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ESSAYS ON FORECASTING DEMAND AND PREFERENCES FOR 

CARS IN EMERGING MARKETS: THE CASE OF CHINA

ABSTRACT 

Lixian Qian

The emerging markets (EMs) have been increasingly important in the global economy, 

especially during the recession. These markets have different characteristics from the 

developed markets such as high level of market heterogeneity (Burgess & Steenkamp, 

2006; Sheth, 2011). This thesis explores how to forecast the demand for cars in a 

market context that has been experiencing significant and fast growth. Car sales in 

2002 were only 1.25 million units in China, while the figure increased to 11.27 

million by 2010. Research on car market demand in developed economies is well 

established, but little attention has been paid to the emerging car markets and the 

challenges that researchers face when they have to predict the demand or preferences 

for cars in the EMs. By using the Chinese car market as the market context, this thesis 

explores how to tackle specific problems associated with forecasting the demand for 

cars in an emerging market.

The thesis contributes to the literature in the following ways. We apply some of the 

well-known techniques that have been applied in other domains and assess how they 

fare in predicting the demand and preferences for cars in a new market context. We 

also take into account that preferences and the way in which consumers make choices 

in some markets may require a different methodological approach. We demonstrate



the importance of understanding local consumer behaviour when it comes to not only 

collecting the data but we also show that this may mean that we have to modify or 

reject some of the approaches that have been used in more mature markets. The thesis 

also proposes novel modelling approaches that are inspired by the specific problems 

of predicting car demand in China, but these proposed methods can also be replicated 

and tested for other products in other new emerging market economies.
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CHAPTER 1. 

INTRODUCTION

1.1 Research Background

The emerging markets (EMs, hereafter) have an important role in contributing to 

global economic growth especially in the context of the recent financial crisis. The 

importance of the EMs is particularly prominent when major developed economies 

have been suffering weak demand caused mainly by the economic recession during 

the recent global financial crisis of 2007-2012. Before the crisis, the EMs contributed 

45% of global economic growth from 2000 to 2006, while their contribution rate 

sharply rose to more than 80% in 2007 and 2008 (O'Neill & Stupnytska, 2009). It is 

further predicted that the four leading EMs, namely Brazil, Russia, India and China 

(BRICs), will be as big as a group of seven highly industrialised economies (G7) by 

2032. Research has shown that emerging markets differ from the more developed 

markets on the following key attributes: market heterogeneity, socioeconomic status, 

culture and regulation (Alden, et al., 2006; Burgess & Steenkamp, 2006; Sheth, 2011). 

Given the increasing significance of the EMs and their different context specific 

characteristics, it is crucial for both manufacturers and governments to use marketing 

and forecasting models to forecast demand and better understand local consumer 

behaviour in the EMs, so that better decisions can be made to either effectively fulfil 

the demand or further stimulate the growth. However, there is little attention devoted
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to forecasting and marketing problems in emerging markets. The research context of 

the thesis is an emerging market, China. We look at the marketing modelling 

challenges that arise in such a market and illustrate our propositions by using the case 

of car demand. The existing literature, particularly about forecasting and modelling 

car market demand, has paid little attention to the emerging markets, so it is important 

that we critically explore whether such existing approaches which have been used in 

other markets can be applied in the context of an emerging market. This thesis aims to 

fill in this gap and shed some light on how we can better forecast demand and 

understand local consumer behaviour in the EMs through appropriately accounting for 

the contextual characteristics and the local consumer preferences. By doing this, we 

also propose new modelling approaches that suit the context and the marketing 

problems and challenges.

Among the various economic sectors, the automobile industry is one of the most 

influential sectors with significant impacts on the whole society. It not only 

contributes a large amount of revenue to national economy but also has the potential 

to transform social behaviour and consumer lifestyles. Thus many countries consider 

the automobile industry as one of the economic pillars. When studying the automobile 

industry, there are many interesting topics, such as new product development and 

introduction strategies in the EMs, the innovations in car marketing practice, and the 

design and implementation of incentive policies among governments, car markets and 

consumers. All of them have important implications in the current context of 

promoting the post recession market demand. Furthermore, the transport sector, which 

is largely based on automobiles, is faced with important issues about both oil demand 

and environmental issues. The transport sector accounts for 97% of global oil demand

2



increases (International Energy Agency, 2009). The world oil consumption ratio in the 

transport sector increased from 45.3% in 1973 to 61.40% in 2008 (International 

Energy Agency, 2010a). At the same time, car use is a significant contributor of air 

pollution (Fenger, 1999). Currently, the transport sector accounts for 23% of global 

CO2 emissions, which are estimated to rise to 32% by 2035 (International Energy 

Agency, 2010b). Moreover, the emerging car markets led by the BRIC economies are 

expected to be the main source of global car sales growth in the next decade and 

China alone will account for 42% of this increase (Burgstaller, et al., 2009). Such 

huge growth potential has strengthened public concerns about security of oil supplies 

and environmental impacts. The International Energy Agency (2009, 2010b) warns 

that China will account for more than half of the global increase of CO2 emissions by 

2030 if it continues on current energy path and China will also contribute to almost 

half of global oil demand growth in next 2.5 decades, mainly driven by the growth of 

local car market. Therefore, given the important implications for the automobile 

industry and more importantly for the sustainable development of the whole society, 

this thesis is positioned in the larger context of modelling market demand and local 

consumer behaviour in the emerging car market, as illustrated by the overlapped areas 

of two dashed circles in Figure 1-1.

Considering the emerging car markets such as China’s, as most consumers have no 

prior experience of using cars, the analogy here is that the car is a new product 

concept. Therefore, this thesis is mainly based on the methodology of new product 

forecasting as shown with the solid line circle in Figure 1-1. We elaborate further on 

the specific research questions in section 1.3.
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Figure 1-1: Position of the thesis - m arket context and methodology

Methodology.
New Product 
Forecasting

Context
\ Automobile 

MarketContext. \ 
Demand in 
the emerging 
markets Modelling demand of 

the Chinese car market
r  -  - -

1.2 An Overview of the Chinese Car Market

Let us now elaborate on the context of the Chinese car market. On the one hand, the 

Chinese car market is a typical emerging market with the short development history 

and low household car ownership level. Figure 1-2 shows the urban household car 

ownership level in China from 1999 to 2009. Every 100 Chinese urban households 

only owned 10.89 cars by the end of 2009 in spite of nearly 10 years’ fast growth, 

which is much lower than the world average level. On the other hand, China has 

become one of the most important automobile markets in the world. The fast 

development of the Chinese automobile market is mainly driven by the massive 

growth in the passenger car market since 2002. Similar to other markets, the category 

of the passenger cars in China is defined as the motor vehicles with at least four 

wheels, used for people-carrying purpose and comprising no more than 9 seats



including the driver’s seat, while the commercial vehicles mainly include light 

commercial vehicles (LCV), heavy trucks, coaches and buses1. As shown in Figure 

1-3, the segment of passenger cars is contributing three quarters of annual vehicle 

productions in China now, while 10 years ago it was only about 30%. Thus, it is more 

important for car manufacturers and governments to better cope with the consumer 

demand for passenger cars in China. Therefore, this thesis focuses on the passenger 

car market in China and excludes the commercial vehicles.

Figure 1-2: Household car ownership level in China (1999-2009)

No. of cars per 
100 households

12

10

8

6

4

2

0
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Note: Data is for urban and township households only. 
Data source: China Statistical Yearbooks (2003-2010)

1 See detailed vehicle type definitions on the website o f  the International Organization o f  Motor 
V ehicle Manufacturers (http://oica.net/wp-content/uploads/stats-defmition.pdf).
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Figure 1-3: M arket shares of passenger cars and commercial vehicles in China 
______________________________ (1997-2010)______________________________
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Data source: the International Organization o f  Motor V ehicle Manufacturers

As we have discussed previously, China has a fairly short history in its car market 

development. We provide a brief overview of the development history of the Chinese 

car market as follows in this section. In the first 50 years of the 20th century, there 

was no domestic automobile industry in China. Starting from 1950s, China’s new 

government decided to develop its own automobile industry but chose to exclusively 

focus on the production of commercial vehicles, such as medium or heavy loading 

vehicles and trucks, to meet the demand for large scale infrastructure construction. 

The development of Chinese passenger car manufacturing did not start until the 

establishment of the reform and opening policy in late 1970s. Here we briefly review 

the development history of the Chinese car market over the past three decades. For 

more historical reviews of the Chinese automobile industry and car market 

development, please refer to Chin (2010) and Holweg, Luo, & Oliver (2009).

I Passenger Cars □  Commercial V ehicles

! I I I ■ I ■ ■ I I ■ I I ■ 
II  I I I ■ I I ■ I I f
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
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1. 1980s and early 1990s

In the early 1980s, in order to initiate the domestic passenger car market, the Chinese 

government changed its policy to encourage the domestic firms to cooperate with 

multinational car manufacturers, so that the advanced technologies, equipments and 

funds could be introduced to China. In this period, the first batch of joint venture car 

manufacturing companies was established in China.

• In 1983, the first Sino-foreign joint venture automobile company, Beijing Jeep, 

was established between American Motors Corporation (AMC, which was taken 

over by Chrysler later) and Beijing Automotive Works (BAW) to produce the 

Cherokee Jeep.

• In 1985, the first Sino-foreign joint venture car manufacturing company, 

Shanghai Volkswagen, was formed between Shanghai Automobile Industry 

Corporation (SAIC) and Volkswagen to produce the Santana sedan. In the same 

year, Guangzhou Peugeot Automobile Company was setup between Guangzhou 

Automotive Works and Peugeot Corporation to produce the Peugeot 504 light 

truck and the Peugeot 505 sedan.

• In 1991, Volkswagen’s second joint venture company in China was established in 

Changchun with First Automotive Works (FAW). One year later, Dongfeng 

Automobile Corporation setup its first joint venture company, Dongfeng Citroen 

(Shenlong Automobile), with Citroen from France.

Car market demand during this period primarily came from various governmental 

organisations, public sectors and commercial companies. The Chinese households in 

1980s couldn’t afford the private cars due to their fairly low income. Instead, the 

Chinese urban households at that time were mainly intended to adopt home appliances,

7



typically including televisions, refrigerators and washing machines, which were 

known as three “must have” items for the marriages in 1980s in China2.

2. Mid 1990s to 2000

In mid 1990s, the Chinese government started to transform its car market policy from 

supporting the car demand in public or business sectors to encouraging private car 

adoption. The Automotive Industry Policy published in July 1994 is regarded as a 

watershed policy (Chin, 2010), because it not only established the automotive industry 

to be one of the “pillar industries” of the national economy in China, but also 

explicitly encouraged the household car ownership and identified the passenger cars to 

be one of the development priorities thereafter.

During this period, several new car manufacturing companies were established in 

China, who became the important market players in the new century. Shanghai 

General Motors and Guangzhou Honda opened in 1997 and 1998 respectively as the 

new members of Sino-foreign joint venture car makers. At the same time, a few 

domestic enterprises, such as Chery and Geely, entered the car manufacturing field in 

late 1990s to produce cars with their own brands.

In spite of the improvement of government policy and the establishment of more car 

manufacturers, many problems still existed in the Chinese car market, which restricted 

the private car market demand in this period. First of all, various taxes and fees above 

the car price overcharged potential consumers. Local protectionism was another issue 

at that time. Regional governments set up entry barriers for the cars not produced in

2 “Chinese wedding costs spiraling”, 14/10/2011, China N ew s Service (CNS), http://ww w.ecns.cn/life- 
stv le /2011/10-14/3014.shtml

http://www.ecns.cn/life-


their own regions through imposing additional fees or unfair regulations. Another 

critical problem in this period is the limited variety of products. Santana (Shanghai 

Volkswagen), Jetta (FAW Volkswagen) and Fukang (Dongfeng Citroen) dominated 

the car market in 1990s, and thus they were popularly called “Old Three” car models 

in China3.

3. First decade of the new century

The first significant event in the new century was the China’s entry to the WTO in 

January 2002, from which the domestic car market in China was expected to suffer 

severe impacts from the imported cars. In order to ensure the stable development of 

the car market, the Chinese government implemented a number of practical policies in 

advance, including:

• In February 2001, the Ministry of Public Security revised the Motor Vehicle

Registration Procedure to facilitate the development of the car rental business 

and the used car market.

• In May 2001, the State Planning Commission decided to remove the price

control on domestically produced cars, which provided the car manufacturers 

the right to independently determine their products’ prices in the market.

• In August 2001, the State Economic and Trade Commission, Ministry of

Finance, State Administration of Taxation and State Environmental 

Protection Administration jointly issued a notification to reduce 30% of 

consumption tax for the cars that meet the emission standard of “Euro II”.

3 “Breaking the rules: Moments o f  truth in the car buying process”, AC N ielson  China, 2007, 
http://ip.nielsen.com/industry/Breakingtherule China.pdf.pdf
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• In November 2001, the State Administration of Taxation adjusted the base 

prices to calculate the vehicle purchase tax, which indirectly reduced the 

expenditure of the consumers when buying new cars.

All these supporting policies provided a solid base for the massive domestic car 

market growth in following years without negative impacts due to the entry into the 

WTO. According to the statistics from the China Association of Automobile 

Manufacturers (CAAM), both production and sales of the domestic-made cars 

exceeded 1.2 million units in 2002, which increased by 59.18% and 62.43% 

respectively in comparison to in the previous year. It was the highest car market 

growth rate achieved since 1993 in China, which demonstrated the start of large-scale 

household car adoption in China. Thus, the year of 2002 was called the first year of 

the car popularisation era in China.

In the following years, the Chinese passenger car market continued this fast expanding 

trend with more than 15% annual growth rate. As we have shown in Figure 1-2, the 

household car ownership level starts its “exponential” increase since 2002. It shows 

that every 100 Chinese urban households owned less than 1 car with little growth until 

2002, but the rate increased faster thereafter and reached over 10 cars per 100 

households by 2009.

In 2008, the Chinese car market was seriously impacted by the global financial crisis 

and its growth rate dropped to below 10%. In order to ensure the stable development 

of the car market, the State Council of China approved the Automobile Industry

10



Adjustment and Revitalisation Plan in early 20094. The major point is to further boost 

the private automobile market. One critical stimulus is to halve the purchasing tax in 

2009 for passenger vehicles with no more than 1.6L engine size and provide the 

allowance to rural consumers to buy the cross-over vans or light trucks. The incentive 

policy demonstrated the immediate effect in the market where the domestic passenger 

car sales in 2009 achieved an outstanding growth rate of 52.93% compared to in 2008, 

which helped China to become the world largest automobile market in terms of annual 

sales by the end of that year.

At the same time, the Chinese government started to promote the green car market to 

address the issues of oil shortages and environmental impacts due to the conventional 

petrol cars. In January 2009, a public sector-focused “Ten cities and Thousand 

vehicles” program was initiated in China, which aims to select 10 cities each year and 

introduces 1000 hybrid, electric or hydrogen fuel cell vehicles for taxis, bus and other 

public services in each city (Huo, et al., 2010). In June 2010, the Chinese government 

announced a pilot subsidy policy for household green car buyers in 5 selected cities 

(Shanghai, Changchun, Shenzhen, Hangzhou and Hefei). This policy has been 

designed for the period between 2010 and 2012 and mainly supports plug-in hybrid 

and electric cars. The governmental subsidies for each hybrid and electric car can go 

up to RMB 50,000 and RMB 60,000 respectively, depending on the different battery 

capacity.

4 “Stimulus plan gives auto sector a shot in the arm”, 37/03/2009, China Econom ic N et, 
http://en.ce.cn/Insight/200903/27/t20090327 18635392.shtml
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1.3 Research Objectives and Contributions

With the development of the Chinese car market, different types of marketing 

problems have gradually emerged, which have significantly shaped the research 

questions. Figure 1-4 shows the main framework of this thesis. In the context of the 

Chinese car market, we discuss here how we develop this thesis framework to 

effectively address four different but interrelated research problems or challenges 

(shown as the small rounded rectangles under the main research question) by 

employing different approaches.

This thesis tackles two broad research questions as illustrated with two large 

rectangles in Figure 1-4: the current and future market demand respectively in the 

Chinese car market. Regarding the existing demand in China, the world car market is 

a typical sector that has been deeply affected by the financial crisis during the past 

three years. Before I started my PhD, I could not expect that China would grow so fast 

and became the world largest automobile market in terms of annual sales in 2009. The 

rapid growth of the car market not only means the increase in the sales figures but this 

has also led to changes in living style and local consumer behaviour in China. 

Therefore, the research questions about the existing market demand tackle modelling 

demand at both aggregate and disaggregate levels5. At the aggregate level, we 

consider how to better forecast sales at the aggregate level for car manufacturers who 

want to further invest in this market and for the local government who cares about the 

economic growth, oil supply and environmental issues resulted from the car sales 

growth. However, the short history of household car ownership in China means that

5 The terms o f  “disaggregate level”, “individual level” and “micro level” are used interchangeably in 
this thesis. The terms o f  “aggregate level” and “macro level” are also used interchangeably.
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only limited sales data is available to forecast sales. The approach that we propose to 

address this challenge is to use the diffusion model that is usually employed for 

modelling car ownership to forecast car sales. We find this approach can outperform 

various benchmark models including time series and linear econometric models. At 

the disaggregate level, we explore the challenge of understanding local consumer 

behaviour and how this affects the adoption decision and the types of cars that 

consumers want to buy. This is important for the market players such as car 

manufacturers and governments because it provides them with more practical 

implications about how to effectively influence consumer behaviour and thus the 

market demand. The thesis explicitly compares the local consumer behaviour for car 

ownership and car type choice in China with the general findings in other more mature 

markets. Importantly, given the significantly different characteristics of the Chinese 

car market, we account for context specific factors, such as consumer knowledge, on 

local consumer behaviour. Consumer knowledge is found to have significant effects in 

many aspects of car market consumer behaviour, including car ownership, car type 

choice and future purchase intentions.

The second aspect of the thesis focuses on the future market demand, which is about 

the new products that are to become available in the future. During the period of 

recession, governments in major economies consistently carried out supporting or 

incentive policies to encourage the development and adoption of green cars or 

alternative fuel cars. China has been no exception and the Chinese government has 

defined the development of alternative fuel vehicles (such as hybrid and electric cars) 

as one of the national strategies to support the sustainable development of China. 

Therefore, it is important that we understand the consumers’ potential preferences
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towards these green cars in China. This is important for car manufacturers as they 

need to know if consumers are going to buy such types of cars. This issue is also 

important for the government to see what types of policies they should be 

implementing to encourage more consumers to buy environmentally friendly types of 

cars. Given that these green cars are brand new products, we conducted a conjoint 

analysis and developed different specifications of discrete choice models to explore 

the potential heterogeneity of consumer preferences for them. Furthermore, with the 

identified heterogeneous preferences for the green cars, the next question emerging 

out of the research is how to forecast the dynamic diffusion of these green cars in 

China. The answer to this question is that we develop a dynamic segmentation 

approach to better capture the heterogeneous consumer preferences across the 

segments of car owners and non-car owners. In addition, we account for another 

important context characteristic of continuously increasing car ownership level in 

China. By comparing with the non-segmentation approach that is usually employed in 

the literature, we empirically demonstrate how different forecasts of the green cars are 

generated when the discrete choice models that better capture heterogeneity are 

applied in each segment. Importantly, in such an emerging market where the 

segmentation (whether households own cars or not) change for over time is 

appropriately accounted for.
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The key research objective of this thesis is to explore marketing approaches and 

models that can forecast demand in a rapidly changing market environment of the 

Chinese car market by accounting for local consumer preferences and the contextual 

characteristics. Most marketing models are developed in more mature markets and 

have been widely applied in these markets. It is important for researchers to assess 

how these approaches fare in the EMs. Therefore, this thesis explores different types 

of demand modelling approaches in an emerging market by looking at aggregate level 

sales forecasting to micro level consumer behaviour, from revealed preferences and 

purchase intentions towards existing products to stated preferences towards new 

products (green cars), and from modelling static preferences to forecasting the 

dynamic diffusion of the green cars. At the same time, this thesis is not just about the 

application of existing methods. We develop or extend the methods by properly 

accounting for the context specific characteristics. For example, we do not simply use 

the diffusion model to model the car ownership growth as appearing in most literature, 

but develop a sales forecasting approach based on the diffusion model to better 

capture the nonlinear growth pattern of sales. Furthermore, the context specific 

variables, such as the consumer knowledge, are accounted for when understanding 

local consumer behaviour for cars in China, in addition to the typical variables that 

have been included in the studies based on the developed markets. Moreover, the 

discrete choice models developed to understand the stated preferences for the green 

cars also take into consideration the fact that most Chinese consumers have no car 

ownership experience so that we do not hold any prior assumption about the 

correlations between any types of cars. Also, the dynamic segmentation approach 

proposed to forecast the diffusion of the green cars also considers the context features 

of China, which include the high level of consumer heterogeneity and the dynamic
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change of car ownership level over time in China. In summary, all these studies are 

linked together and form the main contribution of this thesis, which is that we explore 

the effectiveness of various demand modelling approaches in the context of the 

emerging Chinese car market and importantly by accounting for the contextual 

characteristics of this market. The thesis is organised around the following specific 

contributions which are connected to the marketing modelling challenges of 

understanding and predicting the demand for cars.

The first specific contribution of this thesis is that we explore the challenge of 

obtaining market forecasts at the aggregate level with limited historical sales data. As 

Meade & Islam (2006) point out, the empirical comparison of the diffusion models 

and how they are used to forecast sales against other models generally receives very 

little attention in the literature. This thesis proposes an approach that employs the 

diffusion models, which are usually used to predict car ownership levels in the 

literature (De Jong, et al., 2004), to forecast car sales in the Chinese car market. The 

study compares quarterly and annual car sales forecasts from three basic diffusion 

specifications with the time trend only (Bass, Gompertz and Logistic models), two 

extended specifications with both time and GDP per capita as independent variables 

(Gompertz and Logistic models) and three benchmark models of exponential 

smoothing, ARIMA and linear econometric models. The study also demonstrates the 

value of rolling forecasting approach in emerging markets and particularly so in the 

Chinese car market where there is the rapidly changing demand.

The second specific contribution of this thesis is to thoroughly investigate the 

consumer preferences in the Chinese car market in comparison to those found in other
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car markets. Here we mainly compare revealed preferences based on the car adoption 

behaviour using household survey data collected in China. We investigate the key 

determinants of car ownership and car type choice respectively in China and compare 

them with the general findings in other markets. This is particularly important for car 

manufacturers based in other markets that are going to manufacture and sell cars in a 

new market. Then we demonstrate why it is important to account for variables that 

may be specific to a particular context. We demonstrate this by showing how 

consumer knowledge as an example of context specific variables impacts on the 

choice to adopt cars and the types of cars that consumers buy. We segment the market 

based on levels of consumer knowledge and further demonstrate that if the 

heterogeneity of consumer knowledge is not properly accounted for, we obtain biased 

estimates for some of the parameters especially those that relate to preferences. We 

also examine the purchase intentions for cars in China and find the important effect of 

the consumer knowledge on consumers’ future purchase intentions.

The third specific contribution of this thesis is that we investigate the potential 

heterogeneity of Chinese consumer preferences towards green cars. As we have 

discussed previously, it is important for the government and the car manufacturers to 

know whether Chinese consumers are going to buy the environmentally friendly cars 

given that they also face the option of non-environmentally friendly cars. This thesis 

investigates the stated preferences for different types of cars in China, i.e. one type of 

conventional petrol cars available in the market and two types of alternative fuel cars 

(hybrid and electric cars) considered as brand new products. Unlike previous studies, 

we do not impose any prior assumption about how consumers perceive the different 

types of cars in China. By comparing 4 different choice structures where each of them
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reflects how consumers choose between alternative fuel cars and conventional types 

of cars, we find that consumers in China do differentiate between the types of 

alternative fuel cars and are more likely to consider switching from petrol fuel 

vehicles to hybrid than to electric cars. Through taking into consideration that most 

households in China are non-car owners, further segmentation analysis shows that the 

car owners do consider the hybrid and electric cars to be similar, while the non-car 

owners perceive that the hybrid cars are more correlated with the petrol cars.

The fourth specific contribution of this thesis is that we present a preference-based 

demand forecasting approach for the new products in the Chinese car market. The 

proposed dynamic segmentation approach combines the well-specified discrete choice 

models for each segment with the segmentation diffusion model. Compared with the 

existing studies in the literature that employ one specific specification of discrete 

choice model for all consumers (Eggers & Eggers, 2011; Lee, et al., 2008; Lee & Cho, 

2009; Lee, et al., 2006), the proposed approach helps account for not only the 

segmentation dynamics at the aggregate level but also two types of preference 

heterogeneity at the disaggregate level. The first type of preference heterogeneity can 

be identified across segments using the appropriate segmentation approach. Additional 

preference heterogeneity within each segment can be accounted for by employing 

appropriate and different choice structures for each segment. By applying the 

proposed approach to forecast the demand for the green cars in China, we empirically 

demonstrate how different forecasts of new product demand for such types of green 

cars are generated when the discrete choice models that better capture heterogeneity 

are applied in each segment and, importantly, in such markets, there is a need to 

consider the segmentation changes over time.
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1.4 Summary and Thesis Outline

This chapter has presented the research background and context of this thesis. On the 

one hand, the importance of the EMs is becoming increasingly prominent, particularly 

in the context of the global financial crisis. On the other hand, different institutional 

characteristics are demonstrated in the EMs in comparison to in the developed markets. 

However, little attention has been paid to the forecasting and marketing problems in 

the EMs, as most existing marketing approaches were developed and applied in the 

context of developed markets. This chapter has discussed that how this thesis 

investigates whether these existing approaches can be applied in the context of an 

emerging market of China for car demand. More importantly it extends these 

approaches through appropriately accounting for the contextual characteristics and the 

local consumer preferences. Therefore this chapter has also set the scene to explore 

the marketing modelling challenges in this emerging market, through providing an 

overview of the Chinese car market and reviewing the latest market problems and 

challenges that emerge during its development.

As illustrated in Figure 1-4 of the thesis framework, this thesis tackles four closely 

related marketing problems or challenges in the context of the Chinese car market. 

Then this chapter has discussed in detail the main contribution of this thesis and the 

specific contributions of the four contributing chapters that address different 

marketing problems or challenges. After this chapter of setting the context of the 

research, the structure of the thesis is organised as follows.
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The next chapter presents a brief review of new product forecasting methodologies, 

data and data collection methods used in the thesis. Please note that the literature 

review that relates to the specific research questions is reviewed in each contributing 

chapter. In this chapter we review the fundamental approaches that can be used for 

new product forecasting, specifically the diffusion model at the aggregate level and 

the conjoint analysis as well as discrete choice models at the individual level. In 

Chapter 2, we also discuss the data and data collection methods we use in the thesis. 

Both secondary and primary data are collected in the thesis. In particular, we discuss 

in detail the questionnaire design and importantly how we organised and implemented 

the survey in China.

The following 4 chapters after Chapter 2 are the main contributing chapters of this 

thesis and their specific contributions have been discussed in section 1.3. Chapter 3 

presents an aggregate sales forecasting approach on the basis of the diffusion model to 

address the challenge of how to provide better sales forecasts with limited historical 

data. Chapter 4 investigates the Chinese consumers’ revealed preferences at the 

disaggregate level in terms of car ownership and car type choice by comparing results 

from China to the general findings in the developed car markets and importantly 

accounting for the context specific variables such as the consumer knowledge. In 

addition, this chapter also models the consumers’ future purchase intentions and 

identifies the important effects of consumer knowledge on their purchase intentions. 

Chapter 5 investigates the stated preferences of the Chinese consumers towards 

different types of green cars and the conventional petrol car based on a choice-based 

conjoint analysis. Using the static preference information explored in Chapter 5,
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Chapter 6 proposes a dynamic segmentation approach and empirically demonstrates 

that it can be used to better forecast demand for green cars in the emerging market 

context of China through appropriately accounting for the market specific 

characteristics.

Chapter 7 is the concluding chapter of the thesis with a summary of the major research 

proposition, key contributions and the possible generalisation of this research for other 

products in other EMs. This chapter also presents some possible directions for future 

research.
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CHAPTER 2. 

AN OVERVIEW OF NEW PRODUCT 

FORECASTING METHODS AND DATA

2.1 Introduction

In this chapter, we provide a review of the generic approaches that can be used to 

model and forecast demand for new products and in the thesis we have applied and 

modified some of these approaches to tackle the specific problems in the contributing 

chapters: Chapters 3 to Chapter 6. Please note that we will review the literature that 

relates to each specific problem in the respective contributing chapters. In addition, 

this chapter also provides an overview of data that has been used in this thesis. Both 

secondary and primary data are collected and used in different ways. We introduce in 

particular how we designed the questionnaire and organised the survey to collect the 

data in China. This chapter effectively constitute the methodology chapter of the 

thesis in that it documents the data as well as the empirical modelling approaches that 

have been applied to tackle the specific problems.

The car is a typical example of new products in China, due to its short adoption 

history and low car ownership level in this market. There are two general types of new 

product forecasting models based on different model specifications: the diffusion 

model and the individual behaviour-based adoption or choice model (Wind, 1981). 

Diffusion models are based on the time series data and assume a sigmoid-shaped
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growth curve of the product penetration levels (Bass, 1969; Mahajan, et al., 2000; 

Meade & Islam, 2006). On the other hand, the choice models are based on individual 

level data to investigate the consumer preferences for different characteristics of the 

products and how this will affect the choice of different options presented to the 

consumer (Greene, 2009; Train, 2003). For new products without any sales history, 

conjoint analysis based on hypothetical scenarios is usually employed to collect 

individual’s potential attitudes or preferences towards the new products before 

applying the choice model (Green, et al., 2001; Gustafsson, et al., 2007; Louviere, et 

al., 2000). Recently, there have been some empirical studies that combine diffusion 

models and choice models to forecast new product demand (Jun & Park, 1999; Kumar, 

et al., 2002; Lee, et al., 2008; Lee & Cho, 2009; Lee, et al., 2006). As this 

combination approach is built upon two fundamental new product forecasting methods 

(i.e. the diffusion and choice models) that we mention above, we will not review this 

approach here, but leave it until Chapter 6 where we propose a better combination 

approach that accounts for consumer preference heterogeneity and car ownership 

dynamics over time when forecasting the diffusion of green cars in China.

The remainder of this chapter is organised as follows. The next section reviews the 

different forms of diffusion model, their estimation methods and the applications to 

forecast new product demand. Section 2.3 briefly reviews the conjoint analysis and its 

key elements. Section 2.4 discusses the different specifications of discrete choice 

models. Section 2.5 presents the data and data collection method. This chapter ends 

with a summary of new product forecasting methods and highlights their linkages with 

different contributing chapters in this thesis.
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2.2 Diffusion Models

Diffusion models have been developed since 1960s to model and forecast the 

diffusion of technology innovations and new durable products (Meade & Islam, 2006). 

Researchers recommend to use diffusion models for new product forecasting when 

only early sales data is available (Wind, et al., 1981) and individual level data is 

limited (De Jong, et al., 2004).

There are different specifications of diffusion models. Three well-known diffusion 

types of models Gompertz, Logistic and Bass diffusion models are briefly presented 

below with some of their applications. For more diffusion model specifications, please 

refer to the Appendix section in Meade & Islam (2006), where the authors summarise 

eight types of sigmoid-shaped diffusion models.

2.2.1 Gompertz model

The Gompertz model (Gregg, et al., 1964) has been used to study the car market and 

car ownership. Using the Gompertz model, the aggregate car ownership level at time t 

is defined as:

Nt — M • exp(—a  • exp(—/? • t))  (2-1)

where N, is defined as number of cars per 1000 people, M  is the saturation or 

equilibrium car ownership level in the long term where market growth is stagnating 

and car ownership Nt reaches a plateau, and a and ft are two positive parameters that 

define the shape of the growth curve. One characteristic of the Gompertz model is that
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its inflection point occurs before half of the market has adopted the product (Meade & 

Islam, 1995), which implies a slow diffusion speed and longer diffusion duration6. 

Other than the time variable which is typically included in the basic specification the 

model as in equation (2-1), other explanatory variables can be added into a Gompertz 

model. Therefore, the Gompertz model can be generalised as:

Nt = M • exp (—a  • exp (—/?' • X )) (2-2)

where X  is the explanatory variable vector and /? is the parameter vector.

2.2.2 Logistic model

The logistic formulation of the diffusion model can be expressed as:

M
Nt ~  1 + a  ■ exp (-/?  • t) <-2'3)

where a and/? are parameters to determine the initial level and growth speed, and M is 

the saturation level of car ownership. Compared to the Gompertz formulation, the 

logistic model is symmetrical about its inflection point, which means the growth of the 

market slows down after half of the market adopts the product. Just like the Gompertz 

model, the logistic model has been generalised to include other dependent variables:

M
Nt  ~  1 + a  • exp (-/? ' ■ X )  (2'4-)

where X  is the explanatory variable vector and /? is the parameter vector.

6 The exact inflection point o f  the Gompertz curve is at 1/e, which is about 36.8%  o f  total market 
potential.
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2.2.3 Bass model

The Bass model (Bass, 1969) classifies potential adopters of new products into 2 

different groups: innovators and imitators. In the Bass model, the probability for an 

individual who does not own a car who will purchase at time t is

f t  = (.P + qFt) ( l - F t') 

where Ft is the cumulative distribution function (CDF) of Bass model, standing for the 

ratio of car ownership level at time (t) against the saturation level, and p  and q are

coefficients of innovation and imitation respectively. Based on the initial condition of

no adoption before the diffusion process, i.e. F$ = 0, the cumulative distribution 

function of Bass model can be derived as

p  = Nt = 1 ~  exP (~ (P  +  <7)0 
M 1 + ^ ex +

Therefore, the car ownership level based on the Bass model is expressed as

1 ”  exP ( ” CP +  <7)0Nt — M  q-----------------------  Q-S')
1 + (^)exp ( - ( p  +  q)t)

Essentially, the Bass model is built based on the generalised logistic curve (Mahajan 

& Muller, 1979; Meade & Islam, 1995).

The Bass model has been generalised to accommodate the effects from other 

marketing variables (Bass, et al., 1994):

f t  = (p + qFt) ( l  -  Ft) x t 

where xt stands for the marketing effort that can be modelled in a following equation 

to account for various marketing mix variables such as price and advertising.



where Pr; and Ad; are the price and advertising at time t, and Pr'; and Ad'; are the 

change rate of price and advertising respectively at time t.

Regarding the model estimation, although the ordinary least square (OLS) is 

employed in Bass (1969) to estimate the parameters of the Bass model, it has been 

found that the OLS method is not an optimal choice, as it may lead to the wrong signs 

of the estimated parameters and large bias of the estimated amount (Meade & Islam, 

2006; Putsis & Srinivasan, 2000). Alternative methods for the Bass model estimation 

are nonlinear least square (NLLS) (Srinivasan & Mason, 1986) and maximum- 

likelihood estimation (MLE) (Schmittlein & Mahajan, 1982). As discussed in Meade 

& Islam (2006) and Putsis & Srinivasan (2000), the performance difference between 

NLLS and MLE is not significant, but it is clear that both of them are superior over 

OLS when estimating the Bass model. In addition, the NLLS method is also 

applicable to estimate non-Bass diffusion models, such as the Logistic and Gompertz 

models (Meade & Islam, 1995). It is worth noting that Van den Bulte & Lilien (1997) 

point out that the NLLS estimation method may underestimate m and p, and 

overestimate q for the Bass model. One solution suggested by them to avoid the 

estimation bias is to exogenously set different levels of m and then investigate the 

sensitivity of other parameters. We follow this approach in the thesis.

The diffusion models have been widely applied to model and forecast the diffusion of 

many products, including automobile (Bouachera & Mazraati, 2008; Dargay & Gately, 

1999; Dargay, et al., 2007; Kobos, et al., 2003; Tanner, 1958, 1975), 

telecommunication (Robertson, et al., 2007; Sundqvist, et al., 2005; Wu & Chu, 2010), 

and many other durable goods (Bass, 1969; Bottomley & Fildes, 1998; Tsai, et al.,
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2010). In particular, in the EMs where data are very limited, the diffusion models are 

thought to be the only available method to model the diffusion of cars, which is 

usually measured as the car ownership levels (De Jong, et al., 2004). More 

importantly, Meade and Islam (2006) point out that more attention should been paid to 

the empirical performance comparisons of diffusion models with other sales 

forecasting methods, because it is important for researchers to justify their choice of 

forecasting models by comparing the forecasting capabilities of different models 

(Fildes, et al., 2008). Therefore, in the next chapter, we develop a sales forecasting 

method based on the diffusion model and compare the sales forecasts from such 

method against those produced by three benchmark models, which are Exponential 

Smoothing, ARIMA and linear econometric models that employ sales data directly.

2.3 Conjoint Analysis

Conjoint analysis is one of the most useful marketing research methods for analysing 

consumer tradeoffs between two or more products with different profiles (Green, et al., 

2001). It was introduced into the marketing research domain in early 1970s with the 

seminal work from Paul Green and Vithala Rao (Green & Rao, 1971; Wind & Green, 

2004). Since then, conjoint analysis has been extensively used to investigate not only 

consumer preferences or intentions to buy existing products, but also how consumers 

may react to potential changes in the existing products or to new products to be 

introduced to the market later (Cattin & Wittink, 1982; Green, et al., 2001; Wittink & 

Cattin, 1989). In this thesis, the conjoint analysis technique is applied in Chapter 5 to



investigate the consumers’ potential preferences towards the green cars in China, and 

in Chapter 6 to forecast the diffusion of the green cars by accounting for 

heterogeneous consumer preferences across segments.

In their review of this approach, Hauser & Rao (2004) propose that conjoint analysis 

has five basic elements

• Decomposing the alternative (product or service) into a set of attributes 

(factors). This also includes the definition of different levels of each attribute 

to be explored. The choice of different numbers of attributes and levels of 

each attribute is worth careful considerations. On the one hand, by including 

more attributes and more levels on each attribute, researchers can get more 

information about consumer preferences. On the other hand, the number of 

combinations of attributes, called product profiles, will increase massively 

with more attributes and/or levels included in the conjoint analysis, which 

leads to the increased respondent burden and data collection issue. Therefore, 

balanced definitions of attributes and their levels are required when 

conducting the conjoint analysis.

