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Abstract

This thesis consists of three self-contained essays on the economics 

of education.

Chapter 2 explores a secondary school admission policy reform 

and employs repeat sales data to examine the relationship be­

tween house prices and school quality. I use the reform to gener­

ate exogenous variation in school quality, and repeat sales data to 

eliminate time-invariant unobservable influences on house prices.

There are two primary findings from this analysis. First, I find that 

a one standard deviation increase in school performance raises 

house prices by 2-2.5% for non-flat properties. Conversely, flats 

do not respond to school quality. Second, I show that parents 

value school outputs more than they do school inputs. These find­

ings are robust to a number of alternative school quality measures 

and samples.

Chapter 3 provides evidence on the effectiveness of school capi­

tal investment on education outcomes by studying the short-run 

effect of a large school construction programme in England. Tak­

ing advantage of the phasing design that the whole programme is 

delivered in a sequence of waves, I apply difference-in-differences
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techniques to elicit the causal effect of school capital investment 

on student academic achievement. I find that the programme dis­

proportionately affects pupils from different backgrounds: aca­

demically and socioeconomically disadvantaged students enjoy 

large and positive test score gains, while their more advantaged 

counterparts do not. The overall effect remains positive but much 

smaller and insignificant. There is some evidence suggesting het­

erogeneous effects by school types, project types, and time lengths 

of building occupancy. I further demonstrate that these results are 

not driven by student selection into newly built schools.

Chapter 4 examines how income under-reporting could lead to 

biases in estimating returns to education for the self-employed. 

As the first step, I infer the true self-employment income follow­

ing an expenditure-based approach. An average self-employed 

worker's reported earnings should be boosted by a factor of 1.4 

to arrive at the actual earnings. More importantly, the degree 

of income under-reporting is nonlinear across the income distri­

bution. Lower-income self-employed households under-report 

more heavily. In the second step, I estimate the returns to edu­

cation for self-employed workers using the inferred income data. 

I find income under-reporting leads to a severe upward bias in 

estimating the returns to education. Compared to employees, the 

self-employed extract lower returns from education.
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Chapter

Introduction

Education is the most powerful weapon which you can use to change the 

world.

 Nelson Mandela (1918-2013)

Our understanding of education from the economics perspective has both 

deepened and widened substantially over the last few decades. In this the­

sis, I contribute to this lively literature by presenting empirical evidence on 

three policy-relevant questions concerned with the provision and reward of 

education: How much do parents value school quality? Does school capi­

tal investment improve students' academic performance? How large are the 

economic returns of education for self-employed workers?

Chapter 2, "School Quality and House Prices: Evidence from a School Ad­

mission Policy Reform", aims to quantify the value parents place on school 

quality, and to a further extent, tries to identify what aspects of school qual­

ity parents value. There are two fundamental empirical difficulties in these 

questions. First, many of the factors that influence house prices are unob­

servable. High-performing schools tend to be located in good neighbour­

hoods, thus the observed house price differentials do not only reflect bet­



ter school quality, but also better housing characteristics and neighbourhood 

traits. I seek to solve this problem by using repeat sales data. I difference 

out time-invariant influences of housing characteristics and neighbourhood 

amenities, then attribute the remaining variation in house prices to changes 

in school quality. Second, school quality may be driven by the characteris­

tics of the neighbourhood, for instance parents in good neighbourhoods may 

input more resources in their children's education thus pushing up the neigh­

bourhood school quality. This leads to an endogeneity issue. I address this 

issue by exploring a secondary school admission policy reform that exoge­

nously changes the expected probability of securing a place at local schools.

There are two primary findings from this chapter. First, I find that a one 

standard deviation (SD) increase in school performance raises house prices 

by 2-2.5% for non-flat properties. Conversely, flats which are smaller in size 

and are less likely to accommodate school-age children, do not respond to 

school quality. Second, I show that parents value school outputs more than 

they do school intake. This suggests that parents care more about academic 

effectiveness, rather than the composition of students in the school.

Building schools is costly. Yet little is known about whether the provision 

of school buildings and facilities provides value for money. Causal evidence 

on the effect of school capital investment on education outcomes in the ex­

isting literature is scarce and mixed. It is difficult to evaluate the effect of 

school capital investments using observational data as government polices 

often target resources towards disadvantaged schools and areas, therefore 

simply comparing academic outcomes for schools with higher capital invest­

ments to those with lower capital investments would lead to biased conclu­

sions. In Chapter 3, "Better Buildings, Better Scores? The Short-Run Impact of a 

Large School Construction Programme", I seek to address this issue by exploit­

ing the phasing design of a large school construction programme in England.
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The whole programme is designed with clear-out prioritisation rules, which 

place the schools to receive school estate renewal investment in a sequence 

of waves according to their ranking of social and educational needs. The pri­

oritisation procedure means that schools in neighbouring waves are similar, 

thus their performance is likely to follow similar trends over time. This en­

ables a difference-in-differences approach to elicit the causal effect of school 

capital investment on student academic achievement.

I find that the programme has heterogeneous effects on pupils from dif­

ferent backgrounds: academically and socioeconomically disadvantaged stu­

dents enjoy disproportionately large and positive test score gains, while their 

more advantaged counterparts do not. The overall effect remains positive but 

much smaller and insignificant. There is some evidence suggesting hetero­

geneous effects by school types, project types, and time lengths of building 

occupancy. I further demonstrate that these results are not driven by student 

selection into newly built schools.

Research has consistently documented a positive relationship between 

educational attainment and economic benefits. Chapter 4, "Returns to Educa­

tion for the Self-Employed: The Income Under-Reporting Bias", studies the long- 

researched question of measuring economic returns to education attainment, 

but focuses on a group that has often been overlooked—the self-employed. 

The existing literature offers mixed evidence on how the returns to education 

for the self-employed individuals compare with returns for those in paid em­

ployment. Moreover, self-employment income reported in survey data must 

be treated with caution. Self-employed workers tend to under-report their 

income to tax authorities and survey collectors. Ignoring this feature could 

potentially bias the estimates for the rates of returns to education. Chapter 4 

aims to fill in this gap by taking an expenditure-based approach.

3



Chapter 4 examines how income under-reporting could lead to biases in 

estimating returns to education for the self-employed using their reported 

earnings. As the first step, I infer the true self-employment income follow­

ing an expenditure-based approach. An average self-employed worker's re­

ported earnings should be multiplied by a factor of 1.4 to reflect their actual 

earnings. More importantly, the degree of income under-reporting is non­

linear across the income distribution. Lower-income self-employed house­

holds under-report more heavily. In the second step, I estimate the returns 

to education for self-employed workers using the inferred income data. I 

find income under-reporting leads to a severe upward bias in estimating the 

returns to education for the self-employed. Compared to employees, the self- 

employed extract lower returns from education.

A common theme of this thesis is the effort to find and utilise natural 

experiments that generate exogenous sources of variation in the explanatory 

variables that determine the treatment assignment of various "programmes"— 

the school quality that a house has access to, the participation in a school 

capital investment programme, or an individual's schooling choice. This 

corresponds to a common problem that underlines empirical research using 

observational data, that the assignment of treatment is often correlated with 

unobservable characteristics of participants, thus leading to an endogeneity 

problem. This endogeneity problem renders unreliable the findings drawn 

from pure correlations between the treatment and the outcomes. Without the 

understanding of the extent to which these correlations reflect a causal rela­

tionship, it is impossible to evaluate the effectiveness of those "programmes" 

and consequently make constructive policy recommendations. To this end, 

the common theme of this thesis is to find credible exogenous variations in 

various "programmes" of interest, and bridge the gap between observational 

correlations and causal relationships.

4



All three essays are analysed in the UK context. Cautions must be exer­

cised in extrapolating the conclusions reached in this thesis to other economies, 

as the analyses carried out in these essays are tied with the institutional back­

grounds. That said, the findings can provide input for education policies in 

developed countries which exhibit similar institutions of education provision 

and labour market structure to the UK.

5



Chapter

School Quality and House Prices: 

Evidence from a School Admission 

Policy Reform

2.1 Introduction

Parents have strong preferences for schools' academic performance (Hast­

ings and Weinstein 2008; Burgess et al. 2014). These preferences are very 

likely reflected in their residential location decisions, given that state schools 

often allocate places based on prospective students' residential locations. It 

has become common practice for property websites to provide school quality 

information for a number of schools surrounding the house for sale. Under 

location-based admission criteria, an effective way of securing a place at a 

sought-after school is to buy a house near the school. According to a recent 

online survey1 published by Nationwide, UK's largest building society, 23% 

of parents with children aged 5-16 years would be prepared to pay a 2-10% 

premium on a new home in order to be in the catchment area of a better state

1Artide available at http://www.nationwide.co.uk/mediacentre/pressreleases/ 
viewarticle .htm?id=2254, last accessed in October 2013.
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school.

This chapter aims to quantify the house price premium associated with 

school performance using hedonic pricing method, a workhorse model for 

estimating economic values of local public services and amenities in housing 

markets. The theoretical foundation for this method is described in Rosen's 

(1974) seminal work on the demand and supply of differentiated products. In 

the Rosen model, composite goods are viewed as a bundle of attributes and 

characteristics, thus the consumer choice problem is essentially to choose the 

optimal bundle. In equilibrium, the marginal gains from better attributes and 

characteristics must offset the marginal loss from higher prices, ceteris paribus. 

Thus, regressing equilibrium prices on the attributes uncovers the marginal 

willingness to pay (MWTP) for each attribute of the composite good.

A growing literature has been focusing on this topic.2 The principal con­

cern in the empirical implementation is the omitted variable bias. A house is 

a composite good, compromising many housing characteristics, neighbour­

hood attributes and local amenities, which cannot be all observed by the 

researcher. High-performing schools tend to be located in good neighbour­

hoods, leading to a strong correlation between school quality and neighbour­

hood attributes. Due to this strong positive correlation, omitting unobserv­

able (by the researcher) housing and neighbourhood characteristics would 

yield upward-biased estimates of the valuation of school quality.

Moreover, school performance may also be affected by the composition 

of the neighbourhood, i.e., the characteristics of people who choose to live 

in a neighbourhood influence the characteristics of the neighbourhood and 

schools. In rich neighbourhoods, parents may pay higher taxes to contribute 

to the school expenditures, invest more in other ways in their children's hu­

man capital, and volunteer more often at school events. This leads to an

2For recent summaries of the literature, see Gibbons and Machin (2008); Black and 
Machin (2011); Machin (2011); Nguyen-Hoang and Yinger (2011).
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endogeneity issue that will bias the estimates upward.

Earlier studies try to control for as many observable house price determi­

nants as possible, or directly model the unobservable factors.3 This requires 

either the availability of ideal data, or the imposition of hard-to-justify struc­

tural assumptions.

A more innovative and credible way to deal with unobservable housing 

and neighbourhood characteristics is the boundary discontinuity approach, 

pioneered by Black (1999). The idea of this approach is to compare houses 

within a close range of the boundary between neighbouring school atten­

dance zones. Given the assumption that unobservable characteristics and 

amenities are smoothly distributed on both sides of the boundary, restrict­

ing the sample coverage to a close range of the boundary gives rise to trivial 

differences in those unobservable characteristics and amenities, but leave a 

distinctive difference in school quality since children on different sides of the 

boundary attend different schools. By differencing out the unobservable in­

fluences on both sides, this approach attributes the remaining differential in 

house prices to the differential in school quality and identifies the implicit 

price of school quality. This method has been refined and implemented for 

many other countries.4

The boundary discontinuity approach relies on the assumption of smooth 

distribution of unobserved housing characteristics and neighbourhood ameni­

ties on both sides of the boundary to eliminate the omitted variable bias. 

However, this may not be valid in some cases. Catchment boundaries are 

not usually drawn randomly; rather, they often collide with political juris­

dictions, community boundaries or main roads, causing the housing and 

neighbourhood characteristics to change discretely at the boundary as well as

3See Black and Machin (2011) for a review of papers that follow these approaches.
4Examples include Davidoff and Leigh 2008, for Australia; Fack and Grenet 2010, for 

France; Gibbons and Machin 2003, 2006, Gibbons, Machin and Silva 2013 for the UK; and 
Machin and Salvanes 2010, for Norway.



school quality. For instance, Kane, Riegg and Staiger (2006) show that build­

ing quality and median income still change discretely even within 400 feet 

of the boundary in their sample. Even if the drawing of catchment bound­

aries are initially exogenous, Bayer, Ferreira and McMillan (2007) argue that 

the differential school quality on opposite sides of the boundary would lead 

to residential sorting, which would consequently create discontinuities in 

household characteristics on opposite sides of the same boundary.

Another strand of literature utilises education policy changes as quasi­

experiments, and relates changes in house prices to variation in school qual­

ity induced by those policies. Some studies look at school finance reforms 

to examine the effect on house prices. For instance, Dee (2000) examines 

court-ordered education finance reforms in California that channelled edu­

cational resources available to poor communities, and finds that the median 

housing values and residential rents rose by at least 8  percent in the poor­

est school districts. Cellini, Ferreira and Rothstein (2010) exploit a regression 

discontinuity created by narrowly passed or failed school bond referenda in 

California. Their results imply that the marginal home buyers are willing 

to pay $1.50 or more for each $1 of school capital spending. Other stud­

ies turn to school choice reforms for exogenous variation in school quality. 

Reback (2005) examines Minnesota's inter-district open enrollment program, 

and finds that house prices increased in school districts that allow student to 

transfer to preferred districts, and decreased in districts that accept transfer 

students. Ries and Somerville (2010) utilizes changes in the catchment areas 

of public schools in Vancouver and employ repeat sales methods to control 

for time-invariant neighborhood effects. They find only the most expensive 

quartile of residences are influenced by changes in school quality. Machin 

and Salvanes (2010) consider a school choice reform in Oslo that replaced 

catchment zones with open enrolment. They find this weakening of the as­

9



sociation between houses and schools led to a fall of over 50% in house price 

premium.

This chapter builds on and expands this quasi-experimental literature by 

seeking for an education policy reform that creates exogenous variation in 

school quality associated with houses. I explore a school admission reform 

that took place in the city of Brighton and Hove, England. The reform abol­

ished the admission rule of allocating secondary school places according to 

applicants' home-to-school distances, and introduced catchment areas and 

random allocation into the school admission process. As the first city in the 

UK to abolish distance-based admission rules and introduce random alloca­

tion into the process of school admission, Brighton and Hove provides a rare 

opportunity for economists to explore a series of issues on education. It led to 

a drastic change in the probability of securing a neighbourhood school place 

for local children. Allen, Burgess and McKenna (2013), the first to analyse 

the early impact of this reform, examine the post-reform school composi­

tion changes and conclude that "there are clearly winners and losers from 

these reforms: some students are attending less academically successful sec­

ondary schools than they might have expected to; for others the reverse is 

true" (p. 16).

In this chapter I provide alternative evidence on house prices and school 

quality using quasi-random methods, in particular in the UK context. My 

primary approach relates the change in school admission probabilities to 

changes in house transaction prices. The contributions to the literature are 

threefold. First, instead of relying on cross-sectional variation of school qual­

ity at the school catchment boundary, I exploit an exogenous shock induced 

by a school admission policy reform. This has an advantage in alleviating the 

endogeneity problem. The variation in the school quality associated with a 

house is mainly driven by an unanticipated policy change, thus it is unlikely

10



to be correlated with the unobservable housing characteristics and neigh­

bourhood traits. Second, the analysis goes beyond a small boundary sample, 

thus capturing the effect of intra-district differences in school quality as well 

as inter-district differences. Third, I employ repeat sales data at the dwelling 

level to difference out all time-invariant housing characteristics and neigh­

bourhood traits.

There are two primary findings from this analysis. First, I find that a one 

school-level standard deviation (SD) increase in academic performance raises 

house prices by 2-2.5% for non-flat properties. The magnitude of these es­

timates is in line with previous research. These estimates are also plausible 

when benchmarked against alternative schooling options. The house price 

premium associated with a one student-level SD increase in academic perfor­

mance is equivalent to about 3.5 years of private school fees. Conversely, flats 

which are smaller in size and are less likely to accommodate school-age chil­

dren, do not respond to school quality. This supports the notion that school 

quality is perceived and valued by parents and not other house buyers.

Second, contrary to the majority of existing literature, I show that parents 

value school value-added. An explanation for this inconsistency of findings 

is that I use well-established value-added measures that are readily avail­

able to parents, whereas much of the existing literature uses self-calculated 

value-added measures that parents do not have access to. A further finding 

is that parents value school value-added more than they do school intake. 

This suggests that parents place higher values on school outputs than school 

inputs.

The rest of this chapter is organised as follows. Section 2.2 presents some 

background details of the reform. Section 2.3 sets out the empirical strat­

egy. Section 2.4 describes the data, and Section 2.5 presents the results and 

discusses the findings. Section 2.6 concludes.
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2.2 The School Admission Reform

Brighton and Hove (BH) is a seaside city in south-east England with a pop­

ulation of 273,400 (UK 2011 census). The local authority (LA), Brighton & 

Hove City Council (BHCC), maintains 8  state-funded secondary schools5, 

and manages the allocation of school places in these schools6. In terms of the 

percentage of pupils achieving 5 or more A*-C GCSEs (or equivalent) includ­

ing English and Maths7, a headline measure for England secondary school 

performance, the LA is below the national average in England by a small 

margin. Figure 2.1 shows the performance of BHCC maintained schools be­

tween academic years 2004/2005 and 2011/2012. Although there is year-to- 

year variation in the performance for each school, the relative ranking of the 

schools within the LA stays roughly unchanged. Of the 8  maintained schools, 

3 are on or above national average, and the rest are generally below average. 

The high-performing schools are all located in the central area of the city (see 

Figure 2.2).

Prior to 2007, BHCC administered a similar admission process with other 

LAs in England. Parents were allowed to name three preferences in their ap­

plication for a school place. When the number of applications exceeded the 

number of available places at a school, all the applications would be ranked 

on a number of priorities to decide which applicants get a place at the school.

5There were 9 including East Brighton College of Media Arts (known as COMART) which 
was announced to close in 2004 and was officially closed in August 2005, due to poor per­
formance and extremely high truancy rate.

6Cardinal Newman Catholic School is an autonomous state-funded school. It manages 
its own admission based on the strength of commitment to its religious faith. This school 
did not take part in the admission reform, and therefore is excluded from the analysis.

7The national curriculum in England is organised into a few Key Stages (KS). The primary 
school phase is split into KS1 (covers ages 5-7) and KS2 (ages 7-11), and secondary school 
phase is split into KS3 (ages 11-14) and KS4 (ages 15-16). Pupils are formally assessed at 
the end of each KS. Most KS4 pupils work towards national qualifications—usually General 
Certificate of Secondary Education (GCSE) in a number of subjects. The GCSE examinations 
are usually taken in May at the end of KS4. The pass grades are A*, A, B, C, D, E, F and G 
from highest to lowest. In the National Qualifications Framework, a GCSE at grades D-G is 
a Level 1 qualification, while a GCSE at grades A*-C is a Level 2 qualification.
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Applicants in lower priorities were offered places only when applications in 

higher priorities were fulfilled first. The first priority was given to looked- 

after children8. The second priority was given to children with special social 

and medical needs. The total number of applications under these two crite­

ria were usually very small. Children with a sibling currently enrolled at the 

school had the third priority. The first three priorities usually took about half 

of the available spaces at the school. The rest of the places were allocated 

based on the distance between the school and the home addresses of the ap­

plicants under priority IV. A home-to-school distance tie-breaker would be 

introduced when a school is oversubscribed. Only children living within the 

tie-breaker distance could obtain a place at the school.

The School Admissions Code 2007 permitted school admission authori­

ties to use random allocation as the oversubscription criterion for allocating 

places at popular schools. As a result, from the 2008/09 admission onwards, 

BH became the first city to see a lottery system come into effect for determin­

ing the allocation of places at its secondary schools. This reform involved 

changing the allocation rules under priority IV. The home-to-school distance 

rule was abolished and replaced by catchment areas and random allocation. 

The first three allocation priorities remained unchanged.

Table 2.1 summarizes the features of the reform. Under the new admis­

sion rules, the city is divided into 6  catchment areas, with 4 single-school 

catchment areas and 2 two-school ones (see Figure 2.2). When the first three 

priorities are fulfilled, the next available places are first allocated to children 

living within the catchment area. When the number of applications from 

the catchment area exceeds the number of available places, a lottery is in­

troduced to randomly allocate the places. The random allocation process is 

carried out by a software which assigns a random number to each preference

8Look-after children are those taken into care by the local authority.
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within an oversubscribed priority category and ranks them from the smallest 

to the largest. The catchment boundaries are not rigid, so cross-catchment- 

area applications are allowed. When there are still spaces available after ap­

plications from the catchment area are fulfilled, the available places are al­

located among the applicants from outside the catchment area. A second 

lottery is introduced if the school is oversubscribed under this priority.

Table 2.1: Summary of the secondary school admission reform

Pre-reform Post-reform

Catchment area No Yes
Priority I Children in care Children in care
Priority II Social and medical reasons Social and medical reasons
Priority III Sibling link Sibling link
Priority IV Home to school distance Within catchment area, 

with a random allocation 
tie-breaker

Priority V N /A Outside catchment area, 
with a random allocation 
tie-breaker

This reform essentially changes the expected school quality that can be 

associated with the location of a property through the school place alloca­

tion mechanism. First, it creates a shift in the "local" school. Under the new 

catchment rules, it is now more probable for the children to attend the catch­

ment school than the nearest school, if the two are different. Allen, Burgess 

and McKenna (2013) confirm that the introduction of catchment areas leads 

to distinct winners and losers in terms of the quality of school attended. 

They note that the children who live on the far east side of Vamdean and 

Dorothy Stringer schools were not able to get into the two popular schools 

under the old allocation, but now gain substantially by residing in the Varn- 

dean/Dorothy Stringer catchment area. Those who live close enough to ac­

cess Dorothy Stringe, on the other hand, suffer a loss of school quality be­
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cause they now have the low-performing Patcham High designated as their 

catchment area school.

