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Abstract

This research makes contributions to conditional heteroscedastic models in finan

cial time series. A class of M-estimators for time series models with asymmetric 

form of heteroscedasticity are developed. A weighted resampling method is used 

to approximate the sampling distribution of M-estimators. The primary finding 

is tha t there are estimators in this class tha t can perform better than the widely- 

used quasi-maximum likelihood estimator (QMLE) and even outperform the least 

absolute deviation estimator.

The asymptotic distributions of the squared and absolute residual autocorrelations 

for generalised autoregressive conditional heteroscedastic (GARCH) models esti

mated by M-estimators are derived. Diagnostic tests based on M-estimators are 

developed to check the adequacy of GARCH-type models.

The performance of M-estimators in the estimation and prediction of value-at-risk 

(VaR) is investigated. A wide range of summary statistics is used to evaluate 

and compare M-estimators in estimating the in-sample and predicting the out- 

of-sample VaR of three well-known stock indices. Some of the M-estimators are 

observed to show better performances in predicting the one-day-ahead VaR than 

the commonly-used QMLE.

The Linear Estimator (LE) for ARCH models is explored and results show that 

this estimator provides good estimates for the parameters of the ARCH model 

and also predicts the volatility better than the QMLE. Using a class of weighted 

resampling schemes, it is found tha t there are schemes th a t can match and even



perform better than the commonly-used paired bootstrap scheme. Bootstrap pre

diction intervals for returns, volatilities and value-at-risk in ARCH models are also 

developed.

A weighted linear estimator (WLE) for the multivariate ARCH parameters is pro

posed. This estimator involves solving sets of linear equations and hence is very 

easy to compute. A weighted resampling method for multivariate ARCH models 

is also discussed. The accuracy of this estimator is compared with the QMLE in 

estimating the parameters of multivariate ARCH models. The WLE is also applied 

to real data  sets and forecasts of volatilities and value-at-risk are obtained. Our 

study indicates tha t the forecasting performance of the WLE is not inferior to the 

QMLE and one-day-ahead risk estimates are found better.

M-estimators for multivariate GARCH models are discussed. Two different meth

ods for the estimation of multivariate GARCH models using univariate GARCH 

specifications are proposed. These methods are easy to apply as these require 

several univariate GARCH estimations to estimate the full multivariate GARCH 

model. Results of Monte Carlo simulations and application to real data sets show 

th a t our methods provide better results in terms of estimating and predicting the 

conditional correlations and value-at-risk.
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C hapter 1

Introduction

Many financial time series, such as stock returns and currency exchange rates are 

well described by stylised facts such as excess kurtosis and volatility clustering. 

In order to capture these features in the financial data, autoregressive conditional 

heteroscedastic (ARCH) model was introduced by Engle (1982). Since the intro

duction of the ARCH model many extensions have been proposed. Among them 

the generalised ARCH (GARCH) model of Bollerslev (1986) is the most popular. 

Many applications of the GARCH model to financial data sets have found that this 

model provides a good fit to the data. However, one weakness of this model is that 

it responds equally to positive and negative shocks and hence cannot capture the 

asymmetric feature common in many asset returns. For this purpose asymmetric 

GARCH models are proposed.

The estimation of GARCH-type models is often carried out using the quasi

maximum likelihood estimator (QMLE) where the Gaussian likelihood is used for 

the true but possibly unknown likelihood. The QMLE is consistent and asymptot

ically normal if the innovation has four finite moments. However, such stringent 

moment condition may not hold in many situations; an example is innovations

1



1. Introduction 2

with student-1 distribution where the degree of freedom is at most four.

The main focus of this thesis is on GARCH-type models estimated by M-estimators 

which are applicable under weak moment assumptions. We address the issues of 

estimation, diagnostic testing, resampling and forecasting in both univariate and 

multivariate heteroscedastic models. In addition, we provide a detailed investi

gation of the Linear Estimator (LE), an alternative estimator to the QMLE for 

ARCH models. Thus the main aims of this thesis are (i) to develop computational 

algorithms for new and improved estimation techniques for ARCH-GARCH mod

els (ii) to extend existing work on M-estimation of GARCH models and LE for 

ARCH models (iii) to develop testing, bootstrap and prediction techniques based 

on such estimators and (iv) to introduce new areas of application.

This thesis can be divided into three parts. In the first part of the thesis (Chap

ters 3-5), robust M-estimators for asymmetric GARCH models are proposed and a 

weighted resampling method for GARCH models is discussed. Diagnostic tests for 

GARCH models, when M-estimators are used for estimation, are developed. The 

performance of these estimators in terms of predicting risk estimates is evaluated 

using a wide range of summary statistics. In the second part of the thesis (Chap

ters 6-7), the Linear Estimator (LE) for ARCH models is explored empirically 

and weighted resampling schemes for LE are investigated. Bootstrap prediction 

intervals for returns, volatilities and VaR are also developed. A weighted version of 

LE (WLE) for multivariate ARCH models is proposed and a weighted resampling 

scheme for WLE in multivariate ARCH setup is defined. In the last part of the 

thesis (Chapter 8), some robust methods for multivariate GARCH models using 

univariate GARCH specification are introduced. All proposed methods are inves

tigated through extensive Monte Carlo simulations and applications to real data
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sets. Some interesting results are found in this study and based on these results 

suggestions are made for the estimation, diagnostic checking, bootstrapping and 

prediction of ARCH-GARCH models.

Chapter 2 highlights some common characteristics of financial time series also 

known as stylised facts. We present a brief review of the ARCH, GARCH and 

asymmetric GARCH models. The estimation, testing and forecasting methods for 

these models are also discussed. The aim of this chapter is to make the reader 

familiar with the fundamental concepts and related work.

Our aim in Chapter 3 is to propose robust methods for GARCH models tha t can 

capture the asymmetric property of financial time series. We also aim to explore 

estimators tha t can perform better than the commonly-used QMLE in terms of 

parameters estimation and volatility forecasting. M-estimators for asymmetric 

GARCH models are defined. The class of estimators includes least absolute devi

ation (LAD), Huber’s, Cauchy and B-estimator as well as the QMLE. Algorithms 

for the computation of these estimators are presented. Extensive simulations are 

used to check the relative performance of these estimators in both symmetric and 

asymmetric GARCH models. A weighted resampling method is used to approx

imate the sampling distribution of M-estimators. Our study indicates tha t there 

are estimators tha t can perform better than the QMLE and even outperform the 

robust LAD estimator when the error distribution is heavy-tailed. These estima

tors are applied to analyse real data sets.

There is a huge literature on the modelling of conditional heteroscedastic time 

series, but not much work has been done on model checking or model selection. 

Testing the adequacy of these heteroscedastic models is undoubtedly im portant for
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several economic and statistical reasons. Diagnostic is one of the im portant stages 

of model building. In Chapter 4, goodness-of-fit tests in the class of conditional 

heteroscedastic time series models are examined. Portm anteau statistics based 

on squared and absolute autocorrelations of residuals from GARCH-type models 

estimated by M-estimators are developed. The asymptotic distributions for these 

statistics are obtained and size and power analyses are conducted through Monte 

Carlo simulations. It is found tha t the asymptotic standard errors for both squared 

and absolute residual autocorrelations match the empirical standard errors quite 

satisfactorily for all estimators. Investigation of the sizes of these tests suggests 

tha t their empirical sizes are close to the nominal level. Analysis of the power 

of tests reveals th a t tests based on absolute residual autocorrelations outperform 

those based on squared residual autocorrelations. The power levels of tests, when 

Cauchy and B-estimators are used for estimation, are found superior to other es

timators.

Risk management is one of the important tasks for financial institutions, non- 

financial corporations, regulators and asset managers. Value-at-risk (VaR) is a 

commonly-used statistic for measuring potential risk of economic losses in finan

cial market. Our aim in Chapter 5 is to study the performance of M-estimator 

in estimating and predicting risk estimates. We propose evaluation measures and 

M-tests for this purpose. Symmetric and asymmetric GARCH models using M- 

estimators are fitted to three major stock indices and both the in-sample and 

out-of-sample VaR estimates are obtained. The predictive performances, when 

estimators other than the QMLE are applied for GARCH models, are investigated 

using various evaluation measures and M-tests. It is found tha t these estimators 

not only fit the data well, they also predict the VaR accurately and hence provide 

reliable estimates for risk. A comparison of results for both symmetric and asym
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metric GARCH models reveals tha t an asymmetric model provides better forecasts 

for the data set used.

Bose and Mukherjee (2003) proposed the linear estimator (LE) estimator for the 

ARCH model. The computation of this estimator involves solving only two sets 

of linear equations. An advantage of LE over the widely-used QMLE is tha t its 

computation is very easy and requires less CPU time which enables one to perform 

computer intensive tasks on ARCH models in little time. Chapter 6 makes three 

contributions. First, a detailed investigation of the Linear Estimator (LE) for the 

ARCH model in terms of parameter estimation and volatility forecasting is pro

vided. This estimator provides good results for the estimation of the parameters 

of ARCH models and also produces better volatility forecasts than the QMLE in 

almost all Monte Carlo simulations. These findings are further supported by appli

cation to three stock indices. Second, a weighted resampling method for the linear 

estimator is presented to approximate the distribution of the parameters of ARCH 

models. Results of our experiments show that alternative schemes such as Scheme 

E and Scheme U match the widely-used paired bootstrap and residual bootstrap 

and even perform better than these commonly-used methods. Third, bootstrap 

prediction intervals for returns, volatilities and VaR in ARCH models are devel

oped. Monte Carlo results show tha t although both estimators provide good mean 

coverage, the LE can be considered superior in terms of its mean lengths close to 

the empirical with low standard errors.

Chapter 7 makes two contributions. First, a weighted linear estimator for multi

variate ARCH parameters is proposed. The accuracy of this estimator is compared 

with the QMLE in estimating the parameters of multivariate ARCH models. This 

estimator is also applied to real data sets and forecasts of volatilities and value-



1. Introduction 6

at-risk are obtained. Results show tha t the forecasting performance of the WLE 

is not inferior to the QMLE. Also, one-day-ahead risk estimates are found to be 

better. As a second contribution of this chapter, a weighted resampling method for 

multivariate ARCH models is proposed. Using different weights for bootstrap it 

is shown tha t Scheme U and Scheme E provide better results than the commonly- 

used paired bootstrap.

Multivariate GARCH models focus on volatility and correlation analysis for more 

than one asset. In order to study the relations between the volatilities and co

volatilities of financial time series the development of multivariate GARCH-type 

models is very important. The problems in the application of multivariate GARCH 

models are th a t the number of parameters becomes large as the dimension of the 

system increases and many constraints need to be imposed to ensure the positive 

definiteness of the covariance matrix. The main objective of Chapter 8 is to pro

pose robust methods for multivariate GARCH models tha t are easy to estimate 

and do not put additional constraints on the model. We propose M-estimators for 

multivariate GARCH models using univariate GARCH specification. Two differ

ent models are introduced and the results of simulations and real data analysis 

show tha t our robust estimators perform better than the widely-used QMLE in 

terms of estimating and predicting the conditional correlations and risk estimates. 

Our methods can be applied easily to high dimensional financial time series, since 

the number of parameters is relatively small.

Finally, in Chapter 9, a summary of the research is given and some possible direc

tions for future research are discussed.



Chapter 2

Financial T im e Series and

Literature R eview

2.1 In troduction

Autoregressive (AR), Moving Average (MA) and the Autoregressive Moving Av

erage (ARMA) models are often very useful in modelling general time series. All 

these models are based 011 the assumption tha t the errors have equal variances. 

This is also known as homoscedasticity of the errors. When dealing with finan

cial market variables such as daily quotes on a share, stock indices or currency 

exchange rates, this assumption is not appropriate due to some of the features of 

these financial data sets.

Let {Pt,t  =  1 ,...,T } , be a time series of prices of a financial asset. These 

prices are highly correlated and the variances of prices often increase with time. 

This makes the statistical analysis of prices difficult and often the prices Pt are 

transformed to log-returns

X t =  log Pt — log .Pi-i =  log , £ =  1,...,T .

7
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The log-returns are easy to handle and have attractive statistical properties. These 

series are free of units and can be compared with each other.

2.2 C haracteristics o f F inancial T im e Series

Many financial time series have a number of characteristics in common. Cont 

(2001) presented a set of stylised empirical facts emerging from the statistical 

analysis of price variations in various types of financial markets. Some of the im

portant ‘stylised facts’, in financial log-return series {V*}, are described below.

Leptokurtosis:

The distribution of the financial asset returns is leptokurtic, i.e., exhibits excess 

kurtosis (heavy-tails) and have sharp peak. The frequency of large and small 

changes, relative to the range of data, is rather high which leads us to believe that 

the data do not come from a normal but a heavy-tailed (leptokurtic) distribution 

(relative high probability for extreme values).

V olatility  Clustering:

Large and small values in a log-returns sample tend to occur in clusters. Extreme 

returns tend to be followed by other extreme returns, although not necessarily with 

the same sign. Mandelbrot (1963) quoted: “... large changes tend to be followed 

by large changes -of either sign- and small changes by small changes...”. Fama 

(1965) also reported this behaviour. The implication of volatility clustering is that 

the volatility shock today influences the expectation of volatilities of many future 

periods ahead.
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Leverage Effect:

The series {X*} responds differently to its own positive and negative movements. 

In other words, changes in stock prices tend to be negatively correlated with 

changes in volatility, i.e., volatility is higher after negative shocks than after pos

itive shocks of same magnitude. This asymmetry, or “leverage” was first docu

mented empirically by Black (1976). Some other studies tha t find evidence of 

leverage effect are Nelson (1991), Engle and Ng (1991) and Glosten et al. (1993).

Long-range D ependence:

Sample autocorrelations of the log-returns are small whereas the sample autocor

relations of the absolute and squared log-returns are significantly different from 

zero even for large lags. Absolute or squared log-returns exhibit significant positive 

autocorrelation or persistence (slow decay in autocorrelations).

Figure 2.1 below shows the monthly log-returns of IBM Stock from 1926 to 1999 

(888 observations) and the Quantile-Quantile plot (Q-Q plot) of the marginal dis

tribution of {X*} against the standard normal. Some of the properties mentioned 

above can be observed in this figure. It can be seen from the top panel of the figure 

tha t there is a time varying volatility (conditional heteroscedasticity) in the log 

returns. The Q-Q plot at the bottom reveals tha t the distribution is heavy-tailed.

Figure 2.2 contains three autocorrelation plots. The first plot is the autocor

relation plot of monthly log-returns. The autocorrelation plots of the squared 

and absolute log-returns can be seen in the second and third plot in Figure 2.2, 

respectively. These plots clearly indicate that although there is no significant au

tocorrelations in log-returns, the squared and absolute log-returns show profound 

dependence. This implies that large price variations are more likely to be followed 

by large price variations, and small price variations are more likely to be followed



2. Financial Time Series and Literature Review

3 0

20

-1 0

-2 0

- 3 0

0 100 200 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
T im e  (W e e k s )

3 0

20

- 1 0

-20

- 3 0
- 4 - 1- 3 -2

S ta n d ard  N o rm al Q u an tile s

Figure 2.1: M onthly log-returns and Q-Q plot of IBM stock (1926-1999).

Sim ple Returns
1.0 rj----------------------------------1--------------------------------- 1----------------------------------1--------------------------------- 1----------------------------------1---------------------------------

0.8  -  

0.6 - 

0.4  -

0 .2  i

0.0 — T  ..................... T T- f i i « * T T • * i * 1 T * * • « TJ___________ I___________I___________I___________I___________I___________
0 5 10 15 20  25  30

Lag

Squared Returns

0.6
0 .4

0.2
0.0

20 2515 3010
Lag

Absolute Returns

0.6

0.4

0.2
0.0

20 25 30
Lag

Figure 2.2: A utocorrelation plots of IBM log-returns, squared and absolute log-returns.



2. Financial Time Series and Literature Review 11

by small price variations.

The kernel density estimate of IBM log-returns is plotted in Figure 2.3. Super

imposed on this graph is the normal density curve with mean =  X ,  and variance 

=  cr^, where X  is the sample average and g\  is the sample variance of log-returns. 

The empirical distribution has fatter tails and sharper peak as compared to the 

normal density function. This indicates evidence of leptokurtosis.

0 .0 7

0 .0 6

0 .0 5

0 .04

0 .0 3

0.02

0.01

10-20 - 1 0 20- 4 0 -3 0 30 4 0
Monthly Returns

Figure 2.3: Kernel Density Estimate of IBM log-returns along with normal density function 
(red) with mean and standard deviation equal to that of log-returns.

2.3 F inancial T im e Series M odels

In this section we give a brief overview of some of the popular financial time 

series models. The volatility clustering property and heteroscedasticity of financial 

time series have been observed and documented (see, Fama (1965)). However, 

traditional time series models cannot explain these properties well and new models
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are, therefore, required. In order to capture these stylised facts in the financial 

data, the autoregressive conditional heteroscedastic (ARCH) model was introduced 

by Engle (1982). This model for the conditional volatility has been extended by 

Bollerslev (1986), Nelson (1991) and Glosten et al. (1993), amongst many others.

2.3.1 The ARCH  M odel

Engle (1982) proposed the autoregressive conditional heteroscedastic (ARCH) model 

for the log-returns. The conditional variance in ARCH is specified as a linear 

function of past squared disturbances. In the ARCH(p) model, the following rep

resentation of the series { X t;t G Z} is assumed. Observe {X t ; 1 < t < T }  such 

tha t

X t = h]/2et , with
v

ht = (jJq +  cty (2.1)
i—1

where p > 0,u;o > 0, 0 < a 0i < 1 for i — 1 ,...,p, and {e*; 1 <  t < T }  are 

unobservable independently and identically distributed (i.i.d.) errors with mean 

zero and variance one. The conditional variance ht is called the volatility. The

conditions u 0 > 0, and 0 < a Qi < 1 for i — 1, ...,p, guarantee tha t the variance of

{A d remains positive.

The ARCH model states tha t the conditional variance of X t is an increasing 

function of the square of the shock that occurred in the previous time period. 

Therefore, if the absolute value of X t~i is large, the absolute value of X t is expected 

to be large as well. In this way the ARCH model can describe volatility clustering.
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The conditional mean and variance of { X t} can be obtained as

E ( X t 1 ^ - j )  =  E(hl /2)E(et) =  0,

Vax(Xt \Tt- i )  = E{X*\Ft-{) =  hu

where T t- \  is the information set available up to time t — 1. The unconditional 

variance of { X t}, denoted by h , is given by

h =
1 - E L i

The process {A*} is covariance stationary if and only if the sum of autoregressive 

parameters is less than one, i.e., XXu < 1- 

The ARCH(l) model is

X t =  h y 2et , with

ht =  u j OiiX^_^. (2.2)

This model can be written as an AR(1) model of X f .  Let vt = — ht so that

ht = X? — vt. By plugging this into (2.2), we get

Xf = co + Oi\Xt_i + Vt,

where {vt} is a martingale difference series.

2.3.2 The GARCH M odel

To adequately describe the volatility process, the ARCH model requires estimation 

of many parameters. Since the introduction of ARCH model, many extensions of 

ARCH model are proposed and among these the generalized autoregressive con-
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ditional heteroscedastic (GARCH) model of Bollerslev (1986) where the volatility 

is not only a function of past observations but also past volatility, is certainly the 

most popular and successful.

In the GARCH(p, q) model, the following representation of the series {X t ; t G

Z} is assumed. Observe { X t \ 1 < t < T }  such that

X t = h y 2et , with
P 9

ht = ujq +  aoiXt_{ +  Po.jht-j, (2-3)
i- 1 j —1

where p > 0, q > 0, u>o > 0, 0 < a 0i < 1 for i = 1, ...,p, 0 < fioj < 1 for j  = 1,..., q, 

and {e*;l <  t < T }  are unobservable i.i.d. errors symmetric about zero. When 

q = 0, the GARCH model reduces to the ARCH model.

The unconditional variance of X t is

h -

The process { X t} is covariance stationary if and only if a oi +  YPj=i Poj < 1- 

The GARCH model is a special case of an infinite-order (ARCH(oo)) model 

Xt = hlJ 2et with OO
ht — otiXl'_i .

1 = 1

The ARCH(oo) representation is very useful when the existence of moments and 

long memory properties of ARCH and GARCH models are under consideration; 

see Giraitis et al. (2000).

Consider the GARCH(1,1) model

X t =  h\,2eu with

ht = u  -\- OL\Xt_\ +  P\ht—\i t G Z. (2.4)
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The GARCH(1,1) model can be written as ARMA(1,1) model for X?  as 

X f  =  uj +  (ai + Pi)Xf_t +

where vt =  X \  -  ht . Notice tha t E(i/t \Xt-i) = 0.

The one-step-ahead forecast of volatility is readily available and is given as

hr+1 =  w T ol\X t +  (3ih'j'.

The forecast of hT+k for k > 1, make use of the fact tha t E{Xj,+k) =  fyr+fc and 

given by

hr+k = cu + (ex i +  fii)hT+k-i- 

By repeated substitutions, the &-step-ahead forecast can be written as

h r+k = "tl-fa + y 1) +  (a i +  01f - ' h T+l.
1 — Qti — Pi

This shows tha t as k —> oo, the multi-step ahead volatility forecast of a GARCH(1,1) 

model converges to the unconditional variance, h = to/{I — ol\ — (3\).

Usually a GARCH(1,1) model is adequate to obtain a good model fit for finan

cial time series. For many financial time series the value of the GARCH coefficient 

/3 is found to be close to 0.9. This shows that large values of ht- i  will be followed 

by large values of ht , and small values of ht~i will be followed by small values of ht 

and hence the GARCH model captures the volatility clustering in financial time 

series.

Many financial time series have fatter tails than a normal distribution. Boller- 

slev (1986) showed tha t the kurtosis implied by a GARCH(1,1) model with normal 

errors is greater than  the kurtosis of a normal distribution assuming tha t the fourth



2. Financial Time Series and Literature Review 16

order moment exists. Thus a GARCH model with normal errors can replicate some 

of the fat-tailed behaviour of financial time series.

When the GARCH(1,1) model of (2.4) is applied to high-frequency financial 

time series data, it is often observed that the estimate of and f3\ are such that 

their sum is close to or equal to one. Those models are called Integrated GARCH 

(IGARCH) tha t results oti + Pi =  1 (Engle and Bollerslev, 1986). Although 

IGARCH model is not weakly stationary, it is shown tha t the IGARCH(1,1) model 

may still be strictly stationary (Nelson, 1990).

2.3.3 A sym m etric GARCH M odels

Standard GARCH models assume that positive and negative values of past obser

vations have a symmetric effect on the volatility. In other words, good and bad 

news have the same effect on the volatility in the GARCH model and the sign of the 

shock is irrelevant. In practice this assumption is frequently violated, in particular 

by stock returns, in tha t the volatility increases more after bad news than after 

good news. This is so called the leverage effect. However, much applied research 

is still conducted assuming implicitly the existence of symmetric dynamics, which 

may lead to model misspecification if dynamic asymmetry is indeed present. The 

GARCH model is not a suitable choice for modelling the asymmetric effect in the 

returns.

The G JR  M odel

To capture the asymmetric effect of positive and negative shocks on volatility, a 

few variants of the basic GARCH model have been proposed. One such model is 

presented by Glosten, Jaganathan and Runkle (1993). This asymmetric GARCH
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model commonly known as GJR model is capable of capturing the asymmetric 

feature. The basic variant is the G JR (1 ,1) model in which the following repre

sentation of the series {X t;t 6 Z} is assumed. Observe { X t; 1 < t < T }  such 

that

and {e*} is a sequence of (i.i.d.) unobservable real-valued random variables. This 

model is based on the assumption that unexpected changes in the return have 

different effects on the conditional variance. An unexpected increase (good news) 

contributes to the variance in the model through multiplicator an whereas an 

unforeseen fall (bad news) generates an increase in volatility through multiplicator 

an +  7 i. The non-negative value of the coefficient 71 indicates a ‘leverage effect5. 

W ith 71 =  0, G JR model reduces to GARCH model.

The /c-step-ahead forecast of the GJR(1,1) model can be obtained in a similar 

manner as of the GARCH(1,1). Assuming that

X t =  h l' \ u

ht = to + +  ryiDt- iX t_ l

(2.5)

where D t - 1 =  1 if X t- \  < 0  and 0  otherwise, with

P(et = h ; 1/2X t < 0) =  i

the /c-step-ahead volatility forecast of GJR(1,1) model is given by

_ 6j[l -  (an + 571 + P i ) k 
T+k 1 — (an + 571 + A) +  (Q!i +  2 7 i +  Pi)k~1h’T+1-
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Other volatility models tha t can capture the asymmetric property are the Ex

ponential GARCH (EGARCH) model of Nelson (1991) and the Threshold GARCH 

(TGARCH) model of Zakoian (1994).

For review articles providing details of above GARCH models and their vari

ants; see Bollerslev et al. (1992), Bollerslev et al. (1994) and Shephard (1996).

2.4 T esting A R C H  Effects

Usually the autocorrelations of squared or absolute returns are used to check the 

volatility clustering in returns. The Ljung-Box statistic can be used to check the 

significance of these autocorrelations. A modified Q statistic is

Q l b ( M )  =  T ( T  +  2) ^  T ~ r ~ k ’
fc= 1

where f'k denote an estimate of k-lag sample autocorrelation of the absolute or 

squared returns. Under the null hypothesis tha t the data are white noise the 

Q l b ( M )  statistics has an asymptotic chi-square distribution with M  degrees of 

freedom. A significant value for Q l b { M )  provides evidence for time varying con

ditional volatility.

Engle (1982) proposed a Lagrange Multiplier (LM) test for ARCH effect. This 

test can be constructed based on the auxiliary regression

=  ctQ +  +  • • • +  a pX t _ p +  Vt, (2 -6)

where vt = X I  — ht . Eq (2.6) is the AR(p) process for X f .  Under the null 

hypothesis th a t there are no ARCH effects, aq =  ot  ̂ =  • • • =  olv — 0, the LM test 

statistic

LM =  T  • R 2
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has an asymptotic chi-square distribution with p degrees of freedom, where T  is 

the sample size and R 2 is computed from (2.6) using estimated residuals. This 

test can be used as a general specification test for GARCH effects.

2.5 E stim ation

In practice, the values of the parameters in the GAR.CH models are not known and 

need to be estimated. In the following we discuss the quasi-maximum likelihood 

estimation (QMLE) which is generally used for the estimation of the parameters of 

the GARCH models. The QMLE is maximum likelihood applied to a model with 

the alteration tha t errors are presumed to be Gaussian. Under some regularity 

conditions, the QMLE is consistent and asymptotically normal.

Consider the GARCH model defined by (2.3). Let 0  be a compact subset 

of (0, oo)1+p x (0, l ) 9,. Let 6q =  (wo, Ooi, •. •, a 0p, An, • • •, Poq)' be the parameter 

vector to be estimated and 9 — (uqaq, ...ap,/A, ■ ■■,PqY be any admissible value of 

O q .  Let /  denote the density function of et (9) —  X t(9)/ h1/ 2(9) .

The negative log-likelihood functions is given by

T

l a v  = (2-7)
t=i

where lt (0) = ( 1 )  log(fi«(0 )) -  log{/(et(0 ))} * =  1,2,

The maximum likelihood estimator 9T of the true parameter 0O is defined by 

minimising

9t  = argmin Lt (9), flee v

where LT(9) is an estimate of LT{9). The BHHH algorithm of Berndt et al. 

(1974) is often used to determine 9T• However, the BHHH algorithm faces serious
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convergence problem if the starting values are not sufficiently close to the solu

tions and instead a full Newton-Raphson algorithm may be used (Mak et al., 1997).

Several conditional distributions for the error density have been employed in 

the literature. The most common is the standard normal density for the errors

=  ^ 6XP { “

The log-likelihood function is then given as

k{0) =  ^log(27r) +  ilo g {htifi)) +  ^ ( 0 )

The quasi-maximum likelihood estimates can be obtained as the solution of

T

Y ^ s t(X t;0) = 0

t =  1

where st = dlt / d 6 , is the vector of derivatives of the log-likelihood with respect to 

the parameters and is usually called the score function.

Throughout, for a function g , g and g will denote the first and second deriva

tives, respectively, whenever they exist. The score function for the QMLE takes 

the form:

dlt =  1 ht(0) 1 X l  ht{0)
Si 30  2 ht(0) 2  ht( 0 )h t(0)

=  1 ht{0) (  X I  \
2h t{ 0 ) \  ht(0)J

In order to capture the degree of tail fatness, several density functions for the 

normalized error have been proposed. After the Gaussian distribution originally
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used by Engle (1982), Engle and Bollerslev (1986) used the conditional student-^ 

distribution. Nelson (1991) suggested the generalized error distribution. Hansen 

(1994) proposed the idea of using the skewed-t distribution to allow the shape and 

the skewness of distribution to change over time.

Some of the frequently used forms of /  are: 

Standardised Student-t density with is degrees of freedom: 

In this case, the density is given as

r ( i s /2 ) ^ /n ( i s -2 )  \ v — 2

with v > 2 and T(.) is the gamma function. 

The log-likelihood is given as

1 is 1 ^
k  =  2  log (M  -  log CM  +  —2 ~  loS i 1 +  ^ 2 )  ’

, , r((^+i)/2)
where cits) = , '

Generalised Error Distribution (GED):

The GED is a symmetric distribution that can be both leptokurtic and platykurtic 

depending on the degree of freedom is (is > I). The GED has the following density 

function:

where A =  ( 2  T ( l /i/ ) /T (3 /^)) and 0 < u <  2 .
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The log-likelihood for GED is

h = -  log C(y) + l( lo g ( /i ,)  + ).

where C{v) =  ^

The generalised error distribution reduces to the double exponential distribu

tion when v = 1. The double exponential density is given as

The tails of the GED distribution are thicker than the normal when v < 2 and 

thinner when v > 2.

Hansen’s Skewed t-distribution:

It is often observed in application of GARCH-type models to financial time series 

tha t even asymmetric GARCH models fail to fully account for sample skewness 

and leptokurtosis of high frequency financial time series when they are assumed 

to follow normal or symmetric student-f distributions with v degree of freedom. 

This has led to the use of asymmetric non-normal distributions. To better model 

conditional higher moments, Hansen (1994) assumed tha t the distribution of errors 

{ e j  can be skewed and consider the following density function

where 2 < v  <  oo, and — 1 < A < 1. The values of constants a, b and c are defined

f ( y )  =  exp {—\ /2 |y |} / \[2 .

e < a/b,

f ( e |j/, A) =  < ~ ( u + l ) / 2

e > a/b ,
V
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as

1 +  3A2 — a2,

r((i/ + i)/2)
V -  2)t ( v/ 2 )

We will denote the skewed-t distribution as ST{y,  A). The skewed-t distribution 

takes the form of the student-t distribution when A =  0 and nests the standard 

normal distribution when v  —> oo.

2.5.1 A sym ptotics of the QMLE

The asymptotic normality for ARCH model was first presented by Weiss (1986). 

He proved the consistency and asymptotic normality for the QMLE in the linear 

ARCH(p) model under the existence of fourth-order moment of the ARCH process. 

These conditions are violated when GARCH models are fitted to financial data and 

also ruled out the IGARCH processes. The necessary and sufficient condition for 

the existence of the second-ordcr moment of the GARCH(1 ,1 ) model and the nec

essary and sufficient condition for the fourth-order moments of GARCH(1 , 2 ) and 

GARCH(2 , 1 ) model were established by Bollerslev (1986). For the GARCH(1 ,1 ) 

and IGARCH(1,1) models, Lumsdaine (1996) established tha t the local QMLE 

is consistent and asymptotically normal assuming tha t E[log(ae2 +  (5)] < 0  and 

tha t the rescaled errors have 32-nd order moment. Lee and Hansen (1994) also 

considered the GARCH(1,1) model and required tha t E[e2+h] < oo for some k > 0 

and gave the proof of consistency of the QMLE under the assumption tha t (A),} 

is strictly stationary and ergodic.

b2 = 

and c =
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Bougerol and Picard (1992) established the necessary and sufficient condition 

for the strict stationarity and ergodicity of GARCH(p, q) model in terms of top 

Lyapunov exponent. Ling and Li (1997) proved tha t the local QMLE is consistent 

and asymptotically normal if E[ej\ < oo. Ling and McAlcer (2002) proved the 

consistency of the global QMLE under the second-order moment condition. They 

derived the asymptotic normality of the global QMLE under the finiteness of the 

sixth-order moment condition. Hall and Yao (2003) established the asymptotic 

normality of the QMLE for the general GARCH(p, q) models under certain con

ditions. They discovered that the asymptotic normality may not be normal with 

an infinite fourth moment. Berkes, Horvath and Kokoszka (2003) extended the 

results to hold for linear stationary GARCH(p, q) model under weaker conditions 

on rescaled errors. The QMLE under general conditional heteroscedastic models 

based on stochastic recurrence equations was studied by Straumann and Mikosch 

(2006) and the asymptotic normality of the QMLE for the ARCH(oo) model which 

includes GARCH as a very special case was derived by Robinson and Zaffaroni 

(2006).

For the G JR model, Ling and McAleer (2002) pointed out tha t the regularity 

condition for the existence of the second moment of the GJR(1,1) is (a-\-/3-\-'y/2) < 

1, provided tha t {et} is symmetric. When 7  =  0, this condition reduces to the sec

ond moment condition for the GARCH(1,1) model. They also showed tha t when 

et ~  Ajr(0 ,1), the fourth moment condition for the asymmetric G JR (1 ,1 ) model is 

given by p 2 + 2a{3 + 3a2 + /3j TSa'y  < 1. This condition reduces to the fourth 

moment condition for the GARCH(1,1) model in case 7  =  0. Ling and McAleer 

(2002b) developed the weak long-moment condition for the GJR(1,1) model and 

showed tha t E[log(a +  7 Dej +  /?)]<  0  is sufficient for the consistency and asymp

totic normality of the QMLE. For a detailed review of some theoretical results for 

time series models with GARCH errors; see Li et al. (2002) and references therein.
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The QMLE is consistent and asymptotically normal if the innovation has finite 

four moments. However, such stringent moment condition may not hold in many 

situations; an example is innovations with student-t distribution where the degree 

of freedom is at most four. To deal with such situations, several authors have 

proposed robust estimators for GARCH models and derived their asymptotic nor

mality under less stringent moment conditions. Peng and Yao (2003) suggested 

tha t for heavy-tailed distributions, least absolute deviations (LAD) estimators 

should be used imposing an extra restriction such as median(e^) =  1 . Berkes and 

Horvath (2004) considered the QMLE and LAD however assuming E{e2) —1 or 

jE7(|e|) = 1  or E{\e\/{1 +  |e|)} is known. Mukherjee (2008) considered M-estimator 

for GARCH model. The class of estimators include LAD, Huber’s as well as the 

QMLE.

2.6 Forecasting

Forecasts from GARCH models are of great interest to researchers and practition

ers. In this section we discuss some of the procedures used for volatility forecasting 

and also defined some commonly-used measures to evaluate these volatility fore

casts.

Assume tha t T  = N  +  K  observations are available for a time series X t. The 

first N  observations are used for the estimation of the model and the last K  

observations are left for evaluation of forecasts. There are three alternative ways 

to generate a sequence of K  one-step ahead forecasts, namely the recursive, rolling 

and fixed schemes.

The recursive scheme uses the sample {1, • • • AQ to estimate the model and 

generates the (N  +  l)-th  forecast. The model is re-estimated using the sample 

{1, • • • N, N  +  1} and the second one-step ahead forecast is generated. These steps
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are repeated until the last one-step ahead forecast is generated based on the sample 

{1, • • • , N  + K  — 1}. In this scheme the sample size grows at each step and at the 

final step the one-step ahead forecast is based on T  — 1 observations. The recursive 

scheme uses all information available at each step to generate the forecasts but is 

not suitable for large K.

In the rolling scheme, the first one-step ahead forecast is produced in the same 

manner as in the recursive scheme. The model is re-estimated by dropping the 

first observation from the sample and including the (N + l)-th  observation, i.e. the 

sample consists of {2, • • • , -1-1} observations. Using this sample the second one-

step ahead forecast is generated and the procedure continues till the last forecast 

is made. The recursive schem.e uses the same window length N  for estimating 

the model at each step. This scheme has an advantage over the recursive scheme 

as it uses a fixed sample size for any value of K  and also omits information in 

the distant past giving more flexibility to time variations. For fixed scheme, the 

sample {1, • • • , N }  is estimated and all forecasts are made based on this sample.

Poon and Granger (2003) provide an extensive review and references on fore

casting volatility in financial markets. Hansen and Lunde (2005) provide a forecast 

comparison of the most important parametric formulations. Chuang et al. (2007) 

analyse the volatility forecasting performance of the GARCH models based on 

various distributional assumptions.

2.6.1 Comparing Forecasting Performance

There are various evaluation criteria available in the literature to compare the 

forecasting performance of two forecasting models. Let h^t, denote the volatility 

forecast of ht, for z-th GARCH model using any forecast scheme and eitt = hitt -  ht 

be the forecast error at time t. Commonly used forecast evaluation statistics
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based on K  out-of-sample forecast are the mean squared error (MSE), the mean 

absolute error (MAE), the root mean squared error (RMSE) and the mean absolute 

percentage error (MAPE) defined as

1 n + k

M S E - =  k  E  £h H-i>
l = N + 1 

1 N + K

MAE< =
l = N + 1

RMSEi -
\

1 N + K

£h\i-v
l = N + 1

1 N+K I I
MAPE; =  — V  J fy M l.

/=AT+1

These statistics are often used to evaluate volatility forecasts and the model which 

produces the smallest values of these statistics is considered the best model in 

terms of volatility forecasting. For real data, the true volatilities are unobservable 

and often the squared returns are used as proxies of the true volatilities. In case 

intra-day data are available, Andersen and Bollerslev (1998) showed tha t higher- 

frequency returns produce better approximations of realized volatilities than same- 

frequency returns.



Chapter 3 

M -estim ation  of H eteroscedastic  

M odels

3.1 Introduction

Commonly used statistical methods rely on a number of assumptions such as 

linearity of regression, independence and normality of errors, variance homogeneity, 

etc. However, often these assumptions are violated. Robust statistics investigates 

the effects of deviations from modelling assumptions and develops new, better 

procedures. There is a need of robust methods for financial time series due to the 

presence of large number of outliers in the financial data, heteroscedasticity and 

dependence of errors as discussed in Section 2.2.

One of the im portant concepts in many econometric models is volatility or 

the instantaneous variability of a financial time series. In a seminal paper, Engle 

(1982) introduced the autoregressive conditional heteroscedastic (ARCH) models 

to describe the volatility of the current return of an asset as a linear function of the 

squares of its past returns. This model explains some of the empirical stylised facts 

related to financial time series such as time-varying conditional volatility, volatility

28
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clustering and heavy-tailedness of the unconditional distribution of returns, among 

others. Since then many extensions of the ARCH model have been proposed. 

Among those, models where the volatility is not only a symmetric function of 

squares of past returns but also past conditional volatilities has turned out to be 

very useful. An im portant example is the generalized autoregressive conditional 

heteroscedastic (GARCH) model of order p,q, introduced by Bollerslev (1986).

A popular method for estimating the unknown parameters in GARCH models 

is to use the Gaussian likelihood of the innovations and the resulting estimator is 

called the quasi-maximum likelihood estimator (QMLE). The QMLE is consistent 

and asymptotically normal if the innovation has four finite moments. However, 

such stringent moment condition may not hold in many situations; an example 

is innovations with student-t distribution where the degree of freedom is at most 

four. To deal with such situations, several authors have proposed robust estimators 

for GARCH models and derived their asymptotic normality under less stringent 

moment conditions. See, for example, Peng and Yao (2003), Berkes and Horvath 

(2004), Muler and Yohai (2008) and Mukherjee (2008), among others.

In this chapter we propose a large class of M-estimators for estimating the 

parameters of GARCH-type models. The class of estimators include QMLE, least 

absolute deviation (LAD) estimator and the analogue of H uber’s estimators as well 

as many other useful estimators. Computation of these estimators is a major issue 

in applications and one of the main contributions of this chapter is to describe gen

eral algorithm for the computation applicable to all score functions. We perform 

extensive simulations to compare the relative performance of M-estimators. Sim

ulation study reveals tha t there are estimators such as Huber’s and B-estimator 

that can perform better than the QMLE and even outperform the robust LAD 

estimator when the error distribution is heavy-tailed. Thus, as the second impor

tant contribution of this chapter, we propose the use of B-estimator as a desirable
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alternative to the QMLE and LAD. We also study the quality of approximation 

to the finite sample distribution of the M-estimators by a weighted resampling 

method. We compute several M-estimates for GARCH and G JR models when 

fitted to real data sets of IBM stock and S&P 500 index and use them to predict 

the value-at-risk (VaR).

The rest of the chapter is organised as follows. In Section 3.2, we briefly 

present M-estimators for location and scale models. In Section 3.3, we consider the 

class of M-estimators in both symmetric and asymmetric GARCH models, address 

the computational issues and state their distributional results. Results of Monte 

Carlo simulations and real data analysis are presented in Section 3.4. Section 3.5 

presents the performance of M-estimators in estimating value-at-risk. A weighted 

resampling method for M-estimators is discussed in Section 3.6. Finally, Section 

3.7 concludes the chapter.

3.2 M -estim ators

Huber (1964) introduced the class of M-estimators for the location and regres

sion models. For detailed studies on properties of M-estimators see Huber (1981) 

and Jureckova and Sen (1996). M-estimators are generalisations of the usual 

maximum-likelihood estimators. Consider the simple location model

Vi — (id-Si (i =  l , . . . ,n ) ,

where ef*  are independently and identically distributed (i.i.d.) random variables. 

Assume tha t Fo, the distribution function of £*, has a density /o =  Fo- The 

likelihood function is 71

i = l
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The value tha t maximises L(y\, p) is called the MLE of //, i.e.,

p  =  argm axL(yi, ...,yn;p) (3.1)

If fo is positive everywhere, then taking the logarithm, fi in (3.1) can be written 

as
n

p = arg min ^  p(yi — p ) , (3.2)
i—1

where p = —log/0.

Differentiating (3.2) with respect to p, provided tha t p is differentiable, we get

n

^ i j j { y i -  p) = 0 (3.3)
i= 1

where if) = p. Hence given a function p, an M-estimate of location is a solution of 

(3.3).

Similarly we can define an M-estimate of scale. Consider the multiplicative 

model

yi = cr£h i = 1,..., n, (3.4)

where <r > 0 is the unknown parameter. The MLE of a  is

,7 =  a r g m a x ^ f [ / o 0 )
i—1

Now, taking the logarithm and differentiating the above with respect to a gives
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In general, any estimate satisfying an equation of the form

; £ - ( ! )  = <• M

where S is a positive constant is called an M-estimate of scale. M-estimator is 

determined by the choice of the criterion function p or of its derivative ip. For 

many choices of p or ip, no closed form expression exists. A few commonly used 

choices of p and ip are given in Table 3.1. Standard optimisation algorithms such 

as Newton-Raphson can be used to compute the solution.

________________________Table 3.1: Examples of p and ip________________________
p{x) ip(x)

Least absolute deviations (Li) M sign(a;)
Least squares (L2) x 2 2x
Huber’s: if |.t| <  k, x 2/2 X

if |x| > k k(\x\ — k /2 ) k sign(a;)
Cauchy k log(l +  (x /k ) )2 2x

(1+ ( x / k ) )

Tukey’s: if \x\ < k V (i -  [i -  (* A )2]3) x[l — (x / k )2]2
if |x| > k k2/ 6 0

3.3 M -estim ators for H eteroscedastic M odels

Variant of M-estimation for the estimation of volatility parameters in GARCH 

model was first considered by Berkes and Horvath (2004). They define their esti

mators as follows:

Let {yu -o o  < k < oo} be a GARCH(1,1) process satisfying the equations

Uk — k (3.6)
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and

= u  +  ay l_  i +  (3a2k_v  (3.7)

Assume tha t

u  > 0, a  >  0, and (3 > 0, (3.8)

where 6 — (u;,a,/?) is the parameter of the GARCH(1,1) process. Also assume

tha t —oo <  i <  oo} are i.i.d. random variables with E { e o) =  0 and E(e l )  =  1.

