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“One way to open your eyes is to ask yourself, ‘What if  I had never seen 
this before? What if I knew I would never see it again?’”

- Rachel Carson (1907-1964)

“The most exciting phrase to hear in science, the one that heralds new 
discoveries is not ‘Eureka!’ (I found it!) but ‘That’s funny...’”

- Isaac Asimov (1920-1992)



ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible. First and 

foremost, thanks go to my supervisor Dr Nigel Fullwood for his inspiration and 

support. He provided encouragement, sound advice and lots of ideas, as well as 

keeping the microscopes up and running. I also owe a debt of gratitude to the TFC 

Frost Trust for funding this research.

This project was carried out in collaboration with the Kyoto Prefectural University of 

Medicine. I was fortunate enough to spend some time in Japan with the group and 

am eternally grateful for the hospitality that was shown to me. I had a fantastic time, 

meeting staff and patients alike. Special thanks go to Dr Takahiro Nakamura, Prof 

Noriko Koizumi, Dr Kan Koizumi, Dr Yoichiro Sano, Yutaka Ishino, Prof Shigeru 

Kinoshita, Dr Che Connon and his wife Jo, as well as the departmental secretaries 

who looked after me and educated me in the way of bento lunches and the local 

lingo! For welcoming me and entertaining me so brilliantly in Tokyo, thanks also to 

Reiko Itoh and her husband.

Many thanks to my friends in the lab; Leanne Cooper, Katerina Paleologou and 

Adam Bentley who have not only been the best of colleagues in the work sense, but 

have become my best friends in Lancaster. To the staff at Graduate College who 

awarded me an assistant deanship, relieving some of the financial strain; I am 

grateful most especially to Jo Hardman, Peta Ainsworth, Candace Davies and my 

fellow assistant deans.



Thanks to Mike Buckley and Beverley Andrew of Pathology Management Services 

Ltd. who, as well as providing employment and supporting me financially, both 

became very dear friends of mine. My decision to do a doctorate was largely down 

to their encouragement. It was one of Mike’s lifelong dreams to see his name in print 

and since he never quite found time to write his book; Mike, this one is for you.

I am grateful to Arnold and Clare Boulter, Dr Neil Weir and the team involved in the 

BRINOS ear camp, as well as the doctors at the Fateh Bal Eye Hospital, Nepalganj. 

The experiences I gained from working in Nepal inspired my choice of vocation.

Special thanks go to Damien for his patience, love and encouragement. Lastly and 

most importantly, I wish to thank my parents, Susan and Alan Rigby. They bore me, 

raised me, taught me, supported and loved me every step of the way. They 

encouraged me to follow my dreams. Sometimes words just aren’t enough but it is to 

them that I dedicate this thesis, with love.



CONTENTS

ACKNOW LEDGEM ENTS.............................................................................................................. I ll

C O NTENTS.............................................................................................................................................V

FIGURES, PLATES AND T A B L E S............................................................................................XII

A BSTR A C T......................................................................................................................................XVII

1 INTRODUCTION........................................................................................................................ 19

1.1 “AH, I SEE...” ............................................................................................................................ 19
1.2 THE Ey e ................................................................................................................................... 21
1.3 The Ocular Surface .........................................................................................................23

1.3.1 The Sclera.........................................................................................................................23
1.3.2 The Conjunctiva............................................................................................................. 23
1.3.3 The Cornea.......................................................................................................................24

1.4 Extracellular Matrices................................................................................................ 26
1.4.1 An Introduction to the Extracellular Matrix..............................................................26
1.4.2 The Basement Membrane Zone................................................................................... 26
1.4.3 Collagens..........................................................................................................................28
1.4.4 Adhesive Glycoproteins................................................................................................30

1.4.4.1 Laminins....................................................................................................... 30
1.4.4.2 Fibronectins................................................................................................. 31
1.4.4.3 Vitronectin.....................................................................................................31

1.4.5 Proteoglycans..................................................................................................................32
1.4.5.1 Glycosaminoglycan Structure......................................................................33
1.4.5.2 Glycosaminoglycan Nomenclature.............................................................. 33

1.5 Corneal Ultrastructure ..............................................................................................35
1.5.1 Corneal Epithelium.........................................................................................................35

1.5.1.1 Junctions o f the Corneal Epithelium........................................................... 37
1.5.1.2 Role o f Corneal Epithelium..........................................................................39
1.5.1.3 Epithelial Turnover......................................................................................39

1.5.2 Bowman’s Layer............................................................................................................ 40
1.5.3 The Corneal Stroma........................................................................................................41

1.5.3.1 Stromal Collagens........................................................................................ 42
1.5.3.2 Stromal Proteoglycans.................................................................................43
1.5.3.3 Corneal Transparency..................................................................................44

1.5.4 Descemet’s Membrane.................................................................................................. 45
1.5.5 The Corneal Endothelium..............................................................................................46

1.5.5.1 Corneal Endothelial Disorders....................................................................48
1.6 Stem Cells.............................................................................................................................. 49

1.6.1 Stem Cell Types and Characteristics.......................................................................... 49
1.6.2 Therapeutic Potential......................................................................................................50

1.7 The Lim bu s ............................................................................................................................52
1.7.1 A Stem Cell Niche......................................................................................................... 53
1.7.2 Limbal Stem C ells......................................................................................................... 53
1.7.3 Limbal Stem Cell Deficiencies....................................................................................54

1.7.3.1 Pterygi um ......................................................................................................55
1.7.3.2 Ocular Cicatricial Pemphigoid (OCP)........................................................55
1.7.3.3 Stevens-Johnson Syndrome (SJS).................................................................56

1.7.4 Treatment o f Limbal Stem Cell Deficiencies............................................................57
1.8 B iomaterials and  Tissue Engineering ........................................................................59

1.8.1 Amniotic Membrane......................................................................................................59
1.8.2 Amniotic Membrane: A History o f  U se .................................................................... 60



1.8.3 Amniotic Membrane in Ocular Surface Reconstruction....................................... 61
1.8.3.1 Action Mechanisms o f  Amniotic M embrane....................................................62

1.8.4 Ex Vivo Expansion o f Limbal Stem Cells on A M ..................................................63
1.9 Central A im s .......................................................................................................................67

2 M ATERIALS AND M ETH O D S............................................................................................68

2.1 Comparison of Cellular and Denuded Amniotic Membrane as Carriers
for Hum an  Limbal Stem Cell Cultivation........................................................................ 68

2.1.1 Preparation o f the Cell Suspension Culture System............................................... 68
2.1.2 Preparation o f Amniotic Membrane.......................................................................... 69

2.1.2.1 Cellular Amniotic M embranes..............................................................................70
2.1.2.2 Denuded Amniotic M embranes............................................................................ 70

2.1.3 Origin o f Limbal Cells for Culture.............................................................................70
2.1.4 Cell Suspension Culture o f Human Limbal Epithelial C ells................................ 70
2.1.5 Sample Processing for Scanning Electron Microscopy [SEM]............................71
2.1.6 Sample Processing for Transmission Electron Microscopy [TEM].................... 72
2.1.7 Collection o f Quantitative Data for Cellular and Denuded Cultures...................72

2.1.7.1 Thickness o f  Cell L ayers ........................................................................................73
2.1.7.2 Number o f  Cell L ayers ...........................................................................................74
2.1.7.3 Area o f  Intercellular Space ...................................................................................74
2.1.7.4 Number o f  Desmosomes........................................................................................ 75
2.1.7.5 Number o f  Basal Junctions/Hemidesmosomes..................................................75
2.1.7.6 Superficial Cell Surface Area ............................................................................... 75

2.1.8 Presentation of Quantitative Data...............................................................................76
2.1.9 Statistical Data Analysis...............................................................................................76

2.2 Cultivation of HCEC on Amniotic Mem brane...................................................... 77
2.2.1 Origin o f Endothelial Cells for Culture.....................................................................77
2.2.2 Cell Suspension Culture o f  Human Corneal Endothelial C ells............................ 77
2.2.3 Preparation o f Amniotic Membrane...........................................................................78
2.2.4 Seeding Corneal Endothelial Cells on Denuded Amniotic Membrane...............78
2.2.5 Sample Processing for Scanning Electron Microscopy.......................................... 79
2.2.6 Sample Processing for Transmission Electron Microscopy.................................. 79

2.3 Morphological Analysis of Polyphenol-Treated Rat Corneal

Endothelium  in Long-Term Storage .................................................................................... 80
2.3.1 Corneal Tissue Preparation.......................................................................................... 80
2.3.2 Polyphenol and Optisol-GS......................................................................................... 80
2.3.3 Tissue Storage................................................................................................................ 81
2.3.4 Scanning Electron Microscopy.................................................................................... 81

2.4 Evaluation of Sterilized, Freeze-Dried Amniotic Mem brane .......................82
2.4.1 Amniotic Membrane Samples.....................................................................................82
2.4.2 Freeze-Drying o f Amniotic Membrane..................................................................... 82
2.4.3 Preparation o f Frozen Amniotic Membrane............................................................. 83
2.4.4 Immunohistochemical Characterization o f Amniotic Membrane........................ 83
2.4.5 Histochemicals...............................................................................................................84

2.4.5.1 P rim ary ....................................................................................................................84
2.4.5.2 Secondary  .....................................................................................................85
2.4.5.3 Controls....................................................................................................................85

2.4.6 Tissue Processing for TEM (Immunoelectron Microscopy)................................. 85
2.4.7 Immunogold Labelling o f Basement Membrane Components..............................86
2.4.8 Culture o f Rabbit Corneal Epithelial Cells on Freeze-Dried A M ........................ 87

2.4.8.1 Extraction o f  Rabbit Limbal Biopsies ................................................................87
2.4.8.2 Epithelial Suspension Culture on FD-AM......................................................... 87

2.4.9 Sample Processing for Scanning Electron Microscopy.......................................... 88
2.4.10 Sample Processing for Transmission Electron Microscopy...................................88
2*4*11 Quantitative Analysis o f Corneal Cells Cultivated on Freeze-dried A M ............88

vi



2.5 Cultivation of Hum an  Oral Mucosal Epithelial Cells on Denuded
Amniotic Mem brane ......................................................................................................................89

2.5.1 Samples for Ultrastructural Examination..................................................................89
2.5.2 Mucosal Cell Biopsies...................................................................................................89

2.5.2.1 Preoperative Oral Management................................................................... 89
2.5.2.2 Preparation for Surgery............................................................................... 90
2.5.2.3 Oral Stem Cell Sampling...............................................................................90
2.5.2.4 Postoperative Oral Management.................................................................91

2.5.3 Sample Preparation for Light M icroscopy................................................................91
2.5.4 Preparation o f Amniotic Membrane...........................................................................91
2.5.5 Primary Cultures o f Human Oral Epithelial Cells on A M .................................... 91
2.5.6 Sample Preparation for Scanning Electron Microscopy.........................................92
2.5.7 Sample Processing for Transmission Electron Microscopy..................................93
2.5.8 Quantitative Analysis o f Mucosal Cell Cultures..................................................... 93

2.6 Clinical Outcomes of A mniotic Membrane/Oral Mucosal Stem Cell 
Transplants..................................................................................................................................... 94

2.6.1 Samples for Ultrastructural Examination..................................................................94
2.6.2 Sample Preparation for Scanning Electron Microscopy.........................................95
2.6.3 Sample Processing for Transmission Electron Microscopy.................................. 95

2.7 Rabbit Oral Mucosal/Corneal Epithelial Hybrid Cultures on 
Amniotic Mem bran e  ..........................................................................................................96

2.7.1 Origin o f Cells for Culture....................................  96
2.7.2 Preparation o f Amniotic Membrane...........................................................................96
2.7.3 Co-Cultures o f Rabbit Oral/Comeal Epithelia on Amniotic Membrane............ 96
2.7.4 Sample Preparation for Scanning Electron Microscopy.........................................97
2.7.5 Sample Processing for Transmission Electron Microscopy..................................97
2.7.6 Quantitative Analysis o f Hybrid Cell Cultures.........................................................97

2.8 EXTRACELLULAR MATRIX PROTEIN-COATED GELATINS AS CARRIERS FOR 
Hum an  and  Rabbit Limbal Stem Cell Cultivation.........................................................98

2.8.1 Preparation and Coating o f  Gelatins...........................................................................98
2.8.2 Origin o f Corneal Epithelial Cells for Culture.........................................................98
2.8.3 Culture o f Corneal Epithelial Cells on Coated Gelatins.........................................99
2.8.4 Sample Preparation for Scanning Electron Microscopy.........................................99
2.8.5 Sample Processing for Transmission Electron Microscopy................................ 100
2.8.6 Quantitative Analysis o f Corneal Cells Cultivated on Gelatin............................100

2.9 Hum an  Serum in Corneal Epithelial Cell Culture ........................................ 101
2.9.1 Origin o f Corneal Epithelial Cells for Culture....................................................... 101
2.9.2 Preparation o f  Human Serum for Culture System................................................. 101
2.9.3 Culture o f Corneal Epithelial Cells on Denuded AM ............................................102
2.9.4 Sample Preparation for Scanning Electron Microscopy....................................... 102
2.9.5 Sample Processing for Transmission Electron Microscopy................................ 102
2.9.6 Quantitative Analysis o f Corneal Cells Cultivated with Human Serum  102

R E SU L T S.................................................................................................................................... 103

3.1 Comparison of Cellular and  Denuded Amniotic Membrane as Carriers
for Hum an  Limbal Stem Cell Cultivation.......................................................................103

3.1.1 Scanning Electron Microscopy.................................................................................. 103
3.1.1.1 Limbal Cells on Denuded Amniotic Membrane.......................................103
3.1.1.2 Limbal Cells on Cellular Amniotic Membrane......................................... 104

3.1.2 Transmission Electron Microscopy.......................................................................... 109
3.1.2.1 Limbal Cells on Denuded Amniotic Membrane........................................ 109
3.1.2.2 Limbal Cells on Cellular Amniotic Membrane......................................... 109

3.1.3 Quantitative Study........................................................................................................ 114
3.1.4 Summary Interpretations.............................................................................................116



4 RESULTS...................................................................................................................117
4.1 Cultivation of Human Corneal Endothelial Cells on Denuded 
Amniotic Mem brane ....................................................................................................................117

4.1.1 Scanning Electron Microscopy..................................................................................117
4.1.1.1 Control Human Corneal Endothelial Cells............................................... 117
4.1.1.2 Human Corneal Endothelial Cells Cultivated on Denuded A M .............. 117

4.1.2 Transmission Electron Microscopy...........................................................................121
4.1.2.1 Control Human Corneal Endothelial Cells............................................... 121
4.1.2.2 Human Corneal Endothelial Cells Cultivated on Denuded A M .............. 121

4.1.3 Summary o f Observations...........................................................................................125
4.2 Morphological Analysis of Polyphenol-Treated Rat Corneal 
Endothelium in Long Term Storage....................................................................................126

4.2.1 Scanning Electron Microscopy...................................................................................126
4.2.1.1 Untreated Rat Corneal Endothelial Cells..................................................126
4.2.1.2 Polyphenol-Treated Rat Corneal Endothelial Cells..................................126

4.2.2 Summary o f Observations...........................................................................................130

5 RESULTS...................................................................................................................131
5.1 Evaluation of Sterilized, Freeze-Dried Amniotic Mem brane ....................131

5.1.1 Scanning Electron Microscopy................................................................................. 131
5.1.1.1 Cellular Amniotic Membranes...................................................................131
5.1.1.2 Denuded Amniotic Membranes.................................................................132

5.1.2 Transmission Electron Microscopy......................................................................... 135
5.1.2.1 Cellular Amniotic Membranes...................................................................135
5.1.2.2 Denuded Amniotic Membranes.................................................................138

5.1.3 Transmission Electron Microscopy: Immunogold Labelling.............................141
5.1.3.1 Fibronectin (IST-4)....................................................................................141
5.1.3.2 Laminin...................................................................................................... 141
5.1.3.3 Vitronectin (VIT-2).................................................................................... 142
5.1.3.4 Collagen type IV (NLI/53)........................................................................142
5.1.3.5 Collagen type I  (COL-1)...........................................................................142
5.1.3.6 Heparan Sulphate (F58-10E4)..................................................................142
5.1.3.7 Chondroitin Sulphate (CS-56)....................................................................143
5.1.3.8 Keratan Sulphate (5-D-4)...........................................................................143
5.1.3.9 Control (non-specific LgG).........................................................................143

5.2 Cultivation of Rabbit Corneal Epithelial Cells on Denuded Freeze- 
Dried Amniotic Mem brane.......................................................................................................154

5.2.1 Scanning Electron Microscopy...................................................................................154
5.2.2 Transmission Electron Microscopy......................................................................... 157
5.2.3 Quantitative Study.........................................................................................................160
5.2.4 Summary Interpretations............................................................................................. 161

6.....RESULTS...................................................................................................................162
6.1 Cultivation of Hum an Oral Mucosal Epithelial Cells on Denuded 
Amniotic Mem brane ................................................................................................................... 162

6.1.1 Light M icroscopy..........................................................................................................162
6.1.1.1 Gingival Mucosal Biopsies........................................................................162
6.1.1.2 Buccal Mucosal Biopsies..........................................................................162
6.1.1.3 Control Human Corneal Biopsy................................................................163

6.1.2 Scanning Electron Microscopy................................................................................... 165
6.1.2.1 Gingival Mucosal Biopsies.......................................................................165
6.1.2.2 Buccal Mucosal Biopsies........................................................................... 167
6.1.2.3 Control Corneal Biopsy............................................................................. 170

6.1.3 Transmission Electron Microscopy......................................................................... 172

viii



6.1.3.1 Gingival Mucosal Biopsies......................................................................... 172
6.1.3.2 Buccal Mucosal Biopsies........................................................................... 176
6.1.3.3 Control Corneal Biopsy............................................................................. 180

6.1.4 Scanning Electron Microscopy...................................................................................182
6.1.4.1 Cultivated Gingival Mucosal Epithelial Cells on AM............................... 182
6.1.4.2 Cultivated Buccal Mucosal Epithelial Cells on AM.................................. 184

6.1.5 Transmission Electron Microscopy...........................................................................186
6.1.5.1 Cultivated Gingival Mucosal Epithelial Cells on AM............................... 186
6.1.5.2 Cultivated Buccal Mucosal Epithelial Cells on AM.................................. 190

6.1.6 Quantitative Study........................................................................................................ 194
6.1.7 Summary Interpretations............................................................................................. 196

6.2 Clinical Outcomes of A mniotic Membrane/Oral Mucosal Stem Cell 
Transplants ............................................................................................................................197

6.2.1 Clinical Observations............................................................................   197
6.2.2 Scanning Electron Microscopy...................................................................................197

6.2.2.1 Case 1: Chemical Injury................................................. :........................ 197
6.2.3 Transmission Electron Microscopy........................................................................ 201

6.2.3.1 Case 1: Chemical Injury...........................................................................201
6.2.4 Scanning Electron Microscopy.................................................................................205

6.2.4.1 Case 2: Stevens-Johnson Syndrome......................................................... 205
6.2.5 Summary Interpretations........................................................................................... 207

6.3 Examination of Hybrid Cultures of Rabbit Corneal and  Oral Mucosal 
Epithelial Cells on Denuded  Amniotic Mem brane ....................................................208

6.3.1 Scanning Electron Microscopy.................................................................................208
6.3.1.1 Corneal & Oral Mucosal Epithelial Hybrid Cultures on AM...................208
6.3.1.2 Corneal & Oral Mucosal Epithelial Hybrid Cultures Post-Transplant.. 211

6.3.2 Transmission Electron Microscopy........................................................................ 213
6.3.2.1 Corneal & Oral Mucosal Epithelial Hybrid Cultures on AM...................213
6.3.2.2 Corneal & Oral Mucosal Epithelial Hybrid Cultures Post-Transplant.. 216

6.3.3 Quantitative Study........................................................... ............ 219
6.3.4 Summary Interpretations...................................   221

7 R E SU L T S .....             222

7.1 U se of Extracellular Matrix Protein-Coated Gelatins as Carriers for 
Hum an  and  Rabbit Limbal Stem Cell Cultivation...........................     222

7.1.1 Scanning Electron Microscopy...............................  222
7. /. 1.1 Coated Gelatin Sheets............................................................................... 222

7.1.2.......Transmission Electron Microscopy........................................................................ 225
7.1.2.1 Coated Gelatin Sheets............................................................................... 225

7.1.3 Scanning Electron Microscopy........................... 228
7.1.3.1 Cultivated Human Corneal Epithelial Cells.............................................228
7.1.3.2 Cultivated Rabbit Corneal Epithelial Cells...............................................230

7.1.4.......Transmission Electron Microscopy.........................................................................232
7.1.4.1 Cultivated Human Corneal Epithelial Cells..................... 232
7.1.4.2 Cultivated Rabbit Corneal Epithelial Cells...............................................234

7.1.5 Quantitative Study — ...............    236
7.1.6 Summary Interpretations  .................................................  238

8 R ESU LTS------------       ......----------------------------------------- 239

8 .1 Hum an  Serum  in Corneal Epithelial Cell c u l t u r e .........................................239
8.1.1 Human Corneal Cell Cultures on AM: Experimental Samples................  239
8.1.2 Scanning Electron Microscopy........................... 240

8.1.2.1 Human Serum-Cultivated Corneal Cells on AM........................................240
8.1.2.2 FBS-Cultivated Human Corneal Cells on AM ..........................................240

8.1.3 Transmission Electron Microscopy......................................................................... 244



8.1.3.1 Human Serum-Cultivated Corneal Cells on AM .......................................244
8.1.3.2 FBS-Cultivated Human Corneal Cells on AM ..........................................244

8.1.4 Quantitative Study.......................................................................................................250
8.1.4.1 Human Serum (1) Cultivated Comeal Epithelial Cells............................ 251
8.1.4.2 Human Serum (2) Cultivated Comeal Epithelial Cells.............................251
8.1.4.3 Human Serum (3) Cultivated Corneal Epithelial Cells............................ 252
8.1.4.4 FBS Cultivated Comeal Epithelial Cells.................................................. 252
8.1.4.5 Comparisons o f Human Serum and FBS Cultivated Cells....................... 253

8.1.5 Summary Interpretations........................................................................................... 256

DISCUSSIO N.... ............................................................   257

Overview  of the A ims of this Th e sis ................................................................................... 257
9.1 Comparison of Cellular and Denuded Amniotic Membrane as 
Carriers for Human  Limbal Stem Cell Cultivation .................................................. 259

9.1.1 Background.................................................................................................................... 259
9.1.2 General Discussion o f  Results................................................................................... 262
9.1.3 Conclusions................................................................................................................... 265

9.2 Cultivation of Human Corneal Endothelial Cells on Amniotic
Mem brane ........................................................................................................................................266

9.2.1 Background.................................................................................................................... 266
9.2.2 General Discussion o f Results................................................................................... 268

9.2.2.1 Ultrastructural Examination......................................................................268
9.2.2.2 Amniotic Membrane as a Carrier.............................................................269
9.2.2.3 Clinical Potential for Cultured Endothelial Cell Sheets...........................270
9.2.2.4 Transplantation in Animal Models............................................................ 271

9.2.3 Conclusions and Future Directions........................................................................... 273
9.3 Morphological analysis of Polyphenol-Treated Rat Corneal 
Endothelium  in Long-Term Sto r ag e .....................................................................  274

9.3.1 Background.................................................................................................................... 274
9.3.2 General Discussion o f  Results................................................................................... 275
9.3.3 Conclusions and Future Directions........................................................................... 277

9.4 Evaluation of Sterilized, Freeze-Dried amniotic Mem brane ................... 278
9.4.1 Background.................................................................................................................... 278
9.4.2 General Discussion o f Results................................................................................... 279

9.4.2.1 Membrane Preparation Methods.............................................................. 279
9.4.2.2 Ultrastructural Examination and Immunohistochemistry.........................281
9.4.2.3 FD-AMas a Culture Substrate...................................................................283

9.4.3 Conclusions................................................................................................................... 284
9.5 Cultivation of Human Oral Mucosal Epithelial Cells on Denuded 
Amniotic Mem brane ...................................................................................................................285

9.5.1 Background.....................................................................................................................285
9.5.2 General Discussion o f Results....................................................................................287

9.5.2.1 Ultrastructural Examination o f Mucosal Biopsies.................................... 287
9.5.2.2 Ultrastructural Examination o f Mucosal Epithelium Cultivated on AM  287
9.5.2.3 Subsequent Clinical Applications......................................  289

9.5.3 Conclusions and Future Directions............................................................................290
9.6 Clinical Outcomes of amniotic Membrane/Oral Mucosal Stem Cell 
Transplants.................................................................................................................................. 291

9.6.1 Background.....................................................................................................................291
9.6.2 General Discussion o f  Observations..........................................................................291

9.6.2.1 Case 1: Chemical Injury............................................................................ 292
9.6.2.2 Case 2: Stevens-Johnson Syndrome...........................................................294

9.6.3 Conclusions................................................................................................................... 295
9.7 Rabbit  Oral Mucosal/Corneal Hybrid Stem Cell Cultures on 
Amniotic Mem brane ...................................................................................................................296



9.7.1 Background........................................................................................................296
9.7.2 General Discussion of Results.......................................................................... 297

9.7.2.1 Evaluation o f Hybrid Culture Sheets Pre-Transplant...............................297
9.7.2.2 Evaluation o f Hybrid Culture Sheets Post-Transplant..............................298

9.7.3 Conclusions and Future Directions...................................................................300
9.8 Extracellular Matrix Protein-Coated Gelatins as Carriers for Human  
an d  Rabbit Limbal Stem Cell Cultivation ......................................................................301

9.8.1 Background........................................................................................................301
9.8.2 General Discussion of Results.......................................................................... 303

9.8.2.1 Ultrastructural Examination o f Gelatin Hydrogels...................................303
9.8.2.2 Ex Vivo Expansion o f Limbal Cells on Gelatin Hydrogels......................304

9.8.3 Conclusions and Future Directions...................................................................305
9.9 Hum an  Serum in Corneal Epithelial Cell Cu ltu r e ........................................306

9.9.1 Background....................................................................................................... 306
9.9.2 General Discussion of Results.......................................................................... 310
9.9.3 Conclusions and Future Directions.................................................................. 313

9.10 Conclusions and  Future Directions................................................... ■..............314

REFERENCES................................................................................................................. 316
APPENDIX 1 (WWW REFERENCES)..........................................................................339
PUBLICATIONS AND PRESENTATIONS..................................................................340

Published Papers........................................................................................................   340
Papers in Pr ess ........................................................................................   340
Papers Submitted for Publication...................................................................................... 340
Papers in Preparation ............................................................................................................... 341
Published Abstracts..................................................................................................................341
Presentations............................................................................................................................... 341



FIGURES, PLATES AND TABLES

Figure 1.1: Sectional anatomy of the human eye.......................................................................21
Figure 1.2: Slit lamp photograph showing a healthy eye with a clear cornea..........................25
Figure 1.3: TEM micrograph illustrating the basement membrane zone..................................27
Figure 1.4: Basic structural elements and higher organization of collagen..............................29
Figure 1.5: Schematic diagram of the basic 0-1 inked proteoglycan structure..........................32
Figure 1.6: Diagrammatic representation of a cross section through the human cornea......... 35
Figure 1.7: TEM micrograph illustrating human corneal epithelium at low magnification.... 36
Figure 1.8: Schematic model and TEM micrograph of a desmosomal junction......................38
Figure 1.9: Schematic illustration of a hemidesmosome attaching an epithelial cell to the

basement membrane...................................................................................................39
Figure 1.10: Schematic illustration of Bowman’s layer............................................................ 41
Figure 1.11: TEM micrograph showing the collagen arrangement in the corneal stroma 43
Figure 1.12: SEM micrograph of human corneal endothelium................................................ 46
Figure 1.13: Light micrograph of the apical region of the limbal zone.................................... 52
Figure 1.14: Diagrammatic representation of the limbal zone.................................................. 53
Figure 1.15: Photographs of common disorders affecting the ocular surface and leading to

limbal stem cell deficiency....................................................................................... 55
Figure 1.16: Foetal membranes in the womb and the subsequent use of AM as a graft.......... 60
Table 1.1: Action mechanisms and reported clinical effects of AM transplantation...............62
Figure 1.17: Schematic diagram of the suspension culture system.......................................... 64
Figure 1.18: Photographs depicting the grafting of cultured limbal epithelial cells on AM... 65
Figure 2.1: Schematic diagram of the suspension culture system............................................ 69
Figure 2.2: Calculation of mean thickness using AnalySIS® software and TEM...................73
Figure 2.3: Diagrammatic representation of the protocol for determination of intercellular

space areas.................................................................................................................74
Figure 2.4: Calculation of mean cell surface areas using AnalySIS® software and SEM...... 76
Table 2.1: Summary of immunohistochemicals used in the characterization of the freeze-

dried and frozen AMs................................................................................................ 85
Plate 3.1: SEM micrograph of human limbal epithelial cells cultured on denuded AM 105
Plate 3.2: SEM micrograph of human limbal epithelial cells cultured on cellular A M  105
Plate 3.3: SEM micrograph of human limbal epithelial cells cultivated on cellular AM 106
Plate 3.4: SEM micrograph of cultivated human limbal epithelial cells on cellular AM 106
Plate 3.5: SEM micrograph of cultivated human limbal epithelial cells on denuded AM .... 107
Plate 3.6: SEM micrograph of cultivated human limbal epithelial cells on cellular AM 107
Plate 3.7: SEM micrograph of human limbal epithelial cells cultured on denuded AM 108
Plate 3.8: SEM micrograph of human limbal epithelial cells cultured on cellular AM  108
Plate 3.9: TEM micrograph of human limbal epithelium cultivated on denuded AM 110
Plate 3.10: TEM micrograph of human limbal epithelium cultivated on cellular AM 110
Plate 3.11: TEM micrograph depicting desmosomes in the cell culture on denuded AM .... 111
Plate 3.12: TEM micrograph depicting desmosomes in the cell culture on cellular AM 111
Plate 3.13: TEM micrograph of human limbal epithelium cultivated on denuded AM  112
Plate 3.14: TEM micrograph showing human limbal epithelium on cellular AM.............. 112
Plate 3.15: TEM micrograph of the basement membrane region of the cellular AM  113
Plate 3.16: TEM micrograph showing cellular AM, devoid of a epithelium........................ 113
Table 3.1: Comparison of human limbal cells cultured on denuded and cellular AM with

normal human cornea...............................................................................................114
Chart 3.1: Comparison of human limbal epithelial cells cultured on denuded and cellular

AM expressed as percentage difference from normal human cornea control 115
Plate 4.1: SEM micrograph of control HCEC............................................................. 118
Plate 4.2: SEM micrograph of HCEC cultured on denuded AM ................................118
Plate 4.3: SEM micrograph of control HCEC............................................................. 119
Plate 4.4: SEM micrograph of HCEC cultured on denuded A M .............................. 119



Plate 4.5: SEM micrograph of control HCEC..........................................................................120
Plate 4.6: SEM micrograph of HCEC cultured on denuded AM ............................................120
Plate 4.7: TEM micrograph of control HCEC..........................................................................122
Plate 4.8: TEM micrograph of HCEC cultured on denuded AM ............................................122
Plate 4.9: TEM micrograph of control HCEC on Descemef s membrane............................. 123
Plate 4.10: TEM micrograph of HCEC cultured on denuded AM ..........................................123
Plate 4.11: TEM micrograph showing the basal region of the control HCEC....................... 124
Plate 4.12: TEM micrograph of the basal region of the cultivated HCEC..............................124
Plate 4.13: SEM micrograph of untreated rat corneal endothelium at 1 week in storage 127
Plate 4.14: SEM micrograph of polyphenol-treated rat corneal endothelium after 1 week

in storage...................................................................................................................127
Plate 4.15: SEM micrograph of untreated rat corneal endothelium at 2 weeks in storage.... 128 
Plate 4.16: SEM micrograph of polyphenol-treated rat corneal endothelium after 2 weeks

in storage...................................................................................................................128
Plate 4.17: SEM micrograph of untreated rat corneal endothelium at 4 weeks in storage.... 129 
Plate 4.18: SEM micrograph of polyphenol-treated rat corneal endothelium after 4 weeks

in storage.................................................................................................................129
Plate 5.1: SEM micrograph depicting cellular FD-AM........................................................... 133
Plate 5.2: SEM micrograph depicting cellular frozen AM......................................................133
Plate 5.3: SEM micrograph depicting denuded FD-AM.........................................................134
Plate 5.4: SEM micrograph depicting denuded frozen AM ....................................................134
Plate 5.5: TEM micrograph of cellular FD-AM taken at low magnification......................... 136
Plate 5.6: TEM micrograph of cellular FD-AM taken at high magnification........................ 136
Plate 5.7: TEM micrograph of cellular frozen AM taken at low magnification..................... 137
Plate 5.8: TEM micrograph of cellular frozen AM taken at high magnification................... 137
Plate 5.9: TEM micrograph of denuded FD-AM.....................................................................139
Plate 5.10: TEM micrograph of denuded FD-AM at high magnification.............................. 139
Plate 5.11: TEM micrograph of denuded frozen AM taken at low magnification.................140
Plate 5.12: TEM micrograph of denuded frozen AM taken at high magnification................ 140
Plate 5.13: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-fibronectin.................................................144
Plate 5.14: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-laminin.......................................................145
Plate 5.15: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-vitronectin..................................................146
Plate 5.16: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-collagen type IV ...................................... 147
Plate 5.17: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-collagen type 1...........................................148
Plate 5.18: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-heparan sulphate........................................149
Plate 5.19: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-chondroitin sulphate................................. 150
Plate 5.20: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with anti-keratan sulphate.........................................151
Plate 5.21: TEM micrographs illustrate cellular and denuded frozen and freeze-dried

membranes immunolabelled with a control non-specific antibody....................... 152
Table 5.1: Relative distribution of extracellular matrix molecules in freeze-dried and

frozen membranes, both cellular and denuded........................................................153
Plate 5.22: SEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM .... 155 
Plate 5.23: SEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM .... 155 
Plate 5.24: SEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 156 
Plate 5.25: SEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM .... 156 
Plate 5.26: TEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 157 
Plate 5.27: TEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 158

xiii



Plate 5.28: TEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 158
Plate 5.29: TEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 159
Plate 5.30: TEM micrograph of rabbit corneal epithelial stem cells cultured on FD-AM.... 159
Table 5.2: Comparison of rabbit corneal epithelial cells cultured on freeze-dried AM with

normal rabbit cornea...............................................................................................160
Plate 6.1: Light micrograph of a human gingival epithelial biopsy........................................164
Plate 6.2: Light micrograph of a human buccal epithelial biopsy........................................... 164
Plate 6.3: Light micrograph showing human control corneal epithelium.............................. 164
Plate 6.4: SEM micrograph of biopsy-derived human gingival mucosal cells............165
Plate 6.5: SEM micrograph of biopsy-derived human gingival mucosal cells............166
Plate 6.6: SEM micrograph of biopsy-derived human gingival mucosal cells............166
Plate 6.7: SEM micrograph of biopsy-derived human gingival mucosal cells............167
Plate 6.8: SEM micrograph of biopsy-derived human buccal mucosal cells...............168
Plate 6.9: SEM micrograph of biopsy-derived human buccal mucosal cells...............168
Plate 6.10: SEM micrograph of biopsy-derived human buccal mucosal cells....................... 169
Plate 6.11: SEM micrograph of the apical surface of buccal mucosal cells........................... 169
Plate 6.12: SEM micrograph of human control corneal epithelial cells................................. 170
Plate 6.13: SEM micrograph ofjunctions between human control corneal epithelial cells.. 171
Plate 6.14: SEM micrograph of the apical surface of human corneal epithelial cells............171
Plate 6.15: TEM micrograph of biopsy-derived gingival mucosal cells.................................173
Plate 6.16: TEM micrograph of superficial gingival mucosal cells at high magnification... 173
Plate 6.17: TEM micrograph of the gingival mucosal cells at low magnification.................174
Plate 6.18: TEM micrograph ofjunctions between the gingival mucosal cells..................... 174
Plate 6.19: TEM micrograph of gingival mucosal cells at low magnification....................... 175
Plate 6.20: TEM micrograph of gingival mucosal cells at high magnification...................... 175
Plate 6.21: TEM micrograph of the buccal mucosal cells at low magnification...................177
Plate 6.22: TEM micrograph of the buccal mucosal cells at high magnificatio..................... 177
Plate 6.23: TEM micrograph of the buccal mucosal cells at low magnification.................... 178
Plate 6.24: TEM micrograph ofjunctions between buccal mucosal cells.............................. 178
Plate 6.25: TEM micrograph of buccal mucosal cells at low magnification.......................... 179
Plate 6.26: TEM micrograph of the buccal mucosal cells at high magnification...................179
Plate 6.27: TEM micrograph of the submucosal connective tissue.........................................180
Plate 6.28: TEM micrograph of human corneal epithelial cells at low magnification...........181
Plate 6.29: TEM micrograph of human corneal superficial epithelial cells........................... 181
Plate 6.30: TEM micrograph of human corneal basal epithelial cells.................................... 182
Plate 6.31: SEM micrograph of cultured human gingival epithelial cells on denuded AM.. 183 
Plate 6.32: SEM micrograph of cultured human gingival epithelial cells on denuded AM.. 183 
Plate 6.33: SEM micrograph of cultured human gingival epithelial cells on denuded AM.. 184 
Plate 6.34: SEM micrograph of cultivated human buccal epithelial cells on denuded AM.. 185 
Plate 6.35: SEM micrograph of cultivated human buccal epithelial cells on denuded AM.. 185 
Plate 6.36: SEM micrograph of cultivated human buccal epithelial cells on denuded AM.. 186
Plate 6.37: TEM micrograph of cultivated human gingival epithelial cells on AM.............. 187
Plate 6.38: TEM micrograph of cultivated human gingival epithelial cells..........................188
Plate 6.39: TEM micrograph of cultivated human gingival epithelial cells..........................188
Plate 6.40: TEM micrograph of cultivated human gingival epithelial cells on AM.............. 189
Plate 6.41: TEM micrograph of cultivated human gingival epithelial cells.on AM...............189
Plate 6.42: TEM micrograph of cultivated human buccal epithelial cells on AM .................190
Plate 6.43: TEM micrograph of cultivated human buccal epithelial cells.............................. 191
Plate 6.44: TEM micrograph of cultivated human buccal cells on AM................................ 191
Plate 6.45: TEM micrograph of cultivated human buccal cells on AM................................ 192
Plate 6.46: TEM micrograph of cultivated human buccal epithelial cells on AM .................192
Plate 6.47: TEM micrograph of the junctions between adjacent cultivated human buccal

epithelial cells......................................................................................................... 193
Table 6.1: Comparison of cultivated human buccal and gingival mucosal epithelial cells

on denuded AM with normal human cornea........................................................... 194

xiv



Chart 6.1: Comparison of cultivated human gingival and buccal stem cells on AM
expressed as percentage difference from normal human cornea control................195

Plate 6.48: SEM micrograph of corneal epithelial-like cells on a removed mucosal graft... 198 
Plate 6.49: SEM micrograph of corneal epithelial-like cells on a removed mucosal graft... 199 
Plate 6.50: SEM micrograph of the transition zone of the rejected mucosal graft where

epithelial cells become more conjunctival in appearance.......................................199
Plate 6.51: SEM micrograph of conjunctival cell invasion of the mucosal stem cell graft... 200
Plate 6.52: SEM micrograph of the inflammatory cells found on the removed graft 200
Plate 6.53: TEM micrograph of necrotic corneal-like cells found on the removed graft 202
Plate 6.54: TEM micrograph depicting an invasion of conjunctival epithelial cells............. 202
Plate 6.55: TEM micrograph of a removed oral mucosal epithelial graft...............................203
Plate 6.56: TEM micrograph depicting the grossly clumped microvilli of the conjunctival

epithelial cells which covered most of the AM.......................................................203
Plate 6.57: TEM micrograph of a rejected oral mucosal epithelial graft................................204
Plate 6.58: TEM micrograph of a rejected oral mucosal epithelial graft................................ 204
Plate 6.59: SEM micrograph showing the epithelium of a human corneal button removed

six months after an oral mucosal epithelial cell transplant.................................... 206
Plate 6.60: SEM micrograph showing the epithelium of a human corneal button removed

six months after an oral mucosal epithelial cell transplant.................................... 206
Plate 6.61: SEM micrograph showing the epithelium of a human corneal button removed

following oral mucosal epithelial cell transplant................................................... 207
Plate 6.62: SEM micrograph of rabbit oral mucosal/comeal epithelial cells on AM......209
Plate 6.63: SEM micrograph of rabbit oral mucosal/comeal epithelial cells on AM..... 209
Plate 6.64: SEM micrograph of rabbit oral mucosal/comeal epithelial cells on AM..... 210
Plate 6.65: SEM micrograph showing regular microvilli n the surface of most of the

cultivated hybrid epithelial cells.............................................................................210
Plate 6.66: SEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after three weeks on the cornea......................................... 211
Plate 6.67: SEM micrograph showing a rabbit oral mucosal/comeal epithelial hybrid

culture on AM, removed following transplantation onto the ocular surface........ 212
Plate 6.68: SEM micrograph showing a post-transplant hybrid oral mucosal/corneal

culture sheet............................................................................................................. 212
Plate 6.69: TEM micrograph of cultivated hybrid corneal and oral mucosal epithelial cells

on denuded AM....................................................................................................... 213
Plate 6.70: TEM micrograph of cultivated rabbit comeal/oral mucosal hybrid epithelium.. 214 
Plate 6.71: TEM micrograph showing the basal region of a rabbit oral mucosal/comeal

epithelial hybrid culture on AM..............................................................................214
Plate 6.72: TEM micrograph showing the basal region of a rabbit oral mucosal/comeal

epithelial hybrid culture on AM..............................................................................215
Plate 6.73: TEM micrograph illustrating the numerous desmosomal junctions joining

adjacent cells in all cell layers of the rabbit hybrid cultures...................................215
Plate 6.74: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after 3 weeks on the cornea............................................... 216
Plate 6.75: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after 3 weeks on the cornea............................................... 217
Plate 6.76: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after 3 weeks on the cornea............................................... 217
Plate 6.77: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after 3 weeks on the cornea............................................... 218
Plate 6.78: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell

culture sheet, removed after 3 weeks on the cornea............................................... 218
Table 6.2: Comparison of cultivated hybrid oral mucosal/comeal epithelial cells on AM

before and 3 weeks after transplant onto the ocular surface...................................219
Chart 6.2: Comparison of cultivated rabbit hybrid cultures before and after transplant,

expressed as percentage difference from normal rabbit cornea control.................220

xv



Plate 7.1: SEM micrograph of an uncoated gelatin hydrogel sheet........................................ 223
Plate 7.2: SEM micrograph of gelatin hydrogel coated with type IV collagen......................223
Plate 7.3: SEM micrograph of gelatin hydrogel coated with fibronectin............................... 224
Plate 7.4: SEM micrograph of gelatin hydrogel coated with both collagen and fibronectin. 224
Plate 7.5: TEM micrograph of uncoated gelatin hydrogel.......................................... 226
Plate 7.6: TEM micrograph of collagen type IV coated gelatin hydrogel.............................. 226
Plate 7.7: TEM micrograph of fibronectin coated gelatin hydrogel....................................... 227
Plate 7.8: TEM micrograph of collagen IV and fibronectin coated gelatin hydrogel........... 227
Plate 7.9: SEM micrograph of human limbal stem cells cultivated on gelatin hydrogel...... 228
Plate 7.10: SEM micrograph of human limbal stem cells cultivated on gelatin hydrogel.... 229 
Plate 7.11: SEM micrograph of human limbal stem cells cultivated on gelatin hydrogel.... 229
Plate 7.12: SEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel...............230
Plate 7.13: SEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel............. 231
Plate 7.14: SEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel...............231
Plate 7.15: TEM micrograph of human limbal cells cultivated on gelatin hydrogel..............232
Plate 7.16: TEM micrograph of human limbal cells cultivated on gelatin hydrogel..............233
Plate 7.17: TEM micrograph of human limbal cells cultivated on gelatin hydrogel..............233
Plate 7.18: TEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel............. 234
Plate 7.19: TEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel.............. 235
Plate 7.20: TEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel............. 235
Plate 7.21: TEM micrograph of rabbit limbal cells cultivated on gelatin hydrogel............. 236
Table 7.1: Comparison of cultivated human and rabbit corneal cells on ECM-coated

gelatin with in vivo corneal epithelial controls...................................................... 237
Plate 8.1: SEM micrographs of human corneal cells cultivated using human serum.............241
Plate 8.2: SEM micrographs of human corneal cells cultivated using human serum............ 242
Plate 8.3: SEM micrographs of human corneal cells cultivated using human serum.............243
Plate 8.4: TEM micrographs of human corneal cells cultivated using human serum........... 245
Plate 8.5: TEM micrographs of human corneal cells cultivated using human serum........... 246
Plate 8.6: TEM micrographs of human corneal cells cultivated using human serum........... 247
Plate 8.7: TEM micrographs taken at high magnification to show the superficial cell

layers of human serum cultivated human limbal epithelial cells...........................248
Plate 8.8: TEM micrographs of human corneal cells cultivated using human serum........... 249
Table 8.1: Comparison of human and foetal bovine serum-cultivated corneal cells on AM

with normal human cornea...................................................................................... 250
Chart 8.1: Comparison of human serum (1) and FBS cultivated human corneal epithelial

cells, expressed as percentage difference from normal human cornea control......254
Chart 8.2: Comparison of human serum (2) and FBS cultivated human corneal epithelial

cells, expressed as percentage difference from normal human cornea control..... 254
Chart 8.3: Comparison of human serum (3) and FBS cultivated human corneal epithelial

cells, expressed as percentage difference from normal human cornea control..... 255
Figure 9.1: Slit lamp images of rabbit eyes at day 7 after grafting of stripped Descemef s

membrane, denuded AM and cultured HCEC on denuded AM............................272
Figure 9.2: Photographs of sterilized, FD-AM which was wafer-like, light and thin becoming

smooth and flexible on hydration...........................................................................280
Figure 9.3: Clinical photographs of the ocular surface of a 14 year old SJS patient before and

after cultivated autologous oral epithelial transplantation..................................... 289
Figure 9.4: Clinical photographs of the ocular surface of a 27 year old chemical burn patient

before and after cultivated autologous oral epithelial transplantation...................290
Figure 9.5: Clinical photographs of case 1: a chemically burned eye, before and after

cultivated autologous oral epithelial transplantation............................................. 293
Figure 9.6: Clinical photographs of case 2: the eye of an SJS patient, before and after

cultivated autologous oral epithelial transplantation............................................ 295
Figure 9.7: Slit lamp images showing the clinical course of human serum cultivated corneal 

epithelial transplantation.........................................................................................313

xv i



ABSTRACT

The central aim of this thesis is to improve current techniques for the ex vivo 

expansion of epithelial and endothelial cells on amniotic membrane for the treatment 

of ocular disorders. This thesis is primarily a microscope-based study and documents 

the findings of several investigations designed to refine tissue engineering o f the 

cornea. Light, scanning and transmission electron microscopy were used to study 

cultured cell morphology. Observations were quantified and compared with data 

from control corneas, facilitating statistical analyses. Immunohistochemical 

techniques were also employed to determine the distribution of extracellular matrix 

proteins in processed amniotic membrane (AM) carriers.

Various components of the culture system (including carrier, media and cell type) 

were evaluated in a number of separate studies. The results of this thesis show that 

denuded amniotic membrane encourages better adhesion of in vitro cultured stem 

cells and as such is a more practical carrier than the cellular variant. A freeze-dried 

form of amniotic membrane (FD-AM) was produced and found to compare 

favourably with cryopreserved tissue. Immunohistochemical findings confirmed 

similar distributions of extracellular matrix proteins in both carriers and FD-AM was 

used as a culture substrate to create healthy-looking epithelial cell sheets. In the first 

study of its kind, amniotic membrane was successfully used as a supportive matrix 

for the culture of quiescent corneal endothelial cells. In addition, evidence from the 

preservation study suggests that polyphenol antioxidant (extracted from green tea) 

could be a useful addition to culture media for corneal organ storage as it was found 

to maintain endothelial morphology and prolong cellular adhesion. In an attempt to



remove the risk of allogeneic graft rejection, human oral mucous membranes were 

evaluated as potential sources of stem cells for autologous corneal grafts. Buccal and 

gingival epithelia cultured on AM formed well stratified and differentiated cell sheets 

which closely resembled in vivo corneal epithelium and were found to be useful in 

the treatment of bilateral limbal stem cell deficiencies. Co-culture with corneal stem 

cells was found to further induce differentiation of the oral mucosal cells into more 

comeal-like epithelium. To remove the risks of viral or prion transmission associated 

with human amniotic membrane, extracellular matrix protein coated gelatin 

hydrogels were examined as alternative carriers for the cultivation of ex vivo 

expanded comeal cells and produced some promising results. It was also found that 

human serum can be effectively used to replace foetal bovine serum in the culture 

medium, removing a potential risk of zoonose contamination. Morphological and 

quantitative analyses confirmed that the cells produced using human serum closely 

resembled those of control cornea.

