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Abstract

Family conflicts over parental care in the blue tit, Cyanistes caeruleus

A thesis submitted to Lancaster University for the degree of Doctor of 
Philosophy,
February 2006.

Megan Dickens, BSc (Hons) University o f Edinburgh.
Department of Biological Sciences,
Lancaster University, UK.

Current research into parental investment has focused on the influence of conflicts of 

interest between family members. This thesis examines how these conflicts affect 

parental investment into individual offspring within broods of blue tits, Cyanistes 

caeruleus. Experimental work mid-way through the nestling period investigates how 

nestlings solicit parental care through begging, and the food allocation rules of male 

and female parents. Nestling begging was found to relate to short-term hunger, but 

contrary to expectation, small nestlings did not beg more than their larger siblings 

{Chapter 3). Begging behaviour was also context dependent, as it was influenced by 

the sex of the provisioning adult and the reliability of the stimulus to beg (Chapters 3 

& 4). Chapter 5 shows that parents allocate food to offspring in response to a 

composite of nestling begging and nestling position, and although this resulted in 

them allocating more food to hungry offspring, they also gave more food items to the 

largest nestlings in the brood. However, female parents allocated food in a more 

complex way than males, controlling for nestling size when responding to the position 

o f nestlings in the nest cup. This may help to prevent the largest nestlings from

viii



completely controlling food distribution. Parents did not appear to be flexible in their 

provisioning rules, as even when they were provided with extra food they continued to 

allocate more food to larger offspring (Chapter 6). This may be to the parent's 

advantage, however, as it maintains size differences between offspring, allowing 

adaptive brood reduction should environmental conditions decline during the breeding 

attempt.



Chapter 1: General introduction



Conflicts of interest within families over parental 

investment

By providing parental care, parents can invest heavily in their offspring (Clutton- 

Brock 1991). This investment, by the definition of Trivers (1972), increases an 

offspring’s chance of surviving at the cost of the parent’s ability to invest in other 

offspring. Thus parental investment in the current reproductive attempt may decrease 

the parent’s future reproductive success through reductions in future fecundity or 

survival rates (Williams 1966; Lessells 1991). There is good empirical evidence for 

this cost of reproduction, although causal relationships may be unclear in some cases 

(Clutton-Brock 1991; Dhondt 2001) and mechanisms unestablished (Stjemman et al. 

2004). For instance, experiments increasing the number of offspring that parents raise 

have demonstrated reduced parental survival (Golet et al. 2004) as well as reduced 

future reproductive success (Gustafsson & Sutherland 1988; Hanssen et al. 2005). 

This assumption of reproductive costs has been used to establish one of the main 

arguments in life-history theory, that parents must trade-off investing in current and 

future reproductive attempts, where behaviour that ensures survival to the next 

breeding attempt conflicts with providing parental care to the current offspring. This 

life-history trade-off has the potential to create conflicts of interest between family 

members over the supply and division of parental care, when parents attempt to 

withhold investment from demanding offspring, fuelling parent-offspring conflict. As 

Figure 1.1 shows, conflict is generated between all parties who have the potential to 

influence parental investment. Parent-offspring conflict is generated, when parents



and offspring disagree over the division o f parental investment between each offspring 

and its current and future siblings (Trivers 1974, see Box 1). It is generated between 

parents, termed sexual conflict, as each parent would prefer the other to pay higher 

costs o f reproduction and also because the benefit gained from providing parental care 

may differ between parents, most importantly when relatedness asymmetries occur 

within the family. Sibling conflict occurs as siblings are in competition with each 

other over the division o f investment, each would prefer a larger share than that going 

to current and future siblings. These conflicts must be resolved in evolutionarily stable 

strategies o f demand and supply between family members in which no actor gains by 

a unilateral change in behaviour (Parker et al. 2002a).

sexual conflict
(a)

%  * *

(b)

parent-offspring parent-offspring

A m

M ►
sibling conflict

(c)

F igu re 1.1. Conflic ts o f  interest within the family over  parental inves tm ent take the form o f  
(a) sexual conflict  be tw een parents over  how  m uch  each parent  should  invest in current  
o f fspr ing  and over  the d ivis ion o f  inves tm ent be tw een  individual o ffspring ,  (b) parent-  
o f fspr ing  conflict  over  the am oun t  o f  investm ent that each offspr ing  obtains from each parent 
and (c) s ibling conflict  over the p roport ion  o f  parental investm ent that each o f fspr ing  obtains 
(note  that s ibling conflict  can occur  within the current  reproductive  a ttem pt and be tw een  
o f fspr ing  from current  and future reproductive  attempts).
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BOX 1.1
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Parental investment

Figure 1.2 Difference in the trade-off o f the cost and benefit o f parental 
investment between parent and offspring. The benefit o f parental investment 
to parents (B) and offspring (2B) and the cost o f the same investment to both 
(C). P = the optimal trade-off for parents, O = the optimal trade-off for the 
offspring (from Lazarus & Inglis 1986).

Parent-offspring conflict occurs because the trade-off between the cost 
and benefit of investment is not the same for parents and offspring (Figure 
1.2). The cost of parental investment, to both offspring and parents, is a 
reduction in the parent’s future reproductive success (i.e. a reduction in 
inclusive fitness, Hamilton 1964). The benefit received from parental 
investment, will differ between parents and offspring, as offspring are 
fully related to themselves, while the coefficient of relatedness between 
parents and offspring is only 0.5. The benefit of parental investment to the 
current offspring is therefore twice as high for the offspring than for the 
parent. The optimal investment is when the benefits of investment minus 
the costs are a maximum. As a result, offspring favour a higher level of 
investment than parents.

In many species, the supply of parental care to offspring is mediated through offspring 

begging behaviour. Research in this area has been centred on parental care in birds, 

although there has recently been several studies on begging and family conflicts over 

parental investment in taxa as diverse as grey seals, Halichoerus grypus, (Smiseth & 

Lorentsen 2001), burying beetles, Nicrophorus vespilloides, (Smiseth et al. 2003a)



and ponerine ants Gnamptogenys striatula, (Kaptein et al. 2005). In altricial birds, 

nestlings beg to provisioning parents to gain indivisible food items. Begging 

behaviour in birds consists of gaping, stretching upwards towards parents and 

vocalising. It also includes movement in the nest relative to the provisioning adult. 

Parents are confronted with a brood of gaping nestlings and must decide who to feed. 

In recent years begging behaviour has become the focus of intensive research into 

how family conflicts affect parental investment (Kilner & Johnstone 1997; Parker et 

al. 2002b). Conflicts between family members have been viewed as the driving force 

behind the exaggerated begging signals seen in many species (Kilner & Johnstone

1997). The first models of parent-offspring conflict viewed begging behaviour as 

purely manipulative in intention, with the outcome of parent-offspring conflict being 

in favour of either parents or offspring (Parker & Macnair 1978; Parker & Macnair 

1979; Parker 1985). In this scenario, begging is an opportunity for offspring to ask for 

more resources than it is optimal for parents to give. However, more recent models 

have viewed begging behaviour as a means for offspring to reliably inform parents 

about otherwise cryptic levels of need (Godfray 1991; Godfray 1995). Honesty in 

communication has been shown to be viable due to signal handicaps (i.e. costs) 

(Zahavi 1975; Grafen 1990). This application of the handicap principle proposes that 

the cost of signalling insures intense begging signals are produced by those offspring 

with greatest need. In the context of parent-offspring and sibling conflict, this 

signalling cost ensures that potentially demanding offspring only signal when the 

benefit they gain from doing so outweighs the cost, which under simplified conditions 

is when they are in need. Thus, conflict within the family drives the production of 

costly communication between parents and offspring (Kilner & Johnstone 1997). 

Demonstrating that these costs occur, however, has not been straightforward. Early
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work looked for metabolic costs, but recorded low energy expenditure from begging 

(Leech & Leonard 1996; McCarty 1996; Weathers et al. 1997; Bachman & Chappell

1998). Later work took a different approach and converted the proposed energetic cost 

into changes in offspring growth rate. Growth rate is a currency that is likely to be 

directly linked to offspring fitness (reviewed in Lindstrom 1999). Attempts to measure 

this have yielded equivocal results. While work on canaries, Serinus canaria, and 

magpies, Pica pica , found effects of begging on growth rate (Kilner 2001; Rodriguez- 

Girones et al. 2001) in a third species, ring doves, Streptopelia risoria, there was no 

effect (Rodriguez-Girones et al. 2001). Begging vocalisations may also attract 

predators and so a predation cost may help to explain the maintenance of honest 

begging signals. Experimental and comparative work has suggested a role for 

predation in selection on begging calls (Redondo & Castro 1992b; Haskell 1994; 

Leech & Leonard 1997; Briskie et al. 1999; Haskell 1999). However, demonstrating 

that predation costs currently act to retain the honesty of calls will require more 

experimental work (Haskell 2002; Wells 2003). Reductions in sibling fitness, through 

decreased allocation of food, may represent a third cost of begging to offspring (Wells

2003). In a comparative study, Briskie et al. (1994) showed that when sibling 

relatedness was lower, begging calls were louder, which is consistent with this cost. 

Taken together, these three potential costs of begging may be enough to maintain the 

reliability of begging signals in communicating information on nestling need, however 

the issue is unresolved at present (Chappell & Bachman 2002; Haskell 2002) and 

more evidence is required for its conclusion.

Recently, attention has turned away from honest signalling models back to models
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that view nestling begging as scramble competition among siblings (Parker et al. 

2002b). As before (e.g. Macnair & Parker 1979) these models predicts that parents 

respond passively to the outcome of sibling competition. Parker et a l (2002b) show 

that when the allocation of resources is determined by sibling competition, begging 

behaviour reflects an interaction between offspring competitive ability and need. 

Predictions from this model about the behaviour of parents and offspring largely 

match those from honest signalling models, making the interpretation of empirical 

data difficult (Royle et al. 2002). In some circumstances parents may wish to allocate 

food in response to offspring competitive scrambles, as scrambles also provide parents 

with useful information, namely as to offspring competitive ability, which is likely to 

relate to offspring quality (Parker et al. 2002b). In which case, judging the outcome of 

parent-offspring conflict (i.e. which party has control over allocation patterns) will be 

extremely hard.

Offspring demand

Empirical work has been used to support the idea that begging signals offspring need 

(Kilner & Johnstone 1997). Both the visual and vocal begging of nestling birds 

contains information on offspring hunger, thermal need and condition. Begging 

posture relates to nestling hunger in many species (Smith & Montgomerie 1991; 

Redondo & Castro 1992a; Leonard & Horn 1998; Lotem 1998; Saino et al. 2000). 

Call rate is also correlated with nutritional state (Iacovides & Evans 1998; Kilner et al. 

1999; Leonard & Horn 2001a) and individual components of calls can be related to 

different aspects of need (Sacchi et al. 2002). In addition, one study has related call
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variables to the need for brooding by the parent (Leonard & Horn 2001a). Correlations 

between the visual and vocal components of begging signals and nestling condition 

have been found by several experimental studies. These studies have used feeding 

rate, brood-size manipulation and artificial parasite infection to alter chick condition. 

They have shown that nestlings in poor condition beg at significantly higher rates and 

at higher volumes than nestlings in good condition (Christe et al. 1996; Price et al. 

1996; Iacovides & Evans 1998; Lotem 1998; Sacchi et al. 2002; Wright et al. 2002). 

However, empirical work has also revealed that there are other factors influencing 

begging behaviour, such as nestling competitive ability, competitive environment and 

parental response (Stamps et al. 1985; Price et al. 1996; Kolliker et al. 1998; Leonard 

& Horn 1998; Leonard et al. 2000; Rodriguez-Girones et al. 2002). This strongly 

suggests that begging is context dependant and may only partially represent offspring 

need to parents, making it harder for parents to assess true need (Kilner & Johnstone 

1997).

The original models of Godfray (1995) and subsequent theoretical work leading on 

from this (Johnstone 2004) predicted that signalling offspring should be sensitive to 

the begging signals of their competitive nestmates. Thus, when offspring have to 

compete with siblings whose need is greater, they should elevate their own begging 

signals. Conclusions of empirical work have been equivocal in response to this 

prediction. Some studies have shown that begging intensity increases as a result o f an 

experimental increase in the need of nestmates (Smith & Montgomerie 1991; Price & 

Ydenberg 1995; Leonard & Horn 1998), when the number of competitors is 

experimentally increased (Leonard et al. 2000) and when nestlings are paired with
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superior competitors (Price et al. 1996). In contrast, others have found no affect of 

competitor state (Kacelnik et al. 1995; Cotton et al. 1996). Johnstone (2004) suggests 

that these discrepancies are due to differences in the function of the components 

within begging signals. Certain components of begging signals may influence 

allocation of food items and are the result of competition between nestlings, while 

other aspects are more cooperative as they influence provisioning to the whole brood. 

Escalation of begging in response to rivals as predicted by Godfray (1995) should 

apply only to the competitive aspects of begging. These may differ between species, 

potentially explaining why different studies make different conclusions, and this is 

further complicated by variation in the indices of begging used in each study 

(Johnstone 2004). Furthermore, whether nestlings respond to rivals is predicted to 

depend on nestling competitive ability. While competitive aspects of begging 

influence food allocation and can be dominated by larger nestlings, cooperative 

begging that influences parental provisioning rate may be subject to exploitation by 

competitive nestlings, who cash in on the efforts of their weaker siblings (Johnstone

2004).

Many altricial birds hatch nestlings asynchronously so that there is a size hierarchy 

within the brood and this is often maintained throughout the nestling period with 

consequences for the survival, condition and subsequent reproductive success of 

individual nestlings (reviewed in Magrath 1990). Thus nestling long-term need can 

differ within broods, with younger nestlings having greater need, while at the same 

tifne the competitive ability to obtain food from parents can vary in the opposite 

direction. There is substantial evidence that, due to these competitive asymmetries, the
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smallest nestlings in a brood have to work harder to receive equivalent amounts of 

parental care to their siblings (Lotem 1998; Cotton et al. 1999; Smiseth & Amundsen 

2002). For example, larger nestlings can dominate positions close to provisioning 

parents (Kilner 1995; Cotton et al. 1999) where they are more likely to be fed 

(Bengtsson & Ryden 1983; McRae et al. 1993; Kilner 1995; Leonard & Horn 1996). 

Larger nestlings may also find it easier to produce intense begging signals, for 

instance louder begging vocalisations or greater postural height, which is supported by 

the common observation that begging signals become more intense with brood age 

(Kilner & Johnstone 1997). Thus the costs and benefits of signalling are not thought to 

be equal across nestling size ranks and consequently nestling begging strategies may 

differ with nestling size (Glassey & Forbes 2002b). In support of this, empirical work 

has demonstrated that smaller nestlings often beg at greater intensities than their older 

nestmates (Price et al. 1996; Cotton et al. 1999; Krebs 2001).

The response of provisioning adults may also influence nestling begging. 

Experimental work on begging in house sparrows, Passer domesticus, (Kedar et al.

2000) has revealed that nestlings can leam to beg at the intensity that brings them 

greatest reward, so that nestlings with equal need can beg at very different levels. A 

follow-up study on hand-reared magpies supported this and also showed that large 

nestlings escalated their begging intensity when it was easier for small nestlings to 

obtain food (Rodriguez-Girones et al. 2002). Further experimental work on learning in 

southern grey shrikes, Lanius meridionalis, has shown that nestlings can leam to beg 

in the most profitable position in the nest (Budden & Wright 2005). Thus begging 

strategies appear to be modified by past experience. Under biparental care, this leads

10



to the prediction that if there is a difference in the provisioning of the two parents, 

offspring may alter solicitation according to the sex of the provisioning adult. Male 

and female parents may follow different provisioning rules (Bengtsson & Ryden 

1983; Stamps et al. 1985), feed at different rates (Bengtsson & Ryden 1983) and bring 

food items of different type or quality (Cowie & Hinsley 1988; Banbura et al. 2001). 

This could make one parent more profitable than the other, and as a result there may 

be increased competition for ‘begging patches’ near to the more profitable parent 

(Kolliker et al. 1998) and more competitive offspring may dominate these positions 

(Slagsvold 1997). Furthermore, there is evidence from several species that, within 

nests, male and female parents may differ in how they allocate resources to different 

types of offspring (reviewed in Slagsvold 1997; reviewed in Lessells 2002). This may 

result in nestlings of particular types soliciting the parent who is most likely to 

respond. For example in great tits, Parus major, hungry nestlings move closer and beg 

more intensely to female parents, who are more likely than male parents to feed them 

(Kolliker et al. 1998).

How do parents respond to nestling begging?

Empirical work supports the idea that parents respond to the information contained in 

nestling begging behaviour, with begging intensity positively influencing both 

provisioning rate (Muller & Smith 1978; Bengtsson & Ryden 1983; Christe et al. 

1996; Burford et al. 1998; Price 1998) and food allocation to individual nestlings 

(Kilner 1995; Mondloch 1995; Leonard & Horn 1996; Saino et al. 2000; Leonard & 

Horn 2001a). For example, in an experimental paired choice test in tree swallows,

11



Tachycineta bicolor, Leonard & Horn (2001a) showed that parents directed 

significantly more feeding attempts to model nestlings near speakers playing deprived 

calls than to those near speakers playing fed calls.

How do parents respond to the different types of begging behaviour? Parents may 

combine information from vocal and visual signals, in order to gain a more accurate 

representation of offspring need. A study by Kilner et al. (1999) demonstrated that 

reed warbler, Acrocephalus scripaceus, parents integrate signal components to adjust 

their provisioning rates in response to nestling need. Parents use the total gape area 

displayed in the nest as a crude estimate of how often to bring food. This signal will 

reflect chick age and brood size. Parents then use the vocal signal, begging call rate, to 

fine tune provisioning rules, as this signal will contain more complex information 

regarding nestling hunger. In a recent review, Kilner (2002b) suggests that 

multicomponent displays function in the resolution of parent-offspring conflict, 

providing more reliable information on offspring state than single signals would alone. 

This could be especially important as offspring age and certain aspects of begging, for 

instance posture, become less reliable signals of need. Conversely, there is some 

evidence that the different components of begging signals elicit different aspects of 

parental provisioning response. By temporarily muting individual nestling red-winged 

blackbirds, Agelaius phoeniceus, Glassey & Forbes (2002a) showed that begging 

vocalisations influence parental provisioning rate but not allocation to individual 

offspring, which is presumably influenced by other aspects of begging. However in a 

third alternative, as stated by Kilner (2002b), these components could also function to 

increase parental response to the begging display as a whole, as the response of the

12



receiver is often greater to a multicomponent display than to the sum of the individual 

components (Rowe 1999). In which case, the multiple components of begging 

behaviour would indicate that offspring are manipulating parents to invest more.

In order to assess whether begging behaviour is involved in parent-offspring 

communication as opposed to parental manipulation, studies must demonstrate that 

parents respond to the signalling content rather than the competitive aspects of 

begging (Kilner & Johnstone 1997). Many studies have assumed that demonstrating a 

parental response to begging signals is evidence for honest signalling models (e.g. 

Leonard & Horn 1996). However, Parker et al. (2002a) challenge this, stating that 

parental allocation rules must be shown to be an active response to begging for honest 

signalling models to be supported. However, in some cases parents may be choosing 

to respond to aspects of competitive begging, for instance if the outcome of 

interactions between siblings indicates offspring quality. In many cases, parents 

appear to provision larger offspring more than their smaller siblings, even though they 

are not begging more intensely (Price & Ydenberg 1995; Cotton et al. 1999; Smiseth 

& Amundsen 2002). This could be because parents are responding passively to sibling 

competition, for instance by feeding nestlings that are positioned close to the 

provisioning adult. Parents may be constrained by provisioning efficiency, unable to 

pay the time cost of discriminating smaller more needy offspring. Alternatively, 

parents could prefer to invest in high quality offspring that are more likely to survive 

and have higher reproductive success (Clutton-Brock 1991). In many species, 

offspring size during development is a good indication of offspring future 

reproductive success (reviewed in Lindstrom 1999). However, even if parents choose
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to invest in high quality offspring, at some point the benefit of investing more in low 

quality offspring will be greater, and at this point parents should switch allocation 

patterns. This behaviour may still be compatible with a scenario of parents responding 

passively to scramble competition, for instance if low quality nestlings are fed only 

when their larger siblings are satiated. Therefore, distinguishing parental control in 

allocation from offspring manipulation will be difficult. Few studies have been 

conclusive when addressing this problem. By controlling nestling positions, Kilner 

(1995) showed that canary parents can override competition between offspring when 

allocating food within the brood. Parents are capable of feeding according to begging 

signals and not position in the nest, which certainly suggests that parents have some 

control over allocation. Work on parrots in two studies has also shown that in this 

group parents actively control food allocation (Stamps et al. 1985; Krebs 2002). For 

instance, in crimson rosellas, Platycercus elegans, there does not appear to be 

scramble competition to get close to the provisioning parent (Krebs & Magrath 2000) 

and parents may be able to control allocation in this species because the cost of 

selectively feeding small offspring is low (due to large size differences between 

nestlings, asynchronous fledging within the brood and a long nestling period with low 

provisioning rates) (Krebs 2002).

To further complicate matters in the debate over parental control, there may be an 

effect o f offspring age on the degree to which parents can assess offspring need 

without sibling competition as a confounding factor. For example, in hole-nesting 

birds physical sibling competition is often increased over the nestling period. When 

nestlings are close to fledging they will compete for access to the nest entrance, where
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they will remain until a parent arrives with food. Parents usually have little choice 

over allocation at this stage, simply feeding the nestling that meets them at the hole 

(Kacelnik et al. 1995). By contrast, shortly after hatching there is very little physical 

competition in most species, and here honest signalling models are much more likely 

to apply. In between these two extremes, direct parental control may steadily decrease 

from hatching to fledging.

Variation in parental response to offspring demand 

Between parents

If parents have control over how food is allocated between offspring, then they should 

invest in individual offspring according to the benefits of that investment for offspring 

survival and quality (i.e. offspring fitness, Parker et al. 2002a). Parents should give 

each unit of investment to the offspring whose increase in quality is largest on 

receiving the investment. As Figure 1.3 shows, offspring quality rapidly increases 

with parental investment, until a point at which additional investment brings only 

small increases in quality, beyond which point additional investment brings no further 

benefit. If all offspring are of equal reproductive value to both parents, then 

investment into different offspring should be egalitarian by both parents (where 

resource availability permits this, see below) (Smith & Fretwell 1974), with each 

parent investing to optimize the fitness of each offspring, trading-off these benefits 

with the cost of reproduction. With relatedness asymmetries within the family 

however, the benefits of investment to the male and female parent will vary with 

offspring parentage. In many socially monogamous species of bird, females engage in
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O ffspring

fitness

x
Parental investm ent

F igu re 1.3. The relationship betw een the amount o f  parental 
investm ent that an offspring receives and its fitness (the function o f  
offspring survival and future reproductive su ccess). At x  parental 
investm ent ensures offspring survival. From Parker et al. (2002).

extra-pair copulations, with the result that some of the nestlings are not related to the 

provisioning male. Fathers risk wasting investment in offspring that they are not 

genetically related to (Westneat & Sherman 1993) but it does not appear that males 

can identify extra-pair young directly (Keller 1997; Whittingham & Dunn 2001). 

