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Abstract

Geostatistical Models for Exposure Estimation in Environmental Epidemiology

Thomas Robert Fanshawe M.Phil., M.A.

Lancaster University 

Submitted for the Degree of Doctor of Philosophy 

December 2009

Studies investigating associations between health outcomes and exposure to environmental pol­

lutants benefit from measures of exposure made at the individual level. In this thesis we consider 

geostatistical modelling strategies aimed at providing such individual-level estimates. We present 

three papers showing how to adapt the standard univariate stationary Gaussian geostatistical 

model according to the nature of the exposure under consideration. In the first paper, we show 

how informative spatio-temporal covariates can be used to simplify the correlation structure of 

the assumed Gaussian process. We apply the method to data from a historical cohort study in 

Newcastle-upon-Tyne, designed to investigate links between adverse birth outcomes and mater­

nal exposure to black smoke, measured by a fixed network of monitoring stations throughout 

a 32-year period. In the second paper, we show how predictions in the stationary Gaussian 

model change when the data and prediction locations cannot be measured precisely, and are 

therefore subject to positional error. We demonstrate that ignoring positional error results in 

biased predictions with misleading prediction errors. In the third paper, we consider models for 

multivariate exposures, concentrating on the bivariate case. We review and compare existing 

modelling strategies for bivariate geostatistical data and fit a common component model to a 

data-set of radon measurements from a case-control study designed to investigate associations 

with lung cancer in Winnipeg, Canada.
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Chapter 1

Introduction

This thesis examines in detail some specific problems relating to estimation of exposure to envi­

ronmental pollutants for use in epidemiological studies. It consists of three related papers, each 

of which looks at a different aspect of the exposure estimation problem and explains how stan­

dard geostatistical methods can be adapted according to the nature and context of the problem 

that motivates it.

1.1 Exposure Estimation for Environmental Pollutants

In order to examine associations between environmental pollutants and adverse health out­

comes, an estimate of each individual’s exposure to the pollutant is required. In early work 

in this area, ecological study designs were often used, in which average exposures and outcome 

rates were estimated across wide areas such as cities or counties (Pope III & Dockery (2006)).

Although some studies have noted the possibility of bias using individual exposure estimates 

(Tielemans et al. (1998)), in general designs that provide individual-level estimates have more 

power to detect associations with health outcomes than those that use group-level estimates. 

Many such studies often assume that individuals remain at a fixed location, for example their 

home or place of work, although more ambitious designs have also been proposed to take into 

account the changing locations of individuals over time. Changes in location for time-spans rang­

ing from a single working day to a whole lifetime have been considered (Han et al. (2005)).

The appropriate time scale in any study will depend on both the nature of the environmental
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pollutant and the health outcome under consideration. For example, fleeting exposure to certain 

radioactive material may be sufficient to initiate carcinogenesis (Little (2000)), while asthmatic 

episodes can be triggered by exposure to particulate m atter for a period of minutes or hours 

(Pope III (2000)). Exposure to particulate m atter over the course of weeks or months during 

pregnancy may be associated with an increased risk of low birthweight and other infant morbidi­

ties (Glinianaia et al. (2004)), and it may take many years of steady exposure to radon before 

lung cancer symptoms become visible (Whitley & Darby (1999)).

These examples motivate the work in this thesis and demonstrate the diverse nature of envi­

ronmental exposure assessment. The thesis presents three self-contained papers that relate to 

these applications. We now provide further background information on the relevance of each 

of the papers to exposure estimation, before discussing their context in relation to geostatistical 

modelling.

Paper 1 (Fanshawe et al. (2008)) uses data from a historical cohort study in Newcastle-upon- 

Tyne over the period 1961 to 1992. The aim of the study was to investigate associations between 

the exposure of pregnant women to ‘black smoke’ (BS, also known as PM4, particulate matter of 

at most 4/un diameter) and a range of adverse birth outcomes. The objective in our paper is to 

construct a model for a spatio-temporal BS surface using data from a network of air pollution 

monitors. The monitors returned weekly measures of BS at fixed locations, but provided rather 

sparse coverage of the study region. The resulting model can subsequently be used to predict BS 

levels at unmonitored spatial locations corresponding to residences of study participants. The 

relationship between modelled BS and study outcomes is to be reported separately from this 

thesis, as the main study analysis.

Paper 2 considers the problem of exposure over a much shorter time period and discusses the 

impact of positional error on prediction. The motivation for this work is the growing number 

of studies that have used Global Positioning Systems (GPS) or similar devices to monitor the 

position of an individual over time (Nieuwenhuijsen & Brunekeef (2008)). Such devices are 

typically unable to operate precisely, and are therefore subject to an error known as positional 

error. This error will have an impact on the estimated exposure of an individual measured at a 

particular location. The complexity and expense of using devices such as GPS in epidemiological 

work means that they are best suited for studies that investigate short-term exposures.
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Paper 3 examines the scenario when more than one pollutant is of interest, or when a single pol­

lutant is measured using more than one method. Monitoring devices routinely set up to measure 

variables such as air pollution quality or soil content often record several quantities concurrently. 

In this paper we review and discuss methods for analysing multivariate data of this type, con­

centrating on the bivariate case. We include an analysis from a case-control study of residential 

radon and lung cancer in Winnipeg, in which radon levels were measured at two distinct loca­

tions - bedroom and basement - in each household. While associations between radon and lung 

cancer are well-established from laboratory studies and in certain groups exposed to unusually 

high levels (for example, miners), there is greater contention over the magnitude of such effects 

in the general population (Krewski et al. (2006)).

These examples provide the contextual background upon which the work in this thesis is based. 

We now describe the basic geostatistical theory that underpins the methodology developed in 

the three papers.

1.2 Geostatistical Modelling

Geostatistics is a branch of the broader discipline of spatial statistics that deals with modelling 

data arising from a spatially continuous phenomenon measured at a finite set of locations. Other 

research areas in spatial statistics include spatial point patterns, which are concerned with 

stochastic models governing the locations of points in space as opposed to any measurement 

that might be made there, and lattice processes, which are concerned with data aggregated over 

spatial regions, often positioned on a regular grid.

Geostatistical models usually assume that there is no stochastic process governing the locations 

at which measurements are taken. Instead, they model the measured quantity as a function of 

spatial location and other covariates. In environmental epidemiology, geostatistical models are 

typically used to provide predictions of such quantities as pollutant levels at individual locations 

or across wider areas. Another goal is parameter estimation, which can provide information 

about the correlation structure of the modelled process, or its association with covariates.

The history of geostatistics as a discipline can be traced to the work of D.G. Krige and the problem 

of predicting gold concentrations in South African mines in the 1950s (Cressie (1990)). Since 

then, the subject has broadened substantially from its geological roots to encompass an enor­

mous range of disciplines, including ecology, hydrology, oil production, soil and earth sciences,
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climatology, agriculture, microbiology, geography, seismology and epidemiology, alongside the 

concomitant mathematical and statistical theory upon which it depends. We introduce this the­

ory below.

A geostatistical data-set consists of real-valued measurements Yi : i =  1, ...,n  associated with a 

corresponding set of spatial locations Xi in a region of interest D. A geostatistical model speci­

fies the statistical relationship between the pairs (Yi, x t) and an underlying spatially continuous 

phenomenon S(x) : x  e M2. A simple yet widely-used model (Diggle & Ribeiro Jr. (2007)) is

where d(x) is a set of spatially referenced explanatory variables, S(x) is a zero-mean Gaussian 

stochastic process with variance a2 and correlation matrix R^, where may be a vector-valued 

parameter, and the Zi are mutually independent Gaussian errors with mean zero and variance r 2.

Let p(-) = p$(•) be a function such that the matrix consists of entries p ^ x p x j ) .  For any 

finite set of locations x l t ..., x n, Rp must be positive definite: for any z e Mn, z T R ^z  > 0. If this 

holds, p is said to be a (valid) correlation function. Common simplifying assumptions are that p 

is stationary and isotropic.

p is stationary if it is invariant to translation: p(x i, x 2) =  p(x i -  x 2) for all x 1} x 2. 

p is isotropic if it is invariant to rotation: p (x i,x 2) — p(\\xi -  ^ 2 II) for all x±, x 2.

Common choices are the exponential, Gaussian and Matem correlation functions:

Exponential:

For the Matem function, K k is the modified Bessel function of order k and 0 is a range parameter

Yi =  d(xi)T(3 +  S(xi) +  Zi : i = 1 , n, ( 1.1)

p(x) = e *

Gaussian:

p(x) — e

Matem:
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that indicates the rate of decay of correlation away from zero. The Matem function has become 

increasingly popular in applications both because of the additional flexibility provided by the 

smoothness parameter k and because it contains both the exponential and Gaussian correlation 

functions as special cases, for k =  0.5 and n —> oo respectively.

Parameter estimation can be achieved by maximum likelihood based on (1.1), with initial values 

provided by an estimate of the variogram

V(x1, x2) =  iv a r ^ z i )  -  S(x2)}.

One such estimate, the empirical variogram based on data Yi : i =  1 ,..., n, is defined as

V» = \ {Yi - Y j f

for i < j .  The Vi3 are often plotted against spatial separation u after they have been ‘binned’ 

(averaging values Vl3 for which j | x t  -  x 3\\ & u). The resulting plot is also useful for indicating 

model fit after parameter estimates have been calculated.

In the specification of (1.1), r 2 is sometimes known as the ‘nugget effect’, and is equal to the sum 

of small-scale spatial variation and measurement error in the Yi. Thus in (1.1) we might replace 

Zi by S*(X i)+ Z *, where S* represents spatial variation at distances less than min||xj —Xj\\, i ^  j  

and the Z* are independent errors. These two quantities cannot be distinguished without repli­

cated observations at individual locations. Schabenberger & Gotway (2005) provide a full dis­

cussion of models for disentangling these two sources of variation, but they are beyond the scope 

of the work in this thesis.

Much research in early classical geostatistics focused on the technique of ‘kriging’, whose aim 

is prediction of S (xp) at a new or previously-sampled location xp. The simple kriging predictor 

based on data y i,...,y ^  is defined as S (x p) =  diYi, where the a* are chosen to minimise

Var[5(xp) -  ^(zp)] subject to E[5’(xp) -  ^(xp)] =  0 .

The simple kriging predictor is derived in Appendix B.l, and is equivalent to the minimum 

mean square error predictor under the stationary Gaussian model (1.1), as shown by Diggle & 

Ribeiro Jr. (2007), page 135. The prediction problem is one of the most important topics that 

arises from applications of geostatistical methodology, and appears in a different guise in each of
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the three papers in this thesis. To address this problem, we adapt the basic model (1.1) in three 

distinct ways according to the aims of the three papers.

In Paper 1, we consider a spatio-temporal application in which the general formulation of the 

model follows the structure set out by Sahu & Mardia (2005):

Y ( x , t ) =  S{x ,t) + Z \(x ,t)

S(x, t) = fj,(x,t) + Z 2(x ,t) (1.2)

where x  indexes space and t time, n  is a mean process, and Z x and Z 2 are zero-mean stochastic

processes. The prediction problem is then to find S (xp, tp) at a location-time pair (xp, tp).

In Paper 2, we assume model (1.1) but drop the assumption that the locations x  can be measured 

precisely. Instead we consider a: to be a realisation of a random variable X .  This problem is de­

scribed by Gabrosek & Cressie (2002). The choice of the joint distribution of the true location 

X*  and the observed location X  (or the conditional distributions [X|X*] and pT*|X]) affects the 

prediction problem. In this paper we consider both the case in which positional error affects the 

measurement location and the case in which positional error affects the prediction location.

In Paper 3, we generalise (1.1) to the multivariate setting, concentrating on the bivariate case. 

In this scenario, S  — (S i ,S 2) is a bivariate process with zero mean whose covariance function 

is defined by three components: two auto-covariance functions and a cross-covariance function. 

As Paper 3 shows, a major research problem in multivariate geostatistics is how to specify these 

three functions without violating the positive definiteness constraint. Once a model has been 

specified, prediction for each component, based on the data Y^ : % =  1 , n^; j  =  1 , 2, contin­

ues in a similar way to the univariate case.

In the simplest solution, separate univariate models could be formulated for the two components 

Yi and Y2, but this unsatisfactory strategy would be inefficient if Yi and Y2 were correlated, as 

is often the case for measures of environmental exposure. Scenarios in which correlated envi­

ronmental exposure data might arise include the measurement of exposures both arising from 

a similar source (e.g. two distinct varieties of particulate matter), the measurement of a single 

exposure using two different instruments (e.g. a hand-held and a fixed monitoring device), or 

the measurement of an exposure in nominally different environments (e.g. two different rooms 

in a single house).
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In summary, the three papers respectively investigate the implications on the basic set-up (1.1) 

of the existence of highly informative, spatio-temporally varying covariates d; uncertainty in the 

geographical locations x; and additional response variables Y .

The main part of the thesis consists of the three papers, as submitted for publication. Chapter 

5 summarises the achievements of each paper, and of the thesis as a whole. It also provides 

extra contextual information for each paper, explains the relevance of the work with respect 

to the existing literature and provides suggestions for future research. Appendices A, B and C 

contain related background work and extensions of the technical material that appears in the 

three papers.
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Summary

Studies investigating associations between air pollution exposure and health outcomes benefit 

from the estimation of exposures at the individual level, but explicit consideration of the spatio- 

temporal variation in exposure is relatively new in air pollution epidemiology. We address the 

problem of estimating spatially and temporally varying particulate matter concentrations (black 

smoke=BS=PM4) using data routinely collected from 20 monitoring stations in Newcastle-upon- 

Tyne between 1961 and 1992. We propose a two-stage strategy for modelling BS levels. In the 

first stage, we use a dynamic linear model to describe the long-term trend and seasonal variation 

in area-wide average BS levels. In the second stage, we account for the spatio-temporal variation 

between monitors around the area-wide average in a linear model that incorporates a range of 

spatio-temporal covariates available throughout the study area, and test for evidence of residual 

spatio-temporal correlation. We then use the model to assign time-aggregated predictions of BS 

exposure, with associated prediction variances, to each singleton pregnancy that occurred in the 

study area during this period, guided by dates of conception and birth and mothers’ residential 

locations. In work to be reported separately, these exposure estimates will be used to inves­

tigate relationships between maternal exposure to BS during pregnancy and a range of birth 

outcomes. Our analysis demonstrates how suitable covariates can be used to explain residual 

spatio-temporal variation in individual-level exposure, thereby reducing the need to model the 

residual spatio-temporal correlation explicitiy.

Key words: dynamic linear model; environmental epidemiology; exposure estimation; partic­

ulate matter; spatio-temporal process
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2.1 Introduction

Links between long-term or short-term exposure to particulate m atter and morbidity or mortality 

in both children and adults are now well established (Pope III & Dockery (2006)). In particular, 

there is growing evidence of an association between air pollution exposures during pregnancy 

and adverse birth outcomes (Glinianaia et al. (2004b); Sram et a l (2005)) or infant survival 

(Glinianaia et al. (2004a); Ritz et al. (2006)), especially for respiratory-related causes (Woodruff 

et al. (2006)). In order to test hypotheses relating to these associations using observational 

data, estimates of pollution levels to which each mother was exposed during different periods of 

pregnancy are needed. Some previous studies have either assumed homogeneity of exposure at 

any one time across large geographical areas (Woodruff et al. (1997); Samet et al. (2000)), or 

estimated exposure using a crude average (Bobak (2000)). Only recently has modelled city-wide 

variation in exposure and its impact on health outcomes been considered (Jerrett et al. (2005)).

In this paper, we use data from the UK Particulate Matter and Perinatal Events Research (PAM­

PER) study to demonstrate a method for estimating a spatio-temporal exposure surface of black 

smoke (BS), equivalent to PM4, concentrations over the city of Newcastle upon Tyne for the 

time-period 1961-1992.

We consider data in the form of a set of time series, one for each of a number of monitoring 

locations within the spatial region of interest, and not necessarily providing data at a common 

set of times. Various approaches have been suggested in the statistical literature for analyzing 

environmental spatio-temporal data of this kind; for reviews, see Kyriakidis & Journal (1999) 

and Sahu & Mardia (2005). Key approaches to such analysis include: directly modelling the 

joint space-time distribution of the observations, treating time as an additional dimension (e.g. 

Brown et al. (2001)); modelling the data as a set of spatial processes correlated in time (e.g. 

Bogaert & Christakos (1997)); or, more commonly, as a set of time series correlated in space 

(e.g. Meiring etal. (1998)).

Most of this work has used Gaussian processes as models for the underlying spatio-temporal 

phenomenon, S (x , t) say, with a consequent focus on the specification of valid, appropriate and 

computationally tractable covariance functions for S (x ,t ) (Gneiting et al. (2007)). An excep­

tion is Higdon (2007), who describes a non-Gaussian kernel convolution approach. Stroud et al.

(2 0 0 1 ) extend state-space models of time series to the space-time domain in order to avoid mak­

ing assumptions of stationarity and separability of the covariance function. In some examples,
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the relatively weak dependence between observations either in space or in time has enabled the 

modelling process to be simplified: for example, Handcock & Wallis (1994) found a lack of tem­

poral dependence in annual winter average temperatures in northern U.S.A. In contrast, other 

examples exhibit long-term temporal dependence, such as the Irish wind speed data of Haslett 

& Raftery (1989).

In the field of air pollution, several authors have addressed the simultaneous consideration of 

spatial and temporal variation of exposure. Carroll et al. (1997) modelled ozone exposure in 

Texas, U.S.A. by splitting the spatio-temporal variation into two components: a deterministic, 

spatially-constant component and a stationary, zero-mean Gaussian random field. Zidek et a l

(2 0 0 2 ) modelled the spatial covariance between residuals using a space deformation approach 

(Meiring et al. (1998)) after first fitting an AR(3) model to hourly PMio levels in Vancouver, 

Canada (Li et al. (2008)). Sahu et al. (2006) illustrated one way in which available covariates 

may be used by modelling PM2.s monitoring data using two random spatio-temporal processes, 

corresponding to urban and rural areas respectively, and weighted by population density.

In this paper we demonstrate a pragmatic, two-stage modelling strategy. We first estimate the 

seasonally-varying temporal trend using a dynamic linear model, then account for remaining 

spatio-temporal variation using temporally and/or spatially varying covariates. We demonstrate 

that for our data, residual spatio-temporal correlation is not significant. In principle, we could in­

clude a spatio-temporally correlated residual term, at the cost of a substantial increase in compu­

tational complexity. However, in our view explicit models of spatio-temporal correlation should 

be used only when the possibility of obtaining an adequate explanation of spatio-temporal vari­

ation using covariate information has been exhausted. In our application, the key step was not 

to rely on routinely available covariate information but instead to construct a suitable surrogate 

using a combination of land-use information and digital images of domestic chimneys which, for 

the area and time-period in question, constituted a major source of BS exposure for pregnant 

women.

2.2 The UK PAMPER Study

The UK PAMPER study is a historical cohort study to investigate the relationship between ad­

verse pregnancy outcomes and a range of socio-economic, meteorological and pollution-related 

factors. In this paper we model levels of weekly BS using data routinely, albeit spasmodically, 

recorded at 20 air pollution monitoring stations within the city of Newcastle-upon-Tyne (the
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‘study area’) between October 1961 and December 1992 (the ‘study period’). The data are 

available from the UK Air Quality Archive (http://www.airquality.co.uk/archive/data_and_statis- 

tics_home.php). Figure 2.1 shows the locations of the 20 monitoring stations within the study 

area, and the locations of five further monitoring stations that we will use for model validation. 

Pless-Mulloli et a t (2007) provide more details of the study’s background and setting.

Figure 2.2 shows the period of time over which each monitor was in operation (‘active’). Over 

the whole study period, the number of monitors active during any single week varied between 

three and ten. In our experience, the relatively sparse spatial coverage of the study area by mon­

itors is typical, and strongly influenced our approach to the prediction problem.

Our aim is to attach to each of the 109,086 singleton births that occurred in the study area 

during the study period a predicted BS exposure level and associated prediction variance, both 

for individual weeks of the pregnancy and time-aggregated over months, trimesters and over the 

whole pregnancy period. Each birth is characterized by the date of birth, the estimated date of 

conception (for births with available gestational age) and the mother’s residential location (grid 

reference) at which BS levels are to be estimated. In future work, we will investigate associations 

between this modelled exposure and a range of adverse birth outcomes, including birthweight, 

low birthweight, preterm birth, stillbirth, infant mortality and congenital abnormality.

2.3 Modelling the Exposure Surface

2.3.1 Exploratory Analysis

In common with other environmental applications (e.g. Brown etal. (2001); Zideketal. (2002)), 

we found that a log-transformation approximately stabilises the variance of BS and gives a 

roughly linear time trend, i.e. city-wide average BS levels have experienced an approximately 

exponential decline over the study period. We therefore model the log-transformed values of BS 

recorded at each monitoring station.

Let Y  denote log-transformed BS. Figure 2.3 shows the area-wide average, Yt say, in each of the 

1631 weeks of the study period, in each case calculated as the average of the observed log-BS 

levels at all monitoring stations that were active during the week in question. The scale of the 

overall temporal variation in Yt is much larger than is the spatial variation between different 

monitors at any given time, which is typically of the order of 1 unit on the logarithmic scale, al­
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though occasional recorded values fall much further than this from the corresponding city-wide 

average. For the subsequent modelling, we use all available data. Re-fitting the final model ex­

cluding 74 recorded values (out of 10174, i.e. around 0.7%) of log-BS more than 1.5 units away 

from the area-wide average has only a small impact on parameter estimates and predictions, and 

as we have no basis for treating these values as recording errors, we retain all of the data in the 

analysis presented below.

Figure 2.3 also shows that there is a strong seasonal component to average BS levels. Annual 

peaks and troughs occur each winter and summer respectively, albeit with some variation from 

year to year. This seasonal pattern is also evident from inspection of the data from individual 

monitors.

2.3.2 The Modelling Strategy

Our strategy is first to model the expectation of the area-wide weekly average log-transformed 

BS levels, jit — E[Y1], ignoring any spatial variation. This results in an estimate /}*. We then use 

spatio-temporally referenced covariates w to account for residual variation between monitors. 