Collectively, the findings described and discussed herein have fostered further 

understanding of the amniotic membrane carrier and contributed towards significant 

improvements in the suspension culture system for the ex vivo expansion o f stem 

cells for ocular surface reconstruction. They have also shown that comeal endothelial 

cells can be cultured successfully on AM and have the potential to treat comeal 

dystrophies.



1 INTRODUCTION

1.1 “Ah, I see...”

This common statement, in which understanding is linked to sight, provides a prime 

example of how imperative vision is to man. Without doubt, vision is the most 

important of the five senses for most vertebrates; conveying information crucial to 

survival and providing a vital awareness of surroundings. Humans are arguably the 

most visually orientated and dependant of all the mammals. Although there are 

certainly situations in which other senses are important and there are examples of 

animals that have secondarily lost vision as a necessity, these are exceptions. Life 

that has evolved in and adapted to the spectrum of solar radiation can be expected to 

develop a means to use it for gathering information. It is not surprising then, that the 

human eye and those parts of the brain associated with the interpretation o f visual 

information are well-developed and any loss of functionality is devastating.

Visual impairment, which may be defined as blindness (best vision of <20/400 in the 

better eye, according to the World Health Organization [WHO] definition) or low 

vision (<20/60), is one of the most common disabilities: an estimated 40 million 

people worldwide were blind nearly a decade ago (at the time of the last accurate 

assessment) and 110 million people had low vision (Thylefors et al., 1995). Despite 

half a century of concerted effort, the global burden of blindness is mounting. Every 

five seconds a person goes blind; every minute a child goes blind. Projections 

suggest one hundred million people will lose their sight unnecessarily by 2020 if 

current trends continue (American Academy of Ophthalmology, September 2003).
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The phenomenon of good vision is heavily dependent on the ocular surface, in 

particular the transparent cornea as the principal refractive component. Diseases 

affecting the cornea are a major cause of blindness worldwide, second only to 

cataract in overall importance. The epidemiology of corneal blindness is complicated 

and encompasses a multitude of infectious and inflammatory eye diseases that cause 

corneal scarring, ultimately leading to functional blindness (Whitcher et al., 2001). 

While cataracts account for nearly half of global blindness, the next major cause is 

trachoma which blinds 4.9 million individuals annually, mainly as a result of corneal 

scarring and vascularization. Ocular trauma and corneal ulceration are significant 

causes of corneal blindness that may be responsible for 1.5 to 2 million new cases of 

monocular blindness every year. Hence, with over 6 million people blinded by 

diseases of the cornea, there is a tremendous requirement for effective treatments 

(Trinkaus-Randall, 2000).

The typical treatment for a damaged cornea is that of a transplant. According to 

National Health Service figures for the United Kingdom, around 2,000 people donate 

their corneas on death each year, yet demand still considerably exceeds supply. 

Given the dramatic shortfall of available donor corneas and the inherent problems of 

rejection, bioengineered replacements for the damaged tissue have long been sought. 

The ultimate aim is to produce an artificial cornea, designed to promote retention, 

minimize postoperative complications and restore vision to patients who cannot 

receive, or are unlikely to have a beneficial outcome from a human donor graft. This 

thesis seeks to address some of the issues involved in the creation of an artificial 

cornea, pivoting around the use of amniotic membrane as a carrier for suspension- 

cultured stem cells in ocular surface reconstruction.



1.2 The Eye

The human eye is a highly specialized organ o f photoreception; a spheroid with a 

diameter o f approximately one inch and a weight o f approximately eight grams 

(Martini, 1998), containing some 70% of all the sensory receptors in the body. The 

eyeball has a complex anatomy (figure 1.1) and can be divided into two cavities by 

the ciliary body and the lens. There is a large posterior cavity containing the 

gelatinous vitreous body and a smaller anterior cavity filled with aqueous humour.
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Figure 1.1: Sectional anatomy o f the human eye. Inset (top left) illustrates the three 
tunics that constitute the wall of the eyeball. Taken from ‘Anatomy and Physiology’ 
(Martini, 1998).
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The aqueous humour is produced by the ciliary body and provides a fluid cushion 

that helps retain the shape of the eye. Intraocular pressure is maintained by drainage 

of the excess through the trabecular meshwork into the canal of Schlemm (Hogan, 

1971). The gelatinous vitreous humour which fills the larger posterior cavity gives 

additional support to the retina in stabilizing the shape of the eye. The wall of the 

eye consists of three layers or tunics (Martini, 1998): an outer fibrous layer, an 

intermediate vascular layer and an inner neural tunic or retina, containing the visual 

receptors and associated neurones. The vascular tunic, as well as enclosing blood 

vessels and lymphatics, holds the choroid and the intraocular muscles within the 

ciliary body and the iris. The choroid is a vascular plexus, unmatched in the rest of 

the body for its concentrated abundance of blood vessels. The outermost fibrous 

layer of the eye consists of the cornea and sclera and provides a mechanically 

durable, fairly impervious barrier between the eye and its external environment.

The tear film coats the visible surface of the eye. Approximately 7.5 pm thick, it is 

comprised of mucin containing glucose, urea, many proteins and enzymes (including 

immunoglobulins and lysosyme), inorganic ions and cells such as desquamated 

epithelial cells and lymphocytes. Tears offer surface lubrication and epithelial 

nourishment, protect against bacterial infection and facilitate the removal of cellular 

waste and other debris from the ocular surface.
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1.3 The Ocular Surface

The fibrous or corneoscleral tunic can be divided into two general regions, namely 

the cornea and the sclera. They merge at the periphery of the cornea, in the region of 

the limbus. The healthy ocular surface is composed of highly specialized 

conjunctival and corneal epithelia which are formed by two phenotypically distinct 

cell types (Wei et al., 1996; Martini, 1998).

1.3.1 The Sclera

The sclera is the tough, opaque tissue, commonly known as ‘the white of the eye’, 

that serves as the eye's protective outer coat (Panjwani, 1997). It is composed mainly 

o f collagen fibres, randomly orientated and interlaced while following the curve of 

the eyeball. The sclera extends from the corneal periphery to the very back of the 

eye, where it is meets the optic nerve. The human sclera is generally thickest at the 

posterior pole (1mm) and thinnest at the equator (0.4-0.5mm) (Maurice, 1962). 

Scleral functions include maintenance of the boundary of the eye, serving as a 

protective envelope for delicate internal structures and providing a site for 

attachment of the six extraocular muscles which connect via tendons to the orbit (the 

eye socket in the skull) and control movement of the eyeball (Stidham, 2000). The 

sclera is highly vascularized, containing blood vessels and lymphatics to drain any 

excess aqueous humour.

1.3.2 The Conjunctiva

The conjunctiva is the thin, transparent tissue forming the outer surface of the eye. It 

begins at the outer edge of the cornea, covering the visible part of the sclera and
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lining the inside of the eyelids. The conjunctiva can be divided into three sections: 

palpebral conjunctiva covers the back of the eyelids, bulbar conjunctiva coats the 

anterior portion of the eyeball and the fornix forms the transition zone between the 

posterior eyelid and the eyeball. Like all mucous membranes, the conjunctiva has an 

epithelial layer and a submucosal lamina propria. As a layer of loose connective 

tissue, the lamina propria supports the delicate mucosal epithelium while allowing 

cells a degree of movement and providing immune defence. The conjunctival 

epithelium is vascularized and consists of loosely organized cell layers populated by 

mucus-secreting goblet cells (Pfister, 1975). Goblet cells are confined to the bulbar 

conjunctiva and are oval or round in shape, with a flattened nucleus near the base of 

the cell and a large intracellular collection of mucin. The apical surface of 

conjunctival epithelial cells is covered with microvilli which increase the surface 

area and hence promotes attachment of the tear film. Basal cells of the conjunctiva 

are attached to a typical basement membrane by hemidesmosomes. Two layers make 

up the conjunctival stroma; a superficial connective tissue matrix and a deeper 

fibrous layer through which run the conjunctival blood vessels and nerves. The 

conjunctiva possesses immunological defences to protect the surface of the eye.

1.3.3 The Cornea

The cornea is the transparent, normally avascular tissue which overlays the iris and 

the lens, forming the most anterior part of the eye (Panjwani, 1997). In conjunction 

with the sclera, it provides mechanical strength for the eye. As well as protecting the 

eye from ultraviolet radiation and providing a physical barrier to infection, the cornea 

is responsible for light transmittance and refraction. The curvature of the cornea 

(figure 1.2) is a major factor governing the extent to which it refracts light entering

24



the eye, providing most o f the focus. Aberrations in the shape o f the cornea can 

cause profound detriment to vision and surgical procedures to correct vision 

problems often involve adjusting corneal curvature.

upper eyelid

rear pole of lens

front surface 
of lens

_  sclera/ 
conjunctivacornea

Figure 1.2: Slit lamp photograph showing a healthy eye with a clear cornea. The 
curvature o f the cornea is indicated by the blue line [www].

Its physical isolation from the circulatory system (hence the immune system) has 

clinical implications. The cornea is effectively incapable of mounting a typical graft- 

rejection response so corneal transplants have a relatively high rate o f success.

Structurally, the cornea is composed o f five layers lying parallel to its surface 

(Maurice, 1962). There is a 5-6 cell layer thick, stratified, squamous, non-keratinized 

epithelium overlying an acellular condensation o f stroma, so-called Bowman's layer. 

The vast majority o f the cornea is the stroma, remarkably regular collagen lamellae 

continuous with the sclera. Descemet's membrane forms the basement membrane of 

the corneal endothelial monolayer. Each o f the component layers is described in 

more detail in section 1.5, following an introduction to the extracellular matrix.
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1.4 Extracellular Matrices

Extracellular matrix (ECM) molecules make up 90% of the cornea stroma, and the 

basal laminae of both the corneal epithelial and endothelial cells consist entirely of 

extracellular matrix molecules. In the following subsections, the major components 

and assembly of extracellular matrices are described along with a brief introduction 

to the basement membrane and associated terminology. Section 1.5 elaborates on the 

finer structure of the cornea and describes in more detail the specialized nature of 

extracellular matrices within this complex tissue.

1.4.1 An Introduction to the Extracellular Matrix

The development and normal functioning of all cell types in an organism depends 

upon molecules in their environments. The term ‘extracellular matrix’ essentially 

includes all secreted macromolecules that are immobilized outside cells. Major 

components of extracellular matrices include collagens, adhesive glycoproteins and 

proteoglycans; the insoluble collagen fibres being embedded in a hydrated gel-like 

ground substance. The ECM provides order in this extracellular space and has 

functions associated with the adhesion, differentiation, proliferation and organization 

of epithelial cells. The basement membrane is a specialized form of extracellular 

matrix and is very important in the cornea (Yurchenco and Schittny, 1990).

1.4.2 The Basement Membrane Zone

The basement membrane zone is a thin, continuous, sheet-like extracellular matrix 

structure composed of hemidesmosomes, basement membrane and anchoring fibrils. 

Basement membranes are specialized structures located at the boundary between
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epithelial cells and underlying connective tissue (Madri et al., 1984). A proteoglycan 

and glycoprotein sheet secreted by cells to form the extracellular matrix, the 

basement membrane comprises two distinct layers: the basal lamina and the reticular 

lamina. Figure 1.3 depicts the basement membrane zone, as seen by transmission 

electron microscopy.

lamina lucida 
lamina densa

.a basement 
v membrane

'Connective * &
m tissue *.« W- ■ M.

Figure 1.3: Transmission electron micrograph illustrating the basement membrane 
zone o f human corneal epithelial cells grown on denuded amniotic membrane. The 
basement membrane effectively separates the underlying collagenous and 
proteoglycan-rich stroma from the epithelial cells, providing a surface for anchorage. 
Yellow arrows indicate hemidesmosomes. The basal lamina (uppermost delicate 
layer o f the basement membrane) is visible as two layers (laminae lucida and densa) 
[scale bar = 200nm].

Immediately subjacent to the epithelial cells, the basal lamina is a product o f the 

epithelial cells themselves. Approximately 80-100nm thick, it contains mainly 

collagen type IV and laminin networks, connected with proteoglycans. The reticular 

lamina contains fibrillar collagen and is produced by fibroblasts o f the underlying 

connective tissue. As defined by electron microscopy, the basal lamina also 

comprises two layers: a lamina lucida and lamina densa. The lamina lucida is the



electron-lucent layer located closest to the cell membrane while the lamina densa is 

discernible as an electron-dense layer next to the connective tissue. It is possible the 

lamina lucida does not exist in vivo and could be an artefact resulting from 

dehydration during tissue processing (Chan et a l, 1993). Mechanically the basal 

lamina anchors epithelial and connective tissue and as such helps stabilize and 

orientate the tissues.

Basement membranes have many important functions. They both separate and 

connect two distinct tissue compartments, allowing the passage of migrating cells 

under certain physiological conditions while also acting as barriers against tumour 

cell invasion. They regulate the movement of molecules on the basis of charge and 

molecular weight. Many components of the basement membrane interact with cell 

surface receptors, influencing epithelial cell behaviour and wound healing by 

regulating cell shape, proliferation, differentiation and motility as well as gene 

expression and apoptosis (Boudreau et al., 1996; Timpl and Brown, 1996; Burgeson 

and Christiano, 1997). The more important of these components are described below.

1.4.3 Collagens

The collagens constitute a superfamily of ECM proteins with a structural role as their 

primary function (Lodish et a l, 1995). Based on the exon structures of their genes 

and the configuration of the protein, they can be divided into several groups (Olsen 

and Ninomiya, 1998). All collagenous proteins have domains with a triple helical 

conformation, in which three a  chain subunits form a right-handed super helix 

(figure 1.4). The presence of such domains provides collagens with regions of 

rigidity. Collagen fibrils contain only one such domain, accounting for almost the
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entire length o f the molecule, whereas others such as FACIT collagens (fibril- 

associated collagens with interrupted triple helices), basement membrane collagens 

and those with transmembrane domains have several triple helical regions separated 

by non-helical sequences. In order to accommodate for this helical conformation, 

every third residue in each a  chain along the helical axis is a glycine.

Figure 1.4: Basic structural elements and higher organization o f collagen. The 
primary structure o f collagen consists o f a left handed a-helix with glycine (Gly) as 
every third residue. Three a  chains are then joined by hydrogen bonds to form the 
right handed, triple helical quaternary structure. Collagen fibrils have a characteristic 
64nm banded appearance under the electron microscope (Mathews et a l,  2000).

Collagenous proteins usually form aggregates, either alone or with other ECM 

components (Aumailley and Gayraud, 1998). Their major roles are in providing 

structural integrity and helping cells anchor to the matrix. In the corneal ECM, the 

most important collagens are types I, III and V (fibrillar, banded stromal collagens, 

accounting for 75% of the corneal total), type IV (monomeric collagen, major 

component o f the basement membrane) and type VII (anchoring fibrils which secure 

epithelial cells to the matrix) (Marshall et al., 1991a; Marshall et al., 1991b).
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1.4.4 Adhesive Glycoproteins

Glycoproteins are widely distributed in all forms o f life. They occur in cells, both in 

soluble and membrane-bound forms, as well as in the extracellular matrix and fluids. 

As the name suggests, a glycoprotein is a compound containing carbohydrate (or 

glycan) covalently linked to protein. The carbohydrate may be in the form o f  a 

monosaccharide, disaccharide(s), polysaccharide(s) or any o f their derivatives. 

Glycoproteins facilitate the adhesion o f cells to the ECM in that they possess a 

number o f different binding domains; usually one for collagen, one for integrins and 

one for proteoglycans. The major glycoproteins o f the ECM are laminins, 

fibronectins and vitronectin.

1.4.4.1 Laminins

Laminins are a growing family o f related proteins (400-1000kDa) characterized by a 

heterotrimeric chain assembly (a, (3, y), a preferred location in basement membranes 

and a multitude o f biological activities. To date, eleven different assembly forms 

have been identified (Sasaki and Timpl, 1998). Electron microscopic visualization of 

laminins usually shows a cross-shaped structure consisting o f a long arm (80nm, 

comprising C-terminal portions) and two or three short arms (25-40nm, N-terminal 

chain ends). Laminins boast a number o f high-affinity binding sites for other 

components o f the basement membrane and for cell-adhesion molecules on the cell 

surface (Beck et al., 1990; Filenius et al., 2001). The centre o f the laminin molecule 

is thought to be located near the junction o f the lamina densa and lamina lucida while 

its long arm favours three major orientations; one close to the cell surface, suggesting 

cell receptor binding; the other two, towards internal matrix structures (Schittny et 

a l ,  1988). The first laminin to be isolated, laminin-1 (Timpl et al., 1979), is present
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along the entire length o f the epithelial basement membrane in human cornea where 

it is thought to be involved in wound healing (Suzuki et al., 2000) and corneal 

epithelial cell adhesion (Kurpakus et al., 1999).

1.4.4.2 Fibronectins

Fibronectins are another important class o f soluble multi-adhesive matrix proteins 

whose principal role is attaching cells to collagen matrices. This family o f high 

molecular weight glycoproteins are produced from alternative splicing o f a single 

gene (Ingham, 2003). Some forms remain soluble and are found in blood plasma 

(where they have a role in blood clotting), others associate into insoluble disulphide- 

bonded fibrils in the extracellular matrix (Hynes, 1998). Like laminins, these peptide 

dimers contain binding sites for a variety o f other molecules such as heparan sulphate 

proteoglycan, integrins and collagens. By virtue o f their attachments, fibronectins 

help regulate the shape o f cells and the organization o f the cytoskeleton and are 

essential for cell migration and differentiation. In the corneal epithelium, fibronectin 

is secreted following injury and is present in the basement membrane under 

migrating corneal epithelium during re-epithelialization (Fujikawa et al., 1984).

1.4.4.3 Vitronectin

Vitronectin is predominantly a blood plasma glycoprotein, but is also found in ECMs 

where it binds collagens and heparin-like glycosaminoglycans and promotes cell 

adhesion and spreading. Vitronectin adsorbs strongly to tissue culture glass/plastic 

and mediates cell attachment (via integrin receptors) to these substrates (Steele et a l, 

1997; Hall, 1998). Vitronectin is a secreted protein and exists in either a single chain 

form or a cleaved, two-chain form held together by a disulphide bond.
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1.4.5 Proteoglycans

Proteoglycans (PGs) are ubiquitous glycoproteins whose carbohydrate moieties 

consist o f long, unbranched chains o f alternating residues o f hexosamine and uronic 

acid or galactose, often sulphated. They are found predominantly in the extracellular 

matrix, within intracellular vesicles or associated with the cell surface o f most 

eukaryotic cells where they have a variety o f functions (Lander, 1998). They can be 

bound by glycoproteins in the ECM or by receptors on cells, promoting cell adhesion 

(Wight et al., 1992). Unlike most proteins which are grouped on the basis o f amino 

acid similarities, proteoglycans are defined by glycosaminoglycan (GAG), a common 

post-translational modification. Glycosaminoglycans are polysaccharides which 

strongly influence the structure and molecular interactions o f the proteins to which 

they are attached, thus making the proteoglycans extremely diverse macromolecules. 

The basic structure o f a proteoglycan is illustrated in figure 1.5.

•- C ore protein

U ron ic acid/ A/-Acetylated 
ga lactose sugar

C =  0

galactosegalactoseH -  C -  CH2 -  0 xylose
H - N
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' C ore protein

Figure 1.5: Schematic diagram of the basic O-linked proteoglycan structure. 
Proteoglycans consist of one or more glycosaminoglycan chains covalently linked 
via a chain o f sugars and an G-glycosidic bond, to the serine [or threonine] residues 
o f a protein core.
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The in vivo roles o f proteoglycans in the cornea are not well understood, however 

functions have been ascribed to some (Iozzo, 1998). Stromal oedema has been 

associated with a reduction in proteoglycans, particularly those containing keratan 

sulphate (Kangas et a l , 1990; Quantock et a l, 1991). Reference to specific 

proteoglycans found in the cornea can be found in section 1.5.3, which provides a 

more in depth description o f corneal ultrastructure and composition.

1.4.5.1 Glycosaminoglycan Structure

Glycosaminoglycans are linear polymers with no branches. Except for the short 

linkage region by which they attach to serine residues in protein cores, each GAG is 

synthesized from just two strictly alternating monosaccharides. There are only three 

such disaccharide repeat units that can be polymerized onto proteins in this fashion; 

it is the subsequent enzymatic modification o f these chains that generates 

complexity. The addition o f negatively charged sulphate groups occurs sporadically 

throughout GAG chains and the extent o f sulphation has a significant bearing on the 

function o f the glycosaminoglycan.

1.4.5.2 Glycosaminoglycan Nomenclature

Traditional criteria by which glycosaminoglycans derive their names include 

observable biochemical features such as the disaccharide repeat unit, susceptibility to 

digestion by certain chemicals or enzymes and overall charge (Lander, 1998). 

Specific glycosaminoglycans o f physiological significance are heparin, heparan 

sulphate, chondroitin sulphate, dermatan sulphate, keratan sulphate and hyaluronic 

acid:
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)► Heparin and heparan sulphate [HS] both derive from the repeating 

disaccharides: glucuronic acid and glucosamine (Murdoch et a l ,  1992). Heparin is 

less heavily sulphated than heparan sulphate.

Chondroitin sulphate [CS] and dermatan sulphate [DS] also share a common 

polymer derivative: glucuronic acid and galactosamine. The distinction between CS 

and DS involves replacement o f glucuronic acid with iduronic acid; if  this 

modification occurs at high frequency, the chain is labelled dermatan rather than 

chondroitin sulphate.

Keratan sulphate [KS] has alternating units o f glucosamine and galactose and 

is unique amongst GAGs as it can be synthesized not only as an O linked sugar 

attached to serine, but also as an AM inked sugar. Keratan sulphate I in the cornea is 

attached to the protein core via a A-acetylglucosamine-asparaginyl bond, while KS II 

in cartilage is O-linked (Funderburgh, 2000).

Hyaluronic acid is unique among the GAGs in that it does not contain any 

sulphate and is not found covalently attached to proteins as a proteoglycan. It does 

however form complexes with proteoglycans in the ECM. Hyaluronic acid polymers 

have high molecular weights and can displace large volumes o f water, making them 

excellent lubricators and shock absorbers.
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1.5 Corneal Ultrastructure

As indicated previously and depicted in figure 1.6 below, the cornea has a complex 

ultrastructure with five layers comprising [anterior to posterior]: a differentiated 

epithelium, Bowman’s layer, stroma, Descemet’s membrane and an endothelial 

monolayer.

Epithelium

Basal Lamina

Bowman’s
layer

Descemet’s
membrane

Endothelium

Figure 1.6: Diagrammatic representation o f a cross section through the human 
cornea, showing the five component layers [www].

1.5.1 Corneal Epithelium

Corneal epithelium is a highly differentiated, stratified squamous epithelium which is 

devoid o f goblet cells and therefore non-secretory. The epithelium, at 50-60pm thick, 

constitutes 10% of the total corneal thickness and is composed o f 5-7 layers which 

include three groups o f cells; flattened squamous superficial cells, wing or polygonal 

cells and a single row of basal columnar cells (figure 1.7 overleaf).
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Figure 1.7: Transmission electron micrograph illustrating cadaver human corneal 
epithelium at low magnification. The tissue is differentiated into a single layer o f 
columnar basal cells, 2-3 layers o f polygonal wing cells and 2-3 layers o f squamous 
superficial cells [scale bar = 5pm].

Superficial cells are flat and mostly hexagonal and attached to each other by straight 

cell boundaries (Pfister, 1973). Numerous microvilli and microplicae are found on 

their apical surfaces to enhance adherence o f the tear film to the glycocalyx. Tight 

junctions are present around the entire lateral borders o f each cell to function as an 

anatomic barrier to the passage o f substances into the intercellular space (Huang et 

al., 1989). The wing cell region is composed o f approximately three layers o f 

polygonal cells with dense cytoplasm and numerous desmosomal contacts. The 

deeply situated basal cells make up a single layer o f columnar cells that rest on the 

basement membrane. These cells are rounded at their anterior surface with oval 

nuclei. They are mitotically active, with daughter cells migrating towards the surface 

to become wing cells (Thoft and Friend, 1983). Basal cells interdigitate laterally
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with neighbouring cells and are joined by desmosomes. Hemidesmosomal junctions 

attach basal cells to the basement membrane where they secrete the basal lamina 

(Garrod, 1993; Ohji et al., 1994).

1.5.1.1 Junctions o f  the Corneal Epithelium

The epithelium, as the outermost layer o f the cornea, is subjected to the adverse 

conditions o f the external environment. In order to prevent invasion by micro

organisms and to maintain barrier function, it must be able uphold its integrity and 

withstand the shearing forces o f blinking. To this end, a number o f junctional 

complexes are found in the corneal epithelium. Most important for mechanical 

strength are desmosomes, adherens junctions and hemidesmosomes (Garrod, 1993; 

Green and Jones, 1996). While desmosomes and adherens junctions mediate strong 

adhesion between cells, hemidesmosomes form the anchor between basal cells and 

the underlying basal lamina. The transmembrane domains o f the desmosome and 

adherens junction belong to the cadherin family o f calcium-dependent adhesion 

molecules (Braga, 2002; Garrod et al., 2002), whereas those in the hemidesmosome 

include the integrin class o f cell matrix receptors (Quaranta and Jones, 1991).

Desmosomes are configured in such a way that any stress on the cell is conveyed to 

its neighbours via intermediate keratin filaments, thus affording strength and rigidity 

to the entire epithelial sheet (figure 1.8 overleaf). Thickened cytoplasmic plaques in 

adjacent cell membranes are bound by interlocking transmembrane linker proteins 

desmoglein and desmocollin. Keratin intermediate filaments bind these plaques and 

form part o f the internal structural framework o f the cell, bestowing shape and 

rigidity.
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Figure 1.8: [Left] Schematic model showing components o f a desmosomal junction 
(Gumbiner, 1993). Transmembrane linker proteins desmoglein and desmocollin 
(both cadherins) attach via cytoplasmic plaques to keratin intermediate filaments 
which traverse the cell interior. [Right] Transmission electron micrograph depicting 
a desmosome joining adjacent corneal epithelial cells at high magnification.

The schematic in figure 1.9 overleaf illustrates a hemidesmosomal junction (or half 

desmosome). Hemidesmosomes firmly secure basal epithelial cells to the 

extracellular matrix by way o f interconnecting cytoskeletal keratin filaments with 

collagen VII fibres in the basal lamina (Gipson, 1992). Intermediate filaments are 

attached to proteinaceous plaques o f the plasma membrane. Integrin oc6P4 (Garrod,

1993) binds the plaque to the basal lamina protein laminin. Since cells are anchored 

to the cell-cell and cell-substrate contacts through cytoplasmic intermediate 

filaments, these junctions are clearly identifiable by electron microscopy, which 

makes them ideal markers for visually gauging the mechanical strength o f an 

epithelial sheet.
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Figure 1.9: Schematic illustration of a hemidesmosome attaching an epithelial cell to 
the basement membrane. Integrins bind proteins in cellular cytoplasmic plaques as 
well as laminin-5 anchoring filaments in the basal lamina (adapted from Quaranta 
and Jones, 1991).

1.5.1.2 Role o f  Corneal Epithelium

The role o f the corneal epithelium is basically fourfold: [1] provision o f a functional 

barrier between the tear film and the intraocular environment by way o f superficial 

tight junctions, [2] creation and maintenance o f a smooth, transparent optical surface 

by adsorption o f the tear film, [3] mediation o f the diffusion of water, solutes and 

drugs at the anterior surface (Trinkaus-Randall, 2000) and [4] transmission and 

refraction o f light.

1.5.1.3 Epithelial Turnover

Precise functioning o f the cornea is essential for good vision, and depends on the 

continual production o f new epithelial cells, their appropriate differentiation and
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eventual desquamation from the corneal surface. A healthy epithelium must also be 

able to repair ocular injuries rapidly. Effective coordination between the factors that 

control the proliferation o f basal epithelial cells and their differentiation into more 

superficial wing and surface cells is therefore critical (Beebe and Masters, 1996). 

The functional properties o f the corneal epithelium need to be constantly maintained 

through differentiation as cells continuously stream towards the surface. Such rapid 

self-renewal o f this tissue is achieved by a small number o f specialized cells known 

as limbal stem cells (described in detail in section 1.7.1).

1.5.2 Bowman’s Layer

Lying directly beneath the basement membrane o f the epithelium is an acellular, 

transparent sheet o f tissue known as Bowman’s layer. It derives its name from the 

ophthalmologist, anatomist and physiologist Sir William Bowman (1816-1892). 

Bowman’s layer is a basically a modified condensation of the anterior stroma, 8- 

12pm thick, terminating abruptly at the limbus (Hogan, 1971). It consists mostly o f 

densely packed, randomly arranged collagen fibrils (20-3Onm diameter, types I, III, 

V and VI) (Marshall et a l,  1991a). On histological sections, it appears amorphous 

and separate from the underlying collagen lamellae and keratocytes. Bowman’s 

layer provides an anchor for the comeal epithelial cells. While the posterior border 

merges with the stroma, the anterior surface is well delineated and is separated from 

the epithelium by a thin, yet prominent basal lamina on which the basal cells rest 

directly. The basal lamina consists mainly o f adhesive glycoproteins; laminin and 

fibronectin, and heparan sulphate proteoglycans such as perlecan (Fujikawa et a l,  

1984; Schittny et a l, 1988; Murdoch et a l, 1992; Ljubimov et a l ,  1995; Fukuda et 

a l ,  1999). Comeal epithelial adhesion to Bowman’s layer is achieved by way o f a
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basement membrane complex which anchors the epithelium via a complex mesh o f 

collagen type VII anchoring fibrils (Gipson et al., 1987) and plaques o f type VI 

collagen, interacting with the lamina densa and the collagen fibrils o f Bowman's 

layer (figure 1.10). Bowman’s layer is incapable o f regeneration and once injured, 

can form a scar as it heals. If large enough and centrally located, these scars can lead 

to some vision loss.
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Figure 1.10: Schematic illustration o f Bowman’s layer, showing interactions between 
the various collagens and glycoproteins o f this subepithelial membrane-like zone 
[www],

1.5.3 The Corneal Stroma

In humans, the corneal stroma is approximately 500pm thick and represents almost 

90% o f corneal thickness. It primarily consists o f collagen embedded in a hydrated 

matrix rich in proteoglycans, interspersed with specialized fibroblasts called 

keratocytes. The organisation o f collagen fibrils as well as the level o f hydration of 

the stroma is important in ensuring corneal transparency.
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1.5.3.1 Stromal Collagens

Stromal collagen has a hierarchical organization (Komai and Ushiki, 1991; Freund et 

al., 1995; Fukuda et al., 1999; Bron, 2001; Meek and Boote, 2004). Triple helical a -  

collagen molecules approximately 300nm long and 1.5nm in diameter are held 

together by interpeptide hydrogen bonds to form fibres. Several thousand o f these 

fibres align parallel to each other thus forming a collagen fibril, 25-3 lnm  in diameter. 

In humans, stromal fibrils are hybrids o f collagen type I, III and V, each differing 

slightly in amino acid sequence. Inclusion o f type V within a fibril is thought to limit 

fibril diameter due to steric hindrance (Birk et al., 1990). It is the structural collagen 

type I which constitutes the majority o f the corneal stroma however collagens type 

VI and XII have also been detected (Marshall et al., 1991b; Marchant et al., 2002; 

Young et al., 2002). These latter collagens are largely non-helical, non-fibrillar 

telopeptides termed FACIT collagens which bind the termini o f collagen type I 

helices and serve as molecular bridges between fibrillar collagens and other ECM 

components, playing an important physiological role (Olsen and Ninomiya, 1998).

The majority o f stromal collagen is nevertheless fibrillar and assembled into broad 

flat sheets called lamellae, approximately 200-250 o f which comprise the human 

corneal stroma (Maurice, 1957). The anterior and posterior stromas differ in a 

number o f ways. Generally the posterior stroma is more ordered (Freund et al., 

1995), more hydrated, more easily swollen (Muller et al., 2001) and has a lower 

refractive index (Meek et a l,  2003a) than the anterior third o f the stroma. The 

posterior lamellae are also wider and thicker (100-200pm wide and 1.0-2.5pm thick) 

than the anterior (0.5-30pm wide and 0.2- 1.2pm thick) (Komai and Ushiki, 1991). In 

the anterior stroma, collagen lamellae run in random directions often oblique to the
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corneal surface and occasionally split, branch and interweave in an irregular fashion 

while those in the posterior stroma tend to run parallel to the surface. Each collagen 

lamella is composed o f thin, parallel collagen fibrils organized in a pseudo-hexagonal 

oriented array (figure 1.11). X-ray diffraction studies have calculated the average 

centre-centre collagen fibril spacing in the hydrated human cornea to be 

approximately 62nm (Leonard and Meek, 1997; Quantock, 2000). Collagen fibrils 

within a single lamella lie parallel to each other in the plane o f the cornea, but are 

rotated with respect to fibrils in adjacent lamellae.

Figure 1.11: Transmission electron micrograph showing the arrangement o f collagen 
in the corneal stroma. Central grey circles (approximately 25nm in diameter) indicate 
fibrils o f one lamella in cross section, sandwiched between fibrils o f adjacent 
lamellae, sectioned along their length [scale bar = 200nm] (reproduced with 
permission from Fullwood, 2004).

1.5.3.2 Stromal Proteoglycans

Collagen in the corneal stroma is embedded within a matrix rich in proteoglycans 

consisting o f long glycosaminoglycan chains. Glycosaminoglycans have vital roles 

in the hydration of the cornea and therefore affect the spacing o f the collagen fibrils. 

It has been observed that the corneal clouding associated with Scheie’s syndrome
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(skeletal dysplasia) is linked to an accumulation o f GAGs and the corresponding 

swelling o f fibrils and disruption to the collagen stroma (Quantock et al., 1993). The 

human corneal stroma ideally consists o f 78% water, while collagen and 

proteoglycans account for the remaining 12-15% and 1-3% of the net tissue weight 

respectively. Approximately 60% of all proteoglycans in the stroma comprise KS 

(i.e. lumican, keratocan and mimecan) and the remainder, DS (i.e. decorin). Studies 

on keratocan-deficient mice have shown a correlation between the observed increase 

in collagen fibril diameter and decrease in KS, suggesting a role for KS 

proteoglycans in the regulation o f collagen fibril diameter (Meek et al., 2003b). 

Lumican is the most abundant KSPG in the cornea and has an important role in 

corneal transparency. Murine models carrying a knockout for the lumican gene 

manifest highly disorganised stromas and corneal opacity (Chakravarti et al., 1998; 

Chakravarti et al., 2000; Quantock et al., 2001). In addition, macular corneal 

dystrophy is characterized by a loss o f transparency, thought to be related to the 

abnormal sulphation o f KS (Hassell et al., 1980; Meek et al., 1989). Decorin is 

thought to be involved in tissue assembly in the cornea and to participate in the 

control o f interfibrillar spacing and the lamellar adhesion properties o f stromal 

collagens (Hahn and Birk, 1992; Danielson etal., 1997).

1.5.3.3 Corneal Transparency

A number o f features help to ensure the cornea’s light-conducting transparency 

including avascularity, regularity o f the epithelium and crucially the degree o f spatial 

order o f collagen fibrils within the stromal matrix, as regulated by proteoglycans. 

The healthy corneal stroma contains collagen fibrils o f uniform diameter with 

consistent interfibrillar spacing. Maurice laid the foundations for many of the current
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x-ray diffraction studies on cornea. He ventured that the regular spacing o f collagen 

fibrils prevented light scattering from the primary visual axis and that light dispersal 

at all other angles is cancelled out by scattering in the opposite direction, thus 

enabling transmission o f light through the cornea (Maurice, 1957). More recently, 

advances in x-ray diffraction have furthered understanding o f fibril organization and 

its implications with regard to corneal transparency (Meek et a l,  2003b) and it is 

widely acknowledged that significant disruption to collagen fibril arrangement 

renders the corneal stroma opaque. In addition to the regulatory role o f PGs, it has 

been proposed that stroma keratocytes may preferentially express water-soluble 

proteins, often enzymes, for controlling their optical properties (Jester et a l ,  1999). 

Corneal endothelial cells (Fayet et al., 2001) contain active transport pumps which 

maintain the 78% state o f stromal hydration optimal for vision. The role o f the 

endothelium in maintaining transparency is detailed in section 1.5.5.

1.5.4 Descemet’s Membrane

Descemet’s membrane (so-called after the French physician Jean Descemet, 1732- 

1810) bounds the inner surface of the stroma, from which it is easily separated. It is 

secreted by the corneal endothelial cells as a resilient barrier for protection against 

infection and trauma. Approximately 5-10pm thick in adult humans, this specialized 

basement membrane appears structureless under the light microscope however 

examination under the electron microscope reveals the extent o f its organization. 

Three processes are required for the formation o f adult Descemet's membrane 

(Murphy et al., 1984). The initial prenatal step is the synthesis o f a very thin 

basement membrane which is thickened by the deposition of a series o f collagen 

units, superimposed to form a lamellar structure (at least 30 layers by the end o f
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gestation). Differentiation o f the membrane also occurs in the prenatal period and 

leads to the formation o f a striated structure through the addition o f cross-linking 

bridges perpendicular to the lamellae. The final thickening process occurs after birth 

when non-striated, non-lamellar, homogenous material is deposited posterior to the 

striated prenatal layer. Descemet’s membrane is rich in glycoproteins (fibronectin 

and laminin), entactin/nidogen, proteoglycans (Katz et al., 1994) and type IV 

collagen (Marshall et al., 1991a; Leung et al., 2000).

1.5.5 The Corneal Endothelium

The endothelium is the single layer o f hexagonal cells covering the posterior surface 

o f the cornea and facing the anterior chamber. Endothelial cell nuclei are 

characteristically large and oval. Cell boundaries appear to be principally hexagonal 

in outline, forming a mosaic as depicted in figure 1.12 below.

;
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Figure 1.12: Scanning electron micrograph o f cadaver human corneal endothelium, 
routinely fixed and processed, illustrating the mosaic pattern o f the hexagonal cells 
with interdigitated membranes [scale bar = 10pm].
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The basal surface o f the endothelial cell is flat against Descemet’s membrane yet no 

special adhesion junctions operate in this region. There is however extensive 

interdigitation o f the walls o f adjacent cells which exhibit desmosomes and 

occasional tight junctions. Corneal endothelial cells have large numbers o f 

mitochondria, indicative o f their crucial role in active fluid transport (Waring et a l ,  

1982). The intact endothelium acts as a semi-permeable barrier between the stroma 

and the aqueous humour, and this integrity is a prerequisite for corneal transparency 

(Joyce, 2003). In order to regulate corneal hydration and prevent swelling, the 

corneal endothelial cells are equipped with sodium/potassium-ATPase and 

bicarbonate-dependent magnesium-ATPase ionic pumps (Maurice, 1957; Hodson 

and Miller, 1976). Intrinsically leaky, the endothelium is also the principle source o f 

glucose and other nutrients for the cornea. In allowing paracellular percolation of 

aqueous humour into the cornea while preventing bulk flow and actively pumping 

out any excess liquid, the endothelium is essential for maintaining comeal 

transparency.

Crucially, endothelial cells show very little mitotic activity after birth and the 

400,000 or so cells present at birth literally have to last a lifetime (Joyce et al., 1996). 

Endothelial cells are inevitably lost with age (Yee et a l,  1985; Bourne et a l ,  1997), 

so in order to prevent stromal oedema, adjacent cells spread to cover the denuded 

areas. Consequently, the thickness o f the endothelium and its corresponding cell 

density decrease dramatically with age; from around 4,000 cells/mm2 at birth, to 

approximately 2,500 cells/mm2 in the adult (Svedbergh and Bill, 1972). Despite the 

endothelial layer’s capacity for vast enlargement, comeal oedema and loss o f vision 

occur if  cell densities drop below the region o f 300-600/mm2 (Green, 1991). For this
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reason, processes o f cell adhesion and migration are vital in maintaining a healthy 

endothelium and hence, also a healthy cornea.

1.5.5.1 Corneal Endothelial Disorders

Approximately half o f all corneal transplantations carried out are due to damaged 

endothelium. As well as damage caused by age and trauma, endothelial disease is a 

major causative factor. The most common corneal endothelial diseases are Fuchs’ 

dystrophy (Adamis et al., 1993) and Iridocorneal Endothelial [ICE] Syndrome 

(Morris and Dunbar, 2004) though the former is better understood. Late hereditary 

Fuchs’ dystrophy is usually seen in the fifth or sixth decade o f life, and affects more 

women than men. Typically o f dominant inheritance and bilateral, the dystrophy 

stems from primary malfunction o f the corneal endothelium and ultimately causes 

disruption o f the corneal dehydration system and optically compromised tissue. 

Fuchs’ dystrophy occurs as endothelial cells gradually deteriorate; first transforming 

into fibroblast-type cells and finally apoptosing (Borderie et al., 2000), thereby no 

longer able to regulate stromal hydration (Mandell et a l, 1989). Eventually the 

epithelium also swells leading to bullous keratopathy in which fluid-filled blebs (or 

bullae) form on the corneal surface, hampering vision. Ruptures cause a foreign- 

body sensation and allow bacterial invasion causing corneal ulcers, resulting in pain 

and severe visual impairment. As a chronic condition, most treatment is purely 

palliative and involves simple measures to remove moisture from the eye. Corneal 

grafts for Fuchs’ dystrophy account for approximately 10 percent o f all corneal grafts 

performed and generally, if surgical intervention occurs prior to involvement o f the 

peripheral cornea, there is a high likelihood that the graft will remain clear for two 

years.
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1.6 Stem Cells

“When Prometheus transgressed the law o f  the ancient Gods and stole fire fo r  

humankind to teach them civilisation and the arts, his punishment was typically 

brutal. Jupiter had the great Titan chained to the side o f  Mount Caucasus, where a 

vulture preyed daily on his liver, which was renewed as quickly as it was devoured”

(Rosenthal, 2003)

This legend captures well the body’s remarkable capacity for repairing wounds; 

restoring tissues to their original form and function by recruiting proliferating cells 

with a retained collective memory o f the complex developmental processes by which 

the tissue was initially compiled. Many tissues undergo rapid and continuous cell 

turnover and thankfully for Prometheus, the liver is one o f the most highly 

regenerative organs. Cells ultimately responsible for repopulation are termed stem 

cells and can be defined as any cell with a high capacity for self-renewal extending 

throughout adult life.

1.6.1 Stem Cell Types and Characteristics

There are distinctions to be made when describing stem cells. Totipotent cells contain 

all the genetic information required to create all body cells plus the placenta. They 

only have this capacity during the first 3-4 divisions o f a fertilized egg, after which 

time the cells become increasingly specialized. The next stage o f division results in 

pluripotent cells, which are highly versatile and can give rise to any cell type except 

those o f the placenta or supporting tissues for foetal development. Embryonic stem 

(Mejia et a l, 2000) cells fall into this category, originating from undetermined early
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embryos (specifically the inner cell mass o f the blastocyst) with no history o f 

differentiation. Adult stem cells are less well understood but are believed to represent 

a population o f reserve stem cells typically less versatile and hence more restricted in 

their developmental potential, conceivably set aside during gestation for coercion 

into regenerative services in later life (Verfaillie, 2002). They can be either 

multipotent as in the case o f haematopoetic stem cells which produce several blood 

cell types or unipotent as in the cornea. Stem cells can theoretically divide without 

limit, so long as the host is still alive. These extraordinary cells are both clonogenic 

(capable o f unlimited self renewal) and able to undergo asymmetric cell division, a 

process that allows one daughter cell to retain stem cell characteristics, while the 

other daughter cell becomes slightly more differentiated (Zieske, 1994). The latter 

cells have been termed transient amplifying cells, have a limited proliferative 

potential and are considered the initial step o f a pathway resulting in terminal 

differentiation (Schermer et al., 1986). While stem cells are by definition 

unspecialized, under certain physiologic or experimental conditions, they can be 

induced to perform specialized functions. It is these unique characteristics by which 

stem cells can be distinguished from other body cells and which makes them the 

focus o f intense scientific study.

1.6.2 Therapeutic Potential

Despite the difficulties o f location, isolation and propagation, through the 

replacement o f damaged cells, stem cells have tremendous therapeutic potential. 

While studies on embryonic stem cells have caused great optimism in the scientific 

community, ethical concerns, uncertainties about immunological compatibility and 

the propensity to form teratomas following transplantation are significant problems
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to be overcome before this approach can be used clinically. With fewer risks involved 

and cause for ethical concern, the search for stem cells in the adult has recently been 

intensified (Orkin and Morrison, 2002). Adult stem cells, such as those o f the 

cornea, which have undergone some degree o f differentiation are perhaps a more 

feasible source for tissue engineering (Heath, 2000) yet with no predictable location 

for stem cells in most adult tissues and limited reliable methods o f identification, 

they are notoriously difficult to isolate.

The next sections describe the limbus (thought to be the most likely location for 

corneal stem cells) and limbal stem cells specifically. There follows a description o f 

some o f the more common limbal stem cell deficiencies and an account o f the 

progress to date in treating these disorders, the continuation o f which this thesis is 

primarily concerned.
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1.7 The Limbus

The transitional zone o f the cornea, bordering the sclera/conjunctiva shows 

differences in structure microscopically from the rest o f the tissue (Maurice, 1962). 

The limbus has an increased number o f cell layers and most notably in humans, 

Bowman’s layer terminates abruptly (figure 1.13). The basement membrane zone of 

the limbal epithelium differs from that of the cornea, being rich in collagen IV 

(Kolega et al., 1989) with a rough, undulating surface consisting o f stromal pegs and 

anchoring fibrils to promote the adhesion of limbal basal cells (Gipson, 1989). 

Descemet’s membrane splits and forms part o f the trabecular meshwork, together 

with the endothelium. Collagen fibrils are continuous between the corneal stroma 

and the sclera but thicken at the limbus. In addition, a rich vascular plexus surrounds 

the cornea and marginal capillary loops enter a short way into the stroma, allowing 

for increased levels o f epithelial nutrition and cytokine interactions.

Figure 1.13: Light micrograph o f the apical region o f the limbal zone (human 
cadaver corneal tissue; routinely fixed, processed and stained); note the thickened 
epithelium, the absence of Bowman’s layer, and the stromal blood cells. Limbal 
basal cells (possibly stem cells) are more densely stained and attached firmly to the 
basement membrane by stromal pegs [scale bar = 10p.m].
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1.7.1 A Stem Cell Niche

The limbus is thought to serve as a stem cell niche, an optimal microenvironment 

able to support the undifferentiated stem cell state (Boulton and Albon, 2004). The 

stem cells which perpetuate the cornea are believed to reside in the basal cell layer o f 

the limbal epithelium (figure 1.16). In particular, the presence o f stromal pegs along 

with the interaction o f anchoring fibrils, in promoting adhesion o f basal cells, 

protects them from injury and limits movement away from the microenvironment, 

thereby protecting the stem cells from entering the pathway o f terminal 

differentiation (Zieske, 1994).

1.7.2 Limbal Stem Cells

Visual acuity is dependent on the corneal epithelium, the integrity o f which is 

maintained by the centripetal migration o f stem-cell-derived transient amplifying 

cells (Cotsarelis et al., 1989; Wolosin et al., 2000) (figure 1.14). Davanger and 

Evensen (1971) first hypothesized that the epithelial cells o f the limbus may be 

involved in the renewal o f the cornea, having observed migration o f pigmented cells 

from the limbus towards the central cornea.