Slagsvold (1997) suggested that extra-pair young are more likely to occur later in the 

clutch, and could therefore be identified by size. Paternity does appear to vary 

predictably with laying order in house martins, Delichon urbica (Riley et al. 1995), 

snow geese, Chen caerulescens (Dunn et al. 1999), collared flycatchers, Ficedula 

albicollis (Krist et al., 2005) and house sparrows (Cordero et al. 1999), but the 

direction of the effect differs between species and in at least two species no pattern 

occurs: tree swallows (Whittingham et al. 2003) and red-winged blackbirds (Westneat 

et al. 1995). Even if males cannot identify extra-pair young, they may still alter 

patterns of allocation to different types of offspring. The presence of extra-pair
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young in the nest causes males to have lower relatedness on average to all offspring 

and potentially this could cause males to decrease investment into low quality 

offspring, especially if low quality offspring have high mortality rates (Lessells 2002).

Slagsvold et al. (1994; 1995) have suggested that if male and female parents invest 

differently in different individual offspring or different types of offspring (known as 

parentally biased favouritism, Lessells 2002) it could be due to a sexual difference in 

the priority of current and future reproductive attempts. In many species of birds, 

females have higher mortality rates than males, possibly due to factors outside the 

breeding season, for example higher over-winter mortality due to smaller body size 

(reviewed in Breitwisch 1989). Slagsvold et al. (1994; 1995) suggest that this would 

lead to females investing more in the current brood and thus being more willing than 

males to invest in small, low quality offspring. However, it is hard to establish the 

direction of causation in patterns of parental investment and survival rates (Dhondt

2001) and in many species provisioning rates at least are relatively equal between the 

two parents (Ligon 1999). Therefore, there is currently some debate over when the 

allocation patterns of the two parents should differ. In a review of parentally biased 

favouritism, Lessells (2002) presents several models examining whether differences in 

life-history trade-offs (cost of reproduction) and relatedness asymmetries within 

families could cause parentally biased favouritism. The models predict extreme bias 

between parents, with each parent caring for only one type of offspring when there are 

differences between the parents in the costs or benefits of care given to different types 

of offspring. However, contrary to the expectations of these models, studies of various 

species of bird have revealed that parents can differ in their preference of feeding
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different types of offspring, a more moderate form of parentally biased favouritism. 

For instance, in budgerigars, Melopsittacus undulatus, crimson rosellas and tree 

swallows female parents preferentially feed smaller nestlings whereas males do not, 

but the bias is not extreme and both parents allocate food to all sizes of nestling 

(Stamps et al. 1985; Leonard & Horn 1996; Krebs et al. 1999). Why does the 

parentally biased favouritism seen in these studies not match that predicted by the 

theoretical models? Lessells (2002) suggests that this is due to the cost o f active 

parental discrimination. Provisioning parents are usually working under strong time 

constraints and discriminating between offspring types is likely to be time-consuming. 

The observed pattern of food allocation may represent the optimal trade-off between 

discrimination for preferred offspring and provisioning efficiency.

Variation in parental response with resource availability

When parents are making investment decisions and trading off the costs and benefits 

of investment, the availability of resources in the environment will have a crucial 

impact, especially when parental care involves the direct transfer of those resources to 

offspring. Parents making reproductive decisions often have to make predictions about 

future resource availability. However, resources in the environment are subject to 

short-term fluctuations and parents often produce more offspring than they can 

support (Mock & Parker 1997). In many species of passerine bird, food shortages 

during breeding cause a proportion of the brood to starve. In 1947, Lack linked 

hatching asynchrony with adaptive brood reduction, a connection which has been 

extremely influential ever since (e.g. Boland et al. 1997). As hatching asynchrony 

produces competitive asymmetries within the brood it will promote adaptive brood 

reduction when there is not enough food being delivered to the nest to support the
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whole brood and smaller young are outcompeted by their older siblings. Work on red

winged blackbirds has explained in detail the adaptive value of this process. In this 

species there is usually one nestling that is younger and smaller than the rest of the 

brood. When competition for food within the nest was experimentally increased by 

manipulating brood size it was this nestling that suffered, whereas larger offspring 

were unaffected (Forbes et al. 1997). The survival of the smaller, ‘marginal’ offspring 

depends on both the number of competitors and the food supply provided by parents 

(Forbes & Glassey 2000). Hatching asynchrony provides a means for parents to 

optimistically overproduce, while protecting the core of their brood from the effects of 

food shortage when resources are not available to support the extra marginal offspring 

(Mock & Forbes 1995). In an experiment to test this, Magrath (1989) manipulated 

both the hatching asynchrony and the food supply available in broods o f nestling 

blackbirds, Turdus merula. Food supply had a larger effect on synchronous broods, 

they produced less young in bad conditions than asynchronous broods. Brood 

reduction was more efficient in asynchronous nests, occurring earlier, whereas in 

synchronous broods parents wasted part of their food supply, giving it to nestlings that 

did not survive, with consequences for the quality of the whole brood.

A fundamental question arises from this work on brood reduction. In circumstances 

where resource availability varies, do parents alter their feeding strategies or are 

competitive interactions between siblings enough to explain adaptive brood reduction 

and conversely the survival of marginal offspring in good breeding conditions? 

Theoretical work supports both scenarios. Bonabeau et al. (1998) present a model that 

maximizes parental fitness in unpredictable food conditions when there is initial brood
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overproduction. Their model shows that competition between siblings can be enough 

to permit optimal partioning of resources in an unpredictable environment. Certainly 

when breeding conditions are poor, scramble competition between offspring for 

parental resources is a cheap way for parents to ensure that high quality offspring get 

enough food (Royle et al. 2002). Conversely the models of Davis et al. (1999) show 

that parents should vary provisioning decisions based on environmental conditions, 

although they assumed that parents have full control over food allocation. Their 

results suggest that as food supply increases parents should switch from a more biased 

strategy of feeding the largest offspring to a more egalitarian strategy, eventually 

feeding all offspring equally. Whether parents or offspring have control over food 

allocation appears to be crucial. Providing some evidence for flexibility in parental 

provisioning Smiseth et al. (2003b) experimentally manipulated the food available to 

broods of bluethroat, Luscinia svecica, nestlings by temporarily removing the male 

parent. After male removal, food allocation became more biased in favour of large 

nestlings. As there was no difference in the change in begging behaviour of large and 

small nestlings in response to the experiment, this result suggests that females altered 

their allocation rules in response to the pressure of being the sole provider for the 

brood. In contrast to scramble competition models (Parker et al. 2002b) there was no 

evidence that large offspring controlled parental behaviour by out-competing siblings, 

for example for positions close to parents. However, the authors caution that a fixed 

parental allocation rule could still alter allocation patterns in response to changes in 

nestling behaviour with brood hunger. Thus parents could interpret begging signals by 

including an interaction with nestling size, so that they are more likely to feed large 

nestlings. Small nestlings are then fed under good conditions, when large nestlings are 

less likely to beg, but less under bad conditions as they would often be competing

20



against a larger nestmate (Smiseth et al. 2003b). A second study directly controlled 

food availability through supplementation and measured the effect on parental 

allocation decisions in white-winged choughs, Corcorax melanorhamphos (Boland et 

al. 1997). They showed that when food was plentiful, provisioning adults favoured 

smaller chicks, while in control broods large chicks were favoured. However, this 

study did not measure offspring behaviour, so it is hard to assess whether parents are 

actively altering provisioning decision making with food availability, although the 

authors state that chicks in the supplemented broods did not appear to be satiated, 

which suggests that parents were actively allocating food to smaller chicks. It is clear 

that more empirical studies are needed to determine whether environmental conditions 

affect how parents distribute food between offspring and that this will have 

implications for the debate on whether honest signaling or scramble competition 

models apply to parent-offspring interactions over parental care.

This project

Whether begging behaviour contains information on offspring need is dependent on 

how competitive interactions between siblings influence begging strategies. For 

example, need may interact with competitive ability on nestling position in the nest 

relative to provisioning adults. If less competitive nestlings are either out competed 

(e.g. Cotton et al. 1999) or are strategic ‘prudent beggars’(Glassey & Forbes 2002b) 

then information on nestling need will be withheld from parents unless parents can 

assess offspring competitive ability through a visual measure such as size and 

integrate this with information from begging signals. Variation in sibling competition
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and parental response between species may have confused this issue still further. 

Detailed work in this area on more species would be useful. An issue that has received 

much less attention is whether biparental care influences begging strategies. Given 

that begging reflects an offspring’s past experience as well as current level of need 

(Kedar et al. 2000; Budden & Wright 2005) and that parents may differ in how they 

allocate food to different types of offspring (Kolliker et al. 1998), strategic begging 

behaviour might be expected to incorporate the sex of the provisioning adult (Kolliker 

et al. 1998). This has been shown to occur in great tits (see above), however that study 

did not involve competitive asymmetries between offspring, although these do occur 

within great tit broods, and so may not be representative of what actually happens in 

the nest. This project aims to address how competitive interactions and biparental care 

influence begging strategies in nestling blue tits, Cyanistes caeruleus.

A second major issue in the study of parent-offspring conflict is whether parents or 

offspring have control over patterns of food allocation (Kilner & Johnstone 1997; 

Parker et al. 2002b). If parents respond passively to nestling competitive interactions 

then this will limit their ability to respond to changing breeding conditions or for the 

two parents to have different allocation rules (see above for reasons why this might 

occur). For instance, in good breeding conditions, parents should prefer a more 

equitable distribution of resources, so that overall nestling condition is maximised. 

However, if parents respond passively and there is hatching asynchrony in the brood, 

then the most competitive offspring will take more than their share. One way to 

examine this is to compare how parents respond to changing conditions when 

allocating food within the brood. If parents change allocation rules, this suggests that
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they have some degree of flexibility and thus control over allocation. Few studies have 

used this approach (but see Boland et al. 1997). Likewise, by comparing male and 

female allocation patterns in response to nestling begging and cues of quality there is 

the opportunity of demonstrating parental control where rules differ.

This project attempts to address these issues through experimental work on parent and 

offspring behaviour during the nestling period. An experimental approach allows 

control over variables of interest that are likely to differ between nests within the 

study population, in this case, nestling hunger and resource availability, both of which 

are normally highly variable within populations. This approach, together with 

statistical control of variation between broods allows us to determine why the 

behaviours of interest occur, against a background of considerable variation in both 

environmental conditions and individual responses to those conditions (e.g. Both et al. 

2005).

Study species

Blue tits make an excellent study species, as they are both extremely common and 

nest readily in accessible nest boxes. They are also tolerant o f human disturbance, 

making them a good candidate for research that involves manipulation of breeding 

conditions and as a consequence they have been previously studied in great detail, so 

that much is already known about their ecology and behaviour (for reviews see Perrins 

1979; Cramp & Perrins 1993). In relation to the present study, their socially 

monogamous breeding system with biparental care and large brood sizes forms a 

useful model system within which to test ideas about intrafamilial conflicts over
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parental investment. During the breeding season both parents invest heavily in 

offspring and have similar parental roles during the nestling period, although only 

females carry out brooding and nest sanitation duties (Perrins 1979; Cramp & Perrins 

1993; Banbura et al. 2001). The breeding season is very short, usually most birds in a 

particular area will start to lay eggs within a two week period (Perrins 1979). This is 

because breeding success is tightly constrained by timing and is dependent on the 

peak in nestling demand for food falling within the annual peak for caterpillars 

(Lepidoptera larvae) (Perrins 1979; Perrins 1991) which is the main food item for 

nestlings (Cramp & Perrins 1993). Thus during the breeding attempt there will be 

intense selective pressure on the behaviours that affect seasonal reproductive success.

There are indications of intrafamilial conflict over parental care in the blue tit from: 

(1) evidence for the costs of reproduction (Nur 1984b; Nur 1988; but see Pettifor 

1993; Merila & Andersson 1999; Richner & Tripet 1999; Kullberg et al. 2002; 

Stjemman et al. 2004), (2) strong sibling competition, due to large brood sizes and 

dependence on a seasonal food supply, so that if the food supply is not sufficient 

nestlings may starve (Nur 1984a), furthermore competition between siblings is 

asymmetric due to hatching asynchrony, and (3) high rates of extra pair paternity 

(extra pair young occur in 40 % of broods, Leech et al. 2001). Previous work has 

shown that there appears to be sexual conflict over investment in different types of 

offspring within broods. Female parents tend to feed smaller fledglings than male 

parents and suffer from decreased survival rates when nestling size differences within 

broods are larger, presumably as males invest less in smaller nestlings in these broods 

(Slagsvold et al. 1994; Slagsvold et al. 1995). Slagsvold (Slagsvold & Lifjeld 1989;
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Slagsvold et al. 1994; Slagsvold et al. 1995) suggests that the male bias towards 

feeding larger offspring causes a sexual conflict between parents over hatching 

asynchrony, with females hatching nestlings synchronously in order to obtain higher 

male investment in the brood. This thesis will investigate further the potential for 

conflicts of interest within the family over the flow of parental investment from 

parents to offspring during the nestling period.

Outline o f  the thesis

Chapter 2 introduces the approaches and methods used in this study. This will form a 

background for the following chapters, which describe the experimental work. The 

following four chapters form the experimental core of the thesis. Chapter 3 

investigates the dual effects of offspring size and hunger on offspring begging 

behaviour in a breeding system with biparental care. Whether begging strategies are 

context dependent is investigated further in Chapter 4, which examines how nestlings 

respond to different stimuli that elicit begging behaviour. Chapters 5 & 6 examine 

parental responses to nestling begging. First, Chapter 5 looks at patterns o f allocation 

in individual nestlings by male and female parents and discusses whether parents take 

into account offspring competitive ability when responding to nestling solicitation. 

Chapter 6 examines whether resource availability affects parental allocation rules. 

Resource availability is influenced experimentally by supplementing the food supply 

to certain broods and comparing parental allocation rules in these broods to those in 

control broods in two different paired designs: (1) control broods without food 

supplementation and (2) periods of parental provisioning in the same broods with the 

supplementary food removed. Finally, all experimental chapters are reviewed in

25



Chapter 7 and discussed in the light of the issues presented in Chapter 7, setting the 

conclusions of each chapter in a wider setting.
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Chapter 2: General methods
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Fieldwork

Study species

This project studied parental care in a wild population of blue tits in Lancashire, 

England. Blue tits are frequently used in behavioural studies, as they are both 

extremely common and nest readily in accessible nest boxes. As a result, much is 

already known about their ecology and behaviour (see Perrins 1979; Cramp & Perrins 

1993). The breeding season is short; most birds will start to lay eggs within a two- 

week period (Perrins 1979). This is because breeding success is dependent on the peak 

in nestling demand for food falling within the annual peak for caterpillars 

(Lepidoptera larvae) (Perrins 1979; Perrins 1991) which is the main food item for 

nestlings (Cramp & Perrins 1993).

Blue tits have a socially monogamous breeding system with biparental care. However, 

even in a socially monogamous breeding system there can be variation in the 

reproductive success among breeding males due to extrapair fertilizations, which are 

common in the blue tit (e.g. Kempenaers et al. 1992; e.g. Kempenaers et al. 1997). For 

example, a previous study on this population revealed that extrapair young occurred in 

39.8% of broods and accounted for 11.7% of all offspring (Leech et al. 2001). 

Therefore, in many broods male parents provide parental care for offspring that they 

are not related to. During the breeding season, both parents provision nestlings with 

food and defend the nest. The relative contributions of the male and female parent to 

provisioning the brood may differ between individual pairs and populations.
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Several studies have found a difference in provisioning rate between the sexes (males 

provision at a higher rate than females: Greico 1999; females provision at a higher rate 

than males: Banbura et al. 2001). Parents can also differ in the quality of food items 

that they bring to the nest, with males more likely to bring larger food items (Cowie & 

Hinsley 1988; Blondel et al. 1991; Banbura et al. 2001). However, other studies, 

including one on this population, have found no difference in either provisioning rate 

or prey size between the sexes (Przybylo & Merila 2000; Leech 2002). Both parents 

remove faecal sacs from the nest but females alone also incubate eggs, brood nestlings 

and clean the nest (Perrins 1979; Cramp & Perrins 1993; Banbura et al. 2001).

Blue tits are notable for their extremely large brood sizes (up to 16). Young often 

hatch over several days, as females can commence incubation while still completing 

the clutch. Where there is hatching asynchrony, size differences between offspring of 

different ages are often retained through much of the nestling period and later hatched 

young are likely to have lower survival rates (Merila & Wiggins 1995; Descamps et 

al. 2002; Brommer 2004). Breeding success can be low in years where breeding 

conditions are poor and brood reduction is common (Perrins 1979; Slagsvold et al. 

1995). Post-fledging survival is also usually low, for instance offspring post-fledging 

recapture rates after the first three months can be as low as 9% (Nur 1986), and is 

probably influenced by fledging body mass (Perrins 1979; Nur 1984a). Table 2.1 

provides information on brood size, hatching spread and brood reduction in the focal 

broods used for this thesis, from each of the three study years 2003-2005.
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Table 2.1. Information on focal broods: Brood size (at hatching), hatching spread (the number o f  days 
over w hich nestlings hatch) and brood reduction (the % o f  nests where brood reduction takes place, and 
in those nests the average % o f  mortality within the brood), over the three study years. Parameters 
represent averages across nests (m ean, fo llow ed  by the range), except for brood reduction m easures (1 )  
& (3). Sam ple sizes are as follow s: 2 0 03 , N  = 22, except for hatching spread, where N = 18; 2004 , N = 
20; 2 0 05 , N =  23.

B reed in g  p a ra m eters 2003 20 0 4 20 0 5

Brood size 8.6 (7 -11) 9.9  (7 -14) 9 .4  (5 -1 2 )

H atching spread (days) 

Brood reduction:

2 .6  (2-3) 3 .0  (2 -4) 2 .8  (1 -4 )

(1 ) % o f  nests with brood reduction 27.3 20 .0 52.2

(2 ) % o f  brood lost 27.8 22 .9 37.5

(3 ) T im ing o f  brood reduction:
(9 .1 -55 .5 ) (1 2 .5 -3 7 .5 ) (8 .3 -9 0 .9 )

% o f  brood reduction occurring before 10 days 
post-hatching

33.3 100.0 50.0

% o f  brood reduction occurring after 10 days post
hatching

66.6 0.0 50.0

Study area

The study area consisted of two small deciduous woodlands, Lancaster University 

campus (grid reference SD4857) and Hazelrigg wood (SD4857 and SD4957). The 

dominant tree species in these woodlands are oak, Quercus robur, birch, Betula 

pendula and beech, Fagus sylvatica. All birds in the study nested in wooden nest 

boxes of a standard size and designed to be used by blue tits only; a 26mm diameter 

entrance hole prevented larger species from entering. The study site has a total of 67 

nest boxes, with 45 boxes at Lancaster University and 22 boxes at Hazelrigg wood, 

although not all are used every year.

30



General procedures

Fieldwork was carried out over the breeding seasons (late March to mid-June) of three 

years: 2003-2005. All nest boxes were regularly monitored from the start of each 

breeding season to establish laying date of the first egg, clutch size, hatch date and 

hatching success, and boxes were checked at the end of the breeding season to 

establish fledging success.

Nestlings were ringed with numbered metal British Trust for Ornithology (BTO) rings 

at day six (day 0 is hatching day). Pairs of breeding blue tits were monitored in the 

field for the presence of unique colour ring combinations, placed on the birds as part 

of a previous study (Leech 2002). Any unmarked adults were caught at the nest during 

the second half of the nestling period and fitted with a BTO and colour ring 

combination.

On days 10 and 13 post-hatching in 2003, and on days 10 and 14 in 2004 and 2005, 

the following biometrics were taken from all nestlings; mass (to the nearest O.lg), 

head and bill length, tarsus length, gape width and gape length (all measured to the 

nearest 0.1mm with dial calipers). Final measurements of nestling biometrics prior to 

fledging were taken on day 14 as visiting the nest after this age may cause nestlings to 

fledge prematurely.
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Experimental procedure

During the field season in 2003, an experiment was carried out controlling nestling 

hunger across size ranks within broods (Chapters 3, 4 & 5). Ten days after hatching, 

nestlings in experimental nests were marked individually with small head patterns 

using white Tippex, to allow identification on the video recordings. The two largest 

and two smallest nestlings (according to mass) in each nest were chosen as focal 

nestlings. The average mass of focal nestlings was 9.7g (SD = 0.72) for ‘large’ chicks, 

and 8.0g (SD = 0.95) for ‘small’ chicks. As nestlings at this age gain, on average, 

under lg  per day (Perrins 1979), the mass difference between large and small nestling 

categories represents between one and two days growth. Focal nestling hunger was 

manipulated by either hand feeding or by depriving nestlings of food. The four focal 

nestlings were randomly allocated to either a fed or deprived experimental treatment 

so that each of the two treatments was carried out on both a large and small nestling. 

After removal from the nest, focal nestlings were kept warm in dummy nests for one 

hour while the treatment proceeded. At the start of the procedure all of the focal 

nestlings were fed until satiation with Nectarblend chick rearing softfood (Haiths, 

Cleethorpes UK). Nestlings were fed until they would no longer gape in response to a 

standardised stimulus of a tap on the bill and the sound of a ‘squeak’ made by the 

experimenter (which mimicked the parental feeding call). The amount of food that 

each nestling consumed was recorded as wet mass (to the nearest O.lg). Nestlings in 

the deprived treatment were not fed again during the hour they were kept away from 

the nest. Fed nestlings were kept warm in a separate dummy nest and were offered 

food every 10 minutes for one hour, each time feeding them until they did not gape to 

the stimulus. The amount of food consumed was recorded as before. At 60 minutes, 

after feeding the nestlings in the fed treatment, nestling mass was recorded for all four
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focal nestlings and they were then returned to the nest. The nest was then recorded for 

one hour using a nest box camera linked to a Sony digital camera (DCR-TRV330E) 

and an outside video camera (Sony Handycam, CCD-TR913E). The nest box camera 

is attached to a nest box lid, which replaces the actual lid at each nest box and allows 

recording of parental provisioning behaviour from vertically above the nest cup. At 10 

days old nestlings are rarely brooded, and both parents are working at approximately 

their maximum provisioning rate for the nestling period (Perrins 1979). Video 

recording took place between 07:30h and 18:00h. Outside video cameras were placed 

on tripods approximately 5-10m from the nest box and used to identify adults (using 

colour rings) during provisioning visits, when this was not possible from inside 

cameras. Dummy cameras were placed at the nest one day before recording, to allow 

adult birds to become used to their presence. After one hour of recording, nestling 

mass was recorded again and the cameras removed.

Ethical considerations

All procedures were carried out under license from English Nature, The British Trust 

for Ornithology and the Home Office as appropriate. The experimental treatment did 

not appear to have a detrimental effect on focal nestlings. In particular, nestlings in the 

deprived treatment were kept under close observation during the treatment hour and 

did not show any signs of physical stress, such as hypothermia, listlessness or 

excessive panting. Previous studies have carried out longer periods of deprivation (e.g. 

Kolliker et al. 1998) without harmful effects in the short or long term. Treatment had 

no long-term affect on nestling mass. At 13 days old (three days after the experimental 

treatment) there was no significant difference between the mass of nestlings in each of
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the treatment groups (ANOVA: F, ,73 = 0.141, P = 0.708). Nestlings classed as ‘small’, 

‘medium’ or ‘large’ during the experiment, at 10 days post-hatching, were still 

significantly different in mass from each other, on 13 days post-hatching (ANOVA: 

FU73 = 13.08, P < 0.001), but there was no interaction between nestling size class and 

the experimental treatment, on mass at day 13 (ANOVA: Fu73 = 0.274, P = 0.601). 

