there is a limit to the 

effect th a t increasing this param eter can have. At high values most of the sales are 

within the first 70 says.

7 . 2 . 5  E x p e r i m e n t  4  -  Bmean

O bjective: Experiment 4 is the sensitivity analysis of mean of the normal dis­

tribution of an agent’s buying criterion. The expected effect here is the higher the 

mean, the lower the product uptake percentage in the whole population.



123

7.2 .5 .1  P aram eters U sed  in T he E xperim ent

In this experiment, the mean of the normal distribution of an agent’s buying 

criterion(B mean) was changed from 0 to 100 in increments of 5.

7.2 .5 .2  R esu lt
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Figure 7.11: The mean of agent’s buying criterion

From Figure 7.11, an obviously negative relationship between the mean in the 

normal distribution of an agent’s buying criterion and the to tal sales can be observed. 

This is because when an agent’s buying criterion increases, the agents are more picky 

in term s of making a purchase. For instance, when B mean is 100, the to tal sales ends 

up with almost 0 since B mean is too high for agent’s preference to reach which leads 

to almost no purchases at the end of the simulation.
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7 . 2 . 6  E x p e r i m e n t  5  -  Um e a n - p o s i t i v e

O bjective: Experiment 5 is the sensitivity analysis of the mean of the normal 

distribution of an agent’s unbiased true preference. The expected effect here is th a t 

a higher mean will lead to higher preference values and therefore a higher uptake 

percentage.

7.2 .6 .1  Param eters U sed  in T he E xperim ent

In this experiment, the mean of the normal distribution of an agent’s unbiased 

true preference(Unean.positwe) is changed from 0 to 100 in increments of 5.

7 .2 .6 .2  R esu lt
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Figure 7.12: The normal distribution mean of agent’s unbiased true preference

In Figure 7.12, when U m e a n .P o s i t i v e  changes from 0 to 40, the to tal sales are close to

0. The to tal sales increases when Urneanjpositive is more than 40 and shows a positive
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relationship with U m ean_pOSitive . However, even Umean_posztwe =  100 doesn’t make all 

agents purchase the product. This is due to the fact tha t 10% of the agents are 

initially allocated with a negative U value and the existence of peer pressure within 

social group causes some agents with a high U value to end up with relatively low 

preference.

7 .2 .7  E x p er im e n t 6 - K out and  Pout

O bjective: Experiment 6 was designed to investigate the effect of the company’s 

knowledge and preference, which is passed on by the company’s advertising cam­

paign. The frequencies of receiving information from the company was investigated 

in Experiment 3. This experiment looks at the nature of information from company.

7.2 .7 .1  P aram eters U sed  in T he E xperim ent

In this experiment, the mean for the company’s knowledge ( K out) and preference 

{ P o u t)  were both changed from 0 to 100 in increments of 5. All the combinations of 

values were simulated giving a to tal number of param eter sets of 431 (=  212).

7 .2 .7 .2  R esu lt

F igu re7 .13  and Figure7.14  shows tha t as K out and P out increase from 0 to 100, the 

to tal sales and the first 70 days sales increase accordingly. W ith the value of 0% there 

is no company knowledge and preference available in the market (no advertisement 

campaign launched), and so the only information source for the agent to gain knowl­

edge will be the independent source, which is only weighted as 20% of the to tal market 

available information. The agents can only obtain knowledge and preference from a
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very limited source and so there are no sales in the first 70 days but considerable sales 

(80) by the end of simulation.

Preference P out has more effect than knowledge K out on the sales in the first 70 

days. As shown in F igu re? .14, with the K out value of 0 and P out value of 100, these 

reflect the fact tha t in the extreme condition th a t the company launched an ad­

vertisement campaign focusing only on publicising the brand instead of the specific 

product, the company can still generate some sales in the early stage (sales 40 after 

70 days). This corresponds to real markets with some consumers making purchases 

based mainly on the brand.

7 .2 .8  E x p er im e n t 7 - G rou p  S ize

O bjective: Experiment 7 was designed to explore the influence of social group 

size on agents’ purchase behaviour.

7.2 .8 .1  P aram eters U sed  in T he E xperim ent

In this experiment, the social group size was changed from 0 to 160 in increments 

of 5. In order to make the experiment applicable, the group size was fixed to the 

testing param eters instead of using a binomial distribution. Because the population 

set in this model is 500, very large group sizes (bigger than 160, 32% of the whole 

population) were not considered. Small group sized (as used in the default parameters) 

were investigated in more detail by running the model for each size from 2 to 15.

7 .2 .8 .2  R esu lt

The results are shown in Figure?. 15  and Figure 7.16. As group size increases from 

2 to 6, the to tal sales increases. This might relate to the way the program works as the
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probability for an agent to talk to each friend within the group is fixed, therefore, if 

the group is large, the agents will have more conversations each day which causes their 

knowledge to be built up quicker and consequently, the agent will purchase earlier. 

As F ig u re? .15 shows, when the group size goes over 25, the 10 weeks sales and total 

sales are very close to each other, with most agents therefore purchasing in the first 

70 days or not at all. When the group size is big, the peer pressure in the group will 

be weaker and so sales probably just reflect the agents characteristics (their U  and B  

values) with the fluctuations in the F igu re? .15  values mainly arising from randomness 

in the model.

7.3 SUM M ARY

This chapter described the behaviour observed from the model set up as the “ 

real system” and the seven model sensitivity experiments. It is believed th a t the 

model is able to produce reasonable results. The general pattern  of the sensitivity 

analysis results were also realistic and can be explained from the model structure, 

which increases the confidence in the credibility of model and in its coding.

Some interesting results have been found and investigated. PiOSe.knowiedge and 

Bmean were negatively related to the total sales in contrast to P  company .marketing jin f romation ^
out side ̂ in f ormation

Ptaik.to.same.group and Umean,positive- More over, high value sales limits were found in 

the experiments on Ptaik.to.same.grouP and-Kout and P out. Consumers need a minimum 

amount of the company’s information (i.e. advertising etc.) to build up their knowl­

edge about the new product but the information’s effect decreases when consumers 

get enough knowledge. In other words, the company’s marketing information cannot



130

increase consumers’ interests in the product boundlessly. Regarding Umean.Positive and 

Bmean, the results are very straightforward, and can be explained by the model struc­

ture. The group size experiment implies a cognitive limit in an individuals’ social 

group size. But due to the limit of population (500 in this case), further investigation 

could be done to reveal this limit.
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Figure 8.1: Contents of Chapter 8

In this chapter, details and results are set out from implementing the research 

methodology in C h a p te r  5  to investigate the range of predictions from alternative 

calibrations. In the research, a similar method to Brooks et al. (1994) was chosen 

to  search for param eter sets which produce a good fit with the calibration data. A 

detailed description of Brooks et al. (1994) paper can be found in C h a p te r  3.

131
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8.1 SCENARIO INVESTIGATED

The artificial scenario devised is tha t a company launched a new product several 

weeks ago, and tha t actual sales to date are known (in this case obtained from the “real 

system” simulation). The product is a one-off product such as a popular film ticket, a 

DVD, a CD album or a new computer game, and there was an advertising campaign 

to promote the product. The company wishes to use the simulation model to predict 

the to tal sales tha t will be achieved over the two years life cycle of the product. The 

only data  available for calibrating the model is the to tal sales to date. The aim of 

the calibration process is to find the highest and lowest to tal sales prediction for the 

param eters values tha t give a good fit with the to tal sales to date.

There are four “experiments” used in the research th a t differed only by the length 

of the initial period with the lengths being 70, 105, 140 and 175 days. The total sales 

to date used for calibration for these four initial periods were 24.4, 63.8, 86.5 and 99.0 

respectively.

8.2 CALIBRATION PROCESS

8 .2 .1  P a ra m eters  U sed  for C a lib ra tio n

Six param eters were chosen to be varied during the experiment as these were 

considered to be the most im portant parameters. All the other param eters were kept 

at the default values. The six param eters were:

• Umean positive '■ The mean for positive unbiased true preference distribution.

•  u m e a n . n e g a t i v e  '■ The mean for negative unbiased true preference distribution.
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•  P ta lk  -to sam e-g ro u p : The probability for agents to contact other agents in the same

social group.

• B mean : The mean for the agent’s buying criterion distribution.

•  Preceive-information-Max ■ The probability of agents receiving outside marketing 

information.

•  Piose-knowledge '■ The probability for agents to lose knowledge about the product 

at the end of each simulation day.

In some of the tables in this Chapter, the param eters are abbreviated to Up, Un, P taik, 

Bmeani Pinfoi &nd Piose respectively.

8 .2 .2  F itn e s s  C r iter io n

A criterion was set for the model to give a good fit, which required setting a fitness 

measure and a critical value th a t defines an acceptable fit. In the research, a single 

data  value is available (total sales to date) and the measure needs to take account of 

the stochastic nature of the model. The choice of fitness measure is subjective and 

needs to reflect the desired accuracy of the model. The measure chosen here was the 

difference between the 95% confidence interval from 100 replications of the model for 

average sales to date per population and the actual value, with an acceptable fit being 

th a t the distance is 0 (i.e. the actual value lies within the interval). Using a large 

number of replications makes this quite a strict measure since the confidence interval 

is likely to be quite narrow.