Cornea

Limbus
Conjunctiva

o
o

Figure 1.14: Diagrammatic representation o f the limbal zone. Blood vessels [bv] are 
located subjacent to the limbal basal cells. Stem cells are shown in black, with 
shading marking a corresponding increase in cell differentiation and decrease in stem 
cell-like characteristics. Transiently amplifying cells move centripetally and apically 
to populate the central cornea (adapted from Zieske, 1994)
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Schermer et al presented further support for the limbal location o f corneal stem cells 

in 1986 with their keratin expression data (Schermer et a l, 1986). Keratin 3 (K3) is 

expressed in the basal cells o f the corneal epithelium yet is lacking in those o f the 

limbus, suggesting a lesser degree o f differentiation. Other evidence in support for 

the localization o f stem cells in the limbal basal layer includes: [1] retention o f 

tritiated thymidine labels for long periods indicating a long cell cycle (Cotsarelis et 

al., 1989); [2] limbal basal cells have a higher proliferative potential in culture than 

cells o f the corneal epithelium (Ebato et al., 1987; Lindberg et al., 1993); [3] surgical 

removal o f the limbus results in invasion o f cells from the conjunctiva (Chen and 

Tseng, 1991); [4] grafting o f cells from the limbus regenerates comeal-like 

epithelium (Tsai and Tseng, 1994; Dua and Azuara-Blanco, 1999a; Henderson et al., 

2001); and [5] limbal basal cells divide in response to wounds o f the central cornea, 

as would be expected o f stem cells (Cotsarelis et al., 1989).

1.7.3 Limbal Stem Cell Deficiencies

The limbal stem cell theory formed the basis for identifying and reclassifying a 

multitude o f comeal blinding diseases. Limbal stem cell deficiency (LSCD) is most 

frequently related to external factors that destroy the cells. Such factors may include: 

chemical and thermal injury (Bourne et al., 1997; Pfister and Pfister, 1997b; Sridhar 

et al., 2000), ultraviolet and ionising radiation (Fujishima et al., 1996), Stevens- 

Johnson syndrome (Koizumi et al., 2001a), advanced ocular cicatricial pemphigoid, 

recurrent pterygium, multiple surgery, excessive or inappropriate contact lens wear, 

or extensive microbial infection (Achong and Caroline, 1999). Limbal stem cell 

deficiencies are characterized by conjunctival epithelial invasion, neovascularization, 

chronic inflammation and stromal inflammation (keratitis and scarring) (figure 1.15).
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Consequently, patients experience severe irritation, photophobia, and decreased 

vision, making them poor candidates for conventional corneal transplantation 

(Lavker et al., 2004).

Figure 1.15: Common disorders affecting the ocular surface and leading to limbal 
stem cell deficiency: (A) pterygium, (B) advanced cicatricial pemphigoid and (C) 
Stevens-Johnson syndrome [www],

1.7.3.1 Pterygium

A pterygium is a pink, triangular-shaped conjunctival growth on the cornea (figure 

1.15A). Some expand slowly throughout life, while others peak after a certain point, 

rarely reaching a size so large that the pupil is covered. It is thought that UV light 

from the sun may be a risk factor since pterygia are more common in sunny climates 

(Roh and Weiter, 1994). Pterygia are surgically removed when vision is affected, but 

rarely for cosmetic reasons since once excised they may grow back, particularly if 

the patient is less than 40 years o f age. Lubricants are often prescribed to reduce 

redness and provide relief from the chronic irritation.

1.7.3.2 Ocular Cicatricial Pemphigoid (OCP)

Ocular cicatricial pemphigoid is a rare systemic autoimmune inflammatory disease 

which primarily involves the oral and ocular mucous membranes (Foster and Rashid, 

2003). Characterized by the development o f blisters, the initial presentation is often
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that o f reddened, painful, tearing and light-sensitive eyes in a patient 60 to 70 years 

o f  age. These inflammatory lesions o f the ocular surfaces can result in scarring, loss 

o f tear film, adhesions o f the lids to the eye, corneal ulceration, perforation (figure 

1.15B) and in the most relentlessly progressive or untreated cases, loss o f the eye. 

The mouth and skin often suffer similar blistering lesions. General treatments involve 

corticosteroids and immunosuppressive agents. The ocular surface requires 

additional lubrication, antibiotics and sometimes surgical procedures, in attempt to 

maintain vision. Nevertheless, many patients will experience severe visual loss due 

to ocular surface scarring, despite the most aggressive management.

1.7.3.3 Stevens-Johnson Syndrome (SJS)

Stevens-Johnson syndrome (SJS) is also known as erythaema multiforme major and 

is characterized by painful, blistery lesions on the skin and the mucous membranes of 

the mouth, throat, genital region and eyelids. Stevens-Johnson syndrome can cause 

serious eye problems; the ocular complications often being disabling and leading to 

severe vision loss. This sight-threatening disease can occur at any age and is 

considered very difficult to treat, especially in children (Tsubota and Shimazaki, 

1999). The aetiology is unknown, but an abnormal immunologic reaction is thought 

to be the cause. Often precipitated by drugs or viral infection, any mucous membrane 

may be affected by the disease. When the acute phase is controlled, patients usually 

recover good function of most organs, but nevertheless permanent bilateral blindness 

is common due to severe keratoconjunctivitis and a lack o f corneal stem cells. With 

corneal stem cells limited to the limbus and representing only a small portion o f the 

mucosal epithelium, severe immunologic reactions can deplete the supply and leave 

the cornea covered with conjunctival cells or even eyelid skin (as in figure 1.15C).
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1.7.4 Treatment of Limbal Stem Cell Deficiencies

Persistent epithelial defects can be caused by various ocular disorders and trauma, as 

outlined previously. Conventional corneal transplantation cannot restore vision in the 

case o f LSCDs, as the requirement is for limbal stem cells to restore the corneal 

epithelium. Traditional therapies involve correcting the underlying cause, 

suppressing inflammation and augmenting the tissue-repair processes (He et al., 

1999) but despite appropriate use o f these measures, established epithelial defects 

may persist (Sridhar et al., 2000). Improvements in surgical procedures over recent 

years have enabled failed ocular surfaces to be replaced with exogenous healthy 

epithelium. According to the type and source o f tissue removed to transplant the 

stem cell-containing limbal epithelium, several surgical procedures have been 

devised (Lavker et a l,  2004). Prior to the realization that conjunctival 

transdifferentiation did not occur (Dua, 1998), conjunctival transplantation was 

performed to treat limbal stem cell deficiency related ocular surface disease (Thoft, 

1977). Thoft later performed keratoepithelioplasty, whereby lenticles o f peripheral 

cornea were placed at the corneoscleral limbus and successfully recovered the cornea 

(Thoft, 1984). Kenyon and Tseng (1989) reported the first conjunctival-limbal 

autograft. With the advent o f the limbal stem cell concept, Kinoshita modified this 

technique to transplant limbal stem cells (Kinoshita et al., 1991). In unilateral 

disorders, the stem cell source is the healthy contra-lateral eye (Dua and Azuara- 

Blanco, 2000a) while in bilateral disorders, stem cell allografts are obtained from 

either living tissue-matched donors or non-matched cadaver eyes (Tsai and Tseng,

1994). As allogeneic transplants, it is mandatory to administer systemic 

immunosuppression in these instances and long term success rates vary 

tremendously. Tsubota et a l  (1999) and Solomon et al. (2002) reported a 40-50%
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success rate based on a 3-5 year follow up, while Ilari and Daya (2002) document 

that only 21.2% o f eyes remained clear and stable after 5 years. This limited success 

has been attributed to aqueous tear-deficient dry eye (Shimazaki et al., 2000), lid 

abnormalities (Solomon et al., 2002) and chronic, persistent inflammation. Signs o f 

graft rejection include corneal vascularization, epithelial rejection lines, invasion o f 

conjunctiva and inflammation. The practice o f limbal allograft transplantation is not 

only limited by these risks o f complications (Thoft and Sugar, 1993) but also by 

donor tissue availability. Given the grave shortage o f cadaver corneas available for 

transplant, alternatives are being sought. The use o f biomaterials and tissue 

engineering in the treatment o f limbal stem cell deficiencies is a rapidly expanding 

area o f research which is reviewed in the following section.
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1.8 Biomaterials and Tissue Engineering

A biomaterial is by definition ‘any material that is designed to contact living tissue 

for a therapeutic or medical purpose’ (Piskin, 1992). In general terms, the field o f 

biomaterials covers both biological tissue transplantation and the implantation o f 

non-biological, artificial devices. Similarly, with regards the eye, ocular biomaterials 

can be biological, such as amniotic membrane or cultured cells, or artificial. 

Artificial ocular biomaterials include such diverse devices as contact lenses, punctal 

plugs and intraocular lenses. With such an array o f eye diseases and the shortage o f 

readily available tissue for transplantation, the need for biomaterials is obvious. The 

field o f tissue engineering emerged in response to the growing need for tissues and 

organs for transplantation. Success hinges on regeneration-competent cells, a 

supportive carrier and an environment conducive to cell growth, differentiation and 

eventual integration. In many respects, amniotic membrane is an ideal carrier.

1.8.1 Amniotic Membrane

Mammalian embryos are contained in a fluid-filled sac o f foetal membranes, arising 

from extra-embryonic tissues (figure 1.16). The outer layer (or chorion) contacts 

maternal cells while the inner layer (or amnion/amniotic membrane) is bathed by 

amniotic fluid. This innermost layer o f the placenta is a thin, semitransparent tissue 

comprising a single layer o f ectodermally derived columnar cells, a thick and 

continuous basement membrane and a subjacent avascular stromal matrix containing 

large amounts o f collagen (van Herendael et al., 1978; Fukuda et a l ,  1999). The 

amniotic epithelium serves to protect the foetus from traumas during development as 

well as having a secretory role (van Herendael et al., 1978).
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Figure 1.16: [Left] Human embryo at 47 
days gestation surrounded by a sac o f 
foetal membranes. [Above] An amniotic 
membrane graft: AM is readily available, 
transparent and strong yet flexible; 
therefore is a perfect adjunct to ocular 
surface reconstruction [www].

1.8.2 Amniotic Membrane: A History of Use

The first documented use o f amniotic membrane in medical science was in 1910 

when Davis used foetal membranes as surgical material to treat burned and ulcerated 

skin surfaces (Davis, 1910). Amniotic membrane has long been used in skin 

transplantation, as a biological dressing for bums (Stem, 1913; Bose, 1979), skin 

wounds and leg ulcers (Troensagaard-Hansen, 1950; Trelford and Trelford-Sauder, 

1979; Ward et al., 1989). The ensuing decades have seen great scientific interest in 

amniotic membrane and it has been used in a wide variety o f procedures, including 

as an adjunctive tissue for artificial vagina reconstruction (Dhall, 1984). In addition, 

AM has also proved useful in preventing tissue adhesion in surgery o f the abdomen, 

pelvis, head, vagina and otolarynx (Trelford-Sauder et al., 1978). However, it is the 

use o f AM in ocular surface reconstruction which is possibly the most active area o f 

research in this field and with which this thesis is primarily concerned.
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1.8.3 Amniotic Membrane in Ocular Surface Reconstruction

Foetal membranes were first used on the eye in 1940 by de Rotth as a conjunctival 

graft to treat symblepharon (de Rotth, 1940). De Rotth recognized the qualities o f 

this tissue and felt that it would be ideal for replacing the conjunctiva in that it was 

thin, strong, flexible, transparent, sterile and readily available. This surgery had 

limited success (only one out o f the six cases), almost certainly due to the inclusion 

o f live cells and the chorion. In 1946, Sorsby and Symons used chemically 

processed ‘dry’ amniotic membrane termed ‘amnioplastin’ as a temporary patch on 

burnt eyes (Sorsby and Symons, 1946). Despite remarkable success given an early 

intervention, amniotic membrane for ophthalmic use disappeared from the literature 

until 1995 when it was reintroduced by Kim and Tseng (Kim and Tseng, 1995b). 

They utilized a preserved form o f AM to reconstruct damaged ocular surfaces in a 

rabbit model and noted positive outcomes in 40% of cases. These encouraging 

results, coupled with improved methods o f AM processing, have prompted a recent 

surge o f interest in this surgical application.

Amniotic membrane has proved useful for surgical reconstruction o f the ocular 

surface and has been successfully used in the treatment of ocular surface disorders 

including LSCDs such as Stevens-Johnson syndrome, ocular cicatricial pemphigoid, 

thermal and chemical bums, and severe pterygium (Shimazaki et a l ,  1997; Tseng et 

a l, 1998; Tsubota and Shimazaki, 1999). This non-antigenic basement membrane 

facilitates migration o f epithelial cells, reinforces adhesion o f basal cells, and 

promotes epithelial differentiation. Collectively, these are the thought to be the 

characteristic actions by which amniotic membrane permits rapid epithelialization 

(Lee and Tseng, 1997).
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1.8.3.1 Action Mechanisms o f  Amniotic Membrane

When appropriately processed and preserved, AM can be used as either a graft to 

replace the damaged stromal matrix, as a patch to prevent inflammatory insults from 

further damaging the ocular surface, or a combination o f both. Human amniotic 

membrane transplantation is used for a widening spectrum of ophthalmic indications 

and has been found to confer many beneficial effects; these and potential action 

mechanisms include those summarized in table 1.1 below.

Action Mechanisms

Prolonged life span  and m aintenance of epithelial progenitor cell clonogenicity  
Promotion of non-goblet cell epithelial differentiation 
Exclusion of inflammatory cells with anti-protease activities
Sup pression  of the transforming growth factor p signalling system  and myofibroblast 
differentiation of normal fibroblasts

Observed Clinical Effects

Facilitation of epithelialization 
M aintenance of normal epithelial phenotype  
R educed  inflammation 
R educed  vascularization  
R educed  scarring

Table 1.1: Potential action mechanisms and reported clinical effects o f amniotic 
membrane transplantation (adapted from Tseng, 2001)

The basement membrane component o f the amniotic membrane resembles that o f the 

conjunctiva, expressing collagen IV, V and VII, laminin and fibronectin (Fukuda et 

al., 1999) and is therefore an ideal substrate for supporting the growth o f epithelial 

progenitor cells (limbal stem cells and TACs), specifically in prolonging life span 

and maintaining their clonogenicity (Tseng et al., 1998). Amniotic membrane has 

been found to promote epithelial differentiation, to reinforce cell adhesion and to 

prevent apoptosis (Boudreau et al., 1996; Wang et al., 2001). Moreover, amniotic
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membrane has anti-angiogenic (Kim and Tseng, 1995a; Ma et a l,  2004) and anti

inflammatory properties (Chen et a l,  2000; Zhou et al., 2003) and expresses 

numerous growth factors (Koizumi et a l,  2000c). Amniotic membrane has also been 

found to inhibit fibrosis (Shimazaki et a l,  1998) and display anti-bacterial properties 

(Talmi et a l,  1991). In rabbits, amniotic membrane transplantation has elicited a 

reduction in corneal haze and scarring (Wang et a l,  2001). Collectively these 

properties make AM an ideal carrier for the ex vivo expansion o f limbal stem cells 

and their subsequent transplantation onto the ocular surface.

1.8.4 Ex Vivo Expansion of Limbal Stem Cells on AM

Tissue engineering is a multi-disciplinary field that combines the principles o f 

engineering and biological sciences in the development o f bioartificial tissues and 

organs (Heath, 2000). The concepts o f tissue engineering and cell culture have 

developed rapidly over the past three decades, so that it is now possible to 

manipulate cells both in vivo and in vitro by controlling their proliferation and 

differentiation through the addition o f exogenous growth factors and hormones 

(Vacanti and Vacanti, 2001). Pellegrini and co-workers (1997) were the first to 

successfully generate and engraft multi-layered cultured corneal epithelium to 

resurface damaged eyes. As described in the previous section, amniotic membrane 

appears to serve as an ideal substrate for restoring the limbal stem cell niche for ex 

vivo expansion (Grueterich et a l, 2003a) and has subsequently been used by many 

researchers, with or without 3T3 fibroblast feeder layers for autologous (Schwab et 

a l,  2000; Tsai et a l,  2000; Grueterich et a l, 2002b) or allogeneic (Koizumi et a l, 

2001a; Koizumi et a l ,  2001b) limbal stem cell transplantation for treating LSCD. 

This latter technique has proved very effective in reinstating a corneal epithelial
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phenotype, with the further advantage that only a small limbal biopsy is required, 

thus minimizing the risk o f depleting the donor eye. In addition, ex vivo expanded 

cells are considered preferential to limbal allografts since antigen-presenting 

Langerhans cells are eliminated from the transplant, reducing the risk o f allograft 

rejection (Sano et al., 2000).

Various methods are currently employed in generating new tissue for transplantation, 

however it is the ‘cell-seeded matrix’ or ‘cell suspension’ approach which, though the 

most complex, seems to be the most promising route to tissue regeneration and it is 

this method which is used in this thesis (schematic shown below in figure 1.17).

Limbal biopsy from 
donor cornea Suspension of 

limbal epithelium

Cells transferred to 
amniotic 

membrane in 
culture dish

Cells cultured on AM 
with 3T3 fibroblast 

layer

Cells and AM 
carrier grafted onto 

ocular surface

Figure 1.17: Schematic diagram of the suspension culture system. Epithelial cells 
are isolated from the limbus and then seeded onto denuded amniotic membrane and 
co-cultured with inactivated 3T3 fibroblasts (based on Koizumi et al., 2002)
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Colleagues in Shigeru Kinoshita’s research team at the Kyoto Prefectural University 

of Medicine, Japan have pioneered a highly successful technique for the repair o f 

damaged corneal epithelium based on the work o f Tsai and co-workers (Tsai et a l,  

2000) in which cells from a biopsy o f the limbal region are disaggregated and seeded 

onto a matrix derived from human amniotic membrane (Koizumi et a l,  2002; Ban et 

a l,  2003). During a highly controlled culture regime involving lowering the growth 

medium to expose the uppermost cell layers to air, the limbal epithelial cells 

reorganize themselves into stratified sheets which closely resemble normal corneal 

epithelium. Within three to four weeks, this sheet (along with the amniotic membrane 

carrier) can then be sutured onto the damaged ocular surface where it should 

hopefully restore vision. The graft is covered with a therapeutic contact lens for 

protection (figure 1.18).

Figure 1.18: Photographs depicting the surgical transplantation o f cultivated limbal 
epithelial cells on AM. The vascularized, opaque tissue is removed from the ocular 
surface and replaced with the graft. The cornea regains clarity and vision is restored 
[www].

Transplantation o f biological tissues onto and within the eye is not always 

straightforward. Preferably, tissue damage ought to be surgically reconstructed using 

autologous tissue grafts from the host. In many cases however, such as bilateral 

limbal stem cell disorders, autografting is not an option and an alternative source o f
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tissue has to be established. This generally takes the form o f a same species donor 

(usually o f cadaver origin, but increasingly from living human donors) and is termed 

an allograft. As well as the severe shortage o f tissue available, the major 

disadvantage to transplanting allogeneic tissue is the need for life-long 

immunosuppressive drug treatments to prevent graft rejection, postoperative 

inflammation and infection.

Many researchers have documented the clinical success o f such surgery and in some 

cases as many as 80% of grafted eyes (Garrod et a l,  2002) were restored to good 

vision (Koizumi et al., 2001a). As with any technique, this is far from perfect and 

there remains considerable scope for improvement. This thesis builds on the 

progress made to date and uses microscopic techniques to evaluate potential 

enhancements, in particular optimizing the carrier and culture technique, and 

investigating alternative sources o f autologous stem cells for culture which would 

potentially remove the need for prolonged immunosuppression.
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1.9 Central Aims

The ex vivo expansion o f limbal stem cells on amniotic membrane for ocular surface 

reconstruction, while largely successful, is not infallible. Limitations with this 

technique include a shortage o f donor materials, risks o f allograft rejection and the 

need for prolonged immune suppression (which has its own complications). The 

central aim o f this thesis is to use microscopic and immunohistochemical techniques 

to refine tissue engineering o f the cornea and as such, covers several potential areas 

o f improvement to include:

4- An investigation into the comparative merits o f cellular and denuded 

amniotic membrane as a carrier for cultivated human limbal stem cells.

4- An evaluation o f amniotic membrane as a supportive matrix for the culture o f 

corneal endothelial cells for grafting into dystrophic eyes. Similarly, an 

investigation into the use o f polyphenol antioxidant for preserving corneal 

endothelial cells, pre-transplant.

ifc- The ultrastructural and immunohistochemical characterization o f freeze-dried 

amniotic membrane and evaluation o f its potential as an alternative substrate 

to conventionally cryopreserved tissue.

■4- Analysis o f the human oral mucosa as a potential source o f stem cells for 

autologous corneal grafts.

4- An examination of extracellular matrix protein coated-gelatin hydrogels as 

alternative carriers for limbal stem cell cultures.

4- An investigation into the feasibility o f replacing foetal bovine serum in the 

culture medium with that o f human origin.



2 MATERIALS AND METHODS

This chapter is divided into sections that detail the materials used and methods 

employed in fulfilling the main objectives o f this thesis.

2.1 Comparison of Cellular and Denuded Amniotic Membrane as 

Carriers for Human Limbal Stem Cell Cultivation

This section describes the materials and methods utilized in the comparison of 

cellular and denuded human amniotic membranes as culture substrates for limbal 

stem cells for use in ocular surface reconstruction. The control in this investigation 

(and all subsequent human cell studies) was donor human corneal tissue obtained 

from the Northwest Lions Eye Bank and preserved on ice prior to fixation in 4% 

glutaraldehyde and routine processing as outlined in sections 2.1.5 and 2.1.6.

2.1.1 Preparation of the Cell Suspension Culture System

All cell cultures were carried out by project collaborators at the Kyoto Prefectural 

University o f Medicine in Japan and transported to Lancaster University for analysis. 

Figure 2.1 overleaf shows a schematic o f the stem cell suspension culture system 

used in each o f the investigations in this thesis. Briefly, limbal stem cells were co

cultured with mitomycin [MM]C-treated 3T3 fibroblasts, using a modified 

keratinocyte culture system (Rheinwald and Green, 1975). Confluent 3T3 fibroblasts 

were incubated with 4mg/ml o f MMC for two hours at 37°C under 5% C 0 2. These 

were then trypsinized and plated onto plastic dishes with a density o f 2*104 

cells/cm2. Cellular and denuded membranes (prepared as outlined in section 2.1.2)
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were spread, amniotic epithelial/basement membrane side-up, on culture plate inserts 

(Corning, NY, USA) in dishes containing the treated 3T3 fibroblasts.

Conjunctiva

Amniotic 
membrane 

with cultured 
limbal cells

Limbal
explant

Limbal
  epithelial

suspension

Amniotic 
^  membrane

Lim bal
epithelial

cells

Culture
medium

3T3 Fibroblasts

Figure 2.1: Schematic diagram of the suspension culture system. Epithelial cells are 
isolated from the limbus and then seeded onto denuded amniotic membrane and co
cultured with inactivated 3T3 fibroblasts (adapted from Koizumi et al., 2002).

2.1.2 Preparation of Amniotic Membrane

All amniotic membrane samples were initially prepared at the Department of 

Ophthalmology, Kyoto Prefectural University o f Medicine (Japan). In accordance 

with the tenets of the Declaration o f Helsinki and with proper informed consent, 

human amniotic membranes were obtained at the time of elective caesarean section 

in volunteers seronegative for human immunodeficiency virus, hepatitis B and C and 

syphilis.
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2.1.2.1 Cellular Amniotic Membranes

Membranes were washed under sterile conditions with phosphate buffered saline 

(PBS) containing antibiotics (0.3% ofloxacin, 5ml) and stored at -80°C for twelve 

months in glycerol (Nacalai Tesque Co., Kyoto, Japan) and Dulbecco’s modified 

Eagle medium (DMEM) (GIBCO BRL, Rockville, MD, USA) at a ratio o f 1:1 

(volrvol). Immediately prior to use, the amniotic membranes were thawed, rinsed 

with sterile PBS and cut into pieces approximately 2.5cm square.

2.1.2.2 Denuded Amniotic Membranes

Several pieces o f the cellular amniotic membrane were deprived of their amniotic 

epithelial cells by incubation with 0.02% ethylenediaminetetraacetic acid (EDTA) 

(Wako Pure Chemical Industries, Osaka, Japan) at 37°C for two hours to loosen 

cellular adhesion, followed by gentle scraping using a cell scraper (Nalge Nunc 

International, Naperville, IL, USA).

2.1.3 Origin of Limbal Cells for Culture

Human corneal tissue supplied by Cologne University Tissue Bank (Cologne, 

Germany) was used for epithelial cell culture in this instance.

2.1.4 Cell Suspension Culture of Human Limbal Epithelial Cells

Suspension culture was carried out by project collaborators from the Department of 

Ophthalmology, Kyoto Prefectural University o f Medicine (Japan), following 

approval from the Institutional Review Board, with cultures transported to Lancaster 

University for subsequent evaluation. Immediately after the central corneal button 

had been used for corneal transplantation, the limbal ring was washed with sterile
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PBS. Following removal o f up to two thirds o f the scleral and corneal stroma, the 

limbal ring was cut into 2-3 pieces and incubated at 37°C for 1 hour with 1.2IU 

dispase (Roche Molecular Biochemicals, Manheim, Germany) as described by 

Gipson and Grill (Gipson and Grill, 1982). The reported method was modified 

slightly with regard to the duration of the incubation. Limbal epithelial cells (5- 

lOxlO4 cells) were scraped with fine forceps and suspended in 3ml o f culture 

medium and seeded onto pieces of cellular and denuded amniotic membrane spread 

on culture inserts and co-cultured with MMC-inactivated 3T3 fibroblasts. The 

culture medium used was DMEM and Ham's F12 media (1:1 mixture) and included 

foetal bovine serum (or FBS), insulin (5pg/ml), cholera toxin (0.1nmol/l), epidermal 

growth factor (lOng/ml) and penicillin-streptomycin (50IU/ml). Cultures were 

incubated at 37°C in a 5% CO2 enriched incubator, submerged in medium for two 

weeks and then exposed to air by lowering the medium level (airlifting) for a further 

two weeks. The culture medium was changed every two days.

2.1.5 Sample Processing for Scanning Electron Microscopy [SEM]

Limbal cultures on cellular and denuded amniotic membrane were initially fixed in 

4% glutaraldehyde in PBS buffer for a minimum of two hours. Specimens were then 

washed in PBS for 3 x 15 minutes and post-fixed in 2% aqueous osmium tetroxide 

for two hours. They were washed again in PBS before being dehydrated through a 

graded alcohol series, in which samples were placed in ethanol solutions at 50%, 

70%, 80%, 90%, 95% and 100% concentrations for 20 minutes each. Samples were 

then transferred to hexamethyldisilazane (HMDS) (TAAB Laboratories, UK) for 20 

minutes and left overnight to air-dry. The evaporation o f HMDS is an alternative 

method to critical-point drying o f samples for scanning electron microscopy (Nation,
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1983) and is documented to provide results o f the same standard (Braet et al., 1997). 

Cultures were then mounted on aluminium specimen stubs and sputter-coated with 

gold using an Edwards S150A sputter-coater prior to examination on a JEOL JSM 

5600 scanning electron microscope (Japanese Electron Optical Limited, Tokyo, 

Japan).

2.1.6 Sample Processing for Transmission Electron Microscopy [TEM]

Cultures were fixed in 4% glutaraldehyde in PBS buffer for a period o f at least 2 

hours prior to processing for transmission electron microscopy. They were then 

washed in PBS, post-fixed in 2% aqueous osmium tetroxide for 2 hours, washed 

again in PBS before being passed through a graded alcohol series (50%, 70%, 80%, 

90%, 95% and 100%). Samples were infiltrated with propylene oxide twice for 20 

minutes, then left overnight in a 1:1 mixture o f propylene oxide and araldite resin 

(Agar Scientific, UK). The following day, samples were transferred to pure araldite 

resin and left to infiltrate overnight, under agitation. Finally, samples were 

embedded in moulds containing fresh resin and polymerized at 60°C for 24-36 hours. 

Ultrathin sections (50-70nm thick) were cut on a Reichert Ultracut E microtome, 

collected on naked copper grids and counterstained for 1 hour each with 1% aqueous 

uranyl acetate and phosphotungstic acid, then for 20 minutes with Reynolds’ lead 

citrate (Reynolds, 1963) prior to examination on a JEOL JEM 1010 transmission 

electron microscope (Japanese Electron Optical Limited, Tokyo, Japan).

2.1.7 Collection of Quantitative Data for Cellular and Denuded Cultures

To quantify and statistically analyse the microscopic observations, the following 

protocols were applied (adapted from Koizumi et a l, 2002; Ban et al., 2003):
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2.1.7.1 Thickness o f  Cell Layers

Transmission electron micrographs o f the cultured epithelial cells on cellular and 

denuded AM were digitized using an Epson Perfection 1240U scanner and the 

thickness o f cell layers was measured at various randomly selected points (>7=14) 

using AnalySIS® (Soft Imaging System GmbH) software. The scale bar on each of 

the micrographs was used for calibration and so the results obtained were in 

micrometers and required no calculation (as in figure 2.2).

Figure 2.2: Average thickness was calculated using AnalySIS® software and 
transmission electron micrographs calibrated using the scale bars. Regions were 
selected at random (see coloured lines) for measurement. [Micrograph illustrates 
control human corneal epithelium, routinely processed and stained for TEM].
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2.1.7.2 Number o f  Cell Layers

To determine the mean number o f cell layers in each o f the cultures, 14 areas were 

selected at random and the number o f cells (basal, wing and superficial) was counted 

manually under the transmission electron microscope.

2.1.7.3 Area o f  Intercellular Space

111 An outline of the cell morphology [2] Inter and intracellular areas were
was made from the electron micrograph digitised and a 3pm lateral distance was

selected at random

[3J The area of intercellular space over [4] The number of desmosomes over the
this 3 pm length was calculated using same 3 pm length was manually counted

AnalySIS®

Figure 2.3: Diagrammatic representation of the protocol for determination of 
intercellular space areas to statistically compare cells cultured on cellular and 
denuded amniotic membranes. [Micrograph illustrates control human corneal 
epithelium, routinely processed and stained for TEM].
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To calculate the areas o f space between adjacent cells, outlines o f cell morphology 

were made on acetates from TEM micrographs. Images were again digitized using 

an Epson Perfection 1240U scanner. Regions o f the interface o f adjacent cells 

(corresponding to a 3 pm distance) cultivated on both cellular («=14) and denuded 

(«= 14) amniotic membranes were selected at random by a person independent o f this 

project. AnalySIS® software was used to calculate the intercellular area, while the 

number o f desmosomes in the same randomly selected area was manually counted 

(refer to figure 2.3).

2.1.7.4 Number o f  Desmosomes

As described above, mean numbers o f desmosomes in each o f the cell cultures were 

calculated from fourteen regions at random, across 3 pm lateral distances at cell-cell 

interfaces (figure 2.3).

2.1 .7.5 Number o f  Basal Junctions/Hemidesmosomes

The number o f hemidesmosomal junctions at the basement membrane in the denuded 

culture («= 14) and that o f desmosomal junctions attaching cultivated cells to AM 

epithelial cells on the cellular substrate («= 14) were similarly quantified over 

randomly selected 3 pm lateral distances using TEM micrographs.

2.1.7.6 Superficial Cell Surface Area

Average cell surface areas on denuded («=50) and cellular (w=50) membranes were 

calculated using SEM micrographs taken at low magnification. Cell peripheries 

were manually outlined and once calibrated, the AnalySIS® software calculated 

superficial cell surface areas (figure 2.4 overleaf).
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Figure 2.4: Mean cell surface areas were calculated using AnalySIS® software and 
scanning electron micrographs calibrated using the scale bars. Regions were selected 
at random (see coloured lines) for measurement. [Micrograph illustrates control 
human corneal endothelium, routinely processed for SEM].

2.1.8 Presentation of Quantitative Data

Mean values (± standard deviation, S.D.) were determined for each o f the parameters 

and for ease of interpretation these were plotted in a chart in the form of percentage 

difference from control, which in this case was normal human cornea. The scale of 

the vertical axis was kept constant for every study in this thesis.

2.1.9 Statistical Data Analysis

Statistical analysis was carried out on the raw data obtained for each substrate using 

SigmaStat® v2.03 (SPSS Inc., UK). Where the data passed normality and equal 

variance tests, t-tests were performed and where the data failed one or both o f these, 

a Mann-Whitney Rank Sum test was used. The level of significance was taken to be 

0.050 in both instances. Statistical comparisons were drawn between the cultivated 

stem cells and the control human corneal epithelium as well as between the cellular 

and denuded culture systems themselves.
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2.2 Cultivation of HCEC on Amniotic Membrane

This section describes the materials and methods used to assess the usefulness o f 

denuded amniotic membrane as a carrier for the cultivation o f human comeal 

endothelial cells.

2.2.1 Origin of Endothelial Cells for Culture

A human donor cornea (47 years old, male, endothelial cell density: 3065cells/mm2) 

obtained from Northwest Lions Eye Bank, USA, was preserved in Optisol GS 

(Chiron Vision, Irvine, CA, USA) and transported on ice to the Kyoto Prefectural 

University o f Medicine. After using its centre for human comeal transplantation, the 

residual limbal tissue was used, at day 7 after death, in this study.

2.2.2 Cell Suspension Culture of Human Corneal Endothelial Cells

Suspension culture was carried out at the Department of Ophthalmology, Kyoto 

Prefectural University o f Medicine (Japan), following approval from the Institutional 

Review Board, with cultures transported to Lancaster University for subsequent 

evaluation. Limbal tissue was placed in a petri dish containing DMEM (Invitrogen 

Corp., Carlsbad, CA, USA), 50U/ml penicillin and 50pg/ml streptomycin. Under a 

dissecting microscope, Descemet’s membrane with its attached comeal endothelium 

was stripped from the stroma and placed in a 35mm dish containing 1.2IU/ml dispase 

in PBS. The tissue was incubated for 1 hour at 37°C and the cells were rinsed gently 

with a sterile pipette. The dispase was then inactivated by suspending the cells in a 

medium containing DMEM, penicillin (50IU/ml) and streptomycin (50jug/ml). After 

gentle centrifugation (3 minutes at 180g), the cells were re-suspended in culture



medium containing DMEM, penicillin (50IU/ml), streptomycin (50pg/ml), 10% 

foetal bovine serum (ICN Biomedicals, Inc. Aurora, Ohio, USA) and 2ng/ml basic 

fibroblast growth factor (Invitrogen Corp., Carlsbad, CA, USA).

The endothelial cells were then incubated in wells o f a collagen IV-coated 24-well 

plate at 37°C in a 5% carbon dioxide humidified atmosphere. The medium was 

changed every other day. Cells reached confluence in 10-20 days and were then sub

cultured by treatment with trypsin and EDTA (Invitrogen Corp., Carlsbad, CA, USA) 

and seeded at a ratio split of 1:2 to 1:8.

2.2.3 Preparation of Amniotic Membrane

Human AM obtained at the time of caesarean section was stored at -80°C in DMEM 

and glycerol (Nacalai Tesque, Kyoto, Japan) after washing with PBS containing 

antibiotics (5ml 0.3% ofloxacin). Immediately before use, the thawed AM was 

deprived o f amniotic epithelial cells by incubation with 0.02% EDTA (Wako Pure 

Chemical Industries, Osaka, Japan) at 37°C for 2 hours, followed by gentle cell 

scraping with a cell scraper (Nalge Nunc International, Naperville, IL, USA). The 

tissues were then washed twice with sterile PBS.

2.2.4 Seeding Corneal Endothelial Cells on Denuded Amniotic Membrane

Confluent monolayers of human corneal endothelial cells from passage five were 

trypsinized, centrifuged and re-suspended at a final cell seeding concentration o f 

6.0x103 cells/mm2. Re-suspended cells were gently seeded on denuded AM spread, 

basement membrane side up, on polyester culture inserts (Coming, NY, USA) in 

wells o f a 12-well plate and incubated at 37°C in a 5% carbon dioxide humidified

78



atmosphere. Three days later, the culture medium was changed and then changed 

every other day for two weeks.

2.2.5 Sample Processing for Scanning Electron Microscopy

Briefly, day 14 cultures on amniotic membrane were fixed in 2.5% glutaraldehyde in 

0.1M PBS, washed three times for 15 minutes in PBS, post-fixed for 2 hours in 2% 

aqueous osmium tetroxide and washed three more times in PBS. Following 

dehydration through a graded ethanol series (50, 70, 80, 90, 95 and 100%) specimens 

were transferred to HMDS (Agar Scientific, London, UK) twice for 10 minutes and 

allowed to air-dry. When dry, specimens were mounted on aluminium stubs and 

sputter-coated with gold before examination on a JEOL JSM 5600 scanning electron 

microscope.

2.2.6 Sample Processing for Transmission Electron Microscopy

Briefly, day 14 cultures on AM were fixed in 2.5% glutaraldehyde in 0.1M PBS, 

post-fixed in 2% aqueous osmium tetroxide, dehydrated through a graded ethanol 

series, and embedded in araldite resin (Agar Scientific, UK). Ultrathin (70nm) 

sections were collected on copper grids and stained for 1 hour each with uranyl 

acetate and 1% phosphotungstic acid and for 20 minutes with Reynold’s lead citrate 

prior to examination on a JEOL JEM 1010 transmission electron microscope.
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2.3 Morphological Analysis of Polyphenol-Treated Rat Corneal 

Endothelium in Long-Term Storage

This section describes the methodology used to examine the effects o f polyphenol 

treatment on rat corneal endothelial cells over a 4 week time course, with the aim of 

improving cell preservation in long-term storage.

2.3.1 Corneal Tissue Preparation

Six week old female Wistar rats were purchased from Shimazu Laboratory Supplies 

(Kyoto, Japan) and sacrificed by injecting an overdose o f sodium pentobarbital. 

Eyes were enucleated and corneal tissues excised at the limbus. Tissues were 

washed twice in Optisol-GS before storage. All animals were treated in accordance 

with the guidelines o f the ARVO Statement for the Use o f Animals in Ophthalmic 

and Vision Research

2.3.2 Polyphenol and Optisol-GS

Green tea extract polyphenol, containing (-)- epigallo-catechin-3-O-gallate, was 

purchased from PFI Inc., (Kyoto, Japan) with a purity in excess o f 90%. The 

polyphenol was dissolved in PBS at a concentration o f 2mg/ml and stored at -80°C 

until use. Optisol-GS (containing 2.5% chondroitin sulphate, 1% dextran, lOOpg/ml 

gentamicin and 200pg/ml streptomycin sulphate) was purchased from Bausch & 

Lomb Surgical Inc., Irvine, CA.
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2.3.3 Tissue Storage

Corneal tissues were stored in Optisol-GS containing 500pg/ml polyphenol at 4°C 

for 24 hours. After washing twice in pure Optisol-GS, the tissues were stored in 

polyphenol-free Optisol-GS for up to 28 days at 4°C. The medium was changed 

every seven days. The control samples were treated with Optisol-GS solution only. 

At days 7, 14 and 28 corneal samples were fixed with 4% glutaraldehyde solution in 

phosphate buffer. All o f the above was carried out by project collaborators at the 

Kyoto Prefectural University o f Medicine, Kyoto, Japan and the samples were 

shipped to Lancaster University for preparation and examination by SEM.

2.3.4 Scanning Electron Microscopy

Corneal samples were prepared for analysis by SEM exactly as outlined in section 

2.1.5. The corneal tissues were mounted endothelial side-up on aluminium specimen 

stubs and sputter coated with gold prior to examination.
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2.4 Evaluation of Sterilized, Freeze-Dried Amniotic Membrane

This section describes the materials and methods used in the ultrastructural and 

immunohistochemical evaluation of freeze-dried amniotic membrane (FD-AM) as an 

alternative carrier for corneal cells in ocular surface reconstruction.

2.4.1 Amniotic Membrane Samples

Samples o f human amniotic membrane were all obtained from the Department o f 

Ophthalmology, Kyoto Prefectural University o f Medicine (Japan). Freeze-dried 

amniotic membrane was evaluated alongside frozen, routinely preserved amniotic 

membrane for comparison purposes. For ultrastructural examination, amniotic 

membranes were conventionally processed for scanning and transmission electron 

microscopy. For immunohistochemical characterization, cellular and denuded, 

frozen and freeze-dried membranes were labelled with antibodies directed to 

extracellular matrix proteins and glycosaminoglycans. In a final study, denuded 

freeze-dried amniotic was used as a culture substrate for rabbit corneal epithelial 

cells.

2.4.2 Freeze-Drying of Amniotic Membrane

All amniotic membrane samples were prepared at the Department o f Ophthalmology, 

Kyoto Prefectural University o f Medicine (Japan) and shipped to Lancaster 

University for subsequent analysis. On approval by the Institutional Review Board 

o f Kyoto Prefectural University o f Medicine and in accordance with the tenets o f the 

Declaration o f Helsinki for research involving human subjects, amniotic membrane 

was obtained at the time of elective caesarean section. Under sterile conditions the
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membrane was washed with sterile PBS containing antibiotic-antimycotic liquid and 

cut into small pieces. Several pieces of AM were then deprived o f amniotic epithelial 

cells as previously described (section 2.1.2.2). Amniotic membranes were freeze- 

dried under vacuum conditions and vacuum-packed at room temperature as soon as 

possible. Finally, y-irradiation (25kGy) was used to sterilize the resultant freeze-dried 

amniotic membrane and bacteriological tests were carried out to confirm 

sterilization.

2.4.3 Preparation of Frozen Amniotic Membrane

As described previously (section 2.1.2), human amniotic membranes were obtained 

at the time of caesarean section, washed under sterile conditions with PBS containing 

antibiotics and stored at -80°C for five months in glycerol and DMEM at a ratio o f 

1:1 (vokvol). Immediately prior to use, the amniotic membranes were thawed, rinsed 

with sterile PBS and cut into small pieces. Several pieces o f amniotic membrane 

were then deprived o f their amniotic epithelial cells as detailed earlier (section 

2 . 1.2 .2).

2.4.4 Immunohistochemical Characterization of Amniotic Membrane

Antibodies were directed against several extracellular matrix molecules in freeze- 

dried amniotic membrane. Frozen amniotic membrane was also examined for 

comparison.
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2.4.5 Histochemicals

2.4.5.1 Primary

For the primary labelling o f fibronectin, a monoclonal mouse antibody (IST-4) 

immunospecific for the human epitope was obtained from Sigma Chemical Company 

(Poole, UK). For labelling o f laminin, a monoclonal rabbit affinity-isolated antibody, 

again specific for the human epitope, was obtained from Sigma Chemical Company 

(Poole, UK). Vitronectin was labelled with a monoclonal mouse-derived antibody 

(VIT-2) obtained from Sigma Chemical Company (Poole, UK). For collagen type IV 

labelling, a mouse monoclonal antibody (NLI/53) was purchased from Biogenesis 

(Poole, UK). This antibody is reactive to native and denatured forms o f type IV 

collagen and shows no cross-reactivity with collagen types I, II, III, or V. Collagen 

type I was labelled with a mouse-derived antibody (COL-1) obtained from Sigma 

Chemical Company (Poole, UK) which recognizes the native helical form o f type I 

collagen. Cross-reactivity has not been found with collagen types II, III, IV, V, VI, 

VII, IX, X and XI. For heparan sulphate [HS] labelling, the monoclonal mouse 

antibody F58-10E4 was obtained from the Seikagaku Corporation (Japan). The 

epitope for this particular antibody is known to contain one or more N-sulphated 

glucosamine residue(s). For labelling o f chondroitin sulphate [CS], the monoclonal 

mouse IgM CS-56 was obtained from Sigma Chemical Company (Poole, UK). CS- 

56 recognizes an epitope present in the interior region o f native chondroitin 4- and 6- 

sulphate chains (Avnur and Geiger, 1984; Sorrell et al., 1993). For keratan sulphate 

[KS], the antibody 5-D-4 was obtained from the Seikagaku Corporation (Japan). 5- 

D-4 binds to large oligosaccharides o f sulphated polyN-acetyllactosamine (Mehmet 

et al., 1986).
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2.4.5.2 Secondary

For primary antibodies to be visualized by transmission electron microscopy, goat 

anti-mouse IgQ goat anti-mouse IgM and goat anti-rabbit IgM secondary antibodies 

conjugated to 5nm colloidal gold were used. All secondary antibodies were obtained 

from British Biocell International.

Antigen Category Clone Supplier 2° Antibody

Fibronectin Mouse (ascites) IgG IST-4 Sigma, UK Goat anti-mouse IgG

Laminin Rabbit IgG - Sigma, UK Goat anti-rabbit IgG

Vitronectin Mouse (ascites) IgM VIT-2 Sigma, UK Goat anti-mouse IgM

Collagen type IV Mouse IgM NLI/53 Biogenesis, UK Goat anti-mouse IgM

Collagen type I Mouse (ascites) IgG COL-1 Sigma, UK Goat anti-mouse IgG

Heparan sulphate Mouse IgM F58-10E4 Seikagaku, Japan Goat anti-mouse IgM

Chondroitin sulphate Mouse (ascites) IgM CS-56 Sigma, UK Goat anti-mouse IgM

Keratan sulphate Mouse IgG 5-D-4 Seikagaku, Japan Goat anti-mouse IgG

Table 2.1: Summary o f immunohistochemicals used in the characterization o f the 
freeze-dried and frozen amniotic membranes.

2.4.5.3 Controls

As a negative control, primary antibodies were replaced with non-specific primary 

antibodies (Serotec, Oxford, UK) at equivalent dilutions. This determined the level of 

non-specific background labelling on a sample.

2.4.6 Tissue Processing for TEM (Bairaktaris et aL, 1998)

Extracellular matrix proteins in freeze-dried and frozen, cellular and denuded

amniotic membranes were studied via immunoelectron microscopy. Frozen

membrane samples were thawed and freeze-dried samples were rehydrated in PBS

buffer prior to fixation in 4% paraformaldehyde in phosphate buffer at pFI 7.2 for a

period o f at least two hours. The samples were washed three times in phosphate
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buffer containing 0.1M glycine before being dehydrated through a graded ethanol 

series (20 minutes in each of 50%, 70%, 80% and 90% ethanol solutions). 

Specimens were then agitated for 1 hour in London Resin (LR) White resin (TAAB 

Laboratories). Subsequent infiltrations in fresh resin were for one hour and then 

overnight. Amniotic membranes were then embedded in moulds with fresh resin and 

polymerized at 50°C for 24 hours. Ultrathin sections were cut on a Reichert Ultracut 

E microtome and collected on G400 gilded copper grids (Agar Scientific, UK).

2.4.7 Immunogold Labelling of Basement Membrane Components

Sections to be labelled for examination under the transmission electron microscope 

underwent the following protocol with all steps carried out at room temperature 

unless otherwise stated. Labelling for the primary antibodies was carried out by first 

placing grids in droplets o f 0.1M glycine in PBS for two 10 minute periods, then in 

droplets o f goat serum for 20 minutes to prevent non-specific labelling. Excess goat 

serum was removed before grids were transferred to a grid box loaded with 15 pi of 

primary antibody diluted 1:50 in PBS buffer at pH 7.4 containing 1% bovine serum 

albumin (BSA) and 1% Tween® 20 (buffer 1). To prevent evaporation o f the primary 

antibody, grids were incubated overnight at 4°C in a moist chamber. The primary 

antibody was replaced by a non-specific antibody for negative controls.

The next day, grids were washed for 5 x 8 minutes in droplets o f buffer 1 solution. 

This was followed by five 8 minute washes in distilled water. Grids were transferred 

to a grid box loaded with 15 j l l 1 o f the appropriate 5nm gold-conjugated secondary 

antibody (British Biocell International, Cardiff, UK), diluted 1:50 in PBS at pH 8.2 

containing 1% BSA, 1% Tween® 20, 1% normal goat serum, 1% fish gelatin and 2%
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sodium chloride (buffer 2). Sections were incubated for 3 hours at room temperature 

after which the grids were washed for 8 minutes each time in 5 droplets of buffer 2 

solution followed by five washes in distilled water. Sections were counterstained in 

aqueous uranyl acetate for one hour before being examined on a JEOL JEM 1010 

transmission electron microscope.

2.4.8 Culture of Rabbit Corneal Epithelial Cells on Freeze-Dried AM

Corneal epithelial cells were cultured at the Department o f Ophthalmology, Kyoto 

Prefectural University o f Medicine (Japan) and transported to Lancaster University 

for subsequent examination.

2.4.8.1 Extraction o f  Rabbit Limbal Biopsies

Limbal biopsies (each 4mm2 in size) were taken from 8 adult albino rabbits (2- 

2.5kg), anaesthetized by intramuscular injection o f xylazine hydrochloride (5mg/ml) 

and ketamine hydrochloride (50mg/ml). Animals were treated in accordance with 

the ARVO Statement on the Use o f Animals in Ophthalmic and Vision Research and 

with the experimental procedure approved by the Committee for Animal Research at 

Kyoto Prefectural University o f Medicine. Corneal endothelium and half the corneal 

stroma were removed with scissors to the extent possible; the cells in the resulting 

sample were then disaggregated using dispase for use in suspension culture.