If error density is / ,  then the log likelihood function is given by

M u )  =  }  l0 s ( . l / 2 / , / ( W ^ /2 ( u ) ) | .
1 1 < k < T  [  W k (u) J

and
3C ^

^fc(u ) =  Y 3 i  +  s X .  u = (a r ,5 , t) ,
i<i<fc-i

where the definition of u)fc(u) is motivated from the approximation of the variance 

function defined in (3.15) below. Hence for any error distribution, the quasi

likelihood estimator 6t  is defined as

0T = argmaxZ/7-(u), 
u  e u

where

U = ( u  =  (x, s, t) : t  < po and m  = m info s, t) <  m ax(3;, s, t) < u2},

with some 0 < Ui < u2 and 0 < pQ < 1. Among other sets of conditions, Berkes
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and Horvath (2004) impose the following moment condition on so'-

E\£q\k < oo with some k, > 0. (3.9)

Also,

L(u) =  £ lo g  (  t / 2 f{yo /w l/2(u)) \
(u ) J

exists for all u G  17, where

rjQ ^

Wk{u) = j - —t + s X  u  =  (x > 5>£)

and note tha t Wk(0) — o\.  The following condition implies th a t L(u) has a unique 

maximum

Eg(eo,t) < Egieo, 1) for all 0  < t < oo, t ^  1 , (3.10)

where g{y , t ) =  log{t f (y t) } .  They showed that

Qt  —> 0 CL.s.

and

Vf{0T -  0) -2+ N(0,4r2A_1),

where — > denotes convergence in distribution,

2 Eg2(e o , 1 )

0 < r =  tj?~t m  < °°'(Eg(e  o, l ) ) 2

and

A  =  E(wo(O)/wo(0)y{wo(0)/wo(0)).

Note tha t g and g represents the first and second derivative of g, respectively,
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whenever these exist and B 7 denotes the transpose of m atrix B.

The following three choices of /  are considered by Berkes and Horvath (2004).

1. The standard normal density:

f (y )  =  (27r)~1/2exp(—y2/2) 

assuming Eel  — 1- (3-11)

2. Double exponential distribution:

f (v )  =  (1 / 2 ) exp(—12/|) 

assuming #|£o| =  1- (3.12)

3 .  The density of the following form:

f ( y )  =  { ( » - 1)/2}(1 +  M)"", v >  1

and assuming E{\eq\ /{\  +  |eo|)} =  (3.13)

Assumptions (3.11)-(3.13) are undesirable and impossible to verify as we do not 

know about the error distribution in advance. Therefore, other robust estimators 

need to be investigated tha t do not impose these restrictions. Also estimators 

with less moment conditions are very desirable especially when it is known that 

financial time series often have heavy tails.

3.3.1 M -estim ators for Asym metric GARCH M odels

In this section we define M-estimators for asymmetric GARCH models. In par

ticular, we consider the G JR model of Glosten et al. (1993) but M-estimators for 

other asymmetric models such as the TGARCH model of Zakoian (1994) can also
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be defined in a similar way. As mentioned earlier, the GARCH model is not a 

good choice for modeling when financial data has leverage effect. An asymmetric 

GARCH model such as GJR-GARCH model is designed to capture the asymmetric 

effect. Our aim is to define estimators for these GARCH-type models tha t require 

weaker moment assumption and also handle asymmetric data. Our second aim 

is to propose the use of other estimators as a desirable alternative to the QMLE 

and the least absolute deviations (LAD) estimators. Note that, hereafter the term 

‘QMLE’ is used for the score function of type H[x) — x 2 defined below.

Mukherjee (2008) discussed M-estimators for GARCH(p, q) models. We start 

our discussion of M-estimators in asymmetric model with the simple GJR(1,1) 

model where the following representation of the return series { X t\ t  E Z} is as

sumed. Observe { X t\ 1 < t < T }  such that

X, =  hl/2et, (3.14)

ht, =  iJd + ariX'f_x 4- ptjht-i +

where Dt- i  =  1 if X t~\ < 0  and 0  otherwise, with {e*} a sequence of independent 

and identically distributed (i.i.d.) unobservable real-valued random variables and 

the unknown parameter do =  [cj0, 7 o, Po]' is in the parameter space

0  =  {0 =  [uj, a, 7 , /?]'; u  > 0 , a , /?, 7  >  0 , (a +  (5 +  - 7 ) < 1 }.

Under these parameter constraints, model (3.14) is strictly stationary and hence 

covariance stationary under finite second moment of Xt.  The GJR(1,1) model 

reduces to the GARCH(1,1) model when there is no leverage effect i.e., when

7 o =  0 .
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By recursive substitution, we get

h t  =  Wq +  o t Q X ^ _ 1 +  7 0 D f _ i X t2_ 1 +  P o { w q  +  olqX ^ _ 2  +  7 o - D f _ 2 X 2_ 2 4 -  2 }

= u 0 ( l  + Po) + M * L i  + p 0X l 2) + 7o(A-i*?_1 + f h D t - 2X l 2)

+/^o(a;o + a o X f _3 4- 7oA-3^f2_3 + P o h t s }

— wo(l + Po + P i )  + a Q( X l _ x + P q X I _2 + P l X f _ 3)

+7o(A -i^2_i + P o D t- 2X 2t_2 + P l D t - s X l _ 3) + P l h t-3

-  JT^Poj + a° 53 ̂ 0 + 7o 53 ̂ -300

For 0 G 0 , define the variance function

OO OO

Ut(e) =  ( f ^ T )  +  “  §  /3 ," 1 X ‘7  +  7  §  Dt~j 0 i ~l x L
(3.15)

and note tha t vt (6o) =  ht.

In (3.14), if /  denotes the error density, then the conditional density of { X t} 

given past will be V t 1̂ 2( 0 o ) f { v ^ 2(0o)Xt}, 1 < t < T.  Now we can define a 

random quantity as a minimizer of the negative log-likelihood function

, e  g 0.
t=i

l t {6) =  f  £  [ ( 5 )  l»gvt(0) -  \ o g f { X t/ v l l2(e)}

Then, its derivative is

=  £  ( I )  f1 -  H ' { X t/ v l /2(0)}] {vt(6 ) /v t(0)},dL T (0) v ' / ' l '

where H*{x) oc{—f  (x) /  f  (x)} .

More generally, we define a score function H  as follows. Let ip :
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be a skew-symmetric function (that is 'iJj( - x ) =  —'iJj(x ), V.x 6  R -  {0}) which is 

differentiable in all but finite number of points. Let D e l  denote the set of points 

where if) is differentiable and let V c denote its complement. Let H(x)  :=  xip(x), 

i £ l .  Note tha t H ( —x) = H(x),  Vz. We can then define Gt  in the model (3.14) 

as a solution of the equation

T
( i ) ( i  -  = o.

Since { X t]t < 0} are not observable, {vt(6 )y s are non observable and hence 0? s 

are noncomputable. We define an observable approximation {vt (0)]t > 1 } to the 

variance functions {vt (G) ; t  >  1 } as

v m  = >  2 ). (3 .1 6 )
U P) j=1 j=1

Then an M-estimator 0T based on the score function H  or -0 is defined as a solution 

of the equation
T

M r (S) =  y r a , ( 9 )  =  0, (3.17)
t = l

where

rht(0) =

and vt can be obtained by differentiating (3.16) w.r.t o;,a;, 7  and /3, respectively,
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as

d v t (0) _  1

du) 1 — p  ’

^  2),
3=1

3 =  1

at>,(0 ) 4-1
+  X ) 0 ’ -  >  2 ).

It turns out th a t 0^ actually estimates a function of the true parameter 0O defined

by

0Q H  =  [CtfWOj C/fQ!o, C / /7 o ,  A ) ] ' ,  ( 3 . 1 8 )

for a constant c# > 0 defined in (3.20) below, tha t depends on the underlying 

score function H.  Note that (30 is free from cjj-

Next, we discuss some examples of the score function H.

E xam ple 1. Least absolute deviations (LAD) score:

Let ip(x) =  sign (x). Then Dc = {0} and H {x ) =  \x\.

Exam ple 2. Huber’s k-score:

Let 'ip(x) =  xl(\x\ < k ) +  ksign(x)I(\x\ > k), where k > 0 is known. Then 

Uc =  {-&, &} and LT(a:) =  x 2I(\x\ < k )  + k\x\I(\x\ > k).

E xam ple 3. The QMLE:

Let i/j(x ) = x. Then H(x) = x2.

Exam ple 4. The maximum likelihood estimation (MLE):

Let i/j(x ) = — fo ( x ) / f0(x), where f Q is the true density of e, assumed to be 

known. Then H(x)  =  x { —fo(x)/ fo(x)}.

E xam ple 5. B- estimator:
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Let V; (-T) =  B  sign(.T)/(l +  |.t|), where B >  1 is a user specified constant. Then 

V c =  {0} and H(x) = B\x\ /(1  +  \x\).

E xam ple 6. Cauchy-estimator:

Let ip(x) =  2 x / (1 -f- x 2). Then H(x)  =  2a:2/ (1 +  x 2).

E xam ple 7. The exponential pseudo-maximum likelihood estimation:

Let ip(x) — a|a;|6- 1sign(a;), where a > 0 and 1 < b < 2 are known constants. 

Such score can be motivated from the class of densities considered by Nelson (1991) 

and Robinson and Zaffaroni (2006) to model the innovations of the exponential 

GARCH model. Here V c =  {0} and H{x)  =  a\x\h.

E xam ple 8. Score function for Hansen’s skewed-t distribution:

Let V-’M  = I (x  < ~ a / b) + M f a V f ' + i ° l + a )  J (-x  S - a / b ) ,
see Section 2.5 for notations used in the definition of iJj (x ). Then

H ( r ) -   b x ( v+ l ) { bx +g )   r /  -a /b )  4 bx{u+l ) {bx+a)   w  >  _ a / u \
n \ x ) -  ( „ - 2) ( l - A )  +(b x+a )  * \ x  ^  a / ° )  ^  (i/—2)(1+A) +(b x+a )  1 \ X -  a / UJ-

R em ark 3.1. Define a function p by p(x) = f*  'ifi(t)dt, for x  >  0 and p(x) = p(—x) 

for x  < 0. Define

R t (0 )  := E  [ ( 5 )  loS U 0 )  + p { X t l v t ' \ 0 ) }
t =  1

, 9 6 9 ,

and notice tha t

Rr(d)  =  E  ( L  | l  -  H { X tlv]l2( 0 ) } \ { « , ( f ) / « . ( 0 ) } -
t =  1 ^ '

Hence 0T from (3.17) can also be considered as an M-estimator th a t minimizes 

the criterion function R T based on p. This helps to explain the intuition behind 

the above score functions. For Example 1, p{x) =  \x\ and hence the corresponding 

estimator minimizes a variant of the sum of the absolute value of the residuals
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{ X t/ v t (0)} plus a penalty function arising out in the form of the logarithm of the 

approximating variance. For Example 3, p{x) = x 2 and hence the corresponding 

estimator minimizes a variant of the sum of the squared residuals plus a penalty 

function. Similar interpretations can be given for other examples.

As we mentioned earlier, an M-estimator based on a score function H  consis

tently estimates 6qh — [ch^ o, ch&q, c//7 o> Pq]', where c# is a constant tha t depends 

on the score function H  through the error distribution. Using the QMLE and as

suming ch — 1, an M-estimator actually estimate 6 q.

Following the guidelines of Section (3.3.1), we can also define M-estimators 

for another asymmetric GARCH model, called the threshold GARCH (TGARCH) 

model.

3.3.2 A sym ptotic Normality

To state the asymptotic distribution of the suitably normalized 6t , we make the 

following technical assumptions.

Model assumptions:

The parameter space 0  is a compact set and its interior © 0 contains both O0

and 0OH of (3.18), respectively. Assume that for some k > 0,

E[\e\K] < oo. (3.19)

Moreover, {At} of (3.14) is stationary and ergodic.

Conditions on the score function:

(i) Identifiability condition:

Corresponding to the score function H , there exists a unique number cH > 0 

satisfying

E [ H{ t ! c f ) \  =  1. (3.20)
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(ii) Moment conditions:

E[H(e/c]^2)]2 < oo and 0  < E{(e/c]^2) f f (e /c# 2)} <  oo. (3.21)

(in) Smoothness conditions:

One can assume smoothness conditions of varying degree tha t are applicable 

to different score functions. One such (strong) assumption is tha t the score func

tion is three times differentiable with bounded third derivative. It is possible to 

have weak smoothness conditions on V c that are satisfied by all score functions of 

Examples 1-8 .

R e m a rk  3.2. Recall that if 0 is a nondecreasing, odd score function satisfying 

some smoothness conditions, then there exists a point 9$ such tha t E[<p(£ — 9^)] =  

0. Since a location estimation problem, say, x t — 9 + et can be rewritten as 

x t = (Q +  9<f,) + (et — 9$), a location-invariant M-estimator based on estimates 

9 + 9(j,. Condition (3.20) is a natural counterpart of the location model in the scale 

estimation problem. To illustrate, first note from (3.15) and (3.18) tha t

vt (OoH) — cnVt{0 0)> (3.22)

and hence (3.14) can be rewritten as

X, =  (3.23)

Now suppose tha t the score function H  in a scale estimation problem is nonde

creasing on [0, oo) with limc_ 0+ H(e/c1/2) =  H{oo) and lim^oo H(e/c1/2) = H (0) 

and suppose tha t the expectation function g(c) = E {H (e /c 1̂ 2)} satisfying H (0) <

g(c) < H ( oo) has a range containing 1. Then, there exists a point cH > 0 satisfy-
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1 fO
ing E[H(e/cH )] =  1 which is assumed unique in (3.20). Hence the scale invariant 

M-estimator based on H  actually estimates 0OH by (3.23).

The following theorem states the asymptotic normality of 6t > Define the score 

function factor

a 2{H) := 4 var{H(e/c]j2)}/[E{(e/c]j2)H (e /c# 2)}]2, 

where both the numerator and denominator are positive by (3.21). Also, define

G =  G (0 qh) '■= E { v i (Qoh)v[(Ooh) / v i {9qh)} •

T h eo re m  3.1 Under (3.20), (3.21) and mild smoothness conditions on the score 

function H

~  0oh ) N (0 , <j \ H ) G - 1). (3.24)

Theorem 3.1 can be proved in a similar way as in Mukherjee (2008).

From (3.23) define residuals by

im  =  X t/ { v l /2(9T)}, 1 < t < T. (3.25)

Since

a \ H )  =  4 [ E { H { t / c f ) ¥  -  1 \ [ E { { e / o f ) H { , / c f ) } } - \  

it can be estimated based on residuals { im }  by

(H) = 4 ( l / T ) y i{ H ( X t/v l /2(9T)}2 - l ( l / T ) Y i l H ix ‘E t ,2(0T)}\'
L t = 1 *=1'

x[(i m  YJ{i^ii'\h)H{xtivr(.0T)}}-\
t=i
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Also, G -1 can be estimated by (G )-1 where

G =  i  f^{0,(flr)C |(«r )/fi?(dr)}.
t=1

Using (3.24), cr2(H)  and (G )“\  we can get confidence intervals of Oqh-

Note th a t Theorem 3.1 is derived under weak moment assumptions on the error 

distribution. The identifiability condition determines what the M-estimator can 

consistently estimate.

Using Monte Carlo simulations and application to real data sets the parameters 

of the GARCH(1,1) and the GJR(1,1) models based on these score functions are 

estimated. Our results suggest tha t the performance of these estimators are better 

than the other commonly-used estimators especially in the case of heavy-tailed 

distributions.

3.3.3 Com putation of M -estimators

Here we discuss the computation of M-estimators. Eq.(3.17) is a highly non linear 

equation and solving such equation is computationally very challenging. Although 

explicit algorithms for the QMLE are available in the literature and most statistical 

packages, but not for computing other score functions. Algorithms for estimating 

the parameters of GARCH and GJR models using M-estimators are developed.

As we showed, an M-estimator is a solution of

T

M t( 6>) =  E " 1‘W  =  0 '
t =  1

where
1
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To solve this, we use an iterative algorithm where 0(r+i), the estimate at the 

(r +  l)-th  iteration, is computed by

0 ( r + l )  —  Q( r)  +  ~  C ( 0 ( r ) )  M T ( 0 ( r ) ) ,  T —  0 ,  1 ,  2 ,  . . .

where C(0(r)) is an invertible matrix. The choice of C(0(r)) and the starting 

value of 0(o) are crucial for the convergence of the above algorithm. In this paper, 

we propose the following modification of the popular BHHH type algorithm of 

Econometrics involving a sum of the modified products of gradients as

T

C(®w) =  \  £{«.(»<-> ) ^ m ) / { * ^ m ) } 2},
t = 1

and with this choice excellent convergence was observed. Our default choice of the 

initial estimator 0(o) is guided by the rule followed by the software MATLAB for 

the computation of the QMLE. In particular, we chose cqo) =  0.05, /3(o) =  0.85, 

7 (o) =  0. For 6t)(o), we use (1 — d(0) — /%>) x 0(A)) =  (1  — 0.05 — 0.85) v{X)  

where v (X )  = XXA* — X ) 2/ ( T  — 1), the sample variance of the observed series 

{ Xi , . . . ,  X T}. We use this choice not only for initiating the computation of the 

QMLE but also for initiating the computation based on any other score functions 

even though the resulting estimator is consistent for 0QH which varies with H.

3.4 Sim ulation and Em pirical R esu lts

In this section, first we investigate the relative performance based on the mean 

squared error (MSE) of each estimator in GARCH and GJR models through ex

tensive Monte Carlo simulations assuming various distributions for errors. Then 

the finite sample properties of M-estimators are assessed when applied to two im

portant financial data sets, IBM stock and S&P500 Index. All computations are



3. M-estimation o f Heteroscedastic Models 46

performed using MATLAB software.

3.4.1 M onte Carlo Simulations

To compare relative performance of estimators based on different score functions, 

we define the mean squared errors (MSE) of an estimator for the G JR (1, 1) model 

as

E[{(u +  7 ) / d + (3} -  {(u;0 + 7o)/<*o + A))}]2-

From (3.18) and (3.24), the ratio of (u +  7 ) and a  is consistent to a quantity 

tha t is free from the underlying score function H  used for the M-estimation and 

hence the above definition of MSE compares the relative performance of different 

M-estimators. When specialized to the GARCH (1, 1) model with 7 0  =  0, the 

corresponding MSE is defined as

E[{(tu/d) + {3} — {(o;0/o!o) + A))}]2-

We use simulations to estimate these quantities corresponding to five different M- 

estimators (QMLE, LAD, Huber with k = 1 .5  x 1.483m e d ia n ^ , B-estimator with 

B  = 2.5 and Cauchy). Our Monte Carlo simulations are based on K  replicates 

each of sample size T.  For both the GARCH(1,1) and the GJR(1,1) model, errors 

are generated from (i) the standard normal distribution (ii) contaminated normal 

distribution (1 -  e)$(x)  +  e$(x/a)  with e =  0.05, and a 2 = 9, Hansen’s skewed-t 

distribution with v — 5 and A =  0.25, and standardized student-i distributions 

with 3 and 4 degrees of freedom. We generate 500 +  T  observations in each 

replication and discard the first 500 observations to reduce the impact of initial 

values.



3. M-estimation o f Heteroscedastic Models 47

E stim ating th e  G A R C H  m odel

In the first study we generate K  — 1000 independent replicates each of sam

ple size T  — 500 from the GARCH(1,1) model assuming tha t errors come from 

the standard normal distribution, contaminated normal distribution and student- 

t distribution with 3 and 4 degrees of freedom. The values of true parameters 

considered are G q  = (0.005,0.2,0.75). Errors generated from ^-distributions are 

standardised to ensure tha t the first two moments are 0 and 1 respectively.

Table 3.2 shows the average MSE over 1000 replications for each score function 

with their standard deviations in parenthesis. Entries in bold are the smallest 

values among all estimators representing the best performing estimator in each case 

in terms of average MSE. As expected the QMLE performs well when normality 

is assumed for error distribution. But it can be seen tha t the QMLE is not a 

good choice when error density follows student-* distributions. Peng and Yao 

(2003) suggested tha t when {e*} follows heavy-tailed distribution, for example t{3), 

least absolute deviations (LAD) estimators should be used. But in these cases we 

observe tha t there are score function such as Huber’s and B-estimator tha t can 

perform even better than LAD when {st} ~  £(3). It is worth mentioning here that 

we get these results without imposing extra restrictions such as median(e2)= l and 

squaring the GARCH model which requires the condition of higher moments.

In the second study, 1000 replicates each of sample size 1000 are generated from 

the GARCH(1,1) model. Errors are generated from the same distributions as in 

previous experiment. The true values of parameters are set to Gq — (0.05,0.1,0.85). 

Table 3.3 shows the MSE for each score function. Again the MSE for the QMLE 

is found the least in case of normal density but when errors are generated from 

the contaminated normal distribution and *(3), B-estimators provides the best 

estimates with Huber’s score also competing well. For students-* distribution with
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Table 3.2 : M ean Squared E rror of the GARCH(1,1) model using M -estim ators. (sample 
size=500)

0  = (0 .0 0 5 ,0 .2 ,0 .7 5 ) QMLE LAD Huber’s B-estimator Cauchy

ooLOIIb
s Standard Normal Distribution

MSE 0.0202
(0.0631)

0.0677 0.0272 0.0441 
(0.1468) (0.0758) (0.1094)

0.0812
(0.1428)

ooL
OIIb. Contaminated Normal Distribution

MSE 0.0720
(0.1106)

0.0440 0.0434 0.0408 
(0.0883) (0.0879) (0.0839)

0.0909
(0.1450)

T  = 500 Student-t distribution (3)

MSE 0.0302
(0.0745)

0.0163 0.0119 0.0133
(0.0595) (0.0392) (0.0488)

0.0204
(0.0604)

II C
n

O o Student-t distribution (4)

MSE 0.0241
(0.0535)

0.0153 0.0145 0.0153 
(0.0448) (0.0430) (0.0398)

0.0351
(0.0925)

4 df, LAD estimate shows good result. These results indicate tha t B-estimators 

can be considered for estimation of GARCH models when data has heavy tails or 

there is evidence of outliers.

In order to check the effect of both asymmetric and non-normal errors on the 

estimated parameters, we perform another experiment. For this experiment we 

generate random draws from the skewed-i distribution proposed by Hansen (1994) 

with skewness parameter A =  0.25 and degrees of freedom v  — 3 and 5. Errors 

are also generated from the standard normal, contaminated normal and student-i 

distribution with 3 df. In this experiment the values of true parameters are set 

as 0O =  (0.005, 0.2, 0.3). We choose this set of parameter values to study the be

haviour of different estimators under small value for the coefficient of the GARCH 

term. A sample of size T  =  1000 is chosen and parameters of the GARCH(1,1) 

model are estimated by M-estimators. The results of MSE and their standard er

rors based on K  = 1000 replications for each estimator are reported in Table 3.4.
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Table 3.3: M ean Squared E rror of the GARCH(1,1) model using M -estim ators. (sample 
size=1000)

e = (0 .0 5 ,0 .1 ,0 .8 5 ) QMLE LAD Huber’s B-estimator Cauchy

T  = 1000 Standard Normal Distribution

MSE 0.0238
(0.0439)

0.0414 0.0257 0.0410 
(0.0896) (0.0441) (0.0772)

0.0697
(0.1198)

II i—1 § o Contaminated Normal Distribution

MSE 0.0223
(0.0309)

0.0052 0.0048 0.0043 
(0.0082) (0.0074) (0.0081)

0.0059
(0.0092)

T  = 1000 Student-t distribution (3)

MSE 0.0343
(0.1075)

0.0317 0.0226 0.0225 
(0.1207) (0.1088) (0.0945)

0.3230
(0.1109)

T  = 1000 Student-t distribution (4)

MSE 0.0089
(0.0405)

0.0033 0.0090 0.0061 
(0.0150) (0.0648) (0.0417)

0.0124
(0.0670)

It can be noticed from the results of Table 3.4 that although the QMLE per

forms better than other estimators in the case of the standard normal assumption 

for errors, it is not a good choice for any other cases. In the case of the con

taminated normal distribution, B-estimator produces the best result as it did in 

previous studies for this type of distribution with Cauchy estimator also perform

ing well. LAD and Huber’s estimators outperform other estimators when errors 

were generated from a skewed-t distribution. Huber’s estimator shows very good 

results for {et} t(3). We set a small value for the GARCH coefficient and 

results in Table 3.4 show that the performance of these estimators remain con

sistent. These results suggest that there are other estimators such as Huber’s 

and B-estimator tha t can perform better than the QMLE and LAD when there is 

evidence of asymmetry, heavy-taildness and outliers in the data.
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Table 3 .4 : M ean Squared E rror of the GARCH(1,1) model using M -estim ators. (sample 
size=1000)

e = (0 .0 0 5 ,0 .2 ,0 .3 ) QMLE LAD Huber’s B-estimator Cauchy

T  = 1000 Standard Normal Distribution

MSE 0.0207
(0.0380)

0.0279 0.0235 0.0370 
(0.0516) (0.0432) (0.0646)

0.0575
(0.0904)

T  =  1000 Contaminated Normal Distribution

MSE 0.1234
(0.1730)

0.0571 0.0515 0.0397 
(0.0828) (0.0780) (0.0674)

0.0490
(0.0726)

T  = 1000 Student-t distribution (3)

MSE 0.0711
(0.1026)

0.0379 0.0337 0.0354 
(0.0620) (0.0538) (0.0608)

0.0575
(0.0849)

T  =  1000 Skewed-t distribution (3,0.25)

MSE 0.0756
(0.1046)

0.0414 0.0361 0.0355 
(0.0703) (0.0620) (0.0614)

0.0546
(0.0835)

T  =  1000 Skewed-t distribution (5,0.25)

MSE 0.0457
(0.0740)

0.0312 0.0268 0.0304
(0.0558) (0.0468) (0.0533)

0.0492
(0.0761)

E stim ating th e  G JR  m odel

Next we consider estimating the parameters of the GJR(1,1) model using M- 

estimators. First, we generate 1000 replicates each of sample size 500 from the 

G JR (1 ,1 ) model. The four choices for error distribution are same as in the case 

of the GARCH(1,1) model, i.e. the standard normal distribution, contaminated 

normal distribution with e =  0.05, o2 = 9 and standardised student-t distribution 

with 3 and 4 degrees of freedom. The true parameters values are cu0 =  1.0, ao =  0.1, 

7 o =  0.1 and f30 = 0.5. Next, 1000 independent replicates each of sample size 1000 

are generated from the GJR(1,1) model with same four choices for error distribu

tions. The true parameters values in this case are ojq =  0.5, ao =  0.3, 70  =  0.25 

and P0 = 0.4.

Table 3.5 below shows the average MSE over 1000 replications for each score
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functions with their standard errors in parentheses. The results show that the 

QMLE is again not a good choice in the GJR(1,1) model when errors are generated 

from heavy-tailed and contaminated distributions. In the presence of outliers, the 

QMLE performs badly. B-estimator outperforms other estimators in all cases 

except for normal assumption. Cauchy score function may be considered as the 

second best.

Table 3.5: M ean Squared E rror of the GJR(1,1) model using M -estim ators. (sample size=500)

e — (0 .5 ,0 .3 ,0 .25 , 0.4) QMLE LAD Huber’s B-estimator Cauchy

ooL
OIIE
h Standard Normal Distribution

MSE 0.0227
(0.0155)

0.0304 0.0303 0.0373 
(0.0178) (0.0187) (0.0337)

0.0371
(0.0268)

T  = 500 Contaminated Normal

MSE 0.1081
(0.0925)

0.0601 0.0593 0.0454 
(0.0782) (0.0811) (0.0175)

0.0566
(0.0177)

II C
n O O Student-t distribution (3)

MSE 0.0786
(0.0625)

0.0400 0.0503 0.0294 
(0.0378) (0.0853) (0.0154)

0.0322
(0.0160)

T  —  500 Student-t distribution (4)

MSE 0.0815
(0.0430)

0.0598 0.0600 0.0547 
(0.0315) (0.0132) (0.0316)

0.0597
(0.0727)

Table 3.6 states the same results for large sample size T  = 1000 and again 

B-estimator seems to be the best choice among all competing estimators. From 

our simulation studies we conclude that for GJR models estimator such as B- 

estimator performs better than the QMLE when errors are contaminated with 

outliers and even outperform the robust estimate such as LAD when the tail of the 

error distribution is heavier than the normal. The performance of this estimator 

is also good when data conies from asymmetric distribution. B-estimator and 

Huber’s estimator show good results in both the GARCH(1,1) and the GJR(1,1) 

cases for both small and large sample sizes.
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Table 3.6: M ean Squared E rror of the GJR(1,1) model using M -estim ators. (sample size=1000)

e — (0 .05 ,0 .3 ,0 .25 ,0 .4 ) QMLE LAD Huber’s B-estimator Cauchy

T  = 1000 Standard Normal Distribution

MSE 0.0554
(0.0199)

0.0564 0.0564 0.0581 
(0.0189) (0.0266) (0.0215)

0.0590
(0.0221)

T  =  1000 Contaminated Normal

MSE 0.0769
(0.0955)

0.0641 0.0513 0.0511 
(0.0381) (0.2532) (0.0214)

0.0513
(0.0222)

T  = 1000 Student-t distribution (3)

MSE 0.0805
(0.0365)

0.0601 0.0597 0.0574 
(0.0275) (0.0276) (0.0254)

0.0575
(0.0258)

T  =  1000 Student-t distribution (4)

MSE 0.0624
(0.0302)

0.0562 0.0566 0.0551 
(0.0234) (0.0231) (0.0234)

0.0553
(0.0241)

3.4.2 Empirical Illustration

In this section, we fit the GARCH(1,1) and the GJR(1,1) models using M-estimators 

to real data sets. The results of M-estimates with the QMLE estimated by MAT- 

LAB are also compared.

Tsay (2005, Chapter 3) analyzed two important data sets, namely, (A) The 

monthly log-returns of IBM stock from 1926 to 1999 (888 observations with first 

value 1.0434 and last value 4.5633) and (B) The monthly excess returns of S&P 

500 from 1926 to 1991 (792 observations with first value 0.0225 and last value

0.1116) and fitted various types of conditional heteroscedastic models to them. 

These data, denoted by {y t\ l  < t < T }  can be found in

http : / / facu lty .chicagogsb.edu/ruey.tsayjteaching)fts2 / .

We compute M-estimates of the parameters by fitting GARCH (1, 1) and GJR (1, 

1) models for the centered IBM stock and the centered S&P 500 index, denoted
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Table 3.7: Descriptive statistics for D ata  Sets.

Statistics IBM Stock S&P 500 Index

Sample size 888 792
Mean 1.2042 0.0061
Median 1.2230 0.0087
Minimum -30.3676 -0.2994
Maximum 30.0971 0.4220
Std. Dev. 6.7287 0.0585
Skewness -0.2369 0.4113
Kurtosis 4.9278 12.3002
Jarque-Bera 145.81 2876.70
Q2(10) 2128.03 387.47
Q  (10) is the Ljung-Box statistic at lag 10 of the squared log-returns.

by { X t = y t — y ; l  <  t < T }. Table 3.7 shows the summary statistics. Both data 

sets are asymmetric and having kurtosis greater than tha t of normal distribution. 

Jarque-Bera, a formal test statistic for testing whether the returns are normally 

distributed is also calculated and high values for both data confirm the nonnor

mality in data. The high values for Ljung-Box, Q2(10), statistics for the squared 

returns up to lag 10 indicate dependence in squared returns (ARCH effect).

The results of using MATLAB’s GARCH Toolbox, for estimation of the pa

rameters of the GARCH(1,1) and the GJR(1,1) models, arc reported in Table 3.8 

below. We need these results to check the consistency and accuracy of our algo

rithm for M-estimation.

First, we estimate the parameters of the GARCH(1,1) model for the IBM 

data. Table 3.9 below shows estimated parameters of the GARCH(1,1) model and 

their standard errors (SE’s) in parentheses using five different M-estimators. The 

Ljung-Box statistics for the squared standardised shocks {e*2} are also computed 

to check the adequacy of the volatility equation. High p-values of Ljung-Box 

statistics for lag 10 suggest that the GARCH(1,1) model is adequate for the data 

at 5% significance level. As mentioned earlier an M-estimator based on a score
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Table 3.8: E stim ated  param eters for the GARCH(1,1) and the G JR(1,1) with SE’s using 
MATLAB ______________________

D ata set IBM Stock S&P 500 Index

GARCH(1,1) GJR(1,1) GARCH(1,1) GJR(1,1)
0J 2.9987 3.3579 0.00008 0.00009

(0.9415) (0.9810) (0.00002) (0.00002)

OL 0.0953 0.0667 0.1211 0.0727
(0.0201) (0.0238) (0.0199) (0.0210)

7 - 0.0558 _ 0.0822
- (0.0256) - (0.0283)

P 0.8376 0.8293 0.8556 0.8543
(0.0365) (0.0380) (0.0190) (0.0185)

function H  consistently estimates Oqh — {ch Ĵq, cHa 0, (3q)'. The QMLE estimates 

are approximately same as those computed by MATLAB as in this case c# =

1. Since 00 does not depend on the constant c//, all M-estimates should give 

approximately the same estimate for this parameter and from Table 3.9 it can also 

be seen tha t the estimates of /30 for all estimators are close to each other.

Table 3.9: E stim ated param eters for the GARCH(1,1) with SE’s and Ljung-Box statistic for 
et2 (IBM Stock) _________________________________________________________________

arameters QMLE LAD Huber’s B-estimator Cauchy

CH UJ 3.0045
(1.4277)

1.6319
(0.7314)

1.9419
(0.8795)

2.0021
(1.0151)

0.8984
(0.4722)

CH OL 0.0950
(0.0307)

0.0542
(0.0162)

0.0680
(0.0201)

0.0717
(0.0236)

0.0297
(0.0105)

p 0.8378
(0.0535)

0.8475
(0.0465)

0.8557
(0.0435)

0.8502
(0.0502)

0.8473
(0.0547)

QH io)
p-value

2.8528
0.9847

3.0512
0.9802

3.2429
0.9751

3.1591
0.9774

3.0479
0.9803

Q  (10) is the Ljung-Box statistic at lag 10 of the standardised squared residuals.
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Second, the parameters of the GJR(1,1) model is estimated for the IBM data. 

M-estimators are used for estimation and results are reported in Table 3.10. Stan

dard errors for these estimated parameters are reported in parentheses. High 

p-values of Ljung-Box statistics for lag 10 of the standardised squared residu

als suggest tha t the GJR(1,1) model is also adequate for this data set. M- 

estimators for the GJR(1,1) based on a score function H  consistently estimates 

Oqh = {ch^ o, choio, ch'Jo-, Po)1- Again it can be seen tha t the estimates of for 

different estimators are 0.83, 0.84, 0.84, 0.84 and 0.84, respectively. These values 

are close to each other as expected and also close to the estimated value of (30 in 

Table 3.8. The estimates of the QMLE are approximately same as those reported 

in Table 3.8. These findings confirm that M-estimators estimate the unknown 

parameters of the model correctly.

Table 3.10: E stim ated  param eters for the GJR(1,1) with SE’s and Ljung-Box sta tistic for et2 
(IBM Stock)__________________________________________________________________

Parameters QMLE LAD Huber’s B-estimator Cauchy

cH u 3.4542 1.7702 2.2448 2.2262 0.9251
(1.5490) (0.7512) (0.3227) (1.0468) (0.4538)

c H a 0.0676 0.0377 0.0471 0.0490 0.0187
(0.0333) (0.0173) (0.0074) (0.0249) (0.0105)

c H l 0.0570 0.0373 0.0489 0.0552 0.0255
(0.0429) (0.0232) (0.0100) (0.0346) (0.0153)

0 0.8257 0.8383 0.8431 0.8381 0.8412
(0.0569) (0.0477) (0.0156) (0.0514) (0.0528)

Q2( io) 2.8068 3.0582 3.1182 3.2097 3.2548
p-value 0.9856 0.9800 0.9785 0.9761 0.9748

Q (10) is the Ljung-Box statistic at lag 10 of the standardised squared residuals.

Next, we consider estimating the parameters of the GARCH(1,1) model for 

the S&P 500 index. The results of estimated parameters of the GARCH(1,1)
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model using five different M-estimators and their standard errors are displayed in 

Table 3.11. Again the estimates of /3, for all estimators are approximately same 

whereas the QMLE estimates are nearly equal to MATLAB’s estimates which 

shows tha t M-estimators correctly estimate the parameters.

Table 3.11: E stim ated param eters for the GARCH(1,1) w ith SE’s and Ljung-Box sta tistic  for 
et2 (S&P 500 Index)

Parameters QMLE LAD Huber’s B-estimator Cauchy

cjjuj (xlO-3) 0.0737 0.0651 0.0859 0.0951 0.0444
(0.0327) (0.0245) (0.0325) (0.0392) (0.0192)

Ch OL 0.1201 0.0616 0.0814 0.0676 0.0280
(0.0279) (0.0166) (0.0221) (0.0223) (0.0102)

0 0.8590 0.8545 0.8549 0.8587 0.8575
(0.0280) (0.0334) (0.0333) (0.0400) (0.0438)

QH  io) 10.1338 11.6089 11.6036 13.9245 15.1043
p-value 0.4288 0.3121 0.3125 0.1765 0.1283

Q (10) is the Ljung-Box statistic at lag 10 of the standardized squared residuals.

The GJR(1,1) model is also fitted to S&P 500 index. Table 3.12 reports the 

estimated parameters and standard errors. After the application of M-estimator 

to both real data sets and comparing the results with MATLAB estimated param

eters we can confidently use M-estimators for the estimation of the parameters of 

GARCH and G JR models.

3.5 V alue-at-R isk

Next we consider prediction of Value-at-Risk (VaR) based on M-estimates. VaR 

is the p-th  conditional quantile of the distribution of the change in value of an 

asset over a certain period of time where p is known and close to zero. It is an 

estimate of the maximal loss associated with a given probability p  and is used by
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Table 3.12: E stim ated param eters for the GJR(1,1) with SE’s and Ljung-Box sta tistic  for et2 
(S&P 500 Index)

Parameters QMLE LAD Huber’s B-estimator Cauchy

c#o;(xl0-3) 0.0882 0.0788 0.1050 0.1070 0.0465
(0.0400) (0.0277) (0.0373) (0.0416) (0.0190)

Ch OL 0.0732 0.0232 0.0318 0.0186 0.0063
(0.0374) (0.0176) (0.0236) (0.0227) (0.0099)

ch! 0.0786 0.0710 0.0911 0.1002 0.0449
(0.0468) (0.0260) (0.0346) (0.0372) (0.0170)

P 0.8581 0.8491 0.8486 0.8526 0.8543
(0.0341) (0.0370) (0.0377) (0.0424) (0.0442)

Q( 10) 9.3685 9.3373 9.4392 9.3887 9.3030
p - value 0.4975 0.5004 0.4910 0.4957 0.5036

financial institutions and regulators for risk measurement. Existing approaches 

for predicting this are historical simulation, extreme value theory and quantile 

regression, among others.

For the returns of a portfolio { X t; 1 < t < T } ,  the VaR qt =  qt{p) at time t > 1 

is defined by

qt =  in i{x \p  < Pt- i ( X t <  a;)},

where Pt- 1 is the conditional distribution of X t given the information available 

upto time t — 1. When returns are of the form (3.14), we get

qt =  v 1t /2(e0) F - 1(p),

where F1-1 is the quantile function of the errors {e*}- Using (3.22),

qt =  - ± - v 1t /2(e0H) F - 1(p), (3.26)
CH
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where notice tha t F 1(p) is the p-th quantile of the scaled errors {^/c]^2}. Es

timating v1J 2{6qh) by v\^2{9t ) and F~1(p) by the p-th quantile of the residuals 

{ X t/ { v t (dT)}V2;1 < t <  T}, wc obtain from (3.26) the predicted value qt of qt . 

Clearly qt depends on the underlying M-cstimates.

The statistic T* =  Y lt= i^ (^ t  < qt) denoting the number of violations, can 

be used to assess the overall predictive performance of the underlying conditional 

heteroscedastic model and the M-estimates used for computing qt . First the num

ber of violations is assessed by the unconditional likelihood ratio test statistic, 

proposed by Kupiec (1995) when the QMLE is used as Or, by

LRnc — 2 In {(1 -  p)T T pT } -  In {(1 -  p)T T pT }], p = T*/T

This is asymptotically X(ip

Note tha t in a reasonable model of VaR, the previous history of violations 

should not convey any information about whether or not additional VaR viola

tions may occur in future. Towards that, using the QMLE as Ot, Christoffersen 

(1998) defined the independence coverage test statistic, denoted by LRind, which 

characterizes the ways in which these violations occur as follows. For 1 < t < T, let 

It =  I ( X t < qt). For i , j  = 0,1, let TJj be the number of time points {£; 2 <  t < T}  

for which It = i is followed by It+i =  j .  Let 7ty =  T^/(Tio+Tji), 7r = (T q i+ T u )/T . 

Then

LR4nd — 2 l n ( ( l - * o i ) T *01 ( l - * n ) T *u ) - l n ( ( l - i r ) (r +T +t ’)

It is im portant to recognize tha t both the unconditional coverage and the indepen

dence properties should be satisfied for an accurate VaR model. Hence Christof-
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Table 3.13: Conditional likelihood statistics of IBM data based on M-estimates for the GARCH 
(1, 1) and GJR (1, 1) models

QMLE LAD Huber’s B-estimator Cauchy

p = 10% GARCH(1,1)

T, 89 89 89 89 89
LRcc 7.5242* 7.5242* 7.5242* 5.8783 5.8783

p =  10% GJR(1,1)

T* 89 89 89 89 89
LRcc 3.1422 3.1422 2.0684 2.0684 2.0684

* shows significant at 5%.

fersen (1998) proposed the statistic

LRCC LRuc; T LR^^

which is asymptotically X(2p

In this study, we have computed {qt} based on different M-estimates and Ta

ble 3.13 presents the number of violations T* at coverage probability p = 10% 

and the corresponding LRCC for IBM data fitted with both the GARCH (1,1) and 

GJR (1 ,1 ) models. Note that in this case, the expected number of violations is 

10% x 888 «  89 and this is same as the observed number of violations T* for both 

models based on all five M-estimates. Using Xo.05,2 =  5.991, Table 3.13 shows 

tha t the LRCC based on the QMLE, LAD and Huber’s estimates are statistically 

significant whereas those based on the Cauchy and B-estimator are not significant 

at 5% level for fitting GARCH (1, 1) model. On the other hand GJR (1, 1) model 

turns out to be not significant based on all M-estimates. Thus we conclude that 

M-estimators based on the Cauchy and B-estimator also provide good predictions 

of VaR especially when the GARCH (1,1) model is fitted with this data.
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3.6 A  W eighted R esam pling for M -estim ators

Efron (1979) introduced the idea of bootstrapping which is a general approach to 

statistical inference based on building a sampling distribution for a statistic by 

resampling from the data at hand. For a comprehensive introduction of bootstrap 

methods, see Efron and Tibshirani (1993).

Chatterjee and Bose (2005) introduced a bootstrap technique for estimators ob

tained by solving estimating equations. They call it generalized bootstrap (G B S ) 

because classical bootstrap, the delete-d jackknife and variations of the Bayesian 

bootstrap are shown to be some special cases of G BS.  Examples of G B S  weights 

and their implementation in heteroscedastic time series, generalized linear models 

and nonlinear regression models are also discussed.

Using the idea of weighted resampling we develop suitable bootstrap versions 

for M-estimators. We bootstrap M-estimators and our goal is to approximate the 

sampling distribution of the parameters with this new approach to resampling. 

Recall tha t for a GARCH(1,1) model, the M-estimator is a solution of

T

M  T(0) =  £ m , ( 0 )  =  O,
t - 1

where rht (0) = ( | ) {1 -  ff{X t/« (1/2(0)}}{fit (0)/fit (0)}, (3.27)

with 0 =  (a;, a , (3)'.

In order to estimate the sampling distribution and the asymptotic variance of
^ A *  r
Gt , define resampling estimator 0T as the solution of

T

M J(0) -  y^WTtfht(O) = 0, (3.28)
t=i

where {wTt\ 1 <  £ < T, T  >  1} is a triangular array of r.v .’s such tha t for each
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T  > 1, {wrt'i 1 < t < T} are exchangeable, independent of { X t}. These are called

the bootstrap weights. Minor modifications of the algorithm for computing 0?  are 
 ̂*

used to compute 0T.