A fitness function F i t n e s s i )  (see E quation  8.1)  was defined to  implement this
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which takes the value of 0 if the true value is in the interval and 10 +  the absolute 

difference between the true value and the interval if it is not in the interval. The 10 is 

an arbitrary value so tha t the function has a step between values inside and outside 

the confidence interval.

Fitness =  <
0 i f  A G 95% C on fiden ce  In terva l

^  C '1upper lim it  T 10 i f  A ] >  C I upperlim it ( ^ - 1 )

G Ilo w e r lim it  A T  10 i f  C llo w e r l im i t  -'> A

N ote:  Confidence Interval: [x — t ( |  , n —1)-^=, x  +  t ( | ,  n —1)-^= ] where  

ot =  0.05 (9 5  % confidence level), x  is the sam ple  m ean, s is the sam ple  s tan dard  

d ev ia t io n  and  n is the sam ple  size. S am ple  here refers to  the values collected f r o m  the 

m odel replications.

8 .2 .3  S earch  P r o c e ss

The search process consists of searching for param eter values th a t meet the fit­

ness criterion and give the highest or lowest predictions for to tal sales. The same 

model structure as for the real system was used. In this respect the pseudo-modelling 

approach is removing an extra source of uncertainty compared to a real modelling 

situation in which the model is a simplification of the real system and may contain 

many assumptions and simplifications. This has the advantage th a t the range of pre­

dictions must be entirely due to the calibration process rather than due to differences 

in the structure of the real system and the model.

The search has to try  and find the extreme values across the whole param eter 

space. However, there is no method th a t guarantees finding a global optimum for a
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complicated function.

In general, an extremum (maximum or minimum point) can be either local (the 

highest or lowest in a finite boundary) or global (the highest or lowest function value 

in the entire param eter space) as shown in Figure 8.13.

E (G lobal)

A  (L ocal)

J  (L ocal)

H (L ocal)

C  (G lobal)

Figure 8.2: Extrem a of a function in an interval (based on Press et al., 1992)

For instance, in this function interval, there are different extrem a points: A , C , 

E , H , J .  Points A  and J  are local maxima but not the global highest point, since E  

is the global highest point in this interval. In the same way, H  is a local minimum 

but not the global lowest point in the interval. C  is the global lowest point in this 

interval. Therefore, finding a global extremum is a very difficult task. Two standard 

heuristics are used widely (Press et al., 1992; Polak, 1971):

1. Search from different starting values (e.g. points B , D, F , G , I ) and then choose 

the most extreme value of the searches.
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2. Examine a local extremum by taking a finite amplitude step away from it, and 

check out if the objective function returns a better point.

The first of these heuristics was used in this research, with the starting values chosen 

from a grid of points and the Nelder-Mead simplex method used to search from 

selected starting values.

8 . 2 . 4  S e a r c h  M e t h o d

The 5-step method shown in Figure 8.3 was used to obtain a prediction range. 

These steps are explained in more detail in the following sections.

R u n  m o d e l  fo r  a  g r id  o f  p o in ts

D e c id e  t h e  in itia l p o in t s  f o r  t h e  s im p le x  s e a r c h

S e a r c h  f o r  m in im u m  & m a x im u m  s o lu t io n s

E x tra  s e a r c h  o n  c o n v e r g e d  p o in ts

P re d ic tio n  r a n g e

Figure 8.3: Model calibration process

8 . 2 . 5  G r i d  o f  P o i n t s

The purpose of initially running the model for a grid of points was to cover the 

whole param eter space so as to provide a wide range of possible starting points for the 

simplex searches. Three values ( Table 8.1) were used for each of the six param eters, 

giving 729 (=  36) points in total. 10 replications were done for each point. The
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Table 8.1: Grid param eter values

Case 1 Case 2 Case 3
U-mean -positive 60 75 90
U m ean .negative 60 75 90
p
r  ta lk .to  s a m e  .group 5 10 15
B m e a n 50 65 80
p
r  rece ive .in f o rm a tio n .M A X 15% 25% 35%
P lose .knowledge 0.5% 1.0% 1.5%

average sales for the initial period and the average to tal sales were calculated for 

these 10 replications. The fitness of each point was also calculated using the fitness 

criterion function in S ection  8 .2 .2  (using the confidence interval calculated from the 

10 replications). The grid points only used 10 replications to reduce the run time 

required. However, as explained in Section  8 .2 .8 , the final points from the search 

procedure used 100 replications to meet the fitness criteria defined in S ection  8.2.2.

8 .2 .6  In itia l P o in ts  for In itia l S im p le x  S earch

As the initial points are im portant for the final param eter values, 9 points were 

chosen to make the initial starting points well scattered in the param eter space (from 

the highest to tal sales point to the lowest total sales point) and close to the potential 

fitted area (i.e. by choosing the three highest to tal sales with fitness 0 and the three 

lowest to tal sales with fitness 0). The following points from the 729 grid points were 

used as the starting points for the simplex searches:

•  The highest total sales (H )

• The lowest total sales (L)

• The three highest total sales with fitness 0 ( H 1, H 2, H 3)
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• The three lowest to tal sales with fitness 0 (LI, L2, L3)

• The default param eter values (D )

These nine sets of param eter values were then used to generate the initial simplexes

for searching. The points for the initial simplex were constructed by adding 1 to each 

param eter value in turn  and details can be found in A p p en d ix  C.

8 .2 .7  N e ld e r -M e a d  D o w n h ill S im p lex  (N e ld er  an d  M ead , 1965)

Nelder-Mead algorithm is widely used to find the local minimum in a nonlinear 

problem. It was firstly proposed by Nelder and Mead (1965). The code used in the 

program to implement this algorithm was obtained from Numerical Recipes (Press 

et ah, 1992). The basis of the algorithm is to search using a simplex in a multi­

dimension space.

8 .2 .8  N e ld e r -M e a d  S earch es

Two Nelder-Mead simplex searches were run for each of the nine initial points 

(see S ec tion  8.2 .6)  to find the highest and lowest total sales with fitness value 0. The 

optimisation function used was:

where S  is the to tal sales and F  is the fitness measure.

The simplex searches only used 10 replications so as to reduce the run time re­

quired (which was still considerable even on a high performance cluster). Due to the 

stochasticity in the model, the Nelder-Mead searches did not meet the convergence 

criterion for stopping the program. In the program, 1000 was set as the maximum

F unction(F , S)
(to minimize sales) 

(to maximize sales)
(8 .2 )
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number of iterations (i.e. different points). Most of the time, the search ended up with 

a series of close param eter values which gave good fits and very similar to tal sales, and 

so the final parameters were treated as the search result. For each of the minimum 

sales case and the maximum sales case, the best value from the nine searches was 

identified. These points were then run using 100 replications to give the overall result 

and the final range of predictions. As already discussed, the search method cannot 

guarantee to find the global optimum and so there may be points tha t give higher 

and lower to tal sales with fitness 0. However, the range obtained is a lower bound for 

the true range.

In addition, parameters searching ranges were set as shown in Table 8 .2  based 

on the assumed feasible region for the model (according to the nature of the original 

model). If the search param eters go beyond the range, the model was programmed 

to return  a fairly large number for the search function value to make the searching 

simplex move back to the feasible region.

Table 8.2: Summary of the param eter searching range

Param eters R ange
u p 0 - 1 0 0
U n 0 - 1 0 0
P ta lk 0 - 4 0
P m e a n 0 - 1 0 0
P in f o 0 - 6 0
P lo se 0 -  10%

8.3 ‘EX PER IM E N T’ 1 (INITIAL PERIOD: 70 DAYS

The to tal sales for the first 70 days (10 weeks) for the real system (i.e. the average 

of 1000 replications) was 24.35 and so this is the value used in the fitness function for
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Experiment 1.

8 .3 .1  G rid  o f  P o in ts

The results of the grid of points was drawn in contour maps using the program 

Surfer 8.0  which uses a “R adia l  B a s is  F u n c tion” as its interpolation method. Since 

it is impossible to draw a 7 dimensional graph, the 6 param eter values were trans­

formed into 2 new values by E qu a tion  8.3.

N e w V a l u e l  9 0 rnean_pOSitive T  10%t/mean_ne â^ue -^m ean 

N e w V a l u e  2 =  30 % P talk.to.sam e.group  T 30 % P receive . in f  orm ation .M  A X -  40%Plose. knowledge

N e w V a l u e l  represents the difference between U  value and B  value and the weights 

(90%, 10%) were set based on the percentage of agents having positive/negative U  

values in the whole population. N e w V a l u e 2  represents the difference between the 

probability of gaining information and the probability of losing knowledge (in terms 

of the value, P i O S e . k n o w i e d g e  is relatively smaller than the other two probabilities, it 

therefore was given more weight to emphasis the impact of losing knowledge on the 

to tal sales). W ith only three values for each param eter (and only 729 values in total), 

the grid points are quite well separated and as just explained, the 6 param eters are 

transformed into two new parameters. Therefore, the contour maps can only give an 

approximately indication of the response surfaces.