2.4.8.2 Epithelial Suspension Culture on FD-AM

Cells were co-cultured with MMC-inactivated 3T3 fibroblasts as previously 

described (section 2.1.1). Denuded freeze-dried AM were spread; epithelial basement 

membrane side up, on culture inserts (Coming Inc., NY, USA) in dishes containing
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treated 3T3 fibroblasts. The disaggregated rabbit limbal cells were seeded onto these 

membranes and cultured using the method detailed in section 2.1.4. The culture was 

submerged in medium for two weeks and then exposed to air by lowering the 

medium level for one week; the medium was changed every day.

2.4.9 Sample Processing for Scanning Electron Microscopy

Freeze-dried amniotic membranes (both cellular and denuded) as well as rabbit 

corneal epithelial cell cultures on freeze-dried AM were processed for examination 

by SEM. All samples were fixed in 4% glutaraldehyde in PBS buffer for a period o f 

at least 2 hours prior to processing. Samples followed the exact protocol outlined in 

section 2.1.5.

2.4.10 Sample Processing for Transmission Electron Microscopy

Similarly, freeze-dried amniotic membranes (both cellular and denuded) as well as 

rabbit corneal epithelial cell cultures on freeze-dried AM were processed for 

examination by TEM. All samples were fixed in 4% glutaraldehyde in PBS buffer 

for a period o f at least 2 hours prior to processing, as detailed in section 2.1.6.

2.4.11 Quantitative Analysis of Corneal Cells Cultivated on Freeze-dried AM

Rabbit corneal cultures on AM were quantitatively analysed using the same 

parameters as outlined in section 2.1.7. Data were collated and mean values 

calculated. Average values for thickness/numbers o f cell layers, numbers o f 

desmosomes/hemidesmosomes and cell surface area/intercellular space areas were 

plotted as percentage differences from those o f control rabbit cornea. Statistical 

analysis on the raw data was carried out as detailed in section 2.1.9.

88



2.5 Cultivation of Human Oral Mucosal Epithelial Cells on 

Denuded Amniotic Membrane

This section details the materials and methods used to evaluate the autologous 

transplantation o f human oral mucosal epithelial cells for ocular surface 

reconstruction.

2.5.1 Samples for Ultrastructural Examination

All samples for this study were derived from the Department o f Ophthalmology at 

the Kyoto Prefectural University o f Medicine (Japan) and sent to Lancaster 

University for processing and analysis. Human mucosal epithelial cell biopsies from 

the buccal (oral cavity-lining) and gingival (masticatory) regions o f the mouth were 

retained along with a corneal biopsy for comparison. In addition, buccal and 

gingival mucosal cells were seeded onto denuded amniotic membrane and cultured 

using a similar protocol to that designed for the corneal epithelium. For 

ultrastructural examination, biopsies and resulting cultures were conventionally 

processed for scanning and transmission electron microscopy.

2.5.2 Mucosal Cell Biopsies

2.5.2.1 Preoperative Oral Management

Given the potential for contamination o f the cell samples from indigenous oral 

bacteria, prior to surgery all patients were given comprehensive oral hygiene 

instructions and teeth were scaled for the purpose o f good plaque control. X-rays 

were taken and oral examinations carried out. Under medical supervision, patients
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were encouraged to brush teeth and use a povidone-iodine mouthwash solution 

(Isodine Gargle, Meiji Seika Kaisha, Ltd., Tokyo) after every meal. All dental caries 

were treated, removable dentures cleaned and smokers were urged to abstain. 

Patients were advised by a dental surgeon about the possibility o f complications from 

the extraction, including swelling, pain and oral dysfunction. Antibiotics were 

administered to the patient preoperatively.

2.5.2.2 Preparation fo r  Surgery

To minimize bacterial contamination, a number of disinfection procedures were 

carried out in preparation for surgery. The extraoral region was twice cleansed with 

chlorhexidine gluconate (Stericlon W solution, Ken-Ei Pharmaceutical Co., Ltd., 

Osaka) twice. Scaling was performed and teeth and gingival were brushed with 

chlorhexidine hydrochloride (Gelcoat F, Sumoka Sima Co, Ltd., Osaka). Finally the 

mouth was rinsed with chlorhexidine gluconate (Gargule Sunstar 100G, Sunstar, Inc., 

Osaka).

2.5.2.3 Oral Stem Cell Sampling

Following careful examination, a sampling site was located (either the mucogingival 

junction o f the lower molar area or buccal mucosa). Infiltration anaesthesia 

comprising 2% lidocaine hydrochloride containing epinephrine (Fujisawa 

Pharmaceutical Co. Ltd., Osaka) was injected around the sampling site and 5mm2 

incisions were made in the locality (surgical blade n o .ll;  Feather Safety Razor Co. 

Ltd., Osaka) enabling removal o f a cell sample along with submucosal connective 

tissue. The wound was closed with 3-0 surgical silk sutures (Nescosuture, Azwell 

Inc., Osaka).
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2.5.2.4 Postoperative Oral Management

Antibiotics were administered to prevent postoperative infection and analgesics were 

prescribed if  needed. Surgical site was regularly evaluated for signs o f infection and 

irrigated with povidone-iodine daily. All sutures were removed after one week.

2.5.3 Sample Preparation for Light Microscopy

Human gingival, buccal and corneal biopsies were routinely prepared for 

examination by light microscopy. All samples were fixed in 4% glutaraldehyde in 

PBS buffer for a minimum o f two hours prior to processing. Tissues were processed 

as for TEM and embedded in araldite resin (as in section 2.1.6). Semi thin sections 

(1-1.5pm thick) were cut on a Reichert Ultracut E microtome, collected on glass 

slides and conventionally stained using toluidene blue, prior to coverslipping and 

examination on a Reichart light microscope. Images were captured digitally.

2.5.4 Preparation of Amniotic Membrane

For oral epithelial cell cultures, amniotic membrane was prepared and denuded as 

detailed in section 2.1.2. Briefly, human amniotic membranes were obtained at the 

time o f elective Caesarean section. Under sterile conditions, the membranes were 

cryopreserved at -80°C. Membranes were deprived o f their amniotic epithelial cells 

by incubation with EDTA at 37°C for 2 hours to loosen cell adhesion, followed by 

gentle scraping with a cell scraper.

2.5.5 Primary Cultures of Human Oral Epithelial Cells on AM

Human oral epithelial cultures were produced in the Department o f Ophthalmology, 

Kyoto Prefectural University o f Medicine (Kyoto, Japan) as previously reported for
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rabbit oral mucosal stem cells (Nakamura et al., 2003a) using a similar yet slightly 

modified method to that for limbal stem cells (section 2.1.4). Oral mucosal biopsy 

specimens (from section 2.5.2) each measuring approximately 2-3mm2, were taken 

from each patient under local anaesthesia 2-3 weeks prior to transplantation. 

Submucosal connective tissues were removed with scissors to the extent possible; the 

resulting samples were cut into small explants that were immersed three times for 10 

minutes in PBS solution containing antibiotics (50 lU/ml penicillin-streptomycin and 

5pg/ml amphotericin B). The explants were then incubated at 37°C for 1 hour with

1.2 IU dispase then treated with 0.25% Trypsin-EDTA solution for 10 minutes at 

room temperature to separate the cells. Enzyme activity was stopped by washing 

with DMEM and Ham’s F I2 medium (1:1) containing 10% foetal bovine serum, 

insulin (5pg/ml), cholera toxin (0.1nmol/l), human recombinant epidermal growth 

factor (lOng/ml), and penicillin-streptomycin (50 IU/ml). The oral epithelial cells 

(1x10s cells/ml) were then seeded onto denuded AM spread on the bottom o f culture 

inserts and co-cultured with MMC-inactivated 3T3 fibroblasts. The culture was 

submersed in medium for 2 weeks and then exposed to air by lowering the level o f 

the medium over the course o f one week. Cultures were incubated at 37°C in a 

5%C02-enriched incubator and the medium changed every day.

2.5.6 Sample Preparation for Scanning Electron Microscopy 

Mucosal cell biopsies and cultures on amniotic membrane were routinely prepared 

for examination by SEM. All samples were fixed in 4% glutaraldehyde in PBS 

buffer for a period o f at least 2 hours prior to processing. Samples underwent the 

protocol outlined in section 2.1.5.
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2.5.7 Sample Processing for Transmission Electron Microscopy

Similarly, mucosal epithelial biopsies and cultures were processed for examination 

by TEM. All samples were fixed in 4% glutaraldehyde in PBS buffer for a minimum 

o f two hours prior to routine processing, as detailed in section 2.1.6.

2.5.8 Quantitative Analysis of Mucosal Cell Cultures

Oral mucosal cultures on AM were analysed quantitatively. Data were collated as 

outlined in section 2.1.7 and mean values calculated and plotted as percentage 

differences from normal human cornea control. Statistical analysis o f the raw data 

was also carried out exactly as outlined previously in section 2.1.9.

! ' . hi ■■ • " '
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2.6 Clinical Outcomes of Amniotic Membrane/Oral Mucosal Stem

Cell Transplants

This section details the materials and methods used to evaluate two human oral 

mucosal epithelial grafts used in ocular surface reconstruction, both o f which were 

removed after 5-6 months to allow for conventional penetrating keratoplasty with 

donor corneal tissue.

2.6.1 Samples for Ultrastructural Examination

Oral mucosal epithelial cells were cultivated on denuded amniotic membrane exactly 

as outlined in section 2.5.5. The resultant culture sheets were used to reconstruct 

fifteen eyes o f twelve patients with acute and chronic phase ocular surface disorders, 

all procedures being carried out by project collaborators at the Department o f 

Ophthalmology, Kyoto Prefectural University o f Medicine (Nakamura et al., 2004a). 

In all eyes, the ocular surface was covered with cultivated oral epithelium 48 hours 

after transplantation, remained free from epithelial defects and visual acuity was 

reportedly improved. During the long-term observation period however two eyes 

became opaque and displayed some of the symptoms of graft rejection. These grafts 

were removed and replaced with donor corneal tissue in conventional PKP then 

shipped to Lancaster University for further analysis, with full consent. The primary 

diagnoses o f the two case studies were acute phase chemical injury [case one] and 

acute phase Stevens-Johnson Syndrome, SJS [case two]. In the first case the graft 

was removed 5 months after placement. The second graft (SJS patient) was removed 

at 6 months.

94



2.6.2 Sample Preparation for Scanning Electron Microscopy

Tissues were routinely prepared for examination by SEM. Both samples were fixed 

in 4% glutaraldehyde in PBS buffer for a period o f at least 2 hours prior to 

processing. Samples then underwent the protocol outlined in section 2.1.5.

2.6.3 Sample Processing for Transmission Electron Microscopy

Similarly, both tissues were processed for examination by TEM. Samples were fixed 

in 4%  glutaraldehyde in PBS buffer for a minimum o f two hours prior to routine 

processing, as detailed in section 2.1.6.
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2.7 Rabbit Oral Mucosal/Corneal Epithelial Hybrid Cultures

on Amniotic Membrane

This section details the materials and methods used to create and analyse hybrid 

cultures o f rabbit oral mucosal stem cells and corneal epithelial cells on amniotic 

membrane.

2.7.1 Origin of Cells for Culture

All samples for this study were derived from the Department o f Ophthalmology at 

the Kyoto Prefectural University o f Medicine (Japan) and sent to Lancaster 

University for processing and analysis. Corneal and oral mucosal biopsies for hybrid 

culture were taken from the same donor albino rabbit. Biopsies were collected under 

local anaesthesia using a similar method to that outlined in section 2.5.2.

2.7.2 Preparation of Amniotic Membrane

For hybrid cell cultures, amniotic membrane was prepared and denuded as detailed in 

section 2.1.2.

2.7.3 Co-Cultures of Rabbit Oral/Corneal Epithelia on Amniotic Membrane

Hybrid oral and corneal epithelial cell cultures on amniotic membrane were created 

at the Department o f Ophthalmology, Kyoto Prefectural University o f Medicine 

(Kyoto, Japan) using a combination o f methods previously reported (Koizumi et a l, 

2002; Nakamura et a l, 2003a) and described in sections 2.1.4 and 2.5.5. Briefly, 

corneal and oral biopsies were collected from an albino rabbit under local 

anaesthesia. Resulting samples were treated with dispase and trypsin/EDTA to
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dissociate the cells. The resulting cell suspensions were mixed together in equal 

volumes (1:1 ratio, comeakoral) and then seeded onto denuded amniotic membrane 

spread on the bottom of culture inserts and co-cultured with MMC-inactivated 3T3 

fibroblasts. The culture was submersed in culture medium for 2 weeks and then 

exposed to air for one week. Cultures were incubated at 37°C in a 5%CC>2-enriched 

incubator and the medium changed every day.

2.7.4 Sample Preparation for Scanning Electron Microscopy

Hybrid rabbit cell cultures on amniotic membrane were routinely prepared for 

examination by SEM. Samples were fixed in 4% glutaraldehyde in PBS buffer for a 

period o f at least 2 hours prior to processing and then underwent the protocol 

outlined in section 2.1.5.

2.7.5 Sample Processing for Transmission Electron Microscopy

Similarly, hybrid cultures were processed for examination by TEM. All samples were 

fixed in 4%  glutaraldehyde in PBS buffer for a minimum o f 2 hours prior to routine 

processing (section 2.1.6).

2.7.6 Quantitative Analysis of Hybrid Cell Cultures

Rabbit hybrid oral mucosal/corneal cell cultures on AM were analysed quantitatively. 

Data were collated as outlined in section 2.1.7 and mean values calculated and 

plotted in terms o f percentage difference from normal rabbit cornea control. 

Statistical analysis o f the raw data was also carried out exactly as outlined previously 

in section 2.1.9.
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2.8 Extracellular Matrix Protein-Coated Gelatins as Carriers for 

Human and Rabbit Limbal Stem Cell Cultivation

The following section describes the materials and methods used in the ultrastructural 

characterization o f extracellular matrix protein coated gelatin as a potential 

alternative carrier to amniotic membrane in ocular surface reconstruction. All 

samples for this study were derived from the Department o f Ophthalmology at the 

Kyoto Prefectural University o f Medicine (Japan) and sent to Lancaster University 

for processing and analysis.

2.8.1 Preparation and Coating of Gelatins

A 10% solution o f gelatin was prepared with distilled water, incubated at 37°C for 30 

minutes and then left to air dry overnight at room temperature, cast in the moulds o f 

a six-well dish. Cross-linking o f the gelatin sheets was achieved by 72 hours o f 

exposure to 160°C heat under vacuum conditions. Ten percent solutions o f 

extracellular matrix proteins (collagen type IV, fibronectin and a mixture o f both) 

were spread on top o f the gelatin sheets (5pg/cm2) and left to infiltrate for two hours 

at room temperature. Any excess was removed by washing with PBS solution. 

Samples o f the coated gels were then sent to Lancaster University for SEM and TEM 

examination, while the remainder were used as corneal epithelial cell culture 

substrates.

2.8.2 Origin of Corneal Epithelial Cells for Culture

Human corneal tissue supplied by the US Eye Bank was used for epithelial cell 

culture in this instance. Immediately after the central corneal button had been used
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for corneal transplantation, the limbal ring was washed with sterile PBS. Following 

removal o f up to two thirds o f the scleral and corneal stroma, the limbal ring was cut 

into 4 pieces and incubated at 37°C for 1 hour with 1.2IU dispase. For the rabbit 

corneal epithelial cell culture, limbal biopsies were taken from adult albino rabbits 

and prepared exactly as described in section 2.4.8.1.

2.8.3 Culture of Corneal Epithelial Cells on Coated Gelatins

Suspension culture was carried out by project collaborators from the Department o f 

Ophthalmology, Kyoto Prefectural University o f Medicine (Japan), following 

approval from the Institutional Review Board, with cultures transported to Lancaster 

University for subsequent evaluation. Rabbit and human corneal epithelial cells were 

cultured on coated gelatin sheets using exactly the same methods. The suspension 

culture technique, previously documented (Koizumi et a l,  2002; Nakamura et al., 

2004b) and outlined in section 2.1.4, was used with minor modifications. Epithelial 

cells were seeded onto the collagen type IV and fibronectin coated gelatin hydrogels 

and co-cultured with MMC-inactivated 3T3 fibroblasts, submersed in medium for 2 

weeks then air-lifted for 2-3 days.

2.8.4 Sample Preparation for Scanning Electron Microscopy

Extracellular matrix protein coated gelatin samples and corneal epithelial cultures on 

coated gelatin were routinely prepared for examination by scanning electron 

microscopy. Samples were fixed in 4% glutaraldehyde in PBS buffer for at least two 

hours prior to processing as outlined in section 2.1.5.
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2.8.5 Sample Processing for Transmission Electron Microscopy

Similarly, coated gelatins and corneal epithelial cultures on gelatin were processed 

for examination by transmission electron microscopy. All samples were fixed in 4% 

glutaraldehyde in PBS buffer for a minimum of two hours prior to routine 

processing, as detailed in section 2.1.6.

2.8.6 Quantitative Analysis of Corneal Cells Cultivated on Gelatin

Data was collected from both human and rabbit comeal cultures on gelatin exactly as 

outlined in section 2.1.7. Mean values were calculated and plotted as percentage 

differences from control human/rabbit cornea respectively. In addition, statistical 

analysis was carried out on the raw data, as outlined in section 2.1.9.
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2.9 Human Serum in Corneal Epithelial Cell Culture

The following section describes the materials and methods used in the evaluation of a 

culture system using human serum as an alternative to foetal bovine serum for the 

culture o f human corneal epithelial cells on denuded amniotic membrane. All 

samples for this study were derived from the Department o f Ophthalmology at the 

Kyoto Prefectural University o f Medicine (Japan) and sent to Lancaster University 

for processing and analysis.

2.9.1 O rigin of Corneal Epithelial Cells for C ulture

Donor human corneal tissue was supplied by the US Eye Bank. Immediately after 

the central corneal button had been used for corneal transplantation, the limbal ring 

was washed with sterile PBS. Following removal o f excess scleral and corneal 

stroma, the limbal ring was cut into pieces and incubated at 37°C for 1 hour with 

1.2IU dispase to disaggregate the cells prior to suspension culture.

2.9.2 P repara tion  of H um an Serum  for C ulture System

Human serum was extracted from the blood o f the patients scheduled to undergo 

cultivated comeal epithelial cell grafts. Thirty millilitre blood samples were taken 

and centrifuged at 3000 r.p.m. for 10 minutes. The supernatant was centrifuged for a 

second time to isolate the serum (second supernatant fraction). The serum was 

incubated at 56°C for 30 minutes to inactivate the complement and then 

decontamination was performed by passage through a Millipore filter o f  a 0.22pm 

pore size. After testing for bacterial contamination, aliquots were cryopreserved at 

-30°C until needed.
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2.9.3 Culture of Corneal Epithelial Cells on Denuded AM

Comeal epithelial cells were cultured at the Department o f Ophthalmology, Kyoto 

Prefectural University o f Medicine (Kyoto, Japan) using the suspension method as 

previously reported (Koizumi et al., 2002) and described in section 2.4.8, the only 

modification being the replacement o f foetal bovine serum with human serum in the 

culture medium of all but the control system.

2.9.4 Sample Preparation for Scanning Electron Microscopy

Comeal epithelial cultures on denuded AM were routinely prepared for examination 

by scanning electron microscopy. Samples were fixed in 4% glutaraldehyde in PBS 

buffer for at least two hours prior to processing as outlined in section 2.1.5.

2.9.5 Sample Processing for Transmission Electron Microscopy

Similarly, comeal epithelial cultures on AM were processed for examination by 

transmission electron microscopy. All samples were fixed in 4% glutaraldehyde in 

PBS buffer for a minimum of two hours prior to routine processing, as detailed in 

section 2.1.6.

2.9.6 Quantitative Analysis of Corneal Cells Cultivated with Human Serum

Data pertaining to human comeal epithelial cell cultures on AM were collected 

exactly as outlined in section 2.1.7. Mean values were calculated and plotted in 

terms o f percentage difference from control human cornea. The statistical 

significance o f these observed differences was again determined using the raw data, 

as described in section 2.1.9.



3 RESULTS

3.1 Comparison of Cellular and Denuded Amniotic Membrane as 

Carriers for Human Limbal Stem Cell Cultivation

Human limbal cells were cultivated on both cellular and denuded amniotic 

membranes. Their relative usefulness as a carrier was morphologically analysed 

using scanning and transmission electron microscopy. A quantitative study was 

undertaken to compare various parameters including areas o f intercellular space, the 

number o f desmosomal junctions between cells and the number o f basal attachments 

to the substrate.

3.1.1 Scanning Electron Microscopy

3.1.1.1 Limbal Cells on Denuded Amniotic Membrane

Examination of the apical surface o f the limbal cells cultivated on denuded AM 

showed a continuous layer o f flat polygonal epithelial cells (plate 3.1). The cells 

averaged 50-60 microns in diameter and were similar in appearance to normal human 

corneal epithelial cells. In some areas, epithelial cells appeared to be undergoing the 

process o f desquamation, as would be expected in a healthy epithelial sheet. 

Cultivated cells were closely attached to each other with tightly opposed cell 

junctions and distinct cell boundaries (plate 3.5) and the apical surface o f the cells 

were covered in short microvilli (plate 3.7).



3.1.1.2 Limbal Cells on Cellular Amniotic Membrane

With regard to cells cultured on cellular amniotic membrane, not all o f the AM was 

covered with limbal epithelial cells. The AM epithelial cells appeared disrupted 

(plate 3.2) and had large intercellular spaces and long, distended microvilli (plate 

3.8). Where limbal cells were present on top o f the AM epithelial cells, they did not 

appear to be well attached to the cells beneath them (plate 3.3). In places the limbal 

cells appeared to be burrowing beneath the AM epithelial cells and making direct 

contact with the basement membrane (plate 3.4). Adjacent limbal cells were not 

tightly attached to each other, and there were prominent intercellular spaces (plate 

3.6).
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Plate 3.1: Scanning electron micrograph o f human limbal epithelial cells on denuded 
amniotic membrane. Limbal epithelial cells formed a confluent layer, with 
prominent cell borders. Cells appeared healthy and well-developed, similar to in vivo 
corneal epithelium. [Scale bar = 10pm]

Plate 3.2: Scanning electron micrograph o f human limbal epithelial cells on cellular 
amniotic membrane. In contrast to those grown on denuded AM, limbal epithelial 
cells did not appear to be in very good condition and had irregular cell borders. 
[Scale bar = 10pm]
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Plate 3.3: Scanning electron micrograph o f human limbal epithelial cells cultivated 
on cellular amniotic membrane. In some areas, the limbal cells [LC] appeared to 
grow over the top of the amniotic epithelial cell debris [AMC] with poor basal 
attachment. [Scale bar = 10pm]

Plate 3.4: Scanning electron micrograph o f cultivated human limbal epithelial cells 
on cellular amniotic membrane. In other places, cultivated limbal cells [LC] spread 
beneath the degraded AM epithelial cells [AMC] apparently making contact with the 
basement membrane itself. [Scale bar = 10pm]

106



Plate 3.5: Scanning electron micrograph o f human limbal epithelial cells on denuded 
amniotic membrane. Cultivated epithelial cells were tightly opposed with distinct 
ridges at cell boundaries. [Scale bar = 5pm]

Plate 3.6: Scanning electron micrograph o f cultivated human limbal epithelial cells 
on cellular amniotic membrane. Cell borders were less pronounced and not as tightly 
opposed as those in the denuded AM culture. [Scale bar = 5pm]
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Plate 3.7: Scanning electron micrograph o f human limbal epithelial cells on denuded 
amniotic membrane. The apical surface o f the cells was covered in short, regular 
microvilli. [Scale bar = 1pm]

Plate 3.8: Scanning electron micrograph o f human limbal epithelial cells on cellular 
amniotic membrane. Superficial cells were covered in long, distended microvilli. 
[Scale bar = 1pm]
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3.1.2 Transmission Electron Microscopy

3.1.2.1 Limbal Cells on Denuded Amniotic Membrane

Limbal epithelial cells cultivated on denuded amniotic membrane were well- 

stratified and differentiated into 4-5 distinct cell layers (plate 3.9). Adjacent cells 

were joined by numerous desmosomes and intercellular spaces were minimal (plate

3.11). Basal epithelial cells adhered well to the AM substrate with hemidesmosomal 

attachments and produced basement membrane material (plate 3.13).

3.1.2.2 Limbal Cells on Cellular Amniotic Membrane

In contrast, limbal epithelial cells cultivated on the cellular/intact amniotic membrane 

did not appear to be in good condition. The amniotic epithelial cells were necrotic, 

with degraded external membranes and large intercellular spaces between adjacent 

cells o f the monolayer (plate 3.10). These cells were not well adhered to the AM 

matrix and there was little evidence o f any basement membrane material (plate 3.15). 

The limbal epithelial cells were at most three layers thick and in some areas formed a 

monolayer; as such they were neither well-stratified nor differentiated. Spaces 

between the cells were large and there were very few desmosomal attachments (plate

3.12). Attachment of the basal limbal cells to the AM epithelial cells was via 

desmosomal junctions, though these were infrequent (plate 3.14). Not all o f the AM 

was covered with limbal cells, and in places there were no cells at all (plate 3.16).
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Plate 3.9: Transmission electron micrograph o f human limbal epithelium [LC] 
cultivated on denuded amniotic membrane [AM] taken at low magnification. Cells 
were well-stratified and differentiated and formed 4-5 layers. [Scale bar = 2pm]
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Plate 3.10: Transmission electron micrograph of human limbal epithelium [LC] 
cultivated on cellular amniotic membrane [AM] taken at low magnification. 
Amniotic epithelial cells [AMC] appeared to be necrotic and were not well adhered 
to the AM. Corneal cells formed a monolayer in places and were neither well- 
stratified nor differentiated. [Scale bar = 2pm]
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Plate 3.11: Transmission electron micrograph depicting cultivated human limbal 
epithelium on denuded AM at high magnification. Numerous desmosomes joined 
adjacent cells in all cell layers. [Scale bar = 200nm]

Plate 3.12: Transmission electron micrograph o f human corneal epithelium on 
cellular AM at high magnification, showing infrequent desmosomal junctions that 
joined adjacent cells. [Scale bar = 200nm]
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Plate 3.13: Transmission electron micrograph of the human limbal epithelium [LC] 
cultivated on denuded amniotic membrane [AM]. Basal corneal cells were very well 
adhered to the substrate via numerous hemidesmosomal junctions (arrowheads) and 
appeared to be secreting basement membrane material (*). [Scale bar = 500nm]
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Plate 3.14: Transmission electron micrograph showing human limbal epithelium on 
cellular AM at high magnification. Basal limbal cells [LC] were attached the 
underlying degraded amniotic epithelial cell layer [AMC] by infrequent desmosomal 
junctions. [Scale bar = 500nm]
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Plate 3.15: Transmission electron micrograph of the basement membrane region o f 
the cellular AM. Necrotic amniotic epithelial cells [AMC] were not well attached to 
the basal lamina [BL]. There were large spaces, as indicated by the asterisks and 
there was little evidence o f hemidesmosomal junctions. [Scale bar=  1pm]

Plate 3.16: Transmission electron micrograph showing cellular amniotic membrane 
[AM] taken at high magnification. There were some areas of membrane completely 
devoid o f a cell layer. [Scale bar = 1 pm]
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3.1.3 Quantitative Study

A number o f parameters were quantitatively compared between the limbal cells on 

denuded AM and those on intact AM, the mean data (±S.D.) are shown in table 3.1 

below. Fourteen data points were collected for each parameter, except for the cell 

surface area which was calculated using scanning electron microscopy and therefore 

facilitated more measurements («=50). Normal human donor corneal epithelium 

from Northwest Lions Eye Bank was included in this study as a control.

Limbal cells cultivated 
on denuded AM

Limbal cells cultivated 
on cellular AM

Human corneal 
epithelium

Thickness o f cell 
layers (pm)

18.65 ± 2.33 11.10 ±  2.53 29.02 ± 2.29

Number o f cell 
layers 4.21 ± 0 .89 1.79 ± 0 .8 0 6.64 ±  0.74

Intercellular space 
area (pm2)

0.18 ± 0.11 1.15 ± 1.11 0.11 ± 0 .0 8

Number o f  
desmosomes

2.29 ± 1.33 0.43 ± 0.65 3.21 ± 1.37

Number o f  basal 
junctions

2.00 ± 1.11 0.43 ±0.51 4.71 ± 1.44

Cell surface area 
(pm2)

525.99 ± 264.43 488.05 ± 317 .79 1093.89 ±335 .43

Table 3.1: Comparison o f cultivated human limbal cells on denuded and cellular 
AM with normal human cornea. Mean data (± S.D.) are shown. Fourteen data points 
were taken at random, except for the cell surface areas in which case n=50. The 
averages for intercellular area and number o f desmosomes are given for random 3 pm 
long interfaces between adjacent cells.

Cultivated limbal cells on denuded AM were fairly comparable to the corneal control 

epithelium. Though there were fewer desmosomal junctions and larger spaces 

between cultivated cells, these differences were not statistically significant. The 

epithelium cultivated on denuded AM had statistically fewer cell layers (hence a 

thinner epithelium, PO.OOl), smaller cells (P<0.001) and fewer basal junctions
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(PO.OOl) than the control cornea. It is important to note that for the cellular AM 

cultures; only the limbal cells were counted. By contrast, highly significant 

differences (PO.OOl) were observed for every parameter when comparing cultivated 

limbal cells on cellular amniotic membrane with the control. When compared to 

normal cornea, there was an almost 10 fold increase (935%) in intercellular spaces in 

the cellular AM culture system, as well as fewer mechanical attachments both 

between cells (87% reduction) and with the underlying amniotic epithelium (91% 

fewer junctions than in the control epithelium). The limbal cells on cellular AM also 

had significantly fewer cell layers (73%) than control corneal epithelium. As such, 

cells cultivated on denuded AM were generally found to more closely resemble the 

normal human cornea, with significantly smaller intercellular spaces and more 

numerous mechanical attachments to each other and to the underlying basement 

membrane.

1 2 0 0  -I

T hickness of cell layers Number of cell layers Intercellular sp ace  area #  D esm osom es #  Basal junctions Cell surface area

Chart 3.1: Comparison of cultivated human limbal epithelial cells on denuded (blue) 
and cellular (red) amniotic membrane, expressed as percentage difference from 
normal human cornea control. Raw data were used to calculate statistical 
significance (P values) o f observed differences between denuded and cellular culture 
systems and these are stated above the bars.
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For ease o f interpretation, mean data were plotted as percentage differences from the 

control (normal human cornea) and the two culture systems compared with each 

other (chart 3.1). There were highly significant differences (PO.OOl) for all 

parameters except cell surface area. The most obvious difference was in terms of 

intercellular space areas which were vastly increased by the cellular AM culture 

system. There was also a highly significant difference (PO.OOl) in the number o f 

desmosomes between neighbouring epithelial cells between cultures. In terms of 

basal attachments of the cultivated epithelial cells to the substrates, there was again a 

highly significant (PO.OOl) difference between the number o f hemidesmosomes at 

the basement membrane in the denuded culture and that of desmosomal junctions at 

the basal limbal cell-AM epithelial cell interface in the culture on intact AM.

3.1.4 Summary Interpretations

Examination of the cultured epithelial cells by SEM and TEM revealed that denuded 

amniotic membrane seemed to be the more useful substrate for limbal stem cell 

culture. Limbal cells were better attached to the denuded amniotic membrane and 

formed more numerous junctional complexes, exhibited fewer intercellular spaces 

and generally appeared to be more mechanically robust. These observations were 

corroborated by the quantitative study which showed the culture on denuded AM to 

more closely represent the normal cornea control, particularly in terms o f numbers of 

desmosomes, hemidesmosomes and areas o f intercellular space. It is important also 

to note that for the purposes of the quantitative study, in the case of the culture on 

cellular AM, only the small area o f the sheet with limbal cells could be analysed. 

Scanning electron microscopy revealed vast areas o f the sheet to be devoid o f limbal 

cells, probably due to their poor attachment to the necrotic amniotic epithelium.
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4 RESULTS

4.1 Cultivation of Human Corneal Endothelial Cells on Denuded

Amniotic Membrane

The transplantation of cultivated human corneal endothelial cells (HCEC) could 

potentially be very useful for the treatment o f diseases caused by corneal endothelial 

disorders. In this investigation, the feasibility o f using denuded AM as a carrier for 

this application was examined using scanning and transmission electron microscopy. 

Cultivated HCEC were compared to in vivo human corneal endothelium.

4.1.1 Scanning Electron Microscopy

4.1.1.1 Control Human Corneal Endothelial Cells

Scanning electron microscopy o f control HCEC revealed a continuous layer o f flat 

squamous polygonal cells, fairly uniform in size with an average cell surface area of 

345.2pm2 (S.D.±100.1) (plate 4.1). Adjacent cells were tightly opposed with 

pronounced ridges at cell boarders (plate 4.3). Corneal endothelial cells had flattened 

surfaces (plate 4.5), lacking the microvilli seen in corneal epithelial cells.

4.1.1.2 Human Corneal Endothelial Cells Cultivated on Denuded A M

Human corneal endothelial cells cultured on denuded AM had an average cell surface 

area o f 309.9pm2 (S.D.±84.7) (plate 4.2). The interdigitations at the cell boundaries 

were less pronounced than those o f in vivo corneal endothelium however the cells 

appeared to be healthy-looking, well-developed and were tightly opposed (plate 4.4). 

Cultivated cells had flattened apical surfaces (plate 4.6) as did the control cells.
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Plate 4.1: Scanning electron micrograph of control human corneal endothelial cells 
taken at low magnification. Cells were polygonal, fairly uniform in size and had 
distinct ridges at cell borders. [Scale bar = 10pm]
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Plate 4.2: Scanning electron micrograph o f cultivated human corneal endothelial 
cells on denuded amniotic membrane. Cells formed a confluent cell layer and 
appeared healthy and well-formed, despite a lack of distinct cell borders. [Scale bar 
= 10pm]
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Plate 4.3: Scanning electron micrograph of control human corneal endothelial cells 
taken at high magnification. There were very few intercellular spaces between 
neighbouring cells and cell borders were well-pronounced. [Scale bar = 5pm]

Plate 4.4: Scanning electron micrograph o f cultivated human comeal endothelial 
cells on denuded amniotic membrane. Cultivated cells formed a confluent cell layer, 
with few intercellular spaces, yet lacked the distinct cell borders seen in the control. 
[Scale bar = 5pm]
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Plate 4.5: Scanning electron micrograph of control human corneal endothelial cells, 
taken at very high magnification. The endothelial cells had a very flat surface, 
lacking microvilli seen on corneal epithelial cells. [Scale bar = 1pm]

Plate 4.6: Scanning electron micrograph o f cultivated human corneal endothelial 
cells on denuded amniotic membrane. High magnification confirmed that the 
cultivated cells had smooth upper surfaces, with little or no microvilli. [Scale bar = 
lpm]



4.1.2 Transmission Electron Microscopy

4.1.2.1 Control Human Corneal Endothelial Cells

Transmission electron microscopy of control cells showed a monolayer o f densely 

stained human corneal endothelium on a thick Descemet’s membrane (plate 4.7). 

The cells appeared to be in good condition and were well attached both to each other 

(plate 4.9) and to the underlying extracellular matrix (plate 4.11). Any intercellular 

spaces between cells were minimal and there appeared to be interdigitations and 

folds in the cell membranes at the cell borders. Cells had prominent nuclei. The 

apical surface o f the cells appeared largely smooth and there did not seem to be many 

microvilli-like protrusions (plate 4.9).

4.1.2.2 Human Comeal Endothelial Cells Cultivated on Denuded A M  

Examination o f the cultivated endothelial cells on AM by transmission electron 

microscopy revealed a fairly continuous monolayer o f flat squamous polygonal 

endothelial cells (plate 4.8). Cells appeared fairly uniform in size. The condition o f 

the culture sheets varied. In places, the cultured cells looked healthy, well-developed, 

and were closely attached to each other with tightly opposed cell junctions (plate 

4.10). Adjoining cells were found to overlap each other slightly to maintain maximal 

contact, as would be expected and is seen in the control endothelium (plate 4.10). 

Other areas o f the culture sheet appeared less healthy, with some prominent 

intercellular spaces. The endothelial cells adhered well to the denuded amniotic 

membrane substrate and also produced basement membrane material (plate 4.12).
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Plate 4.7: Transmission electron micrograph of control human corneal endothelium. 
A monolayer o f endothelial cells [HCEC] rested on a thick Descemet’s membrane 
[DM]. Adjacent cells were tightly opposed and overlapped slightly. [Scale bar = 
2 jam]

Plate 4.8: Transmission electron micrograph o f cultivated human corneal endothelial 
cells [cHCEC] on denuded amniotic membrane [AM]. Cells appeared to be in good 
condition and formed a confluent monolayer. [Scale bar = 2|am]
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Plate 4.9: Transmission electron micrograph o f control human corneal endothelium 
[HCEC] on Descemef s membrane [DM]. Adjoining cells overlapped each other 
slightly to maintain good contact and cell membranes were interdigitated at the cell 
borders. [Scale bar = 500nm]

Plate 4.10: Transmission electron micrograph o f cultivated human comeal 
endothelial cells [cHCEC] on denuded amniotic membrane [AM]. As seen with the 
control cells, there was considerable overlapping o f adjacent cells and little in the 
way of intercellular spacing. [Scale bar = 50Gnm]
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Plate 4.11: Transmission electron micrograph showing the basal region o f the control 
human corneal endothelium [HCEC]. The cells were well attached to the underlying 
Descemet’s membrane [DM]. [Scale bar = 200nm]

Plate 4.12: Transmission electron micrograph of the basal region o f the cultivated 
human corneal endothelial cells [cHCEC] on denuded amniotic membrane [AM]. 
The AM appeared to be in good condition, with an intact lamina densa [LD]. The 
endothelial cells were well attached to the substrate and appeared to produce 
basement membrane material. [Scale bar = 200nm]
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4.1.3 Summary of Observations

Scanning electron microscopy of HCEC cultivated on amniotic membrane revealed a 

continuous layer o f flat squamous polygonal endothelial cells, uniform in size yet 

lacking the interdigitations at cell boundaries present in normal endothelium. 

Transmission electron microscopic images showed a monolayer o f flat endothelial 

cells which appeared healthy and well-formed with tightly opposed cell junctions.

Although epithelial cells are frequently cultivated on amniotic membrane, this is a 

novel substrate for the culture o f corneal endothelial cells. This study produced some 

promising results and demonstrates that tightly opposed human corneal endothelial 

cells can be cultivated on denuded AM with some success in vitro.
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4.2 Morphological Analysis of Polyphenol-Treated Rat Corneal 

Endothelium in Long Term Storage

The storage of corneal tissue in the period following removal and prior to 

transplantation is one o f the most important factors in determining a successful 

outcome to corneal transplantation. In this study, polyphenol was used with Optisol- 

GS to try to improve corneal endothelial cell viability and increase storage times. 

Polyphenol-treated rat corneal endothelial cells were analysed by SEM after 1, 2 and 

4 weeks in storage and compared to those stored in Optisol-GS only (control).

4.2.1 Scanning Electron Microscopy

4.2.1.1 Untreated Rat Corneal Endothelial Cells

After one week in storage, the control (untreated) corneal endothelial cells were in 

fairly good condition, despite some expulsion of cell nuclei onto the surface o f the 

cells (plate 4.13). By two weeks, the external cell membranes were degraded and the 

cell nuclei had become exposed (plate 4.15). At four weeks, the control endothelial 

cells had detached completely from Descemet’s membrane in places (plate 4.17).

4.2.1.2 Polyphenol- Treated Rat Corneal Endothelial Cells

Compared with control cells, the polyphenol-treated endothelial cells appeared to be 

generally better preserved. There was little difference in appearance between cells at 

1, 2 and 4 weeks in storage (plates 4.14, 4.16 and 4.18 respectively). While some 

shrinkage had occurred, cell membranes remained largely intact and adjacent cells 

were closely attached and had prominent cell borders. There was some surface debris 

on the treated cells which was almost certainly of polyphenol origin and not cellular.
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Plate 4.13: Scanning electron micrograph depicting control (untreated) rat corneal 
endothelium after 1 week in storage. Cells were generally in good condition, except 
for some regions where membranes were disrupted and there were exposed nuclei on 
the cell surface. [Scale bar = 10pm]

Plate 4.14: Scanning electron micrograph showing polyphenol-treated rat corneal 
endothelium after 1 week in storage. The endothelial membranes were still intact 
and whilst some shrinkage had occurred, there were fewer ruptured cells than in the 
control sample. The debris on the surface appeared to be o f polyphenol origin. [Scale 
bar = 10 pm]
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Plate 4.15: Scanning electron micrograph depicting control (untreated) rat corneal 
endothelium after 2 weeks in storage. Endothelial cell membranes were markedly 
disrupted and the nuclei were prominently exposed. [Scale bar = 10pm]

Plate 4.16: Scanning electron micrograph illustrating polyphenol-treated rat corneal 
endothelium after 2 weeks in storage. Most o f the endothelial cell membranes were 
still intact although some shrinkage was evident. Cell nuclei and borders were quite 
pronounced. [Scale bar = 10pm]
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Plate 4.17: Scanning electron micrograph showing control (untreated) rat corneal 
endothelium after 4 weeks in storage. There were some large areas (asterisk) where 
the endothelial cells had detached from Descemet’s membrane, as depicted above. 
[Scale bar = 10pm]

Plate 4.18: Scanning electron micrograph depicting polyphenol-treated rat corneal 
endothelium after 4 weeks in storage. These treated cells were in better condition 
than the control cells and even at 4 weeks, cell membranes remained intact. [Scale 
bar = 10 pm]
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4.2.2 Summary of Observations

Treatment o f rat corneal endothelial cells with polyphenol for 24 hours prior to 

storage in Optisol-GS appears to help with preservation. Polyphenol treated cells 

had more intact membranes and more defined cell borders than the control cells. 

They also appeared to be better attached to Descemet’s membrane, since it was only 

in the control samples that cells detached from the membrane.

The collapse o f the cell membranes in the polyphenol-treated cells may be an artefact 

o f the SEM preparation. However, even if  it is genuine, it is clear that the condition 

o f the cell membranes is much better in the polyphenol-treated cells than the 

controls.
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5 RESULTS

5.1 Evaluation of Sterilized, Freeze-Dried Amniotic Membrane

A variety o f unique characteristics make amniotic membrane a useful tool in the ex 

vivo expansion o f limbal stem cells and in ocular surface reconstruction. Currently, 

either fresh or preferably frozen/cryopreserved AM is used for such applications 

(Kruse et al., 2000). In view of the attention focused on various pathogenic 

organisms in recent years proper sterilization o f the AM prior to use is vital. In this 

chapter, the feasibility o f using sterilized, freeze-dried amniotic membrane (FD-AM) 

as an alternative substrate for corneal epithelial stem cell cultivation is examined.

5.1.1 Scanning Electron Microscopy

Freeze-dried amniotic membranes, both cellular and denuded, were examined by 

scanning electron microscopy alongside their frozen counterparts for comparison.

5.1.1.1 Cellular Amniotic Membranes

Examination o f freeze-dried cellular amniotic membranes by scanning electron 

microscopy revealed a continuous layer o f flat squamous polygonal epithelial cells, 

morphologically resembling corneal endothelial cells (plate 5.1). The cells appeared 

to be intact and fairly well-preserved. Adjacent cells were well attached to each other 

with tightly opposed cell boundaries and distinct ridges at cell borders. Amniotic 

epithelial were very smooth in appearance and had no obvious microvilli on their 

apical surface.
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Examination o f the surface of frozen cellular membranes revealed similar findings. 

The membrane was completely covered with a continuous layer o f polygonal 

epithelial cells (plate 5.2). Amniotic epithelial cells appeared to be fairly intact with 

prominent cell boundaries and an apical covering o f short microvilli.

5.1.1.2 Denuded Amniotic Membranes

Examination o f freeze-dried denuded amniotic membranes by scanning electron 

microscopy revealed a fairly flat and smooth layer o f extracellular matrix (plate 5.3). 

There were no intact cells remaining on the membrane, however there were areas 

with epithelial cell debris, appearing as rough projections on the surface. At high 

magnification, it was clear that the basal lamina and in particular the delicate lamina 

densa had remained intact.

The denuded frozen samples were similar in appearance (plate 5.4). Examination of 

the apical surface o f these membranes confirmed the complete removal o f the 

amniotic epithelial cell layer. There was an exposed smooth and featureless 

extracellular matrix and again, an intact basal lamina.
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Plate 5.1: Scanning electron micrograph depicting freeze-dried cellular amniotic 
membrane. Polygonal amniotic epithelial cells formed a confluent layer, with 
prominent cell borders. [Scale bar = 10pm]

Plate 5.2: Scanning electron micrograph o f frozen cellular amniotic membrane. 
Amniotic epithelial cells formed a confluent layer, with prominent cell borders and 
numerous microvilli on their apical surface. [Scale bar = 10pm]
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Plate 5.3: Scanning electron micrograph o f freeze-dried denuded amniotic 
membrane. All intact epithelial cells had been removed to expose the extracellular 
matrix basal lamina. There was some cell debris on the surface. [Scale bar = 1 Opm]

Plate 5.4: Scanning electron micrograph o f frozen denuded amniotic membrane. The 
amniotic epithelial cell layer was successfully removed revealing a smooth intact 
basement membrane. [Scale bar = 10pm]
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5.1.2 Transmission Electron Microscopy

Freeze-dried amniotic membranes, both cellular and denuded, were examined by 

transmission electron microscopy along with frozen membranes for comparison.

5.1.2.1 Cellular Amniotic Membranes

Examination o f freeze-dried cellular amniotic membranes by transmission electron 

microscopy revealed a continuous monolayer o f cuboidal epithelial cells attached to 

a stromal matrix via a basement membrane (plate 5.5). The cells themselves were 

compact and very densely stained. Cell membranes seemed to be intact however the 

apical cell surface was flattened. This is likely to be due to the vacuum packing o f 

the membranes. Amniotic epithelial cells appeared to be well attached to the 

membrane (plate 5.6). Due to the compaction of the AM, it was difficult to see any 

detail in the stroma and basement membrane area.

Examination o f the frozen cellular membrane showed a single layer o f amniotic 

epithelial cells with centrally located nuclei and prominent surface microvilli (plate 

5.7). The cells appeared to be in a necrotic state with multiple cytoplasmic vacuoles. 

The low temperature conditions in which the tissue is kept prior to processing are 

likely to result in ice crystal damage that would explain the poor state of these cells. 

Amniotic epithelial cells were adhered to a basal lamina in which collagen type IV 

fibrils formed a dense meshwork (plate 5.8). The epithelial cells were anchored to 

the lamina densa region o f the basal lamina by way of hemidesmosomal junctions 

(plate 5.8). A matrix of loosely arranged type I collagen fibrils made up the stroma 

o f the amniotic membrane.
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Plate 5.5: Transmission electron micrograph o f cellular freeze-dried amniotic 
membrane [FD-AM] taken at low magnification. A compacted, densely-stained 
monolayer o f amniotic epithelial cells [AMC] was supported by a stromal matrix of 
fibrillar collagen. [Scale bar = 2pm]

Plate 5.6: Transmission electron micrograph o f cellular freeze-dried amniotic 
membrane [FD-AM] taken at high magnification. Epithelial cells [AMC] were well 
attached to the underlying basal lamina. [Scale bar = 200nm]

136



Plate 5.7: Transmission electron micrograph o f cellular frozen amniotic membrane 
[AM] at low magnification. A monolayer of cuboidal epithelial cells [AMC] rested 
on a stromal matrix o f fibrillar collagen. [Scale bar = 2pm]

Plate 5.8: Transmission electron micrograph o f cellular frozen amniotic membrane 
[AM] at high magnification. Interdigitations o f the amniotic epithelial cells [AMC] 
protruded into the basal lamina [BL] where they attached to the membrane via 
hemidesmosomes (arrowheads). The lamina densa [LD] was visible as an electron 
dense layer overlying the basal lamina. Type I collagen fibrils made up the stroma. 
[Scale bar = 200nm]
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5.1.2.2 Denuded Amniotic Membranes

In contrast to cellular amniotic membrane, examination o f the freeze-dried denuded 

samples revealed only small remnants of cell debris on the basal lamina with no 

evidence o f any intact residual epithelial cells (plate 5.9). As with the cellular tissue, 

these freeze-dried amniotic membranes appeared to have been compacted, possibly 

by the vacuum packing. It was clear however that the basal lamina had not been 

damaged by the denuding process (plate 5.10). The collagen stroma also appeared to 

have been well-preserved and had collagen type I fibres in a typically random 

arrangement.