We assume the following basic conditions (Conditions BW of Chatterjee and 

Bose (2005)) where of =  Vh^u^) and k\ > 0 is a constant. The conditions on 

weights are as under:

E B(wTi) =  1, 0 < ki < u f  =  o(T),

and covib{w ti,w t2) — 0 (T _1). (3.29)

Let {WTt \= [wTt ~  1 )l&t} be the standardized weights satisfying

E b { W ^  < oo), and lim EB( W ^ W ^ 2) = 1. (3.30)
T —► oo

We are interested in approximating the distribution of V T (6 t  — 0 qh)- We approx

imate such distribution via weighted bootstrap.

Similar to Chatterjee and Bose (2005, Theorem 3.2) it can be shown tha t under 

some technical assumptions on the correlation structure of the bootstrap weights, 

the distribution of T 1/2(6t  ~  O q h ) can be approximated by the distribution of 

a ^ lT l^2(eT - e T ) outside a set of probability zero, where erf denotes the variance 

of Wt\ •

Three different schemes for weights are considered. These are

(i) Scheme M when weights have a multinomial (T, 1 /T ,..., 1/T) distribution.

(ii) Scheme G when wTt = Gt/G, where Gt's are i.i.d Gamma(l,3) and G =

T - ' Y L x G t -

(iii) Scheme E when wTt = Et/ E , where E t's are i.i.d Exponential 1) E  =
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Note th a t Scheme M corresponds to the commonly-used paired-bootstrap in 

heteroscedastic models. We empirically study Schemes G and E as possible alter

natives to the paired-bootstrap. It is possible to obtain quantiles of the bootstrap 

distribution of crT 1T 1//2(0T — 0 t ) using simulation and then using the bootstrap 

approxim ation, we can construct the bootstrap confidence intervals of 0 OH.

3.6.1 R esu lts

This section reports the results of resampling study. We are interested in studying 

the quality of bootstrap  approxim ation to  the finite sample distribution of V T ( 0 t — 

Oqh)■ We use a sample of size T, and assume th a t the underlying error distributions 

of {q} is standard  normal. GARCH model is fitted using three M -estimators, the 

QMLE, LAD, and B-estimator.

Accordingly, we generate K  =  1000 samples each of size T  = 500 from the 

GARCH(1,1) model with 6 q = (0.05,0.15,0.65). Let 0T(k) denote the estim ate 

com puted from the /c-th sample, 1 < k < K .  The estim ated marginal means and 

variances of \ / T ( 0 t  — O q h )  by the (entrywise) average and sample variance of these

three sets of K  numbers are reported in Table 3.14.

Table 3 .1 4 : E stim ated  m ean and variance of \ / T { 6 t  — O q h ) for G A RCH (1,1) m odel.

6 =  (0 .05 ,0 .1 5 ,0 .6 5 ) QMLE LAD B-estim ator

T  = 500 Mean Var Mean Var Mean Var

Uq 0.0162 0.0032 -0.0475 0.0030 -0.0076 0.0032
Oi 0 0.1601 1.8087 -1.6823 3.6652 -0.5562 2.8326
A) -0.9836 12.9870 1.2091 10.1425 -0.3921 17.4046

Next, we generate B* =  1000 bootstrap samples based on weights {wrt, 1 <  t < 

T } under M-, G- and E-schemes. Fixing A; in { 1 , . . . ,  K } ,  we obtain a ^ l \ / T ( 6 T — 

^T(fc)) from the  6-th sample, 1 <  6 <  B, and compute (entrywise) average and 

sample average of these three sets of B  numbers and finally took average of these
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quantities over R = 100. The results are shown in Table 3.15 where entries in bold 

represent the closest match of bootstrapped variance to tha t of Table 3.14.

Prom Table 3.15, in case of the QMLE, Scheme M, which is commonly-used 

paired bootstrap, seems to approximate the MSE of estimating uj0 and Pq more 

accurately whereas it cannot perform well for other parameters. Although Scheme 

G does not do well for the QMLE, it produces best approximation of MSE for 

LAD and also has a good performance for B-estimator. Scheme E turns out to be 

the second best choice in nearly all cases. It gives results close to Scheme M for 

the QMLE and also matches Scheme G for other estimators. Thus Scheme G is a 

good competitor to the Scheme M. Overall, none of these bootstrap schemes has 

any distinctly better performance compared to each other or normal approxima

tion in approximating the mean and variance of the standardized M-estimators. 

Nevertheless, the bootstrap schemes do capture the shape of the standardized M- 

distributions reasonably well.

Table 3.15: E stim ated mean and variance of ctt 1\ /T ( 0 t  — 6?)  for GARCH(1,1) model.

Scheme M Scheme G Scheme E

B* = 1000 Mean Var Mean Var Mean Var

QMLE
UJq -0.0021 0.0031 -0.0053 0.0026 -0.0025 0.0030

0.2065 2.4984 0.1709 2.3781 0.1760 2.4091
Po -0.0251 12.4979 0.1624 10.8873 -0.0294 12.4184

LAD
Uq -0.0016 0.0007 -0.0014 0.0008 -0.0017 0.0007
O/Q 0.1061 0.9536 0.1424 1.0486 0.0786 0.9583
Po 0.0319 7.7821 -0.0495 8.6255 0.0147 8.2876

B-estimator
Uq -0.0028 0.0031 -0.0033 0.0035 -0.0031 0.0034
OiQ 0.2422 2.7450 0.3134 2.8542 0.2272 2.7402
Po 0.0647 16.2140 0.0294 18.7581 0.0202 18.1217
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3.7 C onclusion

64

We conclude this chapter by pointing out our main contributions and findings.

We discussed the robust estimation of heteroscedastic time series models. In 

particular, M-estimators for asymmetric GARCH models are defined. Algorithms 

for computing these estimators were also discussed. The class of M-estimators 

considered are the QMLE, LAD, Huber’s, Cauchy and B-estimators. Monte Carlo 

simulations were conducted to check the relative performance of these estimators 

under different distributional assumptions for errors.

It was found tha t some of the M-estimators provide good alternatives to the 

widely-use QMLE. Estimators such as B-estimator, Cauchy, and Huber’s produced 

very good results in terms of mean squared error and outperformed the QMLE. 

These estimators even outperformed the robust LAD estimator in cases when errors 

are generated from heavy-tailed distributions. Performances of these estimators 

were investigated under different set of parameter values and also under heavy

tailed asymmetric errors. We also noted that under the existence of some fractional 

error moments, it is still possible to estimate consistently scalar multiples of the 

GARCH and GJR parameters. Application to real data sets and simulations 

revealed the better performance of the alternative estimators. We conjecture that 

it is possible to investigate M-estimators under more general asymmetric GARCH 

model, namely, the asymmetric power ARCH or APARCH model, which nests a 

number of im portant symmetric and asymmetric models.

Using the idea of weighted resampling for estimating equations, suitable boot

strap versions for M-estimators were developed. We bootstrapped M-estimators 

and approximate the sampling distribution of the parameters with this new ap

proach to resampling. In addition to the commonly-used Scheme M, we used 

Scheme G and Scheme E and results showed that these schemes show good results.
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Overall, none of these bootstrap schemes had any distinctly better performance 

compared to each other or normal approximation in approximating the mean and 

variance of the standardized M-estimators. Nevertheless, the bootstrap schemes 

did capture the shape of the standardized M-distributions reasonably well and 

there is a need of further investigation on weighted resampling for M-estimators 

in GARCH models.



Chapter 4

D iagnostic Checking for 

G A R C H -type M odels

4.1 Introduction

The autoregressive conditional heteroscedastic (ARCH) model of Engle (1982) and 

the generalized ARCH (GARCH) model of Bollerslev (1986) have been found to 

be successful in capturing the volatility or the conditional variance structure of 

many financial time series. There is a huge literature on modeling these condi

tional heteroscedastic time series, but not much work has been done on model 

checking or model selection. Testing the adequacy of these heteroscedastic models 

is undoubtedly important for several economic and statistical reasons. Diagnostic 

is one of the im portant stages of model building. Generally, misspecification in the 

mean and variance results in inconsistency and loss of efficiency in the estimated 

parameters. Residual autocorrelations are used to identify possible departure from 

the assumption tha t the white noise disturbances in the specified model are un

correlated (see Box and Jenkins, 1970).

To check the model adequacy, the asymptotic distribution of the squared and

66
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absolute residual autocorrelations derived from such models might be useful. One 

option is to look at the graphs of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the residuals. The graphs will show which lags 

of the ACF and PACF display significant values and also reveal some remaining 

structures. However, these graphs only show linear dependent structures, and it is 

well known tha t in many cases we are likely to have different non-linear structures.

The second option is to build a test statistic to test the null hypothesis that 

the residuals are independent up to a lag M. The test statistic can be applied to 

check for non-linearity in mean and also for nonlinearity in variance. In particular, 

we are interested in finding not only linear, but also non-linear structures. The 

test statistics usually used are called portmanteau statistics. Next, we discussed 

some of the frequently used statistics in time series for diagnostic checking.

One of the widely used portmanteau statistic is the one proposed by Box and 

Pierce (1970). This statistic is used to test the null hypothesis tha t the first M  

autocorrelations of a covariance stationary time series are zero. If significant auto

correlation is not found in the residuals from the model, then the model is declared 

to be adequate. Ljung and Box (1978) discussed the finite sample properties and 

conservative behavior of the Box-Pierce statistic. In financial time series analysis, 

it is particularly im portant to check serial correlations of squared series. McLeod 

and Li (1983) derived a portmanteau test for model adequacy based on the squared 

residual autocorrelations in ARMA models.

In practice, many researchers apply the Ljung-Box or McLeod-Li tests to the 

squares of the estimated standardised residuals when testing the adequacy of an 

ARCH/GARCH model. A y 2 distribution with M  degrees of freedom, as the 

large sample distribution for these statistics is found misleading and using the 

squared residual autocorrelations a correct portmanteau test is proposed by Li 

and Mak (1994). They derived the asymptotic variance of the residual correlation
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coefficients, and suggested some diagnostics for the ARCH/GARCH models.

Wong and Li (1995) presented a portmanteau test using ranks of squared resid

uals and showed through simulations that their test using ranks is a more robust 

alternative to the McLeod-Li statistics. Ling and Li (1997b) further generalised the 

Li-Mak work and derived the asymptotic distribution of the portm anteau statistic 

in multivariate case. Tse and Zuo (1997) reported some Monte Carlo results for 

the finite sample performance of some commonly used diagnostics used in litera

ture and found tha t the Li-Mak test based on the asymptotic variance under the 

Gaussian assumption performs favorably among other versions of statistics.

Asymptotic theory for quadratic forms of the autocorrelation of squared resid

uals from a GARCH(p, q) model was developed by Berkes et al. (2003b). Kwan 

et al. (2005) carried out a comparative study of the finite-sample performance 

of some well-known portmanteau tests. Based on their Monte Carlo results they 

reported tha t when the data generating process is skewed then the empirical size 

of these tests are severely undersized and that the non-pararnetric test is more 

powerful than the portmanteau tests.

Li and Li (2005) derived the asymptotic distributions of absolute residual au

tocorrelations and squared residual autocorrelations from the GARCH model esti

mated by the least absolute deviation method proposed by Peng and Yao (2003). 

They also develop diagnostic tools for checking the adequacy of GARCH models 

fitted by least absolute deviation method.

Tests used to check the adequacy of GARCH models estimated by the quasi

maximum likelihood method assume that the innovations have at least finite fourth 

moment. Li and Mak (1994) assume the conditional normality and the existence 

of fourth-order moment of the observations. However, these assumptions are not 

satisfied by many financial time series. Many heavy-tailed distributions are ex
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eluded as the existence of squared residual autocorrelations needs a finite fourth 

moment. Moreover, a drawback of this approach is the lack of robustness because 

it is sensitive to outliers and error distributions. Therefore, it is important to 

investigate the robustness of portmanteau tests. Tests derived under the assump

tion of Gaussian errors should be used only for such errors and hence it is also 

im portant to develop tests for GARCH-type models estimated by estimators other 

than the QMLE.

In the previous chapter we suggested using Cauchy and B-estimator for fit

ting GARCH-type model. Our Monte Carlo simulation and application to real 

data sets showed tha t these estimators perform better than the QMLE and even 

outperform the robust estimator such as the LAD when the error distribution is 

heavy-tailed. A significant contribution to the existing literature on the subject 

would be to develop some diagnostic tests that can be used to check the adequacy 

of GARCH-type models estimated by M-estimators. For this, it is important to de

rive the asymptotic distribution of absolute and squared residual autocorrelations 

for GARCH models. It is also important to examine the finite sample behaviour of 

these tests in the presence of outliers, under heavy-tailed and skewed distributions.

In this chapter we derive the asymptotic distributions of absolute and squared 

residual autocorrelations from GARCH-type models when M-estimators are used 

for estimation. We propose two new diagnostic tools based on the correct large 

sample distributions of the squared and absolute standardised residual autocorre

lations. Since these tests are based on M-estimators, we call these robust port

manteau tests for GARCH models.

An advantage of using the absolute values of the residuals is tha t in order to 

obtain the asymptotic distribution we need to assume the existence of only the 

second-order moment of residuals, whereas for the squared residuals the existence 

of the fourth-order moment is required. Our results are valid under very weak
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conditions on the errors and hence robust under heavy-tailed distributions. The 

asymptotic distributions for these statistics are obtained and size and power analy

sis are conducted through Monte Carlo simulations. It is found tha t the asymptotic 

standard errors for both squared and absolute residual autocorrelations match the 

empirical standard errors quite satisfactory for all estimators. Investigation of 

the size of these tests suggests that empirical sizes of these tests are close to the 

nominal level. Analysis of the power of tests reveal that tests based on absolute 

residual autocorrelations outperform those based on squared residual autocorre

lations. The power levels of tests, when Cauchy and B-estimators are used for 

estimation, are found superior than other estimators used.

The plan of the rest of the chapter is as follows. In the next section, we give 

a brief introduction to some commonly used portm anteau statistics. Diagnostic 

checking for GARCH models estimated by M-estimators are explained in Section 

4.3 where asymptotic of squared and absolute residual autocorrelations are dis

cussed in detail. Simulation results of the size and the power of the tests are 

reported in Section 4.4. Finally, Section 4.5 concludes the chapter.

4.2 Portm anteau  Statistics

In this section we discuss some of the frequently used statistics in time series for 

diagnostic checking.

4.2.1 Box-Pierce Statistic

The Box-Pierce statistic is used to test the null hypothesis tha t the first M  auto

correlations of a covariance stationary time series are zero. Under the assumption 

that the observations are independent and identically distributed, the asymptotic 

covariance matrix of the vector of sample autocorrelations is the inverse of the
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sample size times the identity matrix. This test is generally called the classical 

portm anteau statistic. The lag-A; residual autocorrelation is defined as

f lk = S ‘̂ (Te‘ ~ e)(6t- fe~ e) for k = 1 , 2 , M,  (4.1)
E t= i(c t -< 0 2

where {ei} are residuals from an autoregressive moving average, ARMA{p,q) 

model, 6 =  y, h  and T  is the sample size. The Box-Pierce statistic is defined as

M

QBP(M)=Tj2flk
k=1

where is the sample residual autocorrelation of order k = 1, ...,M . Under the 

null hypothesis tha t ARMA(p, q), model is adequate, Q b p { M )  is asymptotically 

distributed as a x 2 with (M — p — q) degrees of freedom.

4.2.2 Ljung-Box Statistic

A modified test proposed by Ljung and Box is

Q l b ( M ) = T ( T  + 2 ) ] T
M ^2 Ik.
, T - kk=1

It has been shown tha t the finite sample distribution of this statistic is much closer 

to tha t of the X(m- p- 9)’ however its variance could be substantially larger than 

that of its asymptotic distribution.

4.2.3 McLeod-Li Statistic

The lag-A; squared residual autocorrelation is defined as

£*=*+■ — el  for k = (4.2)
E L f e 2 - * ) 2
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where e — L ej and T  is the sample size. The McLeod-Li statistic is

M  „2

QML(M)=T(T + 2) Y , ^ k -
k=1

They showed that, if the eighth order moment of the returns exists, Q m l ( M )  is 

distributed asymptotically as x\m)- This test asymptotically equivalent to the 

Langrange Multiplier (LM) test of Engle (1982). When the Q m l ( M )  statistic is 

implemented with absolute values, only the fourth order moment of returns should 

be finite for the asymptotic distribution to hold.

4.2.4 Li-Mak Statistic

Li and Mak (1994) derived the asymptotic variance of the correlation coefficients, 

and suggested some diagnostics for the ARCH/GARCH models. The lag-A: corre

lation coefficient r 3fc is defined as

.  , , , ,  

 “ ■ ( , 3 )

where et are the standardised residuals from GARCH model estimated by QMLE. 

Li and Mak (1994) showed that y/Tr3 is asymptotically normally distributed with 

mean 0 and covariance matrix V , where r 3 denotes the vector of sample correlation 

coefficients defined by r 3 =  (r3i, ...,r3M)' and V  can be consistently estimated by 

v  =  i M-  (1 j 4)X G  where lyv/ is the 1Mxi\4 identity matiix, G is a consistent 

estimate of the asymptotic variance of y/T(0 — Oq) and X  =  (Ah, . . . ,X m Y with 

Xk = —T ~ l Ylt=k+i(^t-k ~  1 )0l t/ht), and ht is the estimate of the conditional 

variance of the GARCH model. The Li-Mak statistic is

Q l m ( M )  =  Tr'V-'f.
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If the model is correct, Q l m (M)  asymptotically follows y 2 distribution with M  

degrees of freedom.

4.3 D iagnostic  Checking for G A R C H -type M od

els E stim ated  by M -estim ators

In this section we discuss the diagnostic checking for GARCH-type models when 

M-estimators are used for estimation. We derive the asymptotic distributions of 

autocorrelations of squared and absolute residuals from GARCH models estimated 

by M-estimators. Based on these results we develop portm anteau statistics that 

can be used to check the adequacy of GARCH models.

We start our discussion of M-estimators in the GJR model and introduce some 

notations and definitions (see Section 3.3.1 for detailed discussion on M-estimators 

for GARCH-type models). For simple GJR(1,1) model, the following representa

tion of the return series { X t\ t 6 Z} is assumed. Observe { X t; 1 < t < T }  such 

that

X t  =  h j  et , (4.4)

ht = + oloX U  + Poht- i  + loD t-iX ^_ l

where D t-1 = 1 if X t~ i < 0 and 0 otherwise, with {e t } is a sequence of independent

and identically distributed (i.i.d.) unobservable real-valued random variables and

the unknown parameter 0O — [<̂ o, <ao, 7o> Po}' is in the parameter space

O = {0 = [a;, a, 7, /?]'; w >  0, a, /?, 7 > 0, (a + 0  + -7) < 1}.
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Under these parameter constraints, model (4.4) is strictly stationary and hence 

covariance stationary under finite second moment. The GJR(1,1) model reduces 

to the GARCH(1,1) model when there is no leverage effect i.e. when 7 0  =  0.

By recursive substitution, we get

OO OO

ht  =  Q  \  N +  AS 1X ? - j  +  70 D t- j P o  ' X l j .
'  Po' 3=1 3=1

For 0 6 0 , define the variance function

OO OO

v t { e ) = ( T T s ) + “  y  /33" i x ‘- ^ + 7  y  (4-5)

and note tha t vt{Oo) = ht .

In (4.4), if /  denotes the error density, then the conditional density of {A*} 

given past will be v ^ 1/2 (60) f  { v ^1/2 (60)X t} , 1 < t < T. Now we can define a 

random quantity as a minimizer of the negative log-likelihood function

1 T
L t ( 0 )  =  » € 0 ,

t = 1

where

m  =  [(i) iog«,(fl) -  log} { x ti v l l2( e ) } \

Then, the derivative of the log-likelihood is

dĴ W 1  =  t  ( 5 )  D -

where H*(x) := x { —f  (x) J f  (x)} .

More generally, we define a score function H  as follows. Let ijj : R —» K. be 

a skew-symmetric function (that is 3p{—x) = —'iJj(x ), V.t E M — {0}) which is
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differentiable in all but finite number of points. Let H (x) := xijj(x), x  € M. Note 

tha t H {—x) — H(x), \fx. We can then define 0T in the model (4.4) as a solution 

of the equation
T

M r (0) =  £ > , ( 0 )  =  o,
t= 1

where

^  =  Q  j 1 -  H { x t i v \ l 2 ( e ) } Y v , { e ) i v , { e ) } .  (4.6)

Since { X t]t < 0} are not observable, {?;*(#) }’s are non observable and hence 0? s 

are noncomputable. We define an observable approximation {vt{Q)\t > 1} to the 

variance functions {vt (9)’, t  > 1} as

i t { 0 )  = IT T ) +  { “ E ^ ' IX‘b  +  > 2). (4.7)
'  '  j = 1 j - 1

Then an M-estimator 0t  based on the score function H  or ip is defined as a solution 

of the equation
T

Mr(fl) =  y ^ m t ( 0 )  =  0, (4.8)
f=l

where

rnt(0) =  (i){l -  H { X t/v ln ( 0 ) } ) { i m / v tm ,

In Section 3.3.1, we showed tha t an M-estimator 0T, based on a score function H  

consistently estimates

9 q h  =  c//70) P o ] \  (4-9)

where cH > 0 is a constant tha t depends on the score function H  through the error
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distribution. From (4.5) and (4.9), notice that

vt (0QH) =  cHvt (po).

Hence

X , / { v t(0OH)}1/2 = X t/ { c Hvt(0o)}1/2 =  t t / c t f .  (4.10)

By Theorem 3.1.

t W ( 0 t  -  00h ) N [ 0 ,  a2(H) G " 1]. (4 .1 1 )

where

a2(H) := 4 var{H (e /c ^ 2)} /[E{(e /c^2)H (e /c ^ 2)}]2,

and

G  =  G (0oh) ■= E I M O ohM O ô / vKOoh)}.

Based on the above theorem, it can be shown that

0T -  00 h  = ( T B ) - 1 £  (^ )  i 1 -  ^ 4  + op(T-V2) (4 .1 2 )

where B =  —£ ,(T_1M t(0o//)) and

T

M t { 9 q h )  = (1/4) y ^ y[H(et/Cff2)(et/c](2){vt(6oH)v,t(OoH)/v2(^oH)}\
t=i 
T

+  ( 1 / 2 )  y ^ [ { l  — H ( € t / c ) ( 2 ) } { V t ( 0 O H ) V t ( 9 o H )  — V t ( 0 Q H ) v ' t ( 0 O H ) } / v t ( Q o h )\-

t =  1

As shown in Mukherjee (2008, A.23)

M t (^o/t)/(2T) —► V ,
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where

V  =  o G  and 5 =  £ { (e /c ] f ) t f  (e/c„/2)}/8  >  0. (4.13)

Therefore, for M-estimators
p - i  4G -1

k { H ) '

where k(H) = E{(e/c]^2)H(e/c# 2)}.

We can also write <J2(H) in (4.11) as

a2(H) =
4(7 \

k \ H ) '  

where a2H =  var{H(e/c]^2)}.

Next, the asymptotic distributions of squared residual autocorrelations and 

absolute residual autocorrelations for GARCH models are derived. Using these 

results two new diagnostic tests are developed that can be used to test the adequacy 

of GARCH-type models when M-estimators are used for estimation.

4.3.1 A sym ptotic D istribution of the Squared Residual Au

tocorrelations

In this section we derive the asymptotic distribution of the squared residual au

tocorrelation. This leads us to build a useful portmanteau test for checking the 

adequacy of GARCH models fitted by M-estimators.

Define the estimated residuals by

It h  =  Xt l{v t (8T)}112, 1 < t < T .  (4.14)

Following Li and Mak (1994), the lag-A: standardized squared residual autocorre
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lation can be defined as

- _YZ=k+i (x t / v t - e H)(X?_k/vt- k - e H)
rk - ------------- —^ , y 2 /»----- 1-77------------  for k = 1 . - .A f ,  (4-15)

22t=i(x t / vt ~ e//)2

where eH = £  Y^=  1 x t ! ^ u  and vt = vt(0T).

If the model is correct, by the ergodic theorem,

1 T
= ^  E ( X } / v t) as T —» oo,

t,= 1

and E(X?/vt) = E{e2/cn) =  Pe- So f k can be replaced by 

Ef=fc+ir fc = ------- - ------ =--------------------------------- for & =  1, (4.16)
E L W M - m.)2

In particular p e =  1, if {e*} follows the standard normal distribution. We consider 

the asymptotic distributions of the squared residual autocorrelations ( r i , . . . , fM)' 

for some integer M  > 0.

If the model is correct,

i  ^ 2 {X 2/vt -  p e)2 E(x?/vt -  p e)2 as T -> 00,
i=l

and E ( X 2/ v t -  p e)2 = E(e2/cH -  pe)2 =  vax(e%/cH) = a2. The constant a2 = 2, 

in case of the standard normal distribution.

Hence we only need to consider the asymptotic distribution of

and f fc can be written as Ck/C Q. Denote by Ck the counterpart of Ck when vt 

is replaced by vt . Let C =  (Ci, C2, •••, Cm)' and C =  (Ci, C2 , ..., Cm)7) for some
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integer M  > 0. We can define r  =  (r1; r 2, rM)' and r  =  ( r i , f 2, ... 

similar way. By expanding C in a Taylor series expansion, we obtain

f ) C
c * c  + — (0T- d OH),

where d C j d O  =  (8 C \ j d 9 , 8 C m / 8 6 and for k  =  1 , M,

dCk
dd

1 ^  x ?  [  X 2t_k \ . 1 ^

t=k + 1 Vi \ T  v? k \ vt
t=k+ 1 t~ k \  1

Me

By the ergodic theorem, we obtain

d Ck a.i

89
—Yfe, as T  —> oo,

where

yfc =
v t - k  6  /  V f

Then C in (4.17) can be approximated by

C «  C -  Y (0 t  -  e 0H).

where Y  =  (Y i,..., YM)'■

The following lemma may be shown by straight forward calculation.

L em m a 4.3.1 For any constant vector Z =  (Z\, Z2, ..., Z u ) '

1 T
V t z 'c  =  - j=  Y i  u t +  o p( i ) ,

v f  t=M+ 1

where
M i x ?  \  x l k

r M)' in a

(4.17)

(4.18)

(4.19)
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and

L em m a 4.3.2

E{U?} = cr tZ 'Z<oo

E{{dlt/dB)Ut} =  ^ Y ' Z
Zpe

where Ut is defined as in (4-20) and d(H) = pt£ -  E { (X ? / v t) H ( X t / v ^ 2) 

P ro o f. By (4.4), (4.6) and (4.20), we have

Mt
dQ

Ut =

.  fc=i vt /  \  Vt-k

It follows tha t

_1_
2/̂ e

J _
2/Ue

d ( H ) Y ’ Z.
2pe

M

Y , ZkE
k- 1 
M

X l k
Vt - k

k= 1

L em m a 4.3.3 The asymptotic joint distribution of y /TC  and V T ( 0 t  

normal with mean zero and covariance

d(H) Y B ~ 1/(2pe)

^  d{H)B - 1YV(2/ie) a2{H)G~l J

(4.21)

(4.22)

(4.23)

0QH) is

P ro o f. Let Z =  (Z', V ') ' be any constant vector and Z'Z ^  0, where V  is of the 

same dimension as 0.



4. Diagnostic Checking for GARCH-type Models 81

By (4.12) and (4.19), we have

Vfz'(c', e'T -  e’0Hy = + + opW

= ^ i T +v'B' » ) +0’(,) (‘-!4>

It can be easily shown that (1 / V T )  Y h=m +i (Ut +  V ' B - ' d h / d e )  is a martingale. 

Now, by (4.21), Lemma 4.3.1 and Lemma 4.3.2,

E \  Ut + Y ' B - ldlt/ d e \

71

=  o\71\m 7  +  d(H)  Z,Y B - 1V/(2/ie) + d(H)V'  B ^ Y 'Z /p /i* )  +  V V ^ G ^ V  

f  a f l M d (^ )Y B -V (2 Me) ^

v d(H )B~ 1Y'/(2iJ,e) cr2(H)G - 1 j
Z < oo.

Hence, by (4.24) and Billingsley’s (1961) martingale central limit theorem, the 

proof is completed.

T h eo re m  4.3 .4

V f C  N[0, <re4W] as T  -> oo,

Vfr  N[0, W] as T  -* oo,

where
4Y G -1Y ' f rf(ff) ^  1 

W I m+ affc(ff) { ^  +  f c ( t f ) / -

P roo f. This follows from (4.18) and Lemma 4.3.3.

R em ark :

The proofs of these lemmas and theorem are shown by Ling and Li (1997b) for 

multivariate case when QMLE is used for estimation.
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The correct asymptotic standard errors for the squared residual autocorrela

tions can be obtained from the above and these will give more accurate asymptotic 

standard errors than 1/y/T for the squared residual autocorrelations.

In general, the matrix W  is not an idempotent matrix even asymptotically. 

Therefore, Tr'r  is not asymptotically distributed as a y 2. However, based on our 

results, if the model is correct, the statistic

Q(M) = T r 'W _1r

will be asymptotically x 2 distributed with M  degrees of freedom. Hence, a large 

value of the statistic Q will imply that there is a temporal dependence in variance 

of the series under investigation. Equivalently, this gives an indication of the 

presence of conditional heteroscedasticity and thus ARCH/GARCH models should 

be considered. This new portmanteau statistic may be useful for checking the 

adequacy of GARCH type models that are estimated by M-estimators.

If the distribution of {et} is known, the exact values of h(H),  and p e can be 

obtained. For example when et follows the standard normal distribution, we have 

cH =  1, k(H) = 2, (T2h  =  2, ip =  1, of =  4 and d(H ) =  -2 .  Hence, the asymptotic 

covariance matrix of y/Tr is

W  =  I „ -  jY G r 'Y '.

where G / 1 =  2G -1 , and we have the Li and Mak (1994) result. If vt is constant 

over time, then Y  =  0; the asymptotic standard error of f k is exactly 1 / y / f  and 

we get the McLeod and Li (1983) result.

In general, often the error distribution is unknown. We can estimate these
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quantities as

T T

Hn) = \ A  = ^ £ ( * ,7 4 ) .
4=1 t=l

t=1 t=i
T

and d(ff) =  Me - ^ { ( X , 2/« () f f W « (1/2)}-T t=i

Also, G _1 can be estimated by (G )_1 where

*-?§{¥}■
Y  can be estimated by Y  = (Yi,..., Y m ) \  where

V  _  1 C  r  \  biYk — rp  /  ,, I he \ *. •
T V v‘~k J Vt

Also of  can be replaced by (Co)2. Using these sample estimates, we can define an 

estimate of W  as

w = i M + i x e ^ t e + 4 a
o f k ( H )  \  he k ( H )  J

4.3.2 A sym ptotic Distribution of the Absolute Residual 

Autocorrelations

Next, the asymptotic distribution of the absolute standardised residual autocor

relation is discussed. The lag-A: standardized absolute residual autocorrelation is
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defined as

* E l ky m / v f 2 - - e-H) ..............................
Pk = -------------—~------------ 775-------------------------  for k = l,  (4.25)

E U m / v p  -  eHy

where i n = Z f i  \X t\ /v ' /2.

If the model is correct, by the ergodic theorem,

1 T
= as T  —* 0 0 ,

t=1

and E ( \X t \ l v lJ 2) =  E(\et \/c](2) = v£. So pk can be replaced by

e L + i  m & n  -  ^){\Xt~k\ /v]L\ - v . )

E h m / v / 2 -  * y

Now consider the asymptotic distributions of the absolute residual autocorrelations 

( A l ,  ••■i Pm Y for some integer M  > 0. If the model is correct,

t  j r  ( \Xt \lv]12 -  vef  E ( \X t\ / i ,y2 -  p , f  as T  -  oo,
t=k+1

and E ( \X t \ / v l '2 -  pc)2 = E ^ / t " 2 “  f  = 4 -

Hence we only need to consider the asymptotic distribution of

C'fc rp ^ 2  \ -1/2 "£ M -1/2
t= fc  +  l  \ Vt  /  \

/5fc can be written as C^/C q. Let C a — ( C f , C m ) 7 an<̂  C a — (^T»•••> 

for some integer M  > 0 .  p  and p  can be defined in a similar way. By Taylor s 

expansion of C a about Oqh and evaluated at Ar> we have

(4.27)
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where DCa/O0 =  (dC f /dO , ..., dClf/dO)',  and for k =  1 , M,

d C l  1 ^  \ X t \ ( \ X t - k \
•lM  U 1/2

= ~ Y  2 T
t = * + l  " i? V  \  v

By the ergodic theorem, we obtain

a c t
dd

k a.s - K a, as T  -> oo,

where

Ka - vt
vt

Then C in (4.27) can be approximated by

C a «  C a — Y a(6T — O q h )- (4.28)

where Y a =  (Y®,..., Y^) ' .  By simple calculation the following lemma may be 

shown.

L em m a 4.3.5 For any constant vector Z =  (Zi, Z2, Z m ) '

1 TVrz'ca = —j= ut + o„{ 1),
V T  t = M + 1

(4.29)

where
M

u t  = Y . z k \Xt
4/2 -  V,

fc=l \  ut

\ X t - k \

v 1/2 . vt-k
~  VF (4.30)

and

(4.31)

L em m a 4.3.6

E{(dlt/d0)U?}  =  - d a(H)  Y “ Z
Ve

(4.32)
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where Uf is defined in (4-30) and da(H) = ue — E { ( \ X t\ / v lt /2)H { X t/ v lJ 2) } .

P ro o f. By (4.4), (4.6) and (4.30), we have

dh
06

U? =
1
2

M

E
k=l

I X t.
;1/2
}t - k

(4.33)

Hence, it follows that

E { f e v■) = E i E & t V ]
dU

JL_
2ve

Ve

V, -  E { ( \X t\ /vl /2)H (X t/ v p ) }  

-  E{{ \X t\h,ll2)H (X tlv]12)}

M

E Z*B
fc=i
M

V,
\Xt- k

< L\
\ Vt Ve —
h t

k= 1

— da{ H ) Y a Z.

L em m a 4.3 .7  The joint distribution of V T C a and V T ( 6 t  — doh ) is asymptoti

cally normal with mean zero and covariance

(  ?£4Im

, da(H )B ~ 1Y a / v t a2(H )G "1 y

P ro o f. Let Z =  (Z', V ')' be any constant vector and Z'Z ^  0, where the dimen

sion of V  is same as tha t of 0.
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Now, by (4.12) and (4.29), we have

Vfzxc°',e'T-o 'y  = E  ^“ + E v ' B - 1g )  + o p(i)

=  y f  E ^ ^  +  V 'B - ^ j + O . C l )  (4.34)

It can be shown tha t (1 / V T )  ( v t +  V' B- 1 is a martingale and

.31), Lemix

E l  Uf + V ' B - ' d h / d e

by (4.31), Lemma 4.3.5 and Lemma 4.3.6, 
/  \  2

=  ^4Z'ImZ +  da( H ) Z 'Y aB - lY / u e +  d t( H )V iB ~ 1Y a 7*!ve +  W ( t f  )G _1V

^  ^ 4 t .  Aa.( LI W a n - I

= z'
C£4I m da(F )Y aB-Vz/e ,

Z < oo.
^  da(LT)B_1Y a /i/e ^ ( / / J G - 1

Hence, the proof completes by using martingale central limit theorem and (4.34). 

T h eo re m  4.3.8

V T C a N[0, c4W a] as T  ^  oo, 

x/Tp N[0, W a] as T  oo,

where
4Y

W a =  IM +
c,

aG - i Y a [  2da(tf) )

F W " 1  +  * ( # ) / '

P roo f. This follows from (4.28) and Lemma 4.3.7.

Hence we obtain the correct asymptotic standard errors for the absolute resid

ual autocorrelations. These will give more accurate standard errors for the absolute 

residual autocorrelations.
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In general, W a is not an idempotent matrix even asymptotically, therefore 

asymptotically T p 'p  is not distributed as a chi-squared. However, if the model is 

correct the portm anteau statistic

of GARCH type models that are estimated by M-estimators can be checked using 

this new portm anteau statistic. It is worth mentioning here tha t only the existence 

of a second-order moment is required in this case. Since the distribution of e* is

4.4 R esults

In this section we report results of Monte Carlo simulations. First, the usefulness of 

the asymptotic results are assessed using simulations and results of empirical and 

large sample standard errors are presented. Then, the empirical size and power of 

the tests are investigated through Monte Carlo simulations.

Qa{M) = T p l[Wa]~1p

will be asymptotically y 2 distributed with M  degrees of freedom. The adequacy

not known, the values of h(H), cj2h and others can be estimated by their sample 

counter parts. Also, Yg can be estimated by

where

and Cg can be replaced by (Cfi)2.
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4.4.1 Result of Empirical and Large Sample Standard Er

rors

First we perform simulations to assess the usefulness of the asymptotic results 

obtained in previous sections. For our first experiment the time series X t satisfies 

the GJR-GARCH(1 ,1 ) model,

x t = i i i ' y ,

ht =  0.01 + QAXl_x +  0.5/i(_i +  O.IX2̂ ! ( X t_! <  0),

where {et} is an independently identically distributed sequence. Data are also 

generated from the GARCH(1,1) model and for this purpose we set 7  =  0 . The 

errors are generated from the standard normal distribution, standardised student-f 

distribution with 3 and 5 degrees of freedom and contaminated normal distribution 

(1 — £)<3>(:e) +  §(x/cr) with s =  0.05, and cr2 =  9. The sample size T  =100, 

250, and 500 are considered for simulation purpose. In all the experiments, R  = 

1000 independent replications are used. We are interested to investigate under 

different error distributions: the asymptotic and empirical standard errors of the 

squared and absolute residual autocorrelations and the finite sample performance 

of portmanteau tests, Q(M)  and Qa{M) when M-estimators are used for fitting 

GARCH models.

The parameters are estimated using the algorithms developed for M-estimators. 

All simulations are performed on MATLAB software. The asymptotic standard 

errors Ai(i =  1 , 1 0 ) ,  of the squared residual autocorrelations, r =  (77, . . . ,rio)' ,  

and absolute residual autocorrelations, p  — (/3i, ...,/5io) are obtained, respectively, 

from the results in Section 4.3.1 and 4.3.2. The empirical standard errors Si(i =  

1,..., 10), of r and p  over 1000 replications are also obtained and considered as the
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“true” standard errors.

Both GJR(1,1) and GARCH(1,1) models are fitted and the results for the em

pirical standard errors and the averages of the asymptotic standard errors for lags 

1, 2, 3, 7 and 10 when the errors arc generated by standard normal distribution are 

presented in Table 4.1 and 4.2. For both models we find tha t the asymptotic stan

dard errors for squared and absolute residual autocorrelations match the empirical 

standard errors quite satisfactory for all estimators.

The results for student-t distribution with 3 and 5 degrees of freedom and 

contaminated normal distribution when both GARCH(1,1) and GJR(1,1) models 

are fitted rising M-estimators are not reported as we did not find any significant 

difference between the asymptotic and empirical standard errors in those cases.

4.4.2 A nalysis of the Size and Power of Tests

We conduct Monte Carlo simulations to examine the empirical sizes of the port

manteau statistics Q{M)  and Qa(M).  We use 1000 replications and the sample 

size of T = 100, 250, and 500 for all experiments. The data  are generated from 

the following data  generating processes (DGPs), denoted by M l for GARCH(1,1), 

M2 and M3 for ARCH(2) model:

M l: x t II lo rt\ ht II o + o I
60 +  0.1 ht-!.

M2: Xt =  h)/2eu ht =  0.01 +  0.2 X 2t_,  +  0 . 7 I t2_2

M3: Xt =  h]/2eu ht = 0.01 +  0.7 X 2t_i +  0-2 Xt_2

These DGPs with different values of the parameters are also used by Tsui (2004) 

to study the size and power of Li-Mak and other diagnostic tests. The conditional 

mean of each data  generating process (DGP) is assumed to be zero. For each DGP, 

Cf are generated from the standard normal distribution, student-t distribution with
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3 and 5 degrees of freedom and the contaminated normal distribution. We also 

generate error from Hansen’s skewed-t distribution with 4 degrees of freedom and 

skewness parameter 0.25. The skewed-£ distribution is chosen to observe the effect 

of asymmetry on the size of tests. The GARCH(1,1) model is fitted to each 

DGP using M-estimators and the portmanteau statistics Q(M)  and Qa( M ), of 

squared and absolute autocorrelation of residuals, respectively, are computed. The 

rejection frequency represents the estimated size of the test when the underlying 

DGP is M l, while for M2 and M3, it represents the estimated power.

Although, like residual-based diagnostics, these portm anteau tests have no spe

cific alternatives, it should not be construed that the portmanteau tests are con

sistent against all model misspecifications. For empirical power, we use ARCH(2) 

models as our DGPs, other DGPs such as high order ARCH models may also be 

used.

Table 4.3 reports the proportion of rejection of Q (M ) and Qa(M),  based on the 

upper 5th percentile of the corresponding asymptotic y2 distribution. We chose 

a lag length, M  = 6 for this study. It can be seen from Table 4.3 tha t Q(M)  

test generally has a reasonable size under the standard normal distribution and 

student-f distribution with 5 df. The size of Qa(M)  is also found close to the 

nominal level under these distributions.

Under the heavy-tailed distribution, students distribution with 3 degrees of 

freedom in this case, the empirical significance level of Q (M ) is found slightly 

greater than the nominal size of 5%. This is found for all sample size considered in 

this experiment. Both the tests over reject the null hypothesis when QMLE is used 

to fit the GARCH model. The size of Qa(M)  is close to the nominal size in case of 

t{5) for all the estimators other than the QMLE. In the case of the contaminated 

normal distribution, both tests over reject for all sample sizes but again some of 

the estimators show better results than the QMLE.
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When errors are generated from skewed-/: distribution, the test based on squared 

residual autocorrelation is found to be consistently undersized as compared to the 

test based on absolute residual autocorrelation. The Qa(M)  test, when estimators 

other than the QMLE is used for GARCH model fitting, show better empirical 

size. Increasing the sample size improves the size slightly.

In general, based on the empirical sizes reported in Table 4.3, we conclude that 

although the size of both tests may be considered reliable, Qa( M ) has a slight edge 

over Q (M ) when the data are generated from a heavy-tailed or skewed distribu

tion. Moreover, estimators other than the QMLE can be considered adequate for 

GARCH models under non-normal distributions.

Next, in our second experiment we check the empirical power of Q and Qa. The 

empirical power of both diagnostic tests are obtained from the rejection frequency 

when data are generated from M2 and the GARCH(1,1) model using M-estimators 

is fitted. Table 4.4 below shows the result of this study. The results for standard 

normal errors suggest tha t QMLE has the highest power as compared to other 

estimators. For student-/ distribution with 3 degrees of freedom, B-estimator 

shows the best results with LAD and Cauchy estimator also provide good empirical 

powers. For the case of student-/ distribution with 5 degrees of freedom, LAD 

outperforms other estimators.

Both tests show low power when errors are generated from contaminated nor

mal distribution. In this case, B-estimator can be considered as the best estimator 

for fitting GARCH model. When errors are generated from skewed-/ distribution, 

the feature we observed for non-nonnal distributions seems to hold here as well 

with the QMLE showing the lowest power and other M-estimators provide rea

sonable results. Another feature we notice from this study is that the test based 

on absolute residual autocorrelations show better empirical powers than the test
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based on squared residual autocorrelations especially for non-normal errors.

We note tha t the powers of the proposed tests, when Cauchy and B-estimators 

are fitted to data, are found higher than other estimators. These findings indicate 

that estimators such as Cauchy and B-estimator are more adequate than the com

peting estimators especially when errors are non-normal. These results support 

the suggestion of using B-estimators for fitting GARCH-type models.

The finite sample performance of the size and power of the tests may vary 

with the number of lag correlation coefficients taken. To examine this effect, 

we perform another study and consider M  = 1,2, ...,25. The rejection frequency 

represents the estimated power of the tests when the underlying DGP is M3 and 

the GARCH(1,1) is fitted using M-estimators. For the errors, we use the same 

distributions as in previous studies and the graphs of empirical powers of both 

tests are plotted against M . The sample sizes considered are 100 and 500.

Fig. 4.1 below presents the empirical powers of Q and Qa for T  =  100, when 

errors are normally distributed. It is easy to see that the empirical power of the 

test based on absolute residual is greater than the test based on squared residuals. 