Figure 8.4 shows total sales plotted for the two new values and Figure 8 .5  shows 

the fitness values (using the first 70 days as the initial period) plotted for the two new 

values. The red lines in the map are the contour lines on which the fitness is 0. The 

contour map only gives an approximate indication of the pattern  but I also have some
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additional confidence in the pattern  from the examination of the grid data. The grid 

data  contains dispersed points with zero fitness matching the pattern  in the contour 

maps of scattered areas of good fit.

The same grid of points was used for all four experiments. The to tal sales are 

unchanged by the different experiments and therefore the sales contour map Figure

8.4 applies to all. However, the fitness values are different because the comparison is 

with the to tal sales for the initial period.

As shown in histogram of the sales values with zero fitness in Figure 8 .6 , there 

were 40 points with zero fitness having sales ranging from 59 to 372. The sales 

between 60-80 appear more frequently than the sales in other ranges. There is only 

one sale in range 360-380. Some of these points had quite different param eter values, 

as represented by the widely scattered red lines in Figure 8.5. Comparing Figure 8 .5  

with Figure 8 .4 , zero fitness contour lines correspond to sales of about 60, 120, 250 

and 360. As we would expect, with a small amount of available data  (70 days out of 

720 days), the prediction range just from the grid points is wide. Furthermore, Figure

8.4 also indicates more than one local optimum.

8 .3 .2  In itia l Search  P o in ts

Table 8 .3  shows the search starting points for the initial period of 70 days. The 

param eter values are generally as expected. Taking the H  values as an example (the 

param eter values tha t gave the highest to tal sales), this point has the highest of 

values for Umean.positive and Preceivejinformation.Max •> and the lowest values for the other 

four parameters. These are all as expected for high sales apart from P t a i k . t o . s a m e .g r  o u p -
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Figure 8.4: Contour map of the to tal sales
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Figure 8.5: Contour map of the fitness (initial period: 70 days)
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Figure 8.6: Histogram of the sales values for the 40 points with fitness 0

However, Section 7.2.3.2 indicated tha t above a certain level, P t a i k . t o . $ a m e . g r o u p  has no 

effect and so it appears th a t a value of 5 is sufficient in the H  case.

As described in Section 8.2.6, these nine sets of param eter values were then used 

to generate the initial simplexes for searching.

8 . 3 . 3  R e s u l t s

Table 8.4 and Table 8.5 show the search results from the 9 initial simplexes. An 

* indicates th a t no data has been returned by the search model1. Table 8.6 shows 

the distance between the original and final points for each search measured using 

“Euclidian distance” . 16 points were found by Nelder-Mead searches (8 minimum 

and 8 maximum) as listed in Tables 8.4 and Table 8.5. This indicates th a t there

1 Since the search model will stop after 1000 runs, if the search model can not manage to go into 
a zero fitness region after 1000 runs, the model stops and no data will be collected for tha t search. 
For instance, if the model constantly returned out-range parameters for the testing model.
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Table 8.3: Summary of the initial param eters for searching (70 days as initial period), 
note tha t there were 6 points with 0 sales, so I arbitrarily picked one for L.______

P a ra m e te rs u p U n P ta lk P m e a n P in f o P lo se Sales Fitness
L 60 60 5 80 15 1.5 0 24

L I 75 90 15 80 35 0.5 59 0
L2 60 90 15 65 25 1.5 62 0
L3 75 60 15 80 35 0.5 62 0
H 90 60 5 50 35 0.5 449 116

H I 90 90 5 50 15 0.5 372 0
m 75 90 5 50 15 0.5 255 0
m 75 90 5 50 25 0.5 235 0
D 75 75 10 65 25 1.0 123 0

were several different local extrema (some might be the same local optimum) in the 

param eter space which could all give good fitness 0. The max searches from H 1 - H 3  

and the min researches from L1-L3 tended not move far away from the original starting 

points. This could be because, as indicated by the contour map, the fitting regions 

are small and widely scattered. The searches for simplex H  and L  moved a relatively 

large distance. Since the initial fitness values for them (116 and 24 respectively) were 

high, it is to be expected tha t they have to move more distance from the original 

points in order to reach a fitting region.

In some cases the sales value at the end of the search in Table 8.4  and Table 8 .5  

is slightly worse than the starting point in Table 8.3. The reason is th a t different 

random numbers were used for the replications in the grid points and the search. 

Therefore, the sales value will be slightly different for the starting point of the search 

and in some cases the fitness value may not be 0.

In the minimum search, Simplex L  returned the minimum sales of 59.3, although 

the sales returned by Simplex L I  (60.7) is very close to 59.3. The best point from the
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Table 8.4: Search for Max Sales results with 70 days as initial period
Ma x up un P ta lk P m e a n

p
r  i n f  o P lo se Sales

S i m p l e x i 65.654 51.903 13.680 69.801 30.677 4.261 61.7
S i m p l e x  li 66.701 79.061 13.935 70.065 30.594 4.340 71.1
S i m p l e x  L2 56.597 83.505 14.840 60.764 23.661 13.893 65.3
S i m p l e x 65.654 51.903 13.680 69.801 30.677 4.261 66.5
S i m p l e x  h 66.456 55.443 3.080 37.519 29.932 9.213 236.3
Sim p lexn i 91.785 90.898 5.994 50.453 15.151 5.024 371.7
S i m p l e x n 2 * * * * * * *

S i m p l e x  H3 73.685 75.621 5.347 42.462 21.300 4.658 266.3
S i m p l e x  d 82.501 81.851 10.991 68.348 28.294 11.453 133.2

Table 8.5: Search for Min Sales results with 70 days as initial period
M in Up Un P t a l k • P m e a n P I n f o P l o s e Sales
SimplexL 55.777 82.407 14.525 60.131 23.439 14.240 59.3
S i m p l e x  li 76.007 90.008 16.134 77.209 35.018 5.057 60.7
S i m p l e x ^ 60.951 89.926 15.983 63.939 25.970 5.979 63.4
S i m p l e x  Ls 73.310 57.939 15.233 77.875 34.032 4.968 74.2
S i m p l e x  h * * * * * * *

S i m p l e x n i 75.677 89.658 5.912 50.788 25.836 15.883 211.4
S i m p l e x  H2 78.213 93.757 6.435 52.254 16.662 5.244 261.2
S im p le x H 3 75.092 95.207 6.202 53.457 15.690 5.216 259.4
S i m p l e x  d 91.853 90.768 12.282 79.130 30.818 12.586 64.6

Table 8.6: The distance between the initial search points and search results

L L I L2 L3 H H I H 2 m D
M ax Search 25.258 17.556 8.646 16.671 27.892 2.282 * 16.710 11.329
M in Search 32.821 3.177 9.237 3.551 * 21.038 5.865 11.280 27.894

maximum sales searches was Simplex H I .

The points for Simplex L  and H I  were then run with 100 replications to give 

the final result. This is shown in Table 8 .7  which includes the 95% C.I. for the 

predictions of total sales. The extreme values of the confidence intervals are used for 

the prediction range. The results give a very wide prediction range for to tal sales 

of between 58.092 and 376.348. Examination of the param eter values may give an 

insight into the reason for these extreme values. The key aspect will be the relatively
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Table 8.7: Prediction range with 70 days as initial period
M in  S M ax  S

P m ean-positive 55.777 91.785
P m ean-negative 82.407 90.898
P ta lk -to  s a m e  .group 14.525% 5.994%
P m e a n 60.131 50.453
p
r  rece ive -in fo rm a tio n .M  A X 23.439% 15.151%
Plose-knowledge 1.424% 0.502%
First 70 days sales (95% confidence level) [22.899, 24.840] [22.727, 25.232]
Mean of the first 70 days sales 23.870 23.980
Prediction (95% confidence level) [58.092, 60.987] [366.091, 376.348]
Mean of prediction 59.540 371.220
Calibration benchmark 24.35

different effects on the initial and to tal sales. For example, the probability of receiving 

outside information has more effect on sales during the initial period than  on to tal 

sales based on the analysis in S ection  7 .2 .4• Some of the other param eters will have 

a more similar effect on initial and to tal sales. The possible reason for the results 

could be th a t the highest sales case (Simplex H I )  has a high mean U  value (91.785) 

relative to B mean (50.453) tending to produce high overall sales, whereas the low value 

for receiving information (i.e. Pinf 0 =  15.151) reduces sales in the initial period so 

th a t the model still fits. Low U  (55.777) and a high probability of receiving outside 

information (i.e. Pinf 0 =  23.439) will then have the opposite effect in the lowest sales 

case (Simplex L).

Next, I repeated the above procedure on the other-three experiments (with initial 

period of 105, 140, 175 days), and compared the results.
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8.4 EXPERIM ENT 2 (INITIAL PERIOD: 105 DAYS)

The total sales for the first 105 days (15 weeks) for the real system (i.e. the average 

of 1000 replications) was 63.79 and so this is the value used in the fitness function for 

Experiment 2.

8 .4 .1  G rid  o f  P o in ts

As mentioned in the previous section, the same grid of points was used here but 

compared to 105 days as the initial period. As shown in Figure  <5.7, there are 35 

points with zero fitness (decrease from 40 points in Experiment 1) with sales ranging 

from 79 to 323. Among these 35 points, there are 19 points th a t also had zero fitness 

for Experiment 1. Most new points have sales in the range of 80-100 and the range 

of 260-340. Comparing with Figure 8 .6 , the distribution of sales is concentrated on a 

narrower range. The most frequent sales category moved slightly to the right in the 

range of 80-100 and there are more sales evenly distributed in the range of 260-340.