Hence, if t denotes week and x  geographical location, we model log-transformed BS, Yt (x), as

Yt {x) =  fit + w T(3 + Z t (x), (2.1)

where Zt (x) is a residual term which may or may not exhibit temporal and/or spatial correlation, 

and fit is treated as an offset, provided that its associated prediction variance is negligible. Note 

that in (2 .1), time is treated as discrete, with a resolution of one week, whereas x  is treated as 

a spatial continuum, and that w depends implicitly on t and x. This framework acknowledges 

that, although our data are confined to a discrete set of monitor locations, our aim is to predict 

BS at every maternal residence within the study area.

Our two-stage modelling strategy is informed by two considerations. Firstly, the exploratory 

analysis showed that the temporal variation in Yt (x) dominates the residual spatio-temporal 

variation. Secondly, and not untypically (cf de Luna & Genton (2005)), our data are temporally 

rich but spatially sparse. Together, these features enable relatively precise estimation of the 

spatially-constant component jit . Other authors have preferred to fit different models to the 

individual time series obtained from each monitor, treating periods of inactivity as missing data 

(Haslett & Raftery (1989); Meiring et al. (1998)). For our data, the extent of the incompleteness
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of the time series from individual monitors, as shown in Figure 2.2, makes this a less attractive 

strategy. Finally, construction of the spatio-temporal part of the model is greatly helped by the 

availability, at both monitor and residential locations, of a set of spatio-temporal covariates that 

are predictive of BS levels. Hence, anticipating the results in Section 2.3.4, we do not necessarily 

need to build an elaborate spatio-temporal stochastic model for the residual component Zt (x) .

2.3.3 Stage 1 : Modelling Area-Wide Average BS Levels

To model fxt , we note from Figure 2.3 the approximately linear decline in log-BS levels over 

the study period, and the clear seasonal pattern, with higher levels occurring during the winter 

months. We anticipated that the seasonal pattern might be partially attributable to seasonal vari­

ation in temperature. We therefore obtained daily temperature readings from nearby weather 

recording stations for the whole study period, and calculated a value dt as the average of the 

daily minimum temperature readings over the seven days in week t. Finally, we set u; =  27r/52 

as the frequency corresponding to an annual cycle.

A first, static regression model for the spatial average Yt is

Yt = a  + (3t + 7 dt -t- A  cos(u)t) -t- B  sin(u;£) +  Ut (2.2)

where a, (3, 7 , A  and B  are parameters and the Ut are mutually independent N(0, trfj) residuals.

Figure 2.4a shows that the model (2 .2 ) captures much of the seasonal variation in Yt; for clarity, 

the diagram shows only representative results from years 1984 to 1992. However, the residuals 

show strong evidence of short-term and long-term autocorrelation, with small peaks correspond­

ing to one- and two-year lags indicating that a static seasonal component is inadequate (Figure 

2.4b). Re-examination of Figure 2.4a suggests that the lack of fit is primarily due to year-by-year 

variation in the phase and amplitude of the seasonal pattern. We therefore consider instead a 

dynamic regression model (West & Harrison (1997)),

Yt — a  +  (3t + 7 dt +  A t cos(u;f) +  B t sm(u>t) +  UL (2.3)

where a, (3, 7  and Ut are as before, but now the static parameters A  and B  have been replaced

16



by independent random walks, hence

B t \Bt- i  ~  N(Bt-i,ar%)

Given initial values A 0 and B 0, the dynamic model (2.3) can be fitted either by direct maximiza­

tion of the likelihood function, or via a Kalman filter followed by Kalman smoothing using, for 

example, functions kf i l t e r  and smoother in the contributed R package s s p i r  (w w .R -p ro je c t. 

org).

The estimated parameter values a, /3 and 7  differ little between models (2.2) and (2.3), but 

the estimated residual variance afj drops from 0.14 to 0.08 and the corresponding R 2-value 

increases slightly, from 0.88 to 0.93. More importantly, the dynamic model provides a qualitative 

improvement in fit compared to the static model: the residual autocorrelation largely disappears 

(Figure 2.4b) as a result of the more flexible fit to the seasonal pattern (Figure 2.4a).

2.3.4 Stage 2 : Modelling Residual Spatio-Temporal Variation

If we now apply the area-wide fitted values, f,t say, from (2.3) to the values of log-transformed 

BS at individual monitors, the residuals show a strong spatial pattern, with monitors towards the 

south of the study area tending to have large, positive residuals. This is consistent with the fact 

that early in the study period this part of the study area was dominated by areas of heavy industry.

As described in Section 2.3.2, we seek to explain this effect by treating fit as an offset in a lin­

ear model for monitor-specific log-transformed BS levels Yt (x) that includes spatio-temporally 

referenced covariates. Note that to achieve our aim of predicting BS exposure at every residen­

tial location, any covariates in the model must be available not only at monitor locations, but 

throughout the study area.

Covariates

To account for residual spatio-temporal variation, we constructed the following candidate co­

variates:

wi : domestic chimney count within 500 metres;

W2 : distance to nearest industrial area;
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w3 : binary indicator of land use, either residential (w3 = 1) or non-residential (iy3 =  0);

104 : binary indicator of whether the 1956 Clean Air Act (CAA) had (w4 = 0) or had not 

(io4 =  1) been implemented;

w5 : area of industry within 500 metres.

Covariates w4, wo, and w5 were derived at a time-resolution of one year from digitized annual 

images of the study area.

Covariate 1x3 was derived as follows. For any monitoring location x  within the study area and a 

given value of r  > 0, we counted the number of births in each year within a radius r  of location x. 

We then identified, by trial-and-error, a range of values of r  for which the resulting count distri­

bution was strongly bimodal, suggesting a classification of monitoring locations with high counts 

as residential and locations with low counts as non-residential. Using this criterion with r  =  150 

metres provided the clearest distinction between residential and non-residential locations. More­

over, by this criterion the residential status of each monitoring location did not appear to change 

over time. We therefore considered w3 to be time-constant, and defined a residential area to be 

one for which at least 50 births occurred within a 150-metre radius throughout the study period. 

The majority of monitors classified in this way as non-residential were in known industrial areas, 

although one was in a known commercial area.

Covariate w4 was obtained from local government records. The CAA was implemented in stages 

across administrative sub-areas of the city between 1959 and 1978. The assumption that im­

plementation within a sub-area took place at a fixed date, rather than gradually over a longer 

period of time, is questionable. However, in the absence of more detailed information we took 

the pragmatic decision to define w4 as a binary factor, changing from 1 to 0  at the nominal im­

plementation date for the sub-area in question.

For a preliminary assessment of the importance of each candidate covariate, we compared 

monitor-specific average residuals and covariates as follows. For each monitor, at location x  say, 

we defined the average residual as a time-average of Yt {x) -  jlt over those weeks t  in which the 

monitor was active, and the average covariate as the corresponding time-average of the covariate 

at the same location. For the binary covariates, w3 and w4, we compared the two distributions 

of average residuals corresponding to w =  0 and to w =  1. For w\, W2 and w$, we examined 

scatterplots of monitor-specific average residuals against average covariate values.
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On this basis, we discarded the industry variable w5 because it showed a relatively weak relation­

ship with monitor-specific average residuals and a strong relationship with the other covariates. 

The other covariates all showed a potentially useful relationship with the monitor-specific av­

erage residuals, and were therefore retained. Figure 2.5 shows the plot for the chimney count 

variable, wi. Each point represents a monitor, and is labelled according to its residential status. 

The plot shows a positive relationship with chimney count for monitors in residential areas, and 

a negative relationship in non-residential areas, suggesting a strong interaction effect between 

chimney count and residential status. A possible explanation for this is that within industrial ar­

eas, very few domestic chimneys would be found close to the most heavily polluting industries, 

whereas rather more would be found close to lighter industries. In residential areas, there is 

relatively little variability between levels of emission per chimney, and pollution levels therefore 

show a direct relationship with chimney count.

Another important interaction is between chimney count and date of implementation of the CAA. 

After the CAA was implemented, the emission of black smoke from any building was prohibited. 

Thus, as a surrogate for local levels of black smoke emission, the chimney count could be con­

sidered as being effectively zero after CAA implementation. However, as discussed below, care 

is needed to interpret correctly the combined effect of CAA implementation and the estimated 

area-wide temporal trend, fit .

Model Formulation

We now consider a single linear model for the data from all monitors. Taking into account the 

above remarks, we assume the following model:

Yt(x k) — fit +  PlQWlO +  PllWll +  P2W2 +  P3W3 +  @4™ 4 +  Zt{x k)i (2.4)

where x t  is the location of monitor k, W2, wo and W4 are as defined above, and w u  =  w\l(ws =  i) 

where I(-) is the indicator function. We also assume that Zt (xk) ~  N(0, <r|) independently for 

all k and t. However, to preserve the interpretation of jXt as the area-wide average of S t, we also 

need to centre each covariate appropriately. We therefore require that, for any given t, the fitted 

value from the spatio-temporal model (2.4), averaged over all monitors active at t, should equal 

fit. To satisfy this condition, for each covariate w at each time t we calculate w = (Y ,w) / m t> 

where the sum is over the m t monitors active at time t, and subtract each value of w from the 

corresponding value of w before entering into equation (2.4).
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Assessment of Model Fit

Including monitor-specific fixed effects would be incompatible with our goal of spatial predic­

tion. However, as part of the assessment of the model fit, we did consider the effect of adding 

monitor-specific levels to the right-hand side of (2.4). This resulted in only a small increase 

in the R 2 value, from 0.84 to 0.86, and we therefore reverted to model (2.4).

To test the assumption of independent residuals Zt (xk), we calculate a standardized average 

residual for each monitor k as

z i  = ^ Y . ( s ^ ) - Y t (xk)},
t

where is the number of weeks in which monitor k was active. Under the assumed model, 

Z l  ~  N (0, <r|), for all k. Figure 2.6 shows the standardized residuals plotted at their correspond­

ing monitor locations. The visual impression is of a concentration of large, negative residuals 

close to the southern boundary of the study area. However, visual impressions from sparse spa­

tial data can be misleading. For a formal test, we compute for each distinct pair ( i,j)  of monitors 

Uij = \\xt —Xj\\ and vtj — (Z* — Z*)2. We then use the sample correlation between the utJ and the 

Vij as a measure of the spatial dependence and compare the observed value with that obtained 

after randomly re-labelling the monitoring locations. The resulting Monte Carlo test, based on 

999 independent re-labellings, gives a p-value of 0.7, corresponding to no significant evidence 

of spatial structure. Consistent with the result of the formal test, maps of re-labelled residuals 

(Figure 2.7) show chance spatial concentrations of large and small residuals comparable to those 

seen in Figure 2.6. We conclude that the assumption of spatially independent residuals Z t{xk) 

is reasonable, and that any differences between monitors are likely to reflect properties of the 

monitors themselves, rather than of their locations.

We also examined the temporal pattern of residuals at individual monitoring stations. Time- 

plots of residuals, shown in Figure 2.8, reveal clear lack of fit for some monitors over some 

time periods. Table 1 summarizes the fit of the model to individual monitors, including the five 

validation monitors located outside the study area. The R 2-values for the 20 monitors within 

the study area vary between 0.21 and 0.87, but the smaller values of R 2 are generally associated 

with monitors for which we have relatively little data.
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Validation

To assess the model’s external validity we used five additional monitors situated just outside the 

study area. The locations of these monitors are shown in Figure 2.1. Historical records were less 

readily available for locations outside the study area: for example, the aerial photographs needed 

to construct the chimney count variable were available only for the years 1966 and 1974. For this 

reason, we consider only data from these years in our assessment of validity. Table 1 summarizes 

the fit for these five monitors. The fit is rather poor for some monitors, notably Hebbum 3, and 

we would not recommend extrapolating the model beyond the study area. Inevitably, imposing 

a common model on all available monitor locations within the study area compromises the fit to 

any individual monitor’s data, but is a necessary simplification in order to address our goal of 

spatio-temporal prediction at arbitrary locations. Extrapolation beyond the study area is likely 

to exacerbate this effect; for example, although the locations of the validation monitors are 

geographically close to the boundary of the study area, they differ in their historical pattern of 

land use.

In terp retation  of the Spatio-Temporal Model Coefficients

An alternative interpretation of (2.4) is obtained by re-casting the dynamic model (2.3) to allow 

different area-wide average log-transformed BS levels before and after CAA implementation. We 

denote these by pdt (‘dirty’) and pct (‘clean’) respectively, and let pt be the proportion of active 

monitors at week t that are dirty. Then, p t is a weighted average of log-transformed BS levels in 

dirty and clean areas,

AH =  PtPdt  +  (1 ~ P t ) P c t -  

Now suppose that pdt = Pet +  for some function At, so that

Pt  =  P c t + P t h

— pdt  +  Pt ^t  — At-

The estimated contribution to the right-hand side of (2.4) for a clean monitor is ftt -  p4pt, whilst 

the estimated contribution for a dirty monitor is pt + P4 -  P4pt- These quantities estimate pct 

and pdt respectively. Hence, p4 can be interpreted as an estimate of the difference in average 

log-transformed BS levels between dirty and clean areas, on the assumption that this difference 

is constant over time. The estimate of this difference is p4 =  0.33, with standard error 0.013. 

Figure 2.9 shows the observed average difference in log-transformed BS between dirty and clean 

monitors at each time, and supports the assumption that At is approximately constant.
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Direct interpretation of the other /^-coefficients in (2.4) is more difficult, owing to the necessary 

standardization of the covariates w. Nevertheless, we note that in each case the parameter 

estimate has the anticipated sign (i.e. negative for flio, /32 and positive for /3n).

2.4 Prediction of BS Exposure at Residential Locations

Our aim is to predict BS exposure at each maternal residential location, both for individual weeks 

and aggregated over time within the pregnancy. Thus, to compute prediction variances we need 

to consider not only the prediction variance for a single week, but also the covariance between 

predictions made for different weeks. Each birth is associated with a single residential location, 

x  say, so in order to estimate an individual mother’s exposure we need only consider prediction 

at that location. To simplify notation, we therefore suppress the dependence on x  and write S t 

for the BS level at time t, Yt = log(S't), and w f for the covariate vector at this location x  and 

week t. The following discussion then holds for any location x.

Suppose that our target for prediction is the time-aggregated BS exposure over weeks ti, ...,tn . 

As the prediction variance of /1(f) is small by comparison with that of Yt (approximately 0.08 

versus 0.27), we treat jxt as known and equal to fit . The predicted value of Yt — fit is Yt -  fa 

where Yt — w  J with associated prediction variance

V(Yt) = V(Yt - Y t) = V(Zt + w J ( 0 - 0 ) )

= V(Zt) + V( wJ ( p - 0 ) )

= o% + vfV0 )wt.

Also, for t^u,

Cov(Yt , Yu) =  Cov(wJ(3 +  Zt ,w l(3  +  Zu)

= Cov(wtT£,wJ/3)

=  w ^V (3 )wu.

Under the fitted model (2 .4 ), a \  »  wJV(/3)wt in any week t (approximately 0.27 and 0.00006,
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respectively), and it follows that

Var 5 3  Var(Yi) +  2 5 3  Cov(yt , Y„) «  5 3  Var(Yt) «  n a \ .
t < u

We require predictions on the original scale, rather than on the log-transformed scale. At a 

given location, S t = exp(Yt) and our targets for prediction are of the form T  =  n ~ l J2t=ti 

Under our assumed model, each St follows a log-Normal distribution. Writing =  E[Yt] and 

E tu =  Cov{rt , Yu}, it follows that

The prediction variance for the average black smoke level T, over weeks £1,..., £n, follows as

and approximate prediction intervals can be computed using a Normal approximation. For ex­

ample, an approximate 95% prediction interval for T  is

Figure 2.10 shows a grey-scale image of predicted values on the logarithmic scale for four weeks, 

corresponding to summer and winter in 1969 and 1982. Non-residential locations, for which 

prediction is of no interest, are shown in Figure 2.10 as white areas. One feature of Figure 

2 .1 0  is the relatively low spatial variation at any one time, by comparison with the variation ei­

ther between different seasons in the same year, or between different years for the same season. 

This pattern is consistent with our exploratory analysis of these data as reported in Section 2.3.1.

The pattern of prediction variances is qualitatively similar to that of the predictions themselves, 

as a consequence of the log-Normal distributional assumption for untransformed BS concentra­

tions.

E (St) = exp (& +  Ett/2)

Var(iS't ) =  exp(2& +  Ett)(exp(Ett) -  1),

and for t u,

Cov(S t , Su) = exp(ft + fu + (Ett +  Euu) / 2 )(exp(Etu) -  1).
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2.5 Discussion

We have demonstrated a two-stage modelling strategy for modelling spatio-temporal data using 

monitoring data that is temporally dense and spatially sparse, a common scenario in epidemi­

ological studies of air pollution exposure. In the first stage, we used a dynamic model for the 

purely temporal trend, while in the second we used appropriately constructed covariates to take 

account of remaining spatio-temporal variation. Using a dynamic model in the first stage ob­

viates the need to consider separate models for short-term and long-term correlation between 

observations, and in our application resulted in a materially better fit to seasonal variation in 

spatially averaged pollution levels than was obtainable from a static harmonic regression model.

The area-wide average log-transformed BS levels given by the first-stage model are relatively 

precise, with prediction variance around 0.08 compared with predicted values ranging between 

1.7 and 6.3. In contrast, the spatial sparsity of the data makes it important to take account of 

the uncertainty in the predictions at particular locations. Our exposure estimates will subse­

quently be used as covariates in an analysis of the relationship between exposure and adverse 

birth outcomes, in which context it will be necessary to check that conclusions are robust against 

the statistical error in the exposure estimates. We believe that these estimates, although only 

surrogates for the true levels of pollution to which mothers were exposed, indicate a more real­

istic pattern of exposure than would an assumption of homogeneity of exposures across a whole 

city. This seems likely to hold true both for particulate matter and for other pollutants, for which 

there is evidence elsewhere (Haas (1995); Meiring et al. (1998); Zidek et a l (2002)).

In our application, we have been able to model the spatio-temporal variation without the need to 

model spatio-temporal correlation in the residuals. This greatly eases the computational burden 

of computing predictions and prediction variances. In principle the methodology extends directly 

to models with correlated residuals, provided that we are prepared to specify a spatio-temporal 

covariance structure for the residual process Z t (x); see, for example, Gneiting et a l (2007). In 

problems of this kind, we would always advocate the use of relevant covariate information to 

explain as much as possible of the spatio-temporal variation. Nevertheless, and as the results 

from the validation sites indicate, extrapolation beyond the area from which the model was 

constructed is almost certainly unwarranted. In other settings the importance of other sources of 

pollution, for example traffic emissions, may require the use of different covariates. The means 

by which suitable covariates are identified and constructed is not necessarily straightforward and 

may require a degree of imagination; in our application, the construction of the chimney count
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covariate and careful consideration of its interaction with both the residential/non-residential 

land-use classification and with the effect of the Clean Air Act were crucial to the implementation 

of the methodology.
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Monitor n Mean

residual

Standardized

mean

residual

Residual

variance

Raw

variance

R 2

1 Gosforth 1 676 0.14 3.74 0.17 0.92 0.81

2 Gosforth 2 2 2 0 .2 2 1.03 0 .2 0 0.34 0.42

3 Newburn 2 1598 -0 .0 2 -0.78 0 .2 0 1.58 0.87

4 Newcastle 17 1399 0.08 2.84 0.24 0.81 0.71

5 Newcastle 18 670 -0.16 -4.09 0.13 0 .6 6 0.80

6 Newcastle 19 6 8 8 -0.09 -2.44 0.19 0.70 0.73

7 Newcastle 20 360 0.08 1.59 0.26 0 .6 6 0.60

8 Newcastle 21 445 -0 .2 2 -4.66 0.25 0 .6 6 0.63

9 Newcastle 22 321 0.24 4.27 0 .2 0 0.61 0.67

10 Newcastle 23 52 0.09 0 .6 8 0 .2 2 0.53 0.59

11 Newcastle 24 1064 0 .2 0 6.38 0.26 1.61 0.84

12 Newcastle 25 339 -0.08 -1.52 0.14 0.55 0.74

13 Newcastle 26 224 -0.32 -4.86 0.09 0.44 0.79

14 Newcastle 27 1198 -0 .1 2 -4.05 0.15 0.65 0.76

15 Newcastle 28 229 -0.23 -3.55 0.08 0.38 0.78

16 Newcastle 29 89 -0.23 -2.18 0 .2 0 0.32 0.39

17 Newcastle 30 44 -0.06 -0.37 0.08 0.30 0.73

18 Newcastle 31 527 0.23 5.34 0.19 0.54 0.65

19 Newcastle 32 224 -0.09 -1.40 0.14 0.34 0.58

20 Newcastle 5 5 -0.31 -0.69 0.05 0.06 0 .21

21 Blaydon 3 4 -1.27 -2.55 0.28 0.25 -0 .11

2 2 Gateshead 5 77 -0.26 -2.27 0 .1 1 0.48 0.76

23 Hebbum 3 52 -1.27 -9.17 0.27 0.33 0.18

24 Hebbum 4 52 0.62 4.51 0.26 0.43 0.38

25 Newburn 1 87 0.63 5.85 0.09 0.28 0.67

Table 2.1: Summary of spatio-temporal model fit for each of the 20 monitors used for model

fitting and five monitors used for validation (see Figure 2.1). n refers to the number of weeks 

for which the monitor was active. R 2 = 1 -  (residual variance/raw variance).
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Figure 2.1: Outline of the PAMPER study area, Newcastle-upon-iyne. Locations of black smoke 

monitoring stations used for modelling are numbered 1-2 0 ; those used for validation are num­

bered 21-25.
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Figure 2.2: Diagram showing PAMPER monitoring station activity. Periods of activity are indi­

cated by a black line.
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Figure 2.3: Area-wide weekly average black smoke levels, plotted as a time series. The original 

scale is shown on the left vertical axis and the logarithmic scale on the right vertical axis.
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Figure 2.4: a. Fit of static (2.2) and dynamic (2.3) regression models for area-wide average 

black smoke levels, 1984-1992; b. Autocorrelation of residuals from static and dynamic models 

for area-wide average black smoke levels
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Figure 2.5: Monitor-specific average residual from dynamic model (2.3), plotted against average 

chimney count within 500 metres. Points are labelled according to the monitor’s residential 

status (open circle re s id en tia l, filled circle= non-residential).
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Figure 2.6: Map of standardized monitor-specific residuals from model (2.4). Darker shades 

indicate larger negative residuals, and lighter shades larger positive residuals



Figure 2.7: 16 replicates of a map of standardized monitor-specific residuals from model (2.4) 

with monitor locations randomly reassigned. Darker shades indicate larger negative residuals, 

and lighter shades larger positive residuals. The observed map (Figure 2.6) appears in the top 

left.
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Figure 2.8: Observed (grey lines) and fitted (black lines) values from model (2.4) for six monitors 

used for model fitting
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Figure 2.9: Difference between average log-black smoke levels in monitors operating in areas 

before (‘dirty5) and after (‘clean’) the implementation of the 1956 Clean Air Act
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Figure 2.10: Point predictions for log-BS levels for four single weeks (dates inset) representing 

winter and summer, 1969 and 1982. White pixels correspond to non-residential areas, for which 

no prediction is made.
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Summary

Standard analyses of spatial data assume that measurement and prediction locations are mea­

sured precisely. In this paper we consider how the problems of inference and prediction change 

when this assumption is relaxed and the locations are subject to positional error. We describe 

basic models for positional error and assess their impact on spatial prediction. Using both simu­

lated data and lead concentration pollution data from Galicia, Spain, we show how the predictive 

distributions of quantities of interest change after allowing for the positional error, and describe 

scenarios in which positional errors may affect the qualitative conclusions of an analysis. The 

subject of positional error is of particular relevance when assessing the exposure of an individual 

to an environmental pollutant, when the position of the individual is often tracked using imper­

fect measurement technology.