• Representation of alternatives. It involves how to introduce the product or 

service as well as each attribute, so that respondents can fully understand them. 

In addition to presenting the value of each attribute, the representation can 

utilise verbal description, pictorial illustration (Hensher & Greene, 2003), and 

more vivid multimedia or virtual reality techniques (Rogers & Soopramanien, 

2009) to present the products.

• Fractional design of experiments. Considering a relatively small experiment 

with 5 attributes and 3 levels on each attribute, the complete factorial design
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will involve 243 (=35) total combinations. This suggests that the complete 

factorial design is usually impractical for the conjoint analysis except for some 

cases extremely limited attributes and levels (Louviere, et al., 2000). A 

feasible solution is the fractional factorial design which selects a subset of the 

complete design based on different sampling methods. One of the most 

popular fraction designs is the orthogonal design, where all attributes are 

statistically independent with each other (Hensher, et al., 2005; Louviere, et 

al., 2000).

• Conjoint data collection. In early applications of conjoint analysis, a ranking 

method was usually used, such as in Green & Wind (1975), which requires 

respondents to rank order the different profiles of products presented to them. 

Later, researchers in both academia and industry found they could collect 

rating data with scales about consumer preferences, which can contribute to 

very robust analysis (Hauser & Rao, 2004; Louviere, 1988) and reduce 

respondent burden by requiring less judgements or comparisons from each 

respondent (Raghavarao, et al., 2011). The potential issue of the rating method 

is that it is usually weak to capture the competitions or the tradeoffs made by 

the respondents between different product profiles. Furthermore, when using 

the rating data to model consumer choice probabilities, Guyon & Petiot (2011) 

point out that three typical model specifications, including the multinomial 

logit (MNL) model (McFadden, 1974), Bradley-Terry-Luce (BTL) model and 

the Green and Krieger model (Green & Krieger, 1988) are not able to avoid 

the independence from irrelevant alternative (IIA) property. Therefore, an 

alternative way to collect the conjoint analysis data is the choice-based 

conjoint analysis, which can capture the competitions or tradeoffs between
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several products and have the flexibility to hold the IIA property (Elrod, et al., 

1992). In the choice-based conjoint analysis, respondents only make a single 

choice from several product profiles presented to them simultaneously (see a 

choice scenario example in Figure 5-2). The choice-based conjoint analysis is 

also known as the stated preference (SP) or stated choice (SC) experiment in 

the domain of choice modelling (Hensher, et al., 2005; Louviere, et al., 2000; 

Raghavarao, et al., 2011). In addition, a hybrid or adaptive technique has been 

developed to customise the product profiles for different respondents based on 

the previous information collected from them, and it usually requires the 

respondents to consider a subset of the full-profile scenarios (Green & Krieger, 

1996).

• Modelling methods. When evaluating consumer preferences for the presented 

product, a part-worth model is usually employed (Green, et al., 2001), which 

defines the consumer preference for each product as the summation of part- 

worth function values of different attributes at the selected levels on each 

attribute (i.e. the rate for each attribute). With the choice-based conjoint 

analysis data, discrete choice models (Train, 2003) have developed a large 

variety of model specifications to account for different correlation patterns 

between alternatives. In the next section, we review the most common discrete 

choice models, including the MNL model, the nest logit (NL) model, the 

multinomial probit (MNP) model and the mixed logit model.

A typical example of the conjoint analysis is discussed in Train (2003) to obtain the 

stated preference data on residential customers’ choice of energy suppliers. In the 

experiments, each respondent was presented with 8-12 choice scenarios, where each
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scenario consists of four hypothetical energy suppliers. The attributes of each supplier 

include three types of energy price (fixed price, price based on different time of date, 

or seasonal price), the length of the contract, and whether the supplier is a local utility 

company, whether it is a well known energy supplier or an unfamiliar company. 

Therefore, a generic utility function can be developed to include both alternative 

attributes (X) and individual characteristics of the respondents (Z)

Uin — ttn T ft Xin ~b Yn^i "b £in>

where an is the alternative specific constant and Yn ls the effect of individual 

characteristics on different alternatives. Importantly, the coefficient vector of 

alternative’s attributes, /?', is the weights the respondents place on each attribute, 

which essentially shows how each attribute influences the respondents’ utility and 

valuation on each alternative and thus their choices.

2.4 Discrete Choice Models

Discrete choice models have been widely applied since 1960’s due to the rapidly 

increasing availability of survey data on individual behaviour as well as the growing 

use of computers for complex analysis (McFadden, 2001). Considering a choice 

environment, a decision maker faces a choice set with a finite number of alternatives. 

Each alternative provides “utility” or a level of satisfaction to the consumer. This can 

be defined as Um, depending on both the individual’s characteristics and the attributes 

of the alternative. Following utility maximization criteria where the consumer chooses 

the alternative with the highest level of utility, the choice probability for the decision 

maker n to chooses alternative i from choice set Jn is
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Pin = P r (U in >  Ujn , for all j  G ]n and j  *  i) (2-6)

Since the utility cannot be completely explained by measurable/observable 

characteristics, it is decomposed into the observed portion (Vin) and the random 

portion (ein). Thus equation (2-6) can be rewritten as:

Pin = Pr (Vin + fin > Vjn + £jn>V j  * 0

~' J  ffejn ~  £in ^  Vin ~  Vjn,V j  =£ l ) / ( f n)d£n (2-7)

where / ( £ n) is the joint density of the random vector sn = {sin, •••, £In] and /(•) is the 

indicator function whose value equals 1 when the term within the parentheses is true 

and 0 otherwise. The choice of different specifications of the density / ( £ n) will 

directly determine the different structures of following discrete choice models and 

thus the assumed choice behaviour to make the decisions. Due to the space constraint, 

we mainly review the multinomial logit (MNL) model and the nested logit model 

which are going to be employed in this thesis. The multinomial probit (MNP) and the 

mixed logit models are briefly discussed thereafter.

2.4.1 The multinomial logit model

The multinomial logit (MNL) model, proposed by McFadden (1974), is the most 

widely used model in the discrete choice methods. The random term of the MNL

model follows i.i.d. type I extreme value (Gumbel) distribution with the probability

density function (pdf) defined as

/ f e n )  = ex p (-£ in) • exp(—exp(—£in)), 

and cumulative distribution function (CDF) as
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F(ein) =  e x p (-e x p (-£ in)).

Therefore, from equation (2-7), the MNL choice probability for decision maker n to 

choose alternative i can be derived as a closed form as

Because the MNL model has the closed form probability in equation (2-8), the 

traditional maximum likelihood technique is commonly used to estimate the 

parameters of the MNL model.

A well known characteristic of the MNL model is the independence from irrelevant 

alternatives (IIA) property. This property implies that all choices are mutually 

independent of each other ignoring the possibility that in some situations some 

alternatives are similar to each other. The Hausman Test is proposed to test whether 

the IIA property is violated or not when applying a MNL model (Hausman & 

Mcfadden, 1984). When applying the Hauman Test, the original choice set is first 

reduced by removing one alternative and then the MNL model is estimated again to 

get estimation results of a restricted model. Then Hausman test statistic is calculated 

based on both unrestricted (original) and restricted model results, which should follow 

chi-square distribution with the degree of freedom to be the number of estimated 

parameters (Hensher, et al., 2005). Given the IIA property of the MNL model, many 

extension models have been proposed to allow for different correlations between 

alternatives, such as the nested logit (NL) model, the multinomial probit (MNP) model 

and the mixed logit model.

2.4.2 The nested logit model

35



The most famous extension of the MNL model is the nested logit (NL) model. The NL 

model groups alternatives available in the choice set into several subsets, called 

“nests”, and allows the correlations between the utilities of pairs of alternatives within 

a nest while no correlation for alternatives in different nests (Daly & Zachary, 1978; 

McFadden, 1978; Williams, 1977). A common way to understand the NL model is the 

tree structure, where each branch stands for a subset of alternatives and each leaf on 

the branch stands for the alternative. Importantly, the NL model relaxes the IIA 

property of the MNL model is following way. For any two alternatives in the same 

nest, their ratio of probabilities remains independent of the changes of other 

alternatives out of the nest, while for two alternatives in the different nests, their 

probability ratio depends on all alternatives in both nests. Therefore, in the NL model, 

the IIA property is held within each nest but is not held across nests (Train, 2003).

In the two-level NL, the probability of decision maker n to choose alternative i is the 

product of marginal probability of the nest m (Pmn) and the conditional probability of 

the alternative i given to choosing nest m (Pi\min),

P = P-1 • Pr in r i\m,n r mn

  6Xp(l\ n ! P m )  exP(^m^mn)
Tij exP(V jn /P m ) Tim'=l exPipmr^mm)

where Tmn is the log-sum or inclusive value (IV) variable of nest m with log-sum or 

IV param eter/^ , Ymn =  \n (Z jexp(F/n/ fim) ) . The utility maximisation assumption 

requires the IV parameters must be between zero and one (Greene, 2009). The IV 

parameter is an indicator of independence of all alternatives in the nest and 1 — j j^ i s  

the correlation index between pairs of alternatives within the same nest (Ben-Akiva & 

Lerman, 1985). When ixm =  0, it means all alternatives in the nest m are identical with
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perfect correlations. When \im =  1 for all nests, the NL model collapses to the MNL 

model, which indicates the independence and no correlation between all alternatives in 

every nest. If there is only one alternative in every nest, the NL model also reduces to 

the MNL model.

Table 2-1: Direct- and cross-elasticity of the MNL and NL Models

Model Direct-elasticity 
(change in P, due to change in X,)

Cross-elasticity 
(change in Pj due to change in X,)

MNL P d - P O X t — pPiXi

NL • i not in the nest
/?(1 - P t)X t

• i in the nest m

• i and j  not in the same nest
- p p tXi

• i and j  in the same nest m

p ( i - ' a + f c - i ) ( i - ' ,» + ‘ - p [p'+f c - 1)'v] *1

Elasticity is an important way to understand the relationship between alternatives in 

the model. Table 2-1 compares the direct and cross-elasticities of the MNL and the 

NL models. When the alternative is not in the nest, the direct and cross-elasticities of 

the NL model have the same structures as those of the MNL model. However, when 

the alternative is in the nest, its direct-elasticity is greater than the corresponding 

direct elasticity for alternatives not in the nest, since the IV parameter of the nest (jum) 

is less than one following utility maximisation. Similarly, the cross-elasticity for the 

pair of alternatives in the same nest demonstrates greater magnitude than the 

corresponding cross-elasticity for alternatives not in the same nest. This implies that 

the competition among similar alternatives within the nest is higher than dissimilar 

ones across nests. The magnitudes of both direct- and cross-elasticities increase as the
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IV parameter decreases from one, which is the IV parameter value for either single 

alternative nest or the MNL model.

The multi-level NL model is the direct extension of the two-level NL model. For 

instance, in three-level NL models, the choice set is partitioned into nests and then 

each nest is further partitioned into sub-nests. Therefore, the choice probability of the 

three-level NL model can be express as the product of three logit forms similar to 

equation (2-9).

2.4.3 The multinomial probit model

The multinomial probit (MNP) model (Daganzo, 1979; Hausman & Wise, 1978) 

assumes that the random term en in equation (2-7) follows a joint normal distribution 

with mean of zero and covariance matrix S. This assumption allows the MNP model 

to hold several advantages over the MNL model: random taste variation, unrestricted 

substitution pattern without the IIA property, and its applicability for panel data 

analysis as it can allow for the unobserved utility to be correlated as a joint normal 

distribution over time for each decision maker (Train, 2003).

Unlike the MNL and NL models, the choice probability of the MNP model cannot be 

expressed as a closed form, and thus it has a major shortcoming in the high-cost 

estimation. Simulation is the common technique to approximate the MNP choice 

probability. Train (2003) explains the simulation techniques for the MNP model in 

detail. In addition, the normal distribution assumption of random terms is sometimes 

invalid as a representation of the random taste heterogeneity (Hess, 2005). Therefore,
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mixed logit models have been proposed to allow for more flexible distribution of the 

random term.

2.4.4 The mixed logit models

The mixed logit models have also gained popularity recently in that it not only holds 

the same advantages as the MNP model but also allows for a flexible distribution for 

the random portion. The mixed logit model is the direct extension of the MNL model 

by allowing for the random coefficients of the observed utility in the MNL model. 

Therefore, the mixed logit model is also called random coefficients logit model 

(McFadden & Train, 2000).

The choice probability of the mixed logit model is the MNL choice probability in 

equation (2-8) conditional on the coefficients of explanatory variables. The 

distribution selection of the random coefficients is largely based on the characteristics 

of the corresponding explanatory variables captured by the researcher. The normal 

distribution is widely used to approximate the preference randomness among people. 

The lognormal is useful when all people have the similar inclination for certain 

attributes, such as price, so the utilisation of lognormal distribution can ensure the 

negative sign for the coefficient of the price. Other distributions, such as uniform, 

triangle, and truncated normal are also illustrated in Train (2003). Due to the lack of a 

close-form, the estimation of the mixed logit model must rely on simulated methods, 

as discussed in McFadden & Train (2000) and Train (2003).
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2.5 Data and Data Collection

This section discusses the data used in this thesis, which consists of both secondary 

data and primary data. The secondary data essentially includes various time series data 

such as historical car sales, GDP per capita and household car ownership level in 

China, and we also collected vehicle specification data from the secondary sources. 

The primary data is mainly collected through a consumer survey conducted in early 

2010. We also discuss how we designed the questionnaire for this survey and then 

how we organised and implemented the survey in China.

2.5.1 Secondary data

We collected secondary data of car market sales from the China Associate of 

Automobile Manufacturers and the Development Research Centre of the State Council 

of China. It is worth noting that the concept of passenger cars in China did not 

formally exist until the end of 2001 when a new national standard of vehicle 

classification (GB/T3730.1-2001) was implemented. Therefore, the car sales data we 

collected starts from 2002. In addition, we also collected GDP per capita and 

population data since 2002 in China from either the website of the National Bureau of 

Statistics of China (NBSC) or the China Statistical Yearbooks published by the NBSC. 

These datasets are mainly used in Chapter 3 to forecast the car market sales in China 

using diffusion models versus the benchmark models.

Another secondary piece of data that we collected is vehicle attributes, which are used 

for analysing consumer preferences towards different types of cars with different
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specifications in Chapter 4. During our consumer survey, in order to reduce the 

respondents’ burden and avoid their reporting errors, we did not ask for them to 

provide detailed specifications of their owned vehicles. Instead, we collected the 

information from the third party website or magazine based on their purchased car 

models and purchase time (year and month). In addition, when analysing consumers’ 

car type choice preferences, we needed to construct a choice set for each respondent, 

which consisted of not only the selected model, but also other model alternatives7. 

Therefore, vehicle attributes must be collected for all choice alternatives in the choice 

set. Specifically, we collected the following vehicle attributes: car purchase price 

(RMB), fuel consumption rate (litre per 100 km), maximum horsepower (Kwt), 

minimum turning radius (metre), vehicle length (metre), the number of airbags, and 

vehicle country of origin. Most data of vehicle attributes except the fuel consumption 

rate were collected from the automobile magazine, Orient Auto, which regularly 

updates and publishes detail specifications of all available cars in China. Regarding 

fuel consumption rate, the magazine publishes data released by car manufacturers, 

which are inaccurate as they commonly assume constant driving speeds such as 90 

km/h. The more accurate fuel consumption rates for all vehicle models were collected 

from a governmental website of car fuel consumption rates developed by the Ministry 

of Industry and Information Technology of China

In addition, we also collected household car ownership data reported in the China 

Statistical Yearbooks from 2002 to 2009. This data was collected by the NBSC every 

year based on the annual nationwide household survey and it is reported as the number 

of cars owned by every 100 households. Given that only 10.89 cars were owned per

7 For the details o f  how to construct the choice set randomly based on the market shares, please see  
Section 4.6.1 in Chapter 4.
8 The website address is http://chinaafc.miit.gov.cn.
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100 households by 2009, China is still at the early stage of car adoption and also most 

car-owning households only own one car. Thus we can use the household car 

ownership data to approximate the percentage of the car-owning households in China. 

The data is used in Chapter 6  to estimate a car ownership diffusion model, based on 

which the future segment size of car-owning households in China is then extrapolated 

in the forecasting horizon.

2.5.2 Primary data and questionnaire design

In addition to the secondary data, we conducted a household survey in China to collect 

data about the Chinese consumers’ intentions and preferences to buy cars. In this 

survey, we are interested in their existing car ownership and choice preferences, their 

future purchase intentions for cars, and their stated preferences for a type of new 

product, green cars to be available in the market. We also collected some data about 

the demographic characteristics of the respondents and their families.

The design of the questionnaire is based on the extensive literature review as well as 

our knowledge of the local market situation in China. Bunch and Chen (2008), De 

Jong, et al. (2004) and Potoglou & Kanaroglou (2008a) provide comprehensive 

reviews on modelling car demand using the survey data at the disaggregate level. 

Besides, we review a number of individual studies of car ownership and car type 

choice models as summarised in Chapter 4, and many studies of modelling consumer 

choices for green cars as discussed in Chapter 5. Important information gathered from 

the literature review helped us develop the survey questions. We also take into 

account the local market situation when designing the questionnaire. For example,
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since the average car ownership level in China is low and it is fairly rare to have 

families owning multiple cars, we only ask the respondents (if their families own cars) 

to report on one owned car information in detail. If some households have more than 

one car, we ask the respondents to select the main one as the representative to fill in 

the questionnaire. Since we contend that the Chinese car market may differ 

significantly from the other more developed markets, we developed questions to 

understand the local market context. For example, we asked the respondents to 

evaluate their own knowledge level about cars and the car market, which we think is 

an important feature for that market, and we investigate in detail its significant effects 

on local consumer behaviour in Chapter 4.

Our questionnaire consists of following main sections. For the full questionnaire, 

please refer to the Appendix 1 of this thesis. The logical sequence of each 

questionnaire section is presented in Figure 2-1.

43



Figure 2-1: Flowchart of the questionnaire

At least one driver No driverNo. of licensed 
drivers?

At least one car Knowledge, no. 
of owned cars?

No car

Affordable for a 
cheapest car in 
next 5 years?

No

Yes or unsure

Survey Introduction

Information about the 
family member with the 
highest income at home

Information about the 
driver with the highest 

income at home

Information about car 
purchasing intention in the 

future

Choice-based conjoint analysis 
for the green cars

Household location and 
income information

Information of the 
owned car (main one 

only)

Household demographic 
information, except household 

income

Acknowledgement and 
contact information for prize 

draw.
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1. Current car ownership, such as number of cars owned now, and detailed 

information of the currently owned car (for car owning households, and only 

asking the primary one if owning more than one car). In addition, we asked the 

respondents to evaluate their own knowledge level about cars no matter whether 

they were owning cars or not; they chose one from four given options: no 

knowledge, basic knowledge, familiar or very familiar with cars. Since most 

consumers in China do not have any experience of using cars, we collected 

subjective knowledge about the familiarity of cars instead of the more objective 

expertise about handling cars. More discussion about consumer knowledge is 

presented in Chapter 4.

2. Self-assessment of the affordability for the cheapest car in the next 5 years. If self- 

assessment shows the household cannot afford the cheapest car, the respondent 

will be directed to the section of household residential location and income, 

otherwise the survey will continue.

3. Car purchasing intention in the next 5 years. This includes the planned year of the 

next purchase, the preference for the country of origin, whether it is replacing the 

current car or buying one more, preference for a new or used car, preference for 

domestically made or imported cars, etc. In addition, we asked respondents to 

select and sort top 5 factors based on importance in his/her mind when purchasing 

a car. We also allowed respondents to customise their intended car specification in 

5 categories and 32 attributes (purchasing price, vehicle size and general attributes, 

performance, safety/security and comfort/convenience equipments).

4. Choice-based conjoint analysis for electric, hybrid and petrol cars. We designed 

the conjoint analysis to involve product attributes including purchase price, 

running cost, three types of incentives for hybrid and electric cars, availability of
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charging facility and vehicle range after full charging for the electric cars. Each 

attribute has three levels. We employ an orthogonal fractional factorial design, 

which was implemented through SPSS to generate 32 choice scenarios as shown 

in the Appendix 2. In addition, we adopt the hybrid conjoint technique discussed 

previously to customise the price of the petrol car using the respondent’s preferred 

purchasing price provided earlier, so that the presented choice scenarios are more 

related to what respondents really consider. We randomly allocated 8  choice 

scenarios to every respondent and within each scenario, the respondent was asked 

to select one that his/her household would most likely purchase. More information 

on the design of the conjoint analysis for investigating consumer preferences for 

green cars is described in Chapter 5.

2.5.3 Survey data collection

Before formally starting the survey in China, we conducted a pilot survey with 12 

participants to detect any mistakes or missing information in our questionnaire. Based 

on their feedback, we improved the wording and revised some questions in our survey.

Our survey was implemented online (www.survevmonkev.com). To mitigate the 

potential bias of the online survey towards the computer/internet users, we recruited 

students from two local universities in China (North China Electric Power University 

and China University of Mining and Technology) to help us collect data. During the 

Chinese New Year Holiday in 2010, these students went back to their home areas to 

collect data for us, which allows for getting data from different regions in China. For 

each student, we prepared an information card as shown in Figure 2-2 for them to
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easily approach the respondents. The card had a seasonal greeting for each survey 

participant and showed our online survey address. On the card, we also notified 

people that there would be a prize draw if they complete our survey. All students were 

able to provide their own computers for the respondents without access to the Internet 

to complete the survey. With the help of these students, we were able to access a wide 

range of households living in different areas of China and even those households who 

have no access to a computer.

Figure 2-2: information card used in the survey

i------------------------------------------------------------------------------------------------------1I I

I |
I II I
I I

w w w .su rv e y m o n k e y .c o m /s /C H A S 2 0 1 0  j
i ti i

i |
; i
i I i
i / j x  L a n c a s t e r  U n i v e r s i t y  i
j * \  M A N A C fc W tN T  S tH O U L  {

In order to encourage the participation of the potential respondents, we designed three 

types of prizes for those who completed the survey successfully. The first prize was 

500 RMB for one person, the second prize was 200 RMB each for two persons, and 

the third prize was 100 RMB each for ten persons. We also provided some allowances 

for the university students who helped us during the survey. For every completed 

questionnaire with a clear indication of who recommended the respondent to 

participate in the survey, we gave the named student 10 RMB allowance to 

acknowledge his/her help and cover the potential cost of using his/her computer or 

public internet cafe.
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Our survey started on 20th January 2010 and ended on 30th April 2010. In total we 

have 760 respondents who completed the survey. It is worth noting that we did not 

force the respondents to answer every question in the survey, because we wanted to 

collect correct instead of potentially manipulated answers if the respondents had not 

wanted to disclose some information. Therefore, after removing some cases where 

some conflicting answers are detected or where information on some key variables 

(such as income, household head’s age and sex) were missing, we have 563 cases 

available. We will present the data description for each chapter that uses the survey 

data for different purposes.

2.6 Summary

This chapter has presented the methods that are usually employed for new product 

forecasting and has focused on those which have been employed in the thesis. More 

attention has been devoted to diffusion models, conjoint analysis and discrete choice 

models. These new product forecasting methods rely on different types of data, either 

the secondary or the primary data which we have discussed in the second part of this 

chapter. Both these new product forecasting methods and data are then closely linked 

to the modelling methodologies that we use in the following contributing chapters.

The diffusion model is generally based on a sigmoid-shaped curve to model and 

forecast the growth pattern of innovations or new products at the macro level. Usually 

based on the secondary data, the diffusion model has the advantage of not requiring
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primary data (De Jong, et al., 2004). So, it is a typical approach used for modelling 

new products and in the thesis we test whether it can be used to model car demand in 

China. However, the literature has paid little attention to car sales forecasting based on 

the diffusion model and particularly its sales forecasting performances in comparison 

with other forecasting methods (Meade & Islam, 2006). Therefore, the next chapter 

presents a car sales forecasting approach based on the diffusion model that usually 

models car ownership levels. More specifically, we employ five different 

specifications of the diffusion model and compare their sales forecasting performances 

with those from three benchmark models (exponential smoothing, ARIMA and linear 

econometric models) that use sales data directly to forecast sales. The diffusion model 

and the benchmark models in the next chapter are estimated using the secondary data 

of car sales, GDP per capita and population.

For brand new products without any history, the conjoint analysis is widely used to 

investigate consumers’ potential preferences for different features of the new products 

that may be still under design or development. There are different types of conjoint 

analysis. In particular, the choice-based conjoint analysis is useful when studying 

heterogeneous consumer preferences, as its corresponding modelling approach, the 

discrete choice models, can allow for different types of correlations between multiple 

choice alternatives. In most cases, researchers design the experiment and implement 

the conjoint analysis through surveys by themselves. Thus the data collected through 

the conjoint analysis is the primary data, except in rare cases researchers utilise the 

existing conjoint analysis data from other surveys. In Chapter 5 of this thesis, we 

conduct the choice-based conjoint analysis to investigate the consumer preferences for 

the green cars in China. Based on the primary data we collected through this conjoint
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analysis, we explore all possible correlations between conventional petrol cars and 

two types of the green cars (e.g. hybrid and electric cars) and finally identify the most 

appropriate choice structure of the Chinese consumers for the green cars.

In addition to using the conjoint analysis, the discrete choice models can also be 

employed to investigate the revealed preferences (RP) or purchase intentions for the 

existing products. In Chapter 4 of this thesis, we use the primary data collected 

through our survey and specify the discrete choice models to examine the key 

determinates of the car ownership and car type choices in China. We explicitly 

compare these key factors with those typically found in the developed car markets and 

highlight the differences and the corresponding insights. Importantly, we account for 

context-specific factors such as consumer knowledge in these models to demonstrate 

the importance of understanding specific local consumer behaviour when investing in 

new markets.

Finally, this chapter has also noted the recent empirical studies that combine the 

diffusion model with the discrete choice model to forecast new product demand. Such 

combination approach is reviewed in detail in Chapter 6  before we present the 

proposed dynamic segmentation approach to forecast the diffusion of green cars in 

China. Using both secondary and primary data, the proposed approach combines the 

segmental choice models at the individual level and the car ownership diffusion model 

at the aggregate level.
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CHAPTER 3.

EMPLOYING DIFFUSION MODELS TO 

FORECAST SALES IN THE CHINESE CAR

MARKET9

3.1 Introduction

Forecasting aggregate car ownership level and how this will change over time is 

typically used to get an idea of the market potential. It is useful for governments and 

other policy makers when they have to make decisions related to infrastructure 

development or taxation policy (De Jong, et al., 2004). However, a car manufacturer is 

more interested in the forecast of car sales/demand because this will have an important 

bearing on some of the strategic decisions of that company such as whether to keep 

exporting or to produce their cars locally. In the EMs, car sales forecasting is even 

more critical because of both the short term revenue and long term market potentials.

Limited data can be a significant problem for marketers and forecasters. The short 

history of private car ownership in China means that there is limited time series data 

to predict future sales. In addition, preference survey data or consumer panels, which 

have been extensively utilised in more mature and developed markets, may also be

9 This chapter is largely based on: Qian, L. and Soopramanien D., Employing diffusion models to 
forecast sales in the Chinese car market, to be submitted to Journal o f  Business Research.

51



limited or unavailable in such a market. China provides an interesting context for this 

research. The Chinese car market is a typical market in an emerging economy with a 

fast growth rate but with a short history. Starting from 2002, the Chinese car market 

has experienced massive growth and at the end of 2009 it overtook the United States 

to become the largest car market in the world in terms of annual sales. Historical 

annual new car sales in China, the United States and Japan are shown in Figure 3-1, 

which shows a non-linear growth pattern in China during the early stage of household 

vehicle adoption.

Figure 3-1: New car sales history in China, USA and Japan
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Data Sources: China Associate of Automobile Manufacturers (CAAM) 
US National Automobile Dealers Association (NADA) 
Japan Automobile Manufacturers Association (JAMA)

However, the Chinese car market is far from reaching what is commonly termed the 

saturation level (where growth stagnates and sales/car ownership reaches a plateau). 

According to World Development Indicators published by the World Bank (see Table 

3-1), the global average car ownership increased from 90 cars per 1000 people in early
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1990s to 118 cars per 1000 people in 2005. The major car markets in developed 

economies, represented by the US, UK, Germany and Japan, have high car ownership 

rates with roughly one car owned by every two persons in 2005. China had a much 

lower car ownership level, where every 1000 people only owned 15 cars in 2005, 

although the figure had increased more than 1 0  times since 1990.

Table 3-1: Number of cars per 1000 people worldwide and across some countries

Year World China India Brazil Germany Japan UK US

1990 91.06 1.43 2.42 NA 386.30 283.32 340.58 573.28

1995 89.65 2.90 4.12 l I9.73b 494.90 356.19 352.02 484.84

2000 104.35 7.00 6.00 134.00 515.00 413.00 388.00 473.00

2005

\ t  x . a

117.91a 15.00

b J  x ;

8.00°

1 A A / .  C J  j.

136.003 550.00 441.003 457.00 461.00d

minivans, and utility-type vehicles, which are all treated as trucks 

Data Source: 2006 World Development Indicators, World Bank

Researchers have contended that diffusion models are particularly useful when data is

limited and more so in the EMs because they require limited information (Dargay &

Gately, 1999; De Jong, et al., 2004). However, limited research has been conducted to

forecast sales using diffusion models in the EMs. Furthermore, Meade and Islam

(2006) stated that it is important to compare the different specifications of diffusion

models and how they are used to forecast sales and that researchers should justify their

choice of forecasting models by conducting effective comparison of models (Fildes, et

al., 2008). Our objective is to propose an approach where we can forecast sales of cars

in China by using the diffusion models that usually predict car ownership levels. Our

research significantly differs from the existing body of work on car ownership

modelling in that we extend the use of diffusion models to forecast sales. We consider
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five different specifications of diffusion models, including three time trend-only 

models (Gompertz, Logistic and Bass models) and two extended diffusion models 

with both time and GDP per capita as explanatory variables (extended Gompertz and 

Logistic models), and compare the sales forecasts from these models against those 

produced by three benchmark models that employ sales data directly: Exponential 

Smoothing, ARIMA and linear econometric models. In addition, in order to account 

for the potential impact of demand variations on the forecasting performance, we 

adopt the methodology of rolling forecasting to compare the performance of various 

models based on 5 different horizons. Intuitively, a model may perform well in terms 

of its forecasts over a fixed horizon, but if we change the length of that horizon, we 

may find that this is not the case (Fildes, 1992; Tashman, 2000). This is particularly 

important in the context of EMs where the market condition may be more unstable, so 

the rolling forecasting approach is employed to evaluate which model can provide the 

most robust forecasts. Specifically, we examine the mean and median values of 

various forecasting measures across 5 rolling horizons in order to select the best sales 

forecasting model.

Since three basic forms of diffusion models, which are Gompertz, Logistic and Bass 

models, have been reviewed in the methodology chapter previously, the next section 

of this chapter directly presents the proposed sales forecasting approach and the data 

that we use in this chapter. Section 3.3 discusses the model estimation results. The 

sales forecasting performance of the different models is then presented and compared 

in section 3.4. Finally, our conclusions are presented in the last section of the chapter.
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3.2 Methodology and Data

3.2.1 Conceptual model

Our approach that uses diffusion models to forecast car sales is depicted in Figure 3-2. 

Sales of new cars in the current period can be represented as the difference in stock of 

cars between the current and preceding period with some adjustments representing car 

scrapping. Thus, the relationship between new car sales St and car ownership level Nt 

can be derived as

St = N f P t -  N t-i • Pt_! +  At +  et (3-1)

where Pt is the population size so that (Nt Pt) stands for total car stock at time t, A t is 

the scrapping level at time t, and et is the error term. Because we are modelling the 

early stage of the emerging car market, where car scrapping volume is limited, the 

adjusting term^* in equation (3-1) is approximated to zero.

Figure 3-2: Concept framework of forecasting sales using diffusion models
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Therefore, car sales amount at time t is be re-expressed as

St = Nt • Pt — iVt_! • Pt_1 + et 

and thus car ownership level at time t can be expressed as

m  —  ‘• h  ^ t - i ' P t - 1 ~  

l ~  Pt

When we have car sales data Sh initial period car stock (No ■Po) and population size Pt 

data, the historical car ownership levels can be derived through continuous iterations 

of equation (3-3). With the derived car ownership levels Nh various diffusion models 

can be fitted in the 7-period estimation horizon (t = 1, 2, ..., 7), and then future car 

ownership can be extrapolated in a ^-period validation horizon (t = 7+1, 7+2, ..., 

T+K). Finally, through iteratively applying equation (3-2) with the extrapolated car 

ownerships and population information, car sales forecasts can be derived over the 

validation horizon.

In this chapter, we use five diffusion model specifications, as summarised in Table 3-2, 

to model quarterly car ownership in China starting in 2002. The first three models are 

basic forms of Gompertz, Logistic and Bass models, and the other two are the 

extended specifications of the Gompertz and Logistic models that include both time 

and GDP variables. After parameter estimation, all these five models are used to 

predict car ownership levels in a 3-year horizon, which are further used to forecast car 

sales following the approach described above. It is worth mentioning that GDP 

information used in the validation sample is not the actual data but is also forecasted 

from the estimation sample by using the Holt’s exponential smoothing method. This is 

because in a scenario where sales need to be forecasted, the future levels of GDP are 

unknown when one is using that variable as an input to the forecast model. Therefore,
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the car sales forecasts from the extended diffusion models are unconditional rather 

than conditional on future GDP level data.

Table 3-2: Summary of five diffusion models

Model Definition of diffusion process

Gompertz Nt =  M • exp (—a  • exp (—/? • t))

Logistic
M

Nt =
1  +  a • exp(—/? • t)

Bass
. .  1  _  exP +  <?)*)Nt = M ■ a

1 +  (p )exP (—Cp + <f)0

Extended Gompertz Nt =  M • exp {—a  • exp (—/? • t  +  y  • GDPt))

Extended Logistic
M

Nt =
1  +  a  • exp(— • t  + y  ’ GDPt)

In order to compare the forecasting performance of the diffusion-based models, three 

typical benchmark models are used to forecast car sales directly. Exponential 

smoothing and ARIMA models are estimated based on historical car sales. After 

calibrating all the available variables including seasonal effects, we specify following 

econometric model

$t = P o + P i^ t- i  +  P2 PRICEt +  (l3GDPt +  et , (3-4)

which includes one-period lagged sales, market average car price and GDP per capita 

as explanatory variables.

Three forecasting performance metrics are used to compare the forecasting accuracy 

of all competing models on the validation sample. These are mean absolute deviation 

(MAD), mean absolute percentage error (MAPE) and root mean squared error
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(RMSE). Assuming At and Ft are actual and forecasted sales at time t respectively, 

three measures are defined as

MAD
T+K

= i ?

M A P E  =

t=T+1

T+K
100 v '1 IA t - F t
K I Att=T+1

R M S E  =
T+K

t=T+1

3.2.2 Data

We use secondary data that we have discussed in the previous chapter for estimating 

both diffusion models and the benchmark models in this chapter. Specifically, cars 

sales are regularly published since 2002 by the China Associate of Automobile 

Manufacturers (CAAM), from which we can easily obtain quarterly car stock in China 

by using year 2001 as the base year. Furthermore, we collect population data from 

China Statistical Yearbooks (2003-2009) published by National Bureau of Statistics of 

China (NBSC) to derive the car ownership level (Nt) that is measured as the number of 

cars owned by every 1000 people. Finally, quarterly data of GDP per capita is 

available on the website of NBSC, which is further deflated to be at constant 2001 

price. It is worth noting that the quarterly GDP per capita demonstrates significant 

seasonality effects, so we extract the trend component of GDP per capita variable and 

use de-seasonalised GDP per capita in the extended diffusions as well as in the linear 

econometric models.
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3.3 Model Estimation

3.3.1 Estimation of diffusion models

Nonlinear Least Squares (NLLS) instead of Ordinal Least Squares (OLS) method 

should be used to estimate the diffusion models to obtain the least biased parameters 

(Putsis & Srinivasan, 2000; Srinivasan & Mason, 1986). All 5 diffusion models are 

estimated in EViews 6 . The parameters’ starting values in the Bass model are set to be 

0.03 for p  and 0.42 for q, which are the average values of each parameter reported in 

Van den Bulte & Stremersch (2004) across several hundred of consumer durables. 

Furthermore, some attention is required here about our special treatment of the 

saturation level in the diffusion models. The requirement of stable stage data has been 

highlighted in the literature to estimate the saturation levels for every type of diffusion 

models (Dargay, et al., 2007; Kobos, et al., 2003; Srinivasan & Mason, 1986). An 

alternative way to address the problem of saturation levels in the developing markets 

is to assume a reasonable saturation level and then examine the resultant diffusion 

process (Button, et al., 1993; Chamon, et al., 2008; Wang, et al., 2006). Since we only 

have 8  years worth of car sales data from 2002 and car ownership in China is far from 

saturation, we are not able to estimate the saturation level and we instead compare the 

different models’ performance based on different levels of assumed saturation 

threshold for car ownership. Furthermore, there is not much agreement regarding the 

saturation level of car ownership in China. Dargay & Gately (1999) assume an 

international saturation level of 620 cars per 1 0 0 0  people for 26 countries, including 

China. Chamon et al. (2008) hold a higher saturation level assumption of 2 cars per 3 

people to forecast car ownership of China and India in 2030. However, other studies



report lower car ownership saturation level in China. Button et al. (1993) claim that a 

saturation range from 300 to 450 cars per 1000 people can reasonably be assumed for 

low-income countries due to high population density. In this research, we assume 

three different saturation scenarios, a high level of 600 cars per 1000 people in China, 

a middle level of 400 cars per 1000 people and a low level of 200 cars per 1000 

people, and we further verify the sensitivity of the forecasts to these assumptions.