The histogram corresponds to the contour map of fitness for an initial period of 105 

days in Figure 8.8. The zero fitness lines are approximately in the sales regions of 

120, 260, and 100. As we would expect, when the available information increases, it 

is harder to find param eter values tha t fit.

8 .4 .2  In itia l Search  P o in ts

Table 8 .8  shows the initial starting points for an initial period of 105 days. Similar 

to Experiment 1, the param eter values are generally as expected, although L I  -  L3 

and H I  -  H 3  all differ to Table 8.3. Taking LI -  L3 as examples, comparing with
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Table 8 . 3, all U po sit i ve  values increased to the highest value (90) and all P i ose  increased 

from 0.5 to 1.0 while the other four param eters remain similar. In Table 8 . 3 , for 

each of L I  — L3, U posi tiv e  is less than B m ean  whereas in this Experiment U p o sitive  is 10 

higher than  5 mean which is the same as the default param eter values. This makes the 

relationship between these values closer to the real system values. The P ta ik  value is 

higher than the default values (as is also the case in Table 8 .3 ) which may help to 

generate sales quicker thus producing lower overall sales whilst still fitting the initial 

period sales.

Table 8.8: Summary of the initial param eters for searching (105 days as initial period)

P a ra m e te r s up Un P ta lk B m e a n B in f o P lo se Sales Fitness
L 60 60 5 80 15 1.5 0 64

L I 90 60 15 80 25 1.0 79 0
L 2 90 75 15 80 25 1.0 81 0
L3 90 60 15 80 35 1.0 83 0
H 90 60 5 50 35 0.5 449 221

H I 75 90 5 50 15 1.0 323 0
H 2 90 90 5 65 25 0.5 302 0
H 3 90 60 5 65 25 0.5 300 0
D 75 75 10 65 25 1.0 123 0

8 .4 .3  R e su lts

Table 8 . 9  and Table 8 . 10  show the search results from 9 initial simplexes. Table 

8.11  lists the distance between the original and final point for each search. Similar 

to Experiment 1, as we would expect, the max searches from H I  — i /3  and the min 

searches from LI — L3 tended not to move far away from the original starting points 

while searches for L and H  moved a relatively large distance. The min searches for 

H 2 and H 3, whilst not producing the best point, managed to find zero fitness points
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with much lower sales than initial points.

In the minimum search, Simplex LI returned the minimum sales of 79.9, although 

the sales returned by Simplex L 2  (80.2) and L3 (81.1) were both close to it. In 

Experiment 1, simplex L  returned the best point and the Simplex LI point here 

differs considerably in all the param eters apart from P taik and P*n/ 0. In Experiment 

1, the best point Upositive is about 4 lower than B mean whereas here it is about 11 

higher. Simplex H I  returned the best point of 317.3 in the maximum sales searches. 

Compared to Simplex H I  in Experiment 1, which also returned the maximum sales, 

these two points are very similar except tha t the U  has been decreased to 75.960 

(91.785) and consequently the total sales has been decreased to 317.3 (371.7) due to 

the effect of the U  value.

Table 8 .1 2  shows the final results for the predictions of to tal sales based on Simplex 

LI and H I  after running 100 replications. Similar to Experiment 1, the results give 

a very wide prediction range for total sales (using the outer values of the 95% C.I.) 

of between 78.764 and 318.623, although slightly narrower than Experiment 1.

8.5 EX PERIM ENT 3 (INITIAL PERIOD: 140 DAYS)

The to tal sales for the first 140 days (20 weeks) for the real system (i.e. the average 

of 1000 replications) was 86.518 and so this is the value used in the fitness function 

for Experiment 3.
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Table 8.9: Search for Max Sales results with 105 days as initial period
M ax U p U n P ta lk P m e a n P in f o P lo se Sales
S i m p l e x  l 68.792 81.174 6.231 46.398 18.703 9.517 249.7
S i m p l e x  l \ * * * * * * *

S i m p l e x  L2 82.457 54.700 13.993 73.160 32.042 9.158 103.4
S i m p l e x  L3 83.654 89.577 12.675 74.5506 31.526 10.888 106.2
S i m p l e x  h * * * * * * *

Sim plexn i 75.960 89.955 5.996 50.442 15.024 5.028 317.3
S i m p l e x  H2 90.017 88.336 6.788 65.774 26.126 5.194 303.2
S i m p l e x  ̂ 80.963 53.365 5.313 58.557 22.860 4.973 300.4
S i m p l e x  d 78.026 77.167 10.955 67.582 26.404 11.364 116.9

Table 8.10: Search for Min Sales results with 105 days as initial period
M in up Un P t a l k P m e a n P i n  f o P l o s e Sales
S i m p l e x i * * * * * * *

Sim plexLi 88.589 58.455 15.168 77.926 24.301 9.807 79.9
S i m p l e x  L2 89.078 58.747 15.624 78.495 34.415 9.916 80.2
S i m p l e x L3 87.583 57.681 15.387 77.652 24.650 10.054 81.1
S i m p l e x n * * * * * * *

S i m p l e x n i * * * * * * *

S i m p l e x  H2 82.123 53.257 14.103 64.687 24.325 10.332 192.5
S i m p l e x  Hi 83.014 76.792 14.254 63.524 23.212 9.427 188.3
S i m p l e x  d 82.277 54.583 13.958 73.756 31.972 9.138 99.9

Table 8.11: The distance between the initial search points and search results

L LI L 2 L 3 H H I H 2 H 3 D
M ax Search 41.231 * 23.814 30.380 * 7.798 1.463 1.730 5.026
M in Search * 3.039 18.876 11.136 * * 39.038 21.009 24.728

Table 8.12: Prediction range with 105 days as initial period
M in S M ax S

U m e a n .p o s itiv e 88.589 75.960
U m e a n .n e g a tiv e 58.455 89.955
P ta lk .to .sa m e .g ro u p 15.168% 5.995%
P m e a n 77.926 50.442
P r e c e iv e . in f  o rm a tio n .M  A X 24.301% 15.024%
P lo se .k n o w led g e 0.981% 0.503%
First 105 days sales (95% confidence level) [58.821, 63.818] [62.530, 68.051]
Mean of the first 105 days sales 61.320 65.290
Prediction (95% confidence level) [78.764, 83.155] [303.737, 318.623]
Mean of prediction 80.960 311.18
Calibration benchmark 63.79
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8 .5 .1  G rid  o f  P o in ts

The same grid of points as in previous section were used here again but compared 

to 140 days as the initial period. As shown in Figure 8.9, the number of zero fitness 

points reduced from 35 to 27 with the sales ranging from 89 to 267. Among these 

27 sales values, there are 13 points with zero fitness remaining the same as in Figure  

8 .6  and 15 points with zero fitness remaining the same as in Figure 8.7. Most new 

points have sales in the range of 100-120 and the range of 160-220. Comparing with 

Figure 8 . 6  and Figure 8.7, the distribution of sales is concentrated on a narrower 

range with the most frequent sales moving slightly further to the right in the range 

of 100-120. The histogram corresponds to the contour map of fitness for an initial 

period of 140 days in Figure 8.10. Similar to Figure 8.8, the most zero fitness lines 

were approximately in the sales of 120, 260 and 100. There are still several distinct 

regions of zero fitness.

8 .5 .2  In itia l Search  P o in ts

Table 8 .1 3  shows the initial starting points for an initial period of 140 days. Similar 

to Experiment 1 and Experiment 2, the param eter values are generally as expected, 

although L I  — L3 and H I  -  H 3  all differ to those in Table 8 .3  and Table 8.8. Taking 

LI -  L3 as examples, whilst the U posiU ve  and B m ean  values are lower than the previous 

two experiments, the difference here (U v o s itiv e  being 5 lower than B m e a n )  are the same 

as for Experiment 1 and quite different to Experiment 2.
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Figure 8.9: Histogram of the sales values for the 27 points with fitness 0

Figure 8.10: Contour map of the fitness (initial period: 140 days)
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Table 8.13: Summary of the initial param eters for searching (140 days as initial period)

P a ra m e te r s Up Un P ta lk P m e a n P in f o P lo se Sales Fitness
L 60 60 5 80 15 1.5 0 87

LI 60 75 15 65 35 0.5 89 0
L2 60 60 15 65 25 0.5 95 0
L3 60 90 15 65 35 0.5 96 0
H 90 60 5 50 35 0.5 449 257

H I 60 90 5 50 35 0.5 267 0
m 90 90 5 65 25 1.0 228 0
m 90 75 5 65 15 1.0 215 0
D 75 75 10 65 25 1.0 123 0

8 .5 .3  R e su lts

Table 8 .14  and Table 8 .1 5  show the search results from the 9 initial simplexes as 

for the initial period of 140 days. 15 points were found by the Nelder-Mead searches 

while 3 searches did not return any results (L  for both min and max searches and H  

for the max search). Similar to Experiment 1 and Experiment 2, as we would expect, 

the max searches from H I  — H 3 and the min researches from LI — L3 tended not 

to move far away from the original starting points while the successful search for H  

moved a relatively large distance.