Key words: Environmental epidemiology; Geostatistics; Measurement error; Monte Carlo infer­

ence; Location error
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3.1 Introduction

In this paper, we consider the problem of spatial prediction using data that consist of real-valued 

measurements Yi : i — 1, ...,n associated with a corresponding set of spatial locations Xi in a 

region of interest D. A widely-used model specifies the statistical relationship between the pairs 

(Yi, and an underlying spatially continuous phenomenon S  =  {S(x) : x <= R2} as

Yi =  d(xi)'(5 +  S (x i ) +  Zi : i =  1 , n,  (3.1)

where d(x) is a set of spatially referenced explanatory variables, S(x) is a zero-mean Gaussian 

stochastic process with variance a2 and correlation matrix R{(j)), where </> may be a vector-valued 

parameter, and the Z t are mutually independent Gaussian errors, independent of S, with mean 

zero and variance r 2. We write 0 =  (a2,4>, r 2) for the vector of variance and covariance param­

eters. Model (3.1) is standard in the area of spatial statistics known as geostatistics (Chiles & 

Delfiner (1999); Diggle & Ribeiro Jr. (2007)).

Almost all applications require estimation of the parameter vector 9, whether the parameter es­

timates are of intrinsic interest themselves, or are merely a stepping-stone towards the goal of 

spatial prediction. In particular, the so-called nugget variance r 2 =  Var[yi |5'(xl)] : i =  1,..., n 

can be thought of as the sum of small-scale spatial variation and the measurement error inherent 

in taking measurements YJ. A more general formulation of (3.1) therefore explicitiy recognises 

these two sources of variation, and replaces Zi by independent processes z \ s  ̂ and z \ M\  which 

represent small-scale spatial variation and measurement error respectively (Cressie (1991), page 

112). In practice these two processes cannot be distinguished without using replicated spa­

tial locations in the sampling design, and in the current paper we therefore adopt the more 

commonly-used model (3.1).

The problem of estimating the parameter r 2 is described in most standard texts and several re­

search papers on spatial data analysis (e.g. Cressie (1988, 1991); Jaksa et al. (1997); Chiles & 

Delfiner (1999)). In contrast, the issue of equivalent measurement error in recording the spa­

tial locations Xi has received little attention. In practice, locations at which measurements are 

taken are often not recorded or stored precisely, either because of errors in recording devices or 

because of rounding off for computational convenience.

In this paper we consider the positional error problem in more detail, concentrating primarily on

42



spatial prediction but also considering how to obtain parameter estimates when positional errors 

are present. We consider two relevant scenarios in which positional error may occur: when the 

positional error affects the data locations; and when the positional error affects the prediction 

locations. Either or both of these scenarios may occur in applications.

Gabrosek & Cressie (2002) and Cressie & Komak (2003) both consider the impact of positional 

errors in data locations on parameter inference and spatial prediction. Their approach is to de­

fine a new process consisting of pairs of measurements and locations that have been subjected 

to positional error, and then to derive estimates of the first two moments of this process. This 

approach assumes that the measurement error model has parameters that are known via a priori 

information, rather than estimated from the data. For prediction, they assume a predictor that 

is linear in the data values, i.e. of the form atYi +  b. When it is assumed that there is no 

positional error, the minimum mean square error predictor lies in this class of linear predictors. 

In the current paper we relax the assumption of linearity of the predictor and instead use a 

model-based approach (Diggle & Ribeiro Jr. (2007)).

Cressie & Komak (2003) conclude that ignoring non-negligible positional error may result in 

predictions whose bias and mean square error tend to increase as the positional error variance 

increases and the range parameter 0 decreases. They discuss an application in which locations 

of ozone measurements have, for convenience, been rounded off to the nearest grid coordinate. 

In the context of point-process data, Zimmerman (2008) considers errors derived from ‘incom­

plete geocoding’, or ‘coarsening’ (errors resulting from round-off to a coarse grid) using kernel 

smoothing methods to allow for the positional error.

Other recent papers describe applications in which the issue of positional errors arises. For ex­

ample, Barber et al  (2006) consider the positional error in a global positioning system (G.RS.) 

in a model for map calibration, using both existing maps and G.P.S. measurements to make in­

ferences about true map locations. Related work on map calibration appears in Kiiveri (1997). 

Persson et al. (2006) consider independent positional errors in a series of G.P.S.-recorded loca­

tions that are known to form a polygon, and describe methods for estimating the true position 

and area of the polygon. These applications differ from the main focus of the current paper in 

that they aim to predict the true position per se, rather than the underlying spatial process S  at 

the true position. Zandbergen & Green (2007) provide a simple comparison of four geocoding 

methods and a set of assumed true locations, with the aim of assessing air pollution exposure of
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schoolchildren, but do not consider any specific model for the positional error.

Epidemiological studies relating air pollution exposure to adverse health outcomes have in recent 

years increasingly focused on providing measures of individual exposure, rather than assigning 

identical exposure estimates across sub-populations (Pope III & Dockery (2006); Fanshawe et al. 

(2008)). We discuss exposure estimation in this paper. Further analyses may consider associ­

ations between health outcomes and exposure estimates; these are often measured at different 

locations or different levels of spatial aggregation to one another, which results in a related prob­

lem known as ‘spatial misalignment’. However, papers discussing this problem do not typically 

consider positional error in either the outcome or the exposure (Madsen et al. (2008); Gryparis 

e ta l  (2009)).

The work in the current paper is relevant to studies in which imperfect measurement devices 

such as G.P.S. are used to track the locations of individuals. Our results will be of particular use 

in studies that look at short-term pollution exposure, for example when considering the effect 

of positional error on spatial prediction over a trajectory, such as might be obtained by using 

a G.P.S. trace to monitor the movement of an individual over a short period. In this context, 

positional errors apply to the locations where predictions are to be made, but not necessarily 

the locations of data measurements, which typically occur at fixed, known locations such as air 

pollution monitoring sites.

The paper is structured as follows. In Section 3.2 we summarise the background to positional 

error models and draw parallels with measurement error models encountered in other fields. In 

Section 3.3 we investigate the effects of positional error on parameter estimation and prediction, 

discussing the effect of positional errors in both prediction and measurement locations. In Sec­

tion 3 .4  we illustrate our results using data from lead concentrations measured in moss samples 

from Galicia, Spain. Section 3.5 is a concluding discussion.

3.2 The Positional Error Model

Most analyses of spatial data assume that devices used to measure geographical location operate 

flawlessly. Here, we introduce a model for the positional error in the data locations x x. Models 

for positional error are in many ways analogous to measurement error models used in other areas 

of statistics, particularly regression modelling, for which there is a wide literature (e.g. Cheng 

& Van Ness (1999)). Indeed, model (3.1) can be regarded as a particular type of non-linear
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regression model in which the non-linear effect of the Xi on the observations Yt acts through 

both the covariates d and the process S, and thus much of the general work on measurement 

errors in non-linear models (Carroll et al  (2006)) also applies in the context of spatial modelling.

We begin by considering the model specification in more detail. Positional errors can affect 

measurements of data locations and prediction locations. Errors in prediction locations have no 

impact on parameter estimation, so we will not consider them before Section 3.3.2; until then 

we consider the case in which positional error affects only data locations.

Let x* denote the true location at which a measurement Yi is taken, erroneously recorded at x t 

because of positional error, and let Xi  and X*  denote random variables corresponding to ob­

served and true locations. Using the notation [ ] to mean ‘distribution of’, let [y |£, X] denote 

the conditional distribution of Y (X *), i.e. measured at location X* but assigned to location X ,  

given the corresponding value of the signal S(X*)  and the observed, but incorrect, location X .  

This notation implicitly assumes that there is no stochastic dependence between the mechanisms 

which generate the positions X  and X*  and those which govern the processes S  and Y.

The model (3.1) can be written as

[Yi£,X,jr] = [K|S,X,X*][£,X,jr]

= [Y\S,X*][S\X*][X*\X][X] (3.2)

The second line follows as [y |£, X ,X * \  = \Y\S,X*]\ conditional on the true location X*, the er­

roneous location X  carries no further information about Y.  In practice we use a discrete version 

of 5  by sampling it on a finite set of locations x i,  ...,xn .

In this paper we primarily consider models for [X*\X], as this conditional distribution appears 

naturally in (3.2). We assume that the (symmetric) distribution for positional error is bivariate 

Normal with uncorrelated components and variance 7 2, i.e. X * \X t ~  BVN(Xj,7 2/ 2), and that 

errors at different locations are independent. We also assume that no contextual information is 

available regarding the locations of either the true or observed data or prediction points, and 

thus the marginal distributions [X*} and [X] will be identical and uniformly distributed over D. 

In a Bayesian setting, these marginal distributions are regarded as priors for the true and ob­

served locations. From Bayes’s rule [X*\X][X] = [X\X*][X*], under our assumptions it makes 

no difference whether we specify a positional error model in terms of [X*\X] or [X \ X *]. More
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generally, these two conditional representations would correspond to the so-called ‘Berkson’ and 

‘classical’ measurement error model classes respectively.

Using elementary properties of the Normal distribution, the assumed model for [X*\Xi] can 

also be written in the form X* =  + ei} where the are independent zero-mean bivariate

Normal random variables with covariance matrix 7 2/ 2. The conditional distribution notation 

makes explicit the way in which quantities such as the likelihood depend on the assumed model 

for the positional error, as shown in the next section.

3.3 Inference

3.3.1 Estimation

The model specified in Section 3.2 enables the likelihood function of the standard model, L(9, P) =  

\Y\9, P\, viewed as a function of (6, (3), to be extended to allow for the additional random variable 

X  and parameter 7 . From (3.1), [VIS', X*,{3,9} is a product of N(d(X^)'P +  S(X*),t2) densities 

and [S\X*,9] =  [S(X*)\X*,9) is multivariate Gaussian with mean zero and covariance matrix 

a2R{X*\<fi). [X*|X ,7 ] is defined by the positional error model. From (3.2), the new likelihood 

is L(9, P,7 ) =  [Y, X\9, P, 7 ], viewed as a function of (9, p, 7 ). We have

£(0,/J,7) = J  J \Y,S,X,X '\0 ,P , i ]dSdX'

= J  /'[r|S,X*,0,/3,7][S|X*,e,/3,7][X*|X,9,/3,7][X|e,ft7j<i5<iX*

<* / / w r ,  9,p][S\X*,9][X*\X,y\dSdX*, (3.3)

provided [X] does not depend on the parameters.

The likelihood can be evaluated by Monte Carlo integration. As the integration with respect to S 

can be performed exactly, (3.3) can be rewritten as Ex -\x\Y\X*, P, 9\, where the marginalised 

density is [Y\X*,P, 9] ~  N (d(X*)'P, a2R{X*\ p) + r 2 ) .  The likelihood can therefore be estimated 

by drawing n k independent samples X£, each of length n, from [X*\X], evaluating the density 

f k = f{y\x*k) for each sample, and then computing n ^ 1 f k. Computation time can be reduced 

by using antithetic sampling (Evans & Swartz (2000)). Note that to compute [Y\S, X *] requires 

the covariates d{X*) either to be available throughout D or on a sufficiently fine grid, or to have



been measured at the (unknown) true location x* . For clarity, in the results presented below we 

assume a constant mean fi.

Maximisation of the likelihood can be performed using the Nelder-Mead algorithm (Nelder & 

Mead (1965)). Note that the positional error variance 7 2 is confounded with both the nugget 

variance r 2 and the range parameter 0 : when there is positional error, there is no way of know­

ing whether two observations were made at the same location, and two dissimilar observations 

observed at nearby locations could be explained by either a high value of 7 2, a high value of r 2, 

or a low value of 0. In many applications, j 2 will either be known or could be estimated by a 

controlled experiment, so typically the problem of interest is to estimate the other parameters 

assuming a fixed value of 7 2.

We now illustrate the method using simulated data. We generated a realisation of a Gaussian 

process on 80 randomly-chosen locations from a uniform distribution on the unit square, with 

mean fi =  0, variance a 2 =  1, a Matem correlation function with scale parameter 0 =  0.3 and 

order k = 2.5, and nugget variance r 2 =  0.2. We then subjected each data location to positional 

error according to the model described above firstly with 7 2 =  0.032, then with 7 2 =  0.052. 

Figure 3.1 shows the original and repositioned data locations.

We then found maximum likelihood estimates of the unknown parameters n, a 2, 0 and r 2, assum­

ing known values of k and 7 2, under the following scenarios: using the original, true locations; 

using the incorrect, repositioned locations, making no allowance for positional error; and using 

the incorrect, repositioned locations, allowing for positional error.

The resulting parameter estimates are shown in Table 3.1. Computation was slow: merely com­

puting maximum likelihood estimates took around 72 hours on a 3GHz Intel Xeon X5450 proces­

sor core with 8 Gb of RAM, making reliable estimation of standard errors impractical. However, 

we observe that parameter estimates obtained when allowing for positional error tend to be 

closer to the true values than do those obtained from the repositioned data when positional er­

ror is ignored, provided that the positional error variance is small relative to the range of the 

correlation. Cressie & Komak (2003) give similar results obtained from a ‘pseudolikelihood’ 

method, and conclude that a 2 and r 2 are the parameters whose estimates are affected most by 

the presence of positional error.
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3.3.2 Prediction

A typical spatial prediction problem involves making deductions about a functional T  =  T(S(X*))  

given the data (Yi, X*), where X* = (X*r, X*2, ...) denotes a set of prediction locations which

distribution of T  conditional on the data, [T\Y, X*,X*\.  For the Gaussian model, this conditional 

distribution can sometimes, depending on the functional form of T, be derived in closed form via 

[T,Y\X*,X*]  if there is no positional error. The appendix gives more details when T  =  S(x*) 

for a fixed location x*.

In the most general case, the prediction locations may themselves be subject to positional error, 

and we assume the positional error model described in Section 3.2, i.e. X*. \XPi ~  B V N (X Pi, 

7 2/ 2)- The analogous predictive distribution is

In general, (3.4) cannot be expressed in closed form, even for simple positional error models, 

and will not provide a prediction that is linear in the Yi. It therefore differs from the predictor 

used by Cressie & Komak (2003). If either the data locations X* or the prediction locations X* 

are known precisely, the corresponding conditional distribution term is removed from (3.4), with 

a reduction in the dimensionality of the integral. If all data and prediction locations are known 

precisely, the integral reduces to the standard predictive distribution [T\Y,X*,X*\.

Prediction at a point

To illustrate (3.4), we concentrate on the special case in which the data locations are assumed 

known precisely, and the target for prediction is the value of the process S  at a single point 

X*,  i.e. T  =  S(Xp).  This simplified scenario would arise when, for example, the prediction 

location is a position measured imperfectly via a G.P.S. and the data locations are fixed pollution 

monitors. Thus (3.4) becomes

The integral can be evaluated approximately using Gauss-Hermite quadrature with a product

may or may not include the data locations X*. A  general solution to the problem is the predictive

(3.4)

(3.5)
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rule for two dimensions. For a given value of q, this gives an estimate of the form

<? <?
= E  £  K S ( x ;)\y , ( x ; ) Lj)wij,  (3.6)

,=1 J=i

where /  is the density function of the given conditional distribution, J is a two-dimensional 

vector of nodes, and wirj  is a weight.

The distribution of S(X*)\Y, (X*)itj is multivariate Gaussian, albeit non-linear in (X*)ltj, as con­

ditional on [X*)ij  the problem reduces to the standard prediction problem. The optimal choice 

of nodes and weights has been studied extensively (Evans & Swartz (2000)): in general, the 

nodes for each dimension are the roots (c,-) of the qth Hermite polynomial Hq, multiplied by 

7 , and for each i the accompanying weight wt is 2q~ lq l ^ l ( q 2 [Hq- 1(ei)]2). For prediction at a 

single point, this quadrature rule requires q2 function evaluations. In most practical examples, 

values of q around 8  or 10  give sufficient accuracy.

We illustrate the effect of positional error for simulated data in Figure 3.2. We generated a re­

alisation of a Gaussian process on 30 randomly-chosen locations from a uniform distribution on 

the unit square, with mean p. = 0, variance a 2 = 1, a Matem correlation function with scale pa­

rameter 4> =  0.1 and order k  =  2.5, and nugget variance r 2 =  0.04. We calculated the prediction 

mean and prediction variance using ordinary kriging formulae for prediction locations on a grid 

covering the square region, assuming zero positional error. These are shown in the two left-hand 

panels of Figure 3.2. Next, we used (3.6) with q -  8 quadrature points to calculate the predic­

tion mean and prediction variance, considering prediction locations to be subject to independent 

BVN(0 ;7 2/ 2) positional errors with p2 — 0.01, and treating all parameters as known. The results 

are shown in the middle two panels of Figure 3.2.

For the prediction mean (Le. t h e  h e s f  point prediction), Figure 3.2 shows a superficially similar 

pattern whether or not there is positional error. However, predictions allowing for positional 

error tend to  be more conservative near local extremes in the prediction surface. For the predic­

tion variance, the patterns are very different. When there is no prediction error, the prediction 

variances depend only on the locations of the data, not on the data values, with lowest variances 

occurring close to observation locations. This i s  not necessarily the case if there is prediction 

error; which in t h i s  example r e s u l t s  in a  r e l a t i v e l y  h i g h  prediction variance in the region around 

(G.2 ,0 .6 ), where there are s e v e r a l  n e a r b y  observation locations.



In the appendix, we give a theoretical justification of the differences between the predictions be­

fore and after adjusting for positional error. Here, we summarise the main results with reference 

to Figure 3.2.

The naive point predictor (the prediction mean (3.8), ignoring positional error) is adjusted ac­

cording to the shape of the prediction surface via second (and higher) order derivatives of the 

assumed correlation function (see (3.10)). As shown in Figure 3.2, the bias in this naive pre­

dictor is largest near the extremes of the prediction surface. In contrast, the prediction variance 

is affected by first order derivatives of the correlation function (see (3.12)), and so the largest 

impact of positional error is seen in regions of the surface where the gradient is steepest. For 

example, the prediction variance increases around (0 .2 ,0 .6 ) after allowing for positional error.

For similar reasons, at certain locations the prediction variance may be slightly lower in the pres­

ence of positional error than it is when the positional error is zero. In Figure 3.2 this occurs 

in the regions dose to the pixels (0.66,0.66) and (0.94,0.7), and is caused by both a shallow 

gradient in 5  at the prediction location and a relatively large kriging variance (i.e. few nearby 

observations). If the measured location is at a peak in the prediction variance surface, positional 

error in any direction would imply that the true location would have a smaller prediction vari­

ance. Figure 3.3 shows how the prediction variance at (0.66,0.66) changes as a function of the 

positional error variance y2.

The shape of the predictive distribution is shown in Figure 3.4, for four example locations. Only 

if j 2 = o is the predictive distribution Gaussian. If y2 ^  0, the distribution is typically skewed 

away from the mean p: from (3.5), it is a continuous mixture of Gaussian distributions, which 

in general is not Gaussian. This is most dearly seen in the figure for location (0.1,0.7), which is 

dose to a local maximum in the surface.

For comparison, we now consider the case in which the data locations are also subject to posi­

tional error: Quadrature schemes analogous to (3.6) would require evaluation of the conditional 

density function f  at q quadrature points in each of 2 (n + np) dimensions, where n is the number 

of data locations and nP is the number of prediction locations. A similar quadrature scheme 

that uses a product quadrature rule would require a number of function evaluations that grows 

exponentially with qT and is therefore prohibitive computationally.



An alternative is to approximate (3.4) using Monte Carlo integration. The right-hand side of

(3.4) can be written as E x * \ x p [ E x * \ x [ T \ Y ,  X * , X*}}, and the computation can be performed in 

practice by repeatedly simulating values successively from the zero-mean multivariate Gaussian 

distributions of X * \X  and X * \X P and then computing the required expectation by averaging 

over a large number of simulations. Unlike quadrature, Monte Carlo integration allows the pre­

cision of the prediction to be calculated with little extra computational effort, via the Monte 

Carlo variance.

The two right-hand panels of Figure 3.2 show the prediction mean and variance calculated on 

a fine grid of points assuming that there is zero positional error in the prediction location, and 

that data locations are subject to independent bivariate Normal, mean zero positional errors 

with variance j 2 — 0.01. A modest 1000 evaluations were required to ensure that the half­

widths of the 95% confidence intervals for the prediction mean and variance at each prediction 

location were less than 0.05 (the jaggedness of the contours in the figure is a result of the 

approximation). Computation was much quicker than in Section 3.3.1: the computation required 

to produce Figure 3.2 took a total of around 30 minutes, and the quadrature calculations were 

near-instantaneous. The results are comparable with those in the first four panels, although 

prediction variances tend to be lower than when positional errors of the same variance are 

applied to the prediction locations.

