AN APPROXIMATE DYNAMIC PROGRAMMING
APPROACH TO THE SCHEDULING OF IMPATIENT
JOBS IN A CLEARING SYSTEM

Dong Li, B.Eng.,M.Eng.

Submitted in Part Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy

Department of Management Science
Lancaster University

October 2010

Copyright © 2010 by Dong Li

ProQuest Number: 11003505

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 11003505

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

A single server is faced with a collection of jobs of varying duration and urgency.
Before service starts, all jobs are subject to an initial triage, i.e., an assessment of
both their urgency and of their service requirement, and are allocated to distinct
classes. Jobs in one class have independent and identically distributed lifetimes
during which they are available for service. Should a job’s lifetime ex: . = before
its service begins then it is lost from the system unserved. The goal is to schedule
the jobs for service to maximise the expected number served to completion. Two
heuristic policies have been proposed in the literature. One works well in a "no
loss" limit while the other does so when lifetimes are short. Both can exhibit poor
performance for problems at some distance from the regimes for which they were
designed. We develop a robustly good heuristic by an approximative approach to
the ‘application of a single policy improvement step to the first policy above, in
which we use a fluid model to obtain an approximation for its value function. The
performance of the proposed heuristic is investigated in an extensive numerical
study. This problem is substantially complicated if the initial triage is subject
to error. We take a Bayesian approach to this additional uncertainty and discuss
the design of heuristic policies to maximise the Bayes’ return. We identify prob-
lem features for which a high price is paid for poor initial triage and for which
improvements in initial job assessment yield significant improvements in service
outcomes. An analytical upperbound for the cost of imperfect classification is de-
veloped for exponentially distributed lifetime cases. An extensive numerical study

is conducted to explore the behaviour of the cost in more general situations.

IT

Acknowledgements

I would like to express my profound gratitude to my supervisor, Professor Kevin
Glazebrook, for his invaluable guidance and support over the years. His knowledge,
experience, and encouragement are all things I very much appreciated and needed.

My sincere thanks are conveyed to the Department of Management Science
in Lancaster University for providing financial support for my research and to
staff members of the Department, especially Professor Adam Letchford, Professor
Richard Eglese, Dr Dave Worthington and Dr Chris Kirkbride, who have provided
their help and contributed in one way or another towards the fulfilment of this
work. I would like to extend my thanks to Gay Bentinck and Christine Fletcher
who have been always supportive in all the administrative matters and have made
my life much easier.

My officemate Kevin Martin deserves a lot of credit for the final results of this
work. He has been a valuable resource for helping to work out many technical
problems. I am indebted to all of my colleagues and friends in Lancaster, who had
heiped to make my stay there pleasurable and exciting.

Finally, I would like to thank my family and in-laws for their understanding,
support and encouragement over the years. I owe my deepest gratitude to my
wife, Wenting, who has taken the main responsibilities to take care of our little
daughter so that I can always concentrate on this work. Without her this thesis
would not have been possible. Our lovely daughter, Ruohan, has brought us so

many joyful moments, even in those very tough days.

II1

Contents

List of Figures VI
List of Tables VII
1 Introduction 1
1.1 Motivation 1
1.2 Challenges and Objectives 3
1.3 Literature Review Lo 6
1.3.1 Stochastic Scheduling of Impatient Jobs 6

1.3.2 Approximate Dynamic Programming 12

1.3.3 Sequential Decision Making with Unknown System Parameters 23

1.4 Contributions« . . e e 29
1.5 OQutline of the Thesis 31
2 Scheduling of Impatient Jobs with Perfect Classification 33
2.1 TheModel e 33

2.2

2.3

Heuristic Policy Development - a Single Step Approximate Policy

Improvement Algorithm via Fluid Models 38
2.2.1 Fluid Model: No Losses During Service 43
2.2.2 Fluid Model: Losses During Service 55
Numerical Study 57

2.3.1 Scenario (I): lifetimes and service times exponentially dis-
tributed L. o 58

2.3.2 Scenario (II): Weibull lifetimes and deterministic service times 64

v

CONTENTS \%

2.3.3 Scenario (III): Weibull lifetimes and exponential service times 71

2.3.4 Implementation Notes 77

24 Conclusion 78

3 Scheduling of Impatient Jobs with Imperfect Classification 80
3.1 TheModel 80

3.2 Formulation of the Bayes Sequential Decision Problem as a Dynamic

Program 86

3.3 On the Development of Effective Heuristic Policies 92
3.4 Numerical Study 98
35 Conclusion 108

4 Cést of Imperfect Classification 110
4.1 Introduction L 110
4.2 The Cost of Imperfect Classification - Analytical Insight 112

4.3 The Cost of Imperfect Classification in the Worst Case - a Numerical

Study . . . e 118

4.4 Conclusion e 125

5 Conclusions and Future Research 126
5.1 Summary and Conclusions 126
52 Future Research 128
Bibliography : 131
Appendices 144
A Contents in the Accompanying CD 145
B Instructions to Use HPC | 146
C C++ Code for Key Classes and Functions 147

D Matlab Functions 188

List of Figures

2.1
2.2
2.3

24
2.5

3.1
3.2

4.1

4.2

4.3

4.4

Fluid Model. 46
Values of V'§"(ny,n2,0) where 0 <n; <16,0<n, <10. 50
Decisions taken by policy 75 in states (ny,ng,t) where 0 < n; <

16,0 < ny <10 and t=0, 18.15, 30.85,45.39. 52
Hazard Rates. 53
Exact value functions Vs verses the fluid approximations V’§" in
states (ni,ng,t) where 0 < ny < 16,ny = 0,2,4,6,8,10 and t=0,

18.15, 30.85,45.39. o4

Values of V¢ (n1,1n,,0) where 0 <ny,mo <5, 96
Exact value functions V% verses the fluid approximations VPP in

states (ng, no,t) where 0 < nq,ny < 5 and t=0, 2.82, 5.64, 8.99. . . . 97

The relative costs RC'IC for a problem with J = 2, Weibull lifetimes
and deterministic service times. Lo 113
The relative costs RCIC for a problem with J = 2, Weibull lifetimes
and deterministic service times, and two different service rates of
type 2 jobs. 117
Boxplot of the worst case relative costs RCIC for Weibull lifetimes
and deterministic service times when J=2. 123
Boxplot of the worst case relative costs RC'IC for Weibull lifetimes

and deterministic service times when J=4. 124

VI

List of Tables

21

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1
3.2

3.3

Percentage deviation from optimal performance of heuristic policies

% and wSF!,

Percentage deviation from optimal performance of heuristic policies
wSP1 and wPSPT for Weibull lifetimes and deterministic service times
when J =2, e
Percentage approximation errors A(V,s, V°¢¥) for Example 2.1. . . .
Numerical study results for exponential lifetimes and service times
when J =2.
Numerical study results for exponential lifetimes and service times
when J =05, e
Numerical study results for Weibull lifetimes and deterministic ser-
vice times when J =2. L L
Numerical study results for Weibull lifetimes and deterministic ser-
vice times when J =5. L o

Numerical study results for Weibull lifetimes and exponential service

times when J =2.

Percentage approximation errors A(VS, V.%*?) for Example 3.2. . .
Numerical study results for Weibull lifetimes and deterministic ser-
vice times when J = 2, imperfect classification.
Numerical study results for Weibull lifetimes and deterministic ser-

vice times when J = 4, imperfect classification.

VII

Chapter 1

Introduction

1.1 Motivation

This January when I came back from vacation, I was stranded in London Heathrow
airport for two days. Due to the very bad weather, all domestic flights and many
international ones were cancelled. The passengers had to wait in massive queues
for accommodation vouchers, alternative transportation arrangements, or some
other purposes. The amount of passengers was so huge that they significantly
outnumbered the staff, resulting in excessive waiting times everywhere. Many
people left the queues, taking with them lots of unhappiness and complaints. A
challenging question faced by the British Airways management is then how to
optimally deploy the very limited resources (staff, aircraft, coaches, hotel rooms,
etc.) so as to improve the service level as much as possible.

Similar situations are common in our daily lives. You may experience excessive
waiting for service and run out of patience somewhere and sometime; for instance,
in hospitals, when ringing call centres, or when checking out at the supermarket.
All these situations are characterised by services provided by relatively scarce
resources to impatient customers. Key features (eg. processing time, patience) are
random, and the management challenge concerns the deployment of these resources
over time to optimize some cost criterion. There are some other circumstances,

which though very rare, are of crucial importance. One example relevant to the

CHAPTER 1. INTRODUCTION 2

theme of this thesis is the management of scarce medical resource after mass
casualty incidents (MCI), like an earthquake or a terrorist bombing. After such
an incident, a significant number of injuries are caused and these may overwhelm
existing medical resources immediately. To support efficient resource allocation,
all patients are subject to an initial triage at the scene, namely an assessment
of the severity of their conditions, and are classified into distinct priority groups.
Following triage, a central challenge concerns how the patients should be scheduled
for treatment such that the total expected number of patients served successfully
is maximised. The decisions must deal with the uncertainties associated with
the patients’ conditions, like the criticality of their condition and the amount of
resource they will consume. Poor schedules may lead to preventable deaths. In
many proposals, patients are simply treated according to a static order of their
priority as determined at the outset. Recent literature on emergency response has
argued the importance of developing dynamic scheduling policies (Arnold et al.
[2004], Frykberg [2002], and Argon et al. [2008]).

Triage following an MCI must necessarily be undertaken speedily. As Frykberg
[2002] has commented: “ the more time it may take to find those needing imme-
diate care, ...the greater the likelihood of preventable deaths caused by delay in
treatment of the most severely injured.” However, it may well be the case that
determination of the actual criticality level of a patient in a short timeframe is chal-
lenging, and that the initial triage is subject to significant levels of error. Indeed,
in a review related to terrorist bombing events, Frykberg and Tepas [1988] found
that on average 59% of those classified as critical were actually non-critical, with
a 0.05% error rate for the reverse. In medical terminology, these two triage errors
are called overtriage and undertriage, respectively. Recently Turégano-Fuentes
et al. [2008] mentioned in their bomb response assessment that ¢ it is difficult to
distinguish between casualties requiring immediate and delayed treatment by a
rapid examination in the field ” and reported inital chaos due to overtriage. It has

been shown by Frykberg and Tepas [1988] that the accuracy of triage can have a

CHAPTER 1. INTRODUCTION 3

significant impact on casualty survival in MCls.

1.2 Challenges and Objectives

The situation envisaged in the previous section can be thought of as an application
of stochastic scheduling of impatient jobs in a clearing system. A simple mathe-
matical representation can be developed as follows. Please note that we shall use
the terms jobs and customers interchangeably in this thesis to denote the objects
seeking service. A collection of jobs is seeking service which is provided by a single
server. There are two major sources of randomness related to each job. Firstly,
its service is of uncertain duration. Second, the jobs lifetime, namely the period
of time during which it is available for service, is also uncertain. In most of our
models, we assume that a job abandons the system unserved if its service does not
begin before the expiration of its lifetime. Further, all jobs whose service begins
are guaranteed to be served to completion. No service preemptions are allowed.
Each job is subject to an initial triage on its service requirement and its urgency
at time zero, and is placed in one of J classes. Suppose for the moment that
the classification is without error. Jobs in each class j are assumed to have inde-
pendent and identically distributed (i.i.d.) lifetimes (denoted X; ~ F;) and i.i.d.
service times (Y; ~ G;). The goal is to optimally schedule service such that the
total number of successful service completions achieved until the system is cleared
is maximized. Intuitively, it seems clear that priority should be given to jobs with
small service times (since these delays others less) and/or small lifetimes (since
these are most urgent). Precisely how this should be done to achieve optimality is
far from clear, however.

Argon et al. [2008] have shown that when lifetimes and service times are suit-
ably agreeable (jobs with the shortest lifetimes also have the shortest service times)
then the optimal policy always gives highest priority to the time-critical job regard-

less of the system state. Such special results notwithstanding, the central challenge

CHAPTER 1. INTRODUCTION 4

concerns the development and evaluation of strongly performing heuristic policies.
The literature contains discussions of two candidate policy classes. Glazebrook
et al. [2004] develop a simple static policy (hereafter denoted 7°) which operates a
fixed priority among the job classes. The class with the smallest associated value of
E(X;)E(Y;) is accorded the highest priority (jobs scheduled first) while that with
the largest associated value has lowest priority (jobs scheduled last). This simple,
intuitive policy is shown to be asymptotically optimal for problems with exponen-
tially distributed lifetimes in a "no premature job loss" limit (min; E(X;) — o00).
In contrast, Argon et al. [2008] develop a myopic heuristic (hereafter denoted 7)
which performs well in a "heavy premature job loss" limit (max; F£(X;) — 0).
While these policies perform satisfactorily in the neighbourhood of the regimes for
which they were designed, they are non-robust and can exhibit poor performance
more generally.

The textbook approach to solve this problem exactly is to model it as Semi-
Markov Decision Process (SMDP) and to apply the methods of stochastic dynamic
programming (DP). However, since the problem size increases exponentially fast
with the nufnber of job classes, the computational effort required is prohibitive in
most cases of practical size and so the implementation of DP methods is infeasible.
Strongly performing heuristic solutions are thus in order in such circumstances.
An important stream of techniques to aid this quest falls under the title of approz-
imate dynamic programming (ADP) (Powell [2007]). As far as we know, there is
not any universal approximation strategy that works for every problem. Instead
customised ADP algorithms are usually developed by exploiting specific problem
structure. In this regard, one primary objective of this thesis is to design efficient
ADP algorithms to render feasible the task of the development of robustly good
heuristic policies for the triage problem.

This problem is complicated very substantially by the introduction of classifi-
cation errors. The jobs which are assessed and placed into one class could in fact

have many different characteristics. Due to this uncertainty, the distributions Fj

CHAPTER 1. INTRODUCTION 5

and G; are no longer appropriate descriptions of the lifetimes and service times
of all jobs assessed as belonging to class 7. We shall use 4 to index the true class
a job belongs to, and accordingly X;(Y;) their lifetimes(service times). Moreover,
the consequences resulting from any action are more uncertain. Any error-prone
triage problem is much harder to analyse than triage with perfect classification
and has been rarely studied in the literature.

There are two important contributions which address classification errors when
controlling multiclass queueing systems. In neither case does the model incorpo-
rate impatience. Van der Zee and Theil [1961] consider a single server queue with
two priority classes of jobs. Incoming jobs can be misclassified. To minimize the
expected waiting time, they propose a threshold assignment rule to allocate the
uncertain job to either class 1, class 2 or some mixed class. After classification,
jobs are served in the fixed order of class 1 first, followed by the mixed class, and
then class 2. The other contribution is due to Argon and Ziya {2009, who con-
sider a similar priority assignment problem. Each arriving job sends out a signal
which gives partial information (of a stochastic nature) about its true identity. On
this basis the job is placed into a class. The authors argue that if jobs are parti-
tioned into more distinct classes, the long-run average waiting cost achieved will
be decreased. Both contributions focus on optimal priority assignment strategies
to alleviate the possible impact of imperfect information. Neither considers job
scheduling afterwards and simply offers service in some static priority order. As
we have stressed earlier, static service policies can have very poor performance,
especially when impatience is a model feature.

To this end, the thesis aims at the development of strong performing heuristic
service policies in the presence of classification errors. Solving such a problem is
far from a trivial task. Further, we are very interested in understanding the nature
of the additional cost incurred by these errors, and exploring system features for

which this penalty may be considerable.

CHAPTER 1. INTRODUCTION 6

1.3 Literature Review

We first explore the general literature on the scheduling of impatient jobs. Par-
ticular attention is then given to clearing systems which are assumed to have no
new arrivals over time. We also include contributions on admission control and
dynamic routing of impatient jobs. These two decisions are often crucial compo-
nents and precede job scheduling in the three levels of dynamic queueing systems
control. Since such problems can usually be solved by ADP, a review on this
theme is presented next from the algorithmic perspective. To conclude this sec-
tion, we summarize previous contributions on sequential decision making problems
with unknown system parameters, which is the broad problem class in which our
error-prone triage problem sits. ADP approaches are an important source of solu-

tion methods for these problems also.

1.3.1 Stochastic Scheduling of Impatient Jobs

Impatience can be seen in various real life situations. A typical example is the
above mentioned management of medical resource in the aftermath of a MCI.
Another example in the healthcare setting concerns a hospital blood bank. If
the blood stored in the bank is not used within a certain time of its collection,
it may be unusable. In call centres, people will hang up if they are required to
wait excessively for service. In banks or supermarkets, customers may abandon
a queue if not served within some time of their arrival. In telecommunications, a
message is considered lost if its transmission is not completed before some deadline.
Interesting examples in a military context concern enemy targets which may move
out of reach if not dealt with promptly.

Garnett et al. said in their work on a call centre design problem that "a major
drawback of models that ignore abandonment is that they either distort or fail to
provide information which is important to call centre managers." (Garnett et al.

[2002]). A lot of research attention has been paid to the incorporation of impatience

CHAPTER 1. INTRODUCTION 7

in the modelling of manufacturing and service systems, and particularly, in resource
management problems where limited resources are allocated to different tasks over
time. Indeed there is now an extensive literature concerning the scheduling of
impatient jobs in various application domains.

Two quite distinct approaches to the modelling of impatience can be found in
the literature. One concerns a deadline to the end of service; the other a deadline to
the beginning of service. The latter is also referred to as the lifetime or availability
time. Under this approach, a common assumption is that jobs will not abandon
the system once their service commences. In this thesis, we primarily adopt the
second definition. Unless otherwise specified, the terms lifetime and availability
time are used interchangeably throughout.

Before proceeding further, we pause to remark that the situation envisaged in
this thesis should be clearly distinguished from cases where jobs do not abandon
the system even though some deadline may have already passed. The objective in
~ such cases is usually to minimize the total or long run average number of tardy
jobs, or to minimize some cost function based on job tardiness. For important
examples, see Glazebrook [1983|, Pinedo [1983], Boxma and Forst [1986], Em-
mons and Pinedo [1990], Bhattacharya and Ephremides [1991], Jiang et al. [1996],
Doytchinov et al. [2001], Van Mieghem [2003], and Pinedo [2008]. Moreover, all
the literature covered in this thesis concerns stochastic scheduling problems. We
shall not address deterministic job scheduling. Interested readers are directed to
Pinedo [2008] who provides a comprehensive account of job scheduling problems
in various contexts.

An early work related to impatient job scheduling is due to Panwar et al. [1988],
who consider the transmission of voice packets over a packet-switched network. If
the customer does not receive packets in time, they become useless and are lost.
The objective is to maximize the long run fraction of successful customer services.
It is assumed that upon arrival each packet declares an exact value of its deadline,

namely the time available from its arrival to the beginning of its service. Both the

CHAPTER 1. INTRODUCTION 8

inter-arrival times and the service times are assumed to be independent and iden-
tically distributed. No service preemptions are allowed. The authors show that
when enforced idle times are prohibited, the shortest time to extinction (STE)
policy is optimal for M/G/1 queues and for a special case of G/D/1 queues. In
the cases where enforced idle times are allowed, optimal policies, if they exist,
must use the shortest time to extinction with inserted idle times (STEI). This
problem has been further studied by Bhattacharya and Ephremides [1989]. They
| claim that when service times are exponentially distributed, the STE policy is,
among all nonpreemptive and nonidling policies, the one to minimize the expected
number of lost customers over any time interval. A similar argument holds for
STFEI policies when enforced idling is allowed. They also assert that when there
are no new arrivals, idling is not worthwhile and the ST E policy is optimal among
all nonpreemptive policies. When service preemptions are allowed, a preemptive
version of STE is optimal in the general class of nonanticipative policies. These
results are true whether the job deadline is defined as the latest service commence
time or the latest service completion time. More recently, Shakkottai and Srikant
[2002] have studied the scheduling of packets over a multiple channel wireless net-
work. They argue that the results from wireline networks cannot be carried over
to wireless networks. The STFE policy is not necessarily optimal in the wireless
domain. The main reasons are that the wireless channel is not perfect and that
errors are location dependent. Packets cannot be transmitted through a bad chan-
nel, so the channel state (good, bad) must be considered in the scheduling policy.
Assuming that the channel state is perfectly known, the authors show that a STE
policy implemented only to good channels is nearly optimal for a class of déter-
ministic arrival processes. Further, when there are no new arrivals, this channel
state dependent STFE policy is indeed optimal in most cases.
The three works mentioned in the preceding paragraph all assume that job
deadlines are deterministic. This may be a reasonable assumption for communi-

cation network problems, but the degree of job impatience is generally uncertain.

CHAPTER 1. INTRODUCTION 9

The exact lifetime of a patient cannot be known a priori; the waiting time before
a customer leaves a service queue or hangs up an unanswered phone call is not
fixed, and so on. Therefore static policies like STE do not work well any more,
except in some special cases. The problems in the stochastic impatience setting
are usually very hard and optimal policies are not readily available in many cases.
Attention has thus been turned to the development of effective heuristics.
Glazebrook et al. [2004] propose a dynamic heuristic policy for a Markovian
multiclass single server queueing system with abandonment. Customers arrive in
independent Poisson streams. Each customer class has service requirements which
conform to some known exponential distribution and availability times are also
exponential. Customers abandon the system as soon as their availability times
have expired, whether in service or not. A reward is earned upon each successful
service completion. The objective is to schedule customers for service to maximize
the average reward rate. Gaver et al. [2006] consider a very interesting schedul-
ing problem in a military setting where service completions cannot be perfectly
observed. They consider a single server system with multiple classes of uncertain
time-critical tasks (enemy targets). The service is to detect, classify and attack
these hostile threats. Each task in the system has a class dependent, exponen-
tially distributed availability time for service. The server must process the tasks
effectively and efficiently. As a result, it is necessary to control the amount of
service given to each. They propose one myopic policy and one Markovian pri-
ority heuristic which allocates a fixed amount of processing time to jobs within
each class. A special case of this problem that has only a single class of tasks is
studied by Glazebrook and Punton [2008]. They propose two dynamic heuristic
policies for the determination of processing times. In a different situation, the cus-
tomers whose deadlines have expired will not abandon the system automatically.
Instead they are removed from the queue by the scheduler to avoid wasting server
resources. Zhao et al. [1991] consider such a problem and assume that availability

times have a concave cumulative distribution function. A scheduling policy must

CHAPTER 1. INTRODUCTION 10

decide not only how customers should be served, but also how and when customers
should be rejected from the system.

All studies reviewed so far concern situations in which a stream of new jobs
arrive for service over time. The clearing system model alluded to in Section
1.2 posits an amount (possibly large) of urgent work, arising perhaps as the re-
sult of some natural or man-made disaster, which is present ab initio and which
must be accomplished with limited resources. Direct precursors of this thesis in-
clude the studies of Glazebrook et al. [2004] and Argon et al. [2008]. The former
considers the scheduling of a batch of impatient jobs in a single server clearing
system. Each job has an exponentially distributed availability time, but its pro-
cessing time distribution can be arbitrary. Every successful service completion
yields a job dependent reward, and the objective is to maximize the expected total
reward received until the system is cleared. They propose a static permutation
policy and prove its convergence to optimal in a no loss limit via an interchange
argument. The latter contribution emphasises applications concerning the use of
limited medical resources after MCIs. Patients are placed into different priority
classes after a triage process, namely an assessment of their urgency for medical
attention. Lifetimes and service requirements are class specific and are both expo-
nentially distributed. The authors develop myopic service polices which have been
shown to work well when loss rates are high relative to service rates. A slightly
different version of this problem is due to Glazebrook and Mitchell [2002|, who
consider the scheduling of improving/deteriorating jobs in a clearing system. Jobs
improve (namely, more close to completion) while being processed, but deteriorate
and can even abandon the system whenever service is allocated elsewhere. The
goal of scheduling is to maximize the total expected discounted reward.

We now move beyond scheduling and give a review of contributions on admis-
sion control and dynamic routing of impatient jobs for service. Admission control
concerns decisions on whether jobs are allowed to enter a queueing system. In a

multi-queue situation, a routing decision is then made to send the admitted jobs

CHAPTER 1. INTRODUCTION 11

to specific service stations. Ward and Kumar [2008] consider the admission control
of a GI/GI/1 queue with impatient customers who have a common exponentially
distributed deadline before service completion. The controller must decide whether
to admit an arriving customer for which some payment is received. However, a
much larger refund must be paid to any admitted customers who subsequently
renege after waiting too long without being served. The authors have shown that
a simple barrier policy is asymptotically optimal under some stated conditions on
the arrival process. Movaghar [2005] considers the problem of dynamically routing
arriving impatient customers to parallel queues with identical servers. No jock-
eying among queues is allowed, and within each queue customers are served in a
first-come-first-serve (F*CFS) fashion. Customer deadlines are i.i.d. and gener-
ally distributed. It is shown that when the deadline distribution meets a certain
condition, the policy of joining the shortest queue minimizes the expected number
of lost customers during any finite interval in the long run. Recently, Glazebrook
et al. [2009] have developed heuristic policies for both the admission control and
subsequent routing of impatient customers seeking service. They assume a Marko-
vian model, where interarrival times, service times and availability times are all
exponentially distributed.

Another contribution due to Lillo [2001] considers the optimal control of an
M/G/1 queue with impatient customers by means of turning the server on and off.
Customers are segmented into two priority classes. The higher priority customers
are highly impatient in that they only enter the system if the server is on and
idle upon their arrival; otherwise they leave the system immediately. The lower
priority customers have zero impatience. The paper shows that, in the class of
policies which always turns the server off when the system is empty, the optimal
one is to turn the server back on when both of two linear functions of the number
of lower priority customers present in the system attain non-positive values.

There is now a considerable literature tailored to call centre applications. Bas-

samboo et al. [2005] consider the admission control and dynamic routing of mul-

CHAPTER 1. INTRODUCTION 12

ticlass incoming customers to a group of server pools, each of which is qualified
to process only a certain customer class(es). Arrival rates are subject to random
changes. According to this paper, if appropriate scaling is applied to the system
parameters (arrival rate, service rate, abandonment rate) or the number of server
pools, the original problem can be well approximated by a stochastic fluid model.
The routing and admission control decisions are then determined by a simple lin-
ear program derived from the fluid approximation. The authors are able to derive
a control policy for the original system and prove that it is asymptotically optimal
for the minimisation of the expected cost over a finite horizon. This problem is
extended in a subsequent paper (Bassamboo et al. [2006]) to incorporate decisions
concerning the number of servers to be employed in each server pool. In previous
literature, the staffing problem is considered separately from the admission and
routing problems due to the complexity of addressing them together. The paper
assumes that all incoming customers are admitted and that the system consists of
two types of costs, namely personnel costs and abandonment costs. Again, they
propose strongly performing staffing and routing policies based on an asymptot-
ical analysis in a limiting parameter regime. Helber and Henken [2010] address
simultaneously staffing and the shift scheduling of multiskill agents in a contact
centre. In contrast with telephone call centres, contact centres can be reached by
customers over a variety of media, like phone, email, instant message and so on.
They propose simulation optimization approaches and develop policies which are

shown to work best for medium to large sized contact centres.

1.3.2 Approximate Dynamic Programming

A standard approach to stochastic scheduling problems is to model them as Markov
Decision Processes (MDP) and then apply the methods of DP. Extensive and
mathematically rigorous treatments of MDPs can be found in Puterman [1994]

and Tijms [1994]. The foundation of dynamic programming is the well known

CHAPTER 1. INTRODUCTION 13

Bellman equation, which enables computation of the cost-to-go function or value
function in a recursive fashion. Expressed in detail, it expresses the maximum
total reward (for finite horizon problems) or the maximum total discounted/long
run average reward (for infinite horizon problems) at a system state in terms of
the payoff from some immediate action and the maximum reward at the next
state which results from these actions. In the infinite horizon discounted reward,

discrete state space case, it can take the form

V(s) = max {R(s, a)+f Zp(s’ls, a)V(s’)} : (1.1)

a€A(s) jrperd

where s is the current system state, a the action taken at this state, p(s'ls, a) the
one step transition probability, and R(s,a) the reward earned at state s if action
a is applied. We use 2 and A(s) for the state space and admissible action space
respectively. V(s) is the value function evaluated at state s. Note that G is the
discount factor and lies between 0 and 1.

It is clear from (1.1) that there is one Bellman equation for each state. By
solving these equations, we compute the value at all states, and simultaneously an
optimal policy which determines the best action to take in each state. Solution
methods for the Bellman equation include policy iteration, value iteration, and
linear programming. However, the notorious drawback of DP, the curse of dimen-
stonality (Bellman [1961]), means that the exact solution of the Bellman equation,
or even storage of the results, is infeasible for a very wide range of problems. The
computational and storage requirements grow exponentially with the dimensional-
ity of the state space. In such situations, good suboptimal heuristic solutions are
thus in order. Various methods have been proposed for this quest and have been
proven to work successfully in specific applications.

In this thesis, we primarily focus on methods which centre on the development
of an approximation to the value function. This stream of methods have been well
studied and have earned different names. The control theory community uses the

term “neuro-dynamic programming”, as named after the neural network which is

CHAPTER 1. INTRODUCTION 14

used in the value function approximation. An important book on this theme is
due to Bertsekas and Tsitsiklis [1996]. The artificial intelligence community calls
it “reinforcement learning” (Sutton and Barto [1998]). In this thesis we will use
the term “approximate dynamic programming”, which has been adopted by the
operational research community. A recent book due to Powell [2007] provides a
comprehensive account on models, algorithms and applications of ADP.

Among various approximation schemes, the simplest one is known as the lookup
table representation, in which the approximate values, say V(s), are stored in a
table for each discrete system state s. Such a simple representation still suffers
from the curse of dimensionality. For a problem with a fairly large state space,
the resulting lookup table will be huge, even though the values in many states
are unlikely to be used at all under optimal policies. To get around this issue a
simulation based value iteration algorithm has been developed. This algorithm
updates the approximation iteratively for the states on the basis of simulated tra-
jectories. The use of simulation here will help to generate representative states
so that the computational effort is concentrated on them rather than on the en-
tire state space. Detailed discussion of such algorithms is given in Bertsekas and
Tsitsiklis [{1996]. Another widely used technique is to aggregate states so as to
have a simpler lookup table. Bean et al. [1987] use a fixed level of aggregation.
Adaptive state aggregation is considered by Bertsekas and Castanon [1989] and
Singh et al. [1995]. The latter also propose a soft state aggregation strategy. The
contribution due to Lambert III et al. [2004] proposes an aggregation method by
which the solutions produced can be directly implemented to the original problem.
The otherwise essential step, disaggregation, is thus not required.

A more efficient scheme, which is called compact representation, maps the state
by an approximate value function by constructing some parametrized functions
V(s,0), where 6 is a vector of parameters. To be attractive the size of the param-
eter vector needs to be necessarily much less than that of the state space. Only

these parameters and the general structure of the function are stored, and the

CHAPTER 1. INTRODUCTION 15

approximation is generated only as required.

There are two ingredients in this scheme. First, an approximation architecture
needs to be selected. In a general sense there are two categories of architectures,
namely, linear and non-linear. An important example of the latter is a neural
network (Bertsekas and Tsitsiklis [1996]). A notable success story of using neural
networks is an application to develop a policy for backgammon by Tesauro [1992].
In a linear architecture, the approximation is expressed as a linear combination of
a set of basis functions which are weighted by the parameter vector 6. Basis func-
tions are mappings from state variables to the real line and can be nonlinear. They
are selected to capture system features, namely, important aspects of the system
state. The determination of the architecture or basis functions requires a lot of
insight on the problem structure. A nice discussion is given in Bertsekas and Tsit-
siklis [1996], who have suggested that linear architectures should be used whenever
possible. Keller et al. [2006] explore strategies for the automatic construction of
basis functions.

Once the architecture is fixed, the parameters are tuned by some statistical
methods. Please be aware that a variant proposed by Preux et al. [2009] also
tunes the architccture itself. There are a wide range of parameter fitting methods
whose performance varies for different approximation architectures. Bertsekas and
Tsitsiklis [1996] provide a comparison study of alternative methods. Some impor-
tant examples introduced in this book include gradient algorithms, least squares
methods and Kalman filtering (see also Choi and Van Roy [2006]). For a com-
prehensive discussion of statistical learning methods readers are referred to an
excellent book due to Hastie et al. [2009].

We are still one step away from developing practical approximate DP algo-
rithms. There are no training data pairs available to perform the parameter fit-
ting (in fact, our objective is to generate those data pairs). We neither know if
the approximation converges, and if it does, how close the approximation is to

the real optimum. In this regard, an important type of algorithm must be syn-

CHAPTER 1. INTRODUCTION 16

thesized into dynamic programming, namely the stochastic approzimation method.
These methods provide a theoretical framework for iterative estimation of the value
functions (in the lookup representation) or the parameter vector (in the compact
representation) based on randomly sampled information. They are fundamental
tools to analyze the convergence properties of approximate DP algorithms. More
details are given in Bertsekas and Tsitsiklis [1996]. A challenging question in these
methods concerns the selection of optimal stepsizes, which are used to smooth
old estimates with new observations. Powell [2007] gives a thorough discussion
of this challenge. A more comprehensive treatment of general stochastic iterative
algorithms can be found in Kushner and Clark [1978| and Benveniste et al. [1990].

We are now ready to introduce approzimate value iteration algorithms (AVI).
In a typical iteration of such an algorithm, the approximate value functions are

updated at a selected subset of representative states. We write

Vig1(s) = max {R(s, a)+ 0 ZP(S'LS, a)V (s, Gk)} ,Vs € Sy. (1.2)

a€A(s) oo

The subset Sy can be generated by either simulation or state sampling. Some
strategies for the latter are presented in Powell [2007|. If the expectation in (1.2) is
tractable, the update can be done exactly, otherwise simulation is used to estimate
the expectation and the update is done approximately. Based on the values of
Vk+1(s), s € Sy, a new set of parameters), for the approximation function are
fitted by (for example) least square methods. The above steps are then repeated
recursively until the algorithm converges.

Such AVT algorithms were proposed almost as early as dynamic programming
itself. Bellman and Dreyfus [1959] approximate the value function by polynomials
to accommodate the very small amount of computer memory available then. Whitt
[1978] reduces a large scale MDP model to a smaller one by compact representa-
tion. See also Reetz [1977|. A more recent contribution due to Choi and Reveliotis
[2005] considers a relative value function approximation for long run average re-

ward problems. The application is to a job scheduling problem in a capacitated

CHAPTER 1. INTRODUCTION 17

re-entrant line, which is modelled as a continuous time Markov decision process.
The authors use a linear approximation architecture and demonstrate that it is a
promising solution method for the problem considered. A discussion on feature
selection strategies is also presented. For AVI algorithms, a known problem is the
lack of guaranteed convergence. In other words, there may not exist a unique fixed
point. De Farias and Van Roy [2000]| show that approximate value iteration should
not be expected to converge and present two counter examples. Nevertheless, they
propose a variant of AVI which exploits temporal difference (TD) learning and
prove that this variant is guaranteed to possess at least one fixed point. However,
this property does not ensure convergence. Temporal difference learning is a simu-
lation based policy evaluation method. More details will be given later. Tsitsiklis
and Van Roy [1996] also propose two variants of their AVI algorithms. One is
based on a lookup table representation in feature space, while the other employs
a linear feature based architecture. A proof of convergence of both algorithms
is provided. Bounds from the optimal performance are developed to assess their
accuracy. Roubos and Bhulai [2010] approach a problem concerning the control
of a time-vary queueing system by AVI. A counter-intuitive result is that state
disaggregation is preferred to state aggregation in this problem. They argue that
their approximation is more accurate when information from more state variables
is captured.

Another type of algorithm, called approzimate linear programming (ALP) and
first introduced by Schweitzer and Seidmann [1985], endeavours to find a value
function approximation directly by solving a linear program. They generalize the
exact linear programming approach by replacing the value functions by linear
parametric approximations. The obvious advantage is a drastic reduction in the
number of variables, from the size of state space to that of the parameter vector.
However, the number of constraints is still prohibitive. A natural response to this
challenge is again to concentrate on a subset of states. A second approach is to

apply general cutting plane algorithms.

CHAPTER 1. INTRODUCTION 18

De Farias and Van Roy [2004| propose a sampling scheme to generate a much
smaller subset of constraints. The resulting problem is called a reduced linear
program (RLP), and is shown to be not only practically solvable, but also to have
optimal solutions adequately close to those of the original ALP. Under certain con-
ditions, the constraints to be sampled only grow polynomially in the number of
parameters and are independent of the original number of constraints. Trick and
Zin [1993] approach a continuous state space stochastic dynamic program by dis-
cretization, and solve the discretized problem by ALP with constraint generation
methods. They claim that one benefit of using ALP in this situation is the avail-
ability of the shadow prices, which are used to generate an efficient discrete grid
at no extra computational cost. Much literature on ALP exploits specific problem
structure. Morrison and Kumar [1999] investigate the special features of transition
probabilities of a queueing network and construct a new ALP in which only a small
number of constraints are active. Guestrin et al. [2003] exploit two structures in a
factored MDP problem, “additive” and “context-specific’, which yield an efficient
and accurate linear approximation architecture to the value functions. Further,
the original problem can be represented exactly by another LP with exponentially
less constraints.

It is a known fact that the state-relevant weights appearing in the objective
function have no influence on the solutions in the exact LP algorithms, and thus
can take arbitrary positive values. This property, however, does not carry over to
their approximate counterparts. The role of these weights is explicitly explored by
De Farias and Van Roy [2003]. They have shown that these values have significant
impact on the scalability of the ALP algorithms. Guidance on the weight selection
strategies for practical problems is provided. This contribution is also the first to
evaluate approximation quality by developing error bounds against best possible
approximations.

Both AVI or ALP aim at approximating the value functions associated with the

unknown optimal policy, which is a non-trivial task in many cases. In contrast,

CHAPTER 1. INTRODUCTION 19

approximating the value functions associated with a given policy can be much
more straightforward. We call these policy value functions. This observation
yields a very rich type of algorithm, approzimate policy iteration (API). Generic
API starts with a chosen policy and a fixed approximation architecture to the
policy value function. The value functions of this policy are estimated by Monte
Carlo simulation or some other method, followed by a parameter fitting procedure.
After that, a policy improvement step is performed, which uses the approximate
policy value functions obtained by using the latest fitted parameters. These two
steps (the policy evaluation step and the policy improvement step) are then applied
alternately to the newly constructed policy. This is repeated until convergence is
achieved.

A variant of API is based on temporal difference learning. It differs from the
generic simulation enabled API in that the policy value function estimation is
updated incrementally after each transition, while the latter only updates at the
end of one simulation run. TD learning was first introduced in the PhD thesis
of Sutton [1984] and since then has been widely used in ADP. The convergence
of TD(0) is established by Sutton [1988]. Dayan [1992| extends the result to
more general TD(\) learning methods, where A < 1 is a discount factor by which
the differences of future visited states are exponentially discounted. A stronger
convergence result is given by Dayan and Sejnowski [1994]. Jaakkola et al. [1994]
relate TD()\) learning to stochastic approximation theory and provide a rigorous
proof of convergence. TD(A) learning is extended to long run average reward
problems by Tsitsiklis and Van Roy [1997]. It is applied by Marbach et al. [2000]
to a call admission control and routing problem for integrated service networks.

Policy iteration algorithms usually achieve the greatest improvement in the
first few iterations (Tijms [1994]). This observation has motivated the single step
policy improvement algorithm, in which only one policy iteration is executed. Such
algorithms have been widely applied in cases where the policy value functions

can be computed exactly. Examples include Glazebrook et al. [2004], Ott and

CHAPTER 1. INTRODUCTION 20

Krishnan [1992], Bhulai and Koole [2003], and Opp et al. [2005]. If exact policy
evaluation is infeasible, approximation methods are employed and this leads to
a very important variant, single step approzimate policy improvement (SSAPI).
This has been applied by Roubos and Bhulai [2007] to a problem of admission
control to two single server tandem queues over a long period. They construct a
very simple initial policy which admits all jobs into the system. The relative value
function of this policy is approximated by a second order polynomial. Bhulai [2009]
develops a variant of SSAPI for a call routing problem in a multi-skilled call centre.
For either of the two settings studied, he proposes an initial policy whose special
features render feasible a good approximation to the relative value function by a
non-parametrized architecture.

ADP algorithms (except API) eventually lead to the best estimate of the value
functions V*(s), if convergence is achieved. There is one remaining step, which is
to construct implementable policies based on these values. For API, an updated
policy must be constructed at every iteration. In either case, it can be done by
solving the following equation (replace V*(s) by the policy value function approx-

imation for API)

7(s) = arg max {R(s, a) + B Zp(s’\s, a)V*(s')} . (1.3)

a€A(s) s'ef

Unfortunately, the exact solution to this equation remains challenging if the action
space is large and/or the calculation of the expectation is intractable.