In the minimum search, Simplex L I returned the minimum sales of 88.6, although 

the sales returned by Simplex L2 (91.7) and L3 (93.6) are both close to it. Simplex 

H I  returned the best point of 276.7 in the maximum sales searches. The min search 

for H 2 and Lf3, as for Experiment 2, managed to make a big improvement to the 

initial point.

Tables 8 . 1 7  shows the results for initial periods of 140 days. After running 100 

replications for the best points, the width of prediction range reduced by 56.533
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Table 8.14: Search for Max Sales results with 140 days as initial period
M ax up Un P ta lk P m e a n P in f o P lo se Sales
S i m p l e x  l * * * * * * *

S i m p l e x n 60.9953 69.9324 14.8888 61.1272 33.4255 4.9181 108.6
S i m p l e x ^ 57.2231 52.5186 13.3689 57.3234 22.1709 4.4118 118.1
S i m p l e x lz 64.3927 89.5965 15.1846 64.2369 34.9799 5.0395 105.7
S i m p l e x n 62.739 41.849 5.645 34.742 24.129 3.619 251.4
S im p lexHi 67.553 77.662 5.381 57.626 34.642 6.050 276.7
S i m p l e x  H2 88.096 97.915 5.442 70.685 29.664 10.720 231.5
S i m p l e x  h 3 87.013 80.464 5.453 69.722 18.896 10.836 226.7
S i m p l e x  d 73.659 73.973 16.543 68.650 26.719 14.187 125.8

Table 8.15: Search for Min Sales results with 140 days as initial period

M in up Un P ta lk P m e a n P in f o P lo se Sales
S i m p l e x  l * * * * * * *

Sim plexLi 65.0487 75.0385 16.003 66.0304 35.0414 5.0039 88.6
S i m p l e x  L2 61.7837 58.1012 14.399 62.8682 24.1672 4.8451 91.7
S i m p l e x  lz 62.3013 87.739 14.574 63.2126 34.0592 4.8693 93.6
S i m p l e x n * * * * * * *

S i m p l e x  hi 42.641 63.496 3.583 35.077 31.306 4.020 240.7
S i m p l e x  H2 88.239 98.037 5.480 70.808 14.735 12.762 121.4
S i m p l e x  h 3 86.499 81.692 5.545 70.779 18.849 13.012 124.6
S i m p l e x  h 78.204 79.207 11.599 69.436 27.146 10.555 111.5

Table 8.16: The distance between the initial search points and search results

L L I L2 L3 H H I H 2 m D
M ax Search * 11.382 5.145 19.295 37.761 17.245 11.003 8.784 8.915
M in Search * 3.891 11.970 6.845 * 30.802 14.651 10.706 7.424
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Table 8.17: Prediction range with 140 days as initial period
M in S M ax S

Um ean .positive 65.049 67.553
P m ean -negative 75.039 87.662
P ta lk -to  s a m e  .group 16.003% 5.381%
B m e a n 66.030 57.626
p
r  re c e ive .in f orm ation .M  A X 35.041% 34.642%
Plose-knowledge 0.500% 0.605%
First 140 days sales (95% confidence level) [82.785, 86.835] [79.364, 87.195]
Mean of the first 140 days sales 84.810 83.280
Prediction (95% confidence level) [90.756, 95.084] [260.877, 276.682]
Mean of prediction 92.920 268.780
Calibration benchmark 86.518

to 183.325, which is smaller than the previous change between Experiment 1 and 

Experiment 2.

8.6 EXPERIM ENT 4 (INITIAL PERIOD: 175 DAYS)

The to tal sales for the first 175 days (25 weeks) for the real system (i.e. the average 

of 1000 replications) was 99.0 and so this is the value used in the fitness function for 

Experiment 4.

8 .6 .1  G rid  o f  P o in ts

The same grid of points as in the previous Experiments was used here again but 

compared to 175 days as the initial period. As shown in Figure 8 .1 1 , the number 

of zero fitness points reduced from 27 to 23 with the sales ranging from 103 to 188. 

Among these 23 sales values, there are 15 points with zero fitness remaining the same 

as in Figure 8 .9 , 10 points with zero fitness remaining the same as in Figure 8 . 7  and 

10 points with zero fitness remaining the same as in Figure 8.6.  Most new points 

emerge in the sales range of 120-140. Comparing with Figure  8 .6 , Figure 8 . 7  and
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Figure 8 .9 , the distribution of sales is concentrated on a narrower range with the 

most sales in the range of 100-140. The histogram corresponds to the contour map 

of fitness for an initial period of 175 days in Figure 8.12.  Most zero fitness lines are 

approximately in the sales of 120 and 100. Whilst there are still several distinct zero 

fitness regions, the zero fitness regions have become smaller. As we would expect, 

when the available information increases (in other words, the calibration requirement 

becomes more strict), it is harder to find param eter values th a t fit.

8 .6 .2  In itia l Search  P o in ts

Table 8 . 18  shows the initial starting points for an initial period of 175 days. Similar 

to the other three Experiments, the param eter values are generally as expected. LI — 

L3 and H I  — H2> all differ to Table 8 .3 , Table 8 .8  and Table 8 . 1 3 , although, LI — L3 

and H I  — H 3 are close to Table 8.8. Taking LI — L3 as examples, comparing with 

Table 8 .8 , all parameters are similar except tha t Piose has decreased from 1.0 to 0.5. 

Based on the analysis in Chapter 7, Piose (probability of losing knowledge) has a 

negative effect on the total sales. Therefore, as a result, a decreased Piose will lead 

to the increased total sales, although it appears th a t here the interactions with the 

other param eters enables the model to fit the initial period whilst giving low overall 

sales.

8 .6 .3  R e su lts

Table 8 .1 9  and Table 8 . 20  show the search results from the 9 initial simplexes for 

an initial period of 175 days. 14 points were found by the Nelder-Mead searches while 

4 searches did not return any results (both max and min searches from L and H ) .
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Figure 8.11: Histogram of the sales values for the 23 points with fitness 0
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Figure 8.12: Contour map of the fitness (initial period: 175 days)
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Table 8.18: Summary of the initial param eters for searching (175 days as initial period)

P a ra m e te r s up Un P t a l k B m e a n P i n f o P l o s e Sales Fitness
L 60 60 5 80 15 1.5 0 99

LI 90 75 15 80 25 0.5 103 0
L2 90 60 15 80 35 0.5 106 0
L3 90 60 15 80 25 0.5 106 0
H 90 60 5 50 35 0.5 449 287

H I 75 75 5 65 35 0.5 188 0
H 2 75 60 5 50 25 1.5 173 0
H Z 60 75 5 50 25 1.0 171 0
D 75 75 10 65 25 1.0 123 0

The reason is th a t when the feasible region becomes smaller, it is harder to reach the 

region from a bad starting point (in this case, starting points with high fitness).

In the minimum search, Simplex D  returned the minimum sales of 111.9, although 

the sales returned by Simplex L I (109.5) was close to it. And Simplex H I  returned 

the best point of 189.5 in the maximum sales searches.

Tables 8 .2 2  shows the results for the predictions of the to tal sales based on Simplex 

D  and H I  after running 100 replications. As we would expect, the prediction range 

for an initial period of 175 days is considerably narrower than the prediction range 

which has a shorter initial period (70, 105 and 140 days). Comparing with 140 days, 

the width of prediction range was reduced by 105.048 to 78.277. Different to the 

previous Experiments, the minimum prediction range were found by searching from 

simplex D  instead of Simplex LI, although the to tal sales from Simplex L I is very 

close to it.
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Table 8.19: Search for Max Sales results with 175 days as initial period
M ax up Un P ta lk P m e a n P in f o P lo se Sales
S i m p l e x i * * * * * * *

S i m p l e x n 83.434 67.540 13.980 76.439 29.434 4.829 136.9
S i m p l e x ^ 85.134 54.870 14.462 73.821 32.284 4.762 133.2
S i m p l e x  i s 84.463 56.545 14.222 74.865 28.067 4.359 128.6
S i m p l e x  h * * * * * * •*

S im p lex n i 77.899 74.914 5.994 65.234 15.406 5.165 189.5
S i m p l e x  H2 85.340 58.708 6.203 67.587 15.368 5.052 181.2
S i m p l e x  h  3 86.419 75.942 4.276 50.486 15.476 15.189 178.4
S i m p l e x  £> 75.419 74.662 10.708 63.257 25.244 10.311 128.9

Table 8.20: Search for Min Sales results with 175 days as initial period
M in Up U n P ta lk P m e a n P in f o P lo se Sales
S i m p l e x  i * * * * * * *

S i m p l e x n 87.608 72.161 14.485 74.156 31.468 6.769 109.5
S i m p l e x  i 2 81.984 54.106 14.272 72.806 33.853 7.699 118.6
S i m p l e x ^ 84.898 73.914 15.465 73.674 25.006 7.786 114.4
S i m p l e x  h * * * * * * *