Second, even if the "local" school remains the same, the random alloca­

tion leads to a change in the probability of obtaining a place at the school. 

Figure 2.3 illustrates how the reform acts as a shock to the probability of 

children living at different distances getting admitted into an oversubscribed 

school. Children living close to a high-performing school who used to enjoy 

an almost guaranteed place in their neighbourhood school under the dis­

tance rule, now have to compete equally via random allocation with oth­

ers who live further from the school but in the same catchment area. The 

houses close to the school, effectively suffer from a loss in the access to high- 

performing schools; whereas houses which are not close to the school but 

lie within the catchment area, are associated with a better chance of get­

ting children into the school under the new allocation. Children living in 

a low-performing school catchment area, in principle, are now also able to 

get into a random draw into a high-performing school. However, since high- 

performing schools are always oversubscribed, there are often few or even 

no places left for children outside the catchment area. Since the random allo­

cation tie-breaker only comes into force when a school is oversubscribed, it's 

expected that children living around high-performing schools will be more 

affected by the policy reform, and house prices may see different changes in 

terms of magnitude and directions depending on the proximity to a high- 

performing school.
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2.3 Empirical Methodology

2.3.1 The Fixed Effects Estimator

Let p int denote the log transaction price of house i located in a neighbourhood 

n at time t. A hedonic price function relating house prices and school quality 

can be expressed as follows:

Pint =  XintK + fiqu + f i  + Tf +  £jnt, (2.1)

where X j„ t represents housing and neighbourhood characteristics, qu  repre­

sents the associated school quality, fi and Tf represent the location and time 

fixed effects, and £jt is the error term.

The main empirical challenge is that fi  is unobservable, and it is often 

correlated with qZf. Thus ignoring fi  results in a conventional omitted vari­

able bias. As fi and qu are often positively correlated, omitting fi  leads to an 

overestimation of fi.9 The boundary discontinuity approach deals with this 

issue by comparing two groups of houses on the opposite sides of the catch­

ment area boundary. Let i and i' denote these two groups, then the difference 

between these two groups yields:

Vint ~  Vi'nt =  if^-int ~~ ^ i ' n t ) ^  "h f i (q i t  ~  q i ' t) ^

+ ( f i  ~  f i ' )  + (Tf ~ Tt) + (Sfnt ~  Z-i'nt)-

Given the assumption that unobservables are spatially smoothly distributed, 

( J i  —  f i t )  is approximately zero within a close range of the boundary, there­

fore fi is identified from non-zero variation in school quality (qu -  q^t) due 

to the assignment of different schools in the two school attendance zones.

The major identification challenge facing the boundary discontinuity ap-

9Note f  and X;„f might also be correlated, thus estimates for cc could also be biased.
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proach is that residential stratification at the boundary. If heterogenous house­

holds sort into opposite sides of the boundary, (/; — f o ) may not approach 

zero at the boundary. Another concern is that (^ f — q^n) may still be corre­

lated with (eint — £i'nt)r iR the sense that the differences in neighbourhood 

traits lead to the differences in school quality. In addition, under this ap­

proach, the sample has to be restricted to fall into a close range of the catch­

ment boundaries, to ensure that (// — f- ) is close to zero. So this approach ex­

ploits the inter-district differences in school quality, but leaves out the intra­

district differences (Reback 2005).

We turn to an alternative strategy to identify the causal effect of school 

quality on house prices. We address the potential bias from omitting unob­

servable characteristics by using repeat sales data. Instead of differencing out 

the unobservable housing characteristics and neighbourhood traits by com­

paring two houses i and i f  we eliminate the time-invariant unobservables 

by comparing the same house at two time periods t and t'. This essentially 

gives a fixed-effects estimator that can be implemented with the following 

equation:

Pint ~  Pint' =  (X-int ~  X in t ' ) ^  “1“ fiitfit ~  ^

+ ( f i  ~  f i )  + (Tf — Tf/) + (Eint — Sint1)'

In the equation above, the parameter of interest fi, can still be biased if 

(qit — qit,) is correlated with (eint — ein*/). It is essential to find exogenous 

variation in (qu — qw) for the causal identification of fi. I discuss in detail 

how to address this issue in the following subsection 2.3.2.
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2.3.2 Matching Schools to Houses

We use two methods to introduce exogenous variation induced by the school 

admission reform into the term (qjt — qitt). As a starting point, we focus on 

the most probable school that parents may choose. Under the pre-reform 

proximity rule, the nearest school to a house is the most likely school choice, 

taking into account admission probability and transportation costs. This 

choice is changed by the introduction of catchment areas under the reform. 

Under the new rules, the catchment school becomes the most probable choice. 

In other words, the reform changes the school that is mostly likely associated 

with a house (I refer to this as the local school hereafter), from the nearest 

school, to the catchment school. Thus, we incorporate this exogenous varia­

tion in school choice into the term (^ /  — qjt), as the identification source for 

house price premium /3.

This might be an over-simplification of the situation. Unlike in the U.S. or 

other countries (see, for example, Black 1999; Fack and Grenet 2010), catch­

ment areas in England are usually not rigid, and cross-boundary attendance 

is possible, which adds to the complexity of mapping schools to houses. Al­

though not all pupils necessarily attend their nearest school (Burgess et al. 

2006; Gibbons, Machin and Silva 2008), parents do have a preference for a 

school near to home, even when other choices are feasible (Burgess et al. 

2014).

As a second method, we follow Gibbons and Machin (2006) and match a 

weighted average measure of school quality to houses. A child can apply up 

to three different schools both before and after the reform, and these can be 

any three schools within the city. Therefore, house prices do not only respond 

to the local school quality, but are also affected by the performance of other 

schools even if they are not the nearest ones. To address this issue, we in­

troduce the changes in admission probabilities caused by the admission rule
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reform into the school quality term. Specifically, we construct an aggregated 

measure of school performance qn as the following:

Here the school quality q n  is the average of /  schools' quality S j t ,  weighted 

by the ratio of the expected probability of a child living at house i getting into 

school j at time t, Prqt, to the home-to-school proximity, dq. The admission 

probabilities, Prqt/ are calculated using the previous year's numbers of ap-

of the admission. In the empirical analysis we examine how house prices re­

spond to the quality of the 3 nearest schools (/ =  3) and all 8  LA-maintained 

schools (/ =  8 ).

These two methods explore both time-series and cross-sectional variation 

in school quality. In time series, the reform induces a change in the access to 

schools in the admission process pre- and post- 2008/09 admission. Cross- 

sectionally, houses are affected by the reform in different ways and by differ­

ent levels.

An additional concern is that the single-year school performance, S j t ,  could 

be a noisy measure of school performance that parents perceive. It is likely 

that parents respond to the long-term school performance, instead of the 

school performance for a single year. To address this concern, we conduct 

a robustness check by replacing the current measure Sjt with the past three 

years' average performance Sjt in equation (2.4).

Another way of examining the relationship between house prices and 

school quality is to study how the reform changes the house price response to 

the nearest school. Given the pre-reform proximity-based allocation system 

for school places, houses close to an oversubscribed school enjoy a prior-

(2.4)

plications and offered places for each school published by the LA in advance
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ity over houses further away, leading to higher prices within a certain close 

range of the school. The replacement of the proximity rule with random al­

location, erodes the link between the price of a house and the performance of 

the nearest school, by assigning equal admission probabilities for all houses 

within (or outside) the newly-drawn catchment area.

As discussed in Section 2.2, houses near high-performing schools and 

those near low-performing ones receive different treatments in the reform. 

Houses close to high-performing schools which used to enjoy guaranteed 

admission now lose some chance of getting admitted, either because they are 

allocated to a catchment area with a different designated school, or because 

they have to compete with those live further away in the random allocation 

process. In contrast, houses near low-performing schools which used to have 

no chance of going to a popular school far away from them, now have access 

to better school quality, either because they are put in a catchment area with a 

better school, or because they now have the chance to enter the random allo­

cation process of schools in other areas. Either way, the feasible school choice 

sets are changed by the reform. This erodes the link between house prices 

and the performance of their nearest schools. To test how the reform changes 

the valuation of the nearest school, we construct a difference-in-differences 

type model as follows:

Pint = Xi„t& +  fiipostit +  Pztfict +  fa post it x qict +  f i +  Sint, (2.5)

where i indexes houses, n indexes neighbourhoods, t denotes time periods, 

p is the log house price, X represents the house characteristics, qict denotes 

the quality of the nearest school c, and post is a dummy indicating the post­

reform period. The coefficient of interest here is £ 3 . If parents value school 

quality, as the admission reform weakens the link between the house and
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nearest school, post-reform they should value the nearest school performance 

less compared to what they did pre-reform. Following this argument, ^ 3  is 

expected to show a negative sign.

2.3.3 School Inputs and Outputs

A further question of interest is what school characteristics parents value. 

The literature mostly focuses on school outputs such as test scores, with some 

exceptions that study student composition (Weimer and Wolkoff 2001; Clapp 

and Ross 2004), school expenditures (Dee 2000; Bradbury, Mayer and Case 

2001; Downes and Zabel 2002), and school value-added (Kane, Riegg and 

Staiger 2006; Brasington and Haurin 2006; Gibbons, Machin and Silva 2013; 

Imberman and Lovenheim 2013). Whether parents are paying for the school 

outputs or inputs have different policy implications. The capitalisation of test 

scores sheds light on the pricing of academic standards, whereas the valuing 

of students backgrounds or school inputs is more relevant for school segre­

gation policies (Gibbons, Machin and Silva 2013).

To distinguish between these two channels, we follow Gibbons, Machin 

and Silva (2013) to estimate the following equation:

Pint =  Xint& + 7lKS2j t +  72 V A j t + f i  + Tt + Sint, (2.6)

where KS2jt is the mean KS2 test scores at the entry of secondary phase for 

the matched school(s) of house i, and VAit is the value-added from KS2 to 

KS410. Here KS2n serves as a proxy for students' background characteristics 

or school inputs, while VA{t is an indicator for the expected school outputs.

10 See footnote 5.

21



2.4 Data

The house prices data are drawn from UK Land Registry Price Paid database 

for the period of January 2005 to April 2013. As an administrative dataset, it 

covers all the sold house transactions in England and Wales, and the transac­

tion price information is more reliable and accurate than surveys. The Price 

Paid data contain information on the full address of the property, the price 

paid for the property, the date of transfer, the property type, whether the 

property is new build or not, and whether the property is freehold or lease­

hold.

School quality information is mainly drawn from public sources. The De­

partment for Education (DfE) publishes school performance tables around 

the end of every year for the previous academic year. 1 1  I use the headline 

measure for secondary school performance in England, the percentage of 

pupils achieving 5 or more A*-C grades in GCSEs or equivalents including 

English and Maths, as the indicator for school performance. A school-level 

value-added measure is also provided in the performance tables. I also ex­

tract school-level KS2 attainment at the entry of the secondary school phase 

from the National Pupil Database (NPD), the administrative database for En­

glish pupils. The previous year's application and admission numbers that I 

use to calculate the admission probabilities for each school are published by 

BHCC every year.

A note here is how to map the period of school quality to the date of 

house sale. I use the time when the information becomes available as the 

matching reference. For the single year school quality measures, I match 

house transactions in a calendar year, say January to December 2008, to the 

school quality of the academic year 2006/07, which were made available to

11 For instance, the results for academic year 2008/09 were published around the end of 
2009 calendar year.
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the public around December 2007. For multiple year averages, I match 2008 

transactions to the average school quality for 2004/05-2006/07. Applica­

tions for secondary school admissions are usually made in October each year 

for the forthcoming academic year, and decisions are made around January 

the following year. For instance admissions for 2008/09 academic year were 

made in January 2008. At the time of application, parents will have known 

the admission and application numbers for each school for the last admis­

sion (academic year 2007/08) published by the LA. Thus I link the admission 

probabilities for academic year 2007/08 to house transactions in 2008 when 

calculating average school quality.

To include controls for time-varying neighbourhood characteristics, I match 

Indices of Deprivation 2007 and 2010 (ID2007 and 2010) to the house price 

data at the lower layer super output area (LSOA) level12. These matched 

neighbourhood characteristics include indicators for crime rates, accessibil­

ity of local services and outdoor living environment. Crime indicator is a 

combined single score that measures the rate of recorded crime in an area 

for four major crime types (violence, burglary, theft, and criminal damage). 

Measure of accessability to local service consists of population weighted av­

erage road distances to a primary school, to a food store, to a post office, 

and to a GP surgery. Outdoor living environment include indicators for air 

quality and road accidents. All neighbourhood variables are standardised 

to facilitate comparison over time. Table 2.2 summarizes the data pre- and 

post-reform.

12Super Output Areas (SOAs) are a set of geographical areas developed for census statis­
tics. Lower Layer Super Output Areas (LSOAs) typically have an average of roughly 1,500 
residents and 650 households.
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2.5 Results

2.5.1 The House Price Premium

Table 2.3 presents the results for the house price premium estimates for the 

local school, that is, the nearest school under home-to-school proximity rule 

and the catchment school under the new allocation rules. The school quality 

measure here is the percentage of pupils achieving 5 or more A*-C grades 

in GCSE and equivalent tests including English and Maths. To aid with in­

terpretation, the school quality measures in this and the following tables are 

standardised using sample means and standard deviations.

Columns (l)-(3) report the OLS estimates which do not control for dwelling 

fixed effects. The correlations between house prices and the local school 

performance are strong and significant. The point estimates indicate that a 

one school-level SD increase in the local school quality is associated with an 

around 5% premium on house prices. This association is robust to the inclu­

sion of a series of controls including housing characteristics, neighbourhood 

traits, and time trends. In column (1), the housing characteristics mostly 

show significant coefficients of expected signs. Detached houses are more 

expensive than the omitted terraced houses, flats are less expensive, while 

semi-detached houses cost about the same as terraced houses on average. 

New build properties and freehold tenure are also associated with higher 

prices. The inclusion of year-month dummies and observable neighbour­

hood traits in columns (2) and (3) only change the estimated house price 

premium associated with better local school quality by very little .

Columns (4)-(6) report the fixed-effects (FE) estimates for equation (2.3). 

The point estimate on local school quality falls to 2.7% once the dwelling 

fixed effects are controlled for in column (4). Since our estimator mainly ex­

plores the time-series variation in house prices, the 2008 financial crisis is
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likely to be a major confounding factor. As the financial crisis is probably 

a common macroeconomic shock to all houses, this can be easily dealt with 

by controlling for the common trends of the housing market. Column (5) 

includes controls for the year-month dummies, which further brings down 

the house price premium to 1.0% for one school-level SD increase in the local 

school quality. Column (6 ) further controls for observable neighbourhood 

traits. These neighbourhood attributes are mostly insignificant, except crime 

rates. The inclusion of these controls only changes the coefficient on school 

quality by very little. This lends support to the idea that the school quality 

variation is independent from neighbourhood attributes, and suggests that 

we can disentangle the WTP for school quality from the WTP for neighbour­

hood attributes.

Compared to the OLS results, the FE estimates are largely reduced. The 

associated house price premium for one school-level SD increase in school 

quality falls from around 5% to 1%. In monetary terms, this is equivalent 

to a change from £11,500 to £2,300 pounds in 2007 terms. This drop in the 

magnitude of the estimated school quality effects shows evidence that omit­

ted unobservable housing characteristics and local amenities impart a large 

upward bias.

Similar evidence is found using alternative measures of school quality. 

Table 2.4 report the results for the weighted average school quality measures 

for the nearest 3 schools (in panel A) and for all 8  LA schools (in panel A). 

The FE estimates are typically a fraction of the OLS estimates. The preferred 

estimates in Table 2.4 column (6 ) using weighted average school quality are 

only slightly different from the results in Table 2.3 column (6 ) using the single 

local school quality. This supports the robustness of our results.
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2.5.2 The Role of the Nearest School

An implication of the reform is that the nearest school carries less weight 

in parents' school choice set due to either the reassignment of local schools 

or the introduction of random allocations. Next we test the hypothesis that 

the nearest school is valued less after reform. We expect the relationship 

between house prices and the nearest school quality to be weakened by the 

reform. Table 2.5 summarizes the estimation results of equation (2.5). The 

results are broken down by whether the nearest school is a high-performing 

(odd columns) or a low-performing (even columns) one.

Several features can be noted from the results. First, the positive and 

significant coefficients on school quality suggests the pre-reform relationship 

between house prices and nearest school quality is very strong. Moreover, 

it gets stronger when the distances are shorter. This is consistent with the 

pre-reform allocation rule based on the home-to-school proximity.

Second, the negative coefficients on the interaction terms indicate that the 

house price premium associated with the nearest school reduces substan­

tially after the reform, especially for those houses close to high-performing 

schools. This suggests that the replacement of proximity admission criterion 

by catchment areas and random allocation makes parents value their near­

est school less, since they no longer have the guarantee of a secured place 

at that school by residing within a short distance. Those who live close to a 

low-performing school also observe a reduction in house price response to 

their nearest school quality. This may reflect the fact that the reform brings 

more alternative school choices to them. They now have some probability 

of entering a high-performing school through being included in a catchment 

area with a better designated school, or have a larger choice set as they can 

access farther schools which would not have been feasible under the prox­

imity rule. This makes their nearest low-performing school less important in

26



their school choice.

Third, a comparison of the results between houses close to high- and low- 

performing schools suggest that those who live close to high-performing 

schools value the school quality even more. They place a higher value on 

school quality pre-reform, and the reduction in their valuation post-reform 

is also larger.

2.5.3 Who Value School Quality?

In this section, we examine the potential heterogeneity in the school quality 

effect by property types. We add three interaction term of property types and 

school quality into equation (2.3) to examine whether flats and non-flat prop­

erties respond to school quality in different ways. Table 2.6 summarises the 

regression results. Columns (l)-(3) use the three alternative school quality 

measures for the local school, the nearest 3 schools, and all 8  LA schools re­

spectively. The coefficients on the school quality measures estimate the effect 

of a one school-level SD increase in school quality on the prices of terraced 

houses. These estimates are very consistent across the three school quality 

measures, ranging from 2.1% to 2.5%, more than twice the size of the average 

effect found in column (6 ) of Tables 2.3 and 2.4. They are also statistically sig­

nificant at 1% level. The coefficients on the interaction term of flat and school 

quality, measure the differences in the school quality effect between flats and 

terraced houses. These differences are highly significant at 1% level. More 

interestingly, the school quality effect on flats essentially amounts to close to 

zero. A distinctive feature of the BH housing market is that flats constitute 

a much larger proportion of the properties than the rest of England. In our 

sample, flats contribute to 54% of the transactions (see Table 2.2), while the 

national average for the same sample period is 20%. This means that the 

school quality change only effectively affect the prices of less than half of
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properties in our sample.

The finding that flats do not respond to the changes in school quality pro­

vides evidence that it is indeed the parents that value school quality and pay 

the price premium. Flats are generally smaller in size than non-flat proper­

ties. The average number of bedrooms for flats in Brighton is 1.7, whereas 

that figure for non-flat houses is 3.2. 1 3  Thus flats are far less likely to accom­

modate families with school-age children than houses.

A further concern is that this heterogeneity in school quality effect could 

be due to residential sorting. It's possible that households with higher in­

comes place more value on school quality. Flats are on average 30% less 

expensive than terraced houses in the sample. If house prices are any indi­

cation for family income, households living in terraced houses might have 

higher preferences for school quality and consequently value school qual­

ity more than those living in flats. However, this explanation is unlikely in 

our case. Detached houses are on average 23% more expensive than terraced 

houses. Following the same logic of heterogenous preferences, we would ex­

pect the school quality effect to be significantly larger than that on terraced 

houses. This is not supported by the small and insignificant coefficients on 

the interaction term of detached houses and school quality.

The results reported here are consistent with the existing literature in find­

ing that school quality is capitalised in house prices. A one school-level SD 

increase in school quality raises the prices for non-flat properties by 2-2.5%. 

The magnitude of the estimates for the effect of school quality is in line with 

previous research (see Black and Machin 2011, for a summary of findings).

These estimates can be benchmarked against private school fees. The 

largest private school in BH is among the top 1% schools in England. For the 

period of 2008/09-2012/13, above 99% of its KS4 students achieve 5 or more

13Author's calculation using data from www.zoopla.co.uk, a major property website in 
the UK.
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A*-C grades at GCSEs including English and Maths. This equals a 4.8 school- 

level SD increase from the mean performance of state schools in BH. If the 

house price and school quality relationship is taken linearly, such a substan­

tial increase in school quality would raise non-flat house price by 1 0 %-1 2 %, 

or £30,000-36,000 in 2007 monetary terms. This is equivalent to slightly over 

2 years of tuition fees of this private school14. This top school may be an ex­

treme example. Benchmarked to the average private schools, the house price 

premium associated with a one student-level SD increase in KS4 performance 

is equivalent to about 3.5 years of private school fees. 1 5  These calculations 

suggest our estimates are plausible. The house price premia for state schools 

alone are not enough to drive parents to opt for private education.

2.5.4 What do Parents Value?

Next we examine what school characteristics parents value. Table 2.7 presents 

the estimation results for equation (2.6). OLS results in columns (1)—(3) show 

that the point estimates on KS2 test scores at the entry of the secondary school 

phase are highly significant and larger, while the coefficients on school value- 

added are less significant and smaller. However, the FE estimates in columns 

(4 )-(6 ) exhibit quite the opposite: the estimates on school value-added are 

statistically significant and mostly larger, while the coefficients on KS2 at­

tainment are less significant and smaller. The effect of a one SD change in 

school value-added on house prices ranges from 0 .6 % to 0 .8 %.

These results suggest that parents care more about school effectiveness 

than school intake. This finding is robust to different mappings of schools to

14The 2014/15 tuition fees for non-boarding pupils at this private school is £93,570, cov­
ering the ages 11-16. Discounted to 2007, this is about £75,000, giving an average of £15,000 
per annum.