It is not hard to find practical problems in which the action space has more
than thousands of dimensions. A typical example mentioned in Powell [2007] is
the blood inventory management problem. The decision concerns the allocation
of each available blood type to meet the demand of another type. The number of
decisions increases exponentially with the number of valid substitution pairs. To
deal with this difficulty, Bertsekas and Tsitsiklis [1996] suggest.the incorporation
of actions into states and then to solve the augmented state space problem by

value function approximation methods. Powell [2007] proposes a more systematic

CHAPTER 1. INTRODUCTION 21

technique, namely a synthesization of mathematical programming into ADP. It is
the first work to integrate these two techniques. To make this approach workable,
the classical pre-decision state variables must be replaced by post-decision ones.
More details can be found in the book and the references therein.

As for the expectation in (1.3), we can always approximate it by use of Monte
Carlo simulation. In the ADP literature, there is an important quantity whose use
enables this difficulty to be bypassed. It is called the Q-factor, and is defined for a
state-action pair (s,a) and a policy 7. In particular, the optimal Q-factor denotes
the total expected reward obtained when action a is applied in state s and the

optimal policy is followed thereafter. This is written as

Q(s,a) = R(s,a) + 8 Y _ p(s'|s,a)V (s).

s'e

Together with the Bellman equation (1.1), a recursive equation to compute optimal

Q-factors is derived as follows,

Q(s,a) = R(s,a) + 0 Zp(s'|s, a) (max Q(s, a’)) .

o a’€A(s')

A strategy called @-learning to approximate the optimal Q-factors was introduced
by Watkins and Dayan [1992]. The power of Q-learning lies in its ability to break
the so-called curse of modeling, which describes the difficulty of explicitly calcu-
lating the transition probabilities for complex systems with multiple governing
random variables. However, this viewpoint has been challenged by Powell [2007],
who argues that the real value of Q-learning is the release from expectation com-
putation. Indeed, once the approximate optimal Q-factors, Q*(s,a), have been

obtained, the computation of the policy by the equation

7(s) = argmax {Q*(s,a)} .
a€A(s)

is trivial. This is in sharp contrast with (1.3). A convergence proof of Q-learning

CHAPTER 1. INTRODUCTION 22

can be found in Tsitsiklis [1994] and Jaakkola et al. [1994]. Crites and Barto [1998]
apply Q-learning to an elevator control problem. An online Q-learning algorithm is
proposed by Levy et al. [2006] and is used to control a non-stationary Markov deci-
sion process. The learning rate is updated adaptively to track parameter changes.
Leslie and Collins [2005] propose an individual Q-learning approach to deal with
the sterated normal form game. They introduce player dependent learning rates
for which convergence results can be proved in a large number of cases. More
details of this algorithm are given in Bertsekas and Tsitsiklis [1996] and Sutton
and Barto [1998].

We conclude this section with reference to a fundamental question in ADP.
Recall that in all ADP algorithms, a subset of representative states are generated
and computational effort is concentrated on them. This is essential to break the
curse of dimensionality. A natural question to ask is, should we make decisions
on just these states, or we should instead try some new ones? Because no a
prior knowledge about the optimal policy is available, we do not know which
subset we should concentrate on. It may well be the case that some important
states are left out, and the algorithm could be trapped in a local optimum. It
is thus necessary to do some exploration of the state space, which however could
" be costly and time consuming. A tradeoff between the cost of exploration and
their future values must be considered. This issue is referred to as "exploration
vs. exploitation" and is discussed in Powell [2007]. Singh et al. [2000] consider
different exploration strategies and provide corresponding convergence results. A
nice survey and discussion on exploration schemes in learning control is due to

Thrun [1992].

CHAPTER 1. INTRODUCTION 23

1.3.3 Sequential Decision Making with Unknown System

Parameters

Even though only two direct precursors of the error-prone triage problem have
appeared in the literature, the general problem of sequential decision making with
unknown system parameters has been studied extensively. Please note that these
are called stochastic adaptive control problems by the control theory community.
In such a problem, the system under study has some unknown elements. Taking job
scheduling as one example, the distributions of service times may not be completely
known. Instead, they may depend upon an unknown parameter.

The relevant literature can be divided into two distinct threads. One concerns
Bayesian sequential decision problems (BSDPs), in which a prior distribution on
the unknown parameters is given. The other deals with non-Bayesian approaches
in which no prior distribution is available. Instead, the decision maker is usually
given a set which is believed to contain the unknown parameter. In this thesis we
shall be concerned with Bayesian sequential decision problems. For non-Bayesian
approaches readers are referred to a broad survey due to Kumar [1985].

In BSDPs, information regarding the unknown parameters is obtained and
is available to the decision maker over time. The objective is to design control
policies to optimize some pre-specified cost function. A problem of this kind is
made difficult not only because of the uncertainty around the system evolution,
but also because of changing beliefs in the unknown parameters. The standard
solution approach is to convert such problems into an equivalent DP. Then the
rich DP theory and methods are available. Much attention had been devoted
in the 1960s-70s to resolving delicate questions associated with this conversion
and to obtaining well formulated DP approaches. For important examples see
Bellman [1961], Martin {1967], Hinderer [1970], Furukawa [1970], Rieder [1975].
and Kumar [1985]. Sadly, as we have already seen, DP problems can rarely be
solved to optimality. Hence ADP algorithms are sought to tackle these problems.

Some early contributions tried to bound the optimal solution. Van Hee [1978]

CHAPTER 1. INTRODUCTION 24

proposed an approach to compute lower and upper bounds on the optimal dis-
counted cost function. Calculation of the bounds involves the optimal solution to
two sets of nonadaptive control problems for which the parameters are assumed
known. The solutions of both problem sets are then manipulated with a DP op-
erator in an iterative fashion to generate the lower and upper bounds. It has
been shown that as the number of iterations diverges to infinity then both bounds
converge monotonically to the real optimum of the original problem. However,
this calculation procedure can be quite clumsy. Some special cases described in
Van Hee [1978] allow much simpler procedures. Other lower and upper bounds
can be found in Martin [1967], Satia and Lave [1973] and Waldmann [1985].
There is one class of BSDPs whose special structure enables the development
of rigorous theory and exact optimal solutions. These are the multi-armed bandit
problems, for which the policy induced by the celebrated Gittins Index is proven
to be optimal. The Gittins Index was first proposed by Gittins and Jones [1974]
under the name of the Dynamic Allocation Index (D.A.I.). Later, Whittle [1980]
gave a simpler proof of the optimality of Gittins Index policies than provided by
Gittins and Jones [1974] and used the term Gittins Index. The index policy has a
particularly simple form, which can be obtained by computing an index function
for each alternative bandit. There are extensive contributions on this theme, with

broad applications.

Stochastic Job Scheduling

An early paper is due to Gittins and Glazebrook [1977], who apply the Gittins In-
dex theorem to stochastic scheduling problems where the distributions of the jobs’
service times are dependent upon some unknown parameters. Discounted rewards
are obtained when a job’s service is completed and the objective is to achieve the
total maximal expected reward. With the knowledge of the prior distributions of
these parameters, each job is modelled as a Bayesian bandit process, and a mem-

oryless Bayesian bandit process if the posterior distributions of the parameters

CHAPTER 1. INTRODUCTION 25

depend only on the current state. It has been shown that, by incorporating the
parameters and their probabilities into the law of motion, this generalized problem
can be always reduced to the problem of allocating resources for a multi-armed
bandit. Hence the Gittins Index theorem applies.

Hamada and Glazebrook [1993| consider a Bayesian sequential single machine
scheduling problem, where the objective is to minimize the expected sum of weighted
flowtimes. Jobs are grouped into classes. Within each class the processing times
are 1.i.d. and exponentially distributed with an unknown parameter. The con-
jugate priors on the parameters are gamma. The system state is augmented by
including the parameters of the gamma distribution and the problem is formu-
lated as a DP. The optimal strategy is then obtained by applying the Gittins
Index theorem.

Recent work by Cai et al. [2009] considers the scheduling of a batch of jobs
on a single machine that is subject to breakdown. If the machine breaks down in
the middle of processing a job, all work done to date is lost and the job must be
processed again from the beginning once the machine is fixed. Both the distribu-
tions of the processing times and the machine up/downtimes are unknown. The
authors develop the Gittins Index from the posterior distributions of the unknown

parameters and so generate optimal dynamic policies.

Clinical Trials

Glazebrook [1978} studies the allocation of multiple treatments to patients in a
series of clinical experiments. The set of outcomes of an experimental treatment
can be fairly large. The probabilities of the individual outcomes are unknown.
This treatment allocation problem is modelled as a multi-armed bandit and an
index function is developed for each bandit (treatment). The optimal strategy is

to choose the treatment with the smallest index at each decision point in the trial.

CHAPTER 1. INTRODUCTION 26
Optimal Ezxploration

Benkherouf et al. [1992] consider a Bayesian model of oil exploration. There are a
number of candidate areas to explore and each area contains an unknown number
of oil fields. The oil company needs to know which area to drill next or whether
to choose to drill no well, based on the knowledge learned from earlier explo-
ration. The optimal strategy is established and is based on the Gittins Index.
Unfortunately, according to the authors the optimal strategy may be difficult to
apply, since it may involve a lot of switching between areas. In this case, the Git-
tins indices can be used to evaluate heuristics by bounding the lost revenue when
choosing them instead of an optimal policy.

Glazebrook and Boys |1995] extend the oil exploration model to a general search
problem. This concerns the determination of an optimal strategy to search objects
in several locations. Each location has an unknown number of objects of value. A
single search can lead to the discovery of multiple objects and a reward is earned
accordingly. The discovered objects are then removed from the location before
the next search. A binomial distribution is assumed as a conditional model of the
number of objects discovered in a single search. The authors show that a Gittins
Index policy is optimal for this problem and that the nature of this policy depends
critically on the the prior distributions on the number of unknown objects in each
location. If these priors are either Poisson or have a lighter tail than the Poisson,
the optimal policy is myopic and searches whichever location yields the largest
immediate expect reward. In this case a lot of switching between locations may’
be involved. On the other hand, if all priors have heavier tails than the Poisson,

the optimal policy becomes a kind of "stay with the winner" rule.

There is also a rich literature on more general BSDPs, in cases where heuristics

are developed because of the difficulty of finding the optimum.

CHAPTER 1. INTRODUCTION 27
Screening Design

Boys et al. [1996b] study a screen design problem where both the therapeutic effect
and the toxicity of pharmaceutical compounds are tested by passing them through
two series of screens. Each kind of test must be performed in a specified order but
between them they can be interleaved arbitrarily. The authors propose a Bayesian
formulation and specify a joint prior density for measures of activity and toxicity.
Theé heuristic which always chooses as the next screen the one with larger failure
probability per unit cost is shown to work well under some simple conditions. Boys
et al. [1996a] extend this problem to a more general setting, where the question
is how to filter out, in a cost effective way, items with acceptable attributes. It is
very expensive to measure the attributes, but there are some associated covariates
whose measurement is essentially free. They construct a Bayes-optimal two stage
screen. At stage 1 screening is via the covariates and only indecisive items are
passed over to stage 2 when the attributes are measured. The authors suggest
that even though the measurement of the attributes is very expensive, it may be

worth doing in individual cases.

Inventory Control

Azoury [1985] considers periodic review inventory problems where the demand
distribution is dependent upon some unknown parameters. Two inventory models
are analysed, namely a depletive model of consumable items and a nondepletive
model for repairable items, both of which are formulated as Bayesian dynamic
programs. By imposing certain conditions on the demand distribution and on
the prior for the unknown parameters, they show that the development of the
optimal ordering policy in either model can be reduced to the solution of a dynamic

program with one variable only.

CHAPTER 1. INTRODUCTION 28
Optimal Search

A decentralized multiagent search problem is studied by Zhao et al. [2008]. There
are several agents searching for targets over a network. Communication and coor-
dination among agents are limited, a feature which is referred to as a coordination
dilemma. The consequence of the coordination dilemma is the loss of a global op-
timum even though an individual agent could follow an optimal strategy himself.
The authors claim that it is always favourable to implement the same randomized
policy for all agents individually. Three heuristics are proposed and one of them is
based on DP policy iteration. The starting point for this is an optimal policy for
the corresponding centralized multiagent search problem which can be formulated

and solved as a dynamic program.

As can be seen from the above, BSDP problems are usually computationally
demanding to solve and/or close to optimal adaptive policies may be difficult
to implement. A natural question concerns whether or not it is worth devel-
oping adaptive policies. This question is investigated by Glazebrook and Owen
[1995]. They introduce the value of adaptive solutions (VAS) to quantify the ben-
efit brought about by learning about unknown parameters. The VAS is defined as
the loss experienced when deeming the system’s unknown parameters to be known
and then developing an optimal policy for the known case. The authors are able
to relate the VAS to two model features, namely, the degree of peakedness of the
prior distribution and the sensitivity of optimal policies to the assumed values of
the unknown parameters. According to the authors, the VAS is small if the prior
is peaked and/or optimal polices are insensitive for the scheduling models under
consideration.

We would like to mention that a slightly different body of literature deals
| with partially observable Markov Decision Processes (POMDP). In this literature
all elements of the systems are known. The uncertainty relates to knowledge of

the current system state. It could be costly or, indeed, impossible to observe

CHAPTER 1. INTRODUCTION 29

the current state completely and without error. Only information relating to the
current state is obtained. Despite this difference, the solution methodology is
somewhat similar. By redefining the state space to be a space of distributions
over the actual system states, any POMDP can be reformulated as a completely
observed, continuous MDP problem. General techniques for continuous MDPs can
then be applied. However, some special properties of this converted problem allow
tailored techniques to be developed. For comprehensive and rigorous treatments of
POMDPs, readers are referred to Sawaragi and Yoshikawa [1970], Monahan [1982],
Sondik [1978|, and the PhD dissertation of Cassandra [1998| and the references

therein.

1.4 Contributions

We summarise the primary contributions of the thesis as follows:

1. For the perfect triage problem, we exploit the simplicity (especially the static
nature) of the heuristic 7% proposed by Glazebrook et al. [2004] to develop
a new class of heuristic policies with robustly strong performance via a two
stage procedure. At stage 1, we use a fluid model to approximate the policy
value function of the system operating under m°. We then adopt an ap-
proximate DP approach and design in stage 2 a dynamic heuristic by using
the approximate policy value function from stage 1 in a single step policy

improvement algorithm.

2. Taking advantage of the special structure of the policy 7%, the fluid model we
have developed has a very simple, deterministic, and non-parametric archi-
tecture. This architecture enjoys the advantages of compact representation,
yet avoids the non-trivial task of parameter fitting. The solution to the fluid
model is very fast and straightforward, nothing more than solving an array

of ordinary differential equations, one for each job class. Numerical results

CHAPTER 1. INTRODUCTION 30

demonstrate that the approximated value functions are very close to the

exact ones for all the states examined.

3. We conduct extensive numerical experiments to investigate the performance
of our proposed heuristics for the perfect triage problem in three general
scenarios. These are (I) lifetimes and service times are both exponentially
distributed, (II) Weibull lifetimes and deterministic service times, and (III)
Weibull lifetimes and exponential service times. In the first two scenarios
we are able to compute optimal policies using exact DP methods, though
this is very expensive of computing time, except for very small problem
instances. It is thus possible to assess the quality of our proposed heuristics
by direct comparison with the optimum. For the third scenario, it has not
proved possible to develop optimal policies for problems of even modest size
in reasonable time. However, the way that the proposed heuristic policies
are developed means that their on-line implementation is straightforward.
Hence, we chose to assess the relative performance of alternative heuristics
by means of Monte Carlo simulation. Numerical results have shown that
our proposed heuristics perform extremely well, comfortably outperforming
competitors, in all the testing instances considered. This work on the perfect

triage problem has appeared as Li and Glazebrook [2010a).

4. To explore the error-prone triage problem, we propose a simple analytical
model and adopt a Bayesian approach to address the uncertainty of the true
identity of each job. Hence immediately after triage (¢t = 0) each job has
a prior distribution which summarises the decision maker’s beliefs about its
true identity before service begins. As time passes, these beliefs are modified
at every time ¢t > 0 and posterior distributions, which condition on the event

that a surviving job’s lifetime exceeds t, are computed using Bayes’ Theorem.

5. We formulate this Bayesian sequential decision problem as a dynamic pro-

gram. The ADP approach proposed for the perfect triage situation is further

CHAPTER 1. INTRODUCTION 31

developed to yield effective solutions to our Bayesian model. We successfully
extend the fluid model approach to accommodate triage errors and the ap-
proach still generates high quality policy value function approximations in
this case. A numerical study testifies to the strong performance of the re-

sulting heuristic service policy.

6. We then explore the question of whether it is possible to identify problem
features in which poor triage is particularly costly in terms of the number
of service completions lost. To this end, we introduce the (relative) cost of
imperfect classification, denoted (R)CIC, as a natural measure of this. We
are able to develop an analytical upperbound for (R)CIC for the case in
which the random lifetimes X; are exponentially distributed. This bound
tells us that in the exponential lifetime case, (R)CIC' is small whenever the

system parameter
A = max F(X;)E(Y:) — min E(X;))E(Y;)

is small. In such cases the triage process is relatively unimportant for the
scheduling problems. Numerical studies indicate that these insights extend
beyond the exponential case and suggest strongly that there is most to be
gained for the scheduling problem from improving the quality of triage when
A is large. A paper (Li and Glazebrook [2010b]) describing these contribu-

tions to the error-prone triage problem has been submitted for publication.

1.5 Outline of the Thesis

Chapter 2 investigates the scheduling of impatient jobs in a clearing system with
perfect classification. A SMDP is constructed to model this problem. We present
an efficient ADP approach to the development of dynamic heuristic policies via a

fluid model approximation. An extensive numerical investigation is carried out to

CHAPTER 1. INTRODUCTION 32

compare the performances of our proposed heuristic policies to earlier proposals
in the literature and (where possible) to optimal.

We extend to the error-prone triage problem with imperfect classification in
Chapter 3. After the introduction of some additional notation this problem is
modelled as a Bayesian sequential decision problem which is then formulated as a
dynamic program. The solution approach and the fluid model proposed in Chapter
2 are further developed so that they can yield effective service policies in the
presence of classification errors. Again, a numerical analysis is conducted to assess
the quality of the heuristics.

In Chapter 4 the cost caused by imperfect classification is studied. We propose
a measure (RCIC) to quantify the cost. A J = 2 example is presented to illustrate
the sensitivity of RC'IC to the error rates. For the exponential lifetime cases, we
find an analytical upperbound for RCIC that depends heavily on an identified
system parameter. A detailed proof is given. For more general problems, a worst
case numerical study is conducted to explore thoroughly the impact of this system
parameter.

We conclude in Chapter 5 with a summary and a discussion of possible future

research directions.

Chapter 2

Scheduling of Impatient Jobs with

Perfect Classification

This chapter considers the scheduling of impatient jobs with perfect classification.
It proceeds as follows: the problem is modelled as a semi-Markov decision pro-
cess in Section 2.1. In Section 2.2 we describe an approach to the development of
heuristic policies via an approximating fluid model. Our proposed heuristics are
implemented in three general scenarios and subject to extensive numerical investi-
gation in Section 2.3 where they are compared to earlier proposals in the literature

and (where possible) to optimal. A conclusion is given in Section 2.4.

2.1 The Model

A clearing system has a single server and a collection of impatient jobs (or cus-
tomers) awaiting service. Before any service starts, each job is allocated to one of
J classes after a triage process. We use the pair jk to denote the job which is the
k" member of class j, 1 < k < L;,1 < j < J. Observe that L; is the number of
class 7 jobs present at time 0. Associated with each job jk are two positive valued
random variables, namely its lifetime X and its service time Y. Class j lifetimes

X1, Xjo, - - : , Xj1, are independent and identically distributed (i.i.d.), having the

33

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 34

same distribution as X; whose distribution function is Fj. Similarly, the collec-
tion {le,ng, e ,Yij} of class j service times are independent and identically
distributed, having the same distribution as Y; whose distribution function is G;.
All lifetimes and service times have finite expectation and are independent of each
other.

The single server processes individual jobs nonpreemptively. Job 7k will aban-
don the system unserved if its service has not begun before X,i. However, once
a job has begun service, it will be served through to completion. Let 7 denote a
service policy (a nonanticipative rule for allocating the server to waiting jobs) and
Tjk(m) the random time at which policy 7 begins to process job jk. If jk is not
served by 7 then we write Tjx(7) = co. The number of jobs served to completion

under 7 is denoted N(7) and is given by

Lj

N(m) = > T{Ti(r) < X} (2.1)

Jj=1 k=1

In (2.1), I is an indicator. The goal of analysis is the determination of a policy =
to maximise E{N(m)}. Argon et al. [2008] argue that under the optimal policy
the server will never idle, while the theory of stochastic dynamic programming
(see, for example, Puterman [1994|) guarantees the existence of an optimal policy
which takes actions which depend only upon the current system state.

We model this problem as a semi-Markov decision process as follows:

1. Decision epochs are at time zero and at all service completion times. The
state of the process at decision epoch ¢ > 0 is denoted {n;(t),1 < j < J;t} =
{n(t),t} where n;(t) is the number of class j jobs which at time ¢ have not
yet been served and have not abandoned the system. Generic states of the
system are denoted (n,t),(n’,s). Note that the number of effective states
decreases as time passes. A state is effective if it has a positive probability

ever to be visited given the initial condition.

2. At each decision epoch, one of the jobs remaining in the system is chosen for

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 35
processing. In any system state (n,t), the collection of admissible actions is
written A(n) and is given by

Aln) = {j;n; > 1,1 <5 < J}. (22)
In (2.2) the action 7 is identified with the class of the job chosen for process-
ing.

3. Let ¢ be a decision epoch and (n, t) the system state then. If action j € A(n)
is taken and results in a service time (realized value of Y;) equal to s then
the system at the next decision epoch ¢+ s will be (n', ¢+ s) with probability

p(n’|n,t, 7, s) given by

p(n/ln’ t) j’ S)

J
—y y -
H(Tl . 3) {P[X12t+S|X.L>t]} I{P[X1<t+S|X,>t]} i—0i5—n;

1

OSnQSn]—(Sw,lSzSJ

In (2.3), 4;; is the Kronecker delta which is equal to one when 7 = j and is

otherwise zero.

4. A policy 7 is any nonanticipative rule for choosing admissible actions. Our
goal is the determination of a policy to maximise the expected number of

jobs served from initial state (L, 0).

In principle, an optimal policy could be developed with the tools of stochastic

dynamic programming. Write
Q={(n1);0<n;<L;1<j< JteR"}

for the system’s state space and develop the value function V' : Q@ — [0, Z;}:l Lj]

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 36

where V(n,t) is the maximal expected number of service completions from state

(n,t). Assuming sufficient regularity, V satisfies the optimality equations

JEA(n)

V(n,t) =1+ max {/oo Zp(n’ln,t,j, s)V(n',t + s)de(s)} ,n#0,
(-~

V(0,t) = 0. (2.4)

It is trivial that V'(n,t) is monotonically increasing componentwise in n, for fixed
t. Moreover, from our numerical experiments, we observe that in many cases the
optimal policy is also monotone componentwise in n for fixed ¢. Specifically, if
the optimal policy moves from one action to another as the number of jobs in one
class increases/decreases, it will stay on the latter action if the number of jobs in
this class is further increased/decreased.

As we have stressed repeatedly, computational approaches to the determination
of optimal policies built around the recursive scheme in (2.4) are not practical for
problems of realistic size. We seek to develop heuristic approaches which are close

to reward maximising.

Remark 2.1. The heuristic approaches to be developed in the coming section are
generic. The implementation in scenarios where the state space is discrete and
finite is straightforward. In general situations, however, the state space) is con-
tinuous and infinite. This is attributed to the inclusion of the element t in the
state space. The standard approach is to discretize the continuous time axis and
develop heuristics for the resulting discrete problem. Unfortunately, this treatment
may blow up the state space which may be already intractable in many cases. A
scenario of such is dealt with in this thesis and a detailed account is given in the
numerical study section 2.3. For general approaches to continuous MDP problems,
see for example Boyan and Littman [2001], Li and Littman [2005] and Mareck:
et al. [2006].

Two heuristics have been proposed in the literature and both will play a role in

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 37

our narrative. Glazebrook et al. [2004] proposed a static priority rule 7°. Suppose
that the job classes are numbered in increasing order of the quantity E(X;)E(Y)),
i.e. such that

BX\)E(Y;) < B(X,)B(¥s) < -+ < E(X,)E(Yy). (2.5)
In any state (n,t), 75 chooses action 7%(n,t) where
7 (n,t) = min{j;n; > 1}.

Hence 7% implements a class priority according to the orderingl -2 — -+ — J.
It favours jobs with small mean service times and/or small mean lifetimes, and
specifically, jobs which have large probabilities of abandonment if the service is
allocated to any of the others. It was shown by Glazebrook et al. [2004] to be
optimal in a "no premature job loss" limit when job lifetimes are exponentially
distributed.

Argon et al. [2008] propose a myopic heuristic policy m which takes the fol-
lowing form: in state (n,t), 7™ chooses action 7 (n,t) to be the non-empty class

4 with smallest associated value of

J
E(Y) | Y (i = 8){B(Xs — 11X >)} 7] . (2.6)

i=1

This quantity can be understood as an approximation to the mean number of
abandonments while serving a class j job. Therefore, policy 7™ gives priority to
the actions for which the mean number of abandonments during the next service
is close to minimal. It works well in a "heavy premature job loss" limit. In such
cases most jobs will be lost at an early stage and the value function is determined
by the very first few actions, which are "optimised" by 7™ in some sense.

As we shall see, both heuristics 7° and 7 perform well on occasion, but

exhibit a lack of robustness in performance. Namely there are problems for which

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 38

they do not work at all well. In the next section we propose an approach to the
development of a heuristic policy with associated performance which is robust and

stronger than either.

Remark 2.2. Minor adjustments to the above are required for simple variants of
our model, such as (a) incorporating the possibility of loss during service, and/or
(b) different returns earned upon completion of services of jobs from different
classes. For exzample, scenario (a) requires an adjustment of the optimality equa-

tions in (2.4) to

V(n,t) = max {P(Xj >t+ Y| X; >t)

+ [ain s>V<n',t+s)de<s>},n¢ 0
0 n

V(o,t) =0. (2.7)

In (2.7) we make an assumption that service times are delivered in full even when
premature loss occurs. There are other modelling possibilities. It is evidently the

case that V(n,t) < V(n,t) for all choices of n,t.

2.2 Heuristic Policy Development - a Single Step
Approximate Policy Improvement Algorithm

via Fluid Models

Of the heuristic policies described at the conclusion of the preceding section, 7

enjoys the benefits of a very simple structure. It seems reasonable to explore the
possibility of designing effective dynamic heuristics for our problem by strength-
ening the performance of this static policy via the implementation of a single DP

policy improvement step. Write Vs @ 2 — [0, Z‘jlzl LJ} for the value function

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 39

for 75, namely V,s(n, t) is the expected number of service completions from state

(n,t) under policy 7%. The function V,s satisfies the recursion

Ves(n,t) =14 / Zp(n’ln, t,m°(n,t), 8)Ves (0, t + 8)dGrs(ny(s),n # 0,
0o

V,s(0,t) = 0. (2.8)

A single DP policy improvement step applied to 7° will result in a new dynamic

policy m5F! determined as follows:
5P (n,t) = arg max {/ Zp(n'ln, t,7,8)Ves(n',t + s)de(s)} (2.9)

with the argmax in (2.9) being taken over the admissible set A(n). In words,
policy m5F7 makes optimal decisions under an assumption that all future decisions
are made according to 7.

Our experience is that policy 77! performs very strongly when it is available.
In support of this claim we make reference to 2,000 randomly generated problems
in which J = 2 and both lifetimes and service times are exponentially distributed.
The performance of 7% and 75”7 when applied to these problems is given in Table
2.1(a), while the details of the problems themselves are given in Section 2.3. Sim-
ilar results for 2,000 randomly generated problems with J = 5 and exponentially
distributed lifetimes and service times are given in Table 2.1(b). In both tables, the
results are presented in four groups (500 problems in each group) labelled A, B, C
and D according to the relative lengths of lifetimes and service times in the gener-
ated problems. In Table 2.1(a), the worst performances of heuristic 7 within each
group, as measured by the percentage deviation from optimum, are 23.79% (group
A), 24.33% (B), 16.52% (C) and 5.17% (D). Once a policy improvement step is
applied to 75 as in (2.9) above, the corresponding worst case percentages for ik
are 0% for all four groups. In Table 2.1(b), the worst case percentages for 75 are

15.95% (A), 11.86% (B), 3.87% (C) and 0.33% (D) while those for 757" are 0.48%

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 40

(A), 0.88% (B), 1.04% (C) and 0.05% (D). In all groups and for both tables the
median percentage suboptimality for 797/ was 0%. Further, for non-exponential
cases, results for 2,000 randomly generated problems in which J = 2, lifetimes are
Weibull distributed and service times are deterministic are given in Table 2.1(c).
Full problem details may be found in Section 2.3. The design of the study is along
the lines of the exponential cases above. In Table 2.1(c), the worst case percentage
for heuristic 7 are 36.34% (group A’), 26.16% (B'), 20.21% (C") and 4.13% (D).
The corresponding percentage for 7577 are 0.00% (A’), 0.24% (B'), 1.46% (C')
and 0.20% (D').

Remark 2.3. A dynamic version of the priority policy ° recalculates the expected
remaining lifetimes at every decision epoch and updates the priority list. We have
~also 1mplemented a single DP policy improvement step for this policy in all the
2,000 problems for Weibull lifetimes and deterministic service times when J = 2.

DSPI and its performance is summarized

The resulting policy is referred to as m
in Table 2.2, in which we have also included the results for policy 5T for the
reader’s convenience. It is shown clearly that P51 does not offer any significant

improvement on w°F1. In some cases its performance is weaker. It is worth men-

tioning that in some special cases the priority sequence does not change over time

DSPI Pl

and hence T reduces to w57, An obvious ezample is when lifetimes are ez-
ponentially distributed. Another ezample could be when the lifetime distributions
satisfy a certain conditions such that the ezpected remaining lifetimes remain a

fized ordering between classes.

The strong performance of 77/ notwithstanding, its development via (2.8)
and (2.9) is computationally prohibitive other than for small problems and special
cases. In light of this computational intractability we proceed as follows: we shall
develop an approximation V&% : — [O, EJLI Lj] to the policy value function

V..s. The dynamic heuristic which then results is obtained by using the approxi-

41

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

"¢ = [U9Um SOWI) JIISIUIULIDIOP pUe Sawayy [nqpy (9)

€Ty 020 XVIN | (sourgepy Suoy)
&4 000 NVIN a
000 000 NIN
12°0¢ 9’1 XVIN | (sewryeiy eyeispour)
120 200 NVIN o)
000 000 NIN
91'92 ¥20 XVIN | (sswmeyi 310us)
€8T 000 NVIN A
000 000 NIN
re9g 000 XVIN | (sewmojiy 310ys £104)
LTY 000 NVAN h4
000 000 NIN
(gdoqu)y | (3do‘, L) K10807€))
‘G = [uaym

SO} BDIAISS puR sawllje)l [eljuauodxy (q)

“1qgt PUe g1 samrjod onsumay jo soueuiojrod [ewydo wWolj uoljeIAep 988IuedId (1°Z Jqe],

"¢ = [USUM SoUIl} 901AISS PUR SAUIIRN] [eljusuodxy (e)

£€°0 800 XVIN LT 000 XVIN | (sowropy Suor)
000 000 NVIN a ¢1o 000 NVIN a
000 000 NIN 000 000 NIN
L8¢ 01 XVIN [AR) 000 XVIA | (sowngoyy oyetapour)
€10 100 NVHEN 0 €e'l 000 NVEIN 0
000 000 NIN 000 000 NIN
9811 880 XVIN £ETT 000 XVIN (seturogyy 410ys)
780 100 NVHN g (4434 000 NVIN g
000 000 NIN 000 000 NIN
8661 870 XVIN 6L°€T 000 XVIN | (soUInyajry 310Us Axon)
9¢e'1 000 NVHEN |4 10°¢ 000 NVIN |4
000 000 NIN 000 000 NIN

(ydo‘cr)y | (3do®, 1)y £108a1e0) (1do‘u)y | (3do*, 1)V £108938))

42

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

OISTUTILIoYP PUR SAWIIRJI [[NQIBA 10J ;o L PUB |, . somijod orgstmay jo soururiojied [ewijdo wroIy uolyeIAdp afejusdisd :g'g 9[qeL

"¢ = [USUM SOUIT} 9IIAIDS

12°0 00 XVIN | (sewrioyr Suoy)
000 000 NVIN a
000 000 NI
6S'T 91 XVIN | (sewrafi oyerapou)
10°0 00 NVHN o)
000 000 NI
V62 720 XVIN | (sewmjepy 410Us)
100 000 NVAN g
000 000 NIN
000 000 XVIN | (sewaryei] 110ys £194)
000 000 NVHN N4
000 000 NIN

(gdo’, oq)v | (3do¢, 1)y £10897e)

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 43

mation V’¢¥ within (2.9). Hence we have

F(n,t) = arg max {/ Zp(n’|n,t,j, s)VeP(n',t + s)de(s)} . (2.10)
[R—

M

Remark 2.4. For the determination of policy w51 via equation (2.9), we do not
need to compute the quantity within the brackets for j = n°(n,t), because V,s(n,t)
should have already been computed. The computational effort is thus significantly
reduced. However, this result does not carry over to the fluid heuristic m°F that is
determined by equation (2.10). We must compute the quantity in the brackets for

every action j € A(n), including ™ (n, t).

The approximating policy value function V* is obtained by developing a suit-
able fluid (deterministic) analogue of the stochastic system emptying under policy
75. In this approximating model the (random) number of jobs remaining is repre-
sented by a fluid level which diminishes at a suitable deterministic rate to reflect

both service completions and losses from the system of unserved jobs under 75.

2.2.1 Fluid Model: No Losses During Service

We proceed to discuss how to develop V’*(n,t), an approximation to V,s(n,t)
based on a fluid model which drains fluid in a way which is appropriate given our

assumption that jobs in service cannot experience premature loss.

Remark 2.5. Fluid approximations have been widely used in the study of perfor-
mance evaluation and optimal control of queueing systems. Almost all the liter-
ature approzimates the original queueing system via a fluid limit that is obtained
through appropriate scaling of system parameters. Contributions of this sort are
covered at length in earlier works by Mandelbaum et al. [1998], Gajrat and Hordijk
[2000], Whitt [2006], Decreusefond and Moyal [2006], and Bassamboo et al. [2006],

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 44

among others. Fluid limits have also been used in the development of ADP al-
gorithms. Moallemsi et al. [2006] obtain valuable insights on system behaviour by
means of an asymptotic analysis in a fluid limit. These analyses are then used to
select basis functions in an ALP algorithm. Similarly, Veatch [2009] approzimates
the relative value functions in an ALP algorithm by quadratic value functions ob-
tained from fluid models. Another contribution due to Chen et al. [2009] constructs
basis functions by exploiting knowledge of associated fluid and diffusion approzi-
mations in a T'D learning algorithm.

Distinct from previous literature which centres on asymptotic analyses in a
limiting regime, the fluid approximation model proposed in this section has a very
simple structure and does not require any parameter scaling. The solutions to
the fluid model are immediate approxzimations to the value functions rather than
just guidelines to basis function selection as in the previous contributions. These

features are essential for the development of our efficient ADP algorithms.

We focus initially on the contribution to V4”(n,t) from a single job class.
We drop the class identifier and use X, Y and 0(-) for the class lifetime, service
time (both assumed absolutely continuous in this account) and lifetime hazard
respectively. Note that the lifetime hazard is given by 6(t) = F/(t){1 — F(¢t)}~!
where F is the distribution function of X and ’ denotes derivative. We also write
E(Y)=pu"t

We use the pair (m, s) to denote the fact that an amount of fluid (number of
jobs) m is present when the processing of some class begins at time s. Because of
the way in which 7% imposes static priorities among the classes, this class will be
served continually from s until all of the corresponding fluid is drained. We use
N(m,s) for the number of services completed (which in the fluid model may be
non-integer) during the processing of the class. It will then follow that = 'N(m, s)
is the time taken to process the class under the fluid model.

The fluid is drained as follows: if m > 1 then a single unit of fluid is removed

instantaneously (to signify the guaranteed service completion of one job) at time

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 45

s. Loss of fluid is then experienced at a rate determined by the hazard rate 6(r)
during the time period s < 7 < s+ u~'. Note that this period is the time
occupied by the processing of the first job in the fluid model. If the amount of
fluid remaining at time s + u~! exceeds one then a further single unit of fluid
is removed instantaneously at time s + u~! and signifies the guaranteed service
completion of a second job. Loss of fluid is then expected at a rate determined by
the hazard rate 6(7) during the period s + u~! < 7 < s+ 2u7!, and so on. If we

write R(7) for the amount of fluid remaining at time 7, we have for 7 > s

R(r)=—6(r)R(r),7 # s+ ku™" k €N,
R({s + kp'}*) = max{R(s + kp~') — 1,0}, k € N, (2.11)

R(s) =m.
If we define k(m, s) by
k(m,s) = min{k; R({s + ku~'}*) = 0} (2.12)

we then have

N(m,s) = k(m, s) + R(s + k(m, s)p™). (2.13)

Note from (2.12) that k(m, s) is the (integer) number of fully completed jobs under
the fluid model while R(s + k(m, s)u™") is a fractional amount of fluid remaining
after those completions and is deemed to yield a further fractional completion
within the approximating fluid model.

The fluid model is illustrated in Figure 2.1.

In fact, the system (2.11) is straightforward to solve explicitly. In order to state

the solution with a minimum of notation we develop the sequence

1,7=0

m”‘(s) = -1 .
1+ 3 ¢ exp {fo(uﬂ)“ (s + v)dv} NE-VAS

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 46

R(v)

R(s+p?

R(s+phH*

R(s+2pt)f-mmremmnmmmenne '
} 1
R(s+2pty*

R(s+k(m,s)p?)|
0

s s+p? s+2pt. e s+k(m,s)p?

Figure 2.1: Fluid Model.

The quantity m,(s) may be understood as the amount of fluid at time s to achieve
r + 1 service completions. Please note that the assumption that F(X) < oo
implies that the hazard rate 6 has an infinite integral over R™ and hence that

m.(s) — oo, — oo for all choices of s.

Proposition 1. (a) If m,_1(s) < m < m,(s) for some r € Z* then

-1

N(m,s) =1+ {m — m,_1(s)} exp {— /Ow 0(s+ v)dv} ; (2.14)

(b) If m < my(s) =1 then

N(m,s) =m.

Proof. From (2.11), we have that when R({s+ ku~'}*) > 0 it then follows that

R(1) = —68(T)R(1),s +kp™ ' <7 < s+ (k+1)u”’,

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 47

and hence that

(k+1)pt
R(s+ (k+1)p™") = R({s + ku~'}") exp {——/k 0(s+ v)dv} . (2.19)

!

We now develop the sequence {R(k), k € N} as follows:

R(0) =m,

. R (k+1)p—?
R(k+1) ={R(k) — 1} exp {—/ 9(s + v)dv} ke N. (2.16)

kp—1

Substituting m into the sequence we have for £ € N that

kp~1 k-1 k:#—l
R(k) = mexp {—/0 " 9(s + v)dv} - Zexp {—/ (s + v)dv} . (2.17)

u=0 pt

In (2.17) and elsewhere we use the convention that an empty sum is zero. From

(2.11) and (2.15) it is straightforward that if R(I) > 0,0 < I < k, then
R(k) = R(s + ku™1). (2.18)

Now consider m in the range m,_1(s) < m < m,(s) where r € Z*. We write m in

the form
r—2 (u+1)p? ru~t
m=1+ Z exp / 0(s+v)dv p +yexp / 9(s + v)dv (2.19)
u=0 0 0 »

where v € (0,1]. It is straightforward from (2.17),(2.19) and an induction argu-

ment that R(k) decreases as k increases from 0 to r with

(ut+1)p~? -t

. r—2 i
R(k) = 1-|-Z exp {/k (s + v)dv}-i—’y exp {/}; 1 (s +v)dv} ,0< k< r—1.
u=k ut B

(2.20)

It now follows from (2.18) and (2.20) that

Rk)=R(s+kp™1),0<k<r—1,

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 48

and in particular that

r,u‘1

Rir—1)=R(s+(r—1)u™") =1+~exp {/(

r—1)p~!