S i m p l e x n i 87.830 75.574 5.447 67.543 15.034 5.322 176.4
S i m p l e x H 2 86.667 63.750 6.333 69.562 15.979 5.333 178.3
S i m p l e x n z 74.855 70.450 5.532 47.846 15.077 4.146 154.3
S im p lex o 71.809 70.937 10.318 61.339 23.591 9.401 111.9

Table 8.21: The distance between the initial search points and search results
L L I L2 L3 H H I m m D

M ax  S earch * 11.497 9.793 8.910 * 19.834 24.720 28.587 1.996
M in  S earch * 9.652 12.644 16.359 * 23.882 26.636 19.469 6.522

Table 8.22: Prediction range with 175 days as initial period
M in  S' M ax  S

U m e a n .p o s itiv e 71.80 77.899
U m e a n .n e g a tiv e 70.937 74.914
P ta lk .to .sa m e .g ro u p 10.318% 5.994%
P m e a n 61.3397 65.234
P r e c e iv e .in f  o rm a tio n .M  A X 23.591% 15.406%
P lo se .k n o w led g e 0.940% 0.516%
First 175 days sales (95% confidence level) [95.409, 99.591] [98.811,103.468]
Mean of the first 175 days sales 97.500 101.140
Prediction (95% confidence level) [109.199,113.820] [180.443,187.476]
Mean of prediction 111.510 183.960
Calibration benchmark 99.039
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8 . 7  D I S C U S S I O N S

Figure 8.13 is a graph of the range of predictions for the four different initial 

periods. The actual sales from the “real system” model was 123.5, and the actual 

sales for the four initial periods were 24.4, 63.8, 86.5 and 99.0 respectively. The 

prediction range is extremely wide for an initial period of 70 days and would provide 

very little useful information. As would be expected, the prediction range narrows as 

more information is obtained from a larger initial period. However, even for a period 

of 175 days, when 80% of the to tal actual sales have, in fact, been made, the range is 

still wide having a value of 78.
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Figure 8.13: Prediction Range Vs Information available.

The circumstances of these experiments were tha t the model had a perfect struc­

ture but the param eter values were unknown and so could vary over a wide range. In 

this situation, it appears tha t it will often not be possible to make a precise prediction
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and therefore the usefulness of using such a model for prediction may be limited. Fur­

ther work is needed to investigate other scenarios. In particular, the fitness function 

only used a single point. F itting against several points (using sales at several points 

during the initial period) would be likely to produce a narrower prediction range, al­

though it is harder to define what constitutes an acceptable fit in these circumstances.

8.8 SUM M ARY

This chapter has described the calibration process used in the research. The 

chapter started  with a brief introduction to the scenario investigated in Sect ion  8.1.  

Then, Sect ion  8 .2  gave an overview of the entire calibration process. The calibration 

process used in the research followed 5 steps as described in Se ct i on  8 .2 . 3 , namely grid 

of points, deciding on the initial search simplexes, optimum solution searches, extra 

searches if necessary and prediction. The simplex searching method was explained in 

Sec t io n  8 . 2 .7. Following the five steps, results from 4 experiments with different initial 

periods were presented. By reviewing the results from each experiment, a conclusion 

can be observed tha t as we would expect, in this agent-based WOM consumer model, 

different acceptable models give quite different predictions. In addition, the increase 

of the available data  (i.e. increase the initial period from 70 to 105, 140 and 175 days 

accordingly in this research) would narrow down the prediction region.



C hapter 9 

C O N C L U SIO N S A N D  F U T U R E  
R E SE A R C H

CH A PTER  OVERVIEW

This chapter summaries and discusses the results of the experiments, how these 

meet the research objectives, limitations of the method used and the future research 

areas.

9.1 SUM M ARY OF THE THESIS

This thesis reviewed the current literature on ABS, inverse problem, model cali­

bration, and marketing simulation and described the development of an agent-based 

consumer word-of-mouth model and the implementation of a method for determining 

a range of prediction from alternative calibrations.

9 .1 .1  M ain  A rg u m en ts

Agent-based simulation has attracted much interest lately, but an agreement on 

the definition of an agent has not yet been achieved. The simplest viewpoint is tha t 

an agent is an entity for which some cognitive process is modelled (Edmonds and

163
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Mohring, 2005). To some extent, ABS is a new simulation approach and with the 

benefit of much-increased computing power, it enables new types of simulations to 

be investigated. So far, it has been widely applied in many areas such as military, 

economics, sociology and movement patterns.

However, much of the ABS work has had the aim of increasing the understand­

ing of the type of system rather than trying to reproduce a specific situation. Such 

an approach can be very valuable in producing im portant new insights and improv­

ing understanding. Simulation models in general are constructed by modelling local 

behaviour and then connecting the different parts together and allowing them to in­

teract. Therefore any simulation model can provide useful information about the 

relationship between local structure and global behaviour, which can increase under­

standing. However, relating this to a particular real system implies tha t the model 

structure is a good representation of the im portant parts of the real system. If this is 

not the case then the implications drawn may be incorrect. It is therefore im portant 

to assess the validity of the model, although in the absence of a specific real system, 

validation can only consist of a subjective assessment of the plausibility of the model 

structure and of the responses (white box validation (Pidd, 2004)). For example, one 

of the early pieces of work was the boids simulation (Reynolds, 1999b), which tried to 

find rules for general “boid” agents to produce flocking behaviour th a t appeared real­

istic compared to the flocks, herds and schools of different animals in the real world. 

Some of the social science simulations are highly simplified models of virtual societies, 

such as the Sugarscape model (Epstein and Axtell, 1996). Criticisms of these sorts of 

models in some quarters have been tha t they are too divorced from reality to provide
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useful information about the real world and may reflect the prejudices of the model 

builder (see, for example, Lansing (2002) for a discussion of this debate).

9.1 .1 .1  P red iction , M odel C alibration  and th e  Inverse P rob lem

For some applications, using agent-based simulation for prediction (rather than 

just better understanding) could be very powerful. For example, a company might 

wish to use a model of the population of their customers with WOM interactions to 

predict the sales of the product or the effect of an advertising campaign. However, the 

problem is tha t agent-based models typically have a very large number of parameters 

and many of these cannot be measured directly or estim ated with sufficient precision. 

The only other information available may be historical output data  from the real 

system. Such data  can be used to calibrate the model by finding param eter values 

th a t produce a good fit with the data. This is known as an inverse problem since it 

consists of using the outputs to determine the inputs. The problem is th a t there will 

usually be many solutions. There are two main reasons for this. The first is tha t there 

are often many parameters and few historical data  values. The second is tha t any 

model th a t produces a good fit should be considered acceptable. A perfect fit is not 

expected because any simulation is a simplification of the real system and also there 

may be measurement errors in the historical data. The result is th a t a wide range of 

sets of param eter values may give an acceptable fit and are therefore feasible values. 

However, they may give quite different predictions.
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9.1 .1 .2  A pproach U sed  in T his R esearch

This research investigated the calibration problem for an agent-based simulation, 

which gave an indication of the limitations of using such models for prediction.

The approach used was to develop an agent-based model and to treat this model 

as the real system. O utput data  from this model was then taken as measured values 

from the “real” world and, in a pseudo-modelling exercise, used to calibrate an agent- 

based model of the system. A method similar to tha t of Brooks et al. (1994) was then 

used to investigate the variations in predictions. The advantage of such a pseudo­

modelling exercise is tha t the “real system” was completely known. Consequently, 

the models’ predictions could be compared with the “true” future values, and the 

precise differences between the models and the real system was also known.

9.2 RESEARCH OBJECTIVES A N D  CONTRI­
BU TIO N TO THE FIELD

For each of the research objectives in Chapter 1, this section discusses the to which 

they were met and the contribution made.

9 .2 .1  M ain  O b jec tiv es

O bjective: to develop and implement a method based on previous research for 

obtaining an acceptable range of predictions from the alternative acceptable calibra­

tions.

This research has set out and implemented a method of finding a prediction range 

for ABS models. The research adapted the Brooks et al. (1994) method used in
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groundwater modelling and applied it to a word of mouth consumer model. Com­

pared to the deterministic groundwater models, an additional problem for agent-based 

simulations is stochasticity. This is because heterogeneous populations are being mod­

elled and information for each individual in the real population will not usually be 

available. Instead the model represents a typical population and multiple replications 

are required to take account of the variations across possible populations. Therefore 

the Brooks et al. (1994) method had to be adopted for a stochastic model, since 

a good fit with the historical data  requires comparing the measured values against 

the range of values from multiple replications. The fitness measure used compared 

the real system value with the confidence interval from multiple replications, with a 

good fit defined as the real value lying within the interval. The predictions were also 

produced using multiple replications.

O bjective: to compare the range of predictions for different scenarios of the data 

available for calibration.

A range of prediction was calculated for four scenarios of different initial periods 

of data  collection. As would be expected, the larger the initial period the narrower 

the range of predictions. However the work quantified the range of predictions and 

found tha t the range was wide for all four scenarios.

9 .2 .2  S eco n d a ry  O b je c tiv e s

O bjective: to develop a new agent-based WOM consumer model.

This research devised a simple structure for a WOM consumer model. Few models 

of this situation have been developed and the structure used was different to previous
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models. The structure is therefore a potential new modelling approach for this type of 

situation which could also provide an underlying theory or which further work could 

be based. The ability to model consumer word of mouth interacting effectively could 

have im portant benefits for business.