The denuded frozen samples were comparable with the freeze-dried tissue. The 

frozen membranes were far less compact than the freeze-dried samples and as such it 

was easier to resolve the finer detail (plate 5.11). There was little or no structural 

damage to the fine meshwork o f delicate type IV collagen fibrils that made up the 

basal lamina. The collagen stroma was characterized by a loosely arranged matrix of 

fibres as in the cellular membranes. Removal o f the epithelial cells appeared to have 

had no detrimental affect on the amniotic stroma, the basal lamina, or the electron 

dense lamina densa (plate 5.12).
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Plate 5.9: Transmission electron micrograph o f denuded freeze-dried amniotic 
membrane. Residual amniotic epithelial cells were successfully removed, leaving 
only a little cell debris. The amniotic stroma was composed of loosely arranged 
collagen fibrils. [Scale bar = 2pm]

Plate 5.10: Transmission electron micrograph o f denuded freeze-dried amniotic 
membrane [FD-AM] at high magnification. There was a small amount of cell debris 
remaining after the denuding process. The thin basal lamina [BL] and lamina densa 
[LD] appeared to be undamaged. [Scale bar = 200nm]
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Plate 5.11: Transmission electron micrograph of denuded frozen amniotic membrane 
taken at low magnification. There were no residual amniotic epithelial cells 
following the denuding process and the basal lamina remained intact. [Scale bar = 
2 pm]

Plate 5.12: Transmission electron micrograph of denuded frozen amniotic membrane 
[AM] taken at high magnification. The electron dense lamina densa [LD] remained 
intact at the apex o f the basal lamina [BL]. Below this is the amniotic stromal matrix 
of collagen fibrils. [Scale bar = 200nm]
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5.1.3 Transmission Electron Microscopy: Immunogold Labelling

Both cellular and denuded freeze-dried amniotic membranes were labelled for 

several extracellular matrix molecules. Frozen membranes were also examined for 

comparison. The distributions o f matrix molecules are described in detail in the 

sections below and summarized in table 5.1. It is important to note that in the 

processing o f these samples, ultrastructural preservation was compromised in order 

to maintain antigenicity.

5.1.3.1 Fibronectin (IST-4)

In cellular membranes, there were moderate levels o f labelling with anti-fibronectin 

(plates 5.13A-D). This was localized in the basal lamina region just below amniotic 

epithelial cells and concentrated in the lamina densa. Equivalent levels o f labelling 

were observed in the lamina densa of denuded samples. There was a little labelling 

in the amniotic membrane stroma. Levels of labelling in freeze-dried membranes 

were comparable to those seen in frozen membranes.

5.1.3.2 Laminin

The antibody to laminin reacted strongly with the basal lamina area when compared 

to the control antibody. Laminin appeared to be concentrated in the lamina densa 

region, with high levels being observed directly beneath amniotic epithelial cells in 

the cellular samples (plates 5.14A and B). Denuding appeared to have little or no 

effect on the presence o f laminin in the lamina densa, as staining was found in 

equally high levels in denuded samples (plates 5.14C and D). There was no labelling 

in the stroma of any o f the samples. Again, the levels and locations o f laminin labels 

were comparable in the freeze-dried and frozen membranes.
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5.1.3.3 Vitronectin (VIT-2)

Labelling patterns for vitronectin were very similar to those seen for fibronectin. 

Vitronectin was concentrated in the lamina densa, with low levels o f staining in the 

basal lamina and stroma (plates 5.15A-D). There were no discemable differences in 

the levels o f labelling between freeze-dried and frozen membranes, nor cellular and 

denuded tissues.

5.1.3.4 Collagen type IV  (NLI/53)

Type IV collagen was observed in high levels continuously along the basal lamina 

region, slightly more concentrated in the lamina densa (plates 5.16A-D). Small 

amounts o f staining were found in the stroma of all samples studied. It appeared that 

neither the freeze-drying nor denuding process had any detrimental effect on 

collagen IV distribution.

5.1.3.5 Collagen type I  (COL-1)

Collagen type I was seen in moderate levels in the stroma of the amniotic membrane 

with little or no labelling in the basal lamina area. Labelling seemed to be associated 

with the collagen fibrils o f the stroma, as would be expected. Distributions were 

very similar in freeze-dried and frozen, cellular and denuded membranes (plates 

5.17A-D).

5.1.3.6 Heparan Sulphate (F58-10E4)

In all amniotic membranes studied, the monoclonal antibody for heparan sulphate 

reacted strongly with the lamina densa and with the subjacent basal lamina to a lesser 

extent (plates 5.18A-D). There was little or no labelling in the stroma. Neither the
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freeze-drying nor the denuding process appeared to have had any affect on the 

distribution o f HS.

5.1.3.7 Chondroitin Sulphate (CS-56)

Low levels o f chondroitin sulphate labelling were found in the stroma o f cellular and 

denuded amniotic membranes (plates 5.19A-D). Labels were associated with 

collagen fibrils in the stroma with negligible levels in the basal lamina region. 

Again, the levels of staining seen in the freeze-dried membranes were comparable to 

those in the frozen tissues.

5.1.3.8 Keratan Sulphate (5-D-4)

Keratan sulphate labelling was observed in low-moderate levels in the stroma o f all 

amniotic membrane samples (plates 5.20A-D). Labelling was distributed in a similar 

manner to that o f collagen type I and chondroitin sulphate, in close proximity to the 

stromal collagen fibrils with little or no labelling in the basal lamina.

5.1.3.9 Control (non-specific IgG)

The control non-specific antibody showed negligible levels o f reactivity in all 

amniotic membrane samples under study (plates 5.21A-D).
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Plate 5.13: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-fibronectin. Figures A and B represent the interface 
between amniotic epithelial cells and the basal lamina of cellular amniotic 
membranes, while C and D show the basal lamina region o f denuded membranes. 
The 5nm gold particles appear as black dots. In all samples there were moderate 
levels o f labelling in the lamina densa and low levels in the underlying basal lamina 
and stroma. [Scale bar = lOOnm]
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Plate 5.14: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-laminin. Figures A and B represent the interface between 
amniotic epithelial cells and the basal lamina of cellular amniotic membranes, while 
C and D show the basal lamina region of denuded membranes. The 5nm gold 
particles appear as black dots. In all samples there were high levels of labelling in the 
lamina densa and low levels in the underlying basal lamina. [Scale bar = lOOnm]
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Plate 5.15: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-vitronectin. Figures A and B represent the interface 
between amniotic epithelial cells and the basal lamina o f cellular amniotic 
membranes, while C and D show the basal lamina region o f denuded membranes. 
The 5nm gold particles appear as black dots. In all samples there were moderate 
levels o f labelling in the lamina densa and low levels in the underlying basal lamina 
and stroma. [Scale bar = lOOnm]
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Plate 5.16: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-collagen type IV. Figures A and B represent the interface 
between amniotic epithelial cells and the basal lamina of cellular amniotic 
membranes, while C and D show the basal lamina region o f denuded membranes. 
The 5nm gold particles appear as black dots. In all samples there were high levels o f 
labelling in the lamina densa, moderate levels in the underlying basal lamina and low 
levels in the stroma. [Scale bar = lOOnm]
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Plate 5.17: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-collagen type I. The 5nm gold particles appear as black 
dots. Moderate levels o f labelling were seen in the stroma of all samples, in close 
proximity to the collagen fibrils. There was little or no labelling in the basal lamina 
region. [Scale bar = lOOnm]
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Plate 5.18: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-heparan sulphate. Figures A and B represent the 
interface between amniotic epithelial cells and the basal lamina o f cellular amniotic 
membranes, while C and D show the basal lamina region o f denuded membranes. 
The 5nm gold particles appear as black dots. In all samples there were high levels o f 
labelling in the lamina densa and low levels in the underlying basal lamina. [Scale 
bar = 1 OOnm]
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Plate 5.19: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-chondroitin sulphate. The 5nm gold particles appear as 
black dots. In all samples, there were only low levels of labelling in the stroma, in 
close proximity to the collagen fibrils. There was little or no labelling in the basal 
lamina region. [Scale bar = lOOnm]
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Plate 5.20: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with anti-keratan sulphate. The 5nm gold particles appear as 
black dots. In all samples, there were low-moderate levels o f labelling in the stroma, 
in close proximity to the collagen fibrils. There was little or no labelling in the basal 
lamina region. [Scale bar = lOOnm]
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Plate 5.21: Transmission electron micrographs illustrate cellular frozen (A) and 
freeze-dried (B) and denuded frozen (C) and freeze-dried (D) amniotic membranes, 
immunolabelled with a control non-specific antibody. Figures A and B represent 
the interface between amniotic epithelial cells and the basal lamina o f cellular 
amniotic membranes, while C and D show the basal lamina region o f denuded 
membranes. Negligible levels of labelling were seen in each sample. [Scale bar = 
lOOnm]
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Frozen cellular AM Freeze-dried cellular AM

Lamina Basal Lamina Basal _
densa lamina Stroma densa lamina Stroma

Fibronectin ++ + + ++ + +
Laminin +++ + _ +++ + _

Vitronectin ++ + + ++ + +
Collagen IV ++ + ..+++ ++ +
Collagen I - - ++ - - ++
HS +++ + - +++ + -

CS - - + - _ +
KS - - + - - +

Frozen denuded AM Freeze-dried denuded AM

Lamina
densa

Basal
lamina Stroma Lamina

densa
Basal
lamina Stroma

Fibronectin ++ + + ++ + +
Laminin +++ + - +++ + -

Vitronectin ++ + + ++ + +
Collagen IV +++ ++ + +++ ++ +
Collagen I - - ++ - - ++
HS +++ + - +++ + -

CS - - + - - +
KS - - + - - +

Table 5.1: Relative distribution o f extracellular matrix molecules in freeze-dried and 
frozen amniotic membranes, both cellular and denuded. Level o f labelling: +++ high, 
++ moderate, + low, - none.
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5.2 Cultivation of Rabbit Corneal Epithelial Cells on Denuded

Freeze-Dried Amniotic Membrane

In an attempt to assess the usefulness o f freeze-dried AM as a culture substrate, it 

was used to grow rabbit corneal epithelium. Project collaborators at the Kyoto 

Prefectural University o f Medicine who carried out the culture experiments observed 

that cells began to form colonies on the FD-AM within 3 days. After 7 days a 

confluent primary culture o f corneal epithelial cells had been established that covered 

the entire membrane. At 3 weeks, the cultivated corneal epithelial cells were fixed 

and couriered to Lancaster University for detailed analysis.

5.2.1 Scanning Electron Microscopy

Scanning electron microscopic examination o f the cultivated rabbit corneal epithelial 

cells on freeze-dried amniotic membrane revealed a fairly continuous layer o f flat 

squamous polygonal epithelial cells with a mean cell surface area o f 402.2pm2 

(S.D.±184.9pm2) (plate 5.22). In some areas the cells appeared healthy and well- 

developed and were closely attached to each other with tightly opposed cell junctions 

though cell borders were not very defined (plate 5.24). In places, epithelial cells 

appeared to be undergoing the process o f desquamation. There were some less 

healthy-looking areas o f the culture where cells appeared to be rounded and 

abnormal (plate 5.23). The apical surface o f the cells was covered in short, regular 

microvilli (plate 5.25).
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Plate 5.22: Scanning electron micrograph o f rabbit corneal epithelial cells on freeze- 
dried denuded amniotic membrane, taken at low magnification. Cells formed a 
confluent layer but had less prominent cell borders than in vivo corneal epithelium. 
[Scale bar = 10pm]
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Plate 5.23: Scanning electron micrograph o f rabbit corneal epithelial cells grown on
freeze-dried denuded amniotic membrane. Some areas o f the culture sheet exhibited
rounded, abnormal cells as in the image above. [Scale bar = 1 Ojam]

155



Plate 5.24: Scanning electron micrograph of rabbit corneal epithelial cells on freeze- 
dried denuded amniotic membrane, taken at high magnification. Adjacent cells were 
well attached to each other. [Scale bar = 5pm]

Plate 5.25: Scanning electron micrograph of rabbit corneal epithelial cells on freeze- 
dried denuded amniotic membrane taken at very high magnification. The apical 
surface of the superficial cells was covered in short regular microvilli. [Scale bar = 
lpm ]
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5.2.2 Transmission Electron Microscopy

TEM examination of the comeal epithelial culture sheet showed that the cells 

produced 5-6 layers of well-stratified epithelium (plate 5.26), appeared healthy and 

were differentiated into basal columnar cells, suprabasal wing cells and flat 

squamous superficial cells (plate 5.27). In all cell layers the epithelial cells were 

closely attached to neighbouring cells by numerous desmosomal junctions (plate 

5.28). The epithelial cells in the basal cell layers (plate 5.29) were well attached to 

the FD-AM substrate with hemidesmosomal attachments and produced basement 

membrane material (plate 5.30).

Plate 5.26: Transmission electron micrograph of rabbit comeal epithelial cells on
freeze-dried denuded amniotic membrane [FD-AM]. The culture formed 5-6 well-
stratified and differentiated cell layers. [Scale bar — 2pm]
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Plate 5.27: Transmission electron micrograph o f rabbit corneal epithelial cells on 
freeze-dried denuded amniotic membrane. Superficial cells were approximately 2-3 
layers thick and squamous in appearance. There was evidence of cell desquamation 
(*). [Scale bar = 1pm]

Plate 5.28: Transmission electron micrograph of rabbit corneal epithelial cells on
freeze-dried denuded amniotic membrane taken at very high magnification. Adjacent
cells in all cell layers were joined by numerous desmosomes. [Scale bar = lOOnm]
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Plate 5.29: Transmission electron micrograph o f rabbit corneal epithelial cells on 
freeze-dried denuded amniotic membrane [FD-AM]. The basal cells were columnar 
in appearance and were tightly opposed. [Scale bar = 1 pm]

Plate 5.30: Transmission electron micrograph o f rabbit corneal epithelial cells on 
freeze-dried denuded amniotic membrane [FD-AM], taken at high magnification. 
Basal cells were generally well attached to the amniotic membrane by way of 
hemidesmosomal junctions (arrowheads). [Scale bar = 500nm]
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5.2.3 Quantitative Study

Further to the microscopic examination of the cultivated corneal epithelial cells on 

FD-AM, a quantitative study was undertaken to compare these cells with those o f the 

normal rabbit cornea. Mean data (±S.D.) are given in table 5.2 below.

Corneal cells cultivated on 
freeze-dried denuded AM

Control rabbit corneal 
epithelium

Thickness o f cell layers 
(pm)

22.29 ± 8.77 20.55 ±  2.99

Number o f cell layers 6.57 ± 1.34 7.79 ± 1.31

Intercellular space area 
(pm2)

0.18 ± 0 .24 0.09 ± 0.07

Number o f  desmosomes 1.57 ± 1.02 2.57 ± 1.60

Number o f  basal junctions 2.64 ± 1.74 8.29 ± 1.68

Cell surface area (pm2) 402.21 ± 184.87 788.19 ±200.53

Table 5.2: Comparison o f cultivated rabbit corneal epithelial cells on freeze-dried 
AM with normal rabbit cornea. Mean data (± S.D.) are shown. Fourteen data points 
were taken at random for each o f the parameters, except for the cell surface areas in 
which case >7=50. The averages for intercellular area and number o f desmosomes are 
given for random 3pm long interfaces between adjacent cells.

Raw data were compared with that o f the control and a percentage difference value 

calculated for each o f the parameters, thus facilitating interpretation o f the overall 

effect o f the culture technique on the epithelial cells. The raw data were again used to 

calculate the statistical significance of these results. Depending on the normality and 

variance o f the data, either a t-test or a Mann-Whitney Rank Sum test was used. P 

values indicate the level of significance. The cultivated epithelial cells closely 

resembled the control cornea. In terms o f percentage differences, the most apparent 

was in terms o f 92% larger intercellular spaces in the cultivated cells however this
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difference was found to be statistically not significant, undoubtably as result o f the 

high standard deviation. Statistically, there were smaller but more significant 

differences between the number o f cell layers (P=0.023), the number of 

hemidesmosomal junctions (P<0.001) and the cell surface area (PO.OOl) o f the 

cultivated cells compared with the rabbit corneal epithelium control. Differences in 

thickness o f cell layers, area o f intercellular space and numbers o f desmosomes were 

found to be not statistically significant.

5.2.4 Summary Interpretations

Examination o f the freeze-dried amniotic membrane by SEM and TEM showed that 

it was similar to conventionally frozen amniotic membrane. Immunohistochemistry 

also revealed no remarkable differences in the location or abundance o f extracellular 

matrix proteins. The freeze-dried AM appeared to be a useful alternative culture 

substrate for rabbit corneal epithelial cells. When compared to the control (normal 

rabbit corneal epithelium), cultivated cells were significantly smaller (in terms of 

superficial cell surface area), had fewer hemidesmosomal junctions (for basal 

attachment) and fewer cell layers. However, in spite o f these differences, overall 

impressions of the cultured cells were very good.
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6 RESULTS

6.1 Cultivation of Human Oral Mucosal Epithelial Cells on

Denuded Amniotic Membrane

This chapter describes an investigation into the culture o f human oral mucosal 

epithelial cells on denuded amniotic membrane to serve as potential new sources o f 

autologous epithelium for ocular surface reconstruction. Both gingival (gum) and 

buccal (cheek) cell cultures were analysed morphologically using scanning and 

transmission electron microscopy. A quantitative study compared the two cell types 

with each other and with the same control human cornea as used in previous 

investigations (donor tissue from Northwest Lions Eye Bank).

6.1.1 Light Microscopy

6.1.1.1 Gingival Mucosal Biopsies

Examination o f the small gingival biopsy sample revealed well in excess o f 40 layers 

of well-stratified epithelium, differentiated into columnar basal, suprabasal wing and 

squamous superficial epithelial cells (plate 6.1). Adjacent cells seemed to be closely 

attached, with only some small spaces in the more basal regions. Subepithelially, 

there was a mass of what appeared to be vascularized connective tissue

6.1.1.2 Buccal Mucosal Biopsies

The buccal mucosal biopsies were similar in appearance to the gingival ones. There 

appeared to be more than 40 layers o f stratified and differentiated epithelial cells
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resting on a mass o f connective tissue (plate 6.2). Superficial cells formed many 

layers and were tightly opposed. Again, there were some small intercellular spaces 

between cells o f the basal layers. Basal cells were well attached to the underlying 

tissue.

6.1.1.3 Control Human Corneal Biopsy

In contrast to the oral mucosal biopsies, light microscopy of the corneal biopsy 

showed a thick stroma with cells at the anterior and posterior on their respective 

basement membranes. There was only a thin layer o f differentiated epithelial cells, 

forming approximately 4-5 layers (plate 6.3). The cells o f the epithelium were 

tightly opposed and attached to the underlying Bowman’s layer. The corneal stroma 

was thick and strewn with keratocytes. In the region o f the posterior cornea, there 

was a Descemet’s membrane and some residual flattened corneal endothelial cells in 

a monolayer.
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Plates 6.1 and 6.2: Light micrographs of human oral mucosal biopsies stained with 
toluidene blue. Gingival [left] and buccal [right] epithelial cells formed in excess o f 
40 layers. Superficial cells were squamous and appeared to be desquamating in 
places. Basal cells were well attached to the underlying vascularized connective 
tissue. [Scale bars = 50pm].

Plate 6.3: Light micrograph showing human control corneal epithelium, stained with 
toluidene blue. The epithelium had 4-5 differentiated cell layers and there was 
evidence o f superficial cell desquamation from the surface. The corneal stroma was 
thick, only a fraction is visible in this micrograph. [Scale bar = 50pm]
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6.1.2 Scanning Electron Microscopy

6.1.2.1 Gingival Mucosal Biopsies

Examination o f the gingival mucosal epithelium by SEM revealed an undulated, yet 

continuous layer o f squamous, polygonal epithelial cells with an average cell surface 

area o f 519.6pm" (S.D.±168.3) (plate 6.4). As would be expected in a healthy 

epithelial sheet, some cells appeared to be undergoing the process o f desquamation. 

Neighbouring cells were tightly opposed and had distinct and well-defined cell 

borders (plate 6.5). The apical surface of the mucosal epithelial cells was generally 

covered with long parallel ridge-like folds, quite different from the surface microvilli 

found on superficial corneal epithelial cells (plate 6.6). In other areas the microplicae 

appeared less regular and had a more random arrangement. The surface o f other 

cells was pitted and resembled a series of holes (plate 6.7).

Plate 6.4: Scanning electron micrograph o f biopsy-derived human gingival mucosal
cells, taken at low magnification. Cells were polygonal and squamous in appearance
and formed a continuous layer. [Scale bar = 10pm]
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Plate 6.5: Scanning electron micrograph o f biopsy-derived human gingival mucosal 
cells, taken at high magnification. Adjacent cells were closely attached to each other 
with tightly fitting and well-formed cell junctions. [Scale bar = 5pm]

Plate 6.6: Scanning electron micrograph o f the apical surface o f gingival mucosal 
cells at very high magnification. The surface o f the superficial cells often revealed 
parallel ridge-like surface folds, quite unlike the microvilli found on corneal 
epithelial cells. [Scale bar = 1pm]
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Plate 6.7: Scanning electron micrograph o f the apical surface o f gingival mucosal 
cells at very high magnification. While most o f the cells were covered in ridge-like 
folds, some demonstrated a pitted appearance, as illustrated above. [Scale bar = 1pm]

6.1.2.2 Buccal Mucosal Biopsies

Examination o f the buccal mucosal epithelium by SEM revealed an undulated, yet 

continuous layer o f squamous, polygonal epithelial cells with an average cell surface 

area of 556.1pm2 (S.D.±288.5) (plate 6.8). Some cells appeared to have very 

prominent nuclei. In places, cells appeared to be undergoing the process of 

desquamation. Neighbouring cells were tightly opposed and had distinct cell borders 

(plate 6.9). The apical surface of the mucosal epithelial cells was covered with long 

parallel ridge-like microvilli (plate 6.10) similar to those seen on the gingival 

mucosal cells but quite different from the surface microvilli found on superficial 

corneal epithelial cells. In some areas the microvilli had a slightly different 

morphology and were shorter and less ridge-like (plate 6.11).
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Plate 6.8: Scanning electron micrograph o f biopsy-derived human buccal mucosal 
cells, taken at low magnification. Cells were polygonal and squamous in appearance 
and formed a continuous layer. The cell surface was undulated, unlike that o f corneal 
epithelial cells which is flat by nature. [Scale bar = 10pm]

Plate 6.9: Scanning electron micrograph o f junctions between biopsy-derived human
buccal mucosal cells, taken at high magnification. Cells were polygonal and
squamous in appearance and formed a continuous layer. [Scale bar = 5 pm]
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Plate 6.10: Scanning electron micrograph o f the apical surface of buccal mucosal 
cells at very high magnification. The surface o f the superficial cells often revealed 
parallel ridge-like surface folds, similar to those on the gingival mucosa but quite 
unlike the microvilli found on corneal epithelial cells. [Scale bar = 1pm]

Plate 6.11: Scanning electron micrograph o f the apical surface o f buccal mucosal 
cells at very high magnification. Some of the superficial cells had short microvilli
like projections on their surface. [Scale bar = 1pm]
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6.1.2.3 Control Corneal Biopsy

Human comeal epithelium was used in this study as a control against which to 

compare the oral (gingival and buccal) mucosal cells. Human tissue was obtained 

from Northwest Lions Eye Bank, preserved and processed as the mucosal cells. 

Examination of comeal epithelium by scanning electron microscopy revealed a 

continuous layer o f squamous, polygonal epithelial cells with an average cell surface 

area o f 1093.9pm2 (S.D.±335.4) (plate 6.12). There were a number o f cells 

undergoing the process of desquamation, as would be expected in a healthy epithelial 

sheet. Adjoining cells were tightly opposed and had distinct cell borders (plate 6.13). 

The apical surface o f the superficial cells was covered in short finger-like microvilli 

(plate 6.14).
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Plate 6.12: Scanning electron micrograph o f human control comeal epithelial cells,
taken at very low magnification. Cells were polygonal and squamous in appearance
and formed a continuous layer. [Scale bar = 100pm]
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Plate 6.13: Scanning electron micrograph o f junctions between human control 
corneal epithelial cells, taken at high magnification. Adjacent cells were tightly 
opposed and had distinct and well-defined cell borders. [Scale bar = 5pm]

Plate 6.14: Scanning electron micrograph o f the apical surface o f human corneal 
epithelial cells at very high magnification. Superficial cells had short microvilli-like 
projections on their surface. [Scale bar = 1 pm]
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6.1.3 Transmission Electron Microscopy

6.1.3.1 Gingival Mucosal Biopsies

Examination o f the biopsy-derived gingival epithelial cells by TEM revealed many 

layers (40+) o f epithelial cells. These appeared to be well-stratified and well- 

differentiated. There were many layers o f superficial squamous epithelial cells with 

very few intercellular spaces (plate 6.15). The apical surface o f the most superficial 

cells was covered with short, regular microvilli and in places a glycocalyx-like 

substance (plate 6.16). There were several layers o f cuboidal wing cells (plate 6.17). 

Adjacent cells were attached by way of desmosomal junctions and cell membranes 

were highly interdigitated (plate 6.18). Basal cells were columnar in appearance 

(plate 6.19) and were attached to the basement membrane by hemidesmosomal 

junctions (plate 6.20). There were fairly large intercellular spaces between cells in 

the basal region. Beneath the epithelial cell layer there was also a mass o f connective 

tissue. This was vascularized and contained an abundance o f fibrillar collagen, as 

well as fibroblast cells.
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Plate 6.15: Transmission electron micrograph of the gingival mucosal cells at low 
magnification. Squamous superficial cells formed many layers, and there was 
evidence o f cell desquamation [d] from the surface. [Scale bar = 5 pm]

Plate 6.16: Transmission electron micrograph of the superficial gingival mucosal 
cells at high magnification. There were small projections on the apical surface and in 
places, a thin covering of glycocalyx-like substance [gj. [Scale bar = 500nm]
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Plate 6.17: Transmission electron micrograph o f the gingival mucosal cells at low 
magnification. There were several layers of wing cells as depicted above. These cells 
were tightly packed and joined by numerous desmosomal junctions. [Scale bar = 
5 pm]
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Plate 6.18: Transmission electron micrograph o f junctions between the gingival
mucosal cells at high magnification. There were numerous desmosomes joining cells
at all cell layers. [Scale bar = 200nm]
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Plate 6.19: Transmission electron micrograph o f the gingival mucosal cells at low 
magnification. Basal cells were columnar in shape, though not tightly opposed. There 
were some large spaces between adjacent cells however basal cells were well 
attached to the underlying extracellular matrix [ECM]. [Scale bar = 2pm]

Plate 6.20: Transmission electron micrograph of the gingival mucosal cells [GC] at 
high magnification. Basal cells were well attached to the basement membrane via 
frequent hemidesmosomes (arrowheads) and were secreting basement membrane 
material (*). [Scale bar = 500nm]

175



6.1.3.2 Buccal Mucosal Biopsies

Examination o f the buccal epithelial cells by TEM revealed in excess of 40 layers of 

epithelial cells. The buccal epithelium was similar in appearance to that o f the 

gingival. Cells were well-stratified and differentiated. Superficial epithelial cells had 

highly interdigitated cell membranes however were not very regular in shape and 

were not as squamous as those found in the comeal epithelium (plate 6.21). Some 

cells appeared to be undergoing the process of desquamation. The apical surface o f 

the most superficial cells was covered with short, regular microvilli (plate 6.22). 

There were several layers o f cuboidal wing cells (plate 6.23). Adjacent cells in all 

layers were attached by way of numerous desmosomal junctions (plate 6.24). 

Intercellular spaces were more prominent in the more basal regions o f the epithelium. 

Basal cells were columnar (plate 6.25) and attached to each other by way of 

desmosomal junctions. In some areas, there were large intercellular spaces between 

adjacent basal cells. The basal cells were attached to the basement membrane by 

hemidesmosomal junctions (plate 6.26). There was a submucosal mass o f 

extracellular matrix and connective tissue. This was quite heavily vascularized and 

both red and white blood cells were observed within capillaries (plate 6.27).
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Plate 6.21: Transmission electron micrograph of the buccal mucosal cells at low 
magnification. Squamous superficial cells formed many layers and there was 
evidence o f cell desquamation from the surface. [Scale bar = 2pm]

*  }

Plate 6.22: Transmission electron micrograph o f the buccal mucosal cells at high
magnification. Superficial cells were covered in microvilli-like projections. [Scale
bar = 500nm]
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Plate 6.23: Transmission electron micrograph o f the buccal mucosal cells at low 
magnification. There were several layers o f wing cells with prominent nuclei. The 
wing cell layer had fairly large spaces between cells. [Scale bar = 2pm]

Plate 6.24: Transmission electron micrograph o f junctions between the buccal
mucosal cells at high magnification. There were numerous desmosomes joining cells
at all cell layers. [Scale bar = 200nm]

178



ECM

Plate 6.25: Transmission electron micrograph of the buccal mucosal cells at low 
magnification. Basal cells were slightly more columnar in shape than cells in other 
areas, though not they were not very tightly opposed. [Scale bar = 2pm]
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Plate 6.26: Transmission electron micrograph o f the buccal mucosal cells [BC] at
high magnification. Basal cells were well attached to the basement membrane via
frequent hemidesmosomes (arrowheads). [Scale bar = 500nm]
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Plate 6.27: Transmission electron micrograph o f the submucosal connective tissue. 
Beneath the basal cell layers the connective tissue was heavily vascularized. This 
micrograph illustrates a red blood cell (*)-containing capillary [BV]. There were also 
many white blood cells which did not seem to be contained within vessels. [Scale bar 
= 2pm]

6.1.3.3 Control Corneal Biopsy

Examination of the control corneal epithelial cells (human donor tissue from 

Northwest Lions Eye Bank) by TEM revealed 6-8 layers of well-stratified epithelial 

cells (plate 6.28). The epithelium was differentiated into columnar basal cells, 

cuboidal suprabasal wing cells and 3-4 layers o f squamous superficial cells. Some 

cells appeared to be undergoing the process of desquamation. The apical surface of 

the most superficial cells was covered with short, regular microvilli (plate 6.29). 

Adjacent cells in all layers were attached by way of numerous desmosomal junctions 

and there were negligible intercellular spaces. Basal cells were columnar and 

attached to the basement membrane by numerous hemidesmosomal junctions (plate 

6.30).
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Plate 6.28: Transmission electron micrograph o f human corneal epithelial cells at 
low magnification. Cells were well-stratified and differentiated and formed 6-8 
layers. The epithelium was adhered to Bowman’s layer [BL] via a thin basement 
membrane. [Scale bar = 5pm]
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Plate 6.29: Transmission electron micrograph o f human corneal epithelium.
Superficial cells were squamous and covered with short microvilli. [Scale bar = 2pm]
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Plate 6.30: Transmission electron micrograph of human corneal basal epithelial cells. 
Basal cells were columnar and were well attached to the underlying Bowman’s layer 
[BL] with numerous hemidesmosomes. [Scale bar = 2pm]

6.1.4 Scanning Electron Microscopy

6.1.4.1 Cultivated Gingival Mucosal Epithelial Cells on AM

Examination o f the gingival epithelial culture by SEM revealed a continuous layer o f

flat, squamous polygonal epithelial cells with an average cell surface area of

613.1pm2 (S.D.±294.8) (plate 6.31). The cells seemed to be in good condition and

were similar in appearance to in vivo human corneal epithelium. In places, cells

appeared to be undergoing the process o f desquamation (plate 6.31). Adjacent cells

were closely attached with tightly opposed cell junctions and fairly distinct cell

boundaries (plate 6.32). The apical surfaces were covered in short microvilli

resembling those seen on the surface of normal corneal epithelial cells (plate 6.33).
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Plate 6.31: Scanning electron micrograph of cultivated human gingival epithelial 
cells on denuded amniotic membrane. The cells appeared healthy and well-formed 
with distinct cell boundaries. There were many cells desquamating from the surface. 
[Scale bar = 10pm]

Plate 6.32: Scanning electron micrograph o f cultivated human gingival epithelial
cells on denuded amniotic membrane, taken at high magnification. Adjacent cells
were tightly opposed with distinct cell borders. [Scale bar = 5pm]
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Plate 6.33: Scanning electron micrograph o f cultivated gingival mucosal cells at very 
high magnification. The apical surface of the cells was covered with short microvilli. 
This micrograph shows microvilli at the border o f two adjacent cells. [Scale bar = 
ljurn]

6.1.4.2 Cultivated Buccal Mucosal Epithelial Cells on AM

Scanning electron microscopy of the buccal epithelial culture on amniotic membrane 

revealed a continuous layer o f flat, squamous polygonal epithelial cells (plate 3.34). 

The cultivated cells had an average cell surface area of 491.4pm2 (S.D.±173.7) and 

were healthy-looking and well-developed. The cultivated mucosal cells were very 

similar in appearance to corneal epithelium. In places, cells appeared to be 

undergoing the process of desquamation. Adjacent cells were closely attached with 

tightly opposed cell junctions and distinct cell boundaries (plate 3.35). The apical 

surface o f the cells was covered in short microvilli (plate 3.36) which were very 

different in appearance to the surface folds seen on the mucosal cells.
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Plate 6.34: Scanning electron micrograph o f cultivated human buccal epithelial cells 
on denuded amniotic membrane. The cells appeared healthy and well-formed with 
distinct cell boundaries. [Scale bar = lOjum]

Plate 6.35: Scanning electron micrograph o f cultivated human buccal epithelial cells 
on denuded amniotic membrane. The cells appeared to be in good condition and 
were closely attached to each other with tightly fitting junctions. [Scale bar = 5jum]



Plate 6.36: Scanning electron micrograph o f cultivated human buccal epithelial cells 
on denuded amniotic membrane. The apical surfaces o f the cells were covered with 
numerous microvilli like projections. [Scale bar = 1 pm]

6.1.5 Transmission Electron Microscopy

6.1.5.1 Cultivated Gingival Mucosal Epithelial Cells on AM  

Examination of the cultivated human gingival epithelial cells by TEM revealed 

approximately 10-14 layers o f fairly well-stratified epithelium (plate 6.37). The cells 

appeared quite healthy and were differentiated into basal columnar cells, suprabasal 

wing cells and flat squamous superficial cells. There was evidence o f cell 

desquamation at the surface, as would be expected in a healthy epithelial sheet. 

Superficial cells were often found to contain intracellular vacuoles containing a 

granular-looking substance, possibly glycogen (plate 6.38). There was an apical 

covering o f microvilli-like projections (plate 6.39). Basal cells (plate 6.40) adhered 

well to the amniotic membrane substrate with hemidesmosomal junctions and
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appeared to produce basement membrane material (plate 6.41). Interdigitations into 

the AM were quite pronounced in some regions. There were however large 

intercellular spaces between cells in all cell layers and these were most prominent in 

the basal region. Epithelial cells were attached to neighbouring cells by infrequent 

desmosomal junctions.

Plate 6.37: Transmission electron micrograph of cultivated human gingival epithelial 
cells on amniotic membrane. Cells formed 10-14 layers of fairly well-stratified and 
differentiated epithelium. There were substantial spaces between adjacent cells at all 
layers (*). [Scale bar = 10pm]
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Plate 6.38: TEM micrograph o f cultivated superficial gingival cells. Many cells 
contained inclusions o f granular substance, possibly glycogen [g]. [Scale bar = 2 pm]

Plate 6.39: Transmission electron micrograph of cultivated human gingival epithelial
cells on amniotic membrane. Superficial cells had an apical covering o f short
microvilli-like projections. [Scale bar = 500nm]
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Plate 6.40: Transmission electron micrograph o f cultivated human gingival epithelial 
cells on amniotic membrane [AM]. Basal cells were slightly columnar in shape 
though not as differentiated as normal corneal basal epithelial cells. There were large 
spaces between adjacent cells. [Scale bar = 2pm]

Plate 6.41: TEM micrograph of cultivated human gingival epithelial cells [GC] on 
amniotic membrane [AM]. Basal cells were attached well to the amniotic membrane 
by hemidesmosomes (arrowheads) and produced basement membrane material (*). 
[Scale bar = 500nm]
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6.1.5.2 Cultivated Buccal Mucosal Epithelial Cells on AM

Transmission electron microscopy of the cultivated human buccal epithelial cells 

revealed approximately 6-10 layers of fairly well-stratified epithelium (plate 6.42). 

The cells appeared quite healthy and were differentiated into basal columnar cells, 

suprabasal wing cuboid cells and flat squamous superficial cells (plate 6.43). In 

places the basal cells adhered well to the, amniotic membrane substrate (plate 6.44) 

and appeared to produce basement membrane material (plate 6.46). In other areas 

the cells had completely come away from the amniotic membrane (plate 6.45). 

There were large intercellular spaces between cells in all cell layers however 

epithelial cells were attached to neighbouring cells by desmosomal junctions (plate 

6.47). The surface of the cells was covered with short microvilli, though in places 

these were longer than those normally present on corneal epithelial cells.

Plate 6.42: TEM micrograph of cultivated human buccal epithelial cells on amniotic
membrane. Cells formed 6-10 layers of well-stratified and differentiated epithelium.
There were fairly large spaces between adjacent cells at all layers. [Scale bar = 7pm]
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Plate 6.43: TEM micrograph of cultivated superficial buccal cells. Superficial cells 
formed several layers, and were generally squamous in appearance. There was an 
apical covering o f microvilli-like projections. Intercellular spaces were prominent in 
the superficial regions. [Scale bar = 2pm]

Plate 6.44: Transmission electron micrograph o f cultivated human buccal cells on
amniotic membrane [AM]. Basal cells were columnar in shape and were, for the most
part, well attached to the substrate. [Scale bar = 2pm]
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Plate 6.45: Transmission electron micrograph o f cultivated human buccal cells on 
amniotic membrane [AM]. In some areas o f the culture sheet (as pictured above), the 
epithelial layer had detached from the amniotic membrane. [Scale bar = 2pm]

Plate 6.46: TEM micrograph o f cultivated human buccal epithelial cells [BC] on 
amniotic membrane [AM]. This figure represents good attachment of the basal cells 
to the amniotic membrane substrate by hemidesmosomes (arrowheads). These cells 
appeared to be producing basement membrane material (*). [Scale bar = 500nm]
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Plate 6.47: TEM micrograph of the junctions between adjacent cultivated human 
buccal epithelial cells. Though there were a number of large intercellular spaces 
between cells, mechanical strength was maintained by way of many desmosomal 
junctions. [Scale bar = 200nm]
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6.1.6 Quantitative Study

A number o f parameters were quantitatively compared between the two mucosal cell 

types and the control corneal epithelium. Mean data (±S.D.) are shown in table 6.1 

below. Fourteen data points were collected for each parameter, except for the cell 

surface area which was calculated using scanning electron microscopy and therefore 

facilitated more measurements (t?=50).

Gingival mucosal cells 
cultivated on AM

Buccal mucosal cells 
cultivated on AM

Human corneal 
epithelium

Thickness o f cell 
layers (pm)

73.42 ± 2.70 46.98 ± 12.57 29.02 ± 2.29

Number o f cell 
layers 10.29 ± 1.33 8.57 ± 1.70 6.64 ± 0.74

Intercellular space 
area (pm2)

1.08± 1.16 1.40 ± 0 .89 0.11 ± 0 .0 8

Number of 
desmosomes 2.07 ± 1.64 1.29 ±0.91 3.21 ± 1.37

Number of 
hemidesmosomes

3.43 ± 1.45 2.21 ± 1.53 4.71 ± 1.44

Cell surface area 
(pm2)

613.09 ±294.75 491.44 ± 173.67 1093.89 ±335.43

Table 6.1: Comparison o f cultivated human buccal and gingival mucosal epithelial 
cells on denuded AM with normal human cornea. Mean data (± S.D.) are shown. 
Fourteen data points were taken at random, except for the cell surface areas in which 
case «=50. The averages for intercellular area and number o f desmosomes are given 
for random 3 pm long interfaces between adjacent cells.

For ease of interpretation, mean data for the gingival and buccal epithelia were 

plotted as percentage differences from the control (normal human corneal 

epithelium). Neither of the cultivated cell types accurately resembles corneal 

epithelium. Cultivated human gingival epithelial cells had a significantly thicker cell 

layer (153% increase in cell thickness compared with control, PO.OOl) and 

significantly smaller surface areas (P<0.001). There was also a large increase (873%) 

in the area o f intercellular space in the cultivated mucosal cells, though the large
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standard deviation rendered this finding not statistically significant. The observed 

discrepancy in numbers o f desmosomes was found to be not statistically significant 

(P=0.056). There were 27% fewer hemidesmosomal junctions in the cultivated 

gingival cells than in the control cornea, and this difference was found to be 

significant (P=0.026). Cultivated buccal cells differed more drastically from the 

control corneal epithelium. The observed differences were all statistically highly 

significant (PO.OOl). Most notable was the 1159% increase in intercellular spacing 

in the cultivated buccal cells. Chart 6.1 compares the two cultivated cell types with 

each other, using control cornea as the benchmark. It appears that the cultivated 

gingival cells more closely resemble the corneal epithelium than the cultivated 

buccal cells on AM, having a slightly thicker cell layer, smaller intercellular spaces, 

more desmosomes for mechanical strength and more hemidesmosomes for basal 

attachment. Only the differences in thickness of cell layers (PO.OOl) and number o f 

hemidesmosomes (PO.036) were deemed statistically significant.

P=0.423

t  600

■o 400

P=<0.001

P=0.129 P=0.036 P=0.064P=0.010

Thickness of cell layers Number of cell layers Intercellular sp ace  area #  D esm osom es #  Hem idesm osom es Cell surface area

Chart 6.1: Comparison of cultivated human gingival (yellow) and buccal (blue) stem 
cells on amniotic membrane, expressed as percentage difference from normal human 
cornea control. Raw data were used to calculate statistical significance (P values) of 
observed differences between mucosal cell types and these are stated above the bars.
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6.1.7 Summary Interpretations

Examination o f the cultivated epithelial cells by SEM and TEM revealed that both 

gingival and buccal cells seemed to have become more comeal-like under culture 

conditions, yet still differed significantly from control in vivo human comeal 

epithelium in a number of parameters. Scanning electron microscopy o f the mucosal 

biopsies showed the distinctive ridges that characterize mucosal epithelium. These 

were absent in the cultivated cells. Transmission electron microscopy showed very 

thick cell layers in the mucosal epithelial biopsies. The thickness o f the cell layers 

was dramatically reduced in culture, both of buccal and gingival cells. From the 

results o f the quantitative study, gingival cells seemed to be the better choice o f the 

two and more closely resembled control corneal epithelium. They had smaller 

intercellular spaces and formed more junctions, both basal and mechanical, than the 

buccal cells in culture. While encouraging, there remain some discrepancies between 

the oral cultured cells and control comeal epithelium. Following a number o f clinical 

trials using cultured mucosal tissue, an attempt was made to further improve this 

culture system by co-culturing comeal epithelial and oral mucosal stem cells (results 

described in section 6.3).
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6.2 Clinical Outcomes of Amniotic Membrane/Oral Mucosal Stem

Cell Transplants

Given the encouraging results o f the cell culture experiments o f the previous section, 

mucosal sheets were used in fifteen ocular surface reconstruction procedures by 

colleagues in Japan, with varying degrees of success (Nakamura et al., 2004a). One 

o f the benefits o f this technique is that the stem cell graft and underlying amniotic 

membrane can be removed if necessary. This section describes the morphology of 

two grafts, removed after 5-6 months on the ocular surface, which were replaced by 

donor corneal tissue in conventional PKP surgery.

6.2.1 Clinical Observations

Clinical examination by project collaborators at the Kyoto Prefectural University o f 

Medicine indicated that despite initial signs o f success (acceptance o f the oral graft 

with no epithelial defects) and a reported improvement in visual acuity, two of the 

grafted eyes began to display symptoms of allograft rejection, characterized by 

vascularization and conjunctival invasion, 2 months after surgery. In both cases there 

was considerable loss of epithelial transparency and the grafts were replaced with 

donor tissue. The removed grafts were prepared for examination by scanning and 

transmission electron microscopy.

6.2.2 Scanning Electron Microscopy

6.2.2.1 Case 1: Chemical Injury

Examination of the rejected oral mucosal graft by SEM revealed a central area of 

comeal-like epithelial cells (plate 6.48). These cells appeared to be in good condition
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with an average surface area of 218.8pm2 (S.D.±74.7). Adjacent cells were tightly 

opposed, with distinct cell borders (plate 6.49). Surface microvilli were short and 

comeal-like in appearance. Around this central zone o f comeal-like cells, there 

appeared to be a transition towards a more conjunctival-like phenotype (plate 6.50). 

Cells in this region were intermediate in size, cell boundaries were quite defined and 

surface microvilli were more clumped together. Most of the amniotic membrane 

however, was covered with conjunctival epithelial cells (plate 6.51). These cells were 

much smaller than the comeal-like cells, with an average surface area o f 38.4pm2 

(S.D.±14.0). In addition their cell borders were more prominent and the apical 

microvilli showed gross clumping (plate 6.51). Numerous inflammatory cells and red 

blood cells were found on the surface of the epithelial cells (plate 6.52).

Plate 6.48: Scanning electron micrograph o f the comeal epithelial-like cells on the 
rejected mucosal graft. Cells appeared to be in good condition. Adjacent cells had 
tightly opposing cell junctions and apical microvilli were short and comeal-like in 
appearance. [Scale bar = 10pm]
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Plate 6.49: Scanning electron micrograph o f the corneal epithelial-like cells on the 
rejected mucosal graft at high magnification. Adjacent cells had tightly opposing cell 
junctions with distinct cell boundaries. Apical microvilli were comeal-like in 
appearance. [Scale bar = 2pm]

Plate 6.50: Scanning electron micrograph of the transition zone o f the rejected 
mucosal graft where epithelial cells become more conjunctival in appearance. In this 
region, surrounding the central comeal-like epithelium, cells were intermediate in 
size, borders more prominent and surface microvilli more clumped together. [Scale 
bar = 10pm]
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Plate 6.51: SEM micrograph of the conjunctival cells that invaded the mucosal stem 
cell graft. The conjunctival cells were smaller than the corneal-like cells, with more 
pronounced cell borders and grossly-clumped microvilli. [Scale bar = 2pm]

Plate 6.52: Scanning electron micrograph of the inflammatory cells found on the
rejected graft, taken at very high magnification. Inflammatory cells appeared to be
destroying the grafted epithelium. [Scale bar = 2pm]
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6.2.3 Transmission Electron Microscopy

6.2.3.1 Case 1: Chemical Injury

Two samples o f a rejected oral mucosal stem cell graft were isolated and shipped to 

Lancaster University for analysis; these represented the lower nasal area, and the 

upper temporal/nasal region. Both were similar in appearance and so are described 

together. Only small areas o f comeal-like (oral mucosal) epithelial cells remained 

and these had become necrotic (plate 6.53). There was an obvious invasion o f 

conjunctival epithelium (plate 6.54), characterized by their dense cytoplasm and 

clumped microvilli (plate 6.56). Most of the epithelium on the removed graft 

appeared to be o f conjunctival origin (plate 6.55). The amniotic membrane seemed to 

have been integrated into the comeal stroma as there was no distinct boundary 

between the two. The amniotic membrane/stroma had become partially vascularized 

and there were a number o f blood vessels in evidence (plate 6.57). In addition to red 

blood cells there were numerous inflammatoiy cells both within the amniotic 

membrane/stroma and amongst the epithelial cells (plate 6.58).
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Plate 6.53: Transmission electron micrograph o f necrotic comeal-like cells found on 
the rejected graft, taken at high magnification. There was only a small area of 
corneal-like epithelia remaining on the removed graft. [Scale bar = 2pm]

Plate 6.54: Transmission electron micrograph depicting an invasion o f conjunctival 
epithelial cells. Conjunctival epithelial cells [C] appeared to be replacing residual 
necrotic grafted cells [N], growing over them [Scale bar = 2pm]
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Plate 6.55: Transmission electron micrograph o f a rejected oral mucosal epithelial 
graft. Conjunctival epithelial cells covered most o f the amniotic membrane and 
appeared to have largely replaced the original grafted cells. [Scale bar = 2jum]

Plate 6.56: Transmission electron micrograph, taken at high magnification, depicting 
the grossly clumped microvilli characteristic of conjunctival epithelial cells which 
covered most of the amniotic membrane in the rejected mucosal epithelial graft. 
[Scale bar = 200nm]

203



Plate 6.57: Transmission electron micrograph of a rejected oral mucosal epithelial 
graft. The amniotic membrane/underlying stroma had become vascularized with 
many blood vessels [BV] located directly beneath the invading conjunctival 
epithelial cell layer. [Scale bar = 2pm]

Plate 6.58: Transmission electron micrograph of a rejected oral mucosal epithelial 
graft. Inflammatory white blood cells, such as the granulocyte depicted above, were 
found throughout the necrotic grafted epithelium and within the underlying 
AM/stroma. [Scale bar = 1 pm]
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6.2.4 Scanning Electron Microscopy

In a second case study, an autologous cultivated oral mucosal graft removed from the 

ocular surface o f an SJS patient 6 months after transplant surgery was analysed. The 

patient underwent conventional penetrating keratoplasty using donor cornea at the 

time of graft removal. Due to the very small size o f the sample received from Japan, 

only scanning electron microscopy was used to examine the tissue.