9(s+v)dv} . (2.21)
It follows from (2.16), (2.18) and (2.21) that

R(r)=R(s+ru") =1. (2.22)
From (2.11)-(2.13) we now infer that

N(m,s)=r+7v
-1

=7+ {m—m,_1(s)} exp {— /ow 0(s+ v)dv} : (2.23)

Equation (2.23) is recovered from (2.19) by solving for v and using the expression
for m,(s) in the paper. This completes the proof of Proposition 1(a). Proposition

1(b) follows trivially from the definition of the quantities concerned. O

In order to obtain V'$"(n,t), we need to restore the class identifier to the
notation and write N;(mj,s;) for the above fluid approximation for the number
of class j services completed from an initial state (m;, s;). We now suppose that
the classes are numbered according to their ordering by 75, with class 1 processed
first and class J last.

For fixed system state (n,t) and 1 < j < J, we inductively develop the quanti-
ties v;(n, t) which record the number of class j services completed under the fluid

model when static policy m° is applied from this state, as follows:

Ul(n7t) = Nl(nlat))

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 49

and

I m vi(nnt)
vj(n,t) = Nj | n;exp —/ 0;(t +v)dv p ,
0

t+ > uw, t)) 1<i<) (224)

The first argument of V; on the right hand side of (2.24) is the number of class
J jobs present when the processing of that class begins. The original number
n; (present at t) is diminished by losses occurring over the time period [t,t +
Zrl u;tvi(n,t)) during which the first 7 — 1 classes are processed. We now use
the quantities in (2.24) to develop the needed approximating policy value function

as
J
VP, t) = v(n,
Jj=1

Dynamic heuristic 75F is then developed from (2.10).

Remark 2.6. It is straightforward to establish from the expression on the right
hand side of (2.14), together with the preceding expressions for the m.(s), that the
quantity N(m, s), regarded as a function of m only (fized s) is continuous, increas-
ing, piecewise linear and concave. It will then follow that the derived approximating
value V7§ (n,t) is increasing and concave componentwise in n, for fized t. This
is exemplified in Figure 2.2 below where values of V§P(ny,ng,0) are plotted for a

two class problem whose details are as in the following example.

Example 2.1. Consider a two class example in which the lifetimes X; are i.i.d.

Weibull with hazard rate given by
0;(t) = a;B; ¥t t e RY,j =1,2. (2.25)

In this illustrative example we set the parameter values to be a; = 1.06,0;, =

56.77, 00 = 1.81,0, = 81.22. We further assume that the service times are de-

WITH

SCHEDULING

2.

CHAPTER

0l >Tu > 9] > w >0 aym (o‘cunu), 4 P sonep :c ¢ am3iyg

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION o1

terministic with rates 11 = 0.11, uy = 0.13. In Figure 2.8 find a summary of the
decisions (which job class to process) taken by dynamic heuristic 75 at time points
0, 18.15, 30.85 and 45.39, should decisions be required then. These time points
are chosen to be representative of likely decision times. Indeed, the three positive
time points are the decision epochs when two class 1 jobs, four class 2 jobs, and
five class 1 jobs have just finished service, respectively.

In Figure 2.8 each filled circle indicates a decision in favour of class 1, and
each diamond a decision in favour of class 2. Please note that 0;(t) > 05(t),0 <
t < 66.02, while 05(t)/0:1(t) increases with t (refer to Figure 2.4). Hence at time
t = 0, class 1 jobs will appear more urgent and in most states this is reflected
in a decision to process this class. As time increases all residual lifetimes of jobs
decrease, but those of class 2 jobs decrease more rapidly. Hence decisions taken by

79F increasingly favour class 2 jobs as time elapses.

SE swjitches back and

We would like to point out that in the top right diagram m
forth between class 1 and 2 with nq increasing, for fived ny = 9 or 10. This is
also found in the top left diagram when ny = 16. This kind of pattern is due to

approzimation errors. even though these are fairly small. We have checked the

~optimal policy for this example and it does not have such behaviour.

Even though we do not have an analytical bound on the accuracy of the
proposed fluid approximation, we can check its performance numerically. For
the above example, we plot in Figure 2.5 both the exact value function Vs
and its fluid approximation V/§” for a set of selected states at four representa-
tive decision times. It is shown that the performance of the approximation is
outstanding, with consistently small errors across all the states examined. We
conjecture that it also works well for the other states. Indeed, the results sum-
marised in Table 2.3 support our conjecture. The percentage approximation errors,
A(Vis, VEP) = 100[1 — V47 /V,s|%, have a small average of 1.27% and a worst
performance of just 3.34% over 19,354 points in the effective state space. Such a

space excludes all the states which will never be visited given the initial condition.

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 52

(@)}
«
0
<+
[Tgn]
o0
S
o
Lo
—
0
—
> @ S 0 -
SO OO OO S POOO OO OOOO ?
}ooooooooonz PO GO OO OO OO T -
SO OO OO OO B POOCTCOCO OO SO ® ”g
Toooooooooqw >000000000+§ <
SO OO OO W <><><><><><><><><>1r S
'@Tooooooooon&’ F‘;eooooooooo?.@ Vi
Tl 0000080 8 $j<><><><><><><><><>0 ~
-'g’—<><><><><>ocooinmg Ed 0600000600 0 I
o a
sl oo ceses s gp oo oo oot ¢ VI
i:~<>¢ooooo¢¢4[m = ooooooooon oo
se s e s c><><><><><><><><>l =y
—
oo oo oo e oo g SO O OO OO e v
es 00000009 Looooooooo« !
—
ree s s 00 00 s PO OO OO oo OO e I
cessseve e s S o0 o CO e e e V|
AT B e Bt geogogeeegoLe o
— 0y @
(& 2% & =
& © 3]
°° =
P
® 0 B
aa =
* o S
* - *—o—o—9° < % g < = =
. S
SCe e s 00y OO OO OO OO
Fo o &8 8 8 ¢ 0 ¢ b O OO0 OO 92 %
te 06000 s SOV OO OO 4&-‘3'
-uooo'ocoa?': bSO OO 000000 e 2
se s 0000009 SO OO OOCO S =
I oo oo o8 0 ¢ 0 ¢ WP O OO OO OO OO e f’:
8 3
2 .otoo:atolt %<[<><>0<><><><><>0u w
a‘?’-ooonoo.oojmc— £ 06000000 0O o E?
@ "%
El eeeeeossssye AL | Y
£ =
oo & ¢ 9 ¢ 0 @ & s0 Fe o000 o0 00 o< $o 'B‘
RO N I I N I PO OO OOCOOOO B jo
-o-ogotnlchv bO OO OSSO 8 e 8 '_Su
R I I I I A N cCoOo e e e s ee o
F oo ¢ 090 ¢ @ o deescees s o g
IEEEREEEEE o s s o0 s e 00 g
- oo - o o PP - - o
lu Zu 9
%]
oy
5}
a

Figure 2.3

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

0.03

0.02

001

0 20

40

50

80 100

Figure 2.4: Hazard Rates.

For this example, a state (n1,n9,%) is in the effective sample space if
1. ¢t can be expressed in terms of

™ T2

= ;
Ha

_ﬂl

for some 71,y which are non-negative integers and satisfy 0 < r; < 16,0 <

T < 105

2. and the following condition holds:

Table 2.3: Percentage approximation errors A(V;s, V&%) for Example 2.1.

ts16—n1+10—n2.

Ha Ha
MEAN 1.27%
MIN 0.00%
1ST QUARTILE | 1.01%
MEDIAN 1.35%
3RD QUARTILE | 1.61%
MAX 3.34%

o4

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

'6¢°GY '68°0€ ‘ST'8T ‘0=1
PUB 0T ‘8°9‘F‘C‘0 = %u ‘9l > Tu = () a10uym (7 ‘%u ‘1u) segess ur a%%\w suoryewrxordde ping oY) sesien s*/ SUOIIOUNJ AN[eA JORX :G'g 9INS1]

9l 143 cl 0l 8 9 14 [4 0 9l 143 43 0l 8 9 ¥ [4 0

anjeA
aneA

anjeA

O\ Vo \=
©

ShneA

S8l =1 0=1

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 95

2.2.2 Fluid Model: Losses During Service

We now give a brief account of how the above discussion should be modified for the
variant of our model in which losses are allowed during service. See (2.7) above.
It is clear that our initial policy 7° will continue to be asymptotically optimal in
the sense discussed in Glazebrook et al. [2004] for this variant of the basic model
discussed above. We write Vs : Q — {0, ijl LJ} for the policy value function

for 7% now given by

V,rs (n, t) =P {Xﬂ's(n,t) >t4+ Yvrs(n,t)leS(n,t) > t}

b [bt w0, 0, 9) Vs 0, +)G (),
o

V.s(0,t) = 0. (2.26)

Direct computation of Vs from (2.26) is computationally prohibitive other than for
small problems and special cases. Hence we again deploy a fluid approximation to
develop an approximating value function V% : Q — [0, 23’:1 Lj]. The dynamic

heuristic which results is given by
75 (n,t) = argmax{P(Xj >t+ Y| X; > t)
J

+ /000 Zp(n’]n, t, 7, S)Vfg’p(n’,t + s)de(s)}. (2.27)

Consider now a single class with X, Y, and 8 as in subsection (2.2.1) above.
Under the fluid model suppose that m begins processing the class when in state

(m, s). If we write R(t) for the amount of fluid remaining at time 7, we have that

forr>s

R(s) =m. (2.28)

Hence, according to (2.28) fluid is now drained continuously under the impact of

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 56

both losses from the system and service effort. If we define £(m, s) by
t(m,s) = inf{r — ;7 > s and R(t) = 0}

then it is not difficult to show from (2.28) that #(m, s) satisfies the integral equation

/Oz<m,s) {exp [/Ou s+ U)dv] } du = m, (2.29)

which has the solution
t(m,s) = 0 In(1 + mlu™")

in the special exponential lifetime case in which the hazard rate is constant, namely
6(-) = 6. Since t(m, s) is the time for the fluid to be drained, the corresponding

number of service completions is given by
N(m,s) = ut(m,s).

To obtain V4" (n,t) we develop quantities 7;(n,¢),1 < j < J, inductively as
follows:

71 (n,t) = Ny(na, t),

and

_ Yz uto(ngt)
55(0,0) = N myexp { = [(¢ +v)dv }
j—1
S o, t)) 1<i<l (230
=1

Please note that in (2.30) the job classes are numbered in order of their processing

by m5. We now use the quantities in (2.30) to develop the approximating policy

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 57

value function as
J

Vet (n,t) =) 7(n,t).

J=1

Dynamic heuristic 757 is then developed from (2.27).

2.3 Numerical Study

In the following discussion we consider three general scenarios. These are (I) life-
times and service times are both exponentially distributed, (II) Weibull lifetimes
and deterministic service times, and (III) Weibull lifetimes and exponential service
times. As we shall see, our problem formulations for scenarios (I) and (II) have
discrete and finite state spaces. In both cases it is possible (though expensive) to
compute optimal policies for problems of modest size using dynamic programming
by exploiting special features of the structure of the value iteration algorithms
concerned. It is thus possible to assess the quality of heuristic 75 by direct com-
parison of the expected number of service completions achieved with the optimum.
For scenario (IIT), the state space is continuous and infinite. In these cases, it has
not proved possible to develop optimal policies for problems of even modest size
in reasonable time. In sharp contrast, it is a straightforward matter to perform

SE on-line; namely, to ob-

the computations necessary to implement heuristic 7
tain those 7% (n,t) which are required in any realisation of the system. Hence,
in scenario (III) it is natural to assess the relative performance of 75 and the
competitor heuristics 75 (see (2.5)) and " (see (2.6)) by means of Monte Carlo

simulation. In the numerical results we have also included the heuristic 75*7 for

comparison when it has proved possible to do so.

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 58

2.3.1 Scenario (I): lifetimes and service times exponentially

distributed

In this scenario, we have

Fi(s) =1—e7"%°,

Gj(s) =1—e™°,

and crucially, the lifetime hazard rates 6, are all constant functions. Hence the
time dependence in the policy value function V;(n, t) for any stationary policy (i.e.
one which makes decisions in any state (n,¢) which depend upon n but not on)

disappears. In such cases, the optimality equation in (2.4) reduces to

JEA(n)

V(n) =1+ max {/ Zp(n’ln, 7 s)V(n’),uje-‘”isds} ,n#0,
o

V(0) =0, (2.31)

and the transition probability reduces from (2.3) to

i — 0ij s/ cg\ i —dij—n]
p(n'ln,j, S) _ H (n . J)e—&sni (1 — 6—013)” &ij nz, (2.32)

i=1 i

The policy 75F can be obtained from the expression
75F(n) = arg max {/ Zp(n’]n,j, S)V:spp(n’)uje”“jsds} : (2.33)
i 0o

Equation (2.31) enables the development of optimal policies in this case along
with the value V(L) which is the expected number of service completions achieved
from initial state L. It is a straightforward matter to check that in this case heuris-
tics 7SP1 7xSF 75 and ©M are all stationary (have no explicit time dependence).

Here, the appropriate value iteration algorithm for the computation of the num-

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 59

ber of expected services achieved under any stationary policy 7 is developed from

recursions of the form

Ve(n) =1 +/ Zp(n’|n, m(n), s)Vx(n")pe *°ds,n # 0,
o T

V,(0) = 0. (2.34)

Please note that the integrals in equations (2.31), (2.33) and (2.34) need to
be estimated by numerical approximation. In this thesis we employ the Matlab
numerical integration toolbox for this purpose. The function being used is quadl,
which is based on a recursive adaptive Lobatto quadrature. To use this function
we need to specify an integration interval of the service time s. The lower bound
is obviously zero. The upperbound must be a finite positive real number rather
than infinity as shown in these equations. Proper selection of the upperbound
is critical to the computation outcome. A value which is too small will lead to
incorrect integration results, while a too big value will waste a significant amount
of computational time. Experiments show that the value which covers 99.9% of
all the service time possibilities finds the balance. For exponential service times,
this value is 3u~!1n 10.

It is worth mentioning that because the lifetime distributions are exponential
and memoryless in this scenario, the quantity (2.6) that determines policy m

takes a very simple closed form, as shown below:

J
,U,j_l {Z(nz - (5@')9{' .

i=1

As we shall see, however, this quantity is much more difficult to compute when
lifetimes are Weibull distributed. In the next two scenarios, numerical methods
are used instead.

Problems are generated at random for two class (J = 2) and five class (J = 5)

cases for each of four distinct assumptions (A, B, C, D) about the relative lengths

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 60

of lifetimes and service times. We sample the key problem features uj‘l, 0; L L; as

follows:
pit ~ U[1,10] (all cases); (2.35a)
9]-_1,uj|uj‘1 ~ U][0.1,0.5] (very short lifetimes, A); (2.35b)
05 wilust ~ U0.5,2.0] (short lifetimes, B); (2.35¢)
0]71,uj|uj‘1 ~ U[2.0,10.0] (moderate lifetimes, C); (2.35d)
05 pilust ~ U[10.0,100.0] (long lifetimes,'D); (2.35¢)
L; ~ DU[L, 50 (J = 2 cases); (2.35f)
L; ~ DU[L,6] (J =5 cases). (2.35g)

In (2.35a)-(2.35g), Ula, b] is a continuous uniform distribution on the range [a, 4]
while DU][a,b] is a discrete uniform distribution on [a,b]. Note that in category
A, (2.35b) indicates that the ratio of mean lifetime to mean service time lies in
the range [0.1,0.5] and hence few service completions are likely. In category D
this ratio lies in the range [10.0,100.0] and hence many service completions are
likely. We observe that the myopic nature of heuristic 7™ suggests that it is likely
to perform well in category A where the current decision in any state need take

"no

little account of the future. Further, the asymptotic optimality of 7% in a
premature job loss" limit suggests that it should perform well in category D.

Note in this section and the numerical study elsewhere, that we deliberately
avoid those special problem instances where the jobs with smaller mean lifetimes
also have smaller mean service times. In these cases the optimal policy is obvious
and all the three heuristics can easily find the optimum. This may disguise the
differences in performance between them.

For each of J = 2 and J = 5 and each of the categories A, B,C and D,
500 problems were generated at random according to (2.35a)-(2.35g). For each

problem value iteration was deployed to compute the mean number of service

completions achieved under the heuristics 7577 757 75 and 7™ and under an

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 61

optimal policy. In every problem the percentage suboptimality A(7,opt) of each
heuristic 7 = 757! 757 75 7™ was computed. Further, for each collection of 500
problems, the minimum, mean and maximum values of A(w, opt) were recorded
for each heuristic. These values may be found in Table 2.4(a) (J = 2) and Table
2.5(a) (J = 5).

From Table 2.4(a), and as indicated above, the performance of the asymptoti-
cally optimal heuristic 7% improves steadily from category A to category D while
for myopic heuristic 7" the reverse is the case. Serious suboptimalities can occur
especially in those problem instances for which these heuristics are not designed.
The position is similar in Table 2.5(a) though the fact that in the J = 5 cases the
values of the generated L; are much smaller (see (2.35g)) means that the maximum
suboptimalities for the myopic heuristic are substantially reduced. In sharp con-
trast, the heuristic 75 is robust; it performs well in all scenarios. It outperforms
75 and 7 in all cases with the single exception of category D, J = 5 where the
asymptotic optimality of 75 confers on the latter a slight advantage. As reported
in Section 2.2, 757! performs outstandingly well and may be readily computed in
exponential cases of modest size.

We also calculated, for each of the categories and J = 2 and J = 5, the number
of problem instances in which each heuristics 7 = 757, 75 7™ provides the best
performance. Moreover, a Friedman test was conducted to test if the differences
across the heuristics are significant. These results can be found in Table 2.4(b)
(J = 2) and Table 2.5(b) (J = 5). It is worth mentioning that here and elsewhere,
the total number of winners exceeds the number of problems. This is because of
ties in performance between policies. It is shown in Table 2.4(b) that 75 provides
the best performance in many more instances than the other two when J = 2. The
only exception is category D where 7% wins in 24 more instances. The result is
similar in Table 2.5(b). 7° wins again in category D. In category B the myopic

policy 7 provides the best performance in 33 more instances than 757, which

could be due to the smaller values of L; when J = 5. In either table, the p-values

62

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

"¢ = [UM SOWII) 91IAIOS PUR SOWIL]1] [RTjUeUOdxe 10] $3 NSl Apnjs [edlrewiny 'z o[qeRL

"90URISYIP JO 9597 wewrpall] 10y sanfea-d yjm
‘00S 3O 8303 © JO JNO sPOURISUI UM Jo Jequny (q)

0000 eS| 1vv | LTV | d

0000 8G¢ | L2€ | S9% | O

0000 GeE | C9C | 88¢ |

0000 GEE | TVG | 8LV | V

onfea-d s uewpaLL] | L | o2 | ok
-soueuriojred [ewrido woly uoljeIASp 998 U] ()
98'81 LTS L0 | 000 XVIN | (sourjepy Suor)
€CC ¢10 ¢00 000 NVAN a
000 000 000 000 NIN
¢E6 ¢S 91 ¢ro 000 XVIN | (seurrjoji] oyerspour)
06°0 €C'1 000 000 NVHIN 0]
000 000 000 00°0 NIN
67V E€EVC 810 000 XVIN (sewurjeyy] 4107s)
10 (4Ké ¢00 000 NVHAN q
000 000 000 00°0 NIN
761 6L°€C Gs0 000 XVIN | (sowtieq 410ys A19a)
00 10°€ 10°0 000 NVHNW Vv
000 000 000 000 NIN
(pdo‘ 1)y | (3do‘u)y | (3do‘ cr)v | (3do° 1gst)V K10897ye))

63

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

‘G = [USYM SOWII} 9OIAISS PUR SoWIILJ]] [eljuauodxa 10J $)NSal Apnjys [edLBWNN ¢ 9[qRL

"90USILIP JO 1599 UrWIPaLL] 10] sanfes-d [jrm
‘00 JO 12307} © JO N0 SPOURISUI Ulm JO UMY (q)

000°0 69T | T2¥ | 198 | @
0000 2sg | 698 | W | O
00070 I8¢ | 69z | 8¥¢ | g
000°0 69z | 861 | G4V | V
onfea-d s URWIPALL] | L% | o2 | sl
-ouewrIojted peuri3do wWoOJ UOIIRIASD 98ejusdIad (&)
9¢¥ ee0 9%°0 600 XVIN (sewrgopy Suoy)
670 00°0 z0°0 000 NVAN a
000 000 00°0 00°0 NI
68°F 18°€ 131 R XVIN | (sewrjejif ayeiepoun)
ve0 €10 200 100 NVAN o,
000 000 000 00°0 NIN
08°1 98°TT Z0'1 88°0 XVIN | (sewmaji[310s)
€0°0 780 200 10°0 NVAN q
000 00°0 000 00°0 NIN
vt G6'G1 01T 8%°0 XVIN | (sourgep 310ys A104)
700 9¢'1 10°0 000 NVAN 14
00°0 000 000 000 NIN
(3do‘ 2)v | (3do‘cu)y | (3do‘ ;ou)v | (3do 1)V K1080yeD)

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 64

of Friedman test are all zeroes, which means that we have very.strong evidence of
differences in performance between the heuristics.

It is worthy of mention that the scale of computational effort required in the
analysis necessitated the use of high performance computing (HPC) facilities. The
most computationally intensive tasks include development of the optimal policy,
development of policy 797, and computation of the mean number of service com-
pletions achieved under each heuristic. In contrast, development of heuristic 75
takes only a small percentage of the total computation time. It is trivial to develop
7% and 7. To appreciate the computing challenge of this numerical analysis, we
can estimate the time which would have been required if all the 4,000 problem
instances were solved on a single PC. Experiments show that the average run time
is 12 hours for a single problem on my desktop, which has a 3.00GHz CPU and
1GB RAM. The total time needed would be 2,000 days, or 5 years and a half.
In contrast, HPC facilities in Lancaster University have the capability to solve 60
problems in parallel, with an average run time of 2 hours per problem. The total

time required is then 5 days and a half. Similar results also hold for the next two

scenarios.

2.3.2 Scenario (II): Weibull lifetimes and deterministic ser-
vice times

The Weibull family of distributions yields a flexible way of modelling lifetimes.
Note that here and elsewhere, we shall use Weibull(a;, §;) to denote the distribu-

tion function
Fy(s) =1—e /8%, (2.36)

where «; is the shape parameter and B; is the scale parameter for class j. This
reduces to the exponential distribution when a; = 1. The mean of the Weibull

random variable is G,'(1 + ozj"l), The hazard rate takes the form given in (2.25).

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 65

In order for the class j hazard to be increasing, which is a natural assumption in

many applications, we require that a; > 1.
In cases in which class j service times are deterministic of value uj”l the value
iteration procedure need only compute value functions V,V; at states (n,t) for
J —

‘t-values of the form ¢ = } 77, mju; ! where the m; are non-negative integers. The

optimality equation (2.4) now takes the form

vm@=1+mw{ipm%mx@HWﬂ¢+@w}n¢m

JEA(n)

V(0,t) = 0, (2.37)
and the transition probability (2.3) becomes

J
A i — Oij 1\ ™ —1\\ni—8;—n]
platin, o) =TT (7777 (1= B) (R 29

i=1 @

in which the remaining lifetime distribution F(s) is given by

Fi(s) =1 —exp [(%)W - (t;js)%] . (2.39)

Also, we have
SF ! R | app ../ -1
7" (n,t) = arg max {Zp(n In, ¢, 7,15)Vost (st + p;)} , (2.40)
J n’
and
V'Ir(nv t) = 1 + {Zp(nlln7 ty 7I'(Il, t)) /‘l’;(lnyt))‘/’lr(nls t + #;L,t))} 1 7é 0)
Vz(0,t) = 0. (2.41)

The effective discretisation of the time axis which results radically simplifies value

iteration procedures.

We now give the method to compute the quantity (2.6), which has been copied

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 66

over here for the reader’s convenience:

J

E(Y)) | (mi — 6){B(X; — t1X: > 1)} 7|

i=1

In the above expression, the first term E(Y;) is as simple as in the previous scenario.
The tricky part is to compute E(X; — t|X; > t), which is referred to as the mean
residual lifetime (MRL) in the literature. Recall that in the previous scenario MRL
reduces to E(X) or 87! due to the memoryless property of exponential lifetimes.
For Weibull lifetimes that are defined by (2.36), E(X; — t|X; > t), or MRL(t),
can be calculated by the following equation. For presentation purpose, we discard

the subscript ¢ in the following account.

E(X —t]X > t) = MRL(t) = P23/ a&(t/ B)*) yessr. (2.42)

where I'(1/a, (t/5)*) is the upper incomplete Gamma function which takes the

form

oo

I(1/a, (t/8)%) = /W)a selemsdy, (2.43)

Proof. By definition

ftoo (1~ F(s))ds
1—- F(t)

MRL(t) =

Substituting F(-) by equation (2.36), we have

f;oo e—(‘g/ﬂ)ads

MRL(t) = “— a7y

(2.44)

Now, expand the upper incomplete gamma function in (2.42) by (2.43), we have

00 1/oa-1_—x
B Jpy (=N E) (e
(0%

MRL(t) = (2.45)

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 67

Let 2 = (s/0)%, we have

dz = as*~'/B%ds,

g/l = (B/s)* L. (2.46)

Substituting these values back into equation (2.45), we have the resulting equation

exactly as in (2.44). O

The calculation seems quite straightforward via equation (2.42). The only
difficulty is that C++ does not have a pre-defined incomplete Gamma function
in its standard libraries. Luckily, such a function is provided in the Boost C++
libraries, which are a collection of free libraries that extend the functionality of
C++.

Unfortunately, during the analysis we have found that the equation (2.42) is
not numerically robust. When time ¢ is large, the incomplete Gamma function
approaches zero while on the contrary the exponential term approaches infinity.
The result is a NaN (Not a Number). To get around this issue, we opt instead to

compute MRL by the following equation:
MRL(t) = sdF*(s)

M rrr) ::/ O sar-(s),
0

where F*(s) is the remaining lifetime distribution function given in (2.39). There-

fore, we have

a—1 a o ’
® aft+s t t+s
MRL(t) = / N (——> ex K-) - (———)] ds. 2.47
There is no closed form solution to the integration. Again, it is computed numer-

ically by Matlab function quadl. The upperbound for the integral is determined

as

(t* + 78%In10)"* — ¢, (2.48)

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 68

which covers 99.99999% of all the remaining lifetime possibilities.

In our numerical study, problems are generated at random for two class (J=2)
and five class problems (J = 5) under each of four distinct assumptions (A’, B, C", D')
about the relative lengths of lifetimes and service times. We sample the key prob-

lem features u; ', o, 8, L; as follows:

pit ~ U[1,10] (all cases); (2.49a)
a; ~ U[L.0,2.0] (all cases); (2.49Db)
G;iT(1+ aj'l),uj!uj_l, a; ~ UJ[0.1,0.5] * (very short lifetimes, A"); (2.49c¢)
BiT(1+ o uilus, a; ~ U[0.5,2.0] (short lifetimes, B'); (2.49d)
BiT(1+ o5 pslu;t, o ~ U[2.0,10.0] (moderate lifetimes, C’); (2.49)
BiT(1+ o pjlu; o ~ U[10.0,100.0] (long lifetimes, D'); (2.49f)
L; ~ DUI1, 20] (J = 2 cases); (2.49g)
L; ~ DUIL, 5] (J =5 cases). (2.49h)

! and «; obtained from

Note that values of §; are derived from the values of
the draws in (2.49a) and (2.49b) and the value of G;I'(1+ a;') obtained from
whichever is appropriate of the draws in (2.49c¢)-(2.49f). Note also that the values
of the L; drawn from (2.49g)-(2.49h) will tend to be smaller than those in (2.35f)-
(2.35g). This is forced upon us by the added complexity of the recursions (2.37),
(2.40) and (2.41) in comparison with (2.31), (2.33) and (2.34) . As with scenario (I)
comparisons between the heuristics are based on 500 problems randomly generated
as in (2.49a)-(2.49h) above for each of J = 2 and J = 5 and each of the categories
A’ B, C" and D'. Note that development of policy 7577 is possible for the J = 2
cases, though computationally expensive. Hence this heuristic has been included
in the J = 2 study but not in the J = 5 study since it was not possible to get
results for the latter in reasonable computational time. The results are presented
in Table 2.6 and Table 2.7.

The evidence provided by Tables 2.6(a) and 2.7(a) yields similar conclusions

69

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

"¢ = [U9YM SOUWII} 9OTAISS DISIUTULIS)SD PUB SOWILJI] [[NQIAAN 10] S}NSI Apnjs [edlewny :9°g 9[qel

“90URILJIP JO 1599 UBWIPSLL] 10] sonpea-d
qHA ‘00g JO (8309 ® JO JNO SPOURISUL UM JO oquiny (q)

0000 GL1 | G8€ | L6V | .d
000°0 61¢ | OT€ | 047 | ,O
0000 ¥8¢ | 00¢ | T,V | .4
0000 1y | 902 | 00S | WV
onrea-d s uewpalL] | L | oL | oL
-ooueuL1ojted pewrydo woIj UOIPRIASD 28ejuadia (e)
9¢'1¢ €Ty 8€°0 0%°0 XVIN | (sowmeyy Suor)
1€¢ Q) 000 000 NVHN a
00°0 000 000 000 NIN
6291 12°0C 181 9T XVIN | (seuarjeqnf o3esopowm)
0e1 120 €00 ¢00 NVHIN o)
000 000 000 000 NI
“¥19 9192 ¥6°0 ¥20 XVIN (seurryayr 410YS)
0¢0 €4'C 100 000 NVHN &
000 000 000 000 NIN
08¢ ve9€ 000 000 XVIN | (sowrgep 11oys £104)
900 LTV 000 000 NVHEN 4
000 000 000 000 NIN
(pdo‘) | (3do‘cr)y | (3do‘ L)y | (3do*, L)Y K10399%))

70

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

‘G = [USYM SIWI} SDTAISS OIPSIUIULIDIOP PUR SSWIIIRJI] [[NYIOAN 0] SHNSaT APNIS [eordwny :/ g 9[qel

"90URIRYIP JO 180} WewpslL] 10} senjea-d
Y314 ‘00G JO [8303 ® JO IO SDURISUT UM JO Ioqumy (q)

0000 9L | LET | 18V | . d
000°0 IST | ¥9¢ | 8% | ,O
0000 61¢ | 991 | 8%V | .9
000°0 V.¢ | 291 | 00S | WV
anfea-d s uewWIpatL] wh | gk g

-ouewrojted [ewrydo woly uoryeIAep ogeuediad (e)

99°G 87T €9°0 XVIN (sowrjoyr Suor)
190 &l €00 NVAN a
000 000 000 NIN
6z'9 eq'y 780 XVIN | (sewnieji| syezspour)
G9°0 LT0 200 NVAN o,
000 000 000 NIN
er'e 1501 6L1 XVIN | (sowmney 310Us)
200 88°0 z0°0 NVAN Fe
000 00°0 000 NIN
6¢°G Y ee 200 XVIN | (sewnjeqt] 110ys A1on)
110 €9°C 000 NVAN v
000 000 000 NIN

(3do‘)y | (3do‘ u)y | (3do’ ;o1)v K£108971R0)

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 71

to those drawn from Tables 2.4(a) and 2.5(a). The heuristics 7% and 7 continue
to have poor worst case performance in settings for which they were not designed.
The uniform excellence of the performance of 757 is in clear contrast. From Tables
2.6(b) and 2.7(b), it is clear that 75 wins easily in all cases. It provides the best
performance in nearly all the problem instances, especially category A in which
it is the best for every single instance. The zero p-values again indicate strong

evidence of differences in performance among the heuristics.

2.3.3 Scenario (IIT): Weibull lifetimes and exponential ser-
vice times

In both scenarios (I) and (II) it was possible to exploit model features to develop
exact analyses based on DP value iteration for problems of modest size. In this
way, it was possible (though expensive) to develop optimal policies and calculate
the expected number of service completions for the heuristics of interest and for
the optimal policy. This is no longer possible in scenario (III).

As the service times are now continuous random variables, the decision epochs
after time zero could be any positive real values in the set R*. The resulting state
space is continuous and infinite. It is impossible to implement direct DP methods
for such problems. The continuous state space must be discretized. This can be
done by defining a small enough time increment § and a large enough termination
time point Truee. We assume that after T,,, no more customers will be sent for
service and no more rewards will be received. Let E = {0,6,24,--- ,kd,--- , Kd}
be the set of all time points on the discretized time axis, where K¢ is the last one
within Tynee and K = |Tyn../d]. For any reasonable discretisation, the value of K
is huge and the size of the state space, (K + 1) H‘l] L;, is far beyond tractability
even for cases with a modest number of initial jobs. Development of the optimal
policy, or even the exact evaluation of any given policy, is not a realistic option.

Nonetheless, it is still straightforward to develop on-line applications of the

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 72

SF

three heuristics 7 SP])

,m and 7 (though not of 757!). By this we mean that it
is straightforward to perform the computations required to determine the action
prescribed by each heuristic in any given state. This is trivial for the heuristics
7 and 7. We show now how to determine the action specified by the heuristic
policy 75 for any given state.

After discretisation, the service completions can only happen at the time points
in set E, and the service time variables are transformed from exponential to their
discrete counterpart, geometric. We allow customers to abandon the system at
any time and the lifetime distributions remain unchanged, still Weibull. Let de

be a geometric random variable describing the discretized service time for class j

jobs. The pmf (probability mass function) for Y is

P{Y} = ké} = (1 - G;(8))7'G;(9)

= eidk=D(] _ g1 0 < k < K. (2.50)

Remember G;(8) = 1 —e~#/ is the probability that a service completes within the
interval ¢ before discretization.

Denote by E(t) = {k:d, (ki + 1)d,--- , K6} the set of time points lying within
the interval [t, T}n4z). Obviously we have k, = [t/d] and in particular ky = 0 and

E(0) = E. We then have

75F(n,t) = arg max Z P(de =) Zp(n'[n, t,5,8)VE (', t+s) o, (2.51)
J sEE(t) 0
where the transition probability p(n'|n, ¢, j, s) takes the same form as in (2.38).
To find a proper Trmq. value, we firstly define by Y(L) a random variable for

the cumulative service times of all the initial jobs, written as

L;

D=3 % (25)

j=1 k=1

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 73

Then we let

Toee = B(Y(L)) + 3y/Var (Y (D))

J J
=Y E(Y;)L; +3,| > Var(Y;)L,

(2.53)

The resulting T4, serves as a reasonable (actually rather conservative) termina-
tion point, by which most jobs (if not all) will have either been served or lost from
the system. There is not a single best choice of the value of . When making the se-
lection we need to consider the balance between the accuracy of the approximation
and the computational effort required.

Even though the determination of the 757 action by equation (2.51) still takes
some time, especially at the early stage, it does not matter at all if this is only
required for a few states. In light of this, a natural approach is then to use Monte
Carlo simulation to conduct a comparative study of the performance of 75, 7% and
7M. For each simulation run, the computation of (2.51) is only needed for those
states visited (not many at all) by the simulation trajectory. The computational
time taken in the rest of the simulation is negligible.

In the exact approach, we do not need to differentiate individual jobs within
one class as they are identically distributed. This is not the case any more in the
simulation. Each job has a distinct sampled lifetime and a distinct sampled service
time. An extra decision is then required to select, among the others, a specific job
for service. This decision needs to be necessarily a random pick up process as
otherwise the simulation will be biased from the exact approach. To simulate this,
we assign each job a priority which is sampled uniformly between 0 and 1. If a
class j job is to be served next, the choice is given to the remaining job that has

the highest priority in that class.

The other two random variables, the lifetimes x;; and the discretized service

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 74

times y}ik, are generated as below.

Tk Z,Bj(han)l/aj,
InU

d

y' =)

* LM‘S]

where U is a random variable uniformly distributed between 0 and 1 and is sampled

using the Mersenne Twister random number generator (Matsumoto and Nishimura
[1998]). There is plenty of open source code available which implements this algo-
rithm. The one we use in this thesis is due to Fog [2010].

A key issue to be addressed in any simulation is variance reduction. In this
thesis we use the method of common random numbers (or matched sampling) to
reduce the variance, by sharing random numbers between the simulations for the
heuristic policies 7, 7™ and 75F. Expressed in detail, at the beginning of each
replication, the lifetimes, service times and priorities are generated and stored
for all jobs. Under the same experimental scenario, the system is then simulated
repeatedly three times, one for each heuristic. The difference between the number

M

of successful service completions achieved by 7%/ and that by 7 or 7™ is recorded

as one output sample, the averages of which over all the replications are used to

generate the final report.
For each problem instance, the simulation is replicated a large number of times

until the variance of the samples falls below an acceptable tolerance. Denote the

S ,”SF)

sample variance in our simulation by (7%, M pSF)

and s?(7™, 75F), respectively.
The simulation stops after M replications where M is the smallest m which satisfies

the following stopping criterion.

S ..SF

s(nS,75F) s(mM, m5F)
max {1.96 N 1.96 T < d,

where d is the acceptable tolerance which is set to 0.001. To ensure that the
simulation has a fairly large coverage of the sample space, we require that M >

100. In other words, the simulation is replicated at least 100 times and then the

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 75

stopping criterion begins to apply. We also specify an upper limit for M so that
the simulation does not run forever.

With the simulation progressing, the sample mean and sample variance are
updated dynamically, whenever a new replication is done and new samples are
available. We could keep a record of all the samples to date for the calculation, but
they would consume a lot of memory. A better way is to update the sample mean
and variance by the following on-line algorithm. We have used generic notations
Tm, Tm and s2, for the latest sample after the m* replication, the latest sample

mean and the latest sample variance, respectively. We have

Tm — Tm—
T = Ty + ——
m
1 .
s2, = (1- — 1)sfn_1 +M(Tm — Tm1)®

As we can see, there is no need to store any samples in this algorithm.

Problem parameters were chosen as in scenario (I) (service times) and scenario
(II) (lifetimes) though time constraints limited the study to the J = 2 case, with
100 problems generated in each category. In Table 2.8(a) find information on the
estimated values of A(7%, 75F) and A(r™, 75, the percentage excess expected
number of successes achieved by m3F over 7% and 7™ respectively. Hence positive
values indicate stronger performance by 75 while negative values indicate stronger
performance by the competitor heuristic.

While we encountered occasional problem instances in which the estimated
expected number of successes achieved by the competitor heuristic exceeded that
of F these were rare and the differences usually very small. In all categories the
average performance of 75F was superior. There continued to be problem instances

in which 75, 7™ performed very poorly in comparison with 75%.

S S

In Table 2.8(b), the number of win instances for 757 is many more than 7
and 7 in all the cases considered. The p-values of Friedman test are again zeroes

throughout and indicate strong evidence of differences in performance among these

76

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION

' = [USUM SaUII} 9DIAIAS [RIJUSUOAXD PUE SOWIILII [[NGIBA\ 10] $3NSaI APNjs [edlIoWny :§°Z 9[qRL

"9DUDIOYIP JO 1593 urWpalL] 10J sonjea-d yjim
‘00T JO [€303 ® JO MO SeoueIsUl Ulm Jo aquiny (q)

000°0 05 [62| 26 |.a]
0000 €6 | vL] 16 | O
0000 VL 1 9S| LL | .E
0000 0L |6V | ¢6 |V
onrea-d s URWIPALL] | 2 | oL | ol

X DTYSLINAY JO YRy} pue

Wl ‘g sousumay jo moqr,mwﬁo.ﬁwa 9} U99M1I9Q IOULISPIP 28eIuadIg (®)
7C'8 6°€ XV | (seumjeqr Suoy)
¥6°0 91°0 NVHN Aa
000 10°0- NIN
Ly 01 VLS XVIN | (sewmey syerspou)
¢0'1 Gc'0 NVHN o,
9¢°'0- 1¥°0- NIN
98'8 €9°61 XVIN (sewryay] 110US)
eT°0 vl NVHNW el
L0°C- 09°0- NI
911 LV T XVIN | (sewrgeqi] 110ys AI1aa)
200 81'¢C NVHANW v
LS°0- L8°0- NI

(o2 W)V | (fok‘gt)V K10307R))

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 7

heuristics.

2.3.4 Implementation Notes

In this section we put together a selection of important procedures that have
been implemented in this thesis to deal with the very intensive computational

requirements.