Joint Prediction

We now return to the case in which positional error affects only the prediction locations, and 

consider joint prediction at two locations X*x and X*2. The required integral is the higher­

dimensional analogue of (3.5):

[S(X;t),S(X^)\Y,Xn ,XP2\ = J J  [ S i X ^ S i X ^ X ^ X ^ l X ^ X r M ^ X p t l d X ^ d X ; , .

(3.7)

This is an example of the more general integral (3.4), and can be evaluated using Monte Carlo 

integration.

Figure 3.5 shows the result of estimating the covariance between predicted values at the point 

(0.5,0.5) and all other points on the unit square for the example used in Section 3.3.2. The left- 

hand panel shows an image of these covariances assuming no positional error ( j 2 = 0), whereas 

the right-hand panel assumes 7 2 =  0.01 for both prediction locations; the panels are plotted on
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a common colour scale that allows both positive and negative covariances.

We conclude that the covariance between predicted values tends to be reduced when positional 

error is introduced, even with a positional error variance that is small relative to the range pa­

rameter of the correlation function. Figure 3.5 illustrates this with 7 2 =  0.01 and 0 = 0 .1, and 

equation (3.14) in the appendix gives a theoretical explanation.

Qualititive patterns of the two panels in Figure 3.5 are similar: the covariance between pre­

dictions at different locations depends only on the relative positions of the prediction locations 

and data locations, and not on the data values y (see (3.14)). This result is a consequence of 

the assumption that positional errors at two data locations are independent. In contrast, in the 

presence of positional error the prediction variance depends on the data y (see (3.12)).

For a large number of prediction locations, evaluating the high-dimensional joint distribution 

may be infeasible, but also unnecessary in practice. A more useful alternative may be to estimate 

the pairwise covariances at prediction locations using (3.7), omitting pairs of locations far apart 

in space relative to 0 , for which the covariance will be negligible.

Prediction Over A Trajectory

We now consider joint prediction over a trajectory, or connected path. In the context of environ­

mental exposure assessment, this scenario mimics the changing location of an individual moving 

through a pollution surface, and is a special case of the general joint prediction problem. To ob­

viate the need to formulate an explicit model for the underlying true trajectory, we assume that 

it can be approximated by a sequence of connected line segments, with error-prone observations 

taken at the intersections between adjoining segments. As demonstrated below, this assumption 

allows computation of the predictive distribution over a line segment to be greatly simplified.

We assume here that data locations are known precisely. Consider a line segment connecting 

the true locations xpi and x *2, subject to errors ePl and eP2 respectively. Conditional on ePl and 

eP2, the error at any intermediate location on the line segment is known precisely, and when 

evaluating (3 .7 ) it is sufficient to condition only on the errors at locations where the prediction 

locations are measured, and to ignore any additional form of error at intermediate locations. The 

integrand in (3.7) can then be evaluated in practice at locations (1 -  A)xPl + AxP2 using a range 

of values of A e [0,1], not merely at the endpoints (A =  0 and A = 1), to improve the accuracy
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of the computation. Below, we investigate the effect of changing the number of intermediate 

locations m  on a line segment at which (3.7) is evaluated.

Consider the predictive distribution of the mean over a line segment connecting two points 

observed after the imposition of positional error as (0.3,0.5) and (0.7,0.5) for the previously- 

described example, as shown in the left-hand panel of Figure 3.6. The target for prediction is 

f c S{x)/\£\dx,  where £  denotes the line segment connecting true locations, with length \£\. We 

treated the true values of all parameters as known and estimated the integral by Monte Carlo 

integration, using m  equally-spaced intermediate locations along the line segment at which to 

evaluate the integrand in (3.7). We chose values m  =  0 (i.e. evaluate only at the two end-points) 

and m  = 1 ,2 ,5 and 20. 10000 simulations were sufficient to make the Monte Carlo variance of 

all density estimates less than 0.01. The results are shown in the right-hand panel of Figure 3.6.

The extent to which the number of intermediate points used affects the predictive distribution 

depends on both the length of the line segment and the parameter values. To illustrate this we 

carried out a simulation study in which we fixed 7 2 =  0.01 and generated, at each simulation, 

a realisation of a Gaussian process with zero mean and unit variance on 30 points randomly 

and uniformly distributed on the unit square. We assumed a Matem correlation function with 

k — 2, and varied the range parameter (p e (0 .1 ,0 .2 ,0.3,0.5}. Our target for prediction was the 

integrated exposure over the line segment (0.3,0.5) to (0.7,0.5), with the two end-points subject 

to positional error. We approximated the integral using m  =  0 ,1 , 2 ,5,10 and 20 intermediate 

locations.

The left-hand panels of Figure 3.7 show the results from 200 simulations. Results are summarised 

as: (i) average mean square error (M.S.E.) of the predictions relative to the ‘true’ integrated ex­

posure calculated by assuming zero positional error and extending the realisation of the Gaussian 

process to 50 points located along the line segment (0.3,0.5) to (0.7,0.5); and (ii) the prediction 

variance. As anticipated, we found that predictions improved as (p increased, and in absolute 

terms the improvement in mean square error was greater for smaller values of (p. For all cases 

the improvement in mean square error and prediction variance was most marked as the first two 

intermediate locations were added.

We then repeated the experiment holding (p fixed at 0.2, and varying 7  e {0,0.05,0.1,0.2}. 

Results are shown in the right-hand panels of Figure 3.7, and show that predictions gradually
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worsen as 7  increases. Again, the greatest gain comes from using the first two intermediate 

locations on the line segment.

3.4 Application

We illustrate our methods using a data-set consisting of lead pollution measurements taken from 

moss samples collected during July 2000 in Galicia, Spain. Fernandez et a l  (2000) and Aboal 

et a l  (2006) give further details, so we provide only a brief summary here. Samples were 

taken on an approximately regular lattice, as shown in Figure 3.8, with measurement locations 

recorded using a G.P.S. and plotted on a scale of 1 unit to 100 kilometres. Lead concentrations 

were measured in gg/g  dry weight and are analysed here on the logarithmic scale as the log- 

transformed values have a distribution that is approximately Normal. Figure 3.8 also shows a 

histogram of the data, the smoothed sample variogram and the fitted variogram resulting from 

the model described below.

We fitted the Gaussian model (3.1) to the log-transformed data, with a constant mean g and 

treating S(x) as a stationary Gaussian process characterised by a Matem correlation function 

with k  =  0.5. This value of k  resulted in better fit than other values in the discrete set {0.5,1,1.5, 

2,2.5}. Treating the measurement locations as fixed, we found the maximum likelihood estimates 

of the parameters to be g = 0.724, a 2 =  0.192, $ = 0.206 and f 2 =  0. The left-hand panels of 

Figure 3.9 show maps of the prediction mean and variance calculated on a grid covering the 

whole study region. The remaining panels of the figure show corresponding graphs when a hy­

pothetical bivariate Normal positional error with variance 7 2 is applied independently to each of 

the prediction location grid cells. As anticipated from (3.10), (3.11) and (3.12), the prediction 

variance is much more sensitive to positional error than is the prediction mean. Appreciable 

differences in the prediction variance map appear when 7 2 is increased to 0 .022, while maps for 

the prediction mean are superficially identical for values of 7 2 less than 0.052.

Figure 3.10 shows a hypothetical trajectory across the study region based on eight observed 

positions. The observations are assumed to be taken at regular intervals in time and subject to 

independent bivariate Normal positional errors with variance 7 2, and the trajectory is assumed 

to be piecewise linear. The right-hand panel of the figure shows the predictive distribution of 

average (log) moss concentration over the trajectory for different values of 7 2, computed using 

Monte Carlo integration with three intermediate points on each line segment. The main effect 

of increasing 7 2 is to increase the variance of the predictive distribution, while the mean of the
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distribution remains relatively unchanged.

3.5 Conclusions

In this paper we have discussed the effects of positional error in both measurement and predic­

tion locations in spatial problems. Little has been written on this topic in the existing literature, 

but it is relevant to a wide range of applications, especially in the growing number of epidemi­

ological studies that attempt to provide measures of individual environmental exposure rather 

than population average exposure.

A natural question to ask is in what circumstances positional errors are likely to change the 

conclusions of a spatial analysis. In standard regression problems, failing to take account of 

measurement error in a covariate can lead to parameter estimates and predictions that are bi­

ased and have incorrect, usually over-optimistic, precision (Carroll et al. (2006)). The same is 

true of positional errors for spatial data. The extent of the problem is primarily dependent on 

the size of the positional error and the shape of the underlying surface. For example, pollution 

surfaces that change sharply (i.e. have locally large gradients), as might occur in the case of air 

pollution close to a point source or near a busy road, are more sensitive to the effects of posi­

tional error in the prediction location. We have shown that the local gradient of the surface may 

have a large effect on the variance of the predictive distribution, which would not be detected 

by a standard analysis in which the estimate of the nugget effect were increased. Estimating 

this gradient (Banerjee et al. (2008)) may therefore be useful in more complicated problems to 

determine the likely impact of positional errors. If only the prediction locations are subject to 

positional error then this will not affect the problem of gradient estimation.

Typically the positional error variance parameter j 2 will either be known or could be estimated 

via a separate experiment, for example by taking replicate measurements at a single fixed loca­

tion. Gabrosek & Cressie (2002) also make this assumption. Our methods do however differ 

from those provided in that paper, as we maximise the likelihood directly rather than using a 

pseudolikelihood approach. Our solution to the prediction problem also differs, in that we do 

not assume that the minimum mean square error predictor is linear in the data values; indeed, 

our results demonstrate that it is not. The predictive distribution at a point is non-Gaussian, and 

asymmetric, in the presence of positional error, even if S  is a Gaussian process.

Throughout this paper, we have used a simple bivariate Normal model for positional error. This
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assumption enables the required integrals with respect to the positional error distribution to be 

computed either by quadrature, for which computation is near-instantaneous, or by Monte Carlo 

integration, for which computation is slower, but not prohibitively so for data-sets of moderate 

size. In assuming this model we have purposely avoided the need to specify a marginal dis­

tribution for either the true location A”* or the observed location A. For the Berkson model 

[A* | A] this specification is not needed, while for the classical model [A|A*] a specification of 

this marginal distribution would be required in order to perform the integration in the computa­

tion of the likelihood.

It may be advantageous in future work to consider further positional error models. Cressie & 

Kornak (2003) used a uniform distribution, resulting from rounding off coordinates to the near­

est grid point. We have also examined this model for our prediction task (results not shown), 

with very similar results to those we obtained from a bivariate Normal model with a matching 

positional error variance, an observation also made by Gabrosek & Cressie (2002). Thus the vari­

ance of the positional error may be of more importance than its exact distributional form. Other 

positional error models that warrant further investigation include those that allow correlation 

between measurements made sequentially, and those that take account of covariates.

Appendix

In this section we present additional results relating to Section 3.3.2 when positional error affects 

only the prediction locations.

Consider prediction of S' at a single location x* under the Gaussian model (3.1) with constant 

mean p and n data points at locations xi, ... ,xn . Let r* =  p(\\xp -  Xi\\), where p is a given 

correlation function, R  be a matrix with ( i j ) th element R LJ = p(\\xi -  X j \ \ ) ,  and Q =  R * 1. 

A standard result (e.g. Diggle & Ribeiro Jr. (2007), Chapter 6) states that the ordinary kriging 

prediction mean and variance, in the absence of positional error, are

n
(3.8)

where a* = YJj=i QijiVj ~ v)> which does not depend on the prediction location, and

(3.9)
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The predictive distribution [5(x*)|Y] ~  N(/ix. cr“), so p x provides the ‘best’ point prediction for 

S(x*p).

We now investigate how these results change when x* is subject to positional error under the 

independent Gaussian model described in Section 3.2. Our aim here is to approximate the first 

two moments of (3.5) using a Taylor expansion of the correlation function r. For clarity, we use 

the notation x  =  (x,y) for the two components of a general prediction location (removing the 

subscript p), with error e =  (ex .ey). The Taylor expansion for r is

, . . . drhc) dr(x) 1 2 <92r(x) 1 2 d2r(x) 32r(x)
r(x  +  c) =  r(x) +  e ,—  + ev —  +  ^ x - ^ ~  +

To simplify notation, we write ax for X^=i 0,1 drtfdx ,  axy for Yh=i ai d2r i/dxdy,  etc, and Qo)X 

for j= \r iQij dr j/dx ,  QXiXy for Yl7,j=i Qtj d2r j /dxdy ,  etc, all evaluated at x. In this

notation, = p + ao and a 2 — a 2 (1 -  Qo,o)-

In the derivation below, it is convenient to use the alternative form X* =  X  +  e of the positional

error model discussed in Section 3.2. The Taylor expansion corresponding to (3.8) is

1 2 I
Px+e  — P x  *b €xa x "b £ya y "b ^ ^ x x  "b £x £y&Xy "b ^ y a yy +

1 3 1 2 1 2 1 3
gexaxa:z b  2 exeyaxxy b  ^ x ^ yaxyy b  ~̂ eyayyy b

I 4 f-3 1 2 2 ^ 3   ̂ 4 _i_~ ^exaxxxx b  g exeyaxxz2/ b  xeyaxxyy b  Q^x€yaxyyy b y^-yQ-yyyy b •••

For any positive integer m, E(e2m) =  ((2m -  l)(2m  -  3)...3 .1)7 2m and E(e2m-1) =  0, and ex and 

ey are assumed independent, so the mean of the predictive distribution is

E [S (xbe)] =  Ee [px+e]

— P x  "I" 2 T2(axx b  ayy) b  gT i a xxxx b  2axxyy b &yyyy) "I" ). (3.10)

Similarly, the variance of the predictive distribution is

Var[S(x b  e)] =  Ee[<r2+e] +  Var £[Px+e],

where it can be shown that

Ee[c72+e] =  cr2 -  CT2 1 2 { Q x , x  + Qy,y + Qo,xx + Qo,yy) +  0 ( j 4) (3.11)
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and

¥ax!tii/i3C_ ej -  7 2(ô . t- a*) 4- 0 ( 7 4). (3.12)

These formulae motivate the discussion in the “prediction at a point'’ subsection in Section 3.3.2: 

the prediction m ean depends on second order (and higher) derivatives of p, while the prediction 

variance depends on first order (and higher) derivatives.

We now  consider the case of two prediction locations x*x and x*2. Let r  be the (n x 2) matrix 

with r.ij = p{| \\xPi — Xi 11) for j  =  1.2, and c -  p(||\xPl — x P2: |). In the case of zero positional error, 

standard results give

Cm'[S(xP:i) S{xp2 )J =  a 2(c -  (r'Q r)i>2). (3.13)

Mext we present corresponding results if the prediction locations are subject to independent 

positional errors. Using similar notation to the above, removing the subscript p, let x x =  (x i.y i)  

and x 2 =  (x2.jte) denote the prediction locations. Write the second partial derivatives of c as 

Cziae, =  - 02cfd'Mf. etc. Also, write QXlj0 for d {ru ) /d x1Qij r2j ) Q0,X2 for

Y tZ j= ir iiQij@(r2i) fd x 2 , Qm ..0! for 9(rii ) /dy l Q.lJr2j etc. Then it can be shown that

Cor[5(x i +  ci), 5(x2 +  ca)] = °"2 ( c -  Qo, o +  \ p 2 (c XXXX ^VlVl CX2X2 + Cy2y2

Qx\Xi ,Q +  Q y i y i , o  "f Q o , x 2x2 Qo,y2V2 )} + 0 { 7 4). (3.14)

This formula motivates die discussion in the “joint prediction” subsection in Section 3.3.2: the co- 

variance between predictions at two points tends to be reduced when positional error is present. 

In particular neither (3.13) nor (3.14) depends on the data y.
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7 a 2 4> T 2

True parameters - 0 1 0.3 0 .2

Scenario 1 - 0.51 0.98 0.26 0.18

Scenario 2a 0.03 0.41 0.80 0 .2 0 0.15

Scenario 2b 0.03 0.47 0.93 0.24 0.17

Scenario 3a 0.05 0.69 1.60 0.43 0.23

Scenario 3b 0.05 0 .6 8 1.40 0.43 0.25

Table 3.1: True parameters and parameter estimates for the data shown in Figure 3.1 under the 

following scenarios: 1. Using the original, true locations; 2a. Using the incorrect, repositioned 

locations with 7 2 =  0.032, making no allowance for positional error; 2b. As 2a, allowing for 

positional error; 3a & 3b. as 2a & 2b, with j 2 = 0.052.
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Figure 3.1: A realisation of a Gaussian process at 80 locations (left), with positional error applied 

to data locations (variance 7 2 =  0.032 (middle) and 7 2 =  0.052 (right)). The size of the point 

indicates the magnitude of the observation.
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Figure 3.2: Prediction means (top row) and variances (bottom row) calculated assuming no posi­

tional error (left column), positional error in prediction locations (middle column) and positional 

error in data locations (right column). Data points are shown at observed locations.

61



Pr
ed

ict
io

n 
va

ria
nc

e 
at 

po
in

t 
(0

.6
6,

0.
66

)

o
COo

o10d

o
o

0.01 0.02 0.03 0.040.00

gammaA2

Figure 3.3: Relationship between the prediction variance at a single point and the positional 

error variance of the prediction location.
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Figure 3.4: Predictive distributions at four locations assuming no positional error (dashed) and 

assuming positional error in the prediction location with variance 7 2 =  0.01 (solid). The four 

locations are (0.1,0.7) (top left), (0.1,0.95) (top right), (0.5,0.6) (bottom left) and (0.66,0.66) 

(bottom right).
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Figure 3.5: Covariance between predictions at the point (0.5,0.5) and other locations, where 
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Summary

We present a review of multivariate geostatistical models, focusing on the bivariate case. We 

compare in detail three approaches, the linear model of coregionalisation, the common com­

ponent model and the kernel convolution approach, and discuss similarities between them. In 

particular, we show how kernel convolution can be used to approximate the common component 

model, and demonstrate the method using a data-set of calcium and magnesium concentrations 

in soil samples. We then apply the common component model to a study of domestic radon 

concentrations in the city of Winnipeg, Canada, in which exposure was measured at two sites 

(bedroom and basement) in each residential location. Our analysis demonstrates that in this 

study the correlation between the two sites within each house dominates the short-range spatial 

correlation typical of the distribution of radon.

Key words: Common component model; Linear model of coregionalisation; Kernel convolution
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4.1 Introduction

In this paper, and following Cressie (1993), we use the term geostatistics to mean the branch of 

spatial statistics that is concerned with analysing a spatially continuous phenomenon using data 

collected at a discrete set of spatial locations. In recent years, there have been many develop­

ments in modelling multivariate geostatistical data. Computational advances have enabled data 

analysts to fit models of increasing complexity, but often little attention is paid to the relative 

benefits and drawbacks of using each class of models. In this paper we summarise and compare 

the available modelling strategies, and illustrate them with examples. We focus on the bivariate 

case, in which the problem is to model jointiy the distribution of two quantities that vary over 

space.

More formally, bivariate geostatistical data consist of pairs of measurements (Yij,Xij), for i =  

1,..., rij and j  = 1,2. The locations Xij are usually considered to be specified by the study design, 

rather than as the outcome of a spatial stochastic process. Often, the observations F -̂ =  Yj(xij) 

can be modelled, possibly after transformation, as a realisation of a multivariate Gaussian distri­

bution with a spatially structured covariance matrix, and we make this assumption throughout 

the paper.

A standard Gaussian model for univariate geostatistical data models the observations F  condi­

tional on an underlying, unobserved, continuous spatial process S  as

F (xi) = f3Td(xi)  +  a S ( x i ) +  : i =  1 , n (4.1)

where d{x)  is a vector of spatially-referenced covariates, jd is a vector of regression parameters, 

5 is a Gaussian process with zero mean, unit variance and covariance function 7 (-), and the Zx 

are independent N(0 , r 2) random variables (i.e. a white noise process with variance r 2). Often, 

S  is treated as stationary, meaning that j(u ,  v) = Cov{5(u), S(v)}  is a function of | | u  -  v\\, the 

distance between u and v.

In the bivariate extension of (4.1), S  = (SU S2) is a bivariate process with zero mean, auto­

covariance functions 711 and 722 and cross-covariance functions j 12 and 721, defined by 7 ,-*(«, v) = 

Cov(Yj(u), Yk{v)).  Here we make the simplifying assumption that S x and S2 are stationary and 

also ‘jointly stationary’, so that 7 n (u, v), 7 22(u, v) and 712(u, v) are all functions of \\u -  v\\. This 

implies that 712 =  721- We model the measurement errors as a bivariate white noise process,
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(Zi(u), Z 2 (u)), but allow its two components to be correlated, hence Cov(Zi(u), Z 2 (u)) may be 

non-zero, but for any u and v u, Cov(Zi(u), Z 2 (v)) = 0.

Although adjustments for spatially varying covariates are important in practice, for our current 

purposes they are a distraction. In what follows, we therefore replace the regression model

(3Td(xi) in (4.1) by a constant mean, and consider only bivariate models of the form

Yjixi) -I- <jjS(xij) +  Zij \ i =  1, — 1, 2, (4.2)

where =  Z j(x i j) denotes the measurement error term for the j th  component (J =  1,2) at

location Note that we do not require both components to be measured at the same set of lo­

cations but, as described above, at any location where both components are measured we allow 

the corresponding two measurement errors to be correlated. This is important in applications 

where the Zij are intended to capture pragmatically both pure measurement error and spatial 

correlation at a scale smaller than the shortest distance between any two measurememnt loca­

tions.

A key constraint on the choice of a covariance structure for the process S  relates to positive 

definiteness: given any two sets of locations x i iUl and x 2 ii , x 2tn2, the symmetric

(■n i + n 2) x (m + n 2) block matrix with diagonal blocks given by j u ( x i  4 , x \  j ) ,  i, j  = 1,..., n\ and 

722(^2,»,£2,j)> i , j  = 1 , - - ,n 2, and off-diagonal block 712(^1,*,x 2J), i = l , . . . ,n i ,  j  =  1 , .. .,n 2, 

must be positive definite.