Most nestlings fledged and the probability of fledging did not differ between treatment 

groups: deprived 92%, fed 90% and untreated 91% (chi-square test; x  = 0.157, DF = 

2, P = 0.924).

Data collection from videotapes

Nestlings were successfully identified on the screen using head patterns. Each time 

that at least one nestling gaped was termed a beg event (i.e. the event was recorded 

whether or not an adult was present). During each beg event the behaviours of 

nestlings and adults, if present, were recorded as described below. Beg events were 

considered to be over when all nestlings had stopped gaping and the adult, if present, 

had fed at least one of the nestlings. All time variables were recorded to a 25th of a 

second (one frame on the video).

Nestling and adult location in the nest

To record the positioning of parents and offspring in the present study, the nest area 

was divided into nine equal areas on the screen (following McRae et al. 1993) with
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one central area and eight areas in a circle adjacent to the centre (Fig. 2.1). Nestling 

and adult location were then assigned to one of the nine areas, at each beg event, 

immediately before a feed occurred (adults could not occupy area 1, in the middle of 

the nest). The distance between each nestling and the provisioning adult was 

quantified by transforming the two locations into a position score, ranging from one 

(nestling and parent were in the same area of the nest) and six (nestling and parent 

were opposite each other). When the nestling was in area 1 (Fig. 2.1), they had a 

position score of 3, regardless of where the adult fed from around the nest cup.

Figure 2.1. The divisions o f  the nest on the video screen, 
used to record nestling position (all sections used) and adult 
position (only the outer segm ents 2-9).

Nestling begging variables

In altricial birds, begging behaviour consists of gaping, stretching towards the parent 

and vocalising. For each nestling, observations were made of visual begging signals at
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each beg event. Beg posture was coded as shown in Figure 2.2, with postural begging 

intensity categorised into six levels (adapted from Redondo & Castro 1992a) where 

zero represents not begging and five represents begging at full intensity (the nestling 

is stretching upwards towards the parent with the whole body raised). Begging posture 

was measured directly before a feed and every second for six seconds from the time of 

the adult’s arrival at the nest. Latency to beg (the time taken from the arrival of the 

adult and the nestling first opening its gape) and begging duration were measured in 

seconds.

Adult behaviour

Where an adult bird was present at a beg event, observations were made of 

provisioning and nest maintenance behaviour. The duration of time that an adult spent 

in the nest box and the time that the adult spent before feeding: ‘assessment time’ 

(Kolliker et al. 1998), were measured in seconds. The identity of fed nestlings was 

recorded at all feeds. In all nests, adults occasionally offered food to one nestling and 

then immediately removed the prey item from the nestling gape and offered it to 

another nestling. This behaviour was termed a ‘rejection’. The size of prey items were 

recorded on a scale 1-3 (1= small, 2 = intermediate, 3 = large, where an intermediate 

prey length is between 80-100% of adult bill length). Prey items were classified as 

insect larvae, winged insects, and spiders/harvestmen, or as unidentified.
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Data analysis

The analysis of nestling begging behaviour and parental response is complicated by 

interactions between nestlings within broods, by potentially large differences between 

broods due to food availability and by small sample sizes (Forbes 2002). Controlling 

for this statistically is difficult. Where possible, the analyses presented in this thesis 

were carried out on brood means, or means for individual focal nestlings within 

broods. Mixed models were used to account for variation between nests. Furthermore, 

where it was necessary to analyse data from individual interactions, models included a 

term for each interaction (i.e. each parental feed) to account for the non-independence 

of data from each individual.
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Chapter 3: Begging strategies and biparental care
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Introduction

Both the visual and vocal components of begging behaviour in nestling birds have 

been shown to contain information on nestling hunger, thermal need and condition 

(Smith & Montgomerie 1991; Redondo & Castro 1992a; Leonard & Horn 1998; 

Lotem 1998; Saino et al. 2000; Leonard & Horn 2001b). However, as well as 

communicating offspring need to parents, begging signals also reflect the competitive 

environment in which they are performed (Price et al. 1996; Leonard & Horn 1998; 

Leonard et al. 2000; Rodriguez-Girones et al. 2002) and as such can be viewed as an 

adaptive strategy reflecting nestling need, relative competitive ability and parental 

response (Godfray 1995; Johnstone 2004).

Where nestlings hatch asynchronously, later hatched nestlings often remain smaller 

and in worse condition than their older siblings for the whole of the nestling period 

(reviewed in Magrath 1990). As a consequence, they may have greater short and long

term need than older siblings. However, they may also be inferior competitors, for 

example large nestlings can dominate positions close to parents (Kilner 1995; Cotton 

et al. 1999) and parents often preferentially feed nestlings that are closer to them 

(Bengtsson & Ryden 1983; McRae et al. 1993; Kilner 1995; Leonard & Horn 1996). 

Parents may also bias their provisioning towards large, high quality offspring 

regardless of their begging intensity (Kilner 1995; Price & Ydenberg 1995; Cotton et 

al. 1999; Smiseth & Amundsen 2002). As a result, nestlings of different sizes may 

experience very different costs and benefits in relation to begging tactics (Godfray
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1995; Glassey & Forbes 2002b). In support of this, studies have generally shown that 

younger, smaller nestlings beg at greater intensities and for longer periods than their 

older nestmates (Price et al. 1996; Cotton et al. 1999; Krebs 2001). Theoretical models 

also predict differences in the begging strategies of different sized nestlings within the 

brood in response to competitors (Godfray 1995; Johnstone 2004) and several 

empirical studies support this (Smith & Montgomerie 1991; Price et al. 1996; Leonard 

& Horn 1998; Leonard et al. 2000) although others do not (Kacelnik et al. 1995; 

Cotton etal. 1996).

Where there is biparental care, the benefit nestlings receive from solicitation may also 

depend on the sex of the parent that they solicit, as there is evidence that within nests 

male and female parents can differ in how they allocate resources to different types of 

offspring (for reviews see Slagsvold 1997; for reviews see Lessells 2002). Several 

studies have shown that nestling sex, size and need can differently affect how much 

male and female parents invest in individual offspring (e.g. Stamps et al. 1987; e.g. 

Kolliker et al. 1998; Krebs et al. 1999). Even if parents follow the same provisioning 

rules, they may still differ in their potential value to offspring if they provision at 

different rates or bring food items of different quality (Slagsvold 1997). If this is the 

case, then competition for ‘begging patches’ (Kolliker et al. 1998) near to the two 

parents will not be equal and the more competitive offspring will dominate positions 

next to the more profitable parent (Slagsvold 1997). In either case it should pay 

nestlings to adjust their demand to the sex of the provisioning adult, subject to the 

profitability of begging to that parent. This would make begging more efficient as it 

would reduce begging costs and increase the benefits. It would be especially relevant
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where brood division takes place and each parent only allocates food to certain 

offspring, as occurs in common coots, Fulica atra, where chicks can suffer physical 

punishment if they beg to the ‘wrong’ parent, (Horsfall 1984). Even where the brood 

is not divided, differential demand to parents could still be advantageous. It would be 

particularly profitable where there are simple cues that allow offspring to discriminate 

between parents, for instance if parents feed from different locations at the nest (as 

shown in the great tit, Kolliker et al. 1998). Great tit nestlings orientate themselves so 

that they are close to where the provisioning adult typically feeds (Kolliker & Richner 

2004) and they move closer to parents when they become more hungry (Kolliker et al. 

1998). Studies on other species have shown that nestlings often change positions in 

hungry broods (McRae et al. 1993) and can learn to beg in the most profitable 

locations in the nest (Budden & Wright 2005). Therefore, there is potential for 

offspring to adaptively alter levels of solicitation to the male and female parent where 

there is the opportunity to do so. Kolliker et al. (1998) showed that great tit nestlings 

move closer to, and beg more intensely towards, the parent that is most likely to feed 

them. Parents may favour influencing begging tactics in this way, as it may both 

reduce competition within the brood, by forcing offspring to choose between parents, 

and reduce the time cost of parental allocation to preferred offspring (Kolliker et al. 

1998).

This study looked at the begging behaviour of nestling blue tits, Cyanistes caeruleus, 

according to their hunger, size and the sex of the provisioning adult. Specifically, the 

study aimed to determine whether: (1) Nestling begging behaviour relates to nestling 

hunger level, (2) the smallest nestlings are inferior competitors within broods and
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therefore beg more intensely than large nestlings, given equivalent levels of hunger, 

and (3) nestling begging behaviour differs according to whether nestlings are 

soliciting parental care from the male or the female parent.
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Methods

General fieldwork followed the methods described in Chapter 2 and was carried out 

between March and June in 2003. Twenty-five pairs of breeding blue tits were used in 

the experimental procedure, however, due to technical problems with videotaping, 

data from three of these nests could not be used.

Experimental procedure

The experimental procedure is described fully in Chapter 2; using hand feeding and 

periods of food deprivation to control nestling hunger across size ranks and filming 

parental provisioning visits for one hour to record allocation rules by both parents, 

when nestlings were 10 days old.

Data collection from videotapes

Nestlings were successfully identified on the screen using head patterns. Information 

on nestling begging behaviour was recorded as described in Chapter 2.
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Data analysis

The four measures of nestling begging behaviour; begging posture, latency to beg, 

begging duration and the position of nestlings relative to the provisioning adult were 

significantly correlated although in five out of six cases the correlation was not strong 

(Spearman’s correlation coefficient ranges from -0.454 - 0.837, N ranges from 2336- 

5031). Furthermore, principal component analysis indicated that at least three 

components would be needed to explain 86.9% of the variance in the data. Therefore, 

the different measures of begging were analysed separately.

As information on individual begging bouts within nests was not independent, the 

analysis used average values of begging variables for each focal nestling within nests 

(except in the analysis of nestling position, see below). Differences between nests 

were accounted for by using mixed models with nest as a random factor. The models 

examined the importance of the following factors on the begging behaviour of focal 

nestlings: experimental treatment (whether the nestling was deprived or satiated), 

nestling size and sex of the provisioning adult, together with interactions between the 

terms. Three-way interactions between terms were examined but were not significant 

in any model. Model terms were fitted by examining the significance of each term 

when they were the last term in the model within main effects and interactions. Final 

models contained only significant factors. Data on begging posture were not suitable 

for mixed models due to significant deviations from normality and so were analysed 

using non-parametric statistics. Mixed models were performed using PROC MIXED 

in SAS 9.1 and non-parametric tests were carried out in SPSS11.5.
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Nestling position changes over time as nestlings move around the nest cup, competing 

to be near to the provisioning adult. The analysis of these movements was carried out 

on the relative positions of nestlings to adults over the observation hour. For ease of 

interpretation the observation hour was divided into four 15-minute periods. A 

longitudinal multilevel model (Goldstein 2003) for ordinal data was then used to 

assess how hunger, size and the sex of the provisioning adult influence nestling 

position, including interactions between the explanatory terms. This model uses a 

generalisation of standard binary logistic regression to handle ordinal data. The 

ordinal response is partitioned in five separate models so that only adjacent categories 

are combined, thus retaining the original ordinal relationships. For example, the first 

model partitions the positions into nestlings that were closest to the adult (a distance 

score of one) and all other positions. All five possible partitions are then fitted 

simultaneously using a proportional odds model (McCullagh 1980). Models were 

carried out using the GLLAMM program (Rabe-Hesketh et al. 2001a; Rabe-Hesketh 

et al. 2001b) in STATA release 9 (StataCorp. 2003). Random effects (nestling and 

nest) were ‘nested’ to take into account multiple observations from individual 

nestlings in each nest (Rabe-Hesketh et al. 2005). Terms were added sequentially into 

the model and then assessed for significance using changes in deviance (-2 log 

likelihood).

46



Results

The experimental treatment affected the begging behaviour of focal nestlings. Food- 

deprived nestlings begged with more intense postures (Wilcoxon signed ranks test: Z 

= -3.95, N = 22, P <0.001, Figure 3.1), for longer durations and were quicker to beg 

than satiated nestlings (Table 3.1). However, nestling size did not influence begging 

behaviour (begging posture: Wilcoxon signed ranks test: Z = -1.19, N = 22, P = 0.236, 

latency to beg and begging duration: Table 3.1, size effect and treatment*size 

interaction).

Deprived and satiated nestlings did not beg at significantly different postural 

intensities towards the male and female parents (Wilcoxon signed ranks test, deprived 

nestlings: Z = -0.052, N = 21, P = 0.96, satiated: Z = -0.639, N = 21, P = 0.52). 

Similarly neither latency to beg nor duration of begging was influenced by the sex of 

the provisioning adult and neither nestling size nor nestling hunger altered this pattern 

(Table 3.1: parent main effect andparent*size interaction).
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Experimental treatment

F igu re  3 .1 . The postural begging intensity (see  Fig. 2 .2 ) o f  focal nestlings over  
the one-hour observation period fo llow in g  the experim ental treatment o f  either 
feed ing until satiation or one hour o f  food deprivation. Bars represent m eans ±  
SE for sm all (unshaded bars) and large (shaded bars) nestlings.

T a b le  3 .1 . Variation in begging latency and duration am ongst deprived nestlings according to nestling  
size and the sex  o f  the provisioning parent. N est was included as a random effect in the m ixed m odel 
(latency to beg: Z = 1.61, P = 0 .0537 , duration to beg: Z = 1.50, P = 0 .0 667). Explanatory variables 
w ere assessed  for significance when they were the last terms in the m odel, within three-w ay, tw o-w ay  
and main effects, to control for any influence o f  the order o f  terms. N on-sign ificant term s were  
rem oved from the final m odel.

B egg in g  behaviou r Effect d f F -value P

Treatment 1,121 18.64 <0.0001
Size 1,118 0 .2 9 0.5911

Latency to beg Parent 1,118 3 .32 0.0711
Treatm ent*size 1,117 1.13 0 .2 9 0 0
Treatment*parent 1,114 0 .17 0 .6 8 3 2
Size* parent 1,113 0 .5 0 0.4801

Treatment 1,147 35 .48 <0.0001
Size 1,147 0 .0 0 0 .9 8 3 0

Duration o f  begging Parent 1,150 0 .1 0 0 .7 4 9 4
Treatment* size 1,144 1.68 0 .1968
Treatment*parent 1,144 0 .6 8 0 .4105
Size*parent 1,144 0.05 0 .8153
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Nestling position

During the observation hour almost all focal nestlings moved across positions in the 

nest cup (median number of positions used = 4, range 1-9, Figure 3.2). Hunger 

affected the number of positions that nestlings moved into, with hungry nestlings 

moving into more positions than satiated nestlings (median number of positions used; 

deprived nestlings = 4.5, range 2-9; satiated nestlings = 3.5, range 1-8, Wilcoxon 

signed-ranks test: Z =  -2.756, N = 22, P = 0.006, Figure 3.2).

1 2 3 4 5 6 7 8 9  

Number of different positions in the nest cup

Figure 3.2. The number o f different positions (after the nest cup was divided up 
on the video screen into nine sections; see Methods section) used by satiated 
(unshaded bars) and deprived (shaded bars) focal nestlings over the one hour 
observation period.

25

20

□ Satiated  

■  Deprived
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Nestling position in the nest was significantly affected by the experimental treatment, 

nestling size, the sex of the provisioning parent and time (Table 3.2). However, the 

effect of size involved an interaction with the sex of the provisioning adult and the 

experimental treatment. Both large nestlings and small deprived nestlings were closer 

to the male parent, while small satiated nestlings were closer to the female (Figure

3.3). Focal nestlings were closer to the male parent than to the female parent and they 

also moved further away from the female parent over the observation hour (Figure

3.4). Over the observation period, nestlings changed positions relative to the 

provisioning male parent according to their hunger and size, with large deprived 

nestlings obtaining positions close to the male at the start of the observation period 

and small deprived nestlings obtaining these positions in the latter half of the 

observation period (Figure 3.5). Over time, presumably as they became hungrier, large 

satiated nestlings moved closer to the male parent, however small satiated nestlings 

showed the opposite pattern (Figure 3.5).

Table 3.2. Final m odel exam ining the importance o f  focal nestling size, experim ental treatment 
(deprived and satiated nestlings), parental sex and tim e on the position o f  nestlings relative to the 
provisioning parent. Tim e refers to tim e from the start o f  the experim ent, when focal nestlings are 
placed back in the nest (positions are recorded within 15-minute tim e intervals: 15, 30, 45 and 60  
m inutes). O nly significant terms are included in the final m odel.

Term C hange in deviance d f P

N ull m odel 7235 .38
Treatment 3.98 1 0 .0 4 6 0
N estling size 0.01 1 0 .9203
Parent 43.63 1 <0.0001
Tim e 16.65 3 0 .0 0 0 8
Treatm ent*tim e 7.88 3 0 .0 4 8 6
Treatment* parent 52.25 1 <0.0001
N estling  size*parent 9 .64 1 0 .0 0 1 9
Parent*tim e 26.41 3 <0.0001
N estling  size*treatm ent*parent 20 .64 1 <0.0001
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Figure 3.3. The distance (mean ±SE) between focal nestlings (nestling size and 
experimental treatment) and the provisioning adult (male = unshaded bars, female = 
shaded bars).
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Figure 3.4. The position o f focal nestlings (mean ±SE) over time relative to the provisioning 
male and female parent (male = unshaded bars, female = shaded bars).
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Figure 3.5. The distance (mean ±SE) between large and small focal 
nestlings and the provisioning male parent: (a) Deprived nestlings and 
(b) Satiated nestlings.



Discussion

Begging and nestling need

Food deprived nestlings increased the intensity of their begging signals. This is 

consistent with the theory that begging is an honest signal of nestling need (reviewed 

in Kilner & Johnstone 1997) and corresponds with empirical work carried out on other 

species (Smith & Montgomerie 1991; Redondo & Castro 1992a; Leonard & Horn 

1998; Lotem 1998; Saino et al. 2000; Leonard & Horn 2001b). However, expectations 

that smaller nestlings with greater long-term need would beg more than larger siblings 

were not fulfilled. This suggests that the influence that long-term need has over 

begging strategies is more complex, and may involve differences in both the cost and 

effectiveness of begging with nestling size, as proposed by recent theoretical work 

(Parker et al. 1989; Godfray 1995; Lotem 1998; Parker et al. 2002b; Royle et al. 

2002).

There is substantial evidence from other studies that due to competitive asymmetries, 

the smallest nestlings in a brood have to work harder to receive equivalent amounts of 

parental care to their siblings (Lotem 1998; Cotton et al. 1999; Smiseth & Amundsen 

2002). These studies have generally shown that small nestlings beg more than older 

nestmates, both in a natural setting and when experimentally paired with larger 

nestlings when hunger is controlled (Price et al. 1996). Furthermore, small nestlings 

have greater long term need, as in order to fledge successfully they must achieve a
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higher rate of growth than older siblings. In contrast to these expectations, in blue tits 

small nestlings did not have higher begging rates than their larger siblings after a 

period of deprivation, despite having between one and three days of growing time to 

catch up on. This may in part be due to the stage of nestling development at which the 

experiment was carried out. At day ten in the nestling period, smaller nestlings are still 

in the period of high daily growth rate, while the growth rate of the larger nestlings 

has begun to decline (Gibb 1950). As a result, the potential marginal costs of begging 

are not equal for large and small nestlings. Performing begging signals may carry 

significant metabolic costs (Leech & Leonard 1996; but see Bachman & Chappell 

1998) and there is evidence that these costs can equate to a decrease in nestling 

growth rate (Kilner 2001). Furthermore, Kilner (2001) shows that the marginal cost of 

begging, in terms of impaired growth, declines with nestling age. As small nestlings 

are attempting to catch up with their larger siblings they may be strategically selecting 

not to escalate begging in order to avoid these costs. Lotem (1998) also found that at 

later stages in the nestling period, small nestlings (bam swallow, Hirundo rustica) 

begged less than expected from their long-term need, while Gottlander (1987) found 

that in the middle of the nestling period pied flycatcher, Ficedula hypoleuca, nestling 

mass did not influence begging intensity. The efficiency of begging with nestling size 

may also influence begging strategies. Parents may either preferentially feed large 

nestlings (Smiseth & Amundsen 2002) or may passively accept the outcome of sibling 

competition, for example large nestlings can obtain positions near to the provisioning 

adult (Kilner 1995; Cotton et al. 1999). In either case, small nestlings find that their 

begging signals are less efficient. Glassey & Forbes (2002b) suggest that marginal 

(smaller) offspring may be ‘prudent beggars’ in certain circumstances, for instance 

when their older siblings are hungry. If this is the case, smaller nestlings might wait
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until older siblings are satiated before performing costly begging signals even though 

they have higher levels of long-term need.

Alternatively, although small nestlings may have greater long-term need, body size 

may dictate that larger nestlings need more food in the short-term or there may be 

physiological constraints acting on the ability of smaller nestlings to utilise food 

resources for growth (Lotem 1998; Karasov & Wright 2002), and as a result, larger 

nestlings may become hungry faster.

Dynamic begging strategies as a consequence of biparental care

Biparental care has the potential to influence begging strategies, especially if nestling 

characteristics affect how parents allocate food items (Kolliker et al. 1998). Although 

nestling begging behaviour has been viewed as strategic and thus dependent on the 

signaller’s state, relative competitive ability and probability of success (e.g. Cotton et 

al. 1999) few studies have looked for evidence that nestling begging behaviour is 

affected by the sex of the provisioning adult. In a study on biparental care in the great 

tit, Kolliker et al. (1998) manipulated the hunger of nestlings and recorded their 

begging behaviour towards the male and female parent. Interestingly, the study 

showed that hungry nestlings moved closer and begged more intensely towards the 

female than to the male parent. These differences were then explained by the 

observation that female parents were feeding hungry nestlings more often than male 

parents. Great tit nestlings therefore appear to adjust their demand to the male and
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female parent depending on their need and in doing so increase the profitability of 

their begging signals. Presumably this adaptive behaviour is the result o f nestlings 

learning the profitability of begging strategies in different areas of the nest. A study on 

crimson rosellas, Platycercus elegans, (Krebs 2001) found that chick size affected 

how close chicks were to the male and female parent. Irrespective of hunger, larger 

chicks tended to be closer to the male parent and smaller chicks closer to the female 

parent. Again, the positioning of nestlings relates to the provisioning rules of the 

parents, male parents preferentially feeding large chicks and females small chicks 

(Krebs & Magrath 2000). However, unlike great tit nestlings, in parrots there is no 

difference in the begging intensity of small and large chicks to the two parents and 

chick hunger did not cause chicks to be positioned closer to parents (Krebs 2001), 

strongly suggesting that chicks do not alter their solicitation with the sex of the parent. 

In fact, it appears most likely that in crimson rosellas parents control the allocation of 

food to individual chicks.

These two studies suggest that differences in how parents integrate begging signals 

with other cues (nestling size and position), both between the sexes within species and 

between different species, can produce different nestling begging strategies. One of 

the main factors determining these differences may be how much control parents 

versus offspring have over the allocation of food. Parental assessment of offspring 

state may be constrained by limits on provisioning efficiency and by competitive 

interactions between siblings, leading to begging ‘scrambles’ where parents are 

passive (Parker et al. 2002b). By feeding from different locations and assessing 

offspring need through relative size, parents may be able to regain a measure of
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control over allocation. In highly asynchronous parrots, large size differences mean 

that parents can easily assess nestling need and therefore respond less to begging 

intensity and offspring positioning (Krebs 2002).