6.2.4.1 Case 2: Stevens-Johnson Syndrome

Six months after grafting onto the human ocular surface, scanning electron 

microscopy o f the removed corneal button revealed fairly healthy looking epithelium 

not unlike that of the normal cornea. The central area o f epithelium appeared to be 

comeal-like (plate 6.59) and there was evidence of cell desquamation from the 

surface, indicating healthy epithelial turnover. In the more peripheral regions; 

epithelial cells were more conjunctival in appearance (plate 6.60). The conjunctival 

epithelial cells were smaller than the comeal-like cells, had more prominent cell 

borders, clumped microvilli, and were interspersed with mucin-secreting goblet cells 

(plate 6.60). Adjacent cells, both of comeal and conjunctival appearance were well 

attached to each other, with distinct ridges at cell borders and very little intercellular 

spacing (plate 6.61).
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Plate 6.59: Scanning electron micrograph showing the epithelium of a human corneal 
button removed six months after an oral mucosal epithelial cell transplant. The cells 
in the central region of the corneal button were comeal-like in appearance. 
[Scale bar = 10pm]

Plate 6.60: Scanning electron micrograph showing the epithelium of a human comeal 
button removed six months after an oral mucosal epithelial cell transplant. Towards 
the periphery, a conjunctival phenotype was evident. Conjunctival epithelial cells 
were interspersed with mucin-secreting goblet cells [G]. [Scale bar = 5pm]
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Plate 6.61: Scanning electron micrograph showing the epithelium of a human corneal 
button removed following oral mucosal epithelial cell transplant, at high 
magnification. Adjacent cells were well attached to each other, with tightly opposed 
cell boundaries and distinct ridges at cell-cell borders. [Scale bar = 2pm]

6.2.5 Summary Interpretations

In both removed grafts, examination by SEM revealed a small central region of 

comeal-like epithelium surrounded by a large area o f conjunctival cells, much 

smaller in size and with more prominent cell borders. In the first case study, there 

were numerous inflammatory and red blood cells associated with the rejected graft. 

Transmission electron microscopy revealed that the AM appeared to have become 

integrated into the stroma and that the remaining few comeal-like cells appeared 

necrotic. Most of the epithelium was of conjunctival origin. In places the conjunctiva 

were growing over the comeal-like cells and in other areas they were displacing them 

from underneath. There were numerous inflammatory cells within both the stroma 

and the epithelial cell layers, as well as many blood vessels within the stroma.
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6.3 Examination of Hybrid Cultures of Rabbit Corneal and Oral

Mucosal Epithelial Cells on Denuded Amniotic Membrane

Previous investigations (described in chapter 6.1) showed that cultured oral epithelial 

cells still retain some mucosal characteristics. In an attempt to induce differentiation 

into a more comeal-like phenotype, this project incorporated comeal stem cells in the 

culture. Hybrid mixtures o f rabbit comeal and oral mucosal epithelial cells (1:1 ratio) 

were seeded onto AM and cultured for 21 days by project collaborators at the Kyoto 

Prefectural University o f Medicine then fixed and sent to Lancaster University for 

analysis. Samples from both before and after transplantation onto the rabbit ocular 

surface were examined in this investigation, to determine whether any changes 

occurred in the cell morphology following a 3 week period on the eye.

6.3.1 Scanning Electron Microscopy

6.3.1.1 Corneal & Oral Mucosal Epithelial Hybrid Cultures on A M

Though it was not possible to distinguish between the two cell types by SEM, the 

cultured epithelial cells appeared to be in fairly good condition, formed a confluent 

layer and were, in places, undergoing the process o f desquamation (plate 6.62). Some 

of the epithelial cells appeared to be flattened and had distended microvilli at the cell 

boundaries (plate 6.63). Adjacent cells were well attached to each other with tightly 

opposed cell borders (plate 6.64). Oral mucosal cells appeared to have differentiated 

into comeal-like cells in culture, as there was no evidence of the parallel ridges or 

folds on the surface of the superficial cells which characterize oral mucosal epithelia. 

Superficial cells had an apical covering of short, regular microvilli (plate 6.65).
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Plate 6.62: Scanning electron micrograph showing a rabbit oral mucosal/corneal 
epithelial cell culture on AM at low magnification. It was difficult to distinguish 
between the two epithelial cell types and the cultured epithelium generally resembled 
the morphology of normal cornea. There was evidence of cell desquamation. [Scale 
bar = 10pm].

Plate 6.63: SEM micrograph showing rabbit oral mucosal/comeal epithelial cells 
cultured on AM. The condition of the cells was inconsistent in that some appeared to 
have a very flat surface with long microvilli at the cell borders. [Scale bar = 10pm]
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Plate 6.64: Scanning electron micrograph showing a rabbit oral mucosal/comeal 
epithelial hybrid culture on AM. Adjacent cells were well attached to each other, 
with minimal intercellular spacing. In places, there were distinct ridges at cell-cell 
borders. [Scale bar = 5pm]

Plate 6.65: Scanning electron micrograph showing short, regular microvilli present 
on the surface of most of the cultivated hybrid epithelial cells, taken at high 
magnification. [Scale bars = 1pm].
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6.3.1.2 Corneal & Oral Mucosal Epithelial Hybrid Cultures Post-Transplant 

Examination o f rabbit corneal buttons removed following transplantation o f hybrid 

oral mucosal and corneal epithelial culture sheets by SEM revealed confluent layers 

o f epithelium not unlike that of the normal cornea (plate 6.66). Epithelial cells 

appeared to be in very good condition and there was evidence o f cell desquamation 

from the surface, as would be expected in a healthy epithelial sheet (plate 6.66). It 

seemed that the oral mucosal cells had differentiated into comeal-like cells in culture 

as there was no sign of the parallel ridges and folds on the surface o f the superficial 

cells which characterize oral mucosal epithelia. Adjacent cells were well attached to 

each other, with tightly opposed junctions and distinct ridges at cell borders (plate 

6.67). Superficial cells were covered in short, regular microvilli (plate 6.68).

Plate 6.66: SEM micrograph showing the comeal epithelium of a rabbit hybrid cell 
culture sheet, removed after three weeks on the cornea. The epithelium closely 
resembled that of the normal cornea. There was evidence of cell desquamation. 
[Scale bar =10pm]
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Plate 6.67: SEM micrograph showing a rabbit oral mucosal/comeal epithelial hybrid 
culture on AM, removed following transplantation onto the ocular surface. Adjacent 
cells were well attached to each other, with little or no intercellular spacing and there 
were distinct ridges at cell-cell borders, as in the normal corneal epithelium. [Scale 
bar = 5 pm]

Plate 6.68: Scanning electron micrograph showing a post-transplant hybrid oral 
mucosal/corneal culture sheet. There were short, regular microvilli present on the 
surface of the epithelial cells. [Scale bar = 1 pm]
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6.3.2 Transmission Electron Microscopy

6.3.2.1 Corneal & Oral Mucosal Epithelial Hybrid Cultures on A M  

Microscopic examination of the rabbit hybrid epithelial cell culture on denuded AM 

revealed 4-8 layers of stratified epithelium (plate 6.69). Cells appeared to be in good 

condition and were differentiated into basal columnar shaped cells, suprabasal wing 

cells and flat squamous superficial cells (plate 6.70). It was not possible to tell the 

two epithelial cell types apart. Basal epithelial cells (plate 6.71) adhered well to the 

amniotic membrane substrate and produced basement membrane material (plate 

6.72). Superficial cells were squamous in appearance and had a covering o f short 

microvilli. Cells in all layers were attached to each other by numerous desmosomal 

junctions (plate 6.73).

Plate 6.69: TEM micrograph of cultivated hybrid corneal and oral mucosal epithelial
cells on denuded amniotic membrane [AM]. The epithelial cells formed 4-8 well-
differentiated cell layers and the two cell types were indistinguishable. [Scale bar =
5 pm]
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Plate 6.70: TEM micrograph o f cultivated rabbit corneal and oral mucosal hybrid 
epithelial cells. Superficial cells were squamous in appearance and had short regular 
microvilli on their apical surface. [Scale bar = 2pm]

Plate 6.71: TEM micrograph showing the basal region o f a rabbit oral 
mucosal/corneal epithelial hybrid culture on amniotic membrane [AM] at high 
magnification. Basal cells were columnar and well attached to the substrate. [Scale 
bar = 2pm]
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Plate 6.72: TEM micrograph showing the basal region o f a rabbit oral 
mucosal/corneal epithelial hybrid culture on amniotic membrane at high 
magnification. Basal cells were attached to the substrate by hemidesmosomes 
(arrowheads). [Scale bar = 500nm]

Plate 6.73: TEM micrograph illustrating the numerous desmosomal junctions joining 
adjacent cells in all cell layers of the rabbit hybrid cultures. [Scale bar = 200nm].
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6.3.2.2 Corneal & Oral Mucosal Epithelial Hybrid Cultures Post-Transplant 

After 3 weeks on the ocular surface, the hybrid transplanted epithelium appeared to 

be in very good condition and closely resembled in vivo corneal epithelium. The 

epithelium formed 6-8 well-differentiated and stratified cell layers (plate 6.74). 

There were 3-4 layers of superficial cells, covered in short microvilli (plate 6.75). 

Basal cells were highly differentiated (plate 6.76) and were well attached to the 

amniotic membrane (plate 6.77). Adjacent cells in all cell layers were closely 

attached to each other by way of numerous desmosomal junctions (plate 6.78). 

There was little or no intercellular spacing. As with the original cultures, it was not 

possible to distinguish between the oral mucosal and corneal epithelial cell types on 

the basis o f morphology. The resulting cell layer closely resembled that o f normal 

corneal epithelium.

Plate 6.74: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell 
culture sheet, removed after 3 weeks on the cornea. The epithelium appeared to be in 
very good condition and closely resembled that of normal cornea, having formed 6-8 
well-differentiated and stratified cell layers. [Scale bar = 7pm]
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Plate 6.75: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell 
culture sheet, removed after 3 weeks on the cornea. The superficial cells were 
squamous and had short microvilli on their surface. [Scale bar = 1pm]

Plate 6.76: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell 
culture sheet, removed after 3 weeks on the cornea. Basal cells were columnar and 
tightly opposed to each other. [Scale bar = 2 pm]
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Plate 6.77: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell 
culture sheet, removed after 3 weeks on the cornea. Basal cells were well attached to 
the underlying amniotic membrane [AM], via hemidesmosomes (arrowheads). [Scale 
bar - 200nm]

Plate 6.78: TEM micrograph showing the corneal epithelium of a rabbit hybrid cell 
culture sheet, removed after 3 weeks on the cornea. Cells in all cell layers were 
tightly opposed and intercellular spacing was negligible. Mechanical strength was 
maintained by desmosomal junctions, as pictured above. [Scale bar = 200nm]

218



6.3.3 Quantitative Study

A number o f parameters were quantitatively compared between the hybrid cell 

culture pre-transplant and after 3 weeks on the rabbit ocular surface. Mean data 

(±S.D.) are shown in table 6.2 below. Fourteen data points were collected for each 

parameter except for the cell surface area which was calculated using scanning 

electron microscopy and therefore more measurements were permitted («=50).

Hybrid oral/corneal cells 
on AM (pre-transplant)

Hybrid oral/corneal cells 
on AM (post-transplant)

Rabbit corneal 
epithelium

Thickness o f cell 
layers (pm)

21.36 ± 8.31 33.58 ±13.75 20.55 ± 2.99

Number o f cell 
layers 5.14 ± 1.03 7.21 ± 1.81 7.79 ±  1.31

Intercellular space 
area (pm2)

0.50 ± 0 .24 0.08 ± 0.07 0.09 ± 0 .0 7

Number of 
desmosomes

1.64 ± 1.01 2.79 ± 1.42 2.57 ± 1.60

Number o f 
hemidesmosomes

2.71 ± 1.59 4.21 ± 1.53 8.29 ± 1.68

Cell surface area 
(pm2)

189.03 ± 132.56 794.11 ±446.84 788.19 ±200.53

Table 6.2: Comparison o f cultivated hybrid oral mucosal/comeal epithelial cells on 
AM before and 3 weeks after transplant onto the ocular surface. Both were compared 
with normal rabbit cornea and mean data (± S.D.) are shown. Fourteen random data 
points were taken, except for the cell surface areas in which case n=50. The averages 
for intercellular area and number of desmosomes are given for random 3 pm 
interfaces between adjacent cells.

For ease o f interpretation, mean data for the ‘before’ and ‘after’ transplant hybrid 

sheets were plotted as percentage differences from the control (normal rabbit corneal 

epithelium) and statistically compared. The hybrid cell cultures more closely 

resemble cornea than the oral mucosal cell cultures of the previous study. Prior to 

placement on the cornea, the rabbit comeal/oral mucosal hybrid culture was in fairly 

good condition. In terms of thickness of cell layers, the hybrid culture very similar to
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that o f normal cornea (P=0.982). There was however a significant (P<0.001) 33% 

decrease in the number of cells making up the epithelial layer. There was also a 

substantial increase (442%) in intercellular spacing, which would explain the above 

observation. The difference in number of desmosomes was not significant but there 

were significantly fewer hemidesmosomes attaching the basal cells to the AM than 

were found in the control cornea (P<0.001). Following a 3 week period on the 

cornea, the removed culture sheet even more closely resembled in vivo rabbit corneal 

epithelium. The only parameter in which there was a significant difference when 

compared with control epithelium was that o f numbers o f hemidesmosomes 

(PO.OOl). Chart 6.2 below compares the hybrid culture sheets before and after the 

transplant period.

I  600

P=<0.001

P=0.008 P=<0.001 P=0.021
P=0.017 P=<0.001

T hickness of cell layers Number of cell layers Intercellular sp a c e  area #  D esm osom es #  Hem idesm osom es Cell surface area

Chart 6.2: Comparison of cultivated rabbit hybrid cultures before transplant (purple) 
and after 3 weeks on the eye (blue), expressed as percentage difference from normal 
rabbit cornea control. Raw data were used to calculate statistical significance (P 
values) o f observed differences between mucosal cell types and these are stated 
above the bars.
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The 3 week placement on the rabbit cornea appeared to have improved the cells in 

most o f the parameters under study. The cell layer was 60% thicker following 

transplant (P=0.008) and the number of cell layers was also significantly increased, 

bringing it more in accordance with that of rabbit cornea (mean of 7.21 compared 

with 7.79 for control). Post-transplant, cells had formed a more compact layer, as 

indicated by the highly significant (P<0.001) reduction in intercellular space areas. 

Numbers o f desmosomes were increased, as were numbers o f hemi desmosomes, 

though neither were statistically significant improvements. Superficial hybrid cells 

post-transplant had almost identical cell surface areas to those of the control cornea.

6.3.4 Summary Interpretations

Examination of the cultivated hybrid oral mucosal and corneal epithelial cells by 

scanning and transmission electron microscopy revealed no noticeable difference 

between cell types, suggesting that co-culture results in oral mucosal cells becoming 

more comeal-like. There was no sign of any microplicae-like folds on the cell surface 

o f the mucosal cells; all superficial cells had a covering of finger-like microvilli as in 

the cornea and possibly as a result o f airlifting. Prior to transplant, the cultivated 

hybrid epithelial cells were healthy looking however the three week period on the 

eye seemed to have significantly improved the appearance o f the cultured epithelium. 

Following the transplant, the cultured cells were more robust, having formed a 

thicker cell layer with significantly smaller spaces between cells and a greater 

number o f junctions.
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7 RESULTS

7.1 Use of Extracellular Matrix Protein-Coated Gelatins as 

Carriers for Human and Rabbit Limbal Stem Cell Cultivation

Gelatin hydrogel sheets were coated with extracellular matrix (ECM) proteins 

(fibronectin, collagen IV and a combination of both) and their usefulness as a 

potential new substrate for stem cell culture was analysed morphologically using 

scanning and transmission electron microscopy. A quantitative study was also 

carried out to compare the cultivated limbal cells on gelatin with normal 

human/rabbit corneal epithelia.

7.1.1 Scanning Electron Microscopy

7.1.1.1 Coated Gelatin Sheets

Eight gelatin hydrogel sheets were analysed using scanning electron microscopy; two 

each o f uncoated gelatin, gelatin coated with fibronectin, gelatin with collagen type 

IV, and gelatin with both coatings together. At low magnifications it was difficult to 

see any apparent differences between the samples. Examination at high 

magnifications however revealed that the uncoated gelatin appeared porous and had 

distinct pits on its surface (plate 7.1). The ECM-coated samples appeared generally 

smoother and had less well-defined pores (plates 12-1 A). There were no evident 

differences in the morphology of the coatings.
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Plate 7.1: Scanning electron micrograph of an uncoated gelatin hydrogel sheet, taken 
at very high magnification. Surface pores are quite distinct. [Scale bar = 2pm]

Plate 7.2: Scanning electron micrograph of gelatin hydrogel coated with type IV
collagen, taken at very high magnification. Surface pores are less defined than in the
uncoated sheet. [Scale bar = 2pm]
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Plate 7.3: Scanning electron micrograph of gelatin hydrogel coated with fibronectin, 
taken at very high magnification. Surface pores are less defined than in the uncoated 
sheet and the coating seemed to form a smooth layer. [Scale bar = 2pm]

Plate 7.4: Scanning electron micrograph o f gelatin hydrogel coated with both type IV
collagen and fibronectin, taken at very high magnification. Surface pores were hardly
visible on this sample. [Scale bar = 2pm]
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7.1.2 Transmission Electron Microscopy

7.1.2.1 Coated Gelatin Sheets

It was evident from examination by transmission electron microscopy that there was 

a difference between the control (uncoated) gelatin and those with an ECM-coating. 

There were distinct pores/indentations on one surface of the control (plate 7.5). 

These pores were not particularly obvious when the gelatin was coated, however 

there were variations in thickness of coating along the length o f the section. There 

seemed to be only a very thin layer o f collagen IV (plate 7.6). The fibronectin layer 

was fairly uneven and the coating appeared patchy, varying from 50-200nm in 

thickness (plate 7.7). When both proteins were used to coat the surface a thick and 

even electron dense layer resulted which was up to 500nm thick (plate 7.8).
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Plate 7.5: Transmission electron micrograph of uncoated gelatin hydrogel, taken at 
high magnification. With no coating, the pits (indicated by arrows) on the surface 
appeared well-defined. [Scale bar = 200nm]

Plate 7.6: Transmission electron micrograph of collagen type IV coated gelatin 
hydrogel, taken at high magnification. There seemed to be a thin layer o f collagen 
type IV (arrow) which effectively reduced the pore size of the gelatin. [Scale bar = 
200nm]
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Plate 7.7: Transmission electron micrograph of fibronectin coated gelatin hydrogel, 
taken at high magnification. The fibronectin layer (arrow) was fairly uneven and the 
coating appeared patchy, varying from 50-200nm in thickness. [Scale bar = 200nm]

Plate 7.8: Transmission electron micrograph of collagen IV and fibronectin coated 
gelatin hydrogel, taken at high magnification. The ECM layer (arrow) was fairly 
evenly distributed was up to 500nm thick in places. [Scale bar = 200nm]



7.1.3 Scanning Electron Microscopy

7.1.3.1 Cultivated Human Corneal Epithelial Cells

The human corneal epithelial cells cultivated on ECM (collagen IV and fibronectin)- 

coated gelatins were generally in good condition (plate 7.9). There were however 

some areas devoid of cells, where the gelatin was exposed. Many cells appeared to 

be undergoing the process of desquamation, as would be expected in a healthy 

epithelial sheet (plate 7.9). Adjacent epithelial cells seemed to be well attached to 

each other, with little intercellular spacing and some distinct ridges at cell boundaries 

(plate 7.10). Apical microvilli were short and finger-like (plate 7.11), resembling 

those o f in vivo corneal epithelium.

Plate 7.9: Scanning electron micrograph of human corneal epithelial stem cells on
ECM-coated gelatin hydrogel, taken at very low magnification. Cultured cells were
in good condition. [Scale bar = 50pm]
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Plate 7.10: Scanning electron micrograph of human corneal epithelial stem cells on 
ECM protein coated gelatin hydrogel, taken at high magnification. Adjacent cells 
were well attached, with tightly opposed cell boundaries and distinct cell borders. 
[Scale bar = 5 pm]

Plate 7.11: Scanning electron micrograph of human corneal epithelial stem cells on
ECM protein coated gelatin hydrogel, taken at very high magnification. Superficial
cells had an apical covering of short microvilli. [Scale bar = 1pm]
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7.1.3.2 Cultivated Rabbit Corneal Epithelial Cells

Examination by scanning electron microscopy revealed the rabbit corneal epithelial 

cells cultivated on extracellular matrix protein coated gelatin to be generally in 

reasonable condition (plate 7.12). There was however a large number o f rounded 

(perhaps apoptotic) cells on the surface of the cell sheet (plate 7.12). Adjacent 

epithelial cells again seemed to be well attached to each other (plate 7.13). In places 

there were distinct ridges at cell boundaries. Superficial epithelial cells were covered 

in short and regular microvilli (plate 7.14)

Plate 7.12: Scanning electron micrograph of rabbit corneal epithelial stem cells on
ECM protein coated gelatin hydrogel, taken at very low magnification. While cells
formed a confluent layer, there were some rounded cells on the surface. [Scale bar =
50 pm]
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Plate 7.13: Scanning electron micrograph of rabbit corneal epithelial stem cells on 
ECM protein coated gelatin hydrogel, taken at high magnification. Adjacent cells 
were well attached to each other, with distinct ridges at cell-cell borders. [Scale bar = 
2 pm]

Plate 7.14: Scanning electron micrograph of rabbit corneal epithelial stem cells on
ECM protein coated gelatin hydrogel, taken at high magnification. The apical surface
o f the superficial cells was covered in microvilli. [Scale bar = 1pm]
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7.1.4 Transmission Electron Microscopy

7.1.4.1 Cultivated Human Corneal Epithelial Cells

Human corneal epithelial cells cultivated on ECM protein coated gelatin were in 

fairly good condition. There were 4-6 layers of well-stratified and differentiated 

epithelial cells (plate 7.15). Columnar basal cells appeared to be fairly well attached 

to adjacent cells, despite some rather large intercellular spaces. Basal cells seemed to 

be firmly attached to the gelatin though it was difficult to find any hemidesmosomal 

junctions and there did not appear to be a layer of secreted basement membrane 

material (plate 7.16). Superficial cells formed approximately 2-3 cell layers, again 

with some large spaces between cells (plate 7.17).

Plate 7.15: Transmission electron micrograph of human corneal cells cultivated on 
gelatin hydrogel, taken at low magnification. The cells appeared to be in fairly good 
condition and formed approximately 6 well-stratified and differentiated cell layers. 
There were some large intercellular spaces. [Scale bar = 2pm]
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Plate 7.16: Transmission electron micrograph showing the basal region o f a human 
corneal epithelial cell culture on gelatin hydrogel. Basal cells appeared to be firmly 
adhered to the substrate though it was difficult to find any evidence of 
hemidesmosomes or basement membrane material secretion. [Scale bar = 200nm].

Plate 7.17: Transmission electron micrograph of human corneal cells cultivated on 
gelatin hydrogel, taken at low magnification. Superficial cells were squamous and 
formed 2-3 layers with some large spaces between cells. Apically, there was a 
covering o f short microvilli. [Scale bar = 1pm]

233



7.1.4.2 Cultivated Rabbit Corneal Epithelial Cells

The rabbit corneal epithelial cells cultivated on ECM protein coated gelatin were in 

good condition and formed 8-10 layers of well-stratified and differentiated 

epithelium (plate 7.18). There were some fairly large spaces between adjacent cells 

in all cell layers. Basal cells were columnar and well attached to adjacent cells. 

Attachment to the gelatin was by way of numerous hemidesmosomal junctions and 

there appeared to be secretion of basement membrane material (plate 7.19). 

Superficial cells were squamous in appearance and formed approximately 3-4 cell 

layers (plate 7.20). Desmosomes joined adjacent cells in all cell layers (plate 7.21).

Plate 7.18: Transmission electron micrograph o f rabbit corneal cells cultivated on
gelatin hydrogel, taken at low magnification. The cells formed approximately 8-10
well-stratified and differentiated cell layers. [Scale bar = 5 pm]
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Plate 7.19: Transmission electron micrograph showing the basal region of cultivated 
rabbit corneal epithelial cells [RC] on gelatin. Basal cells were well attached to the 
substrate with numerous hemidesmosomes (arrowheads). They appeared to be 
secreting basement membrane material (*). [Scale bar = 200nm].

Plate 7.20: Transmission electron micrograph of rabbit corneal cells cultivated on
gelatin hydrogel, taken at high magnification. Superficial cells formed 3-4 layers
and had microvilli on their apical surface. [Scale bar = 2(um]
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Plate 7.21: Transmission electron micrograph o f rabbit corneal cells cultivated on 
gelatin hydrogel, taken at high magnification. Adjacent cells in all cell layers were 
joined by numerous desmosomal junctions, as depicted above. [Scale bar = lOOnm]

7.1.5 Quantitative Study

Corneal cells cultivated on collagen IV and fibronectin-coated gelatins were 

compared to control corneal epithelium quantitatively across a number of parameters 

and the mean data (±S.D.) are shown in table 7.1 overleaf. Fourteen data points were 

collected for each parameter except for the cell surface area which was calculated 

using scanning electron microscopy and therefore facilitated more measurements 

(n=50). Percentage differences from control cornea and statistical significances of 

the observed differences were calculated.
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Cultivated 
human corneal 
cells on gelatin

Human corneal 
epithelium

Cultivated rabbit 
corneal cells on 

gelatin

Rabbit corneal 
epithelium

Thickness o f cell 
layers (pm)

21.96 ±2 .45 29.02 ± 2.29 41.00 ± 9.09 20.55 ± 2.99

Number o f cell 
layers 5.71 ± 1.27 6.64 ± 0 .74 9.14 ± 1.23 7.79 ± 1.31

Intercellular 
space area (pm2)

1.06 ± 0 .94 0.11 ± 0 .08 0.60 ± 0 .36 0.09 ± 0.07

Number of 
desmosomes 1.93 ± 1.64 3.21 ± 1.37 1.86 ± 1.17 2.57 ± 1.60

Number of 
hemidesmosomes 0.36 ± 0.84 4.71 ± 1.44 4.57 ± 1.95 8.29 ± 1.68

Cell surface area 
(pm2)

956.29 ± 
474.51

1093.89 ±335.43 241.00 ± 170.19 788.19 ±200.53

Table 7.1: Comparison of cultivated human and rabbit corneal cells on ECM-coated 
gelatin with in vivo controls. Mean data (± S.D.) are shown. Fourteen data points 
were taken at random, except for the cell surface areas in which case n=50. The 
averages for intercellular area and number of desmosomes/hemidesmosomes are 
given for random 3pm long interfaces between adjacent cells.

Human corneal epithelial cells on a gelatin carrier were fairly comparable to the 

corneal control epithelium. The most apparent differences were an 852% increase in 

intercellular spaces and a 92% reduction in numbers of basal junctions in the cultured 

cells as compared with control. Whilst there were slight observed reductions in cell 

surface area and numbers o f cell layers, these differences were not statistically 

significant. Differences that were deemed highly significant included a reduction in 

the thickness of the cell layers (P<0.001), an increase in intercellular space areas 

(PO.OOl) between cells as well as fewer desmosomes (P=0.033) and 

hemidesmosomes (PO.OOl). Since human cells available for culture are not always 

in good condition, rabbit cells were cultivated on the gelatin hydrogel to act as a 

comparison and to help more accurately gauge the usefulness of gelatin as a culture

substrate.
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With the exception of numbers of desmosomes, the rabbit cell culture on gelatin 

hydrogel had highly significant differences for each parameter when compared to the 

rabbit cornea control. The rabbit cell culture was approximately twice the thickness 

o f the control corneal epithelium (99% thicker, P<0.001), and there was a 

corresponding 550% increase in intercellular spaces (PO.OOl) between cultured 

cells, when compared with the control. In addition, the cultured cells had 

significantly fewer hemidesmosomes (PO.OOl) attaching the basal cells to the 

gelatin than were present in the corneal control.

7.1.6 Summary Interpretations

Gelatin samples appeared to be in good condition and were successfully coated with 

extracellular matrix proteins. Examination by SEM showed that there were very 

obvious pits in the surface of the uncoated gelatins which became less apparent when 

ECM coatings had been applied. Transmission electron microscopy revealed that the 

coatings varied in thickness along the length of the sections, possibly as a result of 

the pores on the surface. It seemed that the collagen type IV coating was the thinnest 

while the thickest ECM layer resulted when both proteins were applied together. 

Human and rabbit corneal epithelial cells cultivated on coated gelatins appeared to be 

in good condition. The human cells formed 4-6 layers while the rabbit culture 

formed 8-10 layers. Both cell types were well attached to the gelatin substrate though 

rabbit cells appeared to be in better condition than the human cells with smaller 

intercellular spaces, more desmosomes and more hemidesmosomal junctions.
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8 RESULTS

8.1 Human Serum in Corneal Epithelial Cell Culture

Foetal bovine serum is conventionally used in the culture of corneal epithelial cells 

for transplant. Given the concerns over the use of animal sera in human cell cultures, 

an investigation was launched into the feasibility of replacing the bovine serum with 

that o f human origin. To this end, human corneal epithelial cells cultivated with 

human serum were examined by SEM and TEM and quantitatively compared to 

those cultured using bovine serum as well as to control in vivo human cornea.

8.1.1 Human Corneal Cell Cultures on AM: Experimental Samples

Human corneal epithelial cells were cultivated on amniotic membrane by project 

collaborators at Kyoto Prefectural University of Medicine (Kyoto, Japan) and 

transported to Lancaster University for analysis. Cells from four different donors 

were used in this investigation (eye bank tissue); three were cultured using human 

serum in the culture medium (termed ‘serum 1-3’ respectively) and one using foetal 

bovine serum (FBS). In addition to the foetal bovine serum control culture (current 

standard), normal human corneal epithelium was used as the target against which 

each o f the cultured epithelia could be quantitatively compared.
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8.1.2 Scanning Electron Microscopy

8.1.2.1 Human Serum-Cultivated Corneal Cells on A M

All three cultures of human corneal epithelial cells created using a human serum 

culture system appeared to be in very good condition (plates 8.1A-C). Superficial 

cell surface areas were similar in all cases; mean values (±S.D.) were 502.8jam2 

(±238.4; serum 1), 536.6pm2 (±205.7; serum 2) and 647.1pm2 (±324.7; serum 3). 

Adjacent cells were closely attached to each other with tightly opposed borders and 

distinct ridges at cell boundaries (plates 8.2A-C). At high magnification and on all 

samples, there was an apical covering of short, regular microvilli (plates 8.3A-C). 

Scanning electron microscopy revealed no discernible differences between the 

cultured tissues from different donors.

8.1.2.2 FBS-Cultivated Human Corneal Cells on A M

Since foetal bovine serum is frequently used in cell culture experiments, it was used 

in this study as a benchmark for the current technique. Examination o f FBS- 

cultivated human corneal cells on amniotic membrane revealed a continuous layer of 

polygonal epithelial cells with a mean surface area of 630.3pm2 (S.D.±319.6) (plate 

8 .ID). The appearance of these cells was not dissimilar to those cultivated with 

human serum. Adjacent cells were tightly opposed with distinct cell borders (plate 

8.2D) and all cells had an apical covering of short, regular microvilli (plate 8.3D).
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Plate 8.1: Scanning electron micrographs of human corneal cells cultivated using 
human serum, taken at low magnification. Figures represent cultures as follows; 
serum 1 (A), serum 2 (B), serum 3 (C) and FBS (D). All cultures appeared very to be 
in very good condition, with tightly opposed adjacent cells. There were some cells 
undergoing the process of desquamation in each of the samples. [Scale bars = 10pm]
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Plate 8.2: Scanning electron micrographs of human corneal cells cultivated using 
human serum, taken at high magnification. Figures represent cultures as follows; 
serum 1 (A), serum 2 (B), serum 3 (C) and FBS (D). In all cultures, adjacent 
superficial cells were closely attached to each other and exhibited distinct cell 
boundaries with very little intercellular spacing. [Scale bars = 2pm]
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Plate 8.3: Scanning electron micrographs of human corneal cells cultivated using 
human serum, taken at very high magnification. Figures represent cultures as 
follows; serum 1 (A), serum 2 (B), serum 3 (C) and FBS (D). In all samples, the 
epithelium had an apical covering of short, regular microvilli. [Scale bars = 1pm]
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8.1.3 Transmission Electron Microscopy

8.1.3.1 Human Serum-Cultivated Corneal Cells on A M

The human limbal cells cultured on denuded AM using human serum were generally 

in good condition and appeared to be in a better state than the culture using foetal 

bovine serum (described in section 8.1.3.2). Cells formed 4-6 well-stratified and 

differentiated cell layers, varying in thickness between cultures (plates 8.4A-C). 

Basal cells (plates 8.5A-C) were well attached to the underlying AM with numerous 

hemidesmosomal junctions and appeared to be secreting basement membrane 

material (plates 8.6A-C). There were some fairly large intercellular spaces between 

cells in the ‘serum 2’ culture, especially in the basal regions (plate 8.5B). Cell 

cultures using sera 1 and 3 were more compact. Superficial cells were squamous in 

appearance and had short regular microvilli on their apical surface (plates 8.7A-C). 

Cells in all layers were joined with frequent desmosomal junctions (plates 8.8A-C).

8.1.3.2 FBS-Cultivated Human Comeal Cells on AM

Human limbal cells were cultured on denuded AM using foetal bovine serum (FBS) 

for comparison. Cells formed 4-6 layers, though they were less well differentiated 

than would be expected (plate 8.4D). There were large intercellular spaces between 

adjacent cells at all cell layers, though they were particularly prominent in the basal 

regions (plate 8.5D). Basal cells were well attached to the underlying AM and 

appeared to be secreting basement membrane material (plate 8.6D). 

Hemidesmosomal junctions were less frequent than in the human serum cell cultures. 

Squamous superficial cells had short regular microvilli on their apical surface (plate 

8.7D). Cells in all layers were joined with desmosomal junctions (plate 8.8D) though 

these were less abundant than in the human serum cultures.
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Plate 8.4: Transmission electron micrographs of human corneal cells cultivated on 
amniotic membrane [AM] using human serum, taken at low magnification. Figures 
represent cultures as follows; serum 1 (A), serum 2 (B), serum 3 (C) and FBS (D). 
Each culture produced 4-6 layers of well-stratified and differentiated cells. The 
culture using foetal bovine serum (D) was less healthy-looking than the human 
serum cultures and had large intercellular spaces between cells in all cell layers. 
[Scale bars: A, B and D = 2jum, C = 5pm]
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Plate 8.5: Transmission electron micrographs of human corneal cells cultivated on 
amniotic membrane [AM] using human serum, taken at high magnification. Figures 
represent cultures as follows; serum 1 (A), serum 2 (B), serum 3 (C) and FBS (D). 
Most o f the basal cells were columnar in shape, though some areas of the cultures 
were better differentiated than others. There were large intercellular spaces between 
basal cells of the FBS culture (D). [Scale bars = 2pm]
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Plate 8.6: Transmission electron micrographs at very high magnification to illustrate 
the basement membrane regions of human corneal cells cultivated using human 
serum. Figures represent samples as follows; serum 1 (A), serum 2 (B), serum 3 (C) 
and FBS (D). Limbal cells were well adhered to the denuded amniotic membrane, 
and extended interdigitations into the substrate. There also appeared to be 
hemidesmosomal junctions (arrowheads) and secretion of basement membrane 
material (asterisk) in each of the cultures. [Scale bars = 500nm]
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Plate 8.7: Transmission electron micrographs taken at high magnification to show 
the superficial cell layers o f human serum cultivated human limbal epithelial cells. 
Figures represent samples as follows; serum 1 (A), serum 2 (B), serum 3 (C) and 
FBS (D). Superficial cells were squamous in appearance and there were generally 
smaller intercellular spaces in this region than basally. [Scale bars: A =lpm , B-D = 
2 pm]
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Plate 8.8: Transmission electron micrographs at high magnification show cultivated 
human limbal epithelial cells. Figures represent samples as follows; serum 1 (A), 
serum 2 (B), serum 3 (C) and FBS (D). Cells in all layers were joined by numerous 
desmosomal junctions, though there were bigger intercellular spaces and fewer 
junctions in the culture using bovine serum than those using human sera. [Scale bars 
= 200nm]
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8.1.4 Quantitative Study

Both human serum and FBS-cultivated comeal cells on amniotic membrane were 

compared to normal human comeal epithelium (post-mortem tissue, identical to 

previous studies) quantitatively across a number of parameters. The mean data 

(±S.D.) are shown in table 8.1 below. Fourteen data points were collected for each 

parameter, except for the cell surface area which was determined using scanning 

electron microscopy and as such more measurements were facilitated («=50).

Human serum Human serum Human serum FBS Human
culture 1 culture 2 culture 3 culture corneal epi

Thickness o f cell 
layers (jam)

17.73 ± 1.35 25.21 ±2 .38 47.40 ± 3.06 33.20 ± 
10.52 29.02 ± 2.29

Number o f  cell 
layers

5.21 ± 0.89 5.71 ±0.91 7.21 ± 1.42 6.21 ± 1.12 6.64 ±  0.74

Intercellular 
space area (pm2)

0.15 ± 0.18 0.79 ±0 .52 0.94 ± 0.67 1.12 ± 0 .76 0.11 ± 0 .08

Number of 
desmosomes

1.64 ± 1.01 1.57 ± 0 .94 1.93 ± 1.54 1.14 ±0 .95 3.21 ± 1.37

Number of 
hemidesmosomes 3.07 ± 1.69 2.00 ± 1.57 3.50 ± 1.40 1.79 ± 1.42 4.71 ± 1.44

Cell surface area 502.80 ± 536.59 ± 647.07 ± 630.25 ± 1093.89 ±
(pm2) 240.77 207.75 327.96 322.88 335.43

Table 8.1: Comparison of human and foetal bovine serum-cultivated comeal cells on 
AM with normal human cornea. Mean data (± S.D.) are shown. Fourteen data points 
were taken at random, except for the cell surface areas in which case «=50. The 
averages for intercellular area and number of desmosomes/hemidesmosomes are 
given for random 3 pm long interfaces between adjacent cells.

For ease o f graphical illustration, mean data were plotted as percentage differences 

from the control (human cornea). Charts were plotted for each of the human serum 

cultures (1-3) and for the foetal bovine serum cultivated cells, to enable comparison 

with the target; control cornea.
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8.1.4.1 Human Serum (1) Cultivated Corneal Epithelial Cells

From the morphological analyses, it was apparent that o f all the human serum 

cultures, ‘serum 1’ cells most closely resembled control cornea; in terms o f 

stratification, differentiation and intercellular spacing. The quantitative study added 

further credence to these observations. Intercellular spacing was increased by 38.5% 

in the cultured cells (P=0.414). In all other parameters, observed differences were 

found to be statistically significant. The cell layer was 38.9% thinner (P<0.001) with 

a 21.5% reduction in cell layers (PO.OOl), when compared to control cornea. In 

addition there were significantly fewer desmosomes (P 0 .002) and hemidesmosomes 

(P=0.010) in the cultivated cells than in the control human corneal epithelium.

8.1.4.2 Human Serum (2) Cultivated Corneal Epithelial Cells

Human ‘serum 2’ cultivated cells differed more significantly from the control than 

the ‘serum 1’ cells (section 8.1.4.1). Most significant was the 608.3% increase in 

intercellular spacing in this culture (PO.OOl), when compared to the control corneal 

epithelium. In fact, the human ‘serum T  cultivated cells differed significantly from 

the control in each parameter under study. Even the relatively small reductions in the 

thickness (13.1%, PO.OOl) and the number of cell layers (14.0%, PO .018) were 

statistically significant. When compared to normal human cornea, there were 51.1% 

fewer desmosomes (PO.OOl) joining adjacent cells and 57.6% fewer 

hemidesmosomes (PO.OOl) attaching the basal cells to the underlying matrix. In 

addition, the superficial epithelial cells in this culture had a 51% smaller surface area 

than the control.
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8.1.4.3 Human Serum (3) Cultivated Corneal Epithelial Cells

The most notable statistically significant difference in the 'serum 3’ cultivated cells 

when compared to control cornea, is that of a 746.8% increase in intercellular spaces 

(PO.OOl). The 8.6% increase in number of cell layers was not a statistically 

significant difference (P=0.195) however all other parameters were. In this instance, 

the cell layer was significantly thicker than the control (by 63.3%, PO.OOl). 

Previously described cultures using human serum (sections 8.1.4.1 and 8.1.4.2) had 

thinner epithelial cell layers than the control. As well as having more cell layers, this 

increase in thickness is probably attributable to the comparatively large areas of 

intercellular space. There were significantly fewer desmosomes (P=0.028) and 

hemidesmosomes (P=0.032) in the cultured epithelium than in the control, however 

percentage wise, these differences were smaller than in each o f the other cultures.

8.1.4.4 FBS Cultivated Corneal Epithelial Cells

In terms of thickness of cell layers, the FBS-cultivated corneal cells were marginally 

(14.4%) thicker than those in the control cornea, despite having slightly (6.5%) fewer 

cell layers. Neither of these differences was statistically significant. In all other 

parameters studied, the observed differences were statistically highly significant. 

The FBS-cultivated cells had the biggest intercellular spaces of all the cultured cells, 

with a 9-fold increase compared with the control corneal epithelium (PO.OOl). With 

regard to numbers of desmosomes and hemidesmosomes, again, differences with the 

control were more marked in this culture than for the human serum cultures. There 

was a significant 64.4% reduction in numbers of desmosomes (PO.OOl) and 62.1% 

fewer hemidesmosomes (PO.OOl) in the FBS-cultured cells. Superficial cells were 

42.4% smaller than in the control corneal epithelium.
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8.1.4.5 Comparisons o f  Human Serum and FBS Cultivated Cells 

Since foetal bovine serum is routinely used in cell culture media and represents the 

most readily available option to date, each of the human serum cultures were 

quantitatively compared to the FBS-cultured corneal epithelial cells to gauge its 

relative usefulness in culture. Separate charts were plotted to compare each of the 

human serum-cultured corneal epithelial sheets with that using FBS.

Chart 8.1 shows the comparison between human ‘serum 1’ cultured cells and those 

using FBS. Observed differences were all statistically significant, with the exception 

o f desmosome counts (P=0.188). The ‘serum 1’ culture had significantly fewer cell 

layers (P=0.024) and therefore a thinner epithelium (PO.OOl) than the FBS culture. 

Superficial cell surface areas were also slightly smaller in the human serum 

cultivated cells (P=0.023). Most obvious was the highly significant reduction in 

intercellular spaces in the human serum-cultivated cells, when compared to those 

cultured with bovine serum. There were almost twice the number o f 

hemidesmosomes in the human serum cultivated cells than in the FBS culture 

(P=0.038).

In chart 8.2, comparing human ‘serum T  with FBS-cultivated corneal epithelial cells, 

it is evident that the cultures were more comparable. Only that the human serum 

cultured epithelium was thinner was a significant difference (P=0.037). All other 

quantified differences were not significant however the human serum cultivated cells 

had fewer cell layers (P=0.207) and smaller cells (P=0.088), fewer junctions 

(desmosomes, P=0.240; hemidesmosomes, P =0.708) and smaller intercellular spaces 

(P=0.197) than the FBS-cultivated epithelium.
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Thickness of cell layers Number of cell layers Intercellular sp ace  area #  D esm osom es #  Hem idesm osom es Cell surface area

Chart 8.1: Comparison of human serum (1, blue) and FBS (purple) cultivated human 
corneal epithelial cells on AM, expressed as percentage difference from normal 
human cornea control. Raw data were used to calculate statistical significance (P 
values) o f observed differences between the culture systems and these are stated 
above the bars.
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#  H em idesm osom es Cell su rface area#  D esm osom esH iick n ess  of cell layers Num ber of cell layers Intercellular sp a c e  area

Chart 8.2: Comparison of human serum (2, pink) and FBS (purple) cultivated human 
corneal epithelial cells on AM, expressed as percentage difference from normal 
human cornea control. Raw data were used to calculate statistical significance (P 
values) of observed differences between the culture systems and these are stated 
above the bars.
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Chart 8.3: Comparison of human serum (3, lilac) and FBS (purple) cultivated human 
corneal epithelial cells on AM, expressed as percentage difference from normal 
human cornea control. Raw data were used to calculate statistical significance (P 
values) o f observed differences between the culture systems and these are stated 
above the bars.

The comparison of human ‘serum 3’ cultured cells with those using FBS is depicted 

in chart 8.3 above. The human serum cultivated epithelium was found to be 

significantly thicker (PO.OOl) and to have significantly more cell layers (0.049) than 

the FBS cultured cells. The human serum culture had smaller intercellular spaces, 

though this was not a statistically significant difference (P=0.395), neither was the 

increase in numbers of desmosomes (PO.117). There was a significant increase in 

hemidesmosomal junctions in the human serum culture when compared to the FBS 

cultivated cells (P0.004). Differences in superficial cell surface area were minimal 

between cultures and were not statistically significant.



8.1.5 Summary Interpretations

This experiment was designed to compare the relative efficacy o f human serum in 

culture media with that of foetal bovine serum, in terms o f cultivated corneal stem 

cell morphology. Scanning electron microscopy revealed little in the way of 

differences; all cultured cells appeared healthy and well-formed with tightly opposed 

cell borders and surface microvilli. Transmission electron microscopy highlighted 

some variations not evident by SEM analysis. Of the three human serum cultures 

studied, the first most closely resembled normal human cornea in terms of 

stratification, differentiation and intercellular spacing. The FBS-cultivated cells had 

the biggest intercellular spaces of all the cultured cells, as well as the smallest 

numbers o f desmosomes and hemidesmosomes. To summarize, the cells cultured 

using bovine serum were least like the control human cornea.
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9 DISCUSSION

Overview of the Aims of this Thesis

While ex vivo expansion of limbal stem cells on amniotic membrane for ocular 

surface reconstruction has proven largely successful, it is not an infallible technique. 

Limitations include shortage of donor materials, risk of allograft rejection and the 

need for prolonged intensive immune suppression. The central aim of this thesis was 

to use microscopic and immunohistochemical techniques to refine tissue engineering 

o f the cornea in the pursuit of more superior cell sheets for transplantation onto the 

ocular surface. Each of the results chapters in this thesis has described a potential 

area o f improvement, specifically:

4  An investigation into the comparative merits of cellular and denuded amniotic 

membrane as a carrier for cultivated human limbal stem cells (chapter 3).

4  An evaluation of amniotic membrane as a supportive matrix for the culture of 

corneal endothelial cells for grafting into dystrophic eyes. In addition, an 

investigation into the use of polyphenol antioxidant for preserving corneal 

endothelial cells, pre-transplant (chapter 4).

4  The ultrastructural and immunohistochemical characterization of freeze-dried 

amniotic membrane and evaluation of its suitability as an alternative substrate 

to conventionally cryopreserved tissue (chapter 5).

4  Analysis o f the human oral mucosa as a potential source o f stem cells for 

autologous corneal grafts (chapter 6).

257



^  An examination o f extracellular matrix protein coated gelatin hydrogels as 

alternative carriers for limbal stem cell cultures (chapter 7).

4- An investigation into the feasibility of replacing foetal bovine serum in the 

culture medium with that of human origin (chapter 8).