The objectives of a particular analysis may include the estimation of parameters of interest, and 

will usually include prediction of S  at new or already-sampled locations. Within the Gaussian 

modelling framework, both the likelihood function and the predictive distribution [S* | Yi (•), Y2{-)\, 

where S* denotes the values of S  at the set of locations for which predictions are required, are 

conceptually straightforward, but may be computationally demanding.

The remainder of the paper is structured as follows. In Section 4.2 we first discuss what might 

constitute a desirable set of characteristics for a generally applicable class of models. We then 

review and compare three widely used approaches, namely the linear model of coregionalisation 

(LCM), the common component model (CCM) and the kernel convolution approach (KC). In 

Section 4.3 we consider likelihood inference, parameter estimation and prediction. In Section 

4.4 we report an illustrative analysis of a data-set consisting of calcium and magnesium concen-
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trations in soil samples, and an application to a study of domestic radon concentrations in the 

city of Winnipeg, Canada. In Section 4.5 we give a general discussion and conclusions.

In traditional geostatistics, the univariate and multivariate spatial prediction methods known as 

kriging and co-kriging, respectively, are presented without reference to any specific stochastic 

model; rather, they are justified by their delivery of best (in mean square sense) linear unbiased 

prediction (Chiles & Delfiner (1999)). We take the view, following Diggle & Ribeiro Jr. (2007), 

that linear prediction is most natural under a Gaussian model, and make this choice of model an 

explicit assumption at the outset. This colours our approach to inference, but does not affect our 

comparative discussion of different classes of model.

4.2 Review of Bivariate Models

In the traditional geostatistics literature bivariate spatial prediction is called co-kriging (Ver Hoef 

& Cressie (1993); Haas (1995)). In this technique, a two-dimensional point prediction S(x) = 

(Si(x), S 2 (x)) at location x  is constructed as the linear combination of the data Y  that minimises 

the mean squared prediction error. Equivalently, under our assumed stationary Gaussian model 

the co-kriging predictor is the mean of the Gaussian conditional distribution [(Si (a:), S2(x))|yr, 6], 

calculated after ‘plugging-in’ estimates of the parameters 0 (Diggle & Ribeiro Jr. (2007), Chapter 

6). Thus, co-kriging directly relies upon specifying a suitable model for the covariance structure 

of S.

In some applications, the specific context may suggest an equally specific model. More com­

monly, the model is empirical in nature and is used simply as a means to the end of spatial 

prediction. We consider the following properties to be desirable for a generally applicable class 

of such models.

Firstly, the model should have a spatially continuous interpretation, thereby allowing prediction 

at unsampled locations. Note, however, that once such a model has been specified, it would 

typically be implemented using a finely spaced grid as an approximation to the underlying spa­

tial continuum, in which case a spatially discrete approximation as derived by Rue & Tjelmeland 

(2002) provides a computationally efficient means of implementation.

Secondly, the model and any associated statistical methods should allow for both common and 

misaligned locations at which measurements are made. Any model that is formulated as a spa­
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tially continuous Gaussian process, in conjunction with likelihood-based methods for parameter 

estimation, automatically meets this requirement. One context in which misaligned locations 

would arise naturally is when scientific interest is focused on a process Si(-) which is expensive 

to measure but is correlated with a second process S2(-) which is cheap to measure. The combi­

nation of a small sample of measurements of Si(-) and a large sample of measurements of S2(-) 

might then be more cost-effective than either sampling S'i(-) alone, or sampling both Si(-) and 

S2(-) at a common set of locations.

Thirdly, the model should not generally depend on the labelling of the two components. An ex­

ception would be when there is a natural direction of dependence between the two components, 

analogous to the asymmetric formulation of a classical regression model for an explanatory vari­

able and a response. For example, in modelling the relationship between air pollution and biodi­

versity, modelling biodiversity conditional on pollution would be more natural than the converse.

Fourthly, if less tangibly, the model needs to balance flexibility against parsimony. On the one 

hand, the choice of univariate models for the covariance structure of each component of S  should 

not over-constrain the model for the cross-covariance between the two. But the model should 

also not be so flexible as to be unidentifiable, unless the scientific context justifies strong prior 

assumptions, tantamount to a reduction in the number of unknown parameters.

Some methods that specify a model directly as a particular multivariate Gaussian distribution fail 

to meet the first of the above considerations. For example, a method described by Oliver (2003) 

treats response vectors Yj =  {YJ(xlj) : j  -  1, ...rii} as realisations of a multivariate Gaussian 

distribution by specifying

v yv

( U w S l \

 ̂ L 2p L 2\ / l  -  p2 j
+

V * / V Z2 /

(4.3)

Here, the elements of Z\ and Z2 are independent zero-mean Normal random variables with 

variances i f  and r f  respectively, the elements of Si and S2 are independent standard Normal 

random variables, and L\ and L 2 are the generalised square roots of the covariance matrices of 

the multivariate Normal distributions of Yi -  Z r and Y2 -  Z2, computed using their LU factori­

sations, whilst the scalar p, in conjunction with the variance components r f  and r22, determines 

the cross-correlation between elements of Yi and V2. This representation cannot deal with data 

in which observations for the two components are not co-located, which also makes prediction
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at new locations difficult. In addition, the cross-covariance is determined entirely by the two 

marginal covariance structures, and often does not have a standard functional form. This limits 

flexibility.

A conditional, or hierarchical, approach is used by some authors to represent physical processes 

for which an asymmetrical formulation is natural. For example, Royle & Berliner (1999) model 

vectors (Yi, Y2) according to

Yi|y2 ~ AY2 + Z1 

Y2 ~  ^2

where Z\ and Z2 are independent multivariate Normal random variables and A is a matrix of 

regression coefficients parameterised by a vector of relatively low dimension. In its simplest form, 

the conditional part of this model is a regression of Yi on Y2. In a spatially continuous setting, 

this idea motivates the model for top-soil geochemistry used by Calder et al. (2009). They 

represent the model for Yi and Y2 and latent Gaussian processes S\ and 5 2, given parameters 0, 

by specifying the sequence of conditional distributions [Yi|i>i, 6 ], [Y21S2, 9\, [Si |S2, 6] and [S2|(9j.

4.2.1 Linear Model of Coregionalisation

Several modelling strategies use a ‘constructive’ approach of forming a new covariance function 

as a sum of covariance functions. The most widely used example of this approach is the lin­

ear model of coregionalisation, or LCM (e.g. Goulard & Voltz (1992); D’Agostino et al. (1993); 

Goovaerts (1994); Wackemagel (1995); Chiles & Delfiner (1999); Schmidt & Gelfand (2003); 

Marchant & Lark (2007)). In this model a bivariate process S +(x) = (S+ (x), S^(z)) is con­

structed as a sum of matrix products, each of the same basic form

s + (x ) = J 2  A kS w {x),
k =  1

where each S ^ ( x )  = (S[k\ x ) ,  S ^ i x ) )  consists of two independent Gaussian processes with 

zero mean and unit variance. Li et al  (2008) describes a sequential test for determining the 

optimal value of p. One appeal of the LCM is that the constructive approach guarantees valid­

ity. However, there is no guarantee that all bivariate processes can be constructed in this way 

(Ver Hoef & Barry (1998)).
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The special case of the LCM in which p =  1 (the ‘Single Component Model’, or SCM, Mardia & 

Goodall (1993), Gelfand et al. (2003) and Schmidt & Gelfand (2003)) is specified by

^ S t ( x )  ^

S£(x)

( \ (Til <712

£721 (722
(4.4)

and is a special case of the more general bivariate linear process described by Jenkins & Watts 

(1968), p329. The choice of parameterisation may depend on the context, but for parsimony 

some authors (e.g. Gelfand et al. (2003); Schmidt & Gelfand (2003)) recommend making A  

lower-triangular, i.e. setting <ji2 =  0. Calder (2008) uses this parameterisation of (4.4) to model 

concentrations of particulate matter (PM25 and PM i0). The lower triangular parameterisation 

has a natural interpretation in this context, as particles of diameter less than 2.5pm  necessarily 

have diameter less than 1 0 pm, but not conversely.

4.2.2 Common Component Model

With similar notation to (4.1) and (4.2), the basic form of the common component model (Diggle 

& Ribeiro Jr. (2007)) is

Yj(xij) = pTd(xij) 4- crojSo(xij) +  <ijSj(xij) + Zij. (4.5)

For j  ±  f ,  let Con[Zj(u), Zr (u)] =  C- Marginally,

Yj ix i j )  ~  N {(3Td{xij),  ctqj +  £72j  +  r?).

We have

Cov\Yj(Xij)  ,Yj> (Xij)] — <J0j&0j' +  "b Tj  ) “b ■̂{j¥:3'}^T3Tj'

and, for u > 0,

Cov [Yj (x i j ) ,Y f  (x^ -  u))] =  aojO-Qj'Po{u) +  I{j = j>}CTjPj(u),
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where I{.} is the indicator function. Analogously to (4.4), we can write the model for the two- 

dimensional process S +(x) =  ( S f  (x), S }  (x)) as

^ Si+ (x) ^ 

^ $ 2 (x )

(  n \a01 o i U

O’02 0 <X2

iS'o(x) 

5i(x)

^ 52(x) y

(4.6)

=  A S

One motivation for the CCM is that the ‘common component’ S 0 represents a shared factor that 

affects both Yi and Y2, whereas Si and S 2 represent component-specific effects that are inde­

pendent of each other and of So. Knorr-Held & Best (2001) use an analogous construction in the 

spatially discrete setting of disease mapping, where 5’0, Si and S 2 represent shared and disease- 

specific spatially-varying latent risk-factors for two diseases. From a purely empirical standpoint, 

the use of three independent processes matches the need to specify three covariance functions: 

two auto-covariances and one cross-covariance.

The various construction-based models are compared in Figure 4.1. The single-component LCM 

is shown in panel (a), and the CCM in panel (b). Panel (c) shows an alternative representation 

of the CCM in which the shared process Sq represents an additional level in the hierarchy. This 

can be seen as equivalent to the CCM as follows.

Let Sq = So, SI — Sq + T\ and S *2 =  Sq 4- T2, where Sq, T\ and T2 are independent processes. 

Such a representation is always possible if the Si and S* are Gaussian. In the hierarchical 

specification of the model in panel (c) of Figure 4.1 we would model [Sq]; [Ti] = [S'*l^o] an<̂  

[T2] =  [S2 IS0]; andfinally [(Yi, Y2)|S'o,S'*,S|], which is equivalent to [(S^,S ,̂ ) |5 o ,T ],T2]. Thus 

the model in panel (c) can be rewritten as a model for [S'+ |S'0,T i,T 2]. Similarly, the CCM (4.5) 

can be written conditionally as

Yj (xij)\So(xij),  Sj(xij) ~  N(pTd(xij) + <JojSo{xij) + aj Sj {xij), rf) .  (4.7)

Further discussion of the conditional and unconditional representation is provided by Berliner 

(2000). The choice of representation to use may depend on the practical context of the applica­

tion under consideration.
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4.2.3 Kernel Convolution Approach

The kernel convolution approach is used in both spatial and spatio-temporal modelling. It leads 

to a reduction in computational complexity by comparison with direct specification of a bivari­

ate Gaussian process. The approach relies on a spectral characterisation theorem for stationary 

Gaussian processes, which can be applied to spatial processes in much the same way as in the 

more familiar setting of time series (Priestley (1981)).

We begin by outlining results for the univariate case, summarising material given by Yaglom 

(2004) and the references therein. The key result is Bochner’s Theorem, also proved by Khinchin, 

which states that every positive definite function is the Fourier transform of a positive finite Borel 

measure. Therefore, if a covariance function C  is stationary, we can write

C(u) = J  eliuF(dt) (4.8)

for some positive definite bounded symmetric measure F. Conversely any function C  which can

be represented in the form (4.8) is the covariance function of a stationary Gaussian process. F

is called the spectral distribution function of the underlying stationary process 5. Karhunen’s 

Theorem states that any random process S  can be represented in the form

S{x) =  J  k(x,t)F(dt),  (4.9)

where A; is a deterministic, square-integrable kernel function and F  is an orthogonal random 

measure. We assume that F  is a Gaussian measure with mean zero and independent increments 

such that Var(F(dt)) =  v{dt), say. If v(dt) = dt, it can be shown that the resulting process S, 

defined by (4.9), is Gaussian with mean zero and covariance function

C(u) = J  k(t)k(t — u)dt. (4.10)

Higdon (2002) summarises the method for determining the kernel from a given covariance func­

tion: first determine the spectrum of C as the Fourier transform F(C)\  then, by the convolution 

theorem, take the inverse Fourier transform of the square root of F{C) to find a kernel corre­

sponding to the covariance function C. The choice of kernel is not unique, as either the positive 

or the negative square root could be taken, but there is at most one positive definite kernel that 

corresponds to a given covariance function. However, as discussed by Xia & Gelfand (2005), 

it may not be possible to find such a kernel in closed form. Kern (2000) gives further details
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and derives the result that the Gaussian covariance function corresponds to a Gaussian kernel. 

Similarly, the Matem covariance function gives rise to a Matem kernel, provided the smoothness 

parameter k is sufficiently large (Xia & Gelfand (2005)).

Adaptations for bivariate spatial data are considered by Barry & Ver Hoef (1996), Ver Hoef & 

Barry (1998) and Ver Hoef et al  (2004). Define S0, Si and S 2 as independent white noise 

processes, with

Tj(x ij) = PjSo(xij -  A j) + y j  1 -  PjSj(xij) (4.11)

for j  =  1,2. Here, the parameters pj and A j  represent the strength and shift in the spatial cross­

correlation between the processes Ti and T2.

The process S + is constructed as

Sj~(x ij) = J  kj(t -  Xij)Tj(t)dt, (4.12)

where the kj are kernel functions, and the observation process is

V} {xij) =  Sj~ (xij) +  Zij .

The analogous results to (4.10) are

Cjj(u) = J  kj(t)kj(t — u)dt (j  = 1,2)

Ci2 {u) =  pip2 J  ki(t)k2{t -  u +  A2 -  Ax)dt

and

Corr(iS'i"(x), (x )) = P\p2 -

The use of the parameters pj in (4.11) resembles the formulation of Oliver (2003) in (4.3), 

where pj is interpreted as the correlation between the processes S+ and S 2 at a common lo­

cation. However, Ver Hoef et al  (2004) note that the parameters pj and A j  in such models 

as (4.11) may not be identifiable. If the auto-covariance and cross-covariance functions are all

Gaussian, so are the corresponding kernel functions (Boyle & Frean (2005)).

This type of construction permits a hierarchy of models of increasing complexity and generality,

82



analogous to the SCM and CCM, to be drawn up. Hence, for j  =  1,2

S~j{xij) = J  kj(t  -  Xij)Sj{t)dt

S~j (x ij) =  J  ko ( t~  Xij)S0 (t)dt +  J  kj(t -  Xij)Sj(t)dt

S f fa i j )  — J  k0j( t  -  Xij)So(t)dt + J  kj(t — Xij)Sj(t)dt (4.15)

(4.14)

(4.13)

In (4.13) Si  and S 2 are correlated white noise processes (the correlation being represented by a 

single parameter), whilst in (4.14) and (4.15) Sq, Si and S 2 are independent white noise pro­

cesses.

To implement the kernel convolution method in practice, the integrals are approximated as sums 

over a finite set of m  fixed locations, called knots. For example,

S(x) = f  k(x,t)W (dt)

j = 1

where W  is a white noise process. Such an approximation raises the question of the choice of m  

and the positions of the knots, tj. We give further details on implementation in Section 4.3.3.

4.2.4 Other Approaches

In a slightly different modelling strategy, Majumdar & Gelfand (2007) create cross-covariances 

for a bivariate process by convolving the covariance functions of independent univariate pro­

cesses, hence

where crjCj(-) is the covariance function of the process S+. This yields a valid covariance func­

tion for the multivariate process S +, and the integral can be evaluated using a Monte Carlo 

approximation. In further work, Majumdar et al. (2007) review methods for constructing multi­

variate non-stationary processes using the kernel convolution approach.

Several authors have tackled the problem of non-stationarity of S  using process convolution 

methods. Higdon (1998) and Higdon (2002) develop such a method for spatio-temporal data 

by allowing the parameters of a separable kernel k to vary over space and/or time. A simpler 

example for a purely spatial process is provided by Lee et al. (2005), who allow the convolved
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(4.16)

C ov(5t (Xij), Sp(Xij -  u)) =  (Tjt7j>
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process W  to be more general than white noise. They treat W  as an “intrinsically stationary” 

process, such as a random walk or Markov random field on a discrete set of locations, while 

fixing A; as a Gaussian kernel. The covariance of S  is thus modified via the dependence structure 

of W  according to spatial location.

In a series of papers, Fuentes (2001, 2002a, 2002b) uses the representation

S(x) = J  k{x ,t)W e{t)(t)dt,

where We^  is a stationary process with spatially-varying parameter 9(t). The Wfyt) can there­

fore themselves be represented in the form of a kernel convolution, in this case a convolution of 

white noise processes.

Banerjee et a l  (2008) consider a “predictive process model”, in which the process S  at a location 

x  is approximated by the simple kriging predictor based on a realisation of S  over a discrete set 

of knots. Y  is expressed as a linear combination of the (unobserved) values of S  at the knot 

locations, which reduces the dimensionality of the model.

Bardossy (2006) and Bardossy & Li (2008) introduce an entirely different method based on cop­

ulas. Copulas are parametrically-specified joint distributions generated from given marginals 

of the bivariate components, and have univariate U[0,1] marginal distributions (Frees & Valdez 

(1998)). Any m-variate cumulative distribution function F  with margins Fi, ...Fm can be ex­

pressed in the parametric form

F { x \ , . . x m) — C (F\ (x i),..., Fm(xm)),

where C is a copula. A variety of commonly-used functional forms for C is available. This ap­

proach is used when the margins of the distribution have a known form but the joint distribution 

is unknown. However, it treats the data as a realisation of a multivariate distribution, rather than 

a multivariate process, and therefore lacks a spatially continuous interpretation.
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4.3 Inference

4.3.1 Exploratory Methods

Most analyses begin with simple data exploration to suggest appropriate models and initial pa­

rameter estimates. For univariate geostatistical data, a commonly-used exploratory device for 

model (4.1) is the variogram,

V ( x i , x 2) =  ivax(5'(a;i) -  S (x2)).

In the bivariate setting, there are two different definitions of the cross-variogram for a stationary 

process Y (x ) =  (Yi(x), Y2 {x)). The first is

=  ^C ov(n(x) -  Yi(x -  u), Y2 (x) -  Y2(x -  «)).

The second is the “variance-based cross-variogram”

M « )  = jV a r(Yi(x) -  Y2(x -  «)),

in which Y\ and Y2 are standardised so as to make V\ 2 (u) well-defined when the two variables 

are measured in different units (Cressie & Wikle (1998)). Method of moments estimators for 

these quantities are, respectively,

Vniu) = E M  _ Yl(Xi ~ u)}{y2(a;<) -  Y2(Xi -  u)j

and

v12(u) = -  Yi) -  (y2(xi -  u) -  Y2) } \

where Yi is the sample mean of the Yi} and the sums are taken over the N(u)  data pairs separated 

by a spatial distance of u. Robust estimators of the cross-variograms are provided by Lark (2002, 

2003).

When the data-locations are irreglarly distributed, the empirical estimates are typically averaged 

(‘binned’) over discrete ranges of u before being plotted against u. These non-parametric esti­

mates can then be compared to the corresponding theoretical quantities for a candidate model,

v*2(u)  =  < T K 7 2 { / 9 1 2 ( 0 )  -  (pn{u) -  p12(-u)) /2}
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and

V12(u) = {aj + a l) /2  -  a xa2pi2 {u), 

where of = Var(Yi) and p\2 {u) = Corr(Fi(a;), Y2(x -  u )). An example is shown in Section 4.4.1.

A simple additional plot for co-located bivariate data is a scatter-plot of the data from the two 

components, which provides a check on whether pi2 (0) depends on Yi and Y2.

4.3.2 Likelihood-Based Inference and Parameter Estimation

In principle, likelihood-based inference based on the LCM and CCM is simple, as the likeli­

hood is simply the density function of a high-dimensional Gaussian distribution. To demonstrate 

parameter estimation for the CCM (4.6), we generated bivariate data from this model for 50 

randomly-chosen locations on the unit square, using parameters pi — p 2 — 0 ,  r 2  =  r |  = 0 ,  

°o = a i =  °2  =  1 and assigning to each of the Si a covariance function of Matem form with 

4> =  0.2 and k = 0.5. For each of 100 realisations of the model, we treated r 2 ,  r |  and k as 

known and estimated the remaining parameters by maximum likelihood. The results are shown 

in Figure 4.2. Zhang (2004) provides similar results for the univariate model.

The models described in Section 4.2 may require constraints on their parameters to ensure iden- 

tifiability. For example, the LCM specified in (4.4) is not identifiable if the covariance structures 

of Si  and S 2 are identical, as it has one too many variance parameters. Context often indicates 

a reasonable parameterisation. For example, the CCM (4.6) may be most useful when modelling 

quantities that are physically related to each other and which are measured on the same scale, 

possibly after transformation. In such cases it may be appropriate to assume that a}n -  afr2 

and/or that r f  =  r | .

4.3.3 Implementation of the Kernel Convolution Approach

As noted above, when analysing large data-sets the kernel convolution construction (4.16) yields 

computational savings compared to direct specifications such as the LCM or CCM, which require 

inversion of a covariance matrix V  of dimension n\ + n2 by n i + n2, irrespective of the number 

of locations at which predictions are to be made. Fitting can usually be performed using stan­

dard software routines for Gaussian random effects models, treating the W  terms in (4.16) as 

independent and identically distributed and the k{-, •) terms as fixed multipliers.
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Implementation requires choices to be made for the form of the kernel and the number m  and 

locations of the knots. These choices will depend on the nature of the data being analysed, but 

some general points can be made.