O bjective: to investigate the relationships between the param eters and the model 

output.

The research investigated the effect of different param eters and how the structure 

works by a series of sensitivity analysis Chapter 7. It gave some interesting founding 

for marketing research.

O bjective: to assess whether the model produces realistic output.

Based on the experiments conducted the model appears to produce realistic output 

and plausible behaviour. This provides some support for the structure of the model 

being a good approach.

9.3 FU TU R E RESEARCH

In order to investigate the problem of using agent-based simulation for prediction 

further, the following work could be conducted:

1. D ifferent ways o f m easuring fitness: In the current model, to tal sales of 

10/15/20/25 weeks were used when measuring the fitness. However, other ways 

could be use. For instance, a portfolio of values (e.g. sales for each week) could 

be used to measure the fitness.

2. A ltern ative  m odel structure: the model used in this research has the same
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structure as the “real system” . However, in future, different model structures 

other than the known one could be tried to check if a different result will be 

produced.

3. P rod u ction  type: In the current model, the product type has been set out as 

a one-off purchase product. In future research, repeat purchase behaviour could 

be added into the model to investigate other product types.

4. A ltern ative  business decisions: Different scenarios of business decisions 

could be tested apart from the scenario introduced in the thesis in order to 

help companies’ decision making. For instance, a scenario tha t a company is 

considering putting more effort/money into the advertising campaign and wants 

to know the effects. This could be achieved by changing the influence level of 

outside source information in the model and changing the length of the adver­

tising campaign.

Another area of future research could be to investigate the nature of word of 

mouth interaction as a further test of the model structure developed in this research. 

For example, it may be possible to conduct experiments investigating the transfer of 

knowledge and preference between subjects in conversations about a product.

9.4 FINAL CONCLUSIONS

Using agent-based simulation for prediction (rather than just better understand­

ing) could be very powerful for some applications. However, the problem is tha t 

agent-based models typically have a very large number of param eters and many of
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these cannot be measured directly or estim ated with sufficient precision. The only 

information available may be historical output data  from the real system. Such data 

can be used to calibrate the model by finding param eter values th a t produce a good fit 

with the data. Moreover, any model th a t produces a good fit should be considered to 

be acceptable and different acceptable models may give quite different predictions as 

dem onstrated in our research. A method which takes account of the different feasible 

param eter values (such as the approach described here) needs to be used in making 

predictions. The nature of agent-based models may therefore limit their usefulness for 

prediction except for situations in which the data  for the param eters can be measured 

directly and accurately. The approach set out in this research could help to resolve 

such problem.



A ppendix  A  

A B rief Introduction  to  A B S  

Packages

The description for each ABS package was directly from package’s website.

A .l List of agent-based sim ulation packages: Open 

Source

N am e R eference D evelop er (s)

ABLE h ttp : / /  www.alphaworks.ibm.com/tech/able IBM

D escrip tion

ABLE is a Java framework, component library, and productivity tool kit for building

intelligent agents using machine learning and reasoning

N am e R eference D evelop er (s)

Cougaar h ttp :/ /w  ww.cougaar.org/ DARPA

D escrip tion

Cougaar is a Java-based architecture for the construction of large-scale distributed

agent-based applications.

N am e R eference D evelop er (s)

C ontinued...
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Ecolab http://parallel.hpc.unsw .edu.au/ecolab Russell Standish

D escrip tion

Ecolab is a fairly complete agent-based simulation system. The model is imple­

mented as a C + +  object. Support for more advanced data  structures and algorithms 

are available through the standard library in C + + .

N am e R eference D evelop  er(s)

JADE ht tp : /  /  sharon. cselt. it /  pro j ects /  j ade/ Telecom Italia Lab

D escrip tion

JADE (Java Agent DEvelopment framework) is a software framework fully imple­

mented in the Java language.

N am e R eference D evelop er (s)

JAS http: /  /  jaslibrary.sourceforge.net/ Michele Sonnessa

D escrip tion

JAS is a Java toolkit for creating agent-based simulations. It features a discrete- 

event time engine, APIs for network simulation design, and powerful yet easy-to-use 

implementations of Genetic Algorithms, Neural Networks and Classifier Systems.

N am e R eference D evelop er(s)

MASON http ://cs.gm u.edu / George Mason Univer­

sity

D escrip tion

MASON is a fast discrete-event multi-agent simulation library core in Java, designed 

to be the foundation for large custom-purpose Java simulations, and also to provide 

more than enough functionality for many lightweight simulation needs. MASON 

contains both a model library and an optional suite of visualization tools in 2D and 

3D.

N am e R eference D evelop er (s)

Repast http://repast.sourceforge.net/

D escrip tion

Chicago University

Continued.

http://parallel.hpc.unsw.edu.au/ecolab
http://cs.gmu.edu/
http://repast.sourceforge.net/
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Repast is a software framework for creating agent-based simulations using the Java 

language. It provides a library of classes for creating, running, displaying and collect­

ing data  from an agent-based simulation. In addition, Repast can take snapshots of 

running simulations, and create QuickTime movies of simulations. Repast borrows 

much from the Swarm simulation toolkit and can properly be termed “Swarm-like” .

N am e R eference D evelop er(s)

SimPy http://sim py.sourceforge.net/ SimPy developer team

D escrip tion

SimPy (Simulation in Python) is an object-oriented, process-based discrete-event 

simulation language based on standard Python and released under the GNU GPL. 

It provides the modeller with components of a simulation model including processes, 

for active components such as customers, messages, and vehicles, and resources for 

passive components tha t form limited-capacity congestion points such as servers, 

checkout counters, and tunnels. It also provides monitor variables to aid in gathering 

statistics. Random variants are provided by the standard Python random module.

Swarm http://w iki.Sw arm .org Swarm Development 

Group

D escrip tion

Swarm is a software package for the multi-agent simulation of complex systems 

and was originally developed at the Santa Fe Institute. The basic architecture of 

Swarm is the simulation of collections of concurrently interacting agents: with this 

architecture, a large variety of agent-based models can be implemented.

N am e R eference D evelop er (s)

ZEUS http ://m ore.b texact.com / BT. ISR agent re­

search

D escrip tion

The ZEUS toolkit provides a library of software components and tools th a t facilitate 

the rapid design, development, and deployment of agent systems.

http://simpy.sourceforge.net/
http://wiki.Swarm.org
http://more.btexact.com/
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A .2 List of agent-based simulation packages: Free­

ware

N am e

Ascape

R eference

http://w w w .brook.edu/

D evelop er (s)

The Brookings Insti­

tution

D escrip tion

Ascape is a software framework for developing and analyzing agent-based models. 

In Ascape, agent objects exist within scapes; collections of agents such as arrays 

and lattices. These scapes are themselves agents, so tha t typical Ascape models are 

made up of “collections of collections” of agents.

N am e R eference D evelop er (s)

NetLogo http://ccl.northw estern .edu/ Northwestern Univer­

sity

D escrip tion

NetLogo is w ritten in Java and it can therefore run on all major platforms (Mac, 

Windows, Linux, etc). NetLogo is a programmable modelling environment for sim­

ulating natural and social phenomena. It is particularly well-suited for modelling 

complex systems developing over time. Modellers can give instructions to hundreds 

or thousands of independent “agents” , all operating in parallel.

N am e R eference D evelop er(s)

StarLogo http ://education .m it.edu/starlogo/ MIT

D escrip tion

StarLogo is a programmable modelling environment for exploring the workings of 

decentralized systems systems tha t are organized without an organizer, and co­

ordinated without a coordinator. W ith StarLogo, researchers can model (and gain 

insights into) many real-life phenomena, such as bird flocks, traffic jams, ant colonies, 

and market economies.

http://www.brook.edu/
http://ccl.northwestern.edu/
http://education.mit.edu/starlogo/


A .3 List of agent-based sim ulation packages: Pro­

prietary

N am e R eference D evelop er(s)

AgentSheets h ttp ://w w w .agentsheets.com/ AgentSheets, Inc.

D escrip tion

AgentSheets features the unique Visual AgentTalk tactile and rule-based language 

to create, modify, and customize agent behaviour.