1. The numerical study in this chapter and in the next two is implemented in the
C++ programming language for its high efficiency in scientific computation.
The only exception is some numerical integrations which are calculated by
the Matlab numerical toolbox. To import Matlab functions into C++, they
are compiled into wrapper files for C++ by invoking the Matlab command

mecce, and then the generated files are included in C++ as resources files.

2. For each of the three scenarios, we group all the analysis processes into one
class. For the second and third scenario, since most of the data and functions
are similar, only the class for the second scenario is created from scratch and
the one for the third scenario is just a derived class. This procedure greatly

improves code efficiency.

3. The binomial coefficients (Z) are used very frequently and repeatedly in all

problem instances. Even though a single computation of it is momentary,
millions of times becomes very significant. To remove this unnecessary com-
putational effort, we save the pre-calculated binomial coefficients into a disk
file and load it into memory when the program is initialized. The data stored
in the file take the form of a matrix, where the columns are n and the rows
are k. Because (Z) = (nfk), the matrix is actually lower triangular. We have

chosen 0 < n < 50, of which the resulting matrix is enough for all of our

numerical analyses in this thesis.

4. Similarly, some intermediate quantities are used repeatedly, such as one step

transition probabilities or MRL. Instead of computing them repeatedly when-

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 78

ever needed, they are just computed once and then stored into memory for

future usage.

5. In our C++ implementation, each state is defined as an object of a state
class. For Weibull lifetime cases, the state space is huge. As a result the
objects created will consume a large amount of memory. To save more mem-
ory for the actual computation, we implement state in a different way. We
create an object for each n rather than for each (n,t), and in each of these
objects, declare an array for all possible decision epochs. We have found this

technique works very well for efficient memory allocation.

6. A parameter data file is loaded to memory in the initialization. This file con-
tains a set of parameters which change frequently from one problem instance
to another, such as the number of job classes, or the distribution of lifetimes
and service times. This approach allows a single compilation for all problem
instances. Therefore, we do not need to re-compile the program every time
when a change of parameters occurs. Only the parameter values need to be

updated in the data file.

2.4 Conclusion

A batch of impatient jobs is present at time zero in a single server clearing system.
Before any service starts they are subject to a perfect triage process and are placed
into distinct classes. Jobs placed into one class are assﬁmed to have i.i.d. lifetimes
and i.i.d. service times. The objective is to schedule the service to maximize the
total number of successful service completions.

We model this problem as a SMDP and hence standard DP approaches can
be applied to develop optimal policies. However, any problem of practical size
cannot be solved to exact optimality due to the curse of dimensionality. Instead,

we propose to generate effective heuristic policies by a single policy improvement

CHAPTER 2. SCHEDULING WITH PERFECT CLASSIFICATION 79

step from a static permutation heuristic 75. Moreover, the value functions of 7°
are approximated by a deterministic fluid model to deal with the intractability of
exact policy evaluation. The constructed fluid model not only has a simple form
that permits fast solution, but also its quality of approximation is outstanding.
Our proposed heuristic is tested in an extensive numerical study in three sce-
narios, namely exponential lifetimes and service times, Weibull lifetimes and deter-
ministic service times, and Weibull lifetimes and exponential service times. In the
first two scenarios we are able to compute the exact optimum for small problems
and thus to compare competing heuristics by means of suboptimality. In the third
scenario it is not possible to develop optimal policies in reasonable time. Instead,
a simulation based comparative study is conducted. In all three scenarios, our
heuristic works robustly well. It comfortably outperforms the other two heuristics
proposed in the literature (one is 7%), both of which can exhibit poor performance

outside of the domains for which they were designed.

Chapter 3

Scheduling of Impatient Jobs with

Imperfect Classification

In this chapter we extend the work of Chapter 2 to impatient job scheduling with
imperfect classification. It is organized into four major topics. In Section 3.1 our
job scheduling problem is formulated as a Bayes sequential decision problem and
in Section 3.2 an exact approach to its solution via dynamic programming is de-
scribed. In Section 3.3, the approximate DP methodology and the fluid model
proposed in Chapter 2 are further developed so that they can yield effective so-
lutions to our Bayesian model. A numerical study in Section 3.4 testifies to the

strong performance of the resulting heuristic scheduling policy. It is concluded in

Section 3.5.

3.1 The Model

A clearing system has a single server and a collection of N jobs (or customers)
awaiting service, which starts at time 0. Each job is one of J types, each type
being identified by an integer ¢ € {1,2,...,J}. Each type i job has associated
with it two positive-valued random variables (r.v.s). One of these is its lifetime,
namely the period during which the job is available for service, which is deemed

to have the distribution of some r.v. X; with distribution function F;. A job will

80

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 81

leave the system unserved if its lifetime expires before it is taken into service. The
other job-related r.v. is its service time, which, for a type 4 job, is deemed to have
the distribution of some r.v. Y; with distribution function G;. A job leaves the
system when its service is complete. The lifetimes and service times of all jobs
form a mutually independent collection. We assume that service is nonpreemptive.
Up to this point the model duplicates the one in the previous chapter.

At time 0 all jobs are subject to an error-prone triage and thus the type of
each job is observed with error. Should a type ¢ job be assessed as type j, we
shall say that it becomes a member of class j. Hence throughout, we shall use the
term class to denote the assessed type of a job. Only job class is observed. We
shall adopt the following simple probabilistic model of job (mis)classification. We
write p; for the (unconditional) probability that a job is of type ¢ and ¢;; for the
(conditional) probability that a type ¢ job is assessed as 7. If €; < 1 for any ¢ then
some misclassification is possible. By deployment of Bayes’ Theorem we infer the
conditional probability that, in advance of any service, a class j job is actually of
type i to be

pi;(0) 2 P (type i | class j) = -—;”—pl—— (3.1)
2 k=1 EkiPk

We shall call {p;;(0),1 <14 < J} the prior distribution for each job classified as j.
This summarises the decision maker’s beliefs about its true identity before service
begins.

As time passes, jobs leave the system as services are completed and lifetimes
expire. It is also true, that at some time ¢ > 0 our beliefs with regard to the
(true) type of the remaining jobs need to be updated in light of their survival
beyond t. Again applying Bayes’ Theorem, we compute posterior distributions

{pij(t),1 <t < J} for each class j job as follows,

pi; (t) £ P (type i | class j,lifetime > t) = .
i 0 Yoo €kipk {1 = Fi (1)}

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 82

Proof. Define the following events.

e A;: ajobisof type i. Generally define event Ay: ajobisof type k,1 < k < J.

It is obvious that all these events are mutually exclusive.
e B: a job is assessed as class j.
e C: a job has survived up to time t.

It is not difficult to derive the Bayes’ formula for three events.

_ P(BNCJA)P(A) _ P(A)P(B|A)P(C|A:n B)
PAIBNC) = ——FF 0y = P(BNC) '

By definition event C is independent of event B given any event Ay, as a job’s

lifetime distribution is solely determined by its type. We then have

P(A;)P(B|A;)P(C|A:)
Sty P(BIA)P(ClAR)P(Ar)

Substituting all the probabilities by their definitions gives the equation (3.2) im-

mediately. O

Please note that equation (3.2) is not numerically robust for large ¢. When
time t is large enough, the survival probability for all jobs will usually approach
zero. This results in a zero numerator and a zero denominator, and thus a NaN
issue. We fix this by multiplying both expressions by {1 — F;(¢)}~!. In the Weibull

distributed lifetime scenario, the rearranged equation is,

€i5Ds
S ensprexp [(¢/5:)% — (t/Be)>]

_ . €ijDi _ (3.3)
€ijDi + D=1 gt €Dk €XP [(8/Bi)™ — (t/Br)™]

pi;(t) =

It is trivial to show that if all of the €_, p. are strictly positive and, further, that

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 83

there exists some type ¢* which outlasts the others in the sense that

lim - i)

t—»ooi—__f;’m=0’l¢z ’ (3‘4)

then we must have
lim p;+; (t) = 1, V7,
t—o0

and consequently
lim Dij (t) =0, 75 i*,Vj.
t—o0

Hence survival information can be very informative for (true) type identity.

Example 3.1. Consider an example with J = 2 and with the following parameters:
o p; =0.3,p; =0.7,
e ¢ =0.3,60 =04,
o X ~ Weibull(1.68,1.62), Xy ~ Weibull(1.16,13.43).

At time zero, the probability that a class 1(2) job is indeed of type 1(2) is 0.48(0.82)
from equation (3.1). As time passes these conditional probabilities are updated

according to equation (3.2). Their values at times 2 and 5 are given below:

p11(2) = 0.17, p22(2) = 0.95;

p11(5) = 0.00, pe2(5) = 1.00.

Since type 2 jobs have much longer mean lifetimes (with mean 12.75) than type
1 (mean 1.45), it is unsurprising that we have 1* = 2 here and that type 2 jobs

outlast type 1. As time passes, all surviving jobs are increasingly likely to be of

type 2.

The goal of analysis is the development of an approach to the allocation of

service to surviving jobs (i.e., those still in the system) to maximise the expected

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 84

number of jobs which leave the system served. Equivalently, we seek to minimise
the expected number of jobs which leave the system on the occasion of the expiry
of their lifetimes. Decision epochs occur whenever a service completion occurs.
Suppose that ¢ is such an epoch and that at time ¢, n; class j jobs survive. We
write (n,t) for the corresponding system state, where n £ (ny,n,,...,n,) is the

vector summarising the class membership of surviving jobs. Write
A(n) = {j;n; > 0}

for the set of admissible actions in state (n, t) . A service policy m maps each system
state (n, t) to the action set A (n). We shall conventionally use (L,0) for the initial
system state, where L = {L;,1 < j < J}. Hence at time 0, L; jobs are placed in
class 7,1 < j < J

With initial system state (L.,0) we shall use L = {L;;,1 <4,j < J} to denote
the unobservable true state, where L;; denotes the number of type ¢ jobs clas-
sified initially as j. Since all job classes are determined independently, we have

S Ly =L;1<j < J, with

<

{Lyj, Laj, ... Ly} | L ~ Multinomial (Lj; pi; (0) ,p2; (0),...,ps5(0)),1 <5 <
(3.5)

Conditionally upon the true state (L_, 0} we use a triple ij& to label the jobs, where
tjk denotes the kth type i job to be classified as j. The range of £ is 1 < k < ;.
Denoting the lifetime of ijk by Xix ~ F;, we use T;;x () to denote the time at
which service policy 7 begins to process job ¢jk. Conditional upon the true state
(L._,0) we write N (| L_,0) for the number of jobs to be served to completion

under policy w. We have
J L
N(m|L_0)= ZZ Z]I{Tz‘jk (m) < Xijr}, (3.6)

i=1 j=1 k=1

where [is an indicator. The goal of analysis is the determination of a service policy

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 85

7 to maximise the quantity

Vi (L,0) = By o [E{N (7 |L_,0)}]. (3.7)

In (3.7), the inner expectation is taken over realisations of the system, evolving
under policy 7 from initial true state L_. The outer expectation is taken with
respect to the conditional distribution for L | (L,0) whose marginal distributions
are given in (3.5). We call V¢ (L,0) the Bayes’ return generated by policy 7 from
initial state (L,0). Please note that in (3.7) and in what follows we shall use a
superscript e to denote the fact that we are dealing with an object associated with
a classification which is prone to error (and hence uncertainty).

At this point, we want to make a distinction between our problem and partially
observable Markov Decision Processes. POMDPs are differentiated from standard
MDPs only in that the state of the system is not directly observable. In our
problem, not only is the true state L unobservable, but so are "true" actions as the
type of the job chosen by an action is unknown. Therefore, the problem considered

in this chapter is actually more difficult than standard POMDP problems.

Remark 3.1. This model generalizes the job scheduling problem with perfect clas-
sification that we have studied in Chapter 2. To see this, consider a no error limit
where ¢;; — 0,Vi # j. For any non-negative time point, we have by equation (3.1)

and (3.2)

pi;(t) = 0,Vi # j,

pi;(t) =1,
and by equation (3.5)

Li; = 0,Vi # j,

Ljj = Lj.

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 86

The jobs assessed as class j are indeed of type j and the observed initial state is

ezactly the true state.

3.2 Formulation of the Bayes Sequential Decision
Problem as a Dynamic Program

We now formulate the Bayes sequential decision problem
V¢ (L,0) = sup V; (L,0) (3.8)

as a dynamic program (DP). Any policy achieving the supremum in (3.8) is
a Bayes’ policy. In order to formulate the associated DP we require additional
notation. We shall use X¥ to denote the random lifetime of a job classified as j at

time 0. Using (3.1) above, the associated distribution function is given by
sz]),s eRT,1<j < (3.9)
and the corresponding survival function by

Ff(s)=1—Fj(s)

J

_sz]),s R 1<5< (3.10)

where Fj(s) = 1 — F(s) is the survival function for type i lifetimes.

We shall assume that each F; has an associated absolutely continuous density

fi. Hence X7 has the density

sz,) fi(s),s€RT, 1< <, (3.11)

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 87

and the continuous hazard
. J
05()=F(){1=F5(s)} " =D pij(5)6i(s),seRY 1< <J, (312)
i=1

where in (3.12), 6; = f; {1 — F;} " denotes the continuous hazard associated with

the type ¢ lifetime X;.

Proof of (8.12). From (3.9), (3.11), and the definition of hazard rates we have

Yoie1 Pij (0) fi(s)
Sl pii(0)(1 - Fi(s)) (3.13)

05(s) =

Substitute p;;(0) by equation (3.1), and cancel the common term 3.7_, €x;pk, then

we have

(s) = iz Eijpi(z;t’,_ f’S)()l(i(;)(/ 8()1)— Fi(s))) (3.14)

By changing the index from 7 to k in the denominator, the equation above can be
transformed to

cn = apll=F(s) fils)
() =2 Sior enpu(l — Fy(s)) 1 — Fi(s)’

=1

Note that the first multiplier within the summation is just p;;(s) (See equation

(3.2)), and the second multiplier is the hazard rate §; for type 7. The result then

follows trivially. O

Should type i* outlast the others in the sense of (3.4) above then we will have

lim {65 (s) —6:- (5)} =0,1<j < J.

§—00

Concerning job service times, consider a situation in which a job, originally classi-

fied as 7, is still in the system and is scheduled for service at time ¢. We shall use

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 88

Y;f’t for the corresponding service time, whose distribution function is given by

pr),s €RY, 1< <, (3.15)

and the mean value is given by

J
Ye) = Z P () E(Y). (3.16)

Please note that service time distributions are now time dependent. In the impor-
tant special case that the true servirce times Y; are deterministic and distinct (in

which case we use S; for the type ¢ service time), we have
P{Y} =S} =py(t),t eRY, 1 <4, < J. (3.17)

Now let ¢ be a decision epoch for the problem and let (n,t) be the system state
then. If action j € A(n) is taken and results in a service time (realised value of
Yy,) equal to s then the system state at the next decision epoch will be (0t + s)

with probability p® (n’] n,t, j, s) given by

p° (0’| nt, j,s)

- ﬁ(B m> (P[XS, >t+s| X5 >t} {P[XC, <t+S|Xe > f}mdng =i

0 <My <Ny — O, L <m < L (3.18)

In (3.18), 0 is the Kronecker delta which is equal to one when m = j and is zero

otherwise. We can re-express the transition probability in (3.18) using the hazard

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 89

in (3.12). We have

p° (0’ nt, j,s)

J t+s m t+s Nm —6mj —7m
Nm — 5mj
= H(.) exp —/an (1) dr 1 —exp ——/an (r)dr
m=1 m f /

In order to formulate the optimality equation for our Bayes sequential decision
problem, we require the value function V¢ : Q — [O, Zj=1 Lj] , where (1 is the

system’s state space, given by
Q= {(n,t);O < n; < Lj,t S R+} .

The quantity V¢(n,t) is the maximal expected number of service completions
which can be delivered from system state (n,t). Note that the quantity V¢ (L,0)
is developed in (3.6),(3.7) and (3.8) above. The observed state (n,t) implies the

marginal conditional distributions

{n1j,n24,... 145} | B ~ Multinomial (nj;py; (t) ,p2; (t) ... ps; (), 1 <5< J
(3.20)
over true (but unobservable) states (n_,t), where n_ is the unobserved true state
associated with n. These are marginals for the posterior distribution over true
states which apply when the system finds itself in state (n,t). For any service

policy 7, we then develop the quantity NV (7 | n,t) by natural extension from (3.6)

and write

Ve (n,t) =sup Vy (n,t), (3.21)

where
Vi (n,t) = En my [E{N (7 | n.,1)}], (3.22)

with the outer expectation in (3.22) being taken with respect to the posterior

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 90

distribution over true states. With the above in place we may write the DP

optimality equations as

17

Veé(nit) = e(n e
(n,t) 1+ max /Zp s) Ve (it +s)dGS, (s) p,n#0, (3.23)

and

Ve(0,t) = 0.

In the special case of deterministic service times considered in (3.17), we can

specialise (3.23) to

JEA(n)

Ve (n,t) = 1+ max {ZZ}?U n|nt],S)Ve(nt+S)},n7éO. (3.24)

We further note that DP value iteration is available to us to compute the Bayes’
returns associated with any specified service policy . In this event we use the

recursion

t),s) Vi (0t + s) der(n,t),t (s) p,n#0,

Ve(nt)=1+ /ZP

(3.25)
which in the case of deterministic service times becomes
Ve (n {Zmet e (0| nt, 7 (nyt), .S’)V,f(n',t+Si)},n7é0.
(3.26)

In Chapter 2 we have shown that in the case of perfect classification, the
simple static heuristic policy % works well when loss rates are low. We now adapt
this policy to the imperfect classification case as follows: list the job classes in

increasing order of the quantity & (X]e) E (jfo), i.e such that

E(X{) E (Yf) SE(X5) E (Y5o) < ... E(X5) E(Y5). (3.27)

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 91

In any state (n,t), the adapted policy ¥ chooses action 75 (n,t) where
S . .
7% (n,t) = min {j;n; > 1}.

In what follows, the policy 7% will be both assessed as a policy in its own right and
also used as a building block in the construction of strongly performing heuristic
policies for our Bayes sequential decision problems. How we do this is described

in the next section.

Remark 3.2. We have demonstrated in Chapter 2 that the scenario of exponen-
tially distributed lifetimes and service times is relatively easy to analyse in the per-
fect classification case because of the memoryless property. The time dependence
disappears and the state reduces to just n. This simplification is not available when
classification is imperfect. To see this, suppose that lifetimes and service times for
type i jobs are exponentially distributed as Fy(s) = 1 — e~ %% and Gi(s) = 1 —e™H°,
respectively. According to equation (8.9) and (8.15), we have for each class j the

following distributions

J

Fe(s)=1-> p; (0)e®,
=1
J

c(s)=1-> py(t)e ™,
i=1

both of which have now lost the memoryless property. This can be also seen from

hazard rates which are now a function of time rather than constant as before,

namely,
J
65(s) =Y _pis (5) s
=1

As a result, the time dimension cannot be discarded from the state and in this
case the state space is therefore continuous and infinite. It is not easy at all to solve

such problems exactly. Due to the computational constraints, we shall focus instead

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 92

on the Weibull lifetime and deterministic service time scenario in the numerical
analysis. As we shall see in section 8.4, this scenario permits one to compute

optimal policies via an exact value iteration.

3.3 On the Development of Effective Heuristic Poli-
cies

For problems of realistic size, the utilisation of full DP to develop optimal service
policies via suitable deployment of optimality equations (3.23) is computationally
intractable. In light of the results from the previous chapter, one possible route
to the development of effective policies would be to apply a single DP policy
improvement step to the simple static proposal 7° in (3.27). The resulting policy,

SP

which is again referred to as 757/, is determined as follows:

0
3P (n,t) = arg max /Zpe (0’| n,t, j,5) Vs (05t + 5)dGS5, (s) p ,n # 0.
jeam | T
(3.28)
Sadly, the computation of V% is in many cases not tractable. Instead, we
develop an approximation V:gap P to V% by the deployment of an appropriate fluid
approximation to the stochastic service system. This approach, which extends
that described in Chapter 2 for the perfect classification case, is now described.
In our fluid approximation, we fix j € {1,2,...,J} and represent the class j
situation when its processing begins under static policy 7% by the pair (m;,s;) In
this representation, s; is the time at which class j service begins under 7% and
m; is an amount of fluid representing the number of class j jobs surviving then.
The nature of policy ™5 means that class j will be served continually from (m;, s;)
until all of the class j jobs are completed, namely until all of the corresponding
fluid is drained in the approximating model. The process of draining class j fluid

is as follows: if m; > 1 a single unit of fluid is removed instantaneously at time

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 93

tjo = s; and signifies the guarantced completion of a single job’s scrvice. Loss
of fluid is thereafter experienced at rate 05 (7) during the period of this initial
class j service, which in the fluid model occupies the time interval [tjo,tj1), where

tjl = tj() + F (Ye

j),tj()) . Should the amount of class j fluid remaining at ¢;; exceed

one then a further single unit of fluid is removed instantaneously then and signifies
the guéranteed completion of a second class j service, and so on. In what follows,
tjk denotes the time of the kth class j service completion while R; (7) denotes the
amount of class j fluid remaining at time 7. Class j fluid draining as service is

offered to class j continuously from (m;, s;) is modelled as follows:

th = Sj;tjk+1 = tjk +F (Y;?tjk) ,k S N, (329)
R; (tj0) = my,
R (1) = =05 (1) R; (1), 7 & {tjr, k € N}, (3.30)

R; (th) ={R; (ty) -1} ,k €N,

The illustration to the above model is very similar to Figure 2.1 in Chapter 2,
except that the time interval between two service completions is now a variable

quantity (E(Y,)) instead of the constant (4;'). This model is solved recursively
using:
tik+1
Rj(tje1) = R (tf;) exp /t —=05()dr ¢, (3.31)
ik

R;(tjo) = my,

where t;; is computed by (3.29) and R; (t}) from the last equation in (3.30). The

solution process terminates as soon as the first zero value of R; (t%) is encountered.

We now introduce the quantities

K; (my, s;) = min {k; R; (t}) = 0} (3.32)

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 94
and

Nj ('mja Sj) = Kj (mj', Sj) + Rj (thj(mj,s]-)> . (333)

From (3.32), K (mj,s;) is the (integer) number of fully completed class j jobs
under the fluid model while R; (tj](j(mj’sj)) is the fractional amount of class j fluid
remaining at the conclusion of the class j processing and which is deemed to yield
a further fractional completion within the approximating fluid model. In the fluid
model, we take the total processing time of class j to be

Kj(mj,s5)-1

Tj (mj’ Sj) = Z E <Yj?tjk) + Rj (thj(mjvsj)) E (%?tj,(,(m_ﬁ_))) (3.34)

k=0

We now fix system state (n,t) and use the quantities developed in (3.29)-(3.34)
to develop V¢ (n,t), the estimate of the expected number of job completions
secured under static policy 7% from state (n,t) obtained from our approximating

fluid model. We define the quantities ; (n,t),¥; (n,t),1 < j < J, inductively as

follows:
(1 (n,t) = Ny (n, 1), %1 (nt) = T (ny, 1),
and
(Tilivk@e) i1
G (n,t) = Nj | njexp ¢ — / 05 (t+v)dv . t+ Y t(nt) |, 1< <,
0 k=1
\ (3.35)
(Sl i1
b =T (mep{- [GErw s> hmy] 1<i<T
0 k=1
‘ (3.36)

The quantity ¢;(n,t) records the number of class j services completed under
the fluid model when 7° is applied from state (n,t), and the quantity ¥;(n, ¢) the
processing time taken on this class. The first argument of N, T} on the right hand
side of (3.35) and (3.36) is the number of class j jobs present when the processing

of class j begins. The second argument is the time at which the processing of class

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 95

J begins. The original number n; (present at t) is diminished by losses occurring
over the time period [¢,t + Y7~ 1% (n,t)) during which the first j — 1 classes are

processed.

We now obtain the approximating value function as

Ve () = Z G (nyt). (3.37)

Example 3.2. For the problem with deterministic service times, and the p; and
lifetime distributions given in Ezample 8.1, and the following additional problem

parameters, namely
L4 Ll = L2 = 5;
e 5 =1.41,5, =4.76,

we computed both the exact value function VS and the fluid approzimation Vi g™®.
As in the perfect classification situation, we plot in Figure 8.1 fluid approzimation
values at time zero and in Figure 3.2 both exact and approximate ones at a set
of states at four representative decision epochs. A summary of the percentage
approzimation errors, A(Ve, V™) = 100|1 — V5™ [V E|%, over the effective

state space is presented in Table 3.1 below. For this example, a state (ny,nq,t) is

in the effective sample space if

1. t can be expressed in terms of
t=7“151 +T252,

for some r1,7o which are mon-negative integers and satisfy 0 < 1,13 <

(L1 + Lq) = 10,

2. and the following condition holds:

t S (10 — Ny — ng) max{Sl, Sg}

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 96

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION

< 5 and t=0, 2.82, 5.64,

= 1, N2

where 0 < n

t=282
™

t=8.99

in states (ng, no, t)

€,app

. _\Rarp
n
S

kL

5
v

"
t=564

verses the fluid approximations

e
x5

Figure 3.2: Exact value functions V.

8.99.

97

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 98

MEAN 1.41%
MIN 0.00%
1ST QUARTILE | 0.00%
MEDIAN 1.48%
3RD QUARTILE | 2.35%
MAX 4.55%

Table 3.1: Percentage approximation errors A(%, V5') for Example 3.2.

It is worth mentioning that due to the uncertainty of each job’s true identity,
the effective state space tends to be larger in the imperfect triage case compared
to the perfect triage of Chapter 2. This can be seen from the more relazed upper
bounds on 1,79 and on time t.

We can see that the approzimating value function is again increasing and con-
cave componentwise in n, for fived t. Further, the fluid approximation still has
robustly outstanding performance, with an average error of 1.41% and a worst

performance of 4.55%.

Our proposed sequential decision rule 7°F in the case of error-prone triage can
now be obtained by deploying the approximate value function from (3.37) within

(3.28). We write,

75F (n,t) = arg max /Zp (0’| n,t,7,s) V& (0t + 5)dG5, (s) p ,n #0,

jEA(n)
(3.38)

When service times are deterministic, we have the form

S) V:éapp (n’,t + Sz)} ,n 75 0.
(3.39)

SF (n,t) = arg max {Z ZPU

j€Am) (=1

3.4 Numerical Study

In what follows we compare the performance of the heuristic 5% developed in

the preceding section with that of the static proposal 75 described around (3.27).

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 99

We shall also consider 7", an adaptation of the myopic policy proposed by Argon
et al. [2008] for the perfect classification case. In state (n,t), ™ chooses the action

from A (n) to be the non-empty class j with the smallest associated value of

J
D 1D (e —) {E(XE —t] X5 > 1)}
k=1

In the above expression, E (X; —¢ | Xg > t) or MRL for the class k jobs, can
be obtained by

E(Xg—tX; > 1) = pa()B(X: — t]X: > 1), (3.40)

in which E(X; — t|X; > t) is the MRL for type 7 jobs and can be calculated by

equation (2.47).

Proof of (3.40). By definition, we have

(1= Fg(s))ds [Fe(s)ds
B(X{ — | Xg > t) = *—— Ff(t) = Fg(t) . (3.41)
From equation (3.10),
EB(XE—t)X;>t) = fth 1p””(0)p(Jds (3.42)

Substitute p;(0) by equation (3.1), simplify the resulting expression, and switch

the order of integration and summation, to obtain

J)
> i EikDi J, Fi(s)d‘s. (3.43)

B(X;—tXg>1) = ST eumiFi()
i=1 CikPi Ll

Change the index from 7 to m in the denominator, and move it into the summation

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 100
in the numerator; the above equation then becomes
J

E(X; —t)Xp > t) = Cikbi / Ooﬁ}(s)ds.
; Z; 1€mkp7 F ()
i(t)

(3.44)

_ Z ezkpz -
— m 1 Emkmem(t) Ft(t>

Note that the first term in the summation is just pi(t) (refer back to equation 3.2),

and the second term E(X; — t|X; > t). The result then follows immediately. [

The Bayes’ returns for each of 75, 7% and 7™ are compared to the optimum
for 18,000 randomly generated problems in each of which job lifetimes are Weibull
and service times are deterministic. As we can see from (3.24), (3.26), and (3.39)
in the deterministic service time case the optimality equation, value function equa-
tion and approximate single step policy improvement equation are computed via
summations over a finite number of terms, followed by an argmax over a finite set.
For problems of modest size, it is thus possible, even though very expensive, to
compute optimal policies for such cases and compare competing heuristics against
the optimal performance.

The problems are generated at random under four different sets of assumptions
(represented by categories A,B,C and D) regarding the relative lengths of service
times and lifetimes of individual jobs and under three different sets of assumptions
(poor, medium and good) regarding the quality of the initial job classification.
Some problems involve just two job types (J = 2) while for others there are four

(J = 4). The key problem features S;, a;, f; and N are sampled/chosen as follows:

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 101

S; ~ U[1,10] (J =2 cases); (3.45a)
S; ~ UL, 8] (J =4 cases); (3.45Dh)
a; ~U[1,2]; (3.45¢)
BT (1+0;") S| Siya ~U[0.1,05] (very short lifetimes, A); (3.45d)
B (1+a7h) S| Siya; ~ U[0.5,2] (short lifetimes, B); (3.45¢)
B (1+o;1) S| Si, 05 ~ U [2,10] (moderate lifetimes, C); (3.45f)
BT (1+a;") S| Si, a4 ~ U [10,100] | (long lifetimes, D); (3.45g)
N =20 (J =2 cases); (3.45h)
N =10 (J = 4 cases). (3.451)

Further, for each problem the p; are obtained by first sampling independently
from U/[0.1,0.9] and then normalising. The (mis)classification probabilities ¢;; are
obtained as follows: first obtain the probabilities of correct classification ¢; by

sampling as follows:

ei; ~ U [0.5,0.65] (poor classification); (3.453)
ei; ~ U [0.65,0.85] (medium classification); (3.45k)
ei; ~ U[0.85,1] (good classification). (3.451)

Then obtain the €;; ,7 # j, by sampling independently from U [0, 1] and normalising
suitably.

Please note that the number of initial jobs N here is much less than in the
counterpart scenario when the classification is perfect (see (2.49g)-(2.49h) in sec-
tion 3.4). The MDP model and the DP recursions in this chapter are much more
challenging. Moreover, the state space is far larger, which can be seen from the
fact that the next decision epoch resulted from an action can have J possibilities,

rather than just one in the perfect classification situation. We found that it is not

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 102

possible to solve larger problem instances to optimality in reasonable time.

Each sampled instance from the above is called a profile. For each profile, we
generate a range of problems with different initial states (L,0). This is done in two
steps as follows: first, the number K; of jobs of type 7 is obtained by sampling

from the multinomial distribution
{K1,Ks, ..., K;} ~ Multinomial (N; py, pa, . . .DJ)- (3.46)

Second, for each fixed ¢, the L;;, 1 < j < J, namely the number of type 7 jobs clas-

sified initially as j is then obtained by sampling from the multinomial distribution
{Lila Lif_), e ,LU} ~ Multinomial (Ki; €i1, €2y« -+ ,6“) . (347)

These samples are drawn independently for distinct . We obtain the components of
initial state L by setting L;, the total number of jobs initially classified as j, equal
to Z;le Li;. Please note that our sampling scheme is such that the L; will tend
to be smaller for the J = 4 cases studied than for the J = 2 ones. This choice is
dictated by the computational requirements of the value iteration scheme needed
for the determination of the maximal Bayes’ return and the associated optimal
policies. Please note that our heuristic policies can themselves be computed easily
for much larger problems.

Please also note that service times are sampled from a smaller range for J = 4
cases. The large variability of service times will lead to a huge number of decision
epochs and thus unreasonably long computational times. Since the true identity
of each job under service is unknown, the time between two consecutive decision
epochs could be the service time of any job type. The longest service time deter-
mines the last possible decision epoch, while the shortest service time determines
the gap between two consecutive epochs. When these two extreme values are far
apart, the number of decision epochs is very large. A smaller sample interval can

greatly reduce the number of decision epochs and thus the computational times,

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 103

yet has little impact on the analysis. It is just a scale change. The parameter that
really makes a difference is the relative length between lifetimes and service times,
which has not been changed at all.

For J = 2, 200 profiles were generated according to the above sampling scheme
in (3.45a)-(3.451) for each of the 12 combinations of problem category (A,B,C,D)
and classification quality (poor, medium, good). For each profile, 5 problems
(ie, initial states) were generated according to (3.46) and (3.47). Thus the total
number of problems generated for each problem category/classification quality
combination quality was 1,000, making 12, 000 problems overall. For each problem,
the quantities Vp (L,0), V% (L,0) and V4, (L,0), the Bayes’ returns respectively

for the three heuristics 7#5F

,m and ™ were computed along with the maximal
return V¢ (L,0) . All computations used an appropriate form of DP value iteration
from (3.24) and (3.26). For each heuristic 7 = 757, 75, 7™ and each problem (L,0)

generated , the percentage suboptimality
A (L,0) = 100 {V* (L,0) — Vi (L,0)} {V* (L,0)}

was computed. Further, for each subcollection of 1,000 problems corresponding
to a problem category/classification quality combination, the minimum, mean and
maximum values of A, (L,0) were computed for each heuristic. These values may
be found in Table 3.2(a). As in Chapter 2, we calculated, for each of the categories,
the number of instances in which each heuristic 7 = 77, 7, 7™ provides the best
performance. In Table 3.2(b) find these results, together with p-values of the
Friedman test on the differences in performance.

From Table 3.2(a), we ;)bserve that the policy m°F developed by utilising an
approximating fluid model within a single step DP policy improvement performs
robustly well throughout. Its mean percentage suboptimality never exceeds 0.03%
with a worst case, among all 12,000 problems of just 1.21% suboptimal. It com-
fortably outperforms 7 and M excepting only the category B/poor classification

case where it is marginally outperformed by 7M. Serious suboptimalities are ob-

104

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION

"UOTYedYISSe[d 109f10dWl ‘g = [UM SOWI] 9DIAISS O1ISTUIWIO)SD PUR SOUIIOII [[NQIOAA J0J SINSa1 APNIS [eOLIOWNN '€ 9[qR],

"9OUBIOYIP JO 9897 ueWpsLl] 103 sanfea-d 3 ‘00T JO [103 B JO MO SIOURISUT UIm Jo Toquny (q)

000°0 0TS | 9€L | 886 0000 946 | 692 | TL6 000°0 8EG | GEL | ¥C6 |
0000 925 | €S9 | 8¢6 0000 999 | 069 | 888 1000 G99 | 1L | T0S | O
0000 1€9 | O¥S | 116 0000 962 | 109 | ¥¢8 0000 94L L1911 019 1 4
0000 616 | LSS | 0001 0000 G€6 | 0T9 | 000T 0000 LE6 | 6¢9 | 000T | V
anfea-d s,uewrpall,j Wl | g% | gt anpea-d s uewWpoLL] W | gt | get anfea-d s uRWPaLL] Wl | g% | gt
poo3 WNIpow 100d
-gouewIoj1ad [ewrjdo wOI) UOIIRIASD 3FRiuadIad (@)

Vee€l | ¥¢'€ 1660 | 8L | ¥9T | €10 | LLE | €L0 | 200 XeIN

¥¢'1 | S0 [TO0 || 290 €10 | 000 | 8T0|¥00|000 RESIAN a

000 | 000 | 000|000} 000 | 000 | 000000000 Ut

PLGT | GE'IT | TC'T || ¢8'8 | 69F | G80 | 97'€ | ¥9'T | 850 XeN

68°0 | ¥4°0 | €00 || €50 | 180 | ¢00} LT0| 110|200 UeoN O

000 | 000 | 0070|000 000 | 000} 000]000]000 TN

1€°L | €6°0¢ | 69°0 || 90°C | 9€'IT | 1670 || L&'0 | ST'F | 9L°0 XeN

¢r'0 | €9°T | TOO || SO0 | 680 | €00 T00,¢l0|€00 UeaJ\ qg

000 | 000 [000] 000 | 000 | 6O'O | 000000000 UiN

G€'G | 809¢ | 000 || ¢€¢ | S9°0¢ | 000 || €¥°0 | 6€F | 000 XeN

G600 | 6T | 000 OO0 | ST'T |000 | 100 |2€0|000 e 14

000 | 000 000 000 | 000 | 000} 000000000 UIN

Wi L gt || oL gt | o2 | g% | gt K108971R)

poo3 WInIpau 100d UOIYROYISSB[)

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 105

served for the policies 7% and 7, especially for problem configurations for which
they were not designed. As before, policy 75 works well when jobs have long
lifetimes and deteriorates as lifetimes decrease. For policy 7™ the reverse is the
case. From Table 3.2(b) we find that, in most category /classification quality com-
binations, policy 7! provides the best performance more often than the other
two. Particularly in category A, it is the best policy in all the 1,000 problems
regardless of the classification quality. It only loses to 7% and 7™ at a small disad-
vantage in categories B and C' when the classification is poor. The zero p-values
nearly everywhere show that these policies have statistically significant differences
in performance. The single exception is category C/poor classification in which
the p-value is 0.001. This is still very strong evidence of differences in performance
among the heuristics.

Note that, within problem categories, percentage suboptimalities tend to in-
crease with classification quality. Take category A as one example. The mean
and worst percentage for policy 7% are 0.32% and 4.39% when the classification
is poor, but they increase to 1.95% and 26.08% if the classification is good. Sim-
ilarly, for policy 7, its mean(worst) percentage increases from 0.01%(0.43%) to
0.05%(5.35%) when the classification quality improves from poor to good. The
same pattern can be found in the other categories.

To understand this, consider the worst case for classification in which ¢; =
J~ Vi, 7 and the classification process randomly allocates jobs to classes. In this
case, the assessment process fails to offer useful information on job type and pos-
terior probabilities (of true type) are independent of class. All jobs are effectively
members of a single undifferentiated class and service policies which make use of
class information are indistinguishable. As the classification improves from this
worst case, the classes become more distinct, information on class membership
more informative, policies more distinct and hence the choice of policy more im-

portant. It is thus unsurprising that the differences between the heuristic service

policies is most pronounced when classification is reasonable or good. A cautionary

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 106

note is that the small suboptimalities when classification is poor do not necessarily
indicate satisfactory service outcomes. It may well be that even the optimal policy
cannot achieve a high Bayes’ return when the classification errors are significant.
There is little value in investing lots of resource to develop optimal policies or
the fluid heuristic which are just marginally better than these simple ones. The
only way is to improve the classification process itself. However, as we shall see
in the next chapter, there are some special situations in which the classification
outcomes really are immaterial and hence the difference between policies small.
In such cases, effective scheduling is not reliant upon an accurate initial triage. A
detailed account on this theme is presented in the next chapter.

The study for problems with J = 4 was conducted in a similar fashion, except
that its computational demands were such that only 100 profiles were gencrated
for each of the problem category/classification quality combinations. Hence in this
part of the study a further 6,000 problems were investigated.

The results summarized in Table 3.3(a) are qualitatively very similar to those
for the J = 2 cases. However, the performance pattern with regard to the lifetime
category or the classification quality is not as clear as in Table 3.2(a). In some cases
the heuristic 7 works better when jobs leave faster, and in some others the myopic
policy 7™ works better when jobs leave more slowly. This is due to the relatively
small sample size which is forced upon us by the computational complexity when
J = 4. To uncover the real trend, we calculated the moving average of the mean
percentages over two adjacent categories and two adjacent classification qualities.
The results presented in Table 3.3(b) more clearly show the consistent pattern as
before.

In comparison with Table 3.2(b), Table 3.3(c) shows stronger performance of
#5F in that it wins in all the scenarios. Moreover, the number of win instances is
considerably more than that of 75 and 7M. The p-values are now all zeroes and

thus there is strong evidence of differences in performance among the heuristics.