The power levels of Qa under Cauchy and B-estimators are very close to the power 

level of the QMLE for normal errors. We also observe tha t both tests under the 

LAD and Huber’s estimator show low power as compared to other three estimators 

considered. Another feature we notice is that the power of both the tests reaches 

its highest value at M  =  2 and decreases for higher lags.

For T  = 500, Fig. 4.2 below shows the same features we observed for small 

sample. The empirical power of both tests decline when the value of M  increases 

and both tests produce the highest empirical power at M  = 2. This suggests that 

the choice of the lag of sample autocorrelation, (M), can affect the power of these 

tests. We again note for this sample size that the power of tests when Cauchy and
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1 3 5 11 13
M

157 9 17 19 2 1 23 25

Figure 4.1: Power levels of Q (dotted) and Qa (solid) under QMLE (•), LAD (■), Huber’s 
(♦), B-estimator ( A )  and Cauchy (★): et ~  N ( 0,1), T  =  100.

B-estimators are used for estimation match tha t of the QMLE.

In case where the errors are generated from the standardised student-t distri

bution with 3 df, the results presented in Figs. 4.3 and 4.4 reveal th a t both tests 

posses low empirical powers. For T  — 100 the test based on absolute residuals, 

under Cauchy and B-estimators, shows empirical power greater than the power of 

other estimators. The power levels of this test slightly increases for higher lags. 

This feature is not observed when sample size is increased to 500. In this case 

the power levels of both tests decline as M  increases. For this sample size, The 

QMLE and LAD show slightly lower powers than other estimators. Moreover, the 

im portant evidence is the big difference between the power levels of Q and Qa. 

This show the superiority of the test based on absolute residuals over the test 

based on squared residuals for heavy-tailed distributions.

The findings in the case of student-t distribution with 3 degrees of freedom 

remain valid for the same distribution for 5 degrees of freedom. Again for small 

sample size, the empirical power of Qa under Cauchy and B-estimators are found
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1

M

Figure 4 .2 : Power levels of Q (dotted) and Qa (solid) under QMLE (•), LAD (■), H uber’s 
(♦), B -estim ator ( a )  and Cauchy (★ ): et ~  N ( 0,1), T  =  500.

greater and for large sample size, the dominance of Q a over Q is significant. The 

only difference we observed is the gain in power. In case of t (5), for large sample 

size, the power at M  — 2, is found close to 96% for Q a, whereas it dropped to 83% 

for t (3).

The power results of Q and Qa are displayed in Figs. 4 .7  and 4 .8  when errors are 

generated from the contaminated normal distribution. For T  =  100, the empirical 

powers of Q a based on B-estimator and LAD are found better than those of other 

estimators with the QMLE showing very low power. When the sample size is 

increased this feature can be observed more clearly. The power levels of Qa drop 

as in the previous cases and reach the level of Q for higher lags.

In case of skewed-f distribution, the power plots show the same characteristics 

as observed in case of t (5), with Qa out performing Q in terms of empirical power 

and Cauchy and B-estimator slightly producing better results. Hence, we do not 

plot those graphs.
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13
M

17 21 2311 15 19 257 91 3 5

F ig u re  4 .3 : Power levels of Q (dotted) and Qa (solid) under QM LE (•), LAD (■), H uber’s 
(♦), B -estim ator ( A)  and Cauchy (★ ): e* ~  t (3). T  =  100.

Figure 4.4: Power levels of Q (dotted) and Qa (solid) under QMLE (•), LAD (■), H uber’s
(♦), B -estim ator (a )  and Cauchy (★ ): e* ~  £(3), T  — 500.
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Figure 4.5: Power levels of Q (dotted) and Qa (solid) under QM LE (•), LAD (■ ), H uber’s 
(♦), B -estim ator ( A)  and Cauchy (★ ): et ~  t (5), T  =  100.

1

Figure 4.6: Power levels of Q (dotted) and Qa (solid) under QMLE (•), LAD (■), H uber’s
(♦), B -estim ator (a )  and Cauchy (★ ): e* ~  t(5), T  =  500.
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1

1

1

1

1

F ig u r e  4 .7 : Power levels of Q (dashed line) and Qa (solid line) under QM LE (•), LAD (■), 
H uber’s (♦), B -estim ator (▲) and Cauchy (★ ): et ~  CiV(0.05, 9), T  =  100.

Figure 4.8: Power levels of Q (dashed line) and Qa (solid line) under QMLE (•), LAD (■),
H uber’s (♦), B -estim ator (a )  and Cauchy (★): et ~  C1V(0.05,9), T  = 500.
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We also note from this study that for size accuracy a fairly large M  is required, 

although a smaller M  may be desirable for power improvements. This shows that 

the choice of M  induces a trade-off between size and power. Tse and Zuo (1997) 

suggested M  = p+ q  + 1 as an appropriate choice. Based on our limited experience 

we suggest using M  = 6 as this lag value provides reasonable size and good power 

in our Monte Carlo simulations.

In summary, for standard normal errors the power levels of Cauchy and B- 

estimators match those of the QMLE. For heavy-tailed distributions, these esti

mators show better results for small samples and for contaminated normal dis

tribution, the power of the tests for model adequacy, when Cauchy, LAD and 

B-estimators are fitted, show good results. These findings indicate tha t estimators 

such as Cauchy and B-estimator are adequate for fitting GARCH-type models.

4.5 Conclusion

This chapter deals with the diagnostic checking of GARCH models. We develop 

portmanteau statistics based on the absolute and squared residuals autocorrela

tion when the GARCH model is estimated using M-estimators. The asymptotic 

distributions of these tests are also obtained. Using the Monte Carlo simulations 

we check the empirical and large sample standard errors of absolute and squared 

residual autocorrelations under symmetric, heavy-tailed and asymmetric errors. 

Empirical sizes of the portmanteau tests are also investigated and power plots are 

plotted to analyse the empirical power. The main findings of this study are outline 

below.

The asymptotic covariance matrices of the absolute and squared residual au

tocorrelations are derived. The correct asymptotic standard errors for these auto

correlations are obtained and these give more accurate standard errors than 1/y/T
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for the residual autocorrelations. Based on these results, new portmanteau tests 

are developed for diagnostic checking of GARCH models.

Simulation results show that the asymptotic standard errors for both squared 

and absolute residual autocorrelations match the empirical standard errors quite 

satisfactory for all estimators.

The empirical sizes of both tests are found close to the nominal sizes in most 

of the cases. When errors are generated from heavy-tailed or asymmetric distribu

tion, the empirical power of the test based on absolute residual autocorrelations 

is found slightly better than the test based on squared residual autocorrelations. 

Furthermore, the empirical powers of competing estimators are found higher than 

the QMLE for non-normal errors. Our study suggests the use of robust estimators 

such as Cauchy and B-estimator for fitting GARCH-type models.



Chapter 5 

Value-at-Risk Based on  

M -estim ators for G A R C H -type  

M odels

5.1 Introduction

Risk management is one of the important tasks for financial institutions, nonfi- 

nancial corporations, regulators and asset managers. Value-at-Risk (VaR) and 

Expected Shortfall (ES) are commonly-used statistics for measuring potential risk 

of economic losses in financial market. VaR is the quantile of the loss that can oc

cur within a given portfolio during a specified time period while ES is the expected 

loss, given tha t loss is at least as large as some given VaR. A precise quantile es

timate far out in the left tail of the return distribution is needed for univariate 

VaR measures; see Jorion (2000) for a general introduction and exposition of VaR. 

Value-at-Risk has been widely used for financial risk management by institutions 

including banks, regulators and portfolio managers.

Existing approaches for estimating VaR may be classified into three approaches.

105
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These are the nonparametric, semi-parametric and parametric approaches. One of 

the popular nonparametric approaches is historical simulation (see, e.g., Hendricks, 

1996), which computes the empirical quantiles of historical portfolio returns. In the 

semi-parametric approaches are the GARCH based extreme value theory (EVT) 

approach (McNeil and Frey, 2000), which specifically model the tails of the distri

bution of residuals and quantile regression approach (Engle and Manganelli, 2004), 

which directly models a specific quantile rather than the whole distribution. See 

Kuester et al. (2006) and the references therein for an overview and comparison 

of these and further models.

Among the parametric approaches are the J.P. Morgan’s RiskMetrics (1996) 

and GARCH models. Under the RiskMetrics approach the variance is estimated 

based on the exponentially weighted moving average method. The GARCH-based 

approach is also popular as it provides a parsimonious model with few parameters 

which usually fit econometric time scries very well. The GARCH approach first fits 

the GARCH-type models for financial returns series and then models the residuals 

form these models based on the assumptions of the conditional distributions of 

the residuals. Angelidis et al. (2004) evaluated the performance of an extensive 

family of GARCH-type models in modelling daily VaR.

Empirical evidences show that often the distribution of asset returns is skewed 

and heavy-tailed. This implies that extreme events are much more likely to occur 

in practice than would be predicted by the normal distribution. Hence, value-at- 

risk estimates produced by the model under normality assumption may not be 

reliable and accurate.

The main aim of this chapter is to propose not only robust measures of VaR 

based on GARCH-type models, but also more reliable information on risk esti

mates. To achieve this aim. we present, develop and empirically test VaR estimates 

from GARCH-type models when M-estimators are used for estimation. Risk esti-
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mates from both symmetric and asymmetric GARCH models are obtained. The 

performance of the proposed VaR, estimates is extensively studied for three im

portant financial data sets (S&P500, FTSE100, NIKKEI225). Both in-sample and 

out-of-sample VaR estimates are evaluated. The accuracy of the proposed VaR 

estimates is discussed using a number of newly-introduced M-test statistics.

Our study is important from a number of different angles. Since QMLE is a 

member of the class of M-estimators, in many senses, our method is applicable to 

most of the previous studies on the VaR evaluations using the QMLE. In addition, 

since we use nonparametric setup for the error distributions and some of the M- 

estimators of the GARCH parameters used for the VaR evaluation is consistent 

and asymptotically normal under minimal moment assumption related to merely 

finite second moment of the innovations, our estimators are expected to perform 

well for those financial data for which the use of the QMLE cannot be justified 

due to lack of fourth moment. In fact, our empirical study indicates that in most 

of the cases estimators such as Cauchy and B-estimators predict the VaR more 

accurately than the frequently-used QMLE. These findings strengthen the use of 

M-estimators for fitting GARCH models and predicting VaR. A comparison of the 

results for both GARCH and GJR model shows tha t for data sets used in this 

study, the GJR model provides better forecasts for risk. Our study may help risk 

managers to select appropriate estimator for predicting VaR and to use range of 

summary statistics for the evaluation of risk estimates.

Section 5.2 describes value-at-risk estimation for GARCH-type models fitted 

by M-estimators. Some evaluation measures used to assess the VaR predicting 

performance are introduced in Section 5.3. In Section 5.5, the in-sample and out- 

of-sample VaR estimates of three major stock indices are obtained using both 

GARCH and GJR models. Backtesting and evaluation methods are applied to 

check the accuracy and efficiency of these estimates. Section 5.6 concludes this
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chapter.

5.2 V alue-at-R isk (VaR)

Value-at-Risk or VaR is the p-th conditional quantile of the distribution of the 

change in value of an asset over a certain period of time where p is known and close 

to zero. It is an estimate of the maximal loss associated with a given probability 

p and is used by financial institutions and regulators for risk measurement.

Hence for the returns { X t\ l < f < T } o f a  portfolio, the VaR at time t > 1, 

denoted by qt = q t ( p ) ,  is defined by

qt = inf {x;p  <  Pt- i ( X t <  ar)},

where Pt- \  is the conditional distribution of X t given the information available up 

to time t — 1. When returns are of the form (3.14), we get

qt = v1t /2(00)F~1(p),

where F ~ l is the quantile function of the errors { e j.  Hence, using (3.15) and 

(3.18) we get

=  T H  oh)f - \ p ), (5-1)
CH

where notice that F ~ 1(p) is the p-th quantile of the scaled errors {et/c)£2}. Es

timating v],2{9qH) by v) /2(0t ) and F~1(p) by the p-th quantile of the residuals 

{ X t/ { v t {0T)}1/2', 1 <  t < T}, we obtain (5.1) the predicted value qt of qt as
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Qt = v l /2(0T) x  ([Tp] +  l)- th  order statistics of { X t/ {vt (6T) } 1/2} , 2 <  t < T.

(5.2)

Clearly qt depends on the underlying M-estiinates.

5.3 M -tests  o f VaR

Next, we define some performance measures and M-tests for the evaluation of risk 

estimates produced by M-estimators. Due to the importance of VaR estimates to 

banks and regulators, evaluating the accuracy of VaR estimates is a necessary exer

cise. One approach to improve the accuracy of VaR is through backtesting, which 

is continual statistical testing of the accuracy of VaR estimates. Backtesting helps 

to identify the advantages and disadvantages in each model. It can also be used to 

detect incorrectly specified VaR models and sources of inaccuracy of VaR forecasts. 

Value-at-Risk models and their accuracy can be compared through backtesting to 

select adequately accurate models in market risk management. Backtesting is 

also required by the regulatory bodies such as the Basel Committee on Banking 

Supervision of the Bank of International Settlements. Basel Committee on Bank

ing Supervision (1996) has set up standards for the quality of VaR data in the 

backtesting framework.

5.3.1 Coverage M-Test

Let
T

T* = J2It with = &)
t = 2
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denote the total number of violations. The closeness of the empirical rejection 

probability

conditional heteroscedastic model and the M-estimates used for computing qt . We 

propose below two statistical tests for the null hypothesis E(T+/T) = p against 

its negation, as they are related to the model validity. Note tha t the following 

statistics are also defined in Section 3.5.

According to Kupiec (1995), the number of violations T* follows a binomial 

distribution with probability p. The probability of experiencing T* violations in a 

sample of T  observations, if the model is correct, is given by:

Under the null hypothesis the unconditional likelihood ratio test statistic is given

test statistics is asymptotically xp)- The inspection of LR1tc reveals that if the 

proportion of VaR violations, p x 100%, is exactly equal to p x 100% then the 

test statistic takes the value zero, indicating no evidence of any inadequacy in the 

underlying VaR measure. A problem with this test is that it may fail to detect 

VaR measures tha t exhibit correct unconditional coverage but exhibit dependent 

VaR violations. VaR models that violate the independence property may result in 

losses that exceed the reported VaR in clusters.

Note however tha t in a reasonable model of VaR, the previous history of vio

P = T*/T (5.3)

to ‘p ’ can be used to assess the overall predictive performance of the underlying

by

LRUC =  2 In {(1 — p)T T f  } -  In {(1 — p)T T pT } ■

Kupiec (1995) proposed this statistic when the QMLE is used as dT and the
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lations should not convey any information about whether or not additional VaR 

violations may occur in future. Towards that, using the QMLE as 0T, Christof- 

fersen (1998) defined the independence coverage test statistic, denoted by LFLnd, 

which characterizes the ways in which these violations occur as follows.

For i , j  = 0,1, let be the number of time points {t\2  <  t < T }  for which 

I t = i is followed by Jt+1 =  j .  Let

k i j  — T i j / ( T i o  +  T ji), k  — (Tqi +  T n ) /T .

Then

HRind = 2 l n ( ( l - 7 r 0i ) T t t J  ( l - 7 r n ) T ?rJi ) - l n ( ( l - 7 r ) (T +T r(T +T })

Since both the unconditional coverage and the independence properties should be 

satisfied for an accurate VaR model, Christoffersen (1998) proposed the conditional 

coverage statistic

L R CC — L R WC T  LRjn£i

which is asymptotically x%)- We propose the same test statistics when {<&}’s are 

evaluated using M-estimates.

There are two limitations of Christoffersen’s test. First, independence is tested 

against a very particular form which does not take into account dependences of 

order higher than one. Second, the use of a Markov chain makes it possible only 

to measure the influence of past violations and not tha t of any other exogenous 

variable. The tests proposed by Engle and Manganelli (2004) overcome these two 

limitations.
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5.3.2 Dynam ic Quantile M-Test

Since the LRCC test only checks the first order dependence in the risk estimates, 

it is also desirable to check the high order dependence. Another test to check the 

high order dependence among {A}’s when the QMLE is used as Ot  is the Dynamic 

Quantile (DQ) test of Engle and Manganelli (2004). This test can be used to check 

the high order dependence in risk estimates. In this case the indicator variable 

Hitt , 2 < t < T, is defined by

, 1 ~ P  i f  X t <  qu
Hitt

- p  if X t > qt

and Hiti =  —p. Engle and Manganelli (2004) suggest to test jointly that E (Hitt) =  

0, and that Hitt is uncorrelated with variables included in the information set. This 

can be conducted by using the regression Hitt =  X/3 +  et, where X  is a T x k  matrix 

with ones in the first column, and the remaining columns are lagged values of Hitt 

and some additional explanatory variables such as the current VaR. It is shown 

tha t under the null hypothesis, the dynamic quantile test is

where j3 is the ordinary least squares (OLS) estimate of (3. The DQ test has an 

asymptotic chi-square distribution with k degrees of freedom.

5.3.3 Sign M-Test

Sarma et al. (2003) applied a one-sided nonparametric test. The null hypothesis of 

this test is tha t both models under consideration have same forecasting accuracy 

against a one-sided alternative hypothesis of superiority of one model over the
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other. Consider two VaR models, model i and model j .  The null hypothesis is:

H 0 : 5 =  0

against the one-sided alternative hypothesis:

H a  : 8 < 0,

where 8 is defined as the median of the distribution of the loss deferential, { d L t ; i <  

t < T}, where d L t =  Lit — L j t , with Lit and L j t are the values of a loss function 

for model i and model j ,  respectively, for day t. Negative values of d L t indicates 

the superiority of model i  over j .

Now, define an indicator variable s t , such as

s t
1 if dLt > 0, 

0 if dLt < 0.

The sign statistic is then given by

T

■Sy =  I >
t = 1

Under the null hypothesis, if dLt is i.i.d., S y  is binomially distributed with param

eters (T, 0.5). The standardized is asymptotically standard normal and given 

as
_  {Sij 0-5T ) ^  , v asymptotically.

13 x/0 2 5 T  K

We can reject the null hypothesis at the 5% level of significance if Sg- < -1.645.

Rejection of the null hypothesis means that model i is significantly better than

model j  in terms of the given loss function.
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5.4 C om parisons am ong com peting M -estim ators

After assessing model validity using above tests based on different M-estimators, 

we make pairwise comparisons of only the competing M-estimators in terms of the 

following criteria, namely the mean relative bias and the average quadratic loss.

5.4.1 M ean Relative Bias

Suppose there are c number of competing estimators {qjt;, 1 < t < T, 1 < j  < c}. 

Hendricks (1996) defined the mean relative bias (MRB) of the j - th  estimator (1 < 

j  < c) as

MRB,- =  1  ' A  ^  where ?,(-
1  t = i  qt  ° j = i

The mean relative bias assesses the relative size, and hence the average conser

vatism, of VaR estimates produced by various models.

5.4.2 Average Quadratic Loss

The LRUC test counts the number of violations and does not take into account the 

magnitude of losses. One might be interested, for example, in the magnitude of 

the violation rather than simply whether or not a violation occurred. Lopez (1999) 

introduced regulatory loss functions that assign a numerical score, which reflects 

specific regulatory concerns, to VaR estimates. A model that has the minimum 

value of the loss function is preferred to the other models. The overall quadratic 

loss of a VaR is estimated by X)*=i L t/T  where

j  1 + (rt -  qt)2 if X t < qu 
L t =  \

0 if X t > qt .
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Thus, as before, a score of one is imposed when an exception occurs, but now, an 

additional term based on its magnitude is included. The above loss function takes 

into consideration the magnitude of the failure, i.e. by how much the actual loss 

exceeds VaR estimate and thus penalizes the model that produces higher VaR.

5.5 A pplication  to  Stock M arket Indices

We conduct a detailed study to check the accuracy and reliability of the value- 

at-risk estimates using M-estimators. Both in-sample and one-day-ahead out-of- 

sample VaR estimates are calculated. We fit the GARCH(1,1) and the GJR(1,1) 

model to data sets. Backtesting methods are used to check the accuracy of the 

in-sample VaR estimates and various evaluation criteria are applied to assess the 

reliability of the out-of-sample VaR estimates. We study the accuracy of VaR 

predictions at 10%, 5% and 1% confidence levels for one-day-ahead forecast horizon 

in real data applications.

5.5.1 D ata description and preliminary analysis

The data sets used in the empirical application are daily closing indices of three 

major stock indices of US, Europe and Asia, namely S&P500 Index, FTSE100 

Index, and NIKKEI225 Index, respectively. The data sets are obtained for the 

period of January 1990 to December 2005 (sixteen years data) from yahoo web 

site (http://www.finance.yahoo.com). For each of the three indices, the log-return 

at time t is defined as

rt =  ( I n -  InPt-i) x 100%, t = 1,2,

http://www.finance.yahoo.com
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where Pt is the closing index at time t. Next using { X t = rt — r \ l  < t < T }  (with 

r =  Y^t= 1 r t /T )  as our observations, the whole data range is divided into two parts; 

the estimation period and the validation period. Initial T  — K  values are used as 

the initial sample for estimation purpose, where T  is the total sample size and 

K  is the number of forecast step. Last K  observations are left for out-of-sample 

evaluation. For this study we set K  = 2000 (nearly eight years data). Table 5.1 

summarises the basic descriptive statistics for data sets.

Table 5.1: Descriptive statistics for daily log-returns

Statistics S&P500 Index FTSE100 Index NIKKEI225 Index

Estimation period 
Sample size 2042 2042 1938
Mean 0.0077 0.0078 -0.0104
Median 0.0055 0.0053 -0.0092
Minimum -3.1028 -1.8069 -2.9546
Maximum 2.1528 2.3534 5.4070
Std. Dev. 0.3440 0.3537 0.6460
Skewness -0.3555 0.1503 0.3754
Kurtosis 8.3752 5.2804 7.4802
Jarque-Bera 2501.29 450.17 1666.38
Q2(20) 258.42 223.59 296.27

Forecast period (2000 observations) 
Mean -0.0078 -0.0080 0.0100
Median 0.0031 0.0096 0.0045
Minimum -3.0728 -2.4362 -3.1320
Maximum 2.4072 2.5550 3.3343
Std. Dev. 0.5197 0.5209 0.6470
Skewness 0.0043 -0.1114 -0.0114
Kurtosis 5.4035 5.2426 4.9091
Jarque-Bera 481.41 423.25 303.78
Q2(20) 792.55 205.49 367.17
Q  (20) is the Ljung-Box statistic at lag 20 of the squared log-returns.

S&P500 and FTSE100 indices consist of total T  — 4042 values. The data 

set for NIKKEI225 index consists of T  = 3938 observations. The mean and the 

standard deviation of the S&P500 index are close to that of the FTSE100 index. 

The values of kurtosis of the S&P500 index and the NIKKEI225 index are close to
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each other and higher than the FTSE100 index for estimation period. It can be 

seen tha t all data set exhibit excess kurtosis and skewness for both estimation and 

forecasting period. S&P500 index is slightly negatively skewed where as other two 

indices show sign of positive skewness in estimation period, S&;P500 index shows 

positive skewness while other two indices are negatively skewed in forecasting pe

riod. For both estimation and forecasting periods, the Jarque-Bera (JB) statistics 

are significantly large, rejecting the hypothesis of normality for three indices. High 

values of Ljung-Box (Q2(20)) statistic for the squared returns up to lag 20 in both 

periods indicate dependence in squared returns (ARCH effect).

Descriptive graphs (density of daily returns along with normal density with 

mean and standard deviation equal to that of raw returns and QQ-plot against the 

standard normal) for S&P500, FTSE100 and NIKKEI225 indices for in-sample pe

riods are illustrated in Fig. 5.1. By comparing density graphs against the standard 

normal show tha t each data set exhibits non-normal characteristics. The empirical 

distributions have fatter tails and sharper peaks as compared to the normal den

sity function. This indicates evidence of leptokurtosis. The QQ-plot against the 

standard normal distribution for all data sets exhibits fat-tailedness. Thus, the 

preliminary analysis of the data and graphs suggests the use of a GARCH model 

to capture the time-varying volatility and fat-tailedness in these stock indices.

5.5.2 Results of GARCH model

The GARCH(1,1) model is fitted and the parameters are estimated using M- 

estimators. We allow the corresponding parameters to change over time using 

moving window of size w =  2042 for S&P500 and FTSE100 indices and w = 1938 

for NIKKEI225 index. This corresponds to roughly eight years of trading data. 

After predicting the one-step-ahead VaR forecast, the parameters are re-estimated
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and s tandard  deviation equal to  th a t of returns and QQ-plot of sample d a ta  against the standard  
norm al for th ree indices.
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for each moving window with an increment of one day, discarding the first obser

vation. This process is repeated till the end of the data is reached. In this way 

2000 one-day-ahead VaR estimates based on commonly-used rejection probabilities 

p =  [0.01, 0.05, 0.10] are calculated.

The estimated parameters along with their standard errors and Ljung-Box 

statistics for lag 20, during the in-sample period for all indices, are reported in 

Table 5.2. For all indices, the value of (a +  (3) is very close to 1 showing the pres

ence of an integrated GARCH (IGARCH) effect. Diagnostics of the standardised 

squared residual show that the GARCH(1,1) model is adequate in taking into ac

count the heteroscedasticity exhibited by all data sets. This is confirmed by high 

p-values of the Ljung-Box statistics for the standardised squared residuals.

To assess the performance of different M-estimators in estimating VaR, both 

in-sample and out-of-sample VaR estimates are obtained and evaluation methods 

for VaR described above are used.

In - s a m p le  V aR  p er fo rm a n ce

Range of summary statistics is used to assess the performance of VaR models. 

The first performance criterion we apply is the mean relative bias (MRB). The 

MRB is a measure of size for each value-at-risk estimator that is relative to the 

average of all five estimators. This quantity is measured in percentage terms, so 

that a value of 0.10 implies that the value-at-risk estimate for a given estimator is 

10% larger, on average, than the average of all five value-at-risk estimates.

After assessing the relative size of risk estimates, we check the accuracy of 

the VaR estimates produced by each M-estimator. We are concerned to check 

whether the VaR estimates are large enough to cover the true underlying risk? 

For this we use the likelihood statistics for conditional coverage (LR^) proposed 

by Kupiec (1995). The L R , iC statistic tests the null hypothesis tha t the actual
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Table 5.2: Estimated parameters for the GARCH(1,1) with SE’s and Ljung-Box statistic for 
et2 (S&P500, FTSE100, NIKKEI225) ________________

QMLE LAD Huber’s B-estimator Cauchy
S&P500 Index

cHw 0.0005 0.0003 0.0002 0.0002 0.0001
(0.0004) (0.0002) (0.0001) (0.0002) (0.0001)

c H a 0.0323 0.0183 0.0193 0.02163 0.0103
(0.0088) (0.0040) (0.0038) (0.0051) (0.0024)

(3 0.9642 0.9639 0.9652 0.9669 0.9615

Q2(20)
(0.0102) (0.0081) (0.0075) (0.0081) (0.0087)
10.5497 10.5100 10.4879 10.6582 10.0032

p-value 0.9571 0.9580 0.9584 0.9546 0.96811

FTSE100 Index
CH UJ 0.0026 0.0006 0.0006 0.0010 0.0006

(0.0011) (0.0003) (0.0003) (0.0003) (0.0002)
cHa 0.0550 0.0195 0.0202 0.0276 0.0127

(0.0134) (0.0043) (0.0044) (0.0057) (0.0024)
P 0.9250 0.9609 0.9621 0.9570 0.9515

(0.0185) (0.0136) (0.0084) (0.0111) (0.0135)
Q2( 20) 21.2076 20.9067 21.3215 21.5500 21.6972
p-value 0.3850 0.4026 0.3784 0.3654 0.3572

NIKKEI225 Index
CH U) 0.01414 0.0054 0.0064 0.0048 0.0021

(0.0047) (0.0017) (0.0019) (0.0018) (0.0008)
cHa 0.1118 0.0595 0.0746 0.0665 0.0270

(0.0236) (0.0100) (0.0093) (0.0129) (0.0059)
P 0.8623 0.8755 0.8843 0.8878 0.8770

(0.0278) (0.0191) (0.0178) (0.0191) (0.0201)
Q2( 20) 11.0322 10.9808 10.4957 10.7182 11.0189
p-value 0.9454 0.9467 0.9583 0.9532 0.9457

Q  (20) is the Ljung-Box statistic at lag 20 of the standardised squared residuals.
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and expected number of exceptions are statistically same. Rejection of the null 

hypothesis indicates tha t the computed VaR estimates are not accurate enough.

The LR^c is based on the number of violations and does not take into account 

the magnitude of losses. The Quadratic Loss Function (QLF) of Lopez (1999) 

takes account of the magnitude of the exceptions and thus provides a more pow

erful measure of model accuracy. The QLF penalizes large failures more severely 

than the small failures. Average quadratic loss (AQL) is also calculated for each 

estimator. If two or more models pass the LRUC test, then the model with the least 

AQL can be considered more accurate than others.

In the presence of volatility clustering, the LR7iC test will classify inaccurate 

VaR, estimates as acceptably accurate since it cannot examine whether the excep

tions are randomly distributed. It is of great importance tha t VaR exceptions be 

uncorrelated. The likelihood ratio statistic for conditional coverage (LRCC) is used 

to examine the serial independence of VaR estimated. Since the LRCC test checks 

the first order dependence in risk estimates, it is also desirable to check depen

dence of high order. The dynamic quantile (DQ) test is applied to jointly test that 

the expectation of Hitt is zero and that Hit* is uncorrelated with its lagged values 

or/and lagged values of VaR estimates. For this study, we use five lags of Hit* and 

the current VaR as the explanatory variables.

Table 5.3 reports the results of in-sample VaR estimates for three stock indices 

at rejection probabilities p of 1%, 5%, and 10%. The values of p  provide a good 

estimate of rejection probabilities in each case. The average VaR estimates for all 

estimators are close to each other and we cannot find any significant difference 

in these estimates. For the 99% VaR confidence level, the mean relative bias for 

the QMLE falls between -4 and 3 percent, whereas for other estimators, not much 

variation is observed in this quantity. This shows tha t the QMLE, on average,
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produces VaR estimates that are slightly below or above than the average of all 

five estimators. Results for other confidence levels suggest tha t the difference in 

the average sizes is very small.

For all coverage probabilities we consider, the likelihood ratio statistics for 

unconditional coverage LR.UC. are found statistically insignificant for all estimators 

at 5% significance level and indicate that the expected and the actual number 

of observations falling below the VaR threshold are statistically the same. Also, 

the conditional coverage test statistic LRCC obtained from all estimators fails to 

reject the null hypothesis of no serial dependence in in-sample VaR estimates at 

5% significance level. The LR^ generated by LAD estimators are found the lowest 

in many cases.

The mean quadratic loss (AQL) for each estimator is also reported in Table 5.3. 

Cauchy estimator produces the least AQL for S&P500 Index at all coverage prob

abilities. It also provide good estimate at 90% VaR confidence level for FTSE100 

index. B-estirnator provides the least AQL for NIKKEI225 index at p = 5% and 

10% and also for FTSE100 index at p = 1%. Although, AQL for the QMLE is the 

smallest for FTSE100 index at p — 5%, other estimators also provide very close 

estimates.

O u t-o f-sa m p le  V aR  p er fo rm a n ce

Next, we look at the performance of M-estimator in producing one-day-ahead 

VaR estimates. Table 5.4 provides result of out-of-sample VaR estimates. The 

estimated rejection probabilities are close to the expected values except for S&P500 

index at p — 1%. In this case, both likelihood ratio statistics, the L R ^ and the 

LRCC are rejected at 1% and 5% significance levels, respectively. The LRCC test is 

also rejected in case of FTSE100 index at 95% VaR confidence level. In other cases, 

all M-estimators pass these tests showing that the number of violation produced
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Table 5.3: Ill-sample VaR evaluation for the GARCH(1,1) model using M -estimators

V Mean VaR MRB LR LR AQL

99% VaR confidence level
S&P500 Index

QMLE 0.0098 -0.9326 0.0280 0.0088 0.4243 0.0123
LAD 0.0098 -0.9016 -0.0087 0.0088 0.4243 0.0125
Huber’s 0.0098 -0.9022 -0.0110 0.0088 0.4243 0.0124
B-estimator 0.0098 -0.9131 0.0003 0.0088 0.4243 0.0124
Cauchy 0.0093 -0.9072 -0.0085 0.1021 0.4779 0 .0 1 2 0

FTSE100 Index
QMLE 0.0098 -0.8270 -0.0415 0.0088 0.4243 0.0105
LAD 0.0098 -0.8621 -0.0020 0.0088 0.4243 0.0104
Huber’s 0.0093 -0.8678 0.0052 0.1021 0.4779 0.0099
B-estimator 0.0088 -0.8777 0.0159 0.3017 0.6398 0 .0 0 9 4
Cauchy 0.0088 -0.8841 0.0225 0.3017 0.6398 0.0094

NIKKEI225 Index
QMLE 0.0103 -1.5780 0.0058 0.0198 0.4579 0 .0 1 2 6
LAD 0.0119 -1.5681 -0.0058 0.6445 1.2211 0.0144
Huber’s 0.0114 -1.5704 -0.0029 0.3428 0.8712 0.0139
B-estimator 0.0108 -1.5805 0.0005 0.1332 0.6153 0.0134
Cauchy 0.0108 -1.5840 0.0025 0.1332 0.6153 0.0133

95% VaR confidence level
S&P500 Index

QMLE 0.0490 -0.5206 0.0038 0.0458 1.0359 0.0567
LAD 0.0480 -0.5207 0.0015 0.1756 0.2939 0.0556
Huber’s 0.0480 -0.5194 -0.0040 0.1756 0.6382 0.0557
B-estimator 0.0480 -0.5189 0.0055 0.1756 0.6382 0.0557
Cauchy 0.0480 -0.5253 0.0042 0.1756 0.6382 0 .0 5 5 5

FTSE100 Index
QMLE 0.0485 -0.5574 0.0043 0.1000 0.3555 0 .0 5 1 7
LAD 0.0485 -0.5544 -0.0023 0.1000 0.2084 0.0518
Huber’s 0.0485 -0.5560 0.0011 0.1000 0.2084 0.0518
B-estimator 0.0485 -0.5578 0.0036 0.1000 0.2084 0.0518
Cauchy 0.0490 -0.5525 -0.0067 0.0458 1.0359 0.0524

N IKKE I225 Index
QMLE 0.0531 -1.0121 -0.0039 0.3964 2.7431 0.0648
LAD 0.0537 -1.0190 -0.0024 0.5354 2.7278 0.0651
Huber’s 0.0547 -1.0188 -0.0012 0.8741 2.7763 0.0662
B-estimator 0.0521 -1.0308 0.0076 0.1802 1.7335 0 .0 6 3 2
Cauchy 0.0542 -1.0233 0.0000 0.6947 2.7390 0.0656

90% VaR confidence level
S&P500 Index

QMLE 0.0950 -0.3923 0.0063 0.5747 5.1378 0.1069
LAD 0.0955 -0.3926 0.0046 0.4668 4.8136 0.1073
Huber’s 0.0955 -0.3907 -0.0033 0.4668 4.8136 0.1074
B-estimator 0.0970 -0.3890 -0.0082 0.2111 4.8616 0.1089
Cauchy 0.0945 -0.3934 0.0006 0.6940 4.5303 0 .1 0 6 2

FTSE100 Index
QMLE 0.0955 -0.4329 0.0140 0.4668 1.1401 0.1019
LAD 0.0955 -0.4253 -0.0049 0.4668 0.6940 0.1021
Huber’s 0.0940 -0.4261 -0.0026 0.8247 1.0225 0.1007
B-estimator 0.0945 -0.4247 -0.0064 0.6940 0.8968 0.1012
Cauchy 0.0926 -0.4278 -0.0001 1.2860 1.4974 0 .0 9 9 2

N IKKEI225 Index
QMLE 0.1042 -0.7350 -0.0007 0.3808 5.9871 0.1311
LAD 0.1022 -0.7405 0.0014 0.1005 3.7972 0.1286
Huber’s 0.1022 -0.7361 -0.0031 0.1005 3.7972 0.1291
B-estimator 0.1017 -0.7423 0.0023 0.0584 3.9585 0 .1 2 8 0
Cauchy 0.1017 -0.7408 0.0001 0.0584 3.9585 0.1282

The smallest AQL for each data set at each confidence level is bold faced to highlight the best performance.
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by M-estimators are statistically same as expected number of violations and these 

violations are independent of each other. Not much variation in mean relative bias 

is observed in out-of-sample VaR estimates. As in the case of in-sample VaR, the 

AQL of Cauchy estimator is again the smallest in most of the cases.

Table 5.5 presents the results of dynamic quantile test statistics of Engle and 

Manganelli (2004) on the out-of-sample VaR performance of M-estimators. For 

each data set, at p — 10%, the DQ statistics for all estimators fail to accept the 

null hypothesis of no higher order dependence in VaR violations. The test also 

fails for S&P500 at p — 1% and FTSE100 indices at p — 5%. This shows that 

although in some cases the LRrc accepts the null hypothesis of no serial dependence 

in VaR estimates for different M-estimates, the DQ test confirms the existence of 

high order dependence in these estimates. As an example, all M-estimators pass 

the conditional coverage statistics at both p — 5% and 10% but fails to accept the 

dynamic quantile test at these coverage probabilities.

To further examine the superiority of one estimator to another in predicting 

one-day-ahead VaR, we use the one sided sign statistics. Table 5.6 presents the sign 

statistics on quadratic loss functions between pairs of M-estimators which pass the 

dynamic quantile test. We only report the result for 95% VaR confidence level as 

those of others confidence levels produce the same results. The test statistic applied 

to the quadratic loss function indicates that none of the estimator is significantly 

better than the others for all data set at different confidence levels.

5.5.3 Results of GJR model

In our second study we fit the GJR(1,1) model to those three stock indices and 

estimate the parameters using M-estimators. We predict the one-day-ahead VaR 

using the rolling window method. The size of window length, the number of out-
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Table 5.4: Out-of-sample VaR evaluation for the GARCH(1,1) model using M-estimators
P Mean VaR MRB LR LR AQL

99% VaR confidence level
S&P500 Index

QMLE 0.0045 -1.3340 -0.0037 7.6879** 7.7783* 0.0069
LAD 0.0045 -1.3312 -0.0081 7.6879** 7.7783* 0.0070
Huber’s 0.0045 -1.3381 -0.0022 7.6879** 7.7783* 0.0069
B-estimator 0.0045 -1.3473 -0.0014 7.6879** 7.7783* 0 .0 0 6 8
Cauchy 0.0045 -1.3637 0.0154 7.6879** 7.7783* 0.0069

FTSE100 Index
QMLE 0.0120 -1.2000 -0.0003 0.7595 1.3670 0.0128
LAD 0.0110 -1.2019 0.0001 0.1957 0.7074 0.0118
Huber’s 0.0110 -1.1995 -0.0007 0.1957 0.7074 0.0118
B-estimator 0.0110 -1.1995 -0.0007 0.1957 0.7074 0.0118
Cauchy 0.0110 -1.1961 -0.0043 0.1957 0.7074 0 .0 1 1 7

N IKKE I225 Index
QMLE 0.0085 -1.5267 -0.0135 0.4789 0.7876 0.0118
LAD 0.0080 -1.5406 -0.0063 0.8675 1.1417 0 .0 1 1 3
Huber’s 0.0095 -1.5449 -0.0035 0.0514 0.4351 0.0128
B-estimator 0.0090 -1.5512 0.0009 0.2090 0.5542 0.0123
Cauchy 0.0090 -1.5782 0.0224 0.2090 0.5542 0.0122

95% VaR confidence level
S&P500 Index

QMLE 0.0540 -0.8034 -0.0076 0.6573 1.0143 0.0635
LAD 0.0520 -0.8037 -0.0080 0.1663 0.7529 0.0614
Huber’s 0.0515 -0.8103 0.0016 0.0939 0.2965 0.0608
B-estimator 0.0520 -0.8142 0.0024 0.1663 1.4925 0.0610
Cauchy 0.0505 -0.8186 0.0116 0.0105 0.1165 0 .0 5 9 7

FTSE100 Index
QMLE 0.0600 -0.7927 0.0008 3.9684 7.1741* 0.0665
LAD 0.0595 -0.7934 -0.0000 3.5915 8.3236* 0.0659
Huber’s 0.0605 -0.7923 -0.0004 4.3631 8.6490* 0.0670
B-estimator 0.0605 -0.7971 0.0038 4.3631 8.6490* 0.0668
Cauchy 0.0595 -0.7.900 -0.0042 3.5915 8.3236* 0 .0 6 5 9

N IKKE I225 Index
QMLE 0.0515 -1.0462 -0.0053 0.0939 0.7505 0.0623
LAD 0.0490 -1.0520 -0.0020 0.0424 1.1279 0.0597
Huber’s 0.0495 -1.0522 -0.0023 0.0106 0.3674 0.0602
B-estimator 0.0490 -1.0529 -0.0009 0.0424 0.4500 0.0599
Cauchy 0.0485 -1.0626 0.0106 0.0956 2.3394 0 .0 5 9 5

90% VaR confidence level
S&P500 Index

QMLE 0.1120 -0.6111 -0.0045 3.0927 3.7433 0.1296
LAD 0.1120 -0.6107 -0.0058 3.0927 4.0705 0.1295
Huber’s 0.1110 -0.6144 0.0014 2.6058 4.2349 0.1284
B-estimator 0.1140 -0.6139 -0.0022 4.1867 4.6202 0.1312
Cauchy 0.1090 -0.6209 0.0110 1.7541 3.3588 0 .1 2 6 2

FTSE100 Index
QMLE 0.1055 -0.6049 0.0022 0.6616 4.7973 0.1210
LAD 0.1050 -0.6048 0.0004 0.5475 4.0543 0.1204
Huber’s 0.1055 -0.6030 -0.0011 0.6616 3.9799 0.1211
B-estimator 0.1045 -0.6067 0.0031 0.4441 4.1451 0 .1 1 9 8
Cauchy 0.1060 -0.6016 -0.0046 0.7862 3.9221 0.1215

N IKKE I225 Index
QMLE 0.1005 -0.7689 -0.0007 0.0055 0.2202 0.1253
LAD 0.1005 -0.7683 -0.0033 0.0055 0.2552 0.1254
Huber’s 0.0995 -0.7672 -0.0051 0.0056 0.2175 0.1246
B-estimator 0.0995 -0.7675 -0.0042 0.0056 0.2566 0.1247
Cauchy 0.0990 -0.7789 0.0132 0.0223 0.3497 0 .1241

_____ _ * **The smallest AQL for each data set at each confidence level is bold faced to highlight the best performance. *,** 
denote significant at the 5% and 1% level, respectively.
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Table 5.5: Dynamic quantile test statistics for the GARCH(1,1) model

V QMLE LAD Huber’s B-estimator Cauchy

S&P500 Index 
1%
5%
10%

16.8290*
13.2744
16.2397*

16.8252*
12.5658
21.7491**

16.8177*
12.6396
22.6867**

16.8887*
20.7608**
18.4834**

16.8703*
10.3658
14.7659*

FTSE100 Index 
1%
5%
10%

4.1285
24.4414**
16.1487*

4.1423
19.9735**
20.4942**

4.6675
19.9962**
23.0526**

4.8795
20.4048**
26.9402**

4.9002
28.1486**
28.3048**

NIKKEI225 Index 
1%
5%
10%

4.4172
8.9755

19.0729**

5.2616
11.2762
23.4811**

5.6683
11.4320
23.3008**

5.9421
11.3691
24.3819**

5.8800
12.3032
24.4052**

The dynamic quantile (DQ) test statistics on the out-of-sample VaR. performance of M-estimators. The DQ test 
statistic is asymptotically x  (7)- *.** denote significant at the 5% and 1% level, respectively.

of-sample forecast and the rejection probabilities are kept same as in the case of 

the GARCH(1,1) model. The purpose of this study is to check the predictive 

performance of M-estimators in asymmetric GARCH models. We also aim to 

compare the results of M-estimators in both GARCH and G JR model and to 

investigate which estimator and model fits these data sets well.

Table 5.7 reports the estimated parameters of the GJR(1,1) model for M- 

estimators along with their standard errors and the Ljung-Box statistics for the 

standardised squared residuals for lag 20. The p-values of the Ljung-Box statistics 

show that the GJR(1,1) model is adequate to model the volatility.