As we have already highlighted in the introduction section of this chapter, in order to 

compare the different models and how they fare in forecasting sales, we apply the 

rolling forecast methodology. In our study, the first estimation sample is from 2002Q1 

to 2004Q4, and the following 3-year data is the corresponding validation sample. The 

rolling mechanism extends the estimation sample by every half year, followed by a 3- 

year forward validation sample. Thus, there are total 5 pairs of rolling horizons for 

estimation and validation purposes respectively, as shown in Table 3-3.

Table 3-3: Rolling horizons for model estimation and validation

Case Estimation horizon Validation horizon

1 2002Q1 to 2004Q4 2005Q1 to 2007Q4

2 2002Q1 to 2005Q2 2005Q3 to 2008Q2

3 2002Q1 to 2005Q4 2006Q1 to 2008Q4

4 2002Q1 to 2006Q2 2006Q3 to 2009Q2

5 2002Q1 to 2006Q4 2007Q1 to 2009Q4

Based on 5 different estimation samples and under 3 saturation scenarios, each 

diffusion model has 15 sets of parameter estimation results, as reported in Table 3-4.
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All estimated models have good model fits. Specifically, Gompertz and Logistic 

models (both simple and extended specifications) achieve R2 values higher than 0.99 

in every horizon. The goodness of fit of Bass model improves with more data points 

included in the model estimation. The estimated parameters of all diffusion models are 

statistically significant at 1% level with the expected signs across 5  rolling horizons. 

Regarding the stability of the estimates, we find that the different saturation levels 

affect model estimates for the same estimation sample, particularly a parameter in 

Gompertz and Logistic models and p  in Bass model. When comparing the stability 

across rolling horizons, we find that the simple diffusion models tend to have more 

stable estimates than the extended ones, which suggests that the parameter variation 

increases with additional variables included in the model. Also, the stability of 

extended diffusion models is improved when more data points are used in the 

estimation. More importantly, since our main research purpose is to select the best 

sales forecasting model, the better estimation stability of simple diffusion models may 

not ensure their better forecasting capability. We are going to compare the forecasting 

performances of various models in the rolling validation samples in next section.

3.3.2 Estimation of benchmark models

To evaluate how useful these diffusion models are, we compare them against some 

benchmark models. These models directly forecast future sales in the different rolling 

horizons compared to the diffusion models where we use car ownership data and then 

obtain car sales forecasts. We employ three simple time series models estimated in a 

forecasting software package of ForecastPro. The three models are Exponential 

Smoothing with the linear trend and additive seasonality (ES-LA), Exponential
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Smoothing with the linear trend and multiplicative seasonality (ES-LM), and an 

ARIMA model. The specifications of ARIMA model are SARIMA(0,1,0)*(0,1,0) for 

the first 3 horizons and SARIMA(0,1,0)*(1,0,0) and SARIMA(0,1,0)*(1,1,0) 

respectively for the last 2 rolling horizons. The last benchmark model, a linear 

econometric model in equation (3-4), is estimated using Ordinary Least Squares (OLS) 

method in EViews 6 . Residual normality, correlation and heteroskedasticity tests were 

performed after OLS estimation in every rolling horizon case and no significant 

violations of OLS assumptions were detected.

3.4 Sales Forecasting

3.4.1 Quarterly sales forecasting

Based on the car ownership forecasts in the validation sample, the quarterly car sales 

forecasts from the diffusion models are generated using the equation (3-2). As we 

have discussed above, all benchmark models provide car sales forecasts in all 5 

horizons. In order to evaluate the forecasting performance stability across different 

horizons, we report the mean and median values of three performance measures 

(MAD, MAPE and RMSE) in all rolling horizons for all models (Table 3-5). 

Therefore, the best forecasting model should produce the smallest average and median 

values of various performance measures across the validation samples in distinct 

horizons. It is worth noting that the median value here is more important in the 

dynamic market context, since the error measures may suffer high degree of variation 

and skewed distribution. When using the median of various measures across rolling
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horizons, we can achieve a clearer conclusion that the extended Logistic model is the 

best model in forecasting car sales in China. We present the comparison of the 

quarterly rolling forecasting results as follows.

Table 3-5: 3-year ahead quarterly rolling forecasting performance

MAD MAPE RMSE

Model Saturation Average Median Average Median Average Median

200 4.18E+05 3.93E+05 30.48 30.54 4.62E+05 4.17E+05
Gompertz 400 3.74E+05 3.53E+05 27.29 27.33 4.17E+05 3.80E+05

600 3.54E+05 3.38E+05 25.88 25.89 3.96E+05 3.64E+05
200 2.21E+05 2.10E+05 16.22 15.91 2.61E+05 2.45E+05

Logistic 400 1.97E+05 1.83E+05 14.54 14.16 2.31E+05 2.17E+05
600 1.89E+05 1.76E+05 14.02 13.58 2.21E+05 2.07E+05

200 1.26E+05 b 1.22E+05 b 9.76 b 10.30 1.79E+05 2.00E+05
Bass 400 1.45E+05 1.43E+05 11.10 11.58 2.03E+05 2.31E+05

600 1.52E+05 1.50E+05 11.57 12.01 2.12E+05 2.41E+05

Extended
Gompertz

200 2.20E+05 2.14E+05 16.12 15.32 2.75E+05 2.62E+05
400 1.94E+05 1.94E+05 14.35 13.03 2.41E+05 2.33E+05
600 1.84E+05 1.90E+05 13.69 12.13 2.27E+05 2.20E+05

Extended
Logistic

200 1.39E+05 1.26E+05 10.53 10.11a 1.68E+05 a 1.46E+05a

400 1.31E+05a 1.21E+05a 10.01 a 9.55 a 1.60E+05 a 1.53E+05a

600 1.28E+05a 1.23E+05a 9.87 a 9.25 a 1.58E+05 a 1.58E+05a

ESJLA 1.67E+05 1.96E+05 12.18 10.35 2.10E+05 2.21E+05

ESLM 1.70E+05 1.91E+05 12.37 11.08 2.12E+05 2.16E+05

ARIMA 2.17E+05 1.85E+05 16.64 12.62 2.67E+05 2.41E+05

Linear Regression 1.52E+05 1.67E+05 11.04 10.86 1.94E+05 2.02E+05
Note:a Extended Logistic model outperforms all other models with smaller mean and median values of 
measures across 5 rolling horizons. b Bass Model has smallest average and median of MAD as well as median 
of MAPE in low saturation scenario.

• Comparison of the basic diffusion models

For the three basic diffusion models, the Bass model is best at forecasting car sales, 

followed by the Logistic and the Gompertz models respectively. The average and 

median values of MAPE from Gompertz model range from 25% to 30% depending on 

the different saturation levels, while the MAPE of Bass model on average is only 10% 

to 12%. The similar performance differences between Gompertz and Bass models are
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identified when measured by MAD and RMSE. In addition, the Bass model also 

outperforms the Logistic model in most measurements, except when measured with 

the median of RMSE and in the scenarios of middle or high saturation levels.

Table 3-6: Quarterly forecasting improvement from basic to extended diffusions

MAD reduction rate 
(%)

MAPE reduction rate 
(%)

RMSE reduction rate 
(%)

Saturation 200 400 600 200 400 600 200 400 600

Gompertz vs.
extended
Gompertz

47.35 48.07 47.94 47.09 47.41 47.10 40.39 42.13 42.63

Logistic vs.
extended
Logistic

36.99 33.53 32.08 35.08 31.15 29.57 35.54 30.77 28.48

Note: The reduction rates are measured as the forecasting error decreasing percentage from the basic to 
the corresponding extended diffusion specifications

• Comparison of the different diffusion model specifications

When comparing the basic and extended diffusion models, the extended specifications 

are substantially better than the basic ones. Table 3-6 summarises the improvement 

ratios of average measures achieved in quarterly sales forecasting from the basic to the 

extended diffusions. The extended Gompertz model improves the car sales forecasting 

performance by 40%-50% compared with the basic specification. The extended 

Logistic model improves the forecasting performance by about 30% compared to its 

corresponding basic model. In addition, the extended Logistic model is better than the 

extended Gompertz model under all saturation scenarios. Furthermore, the extended 

Logistic model clearly outperforms the Bass model under both middle and high 

saturation level scenarios with smaller average and median values of all measures. For 

the low saturation level scenario, although the median of MAD is higher for the 

extended Logistic model, it achieves smaller median values in both MAPE and RMSE 

than the Bass model. Therefore, the best model amongst all the diffusion models to

66



forecast car sales is the extended Logistic model with both time and GDP per capita 

variables.

• Comparison between diffusions and benchmark models

Amongst all the benchmark models, the ARIMA model is the worst model and the 

two exponential smoothing models have similar forecasting performances. Although 

the linear econometric model has a better forecasting performance than all the other 

benchmarks and some of the diffusion models, the extended Logistic model still 

outperforms it with both smaller mean and median values of three error measures. 

Therefore, the extended Logistic model is the best model to forecast car sales.

The importance of using rolling forecasting to evaluate which model to use is best 

demonstrated by illustrating what would happen if we were to use a fixed sample. As 

shown in Figure 3-3, the extended Logistic model forecasting performance is more 

stable than the linear econometric model. In the validation samples of 2005Q1- 

2007Q4 and 2007Q1-2009Q4, the linear econometric model is the worst model with 

significantly higher forecasting errors. However, if all models were just estimated 

based on data from 2002Q1 to 2005Q4 respectively, one would opt for the linear 

econometric model because it has the smallest MAD and MAPE compared to the 

extended specification of the logistic model and almost the same RMSE in the 

corresponding validation horizon (2006Q1-2008Q4). Therefore, in order to achieve a 

more robust conclusion on which model to use, it is necessary to examine different 

horizons for model estimation and validation respectively.
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We also note that the different saturation level assumptions do not substantially affect 

the forecasting performance of the diffusion models. As illustrated in Figure 3-3, the 

extended logistic model achieves a similar forecasting performance when we test it at 

the three different saturation levels and the results for the middle and high saturation 

levels respectively are not substantial. This indicates that 3-year ahead sales 

forecasting performance based on the diffusion models will not be influenced by the 

different assumptions that we make on the saturation levels.

3.4.2 Annual sales forecasting

Table 3-7: 3-year ahead annual rolling forecasting performance

MAD MAPE RMSE

Models Saturation Average Median Average Median Average Median

200 1.66E+06 1.57E+06 30.71 31.29 1.78E+06 1.64E+06
Gompertz 400 1.49E+06 1.41E+06 27.47 27.65 1.59E+06 1.49E+06

600 1.41E+06 1.35E+06 26.03 26.22 1.51E+06 1.43E+06
200 8.51E+05 8.14E+05 15.83 15.47 9.35E+05 8.24E+05

Logistic 400 7.21E+05 6.83E+05 13.52 12.58 8.03E+05 7.11 E+05
600 6.78E+05 6.44E+05 12.76 12.04 7.61 E+05 6.76E+05

200 4.32E+05 4.24E+05 8.05b 8.99 5.84E+05 6.59E+05
Bass 400 5.39E+05 5.16E+05 9.78 10.78 6.94E+05 7.88E+05

600 5.75E+05 5.47E+05 10.36 11.25 7.35E+05 8.31E+05

Extended
Gompertz

200 8.22E+05 8.08E+05 15.23 15.70 9.69E+05 9.90E+05
400 7.03E+05 6.86E+05 13.12 13.40 8.15E+05 8.70E+05
600 6.52E+05 6.34E+05 12.22 12.43 7.52E+05 8.17E+05

Extended
Logistic

200 4.29E+05 a 3.71 E+05a 8.21 7.49 a 4.86E+05 a 4.46E+05a
400 3.91 E+05 a 3.16E+05a 7.58 a 6.89 a 4.62E+05 a 3.70E+05a
600 3.84E+05 a 3.16E+05a 7.46 a 6.54a 4.60E+05 a 3.98E+05a

E S L A 5.67E+05 6.92E+05 10.50 9.13 6.77E+05 8.35E+05

E S L M 5.70E+05 6.94E+05 10.51 9.20 6.80E+05 8.20 E+05

ARIMA 7.79E+05 7.20E+05 15.18 13.06 8.95E+05 7.58E+05

Linear Regression 4.66E+05 6.03E+05 8.45
__ __ J  _ 1 _ b  T~\ _

8.41 5.77E+05 7.62E+05
Note:a Extended Logistic model outperforms all other models. Bass model is the best in this case only 
(low saturation scenario and measured with average value of MAPE across 5 rolling horizons).
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We use quarterly sales data but it is very likely that strategic decisions relating to car 

sales will be based on annual sales figures. Thus we further compare the annual sales 

forecasts based on a 3-year ahead rolling horizons, which are derived by combining 

every 4 quarters’ prediction in a 3-year validation horizon. The corresponding 

forecasting performances of the different models are summarised in Table 3-7, where 

we also present both average and median values of three error measures. Following 

the same comparisons for the quarterly sales forecasts, we find that the extended 

Logistic model consistently achieves the smallest median values of forecasting errors 

in any saturation scenario. Again here we find that the Logistic model with the 

extended specification is the best model.

3.5 Conclusion

Aggregate car sales forecast is an important strategic market insight for car 

manufacturers when they have to assess the demand potential of any country’s car 

market. Data on car sales may be limited or not widely available if the product is new 

in a market. In such a situation, we propose that market researchers consider the use of 

diffusion models to forecast car sales in an emerging market by using data on car 

ownership levels which may be more readily predictable whereas sales data is limited. 

We use the context of China where car adoption is still low compared to other 

developed more mature car markets. A more distinctive contribution of this chapter is 

that we have explored how diffusion models can be used to forecast car sales as 

opposed to simply forecasting car ownership levels.
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Three well-known diffusion models are initially estimated (Gompertz, Logistic and 

Bass models) and then we extend their basic specifications by including a trend effect 

and the effect of GDP. The significant effect of income on the car diffusion and sales 

from our results corroborates with other findings in the literature (Dargay & Gately, 

1999; Dargay, et al., 2007; Dargay, 2001). The superior forecasting performance of 

the extended Logistic model compared to the econometric model suggests that the 

diffusion models are better able to cope with the non-linearity characteristic of the 

market expansion in China. This is not surprising as previous research does stress on 

the importance of using models that suit the market dynamics (Fildes, et al., 1998; 

Fildes, et al., 2008).

The sales forecasting performances of the diffusion models are compared against the 

benchmark models (exponential smoothing, ARIMA and linear econometric model). 

We show that it is important to use a rolling forecast horizon approach instead of 

using a fixed validation sample to compare the models. We demonstrate that the 

rolling forecasting approach is particularly significant when it comes to choose a more 

robust model that can cope with the rapidly changing environment in the EMs such as 

China.
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CHAPTER 4. 

THE IMPORTANCE OF UNDERSTANDING 

LOCAL CONSUMER BEHAVIOUR: THE 

CHINESE CAR MARKET

4.1 Introduction

For any car manufacturer who wants to sell its products in China, it should have a 

clear understanding of the local consumer behaviour and particularly the differences 

in comparison to the established markets. Such a comparison provides car 

manufacturers with valuable insights to develop competitive products or strategies that 

meet local consumers’ demand. It is particularly important for multinational car 

manufacturers who want to enter the Chinese car market or further benefit the growth 

potentials of this market. Their success or failure in this market largely depends on 

how they understand local consumer preferences for cars as well as the culture and 

then effectively deliver the “right” consumer products. In the car market, for example, 

the failure of Fiat in China from 2003 to 2007 is believed mainly due to its inability to 

respond to the Chinese consumer preferences10. Another case in the Chinese car 

market is Toyota in 2003, who clumsily advertised its SUV model (Prado) with two 

bowing stone lions (Doctoroff, 2005, p. 104), which were easily connected by the

10 “Fiat ‘must learn from past mistakes’”, China Daily, 13/07/2009, 
http://www.chinadaily.com.cn/cndy/2009-07/13/content 8418360.htm
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Chinese consumers with the similar stone lions on the Marco Polo bridge where the 

Japanese troops started their full-scale invasion in China in 1937. Therefore, the 

advertisement aroused immediate resentment from the Chinese consumers. 

Consequently Toyota had to formally apologise for that advertisement11 and even 

changed the Chinese name of Prado one year later. When modelling car market 

demand, however, the existing literature extensively focuses on the developed markets 

and pays little attention to consumer behaviour in the EMs such as China. Thus, using 

the car market as an example, this chapter aims to bridge this gap and to shed some 

light on local consumer behaviour in China and its differences in comparison with in 

the more mature markets.

At aggregate level, researchers have conducted cross-country comparison of new 

product diffusion processes to differentiate key factors that determine new product 

diffusions in different countries (Meade & Islam, 2006; Yalcinkaya, 2008). For 

example, Gatignon, et al. (1989) find that the innovative effect (p) and imitative effect 

(iq) of Bass model in a country could be affected by its cultural characteristics 

including the role of women in society (proportion of women in the workforce), 

cosmopolitanism (communication with foreign countries by post or by travel) and 

mobility level (car ownership). Takada & Jain (1991) show that a lagged introduction 

of new product in a country may lead to an accelerated adoption, while Tellefsen & 

Takada (1999) find that p  and q of Bass diffusion can also be influenced by the levels 

of mass media in countries. Through comparing new product diffusions in developed 

and developing countries, Talukdar, et al. (2002) find that the average penetration 

potential of new products in developing countries is only one third of that in the

11 “Toyota apologizes for ‘humiliating’ ads”, 05/12/2003, China Daily, 
http://www.chinadailv.com.cn/en/doc/2003-12/05/content 287571 .htm
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developed ones and the adoption rate is slower in the developing countries. They also 

find that the stronger economic and population growth in the developing countries 

would indicate a significant rise of the penetration levels in the developing countries. 

More recently, Van den Bulte & Stremersch (2004) conduct a meta-analysis based on 

52 different consumer durables across 28 countries. They show that the q/p ratio of 

Bass model is positively associated with income inequality in a country and the 

collectivistic cultures tend to have a higher q/p ratio than the individualistic ones.

In this chapter, we focus on two basic types of models at disaggregate level. The first 

one is the car ownership model, which mainly deals with the choice of different 

numbers of cars owned by each household. The second model concerns car type 

choice, which investigates how households select their specific types of cars out of all 

available vehicle types in the market. The more complex models, such as the vehicle 

transaction model and the joint model of vehicle holding and use, are more 

appropriate for the developed markets where there are longer histories of household 

car ownership and more individual level data. See Bunch & Chen (2008), De Jong, et 

al. (2004) and Potoglou & Kanaroglou (2008a) for the relevant reviews on these 

models.

Our research approach in this chapter consists in developing models at the 

disaggregate level to investigate consumer preferences in the Chinese car markets, and 

then comparing them with the typical effects found in more mature markets. 

Furthermore, it is also important for the car manufacturers to explore context specific 

features in a new market that they must take into account. Some preliminary analysis 

highlights that consumer knowledge about cars could be fairly low in China as the
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average car ownership level is much lower than the world average level and the car 

ownership history in China is short. Thus, using consumer knowledge as an example, 

we show the importance of accounting for the context-specific variables when 

understanding the local consumer behaviour. In addition, the importance of the 

consumer knowledge is further demontrated through investigating its effect on the 

consumers’ future purchase intentions.

The remainder of this chapter is organised as follows. Section 4.2 reviews the 

literature relevant to car ownership and car type choices, and presents the key 

explanatory variables in our models and their typical effects in the developed markets. 

Section 4.3 discusses the literature of consumer knowledge in general followed with a 

brief introduction of the data used in this chapter. The modelling approaches and the 

estimation results are discussed in detail in section 4.5 and 4.6 for the two models 

respectively. Section 4.7 presents a segmentation analysis to highlight the different 

elasticity effects of consumers with different knowledge levels, which is followed by 

an additional section investigating the effect of consumer knowledge on purchase 

intentions. The last section of this chapter gives a summary of main findings and 

important implications.

4.2 Review of Literature and Key Explanatory Variables

In this section, we first review the modelling methodology for car ownership and car 

type choice models respectively. After the review for each model, we describe the 

explanatory variables in our model and their typical effects found in models in the
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developed car markets. This establishes our hypotheses about whether consumers in 

China behave differently from those in the developed markets and more specifically 

how they differ.

4.2.1 Car ownership model: methodology review

The car ownership model is mainly concerned with the households’ decision about the 

number of cars to own, including whether to own a car or not. The car ownership 

model is the simplest model at the disaggregate level to investigate automobile 

demand (Bunch & Chen, 2008).

Table 4-1 summarises the recent empirical studies of car ownership models that we 

reviewed, where we compare their market context (data sources), sample sizes, 

dependent variables and model specifications. The key explanatory variables will be 

discussed in detail with their typical effects in the next subsection. It is not surprising 

that most studies, except Li, et al. (2010), are based on the developed markets. It is 

worth noting that Li, et al. (2010) only investigate the car ownership models in two 

big cities in China, Beijing and Chengdu, and these may not be representative of the 

whole Chinese market.
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The dependent variable in the car ownership models is defined as the number cars 

owned. Due to the high car ownership levels in the developed markets, most studies 

define their dependent variable to be zero, one, two cars and even more. Consequently, 

the corresponding models employed in these studies are Multinomial Logit (MNL), 

Ordered Logit (ORL) or Ordered Probit (ORP) model. When some samples have a 

very small ratio of multiple car ownerships (Li, et al., 2010; Nolan, 2002) or the exact 

numbers of cars owned by the surveyed households are unavailable to the researchers 

(Nolan, 2010), a binary model (binary Logit or Probit) is usually employed with a 

binary dependent variable to indicate whether the household own at least one car or 

not. Whelan (2007) is an exception, because he designs three binary models instead of 

a multinomial model to study the multiple car ownerships in the UK. In addition, in 

the multinomial choice situations, some studies compare ordered (i.e. ORL or ORP) 

and non-ordered (i.e. MNL) specifications and they consistently find that the MNL 

model outperforms the ordered model with either better estimation convergence 

(Potoglou & Kanaroglou, 2008b; Potoglou & Susilo, 2008) or more accurate 

prediction in validation samples (Bhat & Pulugurta, 1998).

4.2.2 Car ownership model: key explanatory variables

Given our primary research interests in the cross-market comparison of consumer 

behaviour, we discuss the key explanatory variables included in our car ownership 

model and their typical effects in the developed markets. The selection of explanatory 

variables in our car ownership model is mainly based on the literature review. 

Specifically, we include three categories of explanatory variables usually used by 

empirical studies of the car ownership model: residential location of the household,
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alternative transport modes accessible to the household and demographic 

characteristics.

Table 4-2: A summary of explanatory variables of car ownership model and their
effects in developed markets

Explanatory variable Definition in our model Typical effect in the 
developed markets

• Residential location Category variable
• Live in urban area o f cities
• Live in suburban area o f cities
• Live in cities without indicating 

whether urban or suburban areas
• Living in towns or non-city areas 

(reference category)

Linear effect o f decreasing 
car ownership level with the 
rising density o f residential 

area

• Alternative transport 
modes

Three dummy variables
• Public transport
• Bike, E-bike or motorcycle
• Company shuttle

• Consumer knowledge 
about cars and car 
market

Category variable: good knowledge, 
basic knowledge, no knowledge 
(reference category)

Not available

• Income Household income in year 2009 
(measured at 10,000 RMB), and its 
squared term

+ for the income, -  for the 
income squared

• Family size Number o f family members +

• Children Number o f children +

• No. o f working adults No. o f employed family members +

• Drivers No. of licensed drivers divided by 
the household size

+

• Age o f head Age o f household head + for working ages, -  for 
retired ages

• Gender o f head Dummy variable (male head -  1, 
otherwise -  0)

+ for the male head

Note: + stands for the positive effect on car ownership, -  stands for negative effect on car ownership.

Furthermore, we include consumer knowledge as a context-specific variable in our car 

ownership level to explore the potential association between households’ car 

ownership and their knowledge about cars or car market. Such association has not 

been investigated in the developed car markets, but could be important in the context 

of emerging market such as China, where local consumers have a shorter car adoption
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history and thus the whole market in the current period is still during the early stage of 

knowledge diffusion. Table 4-2 summarises all explanatory variables in our car 

ownership model and their typical effects in other car markets.

• Residential location

Household residential location is widely used in car ownership models to investigate 

the influence of urbanisation and household accessibility on the car ownership (Bhat 

& Pulugurta, 1998; Chu, 2002; Giuliano & Dargay, 2006; Kim & Kim, 2004; Li, et al., 

2010; Nolan, 2010; Potoglou & Susilo, 2008; Whelan, 2007). The typical finding in 

the developed markets is that the denser area the households live in, the less likely 

they are to own cars. For example, by using the category of households living in rural 

areas as the reference, Bhat & Pulugurta (1998) find that households in urban and 

suburban areas have less propensity to own cars and the likelihood decreases along 

with the increase in residential density. The underlying reason is that the residential 

density is an important proxy of households’ accessibility to public transport and local 

services. A similar relationship is identified by Whelan (2007), who defines five types 

of residential locations in the UK based on population density. In his study of car 

ownership, he finds that households in the Greater London and metropolitan districts 

have the lowest car ownership likelihood followed by those in other urban areas 

compared to those in rural areas.

In our survey, we collected information about which city the households are living in 

as well as the post code, which is then used to define their residential location. In our 

sample, some respondents only told us the city name without the post code, so we do 

not know whether they are living in the urban or suburban areas of the city and thus
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these households are classified into a separate group of households living in cities 

without knowing whether in urban or suburban areas. Therefore we finally define four 

categories of household residential locations: urban areas of cities, suburban areas of 

cities, cities but not knowing whether in urban or suburban areas, and other remote 

areas such as towns or non-city regions. One-way analysis of variance (ANOVA) is 

conducted to test the income differences between households in these categories. The 

P-value is 0.263 and thus we do not have sufficient evidence to show that the incomes 

differ across households in these 4 different residential locations.

• Alternative transport modes

The substitution effects are also explored in the car ownership model through 

incorporating the households’ accessibility to alternative transport modes. Intuitively, 

if there is easy convenient access to other transport modes such as buses or the 

underground, households are less likely to own cars. Normally there are two different 

approaches to accommodate this factor in the empirical studies. Some studies ask for 

the households’ own assessment on the convenience level or quality of public 

transport (Hess & Ong, 2002). It is also common that the availability of other transport 

modes is measured by the distance or time to get to the nearby public transport (Bhat 

& Guo, 2007; Kim & Kim, 2004; the Chengdu model in Li, et al., 2010) or number of 

public transport stops within a short distance (such as 500 meters) from home 

(Giuliano & Dargay, 2006; Hess & Ong, 2002; Potoglou & Kanaroglou, 2008b). In 

addition, Li, et al. (2010) also examine the substitution effect of households who own 

bikes or motorcycles on car ownerships. These studies indicate that the convenient 

access to the alternative transport modes does discourage households to own cars.

81



In our study, we explore whether the surveyed households have frequent access to 

three types of alternative transport modes typically available in China. The first one is 

public transports, including buses, undergrounds, light rails and trains. The second 

category includes bikes, electric bikes/mopeds or motor cycles, which are usually 

ridden by the individuals. The last one is company shuttle buses usually provided by 

employers to take employees to and from work. If there is a substitution effect as 

found in the literature, we would expect that the households with the frequent access 

to any of these alternative transport modes have a lower car ownership level in China.

• Consumer knowledge

In the context of China, due to the short history of the car market, cars generally 

represent a new product concept for most Chinese consumers and they are still 

learning about cars. Therefore, it is important to investigate whether the consumers’ 

knowledge level is positively associated with their car adoption behaviour. If so, car 

manufacturers as well as governments might be able to influence market demand or 

consumer adoption behaviour through helping consumers know more and better about 

cars and the car market.

Given that most consumers have no previous experience (expertise) about how to use 

cars in China, we define the consumer knowledge mainly based on their familiarity 

about cars. In our survey, the respondents were asked to assess their own knowledge 

about cars and the car market. Four different levels of familiarity were available for 

them to select: unfamiliar, basic knowledge, familiar and very familiar. In our sample, 

most respondents think they are unfamiliar with cars (about 30% of respondents) or 

have a basic knowledge only (about 47% of respondents), which corroborates our
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expectation that the general consumer knowledge level in China is not high due to the 

short household car ownership history. Only 18% of our respondents think they are 

familiar with cars and the remaining 5% of respondents are very familiar with cars and 

car markets. So we combine those respondents who are familiar or very familiar with 

cars and get three categories of consumer knowledge levels: good, basic and no 

knowledge about cars. The last category is used as the reference category. Therefore, 

our hypothesis in the car ownership model is that whether consumers with the better 

knowledge are more likely to be car owners in China.

Table 4-3: A crosstab of consumer knowledge and annual income

Annual Income (RMB)
Knowledge levels

Grand TotalNo Basic Good

<100k 104 131 52 287

100k-190k 29 61 39 129

190k-300k 15 37 20 72

>=300k 10 16 10 36

Grand Total 158 245 121 524

Table 4-3 presents a crosstab of consumer knowledge and annual household income. 

In general, there is a generally positive association between these two factors. On the 

one hand, in the low income group with annual incomes less than 100,000 RMB, most 

households have limited or even no knowledge about cars. On the other hand, in the 

mid to high income groups (from 100,000 to 300,000 RMB), there are more 

consumers with good knowledge than those without knowledge about cars at the same 

income level. In addition, we conduct an ANOVA test for the income across different 

knowledge levels. The P-value of 0.019 indicates an association existing between the 

income and the consumer knowledge. However, we also notice that all income groups 

are consistently dominated by consumers with the basic knowledge level. In addition,
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the Pearson correlation coefficient between the knowledge and income is only 0.123, 

if the knowledge variable is encoded as an ordinal variable from one to three, which 

indicates there is no strong multicollinearity between these two variables, so that we 

can include both of them in the model.

• Demographic variables

Demographic variables that are investigated in our car ownership model include 

household income and its squared term, number of working adults, household types, 

number of licensed drivers, and age and gender of the household head. We briefly 

review their typical effects in the literature.

Household income

It is not surprising that income is one of the most important factors that influence 

household car adoption decisions. Household income is consistently found to have a 

significant positive effect on the household car ownership (Bhat & Guo, 2007; Bhat & 

Pulugurta, 1998; Chu, 2002; Giuliano & Dargay, 2006; Hess & Ong, 2002; Kim & 

Kim, 2004; Li, et al., 2010; Nolan, 2010; Potoglou & Kanaroglou, 2008b; Potoglou & 

Susilo, 2008; Ryan & Han, 1999; Whelan, 2007). Besides, by including the square of 

income additional to the income variable, Nolan (2010) shows a nonlinear relationship

between household income and car ownership in Ireland, which implies that the Irish

1 0car market is approaching the saturation level . Since the Chinese car market is 

expected to have huge potentials to grow, the income effect can also be investigated 

by including both income and income squared in the car ownership model.

Number of working adults

12 According to the World Development Indicators (WDI) of the World Bank, every 1000 Irish people 
own 451 cars.
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The number of working adults in each household is another frequently employed 

demographic variable in the car ownership model. The typical finding is that the more 

employed adults, the higher probability for the households to own more cars, which 

implies that the working adults in the developed economies heavily rely on private 

cars to independently travel to their working places (Bhat & Guo, 2007; Bhat & 

Pulugurta, 1998; Kim & Kim, 2004; Matas & Raymond, 2008; Potoglou & 

Kanaroglou, 2008b; Potoglou & Susilo, 2008; Whelan, 2007).

Number of drivers

The number of licensed drivers in the households has also been taken into account in 

empirical studies of car ownership models. The variable is usually defined as a ratio of 

the number of drivers to the household size and it is typically found to have a 

significant positive effect for households to own cars (Chu, 2002; Kim & Kim, 2004; 

Potoglou & Kanaroglou, 2008b; Whelan, 2007). In the developed markets, there 

might be a two-way effect between the number of drivers and household car 

ownership level, but in the context of Chinese car market, most consumers are first 

time buyers of cars and they usually learn driving before buying cars. So we include it 

as an explanatory variable of the car ownership model.

-  Age and gender of the household head

Demographic information about the household heads mainly includes the age and 

gender. Generally, compared with the households with young heads in their 20s, the 

households with the mature heads are more likely to adopt cars (Matas & Raymond, 

2008; Nolan, 2002, 2010). Other studies also find that the households with senior or 

retired heads are less likely to own cars than working households (Giuliano & Dargay, 

2006; Matas & Raymond, 2008). In terms of the gender, it is typically found that in 

the developed markets either the households with male heads have the higher
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likelihood to adopt cars (Hess & Ong, 2002; Matas & Raymond, 2008), or the 

households with female heads are less likely to buy cars (Nolan, 2002).

Household type

Household types reflect different home structures or household life stages, which are 

also believed to have important influence on household car ownership. Sometimes, the 

household types are jointly defined by number of children in the household with the 

household size (Kim & Kim, 2004; Potoglou & Kanaroglou, 2008b; Potoglou & 

Susilo, 2008; Whelan, 2007). It is also common that the number of children and 

family size are separately included in the car ownership model (Giuliano & Dargay, 

2006; Hess & Ong, 2002; Kim & Kim, 2004; Nolan, 2002, 2010; Ryan & Han, 1999). 

In general, empirical studies find that the households with children and/or more 

members are more likely to own cars. We account for the number of children and 

family size separately in our car ownership model.

4.2.3 Car type choice model: methodology review

There are a number of empirical studies that examine the key factors affecting 

households’ choices of different types of cars, as summarised in Table 4-4. We focus 

on recent empirical studies here and for more early research on car type choices, 

please refer to Table 1 in Choo & Mokhtarian (2004). It is worth noting that most car 

type choice studies are also conducted in the context of developed markets and 

particularly in the US. The definitions of dependent variable in the vehicle type choice 

models largely depend on classifications of the vehicles. The common approach 

classifies the different vehicles into a certain number of categories and investigates the 

households’ choice among these categories (Cao, et al., 2006; Choo & Mokhtarian,
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2004; Lave & Train, 1979). Alternatively, a more detailed approach directly employs 

the vehicle make and model as the dependent variable (Mannering & Mahmassani, 

1985; McCarthy, 1996; Train & Winston, 2007). Also, some studies combine the 

vehicle classification (vehicle classes or vehicle make-model) with other factors, such 

as vehicle vintages (Berkovec & Rust, 1985; Mohammadian & Miller, 2003), fuel 

efficiency levels (McCarthy & Tay, 1998) or choices of vehicle acquisition 

(Mannering, et al., 2002). In addition, some researchers investigate the dependency of 

vehicle type choices on car ownership levels (Berkovec, 1985; Hensher, et al., 1989).

In terms of modelling approaches, the multinomial logit (MNL) model is usually used 

when the dependent variables are different vehicle classes or vehicle make-models. 

The only exception is Cao, et al. (2006), who use a partially degenerated nested logit 

(NL) model and find it is the best structure that groups two alternatives (car and 

Minivan) into a nest while leaving other alternatives (SUV and pickup truck) 

independent. When vehicle classes or make-models are combined with another factor 

such as vehicle age, the NL model is then commonly employed. One recent study 

employs the mixed logit model to investigate the underlying reasons of the declining 

market shares of the U.S. car manufacturers in their home market (Train & Winston, 

2007).
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4.2.4 Car type choice model: key explanatory variables

The explanatory variables in the car type choice model typically include vehicle 

attributes, brand preference and the demographic characteristics of the household and 

the main driver (Choo & Mokhtarian, 2004). In addition, in order to account for the 

potential context-specific effects, we include the consumer knowledge and the 

primary use of owned cars as additional variables in our car type choice model. Table 

4-5 summarises all explanatory variables in our car type choice model and their 

typical effects in the context of developed car markets.

• Vehicle attributes

In our car type choice model, we consider the following important vehicle attributes: 

the vehicle purchase price divided by household income, fuel cost, horsepower, 

turning radius, vehicle length, and the number of airbags. In terms of running cost, we 

calculate the expected annual running cost for each car-holding household by 

multiplying its annual mileage with its vehicle’s fuel consumption rate. Here we 

briefly review their typical effects found in the other markets.

Vehicle Price

Vehicle price is included in all studies we reviewed in Table 4-4 and it is usually 

assumed to interact with household income. We follow the common definition to 

divide the vehicle price by household income (Lave & Train, 1979; Mannering & 

Mahmassani, 1985; McCarthy, 1996; McCarthy & Tay, 1998). Furthermore, we 

include a squared term of the constructed price variable to explore the potential 

nonlinear effect between the vehicle price and its utility (Lave & Train, 1979), which 

implies that consumers may not prefer the lowest vehicle price. In addition, we use the
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manufacturer suggested retail price (MSRP) of each vehicle model instead of the 

purchase prices provided by each respondent, in order to avoid potential reporting 

errors (Mohammadian & Miller, 2003; Train & Winston, 2007). Not surprisingly, the 

price variable has a significantly negative effect across all studies, which implies that 

the higher priced vehicle is less likely to be chosen (Berkovec, 1985; Berkovec & 

Rust, 1985; Hensher, et al., 1989; Train & Winston, 2007).

Table 4-5: A summary of explanatory variables of car type choice model and 
their effects in developed markets

Explanatory Variables Definition in our model Typical effect in the 
developed markets

• Price/income Vehicle purchase price divided by 
household income, and its squared

-  for price/income, + for 
price/income squared

• Fuel cost Annual fuel cost (1000 RMB) -  or insignificant

• Performance Factor derived through principle 
component analysis with 
horsepower, turning radius and 
vehicle length

+

• Airbags Number o f airbags +

• Brand’s country o f origin Category variable: European 
brands, US brands, Japanese/Korean 
brands, Chinese brands (reference 
category)

+ for foreign brands,
-  for domestic US brands

• Age Age o f household head +/—

• Gender Gender o f household head (male as 
reference category)

+ for small/economical 
cars (female head)

• Children No. of children in the household + for large/spacious cars

• Residential location Binary variable, whether the 
household lives in urban areas

+ for small cars

• No. o f owned vehicles No. o f vehicles held by the 
household

+ for small cars

• Distance Commute distance o f household 
head

+ for large/spacious cars

• Consumer knowledge 
about cars and car market

Category variable: good knowledge, 
basic knowledge, no knowledge 
(reference category)

Not available

• Primary use of the car Dummy variable, whether the car is 
primarily used for business purpose

Not available

Note: + stands for the positive effect on car type choice, -  stands for negative effect on car type 
choice; + /- stands for the association without consistent indications of positive or negative effect.
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Fuel Cost

Another cost related variable is the vehicle fuel cost. Empirical studies define this 

variable to be either annual fuel cost (Hensher, et al., 1989; Mannering & Mahmassani, 

1985; Mannering, et al., 2002), or fuel cost per mile travelled (Berkovec, 1985; 

Berkovec & Rust, 1985; Lave & Train, 1979; McCarthy, 1996; McCarthy & Tay, 

1998; Train & Winston, 2007). In terms of its effect, there is no consistent conclusion 

yet. Some studies find that the fuel cost has a significantly negative effect on vehicle 

type choices (Berkovec & Rust, 1985; Hensher, et al., 1989; Mannering & 

Mahmassani, 1985; McCarthy, 1996; McCarthy & Tay, 1998), while other studies do 

not identify such statistical significance (Berkovec, 1985; Lave & Train, 1979; 

Mannering, et al., 2002). Such inconsistencies across different time periods are 

probably related to the fluctuation of the fuel price. When researchers collected data 

during the fuel price increasing periods, such as during the 1970s oil crisis or 1988 to

1 T1990 (see U.S. oil price history in the Annual Energy Review ), households were 

found to be more sensitive to the fuel cost than in other periods when the fuel price 

was fairly stable.