Remark 3.3. Analysis has been conducted to understand how the optimal policy

107

"UOIYROYISSB[O 109J10dWIT ‘f = / USYM SOWUI} 9IIAISS DIISIUTULISNSP PUR SIWIIAJI] [[NCIOAN 0] SHNSOI APNJS [BOLISWNN '€ O[qR],

"BOUDISYIP JO 1593 ULWPLLL] 10§ sonfea-d Y3m ‘Q0G JO [@I0} ® JO JNO SIOURYSUT UM JO Ioquuny (o)

0000 €1 | 602 | 167 0000 €ET | ¥91 | 98¥ 000°0 €8 | 89T | 6.7 | d
0000 66T | €62 | 09% 000°0 .21 | ¢€¢ | OFF 0000 VET | 08T | 86E | O
0000 8€C | T¥1 | ¥¥¥ 0000 06T | 6L | C¥¥ 0000 ¥E€C | ¥OT | ¥1¥ | &
000°0 00¥ | 2%t | 008 0000 e8¢ | 65T | 00G 0000 89€ | ¥81 | 86V | V
onfea-d s UBWIPALL] | & | o2 | x| onfea-d suewpolt | i | o2 | ok | enjea-d s uewpalig | gt | get
poos wnIpau 100d

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION

-ooueuioyrod rewrydo
WO UOTYRIASD 88rjusdIed UBeW Jo a8eIase SUIAON (q)

%LS°0

%6¢°0

%€0°0

%970

%220

%E00 | d+ O

%9¢°0

%160

%S00

%1E0

%90

%S00 | O+4d

%910

%6¢°1

%€0°0

%L10

%ST'T

%E00 | g+V

w2

Sk

as¥

i
.w.r

as®

poo8 + wmipaw

wnipaw + 100d

-goueurto)rad [ewrpdo WOIJ UOIJBIADD

o8ejuadiad (®)

L8F% | €9°C [0901 92¢| A8C | 1F0 | 61C| ¥2C | 960 XeN
69°0| 9¢°0 200 | OV0O| 620 |TOO | CFO| €20 | €00 UeSIN a
000] 000 | 000 {000 000 |000O]0O0O] OO0 | 00O UIN
€09 | 88C |¥80 | 68¢ | T8¢ 16901 2L9¢| T1¢S |€T'1 XeN
090 | ¥¢0 | ¥0°0) 090 | L0 | €00 | ¥F0O{ 080 | SO0 UB3N 0
000 | 000 {000 | OO0] 000 |0O0O])0O0O0O]| 000 | 000 TN
929 | 90°LT | 20T || 99°C | €80T [FPTC || 28T | 286 | 10¢C XBIN
IO €9°T {900 | OT0| 6F'T [L00 | 800 00T | 900 e q
000 000 {000 | 0O00] 000 [0O0OO0O0O]| OO0 |00OO N
¥96 | P61 | 000 || T6'9 | GP'GT | €270 || L6°G | €811 | 000 XeIN
8T°0| GC'T (000 | €20 LT'T | 000 || 850} ¢60 | 000 uBo 14
000] 000 | O0OO | O0OO} 000 |00O|0O00O] 000 | 000 WA
| e s || w% | % | as® | w*] g% | as® £1038yeD)
poo3 wmrpewt 100d uorBIYISSe[)

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 108

for the perfect classification case performs in the imperfect classification case. By
deeming the classification errors to be zero, the optimal policy for the perfect clas-
sification was developed via the method described in Chapter 2. Then the Bayes’
return for this policy was computed and compared against that of each of the heuris-
tics and the mazimal return V¢(L,0). Results show that even though sometimes,
especially when the errors are small, this policy is also optimal in the imperfect
classification case, it is in general suboptimal. In some cases its performance is

weak and is outperformed by 75,

To conclude this section, we list below several implementation features in this

chapter, which complement those mentioned in Section 2.3.4 in Chapter 2.

1. The prior probabilities p;;(0) and posterior probabilities p;;(¢),t > 0 are
calculated only once. Whenever needed, we just retrieve the value from
memory. Similarly, the remaining lifetime distribution for class j jobs,
P(Xf < t+s | Xj > t) appearing in equation (3.18), is calculated and
stored in memory. They are used frequently to compute transition probabil-
ities.

2. There is no closed form solution to the integrations in equation (3.19) and
(3.31) in most cases, they are thus calculated numerically by Matlab function

quadl, as in Chapter 2.

3. The main C++ class for this numerical study is also derived from the one

for the Weibull lifetime and deterministic service time scenario in Chapter

2.

3.5 Conclusion

In this chapter we consider an error-prone triage problem in which jobs assessed
as one class could actually have many different characteristics. To deal with this

additional uncertainty, we propose a Bayesian sequential decision model for this

CHAPTER 3. SCHEDULING WITH IMPERFECT CLASSIFICATION 109

problem. Our beliefs on the true identity of the remaining jobs are updated over
time in light of the job’s survival.

To solve this Bayesian model, we reformulate it as a SMDP. The approxi-
mate single step policy improvement algorithm and the fluid approximation model
proposed in Chapter 2 are further developed to generate effective heuristics here
when triage is with crror. Even though the fluid model is now more complex,
and does not have closed form solutions, it can still be quickly solved numerically.
The resulting approximation is again very close to the corresponding exact value
function.

The proposed heuristic is subject to extensive numerical investigation. Unlike
in Chapter 2 where three scenarios have been tested, in this chapter we can only
test problems with Weibull lifetimes and deterministic service times, since only in
such cases are the optimal policies available in reasonable time. Performances of
competing heuristics are compared in terms of suboptimality. The results show
that our proposed heuristic has outstanding performance throughout and outper-
forms the alternative heuristics in almost all problem instances.

An interesting observation is that, for all the heuristics, the suboptimality tends
to decrease as the triage quality deteriorates. This does not necessarily mean that
the heuristics work well when the classification is poor. On the contrary, it may
well be that even optimal policies cannot achieve good outcomes. When the triage

process is improved, the policies become more distinct, and more is to be gained

by choosing a good scheduling policy.

Chapter 4

Cost of Imperfect Classification

In Chapter 3, we have described tools to develop 7%/, an effective and easily
computed policy for the triage problem with imperfect classification which has
been seen to achieve a Bayes’ return close to the optimum in a large number of
problems. We now explore the complementary question of the price paid in reduced
service completions for our inability to classify perfectly. Inter alia, this will give
us insight concerning situations where there is most to be gained from improving
the quality of classification. Section 4.1 introduces a measure to quantify the
classification cost. An analytical upperbound for the cost is developed in Section
4.2 for exponential lifetime cases. To investigate the behaviour of the cost in

more general situations, a comprehensive numerical study is conducted in 4.3. We

conclude this chapter in Section 4.4.

4.1 Introduction

Recall from our development in Section 3.1 that for imperfect classification, we
used L for the true state corresponding to the observed state L. We write v for

a service policy which is able to take decisions on the basis of the (unobservable)

true state as the system evolves and
maxE{N (v |L_0)}

110

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 111

for the maximal return available when access to the true system state is available

throughout.

Definition 4.1. The cost of imperfect classification for initial state (L,0) is given
by
CIC(L,0) = By, (w0 [mVaxE (Nw|L, 0)}] — V¢(L,0). (4.1)

’

The relative cost of imperfect classification is given by,

_ CIC(L,0)

RCIC(L,0) = Ve (4.2)

An alternative to RCIC can be obtained by

RCIC CIC(L,0)
1+ RCIC — Ey w0 [max, E{N (v|L_0)}]’

m:

which takes values in [0, 1]. We choose to use RCIC as it is a natural measure of
the relative increase in the number of service completions which could have been
secured if the true states were able to be observed. This ratio can be more than

one if the classification errors are significant.

Example 4.1. For the problem with the p; and lifetime distributions given in Ex-
ample 3.1 (page 83), we computed the relative cost RCIC with respect to different
misclassification probabilities in the range 0.0 to 0.5. Note that €;; = 0.5,4,5 = 1,2

is the worst case when there are only two types of jobs. Figure 4.1 below plots

RCIC.

In Figure 4.1 we see that the relative cost RCIC' is continuous, increasing
and concave componentwise in the misclassification probabilities €3 and €;; and
is much more sensitive to the latter. A major factor here is the fact that type 1
jobs have much shorter lifetimes (with mean 1.45) than type 2 (mean 12.75), and
are thus lost from the system much more quickly in any event. Should type 2 jobs

be classified correctly and scheduled for processing appropriately, they are much

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 112

more likely to be served to completion and contribute to the system’s return.
Mathematically, the quantity Ey, w0y [max, E{N (v |L_0)}] in the expression
for CIC(L,0) increases with €5, but decreases with ;5. For any initial state (L,0),
the higher the value of €,;, the more jobs are likely to actually be of type 2, and
the higher are likely to be the number of successful completions. The quantity

Ve (L, 0) decreases with both misclassification probabilities.

4.2 The Cost of Imperfect Classification - Analyt-
ical Insight

In the special case of exponentially distributed lifetimes, it is possible to gain
analytical insight into system characteristics which impact the cost of imperfect
classification C'IC' and which will inform our upcoming numerical study. We first

state a simple result which will be of use in the analysis.

Lemma 4.1.

By Lo [muaxE{N(y |L.,0)} > V*(L,0) > Er o) [rrgnE{N(y f L..,O)}] .
(4.3)

In order to state our main result, we need some additional notation. In the
exponential lifetime case we shall write the distribution of type ¢ lifetimes as X; ~
exp (pb;),1 < i < J, where the ; are taken to be fixed, and we shall be interested
in the 'no loss’ limit p — 0. Further, we write Y (L_) for the total of the service
times associated with the true but unobservable system state (L., 0) . Conditionally
upon this true state, as in Section 3.1 we use the triple ijk for the kth type ¢ job

to be classified as j. If Yi;; denotes the service time of 75k then Y, ~ G; and we

write L;

113

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION

"SOWI} 90IAIOS OUSIUIULIND PuB SOWNRJ [NQIOM T— ;£ P wejqoid & Xf DH7HY SIS00 2Ane[d] oyl ‘[om3i]

(%)oioa

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 114

Finally, we need the system parameter 9, defined by

d = max ei —1ni L- -1 -1 . -1
= ik s min oy = 7! [mex (B(X0) B (%)} —min (B (%) B(v)}]

Theorem 4.1. For the case of exponential lifetimes, we have
1
CICLO) < S0pEr, wo[E{Y (L)} +0 (0)

and

RCIC(L0) € 560, (a0 E (Y (L)Y +0 ().

Proof. It follows from the above Lemma and from the definition of CIC that
CIC(L) < By, Lo [maxE (N(v|L.,0)} —min E{N (v| L., 0)}] . (44)

It further follows from the analysis of Glazebrook et al. [2004], that when the true
state is observable and has initial value (L_,0) then the static service policy v7
which serves the jobs in increasing order of the quantity E (X;) E(Y;) secures a

return which is within an O (p?) quantity of the maximum, namely
max E{N (v|L_,0)} —E{N (+»*"|L_,0)} <0 (p*). (4.5)

Similarly, it can easily be established that the static policy v which serves the
jobs in decreasing order of the quantity E (X;) E(Y;) secures a return which is

within an O (p?) quantity of the minimum, namely
E{N (v*?|L,0)} —min E{N (v|L.,0)} <O (p’). (4.6)

To simplify the argument at this point, we relabel the jobs 1 to N such that,

conditional upon (L., 0), the static policy V51 i identified with the permutation

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 115

(1,2,..., N) and the static policy v5” with (N, N —1,...,1). Now, the permuta-
tion (1,2,..., N) can be obtained from (N, N — 1,..., 1) by a series of (2’) pairwise
interchanges. At each stage, a permutation of the form (...,l,m,...),l > m, is
transformed via a single interchange to (...,m,[,...). From Glazebrook et al.
[2004], the static service policies corresponding to these permutations have associ-

ated returns such that

E{N((...,m,..) |L,0)} = E{N((....l,m,...) | L.,0)}

_f pm PO) ,
- {E (Ym) E(Y) } E(Y)E (Yn) + O (¢°) < $pE(Y)E (Ym) + 0 (%) . (47)

Note that, in (4.7), by slight abuse of our notation, we have used subscripts [, m
to identify quantities (hazard rates, service times) identified with particular jobs.
If we now aggregate the impact on returns from all (g’) pairwise interchanges, we

infer from (4.7) that

E{N ("|L,0)} = E{N (v’ |L.,0)} <ép> E(Y)E (Ym)+O0 (p°)

I>m

<SpE{Y (L)Y +0 (). (48)

N

We now infer from (4.5), (4.6) and (4.8) that
)
max E{N (v|L.,0)} —min E{N (v | L., 0)} < 5pE{Y (L)} +0 (o)

and the bound for CIC(L,0) now follows from (4.4). The bound for RCIC(L,0)

uses that for CIC(L,0) together with the fact that

Ve(L,0) = N + O(p).
This concludes the proof.

Remark 4.1. If we suppose that service time Y; has mean and variance p; and o?

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 116

respectively then it is straightforward to show that the key quantity in the bounds

gwen in Theorem 4.1 is givén by

By jwolE{Y L)} = Z Z L;pi;(0) [07 + p2{1 — pi;(0)}]

7=1 =1

N Z Z L;pij (O)pkj (O)Miuk.

J=1 i#k

It follows from the above theoretical results that when job lifetimes are expo-
nentially distributed and, moreover, long, the cost of imperfect classification will
be small for problems in which the key quantity F(X;)E (Y;) varies little across
distinct job types. We shall see in the upcoming numerical study that the insight
afforded by these cases has much broader application. Note, for example, the
following development of Example 4.1 above. We first introduce the quantity

ne E (Xi2) E (}/22)

as the index ratio between job types 7; and is.

Example 4.2. In Example 4.1, should the service time for types of job 2 be de-
creased to 0.16 then Ris = Ro1 = 1 and the relative cost of imperfect classification
is drastically reduced. See Figure 4.2, where the mazimum of RCIC over the

displayed range for the adjusted problem is now just 2.32%.

We now consider further the insights afforded by the above material in the next

section.

Q£4/>

COST

°PIM,

ECT
Ay

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 118

4.3 The Cost of Imperfect Classification in the Worst
Case - a Numerical Study

We shall now explore the role of the above index ratio by numerically investigat-
ing the behaviour of the key quantities CIC and RCIC in the worst case, namely
when €;; = J7'V4, j. We shall thus adopt a conservative viewpoint and ask ques-
tions about how much damage is done by a failure of the classification process to
achieve anything better than random allocation of jobs to classes. The reader is
referred back to the above definitions of CIC (L, 0) and RCIC (L, 0) around (4.1).
Remember that in this worst case, the quantity V¢ (L,0) which plays a key role
in (4.1), can be obtained by computing the Bayes’ return for any service policy.
In the computations below, we shall in fact use the static proposal 7° for this
purpose.

One approach to the computation of the key quantity
By jwo) [m;ixE {N(]L, 0)}]

is to estimate it via repeated sampling from the multinomial conditional distri-
bution for L | (L,0). We opted instead for an exact approach which computed
[max, E{N (v | L_,0)}] for each L in the support of this distribution and then
computed the exterior expectation. Remember that to calculate the number of ex-
pected service completions in the perfect classification situation, we need to know
the initial number of jobs in each type. To derive them from L_, we define the
following two vectors. One is L' = (L, -+, Lj) the number of jobs of each type 17,
and the other Lj = (Lyj, -+, L 77) the number of class j jobs which are actually
of type i,1 <14 < J. It is clear that L.; has components which form a subset of

those of L while L’ can be obtained from the equation below.

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 119

We then have

BL (wo) [max B {N (v| L.,0)}] = Buy [max B {N (v | ,0))]

= Erywo [V(L/,0)].

The inner quantity on the right hand side of the second equal sign can be computed
via the optimality equations in (2.4) (page 36) in Chapter 2. To calculate the outer
expectation, we need to compute the probability mass function of L’ | (I.,0), which
is however a far from trivial task for problems of practical size. We first write down
below the probability mass function of L.; | (L,0) (denoted as h;) for class j, which

has been shown to be multinomial (see (3.5)).

L;! } R
LU'—JLJJTPIJ(O)LIJ o 'ij(O)LJJ)lei=1 Lij = Lj)

0, otherwise.

h;i(Lyj) = (4.10)
It then follows from (4.9) and (4.10) that H, the probability mass function of

L’ | (L,0), can be computed via a convolution of all the h;, written as
H:hl*hg*"'*hj. (411)

Convolution of two or more probability mass functions of one dimensional dis-
crete random variables is straightforward and a detailed account can be found
in Grinstead and Snell [1997]. However, this is certainly not the case for multi-
dimensional random variables, or vectors. In our problem, there are J multinomial
random variables, each of which is a J dimensional vector whose components sum
to L;. The convolution of any two such distributions requires summing over the

support of either of them. For each class j, the support is the set

{(nl,n-,nJ)ENJ|ﬂ1+"'+7'LJ=Lj}- (412)

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 120

Its number of elements is

(Lj +L‘j - 1) , (4.13)

which is exponential with regard to J and polynomial of degree J — 1 with regard
to L;. Even for moderate J and L;, the size of the support is already very large.
‘To make the situation worse, the convolution needs to be performed recursively
over all h;.

In light of this, we explored the question of how this task should be approached
for maximum computational efficiency. It has been found that the order of convo-
lution makes a big difference in the run time. It is always preferable to convolve
the variables with smaller support first, and in each convolution, to sum over the
support with smaller size. Experiments show that the best convolution order could
lead to a run time reduction of as much as 80% in some cases in which J = 5 and

L; is less than 10.

Remark 4.2. The reader should note that even though the quantity
[maxE{N (v] L__,O)}]

is available in the numerical study reported here, it is challenging to obtain in gen-
eral. Instead we can approzimate it by computing returns for our heuristic policy
7SF whose design is described in Section 2.2, in cases with perfect classification
and whose initial state is summarised by (L._,0). We know from Li and Glazebrook
[2010a] that the performance of 7% is very close to optimal in such cases and that

any underestimate of the quantities CIC (L, 0) and RCIC (L,0) which results will

be small.

Our numerical study considers problems with Weibull lifetimes and determin-

istic service times and J = 2, 4. Problems are created as in (3.45a)-(3.451) above

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 121

except for the sampling of f;, which is obtained as follows. Firstly we sample 5;
for the type 1 from one of (3.45d)-(3.45g), according to the specified category. The
remaining ;s are determined such that, conditioned on the sampled values of the
@i, 5;, and B the index ratios R;y; are all equal to some R, say, where without
loss of generality we take R > 1. We then check the relative length of service times
and the lifetimes for every type other than the first one. If all of them are in the
same category as of type 1, one problem instance is created. Otherwise the entire

process is repeated. We take four cases for the setting of an R — value which are

R~UJ[1,1.1] (Range 1);
R~UJ11,1.5] (Range 2);
R~ U152 (Range 3);
R~U[2,4] (Range 4).

Please note that Range 1(respectively, 4) allows the quantity E(X4)E(Y}) to be be-
tween 1(respectively, 8) and 1.331(respectively, 64) times as large as E(X;)E(Y}).
We thus investigate a wide range of cases, including some in which the values of
E(X;)E(Y;) are nearly equal Vi to others in which there can be very large dif-
ferences. As above, the p; will be obtained by first sampling independently from
U [0.1,0.9] and then normalising. However, we replace (3.45j)-(3.451) by the choice
€5 = J7IV4, 5.

The computational effort needed here is very considerably greater than for
the studies reported in Section 3.4. Happily, for the worst classification case
we are considering the classification outcomes L are immaterial. Nonetheless,
for each imperfect classification problem we need to solve to obtain V* (L,0),

there are (N +1$‘1) corresponding perfect classification problems whose solution con-

tributes to the quantity Pr |w0) [max, E {N (v|L_,0)}]. This number increases

very rapidly with N in the J = 4 cases.
For J = 2, and each category (A,B,C,D)/range (1,2,3,4) combination, 500

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 122

profiles were generated according to the above scheme, making 8,000 problems in
total. Values of the relative costs RC'IC are presented in Figure 4.3 in the form
of a boxplot for each of the 16 category/range combinations.

Computational demands are such that for the J = 4 study, the number of
profiles for each category/range combination was reduced to 100. Hence 1,600
problems with J = 4 were investigated. The results are given in Figure 4.4.

It is shown very clearly in both figures that, within each category, the values
of RCIC do indeed increase markedly with R. Take Category D in Figure 4.3 as
an example. The average and the maximum RCIC for Range 1 is just 0.68% and
3.05%, respectively. The values are still quite small for Range 2, with a mean of
0.98% and a maximum of 4.98%. However, when R continues to increase to the
next two ranges, the RCIC values can get quite significant. The mean is 3.65%
in Range 4, with a maximum as large as 10.52%. This increase is rather more
dramatic for the J = 4 cases. This is as to be expected since the latter cases
accommodate much greater variability in the type-specific values E(X;)E(Y;).

Another clear feature is the tendency of RCIC to decrease as lifetimes grow.
To see why this might be expected, observe that in the limit in which no jobs are
lost (lifetimes are infinite), all jobs will ultimately be served and no costs incurred
by any misclassification. The only exception is Category A, which has smaller
RCIC than category B in most cases. This is not surprising as category A jobs
have very short lifetimes. Most of them abandon the system in the very early stage
and thus the impact of the misclassification is small.

The median values for RCIC are considerably larger for the J = 4 cases ,
reflecting the fact that misclassification has more impact when the number of job
types is greater. That the maximum values are nevertheless reduced for J = 4 is
almost certainly due to the fact that the initial number of jobs in these problems

is rather smaller (10 rather than 20), depressing the variability of the outcomes.

123

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION

'C = [USYM SOUIr} SOIAIOS DIISTUIUILISP PUR SSWITIOI] [[NIBA 10J)],)Y SIS0D 9AIR[AI 95D 9SIoM a1} Jo jo[dxog ¢ oInSi]

a3uey-Aio8a1e)

+a €a <«a T-a D €D D 2 -4 €4 (] T8 v &V «v v

%wﬁ._.m TTORBEAOHH,

(%) 210Y

00T

124

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION

= [USUM SOWII} SD1AISS DIISIUTUIIDGSP PUR SSUWIISN [[NIOAN 10)])Y SISOD dATJR[DI 95BD 3810M 91} Jo jo[dxog :H'§ 8anSi]

aduey-A10833e)

v-a €a «a Ta D €D <D | 0] -a €8 4 T8 v &V [v

{%) 210¥ ‘

- 0L

CHAPTER 4. COST OF IMPERFECT CLASSIFICATION 125

4.4 Conclusion

In this chapter we introduce a quantity RCIC to measure the cost of imperfect
classification. An upperbound for RCIC is then developed for problems with
exponentially distributed lifetimes. It follows that for such problems the value of
RCIC is small when jobs’ lifetimes are long and when the index ratio R;j; is
close to one across all job types. In light of this result, a comprehensive numerical
study is conducted to explore the behaviour of RCIC in a more general scenario
in which lifetimes are Weibull and service times are deterministic. We focus on the
worst case in which the classification process randomly allocates jobs to classes. It
has been found that RCIC does increase significantly as the index ratio increases
from one in all the problem instances considered. Further, the misclassification
has more impact when there are more distinct job types, in which cases more
uncertainty is accommodated. An interesting observation is that the cost tends
to decrease with jobs’ lifetimes. This can be understood by considering a limit
situation in which all jobs have infinite lifetimes and there will be no cost incurred
by any misclassification as all of them will be served sooner or later.

It is worth mentioning that in the cases where RCIC is small, the optimal
policy that takes decisions based on the observed state will be almost as good as
the optimal policy that is able to take decisions based on the unobservable true
state. The classification errors thus hardly have impact on effective scheduling of
the system. This result extends to any policy if RCIC is small even in the worst

case. In such situations, an arbitrary policy will achieve the same good results.

Chapter 5

Conclusions and Future Research

5.1 Summary and Conclusions

We consider in this thesis the scheduling of impatient jobs in a clearing system,
which is originally motivated by the medical resource management problem af-
ter MCls. In such situations the injuries significantly and suddenly overwhelm
the available resource. To support efficient resource allocation, all the patients
are subject to an initial triage and are placed into distinct classes based on the
severity of their conditions. Following triage, the central challenge is to develop
effective service policies such that the expected number of successful treatments is
maximized.

A simple single server version of this problem is addressed in Chapter 2, where
it is modelled as a SMDP and explicit optimality equations are constructed by
means of which optimal policies can in principle be developed. Sadly, this exact DP
approach is not a realistic option for problems of practical size. The computational
complexity increases exponentially fast with respect to the problem size. We opt
instead to develop effective heuristic service policies by implementing a single step
approximate policy improvement algorithm to a static permutation policy 75 which
was proposed by Glazebrook et al. [2004]. The value functions of 7 are well
approximated by a fluid model, which is a deterministic analogue of the stochastic

system when operated under m5. It has a very simple form and can be solved

126

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 127

trivially. This feature is essential for the efficiency of our heuristic algorithm and
the effectiveness of the resulting policy.

An extensive numerical study has been conducted to explore the performance
of our proposed heuristic policy. In the scenario of exponential lifetimes and service
times, and that of Weibull lifetimes and deterministic service times, we are able to
develop optimal policies and thus to evaluate the heuristics’ performance by means
of reward suboptimality. We also consider a more challenging scenario of Weibull
lifetimes and exponential service times. In this case it has not proved possible to
compute optimal policies (even for fairly small problems) in reasonable time. A
simulation study is carried out instead to compare the performance of competing
heuristics. It is shown clearly that, in all the three scenarios, our heuristic works
robustly well. It comfortably outperforms the two alternative heuristics proposed
in the literature (one is 7%) in most problem instances.

This problem is extended in Chapter 3 to accommodate classification errors.
Jobs placed into one class could actually have many different characteristics. This
is especially the case for triage after MCIs, which has been shown in the literature
to be subject to significant levels of error. Due to this additional uncertainty, the
resulting problem is substantially more complex. We propose a simple analytical
model and adopt a Bayesian approach to deal with the uncertainty arising from
possible misclassification. This Bayesian sequential decision problem is then for-
mulated as a dynamic program and optimal policies can in principle be developed
by standard DP methods. However, this is again infeasible for a wide range of
problems. In light of the results from Chapter 2, we implement a single policy
improvement step to an adapted version of policy 7°. We successfully extend the
fluid approach to generate high quality approximations to the value functions of
the adapted 7.

The resulting heuristic policy is subject to a similar numerical study to that
of Chapter 2. Due to the complexity of the error-prone triage problem, we are

only able to test the scenario of Weibull lifetimes and deterministic service times.

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 128

Numerical results indicate that our proposed heuristic policy has robustly strong
performance in all problem instances considered. An interesting observation is
that the suboptimalities of all the heuristic policies considered in this numerical
analysis tend to decrease with the classification errors. Indeed, in the worst case
in which the triage process randomly allocates jobs to classes, all heuristics have
the same performance as the optimal policy. This is however not good news at
all. Instead, it simply means that even the optimal policy cannot achieve good
results in these cases. The only way to improve the performance is to make the
classification more accurate.

However, there are some special cases in which effective scheduling is not re-
liant upon an accurate initial triage. The issue is explored in detail in Chapter 4.
We first propose a measure to quantify the cost incurred by classification errors.
An analytical upperbound is then established for exponential lifetime cases. This
upperbound approaches zero when the lifetimes are long and when the index ratio
R;14 is close to one across all jobs. To explore the behaviour of the cost, a worst
case numerical study is conducted for problems of Weibull lifetimes and determin-
istic service times. It is shown that the cost does decrease rapidly as the index
ratio approaches one from above in all problem instances. Moreover, the misclas-
sification has more impact when there are more job types. This is not surprising
as greater variability is accommodated in these cases. Finally, the cost decreases
with jobs’ lifetimes. To understand this, observe that in a no loss limit, all jobs

will be served eventually and no cost is incurred by any misclassification.

5.2 Future Research

More research is needed to investigate the behaviour of the cost of imperfect classifi-
cation in the exponential service time scenario. Because of the computational com-
plexity exact optimal policies cannot be developed in these cases and thus (R)CIC

is not available. However, it can be approximated by the following method. It has

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 129

been shown in Chapter 2 and 3 that under both perfect and imperfect classifica-
tion, our proposed heuristic policy has very strong performance and the deviation
from optimal is very small. Therefore, a close approximation to CIC is given by

the following quantity,
Ev jw,0) [Vasr (L, 0)] = Visr (L,0) .

Unfortunately, in the Weibull lifetime and exponential service time scenario, Vysr (L, 0)
and V% (L,0) are not available either. A possible way is to estimate them by
Monte Carlo simulation. The quantity V,sr (L_,0) can be readily obtained as

we have already done this in Scenario (III), Section 2.3, Chapter 2. The main
work then required is to simulate the true states from the observed states, and to
calculate Vp (L, 0) for every sampled true state.

A key problem feature in this thesis is that all jobs are present at time zero
and there are no new arrivals into the system. This is indeed the case (at least
approximately) for the triage problem in the aftermath of MCls, as all the injuries
are present immediately after the incident. However, it does take time to identify
all of them. The triage process and the following treatment would start straight-
away rather than wait until all injuries are collected. In this regard, one possible
topic for future research could be the incorporation of an incoming stream with a
time dependent arrival rate that decreases gradually to zero.

A practical research topic could address the hospital Accident & Emergency
triage problem. In this problem, patients must be seen within a few hours (say
4) after arrival or they have to be admitted to hospital. The cost incurred in the
latter case is significantly more than the former. Therefore, one major objective
of the A&E triage is to maximize the number of patients attended within 4 hours.
Different from the triage problem in the aftermath of MCls, new patients come to
A&E continuously and randomly, and hence multiple stochastic arrival processes

must be considered. The lifetimes are however known and deterministic in this

case.

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 130

We conclude this section with a very interesting and challenging future research
problem. Consider a scenario in which each impatient job requires a range of
different resource(s). Take the medical service as an example. Some patients
may need a doctor, a nurse and an anaesthetist at the same time to complete
the treatment, while some others may need only a doctor and/or a nurse. There
are some multifunctional staff who can play different roles,” while the rest can
only perform a single specialised function. The question is how to allocate staff to
patients and in what sequence to achieve the maximum number of expected service
completions. A promising method to deal with this very complex problem is to
model each job as a restless bandit process and then the rich theory of Whittle
Indices (Whittle [1988|) applies. The recent extension of Gittins Index heuristics
to accommodate more general resource distribution among multiarmed bandits
(Glazebrook and Minty [2009]) may shed some light on this issue. Note that if all
patients need only one and the same type of resource, this problem reduces to a

multi-server version of the problem considered in Chapter 2.

Bibliography

N. T. Argon and S. Ziya. Priority assignment under imperfect information on

customer type identities. Manufacturing and Service Operations Management,

11(4):674-693, 2009

N. T. Argon, S. Ziya, and R. Righter. Scheduling impatient jobs in a clearing
system with insights on patients triage in mass casualty incidents. Probability

in the Engineering and Informational Sciences, 22(3):301-332, 2008.

J. L. Arnold, M.-C. Tsai, P. Halpern, H. Smithline, E. Stok, and G. Ersoy. Mass-
casualty, terrorist bombings: Epidemiological outcomes, resource utilization,

and time course of emergency needs (Part I). Prehospital and Disaster Medicine,

18:220-234, 2004.

K. S. Azoury. Bayes solution to dynamic inventory models under unknown demand

distribution. Management Science, 31(9):1150-1160, 1985.

A. Bassamboo, J. M. Harrison, and A. Zeevi. Dynamic routing and admission
control in high-volume service systems: asymptotic analysis via multi-scale fluid

limits. Queueing Systems, 51:249-285, 2005.

A. Bassamboo, J. M. Harrison, and A. Zeevi. Design and control of a large call

center: Asymptotic analysis of an LP-based method. Operations Research, 54

(3):419-435, 2006.

J. C. Bean, J. R. Birge, and R. L. Smith. Aggregation in dynamic-programming.

Operations Research, 35(2):215-220, 1987.

131

BIBLIOGRAPHY 132

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University

Press, Princeton, NJ, 1961.

R. Bellman and S. Dreyfus. Functional approximxations and dynamic program-

ming. Mathematical Tables and Other Aids to Computation, 13:247-251, 1959.

L. Benkherouf, K. D. Glazebrook, and R. W. Owen. Gittins indices and oil explo-

ration. Journal of the Royal Statistical Society. Series B (Methodological), 54

(1):229-241, 1992.

A. Benveniste, M. Metivier, and P. Priouret. Adaptive algorithms and stochastic

approximations. Springer-Verlag, New York, 1990.

D. P. Bertsekas and D. A. Castanon. Adaptive aggregation methods for infinite

horizon dynamic-programming. IEEE Transactions on Automatic Control, 34

(6):589-598, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-

entific, Belmont, Massachusetts, 1996.

P. P. Bhattacharya and A. Ephremides. Optimal scheduling with strict deadlines.
IEEE Transactions on Automatic Control, 34(7):721-728, 1989.

P. P. Bhattacharya and A. Ephremides. Optimal allocation of a server beween two

queues with due times. IEEE Transactions on Automatic Control, 36:1417-1423,

1991.

S. Bhulai. Dynamic routing policies for multiskill call centers. Probability in the

Engineering and Informational Sciences, 23(1):101-119, 2009.

9. Bhulai and G. Koole. On the structure of value functions for threshold policies

in queueing models. Journal of Applied Probability, 40(3):613-622, 2003.

0. J. Boxma and F. G. Forst. Minimizing the expected weighted number of tardy

jobs in stochastic flow shops. Operations Research Letters, 5(3):119-126, 1986.

BIBLIOGRAPHY 133

J. A. Boyan and M. L. Littman. Exact solutions to time-dependent MDPs. In T. K.

Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information

Processing Systems 13, volume 13 of Advances in N eural Information Processing

Systems, pages 1026-1032. 2001.

R. J. Boys, K. D. Glazebrook, and D. J. Laws. A class of Bayes-optimal two-stage
screens. Naval Research Logistics, 43(8):1109-1125, 1996a.

R. J. Boys, K. D. Glazebrook, and C. M. McCrone. A Bayesian model for the

optimal ordering of a collection of screens. Biometrika, 83(2):472-476, 1996b.

X. Cai, X. Wu, and X. Zhou. Stochastic scheduling subject to preemptive-repeat

breakdowns with incomplete information. Operations Research, 57(5):1236-

1249, 2009.

A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable

Markov Decision Processes. PhD thesis, 1998.

W. Chen, D. Huang, A. Kulkarni, J. Unnikrishnan, . Zhu, P. Mehta, S. Meyn,
and A. Wierman. Approximate dynamic programming using fluid and diffu-
sion approximations with applications to power management. In 48th IEEE

Conference on Decision and Control, 2009.

D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation

and efficient temporal-difference learning. Discrete Event Dynamic Systems, 16

(2):207-239, 2006.

J. Y. Choi and S. Reveliotis. Relative value function approximation for the capac-

itated re-entrant line scheduling problem. IEEE Transactions on Automation

Science and Engineering, 2(3):285-299, 2005.

R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement

learning agents. Machine Learning, 33(2):235-262, 1998.

BIBLIOGRAPHY 134

P. Dayan. The convergence of TD()) for general A. Machine Learning, 8(3):
341-362, 1992.

P. Dayan and T. J. Sejnowski. TD()) converges with probability 1. Machine
Learning, 14(3):295-301, 1994.

D. P. De Farias and B. Van Roy. On the existence of fixed points for approximate

value iteration and temporal-difference learning. Journal of Optimization Theory

and Applications, 105(3):589-608, 2000.

D. P. De Farias and B. Van Roy. The linear programming approach to approximate

dynamic programming. Operations Research, 51(6):850-865, 2003.

D. P. De Farias and B. Van Roy. On constraint sampling in the linear programming

approach to approximate dynamic programming. Mathematics of Operations

Research, 29(3):462-478, 2004.

L. Decreusefond and P. Moyal. Fluid limit of a heavily loaded EDF queue with

impatient customers. Markov Process and Related Fields, 14:131-158, 2006.

B. Doytchinov, J. P. Lehoczky, and S. Shreve. Real-time queues in heavy traffic

with earliest-deadline-first queue discipline. The Annals of Applied Probability,

11(2):332-378, 2001.

H. Emmons and M. Pinedo. Scheduling stochastic jobs on parallel machines with

due dates. European Journal of Operational Research, 47:49-55, 1990.

A. Fog. Pseudo random number generators - uniform and non-uniform distribu-

tions. <http://www.agner.org/random/>, Last modified: Aug 03, 2010.

E. R. Frykberg. Medical management of disasters and mass casualties from ter-

rorist bombings: How can we cope? The Journal of Trauma, 53(2):201-212,

2002.
E. R. Frykberg and J. J. Tepas. Terrorist bombings. Lessons learned from Belfast

to Beirut. Annals of Surgery, 208(5):569-576, 1988.

http://www.agner.org/random/

BIBLIOGRAPHY 135

N. Furukawa. Fundamental theorems in a Bayes controlled process. Bulletin of

Mathematical Statistics, 14:103-110, 1970.

A. Gajrat and A. Hordijk. Fluid approximation of a controlled multiclass tandem

network. Queueing Systems, 35:349-380, 2000.

O. Garnett, A. Mandelbaum, and M. I. Reiman. Designing a call center with

impatient customers. Manufacturing and Service Operations Management, 4:

208-227, 2002.

D. P. Gaver, P. A. Jacobs, G. Samorodnitsky, and K. D. Glazebrook. Modeling and

analysis of uncertain time-critical tasking problems. Naval Research Logistics,

53:588-599, 2006.

J. C. Gittins and K. D. Glazebrook. Bayesian models in stochastic scheduling.
Journal of Applied Probability, 14(3):556-565, 1977.

J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential

design of experiments. Progress in Statistics, pages 241-266, North-Holland,

Amsterdam, 1974.

K. D. Glazebrook. On the optimal allocation of two or more treatments in a

controlled clinical trial. Biometrika, 65(2):335734‘0, 1978.

K. D. Glazebrook. On stochastic scheduling problems with due dates. International

Journal of Systems Science, 14(11):1259-1271, 1983.

K. D. Glazebrook and R. J. Boys. A class of Bayesian models for optimal explo-

ration. Journal of the Royal Statistical Society, Series B (Methodological), 57

(4):705-720, 1995.

K. D. Glazebrook and R. Minty. A generalized Gittins index for a class of multi-

armed bandits with general resource requirements. Mathematics of Operations

Research, 34(1):26-44, 2009.

BIBLIOGRAPHY 136

K. D. Glazebrook and H. M. Mitchell. An index policy for a stochastic scheduling

model with improving/deteriorating jobs. Naval Research Logistics, 49:706-721,
2002.

K. D. Glazebrook and R. W. Owen. On the value of adaptive solutions to stochastic

scheduling problems. Mathematics of Operations Research, 20(1):65-89, 1995.

K. D. Glazebrook and E. L. Punton. Dynamic policies for uncertain time-critical

tasking problems. Naval Research Logistics, 55:142-155, 2008.

K. D. Glazebrook, P. S. Ansell, R. T. Dunn, and R. R. Lumley. On the optimal

allocation of service to impatient tasks. Journal of Applied Probability, 41:

51-72, 2004.

K. D. Glazebrook, C. Kirkbride, and J. Ouenniche. Index policies for the admission
control and routing of impatient customers to heterogeneous service stations.

Operations Research, 57(4):975-989, 2009.

C. M. Grinstead and J. L. Snell. Introduction to probability. AMS Bookstore, 2nd

edition, 1997.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms

for factored MDPs. Journal of Artificial Intelligence Research, 19:399-468, 2003.

T. Hamada and K. D. Glazebrook. A Bayesian sequential single-machine schedul-
ing problem to minimize the expected weighted sum of flowtimes of jobs with

exponential processing times. Operations Research, 41(5):924-934, 1993.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Series in Statistics. Springer, New York,

NY, 2nd edition, 2009.

S Helber and K. Henken. Profit-oriented shift scheduling of inbound contact cen-

ters with skills-based routing, impatient customers, and retrials. OR Spectrum,

32(1):109-134, 2010.

BIBLIOGRAPHY 137

K. Hinderer. Foundations of non-stationary dynamic programming with discrete

time parameter. Springer-Verlag, New York, 1970.

T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic

iterative dynamic programming algorithms. Neural Computation, 6(6):1185-

1201, 1994.

Z. Jiang, T. G. Lewis, and J. Y. Colin. Scheduling hard real-time constrained

periodic tasks on multiple processors. Journal of Systems Software, 19:102-118,

1996.

P. W. Keller, S. Mannor, and D. Precup. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In Proceedings

of the 23rd international conference on Machine learning, pages 449-456, Pitts-

burgh, Pennsylvania, 2006. ACM.

P. R. Kumar. A survey of some results in stochastic adaptive control. SIAM

Journal on Control and Optimization, 23(3):329-380, 1985.

H. J. Kushner and D. S. Clark. Stochastic approximation methods for constrained

and unconstrained systems. Springer-Verlag, Berlin, 1978.

T. J. Lambert III, M. A. Epelman, and R. L. Smith. Aggregation in stochastic

dynamic programming. Technical Report 04-07, University of Michigan, 2004.

D. S. Leslie and E. J. Collins. Individual Q-learning in normal form games. SIAM

Journal on Control and Optimization, 44(2):495-514, 2005.