In - sa m p le  V a R  p er fo rm a n ce

Using evaluation methods, the in-sample VaR performance of M-estimators 

is analysed, when GJR(1,1) model is fitted to these data sets. The results for 

three stock indices at rejection probabilities p of 1%, 5%, and 10% are reported in 

Table 5.8. As we can see from the table, the values of p provide good estimates of
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Table 5.6: Sign test for out-of-sample VaR performance for the GAR.CH(1,1) model using 
M-estimators_____________

( h j )
co

i j
co

j i

95% VaR confidence level
S&P500 Index

(1, 2) -42.0381** -42.5300**
(1, 3) -41.3673** -43.1561**
(1, 5) -41.2331** -43.2903**
(2, 3) -41.0542** -43.6928**
(2, 5) -41.5461** -43.1561**
(3, 5) -42.1722** -42.5300**

NIKKEI225 Index
(1» 2) -42.1722** -42.6195**
(1, 3 -42.1275** -42.5747**
(1, 4 -42.1275** -42.4853**
(1> 5) -42.3511** -42.2617**
(2, 3 -42.1275** -42.8431**
(2, 4) -42.2617** -42.6195**
(2, 5 -42.5747** -42.3064**
(3, 4) -42.3958** -42.5300**
3, 5) -42.9772** -41.9039**

(4, 5) -43.1114** -41.8145**

critical values of the sign statistic at 5% significance level is -1.6345.*,** denote significant at the 5% and 1% 
level, respectively.

rejection probabilities in each case. The average VaR estimates for all estimators 

are found close to each other. For FTSE100 Index the mean relative biases of 

Cauchy estimator are found larger as compare to other estimators for this data 

sets showing tha t on average the Cauchy estimator produce VaR estimates that 

are higher then the average of other estimates.

Both the likelihood ratio statistics for unconditional coverage L R ^ and the 

likelihood ratio statistics for conditional coverage LRCC are not found statistically 

significant at 5% level of significance for all coverage probabilities. This is an 

indication tha t the expected and the actual number of observations falling below 

the VaR threshold are statistically the same and that there are no serial dependence 

between two VaR estimates produce by an M-estimator.
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Table 5.7: E stim ated param eters for the GJR.(1,1) with SE’s and Ljung-Box statistic for e 2 
(S&P500, FTSE100, NIKKEI225) _____________________

QMLE LAD Huber’s B-estimator Cauchy
S&P500 Index

cHu 0.0041 0.0023 0.0027 0.0028 0.0013
(0.0006) (0.0003) (0.0003) (0.0004) (0.0002)

cHa 0.0284 0.0170 0.0216 0.0226 0.0099
(0.0099) (0.0046) (0.0058) (0.0062) (0.0028)

c h i 0.1007 0.0567 0.0710 0.0689 0.0327
(0.0153) (0.0071) (0.0088) (0.0095) (0.0044)

P 0.8863 0.8805 0.8843 0.8751 0.8648
(0.0119) (0.0101) (0.0096) (0.0112) (0.0121)

Q2{ 20) 10.5497 10.5100 10.4879 10.6582 10.0032
p-value 0.9571 0.9580 0.9584 0.9546 0.96811

FTSE100 Index
CH UJ 0.0019 0.0011 0.0013 0.0010 0.0006

(0.0006) (0.0002) (0.0003) (0.0002) (0.0001)
CHOC 0.0206 0.0076 0.0188 0.0063 0.0017

(0.0074) (0.0023) (0.0034) (0.0031) (0.0013)
CH J 0.0504 0.0343 0.0391 0.0491 0.0238

(0.0121) (0.0041) (0.0068) (0.0060) (0.0028)
p 0.9406 0.9475 0.9444 0.9547 0.9518

(0.0119) (0.0056) (0.0097) (0.0054) (0.0059)
Q2( 20) 18.9195 19.5729 24.1036 19.7610 21.1915
p-value 0.5271 0.4849 0.2379 0.4730 0.3859

NIKKEI225 Index
CH 0J 0.0085 0.0044 0.0053 0.0060 0.0026

(0.0013) (0.0006) (0.0007) (0.0009) (0.0004)
cro c 0.0148 0.0083 0.0109 0.0096 0.0040

(0.0067) (0.0032) (0.0041) (0.0046) (0.0021)
c h i 0.1391 0.0886 0.1137 0.1304 0.0564

(0.0140) (0.0069) (0.0088) (0.0108) (0.0048)
P 0.8976 0.8964 0.9003 0.8870 0.8873

(0.0091) (0.0072) (0.0069) (0.0084) (0.0086)
Q2(20) 14.9329 15.8846 15.8154 16.6741 16.7256
p-value 0.7802 0.7238 0.7280 0.6740 0.6707

Q  (20) is the Ljung-Box statistic at lag 20 of the standardised squared residuals.
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The summary of results of the mean quadratic loss (AQL) for each estimator 

is as follows. For S&P500 Index, Cauchy estimator produces the least AQL at 

99% and 95% VaR confidence level whereas at 90% confidence level the AQL of 

Huber’s estimator is found the least. Huber’s estimator also produces the lowest 

AQL for FTSE100 Index at 99% and 90% confidence interval and B-estimator 

outperform other estimator based on AQL at 95% confidence level. Similarly for 

NIKKEI225 Index B-estimator shows the least value for AQL at 99% and 90% and 

LAD’s AQL is found the lowest at 95%. From these findings we may conclude that 

based on AQL, Huber’s and B-estimator provide better results than the competing 

estimators.

O u t-o f-sa m p le  V aR  p er fo rm a n ce

The results of out-of-sample VaR estimate are displayed in Table 5.9. The 

estimated rejection probabilities are close to the expected values except for S&P500 

index at p = 1%. In this case, both likelihood ratio statistics, the LRuc and the 

LRCC for B-estimator are rejected at 5% significance levels. The L R ^ and the 

LRCC tests are not rejected in any other cases we consider. Again we see that all 

M-estimators pass these tests showing that the number of violation produced by 

M-estimators are statistically same as expected number of violations and these 

violations are independent of each other.

The mean relative biases of all estimators do not show much variation in out- 

of-sample VaR estimates. The AQL’s of B-estimator are the smallest for FTSE100 

index at all coverage probabilities. B-estimators also produces the least AQLs for 

S&P500 and NIKKEI225 indices at 95% VaR confidence level. The values of AQL 

for QMLE are found the lowest at 90% for S&P500 Index. These results suggests 

that B-estimator again produces better out-of-sample VaR estimates as compared 

to other competing estimators when the GJR(1,1) model is fitted to these stock



5. Value-at-Risk Based on M-estimators for GARCH-type Models 130

Table 5.8: Ill-sample VaR evaluation for the GJR(1,1) model using M -estim ators

V Mean VaR MRB LR LR AQL

99% VaR confidence level
S&P500 Index

QMLE 0.0093 -0.8890 0.0089 0.1021 0.4779 0.0120
LAD 0.0098 -0.8775 -0.0111 0.0088 0.4243 0.0126
Huber’s 0.0098 -0.8773 -0.0095 0.0088 0.4243 0.0126
B-estimator 0.0098 -0.8909 0.0052 0.0088 0.4243 0.0125
Cauchy 0.0093 -0.8952 0.0064 0.1021 0.4779 0 .0 1 2 0

FTSE100 Index
QMLE 0.0098 -0.8124 -0.0165 0.0088 0.4243 0.0107
LAD 0.0093 -0.8229 -0.0070 0.1021 0.4779 0.0102
Huber’s 0.0088 -0.8233 -0.0033 0.3017 0.6398 0 .0 0 9 7
B-estimator 0.0098 -0.7906 -0.0342 0.0088 0.4243 0.0110
Cauchy 0.0098 -0.8611 0.0610 0.0088 0.4243 0.0107

NIKKEI225 Index
QMLE 0.0114 -1.4921 0.0008 0.3428 0.8712 0.0139
LAD 0.0114 -1.5013 -0.0017 0.3428 0.8712 0.0139
Huber’s 0.0124 -1.4914 -0.0083 1.0341 1.6613 0.0150
B-estimator 0.0103 -1.5181 0.0074 0.0198 0.4579 0 .0 1 2 7
Cauchy 0.0103 -1.5104 0.0018 0.0198 0.4579 0.0128

95% VaR confidence level
S&P500 Index

QMLE 0.0495 -0.5306 0.0065 0.0125 0.3242 0.0567
LAD 0.0490 -0.5370 0.0117 0.0458 1.0359 0.0560
Huber’s 0.0495 -0.5255 -0.0084 0.0125 0.9124 0.0567
B-estimator 0.0480 -0.5274 -0.0052 0.1756 1.3620 0.0553
Cauchy 0.0475 -0.5296 -0.0046 0.2725 0.7953 0 .0 5 4 7

FTSE100 Index
QMLE 0.0480 -0.5511 -0.0066 0.1756 0.2939 0.0513
LAD 0.0480 -0.5506 -0.0106 0.1756 0.2939 0.0514
Huber’s 0.0480 -0.5474 -0.0133 0.1756 0.2939 0.0515
B-estimator 0.0455 -0.5560 0.0113 0.8789 1.1152 0 .0 4 9 0
Cauchy 0.0480 -0.5554 0.0191 0.1756 2.4220 0.0516

N IKKE I225 Index
QMLE 0.0542 -0.9881 -0.0051 0.6947 0.8316 0.0649
LAD 0.0516 -1.0124 0.0106 0.1034 2.8868 0 .0 6 1 8
H ubei’s 0.0526 -1.0091 0.0073 0.2780 1.7017 0.0627
B-estimator 0.0521 -1.0029 -0.0009 0.1802 1.5040 0.0624
Cauchy 0.0521 -0.9924 -0.0119 0.1802 3.1032 0.0629

90% VaR confidence level
S&P500 Index

QMLE 0.0965 -0.3889 0.0036 0.2851 1.9906 0.1083
LAD 0.0975 -0.3933 0.0079 0.1483 3.6884 0.1089
Huber’s 0.0955 -0.3882 -0.0035 0.4668 2.4323 0 .1 0 7 2
B-estimator 0.0989 -0.3862 -0.0090 0.0264 2.3053 0.1108
Cauchy 0.0960 -0.3916 0.0011 0.3703 2.2031 0.1076

FTSE100 Index
QMLE 0.0960 -0.4261 0.0001 0.3703 1.1124 0.1024
LAD 0.0960 -0.4264 -0.0026 0.3703 0.7939 0.1025
Huber’s 0.0950 -0.4240 -0.0051 0.5747 0.7873 0 .1 0 1 6
B-estimator 0.0955 -0.4215 -0.0019 0.4668 3.8900 0.1023
Cauchy 0.0960 -0.4226 0.0096 0.3703 4.4786 0.1031

NIKKE I225 Index
QMLE 0.1037 -0.7419 0.0109 0.2940 2.6928 0.1272
LAD 0.1037 -0.7403 0.0001 0.2940 1.5418 0.1275
Huber’s 0.1032 -0.7400 -0.0003 0.2183 2.1247 0.1266
B-estimator 0.1027 -0.7399 -0.0025 0.1538 1.1521 0 .1 2 5 9
Cauchy 0.1042 -0.7360 -0.0082 0.3808 1.1304 0.1279

The smallest AQL for each data set at each confidence level is bold faced to highlight the best performance.
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indices.

The dynamic quantile test statistics on the out-of-sample VaR performance of M- 

estimators when GJR(1,1) model is fitted to data sets are provided in Table 5.10. 

For S&P500 Index at p =  5%, the DQ tests is rejected at 5% level of significance 

for Huber's Cauchy and B-estimator. For FTSE100 Index the test is rejected for 

all estimators at 5% level of significance except Cauchy estimator. For all other 

case, all estimators pass the DQ test. These results show the DQ test confirms the 

existence of high order dependence in the above mentioned cases. In all other cases 

the acceptance of the DQ test means that there is not any high order dependence 

among the out-of-sample VaR estimates.

5.5.4 Comparison of Results

Next, we compare the results of fitting GARCH(1,1) and GJR(1,1) model to 

S&P500, FTSE100, and NIKKEI225 indices. First we compare results of Ta

ble 5.3 and Table 5.8 for in-sample VaR estimates. The average VaR estimates 

produced by M-estimators when GARCH(1,1) model is fitted to these data sets 

are found higher than the GJR(1,1) model at 99% VaR confidence level. This 

indicates that the GARCH(1,1) model produces high VaR estimates as compared 

to the GJR(1,1) model. For other confidence levels we do not find any significant 

difference. For GARCH(1,1), the cases where the AQLs of the QMLE were found 

the least are replaced by B-estimator when GJR(1,1) model is fitted. The values 

of the AQL of Huber’s estimate were not found the least at any occasion in Ta

ble 5.3 for GARCH(1,1) model but in Table 5.8 when GJR(1,1) model is fitted, 

these values are found the least on four occasions.

Finally, we compare results of Table 5.4 and Table 5.9 for out-of-sample VaR 

estimates. The first observation is that, at 99% VaR confidence level when the
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Table 5.9: Out-of-sample VaR evaluation for the GJR(1,1) model using M -estimators

P Mean VaR. MRB LR LR AQL

99% VaR confidence level
S&P500 Index

QMLE 0.0075 -1.2610 -0.0193 1.3822 1.6240 0.0094
LAD 0.0075 -1.2790 -0.0076 1.3822 1.6240 0.0096
Huber’s 0.0075 -1.2979 0.0026 1.3822 1.6240 0.0096
B-estimator 0.0050 -1.3080 0.0119 6.1875* 6.2981* 0.0069
Cauchy 0.00G0 -1.3117 0.0124 3.7725 3.9294 0 .0 0 8 0

FTSE100 Index
QMLE 0.0110 -1.2015 0.0088 0.1957 0.7074 0.0118
LAD 0.0105 -1.1781 -0.0144 0.0497 0.5167 0.0114
Huber’s 0.0095 -1.1944 -0.0045 0.0514 0.4351 0.0103
B-estimator 0.0095 -1.2157 0.0120 0.0514 0.4351 0 .0 1 0 2
Cauchy 0.0100 -1.2000 -0.0019 0.0000 0.4244 0.0108

N IKKE I225 Index
QMLE 0.0105 -1.5456 -0.0022 0.0497 0.5167 0.0143
LAD 0.0110 -1.5432 -0.0048 0.1957 0.7074 0.0142
Huber’s 0.0105 -1.5593 0.0057 0.0497 0.5167 0.0137
B-estimator 0.0105 -1.5533 0.0012 0.0497 0.5167 0 .0 1 3 6
Cauchy 0.0105 -1.5484 -0.0019 0.0497 0.5167 0.0137

95% VaR confidence level
S&P500 Index

QMLE 0.0520 -0.8201 -0.0037 0.1663 3.3534 0.0599
LAD 0.0520 -0.8235 -0.0011 0.1663 3.3534 0.0602
Huber’s 0.0500 -0.8292 0.0027 0.0000 2.6333 0.0582
B-estimator 0.0485 -0.8241 -0.0010 0.0956 0.9707 0 .0 5 6 5
Cauchy 0.0490 -0.8285 0.0030 0.0424 0.9974 0.0570

FTSE100 Index
QMLE 0.0550 -0.8070 0.0065 1.0210 1.7778 0.0606
LAD 0.0560 -0.7975 -0.0091 1.4616 1.6678 0.0615
Huber’s 0.0570 -0.8044 -0.0023 1.9779 2.1374 0.0623
B-estimator 0.0535 -0.8135 0.0067 0.5048 0.6291 0 .0 5 6 8
Cauchy 0.0575 -0.8069 -0.0018 2.2640 2.4072 0.0628

N IKKEI225 Index
QMLE 0.0490 -1.0302 0.0023 0.0424 0.9974 0.0619
LAD 0.0490 -1.0318 -0.0003 0.0424 0.9974 0.0607
Huber’s 0.0490 -1.0354 0.0028 0.0424 0.9974 0.0611
B-estimator 0.0490 -1.0335 0.0015 0.0424 0.9974 0 .0 6 0 6
Cauchy 0.0500 -1.0283 -0.0043 0.0000 1.1257 0.0618

90% VaR confidence level
S&P500 Index

QMLE 0.1100 -0.6048 -0.0058 2.1595 2.5563 0 .1 2 6 8
LAD 0.1105 -0.6055 -0.0059 2.3776 2.7369 0.1275
Huber’s 0.1110 -0.6111 0.0005 2.6058 3.1171 0.1278
B-estimator 0.1110 -0.6150 0.0097 2.6058 3.1171 0.1271
Cauchy 0.1130 -0.6107 0.0015 3.6197 3.9627 0.1296

FTSE100 Index
QMLE 0.1060 -0.6069 0.0053 0.7862 3.9221 0.1207
LAD 0.1090 -0.6015 -0.0080 1.7541 2.8918 0.1237
Huber’s 0.1070 -0.6059 -0.0029 1.0671 3.8556 0.1211
B-estimator 0.1055 -0.6141 0.0081 0.6616 3.2526 0 .1 1 9 0
Cauchy 0.1070 -0.6077 -0.0024 1.0671 3.8556 0.1211

N IKKEI225 Index
QMLE 0.0995 -0.7706 0.0011 0.0056 0.7268 0.1244
LAD 0.1005 -0.7706 -0.0013 0.0055 0.8766 0.1254
Huber’s 0.0980 -0.7751 0.0042 0.0894 0.9901 0 .1 2 2 8
B-estimator 0.0985 -0.7726 0.0009 0.0502 1.0344 0.1234
Cauchy 0.0995 -0.7688 -0.0050 0.0056 0.4027 0.1245 

____ * **The smallest AQL for each data set at each confidence level is bold faced to highlight the best performance. *,** 
denote significant at the 5% and 1% level, respectively.
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GARCH(1,1) model is fitted for S&P500 Index, both the L R UC and the L R CC 

tests were rejected at 5% significance level for all M-estimators. But, when the 

GJR(1,1) model is fitted to the same data set both likelihood ratio statistics are not 

found significantly different at the same significance level except for B-estimator. 

Similarly for FTSE100 Index, at 95% VaR confidence, the GARCH(1,1) model 

rejected the L R CC test at 5% significance level but it is accepted for the GJR(1,1) 

model. This suggests that for those data sets the expected number of violation for 

out-of-sample VaR estimates in the GJR(1,1) case are equal to the true number 

of violation and also these violations are independent of each other. In Table 5.4 

the AQL of Cauchy and B-estimators were found the least in most of the cases 

whereas in Table 5.9 we observe that the B-estimator overall shows good results.

Comparing the results of Table 5.5 with Table 5.10, it can be seen that the 

dynamic quantile test for no high order dependence is accepted mostly by the 

GJR(1,1) model. This confirms that there exists high order dependence in out-of- 

sample VaR estimates of GARCH(1,1) models but in GJR(1,1) case these estimates 

are independent in most of the cases. Hence, we conclude that for data sets we 

analyse in this study, GJR(1,1) model provides a better fit as compared to the 

GARCH(1,1) model in terms of predicting one-day-ahead VaR estimates.

We analyse in detail the results of using M-estimators for in-sample and out- 

of-sample VaR estimates. Both symmetric and asymmetric GARCH models are 

fitted and various performance measures and M-tests are used to evaluate the 

risk estimates. Our results show that M-estimators can provide reliable estimates 

for risk. These results suggest that estimators such as Huber’s, Cauchy and B- 

estimators outperform the widely-used QMLE. This strengthens our suggestion 

of using robust M-estimators for GARCH-type models. Our study may help risk 

managers to select appropriate estimator for predicting VaR and to use range of
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Table 5.10: Dynamic quantile test statistics for the GJR(l.l) model

V QMLE LAD Huber’s B-estimator Cauchy

S&P500 Index 
1%
5%
10%

7.1346
12.5005
9.3568

7.2829
12.5284
11.9913

7.3984
15.6235*
13.8734

14.5561*
14.4700*
13.3806

10.8300
14.8701*
14.9990*

FTSE100 Index 
1%
5%
10%

4.2564
6.6261

19.7151**

2.1902
3.0925

11.0671

2.1268
5.7603

14.9138*

2.1393
1.4448

14.2534*

2.3754
3.4796

11.9589

NIKKEI225 Index 
1%
5%
10%

1.3981
1.5635
7.4248

4.6199
2.3098
6.4519

5.2873
2.2481
5.6769

5.6648
1.4319
5.4136

5.2949
2.3191
4.8600

The dynamic quantile (DQ) test statistics on the out-of-sample VaR performance of M-estimators. The DQ test 
statistic is asymptotically x  ( A  *>** denote significant at the 5% and 1% level, respectively.

summary statistics to evaluate their predicted risk estimates.

5.6 C onclusion

In this chapter we proposed robust measures of VaR in the GARCH setup using M- 

estimators. We applied these to financial data sets and used backtesting methods 

to assess the in-sample VaR performance of M-estimators. We also assessed the 

accuracy of the proposed VaR estimates with out-of-sample VaR analysis. We 

compare the relative performance of the competing M-estimators using a number 

of newly-introduced M-test statistics.

From our empirical analysis it turned out that the average quadratic losses of 

the Cauchy and B-estimator were the least among the five M-estimators considered 

for the cited data sets. The mean relative bias (MRB) of the QMLE was also found 

to be higher than other estimators in most of the cases, indicating that the risk 

estimate of the QMLE was slightly larger than the average of other risk estimates.
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These findings confirmed the superiority of the Cauchy and B-estimator over the 

QMLE for fitting the GARCH model and VaR calculations. In fact, in many 

occasions, the QMLE is routinely used without paying attention to the fact that 

the finite fourth moment assumption is not tenable for that data. In those cases, 

such alternatives to QMLE for which a well-developed asymptotic theory exist, 

provide strong justification for their use. A comparison of the results of both 

symmetric and asymmetric models reveals that asymmetric model provides better 

forecasts for these data sets.

A number of interesting extensions and questions emerge naturally from this 

research which needs further investigation. In (5.2) we can probably get a bet

ter estimator of qt if we can use extreme-value theory for estimating the second 

term involving quantile of the error distribution. Recent work on the skewed t- 

distribution will be also useful for that purpose. It will be also of theoretical 

interest to investigate different rates of approximation of the quantity \qt~qt\-
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estimator has the same asymptotic normal distribution as that of QMLE. Result 

of a small simulation study showed that the linear estimator (LE) performed better 

than the QMLE.

The linear estimator has a closed form and is obtained by solving linear equa

tions. Hence, it can be easily implemented and does not require the use of any 

numerical optimization methods or the choice of initial values of parameters. An

other advantage of LE is that it requires very little computational time for the 

estimation of the parameters of ARCH model. This enables one to perform other 

computer intensive tasks such as volatility forecasting using recursive scheme and 

bootstrapping volatility models in little time.

Although linear estimator for ARCH models was introduced few years ago 

but to the best of our knowledge no applications to real data sets exist to date. 

Moreover, the accuracy under non-normal errors and the volatility forecasting 

performance of the estimator have not been investigated. We provide a detailed 

empirical analysis of the LE and compare this with the QMLE in terms of esti

mating, volatility forecasting, and bootstrapping ARCH models. The purpose of 

this study is to address all these issues and compare the results of both estimators. 

Based on these comparisons some useful suggestions are made for practitioners. 

Our aims for this study are as follows.

Our first aim is to check the accuracy of the LE in estimating the parameters of 

ARCH models. Monte Carlo experiments are performed to compare the accuracy 

of these estimators with the QMLE. Sample of size 50 is used along with other 

choices for sample sizes to check the performance of these estimators in very small 

samples. Errors are generated from normal and non-normal distributions and 

different orders for ARCH models are considered. The results show that the linear 

estimator provides accurate estimates for the parameters of ARCH models and 

outperform the QMLE in most of the cases.
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Our second aim is to compare the predictive ability of the LE with the QMLE in 

terms of forecasting volatility. The forecasting performance of both linear estima

tor and the QMLE are checked using various evaluation measures. It is found that 

the performance of the LE in estimating and forecasting volatility is comparable 

to QMLE and better in small samples. Recursive and rolling schemes for volatility 

forecasts are used for generating one-day ahead forecasts of SP500, FTSE100 and 

NIKKEI225 indices and results of the study of real data sets support simulations.

Third, to approximate the true distribution of the LE in finite sample using a 

weighted bootstrap method. The weighted bootstrapped LE is obtained by solving 

linear equations and hence the approach is easy to implement. Two schemes 

(Scheme E and Scheme U) are used for bootstrapping besides widely used paired 

bootstrap and residual bootstrap. We observe that weighted bootstrap schemes 

work well for ARCH models when LE is used. It is found that scheme U and scheme 

E are good alternative to paired bootstrap. Moreover, using the LE instead of the 

QMLE for fitting ARCH models enables us to obtain these results in very little 

time.

Our final aim is to develop bootstrap prediction intervals for returns, volatility 

and value-at-risk. These prediction intervals are developed for both the LE and 

the QMLE using a simple bootstrap method. These prediction intervals along 

with point estimate will help practitioners to evaluate the forecasting performance 

of their models. Monte Carlo results showed that our bootstrap method generates 

reliable prediction intervals. We found that although both estimators provide good 

mean coverage, the LE can be considered superior in terms of its mean lengths 

close to empirical with low standard errors. The bootstrapped prediction intervals 

for volatilities and VaR capture the asymmetry commonly present in real data 

sets.

This chapter is organised as follows. In Section 6.2 we define the LE for ARCH
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model and Monte Carlo simulations are performed to check the accuracy in es

timating the parameters of ARCH models. The forecasts of volatility are also 

obtained and application to real data sets is presented. In Section 6.4 using a 

weighted bootstrap method the true distribution of the LE in finite sample is 

approximated. Section 6.5 describes methods for constructing bootstrap predic

tion intervals for returns, volatilities and value-at-risk in ARCH models. Finally, 

Section 6.6 concludes the chapter.

6.2 T he Linear Estim ator

Consider the following ARCH model where one observes { X t ',l — p < t <  T )  

satisfying

X t =  hl,2(P)eu 1 <  t < T, (6.1)

where (3 = [ft, f t ,  is the unknown parameter to be estimated with f t  > 0,

f t  >  0, 1 < j  <  p,

ht = f t  +  +  ... +  (3pXt_p,

with {e£; 1 < t < T}  are i.i.d with mean zero and unit variance. It is assumed that 

{et \ 1 < t < T }  are independent of {X t ; 1 - p  < t  < 0}. It is also assumed that 

(6.1) holds, { X t ; t > 1 —p} is a stationary and ergodic and E(eA) < oo. These will 

be called model assumptions.

Let Yt = X?, 1 -  p < t < T,

Zt-1  =  [1, Yt-1  Yt-J! =  (1 .  * t - i .

and rjt =  e2t -  1, 1 <  t < T. Then squaring both sides of (6.1) and using the form
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Yt — Z't-iP +  ht~i{P)r)t 1 < t < T, (6 .2)

where E{ht-i(p)rjt} = E {h t-i(P)}E(r)t) =  0, 1 < t < T .

Bose and Mukherjee (2003) define a preliminary least squares estimator Ppr of 

P as the solution of
T

-  z;_x̂ }] = o, (6.3)
t= 1

which yields the estimator

/ 3 „  =  ( Z Z )  Z T ,

where Z is the T  x (1 +  p) matrix whose t-th row equals and Y  is the vector 

with £-th entry Yt, 1 < t < T.

An improved estimator P of P can be obtained as follows. Dividing (6.2) by 

ht-i(P), we get

Yt j Zt_t
z i _ , p  \ z  ;_!/3

Now replacing Z b y  Zt-iPpr yields

/3 +  »7t

Zt-i

Z't-lPpr t  ^t-lPpr )

Therefore, a linear estimator of P  is defined as the solution of

T

[{z1-i/(z t. 1/9pr)}{vrt/(z;_1̂ )  -  {z,_!/(zUP^YP}} = (6-4)

yielding the linear estimator

P t ^  i (z  u p Pryt=i

- i

E
t=i

(6.5)
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It is shown in Bose and Mukherjee (2003) that under the model assumptions

The linear estimator has a closed form expression. It does not require any optimi

sation method for solution and hence is easy to compute. Although this method is 

very fast and has better or at least the same performance as QMLE, the estimated 

parameters are not guaranteed to be nonnegative. Applying the nonnegativity 

constraint on parameters of ARCH models may solve this problem. We do not 

pursue in this study and leave it for future research.

Bose and Mukherjee (2003) performed a small simulation study to check the 

finite sample performance of these estimators. In next sections, we explore these 

estimators in detail. We check the performance of these estimators both in terms 

of estimating the parameters and forecasting the volatility under different error 

distributions and small sample sizes.

6.3 Sim ulation and Empirical R esults

In this section we use Monte Carlo simulations to check the accuracy of estimated 

parameters of ARCH model estimated by the LE. We also evaluate the volatility 

forecasts of LE and QMLE. Application to real data set is also presented.

6.3.1 M onte Carlo Simulations

First we report the results of simulations performed to check the accuracy of the 

estimated parameters.

(6 .6 )
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Param eters E stim ation

We investigate the relative performance based on two frequently used accuracy 

measures, the mean squared error (MSE) and the mean absolute error (MAE) 

where estimates of the MSE and the MAE are obtained as

MSE = ̂ E{E(4-ft)2}>
k —1 .7=0

MAE=iE{Dft-fti}.
k =  1 j —0

where (3j and (3j for 0 < j  < p, are the estimated and true parameters, respectively, 

of the ARCH(p) model at the k-th replication.

We use simulations to estimate these quantities for linear estimator and the 

QMLE. All Monte Carlo simulations are based on K  = 1000 independent replicates 

each of sample size T, from ARCH(p) model. The errors are generated from three 

different distributions (i) the standard normal distribution (ii) contaminated or 

mixture normal distribution (1 — e)4>(a;) + e$(x/cr) with e =  0.05, and u2 = 9, 

and standardised student-* distribution with 3 degrees of freedom. We discard the 

initial 500 simulated values and only the last T  observations are kept to reduce 

the impact of initial values.

In the first experiment, 1000 replicates each of sample size T  =  50, 100 and 

500 are generated from the following ARCH(2) model.

Model A: X t = hlt /2eu

hf, =  0.1 +  0 A X 2_y +  0.2X2_2.

Errors are generated from three distributions mentioned above. Student-* distri

butions are standardised to have mean 0 and variance 1. We use ‘garchfit’, a
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function of MATLAB GARCH Toolbox for estimating ARCH models and write 

our own code for the estimation of the LE. The results of the MSE and the MAE 

for both estimators along with their standard errors in parentheses are shown in 

Table 6.1. Entries in bold represent best performing estimator.

Table 6.1: Mean Squared Error and Mean Absolute Error of the ARCH(2) model.
Q M L E L E Q M LE L E Q M L E L E

Standard Normal T  — 50 T = 100 T  = 500

M S E 0.0776 0 .0 6 7 4 0.0526 0 .0 5 0 7 0.0127 0 .0 1 2 6
(0.0789) (0.0577) (0.0548) (0.0450) (0.0204) (0.0130)

M A E 0.3425 0 .3 3 1 8 0 .2 7 8 3 0.2800 0 .1 3 3 5 0.1370
(0.1718) (0.1519) (0.1440) (0.1314) (0.0853) (0.0698)

Mixture Normal T  = 50 T = 100 T  — 500

M SE 0.1026 0 .0 8 1 4 0.0887 0 .0 7 0 9 0.0822 0 .0 5 6 0
(0.1674) (0.0739) (0.1188) (0.0652) (0.1276) (0.0627)

M A E 0.3892 0 .3 6 5 2 0.3515 0 .3 3 5 1 0.3146 0 .2 8 6 1
(0.2147) (0.1725) (0.2115) (0.1703) (0.2246) (0.1659)

Student-t(S) T  = 50 T  = 100 T = 500

M SE 0.1673 0 .1 0 9 1 0.1461 0 .1 0 8 7 0.0829 0 .0 6 7 6
(0.2405) (0.0857) (0.1499) (0.0831) (0.1023) (0.0625)

M A E 0.5033 0 .4 2 9 7 0.4701 0 .4 2 7 4 0.3403 0 .3 2 7 9
(0.2596) (0.1804) (0.2356) (0.1781) (0.1868) (0.1506)

It can be seen from Table 6.1 that for all sample sizes and all errors distributions 

considered in this study, the MSEs of the LE are found smaller than the widely-used 

QMLE. Results from the table also show that the LE provides better estimates 

than the QMLE for very small sample size such as T  = 50. The only case when 

the MSE of the QMLE is found closer to that of the LE, but with large standard 

errors, is when errors are generated from the standard normal distribution and the 

sample size of T  — 500 is considered. This trend does not hold for othei enois 

distributions although increasing sample sizes improve the MSE and the MAE of 

both estimators. The MAEs of the QMLE are found better than the MAEs of the 

LE for standard normal distribution only at sample sizes T  250 and 500 but
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again with large standard errors. On all other occasions the MAEs of the LE are 

found better than that of the QMLE.

In the second experiment, 1000 replicates each of sample size T  =  250, 500 and 

1000 are generated from the following ARCH(3) model

Model B: X t = h}/2et ,

fh =  0.01 +  0 .2 X t2_ 1 + 0 .2 X t2_2 +  0 .1 X t2_3>

and errors are generated from the standard normal distribution, contaminated nor

mal distribution and standardised student-t-distribution with 3 degrees of freedom. 

Table 6.2 reports the results of 1000 independent replications of this experiment.

Table 6.2: Mean Squared Error and Mean Absolute Error of the ARCH(3) model.
QMLE LE QMLE LE QMLE LE

Standard Normal T  — 250 T  = 500 T = 1000
MSE 0.0216 0 .0 2 0 7 0.0119 0 .0 1 1 9 0 .0 0 6 6 0.0066

(0.0180) (0.0177) (0.0100) (0.0098) (0.0055) (0.0056)
MAE 0.2029 0 .2 0 1 0 0 .1 5 1 9 0.1530 0 .1 1 2 2 0.1125

(0.0899) (0.0870) (0.0674) (0.0660) (0.0504) (0.0511)

Mixture Normal T  = 250 T  = 500 T  = 1000

MSE 0.0621 0 .0 3 4 5 0.0646 0 .0 3 8 1 0.0626 0 .0 3 8 9
(0.1224) (0.0417) (0.1148) (0.0483) (0.1006) (0.0498)

MAE 0.2902 0 .2 5 6 9 0.2918 0 .2 6 2 5 0.3030 0 .2 6 4 6
(0.1972) (0.1207) (0.2012) (0.1370) (0.1950) (0.1358)

Student-t(S) T  = 250 T  — 500 T  = 1000

MSE 0.0920 0 .0 5 2 5 0.0753 0 .0 4 6 5 0.0472 0 .0 3 5 5
(0.1279) (0.0578) (0.1096) (0.0546) (0.0695) (0.0401)

MAE 0.3804 0 .3 2 3 2 0.3452 0 .3 0 3 1 0.2800 0 .2 6 3 3
(0.2113) (0.1401) (0.1877) (0.1311) (0.1431) (0.1116)

Table 6.2 reveals same features observed in Table 6.1. When errors are gener

ated from the standard normal distribution and sample size becomes larger, the 

MSEs of the QMLE get closer to the MSEs of the LE and the MAEs of the QMLE
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outperforms the MAEs of the LE but with larger standard errors. In cases of 

mixture normal distribution and student-t distribution with 3 degrees of freedom 

the LE performs better both in terms of the MSE and the MAE. It can be noticed 

that increasing the sample size improves both measures but the LE remains the 

best choice.

Financial time series are often heavy-tailed and have outliers. These results 

show tha t the LE can be applied to financial data sets as they provide better results 

than the QMLE in terms of the MSE and the MAE. Even for very small sample 

sizes where QMLE fails to provide good estimates the LE produces reasonable 

estimates of the parameters of the ARCH model.

V olatility  Forecasts

Forecasting the volatility of financial time series is of great importance to practi

tioners and researchers. The issue of volatility forecasting is also crucial for policy 

makers, option traders and investors, since volatility forecasts can be used for 

calculation of the risk measures such as the value-at-risk. Financial time series 

often exhibits volatility clustering and leptokurtosis. The most popular class of 

econometric models for describing these empirical facts are the ARCH/GARCH 

models.

Next we turn our attention to the volatility forecasting performance of linear 

estimator. The purpose of this study is to compare the volatility forecasts of the 

LE with tha t of the QMLE. Although results from previous section show that the 

LE estimates the parameters as accurately as the QMLE and even better in the 

cases of small sample size and non-normal distribution, it is worth checking their 

predictive ability under different error distributions and small sample size.

First, we describe the procedure of obtaining the forecasts of volatility from an
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ARCH model. Consider an ARCH(p) model

146

Xt — h /  £t and ht — Pq +  +  • • • +  PPXf_p.

The one-step ahead volatility forecast based on the ARCH(p) is defined as

h*T+ 1 =  Po +  P iX ?  +  • • • +  PpX t + i- p, (6-7)

where /3y, 0 < j  < p  are estimated parameters of ARCH(p) model.

The 5-step ahead forecast hx+s for volatility is

p

hr+s = Po +  'y^^Pjhr+s-j, (6-8)
j =i

where hT+s~j = X ^ +s_3 if s — j  < 0.

Initially the ARCH(p) model is estimated over the in-sample period. The esti

mated parameters Pj, 0 < j  < p are then used to obtain one-step ahead forecasts. 

For simulation study we use the rolling scheme to generate volatility forecasts. In 

the rolling scheme the sample is rolled forward one day, the model parameters are 

re-estimated, and these new estimates are used to forecast one-step ahead forecast 

of volatility. In this way the volatility forecasts for the remaining out-of-sample 

period is generated. The moving window modelling and forecasting procedure is 

repeated until the end of the data is reached.

The parameter vector (3 =  (P0, P i ,- "  > PpY is estimated by the QMLE and LE. 

After generating one-step-ahead forecasts of volatilities of ARCH model based on 

the estimated parameters, the forecasting performance of both QMLE and LE are 

evaluated. Evaluation criteria used in this study are the mean absolute prediction 

error (MAPE) and the root mean squared error (RMSE). These are defined as
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follows:

M A P E  =  7  E  %  -  ^
t= T + 1

RMSE =
\

y £  (h, -  h ) \
t= T + 1

where I is the number of out-of-sample data, ht (T +  1 < t < T  +  I) are the 

volatilities generated form the ARCH model using the true parameter values and 

ht are the forecasted volatility. The MAPE are used as this measure is more 

robust to outliers than the mean squared prediction error (MSPE). The RMSE is 

a standard measure used for evaluation.

We use Model A and Model B from previous studies to compare the volatility 

forecasts of the LE with the QMLE. From both models we generate T  +  I obser

vation, where the number of out-of-sample observations are set to 20 i.e., I =  20. 

The errors are generated from three different distributions as in the earlier study. 

These are the standard normal, mixture normal and the standardised student-i 

distribution with 3 df. The rolling window of size T  is used to estimate the param

eter and one-day ahead volatility forecast is made. Then the first observation is 

dropped and (T -f- l)-th  observation is included in the sample and parameters are 

re-estimated and again next day volatility is predicted. This process is repeated 

till we reach at the (T +  I)-th observation. Table 6.3 presents the results of the 

MAPE and the RMSE of both the LE and the QMLE. All results are based on 

1000 replications.

Results of the the Table 6.3 indicate that for Model A, when sample size is very 

small T  = 50, LE forecasts the volatility better than the QMLE both in terms 

of the MAPE and RMSE. This hold for all error distributions considered in this 

study. This suggests that for very small sample sizes, LE is a better choice than
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the QMLE not only for estimating the parameters of the ARCH model but also for 

forecasting one-step-ahead volatility. When the sample size is increased to T  =  250 

the results from Model B show that the predictive performance of the QMLE gets 

better although the LE still performs well for the mixture normal distribution. 

The study for volatility forecasts shows that for small sample sizes and non-normal

Table 6.3: Performance of volatility forecast in term s of mean absolute prediction error and 
root mean squared error.___________________________________

Q M L E LE Q M LE L E Q M L E LE

M odel A: T  = 50 Standard N orm al M ixture N orm al S tu den t-t(3 )

M A P E 0/2043 0 .1 6 4 2 0.1596 0 .1 5 2 3 0.1491 0 .1 4 3 7
(0.1628) (0.1038) (0.0308) (0.0311) (0.0375) (0.0283)

R M S E 0.4097 0 .3 6 9 8 0 .5 9 6 3 0.5957 0.5442 0 .5 4 1 2

M odel B: T  = 250 Standard N orm al M ixture N orm al S tu den t-t(3 )

M A P E 0 .0 1 3 0 0.0202 0.0078 0 .0 0 7 7 0 .1 1 8 6 0.1199
(0.0101) (0.0021) (0.0017) (0.0016) (0.1176) (0.1233)

R M S E 0 .0 2 0 4 0.0241 0.0301 0 .0 3 0 1 0 .1 6 7 4 0.1721

distributions, the LE may be preferred over the widely-used QMLE. This estimator 

also performs well for large sample size in the presence of outliers in the data. These 

findings suggest the use of the LE in those cases.

6.3.2 Empirical Illustration

The forecasting performance of both the QMLE and the LE is also checked through 

applications to real data sets. The SP500, FTSE100 and NIKKEI225 indices are 

used in this study (see section 5.5 for summary statistics of these indices). Both 

rolling window and recursive scheme are used to generate 2000 one-step ahead 

volatility forecasts. By looking at the sample partial autocorrelation plots of all 

three indices we choose ARCH models of order p = 5, 3 and 6 for SP500 index, 

FTSE100 index and NIKKEI225 index, respectively as the higher lag correlation 

are not found significant.
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In addition to the mean absolute prediction error (MAPE) and the root mean 

square error (RMSE), the mean squared prediction error (MSPE) is also used to 

evaluate predictive performance of both estimators. The MSPE is another criterion 

often used to estimate the error between estimates and true values. The MSPE is 

defines as
1 T+l 2 

MSPE =  -  Y ,  ( '“ -  h)  ■■
t= T + 1

where ht are the estimated volatilities from the ARCH model. Since the true 

volatilities, ht , are unobservable, the squared returns can be used as proxies for 

these true volatilities to evaluate one-day ahead forecasts. The daily squared 

return is conditionally an unbiased estimator of the daily conditional variance. 

Another conditionally unbiased estimator for the daily conditional volatility is the 

‘realised volatility’ computed from high-frequency intra-day returns (see Andersen 

and Bollerslev, 1998). In this study we use the squared returns as proxies for 

volatilities as the intra-day observations are not available. Table 6.4 reports the 

results of these evaluation criteria using both forecasting schemes.

Table 6.4: Evaluating volatility forecast for each stock price index.

Q M L E  L E Q M LE L E Q M L E  L E

R ecursive Schem e S& P500 F TSE 100 N IK K E I225

M S P E
M A P E
R M S E

0.2973 0 .2 9 5 5  
0.2702 0 .2 6 7 1  
0.5452 0 .5 4 3 6

0.2772 0 .2 7 1 1  
0.2677 0 .2 6 2 7  
0.5265 0 .5 2 0 7

0.6579 0 .6 5 6 4  
0.4489 0 .4 4 7 6  
0.8111 0 .8 1 0 2

Rolling Schem e S& P500 FTSE 100 N IK K E I225

M S P E
M A P E
R M S E

0.3023 0 .3 0 0 4  
0.2817 0 .2 7 9 5  
0.5498 0 .5 4 8 1

0.2730 0 .2 7 1 8  
0.2786 0 .2 7 2 0  
0.5225 0 .5 2 1 3

0.6555 0 .6 5 4 0  
0.4469 0 .4 4 4 2  
0.8096 0 .8 0 8 7

As we can see from Table 6.4 that the LE provides better forecasts than the 

QMLE based on the standard evaluation measures. Not only MSPE but also 

MAPE are found the least for the LE. These results hold for both recursive and
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rolling schemes and for all three data sets used in this study. Based on these 

results and also looking at the results of the RMSE, we can say tha t the LE may 

be used instead of the widely-used QMLE for the estimation of ARCH models 

as this estimator not only estimate the parameters well but also provides better 

forecasts.

6.4 A  W eighted Resam pling for the Linear E sti

m ator in A RC H  M odels

This section deals with resampling methods for ARCH models estimated by linear

of estimators that have been obtained as minimisers via solution of equations in

suitable bootstrap version of the linear estimator.