Vehicle Performance

After the cost-related attributes, the vehicle performance is the next important 

category of vehicle attributes included in the car type choice model. Among various 

vehicle performance measurements, horsepower and turning radius are the two most 

common attributes. Some studies divide the horsepower by the vehicle weight to 

measure vehicle acceleration ability (Berkovec & Rust, 1985; Lave & Train, 1979; 

Train & Winston, 2007), while others directly investigate the effect of the horsepower 

on vehicle type choices (Mannering & Mahmassani, 1985; Mannering, et al., 2002;

13 See Figure 5.18 of Crude Oil Domestic First Purchase Prices (1949-2010) in the Annual Energy 
Review (U.S. Energy Information Administration, 2011)
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McCarthy, 1996) or directly account for the acceleration time from 0 to 100 km/h 

(Hensher, et al., 1989). Generally, a vehicle with the larger horsepower or better 

acceleration performance is more attractive to consumers (Hensher, et al., 1989; 

McCarthy, 1996; Mohammadian & Miller, 2003; Train & Winston, 2007). In terms of 

the turning radius, some researchers find that vehicles with the smaller turning radius 

are more attractive, particularly in metropolitan areas (Berkovec & Rust, 1985; 

Mannering & Mahmassani, 1985), while other studies show that a vehicle with the 

greater turning radius is more likely to be chosen due to its correlation with a 

smoother vehicle ride and greater comfort (Mannering, et al., 2002). In addition, 

empirical studies in the developed markets consistently find the vehicle length has a 

significant positive effect on household car choice (Hensher, et al., 1989; McCarthy, 

1996; McCarthy & Tay, 1998; Mohammadian & Miller, 2003; Train & Winston, 

2007), which implies that consumers in those markets, typically US market, tend to 

prefer larger vehicles.

Table 4-6: Principle component analysis of vehicle performance factors

Variable

Correlation Matrix 

Horsepower Vehicle
Length

Factor
Loading

Horsepower 1 0.834 0.727 0.371

Turning Radius 1 0.714 0.369

Vehicle Length 1 0.351

% Variance Explained 83.94%

Furthermore, we find that there is an issue of multicollinearity among all three factors 

about vehicle performance (see the correlation matrix in Table 4-6), which means it is 

inappropriate to employ them directly as explanatory variables in the car type choice 

model. Therefore, we follow Mohammadian and Miller (2003) to use principal
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component analysis (PCA) to create independent variables based on the information 

on existing variables. Since all three variables are highly correlated, the principal 

component analysis generates one factor related to vehicle performance. As the result, 

this factor can explain about 84% of the total variance of three factors in the sample.

Airbags

Although airbags have become the standard equipment of cars nowadays, they were 

not widely adopted in the developed markets until early 1990s. That’s why the 

inclusion of airbags as one of the vehicle attributes appears in more recent studies. 

More specifically, both McCarthy & Tay (1998) and all three models in Mannering, et 

al. (2002) show the significant effect of the airbags on increasing the choice 

probability of the corresponding vehicle. This is probably because consumers are 

usually risk-averse and the presence of airbags is thought to help improve the vehicle 

safety and reduce injury risks.

• Brand preference

The brand preference is a non-tangible vehicle attribute that measures consumers’ 

attitude to different vehicle brands or more generally their countries of origin. It 

indicates how consumers perceive and compare different car manufacturers and 

products. To account for the potential brand preferences in China, we define four main 

categories based on the country of origin: European brand, American brand, 

Japanese/Korean brand, and local brand in China. The last one is used as the reference 

category in our model.
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Most empirical studies reviewed in Table 4-4 investigate consumers’ brand 

preferences when choosing different types of vehicles, except Lave & Train (1979) 

and Mohammadian & Miller (2003). Specifically, most studies compare the brand 

preferences between the US Big Three car manufacturers (General Motors, Ford and 

Chrysler) and different Japanese and European brands. For example, Mannering, et al. 

(2002) find in one of their models based on the vehicle leasing market, that the 

Chrysler vehicles are extremely disliked by consumers followed by GM, while there is 

no significant preference difference between the Ford and all foreign brands when 

consumers lease cars. However, consumer preferences change when they buy vehicles, 

as Mannering, et al. (2002) show that the US consumers demonstrate strong negative 

preferences against the domestic Big Three brands as well as Japanese brands when 

buying vehicles. Similar brand preferences are found in a recent study from Train & 

Winston (2007), who use the Japanese brands as a reference category. They find that 

the European brands are particularly welcomed followed by the Korean ones, while 

the preference difference between the Japanese and the US brands is insignificant. In 

summary, consumers in the US market prefer the foreign brands and particularly the 

European brands instead of their local brands, which may help explain the reason why 

the US car manufacturers have been suffering the market share decline in the past 

decades as explored in Train & Winston (2007).

• Demographic variables

We include the following demographic variables from the literature in our car type 

choice model: age and gender of household head, number of children, residential 

location (whether the household lives in urban areas or not), number of owned cars, 

commuting distance of the household head. It is worth noting that the income effect in
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the car type choice model is mainly explored through its interaction with the vehicle 

purchase price, as we have discussed previously.

Age and gender

Empirical studies demonstrate that there is a relationship between the driver’s age and 

gender and particular types of vehicles. Mohammadian and Miller (2003) show that 

households with lower average age of people are more likely to choose SUVs or 

pickups and are less likely to buy the second hand cars. At the same time, they also 

find that the more mature drivers are also more likely to buy new cars. More recently, 

research has shown that the older consumers are less likely to drive small cars or 

personalised vehicles, such as sports cars and SUVs (Choo & Mokhtarian, 2004), but 

more likely to own minivans (Cao, et al., 2006). In terms of the gender factor, the 

typical finding is that the female consumers prefer more economical vehicles. 

McCarthy and Tay (1998) find that women are more likely to buy fuel-saving vehicles. 

Moreover, Mohammadian & Miller (2003) find that the male drivers significantly 

prefer large cars, SUVs and pickups as well as minivans. Similarly, both Choo & 

Mokhtarian (2004) and Cao, et al.(2006) find that women significantly dislike pickup 

trucks.

Number of children

The influence of children in the households on their vehicle type choices has been 

investigated in the recent studies (Cao, et al., 2006; Choo & Mokhtarian, 2004; 

Mohammadian & Miller, 2003; Train & Winston, 2007). These studies indicate that 

the households with children are likely to buy spacious vehicles, such as minivans, 

SUVs and station wagons.

Residential location
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It is interesting to see that the households’ residential locations affect not only their 

choices of the number of cars to own, but also which types of cars to adopt. Its typical 

effect is that households living in metropolitan areas prefer small cars or cars with 

high fuel efficiency (Choo & Mokhtarian, 2004; Mannering, et al., 2002; McCarthy, 

1996; McCarthy & Tay, 1998).

Number of already owned vehicles.

A couple of empirical studies investigate the influence of household fleet size, i.e. 

number of owned vehicles, on their choices of different types of cars. An early study 

found that the households owning more than two vehicles have a significantly high 

probability of owning small-sized cars (Lave & Train, 1979). A recent study shows 

that the households with multiple vehicle ownerships are also more likely to own a 

pickup truck (Cao, et al., 2006). These results suggest that small cars or pickup trucks 

are usually not the consumers’ first vehicle choice, but often the second or third 

vehicle owned to diversify the family fleet.

Travel distance

The travel distance is also accounted for in the car type choice model. It is usually 

found that the spacious SUVs are more likely to be adopted by consumers who travel 

a lot (Cao, et al., 2006; Choo & Mokhtarian, 2004), and the compact or sports cars are 

more desired by people who perceive to mainly drive short distances (Choo & 

Mokhtarian, 2004).

• Consumer knowledge and primary use o f cars

We account for two context specific factors, the consumer knowledge and the primary 

use of cars, in our car type choice model, so that car manufacturers that plan to enter 

this market could have greater insights about how to better position and promote
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different types of products. In the developed markets, cars are primarily used for daily 

commuting, while private cars may take additional roles in the EMs. For example, 

Vasconcellos (1997) shows that the middle class in the EMs tends to perceive the car 

as an essential tool for their “social reproduction” to ensure their living conditions. In 

our model, we explore whether consumers demonstrate different preferences of 

selecting cars if they use cars for different purposes. Specifically, we define a binary 

variable to indicate whether the owned cars are primarily used for business purposes. 

It is worth noting that company cars are not widely available in China except for 

senior staff, so that most people may have to rely on private cars or other transport 

modes for their business activities. Such investigations can help car manufacturers 

appropriately segment the market and define the target customers with different needs.

Regarding the definition of consumer knowledge, we use the same category variable 

as in the car ownership model and the lowest knowledge level is used as the reference 

category. By accounting for the consumer knowledge in the car type choice model, we 

explore whether consumers with different knowledge about cars demonstrate different 

preferences for different types of cars.

4.3 Consumer Knowledge

Consumer knowledge influences how consumers search for information (Bettman & 

Park, 1980; Brucks, 1985; Cowley & Mitchell, 2003; Rao & Sieben, 1992) and also it 

impacts on consumer choice behaviour (Maheswaran, et al., 1996; Mitchell & Dacin, 

1996; Moorman, et al., 2004; Peracchio & Tybout, 1996; Rao & Monroe, 1988).
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When attempting to measure consumer knowledge, Alba and Hutchinson (1987) 

suggest that consumer knowledge mainly consists of two components: familiarity and 

expertise. The former is the product experiences accumulated by the consumers and 

the latter is defined as the consumers’ ability to successfully perform product-related 

tasks. Regarding the relationship of these two components, familiarity is thought to be 

necessary but insufficient for consumers to have enough expertise (Rao & Monroe, 

1988). There is another measure of consumer knowledge, which differentiates two 

types of knowledge: objective knowledge (correct information actually stored in the 

memory) and subjective knowledge (self-assessed or perceived knowledge) (Brucks, 

1985). When investigating the key determinants of these two different types of 

knowledge, Park, Mothersbaugh and Feick (1994) find that consumers’ subjective 

knowledge is more associated with their product-related experience than with the 

stored product class information, while the objective knowledge is affected more by 

the stored product-class information than by the product experience. Therefore, the 

subjective knowledge is more related to the familiarity component of consumer 

knowledge, because both of them depend greatly on the product-related experience, 

which is mainly acquired through advertising exposure, information search, product 

usage and ownership. Similarly, the expertise component of knowledge is closer to the 

objective knowledge, which requires the product-class information, such as usage 

procedure, product features and brand information, to conduct product-related tasks. 

See Figure 4-1 for the illustration of two different measures of consumer knowledge.

99



Figure 4-1: Two different measures of consumer knowledge

Subjective
knowledge

Familiarity

Objective
knowledge

When investigating the effect of knowledge on product choice or evaluation, 

researchers typically employ a segmentation approach that compares how consumers 

with different knowledge levels make different judgements or choices. For example, 

in the study that investigates the effect of consumer knowledge on the assessment of 

product quality using price information, Rao and Monroe (1988) find that consumers 

with low and high knowledge level tend to perceive a stronger positive association 

between product price and quality than those with the moderate knowledge, which 

implies the heterogeneous effects of consumer knowledge on their judgements. 

Similarly, Maheswaran, et al. (1996) examine how consumers’ existing knowledge 

level affects their further learning and thereby product evaluations. Through 

comparing the different behaviour from two separate groups (novices versus experts), 

they find that the learning and product evaluations of the novices can be enhanced by 

better information organisation and message repetition, while the experts with better 

prior knowledge are more affected by the type of message delivered and the detailed 

content of the message.
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It is not surprising that the studies about the effects of consumer knowledge are more 

relevant to new products in the market (Moreau, et al., 2001; Peracchio & Tybout, 

1996; Wood & Lynch, 2002). This is because for new products, most consumers are 

learning about the products and furthermore different consumers may have 

significantly different knowledge levels about the new products. Thus, the 

accumulation of knowledge can effectively influence consumers’ information search 

strategy and their choice behaviour thereafter. In comparison, mature products, such 

as cars in the developed economies, have existed for several decades so that 

consumers there commonly know how to use these products with generally high 

expertise. That can explain why the consumer knowledge factor has not been 

accounted for when modelling car market demand in the developed markets. 

Therefore, in our consumer survey, we asked each respondent to evaluate their own 

familiarity about cars and the car market (which is the subjected knowledge we 

collected), so that we can investigate how consumer knowledge levels are associated 

with their car adoption behaviour in China.

As we asked for the self-evaluated (subjective) knowledge in our survey, respondents 

were likely to interpret the question as their general experiences about both products 

and the market, which are highly influenced by car advertising exposure, car 

information search as well as car ownership and use. When answering this question, 

they may think of whether they frequently came across car advertisements, whether 

they knew different brands or models of cars, whether they actively learned 

information about cars (e.g. visiting automobile websites or reading car related 

magazines) and whether they owned and used cars etc. We acknowledge that this 

subjective knowledge is not very accurate to evaluate the actual knowledge level of
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respondents. Essentially, we can better design the question to be more specific with a 

finer scale of knowledge. It will also be desirable to acquire the objective knowledge 

of respondents, such as detail usage procedure and product features.

4.4 Data Description

Typically when exploring the effects of various factors on consumer choices, we need 

to use micro-level data. The car ownership and car type choice models in this chapter 

are based on the survey data we collected in China in early 2010 as we have discussed 

in Chapter 2. After removing cases with missing information on some key attributes, 

we are able to use 524 respondents for the car ownership model and 173 car owners 

for the car type choice model in this chapter.

Table 4-7 compares the major demographic characteristics of our sample that we used 

for the car ownership model against those in the 2009 national sample reported in the 

China Statistical Yearbook 2010 (National Bureau of Statistics of China, 2010). Our 

survey oversampled high-income groups and car owners in China, so that we can have 

enough observations for the car type choice model that is based on car owners. In our 

first model that measures the car ownership status of the whole population, we 

reweight our sample based on the household income and car ownership information 

from the national sample. In our second model of car type choices based on the 

owners only, there is no obvious indication of oversampling any specific group of car 

owners and we do not have national level information about all car owners in China, 

so we do not use the reweighting approach.



Table 4-7: Demographic distribution of car ownership model sample

Variables Our Sample National Sample2

Average family size 3.25 2.89

Average no. o f children less than 18 years old 0.46 /

Average no. o f working members 2.08 1.49

Average household disposable Income in 2009 (RMB) 125,391 49,635

No. o f cars owned per 100 households 66.22 10.89

Average age o f the household head 37.74 /

Proportion o f male household head (%) 78.05 /

Average commuting distance of household head (km) 9.13 /

Sample size 524 65,506

a National Sample Data Source: China Statistical Yearbook 2010

In the car type choice model, we also collected secondary data on vehicle attributes 

from the magazine of Orient Auto in China and the automobile fuel consumption 

website developed by the Ministry of Industry and Information Technology of China14. 

See Chapter 2 for more discussions on the data and data collection.

4.5 Modelling Car Ownership in China

4.5.1 Modelling approach

We follow previous research and use discrete choice models to analyse households’ 

car ownership decisions in China. More specifically, because owning multiple cars is 

fairly rare in China and our sample only has 9.5% of households owning two or more 

cars, we employ a binary choice model to investigate the households’ choice between

14 The website address is http://chinaafc.miit.gov.cn/index.html.
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owning private cars or not. We specify the utility function of the household (z) owning 

cars depends on various explanatory variables (Xt), including demographic 

characteristics, residential location, alternative transport modes and consumer 

knowledge:

Ui = Vi + el = p %  + e* (4-1)

where V, and s, are the deterministic and random portions of the utility respectively.

When the random utility is assumed to follow the logistic distribution, the model is a 

binary logit model, while it becomes a binary probit model with the random portion 

following the normal distribution (Franses & Paap, 2001; Greene, 2009). We use the 

binary logit model here15, and the corresponding probability of owning at least a car is

exp (P'Xi)
p. = -------------- £ _ £ — \L— (4-2)
^ 1 + exptf'Xi) 1 '

4.5.2 Estimation results and discussions

Because the effect of consumer knowledge has not been explored in other markets, we 

estimate two binary car ownership models, the first one without consumer knowledge 

and the second one with this variable, to demonstrate the value of the consumer 

knowledge in contributing to a better car ownership model in China. Both binary car 

ownership models are estimated using NLOGIT 4.0 (Greene, 2007)16 and the 

estimated parameters of these two models are presented in Table 4-8.

15 We also estimate a binary probit model, but it does not show the significant difference from the 
binary logit model.
16 The NLOGIT code for the binary car ownership model is available in Appendix 3.1.
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Table 4-8: Estimated parameter of the car ownership model

Explanatory variable
Model 1 Model 2

Coeff. T-stat. Coeff. T-stat.
Constant o f car owners -6.98 -3 90 *** -7.38 -4.05***

D em ographic variable
Household income 0.46 2.51 ** 0.43 2.29**
Income squared -0.02 -1.75* -0.02 -1.64
Number o f working adults -0.21 -0.54 -0.33 -0.80
No. o f drivers 5.11 4 yj *** 5.02 4 49***

Gender o f household head -0.33 -0.63 -0.81 -1.38
Age o f household head 0.05 2.18** 0.06 2.46**
No. o f children 1.09 2.66*** 0.91 2.12**
Family size 0.65 2 i i* * 0.74 2.33**

Residential location
Urban area o f cities -1.87 _2.44** -2.15 -2.60***
Suburban area o f cities -0.73 -0.80 -0.87 -0.89
Unknown whether urban or suburban areas -1.16 -1.61 -1.45 - 1.86*

Alternative transport modes
Taking public transport -3.88 -5.66*** -4.32 -5.75***
Riding bikes or motorcycles -2.75 -5.28*** -2.87 -5.23***
Company shuttles -3.06 -4 17 *** -3.20 -4.16***

Consumer knowledge
Good knowledge level 1.89 2.76***
Basic knowledge level 1.25 2.30**

No. o f observations 524 524
Log-likelihood at zero -359.77 -359.77
Log-likelihood at convergence -84.39 -79.62
Rho-square w. r. t. zero: 0.765 0.779
Percentage o f correct predictions (%) 74.42 77.86

X2 against zero 550.76 (df = 15)a 560.31 (df = 17)
X2 against Model 1 9.55 (df = 2)c

1 __1. b x l .  ______I j . 1 ___ 1 ____ 1____Note:a the critical value for 15 degrees of freedom is 25.00 at 5% significance level;b the critical value
for 17 degrees of freedom is 27.59;c the critical value for 2 degrees of freedom is 5.99.
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.

Overall, both models perform very well as indicated by their high values of the

likelihood ratio index or Rho-square (0.765 and 0.779). Furthermore, our models

achieve good predictive accuracy (74.42% and 77.86%). The likelihood ratio tests

against the equal probability model are conducted and the high chi-square test values

of 550.76 with 15 degrees of freedom and 560.31 with 17 degrees of freedom

significantly reject the null hypothesis of no difference from the equal probability
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model. Finally and more importantly, the difference between the models with and 

without the knowledge variable is tested through another likelihood ratio test with 2 

degrees of freedom. The resulted chi-square value of 9.55 is larger than the critical 

value of 5.99 at 5% significance level, which confirms that the second model 

including the consumer knowledge variable is significantly better than the first model 

without consumer knowledge in terms of explanatory power. Therefore, we discuss 

the estimated parameters based on the second model.

When discussing the estimated parameters, we are particularly interested in their 

differences in comparison to other markets, which are summarised in Table 4-9. Thus 

we discuss the estimated results along with the comparisons of their typical effects in 

the developed markets as we have reviewed in section 4.2.2.

Among all demographic variables, we find that two variables typically significant in 

the developed markets, the number of working adults and the gender of the household 

head, are insignificant in our car ownership model. The insignificance of the gender 

variable implies that the first household car purchase usually depends on the joint 

decision of the spouse no matter who is the head member. In addition, with the 

economic reform in China, Chinese women have become more independent and thus 

balance the influence with their partners on household purchase decisions (Doctoroff, 

2005). In terms of the number of working adults, its significance in the literature is 

probably because most working adults rely on private cars for their independent 

commutes in the mature markets so that owning two or more cars is very popular. In 

China, however, most car-holding families own one car only, so that the dominating 

status of single car ownership cannot account for the different numbers of working
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adults in the Chinese households. In addition, we find that household income variable 

is significant but the income squared is insignificant in our model, which indicates the 

existence of a linear association between income and car ownership and further 

implies that the Chinese car market is far from the saturation level.

Table 4-9: Comparison of effects in car ownership model

Explanatory variable a Typical effect in the 
developed markets Finding in our model

• Income + for the income, -  for the 
income squared

+ for income, insignificant for 
income squared

• No. of working adults + Insignificant

• Drivers + +

• Age o f  head + for working age, - for 
retired age

+

• Gender of head + for the male head Insignificant

• Household type + for larger households and/or 
with children

+ for larger households 
+ for households with children

• Residential location Consumers in higher dense 
areas are less likely to own 

cars.

Urban households are less likely 
to own cars than households in 

remote areas.

• Availability of  
alternative transports

- -

• Consumer knowledge Not applicable & not tested +

Note: + stands for the positive effect on car ownership, -  stands for negative effect on car ownership; 
‘Insignificant’ means the insignificant effect on car ownership;
a Explanatory variables in bold have different effects in China and the developed car markets.

The remaining three demographic variables are largely consistent with the findings in 

the developed markets. Specifically, the households with more licensed drivers, more 

family members or children are more likely to adopt cars in China. In addition, most 

family heads in our sample are at their working ages and the age variable 

demonstrates a positive effect on the car ownership in China, implying that the mature 

households are more likely to adopt cars than the young ones.
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In terms of alternative transport modes, our models find the substitution effects in 

China as in other markets. Specifically, good accessibility to three alternative 

transport modes (public transport, bike/motorcycle and company shuttle) reduces the 

likelihood for consumers to adopt cars. It is worth noting that we only accounted for 

the substitution effect of alternative transport modes (by using dummy variables) on 

owning cars, but we are not able to address the effects of different quality levels of 

public transport and road system across different countries in this thesis.

With regard to the residential locations, the typical effect on car ownership in other 

markets is that the households living in the denser areas have the lower car ownership 

level. In our model, we find the similar effect of the residential locations on car 

ownership level in China. Specifically, by using the households in remote areas as the 

reference, the urban households show a significant negative propensity to own cars. 

The households in suburban areas have no significant difference from those in remote 

areas.

Finally, we find that there is a positive association between consumer’s knowledge 

levels and their car ownerships in China. As cars are still considered as new products 

in China, this finding is consistent with the prior consumer research that consumers’ 

subjective knowledge is positively associated with their product related experiences 

such as product ownership or use (Park, et al., 1994). On the one hand, car ownership 

experiences can enhance consumers’ familiarity or knowledge about cars and car 

markets. On the other hand, better knowledge about cars can improve consumers’ 

information search efficiency (Brucks, 1985), which may further help them make 

earlier adoptions. What is important here is that we explicitly show the significant
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association between a consumer’s knowledge and their car ownership level. It 

provides important implications for car manufacturers that the market size can be 

expanded and consumers can be encouraged to make earlier purchases through 

helping them improve their knowledge about the products and the markets. For 

example, more trial driving activities can help consumer learn how to set realistic 

expectations about cars, which will positively influence market demand (Goering, 

1985; Lakshmanan & Krishnan, 2011).

4.5.3 Model validation

We also examine the predictive capabilities of two car ownership models (Model 1 

and Model 2). We first drew 10 random sub-samples from the whole dataset and each 

sub-sample consists of 90% observations. They were used as the estimation samples 

and the remaining 10% observations were kept as the validation samples. For every 

estimation sample, different car ownership model specifications were estimated 

separately and the estimated results were used to calculate the choice probabilities of 

each alternative in the validation sample. We will not report the estimated parameters 

of these 10 sub-samples here but show the predictive performances of different car 

ownership model specifications in the validation samples.

We follow Bhat & Pulugurta (1998) to compare forecasting performances of different 

discrete choice models using both aggregate and disaggregate measures. The 

aggregate measures are MAD, MAPE and RMSE that examine the accuracy of market 

share forecasts for different alternatives in the validation sample, and the disaggregate 

measure is the correctly predicted ratio, which is calculated through dividing the
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number of respondents who have been correctly predicted to make their choices, 

based on the estimated model, over the total number of respondents in the validation 

sample (Hensher, et al., 2005; Train, 2003). The prediction of respondent’s choice is 

made for the alternative with the highest probability for each respondent.

Since we have 10 random sub-samples, we report both mean and median values of all 

forecasting performance measures across all validation samples in Table 4-10. It 

clearly shows that the Model 2 that accounts for consumer knowledge as a key 

explanatory variable in car ownership model can provide better forecasting 

performances than Model 1 without that variable, as indicated by the smaller error 

measures (both mean and median values of MAD, MAPE and RMSE) and higher 

percentage of correct predictions.

Table 4-10: Validation results of car ownership models
M odel 1 M odel 2

A ggrega te  M easure

Mean o f  MAD 21.28 19.01
Median o f  MAD 22.24 19.73
Mean o f  MAPE 45.09% 40.26%

Median o f  MAPE 48.39% 41.29%
Mean o f  RMSE 21.24 19.01

Median o f  RMSE 22.24 19.73
D isaggrega te  M easure

Mean o f  correctly predicted ratio 74.24% 75.74%
Median o f  correctly predicted ratio 73.31% 76.11%
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4.6 Modelling Car Type Choices in China

4.6.1 Modelling approach

The dependent variable of vehicle type choice model primarily depends on vehicle 

classification according to vehicle sizes as well as other special body types such as 

SUVs or MPVs (see Table 4-4). In addition to SUVs and MPVs, the passenger cars in 

China are usually classified into 6 categories based on their sizes: mini, small, 

compact, mid-sized, upper-mid and luxury classes17. Because our sample size of car 

owners is small, we do not have enough observations of SUV or MPV owners and we 

also need to combine 6 size classes of cars into three categories as follows. The mini 

class is merged into the small car category, the compact and mid-sized classes are 

combined to be a new mid-sized car category, and the upper-mid and luxury classes 

are combined together to be a large car category.

Along with the fast development of the car market in China, more than 75% of 

households in our sample who own cars made their adoptions from 2006 to early 2010 

when we conducted the survey. In addition, we are more interested in the current or 

recent consumer behaviour in the market and exclude car type choices occurred at 

earlier time (such as 5 years ago), because in such a fast growing market, the earlier 

consumer preferences may differ significantly from now and thus they have limited 

values for studying the existing or future market demand. Therefore, our car type 

choice model is based on the new car buyers in China (from 2006 to early 2010). As a 

result, we have in total 173 cases left for the car type choice model.

17 See detail vehicle classification schemes on two most popular auto websites in China: 
http://data.auto.sina.com.cn/ and http://db.auto.sohu.com/model-list.shtml
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The choice set of each household is defined as follows. Each household has three 

different alternatives of small, mid-sized and large car types, from which consumers 

have made their decisions to buy which type of cars. First, we randomly selected a 

representative vehicle model in each class from all available models by applying a 

reweighting method. The weights are defined based on actual sales of different vehicle 

models from 2006 to 2009, which is based on an assumption that the vehicle models 

that had been sold more would have better market exposure and thus are more likely 

to be considered and compared by consumers. Second, since each respondent has 

reported one owned car, we can easily identify its class and then use it to replace the 

randomly selected one in the corresponding class. Thus, one actually owned car and 

two randomly selected cars form the different choice set for each respondent.

Given three alternatives in our choice set, we employ the multinomial logit (MNL) 

model (McFadden, 1974). The utility function of household (z) choosing car type (n) 

depends on car attributes (X), and choice-invariant factors (Z) including demographic 

variables, consumer knowledge and primary use of the car.

Uin = Vin + £in = a'̂ in + PhZi + £in (4-3)
Thus choice probability of the MNL model that assumes that the random term (ein) 

follows the type I extreme value distribution is specified as

exp(Fin)

P i"  = sf^ fe ) ( 4 - 4 )

4.6.2 Estimation results and discussions
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Depending on whether accounting for two context specific explanatory variables 

(consumer knowledge and primary use of owned cars), we have two different forms of 

car type choice model. Both models are also estimated using NLOGIT 4.0 (Greene, 

2007)18 and their estimation results are shown in Table 4-11.

After estimating the MNL model, we apply the Hausman test (Hausman & Mcfadden, 

1984) to verify whether the independence from irrelevant alternatives (IIA) property is 

violated or not. The test result confirms that all the alternatives are independent and 

thus the MNL model is an appropriate model here. In general, our car type choice 

models achieve good performance with the likelihood ratio index (Rho-square) to be 

0.242 and 0.300 respectively. Also, our models achieve the corrected predicted ratios 

to be 60.12% and 67.05%. In addition, the likelihood ratio test values of 91.87 and 

114.01 indicate that both models are clearly superior to the equal probability model 

that has all parameters to be zero.

Furthermore, we conduct another likelihood ratio test to compare two different 

specifications of the car type choice model. The test statistic is 22.14 with 6 degrees of 

freedom, which is larger than the critical value of 12.59 at 5% significance level. This 

indicates that the Model 2 with two context specific variables of consumer knowledge 

and primary use of the car achieves higher explanatory power than the Model 1 

without these two variables.

18 The NLOGIT code for the car type choice model is available in Appendix 3.2.
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Table 4-11: Estimated parameters of the car type choice model

Explanatory variable
Model 1 Model 2

Coeff. T-stat. Coeff. T-stat.

Vehicle attributes
Price/income -0.59 -3.18 *** -0.67 -3.31 ***
Price/income squared 0.01 2.05 ** 0.02 2.39 **
Fuel cost -0.41 -2.17 ** -0.48 -2.32 **
Performance 0.13 0.40 0.19 0.52
No. o f airbags 0.36 2.96 *** 0.46 3.34 ***
European brands 1.00 2.54 ** 1.07 2.62 ***
American brands 0.74 1.76 * 0.76 1.71 *
Japanese or Korean brands 0.03 0.09 0.10 0.28

Individual characteristics o f  m id-size car owners
Mid-size car, constant -0.64 -0.49 0.70 0.43
Age o f household head 0.01 0.37 0.01 0.25
Gender o f household head (male) 0.30 0.61 0.13 0.26
Living in urban areas -0.85 -2.04 ** -1.04 -2.32 **
No. o f owned cars 1.44 1.73 * 1.64 1.81 *
Commuting distance o f household head 0.00 0.12 0.01 0.38
Basic knowledge -1.45 -1.93 *
Good knowledge -2.31 -2.92 ***
Use cars for business purposes 2.45 1 97 **

Individual characteristics o f  large car owners
Large car, constant -3.63 -2.09 ** -2.00 -0.97
Age o f household head 0.00 0.17 -0.01 -0.22
Gender o f household head (male) 1.39 2.05 ** 1.41 1.97 **
Living in urban areas -0.86 -1.65 * - 1.02 -1.82 *
No. o f children 0.74 1.91 * 0.80 2.01 **
No. o f owned cars 2.17 2.34 ** 2.41 2.44 **
Commuting distance o f household head 0.04 1.14 0.05 1.38
Basic knowledge -2.44 -2.67 ***
Good knowledge -2.08 -2.29 **
Use cars for business purposes 2.70 2.07 **

No. o f observations 173 173
Log-likelihood at zero -190.06 -190.06
Log-likelihood at convergence -144.13 -133.06

Rho-square w.r.t. zero 0.242 0.300
Percentage o f correct predictions 60.12 67.05

X2 against zero 91.87 (df = 21)a 114.01 (df = 27)

X2 against Model 1 22.14 (d f= 6)c

for 27 degrees of freedom is 40.11;c the critical value for 6 degrees of freedom is 12.59. 
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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Table 4-12: Comparison of effects in car type choice model

Explanatory Variable a Typical effects in the 
developed markets Finding in our model

• Price/income -  for price/income, + for 
squared price/income

-  for price/income, + for 
squared price/income

• Fuel cost - -

• Performance + Insignificant

• No. o f airbags + +

• Brand preference + for foreign brands 

-  for domestic US brands

+ for European brands 
followed by the US brands; 
Insignificant for Japanese/ 
Korean brands.

• Age + /- Insignificant

• Gender + for small cars (female) + for large cars (male)

• No. o f children + for large/spacious cars + for large cars

• Residential location (urban) + for small cars + for small cars

• No. of owned vehicles + for small cars + for large cars

• Commute distance + for large/spacious cars Insignificant

• Knowledge level Not available + for small cars

• Primary use of cars for 
business purposes

Not available -  for small cars

Note: + stands for the positive effect, -  stands for negative effect; + /- stands for the significant 
association without consistent indication of positive or negative effect. ‘Insignificant’ means 
insignificance for car ownership.
a Explanatory variables in bold have different effects in China and the developed markets.

We follow the same approach employed in the car ownership model to discuss the 

estimated parameters along with the comparison against their typical effects in the 

developed car markets (see Table 4-12 for the comparison summary). First of all, we 

find that the Chinese consumers place more emphasis on the monetary factors and 

safety than vehicle performance when selecting cars, which corroborates the findings 

observed by the local market experts (Gamer, 2005, p. 78). Specifically, we find the 

Chinese consumers are fairly similar to those in the mature markets in being 

concerned about the vehicle price, running cost and the number of airbags. However, 

what is significantly different in China is that vehicle performance is insignificant.
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This is probably because when consumers buy their first cars, they have no prior 

experiences about how different technical factors will affect their car use, but other 

tangible factors seem more sensible for them, such as how much money they need to 

pay and how safe the car can be. Of course, when consumers have more experiences 

about running cars, we expect that they will become more sensitive to the technical 

attributes.

With respect to the brand preference, using the local (Chinese) brands as the reference 

category, we find that the European brands are most preferred in China. This can be 

explained by the fact that both Germany and French car manufacturers were the 

earliest entrants into the Chinese car market, setting up their local joint venture firms 

in China before the Chinese government published the Automotive Industry Plan in 

1994 to officially support the car market development. In particular, as a market 

leader in China, Volkswagen group has started to sell more cars in China, mainly 

under three main brands of Volkswagen, Audi and Skoda, than in its home market of 

Germany19, and China has been considered as its “second home market”20. Its market 

advantage has been built through emphasising the reliable German engineering as well 

as providing dynamic and youthful products in China (Doctoroff, 2005, p. 134). After 

the European brands, the Chinese consumers also like the U.S. brands, as indicated by 

the positive effect significant at 10% level. It is interesting because these U.S. brands 

have dramatically lost market shares in their home market (Train & Winston, 2007). 

The reason is largely due to the success of General Motors (GM) in China since its 

first debut in 1998. Buick, a dead brand of GM in the United States, has revived and

19 “VW China sales exceed home market”, 27/06/2009, Leftlane, http://www.leftlanenews.com/vw-
china-sales-exceed-home-market.html
20 “VW sees leap in its China profits”, 27/10/2010, Financial Times, 
http://www.ft.eom/cms/s/0/a4eb38c8-e 1 b5-11 df-b71 e-00144feabdc0.html
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becomes the category leader in China, so that it remains as one of four pillar brands 

after GM’s recent bankruptcy crisis21. By the end of 2010, GM also achieved more 

annual sales in China than in the U.S.22. In addition, our model shows that the Asian 

brands from either Japan or Korea are not significantly preferred in China compared 

to the Chinese brands, probably due to their low quality images in the mind of Chinese

23consumers . In particular, Japanese car makers need to be extremely careful about the 

sensitive nationalism in China against the Japanese brands. The improper 

advertisement case of Toyota that we have discussed previously is a typical example. 

This Japanese car manufacturer did not fully understand the potential influences of 

local culture, local consumers and historical events before conducting its marketing 

activity, which directly led to the negative effects on the company.