The present study provides some evidence that dynamic patterns of offspring 

solicitation can occur as a result of biparental care. While offspring appear to move 

closer to parents when hungry, they also show complex patterns of movement that 

relate to nestling size, hunger and the sex of the provisioning adult. Large nestlings 

and those that have been deprived of food obtain positions closer to the male parent, 

changing positions with time according to motivation and competitive ability. This 

suggests that the differences in provisioning rules between the parents with respect to 

nestling position (Chapter 5) have driven competition between offspring to get closer 

to the male parent. Thus nestlings bias one aspect of their begging behaviour to 

address the differences in male and female allocation. By dominating positions close 

to the male parent, large nestlings can capitalise on male provisioning rules.

Alternatively, nestlings could be biasing their solicitation behaviour towards the male 

parent because of the profitability of doing so. Slagsvold (1997) suggested, in his 

sibling rivalry hypothesis, that offspring solicitation is influenced by the relative 

provisioning rate of the parent. This theory predicts that competitive offspring are able 

to obtain positions close to the parent that is provisioning at the highest rate and that 

parents respond passively to sibling competition, feeding the nestlings that are closest. 

In the present study there was no difference in the provisioning rates o f the two
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parents, however more detailed work on provisioning in blue tits has had mixed 

results. Several studies found that male parents provision at a higher rate than females 

(Greico 1999; but see Banbura et al. 2001 for the reverse pattern) or bring larger food 

items (Cowie & Hinsley 1988; Blondel et al. 1991; Banbura et al. 2001), while others 

found no difference in provisioning (Leech 2002). It is possible that the relative 

contributions of the two parents to provisioning may differ with individuals and 

environmental conditions and that begging strategies could be flexible in response to 

this. There is some evidence from studies on other species that nestlings compete for 

access to the parent provisioning most frequently, for example Leedman & Magrath 

(2003) suggest that in fledgling white-browed scrubwrens, Sericornis frontalis, the 

most dominant fledging obtains parental care from the best feeder.

In conclusion, the present study has shown that blue tit nestlings alter begging signals 

with short-term need, however long-term need with respect to body size does not 

appear to relate to begging intensity. Nestlings do not alter begging signals according 

to the sex of the provisioning adult but there is differential competition for positions 

close to the male and female parent. Nestlings appear to compete for positions close to 

the male parent, with large nestlings primarily obtaining closer positions but with 

nestling hunger also motivating all nestlings to move closer to the male.
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Chapter 4: Begging strategies and the reliability of the 
begging stimulus
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Introduction

In altricial birds, nestlings must beg towards the provisioning adult to have a chance 

of receiving food. In order to do so, they have to perceive when a feed is imminent. 

Nestlings usually beg when an adult arrives at the nest, and seem to respond to the 

sound of the adult’s arrival on the nestbox (Leonard & Horn 2001c) or to the 

appearance o f the parent at the nest (Budden & Wright 2001). They can also, 

however, respond to apparently irrelevant stimuli, such as noises in the environment, 

the sound of the parent leaving the nest and to parental vocalisations that are not 

related to provisioning (Clemmons 1995a; Price & Ydenberg 1995; Leonard & Horn 

2001c; Maurer et al. 2003), and sometimes fail to beg to an adult arriving with food 

(Leonard et al. 1997; Grieco 2001a). Therefore, nestling discrimination between 

correct and incorrect stimuli is error prone. Signal detection theory states that when a 

receiver cannot perfectly distinguish signals, it is not possible for the receiver to both 

maximise correct responses as well as minimise errors (Koops 2004). Receiver error is 

expected to vary with the costs and benefits of correct detection to the receiver (Koops

2004) and in addition will be constrained by perceptual ability, i.e. when the ability to 

distinguish correct from false stimuli is low, receivers will be forced to either commit 

errors or to refrain from responding. Examining nestling begging response to a variety 

of stimuli that differ in their reliability should give valuable insights into nestling 

begging behaviour and help to clarify constraints and strategies involved in the 

evolution of parent-offspring communication.
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The ability to respond correctly to the sound of a parent arriving at the nest has 

obvious consequences for nestlings in terms of getting access to food. Nestlings are in 

competition with each other and being the first to beg increases a nestling’s chances of 

being fed (e.g. Teather 1992; e.g. Leonard & Horn 1996). Failure to respond to the 

correct stimuli, or responding too slowly, means losing out on a feed, a cost that 

would have severe implications in the long term for nestling growth and survival. 

Conversely, as begging may be costly to nestlings (Kilner 2001; Chappell & Bachman 

2002), discrimination against responding to irrelevant stimuli is adaptive, as it 

decreases the likelihood of a nestling begging without reward. In addition, if begging 

vocalisations increase the risk of nest predation this will also select for discrimination 

against false alarms (Haskell 2002). Indeed, when parents perceive a threat close to 

the nest they may give an alarm call, to which nestlings will respond by instantly 

ceasing to beg (Flanagan & Morris 1975; but see Maurer et al. 2003; Davies et al. 

2004; Platzen & Magrath 2004). The ability of nestlings to respond to species-specific 

alarm calls appears to be innate, with learning fine-tuning the ability to correctly 

discriminate these calls (Davies et al. 2004). The ability of nestlings to beg in the 

correct context might be expected to be influenced by the level of predation risk, so 

selection should act to improve the ability of nestlings to correctly discriminate 

between stimuli when deciding whether to beg, and to respond appropriately. Thus, 

nestling begging in the absence of parents has largely been thought to represent a 

costly error in perception (e.g. Leonard & Horn 2005) with a resultant cost to the 

individual.

The ability o f nestlings to correctly discriminate between stimuli, and therefore reduce



the frequency of errors, will be constrained by perceptual ability, which alters with 

age. Nidicolous young are bom blind, remaining so for a period after hatching. 

Sensory development continues while the young are in the nest and therefore 

perceptual ability increases with nestling age (Khayutin 1985). This being the case, 

the ability of nestling birds to discriminate between the arrival of a parent at the nest 

and random noise from the environment will be influenced by nestling age. Where 

nestlings hatch asynchronously age differences between siblings, especially early on 

in the nestling period, may also represent differences in sensory ability. As a result, 

younger siblings may be more prone to beg to irrelevant stimuli and more likely to fail 

to beg to the sound of a parent arriving with food (Budden & Wright 2001; Leonard & 

Horn 2001c).

The individual need of nestlings within nests may also affect how much they 

discriminate between different stimuli. Receiver error is expected to vary with 

receiver motivation (Koops 2004). For instance, hungry nestlings might be expected 

to be more willing to risk begging to any stimuli, while satiated nestlings respond to a 

narrower range of stimuli; those that are least likely to lead to errors. Thus there is the 

potential for an interaction between a receiver’s perceptual ability and its motivation 

when discriminating between correct and incorrect stimuli.

Parents can influence the interaction between receiver motivation and ability on 

discrimination, through unambiguously announcing their arrival and intention to feed 

their offspring. Many altrical birds appear to do so by giving a distinct ‘feed call’ on
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arrival at the nest. This call stimulates nestlings to beg (Flanagan & Morris 1975; 

Khayutin 1985; Clemmons 1995a; Clemmons 1995b; Leonard et al. 2005). 

Observations in blue tits, Cyanistes caeruleus, (Grieco 2001a) show that this call is 

given less frequently as nestlings age, presumably because older nestlings are more 

likely to respond correctly to the arrival of the parent.

This chapter asks whether nestling begging strategies are influenced by the reliability 

of the stimulus to beg and examines how nestling motivation affects the response to 

stimuli that differ in reliability. Specifically the following predictions are tested: (1) 

nestlings with greater motivation to beg, are more likely to beg to unreliable stimuli, 

and (2) less motivated (satiated) nestlings respond mainly to the most reliable stimulus 

type. By controlling nestling hunger across size-ranks within broods, the analysis also 

examines whether nestling begging responses are constrained by potentially size- 

related perceptual ability halfway through the nestling period. If this is the case, 

smaller nestlings may either be more likely than large nestlings to commit errors, 

begging when the adult is not present, or their begging response may depend on the 

adult’s feed call, if they are unable to detect the more subtle stimulus of the 

provisioning parent arriving at the nest.

63



Methods

General fieldwork followed the methods described in Chapter 2 and was carried out 

between March and June in 2003. Twenty-five pairs of breeding blue tits were used in 

the experimental procedure, however, due to technical problems with videotaping, 

data from three of these nests could not be used.

Experimental procedure

The experimental procedure is described fully in Chapter 2; using hand feeding and 

periods of food deprivation to control nestling hunger across size ranks and filming 

parental provisioning visits for one hour to record allocation rules by both parents, 

when nestlings were 10 days old.

Data collection from videotapes

Nestlings were successfully identified on the screen using head patterns. Information 

on nestling begging behaviour was recorded as described in Chapter 2. Both male and 

female adult blue tits occasionally gave a short call at the nest cup after they arrived 

with food for the nestlings. This call has been previously described in blue tits by 

Grieco (2001a) and other species appear to have an equivalent call (e.g. tree swallows 

Leonard et al. 1997). It has been termed a feeding call, as it appears to have a function
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in the provisioning of nestlings. This feed call was noted when it occurred and the 

precise time recorded to allow the call to be linked to the begging behaviour of 

nestlings. In all nests, nestlings occasionally begged when both parents were absent 

from the nest, responding to a noise from the environment, or to the sound of the 

parent leaving the nest box. The begging behaviour of nestlings during these 

occasions was recorded as for a parental visit and these begging bouts were termed 

false alarms, following Leonard & Horn (2005).

Data analysis

The analysis aimed to compare the begging responses to three different types of 

stimuli: (1) The adult arriving at the nest, (2) The adult arriving at the nest and giving 

a feed call, and (3) Random sounds from the environment causing a false alarm. As 

the feed call was not used in all nests (see results section) the analysis was carried out 

on two separate datasets: (1) nests where the feed call was given (N = 13), and (2) 

nests where more than one false alarms took place (N = 20 nests). In each of these 

separate analyses, the response to the stimulus of interest was compared to the 

response to the parent arriving at the nest, firstly for all nestlings in the brood and 

secondly for focal nestlings (comparing responses with focal size and experimental 

treatment). Although the different measures of begging were significantly correlated 

(Spearman’s correlation coefficient ranges from -0.332-0.835, N ranges from 2688- 

5845, in all cases P < 0.0001), they were tested separately as stimulus type may affect 

particular components of begging displays differently.
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Feed calls and nestling begging

To test whether nestlings respond differently to the feed call and the arrival of the 

adult, the proportion of begging nestling in the brood that begged to each type of 

stimulus, was compared, together with the following measures of nestling begging: 

begging posture, the latency to beg and begging duration. Begging postures were 

compared directly before the adult provided a feed, i.e. after the feed call during a feed 

call visit. Latency to beg was measured either as the time from the sound of the parent 

arriving at the nest or from the feed call, depending on whether it was a feed call visit 

or not. Mean values for each stimulus type within nests were compared with paired t- 

tests or Wilcoxon signed ranks test where appropriate. Data on the proportion of 

nestlings gaping were arcsine square root transformed.

False alarms and nestling begging

To test whether nestlings respond differently to the arrival of the adult and stimuli that 

elicit a false alarm, the proportion of nestlings begging in the brood begging to each 

type of stimulus (arcsine transformed) was compared, together with nestling begging 

posture and begging duration. For each stimulus type, nestling begging posture was 

taken as the mean of the begging posture, each second, for the first three seconds after 

either the sound of the parent arriving or after the first nestling began to beg when 

there was no adult. Again, mean values for each stimulus type within nests were 

compared with paired t-tests or Wilcoxon signed ranks test where appropriate.

Focal nestling begging and stimulus type

Mixed models were used to test for the effects of nestling size and hunger on the mean 

begging response of each focal nestling to each of the stimulus types. The begging
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response was examined in terms of (1) Begging frequency, the proportion of feeding 

visits during which a nestling begged, (2) latency to beg and (3) duration of begging. 

Latency to beg was not analysed in the case of nestling response being a false alarm, 

as the timing of the stimulus (i.e. a noise from the environment) was not recorded. 

Data on begging frequency were arcsine square root transformed. Models 

incorporated both fixed effects (nestling size and hunger) and random effects (nest). 

The model considered all two and three-way interactions between explanatory 

variables. Explanatory variables were assessed for significance when they were the 

last terms in the model, within three-way, two-way and main effects, to control for 

any influence of the order of terms. Non-significant terms were removed from the 

final model.

Paired t-tests and Wilcoxon signed ranks tests were carried out in SPSS 11.5 and 

mixed models were performed using PROC MIXED in SAS 9.1.
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Results

Feed calls

Parents used feed calls in 13 of the 22 nests filmed. At those nests, feed calls were 

given infrequently, the median feed call rate being 0.048 calls/parental feed (quartiles 

0.038 -  0.071). Over all nests there were a total of 494 provisioning visits and 43 feed 

calls. Males gave more feed calls than females at the same nest (Wilcoxon signed 

ranks: Z = -2.223, p = 0.026, N = 11 nests, median call rate: females = 0.030, 

quartiles: 0.000, 0.120, males = 0.110, quartiles: 0.055 -  0.475). Male and female call 

rate was not correlated within nests (Spearman’s correlation coefficient = -0.105, p = 

0.759, Figure 4.1).
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F ig u re  4.1. The feed call rate (the number o f  calls/parental 
feed) for m ales and fem ales from each nest.
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Feed calls and nestling begging

The feed call was always given prior to a feed and was always followed by at least 

one nestling begging to the provisioning adult. Comparing within nests and across 

feeds showed that a feed call visit evoked a greater proportion of nestlings to beg than 

the presence o f the adult alone (Table 4.1). Therefore, the feed call effectively solicits 

nestlings to beg to the provisioning adult. Nestlings were also quicker to respond to 

the feed call than to the arrival of the provisioning adult (beg latency, Table 4.1). This 

suggests that nestlings recognise the stimulus of the feed call as specific to a 

provisioning event, in contrast to the sound of the adult’s arrival, which might not 

necessarily signify an imminent feed and which is more likely to be confused with 

sounds in the environment. Indeed, when there is no feed call given, nestlings appear 

to stimulate each other to beg (i.e. the first nestling to beg acts as a stimulus to the 

others, pers.obs.). Nestlings appear to beg to the feed call for a shorter length of time 

than to a normal adult visit, although the trend is not statistically significant (Table 

4.1). However, begging to the feed call is at the same level of postural intensity as 

begging to an adult visit alone (Table 4.1).

Table 4.1. N estlin g  begging response to the arrival o f  the provisioning adult without a feed call and the 
arrival o f  the adult with a feed call (mean & SE). Responses were tested using paired t-tests (d f  = 12) 
except where indicated with * where a W ilcoxon signed ranks test was used.

B eg g in g  resp o n se A rriva l o f  adult F eed  ca ll Test s ta tis tic P

Proportion o f  nestlings gaping 0.441 (0 .032) 0.571 (0 .045) 3 .425 0.005

B egg in g  posture 3 .062  (0 .082) 3 .138 (0 .126) 0 .909* 0.363

Latency to beg (secon ds) 1.079 (0 .088) 0 .418  (0 .049) 5 .908 < 0 .0 0 1

B egg in g  duration (seconds) 5 .986  (0 .401) 5 .032 (0 .407) 2 .023 0 .066
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Response to feed calls with nestling size and hunger

Only the experimental treatment affected nestling begging rate, with deprived 

nestlings begging more often than satiated nestlings (Table 4.2, Figure 4.2). There was 

a trend for all focal nestlings to beg more frequently to the feed call than to a silent 

adult (Figure 4.2), but this effect was not statistically significant (Table 4.2). Both 

large and small nestlings responded to the stimulus type in the same way, i.e. there 

was no interaction between nestling size and whether nestlings were responding to the 

feed call or to the adult alone. Similarly, nestling hunger did not interact with the 

stimulus type. As expected focal nestlings were quicker to respond to the feed call 

than to the arrival of the adult alone (latency to beg, Table 4.2, Figure 4.3). The 

experimental treatment did, however, interact with the type of stimulus. Satiated 

nestlings decreased their latency to respond dramatically in response to the feed call, 

while in deprived nestlings, who were already responding rapidly to the adult, there 

was a much smaller decrease (Figure 4.3). Duration of begging was influenced only 

by treatment, the stimulus to beg had no effect (Table 4.2).
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F ig u re  4 .2 . M ean begging  frequency (±  SE) in response to the arrival o f  a silent adult 
at the nest (w hite bars) and the arrival o f  an adult with a feed call (shaded bars) for 
focal nestlings (experim ental treatment m anipulating nestling hunger across large and 
sm all nestlings).

T a b le  4 .2 . The effect o f  the parent’s feed call on nestling begging behaviour. B eggin g  variables 
are exam ined in a m ixed m odel, with nest as a random effect, to determ ine the influence o f  
nestling size , the experim ental treatment (whether nestlings are deprived or satiated), w hen the 
stim ulus to beg is either the arrival o f  the provisioning adult with a feed call or the arrival o f  a 
silent adult alone. Explanatory variables were assessed for significance when they w ere the last 
term s in the m odel, within three-way, tw o-w ay and main effects, to control for any influence o f  
the order o f  terms. N on-sign ificant terms were rem oved from the final m odel.

B eg g in g  behaviou r Effect D F F -valu e P

Treatment 1,88 30 .48 <0.0001
Size 1,88 0 .59 0 .4 4 5 9

B egg in g  frequency Feed call 1,88 2 .2 0 0 .1 4 2 0
Treatm ent*size 1,85 2.25 0 .1 3 7 2
Treatm ent*feed call 1,85 0 .10 0 .7 5 8 2
Size*feed  call 1,85 0 .07 0 .7 9 7 7

Treatment 1,64.4 9 .78 0 .0 0 2 6
Size 1,60.8 0.02 0.8791

L atency to beg Feed call 1,64.5 2 7 .3 9 <0.0001
Treatm ent*size 1,57.4 0.87 0 .3538
Treatm ent*feed call 1,58.8 5.90 0 .0182
Size*feed  call 1,59 1.06 0 .3078

Treatment 1,66.5 24 .74 <0.0001
Size 1,64.1 2.72 0 .1 0 3 9

Duration o f  begging Feed call 1,64.9 2 .14 0 .1483
Treatm ent*size 1,62.5 0 .77 0 .3 8 5 0
Treatm ent*feed call 1,61.5 1.26 0.2651
Size*feed  call 1,60.7 0 .06 0 .8 0 9 8
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F ig u re  4 .3 . The mean latency to beg (± SE) in response to the arrival o f  an adult 
w ithout a feed  call (w hite bars) and arrival with a feed call (shaded bars) in focal 
nestlings (experim ental treatment manipulating nestling hunger across large and 
sm all nestlings).

False alarms

At nests where they occurred, the median number of false alarms was 9.5, (quartiles 

6.5-16.0) over the one hour observation period. Although relative to provisioning rate 

false alarm rate was low, it did account for a substantial proportion o f begging bouts 

(begging due to false alarms accounted for 26.3% of all begging bouts). Data from a 

total of 213 false alarms from 20 nests were used in the analysis.
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False alarms and nestling begging

Mean values for nestling begging parameters were calculated for false alarms and for 

adult visits at each nest. Nestlings were less likely to beg to false alarms than to a 

normal provisioning visit (Table 4.3). When nestlings did beg to a false alarm, the 

stimulus had an effect on how they begged. Nestlings begging to a false alarm begged 

for a shorter period than they did to the provisioning adult and begged at a lower 

postural intensity (Table 4.3).

Table 4.3. N estling  begging response to the provisioning adult and to a false alarm (m ean & SE). 
R esp onses w ere tested using paired t-tests (d f  = 19) except where indicated with * where a 
W ilcoxon  signed ranks test w as used.

B eg g in g  respon se A rriva l o f  adult F alse alarm Test s ta tis tic P

Proportion o f  nestlings gaping 0.454  (0 .023) 0 .244  (0 .016) 9 .534 < 0 .0 0 1
B egg in g  posture 2.741 (0 .081) 2 .458  (0 .093) -2 .670* 0 .008
B egg in g  duration (seconds) 3 .023 (0 .310) 0 .845 (0 .078) 7 .195 < 0 .0 0 1

False alarms and nestling size and hunger

In focal nestlings, begging rate was influenced by whether the response was a false 

alarm or not, with nestlings begging less frequently to false alarms (Table 4.4, Figure 

4.4). Nestling size however did not affect the begging response either to the parent or 

during a false alarm (Table 4.4, Figure 4.4). Hunger did affect how nestlings 

responded, with deprived nestlings responding more frequently to both the adult and 

to stimuli that elicited false alarms (Table 4.4, Figure 4.4). All focal nestlings begged 

for a shorter period during a false alarm, and there was no additional effect of nestling 

size on begging duration while hunger caused nestlings to beg for longer to all stimuli 

(Table 4.4).
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Table 4.4. The effect o f  false alarms on nestling begging behaviour. B eggin g  variables are 
exam ined in a m ixed m odel with nest as a random effect to determine the influence o f  nestling  
size, the experim ental treatment (whether nestlings are deprived or satiated), when the stim ulus to 
beg is a false alarm versus a visit by the provisioning adult. Explanatory variables were assessed  
for sign ifican ce  w hen they were the last terms in the m odel, within three-way, tw o-w ay and main  
effects, to control for any influence o f  the order o f  terms. N on-significant terms were rem oved  
from the final m odel.

B egg in g  behaviour Effect DF F-value P

Treatment 1,136 84.25 <0.0001
B egg in g  frequency Size 1,136 0.02 0.8872

False alarm/adult visit 1,136 2 1 .86 <0.0001
Size*treatm ent 1,133 3.80 0 .0 5 3 4
Treatm ent*false alarm/adult visit 1,133 1.41 0.2365
S ize*false alarm/adult visit 1,133 0 .06 0 .8 1 4 2

Treatment 1,137 52 .48 <0.0001
Size 1,137 0.03 0 .8542

B eg g in g  duration False alarm/adult visit 1,137 53.65 <0.0001
Size*treatm ent 1,134 0.83 0 .3 6 3 0
Treatm ent*false alarm/adult visit 1,134 2.48 0 .1175
S ize*false alarm/adult visit 1,134 0 .00 0.9591

As nestlings may react to each other when begging, only the first nestling to respond 

to a false alarm can be considered to be responding to the false alarm stimulus alone. 

If errors were due to differences in perceptual ability, we might expect smaller 

nestlings to be more prone to begging first during a false alarm. However, nestling 

size did not have an effect on which nestling was the first to respond to a false alarm, 

(Wilcoxon signed rank test, Z = -0.446, p = 0.655, n = 20 nests) giving further 

evidence for there being no variation in perceptual ability between large and small 

nestlings at day 10.
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Figure 4.4. Mean begging frequency (± SE) in response to the arrival o f an 
adult at the nest (white bars) and to a false alarm (shaded bars), for focal 
nestlings (experimental treatment manipulating nestling hunger across large 
and small nestlings).
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Discussion

Nestling begging response to the feed call

The feed call was more effective at eliciting nestling begging than the arrival of the 

adult alone. This concurs with previous studies that have examined nestling responses 

to the feed call in black-capped chickadees, Parus atricapillus, (Clemmons 1995b) 

and in tree swallows, Tachycineta bicolor (Leonard et al. 1997). There is evidence that 

shortly after hatching the feed call acts to reinforce the signal of the parents arrival 

with food, at this stage the perceptual ability of nestlings is low (Khayutin 1985) and 

they might otherwise fail to beg at the correct time (Clemmons 1995a; Clemmons 

1995b; Leonard et al. 1997). After this learning period (Clemmons 1997), nestlings 

presumably associate the feed call with a provisioning event. By learning to beg when 

the reliability o f the stimulus is high, nestlings can reduce errors and minimise the 

costs o f begging.