15A one stu den t-leve l SD increase in KS4 performance, equivalent to 4.5 school-level SDs, 
will raise non-flat house prices by roughly 10%, or about £30,000 in 2007 monetary terms. 
Termly tuition fees for non-boarding pupils are £2,800 in England for 2006-2007 (Gibbons, 
Machin and Silva 2013).
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houses. Next in Section 2.5.5 we will further demonstrate that these results 

are robust to alternative samples and school quality measures.

This finding regarding whether parents value school value-added is sim­

ilar to Gibbons, Machin and Silva's (2013) results in the sense that school 

value-added is capitalised into house prices. This is different from much of 

the previous literature on house prices and value-added, which generally 

finds no effects. A reconciliation for this mixed evidence may be that par­

ents only value some school quality of which they can access and perceive its 

information. Studies that find little support for the value-added model are 

either using self-calculated value-added measure (Dills 2004; Downes and 

Zabel 2002; Brasington and Haurin 2006) which is not available to parents, 

or information that has only been available for a short period of time (Imber- 

man and Lovenheim 2013). From this point of view, it's likely that parents 

do not respond to these information because they haven't (fully) perceived 

it. On the other hand, like Gibbons, Machin and Silva (2013), we use well- 

established measures of value-added that has been published by the gov­

ernment for a long period, and find supporting evidence that parents values 

these value-added measures. Further support for this idea can be drawn 

from Figlio and Lucas's (2004) study, which finds that there is an indepen­

dent house price effect of school grade ratings, above and beyond the effects 

of test scores and the other components of the school grades. As the grades 

are mostly some functions of test scores and other public information, this 

suggests that parents value new information.

That said, unlike Gibbons, Machin and Silva (2013), we find that parents' 

valuations for school value-added and school inputs are not similar. From 

this finding, we draw a different conclusion that parents place more value 

on academic effectiveness than school composition. A possible explanation 

for this difference is that this chapter focuses on the secondary school phase,
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while Gibbons, Machin and Silva (2013) look at the primary school phase.

2.5.5 Robustness Checks

In this section, we conduct two sets of robustness checks to gauge the strength 

of previous findings.

The first robustness check reruns the analysis on a balanced subsample, 

that is, a sample of houses with at least one pre-reform sale and post-reform 

sale. This is motivated by the concern that the results could be driven by 

some changes in school quality that is not induced by the reform. Table 2.8 

compares the results from the full sample and the balanced sample. Columns 

(l)-(3) repeat the previous results from the full sample, and columns (4)- 

(6 ) report new results from the balanced sample. Estimates for the school 

performance models are organised in panel A. The two sets of results ex­

hibit virtually no change. Both samples yield a finding of around 2% house 

price premium for a one SD increase in school performance, and close to 

zero premium on flats. Panel B present the estimates for the value-added 

models. Both samples yield results supporting the notion that parents value 

the school value-added more than they do the school inputs. A slight dif­

ference is that the results are stronger from the balanced sample. This lends 

further support to the identification strategy that exploits the variation in 

school quality induced by the reform.

The second robustness check assesses that the results are not driven by 

some noisy measurement of school quality. In previous results, the school 

quality measures are taken from the previous year of the house sale. These 

single year indicators could be noisy measures of the perceived school qual­

ity by the parents. We rerun the analysis using the past three years' average 

as the alternative school quality measures. These new results are presented 

in columns (4)-(6) of Table 2.9. This change doesn't appear to matter for the
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school performance results in panel A. In panel B, columns (4)-(6) using the 

three-year average value-added and KS2 measures find larger estimates on 

value-added and smaller estimates on KS2 attainment at the entry of the sec­

ondary school phase, compared to previous results repeated in columns (1 )- 

(3) that use single year measures. Therefore, this strengthens the finding that 

parents place higher values on school value-added than on school inputs.

2.6 Conclusion

In this chapter I study the relationship between house prices and school qual­

ity by following an alternative approach to the popular boundary disconti­

nuity design. I exploit the exogenous variation in school quality induced by 

a school admission reform to identify the causal effect of school quality on 

house prices. I use repeat sales data to eliminate all time-invariant house 

characteristics and neighbourhood attributes. The estimates show that a one 

school-level SD increase in school quality raises the house prices by 2-2.5% 

for non-flat properties. In monetary terms, this yields a house price premium 

of £6,000-7,500 in 2007 prices. Benchmarked against alternative schooling 

options, the house price premium associated with a one student-level SD in­

crease in academic performance is equivalent to about 3.5 years of private 

school fees. In contrast, there is virtually no effect on flats. This implies that 

it is indeed parents that value school quality, as flats are generally too small 

in size to house families with school-age children. These results are robust 

across a number of school performance measures and samples.

One of the objectives of the reform was to promote equal educational op­

portunities by breaking the "selection by mortgage" in school admissions. 

On this front this policy may have achieved limited success. While the house 

price premium for the nearest school is reduced, house prices now respond
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to other schools that parents have access to.

A further look at what school characteristics matter reveals that parents 

place higher values on school outputs than on school intake. This result is 

different from much of the existing literature which finds little support for 

the notion that school value-added affects house prices. A reconciliation for 

this contradiction is that parents value school information that is available to 

them. Much of the existing literature uses self-calculated value-added mea­

sure that parents do not have access to. This finding suggests that parents 

place higher values on schools outputs than school intake. A policy implica­

tion from this is that investments in technologies and interventions that can 

boost academic effectiveness are likely to be met with high demand.
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Table 2.2: Summary statistics

House price (£000, in 2007 terms)

Log house price 

School quality (Nearest)

School quality (Local school)

Weighted school quality (Nearest 3 schools) 

School quality (LA schools)

KS2 attainment (Local school)

KS2 attainment (Nearest 3 schools)

KS2 attainment (LA schools)

Value-added (Local school)

Value-added (Nearest 3 schools) 

Value-added (LA schools)

Terraced

Detached

Semi-detached

Flat

New build

Freehold

Crime

Distance to post office 

Distance to food store 

Distance to GP surgery 

Distance to primary school 

Air quality 

Road accidents 

Observations

Pre-reform Post-reform

Mean Std. Dev. Mean Std. Dev.

221,124 83,893 235,317 90,211

12.243 (0.350) 12.302 (0.360)

0.417 (0.111) 0.467 (0.137)

0.418 (0.109) 0.488 (0.100)

0.412 (0.061) 0.449 (0.104)

0.369 (0.047) 0.415 (0.091)

1.779 (0.098) 1.771 (0.086)

1.762 (0.066) 1.738 (0.082)

1.732 (0.057) 1.711 (0.063)

0.982 (0.018) 0.996 (0.014)

0.984 (0.010) 0.993 (0.013)

0.980 (0.007) 0.992 (0.011)

0.251 (0.434) 0.258 (0.438)

0.059 (0.236) 0.064 (0.245)

0.147 (0.354) 0.139 (0.346)

0.543 (0.498) 0.539 (0.499)

0.037 (0.188) 0.009 (0.093)

0.455 (0.498) 0.457 (0.498)

0.251 (0.540) 0.029 (0.638)

0.650 (0.303) 0.687 (0.306)

0.668 (0.428) 0.642 (0.422)

0.695 (0.446) 0.725 (0.496)

0.674 (0.324) 0.686 (0.324)

1.229 (0.109) 1.036 (0.151)

1.289 (1.128) 1.431 (0.930)

4,663 8,307
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Table 2.3: Hedonic regressions of house prices on the local school quality

OLS Fixed Effects

(1) (2) (3) (4) (5) (6)
School quality 
(Local school)

0.047*** 0.051*** 
(0.003) (0.003)

0.048***
(0.010)

0.027*
(0.002)

** 0 010*** 
(0.002)

0.009***
(0.003)

Detached 0.216*** 0.220*** 
(0.013) (0.012)

0.182***
(0.037)

Semi-detached -0.001
(0.009)

0.001
(0.009)

0.014
(0.023)

Flat -0.058**
(0.026)

-0.065**
(0.025)

-0.090**
(0.036)

New build 0.152*** 0.164*** 
(0.026) (0.026)

0.161***
(0.046)

-0.022
(0.016)

0.020
(0.016)

0.020
(0.018)

Freehold 0.313**
(0.026)

* 0.310*** 
(0.025)

0.330***
(0.037)

0.273*** 0.264*** 
(0.087) (0.088)

0.263***
(0.084)

Crime -0.003
(0.023)

-0.028**
(0.014)

Distance to post 
office

-0.029
(0.038)

-0.019
(0.017)

Distance to food 
store

-0.201***
(0.030)

-0.006
(0.015)

Distance to GP 
surgery

0.017
(0.028)

0.013
(0.011)

Distance to 
primary school

0.199***
(0.051)

-0.035
(0.034)

Air quality -0.049
(0.132)

0.009
(0.057)

Road accidents -0.000
(0.014)

-0.006
(0.005)

Time FE No 
Dwelling FE No 
Cluster level Dwelling 
Observations 13,236

Yes
No

Dwelling
13,236

Yes No 
No Yes 

LSOA Dwelling 
13,236 13,236

Yes
Yes

Dwelling
13,236

Yes
Yes

LSOA
13,236

N otes  The local school refers to the nearest school for the pre-reform period, and the catch­
ment school for the post-reform period. School quality is measured by the proportion of 
pupils achieving 5 or more A*-C grades at GCSEs or equivalents including English and 
Maths. Terraced house is the omitted dwelling type. Time fixed effects include all year- 
month dummies for the sample period. *, **, and *** denote significance at 10%, 5%, and 
1% levels respectively. Cluster-robust standard errors at the dwelling or LSOA levels are 
in parentheses.

37



Table 2.4: Hedonic regressions of house prices on school quality using 
weighted school quality measures

OLS Fixed Effects

(1) (2) (3) (4) (5) (6)
Panel A

School quality 0.033*** 0.059*** 0.050*** -0.003 0.007*** 0.007**
(Nearest three) (0.003) (0.003) (0.011) (0.002) (0.003) (0.003)

Panel B

School quality 0.021*** 0.064*** 0.059*** -0.005*** 0.007** 0.006
(LA schools) (0.003) (0.004) (0.013) (0.002) (0.003) (0.004)

House characteristics Yes Yes Yes Yes Yes Yes
Neighbourhood traits No No Yes No No Yes
Time FE No Yes Yes No Yes Yes
Dwelling FE No No No Yes Yes Yes
Cluster level Dwelling Dwelling LSOA Dwelling Dwelling LSOA
Observations 13,236 13,236 13,236 13,236 13,236 13,236

N otes  School quality is the average performance of nearest three schools (in Panel A )  or all LA 
schools (in Panel B) using the product of previous year's admission probability and inverse home- 
to-school distance as weights. School performance is measured by the proportion of pupils achiev­
ing 5 or more A*-C grades at GCSEs including English and Maths. Terraced house is the omitted 
dwelling type. Time fixed effects include all year-month dummies for the sample period. *, **, 
and *** denote significance at 10%, 5%, and 1% levels respectively. Cluster-robust standard errors 
at the dwelling or LSOA levels are in parentheses.
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Table 2.5: Pre- and post-reform house price premia for the nearest school's
performance

All distances Distance <  2km Distance <  1km

Close to Close to Close to Close to Close to Close to 
a high- a low- a high- a low- a high- a low-

performingperformingperformingperformingperformingperforming 
school school school school school school

(1) (2) (3) (4) (5) (6)

Post-reform 0.199*** 0.100*** 0.194*** 0.116*** 0.232*** 0.128**:
(0.012) (0.016) (0.015) (0.019) (0.024) (0.031)

School quality 0.095*** 0.065*** 0.093*** 0.045*** 0.110*** 0.045
(Nearest) (0.012) (0.015) (0.015) (0.015) (0.023) (0.030)

Post X -0.106*** -0.040** -0.109*** -0.022 -0.147*** -0.015
School quality (0.012) (0.015) (0.017) (0.016) (0.017) (0.027)

Observations 5,812 7,424 3,160 4,818 1,132 1,638

N otes  All specifications control for housing characteristics, neighbourhood traits, annual 
trends and month dummies, and dwelling fixed effects. School quality is measured by 
the proportion of pupils achieving 5 or more A*-C grades at GCSEs including English 
and Maths of the nearest school to the house. ***, **, and * denote statistical significance 
at the 1%, 5%, and 10% level respectively. Cluster-robust standard errors at the LSOA 
level are in parentheses.
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Table 2.6: House price premium across property types

(1) (2) (3)
School quality 
(Local school)

0.025***
(0.005)

School quality 
(Nearest three)

0.021***
(0.005)

School quality 
(LA schools)

0.023***
(0.006)

Detached x 
School quality

-0.005
(0.011)

-0.007
(0.013)

-0.001
(0.012)

Semi-detached x 
School quality

-0.005
(0.009)

0.005
(0.008)

0.001
(0.008)

Flatx
School quality

-0.025***
(0.006)

-0.026***
(0.005)

-0.028***
(0.005)

Observations 13,236 13,236 13,236

N otes  All specifications control for housing characteristics, neigh­
bourhood traits, year-month dummies, and dwelling fixed effects. 
The local school quality refers to the performance of the nearest 
school for the pre-reform period, and the catchment school for the 
post-reform period. The weighted school quality refers to the av­
erage performance of nearest three schools (in row 2) or all LA 
schools (in row 3) using the product of previous year's admis­
sion probability and inverse home-to-school distance as weights. 
School performance is measured by the proportion of pupils 
achieving 5 or more A*-C grades at GCSEs including English and 
Maths. Terraced house is the omitted dwelling type. *, **, and 
*** denote significance at 10%, 5%, and 1% levels respectively. 
Cluster-robust standard errors at the LSOA levels are in parenthe­
ses.
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Table 2.7: House price premium for school inputs and outputs

OLS Fixed Effects

(1) (2) (3) (4) (5) (6)
KS2 attainment 
(Local school)

0.075***
(0.010)

0.006
(0.005)

Value-added 
(Local school)

0.009
(0.014)

0.006*
(0.004)

KS2 attainment 
(Nearest three)

0.070***
(0.012)

0.005
(0.004)

Value-added 
(Nearest three)

0.032**
(0.013)

0.007**
(0.003)

KS2 attainment 
(LA schools)

0.064***
(0.013)

0.006
(0.004)

Value-added 
(LA schools)

0.041***
(0.014)

0.008**
(0.003)

Flat x 
KS2

—0.071**—0.068**—0.072**—0.005 
(0.014) (0.014) (0.012) (0.005)

-0.006 -0.008* 
(0.005) (0.004)

Flat x
Value-added

—0.029**—0.041**—0.036**—0.001 
(0.012) (0.012) (0.010) (0.004)

-0.003 -0.007* 
(0.004) (0.004)

N 11,384 11,384 11,384 11,384 11,384 11,384

N o tes  All specifications control for housing characteristics, neighbour­
hood traits, year-month dummies, and dwelling fixed effects. The local 
school (for rows 1 and 2) refers to the nearest school for the pre-reform 
period, and the catchment school for the post-reform period. KS2 attain­
ment is the average prior KS2 test scores for the GCSE students at the 
school level. VA refers to the KS2-KS4 value-added at the school level. 
The weighted school quality measures refer to the average quality of near­
est three schools (in rows 3 and 4) or all LA schools (in rows 5 and 6) using 
the product of previous year's admission probability and inverse home-to- 
school distance as weights. *, **, and *** denote significance at 10%, 5%, 
and 1% levels respectively. Cluster-robust standard errors at the LSOA 
levels are in parentheses.
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Table 2.8: Results for the full and balanced samples

Full Sample Balanced Sample

(1) (2) (3) (4) (5) (6)

Panel A

School quality 0.023*** 0.025***
(Local school) (0.004) (0.005)

School quality 0.022*** 0.021***
(Nearest three) (0.005) (0.005)

School quality 0.023*** 0.024***
(LA schools) (0.005) (0.006)

Non-flat x —0.023**—0.026**—0.028**—0.026**—0.027**—0.027***
School quality (0.005) (0.005) (0.004) (0.005) (0.005) (0.005)

Observations 13,236 13,236 13,236 8,397 8,397 8,397

Panel B

KS2 attainment 0.006 0.007
(Local school) (0.005) (0.004)

Value-added 0.006* 0.011***
(Local school) (0.004) (0.004)

KS2 attainment 0.005 0.005
(Nearest three) (0.004) (0.004)

Value-added 0.007** 0.009**
(Nearest three) (0.003) (0.004)

KS2 attainment 0.006 0.008*
(LA schools) (0.004) (0.004)

Value-added (LA 0.008** 0.010***
schools) (0.003) (0.004)

Non-flat x -0.005 -0.006 -0.008* -0.003 -0.006 -0.008
KS2 (0.005) (0.005) (0.004) (0.006) (0.006) (0.005)

Non-flat x -0.001 -0.003 -0.007*

*oX—1oo1 —0.012**—0.014***
Value-added (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Observations 11,384 11,384 11,384 7,219 7,219 7,219

Notes Full sample includes all houses with at least two sales during the pe­
riod January 2005-April 2013. Balanced sample includes houses with at least 
one sale pre-reform and at least one repeat sale post-reform. All specifications 
control for housing characteristics, neighbourhood traits, year-month dummies, 
and dwelling fixed effects. *, **, and *** denote significance at 10%, 5%, and 1% 
levels respectively. Cluster-robust standard errors at the dwelling or LSOA lev­
els are in parentheses.
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Table 2.9: Results for previous year's and past three years' average school
quality

Single Year Three Year Average

(1) (2) (3) (4) (5) (6)
Panel A

School quality 0.023**: * 0.025***
(Local school) (0.004) (0.005)

School quality 0.022*** 0.021***
(Nearest three) (0.005) (0.005)

School quality 0.023*** 0.024**
(LA schools) (0.005) (0.005)

Non-flat x —0.023** —0.026**—0.028**—0.026**—0.029**—0.031**
School quality (0.005) (0.005) (0.004) (0.005) (0.005) (0.005)

Observations 13,236 13,236 13,236 13,236 13,236 13,236

Panel B

KS2 attainment 0.006 0.002
(Local school) (0.005) (0.005)

Value-added 0.006* 0.015***
(Local school) (0.004) (0.004)

KS2 attainment 0.005 -0.001
(Nearest three) (0.004) (0.005)

Value-added 0.007** 0.016***
(Nearest three) (0.003) (0.005)

KS2 attainment 0.006 0.004
(LA schools) (0.004) (0.004)

Value-added (LA 0.008** 0.012**
schools) (0.003) (0.005)

Flat x -0.005 -0.006 -0.008* -0.002 -0.002 -0.004
KS2 (0.005) (0.005) (0.004) (0.006) (0.006) (0.005)

Flat x -0.001 -0.003 -0.007* —0.015**—0.020**—0.020**:
Value-added (0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

Observations 11,384 11,384 11,384 11,384 11,384 11,384

Notes Columns (1)—(3) use school quality measures for the previous year. 
Columns (4)-(6) use the average school quality measures for the past three 
years. All specifications control for housing characteristics, neighbourhood 
traits, year-month dummies, and dwelling fixed effects. *, **, and *** denote 
significance at 10%, 5%, and 1% levels respectively. Cluster-robust standard er­
rors at the dwelling or LSOA levels are in parentheses.
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Chapter

Better Buildings, Better Scores? The 

Short-Run Effect of a Large School 

Construction Programme

3.1 Introduction

Do students do better academically when placed in well-equipped class­

rooms at modem design schools? The answer to this question is of legitimate 

policy concern to the government and the public, particularly in the context 

where public capital expenditure on education has seen a rapid increase until 

recently. In England, capital spending on school buildings increased consid­

erably by 12.9% every year in real terms from 1997/98 to 2008/2009, while 

current spending increased at a 5.0% annual rate . 1 6  In spite of this dramatic 

growth, the returns in academic attainment to these large capital investments 

remain a mystery.

The fastest-growing area in educational capital spending in England is the 

investment on secondary school estate through a programme named Build­

ing Schools for the Future (BSF). Launched in 2003, BSF aims to rebuild or

16Source: DCSF (2009), Table 8.5.
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renovate all England's 3,500 secondary schools by 2020. The whole pro­

gramme is due to cost £55 billion, making it the biggest single capital invest­

ment programme in 50 years. Due to its large scale, the programme is split 

into 15 waves, prioritising the most deprived and low-performing schools 

and areas.

This chapter evaluates the short-run effect of BSF on student test scores. 

The main objective of this chapter is to provide causal evidence on the ef­

fectiveness of school capital investment on student academic achievement. 

While recognising that the treatment is not randomly assigned across all 

schools, I adopt a difference-in-differences (DiD) empirical strategy that takes 

advantage of the phasing design of BSF, by comparing changes in student 

test scores for the schools where the policy intervention took place earlier, to 

changes for the schools which were rebuilt later. Though schools in the first 

and last waves may be systematically different, I argue that schools in earlier 

few waves are similar in characteristics and performance, thus more likely to 

follow similar trends over time. With the availability of multiple periods of 

pre-treatment data, I am able to assess this identification assumption by run­

ning placebo tests to investigate whether there is any significant difference 

between the test score trends for the treatment and control groups.

The most significant finding is that BSF produces large test score gains 

for disadvantaged pupils. Looking by pupil background, I find strong evi­

dence that academically and socio-economically disadvantaged students en­

joy large and positive gains, but their more advantaged counterparts do not. 

This leads to a positive effect on the average test scores for all treated pupils, 

but this overall effect is not significantly from zero. I also find evidence sug­

gesting heterogeneous effects by school types, exposure to the treatment, and 

project types. Autonomous academy schools constructed under BSF have 

larger effects compared to non-academy BSF schools. Longer exposure to the
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treatment appears to generate larger effects, particularly in the third year af­

ter treatment, but these effects are not statistically significant. Different levels 

of renewal to the school also generate heterogeneous test score gains. How­

ever, somewhat surprisingly, minor refurbishment works and information 

and communications technology (ICT) installation seem to produce higher 

test score gains than more costly new build projects. This might reflect the 

fact that the more extensive new build projects lead to more disruptions to 

student learning during the construction. These results are not driven by 

selection of students into BSF schools.