Among all demographic characteristics, the effects are generally similar as in other 

markets and the differences are only on a few variables. First, the age factor 

insignificantly influences consumers buying different types of cars in China. Second, 

the commute distance has limited influences on car type choices in China, while it is 

positively associated with the choice of spacious cars in the mature markets. In the 

developed markets, cars are mainly used for daily commuting. But it is different in the 

emerging markets when consumers own their first cars. Typically, the first cars are 

shared by the whole family and the commuting is one of the roles only. Other 

important roles of owning cars include conveniently sending children to school, 

shopping, weekend/holiday short trips, supporting business purpose or even showing

21 “Buick Back From the Dead”, 06/05/2010, The Detroit Bureau, 
http://www.thedetroitbureau.com/2010/05/buick-back-from-the-dead/
22 “GM sells more vehicles in China than in the U.S.”, 24/01/2011, USA Today, 
http://www.usatodav.com/monev/autos/2011-01 -24-gm-china-sales N.htm
23 “Breaking the Rules: Moments of Truth in the Car Buying Process”, presentation from ACNielsen 
China 2007, http://iD.nielsen.com/industrv/Breakingtherule China.pdf.pdf
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social status/wealth etc. Therefore, the insignificant effect of the commuting distance 

variable implies that other factors instead of commuting distance of household head 

are more important on influencing car type choice in China. Third, the households 

owning more than one car are more likely to adopt mid-sized or large cars, implying 

that the Chinese households usually choose small cars as their first cars, which is 

different in the U.S., where small sized cars are more preferred by the multiple car 

owners (Lave & Train, 1979). The strategic implication for the car manufacturers is 

that if they can develop small cars with satisfying characteristics such as reasonable 

price and high fuel efficiency, this segment could potentially attract a huge number of 

consumers as most consumers in China still have no car owning experiences

In order to explore the context specific effects when the consumers choose different 

types of cars, we account for consumer knowledge and primary use of owned cars in 

the car type choice model. The estimation results indicate that consumers with good 

knowledge about cars or the car market are less likely to own both midsized and large 

cars, and consumers with basic knowledge are more likely to choose small cars. This 

is probably because consumers with better knowledge have higher awareness about 

the high fuel efficiency and less pollution of smaller cars. In addition, as we have 

shown that the small cars are usually bought as the first cars in China, the owners of 

small cars might be preparing for re-purchasing or upgrading their cars in the future, 

so that they are more active in acquiring information about cars and thus they know 

more about the car market. When jointly considering the effects of consumer 

knowledge on car ownership and car type choice models, we find that in general car 

owners have higher knowledge than non-car owners, and within the segment of car 

owners, those who own small cars tend to know more than other car owners. Such

118



heterogeneous knowledge levels across different car ownership status provides an 

important implication for the car manufacturers, suggesting that they could try to 

diversify their market strategies or products to meet the different requirements from 

consumers with different knowledge or experiences about cars. In addition, our 

finding also suggests that the government could promote the segment of small cars 

through enhancing consumers’ knowledge or awareness about the fuel saving 

advantage of small cars in addition to the typicaf^monetary incentives.

In terms of the primary use of cars, we find that if the cars are mainly used for the 

business purposes, the Chinese consumers are less likely to buy small cars, which 

implies the importance of “prestige face” in the Chinese culture (Ho, 1976; Tian & 

Dong, 2011). Driving small cars to do business with others might be perceived to be 

“face losing” and lack high social status, as social status is usually used as a “tool” to 

advertise expensive products such as cars or diamonds in China (Doctoroff, 2005, p. 

29). This finding supports the current practice of car manufacturers that the large cars 

are developed and promoted with a good capability of meeting the business-related 

requirements, such as the larger space for rear seats and luxury interior decoration.

4.6.3 Model validation

We follow the same approach used for the car ownership model to compare the 

predictive performances of two car type choice models in the validation samples. 

Specifically, we examine the aggregate level market share forecasting errors (MAD, 

MAPE and RMSE) and disaggregate level correctly predicted ratio for all alternatives 

(Bhat & Pulugurta, 1998).
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The forecasting performances of two different specifications of car type choice model 

are presented in Table 4-13. We compare both mean and median values of all 

measures, since we have 10 different validation sub-samples randomly selected from 

the whole sample. At the aggregate level, Model 2 consistently demonstrates superior 

predictive performance over Model 1, indicated by the smaller mean and median 

values of every error measure for the forecasted market shares. At the disaggregate 

level, Model 2 achieves higher ratio of correct predictions on average across all 

validation sample, although both models have the same medians of correctly predicted 

ratio.

Table 4-13: Validation results of car type choice models
Model 1 Model 2

A ggrega te  M easure

Mean o f  MAD 17.69 13.87
Median o f  MAD 18.35 15.87
Mean o f  MAPE 64.02% 51.25%

Median o f  MAPE 55.40% 43.63%
Mean o f  RMSE 19.10 15.53

Median o f  RMSE 20.03 17.82
D isaggrega te  M easure

Mean o f  correctly predicted ratio 54.23% 55.43%
Median o f  correctly predicted ratio 53.13% 53.13%

4.7 Segmentation Analysis based on Consumer Knowledge

As we have discussed previously, consumer knowledge is one of the important

context specific characteristics, which should be accounted for in order to better

understanding local consumer behaviour. In this section, we conduct a segmentation

analysis to further examine the moderating effect of consumer knowledge on
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consumer preferences. Specifically, we define three consumer segments based on their 

knowledge levels and compare the elasticity effects of various vehicle attributes for 

the consumers in different segments. We also compare the segmental elasticity effects 

with the non-segmental elasticity effects based on both car type choice Model 1 and 

Model 2.

Comparisons of the direct-elasticity effects based on different consumer knowledge 

levels are shown in Figure 4-2, Figure 4-3 and Figure 4-4 respectively for three types 

of cars. It is worth noting that in spite of the negative elasticity effects of some 

variables (such as price and fuel cost), we show and compare the magnitudes of all 

elasticity effects in these figures.

Figure 4-2: Direct-elasticity effects based on knowledge levels (small cars)

Fuel cost

Airbags

Note: p-values from ANOVA test for elasticity differences across segments are 0.001 (price), 0.531 
(fuel cost), 0.122 (airbags), and 0.015 (performance) for small cars.

i . i N on-segm ental (M odel 2)

i------- 1 Non-segm ental (M odel 1)

 Good Knowledge

 Basic Knowledge

 No Knowledge
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Figure 4-3: Direct-elasticity effects based on knowledge levels (mid-sized cars)

N on-segm ental (M odel 2) 

HU N on-segm ental (M odel 1) 

—  Good Know ledge 

— Basic Knowledge 

••• No Know ledge

Airbags

Perform ance Fuel cost

Note: /7-values from ANOVA test for elasticity differences across segments are 0.269 (price), 0.037 
(fuel cost), 0.000 (airbags), and 0.579 (performance) for mid-sized cars.

Figure 4-4: Direct-elasticity effects based on knowledge levels (large cars)

Fuel cost

Airbags

■ -  . J N on-segm ental (M odel 2)

 1 N on-segm ental (M odel 1)

 Good Knowledge
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Note: /7-values from ANOVA test for elasticity differences across segments are 0.370 (price), 0.256 
(fuel cost), 0.001 (airbags), and 0.088 (performance) for large cars.
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When comparing two types of non-segmental elasticity effects, we find that the car 

type choice Model 1 that does not account for the context-specific variables 

consistently underestimate the direct-elasticity effects of all vehicle attributes across 

all types of cars, as illustrated with smaller green areas for the Model 1 than the blue 

areas for the Model 2 in all these figures.

When looking at each type of cars, we find that the annual fuel cost is the most 

important factor for the owners of small and mid-sized cars. The large car buyers are 

more concerned about both fuel cost and purchase price, while vehicle performance is 

the least sensitive across all types of cars. More importantly, we note some differences 

on the elasticity effects for the consumers at different knowledge levels. For the small 

cars, consumers with no knowledge about cars demonstrate the highest direct- 

elasticity effects (see Figure 4-2), which is linked to our previous finding that the 

smaller cars are usually the preferred choice of the first time car buyers in China who 

have no prior car ownership experience. Regarding the mid-sized cars, we find that 

consumers with no knowledge have the lowest direct-elasticity effects (see Figure 4-3). 

This might be explained by the fact that the segment of mid-sized cars dominates the 

car market in China, so that consumers with better knowledge can conduct more 

information search and comparisons when selecting mid-sized cars. In terms of the 

large cars, we find that the consumers with the basic or moderate knowledge tend to 

have the highest direct-elasticity effects, while other consumers with either no 

knowledge or good knowledge have comparatively lower elasticity effects (see Figure 

4-4). Such kind of “U-shaped” effect is also found by Rao & Monroe (1988) and they 

indicate that this effect occurs for products with a wide variation of product features. 

The segment of large cars in our study shares the similar features of wide variation, as
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the segment consists of upper-mid and luxury cars and their attribute values (such as 

price) can be extremely large for the luxury cars.

In addition, we conduct ANOVA tests to examine the significance of elasticity 

differences across segments (see reported p- values in the notes of above three figures). 

As we can see from the test result, consumers at different self-perceived knowledge 

levels tend to have significantly different elasticity effects on some attributes 

depending on what type of cars they own. For small car owners, the elasticity effects 

both purchase price and vehicle performance factor are significant different across 

three segments. For consumers who own midsize cars, their elasticity effects of fuel 

cost and airbags are significantly different across three knowledge levels. The airbag 

variable also demonstrates different elasticity effects for the large car owners across 

three segments.

In summary, by employing the consumer knowledge as an example, we have showed 

the importance of accounting for the context specific factors when investigating the 

local consumer behaviour, as shown with the different elasticity effects in Model 1 

and Model 2. Moreover, through the segmentation analysis, we further demonstrate 

the importance of the context specific variables, as indicated by our findings that 

consumers at different knowledge levels have different elasticity effects on vehicle 

attributes and comparatively the non-segmental approach tends to provide biased 

estimations of the elasticity effects for consumers in different segments. Therefore, 

properly accounting for the context specific variables is particularly important for 

international companies to enter the emerging markets such as China, where there
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may exist significant different contextual characteristics from the companies’ current 

markets (Burgess & Steenkamp, 2006; Johansson, 2009; Sheth, 2011).

4.8 The Effect of Consumer Knowledge on Purchase Intentions

We have discussed in detail the importance of accounting for the context specific 

variables, such as the consumer knowledge in our study, when understanding local 

consumer purchase behaviour that is observable in the market. In this section, we 

extend our study to examine the key determinants of future purchase intentions and 

particularly the potential effect of the context specific variables on the purchase 

intentions.

Consumer purchase intentions have been widely employed to forecast the actual 

purchase behaviour and product demand (Armstrong, et al., 2000; Bemmaor, 1995; 

Chandon, et ah, 2005; Jamieson & Bass, 1989; Sun & Morwitz, 2010). Using 

intention information to predict sales is found to perform better for the durable goods 

that have already existed in the market (Morwitz, et ah, 2007). Here, we are 

particularly interested in understanding the key factors influencing the consumer 

purchase intentions in the Chinese car market.

As we have discussed in Chapter 2, we collected data about the respondents’ car 

adoption intentions. In the survey, we asked each respondent whether he/she has the 

intention or plan to buy a car within the next 5 years. With the respondents’ choices 

out of three options (yes, not sure and no), we can develop a discrete choice model to
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investigate which explanatory variables significantly influence different levels of 

purchase intentions. We acknowledge here that it is one limitation of our survey that 

we only provided three levels of purchase intentions. It would be better to provide 

more detailed scale of purchase intentions or even ask the probability of purchase 

intentions (Morwitz, 2001; Van Ittersum & Feinberg, 2010). Given the three 

alternatives in the dependent variable, the developed model takes a form of the MNL 

model. We include following demographic variables in the model: household income, 

number of working adults, number of drivers, gender and age of the household head, 

family size, number of children, whether the household owns cars or not. All these 

demographic variables have the same definition as we have discussed in Section 4.2.

We follow the previous approach to develop two choice models to compare. The first 

model only accounts for the demographic variables, while the second one includes 

both the demographics and the consumer knowledge information24. The estimated 

parameters of both models are presented in Table 4-14.

In the first model, we find that most demographic variables, except household income 

and current car ownership, are insignificant for consumers’ purchase intentions. 

Specifically, since most existing car owners adopted their cars a few years ago, they 

demonstrate significantly lower purchase intentions in the near future as indicated by 

the negative sign for the car owners with high purchase intentions. In addition, we also 

find that the individuals who are unsure of their car purchase intentions tend to have 

significantly lower household income than others. This suggests that those consumers 

without clear purchase intentions are mainly concerned about their affordability to the

24 The NLOGIT code for the purchase intention model is available in Appendix 3.3.
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car adoption and the daily use. Furthermore, we notice that for the car manufacturers 

that want to encourage consumers to buy more cars, it is difficult to influence either 

household income or existing car ownership in order to enhance consumer purchase 

intentions.

Table 4-14: Estimation parameters of the purchase intention model

Model 1 Model 2
Explanatory variable Coeff. T-stat. Coeff. T-stat.
Individual characteristics for consumers with unsure purchase intensions
Constant o f unclear intention holders 1.79 1.52 1.62 1.39
Household income -0.18 -2.80 *** -0.18 -2.75 ***
No. o f working adults 0.52 1.61 0.45 1.38
No. o f drivers 0.27 0.33 -0.03 -0.04
Gender o f household head -0.75 -1.40 -0.86 -1.60
Age o f household head 0.01 0.40 0.01 0.63

Family size -0.09 -0.34 -0.08 -0.30
No. o f children 0.34 0.75 0.20 0.42

Existing car owners -0.16 -0.24 -0.29 -0.44

Basic knowledge about cars 1.10 1.96 *

Good knowledge about cars 0.62 0.81

Individual characteristics for consumers with high purchase intensions
Constant o f high intention holders 2.22 2.02 ** 1.62 1.48

Household income -0.06 -1.09 -0.07 - 1.21
No. o f working adults 0.39 1.28 0.23 0.76

No. o f drivers 1.36 1.75 * 0.86 1.10
Gender o f household head -0.23 -0.44 -0.55 -1.06

Age o f household head -0.01 -0.57 0.00 0.07

Family size 0.06 0.25 0.11 0.47

No. o f children 0.18 0.43 -0.02 -0.05

Existing car owners -1.23 -2.01 ** -1.53 -2.41 **

Basic knowledge about cars 1.91 3.56 ***

Good knowledge about cars 1.56 2.19 **

No. o f observations 524 524

Log-likelihood at zero -397.78 -397.78

Log-likelihood at convergence -375.87 -362.28

Rho-square w. r. t. zero: 0.057 0.089

X2 against zero 44.99 (df = 18)a 71.00 (df = 22)b

X2 against Model 1 26.01
i__1. b _

(d f= 4 ) c
N ote:a the critical value for 18 degrees o f  freedom is 28.87 at 5% significance level; the critical value

for 22 degrees o f  freedom is 3 3 .9 2 ;c the critical value for 4 degrees o f  freedom is 9.49. 
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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As we have discussed previously, the context specific variables are important when 

understanding the existent local consumer behaviour. Using the consumer knowledge 

as an example again, we further demonstrate here that the context specific variables 

can also help us know more about consumer purchase intentions. In the second model 

as shown in Table 4-14, both income and existing car ownership level remain 

important, but more importantly we find that consumers with at least some basic 

knowledge about cars demonstrate significantly higher purchase intentions than those 

knowing nothing about cars. This can be explained by that fact that the car is a type of 

expensive durable goods, in particular in the EMs, so that consumers do not want to 

pay money for it if they totally have no knowledge about it.

Figure 4-5: Average purchase intentions across different knowledge levels

Purchase il Non-car owners □ Car owners
intention

2.00  -[-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.00 I

0.00 4-
No Knowledge Basic Knowledge Good Knowledge

Note: the purchase intentions collected from the survey were coded into 0, 1 and 2 to stand for three 
levels o f intentions.

Furthermore, we differentiate the purchase intentions between car owners and non-car

owners, as most consumers in China do not own cars and some preliminary analyses

indicate that the car owners may not have different intentions due to their different
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knowledge levels. Figure 4-5 compares the average purchase intention levels of car 

owners and non-car owners across different knowledge levels. Since we collected the 

self-evaluated knowledge from respondents, some car owners reported that they have 

no knowledge about cars. This is one limitation of using self-evaluated knowledge 

without references and it will be desirable in the future research to explore the 

objective knowledge. When comparing purchase intentions across different segments, 

it is clear that there is a significant gap of purchase intentions for non-car owners 

without knowledge versus with at least basic knowledge about cars, while the 

difference between any groups of car owners is insignificant. The Chi-square test in 

the segment of non-car owners has the P-value of 0.017, which indicates the 

significant association between non-car owners’ knowledge levels and purchase 

intentions. The Chi-square test P-value for the car owners is 0.672, which suggests the 

limited influence of the knowledge on car owners’ purchase intentions.

In summary, our analysis of purchase intentions further demonstrates the important 

effects of the context specific variables when investigating consumer purchase 

intentions. Our finding implies that in the Chinese car market where most consumers 

are non-car owners, consumer purchase intentions can be significantly enhanced 

through improving their knowledge level about cars. This is particularly important for 

the car manufacturers, as they can play an important role in the process of educating 

consumers through implementing many marketing activities, such as providing ‘test 

driving’ opportunities to the potential consumers (Goering, 1985; Lakshmanan & 

Krishnan, 2011).
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4.9 Conclusions and Managerial Implications

With market globalisation, whether firms should adopt the standardised or localised 

marketing strategies across different markets has been a debate for decades (Albaum 

& Tse, 2001; Jain, 1989; Ryans, et al., 2003; Theodosiou & Leonidou, 2003; Zou, et 

al., 1997). In general, the standardisation strategy fits better for the markets that share 

similar characteristics in terms of economic development stage, government 

regulation, customs and traditions, consumer characteristics and so on (Katsikeas, et 

al., 2006; Szymanski, et al., 1993). However, for companies that want to extend the 

business into a completely different market context, the localisation or adaptation 

strategy is highly advocated for their success (Cavusgil & Zou, 1994; Johansson, 

2009). This is particularly important for established companies in the more mature 

markets to move into the EMs, because the EMs demonstrate significantly different 

contextual characteristics from the mature markets that those companies are 

accustomed to (Alden, et al., 2006; Burgess & Steenkamp, 2006; Sheth, 2011).

In the context of car market, the existing body of empirical studies in the literature 

extensively focuses on the mature markets, with little research conducted to 

understand consumer behaviour in the Chinese car market and more importantly to 

investigate how the consumer behaviour that influences car demand is different in 

China compared to those mature markets. Furthermore, it is also important to account 

for context specific factors when understanding the local consumer behaviour, 

because the specific market context may present additional factors that do not exist in 

other markets but influence consumer choices in this market. Understanding the 

behavioural differences with the context specific factors is particularly valuable for
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multinational car manufacturers who want to invest in China and benefit the growth of 

the Chinese car market, so that they can effectively learn how the Chinese consumers 

behave in different ways and are influenced by some new factors that the car 

manufacturers have never experienced in other markets.

In this chapter, we model car ownership and car type choices. We summarise our main 

finding and the corresponding managerial implications as follows. In the car 

ownership model, we find that whether the household head is male or female is 

insignificant in the car ownership in China, which indicates the existence of a joint 

decision mechanism between husbands and wives on whether buying their first cars or 

not. The corresponding implication for the car makers is that they should balance their 

marketing focus between the male and the female consumers without ignoring the 

potential influence of the female on the first car purchase decisions. Also, we find that 

the number of working adults is insignificant in China, which is probably because the 

number of working adults is more associated with multiple car ownerships in the 

developed market context while the key decision for the Chinese consumers is 

whether to buy a car or not.

When investigating consumer preferences for different types of cars, we find more 

behavioural differences in China and the developed car markets than when looking at 

adoption. Specifically, our model shows that the Chinese consumers are more 

concerned about the “tangible” factors such as price/cost and safety instead of the 

vehicle performance. This finding supports our contention that the Chinese car market 

is not as mature as in those in the developed markets. In terms of brand preference, we 

find that the non-Asian brands, particularly those from the Europe, are more popular
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in China, which implies that the European car makers can emphasise their outstanding 

brand images when marketing their products, while the Asian car makers should strive 

to improve their brand values and emphasise other advantages (such as the high fuel 

efficiency of the Japanese cars) when promoting their products. After analysing 

consumer preferences, the consumer profiles of different types of cars are available. 

First time car buyers are more likely to adopt small cars. Small car owners are more 

likely to live in the central urban areas and to use their cars mainly for other purposes 

instead of business activities. When consumers live in suburban or remote areas or 

want to use cars for business purposes, they are more likely to buy mid-sized or large 

cars. In particular, households with children or owning multiple cars are more likely to 

own the large cars rather than the small or midsized cars in China. The implication 

here for car manufacturers is that they should diversify their marketing strategies and 

customise product positions for different consumers. For example, different promotion 

policies or pricing strategies might be applicable for the first time buyers versus the 

existing car owners, based on their heterogeneous preferences towards different types 

of cars.

In addition to comparing preference differences across different car markets, an 

important contribution of this chapter is that we account for the context specific 

variables when understanding local consumer behaviour. Using the consumer 

knowledge as an example of the context specific variables, we find there are context 

specific effects on car ownership, car type choice as well as purchase intention models, 

which indicate that it is critical to incorporate the context specific features in addition 

to the cross market comparison when analysing the local consumer behaviour. The 

localisation strategy through better understanding local consumer behaviour is crucial
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for the success of multinational car manufacturers in China, but its importance goes 

far beyond the car market. Both McDonald’s and Nike has experiences of advertising 

improperly in China due to their low awareness of local culture (Chan, et al., 2007). 

The successful experiences of KFC and Amway in China, in comparison to the less 

successful McDonald’s and the failing Best Buy25, demonstrate that the importance of 

localised strategies applies to many other consumer markets when international 

companies well established in the developed markets extend their business into the 

EMs.

25 “Consumers: How to find favour down at the shops”, 26/10/2011, Financial Times, 
http://ww w.ft.eom /cm s/s/0/e4209f72-f5ac-l Ie0-824e-00144feab49a.htm l

http://www.ft.eom/cms/s/0/e4209f72-f5ac-l


CHAPTER 5. 

MODELLING HETEROGENEOUS CONSUMER 

PREFERENCES FOR ALTERNATIVE FUEL 

CARS IN CHINA26

5.1 Introduction

Car use is a significant contributor of air pollution (Fenger, 1999; Potoglou & 

Kanaroglou, 2007). The rise in the adoption of cars in many developed and emerging 

markets also raises concerns about the stock of oil to satisfy the demand. According 

to the 2010 Key World Energy Statistics, world oil consumption ratio in the transport 

sector increased from 45.3% in 1973 to 61.40% in 2008 (International Energy Agency, 

2010a). Given these two main environmental concerns, governments in many 

countries are implementing policies to encourage producers to manufacture and 

consumers to buy greener cars.

When the global financial crisis started to seriously affect the car industry in 2009, 

governments in major developed economies outlined a number of measures to support 

firms in the industry. Many of those policies focused on stimulating demand but this

25 This chapter is largely based on: Qian, L. and Soopramanien D. (2011), Heterogeneous consumer 
preferences for alternative fuel cars in China, Transportation Research Part D: Transport and
Environment, 16(8), 607-613.
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also represented an opportunity for governments to encourage consumers to buy 

“greener” cars. The Chinese central government was no exception and announced a 

set of stimulus policies to encourage consumers to buy greener cars. The largest and 

most important car show took place in China (Auto China) in 2010 with the theme of 

“For a Greener Tomorrow”, which was another occasion for the country to show that 

it wants to lead the way in promoting the adoption and use of the greener cars.

In this chapter we empirically model consumers’ potential preferences for buying 

alternative fuel cars (AFCs) in China. The market context of China is interesting 

because the majority of potential consumers have never owned a car and this can 

affect how these potential car buyers perceive the choice between conventional type of 

cars and the AFCs respectively. Previous research on modelling preference towards 

green cars tends to use one choice structure for multiple alternatives with different 

types of fuels in their empirical models (See examples in Bunch, et al., 1993; 

Caulfield, et al., 2010; Potoglou & Kanaroglou, 2007. We will discuss them in detail 

in the literature review section). In our study, we do not impose any prior assumption 

about how consumers perceive the different types of cars. The types of cars that are 

considered by consumers are likely to share some common attributes compared to 

those that are not considered. In the context of this chapter, this effectively means that 

if consumers ignore alternative fuel cars when they are deciding to buy a car, then any 

policy action to encourage them to buy green cars will not have the desired impact. So, 

it is important to take into consideration how consumers perceive the different types 

of cars when modelling consumer preferences for the green versus conventional cars.
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In this chapter we also consider if different segments of the market behave differently 

when they have to choose between green and conventional types of cars. In the 

context of China, as most potential buyers of green cars will be non-car owners, we 

explore if these consumers are different to car owners in terms of their preferences 

towards green and conventional types of cars respectively. This comparison has not 

been given much attention in the literature as most studies in this area focus on car 

owners only and are conducted in more mature markets where car ownership levels 

are significantly higher than in China. Another contribution of this chapter is that we 

examine if consumers differentiate between different types of alternative fuel cars 

(electric cars and hybrid); other previous work tend to consider the market for green 

cars as a whole and do not take into account the possibility that some types of green 

cars may be perceived by consumers to be closer substitutes to conventional types of 

cars.

The remainder of this chapter is organised as follows. In the next section we briefly 

review the literature on modelling consumer car preferences and we also provide a 

brief introduction to the development of green cars in China as well as the 

corresponding governmental policies. The data and the models that we employ are 

described in section 5.3 followed by the empirical results and the detailed 

segmentation analysis. Finally, our conclusions and policy implications are presented 

in the last section of the chapter.

5.2 Literature Review and Market Background
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5.2.1 Literature review

Most research on consumer preferences for alternative fuelled vehicles (AFVs) apply 

discrete choice models based on either the survey or conjoint experiment data. When 

some of the attributes of AFVs are either unavailable or limited in the market, choice 

based conjoint analysis is usually designed and implemented. Various hypothetical 

choice scenarios are typically presented and the preference for different offerings is 

explored without actual market data (Louviere, et al., 2000). With conjoint data, 

discrete choice modelling is used to analyse the relationship between consumers’ 

choices and alternative attributes and consumer characteristics (Train, 2003).

Early research on the potential demand and consumer preference for AFVs were based 

on survey data collected in California, where air quality has been an important 

concern since the 1990s (Adler, et al., 2003; Brownstone, et al., 2000; Bunch, et al., 

1993; Golob, et al., 1993). For example, a recent study from Adler et al. (2003) 

investigates conditions and incentives that would encourage California residents to 

adopt AFVs and these researchers employ a conjoint survey consisting of three 

hypothetical car choice: a gasoline, a hybrid-electric and a diesel vehicle. They use the 

NL model and find that that the high purchase cost of AFVs has a negative effect on 

adoption but that the potential fuel cost savings and incentives such as purchase tax 

reduction and free parking would encourage Californians to adopt AFVs. In Canada, 

Ewing and Sarigollu (2000) investigate consumer preferences for low-emission and 

zero emission vehicles and employ a conjoint survey in the suburban area of Montreal. 

Based on the MNL model, they find that the vehicle characteristics such as driving 

range, acceleration and refuelling time are critical factors affecting consumer choice
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for AFVs but also find that consumers are concerned about environmental issues. In 

addition, they also explore government regulations and indicate that the price subsidy 

would be an effective incentive but that increasing gasoline prices or providing faster 

lanes for AFVs are less important. See also Ewing and Sarigollu (1998), Potoglou and 

Kanaroglou (2007), and Mau, et al. (2008) for more studies of consumer preferences 

for AFVs in the context of Canada. Similar studies are also available in the European 

context (Caulfield, et al., 2010; Dagsvik, et al., 2002; Eggers & Eggers, 2011) and in 

South Korea (Ahn, et al., 2008; Kim, et al., 2007; Lee & Cho, 2009). A more recent 

literature review from Potoglou and Kanaroglou (2008a) also shows that the purchase 

price and maintenance and running costs are two critical factors influencing 

consumers choice for AFVs. In addition, other factors such as vehicle performance, 

fuel availability and driving range of AFVs are also found to affect demand. They also 

suggest that monetary incentives for AFVs buyers as well as potential green attributes 

of AFVs would be effective in encouraging adoption of such types of cars.

As far as we are aware, our review of the literature indicates that research on the 

potential demand and consumer preference for AFVs is mostly conducted in the 

context of developed car markets, which essentially treat all consumers/households as 

experienced car owners. The only exception is the research of Dagsvik and Liu (2009) 

which explores a rank-ordered choice model based on conjoint survey data collected 

in Shanghai in 2001. But their study provided limited insights about local consumer 

behaviour for the following reasons. Firstly, most urban households in China had no 

experience at all about conventional car ownership and use at the time of their survey, 

and thus their responses to alternative fuel vehicle choices are far from reliable. 

Secondly, consumer demographic variables were not included which means that the
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influence of different demographics on car preference was not studied. Thirdly, 

incentives or stimulus policies were not present in their conjoint experiment.

With regard to the modelling approach, different specifications of discrete choice 

models have been applied in the literature to model the demand for alternative fuel 

vehicles, such as the MNL model (Ewing & Sarigollu, 1998, 2000; Golob, et al., 1993; 

Mau, et al., 2008), the NL model (Adler, et al., 2003; Bunch, et al., 1993; Caulfield, et 

al., 2010; Potoglou & Kanaroglou, 2007), mixed logit model (Brownstone, et al., 2000; 

Kim, et al., 2007) and rank-ordered models (Dagsvik & Liu, 2009; Dagsvik, et al., 

2002; Lee & Cho, 2009). As we have mentioned previously, the NL models have been 

explored to study how consumers perceive having an additional choice of alternative 

fuel vehicles in the market. Adler et al. (2003) and Potoglou and Kanaroglou (2007) 

mainly group alternatives based on the different vehicle types (e.g. car, Van, SUV and 

Pickup) and/or sizes (e.g. small, medium and large), instead of considering different 

fuel types. Bunch et al. (1993) only investigate one specific NL structure to group 

non-electric vehicles into one branch, based on the assumption that preferences for 

conventional petrol and other fuel types (e.g. methanol, ethanol, propane, or 

compressed natural gas) might be correlated whilst attitude towards electric vehicle is 

independent from both. Similarly, there is only one assumed NL structure used by 

Caulfield et al. (2010) which includes hybrid electric vehicle and alternative fuel 

vehicle in one nest and keeps conventional vehicle on its own, which assumes 

correlated consumer preferences between the hybrid and AFVs a priori. In order to 

fully explore consumer’s perceptions about various AFVs, we propose in our study 

that it is important to test the extent to which AFVs and conventional vehicles are 

perceived to be substitutes without any priori assumptions. That is, for example, it
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may be interesting to investigate an alternative tree structure by grouping both electric 

and other alternative fuel vehicles into one branch because all of them are 

environmental friendly vehicles.

5.2.2 Background of the green cars in China

AFVs can generally be characterised as a new product concept and even more so in 

China. The Toyota Prius was first introduced to China at the end of 2005, and a local 

firm named BYD introduced the first plug-in hybrid car F3DM in 2008. However, 

neither car model was very successful in China: Cumulative sales of Prius from 2006 

to 2009 were less than 3,800 units and total sales of F3DM in 2009 were only 48

7 7units . Moreover, similar to governments in developed car markets, the Chinese 

government also implemented stimulus policies in 2009 to support the market for 

alternative fuel vehicles. In January 2009, the “Ten cities and Thousand vehicles” 

program was initiated in China, which aims to select 10 cities each year and introduce 

1000 hybrid, electric or hydrogen fuel cell vehicles in each of them (Huo, et al., 2010). 

This policy exclusively applies in the public sector to support the green vehicles used 

for taxis, bus and other public services. In June 2010, the Chinese government 

announced a subsidy policy for household green car buyers, which is only available 

for consumers in 5 selected cities (Shanghai, Changchun, Shenzhen, Hangzhou and 

Hefei). This policy is designed for the period between 2010 and 2012 and mainly 

supports plug-in hybrid and electric cars. The governmental subsidies for each hybrid 

and electric car can go up to RMB 50,000 and RMB 60,000 respectively, depending 

on the battery capacity. The short-term goal of the green car sector development in

27 According to China Association of Automobile Manufacturers (http://www.caam.org.cn/)
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China has been clearly stated in “Automobile Industry Adjustment and Revitalisation 

Plan” released in March 2009, which requires electric and hybrid cars to achieve 5% 

market share of the total passenger car sales by the end of 201128.

5.3 Methodology and Data

5.3.1 Modelling approach

In this chapter we also apply the discrete choice models where utility maximising 

behaviour is assumed. The utility function of consumer (i) choosing a car alternative 

(n) depends on car attributes (X ), possible governmental policies (Y) and choice- 

invariant individual characteristics (Z):

Uin = Vin + Ein =  a 'Xin + P'^in + YnZi +  Ein (5_1)

where utility (Uin) consists of the deterministic portion (Vin) and the error unexplained 

component is (££n).

The assumption on the error component (sin) dictates the specification of the discrete 

choice model. We first consider the MNL model (McFadden, 1974), which assumes 

that the error term follows the type I extreme value distribution or Gumbel distribution 

where the independence from irrelevant alternatives (IIA) is assumed. This 

effectively means that the MNL model assumes that the consumer perceives all the 

alternatives to be completely different from each other. If consumers do however 

perceive that some alternatives in the choice set are more similar than others, then the

28 The State Council o f  China fhttp://www.gov.cn/zwgk/2009-03/20/content 1264324.htm)
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IIA property does not hold and we have to consider models that allow for the 

possibility that consumer preferences for some alternatives are correlated. In this 

research we consider the NL model (Ben-Akiva & Lerman, 1985; Daly & Zachary, 

1978; McFadden, 1978) and this assumes that the error term in equation (5-1) follows 

a type of generalised extreme value (GEV) distribution (Train, 2003). The NL model 

allows for the grouping of similar alternatives into a nest thereby relaxing the IIA 

assumption.

Figure 5-1: Tree structures of MNL model and three nested logit models

ConventionalGreen Oil-free Oil-Consuming

Petrol Electric PetrolHybridHybridElectric

Tree Structure 1: NL Model (1) Tree Structure 2: NL Model (2)

Mixed-fuelSole-fuel

HybridPetrolElectric Electric Hybrid Petrol

Tree Structure 3: NL Model (3) Tree Structure 4: MNL Model

We propose different tree structures, as depicted in Figure 5-1, based on the different 

preference assumption towards alternative fuel cars and conventional types of cars. In 

the first structure, we assume that both hybrid and electric cars are perceived to be
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environmentally friendly cars and thus are grouped together to form a “Green” 

nest/group. In the second structure, preferences for hybrid and petrol cars are assumed 

to be positively correlated since both of types of cars consume oil (although at 

different efficiency levels), while the electric vehicle is completely oil-free. We also 

explore another structure as illustrated in tree structure 3 in Figure 5-1, which assumes 

that petrol and electric car alternatives are perceived to be similar given that both of 

them are solely fuelled. We have to note that the MNL model is in fact the restricted 

specification of the NL model. This means that we can obtain the MNL model from a 

NL model by simply making the assumption that all alternatives are independent as in 

tree structure 4.

5.3.2 Data

As we have discussed in Chapter 2, we conducted the choice based conjoint analysis 

experiment as part of our online survey in China. Students from two Chinese 

universities (North China Electric Power University and China University of Mining 

and Technology University) helped us to collect data during their winter holiday. 

When the students went back to their home cities, they visited local households with 

an invitation that described our research objectives and how to fill in the survey online, 

which helped us access households in different regions in China. We obviously, at the 

outset, recognised that an online survey could potentially bias the sample towards 

those who have computers and the Internet. So the students also collected data from 

those households who did not have access to a computer/the Internet. As part of this 

survey we also collected additional information such as demographic characteristics 

and car ownership status. After deleting some cases where information on key
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variables was missing, we are left with 527 usable cases for modelling consumer 

preferences towards alternative fuel cars in this chapter.

Table 5-1: Descriptive statistics for the survey sample

Variables Our Sample National Sample

Average family size 3.24 2.89

Average no. o f children less than 18 years old 0.46 /

Average no. o f working members 2.09 1.49

Average household disposable Income in 2009 (RMB) 124,900 49,635

No. o f cars owned per 100 households 66.60 10.89

Average age o f the household head (Years) 37.76 /

Proportion o f male household head (%) 77.99 /

Average distance from home to work place for 
household head (km)

9.15 /

Sample size 527 65,506

Data Source of National Sample: China Statistical Yearbook 2010

The demographic characteristics of our sample are summarised in Table 5-1. When 

we compare our survey with the 2009 national urban and township household survey 

data reported in the China Statistical Yearbook 2010, there is no significant difference 

in family size but high-income groups and those who own cars are over represented. 

We therefore reweight our data based on household income and car ownership 

information from the national sample when we estimate the empirical models.

In the choice based conjoint analysis, respondents are presented scenarios of 

hypothetical cars with different fuel types: one conventional petrol car and two 

potential AFCs, hybrid and electric cars. We constructed these three choice 

alternatives of cars based on a list of attributes with three levels (Louviere, et al., 2000) 

(see Table 5-2).
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Table 5-2: Attributes and levels in the choice-based conjoint analysis

Attributes Vehicle 1 Vehicle 2 Vehicle 3

• Fuel Type Petrol Hybrid Electric

•  Purchase 
price (RMB)

Specified by 
the respondent

(1). 30% higher than the 
similar-sized petrol car

(2). 50% higher than the 
similar-sized petrol car

(3). 80% higher than the 
similar-sized petrol car

(1). 30% higher than the 
similar-sized petrol car

(2). 50% higher than the 
similar-sized petrol car

(3). 80% higher than the 
similar-sized petrol car

• Annual 
running cost 
(RMB)

Market average 
level based on 
vehicle price

( 1). 20% less than the 
similar-sized petrol car

(2). 40% less than the 
similar-sized petrol car

(3). 60% less than the 
similar-sized petrol car

(1). 20% less than the 
similar-sized petrol car

(2). 40% less than the 
similar-sized petrol car

(3). 60% less than the 
similar-sized petrol car

• Availability 
o f charging 
facility

NA NA (1). 10% of parking spaces
(2). 40% of parking spaces
(3). 70% o f parking spaces

• Vehicle 
range with 
full charging

NA NA (1). 80km
(2). 120km
(3). 160km

• Incentives NA (1). 20,000 RMB allowance
(2). Eligible for priority lane
(3). Free Parking for 5 years

(1). 30,000 RMB allowance
(2). Eligible for priority lane
(3). Free Parking for 5 years

The selection of attributes and levels were largely based on the wide review of 

literature (Adler, et al., 2003; Bunch, et al., 1993; Ewing & Sarigollu, 1998, 2000; 

Potoglou & Kanaroglou, 2007, 2008a). The selected attributes were also adjusted 

based on our knowledge on local market. For example, as we found previously, the 

Chinese consumers are not highly concerned about the vehicle performance, so we did 

not include the performance attribute (e.g. accelerating time or speed) in the conjoint 

analysis. Also, based on the real price information we learned from the local market, 

the price of green cars was assumed to be up to 80% higher than that of the petrol cars 

in our study, while the literature studies usually allow for the price gap of 10% or 20% 

only. Three levels of attributes are usually used in the literature, which can 

accommodate the non-linear effects (Hensher, et al., 2005) but will not significantly
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increase the total number of choice profiles or combinations of conjoint analysis. The 

selected vehicle attributes included the purchase price, annual running cost (including 

fuel and maintenance costs), and charging, convenience and driving range for the 

electric vehicle. Furthermore, we designed three different incentives for potential 

buyers of hybrid or electric cars: one cash subsidy and two non-monetary incentives 

(fast lane or free parking). The cash subsidy for the electric car is slightly higher than 

that for the hybrid car because the electric car normally consumes no oil without any 

direct pollution. This difference in cash subsidy is similar to what the government is 

planning to offer. Priority lane and free parking policies are not yet available in the 

Chinese market but we investigate consumers’ preferences towards such policies to 

test if and how consumers would respond to such incentives. Based on these attributes
o

and levels, the complete experiment design has a total of 3 =6561 combinations or 

scenarios, which are unrealistic to implement. We therefore derive the orthogonal 

fractional design with 32 scenarios using SPSS 17.0 (SPSS Inc.), which reduces the 

complexity of the tasks of the stated choice experiment for consumers.