Firstly, it is common practice to use a standard functional form of kernel, such as the Gaussian 

(Higdon (1998)) or uniform (“small rectangle moving average”, Ver Hoef & Barry (1998)), that 

is chosen for computational convenience, rather than to match the empirical covariance struc­

ture of the data. See Calder (2007) and Gelfand et al. (2003).

Secondly, in general it is not possible to determine the analytic form of the kernel that corre­

sponds to a given covariance function. Instead, the analyst has two choices: either to specify 

the kernel functions directly, or to find by numerical experimentation a set of kernels whose con­

volutions (4.10) approximate the required forms for the auto-covariance and cross-covariance 

functions. For example, the Matern family of kernel functions provides a degree of flexibility 

that is sufficient for many applications; we give an example in Section 4.4.1.

Thirdly, the most commonly-used layout for knot locations is a rectangular or hexagonal grid, in 

which case a stationary process is obtained in the limit as the grid-spacing shrinks to zero. Other 

designs use an increased density of knots in certain regions to capture non-stationarity (Nychka 

& Saltzman (1998)), or in regions with a high density of data-points (Stroud et al. (2001)).

Finally, a formal measure of the effect of the number and locations of the knots on the perfor­

mance of the approximation can be obtained, based on the Kullbeck-Leibler divergence (Xia & 

Gelfand (2005)). In practice, little improvement is gained by locating the knots on a grid whose 

spacing is less than the standard deviation of the kernel (Calder & Cressie (2007)). The convolu­

tion model with knots on a regular lattice can be used as an approximation to the limiting form 

as the lattice spacing approaches zero. In this case, the number of knots can be chosen prag­

matically by decreasing the lattice spacing until the fitted covariance stucture and associated 

predictions stabilise (Rodrigues & Diggle (In press)).
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4.4 Applications

4.4.1 Calcium/Magnesium Soil Data

To compare the modelling strategies described in Section 4.2, we use a dataset of 178 pairs of 

soil chemistry readings. These data are available in the contributed R (R Development Core 

Team (2008)) package geoR (Ribeiro Jr & Diggle (2001)), where further information about the 

source of the data is available. We use calcium and magnesium measurements in the 0-20cm

soil layer. The data are shown in the right panel of Figure 4.5, in which one unit represents one

kilometre. Empirical variograms and cross-variograms are shown in Figure 4.3.

We fit the CCM and SCM to the data, assuming Matem correlation functions with known k = 0.5. 

This gave the largest likelihood amongst values of k e {0.5,1.5,2.5}, although point predictions 

using different values of n were almost identical. We fit the CCM both with t 2 =  r |  (Model 

1) and with r 2 /  r |  (Model 2), although there was no significant improvement in likelihood 

using the latter (-425.3 versus -425.0). The fitted variograms for Model 1, shown in Figure 4.3, 

suggest reasonable fit. Parameter estimates for these two models, the SCM (4.4) with u \ 2 =  0 

(Model 3), and two univariate models (Model 4) are shown in Table 4.1.

In the CCM, the correlation of Corr(Yi (x),Y2 (x)) at a single location x  is

 <^01^02___________
V ( a 01 + ° 1 +  T\  ) ( ^ 0 2  +  & 2 +  T2 ) '

which is estimated for Model 1 as 0.39, close to the sample (co-located) correlation between the 

calcium and magnesium components, 0.33.

Figure 4.5 shows predictions of S(x) and the prediction variances, calculated by plugging in the 

parameter estimates from Model 1. Predictions from the SCM are superficially identical to these. 

Figure 4.5 also shows the predictions resulting from an analysis using kernel convolution. For 

this, we first used the parameter estimates from the CCM with « = 2.5 to determine kernel func­

tions that, after convolution, gave a good approximation to the fitted auto- and cross-covariance 

functions. The best fit was obtained with a Gaussian kernel for k0 and Matem kernels for k 1 and 

k2, and the approximation was found by minimising

J {(Cn(x) -  ku {x) ) 2 + (C22(x) -  k22{x) ) 2 + (C12(x) -  k i2 (x))2 }dx,
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where kij(x) denotes the convolution between hi and kj, and the C^-(x) denote auto- and cross­

covariance functions. Figure 4.4 shows the approximation of the two auto-covariance functions 

and one cross-covariance function. As might be expected, the point predictions from the kernel 

convolution model (middle panel of Figure 4.5) strongly resemble those from the CCM, although 

there are some minor differences for the magnesium component.

4.4.2 Winnipeg Radon Data

These data consist of radon measurements taken as part of a case-control study in Winnipeg, 

Canada to investigate epidemiological associations with lung cancer (Letourneau et al  (1992)). 

Radon dosimeters were placed in bedrooms and basements of current and former residences of 

study participants. As radon concentrations are seasonal (Whitley & Darby (1999)) and highly 

variable over short time intervals (Brabec & Jilek (2009)), measurements were taken over a 

whole year to produce a total exposure measurement in Bq/m3 at each site. Here we use data 

from 1901 dwellings for which a bedroom measurement was recorded; for 1622 of these, a 

basement measurement was also available. Reasons for missing data include equipment failure, 

refusal of house owners to allow installation of dosimeters and the absence of a basement from 

the property.

The original study used exposure for each individual aggregated across their lifetime residential 

locations, and found no evidence of an association with lung cancer (Letourneau et al  (1994)). 

For example, the odds of lung cancer in cases relative to controls was estimated as 0.97 (95% 

confidence interval 0.81 to 1.15), where the units are per 3750 Bq/m3-years for radon measured 

in the bedroom. Nevertheless, there is now strong epidemiological evidence from other cohort 

and case-control studies to support the link between prolonged radon exposure and lung cancer 

incidence (Krewski et al  (2006)). Also, as radon gas tends to become trapped within buildings, 

in many areas the home is a substantially greater source of exposure than the outdoors (Steck 

e ta l  (1999)).

The original analysis of Letourneau et al  (1994) assigned an observed bedroom and basement 

exposure reading to each household without examining the spatial variation in exposure. Here 

we investigate this spatial variation, treating bedroom and basement measurements as the two 

components in a bivariate common component model and using data from residences of partici­

pants in the control group. Data locations are shown in the right panel of Figure 4.6.
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We analyse the radon data on the logarithmic scale, for consistency with the multiplicative 

model used by Brabec & Jflek (2009). Preliminary analysis suggested short-range spatial auto­

correlation for measurements made in the bedroom (Yi) and in the basement (Y2), with a large 

nugget effect. However, bedroom and basement measurements made within the same dwelling 

were highly correlated (r =  0.80), and at least as high in the basement as the bedroom for 1469 

of the 1622 dwellings (91%) for which data were available at both sites.

Other studies have demonstrated that house-specific factors such as detachment, double glazing, 

floor type and date of construction are associated with radon build-up (Hunter et al  (2009)). 

For our study, the only available covariate was altitude, which did not vary substantially over the 

study region and showed no association with radon.

As discussed by Whitley & Darby (1999), radon typically accumulates in the basements of 

houses before dispersing to upstairs rooms and the outside atmosphere. This suggests spatially- 

varying terms of the form exp{cr05’o(-)} (on the original scale) for the basement component and 

exp{<70So(-)} exp{cr15'i(-)} for the bedroom component, where the Si  term is interpreted as the 

proportion of basement radon that is detected in the bedroom at a given location. We incorpo­

rate house-specific effects via a correlated nugget effect (correlation parameter Q, and fit the 

common component model

log {Y jfa j)}  =  (5j +  <j0So(xij) +  I{j=i}(TiSi(xij) +  Zij, (4.17)

where Sq(-) and S'i(-) are standardised Gaussian processes with exponential correlation func­

tions, p0 (u) = ex p (- |u |/0 o) and pi(u) =  e x p (- |u |/^ i) . We also specify that, for any location at 

which both measurements are made, (Zn, Z i2) has a zero mean bivariate Gaussian distribution 

with covariance.
( r 2 Ct2 

V ^  t2 ) '
The maximum likelihood estimates for the Winnipeg data are 0i =  4.65, fa = 5.05, = 0.15,

a\  =  0.015, fa  = 0.009, fa = 0.014, f 2 =  0.47 and C = 0.56. The fitted correlation between 

bedroom and basement measurements made in the same house is

(gp + 6~2) --- = Q_66_
y / ( a % + d -  'I +  T2) {a $  +  t'2)
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The variances corresponding to the two ^'-processes are small compared to t 2, and the spatial 

correlation decays rapidly; for example, at a distance of 1km (u «  0.014°), po(u) = 0.21 and 

Pi (u)  =  0.37. Figure 4.6 shows the predicted bedroom radon surface across the Winnipeg re­

gion; units of distance are degrees latitude/longitude (0.1° «  7.1km at this latitude). There is 

evidence that radon levels are higher in some areas of the city than others, but the variation in 

Y\ between individual houses dominates the spatial variation.

To test the value of the bivariate model for prediction, we deleted 50 >2 observations from the 

data-set, refit the model and made predictions of the deleted >2 values. Figure 4.7 shows a 

comparison of predicted and observed values. There is good agreement between the two, as 

a result of the extra information provided by the observed Yi at the prediction locations, albeit 

with some shrinkage towards the overall mean. We also fitted a univariate model to the basement 

data alone. Figure 4.7 shows that predictions based on this model compare much less favourably 

to the observed values. This is essentially because, in the absence of useful explanatory variables 

the rapidly decaying fitted spatial correlation structure forces the predictions at unmeasured 

locations to revert rapidly to the fitted mean as the distance to the nearest measured location 

increases.

4.5 Discussion

We have presented a comparison of the many models available for analysing bivariate geostatis- 

tical data. In particular, we have discussed in detail the properties of the common component 

model and a corresponding model in the frequency domain, represented as a kernel convolution.

The advantage of the kernel convolution approach is its computational tractability, but at the 

cost that the form of the kernel k is often chosen arbitrarily. We suggest that a suitable kernel 

can usually be found by assuming a Matem functional form, estimating parameters by maximum 

likelihood and checking that the resulting covariance structure gives a good fit to the empirical 

covariance structure of the data. Alternatively, a Bayesian approach could be used, as discussed 

in detail by Higdon (1998) and Calder (2008).

For many bivariate geostatistical models, an appropriate choice of parameterisation is often nei­

ther obvious nor unique, and identifiability can cause difficulties in obtaining meaningful pa­

rameter estimates. This has been especially noted for the linear model of coregionalisation with 

several components (Zhang (2007)), but also applies to simpler related models. For example, a
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simple reformulation of (4.17) is

Y2{xi2) =  (3 2 +  cr0S 0(xi2) +  Zi2,

Yi(xn) = {Pi ~ 02) +  Y2(xn) + criSi(a;ii) + Z'a

where now Z[x is a random variable with Vax{Z!il) /  Var(Zi2). More equivalent formulations 

can often be found for multivariate models of higher dimension.

The choice of model for a particular application is dependent on context. In the radon example, 

our choice of an asymmetric model was suggested by the typical pattern of radon flow in build­

ings (Whitley & Darby (1999)). Our results are broadly consistent with other models for the 

distribution of indoor radon: there is short-range spatial correlation, and a strong house-specific 

effect that is not easily distinguished from measurement error without replicated observations. 

Although the original lung cancer analysis of the radon data did not account for the spatial dis­

tribution of radon (Letourneau et al. (1994)), the relatively uniform nature of radon exposure 

in Winnipeg suggests that a change in the qualitative conclusions of that study would be unlikely.

Finally, the good predictive performance of our radon model by comparison with the predictions 

obtained from a univariate model illustrates the benefit of fitting a bivariate model when the 

data are incomplete. The extent of the improvement is not well documented for geostatistical 

models, but it will depend on the strength of the correlation between Yi and Y2 and the degree 

of incompleteness in the data. We intend to expore these issues in future research.
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Parameter Model 1 Model 2 Model 3 Model 4

Ml 50.0 50.5 50.1 50.1

M2 25.1 25.1 25.1 25.1

°01 32.3 31.2 143 -

002 32.3 31.2 7.53 -

°1 110 101 - 135

02 2.94 4.53 27.9 35.2

00 0.13 0.13 0.14 -

01 0.14 0.19 - 0.16

02 0.13 0.12 0.13 0.13

T? 8.93 19.6 8.81 16.8

r 2 8.93 8.26 8.81 8.30

Table 4.1: Comparison of parameter estimates from four models fit to the soil data. Model 1: 

CCM with =  r f ; Model 2: CCM with r \  ^  r f ; Model 3: SCM with r \  =  r f ;  Model 4: two 

independent univariate models, one for each component.
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Figure 4.1: Graphical representation of (a) the single component LCM; (b) the CCM; (c) an 
alternative representation of the CCM.
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Figure 4.2: Parameter estimates for simulated data from the CCM. Correct parameter values are 
fjti = H2 = 0, ~  °2  = =  0i =  02 =  0.2. See Section 4.3.2 for further details. N.B.
This figure is Supplementary Material.
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Figure 4.3: Empirical variograms for calcium (top left) and magnesium (top right) data, and the 
empirical cross-variogram V{2(u). Curves show the fitted variograms from the CCM, Model 1 in 
Table 4.1. N.B. This figure is Supplementary Material.
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Figure 4.4: For the soil data analysis, comparison of the covariance functions (solid lines) Cn(x)  
(top), C22(z) (middle) and C12(x) (bottom) with convolved kernel function approximations 
(dotted lines).
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Ca Variance

Figure 4.5: Point predictions from the CCM (left) and kernel convolution method (centre), and 
prediction variances from the CCM (right). The top row corresponds to the first component 
(calcium) and the bottom row to the second (magnesium).
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Figure 4.6: Bedroom radon point predictions (left) and prediction variances (right) from the 
CCM (4.17). Points indicate data locations. Distances are shown in degrees latitude/longitude.
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Figure 4.7: Observed and predicted basement radon measurements at 50 locations for which 
bedroom data were available. Filled circles indicate predictions from the bivariate model, and 
open circles predictions from the univariate model.
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Chapter 5

Conclusions

In this section we summarise the findings of each of the three papers separately, discuss common 

themes between them, and suggest possible topics for future work. As each paper contains its 

own set of conclusions and discussion, we focus here on the broader context in which the work 

is based.

5.1 Paper 1

The main aim of this paper was to develop a model for weekly levels of black smoke (BS) 

across the city of Newcastle-upon-Tyne over a 31-year period, based on data from a relatively 

sparse spatial network of air pollution monitoring stations. Our modelling strategy arose from 

the context, availability and nature of both the monitoring data and a series of temporally- and 

spatially-varying covariates that we derived from other sources.

Our final modelling strategy allowed us to take advantage of the approximately constant tem­

poral decline in log-BS levels over the study period. We did this by first modelling the overall 

temporal trend nu ignoring spatial variability, and then modifying this to take account of spatial 

characteristics using covariates w. Thus our model for log-BS Yt (x) at time t and location x  was

Yt (x) = fit +  w t /3 + Zt (x), (5.1)

where Z t{x) is a residual term. The nature of the covariates was such that, to a large extent, 

they accounted for the residual spatio-temporal correlation from the model for fit, and thus we
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were able to make the simplifying assumption that the Zt (x) are independent N(0 ,<r2) random 

variables. Other papers to have treated the residual term in this way, without the need for fur­

ther modelling, include Handcock & Wallis (1994), for winter temperature data, Holland et al. 

(1999), for sulphur dioxide data, and Smith et al. (2003), for weekly PM2.5 data.

As a major objective of the work was to predict BS levels at unsampled locations and times, it 

was important that candidate covariates be available at both monitoring and prediction loca­

tions. Otherwise it would be necessary to construct a spatio-temporal model for the covariates, 

a task that, while not infeasible (e.g. Zhu et al. (2003)), is little different from the problem of 

modelling Yt (x) itself (Zidek et a l (2002)).

It is interesting to consider which modelling approach may have been appropriate if the correla­

tion between BS and the covariates had been weaker. As in the general model formulation (1.2), 

it would then have been necessary to consider an extra spatio-temporal process S t (x) in (5.1).

A simple form for such an St {x) would assume separability of the space and time components 

(e.g. Haas (1995); Glasbey et al. (2001)). This assumption would allow the process to be writ­

ten as St (x) = S i ttS 2 (x), where Si and S 2 are processes to be specified. Separability guarantees 

positive-definiteness of the resulting spatio-temporal covariance function if the covariance func­

tions of S\ and S2 are themselves positive definite (Gneiting et a l (2007)). In our application, 

we “de-trended” the data from each station by subtracting the dominant average temporal trend; 

separability does not appear to be an unreasonable assumption for the resulting residual process.

Our choice to use a two-stage modelling approach was driven by the nature of the decline in 

particulate matter in the study region between the 1960s and 1990s. During this time, imple­

mentation of the Clean Air Act and a rapid downturn in levels of industrial activity in Newcastle 

caused weekly levels of PMi0 to drop from over 500fig/m3 to under 10^g/m 3. This suggested 

that a model for the temporal change alone would be a good starting point for a full spatio- 

temporal analysis, and the fit was improved by including a covariate relating to weekly tem­

perature. The temperature covariate was also suggested by the context: people consume more 

polluting fuels in unseasonably cold weather. Similar methodological approaches, known vari­

ously as “de-trending” or “pre-whitening”, have been used successfully by several other authors, 

including Zidek et a l (2002) and Meiring et a l (1998).
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The final model allowed predictions to be made for each spatial location, for each week during 

the study period. The predictions are used as surrogate measures of exposure to particulate 

matter for pregnant women throughout the course of pregnancy, and are being used in ongoing 

analyses of the PAMPER study. This is an unmatched historical cohort study, so a plausible model 

is the logistic regression

logit(^) =  a  + P f(Y ti (xi)) +  7 Ui +  e*, (5.2)

where pi is the probability of a ‘positive’ outcome (e.g. low birth weight) for birth i, logit (p) = 

log(p/(1 — p)), /(•) is a function of maternal exposure, Yti (x ^  is a vector of predicted BS values 

at location x { and times t {l, the weeks in the pregnancy period of i, u* denotes additional 

risk factors (e.g. age, socio-economic status and smoking status) and e* is an error term. Wake­

field & Shaddick (2006) discuss inference for similar models that link environmental exposures 

and area-aggregated health outcomes.

In practice, predictions Yt i (x) would be used in (5.2) in place of Yt i (xi). As Paper 1 shows, the 

Yti (x ) are subject to considerable prediction error, which may affect inference in the cohort study. 

A simple sensitivity analysis might involve simulating from the (Gaussian) predictive distribution 

of Yt; (x) and refitting model (5.2); a more principled approach would treat the prediction error 

as a form of Berkson measurement error (Gryparis et al. (2009)). This might employ one of 

the many solutions for dealing with measurement error in non-linear models, such as regression 

calibration (Carroll et al. (2006)). We discuss measurement error in a different context in Paper 

2 .

Determining the functional form of /  is another challenge. In Paper 1 we calculated predicted 

exposure weekly and time-aggregated over trimesters and the whole pregnancy period, but other 

authors have suggested that different functions of maternal exposure may be responsible for an 

increased risk of adverse birth outcomes (Sram et a l (2005)). Such functions might include the 

maximum exposure during the whole pregnancy or a particular trimester. There is evidence that, 

for developmental defects, both the timing and the magnitude of exposure are significant factors 

(Axelrod et al. (2001)). This argument suggests that a function such as f  w(ti)Yt i (xi)dti, where 

w(ti) is a weighting function, may be an appropriate choice for / .

A more general issue arising in epidemiological studies of environmental exposures is whether a 

predictor such as Yt (x) truly represent the exposure to which an individual is subjected. There 

are at least two substantial objections to the use of such predictors: firstly, that individuals typi­
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cally do not remain in a fixed location for a prolonged time period; and secondly, that even at the 

purported fixed location, the individual’s uptake of the pollutant would not equal the ambient 

level of the pollutant in the atmosphere.

Such jeremiads are neither new, unfounded, nor easily resolved (Cox (2000)). In the context 

of historical studies such as PAMPER, little retrospective information is available to inform a 

more accurate measure of personal exposure. For such studies, predictions such as Yt (x) should 

therefore be interpreted as surrogate measures of exposure, and associations with outcome sta­

tus interpreted in relative, not absolute, terms. The numerical value of such an exposure for an 

individual is less important than the relative values for different individuals.

Collecting more accurate personalised measures of exposure is infeasible for historical studies 

and studies for which the relevant exposure accumulates over a long time period, but can be 

attempted in prospective designs. To calculate a ‘gold standard’ measure of exposure, it is neces­

sary to track the locations of individuals over time, and this motivates the work in Paper 2.

5.2 Paper 2

In this paper we relaxed an assumption made implicitly in virtually all geostatistical analyses, 

that the data locations and prediction locations can be measured precisely. Very little research 

had previously been conducted around this issue, and the papers by Gabrosek & Cressie (2002) 

and Cressie & Komak (2003) were the only ones to assess its impact on geostatistical modelling.

Our solution to the problem was to formulate two models: a geostatistical model, typically of the 

form (3.1), assuming all locations are known; and a positional error model for [X*\X] or [X\X*] 

that specifies the conditional relationship between the true and observed locations, X*  and X  

respectively. We showed that the likelihood can then be constructed in the form of an integral 

with respect to X* (3.3), from which likelihood-based inference can proceed.

Our results show that point predictions are biased, and prediction variances incorrect, if there is 

positional error that is not taken into account in the analysis. This is not a startling conclusion, 

as similar results are seen in the broader class of non-linear regression models (Carroll et al. 

(2006)). More surprising is the finding that in certain circumstances the variance of the predic­

tion can decrease if positional error is present.
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These results, described and elaborated upon in Appendix B, suggest that if sizeable positional 

error exists, a principled analysis should take its effects into account. Nevertheless, there is a 

substantial computational cost in doing such an analysis. Monte Carlo routines to evaluate (3.3) 

for likelihood maximisation require a large number of iterations to discern a likelihood surface 

that is often flat even for standard geostatistical models (Zhang (2004)).