Short latencies to beg after the feed call demonstrate that nestlings are responding to

the call alone, whereas with other stimuli there is the possibility that they are

responding to sibling begging, as latencies are longer and more variable. With the

arrival of the adult, it is also possible that nestlings are responding to different aspects

of the stimulus, for instance one may be responding to the sound of the adult entering

the box while another responds to the visual signal of the adult at the nest. Other

aspects o f begging do not change in response to the feed call, for instance begging

posture is not altered. This appears counterintuitive, as nestlings might be expected to
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beg at a greater intensity when the certainty of a feed is high. In addition, as the feed 

call elicits more nestlings to beg, competition for a feed after a feed call is higher than 

when there is no call. Elevated competition might be expected to increase begging 

intensity (Leonard et al. 2000). However, the higher costs of more intense begging 

postures may be enough to keep begging levels constant over both different levels of 

competition and with different begging stimuli that vary in reliability. Although not 

statistically significant, there is a trend for the feed call to decrease the duration of 

nestling begging. As the feed call signifies an imminent feed, it would not benefit 

nestlings to beg for long periods after the call. When there is no call, the relationship 

between the sounds of adult arrival and feed time is longer and more variable, so it 

might benefit nestlings to continue begging for longer.

Response to the feed  call with nestling hunger and size

Small nestlings did not elevate their begging rate in response to the feed call more 

than large nestlings. Similarly, small nestlings did not differ from large nestlings in 

their latency to beg, either in response to the adult or to the feed call. This implies that 

the feed call does not release small nestlings from any disadvantage caused by size- 

related differences in perceptual ability. However it is equally possible that by this 

point in the nestling period (ten days after hatching), the perceptual abilities of 

younger nestlings have caught up with their older nestmates. For instance, this is 

around the time that both large and small nestlings will have their eyes fully open for 

the first time (pers. obs). It is certainly likely that earlier in the nestling period 

differences in nestling perceptual ability within nests will have consequences for size- 

related nestling begging strategies, and at this point the feed call may be more



influential. For instance, Khayutin (1985) shows that great tit, Parus major, nestlings 

open their eyes gradually between six and ten days after hatching and the visual 

stimulus o f the parent entering the nest box is effective in eliciting begging only 

between eight and twelve days after hatching. Clearly there will be a point at which 

more developed nestlings are able to respond to visual stimuli while their younger 

siblings must rely on hearing alone.

Both hungry and satiated nestlings responded quickly to the feed call. Normally,

without the feed call, latency to beg is influenced by nestling motivation, with hungry

nestlings responding quicker than satiated nestlings. However, the feed call removes

this difference, with all nestlings responding quickly. There are several possible

reasons for this effect. First, nestling motivation may change how nestlings respond

according to the reliability of the stimulus. Hungry, more motivated nestlings are

willing to respond to less reliable stimuli (see false alarm section below) and thus they

respond rapidly to the sound of the parent arriving at the nest box, which could be

easily confused with background noise. The parent arriving at the nest cup is a much

more reliable visual signal. Provisioning parents land at the nest box entrance and take

on average 1.31 seconds (SD = 1.53, N = 708) from arrival to appearing actually in

the nest cup ready to feed offspring. If less motivated nestlings are responding to

seeing the parent at the nest rather than the sound of the parent landing on the nest

box, this could explain their slower response time. Alternatively, less motivated

nestlings could be more responsive to the begging of nestmates, which again may

represent a more reliable stimulus, especially for those nestlings further from the nest

entrance. Second, in order to respond swiftly, nestlings may have to remain alert
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between feeds which may be metabolically costly, which has been termed the cost of 

vigilance (Roulin 2000). Hungry nestlings may be more willing to pay this cost if the 

chances of being fed on the next feed are increased, and thus they respond quicker 

than less motivated siblings. The intensity and reliability of the feed call would 

remove the influence of vigilance on the speed of the begging response.

Nestling begging and false alarms

False alarms account for a significant proportion of each nestling’s overall begging 

costs. Twenty six percent of all begging bouts are due to false alarms, which is 

comparable to that found in tree swallows at a similar age, (30% of all begging bouts, 

Leonard & Horn 2001c) but notably more than found in both southern grey shrikes, 

Lanius meridionalis (around 10% of all begging bouts at 10 days old, Budden & 

Wright 2001) and in black-capped chickadees (an average of 11% of all begging bouts 

at 6 and 12 days old, Clemmons 1995a). Interspecific differences in the costs of 

begging may account for nonconformity in the frequency of false alarms, for instance, 

as suggested by Budden & Wright (2001), predation risk, potentially increased by 

begging vocalisations, will have a stronger influence on begging strategies in open 

nesting species than in cavity-nesters.

Nestlings begging to a false alarm did so for a shorter period than they did to the 

provisioning adult and they begged at a lower postural intensity. This implies that 

although the false alarm stimulus elicits begging, it does not elicit as strong a response
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as the correct stimulus. The strategy of varying responsiveness with the strength of the 

stimulus will reduce nestling begging costs. Leonard et a l (2005) also found that tree 

swallow nestlings begged at lower intensities to a false alarm.

Response to false alarms with nestling hunger and size

As fewer nestlings beg to a false alarm than to the arrival of the adult, it is clear that it 

is possible for (at least some) nestlings to distinguish the stimulus causing the false 

alarm. In other words, some nestlings are either unable to distinguish false alarms or 

are risking responding to a less reliable stimulus. Small nestlings were not more likely 

to respond to false alarms, which indicates that the difference does not result from 

disparities in perceptual ability. Leonard et al. (2005) found that nestling age had no 

effect on the proportion of false alarms, comparing nestling begging in six and eight 

day-old tree swallow nestlings and Roulin (2000) also found that younger bam owl, 

Tyto alba, chicks were not more likely to be the first to beg when the adult was absent. 

In blue tits halfway through the nestling period, there appears to be no influence of 

age-related perceptual constraints on false alarms, although this may be a factor earlier 

in the nestling period. Instead, false alarms may occur when increased motivation 

causes nestlings to alter the threshold above which they respond. This corresponds 

with the finding that experimentally deprived nestlings had higher begging rates both 

in response to the adult and during false alarms. When nestlings are hungry, the gain 

from a feed is more important, so the increased begging cost due to mistakes is more 

readily traded-off against the benefit gained. This has parallels with other risk-taking 

behaviour, for example when animals are foraging they will expose themselves to a 

higher predation risk (Milinski & Heller 1978; Godin & Crossman 1994; Soto et al.



2005), and also favour more variable food rewards (Caraco et al. 1980), as their 

hunger increases. In support, both Leonard & Horn (2001c) and Budden & Wright 

(2001) find correlational evidence that hunger affects the rate of false alarms and 

Leonard et al. (2005) demonstrate this experimentally using playback of correct and 

irrelevant stimuli. Variation in risk sensitivity with motivational state would be a 

useful concept to apply to future studies of nestling begging strategies.

Competitive begging strategies and begging stimulus

How nestlings choose to beg appears to depend on an interaction between the 

reliability of the stimulus and nestling motivation. As pointed out by Leonard et al. 

(2005) this has relevance for the findings of the numerous studies of nestling begging 

that have used different stimuli to elicit begging. It also has implications for the study 

of parental investment and communication between parents and offspring (discussed 

further in Chapter 7). More experiments are needed, controlling nestling hunger and 

manipulating the begging stimulus across nestling ages to explore how the reliability 

of the begging stimulus affects nestling begging during the development of perceptual 

ability. For example, early in the nestling period, differences in perceptual ability 

between large and small nestlings within the same nest may have a strong effect on 

sibling competition and the reliability of the begging stimulus may strongly influence 

the outcome o f this competition. This may explain why parents influence the 

reliability of the stimulus more, by giving more feeding calls, in the first week after 

hatching (Clemmons 1995a; Leonard et al. 1997). Variation in nestling begging with 

respect to the begging stimulus has consequences for the information transfer that is



thought to occur between parents and offspring, whereby begging honestly signals 

offspring need to parents. It appears that while some elements of the begging signal 

remain constant, whether or not the parent gives a feed call (begging posture, and 

begging duration to a lesser extent), other elements are altered (begging rate and 

latency to beg). This suggests that the relationship between offspring need and the 

begging signal changes with the begging stimulus. As variability in some aspects of 

the begging signal is reduced in response to the feed call, overall begging to the feed 

call may be less honest.

In conclusion, this chapter has found no evidence that age-related perceptual 

constraints affect begging responses halfway through the nestling period in blue tits. 

Instead, nestling motivation in terms of immediate hunger appears to strongly 

influence the response to begging stimuli that vary in their reliability. Hunger causes 

nestlings to respond to less reliable stimuli, thus allowing them to maximise the 

number of correct responses, and to respond quickly which increases the chance of 

being fed. This strategy however, also causes them to commit more errors, as 

predicted by signalling theory (Koops 2004).
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Chapter 5: Parental food allocation decisions by male 
and female parents
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Introduction

Where two parents simultaneously provide parental care for their offspring, each 

parent should prefer the other to invest more than themselves, so that conflict arises 

between parents over levels o f investment (Trivers 1972). Potentially there is also 

conflict between parents over how parental care is divided up between offspring. Each 

parent must decide how much to invest in individual offspring according to the costs 

and benefits o f doing so (Clutton-Brock 1991). If these costs and benefits differ 

between parents, their patterns o f investment in individual offspring may also differ. 

This is a potential area o f conflict between parents, if  one is biasing investment 

towards the non-preferred offspring o f the other (Lessells 2002) or withholding 

investment from particular offspring and thus investing less overall (Slagsvold et al.

1994).

Why should the costs and benefits o f investing in individual offspring differ between 

parents? Explanations for parentally biased favouritism (when the two parents invest 

differently in different offspring or different kinds o f offspring) have centred around 

two themes: (1) that male and female parents may differ in the priority o f current and 

future reproductive attempts and (2) that male and female parents may differ in the 

benefits they receive from investment into different offspring, (Slagsvold et al. 1994; 

Slagsvold 1997; Lessells 2002). Parents have to trade-off investing in current and 

future offspring, optimising their levels o f investment in the current brood (Lessells 

1991). In many species o f birds, females have higher mortality rates than males,



possibly due to factors outside the breeding season, for example higher over-winter 

mortality due to smaller body size (reviewed in Breitwisch 1989). Slagsvold et a l 

(1994; 1995) suggest that this would lead to females investing more in the current 

brood and being more willing than males to invest in small, low quality offspring. 

However, it is hard to establish the direction o f causation in patterns o f parental 

investment and survival rates (Dhondt 2001) and in many species, provisioning rates 

at least are relatively equal between the two parents (Ligon 1999). Aside from costs, 

parents may differ in the benefits that they receive from investment in individual 

offspring. Extra-pair offspring cause relatedness asymmetries within avian families. 

While mothers know that they are related to all their offspring and will benefit from 

investing in them, fathers risk wasting investing in offspring that they are not 

genetically related to (Westneat & Sherman 1993). The presence o f extra-pair young 

may have several consequences for the division o f paternal care between offspring. 

First, if  the male can identify extra-pair young, he should choose not to invest in them. 

However, it is apparent that males can not do so (Keller 1997) and although it has 

been suggested that the proportion o f extra-pair paternities may increase through the 

laying period and that males invest less in younger offspring as a result (Slagsvold

1997) there has been no evidence to support this theory so far (e.g. Westneat et al. 

1995; Whittingham et al. 2003). Second, as the presence o f extra-pair young in the 

nest cause males to have lower average relatedness to all offspring, this might select 

for males to decrease investment in low quality offspring, especially if  they have high 

mortality rates (Lessells 2002). Although several studies have found evidence for 

parentally biased favouritism (see below), there has been no consensus on the reason 

for its occurrence. Theoretical models have been able to explain parentally biased 

favouritism only in the case o f brood division, where each parent cares for a subset
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of the brood and then only if  parents differ in the benefits o f caring for particular types 

o f offspring (Lessells 2002). Several authors have presented verbal hypotheses 

predicting that males and females should not differ in how they invest in individual 

offspring (Smiseth et al. 1998). Furthermore, even when parentally biased favouritism 

does occur, its overall result may be an equal division o f resources between offspring, 

which may in fact be its purpose (Leonard & Horn 1996).

In altricial birds, parents respond to nestling begging signals when they bring food 

items to the nest, both in terms o f provisioning rate and when allocating food to 

individual nestlings (reviewed in Kilner & Johnstone 1997). The mechanism for 

parentally biased favouritism may be a difference in how males and females respond 

to nestling begging behaviour when they are allocating food items (Kolliker et al.

1998). Kilner (2002a) showed that in canaries, Serinus canaria, male and female 

parents differ in their provisioning rules, males being more responsive to competitive 

aspects o f begging (nestling height) while females respond to both nestling height and 

begging intensity. Kolliker (1998) found that, in great tits, male parents fed nestlings 

begging at a higher level than female parents, and Porkert & Spinka (2004) showed 

that male common redstarts (Phoenicurus phoenicurus) have a stronger preference 

than females for feeding nestlings close to the provisioning adult. There are additional 

cues, however, that parents could be using when making investment decisions. Where 

offspring hatch asynchronously, offspring size may be a reliable indicator o f quality, 

as later hatched offspring are often relatively small and have lower survival rates and 

reproductive potential (Magrath 1990). Evidence for parentally biased favouritism in 

relation to offspring size has been found from studies on several species (reviews in
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Slagsvold 1997; Lessells 2002). In eight o f the 15 species tested, female parents were 

found to preferentially feed smaller nestlings, with the male parent showing this 

pattern in only one study (Table 1 in Lessells 2002). In the remaining six studies, 

neither parent showed a preference to feed smaller nestlings. In addition, several 

studies have also found evidence for parentally biased favouritism in relation to 

offspring size after fledging, and in all but one o f these studies the female parent was 

investing more in smaller offspring (Table 1 in Lessells 2002). Parents may also 

respond differently to a combination o f nestling size and begging behaviour. For 

instance, in an experiment on provisioning in crimson rosellas, Platycercus elegans, 

male parents allocated food in response to begging intensity in small but not in large 

chicks (although they biased provisioning towards large chicks overall), whereas 

females did not adjust their food allocation in response to begging intensity at all 

(Krebs 2001). This pattern was reversed in a second experiment where brood hunger 

was increased, when females responded to begging intensity in large chicks and males 

responded only to chick size.

This study aims to establish whether parentally biased favouritism is occurring in 

broods o f  blue tits. Slagsvold (1994) showed that during post-fledging care male blue 

tits are more likely to feed large offspring than females. As a result females have to 

provide more care for smaller fledglings. This appears to have an adverse affect on 

female survival post-breeding, and this sexual conflict between parents may drive 

females to produce broods that hatch more synchronously, thus manipulating males to 

provide more care to the brood (Slagsvold et al. 1994; Slagsvold et al. 1995). In the 

present study, the investment decisions of male and female parents are examined in
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the nestling period with respect to nestling begging signals and also to nestling size, 

which is a potential indicator of nestling quality, in order to determine whether male 

and female parents differ in how they invest in large and small nestlings.
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Methods

General fieldwork followed the methods described in Chapter 2 and was carried out 

between March and June in 2003. Twenty-five pairs o f breeding blue tits were used in 

the experimental procedure, however, due to technical problems with videotaping, 

data from three o f these nests could not be used. One o f the nests had only a single 

parent provisioning during the filming period.

Experimental procedure

The experimental procedure is described fully in Chapter 2; using hand feeding and 

periods o f food deprivation to control nestling hunger across size ranks and filming 

parental provisioning visits for one hour to record allocation rules by both parents, 

when nestlings are 10 days old.

Data collection from videotapes

Both parents and nestlings were successfully identified on the screen using individual 

combinations o f color rings and head patterns respectively. Information on nestling 

begging behaviour and parental allocation o f food items was recorded as described in 

Chapter 2.
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Data analysis

As parents may have been disturbed at the start o f the filming period, when focal 

nestlings were placed back into the nest, analysis was carried out on the last 45 

minutes o f data only.

Parental feeding  location

Parental feeding locations were analysed using circular statistics (Mardia & Jupp 

2000). Feeding locations in each of the eight divisions around the circumference o f the 

nest cup were converted to the mid-point in degrees covered by that segment (with the 

nest entrance taken as 0°). As data on feeding location did not follow the von Mises 

distribution (which may be thought o f as a circular version o f the normal distribution), 

parametric tests were not appropriate and the non-parametric W atson’s two-sample U2 

test, which can be regarded as analogous to the Mann-Whitney test on linear data, was 

used to compare male and female feeding locations within nests. The test ranks data 

according to the combined data set, therefore ties in the data set were broken in favour 

o f the null hypothesis that there was no difference between male and female feeding 

locations (following Mardia & Jupp 2000). Tests were carried out using the CircStat 

package (Agostinelli 2005) in R 2.1.1. (R Development Team, 2005).

Parental allocation rules

For those nests where both parents provisioned nestlings (N = 21) the provisioning 

behaviour o f male and female parents was compared within nests using appropriate 

parametric or non-parametric paired tests. Parents may combine information from 

nestling begging behaviour with other cues that indicate nestling quality and need, 

such as nestling size and position in the nest relative to the provisioning adult. A
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model was created to examine how parents integrate different cues, with the following 

explanatory factors assessed for their ability to predict the allocation o f food items to 

individual nestlings; nestling begging posture (used to represent begging intensity, as 

separate measures o f begging behaviour are usually correlated, e.g. begging posture 

and latency to beg: Spearman’s correlation coefficient = -0.454, P < 0.001, N = 3278), 

nestling position (which is only weakly correlated with nestling begging behaviour, 

e.g. correlation for nestling position and begging posture: Spearman’s correlation 

coefficient = 0.058, P < 0.001, N = 6342), nestling size and the sex o f the provisioning 

adult. A multilevel model (Goldstein 2003) with binomial errors and a logit link was 

used to retain information from individual feeds while guarding against 

pseudoreplication due to multiple observations occurring for each individual nestling. 

Therefore, the model was structured to contain random effects from both the nest and 

the particular feed from which observations on individual nestlings originated. The 

dependent variable was whether each individual nestling was fed at a particular 

feeding event (0/1) to identify nestlings that received (1) or did not receive (0) food 

during a provisioning event. Only the first nestling to be offered a food item was 

considered to be allocated food by the adult, whether or not the adult then went on to 

give the food item to another nestling. The model considered all two and three-way 

interactions between explanatory variables. Explanatory variables were assessed for 

significance when they were the last terms in the model, within three-way, two-way 

and main effects, to control for any influence o f the order o f terms. Non-significant 

terms were removed from the final model. Mixed models were created in S-plus 7.0.6 

and all other tests carried out using SPSS 11.5.
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Results

Parental feeding positions

Parents usually chose to feed between 45-90 degrees from the entrance hole (Figure

5.1) either moving to the right or to the left o f the hole (17 individuals consistently 

going to the right and 26 going to the left). This pattern held for both male and female 

parents (Rayleigh test o f uniformity: Females, r = 0.96, N = 22, P < 0.001. Males, r = 

0.97, N = 21, P < 0.001). Males and females did not differ in their feeding locations 

across nests (Figure 5.2). However, the feeding locations o f the two parents did differ 

within 52.4% o f nests (11 o f 21 nests: Watson U2 test, in all P < 0.05). Where there 

was a significant difference between the positions o f parents, this was either because 

they fed from different sides o f the nest (n = 6 nests, mean angular distance between 

parents = 137.8°, ± SD = 13.1°) or because, although on the same side, the female fed 

from further back in the nest than the male (n = 5 nests, mean angular distance 

between parents = 25.5°, ± SD = 12.9°, Figure 5.3(a) nests 1-5). In three nests the 

male and female parent consistently fed from the same location (Figure 5.3(a)). Where 

parents fed from opposite sides o f the nest there was no consistent trend for either 

parent to feed from further back in the nest (Figure 5.3(b)).
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F ig u r e  5 .1 . T he freq uencies o f  parental feed in g  location  fa llin g  w ith in  
each  4 5 -d eg ree  sec tio n  b etw een  0 and 180 d egrees from  the entrance  
h ole .
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F ig u r e  5 .2 . T he feed in g  loca tion s o f  fem ale  and m ale parents at the nest. Bars in sid e  the  
c irc le s  represent h istogram s o f  the circular distribution o f  feed in g  lo ca tion s around the  
nestcup ; data are the m ean feed in g  locations o f  each  parent (in  d egrees). F illed  c irc le s  
represent the m ean  feed in g  loca tion  across nests. T he entrance h o le  is ind icated  w ith  an 

arrow.
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94



W ithin individuals o f both sexes there was little variation in feeding location, shown 

by the strong preference parents had for feeding from a fixed position at the nest (on 

average parents fed from their most frequently used position in 85.7% o f feeds, Figure 

5.4). Out o f 43 parents, 10 used only a single position. Where parents used more than 

one position, their second-most preferred position was usually adjacent to the 

preferred position (32 individuals had an adjacent second position, while only 1 did 

not). Parental feeding locations appear to be very predictable, at least within the time 

scale o f the experiment. Only females used a third or fourth feeding position, 

suggesting that their feeding locations are less predictable than male parents, however, 

they were still very predictable, as an average o f 80.3% of their feeds were allocated 

from only one position.
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F ig u r e  5 .4 . T he percentage o f  parental feed s in the first to  fourth m ost freq uently  used  
feed in g  p o sitio n  by each  adult. N o te  that no adults fed  from  m ore than four d ifferent p o s itio n s  
and that m ost adults fed  from  o n ly  tw o  position s. In 97 .0%  o f  ind iv idu als that fed  from  tw o  
p o sitio n s, the seco n d  m ost preferred position  w as adjacent to  the m ost preferred p o sitio n  
(w ith  no m ore than 45  d egrees b etw een  the tw o).
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Provisioning behaviour

Parents fed at the same rate, and brought food items o f similar size and type (Table

5.1). They did not differ in how long they assessed nestling begging behaviour before 

allocating food items, nor in how likely they were to alter their original provisioning 

decision and offer the same food item to another nestling (Table 5.1). Female parents 

spent longer in the nest during provisioning visits, due to carrying out brooding and 

nest maintenance activities.

T a b le  5 .1 . Parental prov ision in g  behaviour by the m ale and fem ale  parent o ver  the 4 5 -m in u te  

observation  period  (m ean ±  SE ) and statistical tests o f  potential d ifferen ces b etw een  the parents. T ests  
are paired: W ilco x o n  sign ed  ranks test or paired t-test* (N  =  21 nests)

V a ria b le F em a le M ale T est va lu e P

P rov isio n in g  rate/nestling 2 .0 3  (0 .1 9 ) 2 .0 5  (0 .2 7 ) t20 0 .2 3 * 0 .8 2 3
S ize  o f  fo o d  item 2 .0 7  (0 .0 7 ) 2 .0 9  (0 .0 7 ) Z -0 .2 2 0 .8 2 5
A sse ssm e n t tim e (seco n d s) 1.41 (0 .2 1 ) 1.32 (0 .2 1 ) z = -0 .3 0 0 .7 6 8
T im e sp en t at nest (seco n d s) 2 6 .6 3  (5 .4 9 ) 8 .6 0  (0 .4 3 ) z = -3 .4 6 < 0 .0 0 1
Rate o f  altering a 0 .23  (0 .0 4 ) 0 .2 4  (0 .0 5 ) z = -0 .21 0 .8 3 5
p ro v isio n in g  d ec is io n

Does nestling hunger influence fo o d  allocation?