We first introduce our experiment with detailed explanations about the three 

alternatives followed by their attributes and different incentives. Then 8 choice 

scenarios are randomly selected from a total of 32 scenarios and presented to each 

respondent, where the purchase price and running costs of the base alternative (petrol 

car) are customised based on the respondent’s preference stated beforehand in the 

survey. The respondents are then asked to select one vehicle from each scenario. A 

sample choice scenario is shown in Figure 5-2.
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Figure 5-2: A sample of choice scenarios

Vehicle 1 Vehicle 2 Vehicle 3
Fuel Type Petrol Hybrid Electric

Purchase price (RMB) 75,000 97,500 135,000

Annual running cost (RMB) 15,000 9,000 12,000

Incentives Not Applicable Priority Lane 30,000 RMB subsidy

Availability of charging facility Not Applicable Not Applicable 40% of parking slots

Vehicle range with full charging Not Applicable Not Applicable 80 km

Your Choice: □ □ □

5.4 Empirical Analysis

5.4.1 Estimation results

In our models, the alternative specific attributes include purchase price, annual 

running cost, charging facility and vehicle range for electric cars. The incentive 

variables consist of three types of incentives. We also account for the demographic 

characteristics of the households. We estimate the MNL model and the three different 

specifications of the NL models based on 4216 observations from 527 respondents 

using NLOGIT 4.0 (Greene, 2007)29. The results are presented in Table 5-3.

29 The NLOGIT code for the MNL and NL models is available in Appendix 3.4.
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Table 5-3: Parameter estimation of the MNL and NL models
MNL NL (1) NL (2)

Variable Coeff. t-stat. Coeff. t-stat. Coeff. t-test

Vehicle A ttribute (a)
Purchase price -0.014 -16.018 -0.017 -13.253 -0.014 -15.433
Running Cost -0.059 -7.263 -0.057 -6.835 -0.064 -7.596
Charging Facility 0.933 5.230 0.971 5.333 0.926 5.183
Vehicle Range 0.005 3.982 0.005 4.020 0.005 4.014

Incentive (fi)
Cash Subsidy 0.019 1.739 0.020 1.800 0.017 1.518
Free Parking 0.412 1.534 0.429 1.548 0.364 1.331
Priority lane 0.165 0.618 0.176 0.641 0.114 0.419

Individual characteristics fo r  electric car (yi)
Electric car, constant -1.307 -3.113 -1.392 -3.203 -0.986 -2.33
No. o f young children -0.583 -5.464 -0.638 -5.638 -0.502 -4.682
No. o f drivers -0.434 -6.227 -0.474 -6.375 -0.364 -5.248
Family size 0.296 5.873 0.314 5.915 0.272 5.488
Household Income 0.004 2.142 0.004 2.027 0.004 2.649
No. o f owned cars 0.296 1.869 0.294 1.776 0.349 2.238
Age o f family head -0.009 -1.759 -0.010 -1.746 -0.009 -1.821
Sex o f family head -0.821 -7.627 -0.855 -7.526 -0.821 -7.876
Working distance of -0.032 -4.879 -0.034 -4.984 -0.029 -4.457
family head

Individual characteristics fo r  hybrid car (y2)
Hybrid car, constant 0.866 2.771 0.827 2.525 0.869 2.752
No. o f children -0.500 -6.492 -0.559 -6.508 -0.516 -6.676
No. o f drivers -0.315 -6.158 -0.349 -6.166 -0.324 -6.302
Family size 0.049 1.284 0.064 1.546 0.055 1.436
Household Income 0.003 2.643 0.003 2.407 0.003 2.564
No. o f owned cars 0.371 3.323 0.373 3.113 0.362 3.231
Age o f family head -0.007 -1.834 -0.007 -1.792 -0.007 -1.777
Sex o f family head -0.212 -2.473 -0.236 -2.547 -0.228 -2.648
Working distance of -0.025 -5.528 -0.028 -5.506 -0.025 -5.464
family head

Inclusive value (IV) param eters (1)
Green nest in NL(1) 0 .920a 32.196 K
Oil-consuming nest in NL(2) 0.772 b 15.331

No. of observations 4216 4216 4216

Log-likelihood at
convergence -3952.366 -3949.104 -3940.251

Log-likelihood at zero -4631.749 -4631.749 -4631.749
Rho-square w. r. t. zero: 0.1467 0.1474 0.1493
2 7

% against zero 1358.766 (df=25) 1365.290 (df=26) 1382.996 (df=26)

X2 against MNL 6.524 (d f= 1) 24.230 (df = 1)

Note:
a St. Error o f the IV parameter in NL(1) is 0.029, thus its Wald test against one is (0.920-l)/0.029 = -2.76 
b St. Error of the IV parameter in NL(2) is 0.050, thus Wald test against one is (0.772-1)/0.050 = -4.56
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5.4.1.1 MNL model

The log-likelihood ratio index (Rho-square) value of our MNL model is 0.1467 and 

falls within the range for models which have been reported in the literature: 0.129 in 

Ewing and Sarigollu (1998) and 0.1948 in Golob et al. (1993). The log-likelihood 

ratio test yields a chi-square value of 1358.77 with 25 degrees of freedom, which 

implies that this MNL model is significantly different from the model without any 

variables. We then apply the Hausman test (Hausman & Mcfadden, 1984) which tests 

the IIA assumption and at the 5% significance level we reject the hypothesis that 

consumers perceive the different car alternatives to be completely independent. This 

indicates that we need to explore models that account for correlated preferences of 

alternatives and for this reason we will not pay too much attention to the specific 

parameters of the MNL but will focus more on the NL models.

5.4.1.2 NL models

The NL models are estimated based on the three tree structures as shown in Figure 5-1. 

When estimating our NL models, it is worth noting that all these three structures have 

degenerate branches with only one alternative within each of them. Therefore, the 

corresponding two-level NL models must use the RU1 specification that normalises 

the lower level of the tree structure and imposes the IV parameter of the degenerate 

branch to be one (Hensher & Greene, 2002; Hensher, et al., 2005).

A key parameter of the NL model is the Inclusive Value (IV thereafter) parameter and 

this has to lie between 0 and 1 for the model to be consistent with the utility
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maximisation as described by the tree structures (Greene, 2009). The IV parameter is 

also an indicator of independence of all alternatives in the nest and 1 — A2 is the 

correlation index between pairs of alternatives within the same nest (Ben-Akiva & 

Lerman, 1985). Amongst the three choice structures for NL models, the third structure 

that groups electric and petrol cars together yields an IV parameter which is 

significantly greater than one, which indicates its inconsistency with random unity 

maximisation (RUM) criterion. Therefore, we only present the parameter estimation 

results for the NL models based on tree structures (1) and (2) in Figure 5-1. The IV 

parameters for these two structures are 0.920 for the “Green” nest and 0.772 for the 

“Oil-consuming” nest respectively. Two IV parameters are also significantly different 

from zero at 1% significance level. Moreover, the Wald-test statistics, calculated in 

the footnote section of Table 5-3, show that they are also significantly less than one. 

These results concur with the results of the Hausman test where we reject the IIA 

assumption.

The respective performances of both NL models are further investigated by 

performing log-likelihood tests (—2(LLbase — LLnl)) . Compared with the MNL 

model, both NL models have much higher test values (6.524 and 24.230) than the 

critica l/^ ) value of 3.841 at 5% significance level. For two NL models with same 

number of parameters, we compare their log-likelihood values and find that the 

second tree structure, which groups hybrid and petrol cars in “oil-consuming” nest, is 

better, because its log-likelihood value (-3940.251) is higher than that under the first 

tree structure with a “green” nest (-3949.104). This would indicate that consumers 

perceive petrol cars and hybrid cars to be more similar to each other compared to 

electric cars.
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In Table 5-3 the parameters of the vehicle attributes are significant and the effects are 

similar to those reported in the literature (Potoglou & Kanaroglou, 2008a). More 

specifically, the parameters of monetary attributes such as purchase price and running 

cost have negative signs, which imply consumers would prefer low-priced cars and 

low running costs. The positive parameters of charging facility and driving range 

indicate the importance of providing more charging facilities and designing electric 

cars with longer range batteries. With regard to the various incentives, the estimated 

parameters of all three incentives are insignificant which contrasts with previous 

research conducted in more mature markets. For example, both Ewing and Sarigollu 

(2000) and Potoglou and Kanaroglou (2007) find that a price subsidy such as waiving 

purchasing tax is a significant incentive to buy green cars in Canada. We contend that 

the insignificant effects of incentives have much to do with the fact that the Chinese 

car market is fairly “young” and that government policies on Green cars will probably 

take time to have an impact. Since cars are still a type of new products for most 

Chinese consumers, it will be a safer choice for them to buy a conventional petrol car 

as the first car given its mature technology and widely available service. Therefore, in 

addition to providing short term incentives such as cash subsidy, governments and car 

manufacturers should strive to decrease the price of green cars and also develop a 

user-friendly environment, so that green car buyers do not need to worry about other 

issues, such as how safe the battery is and where to charge battery.

With regard to the impact of the individual characteristics, households with young 

children and where there is more than one driver prefer conventional petrol cars. This 

may reflect consumers’ concerns about the technology maturity (new concept) of
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AFCs in the short term and that they believe that it would be safer to buy a 

conventional vehicle, particularly when they have young children and/or where there 

is a less experienced second driver at home. We also note that larger households tend 

to prefer alternative fuel cars, particularly electric cars. As expected, households with 

higher incomes are more willing to adopt alternative fuel cars as can be seen by the 

significantly positive effect of household income variable when interacted with either 

electric or hybrid cars in both NL models. We also tried to use dummy variables to 

account for the non-linear income effects, but their inclusion does not substantially 

change the main findings of consumer preferences for AFCs as well as the model 

performance.

In addition, households with a male head are less likely to adopt green cars and young 

household heads are found to have stronger preferences towards AFCs, although these 

effects are only significant at the 10% level. We also note that household heads who 

are long-distance commuters are less likely to choose AFCs, possibly due to their 

concerns about the lack of fuelling facilities and limited vehicle range, which is 

similar to other findings in the literature (Ewing & Sarigollu, 1998, 2000; Potoglou & 

Kanaroglou, 2007). The empirical results also show that car owners are more likely to 

switch to alternative fuel cars compared to non-car owners. This provides an 

interesting insight for the government and car manufacturers about the demand 

potential green cars in China.

To demonstrate why it is important to choose a model that appropriately fits the 

market context, we compare the elasticity effects between MNL and NL models 

respectively in Table 5-4. These elasticity effects are computed from the parameters
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so we do not need to go into the detail of the effects since we have already commented 

on the parameters of the model. Furthermore, since we have shown that the second 

tree structure is the best NL model, we simply compare the resulted elasticity effects 

with those from the MNL model. We note in the first instance that the second tree 

structure (see Figure 5-1) allows the cross-elasticities in the NL to vary for the hybrid 

or petrol cars across alternatives compared to the MNL. The magnitude of the 

elasticity effects further shows that hybrid and petrol cars are perceived by consumers 

to be similar. We note to that effect that the cross elasticity effects of the attributes for 

hybrid cars have a bigger impact on the probability of buying a petrol car than on the 

probability to buy an electric car.

Table 5-4: Cross-elasticity comparison between MNL and NL models

Cross elasticity in 
MNL Model

Cross elasticity in 
NL Model (2)

Changing Attribute Hybrid Petrol Hybrid Petrol

Electric car Purchase Price 0.415 0.415 0.368 0.368

Running Cost 0.106 0.106 0.108 0.108

Cash Subsidy -0.044 -0.044 -0.039 -0.039

Free parking -0.016 -0.016 -0.014 -0.014

Priority Lane -0.005 -0.005 -0.004 -0.004

Charging facility -0.049 -0.049 -0.049 -0.049

Vehicle Range -0.083 -0.083 -0.083 -0.083

Electric Petrol Electric Petrol

Hybrid car Purchase Price 1.206 1.206 0.92 1.232

Running Cost 0.312 0.312 0.263 0.354

Cash Subsidy -0.078 -0.078 -0.053 -0.072

Free parking -0.046 -0.046 -0.031 -0.042

Priority Lane -0.016 -0.016 -0.009 -0.012

Electric Hybrid Electric Hybrid

Petrol car Purchase Price 1.014 1.014 0.772 1.025

Running Cost 0.600 0.600 0.509 0.677
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5.4.2 Segmentation analysis

As we have discussed previously, we also explore if different types of consumers have 

heterogeneous preferences towards AFCs and conventional types of cars. We are 

interested in two segments in the case of the Chinese car market: car owners and non­

car owners. Compared to other important car markets such as the USA, the low car 

ownership rate is a distinguishing feature of the Chinese car market. We estimate 

separate NL models for the two segments based on tree structures (1) and (2) in Figure

5-1. We do not present the full set of parameters but we compare the key IV 

parameters and the elasticity effects for these two segments.

Table 5-5: Comparison of IV parameters of segmental NL models by car 
___________________________ ownership___________________________

NL Model (1) NL Model (2)

IV Parameter
a )

s.e. o f (X.) IV Parameter
a )

s.e. o f (X)

Car Owners 0.578 0.058 0.985 0.185

Non-car households 0.948 0.037 0.725 0.063

For each segment, the estimated IV parameters for the two different tree structures are 

summarised in Table 5-5. For car owners, NL model (1) is better than the NL model 

(2) as the IV parameter in NL(1) is significantly different from both zero and one 

while the IV parameter in NL(2) is insignificantly different from one, which implies 

that car owners do consider hybrid and electric cars to be similar30 and perceive petrol 

car to be a distinct alternative. However, this is not the case for those households who 

do not own cars. The IV parameter of NL(1) in this segment is insignificantly

30 The correlation index is 0.666 (1-0.5782).
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different from one while the IV parameter of NL(2) for non-car owners’ is 

significantly different from both one and zero, which implies a stronger preference 

correlation between hybrid and petrol cars for non-car owners. In other words, we find 

evidence that car owners and non-car owners do not think about the AFCs and 

conventional types of cars in the same way.

Figure 5-3: Direct-elasticities comparison based on car ownership status

Price o f electric car 
Price o f hybrid car 
Price o f petrol car 
Running cost o f electric car 
Running cost o f hybrid car 
Running cost o f petrol car 
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Driving range o f electric car
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Figure 5-3 depicts and compares the elasticity effects for car owners and non-car 

owners for both NL models. We find that non -car owners are more sensitive than car 

owners to monetary attributes such as purchase price and annual running cost 

(compare the magnitudes of coefficients). This implies that existing car owners are 

less concerned by the high purchase price of AFCs compared to the non-car 

households. Our results suggest that car owners are less sensitive to the purchase price 

but more responsive to the cash subsidy than non-car households and this can be 

explained by the fact that car owners can already afford conventional types of cars and 

the cash subsidy is effectively reducing the gap in the price between the types of cars. 

Households that are yet to own a car are more concerned about their ability to afford a 

car and they are probably focusing on the total purchase price and not the price 

difference between the different types of cars. Furthermore, we find that existing car 

owners positively respond towards incentives compared to households that do not own 

cars. Car owners are less concerned about charging facility and vehicle range of 

electric cars can be explained by their better understanding of how to estimate the 

daily use of cars and assess whether the range is sufficient. In summary, the empirical 

results from the segmentation analysis for some of the key variables differ from the 

previous empirical results without segmenting the market.

5.5 Conclusions and Research Implications

Following previous work in this area, we investigate the effects of price, fuel/running 

cost and government incentives on consumer preferences to buy alternative fuel cars. 

Whilst the market context of the Chinese car market is interesting on its own right, we
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have aligned the modelling contributions of the chapter to some of the unique market 

features of that market. In that respect, this chapter pays particular attention to the 

comparison of the different empirical choice models and demonstrates the importance 

of choosing those models that fit a specific market context.

Unlike previous research, we do not assume a-priori how consumers perceive the 

choice between alternative fuel cars and conventional types of cars. Previous work in 

this area has also not explored whether consumers differentiate between the different 

types of alternative fuel cars. Our empirical results indicate that the IIA assumption of 

the multinomial logit model does not reflect how consumers in China think about the 

choice between alternative fuel cars and conventional type of cars. Chinese consumers 

do consider green and conventional types of cars when they are buying cars. However, 

they are more likely to consider hybrid cars and conventional types of cars but are less 

likely to consider electric cars. So if consumers are going to switch to greener types of 

cars, they are more likely to buy hybrid cars rather than electric cars.

Some of our empirical results are similar to those reported in previous research: 

Consumers are concerned about the relatively higher purchase price and running costs 

of alternative fuel cars and the lack of charging facilities and the range limitation of 

these types of cars are additional limiting factors. Monetary incentives generally have 

been found to have a significantly positive effect on consumer preferences for such 

types of cars in developed markets but we find that this is not the case in China. 

However, importantly, when we segment the market and consider car owners and non­

car owners separately, the impact of the monetary incentives to buy alternative fuel 

cars differs between the two groups of consumers. Consumers who already own cars
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are more likely to react positively to these incentives to buy alternative fuel cars 

compared to non-car owners who are probably more likely to buy a new car in the 

short term. This raises an important policy implication for the Chinese government 

who needs to look more deeply into the reasons as to why those consumers who do 

not own cars are not motivated by the incentives to buy alternative fuel cars.
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CHAPTER 6.

A DYNAMIC SEGMENTATION APPROACH TO 

FORECAST NEW PRODUCT DEMAND IN THE 

EMERGING MARKETS: THE GREEN CARS IN

CHINA

6.1 Introduction

With the increasing importance of emerging economies such as the BRICs (Brazil, 

Russia, India and China), multinational corporations (MNCs) have launched new 

products almost simultaneously in the emerging markets (EMs) and in the developed 

markets. For instance, the time lag of Apple’s iPhone3 sold in between China and U.S. 

was up to 854 days, but the gap has been significantly shortened to 167 days for iPad 

and 93 days for iPhone4 more recently31. Furthermore, governments and firms in the 

EMs also strive to develop innovative products by themselves in order to achieve their 

own advantages in the global competition.

Alternative fuel cars, or generally green cars, are such type of new products that are of 

great strategic interests to China. Petrol cars are currently dominating the market, but

31 “Apple Gets Quicker In China”, The Wall Street Journal, 20th September 2010, 
http://blogs.wsi.com/digits/2010/09/2Q/apple-gets-quicker-in-china/

http://blogs.wsi.com/digits/2010/09/2Q/apple-gets-quicker-in-china/


the Chinese government is very keen to encourage consumers to adopt two types of 

alternative fuel cars, hybrid and electric cars. All car manufacturers, no matter 

whether they are multinational or domestic firms, have publicized their ambitions to 

develop or sell the greener cars in China in soon future. For example, Volkswagen has 

collaborated with its two Chinese partners to develop new brands specifically for

• 32electric cars . General Motors also plans to develop its electric cars locally through a 

joint-venture company in China33. As a local pioneer, BYD Auto has already started 

to sell its full electric cars (E6) to the Chinese consumers34.

It is a challenge in all markets to forecast demand for new products. When the markets 

are constantly and rapidly changing, it becomes more difficult to do so. In the context 

of Chinese car market, it is a big challenge for car manufacturers to forecast the 

demand potentials of these new products. It is because the existing body of marketing 

research has been largely based on the developed markets, while the EMs demonstrate 

significantly different institutional characteristics (Burgess & Steenkamp, 2006). More 

specifically, the EMs have higher level of within-market diversity or preference 

heterogeneity (Alden, et al., 2006; Batra, 1997; Burgess & Harris, 1999; Zhang, et al., 

2008) and a segmentation approach is recommended to compare results across 

segments (Burgess & Steenkamp, 2006). Furthermore, market dynamics in the EMs 

should also be accounted for, which refer to their rapid socioeconomic changes during 

this period of economic growth (Batra, 1997; Burgess & Steenkamp, 2006). This also 

means that the segments that are constructed to address the preference heterogeneity

32 “VW-SAIC venture to produce electric car”, Automotive News China, 27th September 2011, 
http ://www. autonewschina. com/en/article. asp?id=7621
33 “G.M. Plans to Develop Electric Cars With China”, The New York Times, 20th September 2011, 
http://www.nvtimes.com/2011/09/21/business/global/gm-plans-to-develop-electric-cars-with-chinese- 
automaker.html
34 “BYD Starts Sales of E6 Electric Car to Individuals in China”, Bloomberg News, 26th October 2011, 
http://www.bloomberg.com/news/2011-10-26/bvd-starts-sales-of-e6-electric-car-to-individuals-in- 
china.html
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in the EMs may not be static over time. That is to say, the size of each pre-defined 

segment is more likely to change over time in the EMs, instead of the constant 

segment sizes usually assumed in the developed markets (see an example in Robertson, 

et ah, 2007).

In order to forecast the demand for new and innovative products with limited history, 

some recent studies propose a market simulation approach based on conjoint analysis 

(Eggers & Eggers, 2011; Lee, et al., 2008; Lee & Cho, 2009; Lee, et al., 2006). With 

the conjoint experiment data, these studies normally employ one specification of 

discrete choice model for the whole sample and then conduct market simulation based 

on the changes of assumed attributes or demographic variables in the future. Although 

such non-segmental approach provides some valuable directions about how to forecast 

demand for new products, it cannot sufficiently account for the institutional 

characteristics of the EMs. In particular, such a non-segmental approach might not be 

able to sufficiently address the high level of preference heterogeneity typically found 

in the EMs, because it cannot account for different parameters for the same variable 

across different groups of people. Therefore the segmental approach, which can 

accommodate different parameters across several segments, is proposed to address the 

heterogeneous preferences in the EMs (Burgess & Steenkamp, 2006).

In this chapter, we address and demonstrate the challenge and the value of accounting 

for the preference heterogeneity and market dynamics in forecasting demand for new 

products in the context of EMs. We propose a dynamic segmentation approach that 

can account for not only the heterogeneity across segments, but also within-segment 

heterogeneity through allowing for different choice specification for each segment.
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Furthermore, our approach also addresses the market dynamics, because we consider 

the dynamic change of segment sizes (i.e. dynamic segmentation) in addition to the 

market simulation based on the changes of product attributes and demographics over 

time. When we apply this approach to forecast the demand for alternative fuel cars 

(hybrid and electric cars) in the Chinese car market, we define two segments, car 

owners and non-car owners, because consumers in these two different segments are 

likely to demonstrate different preferences towards the alternative fuel cars. At the 

same time, we account for the fact that the segment sizes are dynamic over time, as an 

increasing number of Chinese consumers are switching from non-car owners to car 

owners, which can be modelled using a diffusion process. We then combine the 

segment-specific choice models with the segmentation diffusion model so that we can 

forecast market shares of alternative fuel cars in China.

To demonstrate the benefit of our approach we define a benchmark model. The 

benchmark model in our research is based on non-segmental approach from the 

existing literature (Lee, et al., 2008; Lee & Cho, 2009; Lee, et al., 2006). Due to its 

non-segmental structure, the benchmark model cannot address heterogeneity across 

segments. Moreover, it fails to allow for different choice structures for different 

segments, so that the heterogeneity of consumer behaviour within each segment 

cannot be appropriately accommodated in the benchmark model. In comparison, our 

proposed approach can allow for flexible choice structures in different segments, 

which can more appropriately account for consumer behaviour. In addition, our study 

designs and tests different scenarios of market change in the future, including the 

changes of vehicle price and fuel price, to demonstrate how the diffusion of green cars
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will be affected by different factors and also allow car manufacturers to effectively 

use the approach to understand the developing market.

The remainder of this chapter is organised as follows. In the next section we briefly 

review the literature on modelling and forecasting demand for new products. Section 

6.3 presents the proposed modelling methodology followed by the specification of an 

empirical application in Section 6.4. The empirical forecasting results, scenario 

analysis and model validation are presented in Section 6.5 with the comparison to 

those from the benchmark model. The final section ends the chapter with our 

conclusions and research insights.

6.2 Literature Review

When modelling the demand and adoption of new products, diffusion models have 

been developed since 1960s at the aggregate level (Bass, 1969; Gregg, et al., 1964; 

Mahajan, et al., 2000; Meade & Islam, 2006). Diffusion models are recommended 

when data is limited and have been widely applied in many areas, such as automobile 

(Bouachera & Mazraati, 2008; Dargay & Gately, 1999; Dargay, et al., 2007; Kobos, et 

al., 2003), telecommunication (Robertson, et al., 2007; Sundqvist, et al., 2005; Wu & 

Chu, 2010), and other durable goods (Bass, 1969; Bottomley & Fildes, 1998; Tsai, et 

al., 2010). However, diffusion models have some limitations (Lee, et al., 2006; Urban, 

et al., 1990). Firstly, diffusion models are usually used to forecast demand at 

aggregate level so that they cannot directly accommodate competitions among 

different products or between new and mature products. Secondly, all diffusion
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models need some historical data for parameter estimation so that forecasting demand 

for brand new products remains a challenge using such data. In addition, multi­

generation diffusion method or the analogy approach extends the simple diffusion 

models based on the assumption of similar diffusion patterns across different 

generations of products (Islam & Meade, 1997; Jun & Park, 1999; Kim, et a l, 2005; 

Mahajan & Muller, 1996; Norton & Bass, 1987). However, the validity of this 

assumption could be a limitation in EMs where there is a high degree of market 

dynamics, so that the diffusion pattern of new products may differ significantly from 

that of the mature products. More importantly, Goodwin, Dyussekeneva & Meeran 

(forthcoming) find that the use of such analogy approach may lead to high forecasting 

errors particularly in highly dynamic markets, which constrain its capability to 

forecast demand of new products in the EMs

At a disaggregated level, discrete choice models based on survey data and conjoint 

analysis are widely used to investigate consumers’ stated preference (SP) and model 

the potential demand for new products, such as alternative fuel vehicles (AFVs) 

(Dagsvik & Liu, 2009; Dagsvik, et al., 2002; Eggers & Eggers, 2011; Ewing & 

Sarigollu, 2000; Lee & Cho, 2009; Potoglou & Kanaroglou, 2007; Qian & 

Soopramanien, 2011). However, the conjoint analysis also has its limitations in terms 

of its forecasting insights that it yields (Wittink & Bergestuen, 2001). Firstly, 

researchers only take a snapshot of consumer behaviour in each conjoint experiment, 

so that changing patterns of utility variables over time are not captured. Although 

dynamic discrete choice models can potentially capture these changes over time 

(Aguirregabiria & Mira, 2010), they require panel data of revealed preference (RP), 

which are typically unavailable for new products. Secondly, all conjoint experiments
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are commonly based on the assumption that all alternatives are fully available in the 

market, which is far from the market reality and this gap also impacts the forecasting 

performance of conjoint analysis. In our study, we propose to use the diffusion models 

to accommodate different supplies of the products in the market.

Some recent studies have combined a discrete choice model with a diffusion model to 

forecast the potential of new products (Jun & Park, 1999; Kumar, et al., 2002; Lee, et 

al., 2008; Lee & Cho, 2009; Lee, et al., 2006), or have proposed a scenario-based 

conjoint adoption model to forecast the adoption of green cars (Eggers & Eggers, 

2011). We adopt the same approach in our study but we address its following 

limitations to fit better with the requirements of the EMs. First, these studies all 

employ a non-segmentation approach by estimating a discrete choice model for the 

whole sample, so that the consumer preference heterogeneity across segments cannot 

be sufficiently accounted for. Secondly, the discrete choice models used in these 

studies do not verify whether the choice process matches the specification of the 

model. Both Lee, et al. (2006) and Lee, et al. (2008) use rank ordered logit model for 

consumer choices for television sets and home networking products respectively. But 

there is no obvious sequence or order between different types of TV sets (e.g. CRT, 

projection and LCD TVs) or home networking solutions (e.g. Ethernet, PLC and 

Wireless LAN). In addition, Eggers & Eggers (2011), Jun & Park (1999) and Kumar, 

et al. (2002) commonly employ a multinomial logit (MNL) model specification to 

model the choices from several different alternatives without testing the independence 

from irrelevant alternatives (IIA) property or exploring the potential correlations 

between some alternatives. In summary, as we demonstrate in this chapter, it is
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important to know if the empirical model that we use reflects the way in which 

consumers make decisions; otherwise we will obtain biased forecasts.

6.3 Modelling Methodology

After dividing the whole market into the two segments of car owners and non-car 

owners, our proposed approach consists of the following four-step procedure to 

forecast market shares for new products (see the left part of Figure 6-1).

1. We compare and specify the most appropriate discrete choice model for each 

segment based on conjoint experiment data so that the within-segment preference 

heterogeneity can be properly accounted for.

2. We conduct market simulation through accommodating different change 

scenarios of several important explanatory variables (called dynamic variables 

hereafter), which generates the dynamic market shares of different products 

within each segment at different periods.

3. We then model the segmentation dynamics by estimating a diffusion process, 

which provides us the dynamic sizes of the car owners’ segment over time. These 

dynamic segment sizes are further used as the weights of averaging market shares 

of different products across two segments.

4. Finally, we employ another diffusion process to reweight the market share 

forecasts to address different supplies of new and mature products in the real 

market context.
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With regard to the benchmark model, the non-segmental approach estimates the 

choice model based on the whole sample data and then applies a simulation approach 

with the same dynamic variables (see right hand side of Figure 6-1). There is no 

additional step for the non-segmental approach to account for segmentation dynamics, 

but it goes through the same product supply re weighting process.

Figure 6-1: the Segmentation vs. Non-segmentation approaches

Segmentation Approach Non-segmentation Approach

Forecasts of Market Shares

Simulation of segmental 
dynamic choices

Dynamic variables: 
Product attributes and 

demographics

Non-segmental 
discrete choice model 

specification

Segmental-specific 
discrete choice model 

specification

Market segmentation based 
on car ownership 

(owners vs. non-owners)

Simulation of non- 
segmental dynamic 

choices

Segmentation dynamics: 
diffusion of product 

family ownership

Diffusion of product supply 
(Reweighting)

6.3.1 Segment-specific discrete choice models
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We follow the same modelling approach used in last chapter to identify the 

appropriate specification of a discrete choice model for different segments of 

consumers. Given multiple different alternatives, utility function of consumer i in 

segment k (k = car owners or non-car owners) choosing alternative n depends on 

product attributes, marketing or governmental policies X  and choice-invariant socio­

demographics Z:

= Vin + d  = < X in +  Y^Zi +  el (6-1)

where the utility Uj^ consists of a deterministic portion and an error term sfn . The 

coefficients of ak and y'nk are segment-dependent, which demonstrate that consumers 

have segment-specific preferences. If the error term is assumed to follow i.i.d type I 

extreme value distribution, we can use the multinomial logit (MNL) model 

(McFadden, 1974) and its choice probability is denoted as P(MNL)fn . The well 

known independence from irrelevant alternatives (IIA) property of the MNL model 

effectively means that consumers are assumed to perceive all alternatives completely 

independent from each other. If the error tern follows the generalised extreme value 

(GEV) distribution, it becomes the nested logit (NL) model (Ben-Akiva & Lerman, 

1985; Daly & Zachary, 1978; McFadden, 1978; Williams, 1977), whose choice 

probability is denoted as P(NL)fn.

As we have discusses in last chapter, the NL model is the generalisation of the MNL 

model, because the IIA property is not held in the NL model so that it allows for 

different correlations and hence substitution effects among alternatives (Train, 2003). 

In our study, we are able to specify different types of the NL model to account for 

different choice structures across segments. Since the NL model reduces to the MNL
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model when the inclusive value (IV) parameter equals one, we use the NL model to 

present our approach hereafter.

6.3.2 Simulation of segmental dynamic choices

The discrete choice models specified in the preceding step are usually static, so the 

simulation approach is used to account for the potential dynamics of market demand 

through feeding some dynamic variables into the (static) segmental-specific discrete 

choice models. Thus, the new utility function with the dynamic (or time-dependent) 

effects is

Vint = Vilt + 4nt = a'kXint + Y'nkZ it + (6‘2)
where Xint and Zit are dynamic variables, such as vehicle purchase price, fuel price 

and household income that are used in the market simulation of our empirical study. 

Also, we define different scenarios for dynamic variables to investigate the sensitivity 

of new product diffusion to these dynamic variables (Eggers & Eggers, 2011). We 

follow the assumption that derived coefficients in the utility function are constant over 

time (Lee, et al., 2008; Lee, et al., 2006).

After the market simulation, consumers at different time periods will have different 

choice probabilities. The time-dependent choice probability is denoted as P(NL)fnt. 

Thus the market share of alternative n in segment k at time t is the average choice 

probabilities of all consumers for this alternative in the same segment:

s , t = & £ S > k  <6.3,

where Ik is the segment size, i.e. the number of respondents in segment k.
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6.3.3 Segmentation dynamics diffusion

Given two segments of car owners and non-car owners in the market, it is reasonable 

to expect that the car owners may have significant different preferences for new 

products of alternative fuel cars from the non-car owners, who have had little 

experience about cars. The additional benefit of such segmentation mechanism is that 

the dynamics of car ownership can be modelled using a diffusion process. For 

example, the Gompertz model is a popular diffusion specification for the car 

ownership (Dargay & Gately, 1999; Dargay, et al., 2007). Using this model, the 

percentage of the car owners’ segment is defined as:

Qt = e - ae~bt (6-4)

where the saturation level is assumed to be 100% because all households can 

potentially be car owners, and a and b are two positive parameters that define the 

displacement and growth rate of the diffusion curve. Conversely, 1 — Qt is percentage 

of non-car owners. The size of the segments, car owners and non-car owners is 

effectively defined by equation (6-4). It follows that the overall market share of 

alternative n at time t is the weighted average of the segmental market shares in two 

segments:

Snt = QXfCar + (1 -  <2t)̂ rNo-car (6-5)
where S^t=Car is the market share of alternative n in the car owners’ segment at time t, 

which is weighted by the size of this segment Qt . Similarly, 5 ^~No-Car js the market 

share of alternative n in the non-car owners’ segment.
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6.3.4 Product supply diffusion

Although Snt derived in equation (6-5) is the overall market share of alternative n at 

time t, it is still conditional on the assumption that all alternatives are equally available 

in the market, as usually assumed in the conjoint analysis (Wittink & Bergestuen, 

2001). The product demand problem we mainly address in this chapter will be 

affected by the different products supplied to the market and even more so for new 

products with fewer product offerings than the mature ones. In our study, we account 

for the supplies of different products over time through an exogenous reweighting 

process. Intuitively, at the start of the commercialisation of a new technology, only a 

limited number of new products are launched by the pioneering firms. If the new 

products are successful, more brands or types of the same product will be offered by 

the followers (Lilien & Yoon, 1990). We can therefore assume that such a sigmoid 

growth pattern can also be modelled using a Gompertz diffusion process as follows

Nnt = N • e~ae~ptn (6-6)

Where N is the saturation level and a  and /? are structural parameters to be estimated. 

In the context of EMs without stable stage data of the diffusion, we are not able to 

estimate the saturation level (Dargay, et al., 2007; Kobos, et al., 2003). Instead, we 

can adopt the scenario analysis approach by assuming different saturation levels 

(Button, et al., 1993; Chamon, et al., 2008). Furthermore, given that the new products 

(such as the electric or hybrid cars) are a new generation of the mature products (such 

as the petrol cars) within the same product family, we assume that the product supply 

of new products will approximately follow a similar but lagged path of the existing 

ones. Thus diffusion parameters in equation (6-6), i.e. a and /?, are same for all 

alternatives. Thus, we can construct the product supply likelihood as
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(6-7)

Thus the forecasted market share of product n at time t can be derived through a 

reweighting process as

more realistic forecasts, but will not change the forecasting comparison conclusion 

between our proposed approach and the benchmark approach, because both go 

through the same reweighting process (see Figure 6-1).

6.4 Empirical Application

When we apply the dynamic segmentation approach to forecast the demand or 

diffusion of the green cars in China, we essentially use both primary and secondary 

data that we have discussed in Chapter 2.

6.4.1 Estimation of segmental discrete choice models

The estimation of segment-specific discrete choice models is based on the choice- 

based conjoint analysis used in the last chapter, which is employing the primary data 

we collected through our survey. Specifically, the alternative-specific variables (X) 

consists of vehicle purchase price, annual running cost, charging facility and vehicle 

range for electric cars, and three types of incentives (cash subsidy, free parking and 

priority lane). The alternative-constant vector (Z) includes a list of demographic

SnfA-
(6-8)

It is worth noting that this reweighting process in equation (6-8) is intended to provide
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variables, such as number of young children, number of licensed drivers, family size, 

household income, household car ownership, and age, sex and working distance of 

household head.

In the last chapter, we show that for the whole sample data, the NL model that 

accounts for preference heterogeneity is more appropriate than the MNL model. More 

specifically, we find there are two potential tree choice structures (called NL1 and 

NL2 models, see Figure 6-2) that can achieve significantly better estimation 

performance than the MNL model. In order to appropriately account for 

heterogeneous consumer behaviour across different segments, we further explore 

whether different groups of consumers make their decisions differently, which is 

reflected through their different choice structures. Specifically, we find that the first 

tree structure in Figure 6-2 fits better for car owners and the second tree structure is 

more appropriate for non-car owners in China.