Thus while we have demonstrated the method for data-sets of moderate size, extra work is 

required to enable these ideas to bear fruit in larger studies. Possible alternative techniques in­

clude Markov chain Monte Carlo methods, although it is far from clear how to implement an 

appropriate algorithm for the required integral (e.g. Example 3 of Evans & Swartz (1995)), and 

the “pseudolikelihood” approach of Cressie & Kornak (2003). The latter method assumes local 

normality of the likelihood surface, but there is no guarantee that this would hold even approxi­

mately for standard geostatistical models (Warnes & Ripley (1987)).

Throughout Paper 2 we used simple independent Gaussian positional errors, with a Berkson 

error structure, in a model for X *\X . Extensions of this work could incorporate alternative posi­

tional error models. For example, in an application that tracks the position of an individual over 

a trajectory, it is plausible that errors ( e i , en) in a time series of consecutive measurements 

might be auto-correlated (Corr(e*, ej+i) = a for i =  1 , n -  1 and Corr(ei; ej) = 0 for all other 

i, j ) .  Alternatively, one might represent the correlation as a function of the time between mea­

surements. While adding extra complexity, such models easily fit into the framework described 

in Paper 2, at least in principle, although determining a suitable positional error model for a 

given application constitutes a separate research topic in its own right.

The impact of positional error on inference is greatest when the positional error variance 7 2 is 

large and the underlying surface S  is changing rapidly. In the setting of exposure estimation, 

this work is therefore likely to be of most importance for short-term exposures, when replicate 

positional measurements cannot be made, and for exposure surfaces that are discontinuous or 

have short-range spatial correlation. An example is the pollution surface around a point source 

such as an incinerator, or a line source such as a road. Traffic studies in particular demonstrate 

a sharp drop in exhaust fume diffusion beyond a certain distance from the roadside (Zhu et a l 

(2002)).

In many scenarios, data locations, such as monitoring stations in air pollution studies, are effec­
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tively fixed. In studies that record the changing positions of individuals over time, there is scope 

for considerable error in the recorded locations. This was the original motivation for our work. 

Allied to methodological differences, this provides a contrast to the earlier work by Gabrosek & 

Cressie (2002) in which error in the prediction location was not considered.

As a postscript, we note that under very precise circumstances (Appendix B.5), the problems of 

positional error in data and prediction locations can be regarded as theoretically equivalent. In 

practice, though, they are rather different, and arise from distinct applications.

5.3 Paper 3

In this paper we considered the effect of multiple outcome variables Yj on the basic geostatis­

tical model (4.1), concentrating on the bivariate case. We illustrated three key approaches, the 

linear model of coregionalisation (LCM), the common component model (CCM) and the ker­

nel convolution method, using data-sets relating to soil chemistry and radon exposure. We also 

demonstrated how kernel convolution can be used to approximate the CCM, as a computation­

ally cheap alternative for large data-sets. This is explained further in Appendix C.l.

One of the main new findings of this paper is that a suitable parameterisation of kernels of 

Matem form can often be found to approximate a given set of auto- and cross-covariance func­

tions via kernel convolution. This is consistent with the general theory that such kernels exist, 

but that provides no means by which they might be found (Xia & Gelfand (2005)).

A second conclusion is that the common component-type models are well-suited to modelling 

stationary Gaussian processes. Three key considerations suggest that this is a fruitful class of 

models.

Firstly, they have the desirable property that the spatially continuous phenomenon S  =  (S1 ,S 2) 

characterised by the covariance functions of the components of the CCM is indeed a valid bi­

variate process, in the sense that it has a positive definite covariance function. This is described 

in Section 4.2. All members of the ‘constructive’ class of models, which also contains the LCM,

share this property.

Secondly, and importantly, the common component model is sufficiently rich to allow the specifi­

cation of two auto-covariance functions and a cross-covariance function for the two components.
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This is a key consideration as in general there appears to be no compelling reason to assume 

that the functional forms of any two of these are the same. With this increased flexibility how­

ever, it may become difficult to estimate parameters precisely, and careful consideration of the 

parameterisation of such models is required in order to maintain parameter interpretation. The 

identifiability problem may not greatly affect prediction, as we found for the soil data example 

in Paper 3; this may explain why the linear model of coregionalisation has historically been the 

model of choice in multivariate geostatistics, for which the primary goal is often point prediction.

Thirdly, the common component model is easily adapted to allow functional constraints between 

the two components of S, and includes as a special case the single component model (SCM). It 

is therefore well-suited for modelling environmental exposures, for which the physical nature of 

the exposure often dictates model choices. Examples include the radon analysis of Paper 3 and 

the analysis of particulate matter concentrations of Calder (2008).

In the radon analysis, we eventually settled on a form of the SCM, in which a single process 

was common to both components (bedroom and basement exposure) and an additive second, 

independent process Si affected only the bedroom component. This was motivated by the phys­

ical process of radon generation, in which the gas originates in the ground and enters a house 

primarily via its basement.

We included an extra parameter ( to model the correlation between the nugget effects of the two 

components at a common location. This was necessary in order to allow for the large within- 

house correlation of radon measurements, and allows vastly improved prediction at locations at 

which Y2 was unobserved.

Our estimate of (  is consistent with the correlation found in other studies of radon distribution. 

For example, Zhu et a l (1998) report a correlation of 0.68 between log-radon levels in the cellar 

and the first floor in a study in Belgium. The high estimate of C provides evidence that a large 

proportion of this nugget effect is not error related to the measurement of radon per se. It seems 

likely to represent either extremely short-range correlation in Winnipeg’s radon surface or, more 

probably, house-specific factors (Hunter et al. (2009)).

In our analysis we did not allow for such factors directly, as they were not available for our 

application. The one available covariate was altitude. Theoretically radon concentrations are
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inversely related to height above sea level because of the diffusion pattern of the gas from the 

Earth’s crust and as it is denser than air (Wilkening (1990)). Barros-Dios et a l (2007) demon­

strate this in an observational study. However, altitude varies rather little over the inner Win­

nipeg area and showed no appreciable association with radon in this study (Appendix C.3). Any 

appropriate covariates would be included as fixed effects in the radon model, which may help 

to simplify the structure of the S- and Z-processes. Paper 1 (Fanshawe et al. (2008)) shows the 

value of including such covariates in models for environmental exposures.

It is interesting to consider extensions of the suggested models to allow for non-Gaussian pro­

cesses, non-stationary processes, and multivariate processes of dimension greater than two. Here 

we briefly discuss each topic, and suggest possibilities for future research.

Non-Gaussian Processes

One avenue for further work in modelling bivariate non-Gaussian processes follows from the dis­

cussion of generalised linear geostatistical models in papers such as Diggle et al. (1998), Section 

3. In a bivariate extension, one might consider the process S  =  (S1 ,S 2 ), itself modelled using 

one of the methods described in Paper 3.

A possible model is to treat Yi: (1 =  1...., nj, j  =  1, 2) as conditionally independent, given S, 

with some distribution f{yy,M ij). Here, My is the conditional expectation E[y'j:?-|5(x^)], and 

hj(M ij) = d(xij)T/3 +  Sj(xij), where the hj are link functions to be specified. An initial analysis 

for data arising from similar distributions might assume h\ = h2.

Non-Stationary Processes

Section 4.2.4 contains a discussion of existing methods for modelling non-stationary geostatisti­

cal data. Two strategies appear to have been used most in applications. Both extend the kernel 

convolution method described above by generalising the form of the convolved process W.

The first is an adaptation of the kernel convolution approach, in which W  is not merely white 

noise, but has its own correlation structure (Lee et a l (2005)). In general, this produces a non­

stationary process even if W  is itself a stationary process. The second allows W  to itself be 

represented in the form of a kernel convolution, usually a convolution of an additional white 

noise process (Fuentes (2002)).
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A further idea, which has received relatively little attention in the multivariate geostatistics lit­

erature, is that of spatial deformation, introduced by Sampson & Guttorp (1992). The method 

relies on assuming a stationary model for data located in a spatial domain that has undergone 

a transformation relative to the original coordinate system. So if x  and y are spatial locations, 

but the covariance function 7 (2;, y) is not stationary, one seeks a function /  such that a new co- 

variance function 7 f(y )), in the transformed coordinate system, is stationary. Sampson & 

Guttorp (1992) choose such a function /  using a combination of multidimensional scaling and 

fitting a thin-plate spline.

This idea has been developed for both spatial and spatio-temporal modelling (Dryden et al. 

(2005)). For bivariate geostatistical data at locations x i r and x 2,.} it might be adapted further 

by finding three functions 7n , J22 and f \ 2 such that the two auto-covariance functions and the 

cross-covariance function, i.e. the functions

7 l l ( / l l ( ® l , i ) i / l l ( z i , j ) )

722(722(22,1)5 722(22,.j))

7 1 2 ( 7 1 2 ( 2 1 , i ) ,  7 1 2 ( 2 1 ,  j ) )

are all stationary for any i , j .  This suggestion clearly needs further work to find suitable f -  

functions and to ensure that a valid bivariate process emerges.

Multivariate Processes

In principle, an analysis for multivariate processes of dimension d > 2 might proceed along 

similar lines to a bivariate analysis. Issues such as practical identifiability, however, are likely 

to become more pronounced in the multivariate case: in the LCM, for example, even using a 

lower-triangular restriction on the multiplying matrices as in (4.4) leaves pd(d +  l) /2  variance 

parameters. Considerable care is needed to obtain a realistic yet parsimonious model, especially 

for large d.

The natural extension of the CCM requires d + 1 processes 50, S i , S d  to model a multivariate
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process of dimension d. The analogue of (4.6) in the multivariate setting is

1 S f ( x )  '

S}{x)

0
\  (  So(x) ^

S i(x)
&02 0  (72 0

S 2 (x)

\  S d ( x ) /  \  a 0d 0 0 . . .  a d J
\  Sd(x )

This has fewer variance parameters than the LCM, but further simplification may be useful. For 

example, physical reasons might suggest including shared processes that influence only subsets

For the kernel convolution method, we have described in Paper 3 a procedure for determining 

approximate forms of kernels of the Matem family. These kernels are selected so that, after 

convolution, they approximate a pre-specified set of auto- and cross-covariance functions. This 

method also holds for d > 2, and in general d+1 kernels would be required. However, optimising 

over an increasingly large set of kernel parameters may become burdensome for large d, and this 

may force the analyst to specify some of the kernels a priori.

One final research topic in this area relates to the usefulness of multivariate, as opposed to 

univariate, modelling in the geostatistical setting. Our work, other anecdotal evidence (e.g. 

Webster & Oliver (2000), Chapter 9), and analogies with the corresponding problem in multi­

variate linear modelling all suggest that the most benefit is likely to accrue when Yi and Y2 are 

highly correlated but one component is sparsely sampled, but this is not widely discussed in the 

geostatistics literature. How to document this observation with numerical evidence would be 

another worthwhile future research question.

o f{S +  S+}.
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Appendix A

Appendices for Paper 1

A.1 Fitting the Dynamic Model

In this section we provide farther details on the model-fitting procedure for the dynamic model 

described in Section 2.3.3 of Paper 1, elaborating on the statement “the dynamic model can be 

fitted either by direct maximisation of the likelihood function, or via a Kalman filter followed by 

Kalman smoothing”.

We concentrate primarily on the technique of direct maximisation of the likelihood function, as 

this method is not easily found in the literature in the context of dynamic model-fitting. The 

model (2.3) under consideration is

Yt = a  +  (3t +  'fdt + A t cos(ut) + B t sin(ut) +  Ut , (A.l)

where

A t \At- i  ~  N(At_i,(T^)

B t \Bt- i  ~  N (B t_ i,cr|) (A.2 )

Ut ~  IID N (0 ,4 )
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Equivalently, we can write

At — At~i + rjt

Bt — Bt-1 +  Ct)

where % ~  IID N(0, a \)  and (t ~  IID N(0, a2B). For convenience, we use here the notation Yt for 

the value at time t of the log-transformed black smoke levels, averaged over all active monitors 

at each instant in time (Section 2.3.3 uses Yt). Let Y  denote the time series (Y i,..., Yn), and 

A  and B  the corresponding time series for the two dynamic coefficients. As each Yt in (A.l) is 

composed of a sum of independent multivariate Normal random variables, Y  ~  MVN(/i, S) for 

some mean vector ^  and covariance matrix S.

Given starting values Aq =  ao and Bq = bo of the series A  and B, for each t > 0, E(At) =  

ao cos(tot) and E (Bt) =  bo sin(wf), so E (Yt) = a  + 0t + jd t +  ao cos(ait) -I- &o sin(a;t). Then

A t cos(u)t) = (At- i  + r]t ) cos(u>t)

=  (A t-2 +  Vt +  rjt-1) cos(caf)

t
=  (a0 + y ^ JVi)cos(ut)

2 = 1

and for each i, r\i cos(wf) ~  N(0, o \  cos2(ait)) independently, so

At cos(cot) ~  N(ao cos(wf), t a \  cos2(a>f)).

Similarly, B t sm(ut) ~  N(60 s in (w i),ta | sin2(cji)), and as A t, Bt and Ut are, by assumption, 

mutually independent for each t,

Yt ~  N (a + 0t + 7 dt + a0 cos(ait) + b0 sin(wf), t ( a j  cos2(wf) +  cr| sin2(a;f)) +  o$). (A.3)

Also, for any s and f,

Cov(ys, Yt) =  Cov(As cos(ws) +  sin(ws), cos(cat) +  Bt sm(ut))

— cos(uis) cos(uit)Cov(As, At) +  sin(u;s) sin(cj£)Cov(5s , Bt)

= cos(uis) cos(ca£)Cov rjt j +  sin(o;s) sin(u;£)Cov
\i= l i=1 /  \*=1 *=1 /

=  min(s, t) [<r2A cos(u; s )  cos(wt) +  sin(u;s) sin(wt)] (A.4)
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Thus, for any t, fit and E ^  are as in (A.3), and for s ^  t, ESit is given by (A.4). Maximum 

likelihood estimates ft and E are then found by minimizing, with respect to n and E,

- 2 E) =  const. +  log(|E|) + (Y  -  ii)t Y - \ Y  -  /j,)

In order to apply the second stage of the modelling procedure, described in Section 2.3.4, we 

need to calculate predicted values of Y  obtained from the dynamic model. These can be obtained 

by substituting the maximum likelihood estimates of the parameters into (A.1):

Yt = ot + fit + ■jdt +  A t cos(ujt) + Bt sin(u;f) 

To obtain values of A t and B t to use in (A.5 ), we use

(A. 5)

A ao cos(a>t) £ A A 0 Y a y

B ~  MVN < bo sin(a;t) 3 0 Y-bb Y b y >

Y /A

1

M ^By E
_ j

(A. 6 )

where fit = a l+ fit+ 'yd t+ ao cos(oot)+bo sin(a>t), 1 is a vector of ones of length n, t  =  ( t i , ..., tn)' 

and the covariance matrix is composed of blocks, each of dimension n x n ,  defined by

{^AA)s,t = Co v(A s,A t) =  m m (s,t)a2A

(S B B ) s , t  =  Co v(B s,B t) = mm(s,t)cr2B

(S A Y ) s , t  =  Cov(A s,Yt) =  min(s, t ) a \  cos(a;t)

( S s y ) s,t =  Cov(B s,Y t) = min(s, t)aB cos(u>t).

Estimates of matrices T , a a ,  E b b ,  Y,a y , E B y  and E  can be computed by direct substitution of the 

maximum likelihood estimates d \ ,  o \  and d^.

Standard properties of the multivariate Normal distribution enable estimates of A  and B  to be

c“ d: ( -A ( < A  f t  \A I n ^ m Q i / A T . )  ? , a \ s

1«)
bo sin(a;t)

+
V

Likelihood maximisation in R (R Development Core Team (2005)) was performed using the 

general-purpose optimisation function optim, using as starting values ao and bo the maximum 

likelihood estimates from the static model (in any case, predicted values of A and B  were found 

to be robust to the choice of starting value owing to the length of the time series in this ap­

plication). Convergence of maximum likelihood estimates took approximately four hours of 

computation time, the most time-consuming step being the inversion of the n x n  matrix E.
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Computation time can be reduced substantially by instead using the Kalman filter, as described 

by West & Harrison (1997), followed by Kalman smoothing. This quicker process can be im­

plemented in R using the functions k f i l t e r  and smoother in the s s p i r  package (Dethlefsen 

& Lundbye-Christensen (2006)). The Kalman filter is a widely-used method for estimating the 

parameters of state space models, and in view of the large literature on the subject and its appli­

cation to time series models, we present only a brief summary here.

With notation similar to that used in the tutorial paper of Meinhold & Singpurwalla (1983), we 

recast model (A.1-A.3) in the general matrix form

Yt = Ft9t + rjt 

9t — Gt9t~ i +  Ct

where for our application F  is the design matrix whose zth row consists of the values of the 

covariates at time i, G is the identity matrix, the rjt are independent univariate N(0 , ay)  random 

variables and the ( t are independent MVN(0, Tq), where the first three diagonal elements of Tq 

are constrained to be zero for each t . These elements correspond to the three fixed effects in 

(A.l).

Kalman filtering is a recursive procedure that relies on repeated evaluation of a version of Bayes’s 

Theorem,

to update the estimated mean and covariance matrix of the parameter vector 9t for increas­

ing values of t. At each stage the required conditional distributions are multivariate Normal, a 

consequence of the Gaussian assumption in (A.3), which is the key observation in reducing the 

complexity of the computation. Meinhold & Singpurwalla (1983) derive the exact form of these 

conditional distributions.

The improved fit of the dynamic model relative to the static model in which A t = A, B t =  B  for 

all t is shown in Figure 2.4, in which both long-term and short-term autocorrelation are seen to 

be largely eliminated.
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A.2 Additional Covariate Information

In Section 2.3.4, we described five covariates considered for modelling the spatio-temporal com­

ponent of variation in black smoke levels at monitor locations. We add here several supplemen­

tary figures relating to covariate selection that were not included in Paper 1 because of lack of 

space.

Figure A.l, similar to Figure 2.5, justifies the decision to use covariate W2 (distance to industry) 

in the model, and to exclude covariate w5 (area of industry within a 500-metre radius). There 

is an inverse relationship between the average residual from the dynamic model and distance to 

industry, but no clear relationship with area of industry.

Figure A.2 refers to covariate W3, and indicates which monitors were assigned residential status. 

It shows the expected pattern: most non-residential areas of Newcastle-upon-iyne lie in the cen­

tre of the city and along the River Tyne at the southern edge of the study region.

Figure A.3 refers to covariate w4, and indicates the years in which the Clean Air Act was imple­

mented across sub-areas of the city. Areas with missing information for this covariate (shown 

as white in the figure) were assigned a date of 1978, by which time the whole of the city was 

officially ‘smoke-free’.
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Figure A.1: Monitor-specific average residual from the dynamic model, plotted against (a) dis­

tance from monitor to nearest industrial area; and (b) area within 500m of monitor used in 

industry.

•  Non-residential
*  Residential

Figure A.2: Map of study region showing residential status of the twenty air pollution monitors.
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Figure A.3: Map of study region showing date of implementation of the Clean Air Act across 

sub-areas of the city. Areas shown in white were developed after the nominal end of Clean Air 

Act implementation.
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Appendix B

Appendices for Paper 2

B.l Standard Results in Geostatistical Prediction

In this section we derive some standard results used in geostatistical prediction problems, used 

throughout Paper 2.

B.1.1 The Distribution of the Minimum Mean Square Error Predictor

Consider the geostatistical model (3.1) with constant mean p,:

Yi =  n +  S ( x i )  +  Zi  : i = n. (B.l)

Here, S(x)  is a zero-mean Gaussian process with variance <j2 and correlation function p and the 

Zi are independent N(0, r 2) errors. Let the target for prediction be T  =  (S(x$), S'faJ))'. Here we 

derive the ‘best’ point predictor for T, i.e. E[T\Y], and its variance Var[r|F].

T  follows a bivariate Normal distribution with mean vector p l 2 and covariance matrix

2y f V2P{\\X\-X2 II)

a2p{\\x\ -x*2\\) a 2

Thus (T, Y)  has a multivariate Normal distribution with mean p l n +2 and covariance matrix

a 2V* a2r' 

cr2r cr2V
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where r is an n x 2 matrix with — p(\\x* -  x t \\) for j  = 1,2 and i  = 1, and =

p i W x i - x j W )  f o r  =  1

Standard properties of the multivariate Normal distribution show that T \Y  has a multivariate 

Normal distribution with

E[T\Y] = T  = p  12 +  r ' V - ' i Y  -  p l n) (B.2)

and

Var[T|Y] =  a 2 {V* -  r 'K 'V ) ,  (B.3)

whose off-diagonal component thus provides the covariance between the predictions at the two

locations, used in the subsection on joint prediction in Section 3.3.2. These results easily gener­

alise to the case in which there are more than two prediction locations.

B.1.2 The Generalised Least Squares Estimator of the Mean

In ‘simple kriging’, p  is replaced by its method-of-moments estimator n~ l Y{ in (B.2). In ‘ordi­

nary kriging’, the Generalised Least Squares (GLS) estimator p is used. This estimator is of the 

form b'Y, where b is a vector chosen to minimise Var(T -  T) under the constraint E(T — T) — 0 . 

Here we derive the form of this estimator.

Consider the special case in which prediction is required at a single location, in which case

V* = l i n  (B.3). Let a' = r 'Y -1  and s =  a ' l n =  r 'V ~ l 1, where 1 is a vector of ones of length n.

The unbiasedness constraint implies that

0 =  E {b'Y +  a'Y -  (a!l)b'Y) -  p 

=  p{b'l + a ' l  — (a 'l)(b 'l)  — 1),

and so we must have bi =  1, i.e. p  is a weighted mean of the data values.

We have Var(T) =  a 2,

Var (T) = Var((a + b — sb)'Y)

= <r2(a + b — sb)'V(a + b -  sb)
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and

Cov(T, T) =  Cov(T, (a + b — sb)'Y)

=  cr2(a +  b — sb)'r,

so

V ar(f -  T) =  * 2(1 -  2 (a +  (1 -  s)6)V +  (a +  (1 -  s)6),Vr(a +  (1 -  s)6)).

Let V  =  Var(T — T) — A(b -  1 ), where A is a Lagrange multiplier. Then, as Va  =  r,

^  =  2cr2(l — s)(—r +  V(a +  (1 — s)6)) — Al

=  2<t2(1 — s)2b — Al.