Let {wTt'i 1 < t < T, T  > 1} be a triangular array of r.v.’s such that for each 

T  > l , { w Tt',l < t < T}  are exchangeable, independent of { X t\t  > 1 — p} and 

{et; t > 1} and E(wrt) — 1- These are called the bootstrap weights. The bootstrap

estimator. Chatterjee and Bose (2005) developed the idea of weighted bootstrap

general dependent models. We use the idea of weighted resampling to develop

preliminary least squares estimator (3*pr of f3 is defined by mimicking (6.3), as the

solution of
T

(6.9)
t = 1

A *
Similarly, as in (6.4), the bootstrapped linear estimator /3r , may be defined as

a solution of

f ^ { W ( z f_1& )} { i ' , / (z ; -1& )  -  {ZmAZ t M l r ) Y P } ]  =  0 , (6.10)
t = 1
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which gives

(3 T  =

T  f

^ 2  wTt 
t=i 1 W t-A r)2

T

Y 2 WTt'
L t= i

Zt-iVt

M - A r ) 2
(6 .11)

We are interested in approximating the distribution of VT({3t -{3) by the distribu

tion of V f ( j 3 T — /3T). We approximate such distribution via weighted bootstrap. 

Three different schemes for weights are considered. These are

(i) Scheme M when weights have a multinomial (T, 1 /T ,..., 1/T) distribution.

(ii) Scheme U when wTt — Ut/U , where UtS are i.i.d Uniform(0.5, 1.5) and

(iii) Scheme E when Wrt = E tj E ,  where Eds are i.i.d Exponential(l) E  — 

T - l Y2,=iEt .

We also consider residual bootstrap when standardised residuals are boot

strapped to form a new bootstrapped return series. Using this bootstrapped series 

the bootstrapped parameters are estimated and the bootstrapped distributions of 

the parameters are obtained. It is also possible to obtain quantiles of the bootstrap 

distribution of a ^ l V T0*T — j3T) using simulation and then using the bootstrap 

approximation, we can construct the bootstrap confidence intervals of (3.

6.4.1 Simulation Results

This section reports the results of a Monte Carlo simulation. We investigate the 

quality of bootstrap approximation to the finite sample distribution of \ / T 0 t —(3). 

We use a sample of size T, and assume that the underlying error distributions of 

{ e j be standard normal. An ARCH(p) model is fitted to the data set using linear 

estimator.

In our first experiment, we generate K  =  10, 000 samples each of size T  = 

50,250, and 500 from the ARCH(2) model with (3 =  (0.1,0.2,0.3)'. Let 0 T{k) =
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(Ptoi Pt \ i Pt^) denote the vector of estimated parameters computed from the /c-th 

sample, 1 < k < K. For each replication we compute 0 < j  < p =  2.

The mean and average of the squares of the three sets over K  replications represent 

the mean and the mean squared error (MSE) of V T 0 Tj -f3j), 0 <  j  < p =  2. The 

corresponding histograms approximate the marginal distributions of \/T(j3T -j3).

The estimates of means under normal approximation are zero. The estimate 

of MSE using the normal approximation is obtained by averaging over K  esti

mated MSEs where the k-th (1 < k < K)  estimate is obtained from the diago

nals of the matrix V[T~l Y ^ =i{ rZ*t-ir%t-i{PT^t.-i)~2} Y l ] here V  is the variance of 

{e^ • • • , e£}, where et = X t/ 0 ' TZ*_i)1/2, 1 < t < T, j3T being the estimate based 

on the Axth replication.

Table 6.5 reports the results of first experiment. The true means are found 

significantly different from the normal approximation. The MSE for small samples 

are also different from normal approximation values. It can be seen from the table 

that Pi and p2 underestimate p\ and /?2, respectively. For large sample size the 

MSE of the distributions of Pi and P2 are very close to the MSE of the distribution 

of these estimates under normal approximations.

Table 6.5: Means and the MSEs of the distributions of \/T (j3T — (3) for ARCH(2) model and
the MSE due to  norm al approxim ation of the distribution.

oI!frn 
i T  =  250 T  =  500

Mean MSE MSE/v Mean MSE MSEyv Mean MSE MSEyv

00 =  0.1 
0! =  0.2 
02 =  0.3

0.0846
-0.0558
-0.2997

0.0919
0.9734
1.4903

0.0953
2.2851
2.7870

0.0918
-0.2615
-0.4635

0.0889
1.9965
3.0102

0.0775
2.0761
2.6626

0.0749
-0.2445
-0.3664

0.0862
2.2800
3.1427

0.0755
2.0912
2.7431

All results are based on 10, 000 replications. M S E  is the MSE under normal approximation.

Next we turn our attention to bootstrap approximations. To approximate the 

distribution of VT((3t -(3), we proceed as follows. We choose and fix j9y(r) 1 ^  r  < 

R, R  < K. In this study we generate B = 999 bootstrap samples. Bootstrap results 

are based on R = 100 replications. For weighted resampling, these bootstrap
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samples are generated based on weights under three schemes, Scheme M, Scheme 

U and Scheme E, after fixing (3T{r) 1 < r < R. For the 6-th sample, 1 < 6 < B, 

we compute crT1T 1/2(/3T^  — j3T^ ) .  For residual bootstrap, we generate B — 999 

bootstrap samples and for the 6-th sample, 1 < 6 < B, compute T 1/2(/3^(b)- /3 T(r)), 

after fixing Pr(r) (1 < r < R).

Table 6.6 reports the results of means and the MSEs of the distribution of the 

standardised bootstrap estimators under residual bootstrap and three different 

schemes. Entries in bold represent MSEs that provide the closest approximations 

to those in Table 6.5. It can be observed from the results in Table 6.6 that 

the residual bootstrap approximate the means better than the other bootstrap 

schemes especially for the large sample size. The MSEs of Scheme M shows good 

approximations. The bootstrap means are different from true means in all cases. 

For sample size T  — 250, the means of all three schemes are significantly different 

from true means. The means from residual bootstrap provide better approximation 

as compared to weighted resampling schemes.

In terms of MSEs, Scheme E provides good bootstrapped approximations for 

sample size of 50 and Scheme M for sample size 500. Scheme U shows better 

results for two cases and the residual bootstrap outperform other schemes just 

once. These results show that although there is no clear cut winner in terms of 

MSEs, Scheme E and Scheme U can be considered as alternatives to Scheme M 

and residual bootstrap.

The kernel density plots of the distributions of V T 0 T — (3) and their bootstrap 

approximations o ^ l VT(P*T -  (3T) under different schemes for sample size T  =  500 

are shown in Fig. 6.1. For residual bootstrap we fix o — 1. Fig. 6.1 shows that 

the density plots of the distributions of -  j3T) based on B  bootstrap

samples are very similar in shape and characteristics to the plots of the distribu

tions of VT{f3T -  P). All bootstrap schemes show good approximations for p0. A
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Table 6.6: Means and the MSEs of the distribution of the standardised bootstrap  estim ators 
for ARCH(2) model under different schemes.
B =  999 Scheme M Scheme U Scheme E Residual Boot

T =  50 Mean MSE Mean MSE Mean MSE Mean MSE

0 - 0.1 -0.0632 0.1898 -0.0210 0.1263 -0.0680 0 .0 8 0 8 0.0369 0.1053
0 =  0.2 0.3063 1.1677 0.1548 1.7945 0.2792 1 .0 7 2 4 0.1370 1.0903
0 =  0.3 -0.0130 1.4138 -0.0464 2.6676 -0.0492 1.3081 -0.1928 1 .4259

T =  250
0 =  0.1 0.0118 0 .0 8 7 2 0.0097 0.0909 0.0115 0.0825 0.0837 0.0975
0 =  0.2 0.0087 2.0606 -0.0304 2.3983 -0.0096 1 .9 3 9 3 -0.1827 2.0128
0 =  0.3 -0.1300 2.6268 -0.0463 2 .8 5 0 4 -0.1363 2.3938 -0.3203 2.5703

T =  500
0 =  0.1 0.0290 0 .0 8 6 9 0.0100 0.0851 0.0273 0.0831 0.0737 0.0883
0 =  0.2 -0.0649 2.3234 -0.0525 2 .3112 -0.0708 2.0862 -0.1863 2.1176
0 =  0.3 -0.1770 3 .0 5 5 0 -0.0476 2.9881 -0.1614 2.8640 -0.3400 2.9880

All resalts are based on 100 replications.

close inspection of the plots reveals that both Scheme U Scheme E serve as good 

alternatives to other commonly-used bootstrap methods.

In the second experiment, we generate K  — 10,000 samples each of size T  = 

50, 250, and 500 from the ARCH(3) model with (3 =  (0.01, 0.1,0.2,0.2)'. For each 

replication we compute y/f{P Tj -  Pj), 0 < j  < V =  3. The mean and average of 

the squares of the four sets over K  replications represent the mean and the mean 

squared error (MSE) of y/T(PTj ~  Pj)-> 0 < j  < P — 3.

Table 6.7 shows results of means, MSEs and MSE under normal approxima

tions. It can be seen that the true means of the distributions of all parameters 

except Pq, are significantly different from the normal approximation values. The 

MSEs for small sample sizes are also found different than the normal approxima

tions. For T  = 500, the values of the MSE match that of the MSE under normal 

approximations.

Using weighted resampling method and residual bootstrap, we generate B  

999 bootstrap samples. Bootstrap approximations of means and MSEs are com

puted. All results are based on 100 replications. These results are reported in

Table 6.8.
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Figure 6.1: K ernel density plots of the distributions of CT{(3t  -  p )  (red) along w ith their 
b o o ts trap  approxim ations (blue) for ARCH(2) model (T =  500).
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Table 6.7: Means and the MSEs of the distributions of \/T((3t — (3) for ARCH(3) model and
the MSE due to  normal approxim ation of the distribution.

T =  50 T  =  250 T  =  500

Mean MSE MSE Mean MSE MSE Mean MSE MSE

p  = 0 .0 1 0.0043 0.0010 0.0009 0.0096 0.0011 0.0010 0.0096 0.0011 0.0010
ft = 0 .1 0.3106 0.7253 2.3588 0.1155 1.1062 1.6271 0.0126 1.3101 1.5818
P — 0.2 -0.1028 0.8923 2.6574 -0.4087 2.0168 2.0555 -0.3579 2.2632 2.0880
(3 = 0 .2 -0.1119 0.9461 2.6099 -0.3669 2.0833 2.0862 -0.3583 2.2986 2.1263

All results are based on K  =  10,000 replications. M S E  is the MSE under normal approximation.

The bootstrapped approximations of means do not match the corresponding 

estimated means in most of the cases except under the residual bootstrap at T  = 

500. The residual bootstrap method seems to capture the sign of the means of all 

parameters correctly for almost all sample sizes. The summary of results based 

on the MSE of the distributions of all parameters under all cases is as follows: 

For T  — 50, all schemes provide close estimate for /5q , scheme E for Pi and P3, 

and residual bootstrap for p2. For T  =  250, again the MSEs of the distribution 

of Pq are very well approximated by all schemes, scheme E for Pi, and scheme 

U for both P2 and p3 can be considered better than other schemes. And finally 

for T  =  500, the bootstrap approximation for the MSE of A), under all schemes, 

provide accurate results. For the same sample size, scheme E, residual bootstrap 

and scheme U provide close approximations for Al, An nnd An respectively. These 

results conclude tha t although there is no clear cut selection for schemes, the 

widely used scheme M is out performed by other schemes we used in oui analysis.

Fig. 6.2 shows the kernel density plots of the distributions of \ / T 0 t -  /3) 

and their bootstrap approximations ^ 1V T(P t - P t ) under different schemes for 

sample size T  =  500. Again for the residual bootstrap we fix oT =  1. It can 

be noticed from the figure that although all schemes capture the shape of the 

distribution reasonably well, the bootstrap approximations based on the residual

bootstrap and Scheme U seem to provide better fit.

We observe from this study that weighted bootstrap schemes work well for
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Table 6.8: Means and the MSEs of the distribution of the standardised bootstrap  estim ators 
for ARCH(3) model under different schemes.
B  =  999 Scheme M Scheme U Scheme E Residual Boot

II cn O Mean MSE Mean MSE Mean MSE Mean MSE

/3 = 0 .1  
P =  0.3 
P = 0 .2  
P = 0 .1

-0.0079
0.2084
0.1G54
0.0227

0 .0 0 0 9
0.8097
0.9205
1.0108

-0.0044
0.1008
0.0769
0.0317

0.0013
1.4651
1.7891
2 .1055

-0.0086
0.1756
0.1307
0.0044

0.0008
0.7690
0.8601
1.0082

0.0076
0.0759
0.0736

-0.0898

0.0035
0.8191
0.8906
1.1000

T =  250 
p  =  0.1 
P =  0.3 
P =  0.2 
p  =  0.1

-0.0052
0.2303
0.0982
-0.0288

0.0010
1.2915
1.6402
1.8742

-0.0008
0.0588
0.0106

-0.0430

0 .0011
1.4598

1 .8967
2 .1741

-0.0045
0.1945
0.0613

-0.0551

0.0009
1 .2 0 3 2
1.5235
1.7376

0.0047
0.1082
-0.1197
-0.2123

0.0010
1.2416
1.5939
1.8346

r  =  500 
p  =  0.1 
p  =  0.3 
P = 0 .2  
p  =  0.1

-0.0003
0.1956
-0.0966
-0.1216

0.0010
1.3506
2.0314
1.9385

0.0007
0.0411
-0.0494
-0.0555

0.0010
1.5165
2.1212
2 .0342

0.0001
0.1721
-0.1060
-0.1213

0.0010
1 .3 0 6 6
1.9078
1.8245

0.0079
0.0711

-0.3006
-0.2604

0 .0 0 1 0
1.2910

2 .1 3 1 8
1.9985

All results are based on R =  100 replications.

ARCH models when LE is used for estimation. We also found that schemes such 

as scheme U and scheme E are good alternative to scheme M. Finally, using LE 

instead of the QMLE for fitting ARCH models enables us to obtain these results 

in very quick time.

6.5 B ootstrap  Prediction Intervals for A R C H  M od

els

Predicting the distribution of the future returns has become an incieasingly in

teresting area of research among financial practitioners and researchers. Accurate 

prediction of future volatilities are important for the implementation and evalua

tion of asset and derivative pricing (Pascual et ah, 2006). Measuring the financial 

risk such as value-at-risk (VaR) is also very important and an accurate measure of 

this risk estimate is desired. Most of the surveys deal with predicting point fore

cast of returns, volatilities and VaR, see Baillie and Bollerslev (1992), Andersen 

et al. (2001) and Tsay (2005) among others for discussion on forecasting.
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These studies focus on point forecasts and most importantly ignore parame

ter uncertainty. Beran (1990) first discussed the parametric bootstrap prediction 

intervals. Thombs and Schucany (1990) gave non-parametric bootstrap intervals 

for AR models. Miguel and Olave (1999) proposed a bootstrap method for predic

tion intervals of future observation in ARMA models with ARCH errors without 

considering parameters uncertainty. Pascual et al. (2004) extended bootstrap 

methods to ARIMA models. Reeves (2005) compared nonparametric and para

metric bootstrap with Baillie and Bollerslev (BB) Gaussian asymptotic prediction 

interval in a Monte Carlo experiment. Christoffersen and Concalves (2005) used 

different VaR estimation methods and develop confidence intervals for VaR when 

QMLE is used for the estimation.

In this study we use bootstrap to obtain prediction intervals for returns, volatil

ities and VaR. The bootstrap prediction intervals are obtained using both the LE 

and the QMLE. These prediction intervals along with point estimate will help 

practitioners to evaluate the forecasting performance of their models. We inves

tigate the difference in bootstrap prediction intervals of both estimators. We are 

also interested in assessing the loss of accuracy from estimation error when esti

mating risk estimates and quantifying this error by confidence intervals around the 

VaR. It is important to mention again that LE can be estimated in quick time and 

thus developing bootstrapped confidence intervals using LE requires very small 

processing time as compared to the QMLE.

6.5.1 Bootstrap Prediction Intervals

Consider an ARCH(p) model where one observes {X t\ 1 -  p < t < T }  satisfying

X t = h\,2((3)et and ht{(3) = Po +  / ? A - i  +  • • • +
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Our aim is to estimate the distribution of s-steps ahead returns AV+S, volatilities 

Ht + s , and value-at-risk Qt + s , where

qt =  /it1/V - I(7 ), (6.12)

where F ~ x is the quantile function of the errors {et} and ht = ht((3).

The bootstrap methods are described in the following steps.

F ittin g  th e  A R C H  m odel

Fit an ARCH model to the given data set and estimate the parameters of 

the model (3 = (An/A,’ ' - ,PpY- We use both the QMLE and the LE for the 

estimation of the parameter vector. Let the estimated parameter vector be (3 = 

(Po, Pi, - -' , Pp)1 and the estimated residuals i t are computed as

t t =  X t / h , (6.13)

where ht = /30 + H-------h

B o o tstra p p in g

Use the fitted model to generate bootstrap draws of the parameter. First we 

generate e£, random draws with replacement from F t , where F t  is the empirical 

distribution function of the centered residuals (it—X^=i Then the followings

replicates are generated:

ht = & + + ••• + &*£,.
X ;  =  h"t 1/2et, for J =  1,2,...,T. (6 .14)
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The parameters of this generated series are estimated and the estimated parame

ters of this bootstrap series /3 = (Po, Pi, ■ • ■ , ft*)' are used to obtain future values.

F uture  rea lisa tio n s

Generate a future realisation of returns, volatilities and VaR. We want to es

timate the distribution of future returns X t+s, future volatilities Ht +s und future 

VaR qr+s for s > 0, where s is the forecast step. In order to get these future 

realisations, we need X£+1_f = X T+ i (1 < % < p), and e^+s (random draws 

with replacement from Ft ). Using the above, the future realisations of returns are 

generated recursively as:

l  * _______ ___ a* I o* v " 2 *  | i a* y 2 *
n T + s  ~  PO +  P l A T + s - l  H f " P p A T + s - p >

=  4 j * r + ! .  for 5 =  1,2,.... (6.15)

Similarly the estimate of VaR at step T  +  s can be obtained as

&+, =  (6.16)

where F -1* is the quantile function of estimated bootstrap centered residuals

{i* -!*}?L i, where e* =  X t/ \ J k l  and F  =  The centering of the

bootstrap residuals ensures that the estimated bootstrap residuals have the zero 

mean property.

P red ic tio n  in te rva ls

Once the set of B  bootstrap future values, (Xrp }̂s, ..., X T̂+S) are obtained, 

the prediction intervals are defined as quantiles of the bootstrapped cumula- 

tive distribution function (cdf) of More specifically, we define the boot
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strapped cdf of Arf _ s by Gx (l) — Pr{A'f_ s <  /} and its Monte Carlo estimate by 

Gx (l) =  # { ^ t+ s  — I}- where #(•) counts the number of cases where the condition 

within brackets is satisfied. Then for a given <p, a  100(1 — (j>)% prediction interval 

for X ^ +s is given by

[Lx ,b (X) ,Ux ,b (X)] =  [Qx,b( ! ) .% , « ( 1  -  I ) ] ,  (617)

where Qx .b = G*X B -

Similarly we can define the bootstrap prediction intervals for volatilities and 

VaR. For future volatilities ( A^ s J t he prediction intervals are defined 

as quantiles of the bootstrap cdf of h^+s. The bootstrap cdf of fo^+s ^  given by 

Gffl)  =  Pr{h?p+s < 1} and its Monte Carlo estimate by G^(l) =  <  /}

Then, a 100(1 — <b)% prediction interval for h^+s is given by

A A V ’UIbW] = [o ; ,b ( |) .% b ( i -  I ) ] .  (6.18)

where Q*h B = G*h~£.

Finally, for VaR a  100(1 — $)% prediction interval for q^+s is given by

[KbW A i)} = -  f)]> (6 19)

where Q* B = G*~B .

6.5.2 Simulation Results

Two different studies are conducted to develop bootstrap prediction intervals for 

returns, volatilities and VaR and to compare the results of the QMLE and LE.
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The first model is an ARCH(2) model
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Model A: X t =  h]/2et ,

ht = 0.1 +  0.4X't5L1 +  0.2X42_2.

The second model considered is an ARCH(3) model

Model B: X t = h]/2et,

ht = 0.01 + 0 . 2 ^ + 0 .2X t2_2 +  0.1X42_3.

For both studies errors are generated from the standard normal and student-^ 

distribution with 3 degrees of freedom. The sample sizes considered are T  = 50 and 

500. ARCH models are simulated from Model A and Model B and the parameters 

are estimated using the QMLE and LE. For both models, under particular sample 

size and error distribution, R  = 1000 future values of X t +s, hr+s, and qr+sil) are 

generated with true parameter values, where the forecast step s =  1, 10 and 20. 

Using the bootstrap method with B=999, a 100(1 — (f))% prediction intervals for 

returns denoted by (LX ,UX ), volatilities denoted by (Z£, £/£), and VaR denoted 

by (L*, U*) are obtained.

The conditional coverage and length for returns are computed as 1 -  <frx  =  

if{L*x  < X't +s < U*x }/R .  Choices of nominal coverage considered are 80%, 95% 

and 99% although only result for 99% prediction intervals are considered as this 

interval could be of interest in risk management. The length is defined as L E N X — 

Ux ~ Lx . Similarly the conditional coverage and length for volatilities and VaR 

are obtained. The coverage of the left and right tail of the distribution of returns, 

volatilities and VaR are also obtained. The average and the standard deviation 

for coverage and length and the average proportion of observation lying out of the
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left and right quantiles are computed based on K  — 100 Monte Carlo replicates. 

For empirical lengths R  = 10,000 independent replication each of size 500 are 

generated. The root mean squared error (RMSE) for both estimators at each step 

length is calculated, where RMSE for returns is defined as

Table 6.9 reports the mean coverage and the corresponding standard errors 

together with the mean length with its corresponding standard errors and the 

mean coverage on the left and right tails and the RMSE when ARCH(2) models are

intervals for returns for s =  1, 10 and 20 steps ahead. It can be seen that the mean 

coverage and their corresponding standard errors for both estimators are close to 

each other and provide good match to the empirical coverage with the QMLE 

having slightly high probability. By examining the results of mean length we 

found that the lengths for LE are close to empirical length and their standard 

errors are below than those of QMLE. These findings become more prominent in 

case of students distribution. The mean lengths of QMLE for all step lengths are 

found greater than both the empirical lengths and LE. This shows that prediction 

intervals of QMLE are on average larger than the mean length of LE and this may 

be one of the reasons of high coverage probabilities of QMLE. The mean coverages 

on the left and right tails of both estimators show similar results. The root mean 

squared errors of QMLE are found slightly smaller than the LE.

Next, we analyse the performance of both LE and QMLE prediction intervals 

for future volatilities. Using same DGP as in the previous case, we develop 99% 

bootstrapped prediction intervals for s = 1, 10 and 20 steps ahead volatilities. The 

results when errors are generated form Gaussian and student-i distribution with

R

generated with standard normal and student-t distribution with 3 df for predicting
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Table 6.9: Prediction intervals for returns of ARCH(2) model with nominal coverage of 99%.
T =  500 
B  =  999

Mean
coverage

S.D of 
coverage

Mean
length

S.D of 
length

Mean coverage 
below/above

RMSE

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9869
0.9852

0.0071
0.0074

Standard Normal D istribution

2.8933 0.50%/0.50%  
3.0967 0.4891 0.57%/0.74%  
2.9622 0.4284 0.63%/0.86%

0.0107
0.0123

10-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9828
0.9816

0.0096
0.0080

3.0550
3.0816
2.9936

0.4992
0.4833

0.50%/0.50%
0.98%/0.75%
1.02%/0.82%

0.0155
0.0156

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9919
0.9914

0.0051
0.0047

3.0416
3.0938
3.0161

0.4647
0.4280

0.50%/0.50%
0.28%/0.54%
0.28%/0.58%

0.0059
0.0060

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9907
0.9889

0.0066
0.0057

Student-t Distribution (3) 

2.7157
3.3364 0.9949 
2.9192 0.5496

0.50%/0.50%
0.57%/0.36%
0.66%/0.46%

0.0078
0.0084

10-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9909
0.9874

0.0053
0.0067

2.8917
3.3347
2.9554

0.8500
0.6913

0.50%/0.50%
0.39%/0.52%
0.64%/0.62%

0.0067
0.0071

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9861
0.9836

0.0074
0.0065

3.1312
3.3538
3.0282

0.9669
0.6815

0.50%/0.50%
0.60%/0.79%
0.77% /0.87%

0.0116
0.0121

3 df are tabulated in Table 6.10. The mean coverage for QMLE are found greater 

than LE with low standard errors. The mean lengths of LE are close to empirical 

lengths where as that of QMLE are larger in size with large standard errors. Again 

this feature can be seen in the case of *(3). The results of the average coverage on 

the left and right tails reveal that the shape of the volatility is asymmetric which 

is often observes in real data sets. The RMSEs of QMLE are found smaller than 

the LE and this can be due to the wider lengths of QMLE.

Finally, we develop prediction intervals for 1% VaR of ARCH(2) model with 

nominal coverage of 99%. Results of mean coverage along with their coiresponding 

standard errors, mean length and their standard eirors, mean coveiage on the left 

and right tails and the root mean squared errors are shown in Table 6.11. The mean
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Table 6.10: Predie tion intervals for volatilities of ARCH(2) model w ith nominal coverage of 
99%.____________________________
T  =  500 
B  =  999

Mean
coverage

S.D of 
coverage

Mean
length

S.D of 
length

Mean coverage 
below/above

RMSE

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9857
0.9730

0.0211
0.0448

Standard Normal Distribution

1.7390 0.50%/0.50%  
2.0875 1.2881 0.48%/0.94%  
1.6939 0.8186 1.45%/1.24%

0.0229
0.0497

10-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9846
0.9735

0.0276
0.0433

1.7957
2.0545
1.8277

1.0999
1.2007

0.50%/0.50%  
0.65%/0.89%  
1.57%/1.09%

0.0294
0.0482

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9891
0.9777

0.0268
0.0441

1.9711
2.2128
1.8338

1.1523
1.1777

0.50%/0.50%
0.74%/0.35
1.66%/0.57%

0.0273
0.0472

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9887
0.9748

0.0150
0.0373

Student-t D istribution (3) 

1.7759
3.4645 4.2050 
1.3863 0.8745

0.50%/0.50%
0.00%/1.13%
0.51%/2.01%

0.0162
0.0422

10-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9947
0.9835

0.0108
0.0300

1.8344
3.5826
1.4372

4.1048
1.1011

0.50%/0.50%
0.00%/0.53%
0.37%/1.28%

0.0108
0.0320

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9894
0.9743

0.0127
0.0410

2.3055
3.5116
1.4704

4.1143
1.4169

0.50%/0.50%
0.00%/1.06%
0.55%/2.01%

0.0138
0.0457

coverage of both estimators, under Gaussian and student-t distribution with 3 df 

are found similar. The significant difference between both estimators can be found 

by comparing their mean lengths with the empirical length. LE seems to provide 

a reasonable approximation with low standard errors. Mean lengths of QMLE are 

found slightly greater than the empirical length for Gaussian distribution but for 

heavy-tailed distribution the bootstrap prediction intervals for 1% VaR of QMLE 

are too wider with large standard errors. The asymmetric feature of prediction 

intervals of VaR is also captured well by both estimators.

We conclude this section by highlighting our contributions and findrngs. We 

defined bootstrap prediction intervals for returns, volatilities and value-at-risk for 

ARCH models. We showed that our method is easy to apply especially if LE is
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Table 6.11: Prediction intervals of 1% VaR of ARCH((2J model w ith nominal coverage of 99%.
T  — 500 
B  -  999

Mean
coverage

S.D  of 
coverage

Mean
length

S.D  of 
length

Mean coverage 
M a w /ab ove

RMSE

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9906
0.9881

0.0100
0.0120

Standard Normal Bisbrihmtion

2.6774 a.50%/0.50%
3.0416 1.0363 0.88%/0.06%  
2.721-5 0.8034 1.12%/0.O0%

0.0109
0.0138

10-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9909
0.9897

0.0112
0.0097

2.7307
3.0210
2.8344

0.9539
0.9777

a.50%/0.50%
Q.M%/O.03%
G.98%/0.05%

0.0119
0.0110

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9961
0.9943

0.0088
0.0100

2.9759
3.1582
2.76S9

1.0039
0.9267

O.5O%/0.5»% 
G.31%/0-08%, 
0.52%,70.04%.

0.0089
0.0100

1-step ahead 
Empirical 
QMLE 
LE

0.9900
0.9910
0.9843

0.0145
0.01SS

Stmdemt-t Bisiribwtima. (3) 

4.1052
6.0102 4 4658  
3.7793 1.7953

0.50%/0-5e%
o.90%,/o.oa%
1.57%/0.00%

0.01.50
0.0199

10-steps ahead 
Empirical 
QMLE
ILK

0.9900
0.995S
0.9920

0.0113
0.0131

4.4615
6.1197
3.826®

4 4186
1.7752

O-5O%>/0.50%
042%/0.00%.
018056/0-00%.

0.0113
0.0134

20-steps ahead 
Empirical 
QMLE 
LE

0.9900
0.9912
0.9645

0.0123
0.0137

43195
6.0465
3JS0S3

4 1538
1.8256

0.5O%./0.50% 
0.88%,/O.M K  
1.55%/OL0O%

0.0128
0.0172

used f o r  the estimation of ARCH models. Results of our simulations indicated that 

the proposed bootstrap method is appropriate for predicting i n t e r v a l  forecasts. We 

found th a t LE provides better prediction intervals than the QMLE in most of the 

cases.
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6.6 C onclusion
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This chapter explores the linear estimator for the parameters of ARCH models. 

An advantage of the LE over the widely-used QMLE is that its computation is 

very easy and requires less CPU time which enables one to do computer intensive 

tasks on ARCH model in quick time.

We showed in this study that this estimator provides very good results for 

the estimation of the parameters of ARCH models. This estimator also predicts 

volatility better than the QMLE in almost all our Monte Carlo simulations. These

findings were further supported by application to three stock indices.

A weighted resampling for the linear estimator is used to approximate the dis

tribution of the parameters of ARCH models. Results of our experiments showed 

that there are other schemes such as Scheme E and Scheme U that can match

the paired bootstrap and residual bootstrap and even perform better than these

commonly used methods in some cases.

Prediction intervals for returns, volatilities and value-at-risk are developed us

ing a simple bootstrap method. Monte Carlo results showed that although both 

estimators provide good mean coverage, the LE can be considered favourable in 

terms of its mean lengths close to the empirical with low standard errors.



Chapter 7 

A W eighted Linear Estim ator for 

the M ultivariate ARCH  

Param eters

7.1 Introduction

The autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) 

and the generalised ARCH (GARCH) model of Bollerslev (1986) have been widely 

used for capturing the time-varying variances in financial time series. The success

ful application in the univariate case has motivated many researchers to extend 

these models to multivariate volatility models. Bollerslev et al. (1988) extended 

the GARCH representation to the vectorized conditional-variance matrix. The 

number of parameters increases with the dimension of data and estimation be

comes difficult. Cecchetti et al. (1988) introduced a bivariate ARCH model with 

constant conditional correlation. Bollerslev (1990) proposed the constant condi

tional correlation GARCH (CCC-GARCH) model. In CCC-GARCH, under the 

assumption of constant correlations, the maximum likelihood estimate of the corre

169
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lation matrix is equal to the sample correlation matrix and further simplification 

is achieved in the optimisation when the correlation matrix is concentrated out 

of the log-likelihood function. The CCC-GARCH model has become very popu

lar among the applied researchers due to its computational simplicity and many 

empirical studies exist in literature (see Bollerslev (1990), Kroner and Claessens 

(1991), Park and Switzer (1995) and Lien and Tse (1998), among others).

The quasi-maximum likelihood (QML) estimation is generally used for the es

timation of the parameters of the multivariate ARCH model. Assuming the errors 

process to be Gaussian, the log-likelihood function is maximised. The QMLE does 

not admit a closed form expression and needs numerical optimisation methods 

to compute the solution. One major problem with estimating these multivariate 

volatility models is that the number of parameters in the variance covariance ma

trix increases rapidly with the dimension of the system, the likelihood function 

becomes very flat and consequently the optimisation of the likelihood function 

becomes infeasible.

Bose and Mukerjee (2003) proposed the linear estimators (LE) of the ARCH 

parameters. The computation of the LE involves solving only two sets of linear 

equations and it has the same asymptotic normal distribution as that of QMLE. 

Using the idea of the linear estimators, Mousazadeh and Karimi (2009) extended 

the LE to multivariate ARCH (MARCH) model with constant correlation. They 

also discuss the asymptotic properties of the two-stage least-squares (TSLS) esti

mator of the parameters of MARCH model.

To derive the limiting distribution of the LE, the crucial assumption is that 

all ARCH parameters must be strictly positive. This assumption restricts the 

application of the result. In order to tackle these problems, Bose and Mukherjee 

(2009) proposed a weighted linear estimator (WLE) of the ARCH parameter and 

derive its limiting distribution. The limit distribution turns out to be multivariate
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normal even when some of the parameters are zero.

In this chapter, we propose a weighted linear estimator for the parameters of 

multivariate ARCH models. The estimator involves solving set of linear equations 

and hence very easy to obtain. Using Monte Carlo simulations, we evaluate and 

compare the performance of the WLE with QMLE under various error distribu

tions. We find th a t the WLE produces as accurate results as the QMLE for large 

sample size and outperforms QMLE in small samples and under heavy-tailed er

rors both in terms of the mean squared error and the mean absolute error. The 

forecasting performance of the WLE is found not inferior to the QMLE and one- 

day risk estimates are found better. This estimator is also applied to real data 

sets and forecasts of volatility and value-at-ri.sk are obtained.

As a second contribution we consider a weighted bootstrapped version of the 

weighted linear estimator (BWLE) for the parameters of multivariate ARCH mod

els. This estimator is proposed using the idea of weighted resampling for estimat

ing equations. The proposed bootstrap estimator resulting as solution of certain 

linear equations is simple and easy to calculate and covers several different resam

pling' approaches including classical bootstrap, bootstrap clone methods and so 

on. Simulation results show? that the BWLE prorides better approximations than 

the normal. We proposed various bootstrap schemes and found these bootstrap 

schemes outperform the widely-used paired bootstrap method.

An advantage of using the WLE for multivariate ARCH parameters over the 

commonly used QMLE is that the former is very easy to compute and requires 

less CPU time. In high dimensions where the QMLE is very difficult to compute, 

the W LE can be easily applied to estimates the parameters in quick time. Boot

strapping is a computationally intensive task even in the univariate case. The 

quick computation of the WLE enables one to use the idea of bootstrapping in 

multivariate ARCH models with ease.
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The plan for the rest of the chapter is as follows. In Section 7.2 we propose 

a weighted linear estimator of the multivariate ARCH parameters. Using simula

tions we compare the accuracy of this estimator with the QMLE under different 

error distributions and varying sample sizes. The WLE is also applied to real data 

sets where multivariate ARCH model is fitted to the daily log returns of SP500 

index and the stocks of Cisco Systems and Intel Corporation. One-day-ahead 

volatility forecasts and value-at-risk estimates are obtained using both the WLE 

and the QMLE. Evaluation measure are used to assess the forecasting performance 

of these estimators. The weighted resampling for the WLE in multivariate ARCH 

model is introduced in Section 7.3. The distribution of the parameters of multivari

ate ARCH model is approximated empirically using three different bootstrapped 

schemes. Section 7.3 concludes the chapter.

7.2 A  W eighted Linear Estim ator o f th e M ulti

variate A R C H  M odel

A sequence of {X,, t e  Z} of random variables with values in R N follows a multi

variate ARCH(p) process with constant correlation if

X* — (7.1)

where X t =  X 2rU • • • , X N>t) \  et = and E t is a diagonal

matrix of conditional standard deviations of Xf defined as

d i a g ( ( T i j , c r 2 , t :  • * ■ W N , t )

t 2 j i  _2 y _  >
W l , ti  ^ 2 , 0  ■ ' ■ 1 &N, t )

(7.2)

(7.3)
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A 0 is a (N  x 1) vector with positive elements, A* are (N  x N ) diagonal matrices 

with non-negative elements and

B — [Aq:A i :A2: • • • :AP] (7.4)

is the matrix of parameters. Also note that N  and p are the dimension and the 

known order of the ARCH model, respectively and © is the Hadamard product 

of two matrices. The hadamard product of two matrices U  =  [uij]itj=p....at and 

V  =  is defined as the element wise product

U  © V  I'U'ijV i j ] i , j—1 ,...,N •

Furthermore, we have the following conditions on et:

1. {et ,t  G Z} is a sequence of i.i.d. R^-valued random variables with mean 0 

and positive definite covariance matrix T such that

r =

P i n1 P\2

P 12 1 ' • :

: ’ ' • ’ ' • P ( n - i )n

\  P i n  • • • P ( N - i ) N  1

2. Also, et is independent of fFt- 1 (tr-field generated by {X*_fc, k > 1}). 

W ith these assumptions, E[X41JTT—i] =  0, and

E[XtX t |^ - i ]  =  H t =
' i ,t i = 3

where H , = E/TE* is the conditional covariance matrix of { X J .
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Let Y t =  (Yi^, Y2jt ■ • • =  X t O X t, for 1 — p < t. < T , is a vector of length

where E { E fo }  =  E {E*} E {rjt} =  0, 1 < t < T.

Let 1 < t < T, 1 < i < N }  be a sequence of non-negative random

variables called weights and let U* and V t be (N  x N)  diagonal matrices with 

elements uijt and viiU respectively, in main diagonals. Now, in (7.6), ignoring the 

randomness of E  ̂ and the presence of parameter B in it, we obtain a preliminary 

weighted least squares estimator Bpr as the solution of

N . For 1 <  t < T, let Z t — (1, Y '_ l5 • • • ^Y't_p) \  is a ((1 4-pN)  x 1) vector and 

Rt =  (Vi,u • • • , is a (N  x 1) vector, where r)jit = e2t — 1, for 1 < j  < N. 

Then
p

a t — i a i ' ‘ ' > a N ,t) '  — A 0 +  A i Y t-i = BZf. (7.5)

Now squaring both sides of (7.1) and using the form of (7.5), we get

Y t — BZt +  1 < t <  T, (7.6)

T

(7.7)

Thus, guided by (7.7), we can define our preliminary estimator

- l
i = 1,2,..., AT, (7.8)

where b^pr is the z-th row of matrix B and hence we get Bpr, the preliminary 

estimate of B. Using this preliminary estimate we can get an estimate of E t as
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where

^2,t> ’ ‘ =  BprZ*.

Now, from (7.6), we get

± ~ 2Y t - ± ~ 2B Z t + rjt , 1 < t  < T .  (7.9)

Using (7.9), we can find another estimate of B, by solving the following set of 

equations
TJ2 [vt{(S72)'S72}{BZt -  Y,}z;j =  0, (7.10)

yielding the estimator

’U  =  f  E  vA Y'-tZ'</(^.')2} )  (  E  « u { w ^ . ) 3} )  , i  = 1 - 2 , AT,

(7.11)

Hence, we get B^, the final estimator of B. Note that the preliminary and the final 

estimator of B are not guaranteed to have all positive elements when sample size is 

small. We found only 4 negative estimates when 1000 independent samples of size 

2000 are estimated by WLE. This problem can be solved by using a constrained 

two-stage least squares method.

7.2.1 A sym ptotics of the WLE

Besides ergodicity, we assume that the errors satisfy

(C l)  E(e4) < o o , i  = 1,..., N. These assumptions will be referred as model 

assumptions.

Assume the following conditions on weights. Consider the increasing sequence
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of sigma-field {T t =  o < Z u ■ ■ ■ , Z t >; t  > 1}, and that

(C2) the weights {(u iit, viyt\ t }i >  1)}, are stationary and for each, t > 1, Uj>f) 

is ^-Pleasurable.

Also assume tha t for the asymptotic normality of the preliminary estimator

E (ul l) < oo, E{u iAYi _jYi - k} < oo, 

and E l u j ^ Y i - j Y i - k Y i - i Y i - m }  < oo, VI < j ,  k, I, m  < p, i  =  1, *• • , N.

(7.12)

Condition (7.12) ensure tha t E{tt*ti(Z iZ i)} and E{n?1(biZ i)2(ZiZ/1)}, for i  — 

1,..., A, are all finite.

Then under model assumptions and (7.12)

T 1' 2^  ~  bj) AT[0.var ( ^ 1){E(«j,1(Z1Z'1))} -1 x

E(«?I(b.Z1)2(Z1Z ;)){E K ,1(Z1Z'1))} -1l. (7.13)

We also assume the following conditions

E(i/f i) <  oo, <  oo, <  oo*

and E { u i ^ <  oo, ¥j,  k 7l G Pq.» =  1, - * * * W, (7.14)

where V q =  { j ; h j  =  0,0 < j  < p, i =  1, ■ * ■ , A7}.

Condition (7.14) ensures that

EK U ZiZJX bjZ ,)-2} < oo and E{u21(ZjZ'1)(b,Z1) 2} <  oo.

The proof of (7.13) for univariate case is shown by Bose and Mukherjee (2009) and
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for LE in multivariate case is shown by Mousazadeh and Karimi (2009). Therefore, 

from those we conjecture that using the property

T 1/2(bitPr~ b i )  = Op( 1), (7.15)

°f where Op denotes the boundedness in probability, and suppose tha t model 

assumptions, (7.14) and (7.15) hold, then

-  b;) N [o, var(e21){E(uj,1(ZIZ'1)(bjZ1)-2)}-1 x

E(1;21(Z1Z;)(b,Z1) - !){E(»i,,(Z1Zl)(biZI)-2) } -1] . (7.16)

7.2.2 Simulation and Empirical Results

In this section we report the results of Monte Carlo simulations performed to eval

uate and compare the performance of WLE with the QMLE in terms of parameters 

estimation and volatility and value-at-risk forecasting. Application to real data 

sets is also presented.

M o n te  C arlo  S im ulations

We use our own MATLAB code for the QMLE since no multivariate volatility 

modelling routines are available in MATLAB software for the QMLE. We also 

write the complete program for estimating multivariate ARCH models using WLE. 

In this section we investigate the performance of WLE with the QMLE based on 

Mean Squared Error (MSE) in estimating MARCH(p) models of dimension N  

through extensive simulations. We assume various distributions for errors. Each 

experiment is repeated K  times and estimates of the MSE and the MAE are
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obtained as

K  N  p

M S E  =
fc=l i = l  j = 0

MAE = i £ { £ £ f e - M } ,
fc=l i=  1 j = o 

1 AT JV -1 iV

k—1 i = l  i<j

where 6^ and for 1 < z < TV , 0 < j  < p are the elements of the estimated and 

the true parameters matrices, B T and B, respectively, of the TV-dimensional mul

tivariate ARCH(p) model and pij is an estimate of constant conditional correlation 

Pij-

We use Monte Carlo experiments to estimate these quantities for weighted 

linear estimator and the QMLE. All results are based on K  replicates each of 

sample size T. The errors are generated from the standard normal distribution 

and student-f distribution with 3 degrees of freedom. Student-f distributions are 

standardized to have mean 0 and variance 1. Initial 500 simulated values in each 

replication are discarded to reduce the impact of initial values.

In first experiment, 1000 independent replicates each of sample size T  =  100, 

250 and 1000 are generated from the following bivariate ARCH(2) model.

Model A:
C Q  ( 0.10 + 0.05X1y ,  +  O .IO X ^ A

2 ^ n on  i n n v  V 2  L n OO y 2y0.20 + 0.07X l t_x +  0.20 X l t_2J

where the value of p\2, the constant conditional correlation coefficient, for this 

experiment is set to 0.95. The results of MSE and MAE for both estimators along 

with their standard errors in parentheses are shown in Table 7.1.

The results in Table 7.1 are found similar to those in the univariate case where
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we compare LE with QMLE in ARCH models. For standard normal distribution 

the MSE and MAE of WLE are found better than QMLE for sample sizes T  =  100 

and 250. This shows that WLE in multivariate case provide better estimates than 

the QMLE for small sizes. For large sample T  = 1000 in our case, both estimators 

shows approximately same results in terms of MSE and MAE with QMLE slightly 

out performing WLE.

When errors are generated from standardised student-* distribution with 3 

df, we can see from Table (7.1) that WLE may be considered as a better choice 

than the QMLE even for large sample size. The MAEs for correlation for both 

estimators are found similar in all cases.

Table 7.1: M ean Squared Error and Mean Absolute Error of the param eters and constant 
conditional correlation of a two dimensional ARCH(2) model.