Figure 6-2: Two tree structures for the Nested Logit models

Oil-consumingOil-freeConventionalGreen

Petrol Electric HybridHybrid PetrolElectric

Tree Structure 1: NL1 Model Tree Structure 2: NL2 Model
______ (Car Owners)_________________________ (Non-car Owners)
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The model estimation results are presented in Table 6-1. Main findings of the 

segmental discrete choice models have been discussed in the segmentation analysis 

section of last chapter. Essentially, we find that car owners tend to perceive that 

hybrid car is more correlated with electric car than with petrol car. In addition, we 

find that existing car owners in China are not concerned with product attributes 

except purchase price but sensitive to governmental incentives such as cash subsidy 

and free parking. Regarding the segment of non-car owners, the better performance 

of NL2 model suggests that the non-car owners are more likely to think hybrid car to 

be more related to conventional petrol cars than to the electric cars. The estimated 

coefficients in this subsample are quite different from the car owners’ sub-sample. 

Importantly, all vehicle attributes are significant at 1% level with the correct signs, 

but no incentives are significant for non-car owners in China.

6.4.2 Selection of dynamic variables

In the EMs, the market dynamics can occur because of the potential changes of both 

demographic characteristics and product attributes. We employ household income, 

vehicle purchase price and fuel price as examples of key dynamic variables and 

apply the simulation technique to account for the dynamic effects of these factors on 

market demand in the future.

• Household income

Amongst all the demographic variables, we select household income as a 

representative variable in the market dynamics simulation, because it is the factor
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that we can surely expect a clear changing pattern (i.e. growth) in the future35. In our 

simulation, we assume the household income level will follow the economic growth 

in China, which is predicted to maintain a fairly high speed in near future and then 

gradually slow down. For example, Goldman Sachs predicts that the annual GDP 

growth rates of China will be 7.9% in 2011-2020 and drop to 5.7% in 2021-2030 

(O'Neill & Stupnytska, 2009). For the illustrative purpose, we assume that house 

hold income in our simulation will increase annually by 8.50% in next 5 years (2011- 

2014), followed with 7.50% from 2015 to 2019, 6.50% from 2020 to 2024 and 5.50% 

from 2025 to 2029 respectively. We apply these income assumptions to all 

households because we conduct hypothesis tests that confirm that there is no 

significant difference in terms of income growth rates for households at different 

income segments in China.

• Vehicle purchase price

The discrete choice models developed previously indicate that vehicle purchase price

is an important factor that significantly affects consumer choices for both segments

of the market. Empirically, the prices for durable goods are normally assumed to

follow an exponentially declining trend (Bayus, 1992), which has been applied by

Lee et al. (2006) to estimate the price change of different TVs:

Pricet = m  • eSt (6-9)

where m is the initial price and S is the parameter of price decline when 5 < 0.

However, it is impossible to directly estimate the price function for new products

such as hybrid or electric cars, because there is no historical price information.

Instead, given the current higher prices of the hybrid or electric cars, we assume that

35 We also note that the income is insignificant for each segment, which suggests the income 
differences across two segments are important. Thus to include or exclude it from the market 
simulation will not significantly change the simulation result.
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their prices will decrease gradually and approach that of the conventional petrol cars 

in the long term, because these new products may benefit more from technological 

innovations and economies of scale in the future. Given that the long term price of 

the petrol cars can be easily extrapolated using its historical information, we can 

derive the price change parameter S of the hybrid or electric cars using the 

transformed equation

s  = ln (P riceT/m )  (6_1Q)

where the long term price (PriceT) of either hybrid or electric cars is assumed to be 

same as the petrol cars’ price after a T periods, and the initial price level m of the 

hybrid or electric cars might be available in the market before their product launch. 

With the price change parameter S, we are able to extrapolate the prices for both the 

hybrid and the electric cars through applying the parameter back into equation (6-9).

In our study, we collect the secondary data of the petrol cars’ price information from 

the magazine of Orient Auto in China, which regularly publishes detail specifications 

of all available passenger cars in the market. We calculate quarterly market average 

price of the petrol cars from Q4/2002 to Q4/2007, and then estimate the price 

function (6-9) of the petrol cars. The quarterly price change parameter S of the petrol 

cars is -0.0089, which is significantly different from zero. It implies that on average 

the petrol cars in China have an annual price decreasing rate of 3.495% (=1 -  e4S).

In order to estimate the price changing parameters of the hybrid or electric cars, we 

derive the initial prices m of the hybrid and electric cars based on two representative 

models in the market. They are BYD F3DM and Chery RIICH Ml-EV for the hybrid 

and electric cars respectively. Specifically, the F3DM is the only hybrid car
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recognised in China’s first batch of green vehicle recommendation catalogue36, 

which qualifies the green cars for government incentives. The price of F3DM is 

twice of its petrol-fuelled version (F3). The first electric car available in China is 

RIICH Ml-EV, which was launched by another local firm Chery in November 

2010 . Its price ranges from 149.8k RMB to 229.8k RMB, which is on average 3.90 

times of the price of the similar model fuelled by the petrol (RIICH Ml). In terms of 

the length of T periods, we do not have any priori but set up three scenarios, i.e. fast 

(T=  20 years), moderate (T= 30 years) and slow (T = 40 years) cases. Based on the 

initial price and different length of T periods, Table 6-2 presents the estimated price 

changing parameters as well as the equivalent annual price decrease rates for both 

hybrid and electric cars. With the price changing parameters, we then apply equation 

(6-9) to extrapolate the periodical prices of two types of green cars respectively in 

the forecasting horizon.

Table 6-2: Scenario-based parameters of the price functions for the hybrid and
electric cars

Scenario Fast (T=20) Moderate (T=30) Slow (T=40)
Parameter

iS)
Annual price 
decrease rate

Parameter
0 )

Annual price 
decrease rate

Parameter
(S)

Annual price 
decrease rate

Hybrid -0.0583 5.67% -0.0508 4.95% -0.0470 4.59%

Electric -0.0873 8.36% -0.0701 6.77% -0.0614 5.96%

Note: The calculation of annual price discount rate follows the formula of (1 — e5).

• Fuel price

In addition to the purchase price, we include the fuel price as another dynamic 

variable in the market simulation exercise. It is because we find that the running cost,

36 It was published by the Ministry of Industry and Information Technology of China, 11 August 2009 
http://www.miit.gov.cn/nl 1293472/nl 1505629/nl 1506277/nl 1984220/nl 1984250/12504301 .html
37 “Chery Riich Ml EV hits the market”, China Automotive Review, 24 November 2010 
http://www.chinaautoreview.com/pub/CARArticle.aspx?ID=5019
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whose variation is mainly from fuel cost, is the second most important car attribute 

(after the car purchase price) that significantly affects consumer choices in the non­

car owners’ segment as well as the total population. Since it is not our focus here to 

forecast fuel price, we adopt the secondary data of the world oil price projections 

from a professional agency within the U.S. Department of Energy, which provides 

annual world average oil price forecasts in three scenarios with the horizon from 

2010 to 2030 (U.S. Energy Information Administration, 2010). As shown in Figure

6-3, the high fuel price scenario projects that the world oil price will exceed $200 per 

barrel by 2030 (at 2008 price level, same in follows), while the low price scenario 

estimates that the oil price will stably keep at $50 per barrel in next 2 decades. 

Between them, the reference scenario forecasts that the oil price will slowly increase 

to be about $123 per barrel in 2030.

Figure 6-3: Three scenarios of annual world oil price (2010-2030)

2008 US$/barrel
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100

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

 Reference Scenario A High Price Scenario 0 Low Price Scenario

Data Source: U.S. Energy Information Administration

Besides, we compare the oil price history in China with that of the world to assess if

we can use the projected world oil price as a proxy of the future oil price in China.
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More specifically, we collect and compare the annual world oil price published in the 

U.S. Annual Energy Outlook 2010 (U.S. Energy Information Administration, 2010) 

and the Chinese annual oil price index from the Development Research Centre of the 

State Council of China38 from 1998 to 2008. As shown in Figure 6-4, we observe that 

the historical oil price in China did closely follow the world price and their 

correlation index is 0.991. A linear regression function is further estimated with the 

world oil price as explanatory variable and the oil price index in China as dependent 

variable. The regression achieves a high R-square value of 0.982 and the estimated 

intercept is insignificant from zero (P-value = 0.223), which confirm that it is 

appropriate for us to use the projections of world oil price in the market dynamics 

simulation in China.

Figure 6-4: Comparison of oil price history in China and the world level (1998-
2008)

Oil Price in China World Oil Price
(at Y2000 price) (2008 US$/barrel)
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Oil Price Index in China — S—  World Oil Price

Data Source: The Development Research Centre o f the State Council o f China 
The U.S. Energy Information Administration

38 The website address is http://www.drcnet.com.cn.
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6.4.3 Estimation of the segmentation diffusion model

Through modelling the segment-specific discrete choice models, we have specified 

the appropriate choice structure for each segment and also estimated the 

heterogeneous preferences. Furthermore, we expect the segment size of the car 

owning households in China will continue to grow following a diffusion process and 

we assume in long term that all households can be potential car owners in the market.

Figure 6-5: Diffusion of the percentage of car-owning households in China

% o f households — Actuals ■ Estimated Gompertz Curve
100

Note: the estimated value of parameter (a ) is 5.378 with standard error o f 0.121; the estimated 
value o f (b )  is 0.111 with standard error o f 0.003. Both parameters are significant at 1% level.

The household car ownership data in China is available in the China Statistical 

Yearbooks since 2002 (National Bureau of Statistics of China, 2003-2010), reported 

as number of cars per 100 households. Because this market is still at the early stage 

of car adoption and most car-owning households only own one car, the percentage of 

the car-owning households can be approximated with the number of cars per 100 

households. We use this secondary data of the car ownership data from 2002 to 2009
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to estimate the Gompertz model specified in equation (6-4). We follow the same 

estimation method described in Chapter 3 to estimate the Gompertz model here. 

Based on estimated parameters, we extrapolate the annual proportions of car-owning 

households in China in following decades (see Figure 6-5).

6.4.4 Estimation of product supply diffusion model

When comparing the car model supply between in China and in U.S. (see Figure 6-6), 

we find that the number of available new car models is rapidly increasing when the 

market is expanding (such as in China), while the growth in more mature market 

(such as the U.S.) was much slower and even has been stagnating at a certain level 

more recently. Thus we assume that the product availability also follows a sigmoid­

shaped diffusion process.

Figure 6-6: Number of new car models available in China and the U.S.

No. o f vehicle 
models ■China ■USA
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Data source: China Associate o f Automobile Manufacturers (CAAM)
J.D. Power New Car Database ('http://www.idpower.eom/autos/new-cars/Q
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In the diffusion model specification of equation (6-6), we argue that the saturation 

level in China might be higher than the level in the U.S. because by the end of 2010 

there were more than 270 new car models available in China and its growth trend is 

still continuing. More importantly, market concentration level in China is much 

lower than in the U.S. According to annual sales in 2009, market shares achieved by 

top four manufacturers (CR4 ratio) was only about 37% in China39, compared to 64% 

in the U.S.40. So we assume a reasonably higher saturation level of 500 new car 

models in China.

The product availability diffusion model of equation (6-6) is estimated using the 

secondary data of the number of new car models available in China from 1995 to 

2010. The sample includes all petrol cars available after the Chinese government 

published Automobile Industry Policy in 1994, which is thought as the watershed of 

the Chinese automotive industry (Chin, 2010). Table 6-3 presents the estimation 

results, based on which we can project the availability of the petrol cars in the future.

Table 6-3: Estimated parameters of product availability model

Parameter Estimated value Standard error t-statistics

a 7.526 0.503 14.974

P 0.153 0.005 28.256

Note: estimation sample is no. o f available car models in China (1995-2010).

With respect to the availability of the hybrid or electric cars, we assume they will 

follow a similar diffusion process as the petrol cars but with later starting points. We 

define the initial diffusion periods of the hybrid and electric cars as the year of 2009

39 According to sales statistics from China Associate o f Automobile Manufacturers (CAAM)
40 According to NADA 2010 Data Report from National Automobile Dealers Association, 
http://www.nada.org/Publications/NADADATA/2010/default.htm
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and 2011 respectively, because the F3DM started its large-scale sales in 2009 and the 

RIICH Ml-EV plans to start its sales in 2011. Thus, we derive the different 

availability diffusion processes for the hybrid and electric cars and then apply 

equation (6-7) to calculate the availability likelihoods for three different types of cars 

at different time periods, which predict that there will be 60% of new car models to 

be either the hybrid or the electric cars by 2030.

6.4.5 Specification of the benchmark model

The benchmark model in this study is based on the non-segmental approach. We 

estimate the benchmark model based on the NL specification using the whole sample. 

That is the benchmark model does not account for the possibility that different 

groups of consumers may make their choices in different ways. Specifically, we use 

the second tree structure with “Oil-consuming” nest (see Figure 6-2) for the 

benchmark NL model, because it is a better model. Based on the estimation NL 

model for the whole sample, we conduct market simulation using the same dynamic 

variables of income, vehicle purchase price and fuel price. Finally, the product 

availability likelihoods calculated in section 6.4.4 are applied to generate the 

benchmark market share forecasts.

6.5 Forecasting Result and Scenario Analysis

6.5.1 Market share forecasts for green cars

184



In this subsection we present the market share forecasting results generated by the 

proposed dynamic segmentation approach and compare them with those from the 

benchmark model. Here we only present the forecasts based on a base scenario and 

more scenario analysis will be discussed in next subsection of scenario analysis. The 

base scenario is specified with the moderate vehicle price decreasing speed for the 

green cars (i.e. the case of T=30) and the reference case for the fuel price changes in 

future. We define our forecasting horizon to be next 2 decades from 2010 to 2030, 

because currently both car manufacturers and governments are more interested in 

exploring the long term demand potential of the green cars sector in order to better 

design its development strategies and industrial policies.

Figure 6-7: M arket share forecasting for hybrid and electric cars in base
scenario (2010-2030)
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Note: the base scenario is specified with the moderate price decreasing for green cars as well as the 
reference fuel price assumption.

The market share forecasts in the base scenario from both hybrid and electric cars are 

presented in Figure 6-7, which includes the results from our proposed dynamic
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segmentation approach as well as the benchmark model. Within the first 5 years, 

there is no significant difference between the forecasts from both models, which 

predict that the hybrid car will start the relatively fast growth and will achieve 10% 

market shares by 2015, while the market expansion of the electric car will be slower. 

More significant distinctions between different approaches appear in the long term, 

where our approach provides more conservative predictions than the benchmark 

model for both types of the green cars. More specifically, our approach forecasts that 

the hybrid car will not reach a market share of 30% until after 2020 and will achieve 

the highest level close to 35% in 2025. More optimistically, the benchmark model 

predicts that the hybrid cars can achieve more than 50% market shares. Regarding 

the electric car, we forecast that its market share will grow slowly with market share 

slightly exceeding 20% by 2030, but the benchmark model predicts a much faster 

growing trend with about 40% shares from the electric cars by 2030. By aggregating 

the forecasts for both the hybrid and the electric cars, our proposed model suggests 

that the green cars will have to equally share the market with the conventional petrol 

cars in late 2020s, instead of the dominating status predicted by the benchmark 

model. Therefore, these significant differences imply that without sufficiently 

accounting for preference heterogeneity in the rapidly growing market, the non- 

segmental approach has the tendency to over-predict the market growth for both the 

hybrid and the electric cars.

We can follow the same approach to forecast the market share of petrol cars. 

Actually the market share of petrol cars equals one minus the green cars’ market 

share, because fundamentally we use the discrete choice model to estimate the choice
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probabilities of three alternatives and the following reweighting procedures also 

normalise the total market share to be one.

6.5.2 Scenario analysis

In addition to the base scenario, we conduct scenario analysis to investigate the 

sensitivity of market demand to different assumptions of two dynamic variables: the 

vehicle purchase price and the fuel price. Each factor has 3 different levels so that we 

have 9 available scenarios. Due to the space constraints, we first present the scenario 

analysis based on each factor individually without further comparing with the 

benchmark model, and then show the extreme case scenario that takes both factors 

into consideration (i.e. the most optimistic and the most pessimistic cases).

Depending on the different rates of change speeds for the green cars’ purchase prices 

(see Table 6-2), three scenarios of market share forecasting are presented for both the 

hybrid and the electric cars in Figure 6-8, where the moderate one is the base 

scenario discussed in section 6.5.1. The underlying assumption about vehicle price is 

that the cost of green cars will decrease faster than that of the petrol cars, because the 

petrol cars are a mature product while the green cars are new to the market. The 

current high price of green car is largely due to its battery cost. We expect the future 

innovation in the battery technology will significantly reduce the price of green cars, 

but we are not sure when and how fast such price reduction will happen, so we make 

three different scenarios about the price of green cars.
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In these vehicle price scenarios, the market share projections for the hybrid cars are 

quite close to each other, which implies the limited sensitivity of the hybrid cars’ 

diffusion to different price changing speeds. On the contrary, different vehicle price 

changing scenarios are found to significantly affect the market share forecasts of the 

electric cars, ranging from 18% to 26% by 2030 depending on different price 

decreasing speeds.

Figure 6-8: Scenario analysis based on different vehicle price change speeds
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Note: Green cars’ price change scenarios are defined in Table 6-2.
In this figure, fuel price follow the reference scenario.

The scenario analysis based on different fuel price levels is presented in Figure 6-9. 

If other factors remain the same as in the base scenario, the electric cars will 

increasingly benefit from the higher fuel prices, whose market share will grow to 

above 26% by 2030 in the scenario of high fuel price compared to 17% only in the 

low fuel price scenario. With regard to the hybrid cars, we find that they will only
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benefit from the high fuel price scenario in the first decade of our forecasting horizon 

until 2020. After that, the differences of the hybrid cars’ market shares due to 

different fuel prices will gradually diminish. After 2026, the hybrid cars in the high 

fuel price scenario will even have less market shares than in the low fuel price 

scenario, but such difference can be completely offset by the market share 

increments of the electric cars in the high fuel price scenario.

Figure 6-9: Scenario analysis based on different fuel price assumptions
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Note: Fuel price scenarios are shown in Figure 6-3.
In this figure, the vehicle prices follow the moderate price changing scenario (T=30).

In summary, the electric cars will be more affected by the different scenarios of 

purchase price and fuel cost than the hybrid cars, as the electric cars will achieve 

higher market shares if their purchase prices decrease faster or the fuel price remains 

higher. Therefore, we present two extreme cases of market share forecasting for both 

the electric cars and the whole green car sector (see Figure 6-10). In the most
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optimistic case, which is specified with the fast decreasing speed for green cars’ 

price (T = 20) and the high fuel price scenario, the market shares of both the electric 

car and the whole green car sector will grow fastest and expect to reach about 31 % 

and 61% shares respectively by 2030. In contrast, the most pessimistic case is 

defined with the slow price decreasing speed (T=40) and the low fuel price scenario, 

where the market shares of the electric cars and the green car sector will have the 

slowest growths and ultimately reach about 15% and 48% respectively in 2030. 

Therefore, the forecasted market shares of the electric cars will vary between 15% 

and 31% and those of the green car sector will range from 48% to 61%, depending 

on the different combinations of vehicle and fuel prices.

Figure 6-10: M arket Share forecasting in extreme scenarios
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Note: The highest scenario is specified with fast decreasing trend for green cars’ price (T=20) and 
high fuel price. The lowest scenario is specified with slow decreasing trend for green cars’ price 
(T=40) and low fuel price. The base scenario follows the same definition as Figure 6-7.
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6.5.3 Model validation

We are not able to conduct the typical model validation exercise based on the 

forecasting performance in a validation sample, because green cars (particularly 

electric cars) are not widely available in the market and we do not have enough data 

to verify the forecasts in a 20-year horizon as used in this study. In a similar case of 

predicting diffusion of digital televisions without sales history, one validation 

approach used by Gupta, et al.(l999) is to compare their forecasts with the adoption 

pattern of older generation of products (i.e. colour television in their case). However, 

this approach will be problematic in our case due to potential issues in both demand 

and supply aspects. First of all, the early stage market demand of conventional petrol 

cars in China mainly came from the public sectors in the last century, while 

household buyers dominate the car market in China now. We expect that the 

adoption behaviour of public and private buyers to be significantly different. In 

addition, the development of petrol cars in China was mainly driven by multinational 

car manufacturers to introduce their existing mature products from other markets to 

China, but currently all car manufacturers, no matter whether they are multinational 

or local in China, are still exploring the key technologies for green cars. Therefore, 

the differences in both demand and supply aspects between petrol cars and green cars 

suggest that it is inappropriate to use the adoption history of petrol cars to validate 

the green car market development in China.

We have shown in the base scenario that our proposed approach will provide smaller 

market share forecasts for green cars than the benchmark approach (see Figure 6-7). 

Since we are not able to directly validate the forecasts using sales data, we
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investigate the model robustness and specifically whether the proposed approach can 

consistently produce more conservative forecasts for green cars’ demand in 

comparison to the benchmark approach in two extreme scenarios. The highest 

scenario is specified with high fuel price and fast vehicle price decreasing trend, 

while the lowest scenario has low fuel price and slow vehicle price decreasing trend.

Figure 6-11 and Figure 6-12 present market share forecasts for hybrid and electric 

cars in two extreme scenarios respectively. We can see in both scenarios that the 

benchmark approach forecasts higher market potentials of hybrid and electric cars 

than the proposed approach. Specifically, in the highest scenario (Figure 6-11), the 

benchmark model predicts that electric cars can achieve more than 60% of market 

shares by 2030, which doubles the forecasts from the proposed approach. Also, the 

predicted market share of hybrid cars can have a peak point of 45% in 2021 based on 

the benchmark model, but the proposed model only predicts the highest market share 

of only 33% for hybrid cars in this scenario. In the lowest scenario (Figure 6-12), the 

benchmark model predicts that the hybrid cars’ market share will increase to 55% in 

2030, which is much greater than our forecasts (34%). Similarly, the benchmark 

model in the lowest scenario forecasts the faster growth of electric cars’ market share 

than our proposed approach (22% versus 14% market share by 2030). In summary, 

the robust analysis in two extreme scenarios demonstrates that the proposed approach 

that can better account for preference heterogeneity will consistently provide less 

extreme predictions about the demand of green cars than the benchmark approach.
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Figure 6-11: Market share forecasting for hybrid and electric cars in the highest
scenario (2010-2030)
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Note: The highest scenario is specified with fast decreasing trend for green cars’ price (T=20) and 
high fuel price.

Figure 6-12: M arket share forecasting for hybrid and electric cars in the lowest
scenario (2010-2030)
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Note: The lowest scenario is specified with slow decreasing trend for green cars’ price (T=40) and 
low fuel price.
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6.6 Conclusion

Growth in Emerging markets has become more important in the context of global 

financial crisis since 2008. Unsurprisingly, consumers now in the EMs have easier 

and quicker access to new technologies and innovative products, and thus it is 

important for both manufacturers and governments to understand the demand 

potential of the new products in the EMs, especially for long term business strategy. 

It is important to recognise some of key features of these markets and how these may 

affect the demand. In terms of models that can be applied, this effectively means that 

approaches used to forecast demand in such markets need to account for the 

differences between emerging markets and other more mature markets. The non- 

segmental approach for choice modelling which is typically used in the developed 

markets may be inappropriate to forecast demand for new products in the EMs, 

because it does not account for the preference heterogeneity typically found in the 

EMs.

We propose a dynamic segmentation approach in this chapter to forecast the new 

product demand in the EMs. Previous research tends to apply the non-segmentation 

approach (Eggers & Eggers, 2011; Lee, et al., 2008; Lee & Cho, 2009; Lee, et al., 

2006), which is used as the benchmark model in our study. Our approach starts with 

separating the whole market into two distinct segments, such as car owners and non­

car owners, which helps address the significant preference differences across 

segments in the EMs (Burgess & Steenkamp, 2006). For each segment, we then 

specify the most appropriate choice structures given different alternatives, so that we
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can further accommodate the within-segment preference heterogeneity by identifying 

different forms of NL model for each segment. The non-segmentation benchmark 

model, however, can only specify a discrete choice model for the whole sample, and 

thus it is not good at sufficiently accounting for preference heterogeneity both across 

and within segments. In a fast growing market context, we expect the consumer 

choices in the future will also be influenced by the dynamic changes of product 

attributes. Therefore we define different scenarios of product attribute changes (e.g. 

vehicle price and fuel price) to address their influences and the sensitivity on the 

future market shares. In the next step, we consider a market trend that the Chinese 

consumers are transiting from non-car owners to car owners, which will deeply affect 

the market share forecasts given the preference heterogeneity between these two 

segments. Thus we specify a diffusion model to account for the continuous growth of 

car owners’ segment, which is then used as the weight to combine the predicted 

market shares from each segment for different alternatives. In contrast, the 

benchmark model cannot address such transition between segments given its non­

segmentation characteristics. The last step of our approach is to address the influence 

of product supply on the market share forecasting, as new products will not equally 

available as the mature ones in the market and their supplies will change over time.

By applying the proposed approach to forecasting market shares of the alternative 

fuel cars in China, our approach forecasts that the aggregate market share of hybrid 

and electric cars will grow up to 54% by 2030 in the base scenario, while the 

benchmark approach provides a more optimistic forecast with more than 87% market 

shares held by the green cars in 2030. This implies that when the non-segmental 

(benchmark) approach fails to account for enough preference heterogeneity, it will
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overestimate the demand potential of the green cars in China. In addition, we use 

several scenario analyses to investigate the sensitivity of the green cars’ market 

demand to different assumptions on vehicle price decreasing speed and fuel price. 

Compared with the hybrid cars, we find that the electric cars will be significantly 

affected by the different scenarios of both purchase price and fuel cost and the effects 

will gradually increase over time. We also validate the model through investigating 

the robustness of our approach in two extreme scenarios. The validation analyses in 

both the highest and lowest scenarios show that our approach consistently provides 

less extreme forecasts than the benchmark models for the green cars’ growth in 

China.

Through this empirical application, we essentially demonstrate the importance of 

appropriately accounting for the key features of the studies market when developing 

models to forecast demand of new products in the EMs. As we show through the 

comparison against the benchmark model, if the market features such as preference 

heterogeneity and dynamic dichotomy of car ownership status are not well accounted 

for, the derived market forecasts are likely to suffer significant bias, which will then 

mislead the strategic investment decisions of car manufacturers as well as the 

industry or incentive policies designed by governments.
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CHAPTER 7.

SUMMARY OF RESEARCH AND RESEARCH

IMPLICATIONS

This chapter provides a summary of the research work that has been conducted in 

this thesis and highlights the key research contributions. In section 7.1 we summarise 

the main background and research proposition of this thesis. In section 7.2 we 

highlight the specific contributions in each contributing chapter and discuss the key 

points when extending our research into other EMs. We also suggest some avenues 

for further research in this chapter.

7.1 Summary of the Main Research Proposition

The emerging markets (EMs) have been increasingly important in the world 

economy, particularly in the context of the global financial crisis since 2008. When 

most developed car markets suffered weak demand or serious fall in demand in 2008, 

only four major developing markets, Brazil, Russia, India and China (BRICs) within 

the top 10 car markets successfully maintained positive market growth (The 

International Organization of Motor Vehicle Manufacturers, 2009). The emerging 

markets usually demonstrate different institutional characteristics from the developed 

markets, such as the high level of market heterogeneity (Alden, et al., 2006; Burgess
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& Steenkamp, 2006; Sheth, 2011). This thesis considers the case of the car market 

and explores the marketing modelling challenges that relate to demand forecasting in 

such a market context. In China, car sales in 2002 were only 1.25 million units, but 

the figure sharply increased to 11.27 million by 2010. The urban household car 

ownership level in China was only 0.88 cars per 100 households in 2002, and the rate 

rose to 10.89 cars in 2009. Significant market growth in China enabled it to overtake 

the U.S. to be the largest automobile market in the world in terms of annual sales in 

2009.

Research on modelling car market demand is well established in the developed 

economies but little attention has been paid to the emerging car markets and the 

corresponding challenges that researchers face when they have to predict the demand 

or preferences for cars in the EMs. When modelling the car market demand in the 

EMs, researchers usually encounter several challenges such as limited sales data for 

demand forecasting and “not well” established consumer preferences which are 

mainly related to the fact that this is a new product concept in that market. The 

scarcity of thorough research in that context has formed and shaped the main 

research contention and proposition of the thesis.

In the context of EMs such as China, cars are a type of new products for most 

consumers. In general, there are two main categories of methodologies for new 

product forecasting: the diffusion model at the aggregate level and the discrete 

choice model/conjoint analysis at the disaggregate level (Wind, 1981). The diffusion 

model has the advantage of not requiring primary data, and thus it is thought to be 

more feasible to model car market demand in the EMs (De Jong, et al., 2004). We
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have reviewed different specifications of the diffusion model and their general 

applications in Chapter 2. At the disaggregate level, researchers are more interested 

in the underlying consumer preferences towards the adoption and choice decisions 

for the new products. The conjoint analysis is a widely used approach to investigate 

consumers’ preferences for different features of the new products and we have 

discussed the key elements when conducting conjoint analysis and in particularly the 

choice-based conjoint analysis. The useful modelling approach with the choice based 

conjoint analysis data is the discrete choice models. Based on different assumptions 

about the correlations between choice alternatives, the discrete choice models have 

the modelling flexibility to account for different forms of preference heterogeneity.

In this thesis, we apply these well developed techniques that have been applied in 

other markets and assess how they perform in modelling demand and preferences for 

cars in a new market context. More importantly, we also take into consideration the 

different characteristics in the market context of China when using these approaches 

which means that we have to modify the existing approaches that have been widely 

used in more mature markets. In this thesis, we also propose novel modelling 

approaches that are inspired by the specific problems in the Chinese car market, but 

we think these approaches and their modelling ideas can also be replicated and tested 

to predict demand for other new products in other emerging economies.
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7.2 Contributing Chapters of the Thesis

The first market problem that we have addressed in this thesis is how to better 

forecast market sales at the aggregate level with limited sales data in history. The 

interesting aspect of this work is to show how we can obtain demand forecasts in a 

situation where data on demand and sales may be unavailable or limited which is 

typically the case in emerging markets such as China. We propose in this thesis that 

we can use the car ownership data that can be extrapolated with the diffusion model 

to forecast car sales in a market context with short sales history such as in China. As 

Meade & Islam (2006) point out, little attention in the literature has been paid to how 

to use the diffusion model to forecast sales and compare its sales forecasting 

performance against other models. When forecasting quarterly and annual car sales 

in China, we empirically compare three basic specifications of diffusion model 

(Gompertz, Logistic and Bass models), two extended forms of diffusion model 

(Gompertz and Logistic models with both time and GDP per capita as independent 

variables) and three types of the benchmark models (exponential smoothing, ARIMA 

and linear econometric models) that directly forecast sales. By using the rolling 

forecasting approach to compare the forecasting results, we find that the extended 

Logistic model outperforms all benchmark models as well as all other diffusion 

model specification and provides the best sales forecasts. The superior performance 

of the extended Logistic model in forecasting car sales in China indicates that, first, 

we should select the sales forecasting method that can better cope with the market 

characteristics (Fildes, et al., 1998; Fildes, et al., 2008), such as the non-linear 

growth in the Chinese car market in our case, and second, the income effect is also 

significant on the car diffusion and sales in China (Dargay & Gately, 1999; Dargay,
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et al., 2007; Dargay, 2001). We also explicitly show that it is important to use a 

rolling forecast horizon approach instead of using a fixed validation sample to 

compare the models (Fildes, 1992; Tashman, 2000). We demonstrate that the rolling 

forecasting approach is particularly significant when it comes to choosing a more 

robust model that can cope with the rapidly changing environment in the EMs such 

as China.

The second research question that we tackle in the thesis is how to better understand 

local consumer behaviour for cars at the disaggregate level in China. Due to the short 

development history of the Chinese car market, local consumer behaviour in that 

market has not been thoroughly investigated in the literature yet. But it is also 

important that we highlight the value of this exercise for multinational companies 

that need to understand whether and how Chinese consumers differ from those in 

other developed markets. In this thesis, we compare the effect of variables that affect 

choice and adoption decisions in China and in other markets. We show that it is 

important for researchers to acknowledge that they need to explicitly account for 

variables that are specific to a market context and how these variables influence 

consumers’ decisions. We illustrate this by looking at how consumer knowledge 

about cars affects their decisions to buy cars and the type of cars that they wish to 

buy. Different specifications of discrete choice models have been developed to 

explore the consumer preferences in terms of different car ownership, car type 

choices and future purchase intentions. The corresponding managerial implications 

have been put forward for car manufacturers and/or governments to effectively 

influence car market demand. We particularly show the significant effects of the 

context specific variables on local consumer preferences for cars. The preference
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heterogeneity across different knowledge levels has also been highlighted through a 

segmentation analysis in this thesis. We demonstrate through model validation that 

the model that accounts for the context specific variables can provide better forecasts 

of consumer choices than those without these variables. We also note that the 

importance of accounting for local market characteristics when developing marketing 

strategies can be applicable in the other market sectors such as retailing or fast food 

when the international companies established in the developed markets try to enter 

the EMs.

The above two research challenges that we have examined are more about the 

existing market demand or the conventional petrol cars existing in the market. More 

recently, the new concept of alternative fuel cars or green cars has attracted extensive 

market attention as well as government support and industry investments, which 

seems to be important not only in the developed car markets, but also in the EMs 

such as China. Therefore this thesis has further explored local consumer preferences 

about the new product of the green cars in this fast growing car market. We collected 

primary data based on the conjoint based conjoint analysis conducted in China, 

which includes two types of green cars (hybrid and electric cars) and one 

conventional petrol car in the choice set. We have investigated the effects of price, 

fuel/running cost and government incentives on consumer preferences to buy 

alternative fuel cars. More importantly, our approach differs from previous research 

on investigating consumer preferences for green cars that consistently holds prior 

assumptions about how consumers perceive the choice between different green cars 

and the conventional type of cars. Instead, we have compared all possible choice 

structures and have demonstrated the importance of choosing those models that fit a
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specific market context. Empirically, we find that the Chinese consumers tend to 

think that the hybrid cars are more similar to the petrol cars than to the electric cars, 

which essentially implies that if consumers are going to switch to the green cars, they 

are more likely to buy the hybrid cars rather than the electric cars. Given the low car 

ownership level in China, we have also compared the preferences of car owners 

versus non-car owners towards the green cars. The segmentation analysis shows that 

these two segments of consumers think about the green cars and conventional type of 

petrol cars in different ways. Car owners consider hybrid and electric cars to be 

similar and perceive petrol cars to be independent from them, while non-car owners 

perceive a stronger preference correlation between hybrid and petrol cars. In addition, 

the segmentation analysis also shows that car owners tend to be more sensitive to the 

incentive policies such as the cash subsidy than the non car owners.

After investigating static consumer preferences towards the green cars, the next 

research question we address in this thesis is how to effectively utilise the preference 

information to better forecast the new product demand in the EMs. We have tackled 

this research question through proposing a dynamic segmentation approach that can 

better account for the typical context characteristics in the EMs, such as the high 

level of market heterogeneity and market dynamics (Alden, et al., 2006; Burgess & 

Steenkamp, 2006; Sheth, 2011). Specifically, we consider that markets are 

segmented and that in each segment consumers can perceive alternatives and make 

decisions differently. The main advantage of the proposed approach over the non- 

segmental approach that is typically used in the literature is that our approach is able 

to account for not only the preferences across segments, but also within-segment 

heterogeneity through specifying the segment-specific choice structures. By adopting
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the segmentation method, our approach can also accommodate the dynamic changes 

of the market structure (e.g. car ownership) in the EMs. We apply this approach to 

forecast the long term diffusion of the green cars in China and we empirically 

demonstrate that if the market features such as preference heterogeneity are not well 

accounted for in the forecasting model, the derived demand forecasts are more likely 

to suffer significant bias. In addition, we apply simulation to analyse the different 

impacts of important factors, such as vehicle purchase price and fuel price, on the 

diffusion of the green cars. Such analysis can provide decision makers with a useful 

tool to project the new product demand based on different scenarios of the key 

factors in the future. As we are not able to directly validate the model, we further 

examine the robustness of our approach in two extreme cases. By comparing the 

forecasts from our approach and the benchmark model in both highest and lowest 

scenarios, we present a consistent conclusion that the propose model will produce 

less extreme forecasts for the demand of green cars.

We use the Chinese car market as an example of an emerging market context for the 

empirical analysis in this thesis. Importantly, when it comes to the generalisation of 

the findings of the research in the thesis, the proposed modelling approaches rather 

than the specific findings can be applied and tested for other products in other 

emerging markets. However, it is likely that different emerging markets have 

completely different context features that should be accounted for. For example, the 

slower car ownership growth in India (see Table 3-1) may suggest that the Gompertz 

model instead of the Logistic model will work better to predict car sales in India. In 

addition, the context specific variables, such as consumer knowledge we have 

selected in Chapter 4 may not be applicable in other EMs. Also, regarding the
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preferences towards the alternative fuel cars, taking Brazil as an example, it has 

developed more flexible-fuel vehicles, another type of alternative fuel vehicles that 

run on the mixture of petrol and ethanol fuel41, than any other developed markets. 

Thus, the Brazilian consumers’ preferences for the alternative fuel cars might be 

different from in China. Therefore, what is more valuable from this thesis is that 

researchers can follow our general modelling approach that we always understand 

local market characteristics before developing various models that can account for 

these context specific characteristics to investigate the local market demand.

7.3 Limitations and Directions for Future Research

This thesis has some limitations which represent avenues for further research. We 

discuss them following their sequence in respective contributing chapters.

• It would be interesting to see how our proposed diffusion models fare in 

forecasting car demand in other emerging markets such as in India and Brazil. 

For instance, we may be interested in whether different forms of the diffusion 

model will contribute to the better sales forecasting performance in different 

emerging market contexts. We can also develop cross-cultural diffusion 

models to explore the context specific factors or the different levels of the 

factor that differentiate the new product diffusion across several markets 

(Yalcinkaya, 2008).