A number o f techniques were employed to evaluate the success or otherwise o f these 

adaptations to the culture technique. Light, scanning electron and transmission 

electron microscopy were used to study cell morphology and observed differences 

were quantified to the best possible extent. The parameters chosen for quantification 

were considered important for the following reasons. The thickness of epithelial cell 

layers determines the extent of protection from bacteria and other contaminants of 

the ocular surface, however too thick a cell layer restricts oxygen and tear film 

permeability as well as acting as a physical hindrance. Likewise the number o f cell 

layers offers some indication of the extent of stratification and differentiation which 

is more easily quantifiable (5-6 cell layers is considered optimal for the corneal 

epithelium). Calculation of areas of intercellular space and corresponding numbers of 

desmosomes provides information about the mechanical strength o f the epithelial 

sheet; the more densely packed the cells in the tissue and the more intercellular 

junctional complexes, the better equipped it is to withstand the rigours of 

transplantation. Similarly basal junctions were quantified since good attachment to 

the carrier is vital for ensuring the cells do not simply extricate when the graft 

recipient blinks. Scanning electron microscopy enabled the accurate quantification of 

cell surface areas and thus provides information about the rate o f cell proliferation 

and differentiation; small cells indicative of a lack of differentiation or perhaps too 

rapid a rate of division. Morphological and quantitative results from each o f the 

studies described will be discussed in turn in the following sections.



9.1 Comparison of Cellular and Denuded Amniotic Membrane as 

Carriers for Human Limbal Stem Cell Cultivation

9.1.1 Background

The corneal epithelium is a self-renewing tissue maintained by the proliferation of 

stem cells located at the limbus (Schermer et al., 1986; Cotsarelis et a l, 1989). 

Severe ocular surface disorders can deplete the limbal stem cell supply, resulting in 

invasion o f the neighbouring opaque conjunctival epithelium and a loss of visual 

acuity (Shapiro et a l, 1981; Tseng, 1996). In order to reconstruct such damaged 

ocular surfaces a number of surgical techniques have been developed in the past 20 

years including conjunctival transplantation (Thofit, 1977), keratoepithelioplasty 

(Thoft, 1984) and the grafting of donor (Tsai and Tseng, 1994) or autologous (Dua 

and Azuara-Blanco, 2000a) limbal epithelium. Since the pioneering work of 

Pellegrini et al. (1997) in which ex vivo expanded biopsy-derived limbal epithelial 

cells on a petrolatum gauze carrier were transplanted in patients with severe 

unilateral disorders, attention has been focused on finding appropriate substrates on 

which to culture limbal epithelial cells and on refining existing procedures for ocular 

surface reconstruction.

A suitable substrate/carrier ought to be biocompatible, flexible, mechanically strong, 

permeable for nutrient transport and able to support surface epithelial cell growth. 

Mechanical or tensile strength is essential for any graft to survive the rigors of 

transplantation, not least onto the ocular surface. Following a transplant operation, 

the cultured epithelium must be able to withstand the physical forces of blinking and 

eyeball movement, as well as potential blows and straining effects. Equally important
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in a comeal graft is the provision of a source of stem cells for adequate self-renewal 

and long-term graft survival, especially in patients presenting total limbal stem cell 

deficiencies. Precise functioning o f the cornea is essential for good vision and relies 

upon the continual production of new epithelial cells, their appropriate differentiation 

and eventual desquamation from the ocular surface. Functional properties need to be 

maintained through differentiation as cells constantly stream towards the surface, 

hence the need for a supply of specialized stem cells (Kruse, 1994; Dua and Azuara- 

Blanco, 2000b). A delicate balance is required between supplying sufficient stem 

cells for renewal and providing enough terminally differentiated comeal-like cells to 

maintain essential comeal functions.

The human amniotic membrane (AM) has been used by many investigators, both 

with and without limbal epithelial transplantation to reconstruct severely damaged 

ocular surfaces (Shimazaki et a l, 1997; Tseng et a l, 1998; Azuara-Blanco et al., 

1999; Gabric et a l, 1999; Chen et al., 2000; Hanada et al., 2001). It consists o f a 

collagenous stroma and thick basement membrane of predominantly type IV collagen 

and laminin which closely resembles that of the conjunctival and comeal epithelium 

(Fukuda et a l, 1999). In addition, AM has been reported to promote epithelialization 

after transplantation via intrinsic growth factors (EGF, HGF and KGF) (Koizumi et 

al., 2000c) and to exhibit anti-inflammatory effects by way of its suppression of 

epithelial interleukins (Solomon et a l, 2001), prevention of polymorphonuclear cell 

infiltration into the comeal stroma (Park and Tseng, 2000) and inhibition of protease 

activity (Kim et a l, 2000). It is widely accepted as a useful adjunct for ophthalmic 

surgery, though the optimal conditions for its use have yet to be established. In the 

pursuit o f an effective method for reconstructing the damaged ocular surface, several
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research groups have developed culture systems which use human AM as a carrier. 

Project collaborators at the Kyoto Prefectural University o f Medicine developed a 

limbal epithelial culture system based on that established by Rheinwald and Green 

(1975) using denuded (acellular) AM as a carrier, supported by a 3T3 fibroblast 

feeder layer and airlifting techniques. They have produced well-stratified and 

morphologically differentiated cellular multilayers which closely resemble in vivo 

corneal epithelium and have been successfully used surgically to cover the severely 

damaged ocular surfaces of patients with SJS, OCP and chemical injury (Koizumi et 

al., 2001a; Koizumi et a l, 2001b). Another established culture system is that using 

limbal explants on cellular AM, performed without the 3T3 feeder layer and 

airlifting. Recently, Grueterich and co-workers have shown that this system preserves 

stem cells or limbal epithelial progenitor cells and have produced cultured cell sheets 

which exhibit slow cell cycling, label-retaining characteristics and do not express 

keratins 3 and 12 or connexin 43 (Meller et al., 2002; Grueterich et al., 2002a); 

features which are found in the stem cell-containing limbal basal epithelium.

Given these developments, this investigation aimed to compare human limbal 

epithelial cells cultured on denuded AM (in which the basement membrane is 

exposed by the enzymatic removal of host epithelial cells) with those on cellular AM 

(where amniotic epithelial cells are retained) using a cell-suspension culture method 

and to ultimately determine the more suitable carrier for use in transplantation, in 

terms of morphological appearance and overall mechanical strength. Earlier 

investigations to compare substrates in this manner have only involved the use of 

animal tissue (Koizumi et a l, 2000b; Koizumi et a l,  2001a).
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9.1.2 General Discussion of Results

This study was designed to compare the morphology of human limbal cells cultured 

on denuded and cellular membranes, using microscopic techniques. While AM has 

been successfully used in many surgical applications over the years, there is still 

some debate as to optimal conditions for use. The results of SEM and TEM 

examinations, presented in chapter 3, were quite conclusive. Limbal cells cultivated 

on denuded AM were well stratified and differentiated (plate 3.9), very similar in 

appearance to in vivo corneal epithelium. Additionally, basal limbal cells were 

attached directly to the basement membrane with numerous hemi-desmosomal 

junctions and appeared to be secreting basement membrane material. By contrast, 

limbal cells grown on cellular AM typically formed a monolayer (plate 3.10) and 

attachment to the underlying amniotic epithelial cells was via infrequent desmosomal 

junctions (plate 3.14); an observation which has also been made in rabbit cultures 

(Koizumi et al., 2000a). The need for a mechanically robust cell sheet for clinical 

application in ocular surface reconstruction cannot be understated and over the years 

a number o f different culture systems have been employed to achieve this end. The 

cell-suspension system used in this project was developed in 2002 (Koizumi et al., 

2002) and typically uses denuded AM as the substrate of choice. TEM examination 

o f the current samples confirmed the supposition that exposure of the basement 

membrane by denuded AM promotes epithelial growth and encourages better cellular 

adhesion and stratification, probably as a result of the direct contact between the 

growth factors/ECM adhesion proteins in the basal lamina and the cultivated cells.

In terms o f the cellular substrate, amniotic epithelium appeared to have been severely 

disrupted by the process of cryopreservation and the cells were clearly no longer
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viable (plate 3.10). This process, the most commonly used method of preserving AM 

for use in ocular surface reconstruction, involves placing tissue on nitrocellulose 

paper in a part glycerol solution and subsequent storage in liquid nitrogen fumes at 

-80°C until surgery. Ice crystals form, causing irreversible damage to cellular 

organelles and as such, amniotic epithelial cells are not viable after preservation. 

Kruse and co-workers, in a study on the effects o f cryopreservation on membranes, 

found that cells removed from preserved AM were not capable of proliferation in 

culture (Kruse et al., 2000) and conclude that amniotic membrane grafts seem to 

function primarily as matrix and not by virtue of transplanted functional cells. The 

results o f this thesis corroborate the findings of Kruse. It is likely that the poor 

structural condition o f the necrotic amniotic epithelial cells would account for their 

weak attachment both to the underlying membrane (plates 3.15-16) and to the 

superior limbal epithelial cells (plate 3.3). Though junctional complexes were very 

few in number in the limbal culture on cellular AM (plate 3.14), it is surprising that 

they were able to form at all and the exact mechanism through which desmosomes 

are able to form between viable and non-viable cells remains a mystery.

Previous studies by project collaborators in the Kyoto group using rabbits (Koizumi 

et al., 2000a) alongside clinical studies of cultivated limbal epithelial transplantation 

(Koizumi et al., 2000b; Koizumi et al., 2001a) have illustrated the need for good 

cellular attachment to the AM extracellular matrix. Without this, early survival o f the 

transplanted graft cannot be expected. It has been reported that the presence of 

devitalized cryopreserved amniotic epithelial cells compromises the growth and 

attachment o f limbal epithelial cells and in turn, detriments the integrity o f the 

transplanted epithelium (Koizumi et al., 2000a), an observation further supported by
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the results of this thesis (plate 3.3). Animal experiments by Ti et al. (2002) describe 

long-term observations of limbal epithelial cells cultivated on cellular AM in rabbits 

and also corroborate the results of this thesis, suggesting that insufficient adhesion 

complexes are formed on the cellular substrate which result in susceptibility to such 

trauma as exposure, blinking and explant removal at the time of transplantation. 

Strong attachments both between adjacent epithelial cells and between basal cells 

and the AM matrix are crucial for the graft to survive the mechanical stresses 

inherent in transplantation.

It is generally accepted that outgrowth is slower on intact AM than on epithelially 

denuded AM (Koizumi et al., 2000a; Grueterich and Tseng, 2002) therefore it has 

been speculated that amniotic epithelial cells directly hinder growth and impair 

attachment by forming a barrier between the membrane and the limbal cells. Cellular 

AM used on its own has been shown to be beneficial when spread on bare sclera in 

inhibiting conjunctival overgrowth (Koizumi et al., 2001a), which would imply that 

cellular AM does not encourage cell growth. In the investigations of this thesis, 

TEM coupled with quantitative data analysis showed that denuded AM produced 

significantly smaller intercellular spacing and an increase in desmosomal junctions 

between adjacent limbal cells (chart 3.1). Both factors help to maintain the integrity 

o f the epithelial layer and are important for visual acuity. Basal attachments were 

also significantly better in the denuded culture with more hemidesmosomal junctions 

at the basal cell-basement membrane interface than desmosomes joining the limbal 

cells to the AM epithelium in the intact culture (chart 3.1), suggesting that limbal 

cells on denuded AM would be better equipped to survive transplantation in the long

term.
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Having established superior mechanical strength in the denuded culture, the issue o f 

differentiation ought to be addressed. As alluded to in the background to this study, 

there are concerns that stripping the membrane of its epithelial cells may cause 

limbal stem cells to terminally differentiate in culture, hence reducing the life span of 

the cell sheet once transplanted onto a stem-cell deficient eye (Grueterich and Tseng, 

2002; Grueterich et al., 2002a). Though the results in this thesis have not shown the 

existence of stem cells or progenitor cells in the culture sheets, long-term clinical 

studies by the Kyoto group have shown that the recovered ocular surfaces of patients 

originally diagnosed with total limbal stem cell loss remain clear more than 5 years 

after allo-cultivated limbal epithelial transplantation (unpublished clinical data). In 

addition, amniotic epithelial cells appear to be in such poor condition that any 

abilities they may have once had in terms of influencing sternness will inevitably be 

short-lived; a theory endorsed in a recent paper comparing culture systems, in which 

just 7 days after transplantation, the dead amniotic epithelial cells o f the 

cryopreserved cellular AM upon which limbal epithelium had been expanded were 

no longer discernible (Grueterich et a l 2003b).

9.1.3 Conclusions

In conclusion, with morphology more closely resembling control cornea, smaller 

intercellular spaces and superior mechanical strength, denuded AM appears to be the 

more practical of the two substrates for human limbal epithelial cell culture, not only 

by the explant culture system but also in cell-suspension.
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9.2 Cultivation of Human Corneal Endothelial Cells on Amniotic

Membrane

9.2.1 Background

An intact comeal endothelium is essential for the maintenance o f normal comeal 

hydration, thickness and transparency. Comeal transparency in particular is critically 

dependent on comeal endothelial cells, sufficient enough in number to actively pump 

fluid from the stroma and maintain a homeostatic environment. Endothelial cells lack 

regenerative capabilities, posing significant clinical problems since many comeal 

diseases, as well as ageing and trauma, are accompanied by substantial endothelial 

cell loss (Joyce, 2003). Typically, in vivo cell loss is compensated by cell 

enlargement and migration (Waring et al., 1982; Schultz et al., 1992) however in the 

disrupted cornea, irreversible comeal oedema results. Currently a comeal transplant 

(penetrating keratoplasty or PKP) is the only available mechanism for the 

replacement o f the damaged or diseased endothelium.

In the western world, most keratoplasties are performed using organ cultured donor 

corneas, stored in culture medium for the mid to long-term. The European Cornea 

Banks prepare and culture an average o f 25,000 corneas per year, o f which only 

approximately 60% meet the quality criteria for keratoplasty (EEBA, 2003), the 

remainder being discarded due to their low endothelial cell density (Aboalchamat et 

al., 1999). This represents a huge problem since there is already a major shortage in 

donor cornea supply. Several factors may give rise to low endothelial cell counts in 

donor organs prior to transplant including old age o f the donor, high post mortem 

time, or mechanical damage during preparation for storage or surgical handling. 

Additionally, chronic endothelial cell loss has been observed post-keratoplasty,
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presumably due to a low grade allograft rejection process (Waring et al., 1982; 

Boisjoly et a l,  1993; Harper et a l, 1998). In an attempt to reduce the wastage of 

donor tissue and to improve the visual outcome for patients with comeal dystrophies 

(who account for approximately half of all recipients), a number o f scientific 

strategies have been investigated. These include the reconstruction o f poor quality 

donor organs by replacing endogenous cells with cultivated endothelium (Jumblatt et 

a l,  1978; Engelmann et a l, 1999), the development o f new surgical techniques to 

allow grafting o f just the endothelium rather than full-thickness cornea (which would 

facilitate the use of autologous cultivated tissue) (Melles et a l,  1998) and the 

examination of more readily- available alternative carriers for such an eventuality 

(McCulley et a l, 1980; Engelmann and Friedl, 1989; Mohay et a l, 1994).

An inevitable prerequisite for comeal endothelial cell transplantation is to supply 

enough vital, differentiated, functional cells. Difficulties in the isolation and 

cultivation o f human comeal endothelial cells (HCEC) became obvious in the initial 

in vitro research over forty years ago (Stocker et a l, 1958). Initial efforts to establish 

cultures o f HCEC reinforced the clinical observation that the cells did not mitose 

readily. Only cultures obtained from embryonic or young donors were sustainable in 

the long-term (Baum et a l, 1997; Pistov et a l, 1998) and those established from the 

corneas o f older donors showed no growth at all or early signs o f senescence (Nayak 

and Binder, 1984). Endothelial cells could however be incited to undergo mitosis in 

vitro in response to appropriate chemically-defined stimuli (Schultz et a l, 1992). 

Another problem was encountered in isolating the cells from Descemet’s membrane, 

their natural substratum, to which they exhibit very strong adhesion (Engelmann et 

a l,  2004). The provision of suitable extracellular matrix components is a critical
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factor in ensuring successful endothelial cell culture. Engelmann and Friedl (1989) 

determined suitable substrates were bovine Descemet’s membrane, collagen type IV, 

laminin, fibronectin or chondroitin sulphate matrices. Though amniotic membrane 

fulfils the criterion o f such a substrate, it has not previously been employed as a 

carrier for endothelial cells. For this reason, an investigation was launched to 

determine whether human AM, widely used as a surgical adjunct and as a carrier for 

corneal epithelial cells (Trelford and Trelford-Sauder, 1979; Koizumi et al., 2001a; 

Koizumi et al., 2001b; Solomon et al., 2002), could also serve as a carrier for 

cultivated human corneal endothelial cells and whether the established and 

successful suspension culture technique could be used to grow these quiescent cells.

9.2.2 General Discussion of Results

9.2.2.1 Ultrastructural Examination

Given this suspension culture technique represents a novel approach for stimulating 

the growth o f these quiescent cells, the SEM and TEM observations o f chapter 4 

were quite encouraging. Scanning electron microscopy revealed that the cultured 

cells formed a continuous layer of polygonal endothelial cells (plate 4.2) which were 

uniform in size and fairly closely resembled control endothelium (plate 4.1). 

Transmission electron microscopy confirmed good contact between adjacent 

cultivated cells and the characteristic overlap also seen in the in vivo endothelial 

monolayer (plates 4.9-10). While TEM observations indicated that attachment to the 

AM substrate was not quite as good as in the control (plate 4.11), the cultured cells 

exhibited satisfactory adhesion and appeared to produce basement membrane 

material (plate 4.12), indicating that amniotic membrane does indeed provide a
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compatible basement membrane for endothelial cell cultivation. In view of the 

availability and well-established effectiveness o f AM in various clinical and 

ophthalmic applications, these culture sheets could have great potential in restoring 

the vision o f dystrophic eyes while also reducing the strain on donor cornea supply 

when used to culture cells from living donors.

9.2.2.2 Amniotic Membrane as a Carrier

For practical corneal endothelial cell transplantation in vivo, a carrier o f some 

description is obviously necessary. Previous studies have used transparent gelatin 

membranes (McCulley et al., 1980; Jumblatt et a l, 1980; Schwartz and McCulley, 

1981) and coated hydrogel lenses (Mohay et al., 1994) as synthetic carriers for these 

cells. Descemef s membrane (often of bovine origin) is the most frequently used non

synthetic carrier. Studies reporting the transplantation of normal (Lange et al., 1993; 

Bohnke et al., 1999; Engelmann et al., 1999; Chen et al., 2001) and immortalized 

SV40-transformed (Feldman et al., 1993; Aboalchamat et a l, 1999) cultured HCEC 

on Descemet’s membrane have described an ultrastructure closely resembling that o f 

corneal endothelial cells in vivo and confirmed the presence of functional Na+/K+- 

ATPase-dependent pumps (Aboalchamat et a l, 1999). The study described in this 

thesis is the first to use human amniotic membrane as a culture substrate for HCEC. 

With the theoretical risk o f transmission o f zoonose infection associated with the use 

o f animal tissue in a graft, human AM represents a much safer alternative. The TEM 

micrographs o f chapter 4 showed that cultivated endothelial cells produced basement 

membrane material and were well adhered to the denuded AM (plate 4.12). Since 

human AM is more widely available than Descemef s membrane yet appears to be 

equally supportive of endothelial cell growth and adhesion under culture conditions,
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the use of denuded AM in endothelial cell cultures could revolutionize treatment o f 

corneal endothelial dystrophies.

9.2.2.3 Clinical Potential fo r Cultured Endothelial Cell Sheets 

As alluded to in the background to this study, there is as yet no specific medical 

treatment for endothelial dysfunction and loss o f normal vision due to low 

endothelial cell density can only be restored by PKP. Though successful to a degree, 

there remains considerable risk of allograft rejection and subsequent graft failure. 

Crucially, patients with corneal oedema secondary to endothelial dysfunction, 

diagnosed prior to the development o f scarring or vascularization, need only have the 

corneal endothelium replaced to restore visual clarity. Were it possible, the 

replacement o f just the endothelium (on a suitable carrier) would be less invasive and 

consequently cause fewer adverse outcomes. In 1998, Melles and co-workers 

described such a surgical technique (termed posterior lamellar keratoplasty) for the 

treatment o f bullous keratopathy (Melles et al., 1998); a method which, they claim, 

has several advantages over conventional PKP for treating corneal endothelial 

dystrophies. It requires a shorter operation time, causes fewer traumas and solves the 

problems associated with corneal surface circular incision and suturing (astigmatism, 

vascularization and wound rupture). With less risk of complications, fewer post

operative follow-ups are necessary, making better use of doctors’ time while also 

enabling the more efficient use o f donor tissue. There are potentially immunological 

advantages to transplanting just the endothelium since highly antigenic corneal 

epithelial cells and keratocytes are not involved. Endothelial cells are thought to have 

low antigenicity (Hori et a l, 2000) as does denuded AM (Ueta et al., 2002). 

Additionally, the anterior chamber of the eye is an immune-privileged site,
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permitting the long-term acceptance o f histoincompatible tissue grafts that would be 

rejected at various other anatomic sites (Streilein and Niederkom, 1981; Streilein et 

a l,  1996).

Posterior lamellar keratoplasty could quite easily be adapted for the cultivated HCEC 

sheets described in this thesis and would have the added benefit that surgery could be 

scheduled (the availability of fresh eye bank eyes no longer being a deciding factor). 

Unlike native corneal endothelium which must be used within days o f harvesting, 

cultured corneal endothelium can be frozen and thawed for later use. Potentially, 

cultured cells from a single donor could provide enough cells for hundreds of 

recipients and there also is the possibility that cells from a small biopsy o f a patient's 

healthy corneal tissue could be cloned and later transplanted back without risk of 

rejection. The use of autologous cultured tissue in such practice would overcome 

problems of donor shortfalls, reduce the risk of allograft rejection and combined with 

AM transplantation, could provide a practical alternative to PKP (Amano, 2002; 

Ishino et al., 2004).

9.2.2.4 Transplantation in Animal Models

To overcome the shortage of human donor tissue, several studies have involved the 

use o f cells of animal origin (Jumblatt et al., 1978; Gospodarowicz et al., 1979; 

McCulley et al., 1980; Lange et al., 1993; Koizumi et a l, 2005). The feasibility o f 

using cultured cells as transplants has also been reported in in vivo animal models 

(Insler and Lopez, 1991; Mohay et al., 1994; Mimura et a l, 2004) but this technique 

has yet to be applied clinically in humans. Insler and Lopez (1991) conducted 

experiments whereby cultured HCEC were seeded onto Descemet’s membrane and
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transplanted into African green monkeys. Their cells retained viability, morphologic 

characteristics and pumping function and 75% of the transplanted corneas were 

reportedly clear after 12 months. In a more short-term study, project collaborators at 

the Kyoto Prefectural University of Medicine used the cultured endothelial cell 

sheets examined in this to thesis to graft rabbit corneas stripped o f native 

endothelium and compared the outcomes with those grafted with denuded AM and 

Descemet’s membrane (Ishino et al., 2004). As illustrated by the slit lamp images of 

figure 9.1 below (kindly provided by Dr. Ishino), corneas transplanted with 

cultivated HCEC remained transparent and maintained corneal thickness much better 

than the controls and the cells remained functional for at least one week. The recent 

observations of Mimura et al. (2004) in a very similar study using commercially- 

available collagen carriers, substantiated these findings. Their grafted rabbit eyes 

remained free from oedema in the 28 day observation period and showed only mild 

stromal opacity.

Figure 9.1: At day seven after transplant, the control rabbit eyes consisting of 
stripped Descemef s membrane (A) and denuded AM (B) were highly oedematous. 
The grafts o f cultured HCEC on denuded AM (C) had little oedema and 
demonstrated excellent transparency (adapted from Ishino et al., 2004).
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9.2.3 Conclusions and Future Directions

This project introduced the concept of cultured HCEC sheets and demonstrated the 

feasibility o f using denuded AM as a carrier. Results were very encouraging yet as a 

novel technique, it is likely that the system could benefit from some refinements. 

Future plans are to optimize plating density and culture conditions to ensure maximal 

endothelial coverage on the graft. In addition, the potential of SV40-transfected cell 

lines ought to be examined (Wilson et a l, 1993; Feldman et al., 1993). Initial reports 

have shown that these immortalized cells give the best results in transplantation 

procedures yet there are concerns over controlling proliferation once optimal density 

has been reached, as well as the potential for tumour development and anxiety over 

the introduction of genetically-manipulated tissues into the human body. Additional 

project plans include replacing mature HCEC with pluripotent stem cells and 

manipulating the culture system to induce differentiation, with the ultimate aim of 

transplanting the resulting cells along with the denuded AM carrier for the treatment 

o f corneal endothelial dystrophies.
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9.3 Morphological Analysis of Polyphenol-Treated Rat Corneal 

Endothelium in Long-Term Storage

9.3.1 Background

The storage o f corneas prior to transplantation is one of the single most important 

determining factors for success. The primary objective o f corneal storage is the 

maintenance of endothelial viability from the time of comeal harvest to transplant, 

while a secondary objective is to ensure the efficient use of donor tissue, facilitated 

by optimizing the period of storage without loss of endothelial integrity. Over the 

years, various storage conditions have been utilized to achieve these goals 

(Lindstrom et a l,  1992). In 1974, McCarey and Kaufmann modified a basic culture 

medium (TC-199) with the addition of the osmotic agent, dextran to produce ‘M-K 

medium’ which permitted 4-7 days of comeal storage without significant 

deterioration (McCarey and Kaufman, 1974). The addition o f chondroitin sulphate 

was subsequently found to further prolong the storage period, and lead to the 

development of assorted commercially-available media such as Comeal Storage 

Media (Lindstrom, 1984), K-Sol (Kaufman et a l, 1985), Dexsol (Lindstrom, 1990). 

At present, the most widely used storage medium is Optisol-GS (containing 2.5% 

chondroitin sulphate, 1% dextran, lOOpg/ml gentamicin and 200(ig/ml streptomycin 

sulphate) which allows the cold storage o f corneas for up to two weeks (Lindstrom et 

a l,  1992; Smith et a l, 1995).

In an attempt to prolong the period of comeal storage and to maintain endothelial 

viability, new additions to the culture media have long been sought. Green tea has 

long been recognized for its health-promoting properties and as the freshest and least
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processed form of tea, it is rich in polyphenol antioxidants, a broad term covering all 

manner o f flavonoids and catechins (Lin et al., 1996). Antioxidants scavenge and 

bind harmful oxygen-containing molecules; free radicals and peroxides, thereby 

preventing lipid peroxidation and damage to DNA and other cell components. 

Flavonoids are nutrient antioxidants, of which there are 12 types, found in most 

plants and common in the human diet. Catechins are flavonoid phytochemical 

compounds that appear predominantly in green tea leaves. Major variants in green 

tea include gallocatechin [GC], epigallocatchin [EPG], epicatechin [EC] and 

epigallocatechin gallate [EPGC]. As very potent antioxidants, up to 100 times more 

powerful than vitamins A, C and E at combating free radicals, these polyphenol 

catechins are being investigated for their chemoprotective effects. Studies have 

shown polyphenols to display anti-carcinogenic activity (Yang, 1997), anti- 

angiogenic (Cao and Cao, 1999), antimicrobial and antiviral properties (Nakayama et 

al., 1993). More recently, Hyon and Kim (2001b) reported the polyphenol-assisted 

maintenance o f pancreatic islet morphology in long term preservation, prompting this 

investigation into the effectiveness of EGCG (the most potent o f the antioxidants in 

green tea) for long-term corneal storage.

9.3.2 General Discussion of Results

Several studies have shown that endothelial cell loss after keratoplasty is related to 

the length o f corneal storage prior to surgery in that the longer the period, the greater 

the detriment to function (Geeraets et al., 1977; Bourne, 1986; Kim et al., 1994; 

Means et al., 1995). One of the most critical functions o f a corneal storage medium is 

to preserve the viability and function o f the endothelium. Optisol-GS is currently the 

best available and most widely-used storage medium. It has been shown to preserve
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endothelial barrier function for 14 days (Kim et al.. 1994) and to maintain viability in 

more than 80% o f cells for up to 21 days, after which time the extent o f deterioration 

increases significantly (Means et al.. 1995). The SEM results o f this thesis (chapter 

4.2) confirmed the observations of other investigators, demonstrating severe 

degradation o f the endothelial cell membranes and exposure o f nuclei at just 14 days 

storage in Optisol-GS (plate 4.15). At 28 days storage in Optisol alone, control 

comeal endothelium was found to have completely detached from Descemet s 

membrane in some areas (plate 4.17). Polyphenol-treated endothelial cells, by 

contrast, exhibited a superior morphology throughout the 28 day study and were 

found to more closely resemble that o f fresh comeal tissue. While some shrinkage 

had occurred, cell membranes remained largely intact and adjacent cells were closely 

attached and had prominent cell borders (plate 4.18).

The mechanisms by which exposure to EGCG seems to preserve endothelial cells are 

not fully understood. As alluded to in the background to this study, polyphenols 

comprise one o f the largest and most ubiquitous groups o f plant metabolites, formed 

to protect against photosynthetic stress and reactive oxygen species (Yang et al., 

2001). They have been documented to protect against cancers (Yang et a l , 1998; 

Fujiki et al., 1998; Suganuma et a l, 1999; Benelli et a l, 2002) and their antioxidant 

properties are well-recognized (Ho et a l, 1992; Lin et a l,  1996; Park et a l,  2003; 

Sang et a l, 2003). Reddy et a l  (1989) used SEM to study the preservative effects of 

ascorbic acid, reduced glutathione, retinol acetate and a-tocopherol in storage media 

and concluded that these antioxidants assume an important role in the preservation o f 

endothelial cell morphology. In a similar way, EGCG may implement its preservative 

effects by way of antioxidative activities. The successful long-term preservation o f
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pancreatic islet cells (Hyon and Kim, 2001b) and peripheralnerve cells (Ikeguchi et 

al., 2003) by polyphenol solution were reported recently. Each of the studies reports 

a time lag between the removal of polyphenol solution and the resumption o f cell 

function. In their article, Hyon and Kim (2001b) found preservation periods in excess 

o f two months were possible with polyphenol treatment, whereas untreated cells 

deteriorated within two weeks. They noted an early decline in the insulin secretory 

capacity o f treated islets though an enhancement was seen at day 40, which could 

suggest a possible polyphenol-induced period of physiological hibernation. A similar 

mechanism of reversibly blocking cellular enzyme activity could explain the 

improved morphology of the polyphenol-treated endothelial cells examined in this 

thesis. In additional, polyphenol has amphipathic properties and as such is able to 

easily pass through the ECM and cell membrane. While readily absorbed into 

proteins, the desorption process is very slow (Hyon and Kim, 2001a), possibly 

explaining why the initial 24 hour treatment has an effect which lasts for 28 days.

9.3.3 Conclusions and Future Directions

The results shown in chapter 4.2 demonstrated that exposure to EGCG has a 

beneficial effect on the maintenance of rat corneal endothelial morphology for up to 

28 days storage in Optisol-GS. While encouraging, it represents only the initial phase 

o f ongoing research and offers no real insight into whether treated cells also retain 

physiological functions. Polyphenol has proved useful in the long-term storage o f 

rabbit corneal epithelial cells, not only in terms of preserving morphology, but also 

tight junctions and cell migration activity (Tsuzuki et al., 2002). Future studies aim 

to include human corneal cells and to further characterize the effects o f this treatment 

in long-term storage.
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9.4 Evaluation of Sterilized, Freeze-Dried Amniotic Membrane

9.4.1 Background

Since 1910 when Davis applied foetal membranes to dress burned skin (Davis, 

1910), amniotic membrane has been used as surgical material in a multitude of 

applications (Stem, 1913; Troensagaard-Hansen, 1950; Trelford-Sauder et al., 1978; 

Trelford and Trelford-Sauder, 1979; Dhall, 1984) including reconstruction o f the 

ocular surface (Tsubota et a l, 1996; Shimazaki et a l, 1997; Tseng et al., 1998). A 

number o f extensively documented characteristics make AM ideally suited for this 

purpose (Tseng, 2001). Easily obtainable and in abundant supply, AM has anti

microbial, anti-fibroblastic, anti-inflammatory, anti-angiogenic properties and also 

very limited immunogenicity. Ten years of thorough research has lead to the general 

acceptance o f AM in ophthalmic surgery, however there remain some concerns.

Fresh AM, though its usefulness in ocular surface reconstruction has been 

documented (Mejia et al., 2000; Adds et al., 2001; Ucakhan et al., 2002), is not 

always available on demand and its use is not generally advised due to concern over 

pathogenic organisms and the potential for disease transmission (Khokhar et al., 

2001). Human AM is obtained at the time of elective caesarean section and generally 

cryopreserved under sterile conditions at -80°C for a period o f at least six months 

prior to use. Despite the best aseptic technique; even this procedure cannot guarantee 

complete sterility due to the biological origins of the tissue. Various methods of 

preservation have been tried over the years including cryopreservation in liquid 

nitrogen and preservation in silver nitrate, antibiotic solutions and glycerol (Maral et 

al., 1999; Kruse et al., 2000; Xu et al., 2001; Ravishanker et a l, 2003) however,
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each has its drawbacks, either due to expense, deterioration over the long term, or 

problems of sterility (Marangon et al., 2004). Ideally, for clinical use, AM should be 

sterile, easy to obtain, transport and store for long periods without deterioration. The 

aim of this project therefore was to analyse and compare ‘freeze-dried’ amniotic 

membrane (FD-AM) preserved in the dry state under vacuum and sterilized using y- 

irradiation at room temperature with the cryopreserved variant.

9.4.2 General Discussion of Results

9.4.2.1 Membrane Preparation Methods

Human AM can be procured from commercial sources and is usually cryopreserved 

(John, 2003). As with any biomaterial, the complete sterility o f amniotic membrane 

is vital however, the expense incurred in preservation tends to restrict accessibility to 

more developed countries. Typically, donor placenta is obtained after informed 

consent during an elective caesarean section. Serological assays, performed on the 

donor at the time of procurement and again 6 months later, include HIV, hepatitis B, 

C and syphilis. The amnion is separated from the chorion, irrigated and then flattened 

onto nitrocellulose paper, epithelial side up prior to storage at -80°C in medium 

containing cryoprotectants and antibiotics. This preservation and later thawing 

devitalizes the amniotic epithelial cells (Kruse et al., 2000; Zhong et al., 2001), 

making the membrane non-viable yet still biologically active, an important 

consideration given that viable amniotic epithelial cells have been associated with 

low-grade inflammatory responses (Akle et al., 1981). The idea o f drying amniotic 

membrane is not a new one (Rao and Chandrasekharam, 1981; Waikakul et al., 1990; 

Onerci, 1991; John and John, 2002a; John and John, 2002b; Rodriguez-Ares et al.,
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2004). In 1981, Rao and Chandrasekharam produced an air-dried form of bovine 

AM for dressing burned skin. Their simple method of preparation involved laying 

the cleaned membranes on a plastic sheet and allowing them to air-dry before sealing 

in polythene and sterilizing by ultraviolet or gamma rays (Rao and 

Chandrasekharam, 1981). While they report some success in healing skin burns using 

these membranes, they also encountered severe infection and were replacing the 

grafts every few days, finding UV radiation to be an inadequate method of 

sterilization in that it failed to eradicate aerobic spore-bearing organisms in 70% of 

cases. In a similar study, Waikakul et al. (1990) applied a form of freeze-dried AM 

to flesh wounds o f 65 patients, most of whom reported a reduction in pain. The FD- 

AM used in this thesis (chapter 5.1) is dried at room temperature under vacuum, 

irradiated and vacuum-packed for storage, requiring only rehydration prior to use in 

the operating room. Membranes were found to retain flexibility, strength and 

smoothness better when dried under vacuum than in ambient conditions (Nakamura 

et al., 2004b). The physical properties of the FD-AM used in this thesis are 

illustrated in figure 9.1.

Figure 9.2: The sterilized, freeze-dried amniotic membrane was wafer-like, very light 
and thin (A). It became smooth and flexible on hydration, similar to cryopreserved 
AM (B) (reproduced from Nakamura et al., 2004b).
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9.4.2.2 Ultrastructural Examination and Immunohistochemistry 

Scanning and transmission electron microscopy were used to compare the 

morphology o f freeze-dried and frozen membranes. Examination o f cellular 

membranes by SEM revealed that the amniotic epithelia appeared to have been fairly 

well-preserved, though the vacuum packing of the freeze-dried substrate seemed to 

have caused some flattening of the cells (plates 5.1-2). The denuded substrates were 

practically indistinguishable by SEM, with both retaining intact basal laminae (plates 

5.3-4). Examination by TEM clearly showed that the FD-AMs (both cellular and 

denuded) were more compact than their frozen counterparts, possibly a product o f 

the vacuum packing. As a result, it was difficult to discern any internal features in 

the freeze-dried amniotic epithelial cells (plate 5.5). Though not evident by SEM, 

frozen amniotic epithelial cells clearly appeared necrotic (plate 5.7), having multiple 

cytoplasmic vacuoles. This is likely to be a result o f ice crystal damage, caused by 

the cryopreservation procedure and is corroborated by the findings o f Zhong et al. 

(2001) who observed that after 90 days of frozen storage, AM epithelial chromatin 

dissolved, organelles deteriorated and mitochondria became vacuolated. The collagen 

fibres o f the stroma appeared to have been undisrupted by the freeze-drying process 

(plate 5.10) and there were clearly visible and intact basal laminae in all membranes.

The extracellular matrix, including the basement membrane, forms the architectural 

supportive framework of tissues. Since the organization of ECM macromolecules is 

so instrumental to the physical and biological properties of AM, immunogold- 

labelling using a panel o f antibodies directed to a variety of ECM molecules was 

used to verify that the freeze-drying process causes no major alterations to the 

normal state. Indeed, the composition of the extracellular matrix in FD-AM was
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found to be practically identical to that of conventional frozen AM (as summarized in 

table 5.1). Labelling for both fibronectin and vitronectin was concentrated in 

moderately high levels in the lamina densa (plates 5.13 and 5.15), with low levels 

being observed in the basal lamina and stroma. This is corroborated by the findings 

o f Fukuda et al. (1999) who found that the basal lamina and stromal regions o f AM 

reacted strongly to antibodies raised against fibronectin. Fibronectin in the AM is 

likely to have originated from the overlying amniotic epithelium as previous studies 

have shown that in culture on plastic, these cells deposit ECM components including 

fibronectin (Aplin et al., 1985). The basal laminae of cellular membranes were also 

found to contain large amounts of laminin; in particular, the lamina densa region 

directly beneath amniotic cells (plate 5.14). Fibronectin, laminin and vitronectin 

glycoproteins are involved in cell adhesion (Steele et a l , 1997), migration during 

wound healing (Fujikawa et al., 1984) and epithelial growth and differentiation 

(Yamada and Kleinman, 1992) and are most likely to be involved in limbal epithelial 

attachment to AM in cell culture.

Collagen type IV was found to be located continuously along the basal lamina in 

high levels (plate 5.16). The majority of the basal lamina is comprised o f type IV 

collagen, a scaffolding protein that has been visualised in the AM by previous 

investigators (Yurchenco and Schittny, 1990; Fukuda et al., 1999). There is however, 

thought to be a subtle difference between the ECM composition of corneal and AM 

basal laminae, as indicated by the presence of a subchain of type IV collagen which 

is only present in that of the cornea (Fukuda et al., 1999). The AM stroma labelled 

moderately for type I collagen (plate 5.17), known to form the bulk o f the tissue 

(Fukuda et al., 1999) and deposited by amniotic epithelial cells in culture (Aplin et
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a l ,  1985). Stromal regions were also found to contain KS and CS, both o f which 

were mainly associated with collagen type I fibrils and detected in low to moderate 

quantities (plates 5.19-20). Immunolabelling for HS revealed it to be concentrated in 

high levels in the lamina densa (plate 5.18); an observation confirmed by previous 

studies on AM and the cornea (King, 1985; Bairaktaris et a l, 1998).

While it has been suggested that denuding AM may damage the basement membrane 

and cause a reduction in ECM proteins, the results of this thesis confirmed that the 

removal o f amniotic epithelial cells caused no detriment to the basal lamina and 

ECM distribution. This is also supported by the work o f Cooper et a l  on frozen AM 

(Cooper et a l, 2005). The results described herein strongly indicate that the 

processes o f drying, irradiation and denuding do not impair the physical or biological 

properties o f AM any more than the currently favoured cryopreservation process.

9.4.2.3 FD-AM as a Culture Substrate

Cryopreserved AM has been widely used as a substrate for cultivating corneal and 

conjunctival epithelium (Schwab et a l, 2000; Tsai et a l, 2000; Koizumi et a l, 

2000b). Having successfully characterized freeze-dried AM and found it to 

physically and biologically resemble its frozen counterpart, the effectiveness o f FD- 

AM as a substrate for the cultivation of rabbit corneal epithelial cells was examined. 

Drawing on their experiences of cell culture on cryopreserved AM, project 

collaborators at the Kyoto Prefectural University of Medicine were able to adapt the 

suspension culture system for this novel substrate, to great effect. After 3 weeks, the 

cultivated corneal epithelial cells showed 5-6 layers of stratification and were well- 

differentiated (plate 5.26), closely resembling comeal epithelium in vivo with results
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comparable to those seen using cryopreserved substrates (Koizumi et al., 2000b; 

Koizumi et al., 2001a; Nakamura et al., 2003a). Strong basal cell attachment to the 

underlying membrane is of fundamental importance in ensuring a successful 

outcome to transplantation so it was reassuring that the cultivated cells were firmly 

attached to the FD-AM and evidently producing basement membrane material (plate 

5.30). When compared to in vivo rabbit corneal epithelium, the only significant 

differences were smaller superficial cell surface areas, fewer cell layers and fewer 

hemidesmosomes in cultured cells. Together, the encouraging results of the 

quantitative and morphological analyses prompted colleagues to transplant these 

cultured cell sheets, along with the novel carrier onto damaged rabbit corneal 

surfaces. Two days later, the grafted corneal surfaces were in good condition while 

surrounded by conjunctival epithelial defects (Nakamura et al., 2004b), indicating 

survival o f the transplanted cells on FD-AM and no contamination by host 

conjunctival epithelium. Conjunctival inflammation rapidly subsided and just 10 

days after transplantation, the area covered by the cultivated corneal cells had 

expanded and began to make contact with the healing conjunctival epithelium.

9.4.3 Conclusions

Sterilized, FD-AM seems to retain all the characteristics of cryopreserved AM in 

terms o f physical properties, levels and distributions of extracellular matrix proteins, 

biocompatibility and an ability to act as a substrate for the culture o f corneal 

epithelial cells. As such FD-AM could successfully rival cryopreserved AM as the 

clinical material of choice and has the potential to extend the availability o f this 

valuable biomaterial into developing countries where it could be easily stored and 

would represent a safer alternative to fresh membranes (Khokhar et al., 2001).
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9.5 Cultivation of Human Oral Mucosal Epithelial Cells on

Denuded Amniotic Membrane

9.5.1 Background

Treatment o f severe, bilateral ocular surface disease is one o f the most challenging 

problems faced by ophthalmologists. The consequences of these conditions are 

devastating and conventional management is usually only palliative in nature. 

Surgical reconstruction of the ocular surface has been greatly advanced by the 

introduction o f amniotic membrane and limbal stem cell transplantation (Tseng et al., 

1998). While generally successful, typical surgery involves the grafting o f allogeneic 

cells from donors. Even with the necessary prolonged immunosuppressive therapy to 

combat risk o f rejection, with severely inflamed eyes and in the most acute cases, the 

outcome is often poor. Transplantation of autologous limbal cells is a preferable 

option, yet is only feasible in situations where only one eye is affected and a limbal 

biopsy can be taken from the contralateral eye (Pellegrini et a l,  1997; Dua and 

Azuara-Blanco, 2000a). Diseases such as SJS and OCP are characterized by the 

complete and bilateral loss o f limbal stem cells, making autografting impossible 

(Tsubota and Shimazaki, 1999) so with these in mind, an alternative source of 

autologous tissue was sought.

Epithelial cells of the oral mucosa were considered potential substitutes since they 

are generally considered less differentiated than skin keratocytes, have a short cell 

turnover time and are able to be maintained long-term under culture without 

keratinization (Hata et al., 1995; Ueda et al., 1995; Thompson et al., 2001; Nishida et 

al., 2004b). Mucosal grafts have been long used in ophthalmic applications in the
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reconstruction o f the ocular surface, eyelids and fomices (Denig, 1912; Ballen, 1963; 

Gipson et al., 1986; Shore et al., 1992; Kuckelkom et al., 1996). In 1912, Denig 

suggested the use of buccal mucosal grafts as a substitute for excised tissue when 

treating alkali bums of the eye (Denig, 1912). Ballen later described a study designed 

to determine whether non-keratinized, stratified squamous epithelium o f non-ocular 

surface origin (termed ‘mucous membrane’) could be used as an autograft in the 

reconstruction of ocular surface defects caused by chemical injuries (Ballen, 1963). 

The lip was used as a tissue source and both epithelium and the underlying lamina 

propria were transplanted onto damaged rabbit and human eyes. Grafts remained 

adherent so long as necrotic tissue was completely removed and one edge remained 

in contact with a blood supply. While they were reported to be heavily vascularized, 

four o f the six human eyes treated retained their grafts (Ballen, 1963). Though these 

grafts were useful in treating comeal ulcers, perforations and lid abnormalities, they 

were not suitable for improving vision since they retained opaque subepithelial 

fibrous tissue. Gipson and co-workers incorporated dispase II into the methodology, 

releasing the epithelial sheet from the underlying connective tissue and reported the 

successful treatment of peripheral wounds in vivo and failure when grafted into 

central, non-vascularized areas (Gipson et al., 1986). On the basis o f these 

investigations (and given that the oral mucosa is both accessible and ideally situated 

for biopsy in that the resulting scar is inconspicuous) project collaborators in Japan 

adapted their cell-suspension culture technique for rabbit oral mucosal cells and 

successfully managed to recreate comeal morphology in 2003 (Nakamura et al., 

2003a). This study o f the human oral mucosa, the results o f which are described in 

chapter 6, aimed to build on these initial results and to determine whether gingival 

and/or buccal cells cultivated on AM could be suitable autograft tissue for transplant.
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9.5.2 General Discussion of Results

9.5.2.1 Ultrastructural Examination o f  Mucosal Biopsies

In this study, gingival and buccal stem cells, were examined by light, scanning and 

electron microscopy, both as biopsies and post-culture on AM. The mucosal biopsies 

were found to have in excess o f 40 layers of well stratified and differentiated 

epithelial cells (plates 6.1-2). By contrast, the corneal epithelium had only 4-5 cell 

layers (plate 5.3). Examination by SEM revealed that the superficial mucosal cells 

(both gingival and buccal) were characterised by apical undulating surfaces, covered 

in long parallel ridge-like folds (plates 6.6 and 6.10) quite different from the finger

like microvilli projections that cover corneal epithelium (plate 6.14); an observation 

which has been confirmed by other researchers (Chomette et al., 1986; Kullaa- 

Mikkonen, 1987; Moreu et al., 1993). TEM analysis resolved the finer 

morphological details. As in the corneal epithelium, oral mucosal cells were joined 

by numerous desmosomal junctions (plates 6.18 and 24) and were well attached to 

the underlying connective tissue (plates 6.20 and 26), both factors indicative of 

mechanical strength and useful in a potential ocular surface graft. There was little to 

differentiate between the buccal and gingival epithelial cells.