Both parents fed deprived nestlings more than satiated nestlings (W ilcoxon signed 

ranks, Female: n = 22, Z = -3.74, P < 0.001, Males: n = 21, Z = -3.62, P < 0.001, 

Figure 5.5). However, there was a non-significant trend for deprived nestlings to gain 

a higher proportion o f male than female feeds (t-test: t = -1.979, d f = 20, P = 0.06) 

whereas satiated nestlings gained an equal proportion o f feeds from each parent 

(W ilcoxon signed ranks: n = 21, Z = -0.420, P = 0.675).
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Does nestling size influence food allocation?

W hen food deprived, large nestlings received more food than small nestlings 

(W ilcoxon signed ranks: n = 22, Z = -2.34, P = 0.019). Both parents appeared to feed 

large deprived nestlings more than small deprived nestlings (Figure 5.5). However, 

this trend was not statistically significant for either parent individually (Wilcoxon 

signed ranks, Females: n = 22, Z = -1.02, P = 0.306, Males: n = 21, Z = -1.53, P = 

0.127). Furthermore, despite a trend in that direction (Figure 5.5) large deprived 

nestlings did not gain a significantly higher proportion o f male than female feeds 

(W ilcoxon signed ranks: n = 21, Z = -1.53, P = 0.125).
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F ig u r e  5 .5 . T he proportion o f  food  (m ean ±  SE ) a lloca ted  to foca l n estlin g s by  

the m ale  and fem a le  parent.
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Does nestling begging behaviour influence food  allocation?

Parents fed nestlings that begged more intensely (median, range, postural begging 

score: fed nestlings = 3.0, 3.0-5.0, unfed nestlings = 0.0, 0.0-4.0, W ilcoxon signed 

ranks: n = 22, Z = -4.08, P < 0.001) and there was no difference between the parents 

in the begging level o f fed nestlings (median begging posture, range: females = 3.0, 

3.0-5.0, males = 3.5, 3.0-5.0, Wilcoxon signed ranks: n = 21, Z = 0.00, P = 1.000). 

Parents also fed according to nestling position in the nest, preferentially feeding those 

nestlings that were closest to them (distance score: fed nestlings = 2.91, 0.13, unfed 

nestlings = 3.75, 0.09, Wilcoxon signed ranks: n = 22, Z = -3.75, P < 0.001, Figure

5.6). The male parent had a stronger preference to feed nestlings that were close to the 

provisioning adult than the did female (mean distance o f adult from fed nestling: male 

= 2.76 (0.14), female = 3.17 (0.17), paired t-test: t = -3.50, d f = 20, P = 0.021, Figure

5.6).
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F ig u r e  5 .6 . T he proportion o f  nestlin gs fed  (m ean ±  SE ) by the p rov isio n in g  m ale  and fem a le  parent 
w ith  d istan ce  o f  the n estlin g  from  the adult. A s the d istance score increases, n estlin g s are further a w ay  
from  the p ro v isio n in g  adult. C lo sed  c ircles indicate the m ale parent and open  squares the fem a le  parent.
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H ow do parents integrate begging and non-begging cues?

Nestling begging intensity was the most important factor influencing parents in the 

allocation o f food items to individual nestlings (Table 5.2). However, the influence o f 

begging intensity depended on how close nestlings were to the provisioning adult 

(begging posture*nestling position interaction, Table 5.2). In contrast to nestlings that 

were close to the provisioning adult, when nestlings were further away from the adult, 

begging posture did not strongly influence the allocation o f food (Figure 5.7). This 

meant that for a similar level o f begging intensity a nestling begging close to the 

provisioning adult was more likely to receive food than one begging further away.

T a b le  5 .2 . Sum m ary o f  m ix ed  e ffec ts  m odel exa m in in g  h o w  b eg g in g  (b e g g in g  posture and n estlin g  
p o sitio n ) and n o n -b eg g in g  cu es (n estlin g  s iz e )  in fluence  h ow  the m ale and fem ale  parent a llo ca te  fo o d  
to ind ividual foca l nestlin gs. T he dependent variable is ‘fe d ’ (0 /1 )  to identify  n estlin g s w h ich  receiv ed  
(1 )  or w h ich  did not receiv e  (0 ) fo o d  at each p rov ision in g  event. Each p ro v isio n in g  ev en t is ‘n e ste d ’ 
w ith in  brood as a random  e ffec t and the m od el has b inom ial errors w ith  a lo g it link. E xplanatory  
variab les w ere a ssessed  for s ig n ifica n ce  w h en  they  w ere the last term s in the m od el, w ith in  three-w ay , 
tw o -w a y  and m ain e ffec ts , to  control for any in fluence  o f  the order o f  term s. N o n -s ig n ific a n t term s 
w ere rem o v ed  from  the final m odel.

M o d e l term d f F P

N e stlin g  b e g g in g  posture 1 ,2179 5 4 9 .2 5 < 0 .0 0 0 1
N e stlin g  p o sitio n 1 ,2179 130 .16 < 0 .0 0 0 1
Parental sex 1,708 0 .4 4 0 .5 0 6 1
N e stlin g  s ize 1 ,2179 10.51 0 .0 0 1 2
B e g g in g  p o stu re*n estlin g  position 1,2173 2 7 .2 2 < 0 .0 0 0 1
B e g g in g  posture*parental sex 1,2173 0.01 0 .9 3 2 4

B e g g in g  p o stu re*n estlin g  s ize 1 ,2173 15.21 0 .0 0 0 1
N e stlin g  p osition *paren ta l sex 1,2173 9 .2 7 0 .0 0 2 4
N e stlin g  p o s itio n * n estlin g  size 1,2173 7 .13 0 .0 0 7 7
P ro v isio n in g  adu lt*n estlin g  size 1,2173 0 .1 5 0 .7 0 0 9
B e g g in g  p o stu re*n estlin g  position*parental sex 1 ,2169 0 .0 0 2 0 .9 6 8 5
B e g g in g  p o stu re*n estlin g  p o sitio n * n estlin g  size 1 ,2169 0 .8 5 0 .3 5 5 5
N e stlin g  position *paren ta l sex * n estlin g  size 1 ,2169 6 .0 0 0 .0 1 4 4
B e g g in g  posture*parental sex * n estlin g  size 1 ,2169 0 .0 7 0 .7 8 9 8

99



1

0.9

0.8

0.7

J 0.6

•■§ 0.5 
o
Q.O
£  0.4 

0.3 

0.2 

0.1

0

F ig u r e  5 .7 . T he proportion o f  nestlin gs fed  (m ean ±  SE ) at each postural 
b eg g in g  in tensity  (b eg g in g  categories: 0 = no b eg g in g , 1= gape open , 2 =  
gap e open  and head raised, 3 =  gape open , necked  fu lly  stretched upw ards, 
4 =  gape op en  and front o f  body raised, 5 =  gape open  and standing up on  
leg s )  and d istan ce betw een  the nestling  and the p ro v ision in g  adult (see  
m eth ods).

Nestling size also influenced the response of parents to begging intensity (begging 

posture*nestling size interaction, Table 5.2). At high begging intensities small 

nestlings were fed considerably less than large nestlings while at low begging 

intensities the difference was less marked (Figure 5.8). Therefore, large nestlings 

gained relatively more from begging at higher intensities than small nestlings.

1 2 3 64 5

□ stan ce  betw een provisioning adult and nestling
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F ig u re  5 .8 . T he proportion o f  large and sm all nestlin gs fed  (m ean ±  SE ) at 
each  postural b eg g in g  intensity  (0  =  no b eg g in g , 1= gape open , 2  =  gape  
open  and head raised, 3 =  gape open , necked  fu lly  stretched, 4  =  gape open  
and front o f  bod y  raised , 5 =  gape open  and standing up on legs).

Male and female parents differed in how they responded to the combination o f 

nestling position and nestling size {nestling position*parental sex*nestling size 

interaction, Table 5.2). Male parents allocated less food to both small and large 

nestlings that were further away (Figure 5.9). Female parents also allocated less food 

to large nestlings as they were further away, but showed a different pattern o f 

allocation towards small nestlings (Figure 5.9). Small nestlings that were close to the 

adult were fed less than those at intermediate distances and at intermediate distances 

the female fed small nestlings more than large nestlings. As small nestlings were 

generally fed less than large nestlings over all other positions and over all positions by 

the male parent, this pattern o f allocation by the female represents a distinct 

difference, with the response integrating both nestling size and position.
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p ro v isio n in g  adult (se e  m eth ods) for (a) the fem ale  parent and (b ) the  

m ale  parent.
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Discussion

In concordance with earlier studies on other species (e.g. Teather 1992; e.g. Kilner 

1995; Leonard & Horn 1996), in blue tits, provisioning parents fed individual 

nestlings in relation to their begging behaviour. Nestlings that begged more intensely, 

and which were positioned closer to the parent, were most likely to be fed. Parents 

integrated information on nestling begging and position in the nest, so that while 

begging strongly influenced the allocation o f food, this response decreased as 

nestlings were further from the provisioning adult. As both nestling begging behaviour 

and position in the nest relate to nestling hunger (Chapter 3), this response by parents 

resulted in them allocating more food to hungry nestlings. Almost all studies on other 

species have shown that nestling proximity influences the probability that a nestling is 

fed (Bengtsson & Ryden 1983; Gottlander 1987; Smith & Montgomerie 1991; but see 

Teather 1992; McRae et al. 1993; Leonard et al. 1994; Kacelnik et al. 1995; Kilner 

1995; Leonard & Horn 1996; Whittingham et al. 2003; Porkert & Spinka 2004). That 

parents integrate proximity with begging cues, i.e. the intensity o f the postural display, 

has also been shown in experiments on canaries, Serinus canaria, where nestling 

position was controlled in the nest cup (Kilner 1995).

Does nestling size influence food allocation?

Large nestlings obtained more food from parents than small nestlings, despite there 

being no difference in begging intensity with nestling size (Chapter 3). There is a
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general consensus that begging efficiency is greater for the largest nestlings in a brood 

(Lotem 1998; Cotton et al. 1999; Smiseth & Amundsen 2002), for instance they can 

obtain positions close to provisioning adults where they are more likely to be fed 

(Bengtsson & Ryden 1983; Kilner 1995; Leonard & Horn 1996). Ostreiher (1997) 

showed experimentally that older Arabian babbler, Turdoides squamiceps, nestlings 

obtained more food through being positioned closer to the provisioning adult. When 

this advantage was eliminated by restricting nestling movement in the nest, food was 

distributed equally. Similarly in tree swallows, Tachycineta bicolor, large nestlings 

obtained more food through begging first and obtaining positions closer to the nest 

entrance (but see Leonard & Horn 1996 for evidence showing equal investment in 

large and small offspring in the same species; Whittingham et al. 2003). In blue tits, 

large nestlings were certainly closer to the male parent than small nestlings but the 

same pattern did not apply to the female parent (Chapter 3). The success o f large 

nestlings may therefore be partly due to the outcome o f sibling competition for 

positions near to the adult, however it also depended on them being much more 

effective than small nestlings at eliciting food at higher begging intensities. The 

begging level o f an individual nestling will often reflect the general begging level o f 

the whole brood, as provisioning rate to the nest affects the hunger level o f the whole 

brood in the long term. Studies often find that there is a large amount o f variation 

between broods in a study population in the average begging intensity o f each brood, 

probably due to the long-term need o f the brood and the amount o f sibling competition 

(Redondo & Castro 1992b; Christe et al. 1996; Leonard & Horn 1998; Leonard et al. 

2000; Neuenschwander et al. 2003). Thus, when one nestling is begging at high 

intensities it is likely that broodmates will also be doing so as well, so that competition 

for food is increased. Under these conditions small nestlings are most likely to be
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outcompeted by their larger nestmates who can stretch higher and get closer to the 

provisioning adult. Teather (1992) showed that large nestlings out compete smaller 

nestlings in red-winged blackbird, Agelaius phoeniceus, broods due to reaching higher 

in the nest regardless o f proximity to the parent.

Do parents differ in how they allocate food?

Male and female parents responded similarly to begging intensity, allocating more 

food to nestlings begging at higher intensities, but they differed in how they responded 

to non-begging cues. By feeding nestlings that are further away, female parents may 

be ensuring that allocation patterns are more egalitarian, while the male parent, with a 

stronger preference based on nestling proximity, allows sibling competition to wholly 

dictate his investment. This result concurs with that found in several other studies 

comparing male and female allocation rules. Porkert & Spinka (2004) found that male 

common redstart, Phoenicurus phoenicurus, parents had a stronger preference for 

feeding nestlings that are in the front positions in the nest than did the female parent. 

In a study on parental allocation rules in tree swallows, Whittingham & Dunn (2003) 

also found that males had a stronger preference than females to feed the nestling that 

was closest to the entrance o f the nest.

Parents appeared to respond in the same general way to nestling size, however their 

responses differed in a complex way that related to both nestling size and position in 

the nest. Male parents followed the general rule o f feeding nestlings less as they get
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further away, regardless o f nestling size. Females, however, preferentially fed smaller 

nestlings when they were at intermediate distances from the parent. This difference in 

how the female allocated food with respect to nestling size may ensure that sibling 

competition does not eliminate feeds to the most needy offspring; those that can not 

obtain positions close to the provisioning adult.

Despite these differences in parental allocation rules, however, there was no evidence 

for differential investment by the male and female in individual nestlings over the 

observation period. There may be several reasons for this. First, as part o f the 

experimental treatment all focal nestlings were satiated prior to the treatment hour. 

This meant that at the end o f the experimental treatment the hunger level o f deprived 

nestlings could be relatively low compared to that found under natural conditions in 

some o f the more hungry broods (for example in broods occurring late in the breeding 

season when food availability is low). Thus, despite the difference between sexes in 

their allocation rules, focal nestlings were not fed at high rates compared to the rest o f 

the brood, which might explain why no overall difference in investment between the 

sexes was observed. Second, when breeding conditions are poor, or late in the 

breeding season, when hatching asynchrony increases, size differences between 

siblings will be larger and under these conditions the allocation rules o f females might 

become more significant, leading them to invest more than the male parent in small 

offspring.

Why do the male and female parents differ in their allocation rules? If these rules led
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to the female parent investing more than the male in small offspring this might be due 

to conflict between parents over levels of investment in different types o f offspring. 

Small nestlings may be more valuable to the female parent because (1) lower annual 

survival rates cause females to value the current reproductive attempt more than males 

and/or (2) small nestlings are more likely to be extra-pair offspring (but it is not yet 

known if  this is true) or the presence o f extra-pair offspring make offspring less 

valuable to the male and thus he is less interested than the female in investing in low 

quality offspring (reviewed in Lessells 2002). A previous study on this population o f 

blue tits has shown that extra-pair young occur in 39.8% o f broods, accordingly, males 

in this population will often find themselves providing parental care for nestlings that 

they are not related to. Alternatively, these differences in provisioning rules might 

lead to parents optimising investment in each individual offspring in the face o f 

sibling competition. Parents are constrained when making allocation decisions, by 

high provisioning rates, which means that they must make the assessment o f nestling 

need as efficient as possible. Under these circumstances, it may be possible for 

competitive offspring to dominate positions close to the provisioning adult, especially 

where the two adults feed from the same location, which occurred in around half o f 

the blue tit nests in this study. If the parents differ in their allocation rules, it would 

enable them to each feed a different subset o f the brood, thus ensuring that all 

nestlings get fed (Kolliker et al. 1998; Kilner 2002a). This would not explain however, 

why parents do not feed from separate locations in all nests.
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Do parents or offspring control food allocation?

As both parents fed from fixed positions in the nest and used allocation rules that 

depended on nestling position, the allocation o f food was strongly influenced by 

interactions between nestlings over positioning in the nest relative to the provisioning 

adult. Presumably as a consequence o f this, the largest nestlings were able to obtain 

more food from parents without begging more intensely. However, as nestling 

position was partly influenced by nestling hunger, parents may be actively responding 

to this cue o f nestling need. The complexity o f female allocation rules suggests a 

degree o f control over investment in different types o f offspring, whereas the male 

parent appears to respond more passively to offspring demand, and this difference in 

itself suggests that parents may often choose to respond passively to sibling 

competition, because this represents the best investment strategy (Kilner 2002a).
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Chapter 6: Food availability and parental allocation 
rules
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Introduction

As in many bird species, the breeding season of blue tits, Cyanistes caeruleus, is 

timed to coincide with the peak in food availability that occurs in the spring. However, 

in a normal breeding season, many breeding pairs will fall either side o f this peak and 

then the availability o f food suitable for provisioning nestlings becomes a limiting 

factor on parental reproductive success. In addition, both the quality o f food items 

available in the environment and their diversity will vary with time. Nestlings have 

different nutritional requirements as they grow, which is reflected in the types o f  prey 

items given to them by provisioning adults, as well as the overall amount o f food 

brought to the nest (Gibb & Betts 1963; Banbura et al. 1999). Periods o f bad weather 

can also restrict parental foraging success, with consequences for nestling growth 

(Keller & Vannoordwijk 1994). In addition to these extrinsic factors, parental trade

offs between reproductive effort and survival can also limit food supply to the brood 

(Lessells 1991). Parents may compensate for poor breeding conditions by increasing 

foraging effort (Stauss et al. 2005; Tremblay et al. 2005), but in doing so are likely to 

incur higher post-breeding mortality rates (Nur 1984b; Nur 1988). As studies on other 

species have shown, at the level o f the individual, environmental conditions will 

interact with parental decision making to dictate reproductive effort at each breeding 

attempt (e.g. Erikstad et al. 1998; e.g. Festa-Bianchet & Jorgenson 1998). As a result 

o f these constraints, in many species there can be periods o f food limitation when 

offspring are not receiving the diet that would allow them to grow optimally. Thus, 

experiments that increase the food available to provisioning parents report increases in 

offspring growth and/or survival (e.g. Magrath 1989; e.g. Simons & Martin 1990;
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Richner 1992). In addition to influencing offspring survival, conditions during growth 

can also influence offspring subsequent lifetime reproductive success (Lindstrom 

1999; Metcalfe & Monaghan 2001).

While periods o f food limitation in altricial birds act on the whole brood through the 

parents’ provisioning behaviour, the detrimental effects o f such periods may not be 

equally shared out amongst nestlings within the brood. Hatching asynchrony and 

subsequent competitive asymmetries appear to ensure that poor environmental 

conditions have a differential effect on offspring within the brood (Mock & Forbes

1995). Typically, the growth and survival o f smaller nestlings is more strongly 

affected by environmental conditions and provisioning effort than that o f their larger 

siblings (Magrath 1989; Magrath 1990). This can occur to the extent that while small 

fluctuations in food availability may leave most o f the brood largely unaffected, the 

diet o f less competitive siblings reflects these conditions perfectly, as shown by recent 

work on red-winged blackbirds, Agelaius phoeniceus (Forbes et al. 1997; Forbes & 

Glassey 2000).

Linking food availability to parental investment within broods

In some species o f bird, for example great white egrets, Egretta alba , competition for 

food amongst siblings involves direct fighting over food items and can even result in 

aggression outside feeding bouts and in siblicide (Mock & Parker 1997). More 

commonly in passerine species, nestlings compete by performing begging behaviour
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directed at the provisioning adult and it is this that protects dominant offspring from 

fluctuations in food availability. Larger siblings may be superior competitors mainly 

because some o f the cues parents use when allocating food are related to offspring 

size. For example, parents may preferentially feed nestlings that are reaching highest 

in the nest when begging (Leonard & Horn 1996), which larger nestlings may find 

easier to achieve (Kilner & Johnstone 1997). Similarly, parents often feed the 

nestlings that are closest to them (Bengtsson & Ryden 1983; McRae et al. 1993; 

Kilner 1995; Leonard & Horn 1996) and large nestlings are able to dominate these 

positions in the nest cup (Kilner 1995; Cotton et al. 1999).

When allocating food items within broods, parents either respond passively to 

competitive interactions between offspring (Parker et al. 2002b) or actively to 

information on offspring need, gained through observing nestling begging behaviour 

(Kilner & Johnstone 1997). In bad conditions, the best parental investment patterns 

may fit with responding passively to scramble competition, or parents may actively 

choose to invest more in offspring o f high reproductive value at these times (e.g. 

Smiseth et al. 2003b). In good breeding conditions, however, when food availability is 

increased, theoretical models suggest that parents would benefit from actively 

increasing investment into offspring with greater need (Davis et al. 1999) and at least 

one empirical study supports this (Boland et al. 1997).

This chapter looks at whether food allocation rules in provisioning blue tits are 

affected by food availability. By experimentally altering breeding conditions through
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food supplementation, this study asks if  parents can alter their response to nestling 

begging signals and non-begging cues such as size and position in the nest, which are 

potential indicators o f nestling quality. Specifically, the study aims to determine 

whether parents provisioning offspring under increased food availability alter 

allocation patterns, in order to invest more in low quality, less competitive offspring.
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Methods

General fieldwork followed the methods described in Chapter 2 and was carried out 

between March and June in 2004 and 2005. Each year, focal broods were randomly 

assigned to be either a ‘food supplemented’ or ‘control’ group, controlling for 

seasonal effects by alternating the groups between consecutive days. In 2004, 11 

broods were supplied with supplementary food (see below), however, two o f these 

nests failed in the early part o f the nestling period. In 2005, 15 broods were supplied 

with supplementary food, however one brood failed early in the nestling period and 

the parents in one further brood did not use the food provided. In addition to taking 

standard nestling biometrics from control and food supplemented nests, as previously 

described in Chapter 2, on both day 10 and day 14 o f the nestling period the length o f 

both the left and right tarsi were measured, each three times, for every nestling in each 

brood. This was to provide a measure o f tarsus asymmetry, which a previous study 

had found to be related to food availability (Grieco 2003). Bilateral traits are subject 

to fluctuating asymmetry, when traits are not perfectly symmetrical (van Valen 1962; 

Aparicio 2001), and these may be a result o f environmental or genetic stress during 

development (Parsons 1992). In 2004, nestling biometrics were compared from 11 

control and 9 food supplemented nests. In 2005, nestling biometrics were compared 

from 10 control and 13 food supplemented nests. Measurements for all nestling 

biometrics could not be blind as to whether the nest was receiving extra food.
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Supplementary food

Supplementary food was provided each morning, starting from the day that the first 

nestlings in the brood hatched. It was not provided after day 14, as visiting the nest 

after this age may cause nestlings to fledge prematurely. Every morning the amount o f 

food remaining from the previous day was measured (wet mass, to the nearest O.lg) to 

provide an indication o f the consumption o f supplementary food items at the nest. 

Food items were placed on a small plastic tray ( 6  x 6  x 2.5 cm) inside the nest box, to 

prevent other birds from taking food items (following Grieco 2001b). Control nests 

were given empty trays. Supplementary food consisted o f two sizes o f live mealworm, 

Tenebrio molitor (purchased from Global live foods, UK). ‘M ini’ mealworms (10- 

15mm) were offered at supplementary nests until day seven o f the nestling period, 

while after day seven only fully grown mealworms (20-3 0mm) were offered. The size 

o f natural prey items brought to the nest increases with nestling age (Gibb & Betts 

1963), presumably as younger nestlings are unable to process larger items (Banbura et 

al. 1999). Offering different sized supplementary food items over the nestling period 

should therefore allow parents to feed supplementary food items to nestlings, as they 

would do natural prey items. The amount o f supplementary food offered followed 

Grieco (2001b), in giving approximately half the daily requirements o f the brood 

according to Gibb & Betts (1963). The amount o f food offered was calculated to 

account for brood size and nestling age. Nestling food intake is thought to increase 

linearly with age until half way through the nestling period at which point it remains 

constant (van Balen 1973). Supplementary food was supplied to follow this linear 

increase (as in Grieco 2001b). The mealworms were contained within the trays until
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consumed by adults or removed the following day (pers. obs.).