41“ Flexible-fuel vehicles in Brazil”, Wikipedia. http://en.wikipedia.org/wiki/Flexible- 
fuel vehicles in Brazil
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When using diffusion models to forecast car sales, we did not extend the Bass 

model with GDP per capita as an additional explanatory variable. The 

existing extensions of Bass model mainly focus on the inclusion of decision 

variables such as price and/or advertising (see the extensive review in Bass, et 

al., 2000), while there is little attention paid to the effect of macroeconomic 

factors such as GDP in the Bass model. So in the future research, we can 

explore how to properly develop an extended specification of Bass model to 

account for the GDP effect and then compare its sales forecasting 

performance with other extended diffusion models.

We used the convenience sampling in our survey. We acknowledge that this 

sampling approach may have some limitations, such as poor 

representativeness for the whole population. Our solution to mitigate this 

limitation is that we use the national survey data to reweight our sample when 

estimating various models. Other sampling approaches, such as stratified 

sampling, can be explored if there are enough resources and a good sampling 

framework when conducting the survey.

We develop car ownership and car type choice models respectively in the 

thesis to explore cross-market comparison of consumer behaviour for cars. 

However, there could be a joint decision making mechanism that consumers’ 

decisions of adopting cars or not might also be influenced by their 

comparison or information searching for different types of cars. Therefore, 

we might be able to develop a joint model that can simultaneously describe 

car ownership and car type choice. In addition, consumer knowledge here is a



subjective concept and we have not been able to differentiate between 

knowledge about cars and knowledge about the car market. For future 

research, it may be useful to look at how these two types of knowledge 

independently can affect car choice. For example, it may be interesting to 

look at how knowledge of cars affects the brands that consumers buy 

especially in such a market where consumers are less familiar with such a 

product. Furthermore, it would be desirable to collect data on consumer 

knowledge based on objective measures instead of self-evaluation.

• In this thesis, we explore consumer intentions to purchase cars in the future. 

There are some limitations about measuring intentions. We only provided 

three levels of intentions for respondents to select. We have to acknowledge 

that it may be desirable to capture better information about purchase intention. 

For example we can ask respondents to tell us their probability of purchase, 

which has been found to provide better predictions (Morwitz, 2001). It may 

also be interesting to look at what the consumers intend to purchase during 

cumulative time intervals, such as next year, next 2 years and next 3 years 

(Van Ittersum & Feinberg, 2010).

• We also acknowledge some limitations on using the intention data to forecast 

new product adoption behaviour. First of all, Morwitz, et al.(2007) shows the 

intentions are more accurate to predict actual purchases for existing products 

than for new ones. As cars are new to most consumers in China, respondents 

may have reporting bias when stating their purchase intentions. Secondly, the 

length of time horizon provided to the respondents (e.g. we asked the
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purchase intentions in next 5 years) also affects the prediction accuracy and 

the short time horizon is preferred (Morwitz, et al., 2007). Also, the actual 

purchase behaviour might change due to the unexpected change of 

explanatory variables (e.g. income shift or promotion) in the future (Sun and 

Morwitz, 2010). Furthermore, researchers find that the participation of 

intention survey also influences the respondents’ purchase behaviour later 

(Morwitz, 2001). Regarding how to adjust the intention data, Morwitz (2001) 

suggests that the current intention can be adjusted using the historical bias in 

intention measures for the same type of behaviour but it requires the panel 

survey data. Van Ittersum & Feinberg (2010) summarise two main 

approaches to address the discrepancies between intentions and purchase 

behaviour. The first approach is to develop models that account for these 

discrepancies. For example, Sun and Morwitz (2010) propose a unified model 

that combines the intention data with actual purchase behaviour to address 

three types of discrepancies between intentions and actual purchase. The 

second approach to address the bias of intentions is to design a better scale of 

intentions data to be collected through the survey, such as asking the purchase 

probability (Morwitz, 2001; Van Ittersum & Feinberg, 2010).

• The attributes that we have considered in our choice based conjoint 

experiment for the green cars can be extended. It might be beneficial to 

further explore consumer’s preferences for more attributes such as less 

emission levels or environmental impacts of various green cars. Our conjoint 

analysis follows the orthogonal design, but recently more design strategies 

have been developed, such as designing the stated preference experiment
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based on the revealed preference information, called “SP-off-RP” questions 

(Train & Wilson, 2008). Thus different experimental design strategies can be 

explored in the future and the derived results can be further compared to 

show whether the different experimental design contributes to our better 

understanding about the consumer preferences.

• Regarding the effects of incentive policies on the green cars, we have noticed 

that different organisations in China, including central government, local 

government and car manufacturers, have different incentive policies for the 

green car buyers. At one level it may be interesting to see which incentive 

policy is more effective. It may be important to investigate how these market 

players can coordinate to design the best incentive policies to support the 

development and adoptions of the green cars.

• In Chapter 6 when forecasting the demand for the green cars, we follow what 

is commonly assumed in the literature regarding constant preferences and 

unchanged choice structures for each segment over time. If panel data is 

available or becomes available, researchers can develop the dynamic choice 

models, which can account for the dynamic preferences and potential changes 

of the choice structures. Based on the dynamic preferences in the history, we 

might be able to further predict consumers’ future preferences, which may 

help the forecasting of future market demand that we are interested in. In 

addition, we use an exogenous diffusion model to address the influence of 

product supply on the demand. It would be better to simultaneously model the 

decision making from both manufacturers and consumers to endogenously
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derive product supply versus demand (Orbach & Fruchter, 2011). Another 

limitation of this chapter is that we cannot directly validate our forecasting 

performance based on a validation sample. In addition, we have assumed that 

the long term penetration level is 100% in this research and it would be worth 

examining how the forecasts change if we assume other penetration levels.

• In the future research, we can explore a type of probability flow models to 

describe multiple stages of consumer adoption process. For example, Ozan, et 

al., (2007) propose an adoption model that consists of 4 stages’ process 

(product awareness, need recognition, alternative evaluation and purchase 

decision) and there are different transition probabilities from the former stage 

to the later one. In addition, we also need to consider the speed of transition, 

which measures the time that consumers will take to move from one state to 

another. By linking the transition probabilities with the transition speed 

across all stages, we might be able to generate time series forecasts of product 

adoption.

7.4 Concluding Remarks

This thesis has made a significant contribution to the literature on forecasting and 

modelling demand in the fast growing EMs. This thesis also proposes some 

managerial insights for car manufacturers that are operating in such a market context. 

In the context of the Chinese car market, this thesis addresses four different aspects 

of the local market challenges: aggregate level demand forecasting, consumer
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preferences for the existing products, consumer preferences towards the new 

products of green cars, and the dynamic diffusion forecasting of the green cars. In the 

thesis, we empirically draw a clearer picture of the car market growth and more 

importantly the underlying consumer behaviour for cars in China, which we believe 

can better support decision making of car manufacturers as well as the policy design 

of local governments.

Regarding the methodological contributions, this thesis not only explores the validity 

of the existing approaches in this emerging market, but also proposes new models 

that can account for the specific characteristics of this market when forecasting new 

product demand. More generally, we demonstrate the importance of taking into 

consideration the local market characteristics when addressing the marketing 

challenges or problems in a different market context. We further contend that this 

research approach should be followed not only when moving from the more matured 

markets to the EMs, but also across different EMs.
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Appendix 1: Questionnaire for Chinese Household Vehicle Adoption 

Survey

Survey Introduction

First of all, we appreciate your time to attend our online survey. This survey is as 
part of my research for a PhD at Lancaster University in the UK. I am a Chinese 
PhD student working on better understanding the car market in China.

We seek to generate better forecast of the Chinese car market and we need your 
help in obtaining data on preferences for car purchase decisions. Please note that 
even if you do not currently have a car we want to know your views too, 
because they are important as well.

Depending on different family, our survey may take you 20 minutes to finish, which 
is completely anonymous and will not include your names, address and other 
characteristics that can identify you. We can assure you that all information collected 
in the survey will be strictly kept confidential and will be used for academic research 
only.

There are two main sections in the survey. The first section will ask you questions 
about your household status and your current car ownership. The second section 
will be about your future car purchasing intention and preferences.

This online survey will be live for about 3 months, until mid of April, 2010. After the 
survey is finished, all survey respondents are automatically entered in a prize draw 
as an incentive. If you are a winner you will be contacted. So we only need your
contact details if you want to enter the prize draw. There will be following prizes:

• One first prize with RMB 500

• Two second prizes with RMB 200 each

• Ten third prizes with RMB 100 each 

Good Luck!

Only a few questions in the survey are mandatory to answer, which are marked with 
an asterisk (*). For other questions, if you feel difficult to answer or cannot answer, 
you are free to skip some of them.

If you have any question about this survey, please feel free to contact us. (Contact 
Person: Lixian Qian; Email: l.aian@lancaster.ac.uk: MSN: lixian_qian@hotmail.com; 
telephone: +44 1524 594471)

Sincerely thank you for your cooperation!

Lancaster University Management School 
Lancaster China Management Centre
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Current Household Information

Firstly, we want to know about your household.

1. Including yourself, how many members does your household have 

currently?

• 1 

• 2

• 3

• 4

• 5

• >=6

2. How many children (under 18) live in your household?

• 1 

• 2

• >=3

3. How many adults in your household are employed?

• 1 

• 2

• 3

• >=4

4. Do you own or rent your current residence?

• Own

• Rent from the government

• Rent from the private

• Other(Please specify)_________

5. Do you have remaining mortgage to pay?

• Yes

• No
6. How big is your current home, measured by square meters of the 

building area?
• Smaller than 60 square meters

• 60-90 square meters

• 90-120 square meters

• 120-140 square meters

• Larger than 140 square meters
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Licensed Vehicle Drivers

In this section, we want to know about the driving licence holders in your household.

1. * In your household, how many driving licence holders? (including type 

A, type B, and C1 or C2 licence in China)?

• 0 

• 1 

• 2

• 3 or more than 3

[Routing: If “0 ”, the responden t will be  directed to Section o f “A bout the h ighest 

incom e m e m b e r  in Your Family’’, otherw ise n ex t page]
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Licensed Vehicle Drivers

In this section, we want to know more about the driving licence holders in your 

household.

If there is more than one driving licence holder in your households, please select the 

one with the highest income to finish following questions.

1. What is the relation of this driving licence holder to you?

• Myself

• Husband/Wife/Unmarried Partner

• Father/Mother/In Law

• Grandfather/Grandmother

• Brother/Sister

• Son/Daughter

• Other

2. What is the sex of this driving licence holder?

• Male

• Female

3. What is the age group of this driving licence holder?

• 18-24

• 25-34

• 35-44

• 45-54

• 55-64

• 65-69

4. Which of the following best describes the current employment status of 

this driving licence holder?

• Full-time employed

• Part-time employed

• Self-employed/Freelanced

• Unemployed, but look for a job now

• Homemaker
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• Retired

• Student

• Others

5. If employed, how far is your home from the working place of this 

driving licence holder? (Skip this question if not employed)

• Work at home.

• Shorter than 1 km

• 1 -3 km

• 4-6 km

• 7-10 km

• 11-25 km

• Longer than 25 km

6. Is there free parking space at working place of this driving licence 

holder? (Skip this question if not employed)

• Yes

• No

7. What is the most frequently used transportation of this driving licence 

holder to his/her working place?

• Walking, Bicycle

• Moped, Motorcycle

• Public Transport (Bus, Underground or Train)

• Employer’s Shuttle Bus

• Taxis

• Car (Drive alone)

• Carpool (including sharing a car with your family member)

• Other (Please specify)_________

[Skip to Section  o f “Current Car O w nership”]
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About the highest income member in Your Family

Since there is no driving licence holder in your household, we want to know more 

information about the family member with the highest income.

1. What is the relation of this family member to you?

• Myself

• Husband/Wife/Unmarried Partner

• Father/Mother/In Law

• Grandfather/Grandmother

• Brother/Sister

• Son/Daughter

• Other

2. What is the sex of this family member?

• Male

• Female

3. What is the age group of this family member?

• 18-24

• 25-34

• 35-44

• 45-54

• 55-64

• 65-69

4. Which of the following best describes the current employment status of 

this family member?

• Full-time employed

• Part-time employed

• Self-employed/Freelanced

• Unemployed, but look for a job now

• Homemaker

• Retired

• Student

• Others
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5. If employed, how far is your home from the working place of this family 

member? (Skip this question if not employed)

• Work at home.

• Shorter than 1 km

• 1-3 km

• 4-6 km

• 7-10 km

• 11-25 km

• Longer than 25 km

6. Is there free parking space in the working place of this family member? 

(Skip this question if not employed)

• Yes

• No

7. What is the most frequently used transportation for this family member 
to his/her working place? (If not employed, select the most frequently 

used transportation during of daily travelling)

• Walking, Bicycle

• Moped, Motorcycle

• Public Transport (Bus, Underground or Train)

• Employer’s Shuttle Bus

• Taxis

• Car (Drive alone)

• Carpool (including sharing a car with your family member)

• Other (Please specify)__________
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Current Car Ownership

In this section, we want to know your household’s current car ownership.

1. * How many passenger vehicles do your household members use, 

including purchased, long-term rented and company cars? (Passenger 
vehicles include sedan, hatchback, SUV, MPV, Sports car/Coupe and 

Station Wagons)

• 0

• 1

• 2

• >=3

[Routing: if the an sw er is “0 ”. the responden t will b e  directed to Section  o f  “future car  

adoption intention”: otherwise, the responden t will continue with n ex t oaae.1

2. Please rate your knowledge level for automobile and automobile 

market.

• Very familiar

• Familiar

• Basic knowledge

• unfamiliar

220



Current Car Ownership

We want to know more about your owned vehicles.

If your household have more than one vehicle, please select the main one as the 
representative.

1. What is the make or brand of this vehicle? (e.g. Volkswagen, Toyota, 
Buick)

/Prop dow n list here including both dom estic  m ade and  im ported m a k es .l

2. What is the model of this vehicle? (e.g. Passat, Corolla, Excelle)

3. How did your household get this vehicle?

• Purchased Please go to Q4

• Long-term rented Please go to Q5

• Company Car Please go to Q5

• Other (Please specify) Please go to Q5

4. Was this vehicle bought by loan or did you pay it by instalment?

• Yes

• No

5. Was this vehicle a new or used one when purchased?

• New car

• Second hand car

6. Was this vehicle imported or domestically made?

• Imported

• Domestically made (including made by joint-ventures)

7. What is the body type of this vehicle?

• Hatchback/2-box car

• Sedan/3-box car

• Sports Utility Vehicle (SUV, including off-road vehicle and jeep)
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• Multi-purpose Vehicle (MPV, such as Buick GL8, Honda Odyssey or 
JAC Refine)

• Sports Car/Coupe (Such as MG TF, Geely China Dragon or BYD S8)

• Station Wagon (Such as Buick Excelle SW or Brilliance Splendour 

Wagon)

• Other

8. When did you obtain or start to use this vehicle?

_________Year____________Month

9. If yo u  p urchased  the car in 2009, p lea se  a n sw er this question, otherw ise  

p lea se  skip to question  10.

How would you make your decision if there were no purchase incentive 

policy in 2009, i.e. halved purchasing tax for small engine cars?

• Would have no car purchased.

• Would have bought a similar car in terms of price and engine size

• Would have bought a different car in terms of price and engine size

10. Excluding purchasing tax and other expenses, what was the 

purchasing price of this vehicle, measured by 10,000 RMB?
____________________(10,000 RMB)

11. What is the engine size of this vehicle?

• Less than 1.0L

• 1.0L-1.3L

• 1.4L-1.6L

• 1.7L-2.0L

• 2.1L-2.4L

• 2.5L-2.9L

• Equal or larger than 3.0L

12. What is the transmission type of this vehicle?

• Manual (MT)

• Automatic (AT)

• Automated Mechanical Transmission/Manumatic (AMT)

• Continuously Variable Transmission (CVT)
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• Direct-Shift Gearbox (DSG)

• Other

13. What is the fuel type of this vehicle?

• Petrol

• Diesel

• Liquefied petroleum gas (LPG)

• Hybrid electric

• Electric

• Other______

14. Who is the main user/driver of this vehicle in your family?

• Yourself

• Your spouse/husband/wife/unmarried partner

• Your father/mother/in-law

• Your son/daughter

• Other_________________

15. What is the primary purpose of this vehicle?

• Driving between home and working place

• Escort child(ren) to/from school or other family members to/from 

working places

• Business requirement during the work

• Trips or Shopping in holiday and weekends

• Visiting relatives/friends

• Other (Please specify)_________________

16. Please select the other purposes of this vehicle? (you can choose more 

than one purposes here)
o Driving between home and working place 

o Escort child(ren) to/from school or other family members to/from 

working places 
o Business requirement during the work 

o Trips or Shopping in holiday and weekends 

o Visiting relatives/friends
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o Other (Please specify)

17. What is the annual mileage of this vehicle? If purchased within 1 year, 
please calculate proportionately.

• Less than 4000km

• 4001-8000km

• 8001-12000km

• 12001-16000km

• 16001-20000km

• 20001-24000km

• 24001-28000km

• 28001-32000km

• 32001-36000km

• 36001-40000km

• More than 40000km

18. Please tell us the approximate running costs of this vehicle in last year.

• Monthly Fuel cost  RMB/Month

• Annual Insurance cost ____________RMB/Year

• Annual Maintenance/Repair cost ____________ RMB/Year

• Annual Tolls/Parking cost ____________RMB/Year

• Other expenses/fees ____________RMB/Year

(Such as road tax, vehicle & vessel tax, MOT)

19. Does your household receive some subsidy from the household 

members’ employers for your car running cost? How much is it per 

month in RMB?

• No Subsidy

• Less than 100 RMB/Month

• 101-300 RMB/Month

• 301-500 RMB/Month

• 501-1000 RMB/Month

• 1001-1500 RMB/Month

• 1501-2000 RMB/Month

• 2001-2500 RMB/Month
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• More than 2500 RMB/Month

20. Before you decided to buy this vehicle, did you consider other 
made/model?

• Yes ->go to Q21

• No ->go to Q22

21. Please tell us your second choice besides this vehicle?
Make: [select from the drop-down list]

Model:________________________

22. Did you get rid of other vehicle within 6 months before or after you got 

this vehicle?

• Yes ->go to Q23 and Q24

• No ->go to next page

23. What was the make (brand) of that vehicle you got rid of?

24. How did you get rid of it?

• Sold to dealer

• Sold to private

• Left with household members/relatives/friends

• Scrapped

• Stolen

• Other_________________
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Future Car Purchasing Intention

In this section, we would like to know about your car purchasing intention and plan 

in next 5 years (2010-2015)

1. * Based on your household income growth expectation, can your 

household afford a lowest priced car (new or second hand) in next 5 

years? Please note that the lowest priced new car is currently around 

RMB 30,000.

• Yes

• No

• Not sure

IRouting: if the a n sw er is “N o ”, the responden t will skip  the Future Car Purchasing  

Intention section  and  b e  directed to the last section  o f “H ousehold  Location & 

In co m e”: otherwise, the responden t will continue with n ex t p a a e .l
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Future Car Purchasing Intention

We want to know more about your car purchasing intention and plan in next 5 years 

(2010-2015)

1. If you can afford, do you intend or plan to buy a passenger vehicle in 

next 5 years, including replacing currently owned vehicle?

2. Please select your reason not to buy a vehicle in the next 5 years.

• Cannot afford the car price with limited income

• Although my household can afford the car price, we cannot afford the 

running cost every month.

• We will have other big expense in next five years, such as housing, 

education, etc.

• Although we can afford a car, we feel it is unnecessary or not

economic for us to own a car.

• We have had a car in our household, but we don’t plan to replace it in

next 5 years.

• Other (Please specify)_____________________

3. If you intend to buy a car, when do you plan to buy it?

• 2010

• 2011

• 2012

• 2013

• 2014

• 2015

• No detail plan now.

4. If you intend to buy a car, will you buy a new or a used car?

• New car

• Second hand car

Yes -^Please go to Q3 

-> Please go to Q3 

->Please go to Q2

• Not sure

No
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5. If you intend to buy a car, will you buy an imported or a domestically 
made car?

• Imported

• Domestically made (including made by joint-ventures)

6. Which origin of brand do you prefer for your future car?

• Chinese local brands (e.g. Chery, Geely, BYD)

• Brands from the US (e.g. Buick, Chevrolet, Ford)

• Brands from Germany (e.g. VW, Audi, Benz, BMW)

• Brands from Japan (e.g. Toyota, Honda, Nissan, Mazda)

• Brands from South Korea (e.g. Hyundai, Kia)

• Brands from France (e.g. Citron, Peugeot)

• Doesn’t matter for me

• Others (Please Specify)______________

7. If purchasing a car in future, will you replace the existing one or add 

one more (including buying the first car)?

• Replace the existing one.

• Add another car (including buying your first car).

8. Will you purchase a vehicle by loan or by instalment?

• Yes

• Will compare and then decide

• No

9. From the available models in current market, have you found one 

vehicle that best matches your intention?

• Yes ^Please go to Q9

• No -> Please go to next page

• Don’t know. ->Please go to next page

10. Please tell us the make and model which is best matched with your 

intention.

Make

[select from drop-down list]

Model:____________________
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Future Car Purchasing Intention

We also want to know five most important factors for your household's car 

purchasing intention.

1. According to the order of importance in your opinion, please select and 

rank top 5 factors you will consider when buying a vehicle for your 
household.

• Safety, which is the vehicle ability to prevent the accidents

• Reliability, which is the vehicle ability without running faults and be 

able to work continuously.

• Performance, including engine size, power, speed, etc.

• Handling, including the driving-related characteristics, such as brakes, 

power steering and gear shifting etc.

• Space & Capacity, including passenger and luggage space

• Comfort, including leg room, seat comfort, etc

• Brand

• Style, including appearance, colour, looks etc

• Purchasing Price

• Running Economy, including fuel consumption, maintenance & 

repairing costs, etc.

• After sale Service

• Depreciation

• Fuel type

• Emission/pollution level

• Age (if considering used cars, including age, mileage, vehicle 

condition)

• Other factors
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Future Car Purchasing Intention: Your Own Design

Based on your economic and household conditions, please select attributes in 

following 5 aspects to design a car matching your future car purchasing intention.

Please note except that the first one is mandatory to answer, you are free to select

all or part of attributes in other 4 aspects to design your intended car.

1. * If you have car purchasing intention, what will be your most possible 

car price range?

• Less than 50,000 RMB

• 50,000-100,000 RMB

• 100,000-150,000 RMB

• 150,000-200,000 RMB

• 200,000-300,000 RMB

• Higher than 300,000 RMB

fThe in tended  price range will b e  u sed  a s  the b a se  price o f  petrol car in 

sta ted  choice experim ents7

2. Size and General Attributes

Body Type No. of doors

Car size (Only for 
Sedan & hatchback) No. of seats

Your

Design

o Hatchback 

o Sedan 

o SUV 

o MPV 

o Coupe 

o Estate 

o Doesn’t matter

o 2 doors 

o 4 doors 

o Doesn’t matter 

o Doesn’t matter

o Mini (e.g. Chery QQ) 

o Small (e.g. Honda 

Fit)

o Midsize (e.g. Buick 

Excel le) 

o Upper-mid (e.g. VW 

Passat) 

o Luxury (e.g. Toyota 

Crown) 

o Doesn’t matter

o 2 

o 4 

o 5 

o 6 

o 7

o Doesn’t 

matter

Boot size Fuel capacity Fuel type Gearbox

Your

Design

o Small (<400L) 

o Midsize (400- 

500L) 

o Large (>500L) 

o Doesn’t matter

o Small (<=50L) 

o Midsize (50- 

65L) 

o Large (>65L) 

o Doesn’t matter

o Gasoline 

o Diesel 

o CNG 

o Hybrid 

o EV 

o HFCV

o Doesn’t matter

o MT 

o AT 

o AMT 

o CVT 

o DSG 

o Doesn’t 

matter
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3. Performance

Engine size
Top Speed 

(km/hr)

Urban Fuel 

consumption 

(L/100km)
0-100 km/h 

acceleration (s)
Your o <1.0L o <150 o <8L o <9s
Design o 1.0-1.3L o 150-180 o 8L-10L o 9-11s

o 1.4-1.6L o 180-210 o 10L-12L o 11-13s
o 1.7-2.OL o 210-230 o 12L-15L o 13-15s
o 2.1-2.4L o >230 o >15L o >15s
o 2.5-2.9L o Doesn’t matter o Doesn’t matter o Doesn’t matter
o >=3.0L o Don’t know o Don't know o Don’t know
o Doesn’t matter

o Don’t know

4. Safety & Security

Airbags Alarm Door Locking Immobiliser

Power

steering

Your

Desig

n

o 0 

o 1 

o 2 

o 4 

o >=6 

o Doesn’t 

matter 

o Don’t know

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know

o Central 

controlled 

o Remote & 

Central 

controlled 

o Keyless Entry 

System 

o Doesn’t 

matter 

o Don’t know

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know

Parking
Distance

Control Seatbelt alarm ABS ESP

Your

Desig

n

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know

o Need 

o No needs 

o Doesn’t 

matter 

o Don’t know

o Need 

o No Need 

o Doesn’t 

matter 

o Don’t know

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know
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5. Comfort & convenience

Audio

system

Steering

Adjustm ent Sunroof

Door Mirror 

A djustm ent

Power

Window

Your

Design

o Radio only 

o CD 

o DVD 

o Doesn’t 

matter 

o Don’t know

o No

o 2D (height) 

o 4D (height & 

depth) 

o Doesn’t 

matter 

o Don’t know

o No need 

o Manual 

o Electric 

o Doesn’t 

matter 

o Don’t know

o Manual 

o Electric 

o Electric & 

heated 

o Doesn’t 

matter 

o Don’t know

o No

o Front only 

o Both front and 

rear windows 

o Doesn’t 

matter 

o Don’t know

S eat Trim

Front Seat 

Adjustm ent

Rear se a t 

folding S at Nav (GPS)

Your

Design

o Cloth 

o Leather 

o Doesn’t 

matter 

o Don’t know

o Manual 

o Electric 

o Electric & 

heated 

o Doesn’t 

matter 

o Don’t know

o No 

o Fold

o Split & fold 

o Doesn’t 

matter 

o Don’t know

o Need 

o No need 

o Doesn’t 

matter 

o Don’t know
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Hypothetical Choices

In the following second portion, we will conduct hypothetical choice experiment for 
green car demand.

You will be provided with 8 choice exercises, and each of them consists of three 

vehicles with different fuel types:

• Petrol car: overwhelming majority of existing cars in the market is consuming 
petrol.

• Hybrid Electric car: this type of vehicles is equipped with an electric motor as 

the supplement to conventional petrol engine to drive the vehicle. Hybrid car 

here is specified as those without the requirement of charging.

• Electric car: they are purely based on battery instead of conventional petrol 

to propel the vehicle. Due to the capacity limitation of the battery, electric car 

has the range limitation after one charging and has to be recharged 

frequently.

In the following exercises, we set up several features for each vehicle:

• Price: the purchasing price of each vehicle.

• Running cost: the annual total expense to run a car, including fuel or 

charging cost, maintenance and repairing costs, insurance, and toll and 

parking costs, etc.

• Incentive: in order to encourage the usage of green car, there might be some 

different incentives, such as cash allowance, free parking or using priority 

lane.

• Charging facility: the availability of charging facilities for electric cars, 

measured by percentage of parking spaces.

• Range: the length of road the electric car can run after full charging.

In each exercise, please read and compare each hypothetical vehicle and its 

features, and then select one that your household would most likely purchase. 

Please repeat these steps for 8 exercises.
1. Eight exercises will be randomly selected for you based on your birthday.

Please select the quarter your birthday belongs to.
• First Quarter (Jan. -  Mar.) froute to 1st group o f  exercise]

• Second Quarter (Apr. -  Jun.) froute to 2nd group o f  exercise]

• Third Quarter (Jul. -  Sept.) froute to 3rd group o f exerc ise l

• Fourth Quarter (Oct. -  Dec.) froute to 4th group oL exercisel
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fTwo examples for respondents with intended purchasing price of less than 50.000 

RMB, Please refer to Appendix 2: for the 32 experimental scenarios created using 
orthogonal designl

All hypothetical choices are mandatory to answer.

1. Suppose there are following 3 cars in the market, please select one your 

household would most likely purchase.

Vehicle 1 Vehicle 2 Vehicle 3
Fuel Type Petrol Hybrid Electric

Price (RMB) 40,000 72,000 52,000

Annual Running 
cost (RMB) 12,000 4,800 7,200

Incentive No Cash Allowance 
20,000 RMB Using priority lane

Charging facility Not Applicable Not Applicable 40% of parking 
spaces

Range Not Applicable Not Applicable 80km

Your choice: □  □  □

2. Suppose there are following 3 cars in the market, please select one your 

household would most likely purchase.

Vehicle 1 Vehicle 2 Vehicle 3
Fuel Type Petrol Hybrid Electric

Price (RMB) 40,000 60,000 52,000
Annual Running 
cost (RMB) 12,000 9,600 4,800

Incentive No Cash allowance 
20,000 RMB

Cash allowance 
30,000 RMB

Charging Facility Not Applicable Not Applicable 70% of parking 
spaces

Range Not Applicable Not Applicable 80km

Your choice:
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Household Location & Income

Finally, we want to know your residence location and Income information.

We can assure you that all information collected will be strictly kept confidential. But 

if you are not able to answer some questions below, you are free to skip them.

1. Which province, autonomous region or municipal city of China Mainland 

is your household living in?
[Drop-down list here]

2. Which city is your household living in?

3. Please provide the postal code of your residence place.

4. What was your household total annual income in 2009, after deducting 

income tax and various social security schemes paid by yourselves?

• Less than 20,000 RMB

• 20,000 -  39,999 RMB

• 40,000-59,999 RMB

• 60,000-79,999 RMB

• 80,000 -  99,999 RMB

• 100,000-129,999 RMB

• 130,000-159,999 RMB

• 160,000-189,999 RMB

• 190,000-219,999 RMB

• 220,000 -  259,999 RMB

• 260,000 -  299,999 RMB

• 300,000 -  349,999 RMB

• 350,000 -  399,999 RMB

• 400,000 -  449,999 RMB

• 450,000 -  499,999 RMB

• 500,000 RMB or more
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Thanks for your Cooperation

Thank you for completing the survey.

1. If you are selected to attend this survey by a university student, please 

specify university and his/her name.

Student’s name_______________________

2. If you want to enter the prize draw activity to win a prize, please provide 

your email address or phone number so that we can contact you for the 

prize result.

Email:______________________________________

Or Telephone no. (including area code)
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Appendix 3: NLOGIT Code for Discrete Choice Models

A3.1 Binary logit model for car ownership

Sample ; all$
NLOGIT; LHS= chosen,cset,alt_ij

; choices = NoCar, Car
; wts=wght
; model:

U(NoCar)= 0 /

U(Car)=asc_car ? Constant o f  car owners
+b_inc * inc new ? Household income
+b_incsq * inc sq ? Square o f  income
+b_wadult * wadult ? Working adults
+b_driver * dri_pro ? Drivers
+b_ownhouse * ownhouse ? House ownership
+b_male * hsex ? Gender o f  household head
+b_age * age ? Age o f  household head
+b_chd * child ? Number o f  children
+b_fsize * fam size ? Family size
+b_urban * urban ? Urban areas o f  cities
+b_suburb * suburb ? Suburban area o f  cities
+b_NA_Urb * NA_urban ? Unsure o f  urban or suburban area
+midknow * midknow ? Basic knowledge level
+highknow * hiknow ? Good knowledge level

;crosstab$
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A3.2 Multinomial logit model for car type choices

Sample
Nlogit

all$
Lhs=chosen, cset, index 
Choices=Small, Midsize, Large 
maxit=200 
Model:

? Attributes o f  small cars ? 
U(Small) = Price * Priinc 
+price2 * pri_inc2 
+fuelcost * YRFLCOST 
+Perform * Factor 
+Airbag * airbags 
+Eur_COO * Europe 
+JPKR COO * JPKR 
+USA_COO * American/

? Attributes o f  mid-sized cars 
U(Midsize) = Price * Pri inc 
+price2 * pri_inc2 
+fuelcost * YRFLCOST 
+Perform * Factor 
+Airbag * airbags 
+Eur_COO * Europe 
+JPKR COO * JPKR 
+USA_COO * American 
+M_age * age 
+M_male * hsex 
+m_urban * urban 
+M_cars * cars 
+M_dist * distance 
+M_WkUse * Work 
+M_midknow * Midknow 
+M_Hiknow * Highknow 
+M_Dummy /

? Price/Income 
? Square o f  (price/income)
? Annual fuel cost 
? Performance factor 
? No. o f airbags 
? European brands 
? Japanese/Korean brands 
? American brands

& Individual demographics?
? Price/Income 
? Square o f  (price/income)
? Annual fuel cost 
? Performance factor 
? No. o f  airbags 
? European brands 
? Japanese/Korean brands 
? American brands 
? Age o f  household head 
? Gender o f  household head 
? Living in urban area 
? No. o f owned cars 
? Commuting distance 
? Primary use o f  cars (work) 
? Basic knowledge level 
? Good knowledge level 
? Constant o f  mid-sized cars

? Attributes o f  large cars & 
U(Large) = Price * Pri inc 
+price2 * pri_inc2 
+fuelcost * YRFLCOST 
+Perform * Factor 
+Airbag * airbags 
+Eur_COO * Europe 
+JPKR COO * JPKR 
+USA_COO * American 
+L_age * age 
+L_male * hsex 
+L_urban * urban 
+L_child * Child 
+L_cars * Cars 
+L_wkuse * work 
+L_dist * distance 
+L_midknow * Midknow 
+L_Hiknow * Highknow 
+L_Dummy

Individual demographics?
? Price/income 
? Square o f  (price/income)
? Annual fuel cost 
? Performance factor 
? No. o f  airbags 
? European brands 
? Japanese/Korean brands 
? American brands 
? Age o f  household head 
? Gender o f  household head 
? Living in urban area 
? No. o f  children 
? No. o f owned cars 
? Primary use o f  cars (work) 
? Commuting distance 
? Basic knowledge level 
? Good knowledge level 
? Constant o f  large cars

; crosstable$
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A3.3 Multinomial logit model for purchase intentions

Sample; all$
NLOGIT; LHS= chosen,cset,index

; choices = Nolnt, Unsure, Highlnt 
; wts=wght 
; model:

U(NoInt)= 0 /

? Demographics o f  individuals 
U(Unsure)= asc_uns 
+uns_inc * incnew  
+uns_wdl * wadult 
+uns_dri * dri_pro 
+uns_sex * Hsex 
+uns_age * age 
+uns_finsz * famsize 
+uns_chd * child 
+uns_car * cars bi 
+uns_mknw * midknow 
+uns_hknw * hiknow/

U(HighInt)= aschigh  
+hig_inc * inc new 
+hig wdl * wadult 
+hig_dri * dri_pro 
+hig_sex * Hsex 
+hig_age * age 
+hig_fmsz * famsize 
+hig_chd * child 
+hig_car * cars_bi 
+hig_mknw * midknow 
+hig hknw * hiknow

unsure o f  intentions ?
? Constant fo r  consumers unsure o f  intention 
? Household income 
? No. o f  working adults 
? Drivers
? Gender o f  household head 
? Age o f  household head 
? Family size 
? No. o f  children 
? Owning cars already or not 
? Basic knowledge level 
? Good knowledge level

? Constant fo r consumers with high intentions 
? Household income 
? No. o f  working adults 
? Drivers
? Gender o f  household head 
? Age o f  household head 
? Family size 
? No. o f  children 
? Owning cars already or not 
? Basic knowledge level 
? Good knowledge level

;crosstab$
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A3.4 Nested logit model for the choices with alternative fuel cars

Sample ; all$
NLOGIT; Lhs=CARFUEL

; Choices=Electric,Hybrid,Petrol

? Following defines 3 NL tree structures. Only one structure is used in each model. 1

1 Tree structure 1 in Figure 5-11 
; Tree=GREEN(Electric,Hybrid),Conv(Petrol)
; IVSET: (Conv)=[1.0]

1 Tree structure 2 in Figure 5-11 
; Tree=No_Oil(Electric),Oil(Hybrid,Petrol)
; IVSET: (No_Oil)=[1.0]

1 Tree structure 3 in Figure 5-11 
; Tree=One_Fuel(Electric,Petrol),Mixed(Hybrid)
; IVSET: (Mixed)=[1.0]

; Wts=WGHT 
; Pds=8 
; maxit=150 
; start=logit

; Model:

? 8 choice scenarios for each respondents 

? Starting from the MNL model

1 Attributes and incentives 
U(Electric)=bprice * Price 
+bcost * RCost 
+bCash * Cash 
+bpark * FreePark 
+bPLane * Prilane 
+bcharge * chargef 
+bRange * Range 
+e_Asc
+be_hhs * hhsize 
+be_child * Child 
+be_drive * Driver 
+be_inc * income 
+be_age * age 
+be_sex * sex 
+be_dis * Distance 
+be_car * Cars/

1 Attributes and incentives 
U(Hybrid)=bprice * Price 
+bcost * RCost 
+bCash * Cash 
+bpark * FreePark 
+bPLane * Prilane 
+h_Asc
+bh_hhs * hhsize 
+bh_child * Child 
+bh_drive * Driver 
+bh_inc * income 
+bh_age * age 
+bh_sex * sex 
+bh_dis * Distance 
+bh car * Cars/

o f  electric cars, as well as demographic characteristics 1 
1 Price o f  electric cars 
1 Running cost 
1 Cash subsidy 
1 Free parking 
1 Fast lane 
1 Charging facility  
1 Range
1 Constant o f  electric cars 
1 Household size 
1 No. o f  children 
1 No. o f  drivers 
1 Household income 
1 Age o f  household head  
1 Gender o f  household head 
1 Commuting distance 
1 No. o f  owned cars

o f  hybrid cars, as well as demographic characteristics 1
1 Price o f  hybrid cars

1 Running cost 
1 Cash subsidy 
1 Free parking  
1 Fast lane
1 Constant o f  hybrid cars 
1 Household size 
1 No. o f  children 
1 No. o f  drivers 
1 Household income 
1 Age o f  household head 
1 Gender o f  household head  
1 Commuting distance 
1 No. o f  owned cars
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? Attributes o f  petrol cars ? 
U(Petrol)=bprice * Price 
+bcost * RCost

; Crosstab?

? Price o f  petrol cars 
? Running cost
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