9.5.2.2 Ultrastructural Examination o f  Mucosal Epithelium Cultivated on A M  

The culture conditions brought about some significant changes to cell morphology, 

resulting in an epithelial sheet which more closely resembled that o f the healthy 

cornea than the oral mucosa. This has since been corroborated by the findings of 

Nishida and co-workers who used a temperature-responsive culture surface to create 

carrier-free confluent sheets of human (Nishida et al., 2004b) and rabbit oral mucosal
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epithelium (Hayashida et al., 2005). The number o f epithelial cell layers, once 

cultured, was reduced to 6-10 [buccal] and 10-14 [gingival] from an original 40; 

more in accordance with in vivo comeal epithelium, which typically has 6-8 cell 

layers. Since the mucosal cells were disaggregated enzymatically for use in 

suspension culture, this reduction in number of cell layers (and hence sheet 

thickness) is likely to be related directly to the quantities of cells seeded. In terms of 

transplant potential o f the cultivated sheet, the most important considerations are 

good attachment of the basal cells to the amniotic membrane carrier and a functional 

tear-ocular surface interface. Comeal epithelial cells form desmosomes to ensure 

firm adhesion to neighbouring cells and hemidesmosomes for bonding to the ECM 

(Green and Jones, 1996). Both these types of distinctive cell junction were evident in 

the cultivated oral mucosa (plate 6.47), indicating a similar specialization to in vivo 

comeal cells. The anterior surface of superficial comeal epithelial cells is covered in 

finger-like projections known as microvilli or microplicae (Pfister, 1973), whose role 

is to stabilize the tear film and increase cell surface area thereby aiding absorption o f 

nutrients and removal of cellular waste (Collin and Collin, 2000). Examination by 

SEM showed the superficial cells of the cultivated oral epithelium to have comeal

like microvilli (plates 6.33.and 36), rather than the parallel ridge-like folds observed 

on the surface of the source biopsies, adding further credence to the supposition that 

oral epithelial cells on AM have the ability to differentiate into comeal-like epithelia 

under culture conditions. The results of the quantitative comparison (chart 6.1) 

indicated that gingival cells seemed to be the better choice o f mucosa since they 

more closely resembled in vivo corneal epithelium. Gingival cells (plate 6.37) had 

smaller intercellular spaces and formed more junctions, both basal and mechanical, 

than the buccal cells (plate 6.42) in culture.
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9.5.2.3 Subsequent Clinical Applications

In 2003, Nakamura and co-workers successfully achieved ocular surface 

reconstruction using cultivated oral mucosal cells in a rabbit model (Nakamura et al., 

2003a). It was noted that 10 days after grafting, most of the keratectomized corneal 

surfaces were free from epithelial defects and conjunctival invasion, indicating early 

survival o f the transplanted oral epithelium. Based on their animal studies and the 

morphological results described in this thesis, project collaborators applied this same 

method to 15 eyes of 12 human patients with severe ocular surface disorders. 

Preoperative diagnoses included chemical injury (4 patients), thermal injury (1 

patient), SJS (5 patients), pseudo-OCP (1 patient) and an unknown idiopathic ocular 

surface disorder (1 patient). Despite two cases where signs of rejection prompted 

graft replacement by donor corneal tissue (discussed in the following section), there 

has been some astounding success in the long-term and the clinical success rate is 

currently 87% for follow-up periods ranging from 3 to 34 months (Nakamura, 

unpublished data). The following clinical photographs (figures 9.3 and 9.4) supplied 

for inclusion in this thesis by Dr. Nakamura of the Kyoto Prefectural University of 

Medicine, represent successful cases two years after ocular surface reconstruction 

using cultivated autologous oral mucosal epithelium.

Figure 9.3: The ocular surface of a 14-year-old SJS patient before and after a 
cultivated autologous oral epithelial transplant. Prior to surgery, vision was restricted 
to hand motions. Two years later (2Y) her visual acuity had improved to 20/200.
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Figure 9.4: Ocular surface reconstruction of a 27-year-old chemical burn patient 
using cultivated oral mucosal epithelium. Prior to surgery the corneal surface was 
vascularised, heavily scarred and invaded by conjunctiva [A]. The patient was only 
able to detect hand movements. Two years after reconstructive surgery using 
autologous oral epithelium, the cornea was clearer and the patient reported 2/200 
vision [B].

9.5.3 Conclusions and Future Directions

The use o f tissue engineered corneal epithelial replacements holds great promise for 

the surgical reconstruction of stem cell-deficient eyes (Kinoshita et al., 2004; 

Kinoshita and Nakamura, 2004). While cultivated autologous corneal epithelium is 

the safest and most reliable method, this is not an option for the treatment o f bilateral 

ocular surface disorders. In these instances, a choice must be made between 

allogeneic corneal epithelium with which there is significant risk of rejection (Ilari 

and Daya, 2002) and autologous cultivated oral mucosal epithelium which is of 

different origin and may have as yet undetermined consequences in the long-term. 

Section 9.7 discusses the results of experiments in which oral and corneal stem cells 

were co-cultured, the aim being to maintain a population of corneal epithelium and 

encourage further differentiation of the oral mucosa. As a relatively new technique, 

there are still questions to be addressed about the longevity and mobility o f the oral 

epithelial cells on the host eye and whether the grafts contain enough stem cells. It is 

also very important to determine whether the human oral mucosal cell type has the 

appropriate characteristics to act as a substitute for human comeal epithelium.
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9.6 Clinical Outcomes of Amniotic Membrane/Oral Mucosal Stem 

Cell Transplants

9.6.1 Background

The transplantation of cultivated oral mucosal epithelial cells on AM onto severely 

damaged ocular surfaces is a novel technique and therefore not fully refined. As 

indicated in the previous section, the long-term clinical outcomes of this procedure 

were generally very good (13 of 15 grafted eyes remaining clear up to 34 months 

later) yet, possibly due to the existing severity of the inflammation, were not without 

complications. This section describes two cases where the grafted sheet was removed 

after several months having stabilized the cornea and replaced with donor corneal 

tissue using conventional penetrating keratoplasty. These tissues were examined 

using electron microscopy to determine the exact fate of the cells once grafted and to 

provide some insight into the mechanism of rejection.

9.6.2 General Discussion of Observations

Frequently with bilateral ocular surface disorders, the patient presents with 

chronically inflamed, vascularized, conjunctivalized and scarred corneas. The 

prognosis o f corneal transplantation in the acute phase is poor due to the difficulties 

in overcoming the severe inflammation and allograft rejection (Koizumi et al., 

2001b; Shimmura, 2004). The application of autologous tissue to the ocular surface 

removes any risks o f rejection, yet it is still a challenge to control the persistent 

inflammation, dry eye and trichiasis which induce epithelial defects. It is not 

surprising therefore, that in some cases the initial graft is insufficient and has to be 

replaced at a later date.
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9.6.2.1 Case 1: Chemical Injury

Chemical and thermal bums ultimately lead to comeal scarring, opacification and 

vision loss (Dua et al., 2000). Acids react with the superficial tissues to form 

proteinates which limit penetration into deeper comeal tissues (Pfister and Pfister, 

1997a). Alkali bums, as in this case, are generally more debilitating and can cause 

recurrent epithelial breakdown, stromal cell death, inflammatory cell infiltration and 

endothelial dysfunction through saponification of lipoprotein cell membranes (Pfister 

and Pfister, 1997b). Alkali bums remain difficult to treat and frequently lead to 

sight-threatening complications (Nishida, 1997).

Examination of the removed mucosal graft using electron microscopy confirmed a 

typical rejection reaction; previously well-characterised by Cooper et al. (2004). 

Only a small central area of comeal-like epithelium (plate 6.48) remained and TEM 

showed that these cells had become necrotic (plate 6.53). The majority o f the ocular 

surface was covered in conjunctival cells (plate 6.51); smaller in size and 

characterized by more prominent cell borders and the presence o f mucin-secreting 

goblet cells (Pfister, 1975; Galbavy and Foster, 1985). Graft rejection appears to have 

resulted in the loss or destruction of almost all the original cultivated mucosal cells, 

allowing conjunctival invasion over the exposed AM initiating vascularization in the 

stroma (plate 6.57). Additionally, it is possible that the graft may not have contained 

adequate numbers of stem cells at the outset, resulting in colonization o f conjunctiva 

once the stem cells depleted. Numerous inflammatory cells including lymphocytes, 

plasma cells, macrophages and granulocytes were associated with the epithelium and 

amniotic membrane (plate 6.58) and numerous red blood cells provided evidence of 

vascularization. It is impossible to determine whether the vascularization seen here
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arose from the already existing host blood vessels or whether they appeared as a 

result of angiogenic factors secreted from the cultured epithelial cells (given the 

mucosal substantia propria is rich in vessels). Anti-angiogenic factors such as 

thrombospondin produced by stromal keratocytes, would no doubt have been acting 

to limit the extent of neovascularization in any case (Hiscott et al., 1996).

The clinical photographs below (figure 9.5) were taken by project collaborators in 

Japan and kindly donated by Dr. Takahiro Nakamura. They authenticate the findings 

o f the ultrastructural evaluation in this thesis, illustrating that the corneal surface 

displayed signs of a typical rejection with severe vascularization and conjunctival 

invasion. While the outcome was not ideal, in that the graft was eventually replaced 

with tissue of allogeneic origin, it is apparent from these images that the mucosal 

graft had a stabilizing effect on the cornea and prepared the ocular surface for the 

subsequent graft in suppressing inflammation and reducing vascularization to a 

certain extent. This was possibly aided by the fact that there was no underlying 

immunologically-mediated disease in this case.

Figure 9.5: Clinical course photographs of case 1: a chemically burned eye before 
and after transplant surgery. The patient presented with a chronically inflamed, 
vascularized eye (pre). Cultivated autologous oral mucosal cells were grafted to 
stabilize the ocular surface (photo taken 2 months, 2M, after surgery). At 5 months, 
the oral mucosal graft was removed and replaced with full thickness cornea from a 
donor. Fifteen months (15M) after initial surgery the ocular surface was much clearer 
and free from epithelial defects. (Photographs courtesy of Dr. Nakamura)
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9.6.2.2 Case 2: Stevens-Johnson Syndrome

Stevens-Johnson syndrome (SJS) is characterized by painful, blistery lesions on the 

mucous membranes and as such, the ocular complications are often disabling and 

lead to severe vision loss. This sight-threatening disease can occur at any age and is 

considered very difficult to treat (Tsubota and Shimazaki, 1999) and permanent 

bilateral blindness is common due to severe keratoconjunctivitis and a lack of 

comeal stem cells. With comeal stem cells limited to the relatively small area o f the 

limbus, severe immunologic reactions can deplete the supply and leave the cornea 

covered with conjunctival cells or eyelid skin -  as in the instance of this case study.

Examination of the cultivated cells 6 months after grafting onto the ocular surface by 

SEM revealed a small central region of fairly healthy looking epithelium not unlike 

that o f the normal cornea (plate 6.59), surrounded by conjunctival cells (plate 6.60). 

The sample received for analysis was unfortunately too small to permit further 

analysis by transmission electron microscopy, so only surface features were noted. 

While the tissue appeared to be quite heavily conjunctivalized, there were neither 

inflammatory cells nor evidence of vascularization in the regions examined. Since 

conjunctival tissue is vascular in nature, this is not to say blood vessels were not 

present, just that they were not visible by SEM. Again, clinical course photographs 

supplied by Dr Takahiro Nakamura validate these observations (figure 9.6 overleaf). 

Comparison o f the eye prior to surgery and at two months after transplantation 

indicates a certain degree of stabilization of the ocular surface by the cultivated cells. 

Following the second graft (conventional PKP) there was further significant 

improvement and the patient reports a drastically enhanced quality o f life.
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Figure 9.6: Clinical course photographs of case 2\ the eye o f an SJS patient, before 
and after surgery. The patient presented with a chronically inflamed, conjunctivalized 
eye (pre). Cultivated autologous oral mucosal cells were grafted to stabilize the 
ocular surface (photo taken 2 months, 2M, post-surgery). At 6 months, the oral 
mucosal graft was removed and replaced with full thickness cornea from a donor. 
Just a month after PKP the ocular surface was remarkably improved (7M). 
(Photographs reproduced with the kind permission of Dr. Nakamura).

It is well documented that the success rate of stem cell transplantation in patients 

with immunologically-mediated diseases (such as SJS and OCP) is much lower than 

in those with non-inflammatory ocular surface diseases (Samson et al., 2002; 

Shimmura, 2004). Ultimately, the likelihood of rejection is largely dictated by host 

factors; most especially underlying inflammation and vascularization. One major 

benefit o f cultivated epithelial transplantation on AM is that the graft can be easily 

removed and replaced if necessary (Nakamura et al., 2003b).

9.6.3 Conclusions

The most plausible explanation for the long-term failure o f these autologous 

cultivated oral mucosal grafts is the presence of acute inflammation at the outset. It 

appears that the more severe the existing condition, the greater the chance a graft will 

fail and require repeat surgery. Despite the poor prognosis, the cultivated cells 

appear to have stabilized the ocular surface sufficiently for the second grafts to have 

succeeded. All patients who underwent autologous cultivated oral mucosal stem cell 

transplants continue to be carefully monitored by colleagues in Japan and their 

current prognoses are excellent.
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9.7 Rabbit Oral Mucosal/Corneal Hybrid Stem Cell Cultures

on Amniotic Membrane

9.7.1 Background

The previous sections have detailed the cultivation and transplantation of autologous 

cultivated oral mucosal epithelial cells on amniotic membrane and described a range 

o f clinical outcomes. Reconstruction o f the ocular surface with autologous oral cells 

offers substantial advantages over allogeneic transplantation for the treatment of 

disease in which there is an underlying immunological cause, most significantly in 

eliminating the need for immunosuppression (Kinoshita et a l, 2004). As yet there 

are no determining stem cell markers for the oral epithelium and so it is difficult to 

confirm the presence of these cells in grafted sheets (Dua et al., 2003). It is however, 

quite revealing that the grafts of cultivated oral epithelial cells are capable of 

remaining transparent for more than two years following transplantation (Nakamura, 

unpublished clinical results depicted in figures 9.1 and 9.2). The life span o f transient 

amplifying cells which are committed to epithelial differentiation is thought to be one 

year (Kinoshita et a l, 1981). This would suggest that there are in fact progenitor 

cells present in the mucosal autograft which have the potential to differentiate into 

the corneal epithelial phenotype.

Graft failures (such as those documented in the previous section) are characterized 

by conjunctival invasion of the cornea. Whether this occurs due to a graft rejection 

reaction and the assault o f inflammatory cells or as a result of stem cell depletion is 

unknown. In this investigation, rabbit stem cells from two different sources (oral 

mucosa and limbus) were co-cultured to create a hybrid epithelial sheet for grafting
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onto the damaged rabbit ocular surface. The aims o f this experiment were two-fold; 

[1] to increase the quantity o f stem cells present on the graft, drawing on the well- 

documented success of ex vivo expansion of autologous limbal cells on AM (Tseng et 

a l,  1998; Dua and Azuara-Blanco, 2000a; Koizumi et a l, 2001a; Du et a l,  2003; 

Grueterich et a l, 2003a; Nakamura et a l, 2003b), while also retaining a quantity of 

oral mucosal epithelial stem cells and [2] to improve the morphology of the 

cultivated oral mucosal epithelial cells and induce differentiation into more comeal

like epithelium. This study attempted to establish whether the cells were capable of 

being cultured simultaneously and to determine whether they were morphologically 

distinguishable. The hybrid epithelial sheets were analysed by SEM and TEM both 

prior to transplant and after 3 weeks placement on the damaged rabbit ocular surface.

9.7.2 General Discussion of Results

9 .7.2.1 Evaluation o f  Hybrid Culture Sheets Pre-Transplant 

Microscopic examination revealed that the oral and comeal stem cells formed a 

confluent epithelial sheet and that the cells were indistinguishable from each other 

after three weeks under cell-suspension culture conditions. Oral mucosal cells 

appeared to have differentiated into comeal-like cells, much more so than when 

cultured without comeal stem cells. Examination by SEM showed that the co

cultured epithelial cells appeared to be in fairly good condition and formed a 

confluent layer (plate 6.62). Some of the epithelial cells were flattened centrally and 

had distended microvilli at the cell boundaries (plate 6.63). It is possible that these 

cells represent a stage of differentiation, intermediate between that of oral mucosal 

and comeal morphology. Superficial cells had apical coverings o f short, regular
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microvilli (plate 6.65) and there was no evidence of the parallel ridges or folds on the 

surface o f the superficial cells which characterize oral mucosal epithelia.

TEM examination o f the rabbit hybrid epithelial cell culture on denuded AM 

revealed 4-8 layers of stratified epithelium (plate 6.69). Cells appeared to be in good 

condition and were differentiated into basal columnar shaped cells, suprabasal wing 

cells and flat squamous superficial cells, as in in vivo rabbit cornea. Comeal cell 

junctions, crucial for epithelial integrity and very important in a potential graft, were 

revealed by TEM, joining adjacent cells to each other (plate 6.73) and to the 

underlying amniotic membrane (plate 6.72). The results of the quantitative study 

were equally encouraging; the hybrid cell cultures were found to more closely 

resemble in vivo rabbit cornea than the previously described mucosal cell-only 

cultures, in almost all parameters. This would suggest that the incorporation of 

comeal stem cells in the cell-suspension mix more accurately recreates the limbal 

niche in culture and induces differentiation of the oral mucosal stem cells, making 

them more comeal-like.

9.7.2.2 Evaluation o f  Hybrid Culture Sheets Post-Transplant 

Following a three week period on the cornea, the culture sheet was further improved; 

exemplifying morphology very similar to that of normal rabbit cornea (plate 6.66). 

Again, there was no sign of the parallel ridges and folds on the surface of the 

superficial cells which characterize oral mucosal epithelia, superficial cells were all 

covered in short comeal-like microvilli (plate 6.68). There were also no flattened 

cells with peripheral microvilli, as were seen in the original hybrid culture. Perhaps 

this would suggest that placement on the cornea provides all the stimuli required for
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comeal differentiation. TEM confirmed the hybrid transplanted epithelium to be in 

very good condition and quite indistinguishable from in vivo comeal epithelium. The 

epithelium formed 6-8 well-differentiated and stratified cell layers and there was 

little or no intercellular spacing (plate 6.74). As with the original cultures, it was not 

possible to distinguish between the oral mucosal and comeal epithelial cell types on 

the basis o f morphology. When compared to the original graft, the post-transplant 

epithelial sheet was found to be thicker, with an increase in the number o f cell layers 

and a significant reduction in intercellular spaces (chart 6.2). It also demonstrated an 

increase in the numbers of cell junctions.

Together, these results are very encouraging though they only represent the initial 

stage o f these investigations. Further studies would be required in order to fully 

comprehend the nature of the interactions between oral and comeal stem cells and 

the mechanisms by which mucosal stem cells from the mouth are able to differentiate 

into comeal-like epithelia under culture conditions. The results described in this 

chapter provide evidence that mucosal stem cells, once considered to be unipotent, 

may have the potential to be at least partially transformed into a new cell type, given 

the right conditions. Obviously three weeks represents only a short period of clinical 

study. More data would be required before drawing any conclusions as to whether 

there is in fact any increase in the proportion of stem cells grafted and the affects on 

long-term viability of these hybrid grafts. A very recent study by Daya et a l (2005) 

used DNA fingerprinting techniques to analyse the outcomes of ex vivo expanded 

stem cell allografts in 10 patients. Over a mean follow-up period of 28 months in 

which seven were considered successful, DNA fingerprinting revealed no evidence 

o f donor stem cell DNA beyond 9 months. Though this brings into question the
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origin o f the host comeal epithelium, when viewed in conjunction with the findings 

described in chapter 6.3, would suggest great potential for co-cultured epithelial 

grafts in ocular surface reconstruction. The inclusion of allogeneic comeal tissue in 

culture may induce the differentiation of autologous oral mucosal epithelial into a 

corneal-like phenotype and with a possible expected life-span of less than a year for 

the donor cells; there may be no need for prolonged immunosuppression.

9.7.3 Conclusions and Future Directions

This study represents the first of its kind in creating hybrid epithelial sheets using 

stem cells from different sources. Though involving a more complicated procedure, 

hybrid cell has the potential to combine the benefits of amniotic membrane 

transplantation with the ex vivo expansion of limbal epithelial cells, and also to 

incorporate an alternative source of stem cells, should there be insufficient limbal 

tissue available as in the case of severe bilaterally-affected ocular surface disorders. 

The incorporation of an alternative autologous stem cell source also reduces the need 

for allogeneic tissue and would possibly limit the risk of graft rejection responses. 

Future plans are to use human cells in similar hybrid constructs.
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9.8 Extracellular Matrix Protein-Coated Gelatins as Carriers for 

Human and Rabbit Limbal Stem Cell Cultivation

9.8.1 Background

Cellular supports, scaffolds or carriers that provide an environment conducive for 

cell migration, growth and differentiation are important components o f tissue- 

engineered grafts since rapid integration with the host is essential for long term graft 

survival (Piskin, 1992; Hodde, 2002). Amniotic membrane has been well 

characterized as a naturally occurring scaffold and is widely accepted as a useful 

support for epithelial cell transplant surgery. It not only accurately mimics the native 

corneal epithelial basement membrane but has a number of therapeutic 

characteristics and can be processed in such as way as to retain these qualities (Dua 

and Azuara-Blanco, 1999b; Tseng, 2001; Nakamura et a l, 2004b). However, despite 

comprehensive donor screening there remains the theoretical risk o f transmission of 

infection by some unknown viral or prion agent. Also, the equipment required for 

cryopreservation is both bulky and expensive, restricting availability of the tissue. 

Alternatives have thus been sought which carry less risk, offer greater ease of 

preparation and are universally available on demand.

Gelatin hydrogels are simple, versatile, biocompatible and biodegradable matrices of 

denatured cross-linked collagen. The hydrophilic nature o f these gels makes them 

fine candidates for biomedical applications and the excellent transparency, light 

transmission properties and permeability to small molecular weight nutrients makes 

them particularly useful for ophthalmic use (Jumblatt et a l , 1980; Zeltinger et a l , 

2001; Griffith et a l , 2002). Gelatins have assorted uses in the surgical domain and
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have been incorporated into a variety of ophthalmic procedures over the years. 

Viscous gelatin solutions have been applied in to the fluid-filled chambers of the eye 

in vitrectomy procedures where, along with sodium chloride solution, they maintain 

intraocular pressure (Takki-Luukainen and Tuovinene, 1961; Krassimir and Stefan,

1996). In dressing form, cross-linked gelatin sponges have been applied to full 

thickness skin wounds in the rat where they demonstrated good healing properties 

(Choi et al., 2001). Additionally, when strategically placed so as to separate raw 

conjunctival surfaces, gelatin sponges have proven to be simple and effective tools in 

preventing symblepharon formation after alkali bums of the eye (Yamada et a l ,

1997). A recent study by Hori et al. reports the preparation of biodegradable gelatin 

hydrogels for use on the ocular surface which have the ability to physically and 

chemically interact with epidermal growth factor (EGF), enabling controlled release 

upon degradation and thus facilitating wound healing (Hori et a l, 2005). There have 

been several reports of the use of gelatin hydrogels as cell culture substrates (Rosan 

et a l, 1965; Jumblatt et a l, 1980; Zhang and Zhao, 1991; Altankov et a l, 1991; Tao 

et al., 2003; Amano et a l, 2005). Altankov et al. (1991) used collagen type 1 coated 

gelatin microspheres to cultivate Vero (African green monkey kidney) cells. In 

comparison with pure gelatin beads, they found cells attached more rapidly and grew 

faster on collagen coated beads, approximately 90% of cells having adhered after just 

one hour. In a more recent study, gelatin was used as a culture substrate for 

multipotent precursor cells from human corneal stroma and subsequently, to 

reconstruct the rabbit comeal matrix (Amano et a l, 2005). To date, there have been 

no reports of the use of gelatin as a culture substrate for limbal stem cells so for the 

purposes o f this thesis, a simple gelatin matrix was prepared as a substrate for cell- 

suspension limbal epithelial culture and evaluated by electron microscopy.
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9.8.2 General Discussion of Results

9.8.2.1 Ultrastructural Examination o f  Gelatin Hydrogels

Native gelatin hydrogels were found to be very porous in nature and despite the 

rather rigorous processing for electron microscopic examination; they retained 

visible indentations at their surface (plate 7.1). Other research groups have illustrated 

the importance o f surface pores in a tissue scaffold as they determine total surface 

area and the distribution of ligands presented to cells for adhesion (Zeltinger et al., 

2001). ECM protein coatings appeared to have been accurately applied and well 

adsorbed, appearing slightly uneven in distribution due to the natural variation in 

pore size of the gel. The thickness of the individual protein coatings (~50-200nm) 

was approximately equivalent to that of the corneal epithelial basal lamina (-80- 

lOOnm). Applied together, fibronectin and collagen IV formed an electron dense 

layer reaching peaks of 500nm in thickness (plate 7.8). The healthy corneal epithelial 

basement membrane is composed primarily of type IV collagen and laminin (Fukuda 

et a l,  1999), while fibronectin dominates during the wound-healing process 

(Fujikawa et al., 1984). It has been shown that surface integrins of migrating 

epithelial cells bind to all three therefore surface modifications with these proteins or 

their derivatives have been widely used in an effort to promote epithelial adhesion to 

synthetic polymer surfaces. Hydrogels coated with collagens type I and IV have 

shown a more rapid rate of in vitro cell growth when compared with those surfaces 

coated with either fibronectin or laminin (Trinkaus-Randall et al., 1988; Kobayashi 

and Ikada, 1991a; Kobayashi and Ikada, 1991b) while adsorption of fibronectin to a 

collagen-modified surface has been found to accelerate corneal epithelial attachment 

(Xie et al., 1997). Encouraged by these reports and the findings of the ultrastructural
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examination of chapter 7, project collaborators used gelatin hydrogel carriers coated 

with collagen type IV and fibronectin in the ex vivo expansion o f rabbit and human 

corneal epithelial cells, the results of which are discussed in the following section.

9.8.2.2 Ex Vivo Expansion o f  Limbal Cells on Gelatin Hydrogels 

A major problem with carrying out studies using human tissue is the shortage o f 

available material. Frequently the corneal cells available for culture are in poor 

condition and so in this study, rabbit cells were also cultured to help more accurately 

gauge the usefulness of gelatin as a culture substrate. Examination by SEM 

highlighted a number of rounded cells on the surface of the rabbit culture (plate 7.12) 

whereas TEM inspection showed the cells to be in good condition with intact 

membranes and cellular organelles (plate 7.18). This would suggest the anomaly 

could perhaps be an artefact of SEM processing. Both human and rabbit cells 

appeared to be firmly attached to the gelatin substrate however hemidesmosomes 

were much more apparent in the rabbit epithelial culture (plate 7.19). Cultivated 

human and rabbit cells were compared to control corneal epithelium from the 

relevant species. Human limbal cells cultured on gelatin were found to have 

significantly larger intercellular spaces and fewer cell junctions (both desmosomal 

and basal) than control epithelium while cultured rabbit cells differed significantly 

from their control in every parameter. That said, in terms of morphology and actual 

values, the rabbit cells appeared to be better suited to the culture conditions and the 

gelatin substrate than the human corneal cells. It is likely that the human limbal cells 

were in poor condition prior to culture so before any firm conclusions can be drawn 

as to the usefulness of coated gelatin as a scaffold for human cell culture, these 

conditions ought to be recreated with more human tissue.
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9.8.3 Conclusions and Future Directions

These experiments are still in the preliminary stages and further laboratory 

investigations are required to fully refine the culture conditions; not least o f all to 

obtain a hydrogel of optimal consistency and the best possible ECM-coating levels. 

Clinical trials involving the transplantation o f confluent corneal epithelial sheets onto 

the ocular surface would then enable more accurate assessment o f its potential as a 

replacement carrier for AM. Gelatin hydrogels have the advantage over AM in that 

they are universally available, quick and cheap to prepare. While studies into such 

alternatives are crucial, amniotic membrane remains a valuable adjunct in ocular 

surface reconstruction and practical carrier for cultivated cells. The beneficial 

qualities it displays in the suppression of infection, inflammation and scarring, the 

promotion of epithelial cell migration, differentiation and adhesion, and the 

inhibition of apoptosis, fibrosis and angiogenesis are not to be overlooked (Dua and 

Azuara-Blanco, 1999b; Tseng, 2001). While there is a theoretical danger of prion or 

viral transmission, it is necessary to weigh this minimal yet potentially serious risk 

against these extraordinary benefits when considering a choice of carrier.

Nishida and co-workers have since investigated the possibility of completely 

excluding any carrier from the epithelial graft (Nishida et al., 2004a; Nishida et al., 

2004b). To this end, they have developed a novel temperature-responsive harvesting 

technique which, following a 30 minute drop in temperature from 37 to 20°C, 

releases an intact transplantable epithelial sheet, capable of being directly applied to 

the ocular surface without the need for a scaffold or sutures (Yamato and Okano, 

2004). Since postoperative complications arise from infection due to more invasive 

procedures, this has tremendous potential for revolutionizing ocular surgery.
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9.9 Human Serum in Corneal Epithelial Cell Culture

9.9.1 Background

As in the previous chapter which was concerned with the replacement of biological 

tissue of non-host origin in the tissue engineering procedure, so this investigation 

looks at the development of a culture technique for human comeal epithelial cells in 

which foetal bovine/calf serum (FBS) in the media is exchanged for that o f human 

origin, preferably the graft recipient his/herself. Bovine serum is a complex mixture 

o f components (proteins, lipids, hormones, growth factors and inorganic trace 

elements) required by cells for growth and maintenance, some of which are as yet 

undetermined. Such is its complexity that it is difficult to isolate the effect of any 

specific cytokine. Despite its well-documented usefulness, there are some notable 

concerns - namely cost, variability in the composition of the serum between batches 

and concerns over the potential for disease transmission (Ayoubi et a l, 1996; 

Bednarz et a l, 2001; Rieck et a l, 2003).

To study proliferation and differentiation of progenitor epithelial cells in vitro, two 

basic culture systems have been established. In the first system, reported by 

Rheinwald and Green (1975) and abbreviated herein as the 3T3 system, cells are 

cultured on feeder layers of 3T3 mouse embryonic fibroblasts in a DMEM medium 

containing FBS. This system is utilized by project collaborators in Japan and has 

successfully grown many types o f epithelial cells including rabbit (Koizumi et a l, 

2000b) and human limbal (Koizumi et a l, 2002) and oral mucosal epithelium 

(Nakamura et a l, 2004a). The 3T3 system is unique in permitting serial propagations 

and promoting the survival of various types of cultivated epithelial cell by
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maintaining a stem cell population. In the second system, reported by Boyce and 

Ham (1983), epithelial cells are cultured in a serum-free medium supplemented with 

growth-promoting agents. This system has also supported the growth o f rabbit and 

porcine corneal epithelial cells (Hackworth et a l, 1990; Kruse and Tseng, 1991), but 

seems to primarily promote the clonal growth of transient amplifying cells (Kruse 

and Tseng, 1992). The addition of FBS was subsequently found to stimulate 

proliferation of limbal stem cells and suppress that of corneal TACs (Kruse and 

Tseng, 1993). When comparing the two systems, Tseng et al. (1996) reached a 

number o f conclusions, as listed: 1) the 3T3 system preferentially promoted stem cell 

growth, 2) 3T3 fibroblasts stimulated colony size only in the presence of FBS, 3) 

growth-promoting activity was present in serum-containing fibroblast-conditioned 

media but not at the cell surface or in the extracellular matrix of the 3T3 fibroblasts, 

4) 3T3 fibroblast-derived anti-apoptotic activity helped maintain the undifferentiated 

state of limbal colonies. Thus it appears that the inclusion of serum and fibroblast- 

derivatives in culture media are important as they provide a mandatory source of 

mitogens.

In addition to its inclusion in cell culture media, almost two thirds of all human 

corneas processed in Europe for corneal grafting purposes are stored for up to five 

weeks in organ culture media containing FBS, in concentrations ranging from 2-10% 

(EEBA, 2000). The endothelial cell density is the main criterion determining quality 

o f a donor cornea and is known to decrease by approximately 10-20% during storage 

(Pels and Schuchard, 1983; Bourne, 1986). Efforts to reduce endothelial cell loss 

have been directed towards media supplementation with mitogenic agents such as 

FBS, that primarily protect the cells from endotoxin-mediated damage during the
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preservation period (Schultz et a l, 1992; Ayoubi et al., 1996; Sobottka Ventura et al., 

1999) however unpredictable variations in the quality and composition o f the 

different commercially available sera may severely compromise endothelial vitality 

and hence graft performance (Engelmann and Winter, 1993). In addition, FBS bears 

at least a theoretical risk as a potential infectious source (Molander et al., 1971; 

Kniazeff et al., 1975; Schuurman et a l, 1991; Erickson et al., 1991; Yanagi et al., 

1996; Vilcek, 2001). Kniazeff et al. employed a viral screening method to detect 

endogenous bovine virus contaminants in commercially supplied foetal bovine 

serum. O f 51 batches from 14 suppliers, over 30% were found to contain bovine 

viruses (such as bovine viral diarrhoea virus, parainfluenza type3-like virus, bovine 

herpesvirus-1, bovine enterovirus type 4 and an unidentified cytopathogenic agent) 

including 25% which had been pre-tested by the supplier and designated free from 

known contaminants (Kniazeff et al., 1975). As yet there is no concrete evidence that 

these are infectious to humans, yet strains have been isolated in human cell lines 

which bear a remarkable resemblance (Giangaspero et a l, 1997). Further concerns 

were highlighted by the recent bovine spongiform encephalitis (BSE) epidemic 

which mainly affected European cattle. There have been over 70 reports o f iatrogenic 

transmission of Creutzfeldt-Jakob disease (CJD) through dura mater grafts in the 

literature (Lang et a l, 1998) and over 120 reports through human growth hormone 

preparations from human pituitary tissue (Markus et al., 1992; de Billette et al., 

1996). Furthermore, there have been three reported incidences o f CJD transmission 

by corneal transplantation, one of which has been proven unequivocally (Duffy et al., 

1974; Uchiyama et al., 1994; Hogan and Cavanagh, 1995; Heckmann et al., 1997; 

Hogan et al., 1999). In 1996, a new variant of CJD was discovered (termed nvCJD) 

and molecular strain typing studies confirmed direct links with BSE in that the same
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prion strain was responsible for the disease in both humans and cattle. With no 

reliable serological method of screening for BSE or CJD (Hogan et a l , 1999) and 

while FBS remains a standard component of corneal storage/culture media, the 

possibility o f transmitting prion disease by transplanting comeal tissue cannot be 

negated (Moffatt, 2001).

All o f the above reasons emphasize the need to find alternate sources o f mitogenic 

agents. Different approaches have been taken to eliminate the need for a serum 

supplement. Some investigators have attempted to adapt cells to media without 

serum or to purify the factors responsible for cell growth and differentiation. Others 

have investigated nutrient combinations or experimented with hormone supplements. 

As a result, a selection o f serum-free and reduced culture/storage media such as 

Eurosol, Endothelial-SFM Minimal Essential Medium. Medium F99 and M l99 have 

been developed and analysed for their effectiveness in preventing endothelial cell 

loss in storage, which were varied (Engelmann and Friedl, 1995; Ayoubi et al., 1996; 

Bednarz et a l, 2001; Moller-Pedersen et a l, 2001; Hempel et a l, 2001; Stoiber et 

a l,  2001; Rieck et a l, 2003). Most researchers concluded that serum-free organ 

cultures were possible but that endothelial cell deterioration was rapid after the first 

week in storage and that there was a clear advantage gained from the presence of 

serum, even at low concentrations (Engelmann and Friedl, 1995; Ayoubi et a l, 

1996). During organ culture, as in tissue culture systems, the composition o f the 

medium changes over time as a result of cellular metabolic activity. In tissue culture, 

a stable environment is maintained for the cells by routinely changing the medium 

every couple of days. Eye banks do not typically follow this practice since the rate 

o f substrate utilization and accumulation of waste is likely to be lower in organ



culture where the purpose is one of cell maintenance rather than proliferation. As 

such, organ culture conditions are not directly comparable to those o f tissue culture 

systems, where serum seems to play a more major role prior to cells reaching 

confluence (Ayoubi et al., 1996; Tezel and Del Priore, 1998). In terms o f serum-free 

epithelial tissue culture, Kruse and Tseng (1991) as detailed above, seem to have 

produced the better results, demonstrating clonal growth o f corneal epithelial stem 

cells however their success was limited in that epithelia did not stratify and even the 

basal cells stained positive for terminal differentiation-linked keratin 3.

Given the clear benefits offered by serum in corneal storage and culture, this study 

was designed to assess the practicality and effectiveness of autologous human serum 

as a replacement for the bovine variant in a limbal epithelial cell culture system.

9.9.2 General Discussion of Results

A medium that does not require components of bovine origin would reduce the risk 

of transmission of infectious diseases such as bovine spongiform encephalitis (BSE) 

and would add an additional safety feature to organ and tissue culture. This 

experiment was designed to compare the relative efficacy o f human serum in culture 

media with that of FBS, in terms o f cultivated corneal stem cell morphology. 

Examination by SEM revealed little in the way of differences between the cultivated 

cells (plate 8.1), while TEM highlighted variations not apparent by surface analysis 

(plate 8.4). Of the three human serum cultures studied, the first (plate 8.4A) most 

closely resembled normal human cornea in terms of stratification, differentiation and 

intercellular spacing however since both sera and limbal cells were derived from 

different donors it is difficult to accurately compare them. As encountered with any
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clinical study, it is impossible to obtain large quantities of identical living tissue for 

experimentation and since FBS varies in composition, it is likely that human serum 

also differs slightly between individuals. The potential benefits of using autologous 

serum in creating an epithelial sheet for grafting, should however outweigh any 

distinctions in serum condition. Of all cultured epithelial sheets in this study, the 

FBS-cultivated cells demonstrated the largest intercellular spaces, as well as the 

lowest numbers of desmosomes and hemidesmosomes and as such, least resembled 

the control human cornea and would be less-well equipped to survive transplantation 

onto the ocular surface.

A thorough review of the literature revealed that human serum has seldom been used 

in cell culture. There have been several reports on the serum-free cultivation of 

corneal, conjunctival and retinal pigmented epithelial cells (Hackworth et al., 1990; 

Kruse and Tseng, 1991; Castro-Munozledo et al., 1997; Tezel and Del Priore, 1998; 

Ang et al., 2003; Tan et al., 2004; Ang et a l, 2004) yet only one that documents the 

use o f human serum in culture media. In a study on corneal endothelial cell culture, 

Amano (2003) compared serum-free with human serum and FBS-containing media 

and found that cell morphology and growth were enhanced when either of the sera 

was used, confirming that inclusion of serum in the culture media produces better 

results yet offering no direct comparison between the serum cultures. Amano’s 

findings do however corroborate the results of the study in this thesis, confirming 

that the culture of corneal cells is possible using adult serum. Although not related to 

the ocular surface, Chachques and co-workers (2004) have investigated cell culture 

using human serum in studies on cell-based myocardial regenerative therapy, with 

similarly encouraging results. Having observed that injection of bovine serum-
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cultivated myoblasts corresponded with an increased incidence of malignant 

ventricular arrhythmias and sudden death in patients, they hypothesized that the 

contact of human cells with bovine serum results in the fixation of animal proteins on 

the cell surface, forming an antigenic substrate for immunological and inflammatory 

attack. In an effort to improve cardiac function, they transplanted autologous muscle 

cells cultivated in human serum directly into 20 infarcted left ventricles and reported 

improvements in condition and no cases of arrhythmia or mortality in the post

operative year long observation period (Chachques et al., 2004). While there have 

been no reports of bovine proteins being detected on the surface of FBS-cultivated 

limbal cells, it is conceivable that such factors could contribute to postoperative 

inflammation when the sheets are used as ocular surface grafts.

Given the encouraging findings of the morphological examination of the human 

serum-cultivated corneal epithelial cells, these sheets were also used in clinical trials 

and subsequently grafted onto ocular surfaces by colleagues in Japan. The photo 

montage overleaf (figure 9.7) was kindly provided by Dr. Nakamura o f the Kyoto 

Prefectural University of Medicine for inclusion in this thesis and illustrates a series 

o f slit lamp images which chart the successful restoration of a cornea using a human 

serum-cultivated limbal epithelial cell sheet. Although further relevant clinical details 

are unavailable at this time, it is encouraging that eight months post-transplant the 

grafted cornea remains clear and free from epithelial defects. This would imply that 

the graft continues to maintain a supply of stem cells and offers additional support 

for a suspension culture system using human serum and a 3T3 fibroblast layer.
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Figure 9.7: These slit-lamp images (with [lower] and without [upper] fluorescein 
staining) show the clinical course of human serum-cultivated corneal epithelial cell 
transplantation. Prior to surgery the eye manifested conjunctivalization with scarring 
and persistent epithelial defects; the patient could only recognize hand movements 
[HM]. Five days later, the ocular surface was completely re-covered by the cultivated 
corneal cells and free from epithelial defects. At the last follow-up visit (8 months), 
the corneal surface remained clear and visual acuity had improved to 0.1 (10/100).

9.9.3 Conclusions and Future Directions

This investigation confirmed quite comprehensively that confluent sheets of healthy- 

looking limbal epithelium can be cultivated using media containing human serum 

and that they more closely resemble in vivo cornea than FBS-grown cells. The major 

benefit of autologous serum cell culture is that it can be performed without risk of 

prion, viral or zoonose contamination. While very encouraging, further clinical 

studies are needed to verify the longevity of these grafts. Future challenges include 

incorporating the replacement of mouse 3T3 fibroblasts with those of human origin 

to eliminate the risks both of transmission of zoonotic infection and xenograft 

rejection during transplantation, though there has never been any confirmation that 

these components have resulted in adverse clinical consequences.
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9.10 Conclusions and Future Directions

This PhD thesis primarily employed microscopic techniques to evaluate potential 

improvements to various components of the suspension culture system for comeal 

stem cells and has documented a number of original findings which have contributed 

significantly to the refinement of the culture technique and the development o f safer 

epithelial sheets for use in ocular surface reconstruction.

In terms o f the amniotic membrane carrier, with morphology more closely 

resembling control cornea, smaller intercellular spaces and superior mechanical 

strength, denuded AM appears to be the more practical substrate for human limbal 

epithelial cell culture. Additionally, freeze-drying the membrane was found to be a 

viable alternative to the conventional technique. Sterilized FD-AM retained all the 

valuable characteristics of the cryopreserved tissue (in terms of physical properties, 

levels and distributions of ECM proteins, biocompatibility and the ability to act as an 

stem cell culture substrate) while having the exciting potential to become more 

universally available. Though the results are preliminary in nature, it was determined 

that protein-coated gelatin hydrogels also seem to possess the desired qualities of a 

carrier. With the theoretical risk of prion/viral transmission via the transplantation of 

human tissue, this is an alternative which warrants further investigation.

A number o f investigations involved evaluating alternative sources and types of cells 

for use in culture. Amniotic membrane was found to support the growth of quiescent 

human corneal endothelial cells and has very promising implications with regard to 

the creation of a complete artificial cornea. Incidentally, since the commencement of 

this thesis, two of the techniques described herein have been successfully combined
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to produce viable cultivated human comeal endothelial cell sheets on FD-AM (Ishino 

et al., 2005). Furthermore, oral mucosal stem cells were successfully used to recover 

the ocular surface and have been grown in conjunction with comeal stem cells to 

great effect. The replacement of donor tissue with that of host origin ought to 

revolutionize ocular surgery and remove any risks of allogeneic rejection. Human 

serum was additionally found to be a good substitute for bovine serum in culture 

media, removing a further potential source of prion, viral or zoonose infection. 

Future challenges include the replacement of mouse 3T3 fibroblasts with human 

feeder cells so as to totally eliminate any risks associated with zoonotic infection or 

xenograft rejection during transplantation.

These findings have made considerable contributions to an improved culture system 

which is more flexible, safer and potentially applicable to a greater population. Many 

o f these improvements have been applied practically and are currently undergoing 

clinical trials; the resultant cell sheets having been grafted onto the ocular surface 

and undergoing regular examination. So to conclude, the results reported in this 

thesis have led to significant advances in stem cell culture for ocular surface 

reconstruction, some of which will produce immediate effects and others which may 

help in the long-term. The application of denuded and/or freeze-dried AM will have 

instant benefits. In the more medium-term, there is the potential to create a working 

culture system with no animal components. It will be more of a challenge to replace 

AM completely, though preliminary findings with gelatin hydrogels are encouraging. 

Perhaps the future of tissue engineering of the cornea lies in the creation of an entire 

artificial organ, combining cultured endothelial and epithelial cells with a suitable 

stromal matrix. Though there remain substantial obstacles to overcome before this 

dream becomes a reality, it is not beyond the realms of possibility.
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APPENDIX 1 (www references)

Figure 1.2: Future o f  Optometry (la st updated  O ctob er 2 0 0 4 ). B erk e ley  O ptom etry, 
U n iv ers ity  o f  C aliforn ia , B erk eley , C a liforn ia  9 4 7 2 0  U S A .
U R L : h ttp ://sp ectac le .b erk e lev .ed u /career /career  future.htm l

Figure 1.6: Anatomy and Physiology o f  the Eye, V ersion  2 .0  (last m o d ified  M arch
2 0 0 1 )  b y  D r T h om as C a cec i, V irg in ia /M aryland  R eg io n a l C o lle g e  o f  V eterinary  
M e d ic in e , V irg in ia  P o ly tec h n ic  Institu te &  State U n iversity , V irg in ia  2 4 0 6 1  U S A . 
U R L : h ttp ://ed u ca tio n .v e tm ed .v t.ed u /C u rr icu lu m /V M 8 0 5 4 /E Y E /cm sc lra .h tm

Figure 1.10: Basal Lamina Histology (last rev ised  January 2 0 0 1 )  F acu lty  o f  
M e d ic in e , K a g o sh im a  U n iversity , 35-1  S akuragaoka 8 -C h om e, 8 9 0  K agosh im a , 
Japan. U R L : h ttp ://w w w .k u fm .k a g o sh im a -u .a c .ip /~ a n a to m v 2 /E P IT H /E F 0 9 .ip g

Figure 1.15A: Ocular Disease (la st updated  A pril 2 0 0 3 )  A d v a n ced  E ye  C are, 2 1 4 5  
O ffic e  Park D riv e , San A n g e lo , T exas 7 6 9 0 4  U S A .
U R L : h ttp ://w w w .a ecev ed o cs .co m /O cu la rD isea se .h tm

Figure 1.15B: Ocular Cicatricial Pemphigoid: Patient Education Monograph fo r  
the American Uveitis Society (la st rev ised  January 2 0 0 3 ), by C .S . F oster and Saadia  
R ash id , M a ssa ch u se tts  E ye  and Ear Infirm ary, Harvard M ed ica l S ch o o l, B oston , 
U S A . U R L : http ://w w w .u v e it isso c ie tv .o r g /p a g e s /d ise a se s /o c p .p d f

Figure 1.15C: Ocular Disease (la st updated A pril 2 0 0 3 ) A d v a n ced  E ye Care, 2 1 4 5  
O ffic e  Park D riv e , San A n g e lo , T exas 7 6 9 0 4  U S A .
U R L : h ttp ://w w w .a ecev ed o cs .co m /O cu la rD isea se .h tm

Figure 1.16 [left]: The Multidimensional Human Embryo (la st m o d ified  February  
2 0 0 3 )  b y  B ra d ley  R. Sm ith , B io m ed ica l V isu a liza tion  S ch o o l o f  A rt and D esig n , 
U n iv ers ity  o f  M ich ig a n , A n n  A rbor, M ich igan  U S A .
U R L : h ttp ://em b rv o .so a d .u m ich .ed u /ca m S ta g es/sta g e  19 /sta g e  19.htm l

Figure 1 .1 6  [top]: Amniotic Membrane Transplantation (last m o d ified  D ecem b er
2 0 0 2 )  b y  D r S ch effer  T seng , O cular Surface C entre, Suite 2 1 3 , 97th  A ven u e, F lorida  
3 3 1 7 3 , U S A . U R L : h ttp ://w w w .o cu la rsu rfa ce .co m /c lin ica lserv ices o ss .h tm l# 3 ea m t

Figure 1.18 [before and after]: New Efforts fo r  Ocular Surface Reconstruction (last 
updated  M arch 2 0 0 4 ) by Sh igeru  K in osh ita , D epartm ent o f  O p h th a lm ology , K yoto  
P refectural U n iv ers ity  o f  M ed ic in e , 4 6 5  K ajii-ch o , K aw aram ach i-H irokoji, 
K a m ig y o -k u , K yoto , Japan.
U R L : h ttp ://w w w .o p h th .k p u -m .a c .ip /e /c lin ica l a c tiv it ie s /c a l .htm l

Figure 1.18 [during]: Amniotic Membrane Transplantation in Ophthalmology (last 
rev ised  A p ril 2 0 0 2 )  R o y a l C o lle g e  o f  O p h th a lm olog ists G u id e lin es, 17 C ornw all 

T errace, L on d on , E ngland , N W 1 4Q W .
U R L : h ttp ://w w w .site4 s ig h t.o rg .u k /O u a litv /R G o v /G u id e lin es/A m n io tic .h tm
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