K. Levy, F. J. Vazquez-Abad, and A. Costa. Adaptive stepsize selection for online

Q-learning in a non-stationary environment. WODES 2006: Eighth Interna-

tional Workshop on Discrete Event Systems, Proceedings. IEEE, New York,
2006.

D. Li and K. D. Glazebrook. An approximate dynamic programing approach to

BIBLIOGRAPHY 138

the development of heuristics for the scheduling of impatient jobs in a clearing

system. Naval Research Logistics, 57(3):225-236, 2010a.

D. Li and K. D. Glazebrook. A Bayesian approach to the triage problem with

imperfect classication. Submitted, 2010b.

L. Li and M. L. Littman. Lazy approximation for solving continuous finite-horizon

mdps. In Twentieth National Conference on Artificial Intelligence, 2005.

R. E. Lillo. Optimal control of an M/G/1 queue with impatient priority customers.
Naval Research Logistics, 48:201-209, 2001.

A. Mandelbaum, W. A. Massey, and M. I. Reiman. Strong approximations for

Markovian service networks. Queueing Systems, 30:149-201, 1998.

P. Marbach, O. Mihatsch, and J. N. Tsitsiklis. Call admission control and routing in

integrated services networks using neuro-dynamic programming. IEEE Journal

on Selected Areas in Communications, 18(2):197-208, 2000.

J. Marecki, Z. Topol, and M. Tambe. A fast analytical algorithm for MDPs with

continuous state spaces. In AAMAS-06 Proceedings of 8th Workshop on Game

Theoretic and Decision Theoretic Agents, 2006.

J. J. Martin. Bayesian Decision Problems and Markov Chains. John Wiley, New

York, 1967.

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on

Modeling and Computer Simulation, 8(1):3-30, 1998.

C. Moallemi, S. Kumar, and B. V. Roy. Approximate and data-driven dynamic

programming for queueing networks. Technical report, Graduate School of Busi-

ness, Columbia University, 2006.

Q. E. Monahan. A survey of partially observable Markov decision processes: The-

ory, models, and algorithms. Management Science, 28(1):1-16, 1982.

BIBLIOGRAPHY 139

J. R. Morrison and P. R. Kumar. New linear program performance bounds for

queueing networks. Journal of Optimization Theory and Applications, 100(3):
575-597, 1999.

A. Movaghar. Optimal control of parallel queues with impatient customers.

Performance Evaluation, 60:327-343, 2005.

M. Opp, K. Glazebrook, and V. G. Kulkarni. Outsourcing warranty repairs: Dy-

namic allocation. Naval Research Logistics, 52:381-396, 2005.

T. J. Ott and K. R. Krishnan. Separable routing: A scheme for state-dependent

routing of circuit switched telephone traffic. Annals of Operations Research, 35

(1):43-68, 1992.

S. S. Panwar, D. Towsley, and J. K. Wolf. Optimal scheduling policies for a class
of queues with customer deadlines to the beginning of service. Journal of the

Association for Computing Machinery, 35(4):832-844, 1988.

M. L. Pinedo. Stochastic scheduling with release dates and due dates. Operations

Research, 31(3):559-572, 1983.

M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edition,

2008.

W. B. Powell. Approximate Dynamic Programming: Solving the curses of

dimensionality. John Wiley and Sons, Hoboken, New Jersey, 2007.

P. Preux, S. Girgin, M. Loth, and Ieee. Feature Discovery in Approximate Dynamic

Programming. ADPRL: 2009 IEEE Symposium on Adaptive Dynamic Program-

ming and Reinforcement Learning. IEEE, New York, 20009.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley and Sons, New York, 1994.

D. Reetz. Approximate solutions of a discounted Markovian decision process.

Bonner Mathematische Schriften, 98:77-92, 1977.

BIBLIOGRAPHY 140

U. Rieder. Bayesian dynamic programming. Advances in Applied Probability, 7
(2):330-348, 1975.

D. Roubos and S. Bhulai. Average-cost approximate dynamic programming for the
control of birth-death processes. Technical report, VU University Amsterdam,

NL, 2007.

D. Roubos and S. Bhulai. Approximate dynamic programming techniques for the
control of time-varying queueing systems applied to call centers with abandon-

ments and retrials. Probability in the Engineering and Informational Sciences,

24:27-45, 2010.

J. K. Satia and R. E. Lave. Markovian decision processes with uncertain transition

probabilities. Operations Research, 21(3):728-740, 1973.

Y. Sawaragi and T. Yoshikawa. Discrete-time Markovian decision processes with

incomplete state observation. The Annals of Mathematical Statistics, 41(1):

78-86, 1970.

P. J. Schweitzer and A. Seidmann. Generalized polynomial approximations

in Markovian decision processes. Journal of Mathematical Analysis and

Applications, 110(2):568-582, 1985.

S. Shakkottai and R. Srikant. Scheduling real-time traffic with deadlines over a

wireless channel. Wireless Network, 8(1):13-26, 2002.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari. Convergence results for

single-step on-policy reinforcement-learning algorithms. Machine Learning, 38
(3):287-308, 2000.

S. S. Singh, T. Jaakkola, and M. L. Jordan. Reinforcement learning with soft state
aggregation. In G. Tesauro, D. Touretzky, and T. K. Leen, editors, Advances in

Neural Information Processing Systems 7. MIT Press, Cambridge, MA, 1995.

BIBLIOGRAPHY 141

E. J. Sondik. The optimal control of partially observable Markov processes over the

infinite horizon: Discounted costs. Operations Research, 26(2):282-304, 1978.

R. Sutton and A. Barto. Reinforcement learning. The MIT Press, Cambridge,

Massachusetts, 1998.

R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,

1984.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9-44, 1988.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8

(3-4):257-277, 1992.

S. B. Thrun. The role of exploration in learning control. In D. A. White and

D. A. Sofge, editors, Handbook of intelligent control: neural, fuzzy, and adaptive

approaches. Van Nostrand Reinhold, New York, NY, 1992.

H. C. Tijms. Stochastic Models: an Algorithmic Approach. John Wiley and Sons,

Chichester, 1994.

M. Trick and S. Zin. A linear programming approach to solving stochastic dynamic

programs. unpublished manuscript, 1993.

J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine

Learning, 16(3):185-202, 1994.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic

programming. Machine Learning, 22(1):59-94, 1996.

J. N. Tsitsiklis and B. Van Roy. Average cost temporal difference learning. Tech-

nical Report Laboratory for Information and Decision Systems, LIDS-P-2390,

Massachusetts Institute of Technology, 1997.

BIBLIOGRAPHY 142

F. Turégano-Fuentes, D. Pérez-Diaz, M. Sanz-Sénchez, and J. Ortiz Alonso. Over-
all asessment of the response to terrorist bombings in trains, Madrid, 11 March

2004. European Journal of Trauma and Emergency Surgery, 34(5):433-441,
2008.

S. P. Van der Zee and H. Theil. Priority assignment in waiting-line problems under

conditions of misclassification. Operations Research, 9:875-885, 1961.

K. M. Van Hee. Bayesian control of Markov chains. Mathematical Center Tracts

95. Mathematisch Centrum, Amsterdam, 1978.

J. Van Mieghem. Due-date scheduling: asymptotic optimality of generalized

longest queue and generalized largest delay rules. Operations Research, 51(1):

113-122, 2003.

M. H. Veatch. Approximate dynamic programming for networks: Fluid models

and constraint reduction. Technical report, Department of Mathematics, Gordon

College, 2009.

K. H. Waldmann. On bounds for dynamic programs. Mathematics of Operations

Research, 10(2):220-232, 1985.

A. R. Ward and S. Kumar. Asymptotically optimal admission control of a queue

with impatient customers. Mathematics of Operations Research, 33(1):167-202,

2008.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292,

1992.

W. Whitt. Approximations of dynamic programs. Mathematics of Operations

Research, 3(3):231-243, 1978.

W. Whitt. Fluid model for multiserver queues with abandonments. Operations

Research, 54(1):37-54, 2006.

BIBLIOGRAPHY 143

P. Whittle. Multi-armed bandits and the Gittins index. Journal of the Royal

Statistical Society, Series B (Methodological), 42(2):143-149, 1980.

P. Whittle. Restless bandits: Activity allocation in a changing world. In Applied
Probability Trust. 1988,

Y. J. Zhao, S. D. Patek, and P. A. Beling. Decentralized Bayesian search using

approximate dynamic programming methods. IEEE Transactions on Systems

Man and Cybernetics Part B-Cybernetics, 38(4):970-975, 2008.

7.-X. Zhao, S. S. Panwar, and D. Towsley. Queueing performance with impatient

customers. Proceedings of IEEE INFOCOM91, 1:400-409, 1991.

Appendices

144

Appendix A

Contents in the Accompanying CD

The main directory in the CD is ’f. | DSICS", which includes all the C++ header
files (.h) and source files (.cpp). They are organized into a Microsoft Visual C-++
project, which can be accessed by double clicking the file DSICS.sin.

Other files include the parameter file controlParas.dat, the binomial coefficient
data ﬁle combMatriz.dat, and a sample input data file wd_sample.dat. For the
reader’s reference, we have also copied two resource files into this folder. One is
libcalc Prob.lib which is generated by the method mentioned in Appendix D, and
the other a Matlab run time library, mclmerrt.lib. Both resource files must be
included into the project.

There are two other data files (regression.dat, fluidApp.dat) in this directory,
but they are not actually used. However they cannot be deleted as the program
still reads them in the initialization.

The second directory is ". |problem instances”, which contains all the prob-
lem instance data files used in this thesis. The file format must be strictly followed
for any new instances. Note that the selected data file needs to be copied over to
the working folder before kicking off a solve.

The third directory is ".|matlabFunctions”, for the three Matlab functions

to be mentioned in Appendix D.

The last directory is ".|thesis"”, which contains an electronic copy of this

thesis in pdf format.

145

Appendix B

Instructions to Use HPC

The following steps can be followed to use HPC.
1. Log into HPC.

2. Copy all the header files, source files, data files and Matlab files from corre-

sponding directories in the accompanying CD into HPC fileserver.

3. Load Matlab module and launch it. Execute the command to be mentioned

in Appendix D to compile all the Matlab functions into a C++ library.

4. Still in Matlab, execute the following command to build an executable:
mbuild Culmprove.cpp ExpoFEzpo.cpp WeibDetermnc.cpp WeibExpo.cpp Bayesian-
WeibDeter.cpp convolution.cpp mersenne.cpp SimuPolicies.cpp stdafx.cpp -

L. -lcalcProb -1. -output triage.

5. Change parameter values in controlParas.dat for the selected problem in-

stance.

6. Create a batch job control script and submit jobs by issuing a gsub command.

Remember to load Matlab and Boost modules in the script.

7. More information can be found in http://www.lancs.ac.uk/iss/hpc/.

146

http://www.lancs.ac.uk/iss/hpc/

Appendix C

C++ Code for Key Classes and

Functions

This appendix contains a selection of C++ code for the key classes and functions

in this thesis. They are organized in the following order.

o EzpoExpo.cpp: the source file for the exponential lifetime and service time
scenario. The key functions which are included in this appendix are:
— createStateSpace(): create all the states.
— probCalculation(): calculate transition probabilities.
— altFluidApprezForThetaMu(): fluid model in this scenario.

— policyImprovementFluid(): the approximate single step policy im-

provement algorithm using the fluid model.

— geneOptActions(): development of the optimal policy.

e WeibDetermnc.cpp: the source file for the Weibull lifetime and determin-

istic service time scenario. The key functions included in this appendix are:

— geneDeciEpochs(): generate all possible decision epochs.

— calcAIIMRLTs(): calculate MRL for all job classes at all decision

epochs.

147

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS 148

o WeibExpo.cpp: the source file for the Weibull lifetime and exponential

service time scenario. The key function is:
— caleBySimulation(): simulation steps for this scenario.

o Bayesian WetibDeter.cpp: the source file for the Weibull lifetime and de-
terministic service time scenario in the imperfect classification situation. The

key functions included in this appendix are:

— calcPostProbs(): calculate the prior and the posterior probabilities.

— calcRemSurProb(): calculate remaining survival probabilities.

o Culmprove.cpp: the main function. It is where the program starts to
execute. This code should be the first to read as it contains detailed steps to
run this program. Due to the length of this code, it is not included in this
appendix. Interested readers can find it in the accompanying CD. Refer to

Appendix A for more information.

149

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

231e3s JUDIAND 3Yl} 399 // ! [pr]eoedsoieis = 931eIS x93€AS
}
(++ PT !()9zTs-adedssieis™ > PT {0 = PT 3IUI) I0OF
23e3s yoea I19ac dooT //
}

() uoTjeTnoTedqord: :wWRTqOId PIOA

! (@3e1s) oeq ysnd-soedgoiels
! (sqgopumu) 33e3lg MU = 93e3S

! ([T]xepurqorumu) 3oeq ysnd-sqopumu
(++T!SSYIDWNNXYIW > T !sseld3ie3is = T 3ur) I0J
!sqopunu JUIDSA

}

(++ [6]xdpulqorumu ! [g]XeWSqoLfwnu => [§]X9dpurqoLunu {Q = [g]xXdpurqoLwnu) Joj
(++ [8)x®puIlIqorumu :[g]XeWSqoLwnu => [g]Xdpulqofumu {(= [g]xdpulgoLumnu) I0J
(++ [L]¥xepuIqofumu ‘ [L]XeWSqOLunuU => [L]XSpuldqopunu ! = (L]x2pulqoLunu) IojF
(++ [9]xspurlqorumu ‘! [9]XeWSqoLunU => [9]XSpuIqorumu ‘g = [9]XspulqoLwnu) IOJF
(++ [S]xspuIqorumu ! [G]XeESqOoLWNU => [G]X9puUIqopunu g = [G]XapuIqopunu) IoJF
(++ [V]xSpurqofumu ! [§]XeWsqoLwnu => [p]XspulgoLumu ! = [p]Xepurqopumu) IoF
(++ [g]lxSpulqorumu ! [g]XeWSoLwnu => [g]Xspuldgopunu !¢ = [¢]XapulqoLunu) IoJ
(++ [g]xepuIqopumu ! [Z]XRWSQOLWNU => [Z]X9pUuIlqofwnu ! = [gZ]xXepurgopumu) Io03J
(++ [T]xopulqofumu ! [T]XeRSqoLwnu => ([J]XSpurgofunu !g = []xspulqopunu) IojJ
(++ [0]x®pulqopumu ! [Q]XBWSqOoLWNU => [(Q]Xopulqopunu g = [Q]Xspulqopumu) IOF
usTqoxd yoes 103 =20eds 83e3s Y3z 83eaid//

! [sse1d3Ie3s - T)SOSSEID92TS = [TI]XPRsqoLwnu
(++T ‘SSVIDWANXYW > T {SSeID3IeIs = T 3IUT)I0F

XeWsqopunu Aeile 8yl 03 SseID9ZTs Ten3iode ayjy Adod//

0I9z 9q 03 XBWSO[SSeld [eIsAdsS TeTITUT 22Uyl 39S // !0 = [T]Xewsqorunu
(++T fsSsSeID3ILIS>T !0 = T 3JuUT)I0F
Xoputr sseld buTlixels syl 9231eTNOTRD//!S9SSLIOWNU - SSVIDWANXVW = SSe1d3Ie3s Jut

! [SSYTIOWNANXVYI] XeWsqo unu jut

! [SSYTOHNNXVI] XopuIlqofumu 3jut

Aexxe 19H23UT SIULDWS TS SSYTIDOWAN Om] a3ea1d//
{93e3s yx93els

}

() @oedsejeisejearn: :wETHoId PTOA

dd>-odxggodxsg

150

C++ CODE FOR KEY CLASSES AND FUNCTIONS

APPENDIX C.

! ([T]xopurqorumu) oeq ysnd - SqoLwSYuInU

(++T!SSYIOWANXYW > T

!sserd3iaels

= T JUuT) 103

IsgofuRdwinu JUIDSA

}

{(++ [6]Xspuiqofunu ! [g]XeWsgorwnu => [g]Xdpuliqopumu ! = [g]XopurqoLwnu) Iog
(++ [8]xspuIlqoLumu ! [g8]XBWSJOLwWNUu => [g]Xspulqopwnu ! = [g]Xapurgopwunu) IoJ
(++ [L]XSpulqopumu ! [,])XBWSHOLWNU => [,L]XSPUIgofuwnu () = [,]XSpulrqofunu) IOJF
(++ [9]xopuIlqopumu ! [9]XBRWSHOLWNU => [9]X2purqopunu !¢ = [9]X9pulqofwnu) IoJ
(++ [G]xSpuIqofumu ! [G]XBWSJOLWNU => [G]XopuIqopwnu (g = [G]XopurgoLunu) IojJ
(++ [p]lXopulqopunu ! [§]XBPWSOLWNU => [§]Xopulqopumu Qg = [§]X3purgqopumnu) Iog
(++ [€]xdpurqoLumu ! [g]xeNsqopwnu => [g]XspulqoLunu !Q = [g¢]XspurqoLumu) Ioj
(++ [Z]xspulqofumu ! [Z]XBWSAOLWNU => (Z]xXapulgqopumu (g = {z]xX3pulqopunu) IoJF
(++ [T]lxspulqopumu ! [T]XBWSqOLWNU => [T]X9puIlqopunu g = []]XSpurqoLunu) IoJ
(++ [0]xXspurqorLumu ! [Q]XeWSqOLumu => [Q]XSpulgoLwnu ! = [p]xXepulgofumu) IO3

sejels Tre xsao dooT//
!T- [XOpUISSBID + SSBTDIIRIS]XBRSJOLUNU = [XSPUISSRIO + SSBIDITLIS]XeRsqopumu

sSsefd sIylz o3 T SNUTW //

! [sserd3xel3s - TI]sopunu =
(++T

{SSVYIDWANXYI > T

018z 3q 03 XPWSJO[sseld Telsass TeIITUT 2yl 385 //
(++T !sSseld3ie3IsS>T !0 = T 3JUT)I07

[T] XeWsqorumnu

{sse1direis = T JUT)I0F
XeWsqooumu Aeiie a8yl 03 sselD9zTs Tenide ayj Adop//

10 =

[T] Xewsqoumu

XOpuT SSeT2 HUTITRIS SY] °Je[NOTe)//!SOSSeIIUNU - SSYIOWANXYW = SSeid3IIels Iut

03094 WQO_“ JOo IJIoqunu jJuaIIND IDY3} 3I8H \\

(++X9puIssero

! [SSYTIOWNANXVIW] XeWsqounu 3ut
! [SSYTOWNNXYW] Xopuigqopunu 3ut
Aexxe I19bs3ul SjUSWS TS SSYIOWNN Om3 93e91D//

ddrodxgodxsy

}

(T =< [xopuIsseld]sqopumu)IT
UOT3IO® STY] Ispun qqoad syl a3eInd{ed ‘33=1 sqol +1 sT =189yl II //

{S9SSeTOUNU > X9PUISSETD

{070 = JOIdTel03 21gnop
butbbngep x04 //

}

() = X9PUISSeTD 3JUT)I0J

sseTo yoes 1sa0 dooT //

() sqopumNiIab<-23e3Ss

= sSqopumu JUIDOA

151

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

(0 == sqorie3ol) It
*@3els 3xau 03 dI¥s ‘we3sAs syl utr 3yeT qof ou 3II //

! [C]sgopumu =4+ SqOPTRIO]
(++[fsesserounu > [! = [3uTr)I03
{0 = SgOrTe3O] 3JUT

1 () sqopumN3I®b<-2383S = SQOLUWNU JUIDIA
93B3S JUSIIND BY3 399 // ! [pr]odedseiels = 23e3S 423e38 }
}
(++ PT !()2zTs-ooedgeieds™ > pPT {0 = PT IUT) IOF
| o3e3s yoes xsao doot //

{[Cle3eyaes” / 0°T = [(}swTraes
(++C !sesseioumnu > [g = € jur) x03
! [sesseTounu” |9 TqnoOp MSU =SWTJISS
!BUTLIDSy STQNOP
I0308A B UT 9I03S PuUR WOyl 33TNDTED oM ‘ATpojeadsl pesn oq [ITM SSWT3 SOTAISS SYyj 9DUTS//
}
() nweleyrIcaxiddypiniiiTe: :weTqoid PIoa

{() ®@so1o-81Ty bngep//
se3els I9a0 sdool Jo pud // {
sasseld I1sao dooi Jo pus // {
3T 30 pus//i{
°f

{TPUa>> qOIdTIe3IO] >> 4 'w>> [+XOPUISSRIO >>,U0TIdR, >> n dUOod - (u>> 3INOD
fy ‘u>> [LCC]sgopunu >> 3nod
(++CCCfsosserpunu » [LC !qg = [CC jut)xo3

¢) @3e3S, >> 3N0D
}
{ 70190¥dTYIOL < 90IdTe3o3 - T || TOLEO¥dTVYLOL <T - goidie3iol) It
f
‘qoad =+ qoIdTelol] B
{ (K3TTTgRqoad) SOIJSURILPPE<-33B3S
! (qoxd ’'X9pUISSeTDd ‘sqofwayunu)qqord Mmau = A3TTTqeqoxds qqoxd
! (T + XOpulsseTd
/S9SSeTOUNU” ‘SO URNUMU ‘SO unu ‘23BYSSOT . ‘93e¥I9S) qqIdoTed = qoxd aTqnop
(T +
Xopuisse(d) o3 sTenbs 3T OS ‘SUO WoOIF ST UOTIOR 3yl 3y3l 930N "UOTIdUNI gelliew TIed //

dd>-odxgodxsy

152

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{BWILPUAISS = SWILIIRISIASS
{([3OVNNEe3dY]] SWTLISS « [1IoynWe3syl] e3eyssoT -)dxs
* (T~ [30YNWEISU3] PTINTATOADT) = [IOVNKRISYI]PINTITIAST

I [I0YNWR3I8aY3] SUTLIBS + SWILIIL]ISIDS = SWILPUIIDS
pIemal @ayjl 03 dUOC ppe // !4+ [IOYNWeRISYI]maudxe
}
(T =< [IOVNWERIBY3]PINTATSAST) STTUM
MOT3] UOTIBTNOTERD 39Ul 0306 ‘1397 ol suo UrYl SI0W ID2ADIYM //

{([IoVNWeIdYl] 3Ie3SI » [JOVNKRIDYI]L3eYssor -)dxe
swty Hurixels 2Y3 I PINTI HuTulewsx =yl // x [IOVYNWEISYI]SOLWMU = [JOYNKEIDYI]PINTITDAST
2wty HuUT3IIEIS 9OTAIDS 9yl // !(SWILIILISISS = [IDYNWe3Iay3l]ixeisi

SSeTD STY3 I03 sisjsweaed burixelis 3yl 38§ //
:{ = 30o¥ynWelsyl ut

{90UTIUOD
suo 3xau 9yl o3 duml ’‘sseld STY3 ur gol ou ST 919yl IT //(0 == [[]sqopunu) IT
}

sseTd yoes 1940 dooT // (++[!sesserounu > [!0 = [juT)Iog

lawTpugIes oTJnop
WTLIND S aWwrl Hurizels TeTITUT 8yl 238s // {0 0 = SWILIILISISS STgnop
100 = Telolmaygdxe sTqnop

0°0 = [Im]lmeydxe
(++3Mm !sesse(ownu > Im 0 = IM JUF) IOJF
! [sosseTDuMU]STONOP MU = PINTIATRAD]
! [S9SSEBTOWNU]9TqnNOp Mau = maydxs
! [sasselounu]9 Tqnop M8U = 3Ie38)
{PINTIToAST» ‘mo¥dxsy ‘31e3S3x STQNOP
sseTo AIsa® JO sS3[NSaI Y3l 9I031S 03 sSaTelIe 93Iyl aurjisd //

{9anuI3luod
2{0°T) nWe3lsyLIogaddypIniimoylss<-93e3s
}
(T == sqopTelol) T
I030NIJISUOD 83e3IS BYJ UT pafpury usaq sey 3T // !{8nurTijuod

ddr>-odxgodxsy

153

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

SINI nwejlsayl Iapun
premd1 dx2 PTINTF Y3l 399 //!() nWRISYLIoJaddVpINTameylsb<-93e3s = nKelayInTimaydxs STqnop
SSeTD yoee Ul sgof JO IsCuUMU 9yl 399 // ¢ () SOLUNMNIDE<-93e3S = SqOLWNU JUIDDA
9TNI NWe3aYl ISPUn psAIdS SSeID 93 399 // ! () UOTIOYITNYNDIDH<-93BIS = UOTIDE JUT
93e3s JULBIAND 3Y3} 389 // ! [pI]ooedgelels” = 93e3S x93e1S
}
(++ PT {()eozTs-ededgsleis > PT !0 = PI 3uTr) I0J
@3e3s yoes Ixaa0 doo1 //
}
asT®
, {enuUTluoD
Ixau o3 drs ‘3jo ST bery oyl ITv // (T =i Deraprnili) It
{() bergisb<- [T]XINIVWIONINODQINT = DBeldpInlj 3ut
{() wy3lTIOoHTVYISh<- [T] XTUIVWIONINODAINTA = WYITIOHIVYPINTI burais
}
(++T !() 92TS XIMIVWIOUINOOAINTI > T {0 = T 3UT) IO3F
suy3jtIobTe pIniI syl xsao0 doog //
}

() pInTdiususaciduriortod: :weTqoxd PIOA

s@3e3s I@a0 dooTl jJo pus // !{
STIOAN = PINTATLAST
ITINN = meydxa
STION = 3Ie383
‘pINTATSART (] °39T=pP
!moydxs [] @39TopP
{3xe383[] @39T°p
satxousu desy 8yl dn as14//

! (Tejormaydxs) nuWelsylIodIddypIniimoylss<-931els
spIemsl [e3l01 3} 18S//

f [Ao¥nelIaYl] moudxa =+ Tejoimaydxs
uinjsx [e3j03 9yl eseaxoutr //

SSeTd 3IX3u IO0J 2WI3 3Ie3s 90TIAISS 2y3 ajepdn // !SWIIPUFISS = SWTL3I03SI0S
{ [1OVNWeIDYI]DWILIDS x [IOVNWERISUI]PTINTITOAS] + DWILIIRISIDS = SWILPUFISS
! [30VNNeIaY3] PINTIATOAST + [IOVIWeIayl]mayudxa = [3D¥YNWe3lay3l]maydxe

MOT9Q uoTje[noTed 9yl ojob ‘3381 ol Teuorioexj e Afuo 3I //

ddr-odxsgodxy

154

C++ CODE FOR KEY CLASSES AND FUNCTIONS

APPENDIX C.

(++ [P]xXepurqopwnu ! [p]XEWSqoLwnu =» [§]xopurqopunu ! [¥] ¥xepulqofunu) I0J
(++ [€]lxspulqopumu ! [¢]XBWSqOLuNU => [¢]xXopulqopunu ! [g}xepurigopunu) IOJF
(++ [Z]xspuIlqopumu ! [z]XeWSJopwnu => [g]XSpurqopunu !Q [z] xopulqorunu) I0J
(++ [T]xspurqoLumu ! [T]XBWSqOoLwnu => [T]xXopulqopunu ! [T]xXspurqofunu) O3
(++ [0]xepuIrgqopumu ! [Q]XBWSqopwnu => [(]X9purqopunu :!Q [0] xepulIqopunu) I0JF
seojels T1e xoa0 dooT//
!T- [UOTIOYMBU + SSBTDIIRIS]XBWSOLUNU = [UOTIOYMOU + SSeTDIIRIS]XeHSqoL unu
SSeTd STyl 03 T SNUIW //

! [8SeTD3ILIS - T]sqopunu = [T]Xewsqopunu
(++T !SSYIDWANXVW > T !SsSeld3Iels = T 2JuT)Io03F
XeWsqofunu Aeiie syl O3 SsSeID®2TS Tenioe oyi Adod//

0I3Z 9 073 XBWSJO[SSeTd TeIsAss TeT3Tul 9yl 39S // {0 = [I]xXelsgopunu
(++T ‘SSeTD3ILIS>T !0 = T 3JuT)I03
XSpuT SsSeTd HurlIIRIS 9Yjl 93eINOTRD//!Sesselduwnu - SSYIDWANXVW = SSeTd3Ieis jut

! [SSYTIORANXYN] XeHsgofumu 3ut
! [SSYIOWNNXYIW] Xopurgqopunu jut

Keixe 19H93UT SIULWR TS SSYIOWNN OM3 83e8Id//

{0°0 = UOTIOYMONMOYAXDS BTROpP
{XOPUISSLTD = UOTIDOYMOU 3JUT

uIinjax
poldadxe 9UY3 93eINOIED pue SSeTD JUSIAND 8yl 03 UOTIDe oYl 39S SSIMIay3l0 // o9sie
!anuTjuod
‘ox3z ST sqol 3o xsqumu @yl JI // (0 ==[XopuIlsselo]sdqopumu) IT

ssefd 3Ixau o3 ob

}

(++X2pPUISSRTD ‘SOSSBTOUMU > XSPUISSeTD !SSeTDIIRIS = XSPUISSPTOD jul) I03F
{0 = sseidiaels
(T == ANIDIVOVILXH) 3IT
{7 4+ UOT3IO® = SSeTD3IL3IS JUT
*sesselo aoao0 dooT //
SpIemal OM] BA0ge 8yl usaMiaq eiI[=d // 0°0 = ©ITSP SIqUOp
uoT3oyMONMaYdXIX Rl
03 UTPUOdS9IIOD UOTIADE MOU 9y} 9I03S 03 S[QRTIIBA ® autjisd // !I- = UOTIOYMSNXBW 3JUT

SuUOoT3o®

MOU JI9PUN UINISI WNWIXPW Y] 8I03S 03 S[GeTIBA B 8utiad // !0°0 = UOTIDOVMONMSYAXIXEBU 3Tqnop

ddrodxgodxy

155

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

SuUaINiaI UOTIOR MBU JO Xew ayl

swyjTIobie asao door pus //*!{
Jjo/uo sber3y Y3} uo asI(a-3T JoO pus // !
so3els x9a0 dool jo pus// {
! (UOTIOYMBNXBW) PINTIUOTIOVPRAOIdUIISS<-93BIS
(T == GNIDTVOVMIXE || 0 > e3rop) 3T
eITOP @Yl HurOL9yD 1933 UOTIOR psacidur oyj 38§ //

{U0TIOoYMONMOYAXAXRW - NWeISYLNTIMIYdxs = e3Top
*S°A UINISI STNI NWEISY3 9yl JO ©ITSP 9yl sle[ndored //

sasse1d I2a0 dooT Jo pud // {
9s19- JIT Jo pus //{
{
{UOTIOYMBU = UOTIOYMSNXRW
{uoTloymaNmaydxe = UOTIOYMaNmOYdXIXRU
}

(UOTIOYMONMOYAXAXBW < UOTIOYMONMOYAXD) IT

{1 =+ UOTIOYMONMOYdxa

nTa PIBMBI 93BTPAUMIT SY3 UT ppe ’‘93e3ls 3Ixdu oTqIissod TTe I12a0 Hutrdoof i833Iv //

(++
(++
(++
(++
(++

so3e3s 3xau [Te I9a0 dool Jo pud // ‘{

2 () nweilsyrIoJrddypInTAmMayisb<-93e383X9U x qoxd =+ UOTIOYMONMOYdxD
2A0ge 23e3S DY} 03 83NOX 3YJ UT piemal pelybreom [e3o3 syl 318 //

! (sqopueyuInu) 93838396 = 931BISIKSU 49338
31391 sqolfwsywnu yY3iTm 93e3S IX9U aYl 23199 //

! (UOT3IDYMBU ’sqopuayunu) sqoldsueilisb«-93e3s = qoad siqnop
@3e3s 3xXau 03 A3TTTgeqoad 8yl sje(nodied //
{([{T]xXepuigorumu) 3oeq ysnd- sqo uwsYunu

(++T!SSYIOWANXVIW > T !sse(direls = T 3Uul) I037

!sqopwsyunu JUIDOA
}
[6] XSpuIqoLumu ! [g] XeWsqoLunu => [g]X8puIqoounu (0 = [g]xspuliqopwnu) IOJF
[g]Xspuldgorumu ! [g]Xewsqoumu => [g]Xspulqopumu (g = [g]xspurqopumnu) IoF
[L]xXepulqopumu ! [L]XBRSqOofunu => [,]¥Xepuldqopunu (0 = [L]XSpulqopumu) IOF
[9]xopuIgopumu ! [9] XBRSOLUNU => [9]XapuIqofwnu ! = [9]xepulIqofunu) I03I
[G]xXepulIqopumu ! [g] XeEsqopunu => [g]Xapulqoounu () = [G]Xapulqopunu) IOF

ddr>-odxsgodxsy

156

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

= [g]xopulqopumu) I03
= [yp]xXepulqoLumu) I03F
= [g]lxepuIlqopwnu) I0JF
= [z]x®spuIlqopwnu) I03F
= [T]xspurqopunu) 103
= [0]xepuIlqorumu) I03
so@je3s [1e I2a0 dooT//

(++ [G]xepurqopunu ! [g]XEWNSqopunu => [G]xopurqopunu !
(++ [p)xepulqofumu ! [§]XeWsSqopouwnu => [§]xopurqoounu !
(++ [€]lXepurqooumu ! [€]XEWSQOLWNU => [¢]Xspulqopumu !
(++ [Z]xepulqopwnu ! [z]XeWsqopumu => [g]Xapurqopunu
(++ [Tlxepurqopumu ! [T]XeWsqopunu => [T]X&pulqofwunu !
(++ [0]X®puIqoLumu ! [Q]XeWsSqopLumu => [(]xX8pulqopunu !

oOococooo
|

!T- [UOTIOYMBU + SSBTDIIRIS]XPWSQOLWNU = [UOTIOYMOU + SSBTDIIRIS]XBWSOLWNU
SSBID POAI®S 03 T SNUTW //

{[sse1D3IeIs - T]sqopumu = [T]XeRSqopunu
(++T ‘SSYTOWANXVW > T {SSe[D3I®e3s = T 3JUT)I0JF
XeWsqoLwnu Aeixe 8yl 03 SSeTD®ZTS Teniode ayj Adod//

OI3Z 3 03 XEPWSO[SSBTD [RIBA®S [RIITUT 8yl 39S // {0 = [I]Xewsqopunu
(++T <sse1Dd3Ie3s>T {(= T 3JUT)I07

Xoput sSseld buriaeis oYl 83eInoIe)d//!SSSSBIDWNU - SSYIDWANXYW = SSeTD3IR3s 33Ul
! [SSYTOWNNXYW] XeWSqO unu Ut

! [SSYTOWANXVI] XopuIqorwnu 3uf

Aexze 19693UT sjuBWSET® SSYIDWNN OM] 23e91D//

00 = UOT3IOYMaNMaYdxDe STqnop
{XSPUISSPTO = UOTIOYMaU 3JUT

}

uInjiax pajoadxe 9yl 23e[NOIRD puUR SSeTd jJuaIInd @Yl O3 UOT3Ide 39Ul 3I=as 3sSIMI=/YL0 \\ 9sIo

{anuT31uod

SSeTD 3IX3U 03 OB ‘ox8z st sqof jo xsqunu =2yd JI // (0 == [xSpulsseld]sqopunu) JIT

}

(++XOPUISSETO !SOSSETIUNU > XOPUISSETD !(= XIPUISSeId JUT) I0J
*sasseT1o 9yl xsao dooq //

uoTIOoYMONMSYdxXFgxXewW O3 HUTPUOdSSIIOD UOTIOR MBU SY3 D103 03 S[gerea ® auriag // !I- = UOTIOYMONXBW JUT
SUOTIO® MSU ISpUN UINISI WNWIXPW 9Y3 SI03S 03 S[eTIBA ® 3utiadg // !{0°0 = UOoTioymeaNmaydxaxew aiqnop

: SseTo yoee UT sqolf JO JIsqunu ayjl 389 // ! () sqoLumNieb<-93e3s = SqOoLunu JUIDDA

93®31S JUSIAND 3Y3 399 // ! [pPr]ooedgsalels” = 93eIS 931§

(++ PT ‘()ozTs-opedseole3s” > PT

() suotjoyidosusbh: :weTqoid pTOA

dd>odxsgodxsg

’

}
0 = PT 3uT) 03

}

157

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

@3e3s I18a0 dooT jo pus// {
! (uotioymeNmaydxgxeuw) jdoaogmeydxmies<-23els
! (UOTIOYMENXRW) uoT3oyldolss<-93els
sasserd 19a0 door jo pud // {
9sT1®- JT Jo pus //{
{
{UOTIOYMBU = UOTIOYMINXPU
luoTioymeNmaddxe = UOTIOYMINMYAXIXRU
}

(uoT3oYMmeNMaNdXTXeW < UOT3IOYMONMa¥dxa) IT

{1 =+ UOTIDYMSNMIYAXD
uwTu DIGMDI 23RTIPSWWT SY3 UT ppe ‘S3e3s jxau a1qissod T1e I9a0 HButdooT 1933V //

$93e3S 3x9U [Te I9a0 dooT jo pud // !{
() 3dozoamoydxgisb<-o23eligixou » gqoaxd =+ uOTIOYMaNMaYdxs
DA0Qe 93e3S 3Y3l 03 93INOI dY3} UT pIemsx paijybrem Te3l03 8yl 189 //

! (sqopweywnu) 93e38328H = 93L31SIABU 4923818
3397 sqolweywnu Y3iTm 93e1S IX8U °Yjl 389 //

! (UOTIOYMDU ’SOLUWSYUWNU) SOIJSURILISH<-23e3s = qoxd aTgnop
@3e3s 3xXsu 03 A3TrTqeqoxd syl 93eTNOTRD //

! ([T]xepurqorumnu) 3oeq ysnd- sqopuayunu
(++T!SSYTORONXYW > T !SSeTD3Ie3s = T JUT) 103
! SO WDYWNU JUIDDA
sqo(psuTewsI 9Yyj I0J I03IDIA B 93ed1d //

[6]1xepulqopunu) I03
[8]x@puIqopumu) 103
[L]x®puIqorumu) 103
[9]xspuIqofumu) 103

(++ [g]XepUurqopumnu ! [g]XeWsqorunu => [g]xdpurqopunu !
(++ [g]lxepuIlqopumu ! [g]XeKsSJoLwnu => [g]Xspuidqopunu !Q
(++ [L]XSpulqopumnu ! [z]XeWsqofwnu => [L]Xspuldqopunu ?(
(++ [9]xspulIqopumnu ! [9]XeWSoLunu => [g]Xdpulgqopwmnu !Q

1

dds>-odxsodxsy

158

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

(++
(++
(++
(++
(++
(++
(++
(++

019z g 03 XeWsSqOo[SSeId [BI2ADS TRTITUT 8yl 338 // ‘0
(++T !{SSeTD3TL}IS>T

[L]xepulqorunu
[9] Xepurqoumu
[§] XxspuIgownu
[¥]xspulqopumu
[£] XopuIgoumu
[Z] xepuIqopumu
[T] xepulqoprumu
[0]xepuiqorumnu

! [L]XeWsqopumnu
! [9] xenWsqoumu
! [g] XeWsqopunu
! [p] XeWsqounu
! [g] xensqounu
! [Z] xeHsgopunu
! [1] xewsqopwunu
! [0] Xewsqopunu

! [sseTDd3laels -

(++T !SSYIOWANXYH > T

[L]xepUuIgoLunu
[9] xepuIrqofwnu
[§] xepurqopunu
[Pl xXepurqopumnu
[€]xepurqoLumu
[z] xepuIgqofunu
[T]xepurqorwnu
[0]xepuIqoLumu

Q0 =

[¢]xepuIqopumu)
[9]) xepuIqoumu)
[q] Xspurqoruwnu)
[¥]xepulqopunu)
[€]xspulqopunu)
[Z]xepuIqorwnu)
[T]x®puIqopunu)
[0] xspuIgorumu)

103
103
x03
103
I03
103
103
103

weTgoxd yoee 1037 adeds 93jels oyl 93vd1d//

T]s28se[dozTs” =

[T] Xewsqowunu

{SSeTD3IRIS = T IUT)IOF

butuuthHsq woIy se3leis oTqeyseai Afuo //
Sjeiousb ’‘poposu oI 93e3S TRTITUT SY) WOl spiemax [ejol ayl Atduts II //

(++T *SSYIDWANXVW > T

{SHOLWNNXVIH =

[T] Xewsqorunu

!ssefd3Ie3s = T 3JUT)I0F

pejeisusb sq ueo sysods uorstO=SpP //
aTqrssod a2yl TTe 3eyl Os iaqunu HTq AxsA ® 99 03 SSPIO Yoes UT sqol Jo Isaqunu ayjy 335 //
syoods s1qrssod T[® 23eIsusb ’‘popesu s1e sSUOTIOE PI[TeIap aya JI1 //

asTo

}

(3I0¥I3319QqTaM) IT
93exausb 03 syoods Auew mOY SSOOUD ‘STTeIdP S3ITNSDI JO 291bop oyl uo paseqg//

[{T]1XersqoLunu

f0 = T 3uT)I0F

Xopul SSBTO Buriaels 8yl 231e[NOTe]//!sosseldunu™ - SSYIDWANXYW = SSeID3Iels juTl

! [SSYTOWNNXYW] XeWsqoumu 3ut
{ [SSYTOWANKYIW] Xapuiqoumu 3ut
Aexze x9Ho3uUT SIUSWRTD SSYIOWAN Om] 23v21D//

! (SOSSBTOUNU ‘33¥I9s ‘S9SSeTDO9ZIS) 30NPOIJIeTeds = JWIIXeW S3TJNOop
yjzbus1 swrtl umwixew ayi o3jernoied //

ddo>-ounuria1a(qrapM

() syoodgTosQousb: :uRTOIIM PTOA

!syoods <91qNOP>1STT

}

159

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

P((I931 Z0--) +) oeq ysnd-syoodyuoISTIOSOp
I0309A 99U} O3UT jJUSWST® jJSer 8yl Ydoeq ysnd //

dooT ay3 do3s ‘pus 8yl ST I93I g0 usyMm // ! (()pus-syoods = I93I g0) STTYM{

‘++ I931 2O
SHY 103 uotitsod suo 3aocw 3snl ‘Tenbs aie Asyjy 3JI // °s1?®
{
uotitsod aUO SHY 9AOW // {++ I93T g0
SHY 7O uoT3Tsod JUSIAND dY3 O3 SHT 9A0W // {I93I g0 = I831 1D
! (2931 10x) oeq ysnd-syoodjuoTsSIdep
}
I0308A 8Y3l o3juTl SHT ysnd ‘Tenbs jou axe A8yl II // (OMIZ HNTIVA < IDIT [Ox - IO83I 20x)IT

}

op

butuutbaq oyl woiz uoriTtsod aUC SAOW // !++ ISIT gD

uosTaedwod asTmated ayj jo 9pTS puey YBTI oyl // ! () urbaq-syoods = 1931 2D

uostaedwod astmited 8yl Jo SpPTS puey 338 8yl // ! () urbeq-sysods = 1031 IO

11931 ¢0 ‘I93IT IO I0JRIDIT::<DTYNOP> ISTT
sjuTod swr3 JedTTdnp pauTewsSI 239T9P PUR I0309A B 03 syoode oyl Adod //

seniea paj3edTTdnp SYl TR SA0WSI JO0UURD poylzadw sTyl // ! () onbrun-sysods
! () 3x0s‘syoods
senTeas psledITdnNp SaA0WLI USY3} pur I9pio Hurpusose uTr 3ISTT 9yl 3x0S//

‘yeaaq
Ssis
{
{Tpue>>yoodguoTsTosp >> Inod//
! (yoodguoisioop) 3oeq ysnd-syoods
}
(swtTiXew => Yoodguoisioep) IT
! (sesseTounyu’ ‘S3eYIIS SO UMNIUSIIND) IONPOIJIRTEDS = YOOodHUOTSTOSP algnop

! ([T]x9purgopunu) 3oeq ysnd-sqoLUNNIUSIIND
(++T!SSYIOWANXVH > T {SSeID3Ie3s = T 3UT) I03
{ SO UMNIUDIAND JFUIDDA
}
[6] xopulqopumu) IOF
= [g]xXepulqopunu) IOF

(++ [6]Xopurqopfumu ! [g] XBWsqopunu => [g]Xspulqopumu -
{(++ [8lxspuldoprumu ! [g]XeWsSqo unu => [g]XspuIlqopunu !