Recording parental provisioning visits

Parental nest visits were recorded with a video camera at six food supplemented nests 

and six control nests in 2004, and at twelve food supplemented nests in 2005. 

However, due to technical problems with videotaping, data from three o f the nests in 

2005 could not be used. Each nest was recorded for between 1 and 1.5 hours when 

nestlings were ten days old, following methods described in Chapter 2.

In 2004, brood sizes in four supplemented nests and five control nests were 

temporarily halved prior to recording, as part o f a separate experiment. During 

recording, half the brood was placed in a nearby nest o f similar age, nestlings were 

replaced back in their original nests immediately after recording had finished. As part 

o f this separate experiment, broods were divided according to nestling mass, and 

middle-ranked nestlings were removed.

During 2005, nine food supplemented nests were recorded twice; once immediately 

after supplementary food had been placed in the tray, and again when supplementary 

food was temporarily removed (for the recording period only). The two recording 

periods took place on the same day with a 30 minute gap between them. The order o f 

recording was rotated between nests so that any effect o f order could be controlled.
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On transcription o f behaviour from the videotapes, the observer could not be blind as 

to whether each nest was in the supplemented or control category. Nestling begging 

behaviour and parental provisioning decisions were documented as described in 

Chapter 2. In 2004, nests were observed from a hide, and recording began when 

parents were observed to be provisioning normally again after the initial disturbance 

o f setting up the cameras at the nest. This meant that details o f the provisioning 

behaviour o f  parents for the full observation period could be used in data analysis. In 

2005, the hide was not used and the first 20 minutes o f data were discarded from the 

transcription from the videotapes. Due to time constraints on transcription, only the 

first 15 feeds were transcribed from videotapes in 2005.

Observations of fledging dates and fledging success

In 2005, focal nests were visited once daily from day 14 after hatching, to measure 

fledging date. Nests were observed from a distance, to ascertain whether parents were 

still provisioning nestlings. In both 2004 and 2005 the nest was visited after each 

brood had fledged, and fledging success was recorded as the number o f nestlings 

fledged.

Data analysis 

Food supplementation and nestling growth

The effect o f food supplementation on nestling growth was tested using doubly 

multivariate repeated measures ANOVA on nestling body mass, gape width, tarsus
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length and tarsus asymmetry, measured at 1 0  and 14 days after the hatching o f the first 

nestling in the brood. Food supplementation and year o f measurement were the 

between subject effects o f interest in the ANOVA, while brood size and hatch date 

(difference, in days, from the median hatch date for the breeding population) were 

treated as covariates in the analyses. First, the effect o f food supplementation on 

variation in nestling growth between broods was tested using brood means for each o f 

the measures. Tarsus asymmetry was calculated for each nestling, at day 10 and 14, by 

taking the average o f the three measurements for each tarsi and then taking the 

unsigned difference between the average for the left and right side, (following Grieco 

2003). Second, the effect of food supplementation on within-brood variation in 

nestling body mass was tested, by calculating the difference in mass between the 

largest and smallest nestling in each nest and expressing this variable as a proportion 

o f the mass o f the largest nestling in the brood (to allow for differences between 

broods in mass). Proportional within-brood variation in nestling body mass was 

arcsine transformed. All other dependent variables were normally distributed, thus 

meeting the assumption for the repeated measures ANOVA.

Food supplementation and parental allocation rules

A model was created to examine how parents respond to nestling begging behaviour 

under food supplemented and control conditions, with the following explanatory 

factors assessed for their ability to predict the allocation o f food items to individual 

nestlings; nestling begging posture (used to represent begging intensity, as separate 

measures o f begging behaviour are usually correlated, e.g. begging posture and 

latency to beg: Spearman’s correlation coefficient = -0.454, P < 0.001, N = 3278)

118



and nestling position (which is not strongly correlated with nestling begging 

behaviour, e.g. correlation for nestling position and begging posture: Spearman’s 

correlation coefficient = 0.058, P < 0.001, N = 6342) and the interactions between 

these begging behaviours and whether nests received food supplementation. A 

multilevel model (Goldstein 2003) with binomial errors and a logit link was used to 

retain information from individual feeds while guarding against pseudoreplication due 

to multiple observations occurring for each individual nestling. Therefore, the model 

was structured to contain random effects from both the nest and the particular feed 

from which observations on individual nestlings originated. The dependant variable 

was whether each individual nestling was fed at a particular feeding event (0 / 1 ) to 

identify nestlings that received ( 1 ) or did not receive (0 ) food during a provisioning 

event. Only the first nestling to be offered a food item was considered to be allocated 

food by the adult. The model considered all two and three-way interactions between 

explanatory variables. Explanatory variables were assessed for significance when they 

were the last terms in the model, within three-way, two-way and main effects, to 

control for any influence of the order of terms. Non-significant terms were removed 

from the final model.

Food supplementation and parental allocation according to nestling mass

Food supplemented and control nests from 2004 were examined for the effect o f 

nestling size on how much food each nestling obtained during the observation period. 

Nestling mass was related to the competitive ranking o f the nestling within each nest 

by dividing the weight o f the nestling by the mean weight o f the nestlings in the 

brood; giving the variable ‘relative weight’ (following Boland et al. 1997). For each
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nestling the number o f feeds obtained per hour (square root transformed) was the 

dependent variable in a mixed model with nestling relative mass, food 

supplementation, brood size and hatch date (in days from the 1st o f April) and all 

interactions as explanatory terms. Nest was entered as a random effect in the model. 

Three-way interactions between terms were examined but were not significant in any 

model. Model terms were fitted by examining the significance o f each term when they 

were the last term in the model within main effects and interactions. Final models 

contained only significant factors.

Post-hoc power analysis (Cohen 1977) was conducted on non-significant results. 

M inimum detectable differences were calculated, at a power o f 0.8, for the main 

questions addressed in non-significant t-tests, given the sample sizes and sample 

variances obtained. Mixed models were performed using PROC MIXED in SAS 9.1 

(food supplementation and allocation with nestling mass) or S-plus 7.0.6 (parental 

allocation rules) and repeated measures ANOVA, together with all other tests, were 

carried out using SPSS 11.5.
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Results

Consumption o f  supplementary fo o d  items

In all supplemented nests bar one (in 2005), a proportion o f the food items were 

consumed, but in no nests was this consumption total over the whole o f the nestling 

period. Use o f supplemented food items by parents, over the whole nestling period, 

ranged from 70.3% of that offered to 99.2% (mean over all nests in both years = 

8 6 .6 %). Consumption o f supplementary food increased over the nestling period 

(Figure 6.1, Spearman rank correlation: rs = +0.502, n = 22 nests, P<0.001). This 

agrees with the findings o f a large-scale supplementation experiment, also on blue tits 

(Grieco 2001b), where consumption, measured by observation, increased with nestling 

age but not with brood size.

Parents carried out four different behaviours involving supplementary food items; (1) 

They fed nestlings directly from the supplementary food, (2) They took a mealworm 

from the supplementary food, flew out o f the nest, perched near to the nest box and 

appeared to ‘prepare’ the food item by removing the head and then went back to the 

nest to feed the item to the nestlings, (3) Parents left the nest box with a 

supplementary item and returned later with a natural food item, in which case they 

were presumed to have eaten the item themselves, or (4) Parents consumed 

supplementary items themselves inside the nest box (pers. obs.).
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Food supplementation and nestling growth

Nestling body mass was greater in food supplemented broods than in control broods at 

both 10 and 14 days after hatching (Repeated-measures ANOVA, F 133 = 6.929, P = 

0.013, Figure 6.2). The year o f breeding also influenced nestling body mass, although 

only at 14 days after hatching (Repeated-measures ANOVA, interaction between year 

and nestling age: F4 30 = 5.791, P = 0.001, separate ANOVA at 14 days after hatching: 

F 139  = 14.976, P < 0.001). At 14 days after hatching, nestlings were heavier in 2004 

than in 2005 (Figure 6.3). Neither nestling gape width, nor nestling tarsus length, was 

influenced by food supplementation (Repeated-measures ANOVA, gape width: ¥ \ ^  = 

0.494, P = 0.487, tarsus length: ¥ \ ^  = 2.266, P = 0.142). Both were, however, 

affected by the year o f measurement at certain ages (Repeated-measures ANOVA 

interaction o f nestling age and year o f measurement, gape width: F 133 = 13.889, P =

0.001, tarsus length: F 133 = 4.232, P = 0.048). At 10 days after hatching, both nestling
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gape width and tarsus length were larger in 2005 than in 2004 (ANOVA, gape width: 

F 137 = 4.884, P = 0.033, Figure 6.4, tarsus length: F i>37 = 4.5 8  7, P = 0.039, Figure 

6.5). Tarsus asymmetry was not influenced by either food supplementation (Repeated- 

measures ANOVA, Fi 33 = 0.019, P = 0.893) or the year o f measurement (Repeated- 

measures ANOVA, F 1 33 = 0.916, P = 0.346).

In summary, food supplementation affected nestling body mass, but not other 

measures o f nestling development. These other measures were, however, influenced 

by the conditions during breeding, indicated by the effect o f year on nestling mass, 

gape width and tarsus length. Therefore, food supplementation did not override all 

other environmental influences acting on the growth o f offspring.
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F ig u r e  6 .5 . N estlin g  tarsus length  (m ean  ±  SE ) at 10 and 14 days after  
hatch ing in 2 0 0 4  (w h ite  bars) and 2 0 0 5  (shaded bars).

Food supplementation did not affect within brood variation in nestling mass (repeated- 

measures ANOVA, F 1 35 = 0.110, P = 0.742, Figure 6 .6 ). There was, however, a 

significant effect o f the year o f measurement on within-brood variation in nestling 

mass (repeated-measures ANOVA, F 135 = 5.529, P = 0.024). W ithin-brood variation 

in mass was greater in 2005 than in 2004 (Figure 6 .6 ). Food supplementation appeared 

to at least partly compensate for this at day 10 (Figure 6 . 6  (a)), however this was not a 

statistically significant trend (repeated-measures ANOVA, year*food  

supplementation*nestling  age interaction: F 135 = 0.740, P = 0.395).
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Fledging success and age at fledging

In 2004, there was brood reduction in three out o f eleven control nests, compared to in 

only one out o f nine food supplemented nests (Fisher’s exact test: P = 0.591); in 

control nests fledging success ranged from 63% to 100%, while in supplemented nests 

it ranged from 73% to 100%. 2005 was a poor breeding year, where brood reduction 

was much more common than in 2004. There was brood reduction in 8 out o f 10 

control nests (fledging success ranged from 30% to 100%), compared to in 5 out o f 13 

supplemented nests (fledging success ranged from 67% to 100%), (Fisher’s exact test: 

P = 0.090). Therefore, there was a non-significant trend for brood reduction to be 

more common in control nests than in food supplemented nests, especially when 

breeding conditions were poor.

There was a non-significant tendency for food supplemented broods to fledge at an 

earlier age than control broods in 2005 (t-test: t = 1.768, d f = 17, P = 0.095). On 

average, food supplemented broods fledged a day earlier than control broods (mean 

fledging age in food supplemented broods = 19.42 days, SD = 1.17, n = 12 broods, 

mean fledging age in control broods = 20.43 days, SD = 1.27, n = 7 broods).
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Food supplementation and parental allocation rules

In 2004, parents from control and food supplemented nests did not differ in how they 

allocated food to individual nestlings in response to nestling begging behaviour (Table 

6.1). Similarly, data from 2005 showed that, within nests, parental allocation rules did 

not change when parents received or did not receive extra food (Table 6.2). Data from 

2004 showed that when parents had access to extra food they did not change their 

investment with respect to nestling mass (nestling mass*food supplementation, Fi j i .2 

= 0.43, P = 0.515). These non-significant results do not appear to be due to low 

statistical power. The detectable effect size o f these tests was small, e.g. a two sample 

t-test o f the mean position o f fed nestlings in food supplemented and control broods 

would give a significant result with a difference in position o f 0.852 (whereas the 

actual average difference found was 0.175), therefore, despite small sample sizes, the 

results presented in Table 6.1 can be viewed with some confidence. Similarly, to give 

a significant result in a two sample t-test, the proportion o f feeds to the smallest 

nestling in the brood (in 2004) would have to be 14% greater in food supplemented 

nests than in control nests. However, in this study, the proportion o f feeds to the 

smallest nestling was actually, on average 6% less in food supplemented broods than 

in control broods. In both food supplemented and control nests, larger nestlings gained 

a greater number o f parental feeds (F 1J 2.5 = 4.03, P = 0.049, Figure 6.7). In nests with 

a small brood size, there was a stronger trend for larger nestlings to be fed more than 

smaller nestlings, while in nests with a large brood size smaller nestlings received 

more food items (nestling mass*brood size, F i j u  = 3.94, P = 0.047, Figure 6.8).

128



T a b le  6.1 M ixed  m odel exa m in in g  h ow  n estlin g  b eg g in g  behaviour (b e g g in g  posture and  
n estlin g  p o sitio n ) in fluenced  h o w  parents from  fo o d  supp lem en ted  and control n ests a lloca ted  
food  to individual nestlin gs during the 2 0 0 4  breed ing season . T he depend en t variab le is ‘fe d ’ 
(0 /1 )  to  identify  nestlin gs w h ich  received  (1 ) or w h ich  did not receiv e  (0 ) fo o d  at each  
p rov isio n in g  event. Each p rov ision in g  even t is ‘n e ste d ’ w ith in  brood as a random  e ffe c t and 
the m o d el has b inom ial errors w ith a lo g it link. E xplanatory variab les w ere a ssessed  for  
s ig n ifica n ce  w h en  they w ere the last term s in the m odel, w ith in  three-w ay , tw o -w a y  and m ain  
e ffec ts , to  control for any in fluence o f  the order o f  term s. N o n -s ig n ifica n t term s w ere  
rem oved  from  the final m odel.

M o d e l term d f F P

B e g g in g  posture 1,3373 8 1 9 .0 0 < 0 .0 0 1
N e stlin g  p osition 1,3373 198 .45 < 0 .001
F ood  supp lem entation 1,10 1.79 0 .2 1 1 0
B e g g in g  posture*n estlin g  position 1,3373 5 1 .6 6 < 0 .0 0 1
F ood  su pp lem en tation *n estlin g  position 1,3371 0 .3 4 0 .5 5 8 8
F ood  su p p lem en tation *b egg in g  posture 1,3371 0.11 0 .7 4 2 9
F ood  su p p lem en tation *b egg in g 1 ,3370 0 .5 4 0 .4 6 2 5
postu re*n estlin g  position

T a b le  6 .2  M ixed  m odel exa m in in g  h ow  n estlin g  b eg g in g  behaviour (b e g g in g  posture and  
n estlin g  p o sitio n ) in fluenced  h o w  parents a llocate  fo o d  to  ind ividual n estlin g s during the  
2 0 0 5  breed ing season  w h en  parents either did or did not rece iv e  su pp lem en tary  fo od . T he  
depend en t variab le is ‘fe d ’ (0 /1 )  to  identify  n estlin gs w h ich  received  (1 )  or w h ich  did not 
rece iv e  (0 )  fo o d  at each  p rov ision in g  event. Each p rov ision in g  even t is ‘n e ste d ’ w ith in  brood  
as a random  e ffec t and the m odel has b inom ial errors w ith a log it link. E xplanatory variab les  
w ere a ssessed  for s ig n ifica n ce  w hen  they  w ere the last term s in the m od el, w ith in  th ree-w ay , 
tw o -w a y  and m ain e ffec ts , to control for any in fluence  o f  the order o f  term s. N o n -s ig n ifica n t  
term s w ere rem oved  from  the final m odel.

M o d e l term d f F P

B e g g in g  posture 1 ,2050 2 4 8 .9 9 < 0 .0 0 1

N e stlin g  p osition 1 ,2050 7 7 .13 < 0 .001

F o o d  su pp lem en tation 1 ,2050 3 5 .4 4 < 0 .0 0 1
B e g g in g  postu re*n estlin g  position 1 ,2049 1.36 0 .2 4 3 6
F ood  su p p lem en tation *n estlin g  position 1 ,2047 2.31 0 .1 2 8 6
F o o d  su p p lem en tation *b egg in g  posture 1,2047 0 .0 0 0 3 0 .9 8 6 0

F ood  su p p lem en tation *b egg in g 1 ,2046 0 .0 2 0 .8 9 2 7

po stu re* n estlin g  p osition
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broods (c lo sed  sy m b o ls) in 2 0 0 4 . Each data point represents an ind ividual 
n estlin g . T he feed s ga ined  are m odel estim ates, back-transform ed to correct for 
the transform ation o f  data in the orig inal m odel.

In 2004', nestlings in food supplemented broods responded to improved conditions by 

begging less intensely than those in control broods (Mann-Whitney test: Z = -2.242, N 

= 12, P = 0.025). However, despite begging at lower levels, nestlings in supplemented 

broods received similar amounts o f food (Figure 6.9). The data from 2005 showed a 

similar pattern. When parents had access to supplementary food nestlings begged less 

intensely (W ilcoxon signed ranks test: Z = -1.956, N = 9, P = 0.050), but received 

similar amounts o f food to when parents were not given supplementary food (Figure 

6 .10).
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to  tw e lv e  n estlin gs (large brood s iz e ) in 2 0 0 4 . Each data point represents an 
ind ividual nestling . T he feed s gained  are m odel estim ates, back-transform ed to  
correct for the transform ation o f  data in the original m odel.
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Discussion

The data suggest that the food supplementation experiment was successful in creating 

variation in nest rearing conditions. In food supplemented nests, parents used the food 

provided, increasingly so as the brood reached the point where nestling growth rate 

was at its peak. Nestlings from food supplemented broods grew faster and reached a 

higher pre-fledging mass than those in control broods, suggesting that without an extra 

food supply parental provisioning rate is constrained. Therefore, in food supplemented 

broods, parents were not just replacing natural food with supplemented items o f a 

similar value, but were supplying offspring with more food overall. Parents fed 

supplementary food to offspring and consumed the food themselves; both uses release 

them from a proportion o f the energetic demands they experience during the nestling 

period. In supplemented broods, nestlings were heavier and begged less intensely. 

Thus, the experimental manipulation o f parental food supply provided parents with 

several different cues to indicate that breeding conditions were improved. Parents, 

however, did not appear to respond to these cues by allocating more food to less 

competitive nestlings.

Grieco (2002b) also provided breeding blue tits with supplementary food and found 

that parents responded by provisioning nestlings with higher quality natural food 

items, while consuming supplementary food themselves and to a lesser extent, giving 

supplementary food items to nestlings. Without an extra food supply, parents may be 

constrained by the amount o f foraging effort required to find food in the environment,
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either because food is time consuming to find or because parents trade-off the current 

foraging effort with future reproductive success, or both. When given supplementary 

food, parents are released from these constraints and can provide more food to 

offspring while expending the same, or less, foraging effort. Additionally, in the 

present study, the extra food supply probably buffered nestlings against periods o f 

reduced parental provisioning effort due to environmental conditions (Keller & 

Vannoordwijk 1994), especially during the poor breeding season in 2005, when 

several days o f heavy rain prevented normal foraging behaviour. In support o f this, 

food supplementation increased nestling mass in both the good and poor breeding 

seasons o f 2004 and 2005 respectively. Grieco (2001b) also found that providing 

supplementary food to provisioning parent blue tits increased the mass o f nestlings, 

although his study differed in that while nestling mass was greater during growth in 

supplemented nests, nestlings did not reach a greater pre-fledging mass at day 14. This 

may be due to a difference in breeding conditions between the two study populations; 

Grieco (2001b) states that during the years o f his study, fledging body mass was not 

limited by food availability, whereas the results o f the Lancaster study suggest that it 

was. Conversely however, in the same population Grieco (2003) found that food 

supplementation decreased tarsus asymmetry, a measure o f developmental precision 

that may indicate conditions during growth (Parsons 1992; Nilsson 1994). In the 

Lancaster population, food supplementation did not influence tarsus asymmetry and, 

suggestively, neither did the year o f measurement, despite the large difference in 

breeding conditions between years.

There was evidence that the food supplementation in the present study did not
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completely ameliorate the poor breeding conditions in 2005, as brood reduction was 

more common in this year, even in food supplemented broods. Additionally, there was 

a shift in nestling growth between the years, with nestlings in 2005 having longer tarsi 

and larger gapes halfway through the nestling period, regardless o f food 

supplementation. As both measures influence the success o f a nestling’s begging 

display, this may indicate that when competition between brood members was 

elevated in 2005, nestling development was biased in favour o f structures that would 

increase the chances o f getting fed.

Large nestlings obtained more food regardless o f food supplementation and parents 

used allocation rules throughout that would ensure competitive offspring could bias 

food distribution. As a result, the difference in mass, between large and small 

nestlings, did not alter with food supplementation. When conditions were poor, in 

2005, this difference increased, although the presence o f supplementary food 

prevented, in some cases, mortality in the smallest nestlings. Therefore, food 

allocation appears to be mainly controlled by the nutritional status o f the largest, most 

competitive nestlings in the brood. When these nestlings are satiated, smaller nestlings 

are allocated food. This means that in good breeding conditions all nestlings in the 

brood increase in mass, but smaller nestlings do not get relatively greater amounts o f 

food and so cannot catch up with their larger nestmates. Grieco (2001b) also found 

that food supplementation did not decrease the gap in nestling body condition between 

first and last-hatched nestlings, in an experiment that also manipulated hatching 

asynchrony, so that in all nests last-hatched nestlings hatched three days after the first- 

hatched nestlings. In a four-year study on hatching asynchrony in blue tits, Slagsvold
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et al. (1995) found that in experimentally-created asynchronous broods, the largest 

nestlings in the brood were heavier than those in synchronous broods. All o f these 

results from blue tits are consistent with those from a study on nestling growth in red

winged blackbirds (Forbes & Glassey 2000), which showed that the survival and 

quality o f marginal offspring depends on the satiation o f the core offspring in the 

brood. Several theoretical models have predicted this type o f hierarchical pattern o f 

food allocation (Parker et al. 1989; Forbes 1993) and it is thought to be the mechanism 

behind adaptive brood reduction (Forbes & Glassey 2000). The main prediction o f this 

theory is that while food shortages affect all brood members, marginal offspring are 

disproportionately affected, thus promoting adaptive brood reduction in poor breeding 

conditions. This may also explain why, in the study presented here, there was still 

brood reduction in food supplemented nests. An experiment on house sparrows, 

Passer domesticus, also found that when offspring were given supplementary food, 

the difference in mass between the heaviest and lightest nestling was the same as in 

normal conditions (Mock et al. 2005). Similarly, Mondloch & Timberlake (1991) 

found that food availability did not have a differential effect on offspring growth 

within broods o f pigeons, Columba livia. Conversely, several studies on other species 

have shown that size differences between nestlings are reduced when food is abundant 

(Graves et al. 1984; Magrath 1989; Boland et al. 1997; Forbes et al. 2002). It should 

be noted that in the study o f Mock et al. (2005), no effect o f supplementation on 

overall brood mass was found. Verhulst (1994) suggests that cryptic influences o f 

supplementary feeding may produce observed effects o f supplementation on offspring 

traits other than those measured by nestling mass and body size. For instance, Mock et 

al. (2005) find no effect o f supplementation on nestling mass, but those nests given 

extra food recruit more offspring into the breeding population and this could be
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due to differences in how nestlings allocate available resources between 

developmental traits that then influence survival. This could also cause differences 

within broods, and should be measured before concluding that supplementation is not 

o f greater overall benefit to marginal offspring. In addition to responding passively to 

offspring competitive interactions, there is some evidence that parents can bias food 

allocation even further in favour o f competitive offspring under poor breeding 

conditions or when brood hunger is increased (Kilner 2002a; Smiseth et al. 2003b). 