The remainder of this chapter proceeds as follows. Section 3.2 relates this 

chapter to the existing literature. Section 3.3 provides details on the back­

ground of the programme, followed by a description of how it enables the 

empirical methodology outlined in Section 3.4. Next, Section 3.5 describes 

the data and assesses the trends in test scores for various subgroups. Sec­

tion 3.6 presents and discusses the results. Section 3.7 checks the robustness 

of the empirical findings. Section 3.8 concludes.

3.2 Related Literature

The Coleman Report (Coleman et al. 1966) spawned the debate on the effec­

tiveness of input-based schooling policies. It reports that school resources 

have little effect on pupil achievement once student background and socioe­

conomic status are controlled for. Since then, a large body of research has 

been carried out to establish the association between school inputs and edu­

cational outcomes (see Hanushek 2003 and Krueger 2003 for recent surveys 

and debate). Various school inputs such as class size reduction17, pupil-

17Angrist and Lavy (1999); Krueger and Whitmore (2001); Fredriksson, Ockert and Oost- 
erbeek (2012).
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teacher ratio18, and teacher quality19, etc., have been explored to assess their 

impact on students' educational attainment, and sometimes to a further ex­

tent, their labour market performance after schooling is completed20. How­

ever, with the sizable literature on school resources still growing, evidence is 

scarce on the effect of capital investment in school facilities.

Outside the economics discipline, a literature has been seeking to explore 

how and why school facilities might affect learning outcomes. The first chan­

nel is a direct effect on learning effectiveness from better physical attributes. 

Facilities such as air conditioning, heating, fluorescent lighting reduce the 

distractions from poor conditions and provide a more enjoyable learning en­

vironment. From the perspective of educational research, Schneider (2002) 

reviews studies on physical facility attributes of indoor air quality, ventila­

tion, and thermal comfort, lighting, acoustics, and building age and quality. 

He concludes that these physical attributes obviously bear on students' abil­

ity to perform. Second, there may also exist a psychological effect where bet­

ter conditions make pupils feel more valued and more motivated to learn 

(Woolner et al. 2007). Third, ICT equipment as a complement (or some­

times substitute) to traditional teaching, might make pupils more interested 

in studying. Lastly, the effect can operate through teaching. Better facili­

ties may attract better teachers and boost their morale (Buckley, Schneider 

and Shang 2004; Schneider 2003), therefore adding more values to education 

production. While it sheds light on the possible mechanisms through which 

school capital inputs might affect educational outcomes, a downside of this 

literature is that a causal link is often missing. As school capital investments 

are usually not randomly allocated, finding causal evidence from observa­

tional data is often difficult.
18Examples include Case and Deaton (1999); Dearden, Ferri and Meghir (2002).
19See Hanushek and Rivkin (2006) for a review.
20See, for instance, Card and Krueger (1992); Duflo (2004); Chetty et al. (2011); Fredriksson, 

Ockert and Oosterbeek (2012).
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A small literature in economics has been trying to fill this gap. Jones and 

Zimmer (2001) are among the first to directly assess the impact of school cap­

ital inputs on academic achievement. Without an accurate measure of school 

capital stock, they use the school district's bond indebtedness as a proxy, and 

employ a series of determinants of debt to instrument for it. They report a 

large positive association between bond indebtedness and academic achieve­

ment; one standard deviation (SD) increase in per-student debt is associated 

with 0.1-0.2 SD increase in test scores21. However, it may be argued that 

the debt determinants could be confounded with other factors at the district 

which also affect educational outcomes.

Duflo (2001) studies the effect of a major Indonesian primary school con­

struction programme in the 1970s, one of the largest of its kind on record, on 

educational attainment and wages. Within a difference-in-differences frame­

work, she examines the educational outcomes for pupils born in different 

years (which determines whether a pupil was exposed to the programme) in 

different regions (which determines whether the exposure to the programme 

was high or low), and finds that each primary school constructed per 1 , 0 0 0  

children led to an average increase of 0.12-0.19 years of schooling. She fur­

ther estimates the labour market consequences of the programme, and finds 

a 1.5-2.7% increase in wages for the treated. Duflo's study may be more 

focused on education provision than school buildings, since the Indonesian 

programme was mainly providing new schools instead of replacing old ones, 

in a country with relatively low human capital development. It's unlikely 

these results could be extrapolated to developed countries, where human 

capital development is high and attending schools are compulsory for chil­

dren. In the context of developed countries, the more relevant issue is to 

replace or renovate deteriorating buildings and facilities with new construc­

21 Calculated from their reported results in Tables 3 and 4 (pp .583-584).
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tion and modern equipment.

Two recently studies by Cellini, Ferreira and Rothstein (2010) and Neilson 

and Zimmerman (2014) exploit more credibly exogenous variation in school 

capital spending. Cellini, Ferreira and Rothstein (2010) examine a school in­

frastructure investment program in California. They adopt a dynamic re­

gression discontinuity approach to study the effect of school capital projects 

funded by local bonds, by comparing districts where school bond referenda 

passed or failed by narrow margins. They find a large and persistent effect 

on home prices, but weak evidence on test score gains. Test score effects are 

small and insignificant for the first several years after bond passage, peak 

during the sixth year at around one sixth of a school-level deviation and be­

come marginally significant, and fall back to zero thereafter.

Due to the nature of regression discontinuity design, the effect Cellini, 

Ferreira and Rothstein (2010) find is very local in the whole distribution of 

school capital investment. Neilson and Zimmerman (2014) study a bigger 

(but lower) part of the capital investment distribution by exploring a school 

construction programme in a poor U.S. district, which was implemented in a 

wide span of 16 years. They use a DiD strategy to exploit the variation in oc­

cupancy dates of new school buildings. They also use panel data to address 

the possible issue of student selection into newly-built schools. Their results 

show large effects on both home prices and reading scores. Home prices in­

creased by 10% due to school construction, and reading scores rose by 0.15 

SD after six years of occupancy, but math scores did not exhibit similar ef­

fects. There are two missing features from their study. First, although they 

can observe different levels of capital investment, they do not distinguish the 

potential heterogeneous effects of these project types. Second, they do not 

investigate whether the school construction affects different socio-economic 

subgroups in different ways.
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Besides these papers that examine general school capital investments, a 

few studies have specifically focused on the effect of school technology in­

vestment on education outcomes. The evidence is mixed. Angrist and Lavy 

(2 0 0 2 ) follow an instrumental variable approach to exploit exogenous vari­

ation in computer use at schools generated by priorities in a funding pro­

gramme in Israel. Computer use in receipt schools saw a substantial increase, 

but no or even a negative association with achievement was found. Gools- 

bee and Guryan (2006) take advantage of a regression discontinuity in ICT 

investments created by a government subsidy in California by comparing 

schools which receive and miss the funding cutoff points, they do not find a 

significant effect. Machin, McNally and Silva (2007) devise an instrumental 

variable which indexes gaining or losing from a policy change in ICT fund­

ing rules, and find a positive and significant effect for English and Science 

at the end of primary school, but not for Maths. As BSF also includes ICT 

installation, this chapter also relates to these studies in assessing the effect of 

ICT investments on test scores.

This chapter provides new evidence on the effectiveness of school capital 

investment in raising academic attainment. It moves the literature forward 

in a number of ways. The first contribution is that it studies a programme 

that enables a simple and effective identification strategy to deal with selec­

tion issues and elicit the causal effect of school capital investment on student 

test scores. Under the BSF programme, clear-cut prioritisation rules are set 

to determine the wave in which schools enter the programme. Such phasing 

design makes the empirical strategy feasible in controlling for the selection 

into treatment. The prioritisation rules imply that schools placed in neigh­

bouring waves have similar pre-treatment characteristics and performance, 

thus are more likely to follow common trends.

Secondly, it adds to the literature by exploring different pupil backgrounds
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and treatment intensity to investigate potential heterogeneous treatment ef­

fects of school construction. It examines which groups of students benefit 

more from the policy intervention. As input-based policy interventions often 

target disadvantaged groups, the findings are useful for assessing the costs 

and benefits of such policies. Moreover, the dataset has an advantage in that 

it provides information on the levels of school renewal, which makes it possi­

ble to assess how the effects vary with treatment intensity. Additionally, this 

chapter also provides some dynamics in how the treatment effects emerge 

over time.

Thirdly, as a national programme, the scale of BSF is larger than that of 

city- or state-wide programmes studied in previous literature. This large 

scale of the programme makes the findings more representative.

3.3 The BSF programme

BSF was launched in 2003 by the then UK Labour government to support 

teaching and learning by providing schools with modem buildings and fa­

cilities. It aimed to rebuild or refurbish all of England's 3,500 state secondary 

schools by 2020, with an estimated cost of £55 billion. This would it make the 

single largest capital investment programme in the UK for 50 years.

In a sequence of calls for proposals, Local Education Authorities (LEAs) 

were invited to submit expressions of interest for inclusion in the programme. 

Each project usually consisted a group of schools which were geographically 

coherent to the LEA. The proposals were assessed by the central government 

education department22, and accepted ones were placed in a sequence of 

waves to be carried out in sequence. The first six waves were announced

22Department for Education and Skills (DfES) during 2001-2007, later known as Depart­
ment for Children, Schools and Families (DCSF) between 2007 and 2010, and subsequently 
Department for Education (DfE) from 2010 onwards.
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in 2004, covering over 600 schools managed by 50 LEAs. By 2009, waves 

1-15 had been announced, involving two thirds of all LEAs in England. In 

addition, a number of LEAs originally placed in waves 7-15 were awarded 

funding for a one-school pathfinder project.

The order in which school projects entered the programme was priori­

tised on the basis of two core criteria: social deprivation and educational 

need. Deprivation is measured by the percentage of pupils eligible for a 

free school meal (FSM)23. Educational need is measured by the percentage of 

pupils achieving 5 or more A*-C grades2 4  in GCSE exams including English 

and Maths, a headline indicator for school performance. The two criteria are 

assigned equal weights and summed up to produce a final ranking score. 2 5  

Areas and schools with higher deprivation and lower performance therefore 

obtained a higher score and entered the programme first.

The project implementation proved the programme too ambitious. At 

the time of announcement, the government expected 2 0 0  schools would be 

open by December 2008 (DfES 2004). The actual delivery fell behind initially 

planned progress. By 2010, approximately £10 billion had been spent (see 

Figure 3.1), but only 175 schools had their construction projects completed. 

Following a spending review in 2010, BSF was scrapped by the new coalition 

government. Planned projects for over 700 schools were cancelled, while 

another 600 schools which had already received capital allocation and signed 

procurement contracts were allowed to go ahead.

As of July 2010, construction had been completed in 175 secondary schools, 

of which 137 are mainstream schools26. Table 3.1a lists the the progress of BSF

23For waves 7-15, this measure is changed to Tax Credit Indicator (TCI) index.
24There are eight pass grades, in descending order: A*, A, B, C, D, E, F and G.
25To take into account different spreads of the two criteria, the two percentages are 

standardised using national SD. GCSE score is subtracted from 100 to achieve an under­
achievement figure. Specifically, the final ranking score is calculated as: nafondSDfoIFSM  +
/ in n  ______ % 5+ A*-C grades in GCSE_______\
V ~  national SD for % 5+ A*-C grades in GCSE' '

26Others include special schools which provide special education, and Pupil Referral Units
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till 2009/10 by year and wave. The majority of the completed schools are 

from Waves 1-3 and one-school pathfinder projects to be constructed around 

a similar time with Waves 1-3.

Schools received different levels of renewal under BSF. There are four 

types of construction projects: new build, which involved completely re­

building existing schools, or making new provisions where there were no 

existing schools; refurbishment of existing schools; a combination of new 

build and refurbishment; and information and communication technology 

(ICT) installation only. Table 3.1b details the numbers of schools constructed 

by 2010 under BSF by project type. Around half of the schools (67 out of 137) 

were constructed as new build projects, while the other half received ICT in­

stallation only ( 2 1  schools), refurbishment ( 2 2  schools), or a mix of new build 

and refurbishment (27 schools).

The amount of capital investment is substantially different among the 

four project types. ICT installation projects are allocated funding of £1.7 

thousand per pupil .2 7  Building project (also including ICT) costs range from 

£2.5 to £31 thousand per pupil, with an average of £17 thousand per pupil28. 

The equivalents to over three years of current spending. Academies con­

structed under BSF cost less due to reduction in building area and specifica­

tion. The average is £10 thousand per pupil.

3.4 Empirical Methodology

This section outlines the empirical framework that is used to estimate the 

effect of BSF on student test scores. Let Tist denote the academic achievement

(PRU), which provide education students who are excluded from or unable to attend main­
stream schools.

27Source: Partnerships for Schools (PfS).
28Source: UK Parliament House of Commons Hansard, HC Deb 7 Mar 2012 vol 541 cc799- 

800W. Available at http://www.publications.parliam ent.uk/pa/cm 201212/cnihansrd/ 
cml20307/text/120307w0003. htm, last accessed Janurary 2014.
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of student i in school s at year t. We start with an OLS estimator based on the 

following equation:

Tist — h  +  fiBSFst +  XiSty  +  TiS/t_5Si +  7/S/f_ 2 ^ 2  +  £istr (3-1)

where BSFst is a dummy variable that takes the value of 1 if school s has 

finished BSF construction by year t, and 0 otherwise. Controls include ob­

servable student characteristics Xist and the time effects A*. £ist represents 

the error term. The parameter of interest, /3, measures how BSF affects the 

academic achievement of the treated students.

We include the term Tf^-5 , KS2 attainment at the end of the primary 

school phase, and Tjjrt_2 , KS3 attainment during the secondary school phase, 

in the current education production. This is motivated by the fact that we 

do not observe historical inputs and ability endowment for the students, yet 

they might still have an impact on current attainment. The prior attainment 

acts as a proxy for historical inputs and endowed ability in the education 

production function. This value-added model has been widely adopted for 

assessing teaching quality, although recent literature has questioned the va­

lidity of the geometric decay assumption (Todd and Wolpin 2003,2007; Roth­

stein 2010). On the other hand, there is also research that finds value-added 

models exhibit little forecast bias in the evaluation of teacher quality (Chetty, 

Friedman and Rockoff 2014). We employ this value-added specification to 

mitigate the lack of historical input data and to control for heterogeneity in 

student background.

The OLS estimate of /3 is unbiased if BSFst is randomly assigned. This 

assumption is unrealistic since BSF clearly selects more deprived and low- 

performing schools for earlier intervention. To control for this selection, we 

include the school fixed effects ccs to construct a DiD estimator as set up in 

the following equation:
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Tist — Af +  a s +  fiBSFst +  +  TiS/t_^Si +  T{s>t_  2S2 +  £ist- (3-2)

The key identification assumption for the DiD estimation strategy is the 

common trend assumption, i.e., the time paths of academic achievement, At, 

would not differ systematically for students in earlier BSF schools and those 

in later BSF schools, had the intervention not taken place. Under this as­

sumption, /3 retrieves the average treatment effect of BSF programme for the 

treated.

We are concerned that equation (3.2) may not adequately control for con­

founding factors that are entangled with BSF. A threat to the correct identi­

fication of /3 is policy interventions that took place at the same time as BSF. 

Two programmes are worth noting. The first is that some disadvantaged 

schools convert to academies as part of BSF delivery. Academies are self- 

governing independent schools that are funded directly by the central gov­

ernment rather than a local authority. Literature has documented that con­

verting to academies improves the school's academic performance (Machin 

and Vernoit 2011; Machin and Silva 2013). If the conversion is positively 

correlated with BSF, our estimates could be biased upwards. Fortunately this 

confounding factor is observable, so we can directly control for it. The second 

is the Devolved Formula Capital (DFC) programme, which allocates capital 

income to schools purely on a formulaic basis. The key factor that determines 

the DFC allocation is the number of pupils. As the school size is relatively 

stable over time, this can be controlled for in the school fixed effect, so that 

the effect of BSF capital investments can be isolated from that of devolved 

capital investments.

In addition to the two confounding programmes mentioned above, we 

also control for per-pupil current expenditure for the school, out of the con­

cern that the funding authorities might substitute between current and capi­
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tal funding. If current spending is effective in raising academic achievement, 

and the balancing consideration in allocating current and capital funds ex­

ists, then failing to control for current spending will bias the estimates of BSF 

effects downwards.

Adding controls for confounding programmes and spending discussed 

above at the school level, Szs, leads to the following specification:

Tist  — Af +  Dig +  f$BSFst +  Xjsty  +  TiSft -  5 ^ 1  +  T;S/f_2 <5>2 +  Si s£ +  £jS£. (3.3)

In addition, to allow for potential heterogeneous effect for academies, we also 

estimate a variation of equation (3.3) which includes a dummy for academy 

conversion academ ys* and an interaction term BSFst x academ ys*.

The common trend identification assumption is not formally testable, but 

with the availability of multiple periods of pre-treatment data, we are able 

to assess whether the two groups follow a similar trend before the interven­

tion took place. In order to analyse the pre-treatment trends, we augment 

equation (3.3) by including p leads and q lags following Autor (2003):

- l
Tist =  ~F K-s +  ^  PrBSFsr +  fir BSFst

r = - p  r=o (3.4)

+ Xis t 'y + TiSft - s S i  + T;S/£_2̂ 2 + Sfsf + Cist,

where BS Fsr equals 1 if current period is year t  relative to intervention, and 

0 otherwise. The completion year is normalised to year 0.

This has a few advantages. First, including leads helps assess whether the 

pre-treatment trends are similar for both groups. This acts as a placebo test. 

Each lead indicator can be thought of as a placebo treatment. If the common- 

trend identification assumption holds, we should expect to find no effect of 

these placebo treatments.
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Second, if it takes time for the effect to fully emerge, including lags en­

ables us to observe the dynamics of the treatment effect. Because construc­

tion completion dates are different across treated schools, one could argue 

that treatment intensity is not the same across all treated students at a given 

time t, as the time lengths of the exposure to new buildings are different. In­

cluding lags circumvents this problem, since the dose of exposure is allowed 

to differ within the treated group. If the effect lasts, it can be expected that 

students exposed to longer period of treatment experience larger effects. 2 9

Third, anticipatory behaviour could pose a threat to identification. Stu­

dents in anticipation of new school buildings and facilities may be motivated 

to exert more effort to studies. Parents expecting new school capital invest­

ment might substitute it for less family inputs on their children's education. 

These anticipatory changes in inputs from the student and their parents may 

bias the estimates as the common-trend assumption will no longer be valid. 

This anticipatory effect can be examined by testing whether lead indicators 

are significant.

There are reasons to suspect students with different backgrounds derive 

heterogeneous benefits from the programme. One one hand, academically 

and socioeconomically disadvantaged children have fewer resources avail­

able from other sources, therefore additional school inputs may have a larger 

effect on them. On the other hand, advantaged children may have higher 

ability in utilizing available resources, so the same programme may be more 

effective among them. Literature offers mixed evidence on this aspect. For 

instance, Krueger's (1999) experimental estimates from the STAR experiment 

find larger effects of class size reduction on minority and free lunch stu­

dents. Using the same experiment but different statistical procedures, Ding

29 On the other hand, it could also be argued that school infrastructure wears down over 
time so later cohorts derive less benefit from it compared to earlier cohorts. But this case is 
unlikely as in this analysis the post-treatment period is short.
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and Lehrer (2011) reject the evidence for larger effects on socioeconomically 

disadvantaged children, and find larger cognitive gains for academically ad­

vantaged children. Heterogeneity in treatment effects of BSF is of particu­

lar policy relevance, since the programme prioritises socioeconomically and 

academically disadvantaged schools and areas. To explore potential hetero­

geneous treatment effects at the individual level, we estimate the following 

regression equation

Tis t =  A f +  DCs +  Y l i P S B S F s t  x  G is t  +  X i s t y

g (3.5)
+ TiStt-561 + Ti$ft-2$2 + SisC +  tist,

where G/s* is a list of indicators for pupil academic and socioeconomic back­

ground drawn from X lst, and {$ captures the BSF effect for subgroup g.

Lastly, to have a closer look at the effects of different project types, we 

expand the empirical model (3.3) by allowing for heterogeneous effect across 

various project types:

Tist =  Af +  as +  E  PmBSF$ +  X ist7
m (3.6)

+ Tisrt-5^1 +  Tisrt-2$2 + Sis£ +  tist,

where m indicates one of the four types of projects: new build, refurbishment, 

a mixture of new build and refurbishment, and ICT only.

One limitation of this study is that it only focuses on the short-run effect. 

As the data only cover the period up to 2009/10, it's only possible to examine 

the short-run effect of BSF, with the exposure to new infrastructure up to

three years. This inevitably loses out some interesting dynamics in student

enrollm en t and academic achievement.

On the other hand, focusing on the short run makes it easier to distin­
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guish between two channels through which capital investment might raise 

academic performance. It's possible that there is a direct effect of capital 

investment on student achievement; it's also possible that the new facul­

ties attract better students thus improving the school's performance. The 

second channel will likely change the school choice equilibrium in the local 

area. These changes could potentially give rise to different dynamics for the 

treated group and control group, which would cast doubt on the validity of 

the common trend assumption. In this case jS captures an amalgamation of 

the direct effect of BSF on test scores and an indirect effect through the intake 

of better students. It would then be difficult to distinguish between the two 

effects if the treated schools and control schools compete for the same pool 

of candidates. But since our analysis is restricted to the short run, the stu­

dents whose test scores we can observe at the end of secondary school are 

not new students admitted after the intervention, but enrolled students who 

have been admitted prior to the treatment.

A further possibility is that students select into BSF schools in advance 

based on the belief of future treatment. In this case, restricting the analysis 

to the short run does not separate the direct effect from the student intake 

effect. To examine this possibility, we provide robustness checks on cohort 

composition changes to investigate whether the student intake has changed 

before and after the BSF programme.

3.5 Data

3.5.1 Data Sources

The delivery agent of BSF, Partnerships for Schools (PfS), published the list 

of schools that had been constructed under the BSF programme by July 2010. 

The list also provides information on what type the project was, and the date

59



when new buildings and facilities were open to students. I match this list 

to two external sources which provide more information at the school level. 