Q M L E W L E Q M LE W L E Q M L E W L E

T = 100 T  = 250 T  = 1000
Standard Normal

M SE 0.0638 0 .0 5 4 3 0.0234 0 .0 2 2 8 0 .0 0 6 5 0.0067
(0.0781) (0.0634) (0.0238) (0.0222) (0.0060) (0.0062)

M A E 0.4234 0 .3 9 2 1 0.2618 0 .2 5 9 4 0 .1 4 0 2 0.1431
(0.2212) (0.1998) (0.1223) (0.1196) (0.0659) (0.0661)

M A E  p 0.0084 0 .0 0 8 2 0.0050 0 .0 0 5 0 0 .0 0 2 5 0.0025
(0.0069) (0.0069) (0.0039) (0.0039) (0.0019) (0.0019)

Student-t(3)
M SE 0.2058 0 .1 1 1 3 0.0657 0 .0 4 9 0 0.0489 0 .0 3 8 1

(0.2685) (0.1250) (0.1279) (0.0760) (0.1084) (0.0670)
M A E 0.6930 0 .5 5 3 2 0.3781 0 .3 5 6 0 0.3195 0 .3 0 9 4

(0.3945) (0.2689) (0.2449) (0.2009) (0.2159) (0.1809)
M A E  p 0.0087 0 .0 0 8 4 0 .0 0 3 8 0.0040 0 .0 0 2 6 0.0027

MAF! is t.hp mpfln aKsnl

(0.0074)
nt.e prrnr for

0.0079)
constant conditic

(0.0031)
mal correlation.

(0.0037)
, Standard err

(0.0021) 
ors in parenth*

(0.0030)
;sis.

In second experiment, 1000 replicates each of sample size T  = 100, 250 and 

1000 are generated from the following DGP:
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Model B: a.2 ,t.

\4,tj

'o.lO + O . lO ^ .!  + 0.20 X l t_2 + 0.20XltA  

0.25 +  0.25X?,_, +  0.10 X | (_2 + 0.05X22,_3 

^0.05 + 0.20X |(_1 +  0.15Xf ,_2 +  0.10 X j ^ j

We consider p12 = 0.75, pu  =  0.50, and p23 = 0.20 for this experiment. Model B 

is a three dimensional ARCH(3) model. The MSE and MAE for the parameters 

of the above model and the MAE for p is calculated. The results are displayed in 

Table 7.2.

Table 7.2: M ean Squared Error and Mean Absolute Error of the param eters and constant 
conditional correlation of a three dimensional ARCH(3) model.

QMLE WLE QMLE WLE QMLE WLE
T = 100 T = 250 T  - 1000

Standard Normal
MSE 0.1446 0 .1 1 3 7 0.0629 0 .0 6 0 0 0 .0 1 7 7 0.0185

(0.0863) (0.0608) (0.0328) (0.0281) (0.0089) (0.0093)
MAE 0.9347 0 .8 4 3 3 0.6325 0 .6 2 4 3 0 .3 3 6 9 0.3459

(0.0956) (0.2067) (0.1562) (0.1477) (0.0851) (0.0865)
MAE,, 0 .1 7 0 0 0.1703 0.1114 0 .1 1 1 3 0 .0 5 4 1 0.0541

(0.0956) (0.0958) (0.0617) (0.0618) (0.0311) (0.0312)
Student-t(S)

MSE 0.2113 0 .1 7 7 7 0.1419 0 .1 0 3 5 0.1002 0 .0 7 9 9
(0.1515) (0.1287) (0.1344) (0.0643) (0.1010) (0.0523)

MAE 1.0207 0 .9 8 9 8 0.8699 0 .7 9 5 0 0.7273 0 .6 9 4 5
(0.3016) (0.2690) (0.2661) (0.1936) (0.2200) (0.1809)

MAE,, 0 .1 0 3 5 0.1043 0 .0 8 0 2 0.0802 0.0574 0 .0 5 7 3

MAR Jc fno moon nncnl
(0.06616) 

nfp prrnr fnr rn

(0.0668) 
nstant, conditio

(0.0451)
nal correlation.

(0.0457)
Standard ern

(0.0338)
ors in parenth€

(0.0339)
isis.

The features we noticed for a 2-dimensional ARCH(2) model in Table 7.1 seem 

to hold for a 3-dimensional ARCH(3) model in Table 7.2. Again, WLE providing 

accurate estimates of the model than the QMLE for both error distributions and 

all sample sizes considered. The only occasion when the MSE and MAE of QMLE 

show better result than WLE is when sample size in 1000 and errors are normally
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distributed. Not much difference is observed in the MAE for correlation.

In oui final experiment we set some of the ARCH parameters to zero. We 

are interested to find how well the WLE accounts for zero parameters. Again 

1000 replicates each of sample size T  = 100, 250 and 1000 are generated from the 

following DGP:

Model C:
(  o \a

1 , 1!

( r0.10 + O.lOAj +  0.20A^_

\°ltj \0.25 + 0.10Xfjt_2 +  0.05A'f,_3

We consider pv2 — 0.85 for this experiment. This is a bivariate ARCH(3) model 

with one ARCH parameter in each series is set to zero. The results of the MSE and 

MAE for the parameters and the MAE for p is tabulated in Table 7.3. The results 

in Table 7.3 are similar to previous experiments where WLE perform better than 

the QMLE for non-normal distributions and small sample sizes. Hence, the same 

conclusion can be drawn from these results that WLE provide better estimates 

than the QMLE for multivariate ARCH models.

Using our own MATLAB and Fortran code we checked the CPU time (in sec) 

taken by both WLE and the QMLE for estimating a three dimensional MARCH(2) 

model. Experiment was performed on a Pentium CPU with Intel Core 2 Duo 

process running at 2 Ghz and having 2 GB of random access memory (RAM). The 

sample size used is T  =  10,000 and the experiment was repeated K  =  1000 times. 

WLE took 583.61 sec where as the QMLE took 2478.20 sec for estimating the 

same data sets. We also computed the MSE and the MAE for the parameters and 

the difference between the two estimators for this large sample size were negligible. 

This clearly reveals the advantage of using the WLE for estimating the parameters 

of MARCH models. The WLE take less than one-fourth of the time than the 

QMLE and also is not only efficient but also estimates the parameters as acourateh
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Table 7.3: Mean Squared Error and Mean Absolute Error of the parameters and constant 
conditional correlation of a two dimensional ARCH(3) model when some ARCH parameters are 
zero.

QMLE WLE QMLE WLE QMLE WLE

T  -= 100 T  = 250 T  = 1000

Standard Normal
MSE 0.1002 0.0803 0.0357 0.0340 0.0090 0.0095

(0.0782) (0.0577) (0.0239) (0.0215) (0.0060) (0.0064)
MAE 0.6455 0.5924 0.3955 0.3917 0.2009 0.2070

(0.2385) (0.2039) (0.1359) (0.1281) (0.0672) (0.0686)
MAEp 0.0227 0.0221 0.0145 0.0146 0.0071 0.0071

(0.0184) (0.0182) (0.0115) (0.0115) (0.0055) (0.0055)
Student-1(3)

MSE 0.1121 0.1015 0.0976 0.0669 0.0590 0.0474
(0.1244) (0.0812) (0.1220) (0.0701) (0.0912) (0.0586)

MAE 0.6961 0.6591 0.5587 0.5028 0.4298 0.4159
(0.3222) (0.2451) (0.2541) (0.1904) (0.2073) (0.1738)

MAEp 0.0191 0.0199 0.0103 0.0105 0.0073 0.0073

MAR is fchia mpan a.Hsn

(0.0103)
lute error for

(0.0105)
constant conditf

(0.0082) 
onal correlation

(0.0083)
. Standard eri

(0.0057)
•ors in parenth

(0.0059)
esis.

as the QMLE.

7.2.3 Application to Real Data Sets

The data sets consist of the daily log-returns of SP500 index and the stocks of 

Cisco Systems and Intel Corporations from January 2, 1991 to December 31, 1999, 

a sample of T  = 2275 observations. These data sets have been used by Tsay (2005, 

Ch. 10) for modeling higher dimension volatility models. The data were obtained

from

http .'//faculty, chicagobooth. edu/ruey. tsay/teaching/fts/

The log returns are in percentages and we denote the log-return vector at time t 

by X t =  (X \  t ,  X i  t,y where X i tt, X 2,t, and X 3J, are the log returns at time t

of SP500, Cisco and Intel, respectively.

Initial N  = 1275 observations are used for model estimation and the remain-
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ing K  1000 observations are retained for out-of-sample forecasting of volatility. 

Summary of a few descriptive statistics of the mean corrected returns are provided 

in Table 7.4. SP500 index is slightly positively skewed where as Cisco and Intel 

returns show negative skewness. All return series exhibit excessive kurtosis. The 

Jarque-Bera tests are highly significant with p-values close to zero. The corre

lation m atrix confirms that the returns are correlated with each other. We also 

calculate the multivariate portmanteau statistic of Hosking (1980) to detect any 

serial dependence in the return series. This test statistic in multivariate form is 

defined as:
M i r

Q n ( M ) = T 2 ' £ tF Z 1  tr Cu Cwl C ’a Cwl, T  — Ii=i

where
1 T 

c ° i = t ET t=j+1

where TV is the dimension of X*, M  is the lag length, T  is the sample size, and 

tr(A ) is the trace of the matrix A. Under the null hypothesis (of independence) 

the test statistic is approximately distributes as a chi-squared with (TV2 x M) 

degrees of freedom.

The values of the test statistics obtained up to lag 4 and 8 are Q(4) =  

60.66(0.0001) and Q(8) -  100.11 (0.0006), respectively, where p-values are given 

in parentheses. These statistics are highly significant as compared to chi-squared 

distribution with 36 and 72 degrees of freedom, respectively. The highly significant 

p-values suggest that there is indeed some serial dependence in the data.

P a ra m e te r  E s tim a tio n

Now, we turn  our attention to volatility modelling. By examining the sample 

partial autocorrelation plots, we choose a multivariate ARCH model of oider p — 4 

for these return series. Note that for simplicity we choose a diagonal constant
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Table 7.4: Descriptive statistics for the mean subtracted return  series over the in-sample period.

SP500 Index Cisco Systems Intel Corporation

Minimum -3.7749 -22.3506 -14.7196
Maximum 3.6161 15.3254 8.9134
Std.dev 0.6523 2.9439 2.3777
Skewness 0.0282 -0.4444 -0.4149
Kurtosis 5.6517 7.8297 6.2800
JB 373.73 1281.17 608.12

Correlation
(0.0001) (0.0001) (0.0001)

SP500 1.0000 - -
Cisco 0.4275 1.0000 -
Intel 0.4360 0.4185 1.0000

JB is the Jarque-Bera test for normality and the number in parenthesis are p-values.

conditional correlation multivariate volatility model. Using both the QMLE and 

WLE, we estimate the model parameters and correlations.

The result of parameter estimation of multivariate ARCH(4) model for the re

turn series are displayed in Table 7.5. The standard errors of the parameters are 

given in parentheses. All estimates are found significant at 5% significance level. 

For the QMLE, the Ljung-Box statistics, up to lag 4 and 8, of the squared stan

dardised residual are Q2(4) =  12.99(0.99) and Q2(8) =  40.66 (0.99), respectively. 

For WLE, we have Q2(4) =  12.43 (0.99) and Q2(8) =  35.68 (0.99). Therefore, both 

fitted models appear to be adequate in modeling the conditional volatilities.

Table 7.6 represents the estimates of correlations among the return series. By 

comparing these results with that of Table 7.4, we can see that both models esti

mates the correlations accurately.

F orecast E v a lu a tio n

We evaluate the volatility forecasts generated by both the QMLE and WLE. 

The rolling window scheme is used in which initial N  =  1275 sample is used 

to estimate the model and one-step ahead conditional variance-covariance matrix



7. A  Weighted Linear Estimator for the Multivariate ARCH Parameters 185

[ . o  s  w «  n
t* t-H t-  oo iv ooo  o  oo t- oo o)
n  o  ffl ^  ID  H

o  o  ^  o

<y

o  o  © o

^ cs 
CO o  o  o



7. A Weighted Linear Estimator for the Multivariate ARCH Parameters 186 

Table 7.6: Estim ated correlation of multivariate AR.CH(4) model using the QMLE and WLE.

M ethod R eturn r

SP500 Cisco Intel

SP500 1.0000
/ \

QMLE Cisco
\r)

0.4411 1.0000
(0.0231) (-)

Intel 0.4410 0.4237 1.0000
(0.02390) (0.0241) (-)

SP500 1.0000
(-)

W LE Cisco 0.4382 1.0000
(0.0290) (-)

Intel 0.4400 0.4240 1.0000
(0.0240) (0.0249) (-)

Hjv+i is generated. The sample is rolled forward one day by including the (7V +  1)- 

th  observation and discarding the first observation. The model is re-estimated and 

again one-step-ahead forecast is made. This process is repeated till we get to the 

end of the data. In this way we obtain I( — 1000 one-step ahead forecasts of

variances and covariances.

Two standard evaluation measures used for forecasts evaluation, the root mean 

squared error (RMSE) and the mean absolute prediction error (MAPE), where

RMSE =
\ jiibixvXv-ty2’

t=l

j  =  1 , 2 .

Table 7.7 reports results of the MAE and the RMSE for one-step ahead forecasts 

of conditional variances and covariances of three data sets analysed. Both WLE 

and QMLE show similar characteristics in forecasting the vanance-covanance ma

trix. The MAPEs and RMSEs of WLE are found less than the QMLE in almost 

all occasions. The only exception is the RMSE of covariance of SP500 index and
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Intel Corporation. In this case the RMSE of QMLE is slightly lower than that of 

WLE. Hence we can conclude that the forecasting ability of WLE in multivariate 

ARCH models is not inferior to the QMLE.

Table 7.7: Mean absolute prediction errors and root mean square errors for one-step-ahead 
forecasts of variances and covariances. _____________________________________________

Variances Covariances

SP500 Cisco Intel SP500-Cisco SP500-Intel Cisco-Intel

M APE
QMLE 1.2356 7.8080 7.3265 2.3209 2.0564 5.3610

W LE 1.2181 7.7342 6.3089 2.3052 2 .0016 5.1716

RM SE
QMLE 3.0754 14.1134 12.8339 5.4377 4.2727 9 .4823

W LE 3 .0617 14.0851 12.6451 5.4330 4 .2867 9.4975

V aR  D ia g n o s tic s

In the econometric literature, models are often evaluated by their out-of sample 

forecast performance using standard measures such as the MAPE and the RMSE 

as used above. Models can also be evaluated from the prospective of their use 

in risk management. We employ an alternative approach by considering both the 

QMLE and WLE in terms of their performance in risk management.

We choose equally weighted portfolio weights cu, and estimate the ex./o one-step 

ahead VaR estimate for model z as

%t{a) =  ci(a )ato  1 =  i ’2’

where q(ct) is the a%  critical values of the distribution of i*t , conditional of infor

mation set available up to time t — 1 and model z, with
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and

-  _
e”‘ ~  ’

Figure 7.1 shows the 1% one-day ahead VaR estimates of both models. It can 

be noticed tha t both models approximately produce similar results. The VaR 

estimates of the QMLE are slightly larger in absolute values as compared to those 

of WLE. This reveals that the QMLE produces higher risk estimates. We also 

calculate the number of violations of each model and test the hypothesis H0 : f  = 

a  against H\ : j  ^  a, where /  is the failure rate estimated by the empirical failure 

rate. The Kupiec’s unconditional likelihood ratio statistic is defined as

L R UC =  2 In [ /( l  -  f ) K~K } -  21n[a* (1 -  a)K~K ],

where K  is the total number of out-of-sample observations and K * is the number of 

VaR violations (Kupiec, 1995). Under the null hypothesis, LR UC is asymptotically 

distributed as a xpp For the QMLE, we get LRUC = 1.8862(0.1696) and for 

WLE, we have L R UC — 0.4337 (0.5102), where numbers in parentheses are p-values. 

Although both estimators pass the Kupiec’s test, WLE has large p-value than the 

QMLE.

The results of volatility forecasts and risk estimates, based on the evaluations 

measure we used, show that the forecasting performance of WLE is not inferior 

to the QMLE. This suggests that one may use WLE for estimating multivariate 

ARCH models instead of the QMLE. We again mention the advantage of using the 

WLE tha t it is very easy to compute and require less CPU time for estimation and 

forecasting and by using WLE for multivariate ARCH models we are not losing 

anything in terms of volatility forecasts and risk estimation.



7. A Weighted Linear Estimator for the Multivariate ARCH Parameters

Figure 7.1: Portfolio returns (blue) of SP500, Cisco and Intel stock indices along w ith one-step 
ahead 1% VaR estim ates of the QMLE and WLE.

7.3 A  W eighted Resam pling for the W LE in M ul

tivariate A RC H  m odels

In this section we define weighted resampling method for weighted linear estimator 

in multivariate ARCH models. A bootstrap technique proposed by Chatterjee and 

Bose (2005) is used for this purpose. Using the idea of weighted resampling we 

develop suitable bootstrap versions for WLE. We bootstrap WLE and our goal is 

to approximate the sampling distribution of the parameters of multivariate ARCH

models with this new approach to resampling.

Let {wTt] l < t < T , T > l } b e a  triangular array of r.v.’s such that for each 

T  > 1 ,  {wTt; 1 < t < T }  are exchangeable, independent of {X*; t > 1 -  p}. These 

are called the bootstrap weights.
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From (7.7), the bootstrapped preliminary weighted least squares estimator B*r 

of B is defined as the solution of

T

U i{Y f - B Z i} z ;  = 0  (7.17)
t.=i

Hence,

. i =  1,2,..., N,  (7.18)

and we get B*r , the bootstrapped preliminary weighted least squares estimator of 

B.

Finally, as in (7.10), the bootstrapped weighted linear estimator may be defined 

as the solution of

T

5 3  [ v t{ ( s r 2)'sr 2} { Yt -  BZt}z(] = 0. (7.19)
t=  1

This gives us

(z ; / ( ^ t)2} j  , * =  1 , 2 , . . . ,1V, 

t=1 ^  (7.20)

and the final bootstrapped weighted linear estimator B£. is obtained.

We study these approximations via simulations based on three different schemes

of weights. These are

(i) Scheme M when {u>xt} have a multinomial (T, 1 /T ,..., 1 /T )  distribution.

(ii) Scheme U when wti — Ut/UTi where Ut s are i.i.d Uniform (0.5,1.5), 1 <

t < T  and UT = ( E L  Ui)/T -

(iii) Scheme E when wTt = Et/E r,  where Et's are i.i.d Exponential (1), 1 <

t < T  and E T = (E f= i E i) /T -

ki,T
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Note tha t Scheme M corresponds to the commonly-used paired-bootstrap in 

heteroscedastic models. In this chapter we empirically study Schemes U and E as 

possible alternatives to the paired-bootstrap. It is possible to obtain quantiles of 

the bootstrap distribution of crr 1T 1//2(b*T — b ^ )  using simulation and then using 

the bootstrap approximation, we can construct the bootstrap confidence intervals 

of B.

7.3.1 Asym ptotics of the Bootstrapped WLE

For all T  > 1,

{^Tb 1 < t, < T }  are exchangeable and independent of{Z*, e^, uitt, vijt, 1 < t < T } .

(7.21)

The weights are assumed to satisfy the following basic conditions of Chatterjee 

and Bose (2005),

Ejg('UJT'l) — 1) 0 < k\ < Grp =  0 (7 ), 

and co rr^w ri, WT2) = 0 (T _1), (7.22)

where g\  =  VB{wTt), h  > 0 is a constant, EB denotes the expectation with respect 

to the bootstrap distribution and o(l) denotes the convergence in probability to 

zero.

Lemma 1. Suppose that model assumptions, (7.21) and (7.22) hold, then for 

some S > 2,

E{(uiliX - JX,-k)'5} < ° ° ’ V j ’k '

then

<7p r 1 /2 (b * iPr -  b j )  =  0 B( !)■
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The standardised exchangeable weights {HA/ {v)Tt — 1)/(T̂ } satisfy

E b (W&) < oo, and lim EB{W^l W^2) = 1.
T  —̂ oo

In addition, we assume that

CTf1T 1/2(b*J,r - b i) =  0 B(l).

Also, For some 6 > 0,

E ('^ i) < oo, - j )6} < oo, E{(u.u yi _j Fi _fc),y} < oo,

E {(vM^-j*i,-fc)*} < °°> andE{(niiiTi _:,-Ti _fcri _i)<5} < oo, 

Vj, k, I G Vo, i =  1, • • • , N.

Suppose tha t model assumptions, (7.21)-(7.25) hold, heuristically then

-  b i!T) = [ E K ^ z ^ H b ^ r 2)
T

T - l/2Y J hi,tWtvUiZ l {biz l ) - 1 +  oB(l),
t=i

and hence

where

sup{|Ffl(x) -  Ft (x )|;x  G M1+p} =  op(l),

Fb (x) =  P B ^T lT l/2(bi,T -  bi,r) < x] and FT(x) =  PpT1/2^  -  U)  <

(7.23)

(7.24)

(7.25)

7.3.2 Results

We consider Model B, a three dimensional (N  =  3) ARCH model of order p =  3 

as our DGP and 10,0000 samples of size T  = 250 and 1000 are generated to
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appioximate the distribution of — B), where is the matrix of estimated

parameter with the z-th row given as b i<T = (bi0, bn , bi2, bi3), 1 < i < N . The mean 

and the averages of the squares of these sets of K  numbers are computed and these 

represent the means and the mean squared error (MSE) of V f ( b . itT -  bijT), 1 < 

i < N.

The MSE under normal approximations are also computed. The estimated 

MSE under normal approximation at the k-th replication, 1 < k < K, is obtained 

from the diagonals of matrices

t - 1 ^ { « t,,(ztz;)(b,zl)-2} ] [ t - 1 y > t2,j(zfz;)(biz t)-2}
t= 1 t = l
T

T ~ 1 ^ { t , ' i,,(ZiZ;)(biZ() - 2}
t=l

where Vê  is the variance of the squared residuals {£?1, • • • ,e?r }, with residuals 

b^t — X ^tjifh iZ t) 1!2, 1 < £ < T ,  l < z < 7 V ,  and b; being the estimate based on 

the k-th  replication.

Table 7.8 reports the mean, mean squared error, and the mean squared error 

under normal approximation of \/T (B ^ —B). The means are significantly different 

from normal approximations. The MSEs are found close to MSE under normal 

approximations.

Next we use weighted resampling to approximate the distribution of y / f ( B T -  

B). From many different choices of bootstrap weights, We choose Scheme M, 

Scheme U and Scheme E for this study. The weighted resampling procedure is 

described as follows. We generate B * =  1000 bootstrap samples on the exchange

able weights {zc^jj’s and compute crTjv /T(b^r — ^ . t ) ’ where depends on the
 ̂(h')

underlying scheme, b*^ is the bootstrapped estimated paiametei vector and h i T is 

the estimated parameter vector of z-th series chosen at A;-th replication, 1 < k  < K.
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Table 7.8: Means and the MSEs of the distributions of — B) for a three dimensional
ARCH(3) model and the MSE due to normal approximation of the distribution.

T  = 250 T = 1000
M ean MSE MSE at M ean MSE MSE/v

ho 0.0496 0.0997 0.1066 0.0578 0.1058 0.1017
h  i 0.2634 1.3616 1.7719 0.0067 1.6247 1.7031
b\2 -0.2857 1.9369 1.9912 -0.2907 2.3895 2.1118
bu -0.1926 1.9898 2.0927 -0.1488 2.2786 2.2043

ho -0.0506 0.4419 0.5133 0.0557 0.4911 0.5078
h i -0.1780 2.8131 2.7706 -0.0636 3.0078 3.0064
h2 0.0239 1.0227 1.7419 -0.2073 1.6712 1.7307
ho 0.3920 0.8381 1.4718 0.1220 0.9533 1.3131

ho 0.0298 0.0224 0.0231 0.0313 0.0233 0.0222
h i -0.2769 2.1815 2.1069 -0.1557 2.4894 2.3200
h  2 -0.1922 1.4920 1.8385 -0.2227 2.0739 1.9256
ho 0.1033 1.0788 1.6383 -0.1213 1.5311 1.5891
All results are based on 10,000 replications. M S E  is the MSE under normal approximation.

We set I (  = 100 for this experiment. The means and the averages of the squares 

of ctt] V T (b*T -  b .^ )  are computed and these represent the bootstrapped mean

and mean squared errors.

Table 7.9 shows the result of means and the MSEs of the distribution of the 

standardized bootstrap estimators for a three dimensional ARCH(3) model under 

different schemes. The entries in bold represent schemes providing closest approx

imations of MSE for corresponding parameters. Note that none of the scheme 

provide very good approximation of means although in few cases each scheme 

estimate the means for bn quite well. In estimating the MSE, for small sample 

size T  =  250, scheme E shows good performance overall with scheme M follow

ing. Scheme U also approximate the MSEs once in each series. For large sample 

size T  — 1000 it can be seen that scheme U dominates other schemes in terms of 

approximating MSEs. Scheme E shows better results than scheme U m three in

stances where as scheme M does not provide results better than other two schemes.
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These findings suggest that our bootstrap weighted linear estimator shows nice re

sults in approximating the shape of the distribution. We also observe that other 

schemes such as scheme U and scheme E can be used for weighted resampling as 

they provide better results the the commonly used paired bootstrap, scheme M.

Table 7.9: Means and the MSEs of the distribution of the standardized bootstrap  estimators 
for a three dimensional ARCH(3) model under different schemes.

Co II j—1 o o o Scheme M Scheme U Scheme E

T  =  250 Mean MSE Mean MSE Mean MSE

bio -0.0459 0.0934 -0.0114 0.1053 -0.0454 0.0843
bn 0.2967 1.6269 0.0083 2.2369 0.2409 1.5007
bn -0.0674 2.0174 -0.0508 2.3931 -0.1096 1.8179
h i -0.0222 1.8346 -0.0231 2.0920 -0.0540 1.6480

^20 -0.2000 0.4909 -0.0120 0.5195 -0.1974 0.4452
&21 -0.0366 2.3938 -0.0222 2.7544 -0.0488 2.2025
2̂2 0.1875 1.3947 -0.0146 1.6949 0.1363 1.2868
2̂3 0.3359 1.1111 0.0618 1.3523 0.2924 1.0421

boo -0.0277 0.0230 0.0042 0.0250 -0.0252 0.0211
h i 0.0406 1.9639 -0.0376 2.3332 -0.0014 1.8208
b;i2 0.1229 1.5190 -0.0290 1.8537 0.0860 1.4429
^33 0.1870 1.3577 -0.0134 1.6576 0.1568 1.2662

T  =  1000
bio 0.0101 0.1036 0.0079 0.1038 0.0072 0.0999

bn 0.1115 1.7413 0.0083 1.8280 0.0986 1.6888

bi2 -0.1451 2.2548 -0.0508 2.2693 -0.1395 2.1386

bi3 -0.0940 2.3134 -0.0231 2.3098 -0.0806 2.1733

^20 -0.0659 0.4977 -0.0120 0.4915 -0.0668 0.4830

2̂1 -0.0697 3.1201 -0.0222 3.0679 -0.0670 2.9488

&22 -0.0084 1.4900 -0.0146 1.6566 -0.0200 1.4556

^23 0.2238 1.1155 0.0618 1.0631 0.2069 1.0868

b'3Q 0.0090 0.0231 0.0042 0.0233 0.0084 0.0223

bsi -0.1068 2.5472 -0.0376 2.5653 -0.1091 2.4550

^32 -0.0800 2.0016 -0.0290 2.0108 -0.0705 1.9183

b33 0.0033 1.5630 -0.0134 1.5676 0.0031 1.5097

All results are based on 100 replications.
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7.4 C onclusion

Weighted lineal estimator for the multivariate ARCH parameters is proposed in. 

this chapter. The accuracy of this estimators is compared empirically with the 

QMLE in estimating the parameters of multivariate ARCH models. Using normal 

errors we found that WLE produced as accurate results as the QMLE for large 

sample size and outperforming QMLE in small samples. Under heavy-tailed errors, 

WLE always outperform QMLE in terms of the mean squared error and the mean 

absolute error. These estimators are also applied to real data sets and forecasts of 

volatilities and valuc-at-risk are obtained. Our results showed that the forecasting 

performance of WLE is not inferior to the QMLE and one-day risk estimates are 

also found better.

We also proposed weighted resampling method for multivariate ARCH models. 

Using different weights for bootstrap we showed that other schemes for weights 

such as scheme U and scheme E provide better results than commonly used paired 

bootstrap.

We suggest using WLE for the estimation of multivariate ARCH models as 

this estimator has a closed form expression and easy to estimate. WLE takes less 

computational time than the QMLE where some optimisation methods are used 

to reach the convergence. The quick estimation of multivariate ARCH models 

using WLE allows researchers to apply very heavy computational methods such 

as bootstrapping in multivariate models.



Chapter 8 

R obust M ethods for M ultivariate 

G AR C H  M odels

8.1 Introduction

Multivariate GARCH models focus on volatility and correlation analysis for more 

than one asset. In order to study the relations between the volatilities and co

volatilities of financial time series, the development of multivariate GARCH-type 

models is very important. Modelling and predicting the time varying dynamics of 

conditional covariances of asset returns is also crucial for asset pricing, portfolio 

allocation and risk management; see, for example, Bollerslev et al. (1988).

One major problem with the application of multivariate GARCH models is that 

the number of parameters to be estimated increases rapidly with the dimension 

of the system. The likelihood function becomes very flat and consequently the 

optimisation of the likelihood function becomes infeasible. Another problem is 

that many constraints need to be imposed to ensure the positive definiteness of the 

conditional covariance matrix. To deal with these problems, different specifications 

of multivariate GARCH models have been proposed. Bauwens et al. (2006) provide

197
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an extensive survey on multivariate GARCH models.

Bollerslev et al. (1988) first introduced the multivariate GARCH model in the 

familiar half-vec (vech) form for the conditional covariance matrices where every 

conditional variance and covariance is a function of all lagged conditional variances 

and covariances, as well as lagged squared returns and cross-products of returns. 

The estimation of the vech model is computationally demanding because of the 

large number of parameters in the model and also there are restrictive conditions 

on the conditional covariance matrices to be positive definite. A simplified version 

of this model called diagonal vech was proposed by Bollerslev et al. (1988) assum

ing the parameters matrices to be diagonal. A special case of the vech model is

the Baba-Engle-Kraft-Kroner (BEKK) model of Engle and Kroner (1995). Fur

ther simplification can be achieved by using the diagonal BEKK (DBEKK) model 

assuming that parameters matrices are diagonal. BEKK models generate positive 

definite conditional covariances matrices but estimation of these models still need 

heavy computation due to several matrix inversions.

Bollerslev (1990) proposed the constant conditional correlation multivariate 

GARCH models (CCC-GARCH) where the conditional correlation matrix is time- 

invariant. The CCC-GARCH model is very popular amongst the practitioner 

because of its simplicity. An extended CCC-GARCH (ECCC-GARCH) model 

was introduced by Jeantheau (1998) in which the assumption that parameters 

matrices are diagonal is relaxed. The ECCC-GARCH allows a considerably richer 

autocorrelation structure for the squared observed returns than the standard CCC- 

GARCH model (He and Terasvirta, 2004). Although CCC-GARCH models are 

computationally attractive, many empirical studies suggested that the assumption 

of constant conditional correlation is too restrictive. By making the conditional 

correlation matrix time-dependent, Engle (2002) proposed the Dynamic Condi

tional Correlation (DCC) and Tse and Tsui (2002) proposed Time Varying Corre



8. Robust Methods for Multivariate GARCH Models 199

lation (TVC) GARCH models. Under both these specifications, the correlation is 

time varying and is able to capture the changes over time. A two-step estimation 

approach can be used for DCC models by writing the log-likelihood as the sum 

of a mean and volatility part and a correlation part (Engle and Sheppard, 2001). 

Ledoit et al. (2003) proposed a two-step approach by estimating each variance 

and covariance equation separately.

Another approach is to use univariate GARCH models to obtain the multi

variate GARCH estimates. Engle et al. (1990) proposed a method to reduce 

the dimensionality of the problem by assuming that the observations are gen

erated b}f underlying factors that are conditionally heteroscedastic and posses a 

GARCH-type structure. This model is called the factor GARCH (F-GARCH) 

model. Alexander and Chibumba (1997) proposed the Orthogonal GARCH (O- 

GARCH) model which is a generalization of the F-GARCH model to a multi-factor 

model with orthogonal factors. Alexander (2000, 2000b) further discussed that this 

method can be used for obtaining large positive semi-definite conditional covari

ance matrices by modeling the principal components of the financial returns’ un

conditional covariance matrix as univariate GARCH processes. The GO-GARCH 

model by van der Weide (2002) generalised the Orthogonal GARCH approach by 

allowing for the linear map that links components and observed data to be non 

orthogonal. Vrontos et al. (2003) introduced a variant of the factor models called 

the full-factor multivariate GARCH model.

Harris et al. (2007) suggested a method of estimating the elements of the condi

tional covariance matrix using univariate GARCH models and called it a simplified 

multivariate GARCH (S-GARCH) model. For each pair of variables, S-GARCH 

model estimates four univariate GARCH models - one for each variable, one on 

the sum of the variables and one on the difference of the variables. The difference 

of the later two yields four times the covariance between the two variables.
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The objective of this research is to propose robust estimators for multivariate 

GARCH models that are easy to estimate and do not put additional constraints on 

the model. We present two new methods for estimating the multivariate GARCH 

models. These methods can be considered as robust versions of the S-GARCH 

model of Harris et al. (2007) and the O-GARCH model of Alexander (2000). 

Both models use univariate GARCH specification and estimates of these univari

ate GARCH models are obtained using M-estimators. The proposed methods 

have many advantages. First, these are easy to estimate as compared to other 

multivariate GARCH specifications as these require estimation of some univariate 

GARCH models. Second, they provide robust estimate of the parameters of mul

tivariate GAR.CH models that according to our knowledge has not been proposed 

in these settings. Third, besides multivariate normal distribution and multivariate 

Student-/: distribution not many multivariate distributions are used in practice for 

multivariate GARCH models. Although, the multivariate normal distribution is 

easy to use it is not consistent with the well-known asymmetry and excess kurtosis 

in financial data. The use of univariate GARCH models allow us to use many 

univariate densities for errors to capture these stylised facts which for multivariate 

case would be extremely difficult if not impossible.

Volatility forecasting has been the main focus of most of the previous studies. 

In this study we focus on correlation estimation and forecasting of multivariate 

GARCH models which have not received significant attention in the literature. 

In addition we investigate the forecasting performance of our methods and M- 

estimators in predicting value-at-risk using various evaluation measures.

Using Monte Carlo simulations the in-sample and out-of-sample performances 

of M-estimators for both models are measured in terms of estimating and predicting 

the time varying correlations between the returns. We estimate our models in two 

distinct applications to stock indices and currency exchange rates and focus on
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predictions foi conditional correlations and value-at-risk. Several in-sample and 

out-of-sample performance measures are used to evaluate the predicted VAR of 

both models. Using these performance measures, we collect empirical evidences of 

the better predictive potential of B-estimator over other competing M-estimators. 

Our results suggest the use of robust estimators such as LAD and B-estimator for 

the estimation and prediction of multivariate GARCH models. We also discuss and 

compare both multivariate GARCH models with univariate GARCH specifications 

and find tha t the O-GARCH model has some advantages over the S-GARCH 

model.

The plan of the rest of the chapter is as follows. In Section 8.2, we propose the 

robust version of the S-GARCH model for estimating the parameters of the mul

tivariate GARCH models using M-estimators. In Section 8.3, using M-estimators 

a robust version of the O-GARCH model is proposed. For both methods, Monte- 

Carlo simulations are performed to obtain the in-sample and out-of-sample correla

tion estimates. These methods are also applied to real data sets and out-of-sample 

correlations and risk estimates are obtained. The out-of-sample forecasts are eval

uated using various performance measures. Section 8.4 discusses and compares 

both models and Section 8.5 concludes the chapter.

8.2 A  R obust M ethod for the Simplified GARCH  

M odel

The simplified multivariate GARCH (S-GARCH) model was pioposed by Hanis, 

Stoja, and Tucker (2007) (hereafter HST). This method involves estimating the 

elements of the conditional covariance matrix using univariate GARCH models. 

For each pair of variables, the S-GARCH model estimates four univariate GARCH
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models - one for each variable, one on the sum of the variables and one on the 

difference of the variables. The difference of the later two yields four times the 

covariance between the two variables.

Let x i tt and x 2jt are two return series at time t, with

where T t- \  is the conditioning information set available at time t — 1. The condi

tional covariance matrix of x ^ t and x 2>t is given by

where a \ t — V a r [ x i ^ | &2 ,t ~  Var[x 2,t\^t-i]  are the variance elements and 

C1 2 — Covjaq^a^.tl-^-i] are the covariance elements of H t, respectively. 

HST proposed a simple procedure for estimating the elements of the conditional 

covariance matrix, H t, that involves estimating only univariate GARCH models. 

First, using the GARCH(1,1) specification, the conditional variances, a j t and cr| £, 

are given by

HST used the quasi-maximum likelihood to obtain the estimates of model param

eters and corresponding estimates of the conditional variances in (8.2) and (8.3). 

The QMLE is consistent and asymptotically normal if the innovation has finite 

four moments. This estimate is very sensitive to the presence of a few outliers in 

the sample and may not be considered a good choice when there is evidence of 

heavy-taildness. In this study we propose estimating the model (8.2) and (8.3)

— 0 , — 1, 2

(8.1)

° i , t  ~ (8 .2 )

° 2 , t  ~  ^ ’2 ^'2^'2,£—1 f f  P 2 ° 2 , t - 1 (8.3)
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using robust M-estimators. It was shown that these estimators provides good 

estimates for non-normal data (see Section 3.4 for results and discussion).

Next, by adding and subtracting the series x \^  and two new series x +j  — 

Xi,td-X2 tt and X-^t ~  %i,t~X2 ,t are constructed. Using a GARCH(1,1) specification, 

the conditional variances of these two series are given by

°+,t =  UJ+  +  a +  x + , t - i  +  P +  cr+^-i (8-4)

o-2_ t =  cj_ +  x 2_ t_x +  p_ u \ t_x (8.5)

where a^ t =  Var[a;+)f |^ _ i]  and a2_ t = Var[x-yt\fFt-i\- Again, we use M-estimators 

to obtain the estimates of the parameters of the model and corresponding estimates 

of the conditional variances. An estimate of the conditional covariance can then 

be base on the following identities.

< y \ t  —  a i , t  +  ° 2 , t  +  2oi2,t (8-6)

a 2_ t =  o\ t +  o\ t -  2cr12yt (8-7)

Combining (8.6) and (8.7) gives the conditional covariance

0i2,t = (l/4)(cr+,z — a - , t )  ( & - & )

The conditional correlation between two returns can be easily calculated using 

(8.2), (8.3), and (8.8) as

pt = (8-9)
& l,t &2,t

Our method consist of estimating several GARCH(1,1) models using a class of 

M-estimators as defined is Chapter 3. The method is easy to implement, does not
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impose extra restriction on model and most importantly robust in the presence 

of outliers. Instead of the GARCH model, any other univariate GARCH speci

fication can be used to estimate the multivariate GARCH models. Asymmetric 

GARCH model such as GJR model can be used to capture the asymmetric feature 

of financial data set. Also, high order GARCH models can be fitted although em

pirical studies have shown that the GARCH(1,1) model provides a good fit to the 

data. See HST for some properties of the S-GARCH model under the univariate 

GARCH specification.

As discussed by HST, a potential problem with this approach is that the re

sulting estimate of the conditional correlation matrix is not necessarily positive 

semidefinite. There are many approaches to handle this problem. We use the sim

plest approach where the eigenvalues and eigenvectors of the estimated conditional 

correlation matrix are extracted and negative eigenvalues are truncated to some 

small positive numbers. Then, these truncated eigenvalues and the original eigen

vectors are used to construct the pseudo-correlation matrix. Other approaches are 

to use the nearest correlation matrix as proposed by Higham (2002) or to trans

form the matrices of the parameters estimates such that the resulting matrices of 

parameters estimates are positive semidefinite (Ledoit at el. 2003).

Next, the method of forecasting volatilities and co-volatilities from the S- 

GARCH models is described. For a bivariate case, k-step ahead forecasts of the 

variances are derived as

Similarly, k-step ahead forecasts of conditional covariances can be obtained

(8 .10)

where dfiT+1 =  6jt +  d, r  -I- dfj,.
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from

&12,T+k ~  ( l / 4 ) ( < J ^ T+fc (8 .11)

where

with a |  T+1 =  Cj ±  +  ol±  x \  t  +  P ±  <r|T.

Hence, using (8.10) and (8.11), the fc-step ahead forecast of conditional corre

lation form the S-GARCH model can be obtained as

8.2.1 Simulation and Empirical Results

In this section we perform Monte Carlo simulations to evaluate the in-sample and 

out-of-sample performance of our proposed method. Applications to real data sets 

are also presented.

M onte Carlo Sim ulations

A bivariate GARCH(1,1) model is simulated 1000 times using the sample size of 

T  =  1000 observations. The data generating process is given by

 ̂iZ,1 A-K
p T + k  — V----------- -̂---------

Gl,T+k ,T+k

&12 ,T+k (8 .12)

<rlt = 0.01 +  0.05 Xi't-i + 0.85 o-jy ,,

<4t =  0.10 + 0 .0 1 4 t-i +  0-60
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with x i j  — y /h i)t x 2j  = y/h2<t t2,t, and

/ \
£ i  ,t

\  £l-‘ J

N
M  I 1 x0 1 pt

pt 1LV0 / \ p t  i J

We also consider simulating errors from Student-* distribution with 3 degrees of 

freedom and Skewed-* distribution with 4 df and skewness of 0.25. For correlations, 

we consider the following processes:

1. Constant: pt — 0.90

2. Sine: pt =  0.50 +  0.40 cos(27r*/200)

3. Fast sine: pt — 0.50 +  0.40 cos(27r*/20)

4. Step: pt = 0.90 -  0.50(* > 500)

5. DCC:

Pt

Ql2,t

Ql2,t

y/Qll,tQ22,t

0.02 +  0.30 ei't-i ^2,t—i +  0.60 <712,*-i,

0.10 +  0.30 + 0.60 q u ^ ,  i = 1,2.

6. TVC:

Pt 0.07 + 0.10 ijjt-i +  0.80 pt-i,  

 E L l  el,t-h^2,t-h _ _ _ _ _ _

J ( Z l = A tA ( Y , l = v  lt-k )

The correlation processes (1-4) exhibit constant, gradual changes and rapid changes 

and are also used by Engle (2002). DCC is the dynamic conditional correlation
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model of Engle (2002) where the time-varying correlation has three components 

with each component having an autoregressive moving average structure. TVC 

is the time varying con elation model of Tse and Tsui (2002) in which a strong 

dependence in the time-varying conditional correlations exist.

The S-GARCH model is fitted using M-estimators and the estimate of the 

coirelations are obtained. In this study we use the QMLE, LAD and B-estirnators 

for the estimation, estimators such as Cauchy and Huber’s estimators can also be 

used, though. The performance of these estimators in estimating the in-sample 

correlations are measured using

1 T
In-MAEP =  — ^ 2  \ h ~  Pt\,

t =  1

where pt and pt are the estimated and true correlations, respectively. The average 

of these in-MAEs over 1000 replications are used as a performance measure.

Table 8.1 reports results of the average in-sample MAEs for each estimator. 