Smiseth et al. (2003b) show that in bluethroats, Luscinia s. svecica, females 

temporarily provisioning as a single parent biased food allocation more towards senior 

nestlings than in normal conditions, even though there was no change in nestling 

begging behaviour. Under poor breeding conditions, parents could actively favour 

competitive nestlings using size as a cue to offspring quality, or as shown by work on 

canaries, Serinus canaria, they could alter their response to nestling behaviour -  in 

this case, biasing food distribution more towards nestlings at the front o f the nest, 

positions which less competitive offspring find hard to obtain (Kilner 1995; 2002a).

Why do parents not change their allocation rules when food availability increases? 

The model o f Davis et al. (1999) shows that environmental quality can differentially 

affect the success o f parental provisioning strategies, however it assumes that parents 

have full control over which nestling they feed, which in reality is not likely to be the 

case. In blue tits, parents allocate food under the pressure o f maintaining a very high 

provisioning rate and, in addition, are assessing the begging displays from a very large 

brood o f nestlings in a small, poorly lit nest environment. Increases in food 

availability, such as that provided in the experiment described here, should release
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parents from some portion o f the time constraint under which they operate. Thus, they 

might be expected to actively allocate food to low quality offspring, i.e. those with the 

greatest long-term need. However, as shown by Grieco (2002a), blue tits can respond 

to a release from time constraints by foraging for higher quality prey. When able to,

i.e. because o f better breeding conditions, parents might also choose to decrease their 

reproductive effort, in order to protect future survival and fecundity (Williams 1966; 

Lessells 1991). In addition, where competition between nestlings is reduced, begging 

displays are more likely to be honest signals o f offspring need. Thus, parents using the 

same allocation rules across a range o f environmental conditions can ensure that 

investment in high quality offspring is prioritised, while low quality offspring obtain 

food when their larger siblings are satiated. In this way, parents would follow adaptive 

patterns o f investment with no assessment cost. This is more similar to the model 

presented by Bonabeau et al. (1998), where competition between siblings is the 

mechanism whereby brood reduction is adjusted to food availability, although in their 

model parental decision making was limited to whether each offspring should survive 

or not, drastically over-simplifying the sequential decision making involved in each 

portion o f parental investment.
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Chapter 7: General discussion



Research into nestling begging behaviour has, in recent years, provided a great deal of 

insight into parent-offspring communication, in the context o f conflict between family 

members over parental investment (reviewed in Kilner & Johnstone 1997; Parker et 

al. 2002a). This body o f work has centred around debates on the information 

contained in nestling begging behaviour, the influence o f competition between 

begging offspring and whether parents or offspring have control over food allocation. 

Independently, work on parental investment in individual offspring according to long

term need has established that in some species male and female parents respond 

differently to offspring demand (reviewed in Lessells 2002). This parentally biased 

favouritism often takes the form o f the female parent investing more than the male in 

smaller, less valuable offspring whose long-term need is greater (e.g. Stamps et al. 

1985; Leonard & Horn 1996; Krebs et al. 1999). A difference between the sexes, in 

patterns o f food allocation, will be mediated by a difference in how the two parents 

assess and respond to nestling begging behaviour, possibly in combination with other 

cues o f offspring need, such as size. Differences between the sexes in allocation rules 

could parallel differences in how males and females regulate their provisioning rate to 

the brood, in response to different elements o f the begging display (reviewed in Kilner 

2002b). These differences in parental investment could result from differences in male 

and female life history strategies (Kilner 2002b; Lessells 2002).

In a species like the blue tit, Cyanistes caeruleus, with large brood sizes and where 

breeding success is strongly dependent upon a seasonal food supply, brood reduction 

is common (Perrins 1979; Slagsvold et al. 1995). Mortality rates are also high 

immediately after offspring leave the nest, and are probably largely dependent on
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fledging body mass (Perrins 1979; Nur 1984a). There will be, therefore, strong 

selective pressure on nestling competitive ability and this may manifest itself in 

strategic and context-dependent nestling begging behaviour (Glassey & Forbes 2002b; 

Johnstone 2004). Despite the strong influence o f hatching asynchrony on the fitness o f 

individual nestlings, size differences between nestlings within nests are often slight, 

with the result that parents may be unable to independently assess offspring long-term 

need. This is especially the case as parents are tightly constrained by a demanding 

schedule o f foraging to provide nestlings with food and spend little time assessing 

offspring before allocating a feed. Indeed, during the nestling period, foraging is the 

main parental occupation (Naef-Daenzer & Keller 1999; Grieco 2001b), is extremely 

energetically costly for parents (Tinbergen & Dietz 1994; Thomas et al. 2001), and is 

likely to be a significant factor in the evolution o f parent-offspring communication in 

this system. Thus, this study has also examined patterns o f food allocation when 

parents are partially released from this constraint, by experimentally increasing the 

food available to provisioning parents. As provisioning parents usually deal with a 

brood o f begging nestlings, which they must choose between, and as there is currently 

debate over whether offspring begging is an honest signal o f need (Royle et al. 2002), 

this concluding chapter begins with an examination o f nestling begging strategies in 

the blue tit, with relation to nestling need, competitive ability and the effect o f 

soliciting more than one care-giver.

Nestling begging strategies

One o f the main questions which results from the begging literature is whether
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offspring begging behaviour is strategic, being context-dependent, or whether begging 

is always an honest signal o f offspring need (Johnstone & Godfray 2002; Royle et al. 

2002). There is convincing evidence that while begging behaviours reflect offspring 

need, they are also dependent upon factors such as past experience, parental response 

and the competitive environment in which they are performed, and therefore can be 

viewed as competitive strategies (Price et al. 1996; Leonard & Horn 1998; Kedar et al. 

2000; Leonard et al. 2000; Rodriguez-Girones et al. 2002). Parents must, therefore, 

control for these factors when obtaining information on offspring need from begging 

displays (Kilner & Johnstone 1997). This thesis has presented results showing that in 

blue tits, nestling begging related to short-term need (hunger due to the experimental 

treatment) and therefore conveyed information, to provisioning parents (Chapter 3). 

However, begging did not contain information on nestling long-term need, as smaller 

nestlings with greater long-term food requirements did not beg more than their larger 

siblings. Furthermore, nestling position in the nest relative to the provisioning adult 

was related in a complex way to nestling hunger, size and the sex o f the provisioning 

adult (Chapter 3). Therefore, at least one aspect o f begging behaviour was influenced 

by factors other than nestling need, affecting the information conveyed to parents in 

begging displays. In fact, the two parents may be receiving different sets o f 

information on nestling state, as there appears to be differential competition for 

positions close to the male and female parent. Nestlings compete for positions close to 

the male parent, while no such behaviour was observed towards the female parent. As 

a result o f this interaction between nestling hunger and competitive ability and the sex 

o f the provisioning adult, each parent receives a different impression o f offspring need 

according to the position o f nestlings relative to the feeding position used by that 

parent. In a similar way, parents gain a different impression o f nestling need
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according to whether or not they give a feed call when they enter the nest with food, 

as the stimulus to beg influences nestling begging (Chapter 4). At the stage in the 

nestling period when this study was carried out, there do not appear to be differences 

within broods in the development o f the senses that would influence how nestlings 

react to the stimulus to beg (i.e. how fast nestlings were to respond to the arrival o f the 

adult, with or without a feed call). This means that parents would not have to control 

for nestling size when responding to nestling begging at feeds when the arrival o f the 

adult was more ambiguous, specifically when the adult did not give a feed call. 

However, at earlier stages in the nestling period, when disparities between nestling 

perceptual ability are larger, this may be a real issue for parents and may be one 

reason why the parent’s feed call is used more when nestlings are younger. The link 

between nestling motivation and begging was influenced by the reliability o f  the 

stimulus to beg. When the parent gave the feed call, signalling that there was about to 

be a feed, all nestlings were quick to respond, whereas when the stimulus was more 

ambiguous, being the sound o f the adult arriving at the nest, only nestlings that were 

highly motivated to beg, due to hunger, were quick to respond. This aspect o f begging, 

therefore, was only honest when the parent refrained from giving the feed call, and 

this may be a factor selecting against the use o f the call. The cost o f begging in error, 

when there is no imminent feed, may be what keeps the speed that nestlings respond 

to the stimulus honest. When this cost is removed, all nestlings respond quickly, as 

their response speed is likely to influence their chances o f being fed. This is backed up 

by the results showing how nestlings respond to unreliable stimuli -  those stimuli that 

produced false alarm begging. When nestlings were motivated to beg to the adult, they 

were also more likely to commit an error by begging during a false alarm, suggesting 

that motivated nestlings reduce the stimulus threshold above which they respond.

143



In this sense, nestling begging is not simply a signal o f need, as begging behaviour is 

dependent upon the costs and benefits involved for individual nestlings, within the 

context o f each particular begging event. This has implications for how parents should 

respond, as well as for the interpretation o f the numerous studies o f nestling begging 

behaviour, especially those studies where begging behaviour is induced by an artificial 

stimulus (as suggested by Leonard et al. 2005). Intriguingly, the results presented in 

Chapter 4 suggest that male and female blue tits differ in how frequently they use the 

feed call, although this needs to be investigated further, as the sample size was low. 

This could be due to the sexes differing in their investment patterns. The male could 

use the feed call in order to increase competitive interactions between offspring, as 

well as maximising foraging efficiency, while the female, by using the feed call less 

often, retains information on nestling need, in order to allocate food to those offspring 

whose need is greatest. Further experiments, involving both manipulating nestling 

hunger within the nest and observing the use o f the adult’s feed call and subsequent 

allocation patterns, and experiments on nestlings in controlled environments, to detail 

how the feed call influences nestling begging, would help us to understand the 

adaptive significance o f the feed call to each o f the parents. These experiments should 

be done over a range o f nestling ages, in order to examine the possibility that the feed 

call can act to remove perceptual disparities between nest mates and to elucidate the 

function(s) o f the feed call in detail.

Parental food allocation rules

In blue tits, parents responded to nestling begging behaviour and this resulted in them
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preferentially feeding hungry offspring, supporting the theory that begging is an 

honest signal o f offspring need (Kilner & Johnstone 1997). However, when deciding 

whom to feed, parents also integrated the position o f nestlings with nestling begging 

and this would allow more competitive offspring to bias food allocation in their 

favour, regardless o f need. Certainly, paternal feeding rules, coupled with competition 

between nestlings to get close to the male parent is likely to result in large nestlings 

obtaining more food from the male over the whole nestling period. This was shown 

quite clearly in how nestlings positioned themselves in the nest, relative to the 

provisioning male parent, over time (Chapter 3: Figure 3.6). When nestling hunger 

was experimentally controlled, large hungry nestlings in positions close to the male 

parent exchanged places with small hungry nestlings over time, suggesting that due to 

competitive asymmetries, small nestlings have to wait until large nestlings are satiated 

before they can obtain positions close to the male. Furthermore, large nestlings were 

more successful than small nestlings at obtaining feeds when competing by begging 

intensely. This may be due to their size conferring on them an added advantage over 

smaller nestmates when parents are comparing begging signals between offspring. 

Parents may assess the intensity o f begging signals partly by the height that nestlings 

reach when begging upwards towards the provisioning adult. This result also shows 

that parents do not control for nestling size when assessing nestling begging posture.

The situation with food allocation by the female parent is slightly different. Although 

the female does not appear to preferentially feed small nestlings overall, as has been 

found in several other species (reviewed in Lessells 2002), she does use provisioning 

rules that favour small nestlings under certain circumstances. Females have a stronger
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preference than males to feed nestlings that are further away in the nest, which could 

result in the female feeding small nestlings more than the male in situations where 

there is increased competition for feeds amongst siblings. Furthermore, females are 

more likely to feed small nestlings than large nestlings when they are further away 

from the provisioning adult, suggesting that the female controls for size when 

assessing offspring need according to the position o f nestlings in the nest cup. These 

differences in allocation rules between the sexes could mediate parentally biased 

favouritism, especially where size differences between offspring are larger or in 

situations where competition for food is increased. Slagsvold et al. (1994) show that 

when the brood hatches more asynchronously, post-breeding survival rates for female 

blue tit parents are lower than when the brood hatches synchronously. Behavioural 

observations suggest this is due to the female providing more care than her male 

partner to the smaller fledglings in asynchronous broods. Apparently, when broods 

hatch synchronously and size differences between nestlings are small, male parents 

contribute more, presumably because the length o f post-fledging care for larger 

offspring is extended relative to asynchronously hatching broods. Females deciding 

when to commence incubation would therefore face a trade-off, between the possible 

advantages o f creating asynchrony within the brood (reviewed in Magrath 1990) and 

maximising their partner’s contribution to parental investment. Female provisioning 

rules in the nestling stage may also be an attempt to minimise size differences between 

offspring in order to maximise the extent o f paternal care.

Chapter 6  showed that in blue tits, parents do not change their allocation rules in 

response to food availability, allowing larger nestlings to gain a higher proportion o f
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parental feeds even when food availability was experimentally enhanced. This 

inflexibility contrasts with the more flexible provisioning rules found in canaries, 

Serinus canaria (Kilner 2002a) in response to nestling hunger and in bluethroats 

Luscinia s. svecica, (Smiseth et al. 2003b) in response to food limitation. However, in 

both o f these previous studies, parents changed provisioning rules in response to 

increased levels o f competition within the brood and changed them so that food 

allocation was more biased in favour o f competitive offspring. This suggests that 

under normal conditions parents play a more active role in food allocation, but when 

conditions are bad, either because the brood is hungrier or because the food supply is 

limited, parents become more passive, allowing competitive interactions between 

nestlings to dictate allocation patterns. This may be the most efficient pattern o f 

investment for parents under these conditions, both as it promotes adaptive brood 

reduction, and as it liberates parents from time-consuming allocation decisions, 

allowing them to increase provisioning rate. In the experiment presented in this thesis, 

food supply was enhanced above normal conditions and this may explain the 

difference between this and the previous studies. If parents are already actively 

allocating food according to both the nestling begging display and the position o f 

nestlings, which represents a composite o f nestling need and competitive ability, then 

there may be no advantages to changing this investment pattern when feeding 

conditions improve. Once more food is available to the brood, competition for food 

will decrease and less competitive nestlings will automatically be able to obtain better 

positions to solicit and be fed by provisioning parents. Where competition between 

nestlings is reduced, begging displays are more likely to be honest signals o f need. 

These observations lead directly to the question o f whether parents or offspring 

control food allocation, which has been the major issue in recent discussions o f
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parent-offspring communication and conflict over parental investment (Royle et al. 

2002).

Do parents or offspring control food allocation?

The difference in provisioning rules between the parents implies that each parent 

trades-off the costs and benefits o f responding to different aspects o f the begging 

display. A major constraint for both may be the time cost o f assessing begging 

displays and other cues o f offspring need, when provisioning rate is limited by food 

availability. Conversely, this constraint may be less important if  it is in the interest o f 

parents to allocate food according to competitive interactions more passively, if  this 

results in investment in high quality offspring when food is limited and more equitable 

food distribution when food availability is high. The individual trade-off between 

these factors and the reproductive effort o f each parent is likely to differ between the 

sexes, and possibly between individuals (for example with parental age). Male parents 

appear to respond more passively to offspring solicitation, with the result that they 

allocate food according to the result o f nestling interactions as well as to the begging 

display. This may be because they are less willing than females to invest time in 

assessing nestling begging behaviour, due to trade-offs with other behaviours, e.g. 

body moult (Svensson & Nilsson 1997). Additionally, they may be selected to invest 

more than the female in highly competitive offspring, due to differences in life-history 

trade-offs or due to the presence o f extra-pair offspring. Blue tit nestlings appear to 

adjust their begging strategy according to the difference in allocation rules between 

the sexes, although it cannot be ruled out that nestlings compete to be closer to the
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male parent because the male provides a better food supply (Slagsvold 1997). Females 

appear to control to some degree, for offspring competitive interactions when 

allocating food. Spending longer at the nest than the male, due to cleaning the nest and 

brooding nestlings, female blue tits may have more information than the male on 

offspring and brood state, without incurring additional assessment costs. This may 

make it easier for the female to override competition between offspring during 

solicitation. Additionally, the female may be more interested than the male in 

investing in lower quality offspring.

It would be hard to determine whether the response o f males implies a lack o f control 

over allocation, due to constraints, or whether males are selected to invest according 

to the outcome o f competitive interactions. The distribution o f food is more equitable 

when competitive offspring cannot dominate positions close to the parents (Ostreiher 

2 0 0 1 ), suggesting that parents may prefer to bias investment away from competitive 

offspring. This may also apply to blue tits. Alternatively, in a study on great tits, 

Parus major, Kolliker et al. (1998) suggest that parents may actually manipulate 

sibling competitive behaviour, so that they can invest in preferred offspring without 

making time consuming choices. In great tits, parents often feed from different 

locations around the nest cup. The male parent feeds nestlings begging at higher 

postures than the female, possibly as a result hungry nestlings move closer to the 

female parent, so that they can obtain food at the lowest possible cost. Parents may 

feed from different locations and respond differently to nestling begging behaviour in 

order to influence the positioning o f nestlings in the nest cup. This will also restrain 

dominant offspring from completely biasing food distribution. Conversely, parents
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may refrain from feeding from random locations around the nest cup, as this would 

reduce information to be gained about nestling state from the position o f the nestlings 

relative to the feeding location. Indeed, in those species where it has been measured, 

parents appear to feed from relatively fixed, predictable locations (McRae et al. 1993, 

this study; Kolliker et al. 1998; Kolliker & Richner 2004). Interestingly, in blue tits, 

parents fed from different locations in only half o f the nests observed. In contrast to 

the great tit (Kolliker et al. 1998), parents rarely moved to the back o f the nest to feed, 

although the female was more likely to do so than the male. Instead, parents fed from 

between 45-90 degrees from the nest entrance. They may, therefore, be more 

interested in feeding according to the outcome o f nestling competition than the great 

tit. This could be due to the larger brood size and higher provisioning rate in blue tits. 

In support, great tits appear to spend more time assessing nestling begging behaviour 

before allocating food (an average o f 2.59 seconds, Kolliker et al. 1998) compared to 

blue tits (1.37 seconds, this study). It would be interesting to find out whether blue tit 

parental feeding locations are fixed over successive breeding attempts or whether 

positions are adjusted to the partner’s position, and to discover why parents do not 

feed from separate locations in all nests. In the great tit also, a significant proportion 

o f parents feed from similar locations (34% of nests, Kolliker et al. 1998). Slagsvold 

(1997) suggests, in his ‘parental approaching hypothesis’ that parents might alter their 

feeding positions, with respect to each other, in order to adapt their investment 

patterns to food availability. When food is very scarce, parents would both use the 

same feeding position in order to feed the most valuable nestling. When food is less 

scarce, parents would feed from different locations, or from variable locations, in 

order to feed a different subset o f nestlings. Differences between species, even those 

with similar breeding ecology, like great and blue tits, may be explained by
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differences in how parents trade-off investment in current and future reproduction, 

together with other aspects o f the breeding ecology o f each species, such as the 

frequency o f extra-pair fertilisations and the level o f sibling competition within 

broods. In parrots, where hatching is extremely asynchronous, parents control food 

allocation, using cues such as offspring size to allocate food in preference to offspring 

begging behaviour (Stamps et al. 1985; Krebs 2002). This degree o f parental control 

may be possible because large size differences between offspring make their long

term need apparent, while very low provisioning rates release parents from time 

constraints when assessing offspring need (Krebs 2002). Even so, there is evidence 

that male and female parents can differ in the degree o f control that they exert when 

responding to offspring demand. For instance, in budgerigars, Melopsittacus 

undulatus, female parents feed offspring primarily according to size, biasing 

investment towards smaller young, but their provisioning rate is only half as fast as 

male parents, who feed young according to their begging display (Stamps et al. 1985).

In conclusion, in blue tits, parents appear to allow nestlings to control food allocation 

to a greater extent, and this may be due to several attributes o f their breeding system, 

for instance large brood sizes and high parental provisioning rates. Breeding success 

in this species is highly vulnerable to short-term changes in food availability, but even 

when parents were provided with extra food they continued to allocate more food to 

larger offspring. This may be because under good breeding conditions, the best 

parental investment policy is to respond to nestling short-term need, as indicated by 

nestling begging behaviour. Although this will result in large offspring gaining more 

food items, this may be to the parent’s advantage, as it maintains size differences
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between offspring, allowing adaptive brood reduction should environmental 

conditions decline during the breeding attempt. However, despite this overall pattern 

o f investment, female parents controlled for nestling size when allocating food and 

this, in combination with different parental feeding locations, may partially counteract 

the bias in food allocation due to competitive interactions between offspring.

It is apparent that issues relating to how parents and offspring negotiate the flow o f 

parental investment will be resolved differently according to the particular breeding 

ecology o f each species. For instance, in blue tits parental investment patterns are 

probably constrained by large brood sizes and high provisioning rates during the 

nestling period. In species o f birds where parents have more control over food 

allocation, competitive, interactions between siblings will have less influence. With 

low provisioning rates and long nestling periods, parents can allocate investment into 

individual offspring with exactitude and appear to do so in very complex ways (Krebs 

et al. 1999; Krebs & Magrath 2000). At the same time, features o f the nest site or 

parental provisioning behaviour will influence the degree to which interactions 

between siblings influence food allocation (Ostreiher 2001; Smith et al. 2005). Studies 

on single-brooded species can shed light on parent-offspring interactions when sibling 

competition within broods is not influencing parental investment (Quillfeldt 2002; 

Quillfeldt et al. 2004). However, on the whole, parent-offspring interactions within 

systems o f care other than in nidicolous birds pre-fledging have been less well studied. 

For instance, in some precocial species o f birds, young are fed by parents and solicit 

parental care through begging behaviour and through ornamented plumage (Lyon et
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al. 1994; Krebs & Putland 2004) but this has not yet been examined in much detail.

As well as differing between species, the nature o f interactions between parents and 

offspring is likely to change over the period o f parental care. This thesis has presented 

results taken from the middle o f the nestling period in blue tits. However, the degree 

to which parents can control food allocation shifts from full control at the start o f the 

nestling period, to a much more passive response shortly before fledging, when older 

nestlings dominate positions immediately adjacent to the entrance hole, with the result 

that the parent often feeds from outside the nest entrance. It is interesting to note that 

shortly after fledging, offspring are usually not very mobile, and at this point parents 

may regain full control over food allocation. Unfortunately, in blue tits at least, at this 

stage nestlings are hard to locate, so that taking observations o f potentially very 

interesting interactions between parents and offspring is extremely difficult. In other 

species, parental tactics may actively change over time, in order to adaptively control 

brood reduction at different stages o f parental care (e.g. Kloskowski 2001). Therefore, 

both across and within species, the begging behaviour o f offspring and the way that 

parents respond to offspring solicitation is variable and context dependent, being 

influenced by the degree to which family members have control over the flow o f 

parental investment and by the amount o f conflict between them.
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