To find out the full history of the sampled schools for the analysis period 

2003/04-2009/2010,1 link the list to EduBase, which records all current edu­

cational establishments in England and Wales and their predecessor schools. 

Next I match the list to school revenue balances data, which record the an­

nual balances of current spending account for all state-maintained schools in 

England, excluding academies. Each school's per-pupil current spending is 

calculated using the current account balance and its proportion in the total 

current income.

The microdata in this analysis are administrative data drawn from the 

National Pupil Database (NPD). The NPD keeps records of all pupils in state 

schools of England. The key source of the data is a school census conducted 

each year since 2 0 0 2  (every term from 2006 onwards), providing information 

on school and pupil characteristics. At the pupil level, the NPD provides 

socio-economic background information including gender, ethnicity, having 

English as an additional language (EAL), special education needs (SEN), and 

eligibility for free school meal (FSM). The pupil-level record can be linked to 

the student's attainment at former Key Stages (KS)30. The outcome of inter­

est in this analysis is the academic attainment at age 16, by which time sec­

ondary schools students take GCSE exams or equivalent tests in a number of 

subjects. I use the average GCSE and equivalents test score as the outcome 

for academic attainment. Details of summary statistics of the variables are 

available in Table 3.2.
30The compulsory state education system in England and Wales is divided into four 

stages: primary education consists of KS1 (school years 1-2 for ages 5-7) and KS2 (school 
years 3-6 for ages 7-11), and secondary education is split into KS3 (school years 7-9 for ages 
11-14) and KS4 (school years 10-11 for ages 14-16).

60



3.5.2 Trends in Academic Achievement

This subsection presents some graphical evidence at aggregate levels. Fig­

ure 3.2 plots the trends of the average test scores for BSF schools and all Eng­

land schools. The solid line represents the achievement for the BSF schools 

that had completed construction by 2009/10, the dashed line for the BSF 

schools that were still in progress by 2009/10, and the dotted line for the 

non-BSF state secondary schools in England. The "+" sign indicates the year 

when pupils started to benefit from BSF buildings and facilities. A few ob­

servations can be made from this graph. First, average test scores had been 

rising steadily during the period of analysis. The figures show that average 

test scores trend upwards both before and after first occupancy. This high­

lights the necessity of controlling for time effects in the analysis, and shows 

that failing to do so would bias the results upwards. Next, it is also notice­

able that there's a large performance gap between BSF schools and non-BSF 

schools, and BSF schools fall behind non-BSF schools. This confirms the BSF 

prioritisation criteria which selected schools in greater social and educational 

need for early treatment. Third, the performance gap is narrowing over time. 

It starts at about a quarter of a school-level SD31, and gradually narrows to 

about 0.17 SD. This suggests that non-BSF schools are not a suitable control 

group for the DiD analysis as the two groups seem to follow different time 

trends. Finally, it is worth noting that completed BSF schools follow ongoing 

BSF schools more closely than they do the non-BSF schools. This suggests 

ongoing BSF schools provide a better control group than non-BSF schools.

Figures 3.3 plots the average test score by wave. Waves 7-15 (short- 

dashed line) have no school construction completed under BSF during the 

sample period. One-school pathfinders (dash-dotted line) and Waves 4-6

31 The national school-level standard SD of average GCSE and equivalent test scores in 
England for the sample period is 11.04.
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(dashed line) have their first schools opened in 2008/09 and 2009/10, so they 

are treated with a smaller dose in terms of time length. They appear to follow 

similar attainment trends with non-treated Waves 7-15 throughout the sam­

ple period both pre- and post-treatment. Waves 1-3 are treated for a longer 

period, with the first school opened in 2006/07. During the pre-treatment 

period, Waves 1-3 and Waves 7-15 circle around a similar upward trend; but 

during the post-treatment period, Waves 1-3 seem to perform consistently 

higher than Waves 7-15. This suggests that a positive effect is likely to be 

found for Waves 1-3.

As we will explore the heterogeneity of BSF effects by academy status 

and project type, it is important to ensure that the consequent treatment sub­

groups exhibit similar pre-treatment trends with the control group as well. 

Figures 3.4 and 3.5 further break down the treated schools by academy con­

version status and project type. Figure 3.4 illustrates that BSF hardly changes 

the performance of non-academy schools, but creates a break in trends for 

academies. For non-academies, treated and non-treated groups are hardly 

distinguishable in terms of performance. For academies, BSF schools fall 

behind non-BSF schools in a parallel fashion, and seem to catch up post­

treatment. Data in Figure 3.5 are noisier, and breaks in trends are less visible.

Figures above exhibit very different patterns, but a fairly common feature 

is that the treatment group and control group share similar pre-treatment 

trends. This offers confidence in the key identification assumption that the 

treatment group and control group experience common time effects over the 

sample period.
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3.6 Results

3.6.1 Baseline Results

Table 3.3 reports the baseline estimates of the impact of BSF on student av­

erage score in GCSE and equivalent tests. Columns (1)—(3) present the re­

sults for the OLS estimator from equation (3.1), which does not control for 

school fixed effects and simply compares the students from treated schools 

with those from non-treated schools; columns (4)-(6) report the results of the 

DiD estimator from equations (3.2) and (3.3), taking into account the pre­

treatment differences between schools. Standard errors in all specifications 

allow for arbitrary correlation within the same school. This is motivated by 

a concern raised by Bertrand, Duflo and Mullainathan (2004) that serial cor­

relation within the same group will produce incorrect standard errors and 

cause overrejection of the null hypothesis of no effect in DiD estimations.

Column (1) only controls for pupil characteristics, including number of 

GCSE and equivalent test entries, gender, IDACI score of the pupil's home 

area, having SEN or not, EAL, FSM eligibility, race, and prior attainment on 

English, Maths, and Science at KS3 and KS2. It shows that BSF treatment is 

associated with a large and significant increase of 2.19 points in the KS4 av­

erage test score, or 0.20 SD. Students who enter more GCSE and equivalent 

tests tend to do better, possibly because they are more motivated and exert 

more effort on studies; the negative quadratic term shows the rate of increase 

diminishes with the number of test entries. Conditional on other factors, girls 

perform better than boys. Students coming from a poor family background, 

proxied by the IDACI3 2  score of their living area, having SEN and eligibility 

for FSM, suffer a disadvantage compared to their counterparts with better

32Income Deprivation Affecting Children Index (IDACI) is an index of deprivation, which 
measures the proportion of children under the age of 16 that live in low income households 
in a local area.
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socioeconomic background. Ethnic and language minorities seem to do bet­

ter in our sample. Students who speak English as an additional language at 

home score higher than native speakers. Broken down the scores by race, the 

results reveal that all other ethnicity groups perform better than the omitted 

white British group.

Column (2) further controls for prior attainment at KS3 and KS2. We no­

tice that previous test scores strongly predict current pupil performance, and 

the coefficients on some family background proxy variables such as IDACI, 

SEN, and FSM are reduced, but still remain highly significant. As the inclu­

sion of previous test scores has already incorporated the effects of historical 

family inputs on current attainment, any residual effect of the family back­

ground variables must be contemporaneous effect. In connection with the 

discussion in Todd and Wolpin (2003), this result suggests that measures of 

contemporaneous family inputs should not be left out from the value-added 

specification. The change in point estimates on BSF is very small. This sug­

gests not taking into account historical inputs might not bias the estimates on 

current inputs by much. The precision of the estimates on BSF and covariates 

improves. Thus we control for prior attainment throughout the following 

specifications.

Column (3) then controls for year fixed effects on top of pupil character­

istics and prior attainment. Due to an upward trend over the sample period, 

the BSF coefficient becomes significantly lower. The point estimate is reduced 

to 0.30, only a slight proportion of the previous estimates, and becomes only 

borderline significant at 10% level. This implies that if one simply compares 

the post- and pre-treatment academic attainment for the students in treated 

schools, the estimate of the BSF effects will be largely biased upwards, be­

cause the treated schools are performing better over time even without the 

BSF intervention.
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The next three columns report the DiD estimates, adding controls for 

school fixed effects. Column (4) corresponds to the results for equation (3 .2 ). 

Comparing columns (3) and (4) reveals two observations. First, the point es­

timate on BSF now becomes statistically insignificant. Second, this estimate 

only changes by a small amount. This suggests that within the sample, the 

selection into treatment is not severe. The point estimate reveals that the av­

erage treatment effect of studying in a BSF school is 0.22 point scores, or 0.02 

SD.

The last two columns deal with policy interventions that took place around 

similar time as BSF, as laid out in equation (3.3). Column (5) controls for 

academy conversion, and allows for heterogeneous effects for BSF academies. 

In the absence of BSF, academy conversion gives rise to a significant improve­

ment in pupil performance. This finding is consistent with Machin and Ver- 

noit (2011). On top of this, BSF has a significantly larger effect on academies 

relative to non-academy schools. The difference is 1.53 points, or 0.15 SD. 

Despite this large difference, the estimates on BSF change very little between 

Columns (4) and (5), mainly because academies only take up a small propor­

tion of the sample.

Column (6 ) adds controls for per-pupil current spending for the three re­

cent years. This applies to non-academy schools only, as current spending 

data on academies are not available for this period. The BSF effect is com­

parable to those obtained in columns (4) and (5). The coefficients on recent 

current spending for the last three years are of similar magnitude, but not 

all three are significant. It's worthwhile to point out that this association be­

tween current spending and test scores is not necessarily causal.

How large are the BSF effects? In a review of recent evidence on the ef­

fect of school resource expenditures, Gibbons and McNally (2013) summarise 

that small effects in the literature are in the order of 0.02-0.05 SD for a 30% in-
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crease in expenditures, whereas large effects are in the order of 0.25-0.30 SD. 

At first glance, our estimates appear very small, considering the average cost 

per school under BSF is three times the annual current operational spend­

ing. But this would not be comparing like with like, as BSF investments are 

large initial capital expenditure, with a stream of potential future returns. So 

without knowing how long the returns will last, it's impossible to benchmark 

these results with studies on current spending by spending terms. Compar­

ison with similar studies on school construction is more plausible. In terms 

of average investment per school, BSF is similar in the order of magnitudes 

with the school construction programme in Neilson and Zimmerman (2014). 

In this analysis, the average time length of treatment under BSF is 1.3 years, 

so it makes sense to compare our estimates with their results for one year 

after treatment. They find a 0.046 SD positive effect on reading scores, but no 

effect on maths, after one year of occupation in new school buildings. Based 

on an assumption of equal weights, the gains on average test score would be 

0.023 SD. Our results for overall effects (around 0.02 SD) are very similar in 

size to this figure, but not statistically significant. Benchmarked to this figure, 

the 0.17 SD effects on academies are large.

3.6.2 Heterogeneity by Dose and Placebo Tests

BSF schools differ in the doses of treatment exposure, as the construction 

work was finished at different times across schools. During a given year, 

earlier finished schools received longer treatment than later finished schools. 

In addition, anticipatory effects could obscure estimates for the treatment 

effects. In order to accommodate the potential dynamic and anticipatory ef­

fects, Table 3.4 reports the estimates for equation (3.4), which is augmented 

by including leads and lags of the treatment. Specifically, indicator variables 

are added for years 1-4 prior to BSF project completion, and years 0-3 after
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the competition. Year 5 and before is the omitted category. Ongoing schools 

are also left in the omitted category as we not able to determine their year 

of treatment. Column (1 ) reports the estimates ignoring time-variant school- 

level variables. Columns (2)-(3) further control for academy conversion and 

current spending respectively. To aid with illustration, the estimated coeffi­

cients and 95% confidence intervals from column (2 ) are plotted in Figure 3.6.

We make two observations from Table 3.4. First, across all three specifica­

tions, the coefficients on lead indicators of years 1-4 prior to project comple­

tion are close to zero. This shows that there is little evidence of anticipatory 

effects. It also suggests that pre-treatment trends are not significantly differ­

ent between the treatment group and control group.

Second, the point estimate on year 3 lag indicator are very large compared 

to year 1 and year 2. Based on Column (3) results, students exposed to three 

years of treatment score 1.43 points (or 0.13 SD) higher, although this is not 

significantly differently from zero at 10% level. Thus this only offers weak 

evidence that longer exposure creates a bigger effect.

3.6.3 Heterogeneity by Pupil Background

Next we examine whether the treatment effects are heterogeneous by pupils' 

academic and socioeconomic background by estimating equation (3.5). Specif­

ically, we add interaction terms of BSF treatment and pupil background vari­

ables, including prior attainment at KS2, IDACI score, having SEN or not, 

and FSM eligible or not. For simplicity of interpretation, interaction terms 

between BSF and continuous variables (KS2 attainment and IDACI score) 

are constructed as BSF multiplied by three mutually exclusive dummy vari­

ables indicating low (within the lower quartile of each sampled cohort), mid 

(within second and third quartiles), and high (within the upper quartile) 

range of each continuous variable. The results are reported in Table 3.5. For
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each measure of background, two specifications are estimated, controlling 

for academy conversion and per-pupil current spending respectively.

The results paint a clear picture of disproportionate gains by academic 

and socioeconomic background. In general, all the coefficients on interac­

tion terms between BSF and poor background are positive and statistically 

significant at 1% level, whereas the estimates on interactions between BSF 

and better background are close to zero or negative. This demonstrates that 

BSF is more effective in improving academic achievement for disadvantaged 

children. In fact, they seem to be the only subgroup that gain from BSF. The 

effects on students with mid or high KS2 attainment are close to zero and 

insignificant at 10% level; in contrast, the effects on students with low KS2 

attainment are very large and significant at 1% level. The size of the effects 

on low KS2 students are around 0.14 SD. Students in rich areas tend to have 

a negative effect about the size of 0.04 SD, whereas those in poor areas expe­

rience a gain by 0.09 SD. SEN students or FSM students gain by roughly the 

similar magnitude, in the range of 0.07-0.09 SD.

These larger effects of school capital investment for disadvantaged stu­

dents are in line with previous literature that generally finds increases in 

school current inputs to be more effective for disadvantaged schools and/or 

students (Gibbons and McNally 2013). This finding supports BSF's phasing 

strategy that prioritises socially and academically disadvantaged schools and 

areas. More generally, this leads to a policy implication that targeting school 

resources towards disadvantaged students could be more efficient.

3.6.4 Heterogeneity by Proj ect Type

In recognition of potential heterogeneous effects due to that different levels 

of renewal as set out in equation (3.6), Table 3.6 breaks down the BSF treat­

ment into four categories: ICT only, new build, mixture of new build and re-

68



furbishment, and refurbishment only. Column (1) reports the DiD estimates 

of the four treatment variables ignoring time-variant school-level controls 

Sst, whereas columns (2 ) and (3) further control for academy conversion and 

per-pupil current spending respectively. Across the three specifications, BSF 

generally does not have a significant effect among non-academy schools, ex­

cept ICT projects in column (2 ). Besides this, comparison of point estimates 

on the four treatment variables seems to suggest that less costly project types, 

ICT and refurbishment, have bigger effects than more costly new build and 

mixture projects. Considering an average building project cost ten times as 

an ICT only project in terms of per-pupil funding, this result is somewhat 

surprising.

A possible explanation for these seemingly counter-intuitive results is 

that different project types create distinct levels of disturbance during the 

construction period. Major renewal projects involved more construction work 

and could cause more disturbance to teaching and learning. Construction 

work could take one to three years to finish. Some schools placed students 

in temporary classrooms during the construction work, and some continued 

on the original site with construction work took place nearby. The distur­

bance could have a negative impact on short-term academic outcomes, thus 

reducing the estimated treatment effects on major projects. In comparison, 

ICT or refurbishment projects might have caused less disturbance, as it took 

less time to carry out the work, or was done outside term-time.

Another finding from Table 3.6 is that new build academies constructed 

under BSF have larger effects. Column (2) finds that new build projects gen­

erate a significantly larger gain of 1.96 points (0.18 SD) for academies than for 

non-academies. ICT projects also have larger effects on academies, but only 

weakly so.
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3.7 Robustness Check on Cohort Composition Change

In the BSF programme, a school's selection into treatment is partly deter­

mined by its past performance. If this past low performance is transitory, 

this will give us a concern that the treated group might have experienced 

Ashenfelter's (1978) dip before treatment. Ashenfelter's dip is a regularity of­

ten found in labour market training programmes (Heckman and Smith 1999; 

Heckman, Lalonde and Smith 1999), where participants experience a tem­

porary earnings shock prior to programme entry. Formally, this means the 

idiosyncratic error term eist has different expected values for the treatment 

and control groups before the treatment takes place. Earnings for the treated 

group would grow more quickly even in the absence of the programme due 

to their mean-reverting tendency. Thus the DiD estimator is likely to over­

estimate the treatment effect. In the context of BSF, if treated schools are 

selected because of the low performance of a particular pre-treatment co­

hort, we might suspect they would follow a faster growth track because later 

cohorts would perform better even without the programme. We might sus­

pect this composition change creates different dynamics for the treated and 

control groups, thus differencing out fixed effects is not enough to deal with 

the selection bias, and the causal interpretation of the DiD estimates will be 

in doubt. On the other hand, if the pre-treatment low performance is per­

manent and cohort composition is stable before and after the treatment, the 

performance gap between the treated and control groups will be picked up 

by the school fixed effects, so the treatment effect is correctly identified by 

the DiD estimator.

To detect whether Ashenfelter's dip exists in this analysis, now we turn to 

examine the pre- and post-treatment cohort composition change. Specifically, 

we estimate equation (3.4) at the school cohort level using prior attainment 

at KS2 (English, Maths, and Science) and indicators of disadvantage (IDACI,
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SEN, and FSM) as dependant variables. Table 3.7 reports the results. Two 

points are worth noting here. First, the point estimates are mostly insignifi­

cant, indicating little change in cohort composition before, during and after 

the programme for the treated. Second, the signs of the estimates on differ­

ent attainment and characteristics variables are well mixed33. Thus positive 

changes in some dimensions of cohort quality are likely to be balanced out 

by negative changes on other measures. In summary, we interpret these evi­

dence as suggesting stable cohort composition in BSF schools pre- and post­

treatment for the sample period.

3.8 Conclusions

School infrastructure investment is costly. Yet there is little evidence that 

such investments are effective in improving learning outcomes. In this chap­

ter, I utilise the phasing design of BSF and apply difference-in-differences 

methods to estimate the effect of this large school construction programme 

on average test scores. BSF Schools are ranked based on their social and 

educational needs for capital investment, and constructed in a number of 

sequential waves according to their ranking. This phasing design implies 

pre-treatment similarity in schools between neighbouring waves.

The most important finding is that BSF has heterogeneous effects on pupils 

from different backgrounds. I find strong evidence that BSF has large ef­

fects on disadvantaged students. As a matter of fact, only students from the 

low end of academic and socioeconomic backgrounds benefit from the pro­

gramme. Depending on the measure for pupil background, BSF raises the 

average test scores of the bottom quartile students by 0.07-0.14 SD. Spread­

ing the test score gains over all treated students, the overall effects become

33Note that for a positive change in cohort quality, we expect positive signs for point esti­
mates on KS2 attainment, and negative signs for indicators of disadvantage.
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much smaller (0.02 SD) and insignificant. These disproportionate gains sug­

gest that BSF has achieved some success in reducing educational inequality. 

For the implication on policy-making, targeting resources on the disadvan­

taged group may prove more effective.

There is some evidence that the BSF effects vary with school types, ex­

posure to the treatment, and levels of investment. Autonomous academy 

schools experience larger gains than non-academy schools. Longer exposure 

to new school buildings and facilities generate larger effects, particularly af­

ter three years of occupancy, although these effects are not statistically signif­

icant. Somewhat surprisingly, more costly new build projects do not warrant 

larger returns. Instead, the effects of new build projects on test scores are 

very close to zero, and smaller relative to the effects of minor renovation or 

ICT only projects. A plausible explanation is that new build projects take 

more construction work and cause more disturbances to the students.

I emphasise that these findings apply to the very short run. As the whole 

BSF programme has not been completely finished, it is not clear how long it 

will take before the full effects emerge, and how long these effects will last. 

With a longer time horizon in mind, future work might consider medium- 

run and long-run evaluations of this programme on a range of outcomes, 

such as school choices, academic attainment, neighbourhood house prices, 

and labour market performance. Although the majority of later waves are 

cancelled, the completion of ongoing projects will see over 20% of all Eng­

land's secondary schools rebuilt or renovated. Considering this large scale, 

it would be interesting to investigate the long-term effects of BSF on educa­

tional attainment and labour market performance in a general-equilibrium 

framework.
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Table 3.1a: Number of completed BSF schools by year and wave

Wave
2006/07

Completed 
2007/08 2008/09 2009/10

Ongoing Total

Wave 1 5 9 40 33 6 8 155
Wave 2 0 0 2 1 0 57 69
Wave 3 0 0 2 14 77 93
Waves 4-6 0 0 0 5 173 178
Waves 7-15 0 0 0 0 1 0 0 1 0 0

One-school pathfinders 0 0 3 14 2 19
Total 5 9 47 76 477 614

Notes Only mainstream schools with KS4 stage provision are included. 
Source Partnerships for Schools (PfS).