0
0

ddrouwmaataqqrap

160

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

q
. {
{(STOLTIN) foeq ysnd: SLTIW
{
¢ (LTHW) 3oeq ysnd - STOLTINW
! eydre / (dwej)dxe x (dwel ‘eydiyISaQsUO0) eumebH3::Yjew: :3s00q yx BI0q = LTNN alqnop//
. ! (eydre ‘e3aq/sutrino)mod = dwel siqnop//
(L00zuobay) ernwiol s,uobay Aq ‘swTl 23TT Hurews: uesw pojepdn 9yl alelndTed////
.«.*«.*«i**&*«.*a*«.*«.*«._.__«(«k.«.*«#*.««..«f«%*****#*%«.**%*k*«,%**«#**«\
/* "POPIROSTP OS ’‘STCqels ATTESTISWNU JOU ST MOTSq BINWIOF BUL x/
/x . 60/T0/ST po3epdn «/
«.%«,«.«,««:«.%*‘«**«.«.«%«.*.«&«.««.«Z«aZIT«**«.«*«(«.*«.a«,***.«*#**.««.*««,*««,*\
{(BWTLIND ‘e3aq ‘eydie)qeliew L[TIWOTED = ITIW 2 Tqnop
! (Xepuleuwtl) jutodsutiyoodgisd = swiLInd aTqnop
}
(++xopuUrawIl !sYcodjuoTsSIooquUMU > XSPUISWT] {(= XOPUIawIl JUT) 103
! [xepulIsseTo]e3isaq = elag STqnOp
! [xepulsseTo]eydrie = eydle sTqnop
!STOLTIW 9TqNOJosA
}
(++XSPUISSLTD {S9SSPTOWNU > XSPUISSEID () = X9PUISSBIO JUT)I0F
}
() SLTYWITVOTED: ‘UPTJOIdM PTOA
f
![T - syocodmuoTsToSWNU] SUYSOdIUOTSTO?P = SWTIXew
() @z1s syoodquoTsIoop = syoodmuoTsTooqunu

ddooumsazagqrom

161

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

:x0 //

(T + SUNYWTIS) 3T O3 BUO pPpe ‘SUnI JO ISqUNU dY3J 396 O] “SUNI UOTIRTNWTS JO XIPUT // !{SUNYWTS JUT

R
{(duel) oeq ysnd-seTltTIoTidpueylieiae
{ (dure]) 3oeq ysnd-sswrlasspuryieire
{{dwsl) oeq ysnd-ssuilolIpueyieiie
{([(]sesse1Doz1s™) dwsly oTqnodosa
}
(++[!sosserpunu >L !g = [jur)zog
!S9TITIOTIJPURYARIIR SUSWTJOMIANOOSA
!sowTLI9ogpUuRdARIIR SUSWTJOMLANADSA
!SBWTLeITTPURYARIIR SUSWTJOMIANIODA

SoTqeTIRA

oT38y3TIUR Jo Ssodand Syl 103 ‘SUNI ISUNU USAS UT SISCUNU WOPURI 9Y3 9I031S O3 SIOJDODA UOTIUBWTIP OM3 28Iyl //

SSBTO yoea uT s9T3TIOTId ,sSqof 3yl 103 xojeisush xsqunu wopuey // ! (00zZ+poes) A3 TI0TIgSqOLbI SUUSSISNLOPURYD
SSWT3 @DTAISS I0J I0jeIdULH Iaqunu wopury // ! (00T+Po9S) SBWILINSHI SUUSSIBSWWOPURYD
S8WT3 9JTT I0F I0jeidusb Jsqunu wopuey // ! (poes) SAWTILOITIIhI SUUSSIDWUOPURYD

$S103eI9ULH ZaqUNU WopuRI 3Y3 JO SUC ISSC0YD //

{TPUDS>>PI3S>>OTTT Ano

xaput wdTqoxd 8y3 JO sInoy Jo Iaqumnu syjz Aq psginjisd // ! () XIpurqoidisb x 009¢ =+ po°S
pa9s wopuex // 2{0)2WTII(ZLIUT) = POS8S ZgIut

SI03eXdUsd JoqUNU wopuel aY3l IOJ P8dS 3s00YD //

!(e2T8de3s™ x [(]e3eyaes™) / T = [[]swirxasuesu
(++[!sosserpounu >[!g = [jutr)Iog
! (S9SSBTOWNU) SWTLISgURSW 3TqNOJOSA
SDWT} 9DTAISS wopuex burjersusb usym uoTjeindwod sARS 03 SWIIISS URSBW Y 389 //

£, U\ IXJ UOTIRTNUTSSM wﬁﬂw ndano butusdo 101I19,>>II90
}
(()ITey =113 3nO) 3T
{(I973Nnq)2TTF INO WESI3ISIO

! (xepuIweTqoad ‘,3X3] PRUOTIIRINWISOM, ‘I97Ing) Jiutads
‘[0s}x2330q IRUD
andano uoTjleInNUIsS 1037 91TF © usdo//

() UOTIRTNWTSAGOTRO: :WOTOIJSEAM PTOA

ddr-odxgqram

}

162

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

SUNI POXSPUT USAD I0J SISQUNU WOPURI MU 93BIJUSD //

}

(0 == z % sunJwrs) 3T

{uot3ioe 3Jutr
{93e35aI0D x23vISM
93®e3Ss STY3l 3B UOTIDR 2Yj pue a3el3s ayjl autrieq //

!deb adA3"eouaInIITP: :9TQNOQISTT
{qorpaales I103eISIT: :TYNOQISIT

sjuswaTe a3yl Ajwopuex

$s900®! I03BI9]T ISTT IYL// {AITIOTIIIOILIT 'SWILSOTAISSIOIOAT ‘BWTLSITIIOILAIT I0IRISIT: :2[NOQISTI

SSeTd yoes UuT 3T13TI0Tad ,sqol 8yl // !S8@TITIOTIJIOARIIR <©TQNOJISTT>I0IDDA

SSBeT® Yoe® UT sSCOL JO SdWT]} 90TAIDS YL // !SOWILIDTAISSJOARIIR <dTANOQISTI>I0FODA
SSeTd yoes ur sqol Jo sawTl 8ITT °2YL// !S2UTLDITTI0ARIIR <3TQNOgISTI>I03D9A
JUSWUOITAUS UOTjIeTNWIS 3yl dn 385 //

}

(++SUNYUTS SNAMANISHANXYW > SUNYWTS ! = SUNJYWIS)IoF

£(0°0 ‘®3e3SITUT) IJPTNTISILISOTHUTS = UOTIOVIAPTNTAISITE 3UT
! (S9SSBTD9ZTS) 2301539H = 93BISITUT »93BISM
‘poaRs ST SWI3 oYl STY3 butop Aq os ATpeieadea pesn ST 31T ‘walqoid 8yl JI0J UOTIDE Id PINTJ 3ISATJI 9yl putd //

{paazogqoroTdoiw ‘PIAISSOLNRIDYL ‘PIAISSOLPINTI STANOP
Aot1od yoeo ISpun poaIss qol Jo Isqunu ayL //

tosTey = suogotdoAw Tooq
!9sTeI = Suodnwelsyl 1ooq
UOT3IeTNWTIS TOI3UOD 03 sbeiy omi //

{070 = IeA pIniy otdoAu
1070 = IeATPINTI nWelayl

10°0 = MOU ueswW pPINTJI

{070 = PIO ueSW PINTJF
= MOU uesw pPINiI oTdoAu
= pro uesuw pIni3 oTdoAu
0 = maU uesw PINTI nWelIsayl
0 = PIO uesw pINTI nWeisyl

sTqnop
sTqnop
a1qnop
a1qnop
a1qnop
s1qnop
sTqnop
sTqnop

pasn aq 03 SOTISTIels poutjed //

I0jeIsUSH JBCUMU WOPURI JO SDURISUT Seu // ! (po9s) b1 xaYIONWOPURYED //

ddr-odxzgqiam

163

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

S9WT] 9DTAIDS WOpURI dj3eIdUsb // ! (92T18dels™ «
({ [sqopumu] [{] sswtgaaspueyierir)boTy [[]awTiIaguesw -) [T199) y}oeq ysnd- sow90TAI9SSqOL
SBWT393ITT wopuel sjersusb // ! (([Lleydre /1
' ([sqofumu] [(] sewTla@ITIpURyAeiie) boT -)mod «[[]e3zeq™) yoeq ysnd-sawrlaITIsqol
}
(++sqofumu ! [[]sossSeID9ZTS™ > sqofunu (g = sqopunu jur) I03
}
013z j0u ST sqol Jo xaqunu ay3l 3I // (0 < [[]sesserdezis™) 3T
$S9®TITIOTISqOL ‘sawra@oTAIessqol ‘sswTLajIIsqol S1qnogasIfi
}
(++(!sesserpunu »>{ !0 = [jut)zoz
sswtl ©JTIT 03 burpiocode Iapio
butpusose UT Pe3IOS USYI pue ol AI9ad IOI S9TITIOTId PUR SOWTF 9OTAISS ‘SSWT] 8ITT SYJ 93BIDUSH //

‘f
{
{
PTIO N
- T @sn // ![sqopumu] [[]saT3TIOTIdgpURYARII® - T = [sqopumu] [[(]soT3TIoTIdpueyAeIIe
Pio n - T @sn // ![sqopumu] [(]sauTlisgpueyierie - T = [sqopwnu] [[]sewTLIiagpueyieiie
pPTO N - T ®sn // ![sqopumu] [[]sawTrajrIpuegieiie - I = [sgopunu] [(] sswutiajTIpueyieiie
}
(++sqopumu ! [{]sS9Sse[D®2TS > sqofunu ! = sqopumu JuT) 1037
}
(++C !sssserpumu >(0 = [3ur)xo3z
SunI paxapur ppo 103 n - T ©sn //
}
asT®

s9T3TIOTId I0J SIa2qumu

wopuex ay3 9jexsusb // ! () wopuey-A3TIiOoTIgsqorbi =[sqopunu] [[]sSOT3TIOTIJPURYARIIR
S9WT] 9DTAISBS

I03F sI2CUMU WOpUBRI d3eISUSH // ! () wWopuey-SSWTLISSHI = [sqopumu] [[]sswTiIagpueyAeire
sowWTISITT

I0J SIsquINU wopuel sjeIdUsh // ! () wopuRY SSUILSITIOXI =[sqopwnu] [(] sswiiejTIpueyAviie
}
(++sqopumu ! [[] sosse[D92TS > sqopunu !(= SqOLuUMuU JUT)I0F
}
(++{ !sesserounu >{ g = [jur)aoz

ddrodxgqram

164

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

Aeize sswTy ©ITT ©Y3 WOII 3T SACWSI PUR 'SWT] STY) 9OTAISS I0J Juds ST qol YDdTym 309T8s //

{UOTIOVIJPINTAISITI = UOT3O®
‘peseq 0x9z ST SdPOD ++D BY3 UT UOT3Ide 8yl urebe s3joN //
Uuotide Id PINTF 3IsITI 8yl putd //

! (S9T3TIOTIJIOARIIR) SDTITIOTIJIOARIIVPINTI <dTGNOJISTITI>I0IO0A
! (SPWT LoD TAIDSI0ARIIR) SBWTLISSIOARIIVPINTI <9TQNOQISTI>I0I09A
! (SSWTLRITTIOARIIR) SOWTLRITTIOARIIVPINTS <3TdnOJIsSIT>I0303A

SseTd AQ 3SOT SIBWOISND JO ISqUINU 3Y3 Junod // ! (p’Sesseldunu) ISOTqol JUIDSA

PoAISS SIBWOISND JO JISQUNU dYJ JUNOD // !0 = paaxsgqol 3jut

syoode je sqof jo Jaqunu Te303 =Yyl 3unod // {0 = SqOLTe3031 JUT

3IX9U 3SOT ST JIDWOISNO SSBIO UYOTYM aUuTjed // !SSBIDUOPUBRQYIXSOU JUT

Jjuaupueqe IBWOISND JO SWT] Jusad ayj aurjiead // !{ALINIANI dNIVA = SWTLUOPURCYIXSU 3Tqnop
UOTISTAWOD @DTAISS JO BWT] JUIAS 3Y]} 3UTISF // !ALINIINI ANIVA = SWIIPUFIDSIXKDU STGNOP
0X9z se SWT]} We3ISAsS 9yl 18s // !0°0 = SWILSAS aTqnop

9TIPT 03 Sn3jels I9aI9S @Yl 139s// {T- = SNIRISIDAISS JUT

sIaqumu TeT3TUT DYl Se paurewsar sqol JO Isqunu oYyl 395 // !S9SSPTDDZTS = WIYQO[JUIDSA
2zTTeT3TUI //

{TPUS>>, SNILISIBATIDG, >>DTTT IANO
ta W>>T+0>>,SseTdJowayqol,>>2TT3 3Ino

(++L!sesseTounu »>[{0=C 3ut)axo3

fn QUSAH,>>, SWITWOISAS,>>STTF 3Ino

8TTF 3ndino ay3 jo sixspesy =ay3y dniss //
}
(sde3snursiurad) IT
\i********i*%*****«*ﬁ*a******«***«***«*%#*******{************k*k****«********#%**\
[xxxxrxxxyrxxxrrxxyrxx¥rxxrxyxy UOTIPTNWIS TId PTINTI wxxxxxxxxrxyrxrxxyxrxxrrxryxyxxyxs/

I I T I I I I I ey

! (seT3TI0Tadsqol) 3oeq ysnd-soT3TIOTIJIOARIIR
Aexxe ayj ojuTl ppe // ! (SSWIL3DTAISSSqO[) oeq ysnd-sswlleoTaIasioAeiae
Aexxe syl o3juT ppe // ! (sswrl23iTIsqol) oeq ysnd-sawrLa3iTIioAeiie
“H
sawtl ©3TT aYyl 3108 // ! () 3II0S SBWTLSITTIsqol
R

soT3TI0Tad 3yl 9jersusb // ! ([sqopumu] [[]saTiTIOTIJPUuRyARIaR) 3oeq ysnd sao13TIOTIdSqol

ddr-odxgqram

(t'0) urt

165

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

! y+paazagqol

{UOTIDR = SNILISIDAIADS

{.. [uoT3dR]WIYqOL

STqeTIeA I93UNOD 3yl a3epdn pue SSBID UOTIOE 8yl WOIF Sqol BurtuTews: JO Isqunu 2yl asesadsq //

! (qorpoaiss) 9seId” [UOTIOR] SOTITIOTIJJOARIAVPINTA

{ (BUTLODTAIDSJOID]T) @SLIS ° [UOTIOR] SBWTLIDS JOARIIYPINTA
! (SWTI®ITIIOID]T)SSRIS " [UOTIOR] SBWTLOITTI0ARIAVPINTI
S3ISTT 931Uyl TT® WOIJ SIUSWS I3 |Yl SAOWSI Usyl //

| ‘ {WTLISS = SUTILPUFISFIXBU
{OWTLODTAISSJOISI T+ = SWTLIDS DTYNOP
BWT3 UOTISTAWOD 9DTAISS IXSU BYJ PUR 3T JO SWT) SDTAIDS 3Y3 39D //

{(deb ‘awWTIS0TAISSIOISIT)SDURAPR

! (deb ‘swTI®ITIIOISIT)O0URAPR

{(qoppaaxas ‘() utbeq- (UOTIOR] SOTITIOTIJIOARIIYPTINTI)9oueysSTp = deb

S2WT) 9IJTT PUBR SSWI] 9DTAIBS SY3 PUTI OF UOTILDOOT IYLTI 23Uyl 03 SI03RISIT 3Y3 SAOW //

{(()pue- [UOTIOR] S8TITIOTIZFOARIIVPTNTA
‘() utrhbsq- [UOTIDR] SSTITIOTIJIOARIIVPINTI) JUSWS TS XU = qOLPIAI3S
9DTAIdS JX0JF aTqerTear qol Ajtxorxd 3saybry syi asooyd //

() utrbaq’ [UOTIDR] SPWILISSJOARIIVPINTA = SWILIDOTAISSIOIDIT
() utbeq- [UOTIDR] SPWTLOITTIIQARIIVPINTI = 2WTIDITIIOIAIT

asTa

() 3juoxy dod- [uoTioe] $9TATIOTIJI0ARIIYPINTL
() 3uoa3y dod- [uoT3o®R] sBWTLISSIOARIIYPINTA
() 2uoxz dod- [uoT3iorR]SBWTIAITIIOARIIYPINTA
S3STIT TTe WOIJ SIUSUWST® O3 saowdx uayy //

{9WTLISS = DWILPUTISSIXDU
{BWTLS0TAISSJOIDITx = SWILISS STqnop
swTl uoT3ioTdwod 9DTAISS 3IXaU oYl 3I9b pur ‘3T JO awTl 92TAISS 9yl 13190 //
() utbhoq- [UOTIO®] SPWILISSIOARIAIYPINTI = SWILSO0TAIDSIOIDAT
3T 3997®s 3snl ‘3397 qol suo Afuo yT //
}
(T == () ®2Ts" [UOT30®] SAWT LI TTI0ARIIVPINTA) IT
soT31I0TId wopuerI ITSY] UC PasSeq 9DTAISS I0J auo 8yl 303a[ss ‘g uotido //

ddrodxgqrapm

166

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

(0 < sqoLTe303)aTTym

! [[Jueyqol =+ sqorteiol
A++ﬁumommeUE:qlvﬁNouﬁucﬂvu0u

{IPUS>>T+SN3ILISIDAIDSS>>ITTT 3N0O
fa w>>[[Jweyqol>>9TT3F 3no
(++C!sesserounu >[!g=C jutr)aoz
M #w>>n90TAISSIOIQOLISITIYLPUSS y>>u W>>3UTLSAS>>2TTI 3N0O
}
' (sdeagnutsautad) 3T
jud@A® 3IsIT3I STY3l 3Indano //

!L = SSeTDUOPUROYIXOU
{OWTLOITTIOIOI Ty = SWTLUOPURQYIXDU
}
(SWTLUOPURQYIXOU > SWILDITTIIOISITx) IT
2 () utbeq- [[]SOWTLIITTIOARIIVPINTI = SWILSITIIOISAT
SSeTd UYO®® UT IXOU 3ISOT 8] 03 SUO °Y3l SAeMTe ST JUSWSTS 3SITI oYL //

SSeTd jxau @Yyl 03 ob 3snl ‘3391 ol ou ST 819yl 3JI // !°ONUTIUOD
(() A3dws- [[]sowrrsITIFoAeraypInld) JIT
}
(++[!sssserpunu »>[(! = [jut)aog
TUOTIDSTIS 9Yl Huriew I91Ie JUSWUOpURQR IXSU BY] STnpayds //

f
!doLS™ 14dInTd o306
{
{IPUS>>0>>3TTF 3Ino
fu w>>[Llueyqol>>aTTI 3no
{++{¢sosseroumu > (p=(3ur)ao3z
" w>>0POUDRYSUWILXRW ‘' SPUTNWTS y>>u w>>3WTLSAS>>3TTY 3Ino

o~

}
(sde3snwtsautad) JT
}
(owTrXew =< SWILPUZISSIXSU)IT
SpPIEMUO PIEMDI 3Y3l JUNOD 30U Op PUB UOTIBTNWTS 3yl dols ‘SuIlXew I93Je Spus 90TAI9S IX9U a9yl JI //

ddo>-odxgqram

167

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{ TPUD>>JOLPaAIDS«x>>3N0D / /

{(()pua’ [UOTIDR] SOTITIOTIAIOARIIYPINTI
‘() urbaq* [UOT3IOR] SOTITIOTIZFOARIIVPINT) IUSWS TS XeW = JOLPIAISS
90TAISS 103 aTqelTear qol A3Ttiorad 3ssaybty ayj ssooyd //

() utbeq- [UOT3OR] SBWTLISSJOARIIVPINTI = SWILOOTAISSIOI]T
() utbeq- [UOTIOR] SBWTLSITTIIOARIIVPINTA = SWTILIITTIOISIT

EERE)

() 3uoaz dod- [UOT3IOR]SOTITIOTIJJOARIIVPTINTI
{{) 2uox3 dod- [uOT310®] SBAWTLIDSIJOARIIVPINTI
() 3uox3z dod- [uOT3O®R] SSWTLSITTIOARIAVPINTI
S3ISTT TTe WOIJ S]USWOTD dY} dAOWAI Uyl //

{BWTLSAS + SWILISS = SUWTLPUZISSIXIU
{BWTLODTAISSIOIS]I T = SWILISS STqNOP
SWT3 UOTISTAWOD ODTAISS 3IXdU 8y} 386 pue ‘3T JO BWT1 9OTAISS Y 399 //
f() urbeq- [UOTIOR] SBWTLISSIJOARIIVPINTS = SWTILODTAISSIOISIT
3T 309198 3snf ‘3381 gof suo Afuo 3T //
}
(T == () ®27Ts" [UOT3IDP] SBWTLRITTIOARIIVPINT) IT
S9T3TI0TId WopueI ITSYJ} UO poseq IDTAISDS I0J SUO 3yl 3d9Tas ‘g uotido //

() 3uoxay dod- [uoTioe] sAWTLOITIF0ARIIVPINTI//
9DTAI®S I03J 3IXdU 3ISOT ©q 03 dUO 2Y3 puas 'T uotado ////
‘Sseld uoT3lde 3dYJ WOIF IJDTAISS I0J JUSdS ST qOL yotuym 30913s //

! (swTLsAs ’‘©3©35IND) IJPTINTJA2303ISOTHUTS = UOTIO®
E

{peTgsTo9ThUTS = uoTio®
(0 =< beldgsidetrbuts) IT
() berasidotbursisbg-93eigano = Pefasideburs jur
23e3Ss STY3l JO UOTIIPEe ¥yl 199 //

! (weoygol)ejeasisb = 9ieagino
{OWTLPUTIDSIXDU = SWTLSAS

uoT3aTdWoD @0TAISS ST JUSAD IXdU IT // (SWUILUOPURYIXSU => SWTLPUFISSIXSU) JT

ddr-odxgqrag

}

168

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{9NUTIUOD
(() Aadws- [(]sowrlaiTTI0ARIIVPINTI) IT
}
(++C ¢sesselpunu >L (g = [juTr)xo3
‘ALINTANI ENIVA = SWILUOpUR]YIXaU
‘UOT3IOBTSS Y3 buTiew I93Fe JUSWUOPURdR IXOU 8y} S[NPaydsay //

'doLs” Idainig ojob
{
IPUS>>0>>9TTI 3IN0O
tu w>>[flweyqol>>91T3 300
. (++Cisssserownu >(f0=[3ut)iIoj
‘u u>>aPOYORIYSUTLXEW ‘SPUTNWTS \>>y w>>SUTLSAS>>9TTF INo
}
(sdeasnutgjutad) 3T
}

(BWTIXeW =< SWILPUdISSIXOU)JIT
pIemsI 83 JUNOD J0U Op pue uoTIeTNMUTS aUy3l dojs ‘SWILXeu I93Je Spue o0TAILS oyl 3II //

{++poazagqol
sn3je3s I9a19s 9Yl 93epdn // {UOTIDR = SNILISIDAIIS
{-- [uot3oe]uayqol

! (qoLpoAI®sS) 8SRIS° [UOTIDR] SBTITIOTIJIOARIIVPINTS

{ (SWTLOOTAIDSIOIDIT) ©SRIS " [UOTIDR] SOWTLISSJOARIIYPINTA
: (SWTLSITTFOIDIT) S8SBID ™ [UOTIOR] SOWT,L9FTTFOARIIVPINTA
S3ISTT @22aY3l TTe WOIJ S3UBWDT3 3Y3 SAOWSI uayyl //

{BWTLSAS 4+ SWILISS = SBWIIPUTISSIXOU
ISWTLOOTAISSIOISIT = SWTILISS STQNOP
swrl uoTisTdwod 2OTAISS IXOU 9Y3 pue JT JO SWIJ 9DTAISS BYL 399 //

{TPUD>>T+9DTAIDSIUSSIUCIYI>>,ON ST 9DTAIDS 103J 3JUSS BUO OYLu>>IN0D//
bngsp x03////

! (deb ‘SUTLEOTAISSIOIDIT)dDURAPE

{(deb ‘sWTILOITTIIOISIT)SdOURAPR

! (qorpealas ‘() urbeq- [UOTIOR]SSTITIOTIJJOARIIVPINTI)SouelsIp = deb

S2WT) S3TT PUBR SSWT] 9DTAISS 9yl PUTI OF UOTIeooT IYDBTI Syl 03 sI0jRIDIT SYI SA0R //

ddr-odxgqram

SpIeMuo

169

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

() utbeqg- [[]saWTL®ITTFOARIIVPINTI = SWILRITTIOILIT
{9NUTIUOD
(() Axdws- [[] sSWTISITTIOARIIVPINTL) JT
}
(++[!sesserpumu >C ‘g = [jut)Ioz
SSeId UYDdTym pue juswuopuede 3IxXau JO SWIF Y3 putg//

() Juoxy dod- [SSRTHUOPURQYIXDU] SOTITIOTIJIOARIIVPINTI

{()3uoxz dod- [sseIDUOPURQYIXOU] SOWT LIS FOARIIYPTNTA

{() 3uoxz dod- [sseTluopuRqyIXoU] SAWTLAITTIOARIIYPTINTA

3soT 3snl suo ay3 buraowsr Aq UOTIBDOT qol 3sOT 3Ixau 9yl a3epdn//

{TPUS>>T+SNIBISIDAISS>>DTTI In0
fu o w>>[flweygol>>9713 3no
(++C¢sesseroumu >(!0=C jur)ao3
#>>u IUDUUOPURAY ; >> T+ SSRTIUOPURAYIXDUS>> , SSBTDu>>u W>>SUTLSAS>>DTTI 3Ino
}
(sdeasnursiutad) 3T

{ALINIANIT ENTVA = dWiiuopuedqyixau
! ++ [sseTDuopurqylixau] 3soriqol

{- - [sseTDuopueqyixau]wayqol
{BWTLUOPURQYIXSU = SWTLSAS

}

SSOT I2WOJISND ST JUSAD 3IX3U BSTMIBYIO// 9ST®

{TPUS>>T+SNIPISIDAIDSS>>DTTF ANO
fu w>>[LJweygol>>aTT3 3no
’ (++C!sosseroumu > !g=C 3jut)I0j3
‘n u>>u IXONPUSSPUYPUTIDS y>>u u>>OWTLSAS>>3TTI 300
}
(sdeagnutgautad) JT

! = SSeT)UOPURIYIXaU
{BWTIOITTIIFOISITs = OWTLUOPURIYIXDU
}
(SWTLUOPURQYIXAU > SWILSFTTIOISIT«) IT
2() urbeq* [[] SEWTLOITIIOARIIVPINT = QWTLSITTIIOIOIT

ddrodxgqrap

{

170

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{TPU®>>, SNIBISIDAIDG (>>BTTT INO
fa w>>T+[>>ussRTDIOWRYqO L, >>dTT3 Ino
(++[!sosserounu >C {0=[3ut)zo3
fn AUSAH,>>w SUWIIWSISAS,>>ITTF 3IN0
31713 3ndino 3yl Jo sispesy =2y3 dnaiss //
) }
{sde3snwrgiutad) 3T
}
(suognuelsayli) It
«.ﬁk«,.«.***#«*«.x****«.**.ﬂ«.«.*«,*««.***«.*«..«*#***«.**«*ii**«,.««.**.«,***.«.**i*****k**#i«;***«\
I UOTIRTNUTS TWRIBUL wsxyxxxxxxxxxrxxxxrrxrssrxsrrrrxx/
\k«.x.*.«*«.««.«&*i*.««.k***«,*«;*«.****«*«.**«.*«.«.*«.*#«.****«.««.«.*«,.«k«*«,***«,*««%**«.***«.*«.***«,\

{mau uedW PINTI = PIO ueswW PINTJ
(T + sunywrs) / (PO uesw PTNIJI - PIAISSJOLPINTI) + PTO ueau PINTJ = MOU uesuw PINTJ
{Id PTNTI Jo uesw o1dwes syj swrl [eax1 o3epdn //

{paazesqol = paarsggorpInig
Ao11od 14 pInT3 3o @bedois syl 103 Teqel ayl// :dJOLS IdAINTA

{TpPUS>>T4+SNIL3SISAISS>>DTTI INO
fu w>>[[Juwey¥gol>>81T3 3no
(++{fsossepounu >L !p=C 3ut)ao3
iy w>>uS0TAIDSPUAQOLISE Ty >> 0 W>>BUWILSAS>>3TTF Ino
}
(sdeagnursyutad) 3T
!T- = SN3B]}SIDAISS
{OWTLPUIISGINOU = SWTLSAS

doot @TTym jo pus // !{
[Clusyqol =+ sqopLTe3lol
sosseIouUNU > !0 = [3jur)Io3g
!0 = sqoprelol
sqol paurewsl Te303} SY3l a3TeNOIRD //
{

.
’

(++C

![= SSeTHUOPURYIXIU
{BWTLOITTIIOIDIT+ = SWILUOPURAYIXDU
N }
(SWTLUOPUBAYIXIU > SWILIITTIOIDIT«) IT

ddr>-odxzgqrapm

171

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

asT®

() 3uoxz dod’ [UOTIOR] SSTITIOTIJIOARIAYNWNRISUL
() 3uoxz dod- [uoTioe] SBWTLIDSIOARIIYNNRIDYL
() 3uoxz dod- [UOTIOR] SOWTILOFTTIOARIIYNNRIIYL
S3STT TIP WOIJ SIUSBWD[S 9Yl Sa0wWSI UYL //

{BWTLIDS = SWILPUAISSIXIU
{BWTLIDTAIDSIOIDI Ty = SWILISS STYNOP
swT]) uUoT3STdWOD SOTAIIS IXBU dY3 386 pue ‘3T JO SWTI 9OTAISS Byl 3199 //
: () urbaq- [uoT3IOR] SSWTLISSIJOARIIVNINEISYL = SWILIOTAIDSIOISIT
3T 39919s 3snl ‘3391 gol auo Afuo 3T //
}
(T == () 22ZTS* [UOT3IOR] SSUWTILSITTIOARIIYNWRISOYL) IT
s9T3TI0Tad WOopuRI ITDYJ UC posSeg 2DTAISS I0F 9UO 9Y3 309[as 'z uoTtlido //

! (0) UOTIDOYNWRISYLISH<-93L1SIND = UOTIO®
‘peseq 0I9Z ST SOPOD +4D BYJ UT UOTIDE Y3 utebe 930N //
uoTI0® NKeIIYL ISIATI Y3l putd //

! (ueyqol)sjels3sh = 93e35IAND
@3e3s butizels syl 389 //

! (S®T3TIOTIJIOARITR) SOTITIOTIJIOARIIVNNEIDYL <2TqnOd3ISIT>I0IDDA
! (SSWTLOOTAIDSFOARIIR) SBWTLIDS JOARIIYOKEIDY], <2 TqnOgISTI>I0309A
! (sewr 93 1T30ARIIR) SBWTLOITTIOARIIVNKNEIDYL <9TQnOQISTT>I0309A

sse[d Aq 3SOT SIBWO3ISND JO Iaqunu 3Yj 3unod // ! (p’sessepounu)ubrsse-ysoqqol
PoAI®S SIBWOISNO JO ILSqUNU Syl Iunod // {0 = poaisgqol

syooda e sqof JO Jsqunu Tel03 SY3 unoy // !0 = SqopIeiol

IX9U 3ISOT ST JI2WOISND SSPTO YDTyYym suTrgeag // !sselduopueqyixsu

Jjuswpuede ISWOJISND JO SWIJ JUIAD ¥Y3 BUTIad // (ALINIANI FNIVA = SWTLUOpURqY3IXaU
uoT39TdUOD 9OTAISS JO SWTIF JUSAd 9Yj auriad // !ALINIANI dNIVA = SWILPUdIDgIXau
019z Se awTl wa3lsAs oyl 13I9s // 0°Q = SWUTLSAS

®TPT 03 SN3e1S I9AISS Yl 19s// !T- = SNIelSISAIasS

9Yy3 se pouTewsl sqol Jo JIaqumnu aYyj 319s // ! (()pus-sasSse[D92TS ' ()ulbsq-sesseldozis)ubIisse-uweyqol
92TTeT3itTur-oy //

ddr-odxsgqiapm

sioquMU TRTITUT

172

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{TPUe>>0>>2TT3 3IN0O
fu w>>[Llueygqol>>21T3 300
(++C¢sosseTpumu >L ‘0= jur)Io3z
‘u n>>uPIYDBRYIUTLXOW ' SPUFNWTS 4 >>n u>>dUTLSAS>>STTF N0
}
(sde3gnutgiutad) 31
}

(dwTXew =< SWILPUZISSIXaU) IT
pIemsl1 Y3 JUNOD 30U Op pPue uoTle[nurs 3Yyj dols ‘swriXeuw I331IB SpPUS 2OTAISS IXau oyl JI //

{++paazsgqol
{UOT30® = SNJeISIVAISS
{- - [uoTaoelwayqol

STqRTIRA I93UNnOd 243 93epdn pue SSBID UOTIOR 9YJ WOIJ SOl BbuTuTewsI Jo Idqunu aY3 oseaivad //

! (qOLPoAIBS) OSBID [UOTIOR] S2TITIOTIJIOARIIYNNEIDYY

! (BWTLPOTAISSIOISIT) 95T " (UOTIOR] SBWTLISS JOARIAVINRISYL
! (SWTLSITTIQOIDIT) 9SLIS " [UOTIOR] SSWT LI TI1FORRIIVINRIDYL
S3STT 921yl T[® WOIJ SIUSWSTS dYl dAOWSI UayL //

IBWTLIOS = AWILPUHIDSIXDU
{BWTIODTAIBSIOIDI T = JWTLISS DTJNOP
Swr3l UOT3ISTAWOD 92TAISS 3IX2U Y3 pue 3T JO SBWI] 90TAIIS =4Yy3 23189 //

{TPUS>>T+9D2TAIDSIUBSIUOOYI>>,,ON ST 9DTAIDS I0J JUSS BUC 9YLu>>IN0d//
bngsp 103////

{(deb ’'PWIISDTAISSIOIDIT)SoURAPR

{(deb ‘PwTISITTIIOIDIT)@DUBAPE

! (qoppealas ‘() utbeq’ [UOT3OR] SOTITIOTIJIOARIIYNNRISYL) 9oUeISTP = deb

S9WT] SJT] PUR S WT] 20TAIDS IJY3J PUTT ©F UOTIBDO0T IYHTI 9yl 03 SI03IRISIT Y] DA0W //

f(()pua” [UOTIOR] SBTITICTIJIOARIIVNNEIDYL
‘() utbeqg- [UOTIDR]SSTITIOCTIJIOARIIVONEIDYL) IUSWS I XBW = qOrpsAlss
90TAISs 103 a1qeireae qol Ajtzorad 3Isauybrty syl asooyo //

() urbeq- [UOT3OR] SPWTLISSJOARIIVNNEISYL = SWTILODTAISSIOIDIT
{() uThaqg- [UOTIOR] SBWTISITTIOARIAYNNERIDYL = SWILDITTI0ISDIT

ddy-odxsgqram

SpIemMuo

173

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

f() 3uoxz dod- [UOTIOR] SOWTLDITTFOARIIVNKRIDYTL//
SDTAIS®S I0F 3IXSU 3ISOT ©q 03 duo ayj puss ‘T uwotrido ////
‘SSeTd UOTIOe SYJ WOAF SOTAISS I0F IUdS ST qol YoTym 3I09[3§ //

! (xopuryoode) UOTIOVNWRIDYLIDb<-93838IND = UOTIOR
!{(@zTgde3s™ / SWTLSAS)I3UT = xopuryoods 3jut
! (weygqol)@3eigiab = @3e3gInd
{QUTLPUTIDGIXBU = SWTLSAS
}
UoTISTAWOD BDTAIBS ST JUDAS IXDU JT // (SWILUOPURQYIXOU => SWILPUTIDSIXBU) IT
}
(0 < sqOLTR3I0l)aTTUYM

! [flwsyqol =+ sqoprelol
(++[!sosserpunu > !¢ = [3jur)zoz

! 1PUS>>T+SN3LISISAISDS>>STTT ANO
fu w>>[[Jweyqol>>d113 3no
(++C!sosserounu >(‘0=C 3jut)zo3]
ta W>>ud0TATIDSIOIOLISITASYLPUSS 4 >> w>>BWTLSAS>>STTF In0