N am e R eference D evelop er(s)

AnyLog'ic http://w w w .xj tek.com / XJ Technologies

D escrip tion

AnyLogic supports virtually all existing approaches to discrete event and continuous 

modelling, such as process flow diagrams, system dynamics, agent-based modelling, 

state charts and equation systems.

http://www.agentsheets.com/
http://www.xj


A ppendix  B

Search Sim plex

B .l  Initial Period = 70 days
Param eter simplex to give the highest sales

Sim plexH

S im plexn i =

90 60 5 50 35 5

91 60 5 50 35 5

90 61 5 50 35 5

90 60 6 50 35 5

90 60 5 51 35 5

90 60 5 50 36 6

rest sales but with fitrr

’ 90 90 5 50 15 5

91 90 5 50 15 5

90 91 5 50 15 5

90 90 6 50 15 5

90 90 5 51 15 5

90 90 5 50 16 6

highest sales but with
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S im p le x H 2

S im p le x H 3  =

Param eter simplex to give the lowest sales

S im p le x L  -

(  75 90 5 50 15 5 >

76 90 5 50 15 5

75 91 5 50 15 5

75 90 6 50 15 5

75 90 5 51 15 5

V 75 90 5 50 16 6 /
highest sales but with fitne

(  75 90 5 50 25 15 \

76 90 5 50 25 15

75 91 5 50 25 15

75 90 6 50 25 15

75 90 5 51 25 15

75 90 5 50 26 1 6 /

i t  sales

/  60 60 5 80 15 15 >

61 60 5 80 15 15

60 61 5 80 15 15

60 60 6 80 15 15

60 60 5 81 15 15

\  60 60 5 80 16 1 6 /

Param eter simplex to give the lowest sales but with fitness 0

/  75 90 15 80 35 5 \

76 90 15 80 35 5

75 91 15 80 35 5

75 90 16 80 35 5

75 90 15 81 35 5

\  75 90 15 80 36 6 /

Param eter simplex to give the second lowest sales but with fitness 0

S im p le x Li =
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Sim plexL 2 =

(  60 90 15 65 25 15 \

61 90 15 65 25 15

60 91 15 65 25 15

60 90 16 65 25 15

60 90 15 66 25 15

\  60 90 15 65 26 16 /

Param eter simplex to give the third lowest sales but with fitness 0

/  75 60 15 80 35 5 \

SimplexL3 =

76 60 15 80 35 5

75 61 15 80 35 5

75 60 16 80 35 5

75 60 15 81 35 5

\  75 60 15 80 36 6 /

Default param eter simplex

Sim plexDefauit =

(  75 75 10 65 25 10 ^
76 75 10 65 25 10

75 76 10 65 25 10

75 75 11 65 25 10

75 75 10 66 25 10

\ 75 75 10 65 26 11 )

B.2 Initial Period = 105 days
Param eter simplex to give the highest sales

/  90 60 5 50 35 5 \

Sim plexn  =

91 60 5 50 35 5

90 61 5 50 35 5

90 60 6 50 35 5

90 60 5 51 35 5

\  90 60 5 50 36 6 /
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S im p le x Hi =

Sim plex H 2 =

Param eter simplex to give the highest sales but with fitness 0

/  75 90 5 50 15 10 \

76 90 5 50 15 10

75 91 5 50 15 10

75 90 6 50 15 10

75 90 5 51 15 10

\  75 90 5 50 16 11 /

Param eter simplex to give the second highest sales but with fitness 0

/  90 90 5 65 25 5 \

91 90 5 65 25 5

90 91 5 65 25 5

90 90 6 65 25 5

90 90 5 66 25 5

\  90 90 5 65 26 6 /

Param eter simplex to give the third highest sales but with fitness 0

/  90 60 5 65 25 5 \

91 60 5 65 25 5

90 61 5 65 25 5

90 60 6 65 25 5

90 60 5 66 25 5

\  90 60 5 65 26 6 /

Param eter simplex to give the lowest sales

(  60 60 5 80 15 15 \

61 60 5 80 15 15

S im p le x H 3  =

S im p le x L  =
60 61 5 80 15 15

60 60 6 80 15 15

60 60 5 81 15 15

V 60 60 5 80 16 16 )
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S im p le x L i =

Param eter simplex to give the lowest sales but with fitness 0

/  90 60 15 80 25 10 \

91 60 15 80 25 10

90 61 15 80 25 10

90 60 16 80 25 10

90 60 15 81 25 10

\  90 60 15 80 26 11 /

Param eter simplex to give the second lowest sales but with fitness 0

/  90 75 15 80 25 10 \

91 75 15 80 25 10

90 76 15 80 25 10

90 75 16 80 25 10

90 75 15 81 25 10

\  90 75 15 80 26 11 j

Param eter simplex to give the third lowest sales but with fitness 0

/  90 60 15 80 35 10 \

S im p le x L 2 =

S im p le x L 3  :

Default param eter simplex

S im p le X D e f a u l t  =

91 60 15 80 35 10

90 61 15 80 35 10

90 60 16 80 35 10

90 60 15 81 35 10

\  90 60 15 80 36 11 /

(  75 75 10 65 25 10 \

76 75 10 65 25 10

75 76 10 65 25 10

75 75 11 65 25 10

75 75 10 66 25 10

\  75 75 10 65 26 11 /
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B.3 Initial Period = 140 days
Param eter simplex to give the highest sales

Sim plexn  =

(  90 60 5 50 35 5 ^

91 60 5 50 35 5

90 61 5 50 35 5

90 60 6 50 35 5

90 60 5 51 35 5

^ 90 60 5 50 36

S im plexn i =

Param eter simplex to give the highest sales but with fitness 0

/  60 90 5 50 35 5 \

61 90 5 50 35 5

60 91 5 50 35 5

60 90 6 50 35 5

60 90 5 51 35 5

\  60 90 5 50 36 6 /

Param eter simplex to give the second highest sales but with fitness 0

/  90 90 5 65 25 10 \

91 90 5 65 25 10

90 91 5 65 25 10

90 90 6 65 25 10

90 90 5 66 25 10

\  90 90 5 65 26 11 /

Param eter simplex to give the third highest sales but with fitness 0

I  90 75 5 65 15 10 \

91 75 5 65 15 10

Sim plex H 2

S im p le x H 3  =
90 76 5 65 15 10

90 75 6 65 15 10

90 75 5 66 15 10

V 90 75 5 65 16 11 j
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Param eter simplex to give the lowest sales

S im plexL =

(  60 60 5 80 15 15 >

61 60 5 80 15 15

60 61 5 80 15 15

60 60 6 80 15 15

60 60 5 81 15 15

^ 60 60 5 80 16 16 /

Sim plexLi =

Param eter simplex to give the lowest sales but with fitness 0

/  60 75 15 65 35 5 \

61 75 15 65 35 5

60 76 15 65 35 5

60 75 16 65 35 5

60 75 15 66 35 5

\  60 75 15 65 36 6 /

Param eter simplex to give the second lowest sales but with fitness 0

/  60 60 15 65 25 5 \

61 60 15 65 25 5

60 61 15 65 25 5

60 60 16 65 25 5

60 60 15 66 25 5

\  60 60 15 65 26 6 /

Param eter simplex to give the third lowest sales but with fitness 0

I  60 90 15 65 35 5 \

SimplexL2 =

S im p le x L 3

61 90 15 65 35 5

60 91 15 65 35 5

60 90 16 65 35 5

60 90 15 66 35 5

\  60 90 15 65 36 6 /



183

Default param eter simplex

S im p le X D e f a u l t  =

(  75 75 10 65 25 10 >

76 75 10 65 25 10

75 76 10 65 25 10

75 75 11 65 25 10

75 75 10 66 25 10

^ 75 75 10 65 26 11 )

Sim plexH =

B.4 Initial Period = 175 days
Param eter simplex to give the highest sales

/  90 60 5 50 35 5 \

91 60 5 50 35 5

90 61 5 50 35 5

90 60 6 50 35 5

90 60 5 51 35 5

\  90 60 5 50 36 6 /

Param eter simplex to give the highest sales but with fitness 0

/  75 75 5 65 35 5 \

75 76 5 65 35 5

75 75 6 65 35 5

75 75 5 66 35 5

75 75 5 65 36 5

\  76 75 5 65 36 6 /

Param eter simplex to give the second highest sales but with fitness 0

/  75 60 5 50 25 15 \

75 61 5 50 25 15

S im p lexm  =

Sim plex H 2 =
75 60 6 50 25 15

75 60 5 51 25 15

75 60 5 50 26 15

V 75 60 5 50 25 16 )
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Param eter simplex to give the third highest sales but with fitness 0

SimplexH3 -

(  61 75 5 65 25 10 >

60 76 5 65 25 10

60 75 6 65 25 10

60 75 5 66 25 10

60 75 5 65 26 10

^ 60 75 5 65 25 11 )

Param eter simplex to give the lowest sales

S im p le x L  —

(  61 60 5 80 15 15 >

60 61 5 80 15 15

60 60 6 80 15 15

60 60 5 81 15 15

60 60 5 80 16 15

^ 60 60 5 80 15 16 /

Sim plexLi =

Param eter simplex to give the lowest sales but with fitness 0

(  90 75 15 80 25 5 \

91 75 15 80 25 5

91 75 16 80 25 5

91 75 16 81 25 5

91 75 16 81 26 5

\  91 75 16 81 26 6 /

Param eter simplex to give the second lowest sales but with fitness 0

/  90 60 15 80 35 5 \

91 60 15 80 35 5

S im p le x L2 =
91 60 16 80 35 5

91 60 16 81 35 5

91 60 16 81 36 5

\  91 60 16 81 36 6 /



Param eter simplex to give the third lowest sales but with fitness 0

I  90 60 15 80 25 5 \

SimplexL3

Default param eter simplex

S i m p l e x D e f a u i t  —

91 60 15 80 25 5

91 60 16 80 25 5

91 60 16 81 25 5

91 60 16 81 26 5

V 91 60 16 81 26 6 /

(  75 75 10 65 25 10

76 75 10 65 25 10

75 76 10 65 25 10

75 75 11 65 25 10

75 75 10 66 25 10

\  75 75 10 65 26 11 j
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