Table 3.1b: Number of completed BSF schools by year and
project type

Project type Year open Total
2006/07 2007/08 2008/09 2009/10

ICT only 0 5 7 9 2 1

New build 0 3 28 36 67

Mixture 1 0 7 19 27

Refurbishment 4 1 5 1 2 2 2

Total 5 9 47 76 137
Notes Only schools with KS4 stage provision are included. 
Source Partnerships for Schools (PfS).
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Table 3.2: Summary statistics

Mean Std. Dev. Min. Max.
Average test score 34.42 10.97 0 58
Project finished by 2010 0.23 0.42 0 1

Project ongoing by 2010 0.77 0.42 0 1

BSF 0.05 0 . 2 2 0 1

ICT only 0 . 0 1 0 . 1 0 0 1

New build 0 . 0 2 0.15 0 1

Mixture 0 . 0 1 0.09 0 1

Refurbish 0 . 0 1 0.09 0 1

Academy 0.04 0.19 0 1

BSF x academy 0 . 0 0 0.06 0 1

ICT only x academy 0 . 0 0 0 . 0 2 0 1

New build x academy 0 . 0 0 0.05 0 1

Per-pupil current spending (£000) 5.40 1 . 2 2 1.54 14.50
GCSE entries 10.18 2.89 0.25 28.00
GCSE entries squared./10 1 1 . 2 0 5.73 0 . 0 1 78.40

Female 0.50 0.50 0 1

IDACI 0.32 0 . 2 0 0 . 0 0 1 . 0 0

SEN 0.23 0.42 0 1

EAL 0.17 0.38 0 1

FSM eligible 0 . 2 2 0.41 0 1

White other 0.03 0.17 0 1

Black 0.07 0.25 0 1

Asian 0 . 1 2 0.33 0 1

Other race 0.03 0.16 0 1

KS3 English 36.62 20.16 0 99

KS3 English missing 0 . 1 0 0.29 0 1

KS3 Maths 69.70 26.89 0 149

KS3 Maths missing 0.05 0.23 0 1

KS3 Science 87.32 33.24 0 174

KS3 Science missing 0.06 0.23 0 1

KS2 English 49.07 21.81 0 109
Continued on next page ...
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. continued from previous page

Mean Std. Dev. Min. Max.

KS2 English missing 0 . 1 0 0.30 0 1

KS2 Maths 54.10 26.16 0 1 0 0

KS2 Maths missing 0.09 0.28 0 1

KS2 Science 50.21 19.54 0 80
KS2 Science missing 0.08 0.27 0 1

Academic year 2003/2004 0.14 0.35 0 1

Academic year 2004/2005 0.14 0.35 0 1

Academic year 2005/2006 0.14 0.35 0 1

Academic year 2006/2007 0.15 0.35 0 1

Academic year 2007/2008 0.15 0.35 0 1

Academic year 2008/2009 0.14 0.35 0 1

Academic year 2009/2010 0.14 0.35 0 1

Observations 784,632
Source National Pupil Database 2003/04r-2009/10.
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Table 3.3: The effect of BSF on average GCSE and equivalents test score

OLS DiD

(1 ) (2 ) (3) (4) (5) (6 )
BSF 2 19*** 

(0.24)
2  2 2 * * *  

(0.16)
0.30*

(0.16)
0 . 2 2

(0.19)
0 . 2 1

(0.19)
0.24

(0 .2 0 )
Academy 1 24*** 

(0.31)
BSF x 
academy

1.53**
(0.60)

Per-pupil
current spending (£0 0 0 )

0.15**
(0.06)

Lag 1 per-pupil 
current spending (£0 0 0 )

0 . 1 0

(0.07)
Lag 2 per-pupil 
current spending (£0 0 0 )

0.13*
(0.08)

GCSE entries 3.76***
(0.06)

2.83***
(0.05)

2 93*** 
(0.05)

2 .8 6 ***
(0.04)

2 .8 6 ***
(0.04)

2  3 4 ***
(0.04)

GCSE entries 
squared. / 1 0

_2  Q 2 * * *

(0.03)
-0.84***
(0 .0 2 )

-0.95***
(0 .0 2 )

- 0 .8 8 ***
(0 .0 2 )

- 0 .8 8 ***
(0 .0 2 )

-0.87***
(0 .0 2 )

Female 2  4 4 *** 
(0.08)

1.06***
(0.05)

0.96***
(0.04)

0.93***
(0.03)

0.93***
(0.03)

q  9 4 * * *

(0.03)

IDACI 7 22*** 
(0.37)

2  79*** 
(0 .2 0 )

2  9 3 *** 
(0.19)

-2.83***
(0.09)

2  3 3 *** 
(0.09)

- 2 .8 8 ***
(0.09)

SEN -5.08***
(0 .1 0 )

-0.46***
(0.07)

-0.85***
(0.07)

—0.98***
(0.05)

—0 98*** 
(0.05)

1  0 2 *** 
(0.05)

EAL 0.54***
(0.15)

2 g4*** 
(0 .1 1 )

1 77*** 
(0 .1 0 )

1.56***
(0.06)

1.55***
(0.06)

1.60***
(0.07)

FSM eligible 2  2 9 *** 
(0.07)

1  0 2 *** 
(0.05)

—0.92***
(0.05)

0  97*** 
(0.03)

0  9 7 *** 
(0.03)

__ q  9 9 * * *

(0.03)

White other 1 70*** 
(0 .2 2 )

1.63***
(0.15)

1  3 9 *** 
(0.14)

0  3 7 *** 
(0.09)

0  3 7 *** 
(0.09)

0.85***
(0.09)

Black 1.90***
(0.19)

2 OS*** 
(0.13)

1  9 7 *** 
(0 .1 2 )

1.30***
(0.08)

1.30***
(0.08)

1 32***
(0.09)

Asian 2.03***
(0 .2 1 )

1.51***
(0.13)

1  4 7 *** 
(0.13)

1  4 2 *** 
(0.09)

1  4 3 *** 
(0.09)

2  4 Q * * *

(0.09)

Other race 2.52***
( 0 . 2 0 )

1 . 8 6 * * *

(0.14)
1 . 6 6 * * *

(0.14)
1 . 1 0 * * *

(0.08)
1 . 1 0 * * *

(0.08)
1 . 1 0 * * *

(0.09)

KS3 English 0 . 2 2 * * *

( 0 . 0 0 )

q  2 2 * * *  

( 0 . 0 0 )

0 . 2 0 * * *

( 0 . 0 0 )

0 . 2 0 * * *

( 0 . 0 0 )

0 . 2 0 * * *

( 0 . 0 0 )

Continued on next page ...
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. continued from previous page

Naive DiD

(1 ) (2 ) (3) (4) (5) (6 )

KS3 English 
missing

4 02*** 
(0 .1 2 )

3 91*** 
(0 .1 1 )

3.71***
(0 .1 0 )

3 71 *** 
(0 .1 0 )

3 7 4 *** 
(0 .1 0 )

KS3 Maths 0.04***
(0 .0 0 )

0  0 4 *** 
(0 .0 0 )

0 04*** 
(0 .0 0 )

0 04*** 
(0 .0 0 )

q Q4*** 
(0 .0 0 )

KS3 Maths 
missing

3.56***
(0.13)

3.40***
(0 .1 2 )

3.30***
(0 .1 0 )

3.31***
(0 .1 0 )

3.39***
(0 .1 1 )

KS3 Science 0.03***
(0 .0 0 )

0.03***
(0 .0 0 )

0.03***
(0 .0 0 )

0.03***
(0 .0 0 )

0.03***
(0 .0 0 )

KS3 Science 
missing

2  2 7 *** 
(0 .1 2 )

2  13*** 
(0 .1 1 )

2. IQ*** 
(0 .1 0 )

2  1 0 *** 
(0 .1 0 )

2.06***
(0 .1 0 )

KS2 English - 0 . 0 0

(0 .0 0 )
0.03***

(0 .0 0 )
0.03***

(0 .0 0 )
0.03***

(0 .0 0 )
0.03***

(0 .0 0 )
KS2 English 
missing

0.49***
(0 .1 0 )

1.53***
(0.09)

1.50***
(0.08)

1.51***
(0.08)

1.51***
(0.08)

KS2 Maths 0.06***
(0 .0 0 )

0.06***
(0 .0 0 )

0.06***
(0 .0 0 )

0.06***
(0 .0 0 )

0.06***
(0 .0 0 )

KS2 Maths 
missing (0.08)

2 29*** 
(0.08)

2 09*** 
(0.07)

2.09***
(0.07)

2  2 2 *** 
(0.08)

KS2 Science 0 07*** 
(0 .0 0 )

0.05***
(0 .0 0 )

0.05***
(0 .0 0 )

0.05***
(0 .0 0 )

0.05***
(0 .0 0 )

KS2 Science 
missing

3.76***
(0 .1 2 )

3 1 7 *** 
(0 .1 2 )

3.13***
(0 .1 0 )

3.13***
(0 .1 0 )

3.15***
(0 .1 1 )

Year FE 
School FE 
Number of schools 
Number of pupils 
Adj. R2

No
No
614

784,632
0.430

No
No
614

784,632
0.646

Yes
No
614

784,632
0.662

Yes
Yes
614

784,632
0.683

Yes
Yes
614

784,632
0.683

Yes
Yes
605

714,816
0.684

N otes  Heteroskedasticity and cluster-robust standard errors at the school level are in paren­
theses. *, **, and *** denote significance at 10%, 5%, and 1% levels respetively. White British 
is the omitted race group.
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Table 3.4: The estimated impact of BSF on average test score before, during,
and after intervention

(1 ) (2 ) (3)
Year —4 -0.09 -0.09 - 0 . 1 0

(0 .2 2 ) (0 .2 2 ) (0.24)
Year —3 -0.17 -0.17 - 0 . 1 1

(0.23) (0.23) (0.24)
Year —2 - 0 . 2 2 - 0 . 2 2 -0.24

(0.25) (0.24) (0.25)
Year —1 0.04 0.06 -0.03

(0.28) (0.27) (0.28)
Completion year 0 . 0 2 0 . 0 1 0 . 0 2

(0.29) (0.28) (0.29)
Year +1 0.37 0.43 0.47

(0.36) (0.36) (0.38)
Year +2 0.50 0.43 0 . 2 0

(0.59) (0.50) (0.54)
Year +3 1.04 1.26 1.43

(0.78) (0.78) (0.89)
Academy 1.26***

(0.31)
BSF x 1.53**
academy (0.60)

Per-pupil 0.14**
current spending (£0 0 0 ) (0.06)

Lag 1 per-pupil 0 . 1 0

current spending (£0 0 0 ) (0.07)

Lag 2 per-pupil 0.13*
current spending (£0 0 0 ) (0.08)

Number of schools 614 614 605
Number of pupils 784,632 784,632 714,816
Adj. R2 0.683 0.683 0.684

N otes All specifications include year and school fixed 
effects, pupil characteristics and prior attainment. 
Heteroskedasticity and cluster-robust standard er­
rors at the school level are in parentheses. *, **, and 
*** denote significance at 10%, 5%, and 1% levels re- 
spetively.
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Figure 3.6: The dynamics of BSF effect on average test score before, during,
and after the intervention
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Table 3.5: Heterogeneous BSF effects on average test score by pupil
background

KS2

0 ) (9
IDACI SEN FSM

(3) (4) (5) (6) (7) (8)

BSF x 
high KS2
BSF x 
mid KS2
BSF x 
low KS2
BSF x 
rich area

-0.18
(0 .20)

-0.17
(0.19)
1.56***
(0.23)

- 0.11
(0.21)

-0.14
(0 .20)

1.53***
(0.25)

BSF x
mid-income area
BSF x 
poor area

-0.40* -0.44*
(0 .2 2 ) (0.24)
0.17 0.19

(0.19) (0.19)
0.83*** 0.98***

(0.23) (0.23)
BSF x -0.03 - 0 . 0 1

non-SEN (0.19) (0 .2 0 )
BSF x 0.80*** 0.85***
SEN (0.24) (0.26)

BSF x 0 . 0 2 0.03
non-FSM (0.19) (0 .2 0 )

BSF x 0.87*** 0.99*:
FSM (0.24) (0.23)

Schools 
Pupils 
Adj. R2

614 605
784,632714,816 
0.683 0.685

614
784,632
0.683

605
714,816
0.684

614
784,632
0.683

605
714,816
0.684

614
784,632
0.683

605
714,816
0.684

N otes  All specifications include year and school fixed effects, pupil characteristics and prior 
attainment. In each panel, the first model controls for academy conversion and its interaction 
with BSF, and the second model controls for per-pupil current spending for the most recent 
three years. The low KS2 category is defined as achieving KS2 attainment in the lowest quar- 
tile of the sampled cohort, the high KS2 category is defined as achieving KS2 attainment in 
the highest quartile, and the mid KS2 category is the rest. Same categorisation applies for low, 
mid, and high IDACI score, except higher IDACI score indicates poorer areas. Heteroskedas- 
ticity and cluster-robust standard errors at the school level are in parentheses. *, **, and *** 
denote significance at 10%, 5%, and 1% levels respectively.
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Table 3.6: The influence of BSF on average test score by project type

(1 ) (2 ) (3)
ICT only 0.63 0 .6 8 * 0.51

(0.38) (0.38) (0.37)
New build 0.09 -0.09 -0.04

(0.25) (0.25) (0.28)
Mixture 0 . 0 1 0.19 0.47

(0.43) (0.43) (0.45)
Refurbish 0.39 0.55 0.40

(0.52) (0.52) (0.48)
Academy 1  24***

(0.31)
ICT only 0.44
x academy (1.89)
New build 1.96***
x academy (0.58)
Per-pupil 0.15**
current spending (£0 0 0 ) (0.06)
Lag 1 per-pupil 0 . 1 0

current spending (£0 0 0 ) (0.07)

Lag 2 per-pupil 0.13*
current spending (£0 0 0 ) (0.08)

Schools 614 614 605
Pupils 784,632 784,632 714,816
Adj. R2 0.683 0.683 0.684

N otes  All specifications include year and school fixed 
effects, pupil characteristics and prior attainment. 
Heteroskedasticity and cluster-robust standard er­
rors at the school level are in parentheses. *, **, and 
*** denote significance at 10%, 5%, and 1% levels re- 
spetively.
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Table 3.7: Cohort composition change pre- and post-intervention

KS2 Characteristics
MAT ENG SCI IDACI SEN FSM

Year —4 0.693** 0.186 0.150 -0.003 - 0 . 0 0 1 0 . 0 0 0

(0.297) (0.215) (0.239) (0.003) (0 .0 1 0 ) (0.006)
Year —3 0.256 0.054 -0.044 0 . 0 0 0 -0.014 -0.003

(0.324) (0.231) (0.242) (0.003) (0 .0 1 0 ) (0.007)
Year —2 0.466 0.091 -0.188 -0.004 -0.009 -0.003

(0.325) (0.242) (0.261) (0.004) (0 .0 1 2 ) (0.007)
Year —1 0.562* 0.060 0.060 -0.007 0 . 0 0 2 -0.003

(0.325) (0.253) (0.252) (0.005) (0.014) (0.007)
Completion year 0.169 0.319 -0.411 -0.005 0 . 0 1 1 0.003

(0.361) (0.279) (0.282) (0.005) (0.016) (0.008)

Year +1 -0.114 -0.510 -0.712** -0.009 0.019 -0.004
(0.473) (0.360) (0.357) (0.005) (0 .0 2 0 ) (0.009)

Year +2 -0.158 -0.761 -0.663 -0.009 0 . 0 0 1 0.017
(1.136) (0.974) (0.846) (0 .0 1 0 ) (0.039) (0.018)

Year +3 0.588 1.205 0.030 - 0 . 0 1 2 0.066 0.007
(0.971) (0.791) (0.625) (0 .0 2 0 ) (0.096) (0.015)

Schools 614 614 614 614 614 614
Observations 4,267 4,267 4,267 4,267 4,267 4,267
Adj. R2 0.882 0.895 0.869 0.968 0.589 0.914

N otes  All specifications include year and school fixed effects. Heteroskedastic­
ity and cluster-robust standard errors at the school level are in parentheses. *, 
**, and *** denote significance at 10%, 5%, and 1% levels respetively.
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Chapter

Returns to Education for the 

Self-Employed: The Income 

Under-Reporting Bias

4.1 Introduction

Economic returns to investment in education have been studied by economists 

over decades for many countries, 3 4  particularly since the classic work of the 

human capital theory (Becker 1962, 1964; Schultz 1963) and human capital 

earnings function (Mincer 1974). While there is a vast literature estimating 

rates of private returns to education for wage- and salary-earning employees, 

there is relatively little evidence for self-employed workers.

Yet self-employment constitutes a significant part of the economy. Self- 

employed workers on average take up over 15% of total civilian employ­

ment in OECD countries, with Turkey at the top, reaching over 50% in 2000 

(see Figure 4.1 for details). And the employment status composition of the

34For instance, see Card (1999, 2001), Harmon, Oosterbeek and Walker (2003) for reviews 
on theoretical framework and empirical strategies of estimating private returns to educa­
tion; Ashenfelter, Harmon and Oosterbeek (1999) for a meta-analysis of the estimates; and 
Psacharopoulos (1985, 1994), Trostel, Walker and Woolley (2002), Psacharopoulos and Patri- 
nos (2004), for updates on cross-country comparisons.



economy has been changing in many countries. Most OECD countries have 

experienced a fall in self-employment ratio from 2000 to 2012. UK, on the 

other hand, has been witnessing an upward trend in both the number and 

the proportion of self-employed workers since 2000 (see Figure 4 .2 ). Study- 

ing the economic returns to education for the self-employed workers may 

help to understand these changes.

Previous literature has discussed various issues with respect to the es­

timation of returns to education for self-employed workers. But to my best 

knowledge, the data quality issue for self-employment earnings has not been 

explored. Surveys are widely used for estimations of returns to education, 

but reliable survey data on earnings, particularly for the self-employed, are 

scarce. It has been long noticed in the literature that self-employed workers 

under-report their income to tax authorities for tax evasion reasons35. They 

lack the incentive to behave otherwise to data collectors. First, they might 

not be confident in the confidentiality of surveys and worry about incrimi­

nating themselves if they report higher income to survey collectors but lower 

income to tax authorities (Pissarides and Weber 1989). Second, it takes con­

siderably more time and efforts for self-employed worker to account for their 

income than for employees, and it's much easier to simply report the same 

accounts to survey collectors (Hurst, Li and Pugsley 2014).

Incorrectly-reported income data, could bias the estimates of returns to 

education. Income under-reporting leads to a downward bias in estimating 

the eamings-age profile. More importantly, the estimates of rate of returns to 

education could be biased as well, if the degree of under-reporting is dif­

ferent across the income distribution or education levels. For instance, if 

self-employed individuals with lower education under-report their income 

more heavily, then using these ill-measured data will lower the bottom end

35See, for example. Slemrod (1985); Andreoni, Erard and Feinstein (1998); Slemrod (2007).
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of the earnings-education profile and raises the slope, therefore the estimates 

of returns to education will be biased upwards.

In this chapter I examine these potential biases by comparing the esti­

mates using reported income data and the estimates correcting for income 

under-reporting. As the first step, I infer the true self-employment income 

following an expenditure-based approach pioneered by Pissarides and We­

ber (1989). I estimate an Engel curve using food expenditure and house­

hold income from employee households, and apply this Engel curve to self- 

employed households to impute their actual income. Next, I estimate the re­

turns to education for self-employed workers using the inferred income data. 

In this step, I adopt an Instrumental Variable (IV) approach to address the 

endogeneity issue of self-selection into education and self-employment. The 

instruments used in this step include early smoking behaviour and parental 

education qualification.

I find evidence that supports income under-reporting from self-employed 

households. On average, reported income of households with at least one 

self-employment worker should be multiplied by a factor of 1.18-1.26 to re­

flect their true income. At the individual level, an average self-employed 

worker's reported earnings should be boosted by a factor of 1.4. More im­

portantly, I present a new finding to the literature that the degree of income 

under-reporting is heterogenous across the income distribution. Lower-income 

self-employed households under-report more heavily. This leads to a severe 

upward bias in estimating the returns to education for the self-employed. 

While using reported self-employment income leads to the finding of a 11.0% 

(using early smoking as the instrument) or 5.9% (using parental qualifica­

tion as the instrument) rate of returns for one additional year of school­

ing, these estimates are reduced to 5.1-7.2% (early smoking) and 3.0-3.2% 

(parental qualification) when income under-reporting is corrected for. Com­



pared to the 13.9-15.2% returns for employees, the results suggest that the 

self-employed extract lower returns from education. However, this compar­

ison does not necessarily support the screening view (Spence 1973; Weiss 

1995), namely education acts as a signalling device for ability instead of en­

hancing ability, as this assumes that individuals make the decisions of be­

coming self-employed and investment in education around the same time. 

This assumption does not appear to be supported by the data.

The remainder of this chapter proceeds as follows. Section 4 . 2  reviews 

previous literature on income under-reporting and returns to education for 

the self-employed; Section 4.3 presents the empirical methodology; Section 4.4 

describes the data; Section 4.5 reports and discusses the results; Section 4.6 

offers concluding remarks.

4.2 Literature Review

The economic literature has long suspected households of under-reporting 

their income to tax authorities, and has developed various theories and meth­

ods to explain and test the existence of tax evasion. Allingham and Sandmo 

(1972), adapting Becker's (1968) economics of crime model, develop a theo­

retical model of household choice of tax evasion under uncertainty, in which 

the household maximise their expected utility and choose such degree of tax 

evasion that expected utility gain equals expected utility loss of detection 

and penalty. The theoretical model has since been extended in a number of 

ways . 3 6  Under this framework, many empirical papers have tried to estimate 

the magnitude of tax evasion . 3 7  Some particular findings (Slemrod 2007) of 

interest for this chapter are: income under-reporting accounts for over 80% 

of individual tax evasion; and the magnitude of tax evasion varies sharply

36See Andreoni, Erard and Feinstein (1998) and Sandmo (2005) for surveys.
37See Aim (1999); Slemrod and Yitzhaki (2002); Slemrod (2007) for reviews of evidence.
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with sources of income: only 1% of wages and salaries are under-reported, 

whereas self-employment business income is associated with a much higher 

noncompliance rate—nonfarm proprietor income is under-reported by 5 7 %38; 

Slemrod (2007) further calculates that self-employment tax is under-reported 

by 52%.

Pissarides and Weber (1989) corroborate this striking dissimilar tax non- 

compliance pattern between employed and self-employed workers by de­

signing an expenditure-based approach, to estimate the size of black econ­

omy in the UK. They assume correct reporting of food expenditures for self- 

employment and employment income groups, correct reporting of employ­

ment income, and under-reporting of self-employment income. They esti­

mate the differences in the Engel curve function between the two groups. 