}
(sdeasnutsiutad) JT

juea® 3SITF STY3 Indano //

! = sseIDUOpPURQVYIXSU
{AWTLSITTIOIDIT = SWILUOPURAYIXOU
}
(SWTLUOPURQYIXOU > SWILSITTIOIDIT«) IT
() utboq- [[]sduTISITTIOARIIVANRISYL = SWTISFITITIOISIT
SSPTD Yded UT 3IXBU 3ISOT 90 03 SUOC 9Y3l SAemIe ST juswe[d 3ISITI SUL //

SSeTd 3IX3aU 9yl 03 ob 3snf ‘3387 qol ou sT 19yl II // !{SNUTIUOD
(() Aydwe" [[]sswTleIT1I0ARIIVNKNEI®YL) IT
}
(++C ?!sessejpumu >[!0 = [3ut)I03
‘uoT3IDSIes 9yl Huryew I9)Je JUSWUOPURGE IXSU DY 2TNPLYSS //

!d0OLS NWYIIHL 0306

ddr>-odxsgqrapm

174

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

! (qorpaares) 9s5eIs” [UOT3ID0R] S9TITIOTIJIOARIAVNNRID],

! (BWTIOOTAIDSIOIDIT) OSRID * [UOTIOR] SOWT LIS JOARIIVNWNRISYL
! (QWTI2ITIFOIDIT)SSRIS " [UCTIOR] SOWTILD I TTI0ARIIVONRIDY
S3ISTT 93IYl [Te WOIJ Sjuswela 29Uyl SA0wWdI udyy //

OWTLSAS + SWTLISS = SWTLPUFIDSIXOU
{OWTLODTAISSJOIDI T« = DWILIDS DTNOP
SWT] UOTISTAWOD 9DTAISS IXBU SY3 PUB 3T JO SWII 90TAISS 8Y3 399 //

{TPUS>>T+90TAIDSIUSSBUOSYI>>,ON ST 9OTAISS I0J JUSS dUO 9YLu>>3Nn02//
bngep 1203////

{(deb ‘BWILSDTAIDSIOIDIT)doURADPE
{(debp 'SWTIOITTIOIDIT)SOURAPR
f{qorpaarss ‘() utrbaq- [UOTIOR]SOTITIOTIJIOARIIYNWEISYL)@oue]3sIp = deb

93FTT pPue SSWI] SOTAISS 9Y3 PUTF OF UOTILDOT IYLTI 9yl 03 SI0IRISIT SYJ SAOH //

{{()pua’ [UOT3OR] SBTITIOTIJIOARIIYNNRIDYL
‘() uthaq* [UOTIOR] SOTITIOTIJIOARIIYNNEIDYL) IUSWS [XeW = JOLPaAIDS
9@0TAI9S 103 @[qeltear qol Ajtaxotad 3seybry =yl ssooyo //

() urbHeq- [UOTIOR] SBUTLIDSIOARIIVNNRIBYL = SWTLSDTAISSIOIS]T
() utbaq- [UOTIOR] SBWTLSITTIOARIIVOINGIOYL = SWILSITIJOISIT

{() 3uoxz dod- [UOTIDP]SBTITIOTIJIOARIIVNNEIDYL
2{) 3uocx3y dod- [uoTiloR] SSWTLISS IOARIIVNINEISYL
() 3uoxz dod- [uoTioe] SBWTLSITTIOARIIVNNRISYL
SAISTT ITIe WOIJ SIUBWST® BYl} saCwWSl UsUL //

{2WTSAS + SWTLISS = SWTILPUAISSIXSU

{BWTIODTAIDSJOIDI T+ = SWILISS STNOP

swrl uoTloTdwod 9DTAISS IX9U Yl 3196 pue ‘3T JO awrl IDTAIIS Y3 39D //
2() uthaq- [UOTIOR] SPWTLIDSJOARIIVNNEIOUL = SWILSDTAIDSFOIDIT

3T 30919s 3snf ‘31397 qol suo ATuo IT //

(I == () 22TS* [UOTIDR] SBWTISITTIFOARIIYNNRISUL) I T
soT1TI0TaId WOpURI ITOY] UO POSBQ 9ITAISS I0J duo aY3 30a[as ‘g uorado //

ddr-odxgqiapm

asT19

}

sauTy

175

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

SSOT IDWOJISND ST JUDAS IX2U DSTMIADYIO// BSTD

{TPUR>>T+SNIRISIDATSS>>ITTF ANO
fa o w>>[Cluwsugol(>>31TI 3no
(++C!sosserounu >L 0= 3uT)x03F
i #>> 3 IXONPUDSPUYPUTIOS i >> W>>BWTLSAS>>2TTI Iano
}
(sde3gnursjutad) 3T

! = sseToUOpURqYIXaU
IQUTLOITIIOISIT = SWILUOPURQYIXIU
}
(SwWTLuopuRqyIXaU > SWILDITIIOIITH) IT
{() urbaq- [[]sSoWILSITIFOARIIYNNEIOYL = SWILIITTIOISIT
fanuT3uod
(() A3due- [[] soWILoITTIOARIIVNINEIOYL) IT
}
(++[!sesserounu [!g = € jut)xo3
!ALINIANI E0IVA = SWILUOPURqY3IXau
‘UOT303TaS By} HuTlyew I83Je JUSWUOPUERGE IXBU oY) SINpsyssay //

’
R
!d0LS NWVLIHL 030H
{
{TPUSO>>(0>>3TTF 3INO
Ly w>> [h“_ wayqol>»>aTT3 3ano
(++C¢sosserounu > !g=C 3ur)x03
Ly w>>,POUORIYBUWILXRW ‘SPUFNUWTIS , >>. w>>8WITLSAS>>3TTY ano
}
(sdejgnurgiutad) 31
}

(BUTIXRW ™ =< SWTLPUFIDSIXSBU) JT
pIemel SY3 3JUNOD 30U Op pPuR UOTIRTNWIS Y3 do3js ‘SWTIXew I93Je SpUS 9OTAISS oyl II //
!4++panxaggol

snje3s I9aI9s 8yl ajepdn // ‘UOT3IOR = SNILISIDAISS
{- - [uotioR]WRygol

ddr>-odxgqrapm

{

spIemuo

176

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

}

(sdeasnursiutad) 3T

!1- = sn3iejgisaiss
{BUTLPUHIDSIXBU = SWTLSAS

dootr oTTyM jJo pus // !{
{[flusyqol =+ sqopTeloln
(++C !sesseTpunu >[{0 = [jut)Ioz
‘0 = sqorte3ol
sqol psutewsz Te303 8yl 93TeNOTed //
{
H

{[= ssel)uoOpuUBRqYIX3aU
- IDWTLRITIIOIDITy = SWILUOPUBQYIXSU
}
AQEMBQO.DCMQ@UVAOG > wEﬂﬁwwﬂAmouwu.ﬂ«,vuﬁ
f() urbeq- [[]SSWTLOITIFOARIIVNNRIOYL = SWIL2ITTFOILIT
uwﬂﬂﬂUEOU
' (() Ajdwe- [(]sawTLo3ITTIOARIIVNARISYL) 3T
}
(++C ‘sesserpunu »[‘g = [3jur)xog
SSPIO UDOTUYM pueR JUSWUOPURJE 3IXSU JO BWTI] 8Y3 @Gﬁh\\

() 3juoaz dod- [SSBTDUOPURQYIXDU] SOTITIOTIJFOARIIYNNRIBYL

f{)3uox3l dod* [SSERTDUCPURAYIXSU] SBWTLISS JOARIIYNNRIBYL

() 3uox3 dod- [sselduopueqyIXau] SaWT oI TTIJOARIIYNNRIDYL

3s0T 3snf auo a2yl burtaowsx AQq uoTieoo] gol 3sOT 3Ixau ayly s3epdn//

{TPUS>>T+SNIRISIBAISS>>BTTT N0
fu w>>[LJuweyqol>>2TT3 3no
(++[!sosserpunu »C {g=C 3JuT)I03
‘n n>>; JUSWUOPURAY 4 >>T+SSRTIUOPURAYIXIU>> , SSRTDu>>u W>>9UTLSAS>>3TTF 3INnO
}
(sdeagnurgjutad) 3T

{ALINIANI E0TYA = SWILUOPURQYIXSU
{4+ [sseTDuopuRqylIxXaU] 3so7qol

! .. [sseTDuopueRqyIXaU]WLYqo L
{DWTLUOPURYIXDU = DWTILSAS

ddo>odxgqrapm

177

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{TPU9>>,SNILISIDAIDS ,,>>OTTF INO
" w>>T+[>>,SSeIDIFoWwRUqOo Ly >>3T T3 ano
(++[!s@sserounu >C ‘g=C 3uT)z03
Iy AUSAH,>>, SWIIWS]ISAS,>>3TTI 3no
9173 Indano 8y3y jo sispesy =2yl dniss //

}
(sde3snurgiutad) 3t

}

(puogoTdoAw;) IT

#i#****k*«***«*¥k*«**%***t%*k«********%********¢**********«*****«*k***k***k«\

Jevxrxxxrrxvxxrrverrrrxrrxrxexxry UOTIRTNUIS DTJOAR T,

*ﬁi**#********i**************#*****%«*#*««***a*************#*************x******\

{

{9NI3 = SUOUNWRIBYI

100 = peAI9gqornelILayd

{IPUS>>, SUNT ,,>>T+SUNYWTS >>, I93IL POyYOERaI BTIDITIO dois UOTIeTNUTS Ao1T0d NHRISYL,>>3N0D
}

(66 < SUMMWTS 3F JJIATINAILIHDOV > (((T+SUNYWTS) /IAPTINTI NWRISYI)13bs) « 96° 1) 3T
suni TQT I93Fe UOTIRTNWIS nwelsayi dois ‘ITWIT STJeMOTI® BYj UTYITM ST ASpP pP3is ¥yl 3I //

IMBU uraW PINTI nWe3lsayl = pIo uesdw pPINII nwelayl
‘e3Tep x BITOP x (T + SUNJWIS) +

JIeA” PINTI NKRIDYZ » ((SUnyWIs)aTqnop/0° T -T) = IeA PINTI NWeIay3l

(0 < sunyurs) 3T

{PTO uURSW PINTI N{RIBYI - MOU uesw pINnTI NWelsyl = eITOP STANOpP

(PTO UeaW PTINTI NWRIBYI - BITSP PINTF OWRIBYL) + PO ueswW pINTI NWRISYI = mau uesw pINTI OWelsyl
{poAISSOLPTNTI - PIAIDSUOLNRIDYY = el[op PTNTI NWelIay3 a[gnop
DWe3lsayl pue Id PINTJI US9MISJ SDOUSDISIITP 3Y3 JO SdurTIea purp uesw osidwes syl swrl Teax a3epdn //

!poaassqol = paaxssqornwelayl
AotT10od nwejsylz jo ebedols 9yl 103 TeqeTl =Yl// :dOLS NWYILIHL

! IPUS>>T+SN3VISISAISS>>STTT 2INO

ty w>>[Llweygof>>9TT3 3no
(++C!sesseTounu >{ !0=(3JUT)I03
W>>u9DTAISSPUHCGOL ISR T >>n W>>3UTLSAS>>9TTI 300

ddr-odxgqiapm

‘f

(T + Sunjuts)

178

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

90TAISS 103 STqelIeae qol Ajtiotrad 3ssybry ayj asooyd //

() urbaq- [UOTIDR] SBWTLISSJOARIIYOTAOAN = SWTLIOTAISSIOIDIT
‘() utrbsq- [UOTIOR] SDWILDITTIOARIIVOTAOAR = SWILDITTIOIDIT

o878

{() 3uoxy dod- [UOT310®] SOTITIOTIJIOARIIVOTAOAR
{() 3uox3z dod- [UOTADER] SOWTLIDSJOARIIYO TAOAR
() 3uoay dod- [uoTioe] sBWTLeI TII0ARIAVOTACARN
S3ISTT IR WOIJ SIUSWa[® DYl dA0wWSI usyl //

{BUWTLIBS = SWTILPudIagixau
{BWTLOOTAISSIOIDITx = DWILISS STYNOP
SWT3 UOTISTAWOD 9DTAIDS IXBU 8Y3 396 pue ‘3T JO SWI] SDTAISS 8yl 389 //
{{) utrbaq- [UOTIOR] SBWTLIBSIOARIIYOTAOAN = SWTILSDTAISSIOISIT
3T 39978s 3Isnl ‘3397 qol suo Afuo 3T //
}
(T == () ®2zTs' [UOT3DR] SBUWTLOITIIOARIAYOTAOAR) JT
s9T3TI0TId WOpuUeRI ITSY] UO paseq 22TaI8s 10J suo 2yl 3o9Tss ‘g uorado //

{(Q) UOTIOVYTILIBD<-93©3ISIND = UOTIOE
uot3oe OTdoAw 3IsaT3y ¥yl putd //

{(weygol)e3eigisbh = 93e38aInd
93e3s burixelis oyl 38D //

(S®T3TIOTIJFOARIIR) SBTITIOTIJIOARIIYOTAOAN <@TqNOJISTI>I0I09A
(SPWT 90 TAIRSJOARIIR) SOWTLIDSJOARIIVOTAOAN <@ TANOQISTI>IOIODA
! (SPWTIaITTI0ARIIR) SBWTLOITTF0ARIIVOTAOAN <8TqnOdaIsIT>I10309A

’
’

Sse1d Aq 31SOT SIDUWOISND JO IBqUNU 8Y3 JUNOD // ! (Q’sesseldunu)ubrsse-3isorqol
PoAI®S SI9WOISNO JO Idqunu IYl Iunod // {0 = paaxagqol

syoode 3e sqol jJo xequnu Te303 2Yl unod // {0 = sqopielol

1X9U 3SOT ST JBWO3ISNO SSe[d YOTym dUIFad // !SSeTOUOPURqYIXIU

Jjuswpuede IBWOISNDO JO SWTI JUSAD Yl SuTliad // ‘ALINIANI ANIVA = SUTLUOPURYIXSU
uoT3ISTAWOD 22TAISS JO SWI3 JULAD 9Yl suriaa // ‘ALINIANI ENIVA = SWTILPUZIDGIXDU
0I5z Se Wl WwelsAsS 3yl 13s // !0°Q = SWILSAS

9IPT 031 sSnlels IBAISS 9yl 38s// !{1- = SNILISIDAISS

9yl se pautewdi sqol Jo Xaqunu ayj 38s // ! (()pua sssseIDIZIs” '’ ()urboaq-sasse[dozTs)ubrsse-wayqol
@zTTRIITUT-2Y //

ddo>-odxsgqrapy

sIsqumu Tet3Tur

179

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

(() Ryduwe* [[]ssuTIoITTJ0ARIAIVOTAOARN) JIT
}
(++€ !seosseroumu »>(fp = [jur)aoz
‘uUoT310979S 9yl bulyew I93jJe JUSWUOPUBRHER IXBU IY3 SINPaYsds //

‘dOLS DIJOAH 0306
{
IpUe>>(0>>9TT3 3no
fu w>>[[Jweyqol>>3TTF 3no
(++[!sesseToumu >L !p=C jut)aoz
n #>>aPOYDRSYSUTLXRW -/ SPUHATWMITS 4y >> u>>BUTLSAS>>3TTF 3IN0O

}
(sdeagnurgiutad) 3T

}

(oWTIXeW =< SWIIPUAIDSIXBU) IT
PIEMSI SU3 JUNOD 30U Op pue UOTIRTNWTS 3yl dois ‘sSwirXew I93Je SPUS SOTAIDS IXSU oYl 3T //

{y++poaaxagqol
{UOTIN® = SnjelgIsAISS
! - - [uoT3or]WOYqOL

STgeTIRA I93UNOD 9yl °3epdn pue SSTO UOTIOP 9yl Woxj sqOf buTurewal jJo Idqunu oyl osesidsq //

! (qorpeaIos) 9SeI®” [UOTIDR] S8TITIOTIJdI0AeIIYO TdOAR

! (BWTLOOTAIDSIOIDIT) OSRID " [UOTIDR] SBWT LIS JOARIIYO TAOAR
{{SWILSITTIOIDIT) 3sRID " [UOTIOR] SOWTLOITII0ARIIYO TAOAR
S3ISTT 891yl [[® WOIJ SIUSBWSTS °9Yl SAOWLI UYL //

{2WTLI9S = SWTILPUIIDSIXDU
{SWTLODTATIDSIOIADI T« = DWILISS STYNOP
swWT3 UOTISTdWOD SOTAISS IX9U aYJ pue 3T JO BWT] 92TAISS 8yl 199 [/

! (deb ‘SUTLOOTAISSIOISIT)SOURAPR

!{(deb ‘SWILSITTIIOISIT)SOUBADR

{ (qoppaaxes ‘() urbeq- [UOTIOR] SOTITIOTIJI0ARIIVOTAOAR)souelsTp = deb

SBWT)} 9JTT PUR SSWI} SOTAISS 9Y} PUTF OF UOTIROOT 3IYBTI 9yl 03 SI03RIIIT DYl SAOW //

{(()pus’ [UOTIOR] SOTAITIOTIdIOARIIYOTAOAN
‘() utboq- [UOTIOR] SOTITIOTIJIOARIIVOTAOAN) JUSWO T XW = qOLPOAISS

ddo>odxzgqap

spaemuo

180

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

S3ISTT TTe WOIJ SIUSWSTS JY3 DA0WSI UYL //

{DWILSAS + SWTLIDS = SWILPUTIDSIXDU
IDWTLODTAIDSIOIDITx = SWILISS OTQNOpP
awWT3 UOTISTAWOD BDTAISS 3IX3U 9Y3 319D pue ‘3T JO SWI] 2DTAISS Y3 399 //
{() utbeq- [UOTIOR] SBWTLISSJOARIIVOTAOAN = SWTLODTAIDSIOIDIT
3T 309T9s 3Isnl ‘338r qol suo ATuo 3T //
}
(T == () 92%1s" [UOT3DOR] SBWTILDITTIOARIIVOTACAR) JT
S9T3TI0TId WOpURI ITSY] UO paseq eOTAIDS I0F SUO 8Y3 3Id99Tas ‘g uotido //

! (xepuIyoods) UOTIOVTILISH<-93L]ISIND = UOTIDR
! (ozTgdels” / SWTILSAS)3uTr = xepulyoods 3Jur
{ (weyqolf)eje3zsisb = o3e3zgand
{BWTLPUFILSIXDU = SWTILSAS
}
UOTISTAWOD SDTAIDS ST JUDAD IXSU IT // (SUTLUOPURAYIXIU => DWILPUTIDSIXDU) IT
}
(0 < SqOLTe3l01)aTTyUM

¢t [[Jweyqol =+ SqorTe3lod
(++[!sosserounu™>[{0 = [3utr)Ioz

{TPUSS>>T+SNIRISIVAIDSH>S>ITTI Ano
fu o w>>[Ljweygol>»>aTT3 3Ino
(++C¢sasseTpunu™>(!09=C 3ut)aog
fa n>>yd0TAISSIOIqOLISITIBYULPUSS y>>n w>>dUWTLSAS>>3TTF 300
}
(sde@i3snursiutad) 3T
Jusa® 3IsIT3I sTYl Indano //

! = sSsSeTduopuUeRqYIXDU
{BWTLRITIIOIDIT+ = SWILUOPURIYIXDU
}
(SWTLUOPURAYIXDU > SWILSITTIOISIT«) IT
{() urbeq-: [[]soWTLDITTIOARIIVOTAOAN = SWILSITIFOISAT
SSeT2 Ude2 UT 3IXSU 3ISOT 2q 03 2U0 9yl SAeMTR ST JUSWSTS® 3ISITI =Yl //

SSeTd 3IXau 8yl 03 ob 3snl ’‘azser gol ou sT 819yl II // !SNUT3IUOD

dd>-odxsgqrap

181

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

£ w>>[[Jweyqol>>37T3 3no
(++[¢sosseTounu™ > !0=[3jut)ao3
i w>>uPOYDRAYSWI IXRW ‘' SPUFNUTSy>>u W>>OUTLSAS>>3TTI IN0
}
(sde3jgnwtsjutad) JT

(puT¥ew =< BWILPUFISSIXSU) IT

}

SpIeMUO

pIemdI 9yl JUNOD 30U OP pue UOTIeTNWIS oYyl do3s ’swIIXew I93Je Spus 90TAISS 9y I //

!++paasagqol
snje3ls I2AIss 9yj @jepdn // !UOTIDE = SNILISIDAISS
{- - [uoT3ide]waygol

! (qoppoAIds) 9SBI9 - [UOTIOR] S8TITIOTIJIOARIIYOTdOAN

7 (SUWTILOOTAISSIOIDIT) OSRID " [UOTIOR] SOWTLISS JOARIAYO TAOARN
! (SWILSITIIOASDIT)OSeIS " [UOTIOR] SSWTLSITTIOARIIVOTAOARN
SISTT 99yl [Te WOIJ SIUdBWSTS Y3 dAOWSI UYL //

{OWTLSAS + SWILIIS = SWILPUITIDSIXIU
{BUTLOOTAIDSIOIDI Ty = SWILIDS DTYNOP
awty) uoT3aTdWoD SOTAISS IXBU 9U3 PuUBR 3T JO SWIJ 9OTAISS 9Yl3 399 //

¢ (deb ‘swTISOTAISSIOISIT)8DURAPR

! (deb ‘ewTIeITTI0ISIT)IDUBAPR
! (qoprpaaxes ‘() utbeq- [UOTIO®]SSTITIOTIJI0ARIIYOTAOAR)@ouelsTp = deb

©JTT pPuR SS9WTIJ 9DTAISS 3Y3} PUTI OF UOTIEDO[3IYDBTI 9y3l 03 SI03RISIT SYI SAOW //
{({)pua- [UOTIOR] SBTITIOTIJIOARIIYOTAOAN
‘() utbeq* [UOCTIOR]SOTITICTIIOARIAVOTAOAR) JUSWS TS XBUW = JOLPOAISS

9DTAISS I0F 9TdeIreAa®r ol Ajrxotad 3ssybIiy 3yj ssooys //

() utrbsq- [UOT3OR] SBWTLIDSJOARIIYOTAOAW = SWILEDTAIDSIOIDIT
() utrhbeq- [UOTIOR] SDWTLSITTIOARIAIVOTAOAN = SWTILIITTIIOASDIT

() 3uox3z dod- [UOTIOR] SOTAITIOTIJFOARIIYOTAOAN
{() 3uoxy dod: [uoTi0®] SAWTLISSJOARIIVITAOARN
! () 3uoxz dod-° [uoTjoe] sawTL2ITT1F0AeIIYO TAOAR

ddo>odxgqrap

sawty

osTo

182

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{IPUS>>T+SNILISIDAIDSS>>OTTI 3INO
fu w>>[flweyqol>>a7T3 N0
(++Cfsosserounu >C fg=C 3UT)a03

0>>3 JUBWUOPURAY , >>T+SSRTOUOPURAYIXDUS> ., SSBIDu>>u W>>PUWTLSAS>>9TTI 3no

}
(sdejsnursiutad) 3T

!ALINIANI |0IVA = SWILUopueqyixou
{++ [sseTDuopuRqyixau] 3soTqol
{-- [sserpuopueqyIXaujwayqo
{BWT LUOPULYIXDU = SWILSAS
}

SSOT ISWOJSTND ST JUSAD IXIU 2STMISYIO// SSTD

{

{TPUS>>T+SN3RISIBATIIS>>STTT INO

fu w>>[LJweyqol>>8TT3 Ino
(++[¢sesserownu >C !0=C 3utr)xo3g
2>>) IXONPUSSPUYPUHAIDS y>>u W>>BWTLSAS>>9TTI 3no

}
(sdeasnwrsiutad) JT

H
! = ssel)uoOpuURqYIXDU
{DWTLOITIFOISITy = SWILUOPURAYIXDU
}

(SWTLUOPURAYIXBU > SBWILBITIIOIDIT«) IT

1() utbaq- [[]sSsWTI®ITII0ARIAIVOTAOAN = SWILSITTIFOISIT

{3NUTIUOD
(() A3dwe- [[]sowTI93TT130A0IaYOTAOAN) IT
}
(++[!sosserpunu >C Qg = [jur)Io3z
{ALINIANI I0TIVA = SWILUOPURqYiIXaU

‘UOTIVSTSS 9UY3 BuTew JI93Je JUSWUOPUBRJER IXSU Y3 STNpayassay //

!dOLS OIJdOAW ©30b
{

{TpuUS>>(>>aTTI Ino

dd>-odxgqrap

183

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

!pTo uesw pInTy otdoAw - meu uesul pinTy otdoAw = e3jI8p 9Tgnop

/ (pTo ueaw pInTy oTdoAw - eITOP PINTI OTdoAw) + pIo ueaw pTniJ otdoAw = mau uesw pTnTji ordoiu
!paaxssqorpIntiy - paaxasqorotdoAw = e319p prnld ortdoiw spqnop
otdoAw pue Id PINTJ USSMIDQ 9DUSILIFTP 2yl JO dOURTIeA pue ueaw oTdwes 9yl swil Tesax a3epdn //

{paaIsgqol = psaxsgqorotdoiu
daodge juswejels 0306 9yj 103 T99eT 3Yl// :dOLS OIJOANW

{TPUS>>T+SNIRISIBDATIISS>>DTTT N0
fu w>>[Llwaygol>>aTT3 3INno
(++(!sosserounu >C fg=L jur)xo3
N n>>udDTAIDSPUHAOLISRT Y>> 4 W>>SUWITLSAS>>3TTI INO
}
(sdeasnutsjutad) 3T
!1- = sSn3e3lgI9AISS
{BWTLPUZIBSIXOU = SWTLSAS

dooT STTym jo pus // !{
! [Llweyqol =+ sqoprieio]
(++C !sesserpumu > g = [3jur)xog
{0 = sqorielol]
sqol pautrewax (IO} 9yl 83Tenoyed //
{
°f

-~

{0 = sselDuopuRqylIXaU
IBWTLOITIIOID] Ty = SUWILUOPURQYIXSU
}
(SWTLUOPURQYIXOU > SWTLSITTIFOISIT«) IT
() urbeq- [[]sswWTLoITTJ0ARIIVOTdOAN = SWTISITIIOISIT
{3NuUTlUOD
(() Aydws* [[]sowToITT1I0AeaavoTdoAN) IT
}
(++C !sessefpunu >L g = [3uTr)Io3F
SSBeTO UOoTUM puUeR jUSWUOpuURde 3IX2U JO SWT3 3yl putd//

! ()3uoxz dod- [sseTJUOPURQYIXOU] SO TITIOTIJIOARIIVO TAOAR

! ()auoxz dod- [sseTOUOPUROYIXSU] SOWTLIDSFOARIIVD TAOAR

! () 3uoxz dod- [sselpuopueqylxXau] sawTLaIT1I0&ke1ayoTdoAR

3s0T 3snl auo ayjl buraowexr Aq uoijled0T ol 3s0T 3xou ay3 e3zepdn//

ddrodxgqram

(T + sunyurs)

184

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

{()9@soTd aTT3 3INO

{IpUS>>IeA PINTY oTdOAW>>, ,>>IBA PINTI NWERISYI>> //
" W>>PTO ueswW pTNT3 OTdoAw>>, u>>PT0 UesW PINTI>>u W>>PTO URSW PTINTI NWRIDYUI>>, w>>SUNPYWIS>>STTI 3Ino//

f{(sunyurs/aea prniy otdoiu) 31bs) pInTioTdoAWa9gpisaos

jutod STY3 3B SUNI JO JaqUnU o3

ST 3T OS ‘®uo Aq peppe sT sunjyuwrs ‘dooTl syl Jo 3no // f{(sunyuis/Iea” pINTF nNWelayl) 3Ibs) pInTINWRIDYLADAPISIOS
{(p1o uesw pInTy o1doiw)pIinigotdoinwuranias

! (PTO UeSW PTNTI NWEISY) PTNTINWRISYLURSKISS

{(PTO ueoW PINTJ) IdPINTIUESNISS

s3Tnsax T[euty syl 3ss //

uoTjeTnNWIsS JO uni-I3Tnw jJo doof 3o pus // {

{
{yea1q
"SS9 SUo 3ng ‘saTdwes JO ISCUNU Ten3jde Y3 j0U ST SUNYWIS ‘es1d oyl 03 9Nd// !++SUNJUTS
ITpuS>> ,SUNI ,>> T+SUNYWIS>>, I933e dojls uoTle[nuUTsS 8YlL,>>3Nod

}

(suogoTdoAw 33 suUOQNWElaYl) IT

eTI9tiTIo dois //

H TpuUs>>
IeA” PTINTT OTdOoAUS>>,, W>>IA PINTT NWR1aUA>>//
u w>>PaAaIagqoroTdoAus>>, n>>PBAIBZAOLPTINTI>>n w>>PIAISSAOLNNRIDYI> >, w>>SUNYWTIS>>DTTI 3no

SunI JO ISqUMU 2Y3 URYJ SSOT SUO BT PUP OI9Z WOIJ S3IeIS YOTUYM ‘X9PUT UNI oYyl ST Sunywis //
‘g

{anx3 = suogotdoAu
019z 8q 03 paaIss qol ayl 388 // {0°0 = peaxssqoprotdolu
{TPUSS>, SUNI ,4,>>T + SUNJWTS >>, I93Je paysesl erTIa3Tido dois uotielnwrs A0T110d OTdOAW,>>3NOD
sunx 10 sordwes Jo Iaqunu 8Yj ST T + SUNJWTIS//
}
(66 < sSUNYWTS 33 JJIQTIYAILIEOOV > (((T+SUNYWTS)/Iea” pTnT3I oTdoAw)3abs) x 96°T)3IT

{moU ueswW pInTJ oTdoAw = plo uesw pinTF ortdoAw

{eq19pP x BITOP x (T + SUNJYWTIS) +

TeA pInTI oTdoAw x ((SUNYWIS)ITANOP/Q°T -1) = IeA pInil otdoAw
(0 < sunywTts)JT

ddr-odxgqrap

185

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

(OMEZ ANIYA < 0°T - sqoxdums)JT
10119 ue j10deox ‘suc ueyl xs3eai1b sqgoxd adAky T-L IASITI OUI 31//

}

(sqoaxdums-(-T) 2sn 3sn{ os ‘juspusadsput j0u ST 2dA3 3setl STUL// ost®

{
sodA] 19a0 uOTIRUMINS DY] 3IDH // ‘edAistyriojqoidisod =+ sSqoIdums

!I03RUTWOUSP /

[xspuradAl] sqoadiotad y [XspuIsTo) [xopuradAl] sxoI1xgs(o™ = odArsTyLioiqoigisod

asT®
{00 = odArsTyuraogqoadgasod
(O¥EZ daNTYA > [X9puIrsid] [xopuladAl] sIoIIgsTo) IT
{
{(([w)eydre ’ [u] e3aq /3uTogawTi)mod -)

([xepuradAl]eydie ’ [xepuradil] elsq /iutodswtl)mod)dxs

[w] sqoadIoTad s [XSpuIsTo] [W] SIOIATSTO =+ IOJRUTWOUSDP
{DNUTIUOD
(O¥EZ dNTIYA > [XOPUISTQ] [W] SIOIAFSTO) IT
u 3xau syl o3 dwunl 3snl ‘ox3z ST I0IXIS 8Yl 3IT//
}
(++W {s@sseTOWNU > W {Q = W 3JUT)I0J
{070 = JIo3rUTWOUSP 3TYNOP
}
Quo 3sel ay3 jou ST a2dA3 |y3l uUsaym 23eINDIRD// (T - Sosserdwunu > xapulsdil) It
tadArsTyrIodqoxdasod a1qnop
. }
(++xopuradAy !sesse(punu > xspui=adAl ! = xopursdAl 3jurl)Io3
sadk3 T1e I19a0 dooT//

(sqoxgums-T) aIsnf ST yYoTUYM ‘LU0 3sel @Yyl nq sadhkl 8yl T[e I9A0 ums// !0°(Q = SqOIJums STqnop
!sTDsTULIOJqoIglIsod aTqnOgoaA

}

(++X9PUISTO {S8SSBTOWNU > XSPUISTO ! = XSPUISTO 3JUT)I0F

sosseid Tie Iaao dooT//

{jutodawTtliygoxdisod suswigomiandadsa
! (Xopulswrl) jutodautysodgiab=jutogawtl aTqnop
}
(++XopuUIowWrl !sSUYs0dmuoTISTOSqWNU > X9PUISWI] ! = XSPUISWTI 3JUT)I0F
syocods TTe I9A0 dOOT//
}
() sSqoIdisodoied::uweiqoidMd PTIOA

ddr-as15q Qra g umsafvg

186

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

tdwel aTgnogosa
! [xopuradAgenii]ajeyiss” / T = SWILISS 9Tqnop

}

(++ xopuradirenay !sesseldunu > xapuladAronii ! = xapuladAlanil 3ut)Iog
SswT]} 90TAX®S 396 03 sT 8sodind oyl yotym jo ’‘2dA3 sniy yoes isao dooq //

!STOSTYLIOGqOId SUSWTIOMIANADOA

(++ XOPUISTD !soSSeIdWnu’ > XIPUISTO

10 =

}

X9PUISTO 3JUT)IOF

sseid yoes ao3z doo1 //

}

() 9OIdANSULYOTRD: :WDTGOIIME PTOA

! (AutogauTtivgoxdaisod) yoeq ysnd-sqoagisod

{

1 (sTOSTULIOdqoadasod) oeq ysnd-jurodawITrivqordisod

! (8dAgsTyrIogqoxdasod) oeq ysnd-sTISTYLIOJqoadlsod

0°0 03 3T ®2103// ‘0°0 = odArstyraodqoadisod

/7

(NIWNA 3NIVA > 2dALsTylLiogqoadiysod) 3t//

{ () 3x0qE

LIpUS>>, j ipeleuTWI®] ST wexboad syj -1 ueyly asbaer sT qoxd 3sod ayL,>>3nod

{

}

(O¥aZ ANTYA < 0°T - 9dALsTYLIoIqoxdisod) 3T

'
! ()3xoqe
{Tpue>>, i ipeleUTWI®] ST werboxd oSyl ’‘pPoIL23UNOOUS SNSST NBN,>>IN0D

{

}

((2dALsTULIOIqOIgIsod) (UeusST: :yjew: :3500q)) IT
anTea paj3Inssx syl JO AjTabajur oyl Hoayud//

!sqoxqums - (°T = adArstyrrogqoxdisod
{
! ()3xoqe

sT wexboxd oyg °T ueyl xsbrel sT qoad 3sod T[-p JO ums OYL,>>3INOD

ddrsa19qqrap umsadog

{

{IPUS>>, | i PRIRUTULIDY

187

APPENDIX C. C++ CODE FOR KEY CLASSES AND FUNCTIONS

! (sTDsTULIoqoxd) 3oeq ysnd-qoxdansusi

! (dwe3) oeq ysnd-sTdSTYULIOqoad
{
{ ((X9PUISTO ‘SWILPUD 'SWTLIND) TOSIAOPINTIURTSDARy)foeq ysnd-duol
{TPUSS>XIPUISTO>>y / 4 >>BWUTLPUDS>S>, / >>BWTLINO>>3N0D//
bngep 103////

“wEﬂBNOw+®Eﬂ9u90nwEﬂBUCm®H£dov
! (XepuIswTl) juTodawtyoodgieb = swTLInNd 9TInOP

, }

(++ XSPUILWT] {SYDS0dJUOTSTODWNU > XSpUISWI] ! = XOpUISWTI] 3JUT)I0F

syoods uotrstodp TR I9a0 dool//

ddr-1219qqiap\ umsadkog

{

Appendix D

Matlab Functions

The following Matlab functions are included in this appendix.

e calcProb.m: the function to calculate the one step transition probability in
the exponential lifetime and exponential service time scenario in Chapter 2.

Refer to equation (2.32).

o MRLT.m: the function to calculate MRL for Weibull lifetimes. Refer to

equation (2.47).

o BayesianFluid.m: the function to calculate the integration in equation
(3.31) to solve the fluid model when classification is imperfect. It is also

used in (3.19) to compute the one step transition probability in these cases.

The command to compile these Matlab functions is mec - W epplib:libcalc Prob
-T link:lib calcProb.m MRLT.m BayesianFluid.m binopdf.m, the result of
which is a C++ library file named libcalcProb.lib. By importing this file to C++,
we can then access any of these Matlab functions from C++. Note that binopdf.m
is a native Matlab function to calculate pdf (probability density function) values

for binomial random variables.

188

189

APPENDIX D. MATLAB FUNCTIONS

pus
pus
IN - K - (UOT3oR)NW = Z

I{(((uoT3oR)nuUW + D) x° X x° T[-)dxo) x° A = &

$(DA x° (T)e32U3 + 2 =

L(T)U v ((X +7(T)@IBYI x° T-)A¥® -T) «° & »° (T)Squod = &

(9 ‘N ‘uorioe ‘sserpumu

wqoLgowo

ssefownu : [= T 03

{T-(uoT3idE)U = (UOTIDR)U
I - T =1u

‘0 = o

T = K

S9TqeTIeA 93RPTWISIUI %
(x) Toungqoxd = z uUOT3IOUNT

¢ (q’0‘1oungqoxde) Tpenb = z
JUSTOTIFo0D9bIRT : oso0oYoU: gy ILVN FJO0 butuaem
iTe uo butuxem

‘3 ‘7 ‘e3eyl ‘nu ‘SqWOD)OIdOTED = 2z UOT3IdUNJ

190

APPENDIX D. MATLAB FUNCTIONS

puUR
pu=
f((1-eudte) v (39q /° (S+3)))«" ©39q /° eudie x* S &°
*cc (eydte v- (e3wq /° (S+3)) - eydie yv-(e3aq /° 3))dxe = 2
(s)oungautajTTuayueaw = 2 UOT3IDduNng

(q’ 0 oungawT Lo JTTUSNUesws) Tpenb = 19X

3 - (eydte /* 0°T) v' ((L-OT)BOT &' eydre v' elaq - eydre v" 3) = q
punogqraddn uotjexbsluTl SY3l -¢ JO UOTITeRDTED %

{3 ‘eiaq ‘eydie) TN = 193 uoTldung

2INTTEJ 03 SWTI IO SWTY 2377 buTuTewsy uUveW %

u' L'TIW

191

APPENDIX D. MATLAB FUNCTIONS

pus
pus
!9j3eyparzey - (qoiduns -) + 2 = Z
! (sesseroumu)eydie v°© (sesserpunu)elaq /° (1 - (sosserownu)eydie) v 3 »° (sosserpunu) eydie = a3eypaezey
2dA3 3sel syl apnioul%

pua
{93eypiezey x° goidisod + z = z
{qoagisod + goxdquns = qoIdguns
pus
{wouap /- (xspursdAl)qoadiotad i - (x9puladAl) STDAESIOIIFSTDO = qoidisod
EERE]
‘070 = qoxdisod
G-9T7 > (xopuradAl)sTDAHSIOIIFSTD IT
pu=
f((ueydie v- ((w)eiaq/: 1)
- (xepuradAl)eydie v° ((xepuradil)eisq/- 13))dxe x° (W)qoadIOTId x° (W)STDAGSIOIIISTD + WOUSP = WOUIP
pua
fenurtjuod
*9uo 3IX8u 9yl 03 dwunl ‘oxez ST I0IX® @Yl IT % (0 0 => (W)sSTDAGSIOIATSTO)IT
s@sseldunu : [= W IOJF
{070 = wouop
(1) (xopuIsTo) (xopuradAi)~d A3r1rTgeqoad xotxsilsod ayl 23eTNOTEDS%

! (xopuredAly)eydie v (xopursdii)eisq /° (T - (xepur=adAl)eydie) v- 3 x° (xopul=dil) eydie = o3eypiezey
3 swtj 3 adAk]l STY3l JO 93°I PIRZRH %
(T - sesserdumu) : I = xopuradAl 103

suo 3sel 8yl 1dsoxs =adAl yoes a9ao doody

sedA3 [-L 3ISITI Y3 Jo sataTTIgqeqoad Jotaoisod Io9A0 ums 3yl 938INOIRD % :0°0 = qOIJums
‘0°0 = 2
(3) T°POWPTNTF = Z UOTIOUNJ
! (SWTLPUS ‘SUITLIIe]S [OPOKWPINTI®) Tpenb = z
(PWTIPUS ‘SWILIIRIS ’‘XOPUISTO ‘STDAGSIOIIFSTO 'qOIdioTad ‘eieq ‘eydle ‘sSosserounu)pInijuerssied = z UOT3OUNT
[owTlpue ‘swIliIeis] poTiad swrl B ISA0 930X pIeZRY JO UOT3IRIBOIUT oYyl Jo uoTiejndwod %

wpinj Juvisadvg