Entries in bold represent best performing estimators in terms of the MAE for 

correlations. When errors are generated from the standard normal distribution, 

the mean absolute errors produced by the QMLE under all correlation processes are 

found the least. For student-* distribution with 3 df, B-estimator shows excellent 

results. The MAEs of correlation estimates for this estimator are found better 

than the competing estimators for all correlation processes except the DCC process 

where the MAE of LAD is found smaller than the B-estimator but the difference 

is not significant. When errors have heavy tails and asymmetric, the B-estimator 

again outperforms other competing estimators and shows the least MAEs for nearly 

all correlation processes. The only occasion when LAD beats B-estimator is the 

DCC processes. This suggests that B-estimator can be considered as the best 

choice for in-sample correlation estimates when errors are non-normal.
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Table 8.1: Mean Absolute Error for the In-sample Correlation Estimates for the S-GARCH 
Model.____________

QMLE LAD B-estimator
Standard Normal

Constant 0.1010 0.1027 0.1094
Sine 0.1817 0.1824 0.1865
Fast Sine 0.2447 0.2451 0.2481
Step 0.1585 0.1617 0.1663
DCC 0.2530 0.2539 0.2574
TVC 0.1560 0.1574 0.1639

Student-t(S)
Constant 0.1783 0.1311 0.1260
Sine 0.2909 0.2655 0.2635
Fast Sine 0.3200 0.2972 0.2950
Step 0.2634 0.2388 0.2339
DCC 0.2884 0.2611 0.2613
TVC 0.2464 0.2114 0.2091

Skewed-t(4,0.25)
Constant 0.1320 0.1167 0.1165
Sine 0.2665 0.2512 0.2498
Fast Sine 0.3002 0.2868 0.2862
Step 0.2392 0.2239 0.2216
DCC 0.2782 0.2663 0.2673
TVC 0.2167 0.1972 0.1971

The out-of-sample correlation forecasts of each estimator are also evaluated. 

The out-of-sample correlation forecasts are important for investors, portfolio and 

risk managers who want to evaluate the predictive performance of their models. 

At each replication, K  =  20-step ahead correlation forecasts are produced using 

each M-estimator and the mean absolute error for out-of-sample correlation is 

calculated as
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The average over 1000 replications is calculated and the results are reported in Ta

ble 8.2. The out-of-sample correlation forecasts can be considered more important 

than the in-sample because of their use in decision making.

T ab le  8.2: Mean Absolute Error for the Out-of-sample Correlation Estimates for the S-GARCH
Model.

QMLE LAD B-estimator
Standard Normal

Constant 0.0689 0.0732 0.0802
Sine 0.2465 0.2346 0.2336
Fast Sine 0.2552 0.2586 0.2602
Step 0.3417 0.2989 0.3178
DCC 0.2616 0.2612 0.2651
TVC 0.1366 0.1374 0.1433

Student-t(S)
Constant 0.1616 0.0979 0.0909
Sine 0.3394 0.2367 0.2069
Fast Sine 0.3193 0.2884 0.2888
Step 0.4123 0.3054 0.2800
DCC 0.2911 0.2295 0.2294
TVC 0.2189 0.1590 0.1624

Skewed-t(4,0.25)
Constant 0.1052 0.0834 0.0865
Sine 0.3144 0.2409 0.2157
Fast Sine 0.2844 0.2660 0.2679
Step 0.3753 0.3064 0.2860
DCC 0.2736 0.2484 0.2494
TVC 0.1883 0.1552 0.1601

For the standard normal errors, the results of the average out-of-sample MAEs 

for each estimator is as follows: the QMLE produces the least MAEs for constant 

correlation, fast sine and TVC processes with LAD showing good results for step 

and DCC processes whereas for sine correlation process, B-estimator outperforms 

others. Both LAD and B-estimator outperform the expected best estimator QMLE 

for normal errors on three correlation processes.
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Fiom the lesults of Table 8.1, we found that B-estimator was the best choice 

in teims of in-sample MAE of correlation estimates, this estimator provides very 

good results for out-of-sample correlation estimates as well. Only for fast sine 

and TVC correlation processes, LAD produces MAEs that are smaller than the 

B-estimator. On all other cases, B-estimator is the clear winner. For skewed-^ 

distribution both LAD and B-estimator provide results better than the QMLE 

with LAD showing good results for constant, fast sine, DCC and TVC correlation 

processes and B-estimator for sine and step processes.

We used the MAE as the forecast error statistic to evaluate and compare fore

cast errors in correlation estimates. This error statistic has a shortcoming that 

the underlying loss function is symmetric. Brailsford and Faff (1996) suggested 

two different error statistics that account for the potential asymmetry in the loss 

function. Their Mean Mixed Error of Under-prediction (MME^) penalizes under

predictions more heavily and defined as

x ^  _________________  k

M M Eu = —  I V\M + k ~  p T + k \ I ( P T + k  < Pr+ k)+ ^2 \ P T + k ~ P T + k \ I ( P T + k  >  p T + k ) 

\  *=1 *=1

It can be seen that the above statistic places a heavier weighting on under

predictions by taking the square roots of the absolute values of forecast enois. 

Similarly, the Mean Mixed Error of Over-prediction (MMEq) which penalizes over

predictions more heavily can be defined as

/  k  _________________  T V
j V' yj\ p T +k  -  p T + k \ I ( i h + k  >  P T + k ) + \ p r + k - p T + k \ I ( p T + k  <  P T + k)  

\  k=i ^

Prom the point of view of decision making, many investors and risk managers are 

sometime, interested to know how much their model under- or over predicts the 

volatilities or correlations. These statistics based on asymmetric loss functions can
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a n s w e r  t h e i r  Q u e s t i o n s  a n d  h e lp  t h e m  d e c i d e  a c c o r d in g ly .

Table 8.3 leports the results of asymmetrical statistical evaluation methods for 

under- and over-prediction for M-estimators under various correlation processes 

and error distributions. All experiments are repeated 1000 times and the average 

over these replications are reported. For sine and step correlation processes all 

estimators under-predict the correlations heavily with QMLE showing the largest 

values. The QMLE produces good results under normal errors. Both LAD and 

B-estimator have smaller mixed mean errors than the QMLE for non-normal dis

tributions with B-estimator producing the best results overall.

Table 8.3: Mixed Mean Error of Under-Prediction and Over-prediction for the S-GARCH 
M o d e l . ____________________________________________ ____________________________

QMLE LAD B-estimator

M M E u M M E 0 M M E u M M E q M M E u M M E q

Standard Normal
C onstant 0 .1727 0.1503 0.1791 0.1583 0.1865 0.1627
Sine 0.4727 0.2627 0.4600 0.2471 0.4648 0.2642
Fast Sine 0 .3648 0.3717 0.3673 0.3775 0.3652 0.3780
Step 0.6251 0.4074 0.5999 0.3787 0.6118 0.3955
DCC 0.3753 0.3692 0.3759 0.3718 0.3800 0.3738
TVC 0.2451 0.2411 0.2468 0.2490 0.2553 0.2528

Student-t(3)
C onstant 0.2931 0.2589 0.1704 0.1953 0.1556 0.2044

Sine 0.5419 0.4071 0.4565 0.2649 0.4112 0.2351

Fast Sine 0.4280 0.4373 0.3713 0.4034 0.3703 0.4156

Step 0.5803 0.4438 0.4999 0.3092 0.4721 0.2878

DCC 0.4226 0.4140 0.3384 0.3398 0.3402 0.3396

TVC 0.3632 0.3551 0.2601 0.2742 0.2598 0.2738

Skewed-tU,0.25) _____
C onstant 0.2272 0.2083 0.1641 0.1882 0.1560 0.1956

Sine 0.5199 0.3346 0.4512 0.2485 0.4166 0.2316

Fast Sine 0.3899 0.3942 0.3677 0.3935 0.3669 0.4034

Step
DCC

0.5810 0.4077 0.5162 0.3168 0.5050 0.3075

0.3898 0.3884 0.3492 0.3588 0.3506 0.3618

TVC 0.3087 0.3065 0.2496 0.2687 0.2475 0.2731

M M E  and M M E  are the mixed mean error of under- and over-prediction, respectively.
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Based on the results of Monte Carlo experiment, it can be concluded that esti

mators such as LAD and B-estimator are good alternatives to the commonly-used 

QMLE for estimating the multivariate GARCH models. The results provide evi

dence that these estimators outperform the QMLE in terms of both in-sample and 

out-of-sample correlation forecasts. Using asymmetric loss functions we find that 

when errors are non-normal, the QMLE systematically under- and over-predicts 

correlation estimates more than other estimates. Overall, B-estimator shows re

sults better then the competing estimators. Finally, the robust method used for 

the estimation of multivariate GARCH models is very easy to implement as it 

requires estimation of some univariate GARCH models.

E m p irica l I llu s tra tio n

In this section the procedure outline above is applied to stock indices and cur

rency exchange rates. The out-of-sample forecasts of the conditional correlations 

and value-at-risk are obtained. Various evaluation measures are used to assess the 

performance of competing estimators in predicting risk estimates.

A p p l ic a t io n  to  s tock indices:

The data set used in this study are the daily log returns of SP500 index and the 

stocks of Cisco Systems and Intel Corporations from January 2, 1991 to December 

31, 1999, with T  =  2275 observations in each set. The same data set was used for 

empirical investigation of weighted linear estimator foi multivaiiate ARCH models 

in previous chapter. Basic descriptive statistics for these data sets can be found in 

Section 7.2.3. The log returns are in percentages and we denote the return vector 

at time by x* =  x 2,u X3J,)', where x2,t, and are the log returns at

time t, of SP500, Cisco and Intel, respectively.

We divide the data set in two parts: initial N  = 1275 observations are used for
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model estimation and the remaining K  = 1000 observations are retained for out-of- 

sample foiecast evaluation. Each data set over the in-sample period is estimated 

using the S-GARCH model. The univariate GARCH(1,1) model is fitted using 

M-estimators to each data sets and 1 < t < A, i = 1,2,3}, estimates of 

conditional variances of x ^ t are obtained.

For the conditional covariances, new series, x +ijjt  =  x iit +  x j)t and x _ ijtt  =  

Xi,t ~  Xj,t, for 1 < i < j  < 3 are constructed. By fitting GARCH(1,1) models, 

conditional variances of these new series are obtained and these are used to get 

ctijf.-, estimates of conditional covariances between each pair of series.

F orecast E va lu a tio n :

Accurate estimates and reliable forecasts of correlations are of paramount impor

tance in risk management (see Skintzi et al. (2005), for the importance of correla

tion forecasting on risk management). The forecasting performance of correlation 

has not received significant attention in the literature.

To evaluate the predictive performance of M-estimators, the out-of-sample fore

casts of correlation estimates between each pair of data sets are compared. The 

k-step ahead forecasts of variances are generated from (8.10) and then aggregated 

over the forecast horizon, K* as

=  y ^Mi,N+k+K .{i-ip  Z= l ,  i — 1)2,3,
fc=i

where L  =  K /K * ,  is the total number of aggregated variances obtained from rolling 

window scheme. For this study we use K* = 5,10, and 20, these correspond to 

weekly, bi-weekly and monthly forecasts. Similarly, we obtain

K

Gi jJ  =  ^  'j & i j , N + k + K  -(/—I)) 

k= 1
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the aggregated forecasts of covariances. Finally, forecasts of conditional correla-

Since the tiue correlations are not observable, we use realized correlations as 

a proxy of these unknown correlations. Andersen and Bollerslev (1998) showed 

that higher-frequency returns produce better approximations of realized volatilities 

than same-frequency returns. In the absence of high-frequency data, we construct 

realized correlation from daily asset returns over the forecast horizon as:

The mean absolute error (MAE) is used to evaluate the correlation forecasts 

of M-estimators where MAE is defined as

where p^q and p.qq are the estimated and realized correlations, respectively.

In addition to the MAEp, we evaluate the performance of our proposed method 

in predicting value-at-risk. We choose equally weighted portfolio weights and esti

mate the p% VaR for each forecast horizon (see Section 7.2.3 for the construction 

of equally weighted portfolio VaR). Some useful evaluation measures are used 

to assess these forecasts. In this study the average number of VaR violations, 

p, Kupiec’s likelihood ratio statistic for unconditional coverage, L R ^  (Kupiec, 

1995), the Dynamic Quantile (DQ) test of Engle and Manganelh (2004) and the

tions are obtained as

Pij,l — I =  1,..., L, 1 < i < j  < 3.

M k = 1 x i , N + k + K  j l - 1) X j tN + k + K  - ( I -1)

r-2
' i , N + k + K  - ( /- I ) ' j , N + k + K' j , N + k + K  -(Z—1)

I = 1,..., L, 1 < i < j  < 3.

(8.13)

MAEp — ^   ̂  ̂ i Pijti Pij,i
1=1 L l< 2< J< 3
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average quadratic loss function (AQ L ) of Lopez (1999) are used to measure the 

out-of-sample peifoimance of competing M-estimators. See Section 5.3 for the 

explanation of these terms. The results are summarised in Table 8.4.

It can be seen from Table 8.4 that B-estimator produces the least MADs for 

correlation forecasts for 5-step and 10-step forecast horizons whereas for 20-step 

horizon, LAD shows better results. The MADs of QMLE are not found the least in 

any of the cases considered. This is consistent with our Monte Carlo results where 

LAD and B-estimator produced very good results for out-of-sample conditional 

correlation estimates. The average number of violations for all M-estimators are 

found reasonable and each estimator pass the LRUC test for all forecast horizons. 

B-estimator passes the DQ test for high order dependence in VaR violations at 

5 and 10-steps forecast horizons where as both the QMLE and LAD fail to pass 

this test. Finally, the AQLs of B-estimator are found smaller than the other two 

competing estimators across all three forecast horizons. These findings clearly 

suggest tha t B-estimator is the best choice among the competing estimators for 

the S-GARCH model.

A p p l ic a t io n  to  exchange rates:

In the second empirical example we analyse the currency exchange rates of the US 

Dollar (US$) against the British Pound (GBP), Euro (EUR), and Australian Dollar 

(AUD) from January 4, 2000 until December 31, 2007. The data sets aie obtained 

from h t tp : / /w w w .u k f o r e x .c o .u k / . Let r^t (i = 1, 2, 3), denotes the exchange rate for 

US$ against GBP, EUR and AUD, respectively, the log-exchange rates are defined 

as x u =  (In Tij -  ln r^ _ i)  x 100%. The data set consist of T  =  2169 observations. 

Again initial N  — 1169 observations are used for estimation and the remaining 

K  — 1000 observations are left for forecasts evaluation.

First row of Figure 8.1 displays the raw exchange rates of USS against three

http://www.ukforex.co.uk/
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Table 8.4: Out-of-sample forecasting performance of M-estimators using the S-GARCH Model 
tor stock indices._______________

Forecast horizon QMLE LAD B-estimator
5-step

P 0.0100 0.0100 0.0080
LRuc 0.00 0.00 0.44

I1-0000] [ i . : : : : ;  [0.5102]
DQ Test 40.65** 40.10** 12.76

[0.0781]
AQL 0.0737 0.0747 0.0687
M A E V  0.8884 0.8530 0.8469

10-step
P 0.0100 0.0100 0.0080
LRuc 0.00 0.00 0.44

[toooo] [ l . : : : : ;  [0.5102]
DQ Test 41.49** 42.06** 13.16

[0.0683]
AQL 0.0743 0.0772 0.0707
MAEp 0.6926 0.6532 0.6513

20-step
p  0.0110 0.0150 0.0100
L R UC 0.098 2.19 0.00

[0.7544] [0.1390] [LZZZZ]
DQ Test 38.26** 37.52** 19.58**

[o.oooo] [0.0065]
AQL 0.0743 0.0843 0.0731
MAE„ 0.5889 0.5468 0.5484

currencies. It can be seen that all three graphs show same trend and hence it 

can be deduced that these exchange rates may be correlated with each other. The 

sample correlation estimates between log-exchange rates are found as p±2 = 0.6833, 

Pn =  0.4607, and p2$ =  0.5497, where 1, 2 and 3 are used for US$/GBP, US$/EUR, 

and USS/AUD, respectively. The log-exchange rates are also shown in the second 

row of the figure and the last row shows the histogram of daily log-exchange rates. 

A slight departure from normality can be observed from these histograms.

The results of MAE and other evaluation measures for exchange rate data are
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Figure 8.1: Daily exchange rates of US Dollars against GBP, EUR and AUD form January 
4, 2000 to  November 3, 2004. First row: daily exchange rates, second row: log-exchange rates, 
th ird  row: histogram s of log-exchange rates.
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reported in Table 8.5. The mean absolute errors for correlation forecasts of B- 

estimator again outperform other estimator in two out of three forecast horizons. 

The LAD shows the least MAD for 10-day horizon correlation forecasts and QMLE 

fails to compete these estimator based on this performance measure. All estima

tors produce the same average VaR violations and hence pass the unconditional 

coverage test. B-estimator passes the dynamic quantile tests in first two cases but 

rejects this test at 20-step forecast horizon. LAD passes the DQ test at only one 

occasion, at 5-day horizon, but fails to accept at other forecast horizons and finally 

the QMLE fail to pass the test at any case. The AQLs of all estimators for all 

three forecast horizons are found approximately the same and we could not find 

a significant difference among them but, since B-estimator shows the least MAD 

and also passes the DQ test, the AQLs of B-estimator can be considered reliable.
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Table 8.5: Out-of-sample forecasting performance of M-estimators using the S-GARCH Model 
for exchange rates.__________________
Forecast horizon QMLE LAD B-estimator

5-step
p 0.0110 0.0100 0.0100
LRuc 0.10 0.00 0.00

[0.7544] [1.0000] [ i . : : : : ;
DQ Test 16.43* 9.13 9.64

[0.0215] [0.2432] [0.2102]
AQL 0.0111 0.0101 0.0100
MAEp 0.7749 0.7546 0.7265

10-step
V 0.0120 0.0110 0.0110
LRuc 0.38 0.10 0.10

[0.5377] [0.7544] [0.7544]
DQ Test 37.96** 33.56** 34.15**

[0.0000]
AQL 0.0121J 0.0112 0.0110
MAEp 0.5551 0.5395 0.5411

20-step
P 0.0100 0.0100 0.0100

LR UC 0.00 0.00 0.00
[1.0000] [1.000]

DQ Test 46.27** 37.12** 37.07**
[0.0000]

AQL 0.0102 '0.0102 '0.0102
MAEp 0.4486 0.4540 0.4248
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8.3 A  R obust M ethod for the Orthogonal G ARCH  

M odel

Engle et al. (1990) proposed the parameterisation of the conditional covariance 

matrix using the idea that co-movements of the stock returns are driven by a 

small number of common underlying variables, called factors. Ding (1994) first 

introduced the use of factor GARCH model using orthogonal factors and later 

Alexander (2000) suggested the construction of unconditionally uncorrelated linear 

combinations of the observed series based on principal component analysis.

It is well known that the correlations between returns make the modelling and 

estimation of the multivariate GARCH modeling more difficult. Therefore, the 

basic idea of the orthogonal model is that in the first step all unconditional cor

relations are removed by taking principal components of the standardised returns 

and some of the principal components are modelled by univariate GARCH models. 

In the second step, the inverse of the principal components construction is used 

to transform the conditional moments of the principal components into the con

ditional variance of the returns themselves. This approach makes the estimation 

of the multivariate GARCH models very easy as only some univariate GARCH 

estimations are required in the first step only.

In our model we use as many factors as the number of variables in the model. 

This solves the problem of choosing the correct number of factors, or equiva

lently, the number of principal components for the model. Since we are using only 

univariate GARCH models for each factors, use of all factors is not a serious com

putational issue. Also the use of all factors ensures the positive definiteness of the

conditional covariance matrix.

More specifically, suppose there are M  return series with T  observations each.

Let Xi,t be the return of variable i at time t and X  be the T  x M  matrix of these
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return series. Define the standardised return series as

where /ij and cq are the estimated mean and standard deviation for return series 

Xi,t- Denoted by Y , the T  x M  matrix of standardised returns, the principal 

component matrix P , can be defined as

P  =  Y W  (8.14)

where W  =  [m^] for i, j  = 1,..., M, is the M x M  orthogonal matrix of eigenvectors 

of Y 'Y .

Since W  is orthogonal, the principal component representation of the system 

can be obtained by inverting (8.14) as Y  =  P W ', that is

Yi — wi\P\ +  UH2P2 +  ... +  uhmPm, (8.15)

where Y{ and P{ denote the z-th columns of Y  and P , respectively. Thus each data

vector in Y  is a linear combination of the principal components. In terms of the

original variables X  the representation (8.15) is equivalent to

Xi — (Jii + WftPi +  w*2P2 +  ••• +  w*m PMi (8.16)

where Xi  denotes the z-th column of X, and w*j = WijUi.

The covariance matrix of X* at time t, denoted by H t can be obtained as

H* =  W*D*W* (8.17)



8. Robust Methods for Multivariate GARCH Models 222

where W  =  [w *j],  for i , j  — 1, is the matrix of normalized factor weights

and D t is the diagonal matrix of the variances of the principal components at time 

t. Since D ( has positive diagonal elements, the variance-covariance matrix H* is 

always positive definite when all principal components are used.

In order to get H*, an estimate of the conditional variance-covariance matrix, 

only the eigenvectors of Y 'Y , and the diagonal elements of D t need to be estimated. 

These diagonal elements can be modelled, independently in a univariate setting, 

using a GARCH framework.

The GARCH model is proposed for the estimation of the variances of the 

principal components. Let pijt (z =  1,..., M ) be the elements of the z-th column of 

matrix P, the conditional variances of the principal components are modelled as 

GARCH(1,1):

ai,t ~  A a iAPi,t-i + 'L — A ---j Af, t — 1,..., T, (8.18)

where a ft is the conditional variance of pij, and a > 0, > 0. Note that

other GARCH-type models can also be used for the estimation of the variances of 

the principal components.

We propose estimating the parameters in (8.18) using M-estimators. Hence, we 

obtain (i = 1,..., Af), estimates of the conditional variances, t (i 1,..., Af), 

at time t. The estimated variance-covariance matrix Hh of return series X  at 

time t are obtained using (8.17) with matrix replaced by its estimate, Th —

diag[dl, , ...,<72M.tJ

The &-step ahead forecast from the O-GARCH models are generated as follows. 

From (8.17), we get
H T+fe = W }+)iD r+tW }+ t, (8.19)



8. Robust Methods for Multivariate GARCH Models 223

where D t+a; = •> ^M,T+fc]> an(i W T+k can be approximated by

without introducing large errors in the covariance matrix, since W  does not change 

much from day to day. For the i-th principal component, the forecast at time T + k  

can be generated from the GARCH(1,1) model as

The advantage of using the orthogonal GARCH specification is that only uni

variate GARCH models for all principal components need to be estimated to ob

tain the robust estimates for the full multivariate GARCH model. This reduces the 

computational complexity without imposing other constraints on the model. We 

suggest using all principal components in the first step of estimating the univariate 

GARCH models. This solves the problem of choosing the correct number of factors 

in the model. Also, as the matrix of normalized factor weights W* has already 

been estimated in the first step, the second step, the inverse transformation (8.17), 

requires no further estimation.

8.3.1 Simulation and Empirical Results 

M o n te  C arlo  E xperim en ts

Using the same data generating and correlation processes as defined in Section 

8.2.1, we fit the O-GARCH model using the QMLE, LAD and B-estimators. The 

performances of these estimators are measured using the in-sample mean absolute 

error for correlation estimates. From (8.19), 20-steps ahead forecasts of variance- 

covariance matrix is generated and using this forecast matrix the out-of-sample

^2 _  £*(1 — (®i +  Pi)k X)
a i,T + k  — :— — aC— T (dj +  Pi) Tr+i’ k > 1,o \k -1-2

where d fT+1 = Ui + + f j ^
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mean absolute error for correlation estimates are obtained. All experiments are 

repeated 1000 times.

Table 8.6 reports the results of average in-sample MAE for correlation esti

mates over 1000 independent replications. When errors are generated from the 

standard normal distribution, the in-sample MAEs for conditional correlations of 

the QMLE show good results for all correlation processes except for fast sine cor

relation process. In this case LAD produces slightly better results. For student-t 

distribution with 3 df, B-estimators dominates over other two estimators. In this 

case B-estimator has the least MAD for constant, sine, fast sine and step correla

tion processes and LAD for DCC and TVC correlation processes. Mixed results 

are found for skewed-£ distribution where both B-estimator and LAD produce the 

least MAD for three correlation cases each. For fast sine, DCC and TVC, LAD is 

considered as a better choice and for all other cases B-estimator show good results. 

Again QMLE is not found better than the competing estimators for heavy-tailed 

and heavy-tailed asymmetric distributions in terms of estimating the conditional 

correlations.

The out-of-sample results for estimating conditional correlations are reported 

in Table 8.7. Although the average out-of-sample MADs for LAD are found the 

least in two correlation cases, QMLE clearly perform well for normal errors. For 

heavy-tailed distributions for errors, both LAD and B-estimators beat the QMLE 

and produce the least MAD for three cases each. B-estimator show good results for 

constant, sine and DCC correlation process and LAD for others. LAD dominates 

the lower part of the table, where results of the out-of-sample MAEs for conditional 

correlations are displayed. For constant and sine con elation piocess B-estimatoi, 

and for other four cases LAD can be considered as the best choice. These results 

confirm tha t QMLE may not produce better in-sample and out-of-sample results 

for conditional correlations when errors are non-normal. Also, we conclude that
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Table 8.6: M ean Absolute Error for the In-sample Correlation Estim ates for the O-GARCH 
model._____________

QMLE LAD B-estimator
Standard Normal

Constant 0.0096 0.0099 0.0115
Sine 0.1291 0.1293 0.1313
Fast Sine 0.2248 0.2233 0.2244
Step 0.0615 0.0627 0.0636
DCC 0.1415 0.1419 0.1452
TVC 0.1212 0.1261 0.1258

Student-t(S)
Constant 0.0279 0.0180 0.0171
Sine 0.1835 0.1704 0.1699
Fast Sine 0.2468 0.2393 0.2390
Step 0.1137 0.0991 0.0965
DCC 0.1738 0.1696 0.1721
TVC 0.1234 0.1114 0.1125

Skewed-t(4,0.25)
Constant 0.0196 0.0147 0.0145
Sine 0.1625 0.1582 0.1562
Fast Sine 0.2384 0.2343 0.2365
Step 0.0923 0.0850 0.0846
DCC 0.1788 0.1701 0.1739
TVC 0.1100 0.1037 0.1073

for the Orthogonal GARCH model, LAD and B-estimator should be used for 

estimation and prediction when there is an evidence of departure from normality. 

Finally, LAD has a slight edge over B-estimator in terms of out-of-sample MAD for 

conditional correlations in O-GARCH models. The mixed mean errors of under

and over-prediction for each estimator is also calculated and results are displayed 

in Table 8.8. The results of LAD and B-estimator are found better than the 

QMLE in all cases of non-normal errors and also in few cases under normal errors. 

Another feature we notice from this table is that when there is a sudden change in 

correlation, as in the case of step correlation process, all estimators under-predicts
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Table 8.7: Mean Absolute Error for the Out-of-sample Correlation Estim ates for the O-GARCH 
Model._________________

QMLE LAD B-estimator
Standard Normal

Constant 0.0060 0.0096 0.0090
Sine 0.2758 0.0728 0.1205
Fast Sine 0.2452 0.2542 0.2545
Step 0.4796 0.2806 0.3962
DCC 0.2507 0.2526 0.2525
TVC 0.1233 0.1263 0.1267

Student-t(S)
Constant 0.0294 0.0121 0.0117
Sine 0.4222 0.1495 0.1318
Fast Sine 0.2779 0.2533 0.2572
Step 0.4895 0.2862 0.3021
DCC 0.2379 0.2113 0.2102
TVC 0.1462 0.1304 0.1324

Skewed-t(4,0.25)
Constant 0.0178 0.0123 0.0115
Sine 0.3666 0.1173 0.1112
Fast Sine 0.2630 0.2538 0.2587
Step 0.4723 0.2629 0.2952
DCC 0.2415 0.2341 0.2370
TVC 0.1339 0.1293 0.1316

the correlation heavily with QMLE producing the largest error. Also, for sine 

correlation process, the QMLE under-predicts the correlations more than other 

estimators.

E m p irica l I llu s tra tio n

As an empirical application, the O-GARCH model is fitted to stock indices and

currency exchange rates.

A p p l ic a t io n  to  s tock  indices:

The same data sets from the previous section, i.e. the daily log returns of SP500
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T a b le  8 .8 : Mixed Mean Error of Under-Prediction and Over-prediction for the O-GARCH 
Model under Normal errors.___________________

QMLE LAD B-estimator

M M E u  M M  Eg M M E u  M M E 0 M M E u  M M E 0
Standard Norm.al

C onstant 0 .0507 0.0273 0.0727 0.0281 0.0628 0.0331
Sine 0.5096 0.2747 0.2503 0.0762 0.3339 0.1191
Fast Sine 0.3609 0.3559 0.3561 0.3781 0.3530 0.3799
Step 0.6886 0.4788 0.4851 0.2848 0.6219 0.3995
DCC 0.3679 0.3629 0.3783 0.3677 0.3690 0.3671
TVC 0.2308 0.2175 0.2211 0.2339 0.2258 0.2301

Student-t(S)
C onstant 0.0871 0.0444 0.0812 0.0299 0.0750 0.0365
Sine 0.6183 0.4196 0.3683 0.1461 0.3382 0.1313
Fast Sine 0.3859 0.3768 0.3599 0.3743 0.3575 0.3817
Step 0.6749 0.4798 0.4716 0.2829 0.4957 0.2986
DCC 0.3389 0.3333 0.3245 0.3182 0.3264 0.3160
TVC 0.2646 0.2504 0.2305 0.2356 0.2279 0.2408

Skewed-t(4,0.25)
C onstant 0.0885 0.0443 0.0834 0.0298 0.0755 0.0333
Sine 0.5866 0.3676 0.3261 0.1159 0.3159 0.1130
Fast Sine 0.3718 0.3657 0.3580 0.3271 0.3551 0.3257
Step 0.6717 0.4630 0.4559 0.2672 0.5018 0.2924
DCC 0.3476 0.3613 0.3420 0.3316 0.3423 0.3487
TVC 0.2418 0.3298 0.2212 0 .2377 0.2169 0.2481

M M E  and M M E  are the mixed mean error of under- and over-prediction, respectively.

index and the stocks of Cisco Systems and Intel Corporations from January 2, 

1991 to December 31, 1999, with T  = 2275 observations, are used in this section. 

The principal components are obtained using the initial N  =  1275 observations. 

The O-GARCH model is fitted to all of these principal components and fc-step 

ahead forecasts for correlations are generated where k = 1,..., I<* and the forecast 

horizon K* =5 , 10, and 20-day. The out-of-sample performances of M-estimators 

are compared using various test statistics and performance measured from previous 

section.

Table 8.9 displays the results of out-of-sample forecasting performance of M- 

estimators using the O-GARCH model. First we look at the 5-step forecast hori
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zon. It is found that all M-estimators provide reasonable estimates of average 

violations, p and pass the likelihood ratio test for unconditional coverage. The 

QMLE and LAD fail to pass the dynamic quantile test for high order indepen

dence in VaR violations. B-estimator passes this test although with a low p-value. 

The average quadratic loss and the mean absolute error for correlation forecasts 

of B-estimator are found the least. B-estimator also show better results than the 

other estimators in terms of AQL and MAEP for 10 and 20-step forecast horizons. 

It passes the DQ test again at 10-day horizon where both QMLE and LAD fail 

to pass the test. For 20-step forecast horizon all estimator fail to pass the DQ 

test. In summary, B-estimator provides excellent results and outperform the other 

competing estimators when the O-GARCH model is fitted to stock indices data.

A p p l ic a t io n  to  exchange rates:

We fit the O-GARCH models to the exchange rate data of the US Dollar (US$) 

against the British Pound (GBP), Euro (EUR), and Australian Dollar (AUD) 

from January 4, 2000 until December 31, 2007. The out-of-sample results for 

M-estimators are reported in Table 8.10.

The results of Table 8.10 are summarised as follows: All M-estimators consid

ered in this study provide good estimate of average number of VaR violation and 

pass the Kupiec’s Likelihood ratio test. For this data set, none of the estimator 

fail to reject the DQ test for all three forecast horizons. This shows that the VaR 

violations produced by each estimator, when O-GARCH models are fitted, are 

not dependent even at higher lags. The AQLs of B-estimator are again found the 

least in all cases. At 20-day horizon, LAD shows better results for the out-of- 

sample mean absolute error of correlations but for 5 and 10-step forecast horizons,

B-estimator performs well.

The results of our Monte-Carlo experiments and real data analysis show that
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Table 8.9: Out-of-sample forecasting performance of M-estimators using the O-GARCH Model 
for stock indices.______
Forecast horizon QMLE LAD B-estimator
5-step

V 0.0090 0.0100 0.0080
LRuc 0.10 0.00 0.44

DQ Test
[0.7465] [ l . : : : : ; [0.5102]
45.46** 39.71** 12.63

AQL
[0.0816]

0.0756 0.0773 0.0722
MAEp 0.9222 0.9016 0.8878

10-step
V 0.0090 0.0100 0.0080
LRuc 0.10 0.00 0.44

[0.7465] [1.0000] [0.5102]
DQ Test 45.51** 39.99** 13.05

[0.0000] [o.:::i; [0.0708]
AQL 0.0800 0.0757 0.0744
MAEp 0.6730 0.6546 0.6470

20-step
P 0.0100 0.0150 0.0100
L R Uc 0.00 2.19 0.00

[1.0000] [0.1390] [1.0000]
DQ Test 52.21** 86.79** 19.23**

[0.0075]
AQL 0.0789 0.0872 0.0765
MAEp 0.5393 0.5216 0.5073

estimator such as LAD and especially B-estimator can produce better results than 

the frequently-used estimator, the QMLE. Both in-sample and out-of-sample re

sults confirm that when errors are generated from a heavy-tailed distribution such 

as Student-* with 3 df or a heavy-tailed-skewed distribution like Hansen’s Skewed-f 

distribution, the QMLE is not a right choice. Both LAD and B-estimator com

prehensively outperformed the QMLE in terms of standard performance measures. 

The QMLE is clearly the worst performer under non-normal errors and these obser

vations are confirmed by the two asymmetric error statistics. Applications to real
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Table 8.10: Out-of-sample forecasting performance of M-estimators using the O-GARCH 
Model for exchange rates.
Forecast horizon QMLE LAD B-estimator
5-step

V 0.0090 0.0100 0.0070
LRuc 0.10 0.00 1.02

[0.7544] [ l . : : : : ; [0.3136]
DQ Test 1.32 1.47 1.30

[0.9878] [0.9832] [0.9884]
AQL 0.0103 0.0115 0.0083
MAEp 0.7418 0.7415 0.7300

10-step
P 0.0090 0.0110 0.0080
LRuc 0.10 0.10 0.44

[0.7465] [0.7544] [0.5102]
DQ Test 2.15 2.60 1.28

[0.9920] [0.9187] [0.9891]
AQL 0.0111 0.0133 0.0102
MAEp 0.5163 0.5101 0.5049

20-step
P 0.0080 0.0110 0.0080
LRuc 0.43 0.10 0.43

[0.5102] [0.7544] [0.5102]
DQ Test 0.97 2.39 0.94

[0.9953] [0.9352] [0.9958]
AQL 0.0112 0.0136 0.0103
MAEp 0.4001 0.3936 0.3974

data sets further support these findings. B-estimator shows excellent results and 

stand out as the best estimator for the estimation and prediction of multivariate 

GARCH models.

8.4 Com parison of both models

In previous two sections we defined M-estimators for two multivariate GARCH 

models namely, the S-GARCH and the O-GARCH models. We investigated the

61
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performance of our estimators with commonly used estimation method, QMLE. 

Our results showed that LAD and B-estimators produce better results than the 

QMLE both in estimating and predicting value-at-risk and correlations between 

assets. In this section we compare both these multivariate GARCH models. More 

specifically, we discuss problem of estimation, positive definiteness of conditional 

variance-covariance matrix and also empirical results of our real data analysis.

First, the S-GARCH model not only involves estimation of univariate GARCH 

models for the individual return series but also for the sum and difference of 

each pair of series whereas the O-GARCH model requires estimation of univariate 

GARCH models for all principal components. For a M - dimensional problem, the 

S-GARCH involves estimation of M  x M  univariate GARCH models but the O- 

GARCH needs estimation of at most M  models. This shows that as the number 

of variable increases the O-GARCH model can be preferred over S-GARCH as the 

former requires less computational time and also easy to manage.

Second, The conditional variance-covariance matrices in O-GARCH model is 

always positive definite by construction if all orthogonal factors are used but this 

is not guaranteed in S-GARCH model. Although few techniques, described in pre

vious sections, to ensure the positive semi-definiteness of covariance matrix can be 

employed but these may introduce some error in estimation and prediction. Hence, 

we prefer the O-GARCH model with all orthogonal factors over the S-GARCH 

model. Note that the principal components are only unconditionally uncorrelated, 

so a covariance matrix of principal components is not necessaiily diagonal and the 

assumption of zero conditional correlation has to be made (Alexander 2000).

Finally, we compare the out-of-sample performance of M-estimators in both the 

S-GARCH and O-GARCH models. By examining the results of Tables 8.4 and 8.9 

(applications to stock indices), we find that both models produce more or less same 

results with B-estimators showing the best results for out-of-sample correlations
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in most of the cases and also producing the least AQL. For 5-step forecast horizon, 

the mean absolute error for correlations of S-GARCH is found less than those of 

O-GARCH but for 10 and 20-step horizons, the O-GARCH shows smaller values. 

For both models, B-estimators pass the DQ test at 5 and 10-step forecast horizons 

while other competing estimators fail to pass this test at all three horizons. When 

both models arc applied to currency exchange rates, comparison of Tables 8.5 and 

8.10 reveal some interesting results. All estimators pass the DQ test at all three 

forecast horizons when the O-GARCH model is fitted but when the S-GARCH 

model is fitted to the same data set, only LAD and B-estimator pass this test at 

only 5-step forecast horizon. This gives some evidence tha t the number of VaR 

violations produced by each estimator, when the O-GARCH model is fitted, are 

independent of each other even at higher lags. Also, the mean absolute errors for 

out-of-sample correlations arc found smaller for O-GARCH model.

It can be concluded from the comparison of both these models tha t the 0 - 

GARCH has some advantages over the S-GARCH model. The former is easy to 

estimate, does not suffer from non-positive definite conditional covariance matrices 

when all orthogonal factors are used and predicts conditional correlations and risk 

estimates better.

8.5 C onclusion

Using univariate GARCH specification, two robust methods for the estimation of 

multivariate GARCH models are proposed. In the S-GARCH model four univari

ate GARCH models are estimated by M-estimators - one for each variable, one on 

the sum of the variables and one on the difference of the variables. The difference 

of the later two yields four times the covariance between the two variables. In the

O-GARCH model the data are transformed into their principal components and
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for nil components, univariate GARCH models are fitted using M-estimators. Our 

models are easy to estimate as these only requires several univariate GARCH es

timation to estimate the full multivariate GARCH model without imposing extra 

restrictions on the model.

Monte Carlo simulations show that use of LAD and B-estimator provide better 

estimates than the QMLE and the out-of-sample performance of these estimators 

are also found superior. These estimators are applied to stock indices and cur

rency exchange rates by focusing 011 predictions for conditional correlations and 

VaR. Our results suggest the use of robust estimators such as LAD and B-estimator 

for the estimation and prediction of multivariate GARCH models. Using differ

ent performance measures, we collect empirical evidence of the better predictive 

potential of B-estimators over other competing M-estimators.

We also discuss and compare both multivariate GARCH models and suggest 

using M-estimators for all components of the O-GARCH model as this model is 

easy to estimate, produces positive definite conditional covariance matrices and 

predicts better conditional correlations and risk estimates. Our approach is not 

restricted to GARCH model only, in fact, any univariate GARCH-type model can 

be used for the estimation of the multivariate model.
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Conclusions

O verview  o f th e contributions

The contributions of this thesis on conditional heteroscedastic time series models 

are as follows:

A class of robust estimators for asymmetric GARCH models was proposed. We 

explored estimators such as Cauchy and B-estimator and our findings showed that 

these estimators not only outperform the commonly-used QMLE but also the ro

bust LAD estimator when errors are non-normal. A weighted resampling method 

for GARCH models was discussed and bootstrapped M-estimators were used to 

approximate the sampling distribution of the parameters with this approach to 

resampling.

The asymptotic distributions of absolute and squared residual autocorrelations 

were obtained and new portmanteau tests were developed. These tests can be 

used to check whether or not a GARCH model fitted by using M-estimators is ad

equate. Our results are applicable under weak error moment assumptions. These 

diagnostic tests can help practitioners to use the correct statistics for checking the

234
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adequacy of GARCH-type models.
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Some useful evaluation measure and M-tests were developed to assess the per

formance of M-cstirnators in predicting value-at-risk. Our results confirmed that 

Cauchy and B-estimator not only provide robust estimate for GARCH models 

but also provide reliable risk estimates. Based on our results we suggest the use 

of these robust estimators for estimation and prediction of GARCH-type models. 

Our findings can help risk managers to use these estimators to predict risk esti

mates with confidence. A comparison of results of both symmetric and asymmetric 

models revealed tha t for data sets analysed in the study, the asymmetric model 

provides better forecasts for risk.

Another contribution was a detailed investigation of linear estimators (LE) for 

ARCH models. Through extensive simulations and real data analysis we found that 

this estimator shows accurate results for parameter estimation and predicts the 

conditional volatility better than the QMLE. Moreover, using a weighted resam

pling approach, other bootstrap schemes were found tha t can match the widely- 

used paired and residual bootstrap. We also developed predictions intervals for 

returns, volatilities and VaR and observed that LE can be considered favourable. 

Based on our empirical findings we prefer LE to QMLE for ARCH models and 

suggest its use for computer intensive tasks.

Promising results for LE in univariate settings encouraged us to generalise this es

tim ator to multivariate models. We proposed a weighted linear estimator (WLE) 

for the parameters of multivariate ARCH (MARCH) models and showed that 

this estimator estimates and forecasts MARCH models better than the competing 

QMLE. We generalised the weighted resampling to multivariate setup and showed
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the fast and easy way of approximating the sampling distribution of the parameters 

of MARCH model. Our method of estimating MARCH models using the WLE 

allows researchers to apply heavy computational methods such as bootstrapping 

in multivariate models in less time.

As our final and im portant contribution, we developed robust methods for the es

tim ation of multivariate GARCH (MGARCH) models. We proposed M-estimators 

for MGARCH models using univariate GARCH specifications. Two different meth

ods tha t are robust and easy to estimate were suggested for these models. Monte 

Carlo simulations and empirical analyses showed tha t B-estimator performs well 

in terms of estimating and predicting multivariate models. Our robust methods 

are easy to apply and do not impose extra restrictions on model. A comparison 

of both models showed that the orthogonal GARCH model with all orthogonal 

factors has an edge over the simplified GARCH model.

P ossib le d irections for future research

Some of the interesting questions and extensions tha t emerge naturally in course 

of this research but are not addressed in this thesis and remain topics for future 

research and investigation are as follows:

Selection of M-estimator among competing estimators is not addressed in this re

search. This problem of when to use what can be solved by defining the goodness- 

of-fit statistics for each estimator that measure the distances between the empirical 

distribution of error and the uniform distribution on (0,1).

One im portant future work is to provide a package for an open-source software 

such as R. The package can be used for fitting GARCH-type models using a class
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of M-estimators. This package will also include other features such as diagnostic 

testing, bootstrapping, forecasting value-at-risk and multivariate GARCH mod

elling using M-estimators, to name a few.

Using weighted resampling, a higher order analysis and consequent demonstration 

of any inaccuracy of the paired-bootstrap under the asymmetric GARCH models 

such as the G JR model is another interesting area of research.

Another approach to estimate the value-at-risk and related risk measures is to 

combine M-estimation and extreme value theory (EVT). In this approach the 

GARCH-type models are fitted using M-estimators to obtain the estimate of the 

conditional volatility and EVT is used to estimate the tail of the distribution of the 

residuals. We believe that use of robust estimators for the conditional volatility 

and EVT for the tail of the innovation distribution will provide more reliable risk 

estimates.

We used M-estimation of GARCH(1,1) specification for modelling multivariate 

GARCH models and checked the performance of M-estimator in predicting the 

conditional correlations and risk estimates. It will be interesting to use asymmet

ric models in multivariate settings and compare the predictive performance of both 

symmetric and asymmetric GARCH models.

An im portant extension is to develop M-estimators for MGARCH models such 

as CCC, DCC, VEC, and BEKK GARCH models, among others. Moreover, if 

M-estimators of these MGARCH models are developed, the next research is to 

compare these robust models with those we proposed. The comparison should be 

on out-of-sample value-at-risk and correlations predictions as in-sample compar
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isons hold little if any information.

Outlier correction in MGARCH model is another area th a t needs to be investi

gated. Using univariate GARCH specification, methods of detecting and correcting 

outliers can be developed.

Not much work has been done in bootstrapping multivariate GARCH models due 

to high computational cost. Using univariate specifications, bootstrap methods in 

multivariate setup can be developed.
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