They attribute the differences to two components: income under-reporting of 

self-employed workers, and transitory income fluctuations over time. They 

impose further assumptions on the distributions of these two components, 

and obtain an interval estimate of degree of income under-reporting. Us­

ing data from Family Expenditure Survey 1982 for the UK, they find average 

true self-employment income is 1.55 times reported self-employment income. 

This implies that the size of the black economy is about 5.5% of UK's GDP.

This approach has been applied and refined by several other researchers. 

Lyssiotou, Pashardes and Stengos (2004) expands this approach from using 

a single Engel curve to a complete demand system. Kim, Gibson and Chung 

(2009) makes use of panel data to pin down an exact estimate of the degree of 

underreporting rather than just an interval estimate. Tedds (2010) proposes 

a nonparametric approach which avoids imposing a functional form of the 

Engel curve a priori. Recent work by Hurst, Li and Pugsley (2014) finds that 

self-employed workers systematically under-report their incomes by 25% on

38Federal tax gap estimates by US Internal Revenue Service (IRS).
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average in two U.S. household surveys. They argue that failing to account for 

such income under-reporting leads to biased estimates in various settings. 

For example, they find that 10-15% of the decline in earnings between the 

ages 45-65 can be attributed to income under-reporting.

Other than to show the biases in estimating returns to education self- 

employment due to income under-reporting, my second interest in this chap­

ter is to compare the returns to education for the self-employed and employ­

ees. This is motivated by the mixed evidence in the existing literature. In a 

meta-analysis of empirical studies,Van der Sluis, Van Praag and Vijverberg 

(2005) reviews 20 studies for industrial industries, 3 9  and finds mixed evi­

dence on the relative magnitude of returns to education for the self-employed 

and employees. Some studies find the self-employed extract higher or equal 

returns from education relative to employees, while others find the reverse is 

true. Perhaps a more consistent pattern is that studies that use US data often 

support the former conclusion, while studies for Europe support the latter. 

This chapter provides one more piece of evidence to this comparison.

This chapter builds on and links the two strands of literature on income 

under-reporting and returns to education for the self-employed. I start with 

estimating a semiparametric food Engel Curve without imposing functional 

form restrictions, and recover that the Engel curve can be closely approxi­

mated by a simple linear or quadratic functional form. Previous work on 

income under-reporting has been focusing on estimating the mean degree of 

income under-reporting based on expenditures. I bring the literature forward 

by assessing the income under-reporting across the income distribution, and 

examine the consequences of income under-reporting in the setting of esti­

mating returns to education for the self-employed.

39See their Table 5.
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4.3 Methodology

4.3.1 Correcting for Income Under-Reporting

Let k denote the household type, where k = EE for an employee household, 

and k = SE for a self-employed household. We define the employee house­

hold as a household with at least one member in paid employment and none 

in self-employment, and the self-employed household as one with at least 

one self-employed member. Without imposing a specific function form, we 

assume that household preferences generate a partially linear Engel curve of 

the following form:

InCf =  / ‘ (In Y?) + W fy  + g ,  (4.1)

where Q is the expenditure of household i on food, Y,- is the household in­

come, Wj- is a vector of controls, and £,• is the unobserved random error.

We suspect that the self-employed household income In Y f E may be mis- 

reported in our data. Our aim is to infer the true income for from the inverse 

Engel curve function. We make three assumptions: (a) employee households 

report both income and food expenditure correctly; (b) self-employment house­

holds report their food expenditure correctly; (c) the food Engel curve is iden­

tical for employee and self-employment households.

We choose food expenditure as we believe the assumptions are more rea­

sonable for food consumption. First, unlike consumer durables, food con­

sumption usually takes up a small proportion of household income, so there 

is little incentive for households to under-report food expenditure for the 

purpose of concealing income information. On the other hand, consumer 

durables usually involve large purchases, so correctly reporting consumer 

durables expenditure and under-reporting income may seem inconsistent.
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From this viewpoint, self-employed households who choose to under-report 

their income are likely to under-report large expenditures as well. Second, 

as food is a daily necessity for all households, conditional on household de­

mographics, its consumption is unlikely to be systematically different by em­

ployment status.

Given these assumptions, we first estimate the food Engel curve using 

reported information from employee households:

In CEE =  f EE (In Y ee) +  W EE(p +  ?,fE, (4.2)

to obtain the estimated parameters <p and the nonparametric fit f EE(-).

We then run a similar regression on self-employed households using their
, j . i ^SE.reportedreported mcome In Yi r :

In CfE = f SE (In Y EE-repor,ed) + W?Eip + E, (4.3)

to obtain residuals f p .  We use this as a proxy for unobservable determinants 

of food consumption for self-employed households.

Next, we plug in the estimated parameters (f) and function f EE(-) from

the employee household equation (4.2), and the residuals f p  from equa­

tion (4.3), into the Engel curve equation to establish a relationship between 

the food expenditure and true income for self-employed households:

In c f E = f EE (In Y ? e  ) +  Wfe 4>e e  + S f E, (4.4)

where Y EE’true is the self-employed household income to be inferred.

Let / _ i(-) denote the inverse function of /(•)• Solving equation (4.4)
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yields the inferred income for self-employed households:

In Y f E’true =  f l f  (InCfE -  W?E$ EE -  j f E). (4.5)

In order for it to be invertible, /(•) must be monotonic within a reason­

able income range. Intuitively, this means food is a normal good, and higher- 

income households spend more on food than lower-income households, con­

ditional on household demographics . 4 0  We will demonstrate that this is sup­

ported by the data.

To simplify the imputation, we check how we can approximate /  (•) with 

a simpler functional form. If /(•) is close to a linear function in log income, 

we can reduce the Engel curve to the following form:

In C\ = x In Yf +  W fy  + g ,  (4.6)

In this case, the self-employment household income can be inferred as: 

] n Y SE,true =  J ^ ^ S E  _  w f E Q E E  _  gSE). (4

If the Engel curve resembles a quadratic form4 1  as follows,

In Cf =  «i In Yf +  a 2  (In Yf ) 2  +  Wfo  +  # ,  (4.8)

theoretically this yields two solutions for the self-employment income

—oc$E ±  J ( & i E)2 -  4ocfE(W?E(pEE +  & E -  In Cf E)
In y EE'true =  _ J  -----------L _ 1 ------------ !--------------------- (4.9)

40Strictly speaking, / (• )  can also be invertible if food is an inferior good. This means 
higher-income households spend less on food. While it does not affect the feasibility of our 
imputation, this possibility is not supported by the data.

41 For instance, see Banks, Blundell and Lewbel (1997) for evidence that supports quadratic 
Engel curves.
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In this scenario, we impose a reasonable income range (for instance, 1.5 

times the sample income range) to select the solution that is realistic.

4.3.2 Returns to education

To estimate the returns to education, we specify a Mincerian earnings func­

tion (Mincer 1974):

I*1 ]/;' ~  fiSj +  Xj 7  +  £j, (4.10)

where yy represents log hourly earnings for individual /', Sj  is the number of 

years of education, Xy is a vector of controls, and ey is the unobservable error 

term. The parameter of interest, /3, measures the returns to education for one 

additional year of schooling.

Estimating equation (4.10) by least squares is problematic if education is 

endogenous, E(Syey) 7  ̂ 0. A prevalent argument is that individuals with 

higher ability acquire more education as the cost is lower for them, thus 

omitting ability counts the reward for higher ability towards the returns to 

education, consequently leads to an upward bias in Another issue is Sy 

is often measured with error in survey data. This will lead to a downward 

attenuation bias in least squares estimation.

We seek to address these issues with instrumental variable (IV ) methods. 

The first stage is given by:

Sj =  7 lZ y  +  XjS +  U j ,  (4.11)

where Zy is the instrumental variable that is correlated with education (the 

relevance restriction), E(SjZj)  ^  0, but not correlated with the error term 

from the earnings equation (the exclusion restriction), E (Z y£y) =  0.

We use two instruments that are available in the data. The first one is
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early smoking behaviour proposed by Evans and Montgomery (1994). The 

intuition is that smoking proxies for an individual's rate of time preference. 

Smoking behaviour at an early age thus affects the investment decisions in 

education. Smokers, having higher discount rates, will invest less in edu­

cation. Dickson (2013) estimates the rates of returns to education for male 

employees using early smoking and Raising of School Leaving Age (RoSLA) 

in the UK (Harmon and Walker 1995; Oreopoulos 2006) as instruments for 

education. As a state policy, RoSLA generates more credible exogenous vari­

ation in education. Unfortunately, we can not use RoSLA as an instrument 

for education in our analysis, as it does not have enough predictive power for 

the education of the self-employed, thus will lead to severe weak instrument 

bias. However, it's likely that this instrument will generate similar results to 

early smoking. Dickson (2013) finds that the rate of returns for one additional 

year of education is 12.9% using early smoking as the instrument, and 10.2% 

using RoSLA. His finding suggests that the results obtained from these two 

instruments are not dissimilar.

A second instrument is parental qualification. It is documented in the 

literate that parental education is strongly correlated with education (Card 

1999). A major criticism for using family background as instruments for 

education is that it may have a wealth effect that directly affects earnings 

(Card 1999; Trostel, Walker and Woolley 2002; Psacharopoulos and Patrinos 

2004), thus violating the exclusion restriction. However, recent research by 

Hoogerheide, Block and Thurik (2012) explores the potential biases of family 

background variables, and finds that a moderate violation of the exclusion 

restriction does not distort the results by much. In our analysis, we control 

for parental occupations to alleviate the potential direct effect of parental ed­

ucation on earning.
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4.4 Data

The analysis in this chapter uses data from the British Household Panel Sur­

vey (BHPS) 1991-2008 and the Family Expenditure Survey (FES) 4 2  1994- 

2009. Each dataset has its own advantages. The FES provides more reliable 

information on expenditures, whereas the BHPS has richer information on 

individual characteristics.

The FES is a continuous annual survey that collects information on house­

hold expenditures and income. Food expenditure is recorded under a diary 

system. Interviewed households are asked to keep a 14-day diary which de­

tails every single purchase. The BHPS is a longitudinal dataset which fol­

lows a nationally representative sample individuals in 1991 each year for 18 

waves. It records food expenditure at household level in every wave. In 

wave 1 , respondents are asked to think out their "weekly food bills" and re­

port approximately the weekly figure the household spends on food and gro­

ceries to the nearest pound. From wave 2 onwards, this question is rephrased 

where respondents are asked to choose their answers from a showcard which 

lists 12 intervals ranging from under £10 to £160 or over. I take the mid-point 

value of each interval as the measure of the household's food expenditure.

Table 4.1a presents some summary statistics in the two datasets by house­

hold type. The statistics show that the two datasets share similar demo­

graphic patterns. In both datasets, self-employed households report slightly 

lower income than employee households, but spend more on food. Self- 

employed households tend to have more members, more children, and more 

non-working members, and the heads of the self-employed households tend 

to be older.
42There have been a few changes in the name of this survey. The FES ran from 1961 to 

2001. From 2001, the Expenditure and Food Survey (EFS) replaced FES and the National 
Food Survey (NFS). From 2008, EFS was renamed the Living Costs and Food Survey (LCF) 
and included as part of the Integrated Household Survey (IHS). FES data prior to 1994/1995 
did not contain some characteristics on central heating.
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I carry out the individual-level analysis for the returns to education in the 

BHPS. This is because the instrumental variables, early smoking and parental 

qualification are not available in the FES. I restrict the individual sample to 

be full-time workers in their working ages43. The top and bottom 1% of the 

earnings distribution are trimmed off. In the BHPS, years of education is not 

directly recorded. Instead, respondents are asked to report their school leav­

ing age and further education leaving age where applicable. I calculate years 

of education as education leaving age subtracted by five, the usual age to 

start compulsory schooling in the UK. However, this calculation does create 

a measurement error for those who return to education with certain years of 

work experience. I drop a small proportion of observations that report leav­

ing full-time education at age 27 or later. This leads to a 2% reduction in the 

sample size . 4 4

Table 4.1a presents the summary statistics at the individual level. Self- 

employed workers appear to work longer hours at lower hourly earnings 

than employees. They tend to have less education, more likely to be male 

and older. They are about equally likely to have smoked at age 14. Their 

parents are less likely to have further education qualifications or above.

4.5 Results

4.5.1 The Food Engel Curve

We first assess the shape of the Engel curve by estimating a semiparamet- 

ric relationship between food expenditure and household income as set up 

in equation (4.1). This procedure is carried out using a Robinson's dou­

ble residuals estimator (Robinson 1988). We first take the expected values

4318-65 for males, and 18-60 for females.
^Results are robust if these observations are coded as having 21 years of education.



of food expenditure and demographic controls conditioning on household 

income, then partial out these expected values from food expenditure and 

demographic controls to obtain the residuals. The parameters (j) on demo­

graphic controls are identified by regressing food expenditure residuals on 

demographic residuals. We then partial out the parametric fit from food ex­

penditure to obtain the part that can be explained by household income. Fi­

nally, we estimate this part nonparametrically by using a local polynomial fit 

estimator. Figure 4.3 plots the nonparametric part of equation (4.1) for em­

ployee and self-employed households separately using the BHPS and FES 

samples.

We make three observations from the nonparametric Engel curves in Fig­

ure 4.3a using the BHPS sample. First, for the most part of the household in­

come distribution (plotted on the right axis), the Engel curve for self-employed 

households (dashed line) lies above the Engel curve for employee house­

holds (solid line). This shows that given the amount of food expenditure, 

self-employed households report lower income than employee households. 

Second, the gap between the Engel curves for the two groups is larger for the 

bottom half of the income distribution, and diminishes quickly with reported 

income for the upper half of the income distribution. If both groups share 

the same food Engel curve, and employee households correctly report their 

income, this means lower-income self-employed households under-report 

more heavily than higher-income self-employed households. Third, except 

for the curvature at both ends of the income distribution due to thin data, the 

slope of the Engel curve for employee households stays roughly constant as 

income increases. In fact, a simple regression reveals that a linear function 

can explain 99% of the nonparametric Engel curve. This suggests that the 

Engel curve can be approximated closely by a linear (or quadratic, to avoid 

missing the slight curvature in the middle) parametric functional form. The
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FES sample presents similar features in Figure 4.3b.

Table 4.2 reports the linear and quadratic parametric estimates of the food 

Engel curves for the employee households using BHPS and FES samples. All 

specifications control for household composition (household size, number 

of children, number of non-working members), a quadratic term in house­

hold head's age, region dummies and year dummies. Columns (1) and (3) 

present the results for the linear Engel estimation. In both samples, the re­

sults suggest that log household income strongly predicts log food expen­

diture. Consistent with intuition, the results also suggest that larger house­

holds spend more on food, whereas households with more children and non­

working members spend less. The household head's age is correlated with 

food expenditure, but seemingly in different patterns in the two samples.

Moving to the results for a quadratic Engel curve in columns (2) and (4), 

the results show two things. On one hand, the quadratic term of household 

income is statistically significant in both samples, suggesting there is some 

curvature in the Engel curve. On the other hand, judging from the changes 

in R-squared, the quadratic term adds very little to the Engel curve estima­

tion in explaining additional variation in food expenditure. This suggests the 

improvement in fitting the data towards the Engel curve from a quadratic 

functional form to a linear one might be marginal. We conduct the following 

analyses using inferred income from both linear and quadratic Engel curves 

to check for robustness.

4.5.2 Income Under-Reporting

Next we examine the extent to which self-employed households misreport 

their income. We impute the income for self-employed households using 

equations (4.7) and (4.9) based on the estimates in Table 4.2. As the quadratic 

Engel curves are monotonic over the sample income distribution, we drop
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the one root from equation (4.9) that falls far outside the sample income 

range. All income data are deflated to 2008 terms.

Table 4.3a presents the summary statistics on reported and inferred monthly 

income at the household level. Panel A reports the results from the lin­

ear Engel curve, and Panel B reports the results from the quadratic Engel 

curve. The first three columns present the results using BHPS data. BHPS 

self-employed households report an average monthly household income of 

£3,120. Our imputation using the linear food Engel curve suggests that the 

true average monthly household income is £3,938. This means that the av­

erage self-employed household's reported income has be to multiplied by a 

factor of 1.26 to arrive at the actual income. This ratio is much similar to 

1.25 found in two US surveys by Hurst, Li and Pugsley (2014). In Panel B, 

using a quadratic Engel curve does not seem to generate very different re­

sults. The under-reporting factor is 1.24 in this case. In both the linear and 

quadratic cases, quartile differences (the difference between reported income 

quartile and inferred income quartile) vary across the three quartiles, sug­

gesting the actual income distribution is quite different from the reported 

income distribution. Results in the next three columns using FES data offer 

further support that self-employed households under-report their income. A 

light difference is that the degree of under-reporting seems to be lower. The 

under-reporting factor at the mean is 1.18-1.19 in FES.

Table 4.3b presents the summary statistics on income under-reporting at 

the self-employed individual level using BHPS data. We calculate the differ­

ence between inferred and reported household income and add this to the 

self-employed household member's reported earnings to achieve their true 

earnings. In cases where there are more than one self-employed member 

in the household (this applies to 1 1 % of the self-employed households), we 

divide the total unreported household income by number of self-employed
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members, and add this average to each self-employed member's earnings. 

Our results suggest self-employment income should be boosted by a factor 

of about 1.4 at the individual level to reflect their actual earnings.

We plot the ratio of the imputed income to the reported income for self- 

employed households in BHPS against the imputed income in Figure 4 .4 . 

We also plot a local mean polynomial fit across the income distribution. We 

make three findings for these plots. First, self-employed households gener­

ally under-report their income. Unlikely some previous studies (Pissarides 

and Weber 1989; Johansson 2005; Kim, Gibson and Chung 2009), we do not 

impose the assumption that self-employed household under-report income, 

but find this is supported by the data. Second, the extent of under-reporting 

is higher for lower-income households, and lower for higher-income house­

holds. This heterogenous under-reporting pattern can lead to biased conclu­

sions for research that relies on the distribution of self-employment income. 

Third, the linear Engel curve seems to capture the food expenditure-income 

relationship very well, as inference using the quadratic Engel curve does not 

seem to generate very different results. Figure 4.5, using FES data, presents a 

much similar picture in supporting these findings.

4.5.3 Returns to Education

Table 4.4 reports the OLS estimates of the returns to an additional year of ed­

ucation for employees and the self-employed. In all specifications, we con­

trol for a quadratic term in age, sex, a quadratic term in year of birth, region 

dummies and year dummies. The dependent variable is log hourly earn­

ings. Column (1) presents the estimates for employees using their reported 

wages. The coefficient on years of education suggests that one additional 

year of schooling is associated with a 4.3% increase in hourly wage. Col­

umn (2 ) presents the estimates for the self-employed using their reported
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earnings. By contrast, the rate of returns to one additional year of education 

for the self-employed is 2.1%, about half of that for employees. In the next 

two columns, we use the inferred earnings for the self-employed from the 

linear and quadratic Engel curves respectively. The returns to education be­

come lower, reduced to 1.5% and 1.2% . 4 5  This reflects our previous findings 

that lower-education self-employed workers under-report their income more 

heavily, thus using reported income leads to an upward bias in the slope of 

the earnings-education profile.

The OLS estimates may suffer from ability bias and measurement er­

ror attenuation bias. We turn to IV estimation to address these two issues. 

Table 4.5a reports the IV estimates using early smoking as the instrument. 

Columns (1 ) and (2 ) presents the results obtained from using the employee 

subsample. The first stage results in column (2) show that early smoking 

strongly predicts years of completed education. Employees who smoke at 

age 14 complete 1.1 fewer years of education than those who do not. The F- 

statistic on the instrumental variable is well above the rule-of-thumb critical 

value of 10 (Staiger and Stock 1997; Stock and Yogo 2005), therefore we are 

not concerned about the weak instrument bias. Compared to the results in 

Table 4.4 column (1), the size of the IV estimate is about three times that of 

the OLS estimate. This estimate is much similar to the 12.9% returns found 

by Dickson (2013) for male employees in the BHPS.

Columns (3) and (4) reports the IV estimates for the self-employed using 

reported earnings. The instrument gets weaker in the first stage, but the F- 

statistic are still well above conventional critical values. The estimated rate 

of returns to education is 11.0%. The magnitudes of the coefficients on early 

smoking and years of education in the first and second stage equations for 

the self-employed are comparable to those for employees. Using reported

45The estimates hardly change (not reported here) when the sample is restricted to obser­
vations with non-missing values of the early smoking and parental qualification variables.
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income, these results suggest the self-employed slightly lower returns from 

education than employees.

Column (5) reports the IV estimates for the self-employed using inferred 

earnings. The rate of returns of education is 7.2% in this estimation. Compar­

ing this number to 15.2% returns for employees in column (1), the difference 

is now more visible. The lowering estimates from column (3) to column (5) 

suggest that using misreported self-employment income data can lead to se­

rious upward biases. Taken the estimates literally, this introduces an upward 

bias by over 50%.

Table 4.5b reruns the estimations using the inferred income from the quadratic 

Engel curve. Column (5) shows that using this imputed information leads to 

consistent findings with Table 4.5a. Estimates for the self-employed using in­

ferred income are smaller in size and less significant. A difference is that the 

estimated rate of returns to education for the self-employed becomes even 

lower using inferred income from the quadratic Engel curve. The point esti­

mate is 5 .1 %, about one third of the size of the estimate for employees, and is 

not statistically significant.

A clear message from the analysis above is that income under-reporting 

distorts the earnings-education profile, and biases the estimation for returns 

to education in self-employment upward. To further support this finding, we 

next rerun the estimations using an alternative instrument, parental qualifi­

cation. We control for parental occupation to address the issue that parental 

education might have an effect on their children's earnings through family 

wealth, thus violating the exclusion restriction of IV estimators. Table 4.6a 

presents the results using this instrument. First stage results in columns (2) 

and (4 ) for employees and the self-employed respectively suggest that this 

is an instrument with strong predictive power on education. Column (1) re­

ports that the estimated returns to education for employees are 13.9%, very
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close to the estimates using early smoking. By comparison, the returns to 

education for the self-employed in column (3 ) are lower than for employees 

using reported information. This is also consistent with results using early 

smoking as the instrument. We find similar results in Table 4.6b column (5) 

which uses inferred income from the quadratic Engel curve.

A concern is that the subsample analysis above is not valid if individuals 

with higher or lower education systematically select into self-employment. 

We check if this is the case by estimating the impact of education on the self- 

employment status using OLS and IV. Table 4.7 presents the results. The co­

efficients on education is small and insignificant in all specifications. These 

results do not support the notion that education has an effect of increas­

ing the propensity to become self-employed. This is in line with the ev­

idence in existing literature that the impact of education on selection into 

self-employment is insignificant (see Van der Sluis, van Praag and Vijverberg 

2008, for a survey of findings).

One reason previous literature distinguishes between employed and self- 

employed workers is that it may shed light on the screening hypothesis, an 

alternative to human capital theory for the explanation of the association be­

tween earnings and education (Spence 1973; Weiss 1995). The strong screen­

ing hypothesis argues that education, does not enhance productivity, but sig­

nals it. A weaker version of the screening hypothesis concedes that education 

may augment productivity beyond its primary role signalling. Previous lit­

erature argues that self-employment provides a setting for testing the screen­

ing hypothesis, as at least in some occupations, education has little signalling 

value since self-employed workers know their own productivity. Thus the 

difference in the rates of returns to education between employed and self- 

employed workers may be seen as the signalling value of education. This

46It can be argued that education can still be of signalling value to customers, particularly 
in professional occupations like lawyers and accountants.
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test hinges on an assumption that individuals make the choice to be self- 

employed at the same time as their education decision (Chevalier et al. 2004). 

Therefore, individuals who plan to become self-employed do not have as 

large an incentive to invest in education as those who plan to find employed 

work (Brown and Sessions 1999). However, as we have demonstrated, edu­

cation does not appear to affect entry into self-employment in our data. Thus, 

this is likely to suggest that self-employment may not be the ideal setting for 

testing the screening hypothesis.

4.6 Conclusions

Self-employment is an important part of the economy. UK in particular has 

seen a surge in self-employment since 2000. Yet our understanding of self- 

employment regarding its causes and consequences remains limited. In part, 

this is due to the lack of reliable self-employment income data. Previous liter­

ature has offered evidence that self-employed workers under-report income 

to tax authorities and survey collectors. But it was less known how income 

under-reporting varies with household and individual characteristics, and 

what implications this has on related questions. This chapter takes a step in 

filling in this gap by making a connection between two strands of literature 

on income under-reporting and returns to education.

Using data from two UK surveys, I infer self-employment income from 

the food Engel curve. Consistent with previous literature, I find self-employed 

households under-report their income. On average, the self-employment in­

come at the individual level should be multiplied by a factor of 1.4 to arrive 

at their actual earnings. More importantly, I find that the extent of under­

reporting varies across the income distribution. This is a feature that has 

been missing in the literature. Lower-income households under-report their
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income more heavily than higher-income households. The results are robust 

to linear and quadratic functional forms of the Engel curve and are consistent 

in both surveys.

Applying the inferred income information to estimating returns to edu­

cation, I find using reported self-employment income from surveys severely 

biases the results upwards. In the instrumental variable (IV) estimation us­

ing early smoking as the instrument, reported earnings lead to an estimated 

rate of returns of 11.0% for an additional year of schooling. Corrected for in­

come reporting, the estimates fall to 5.1-7.2%. In another IV estimation using 

parental qualification as the instrument, the estimates are also reduced using 

inferred income. The comparison between the self-employed and employees 

suggest the self-employed extract lower returns from education. However, 

these relatively lower returns for the self-employed do not necessarily pro­

vide support for the screening hypothesis, as investment in education and 

entry into self-employment do not seem to be correlated.

Data are an indispensable ingredient to empirical research. A broader 

conclusion is that we as researchers should be more aware of unreliable in­

formation in survey data. Other than income information, respondents may 

also provide biased responses in other situations. Data collectors should try 

to devise more incentive mechanisms to obtain reliable data.
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Figure 4.1: Proportion of self-employment in civilian employment: 
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Source: OECD Annual Labour Force Statistics
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Figure 4.2: Trend in self-employment:
UK, 1992-2013

Source: UK Office for National Statistics, Labour Market Statistics, September 2013
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Table 4.1a: Summary statistics at the household level

BHPS FES
Employee 

Households 
(82%)

Self-employed 
Households 

(18%)

Employee 
Households 

(83%)

Self-employed 
Households 

(17%)
Mean/SD Mean/SD Mean/SD Mean/SD

Log monthly 7.902 7.872 7.992 7.980
household income (0.546) (0.616) (0.552) (0.609)
Log monthly food 5.754 5.902 5.820 5.972
expenditure (0.480) (0.456) (0.566) (0.551)
Household size 2.867 3.155 2.742 3.007

(1.275) (1.366) (1.295) (1.312)

Number of children 0.705 0.825 0.679 0.767
(0.985) (1.103) (0.987) (1.049)

Number not working 1.126 1.245 1.082 1 . 1 2 2

(1.205) (1.318) (1.195) (1.225)

Household head age 42.230 45.346 35.411 37.693
(12.271) (11.658) (18.289) (19.400)

Observations 63,546 13,659 54,088 10,724

N o te  Standard deviations are in parentheses.
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Table 4.1b: Summary statistics at the individual level: BHPS 1991-2008

Employee Self-employed
(91%) (9%)

Mean SD Mean SD
Log hourly pay 2.214 (0.445) 2.023 (0.581)
Weekly working hours 43.103 (8.794) 49.067 (13.161)
Years of education 12.979 (3.010) 12.667 (2.976)
Male 0.589 (0.492) 0.847 (0.360)
Age 38.925 (11.071) 43.252 (10.624)

Smoking at 141 0.130 (0.336) 0.141 (0.349)

Parent further education and above2 0.629 (0.483) 0.582 (0.493)

Observations 73,475 7,385

N o te  Standard deviations are in parentheses.
1 Numbers of observations for this variable are 56,246 for employees and 5,825 for the 
self-employed respectively.
2 Numbers of observations for this variable are 56,224 for employees and 5,657 for the 
self-employed respectively.
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Figure 4.3: Nonparametric estimates of the food Engel curve for employed 
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Table 4.2: Food Engel curve estimation using employee household data

BHPS FES
Linear iQuadratic Linear Quadratic

Log monthly 0.243*** -0.262*** 0.391*** -0.008
household income (0.003) (0.052) (0.004) (0.069)
Log monthly 0.033*** 0.025***
household income squared (0.003) (0.004)
Household size 0.195*** 0.193*** 0.257*** 0.257***

(0 .0 0 2 ) (0 .0 0 2 ) (0.003) (0.003)
Number of children -0.006** -0.006* -0.098*** -0.098***

(0.003) (0.003) (0.004) (0.004)
Number not working -0.009*** -0.008*** -0.006 -0.005

(0.003) (0.003) (0.004) (0.004)
Household head age 0 .0 2 1 *** 0 .0 2 0 *** - 0 .0 0 1 * - 0 . 0 0 1

(0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 0 ) (0 .0 0 0 )
Household head age -0.015*** -0.015*** 0.003*** 0.003***
squared/ 1 0 0 (0 .0 0 1 ) (0 .0 0 1 ) (0 .0 0 0 ) (0 .0 0 0 )

Region dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Observations 63,544 63,544 54,088 54,088
R2 0.457 0.458 0.468 0.468

N o te  Region dummies include North East (omitted), North West, Yorkshire and 
the Humber, East Midlands, West Midlands, East of England, London, South 
East, South West, Wales, Scotland, and Northern Ireland. Heteroskedasticity- 
robust standard errors are in parentheses. *, **, and *** denote significance at 
10%, 5%, and 1% levels respectively.
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Table 4.3a: Income under-reporting from self-employed households

BHPS FES

Reported Inferred Difference Reported Inferred Difference

Panel A: Inferred from linear Engel Curve

M ean 3,120 3,938 818 3,484 4,161 676
Standard deviation (1,798) (1,678) (2,080) (2,003)
1st quartile 1,785 2,701 454 1,966 2,686 454
M edian 2,760 3,676 844 2,981 3,776 700
3rd quartile 4,066 4,897 1,265 4,498 5,202 961

O bservations 13,659 13,658 13,658 10,724 10,724 10,724

Panel B: Inferred from quadratic Engel Curve

M ean 3,120 3,867 747 3,484 4,118 634
Standard deviation (1,798) (1,443) (2,080) (1,797)
1st quartile 1,785 2,814 421 1,966 2,779 418
M edian 2,760 3,745 849 2,981 3,905 722
3rd quartile 4,066 4,792 1,251 4,498 5,209 1,004

Observations 13,659 13,658 13,658 10,724 10,724 10,724

N ote  All income data are deflated to 2008 terms.

Table 4.3b: Income under-reporting from self-employed individuals

Linear Quadratic

Reported Inferred Difference Reported Inferred Difference

M ean 1,849 2,640 791 1,849 2,577 728
1st quartile (1,156) (1,261) (1,156) (1,165)

1,042 1,732 351 1,042 1,742 323

M edian 1,530 2,420 772 1,530 2,411 762

3rd 2,368 3,284 1,235 2,368 3,210 1,216

Observations 7,385 7,385 7,385 7,385 7,385 7,385

N o te  All income data are deflated to 2008 terms.
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Figure 4.4: Income under-reporting gap for the self-employed: BHPS
1991-2008

N o te  Solid lines are the local m ean polynom ial fit using the Epanechnikov kernel 
w ith  a rule-of-thum b bandwidth.
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Table 4.4: OLS estimates of returns to education by employment status

Employee Self-employed
Reported

(1 )
Reported

(2 )
Inferred Inferred 

(3) (4)
Years of education 0.043*** 0 .0 2 1 *** 0.015*** 0 .0 1 2 **

(0 .0 0 1 ) (0.004) (0.003) (0.003)
Age 0.073*** 0.038*** 0.032*** 0.029**:

(0 .0 0 2 ) (0.008) (0.007) (0.007)
Age2/100 -0.072*** -0.041*** - 0 .0 2 0 *** —0 .0 2 0 **:

(0.003) (0.009) (0.007) (0.008)
Male 0.157*** 0.164*** 0.116*** 0.143**:

(0.007) (0.029) (0.025) (0.025)
Cohort effects Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Observations 73,475 7,385 7,385 7,385

N ote  Columns (1) and (2) use reported income. Column (3) uses inferred 
self-employment income from a linear Engel curve. Column (4) uses in­
ferred self-employment income from a quadratic Engel curve. Cohort 
effects include a quadratic polynomial control for year of birth. Region 
dummies include North East (omitted), North West, Yorkshire and the 
Humber, East Midlands, West Midlands, East of England, London, South 
East, South West, Wales, and Scotland. F-statistic refers to the Kleibergen- 
Paap (2006) rk-statistic on the excluded instrumental variables for non- 
i.i.d. errors. Heteroskedasticity- and cluster-robust standard errors at the 
individual level are in parentheses. *, **, and *** denote significance at 
10%, 5%, and 1% levels respectively.
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Table 4.5a: IV estimates of returns to education by employment status using
early smoking as the instrument and inferred self-employment income from

linear Engel curve as the dependent variable

Employee Self-employed Self-employed (Inferred)
IV First stage IV 
(1) (2) (3)

First stage 
(4)

IV First stage 
(5) (6)

Years of education 0.152*** 0 .1 1 0 ** 0.072**
(0.016) (0.044) (0.034)

Smoking at 14 -1.089*** -0.927*** —0.927***
(0.104) (0.276) (0.276)

Age 0.063*** 0.115*** 0.041*** 0.035 0.024*** 0.035
(0.004) (0.018) (0 .0 1 2 ) (0.060) (0.009) (0.060)

Age2/100 -0.060*** -0.132*** -0.048*** 0.028 - 0 .0 2 2 ** 0.028
(0.004) (0 .0 2 2 ) (0 .0 1 2 ) (0.070) (0.009) (0.070)

Male 0.191*** -0.158* 0.196*** -0.334 0.128*** -0.334
(0.013) (0.082) (0.047) (0.262) (0.036) (0.262)

Cohort effects Yes Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 56,246 56,246 5,825 5,825 5,825 5,825
F-statistic 890.81 6 8 . 0 0 6 8 . 0 0

N ote  Cohort effects include a quadratic polynomial control for year of birth. Region dummies include 
North East (omitted), North West, Yorkshire and the Humber, East Midlands, West Midlands, East of 
England, London, South East, South West, Wales, and Scotland. F-statistic refers to the Cragg-Donald 
F-statistic on the excluded instrumental variable. Heteroskedasticity- and cluster-robust standard er­
rors at the individual level are in parentheses. *, **, and *** denote significance at 10%, 5%, and 1% 
levels respectively.
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Table 4.5b: IV estimates of returns to education by employment status using
early smoking as the instrument and inferred self-employment income from

quadratic Engel curve as the dependent variable

Employee Self-employed Self-employed (Inferred)
IV First stage 
(1) (2)

IV
(3)

First stage 
(4)

IV First stage 
(5) (6)

Years of education 0.152*** 0 .1 1 0 ** 0.051
(0.016) (0.044) (0.032)

Smoking at 14 -1.089*** —0.927*** —0.927***
(0.104) (0.276) (0.276)

Age 0.063*** 0.115*** 0.041*** 0.035 0.023*** 0.035
(0.004) (0.018) (0 .0 1 2 ) (0.060) (0.009) (0.060)

Age2/ 100 -0.060*** -0.132*** -0.048*** 0.028 - 0 .0 2 1 ** 0.028
(0.004) (0 .0 2 2 ) (0 .0 1 2 ) (0.070) (0.009) (0.070)

Male 0.191*** -0.158* 0.196*** -0.334 0.156*** -0.334
(0.013) (0.082) (0.047) (0.262) (0.033) (0.262)

Cohort effects Yes Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 56,246 56,246 5,825 5,825 5,825 5,825
F-statistic 890.81 6 8 . 0 0 6 8 . 0 0

N ote  Cohort effects include a quadratic polynomial control for year of birth. Region dummies include 
North East (omitted), North West, Yorkshire and the Humber, East Midlands, West Midlands, East of 
England, London, South East, South West, Wales, and Scotland. F-statistic refers to the Cragg-Donald 
F-statistic on the excluded instrumental variable. Heteroskedasticity- and cluster-robust standard er­
rors at the individual level are in parentheses. *, **, and *** denote significance at 10%, 5%, and 1% 
levels respectively.
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Table 4.6a: IV estimates of returns to education by employment status using
parental qualifications as the instrument and inferred self-employment

income from linear Engel curve as the dependent variable

Employee Self-employed Self-employed (Inferred)
IV First stage 
(1) (2)

IV
(3)

First stage
(4)

IV First stage 
(5) (6)

Years of education 0.139*** 0.059** 0.032
(0 .0 2 2 ) (0.028) (0 .0 2 2 )

Parent further 0.631*** 1.108*** 1.108***
education and above (0.092) (0.223) (0.223)
Age 0.059*** 0.157*** 0.038*** 0.092 0.017* 0.092

(0.005) (0.018) (0 .0 1 1 ) (0.060) (0.009) (0.060)
Age2/100 -0.054*** -0.185*** -0.039*** -0.041 -0.015 -0.041

(0.006) (0 .0 2 2 ) (0 .0 1 1 ) (0.065) (0.009) (0.065)

Cohort effects Yes Yes Yes Yes Yes Yes
Parents occupation Yes Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 56,224 56,224 5,657 5,657 5,657 5,657
F-statistic 527.11 170.68 170.68

N ote  Cohort effects include a quadratic polynomial control for year of birth. Parents' occupation dum­
mies include father's and mother's 10 occupational classes when the respondent was aged 14: not work­
ing or not present (omitted group), managers and administrators, professional, associate professional and 
technical, clerical and secretarial, craft and related, personal and protective service, sales, plant and ma­
chine operatives, and other occupations. Region dummies include North East (omitted), North West, 
Yorkshire and the Humber, East Midlands, West Midlands, East of England, London, South East, South 
West, Wales, and Scotland. F-statistic refers to the Cragg-Donald F-statistic on the excluded instrumental 
variable. Heteroskedasticity- and cluster-robust standard errors at the individual level are in parentheses. 
*, **, and *** denote significance at 10%, 5%, and 1% levels respectively.
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Table 4.6b: IV estimates of returns to education by employment status using
parental qualifications as the instrument and inferred self-employment

income from quadratic Engel curve as the dependent variable

Employee Self-employed Self-employed (Inferred)
IV First stage 
(1) (2)

IV
(3)

First stage 
(4)

IV First stage 
(5) (6)

Years of education 0.139*** 0.059** 0.030
(0 .0 2 2 ) (0.028) (0 .0 2 2 )

Parent further 0.631*** 1.108*** 1.108***
education and above (0.092) (0.223) (0.223)
Age 0.059*** 0.157*** 0.038*** 0.092 0.015 0.092

(0.005) (0.018) (0 .0 1 1 ) (0.060) (0.009) (0.060)
Age2/ 100 -0.054*** -0.185*** -0.039*** -0.041 -0.014 -0.041

(0.006) (0 .0 2 2 ) (0 .0 1 1 ) (0.065) (0.009) (0.065)

Cohort effects Yes Yes Yes Yes Yes Yes
Parents occupation Yes Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 56,224 56,224 5,657 5,657 5,657 5,657
F-statistic 527.11 170.68 170.68

N ote  Cohort effects include a quadratic polynomial control for year of birth. Parents' occupation dum­
mies include father's and mother's 10 occupational classes when the respondent was aged 14: not work­
ing or not present (omitted group), managers and administrators, professional, associate professional and 
technical, clerical and secretarial, craft and related, personal and protective service, sales, plant and ma­
chine operatives, and other occupations. Region dummies include North East (omitted), North West, 
Yorkshire and the Humber, East Midlands, West Midlands, East of England, London, South East, South 
West, Wales, and Scotland. F-statistic refers to the Cragg-Donald F-statistic on the excluded instrumental 
variable. Heteroskedasticity- and cluster-robust standard errors at the individual level are in parentheses. 
*, **, and *** denote significance at 10%, 5%, and 1% levels respectively.
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Table 4.7: OLS and IV estimation of education on selection into
self-employment

Early Smoking Parental Qualification
OLS IV 
(1 ) (2 )

OLS IV 
(3) (4)

Years of education - 0 . 0 0 1 0.005 - 0 . 0 0 1 0.003
(0 .0 0 1 ) (0.009) (0 .0 0 1 ) (0.004)

Age -0.008 -0.009 -0.007 -0.008
(0.014) (0.014) (0.014) (0.005)

Age2/100 -0.003 - 0 . 0 0 2 -0.003 —0.003*
(0 .0 0 2 ) (0.003) (0 .0 0 2 ) (0 .0 0 2 )

Cohort effects Yes Yes Yes Yes
Parents occupation No No Yes Yes
Region dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Observations 51,122 51,122 50,956 50,956

N ote  Cohort effects include a quadratic polynomial control for year of 
birth. Region dummies include North East (omitted), North West, York­
shire and the Humber, East Midlands, West Midlands, East of England, 
London, South East, South West, Wales, and Scotland. Parents' occu­
pation dummies include father's and mother's 10 occupational classes 
when the respondent was aged 14: not working or not present (ommited 
group), managers and administrators, professional, associate profes­
sional and technical, clerical and secretarial, craft and related, personal 
and protective service, sales, plant and machine operatives, and other oc­
cupations. Heteroskedasticity-robust standard errors are in parentheses. 
*, **, and *** denote significance at 10%, 5%, and 1% levels respectively.
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Chapter

Concluding Remarks

In this thesis I have addressed three separate yet related topics on the eco­

nomics of education. Chapter 2  estimates the price premium parents place 

on school quality through the housing market, and tries to pin down which 

aspects of school quality parents value. Chapter 3 seeks to understand how 

effective school capital investments are in raising student academic achieve­

ment. Chapter 4 extends the literature on the economic returns to education 

in the labour market by focusing on the self-employed, with an emphasis on 

correcting for income misreporting in survey data that could lead to biased 

conclusions.

In Chapter 2, I find that a one school-level standard deviation increase 

in school quality raises non-flat house prices by 2.1%-2.5%. This implies one 

student-level standard deviation increase in academic performance will raise 

house prices by roughly 10%. This estimate appears large, but is plausible. 

This is equivalent to about 3.5 years of private school fees. As the compulsory 

secondary school phase lasts 5 years in the UK, this house price premium 

alone is not enough to drive parents to opt for private schools.

One policy implication is that school choice programmes are unlikely to 

achieve equal education opportunities for disadvantaged students, as long 

as there remains some link between school admission and the students res-
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idential locations. This "selection by mortgage" is driven by parents7 pref­

erences for better school quality. As long as these preferences exist, parents 

will compete for better schools one way or another.

Another finding is that parents value school academic effectiveness more 

than they value school composition. The estimates could provide some ref­

erence for the cost-benefit analysis of education policies that aim to raise aca­

demic standards.

Chapter 3 evaluates the short-run effect of a large school construction pro­

gramme, BSF, on student academic achievement. I find strong evidence that 

BSF has large effects on disadvantaged students and no effect on more advan­

taged students. This speaks to education polices in the sense that targeting 

resources on the disadvantaged group could prove more effective.

Chapter 3 is limited by the time scope of the study. Future work might 

consider the medium-run and long-run effects of school capital investments. 

Considering the large scale of the programme, it will be interesting to con­

sider the long-run effects in a general equilibrium framework.

Chapter 4 confirms the previous findings that the self-employed under­

report their income in surveys, and presents a new finding to the litera­

ture that the extent of under-reporting varies across the income distribu­

tion. Lower-income households under-report their income more heavily than 

higher-income households. This speaks to research that relies on self-employment 

income data. In the analysis of returns to education for the self-employed, I 

show that the estimates are severely biased upwards due to income under­

reporting.

Future work might consider accounting for income under-reporting in 

other settings than returns to educations. More broadly, it is also important to 

pay attention to other survey responses that might be systematically biased.
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