This is zero when

6 2*2(1 - s )2 7  Xl’

which corresponds to a minimum of V.  To ensure l 'b = 1, we need

2a 2 (1 — s) 2A =
l 'V " 1!  ’

from which

Thus the GLS estimator is
1 ,v - i y
l ' V - 1!  '

B.1.3 Mean and Variance of the Generalised Least Squares Estimator

The estimate T  = jj, +  r 'V ~ l {Y -  ji 1) =  b'Y +  a'Y -  (a'l)b'Y,  where /2 is the GLS estimator of 

the mean, and a and 6 are as previously defined, is by construction unbiased ( E ( f  -  T)  =  0). To
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find its variance, let a  =  l ' V - 1!. Then Var(T) =  a2,

Var ( f )  =  Var(a- 1l /V-1 y  + r 'V ~ 1Y  — a ~ 1 {r'V~1 l ) { l ' V ~ 1Y))

=  (a _ 1l V _1 +  r 'V ~ x -  a.~1{r'V~l l ) l ' V ~ l )cr2V { o r 1 l ' V ~ l + 

r 'V ~ l — o r 1 {r'V~1 l ) l ' V ~ 1)'

=  ff2a " 2(a +  a l ' r V  -  a l V _1r  +  o l ;7 _1r  +  a V r V  -  

a ( l r V )2 -  a l 'V - V  -  a ( l /V " 1r ) 2 +  a ( l ' r V ) 2)

=  cr2o;~1(l — ( l /V- 1r )2 +  otr'V~l r)

and

Cov(r, T) = Cov(T, ( a ^ l ' y 1 + r ' V 1 -  a "  V V - 1l ( l /V - 1))y )

=  cr2a - 1( lV -1r  +  ar 'V ~1r — ( lV - 1r ) 2),

so

V ar(f -  T) =  Var(T) + Var(T) -  2Cov(T, f )

=  cr2(l -  r 'V V )  + cr2a -1 (l -  ( l 'V -1r))2,

the first term of this expression being equal to ‘simple kriging* variance (B.3).

For prediction at two locations x \  and x\,  partition the matrix r* into its two columns r\ and r 2. 

Then similar steps to the above show that

C o v (fi,f2) =  Cov(/i +  (r i) /V -1( r - / i l ) , / i + ( r 2)/V -1( r - / i l ) )

=  cr2a -1 (l +  -  ( l ' r V ^ l V " 1̂ ) )

and

Cov(Ti -  T i , T2 -  T2) =  Cov(fi, T2) -  Cov(Ti,T2) -  Cov(T2, Ti) +  Cov(Ti,T2)

=  cr2a _1(l -  ( l /V~1r i) ( l 'V ~ 1r 2) +  a ( r iV _1r 2)) -

^ a - ^ l V - S  + a r /1V -1r 2 -  ( l V ^ n X lV - V a ) )  -  

i r V ^ l 'V 'V i  + ar'1V ~ 1r2 -  ( l ' V ~ 1r i ) ( l 'V ~ 1r2)) +  a 2r 12

—  a 2(ri2 _  r ; K - v 2) + -  l ' v - v o f i  -  l 'v - v , ) ,
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where r i 2 — pGI^i — £2||). The first term is equal to the covariance of the ‘simple kriging’ predic­

tor, the off-diagonal element of (B.3), while the second is of similar form to the corresponding 

term in the expression for Var (T -  T) for prediction at a single location.

To summarise, in matrix notation we have

V ar(f - T )  = a 2 {V* -  (r* )V _ 1r*) + u 2a ~ l { 1 -  -  I ' V ^ r * ) .

B.2 First and Second Moments of the Predictive Distribution 

in the Presence of Positional Error

In the appendix in Paper 2, we presented several results to illustrate how the mean and variance 

of the predictive distribution change when there is positional error in the prediction location (but 

not in the data locations). In this appendix we give further similar results and their derivations, 

covering both the scenario of a one-dimensional and two-dimensional domain. In Appendix B.2.1 

we assume that the underlying exposure surface S  is known precisely. Although this scenario may 

be unrealistic in practice, results obtained under this assumption resemble and motivate similar 

results given in the appendix in Paper 2 and Appendix B.2.2, in which a correlation function p is 

assumed and a geostatistical model is fitted to the data.

We assume that all necessary derivatives exist, and that all error distributions are bivariate Nor­

mal with zero mean and covariance matrix 7 2/ 2. In two dimensions, we write the two com­

ponents of the error distribution e as (ex ,ey). For the error distributions =  {eXl,eyi) and 

£2 =  (eX2 ,ey2) we will consider separately the cases when and e2 are uncorrelated and when 

Cov(eXl, eX2) = Cov(eyi ,eya) = a j 2 (i.e. C o r r ^ ,  e^ ) = Corr(eyi, ey2) =  a).  The derivations 

below use the following basic properties.

For a univariate N(0,7 2) distribution e, for any positive integers n and m:

E(e2n) =  ((2n -  l)(2n -  3)...3.1)72n

E(e2n-1) =  0 

Cov(ern, en) = 0 if m  +  n is odd 

For two univariate N(0,7 2) distributions ex and e2 with covariance 0 7 2, for any positive integers
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n and m :

E[ef  e2] = 0  if m  + n is odd

E[eie2] =  cry2

E[efe2] =  3cry4, s o  Cov[e^,e2] =  3 a 7 4

E[efe|] =  7 4 +  2a2j 4, so Cov[e2, e%] =  2 a 27 4

Where necessary to avoid ambiguity, in two dimensions we will write a single prediction location 

as x  =  (x, y ) and a pair of prediction locations as x i =  (2 7 , yi) and x 2 =  (x2, y2). Vector notation 

for e is suppressed, but implied by the context. Subscripts on S, a, c and Q (defined later) denote 

partial derivatives, as in the appendix in Paper 2.

B.2.1 Exposure Surface Known 

One dimension - Prediction at a single location

Using the Taylor series expansion

S(x  4- e) =  S  +  (Sx -+• — €2Sxx +  •••

we have

E[S(z +  e)] =  S  +  +  0 ( 76)

and

Var[5(x + e)] = Var(e)S^ +  Var(e2) j S ^  + Cov(e3, e )^ S xSz!CI + ...

= 72s! + l \ \ s l x + Sxs xxx) + 0(76)

The bias in the point prediction using the naive predictor S(x) is given, to the lowest-order 

approximation, by ^7 2SXX, which depends on the magnitude of the error variance and the second 

derivative of the surface. In particular, at local maxima (Sxx < 0) the predictor S(x)  will tend to 

give an overestimate of the true exposure, and at local minima (Sxx > 0) it will tend to give an 

underestimate. The prediction variance will always be underestimated if the positional error is 

ignored, as in this case the true prediction variance would be zero if S  were known precisely. The 

largest difference in prediction variances will occur at points where the gradient of the surface, 

Sx, is largest in magnitude. Appendix B.3 contains an illustrative example based on similar 

results in Appendix B.2.2.
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One dimension - Joint prediction at two locations

If errors ei, e2 are independent then the predictions are also independent, so the problem reduces 

to the single-location case described above. If the errors are dependent, with the correlation 

structure described above, then

Cov[5'(xi +  £i), S (x 2 + e2)] =  Coy(e1 ,e2 )SXlS X2 + Cov(ex, e \ ) \ s x iSX2X2X2 +
b

€2)~SXlXlSx2x2 -b -̂'Ov(€i, 6 2 )^SXlXlXlSX2 -f-... 

o{'y SXlS X2 4- —7  (SXlXlXlS X2 -I- SXlSX2X2X2 +

&SXlXl S X2X2 ) +  0 (  76)}

Two dimensions - Prediction at a single location

We use the two-dimensional Taylor series expansion

S(pt -f- c) — S  -j- 6XSX CySy -f- ~̂j€x&xx ~b 2 3̂i^yy ^x^y^xy “b

with general term

Then

E[5'(x +  e)] =  <S” + — 7  (Sxx + Syy) +  —7  (Sxxxx “b “ZSxxyy "b Syyyy) "b 0(fy )

and

Var[5(x 4- e)] =  7 2{Sl -b S y )  -b ^ ( ^ x x  +  Sxy 4- - 5 ^  4- SXSXXX 4-1 „ 1  . 1

S XS Xyy  +  S y S XXy "b S y S y y y )  +  0 (7  ) .

Two dimensions - Joint prediction at two locations

As in the one-dimensional case, if errors at two prediction locations are independent then the 

correlation between the predictions is zero. If errors are not independent, under the assumed 

correlation structure, Cov[S(xi -b d ) , S ( x 2 + e2)} is obtained simply by adding together the terms 

similar to the one-dimensional case corresponding to the x- and y-directions:

Cov[5,(xi 4- ei), <S'(x2 +  £2)] =  oc{,y 2 ( S X l S X2 +  S yi  +  S y 2) + <^1 (^ i i i i i i  *5®2 "b &xi S X2X2X2 4~

SyiyiyiSy2 *b ^yi  ̂ i/23/22/2 "b 

0( {SXl Xl S X2X2 "b S y i y i S y 2y2 ) )  +  0 {  76)}
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B.2.2 Exposure Surface Unknown

In this section we give corresponding results when the surface S  is not known everywhere, ex­

panding on the results given in the appendix in Paper 2, and using the same notation. We assume 

the stationary Gaussian model (B.l), and let x p be a prediction location (for convenience, the 

subscript is dropped in much of the succeeding derivation), r* = p{ \\xp -  Xi ||), R  be a matrix with 

( i , j) th  element %  =  p ( \ x i  -  X j \ \ ) ,  and Q = R ~ l .

From (3.8) and (3.9), in the absence of positional error, S(x) has distribution al),  where

n
px = p + r'Q{y -  p) = p + airi, (B.4)

and
n

(1 -  r'Qr) =  a2 1 -  r ^ Q i j r ^ x ) (B.5)
i>j= 1

One dimension - Prediction at a single location

Conditional on e, S(x  +  e) ~  N(px+t, crl+e), where

and

using the symmetry of Q (Qi j = Qj,d . Thus

E [S(x +  e)\ =  E e[fxx+e] = p x + \ l 2axx +  \ l * a xxxx +  0 (  76)

and

Var[5(x +  e)] =  Ee[cr̂ +e] + Vare[/ia;+e]

where

and

Vare[//x+e] =  72<2x +  7 4( 2 axx +  ai axxx) +  0 ( j  ). (B.6 )
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These formulae resemble those in Appendix B.2.1; when the surface S  is known everywhere the 

term Ee [cr2+e] is zero.

Two dimensions - Prediction at a single location

The analogous results in two dimensions, also derived in the appendix in Paper 2, but reproduced 

here for completeness, are

EfS^X +  e)] — +  —7  (axx +  CLyy) +  g7 4(axxxx +  2axxyy +  ayyyy) +  0 (7 ®)

and

Var[5(x + e)] =  E e[a2+e] +  Var c[fxx+£],

where

[°x+e] °x ~  ® (T {Qx,x H- Qy,i/ "I- Qo,xx "h Qo,yy) H"
4 1 1 3

'i (^Qo,xxxx “I" ~^Qo,yyyy "I- Qx,xxx “t" Qy,yyy "h ^Qxx,xx "I-
3 1
~^Qyy,yy "f" l^Qxx,yy "h Qxy,xy +  Qx,xyy +  Qy,xxy) +  0 ( 7  ))

and

1 1
Vare[//a;+e] =  7 2(a2 + a2) +  74(^ aL  +  axy +  2 ayv ax(lxxx 

Q'x&xyy “t“ Cly^xxy ^y^yyy) "h ^(T  )•

One dimension - Joint prediction with independent errors in locations

Consider two prediction locations x\  and x 2, so r is now an n x 2 matrix. For each location x k, 

E[5 (xfc +e)] is unaffected by the addition of further prediction locations: the /cth element of fxx is 

M +  Zir=i airik> which uses no columns of r except the /cth. For this reason, fix+e uses no columns 

of r  except the Acth. Thus, for each k, the results already given for a single prediction location 

can be used to approximate E[S(xk +  e)].

Similarly, for each k, Var[^(zfc + e)] is unaffected by the addition of further prediction locations: 

the (fc, /c)th element of a\  is <r2(l -  1 nkQijrjk),  which uses no columns of r except the /cth.

Therefore it is only the covariance between the two predictions that needs further consideration.

From (B.3), the off-diagonal element of Var[T|V] is <72(/o(||a;i -  ar2||) -  £ ”j= i ruQijr j2), which
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we write as a 2(c -  Q0,o), where c =  p(\\Xl -  x2\\).

The Taylor series expansion of the element corresponding to ^ ^ = 1  TnQijTj 2 after addition of 

error yields

Qo,o + ciQi1)0 + e2Qo,X2 + €1 €2QXi,X2 +  \e \Q XxXl, 0 +  \e \Q  0)X2X2 +

2el e2Qxia;i,X2 +  2 €l e2Qx1,x2x2 +  $elQx1x1x1,0 +  QeiQo,x2x2x2 +  \ ^ i^ 2QXlxi,x2x2 +

Using the general result that, for any random variables X ,  Y  and Z,

Cov[X,Y] = Cov\E(X\Z),E(Y\Z)]+E[Cav(X,Y\Z)],

we have

Cov[5(xi +  6i ) , S (x 2 +  62)] Cov[^tXl-|_ei, fJ,X2+e2] T" E[(<7x-|.e) i i2], (B.7)

where (crx+e) 1(2 denotes the ( l ,2 )th element of the matrix ax+e.

For the reasons given above, Cov[^Xl+£l, /iX2+£2] =  0 . An approximation for Cov[5(xi+ei), S (x 2+ 

e2)\ is therefore given by the following approximation of E[(crx+e)1)2]:

Cov[5(a;i 4- ei), S(x 2 +  e2)\ = <72{c + ~7 2(cXlXl +  cX2X2) 4-

g 7  (C xix ix ix i T" 2cXlXlX2X2 +  CX2x2x2x2) ~

(Q 0 , 0  +  2 7 2 ( Q x i X i , 0  +  Q o , x 2 x 2 )  +

- 7  (Qxixixixi,0 T- 2QXlXl!X2X2 +  Qo,x2x2x2x2 )) +  0 (7 6)} o

Like the variance of the simple kriging predictor (B.3) in classical geostatistics, this expression 

depends on the data locations, but not the data. However, from (B.6), Var[5'(x +  e)] is affected 

by the data via its dependence on a and its derivatives.

One dimension - Joint prediction with dependent errors in locations

Again using (B.7), we have

Cov[//Xl+ei,A*x2+e2] = ot{'y2aXlaX2 +  - 7 4(axi“x2x2x2 +

^XlXlXl &X2 C^XlXl &X2X2 ) "F ^(T  )} (B.8)
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and

E[c(:ri +  e\,X2 +  e2)] =  c +  ^ ( O n x !  + 2acXlXa + cX2X2) +

gT (Cxixjxixi 4“ Cx2x2x2x2 + 2(1 +  2 Q!̂ )C;

4a (c )) 4- 0 (7 6).

4-

(B.9)

The expectation of the element corresponding to Qo,o after addition of error is

Q0,0 "I- 2T (Qxm.o 4- Qq,x2X2 4" 2aQ Xl)X2) “4

Qo,x2X2X2X2 ”4 2(1 +  2a  )Qxixi,x2x2 "4 4a(Q XlXlXl)X2 ”4 Qx 1,12x2x2)) 4" ^9(7^)- (B.10 )

Then Cov[5(xi +  e i) ,5 (x 2 4- £2)] is given by ((B.8)+cr2((B.9)-(B.10))).

Two dimensions - Joint prediction with independent errors in locations

As for the one-dimensional case, the expressions for the mean and variance are the same as for 

prediction at a single point.

Again using (B.7), with Cov[/xXl+£l,£iX2+£2] = 0 if ei and e2 are independent, we have 

Cov[S(xi +  ei), S (x2 -4 e2)] =  <r2{c 4- ^ 7 2(cxixi 4- cyiyi 4“ cx2x2 4- Cy2y2) +

'xixixixi  4"  Cyiyiyiyi 4"  C X2X2X2X2 +  Cy2y2y2y2 +

Cyiy 1x2x2 ' t'3/i3/i3/23/2 ' ('X2X2y2y2 )) ~

( Q o ,0 4” ~ 7  (Q x ix i,0  4" Q y i y i ,0 4" Q o,x2x2 4" Qo,j/22/2) 4" 

^ ^ { Q x ix ix ix i,0  4" Q3/13/13/13/1,0 4- Qo , X 2 X 2 X 2 X 2 4- Qo ,2/23/23/23/2

X j X l  .3 /23 /2X l X l , X 2X 2
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Two dim ensions - Joint prediction w ith dependent errors in locations

Similar reasoning to the one-dimensional case yields the convoluted expressions

Cov[/iXl+ei, (j,X2+e2\ =  &{'y"2{aXl a X2 +  a yi a y2) -T

1 4 /
2 ^ V^xixixi Q>X2 h  Q*xixiyi ®t/2 h  "b 0>x2x2x2 ~b

axiax23/23/2 +  ayiyiyiaV2 +  ayiax2x2y2 +  ayiay2y22/2 +

Q:(axixi<2x2X2 h  a yiyiO,y2y2 + 2 a Xly1 &x2y2 )) +  ^ ( 7 6)} (B .ll)

and

E[c(xi -I- e i ,x 2 +  e2)] =  p +  ^72(cxixa +  cyiVl +  cX2X2 + Cy2V2 +  2a{cXlX2 + Cyiy2)) +

1 4f
g7 VCXlXiXiXi + Cj/iyij/iyi + CX2X2X2X2 h  CJ/23/23/23/2 h

4tt(cXlxixiX2 h  ^xixiyij/2 ~b <-:xiyiyiX2 “b  Oxix2X2X2 +

cx i x 2y2y2 h  c2/i 2/i 2/i 2/2 ~b cy iy2y2y2 “b cy i x 2x 2y2) "b

2(1  +  2a  ) ( c Xlx1x2X2 +  £3/12/12/22/2) h

2(Cx1x1yiyi + cx iX!y2y2 + cy i y i x 2x 2 + cx2x 2y2y2) +  ^ (7 6)> (B.12)

and the expectation of the element corresponding to Qo,o after the addition of error is

Qo,0 +  | 7 2 (Q x ix i,0  +  Q 3/12 /1 ,0  +  <3o,x2x2 +  Qo,y2y2 +  2 a ( Q Xi,x 2 +  Q y i , y 2))  +  

^ 7 ^ ( Q x i X i x i X i ,0 " b  Q 3 / 1 3/12/13/1 ,0  " b  Q o ,X 2 X 2 X 2 X 2  " b  Qo,y2y2y2y2 " b  

4a ( Q X l x i X i , x 2 h  Q x i X i 3/ i , 3/2 " b  Q x i y i y i , x 2 ""b Q x i , X 2 X 2 X 2  “b  

- t- Q x i , x 23/23/2 h  Qyiyiyi , y2  " b  ^ 2 /1 ,3 /2 3 /2 3 /2  ~b  Q y i , x 2x 2y2) “b  

2(1 +  2 a 2 ) ( Q  x i x i , x 2x 2 " b  Q y i y i ,3 /2 2 /2 ) ~ b  

2 ( Q x i X i , 3/12/1 h  Q x i x i , 3/23/2 h  Q y 1y 1,x 2 X 2 ~b  Q x 2x 2,y2y2 ) )  " ^ ^ ( l  ) •  ( B . 13)

Cov[5(xi +  e i) ,5 (x 2 +  £2)] is given by ((B.ll)+<r2((B.12)-(B.13))).

B.3 Illustration of Approximations of Moments of the Predic­

tive Distribution

jji this section we illustrate the results of Appendix B.2.2 using a simple example in one dimen­

sion, showing how individual terms resulting from the Taylor series expansion each contribute
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to the approximation of the mean and variance of the predictive distribution.

We generated a realisation of a Gaussian process in one dimension on {0 , 1 , 8} with param­

eters fi — 0, cr2 =  1 and nugget effect r 2 =  0, and used a Gaussian correlation function with 

range parameter 0 = 1. This is shown in the top panel of Figure B.l. Assuming that the true 

parameter values were known, we then estimated the prediction mean and variance at a series 

of prediction locations in [0 , 8], with prediction locations assumed to be subject to independent 

N(0 , 7 2) positional errors.

In the lower panel of Figure B.l we compare the prediction mean for 7 2 =  0 and j 2 =  0.25. It 

shows the difference between the prediction means for the two scenarios, and also demonstrates 

how the approximation for 7 2 =  0.25 improves as extra terms are added, up to terms of order

74-

Figure B.2 is similar, but uses 7 2 =  0.04 for greater clarity. The prediction variance is clearly much 

more sensitive to changes in 7 2 than the prediction mean. This is to be expected from (3.10) and 

(3.12): the leading term of E[5(x + e)] contains only second- and higher-order derivatives of a.

The lower panel of Figure B.2 also highlights a result stated in Section 3.3.2, that in some cir­

cumstances the prediction variance may be smaller when 7 2 > 0 than when 7 2 =  0 , which occurs 

when the curve drops below the zero line. For the one-dimensional example, this tends to occur 

midway between observation locations, when the prediction variance in the absence of positional 

error is largest. The periodic shape of the prediction variance in Figure B.2 when 7 2 =  0 is a 

consequence of the standard result in geostatistics that the prediction variance depends on the 

data locations, but not on the observations themselves. When 7 2 > 0, the prediction variance 

does depend on the observations, as (B.6 ) shows.

Figure B.3 shows the leading terms in the Taylor approximation of the prediction variance when 

7 2 =  0.04 (see the figure legend for details). Curve a shows the prediction variance when 7 2 =  0; 

the other curves contribute to the prediction variance when 7  > 0. In particular the effect of 

the term 7 2a2 in the approximation, strongly related to the gradient of the underlying surface, 

is clearly seen (curve d). Curve e is a balancing higher order term that also depends on the

gradient.
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B.4 Higher Moments of the Predictive Distribution in the Pres­

ence of Positional Error

Here we demonstrate, in one dimension, that the skewness of the predictive distribution in the 

presence of positional error is 0 ( 7 4). This result provides a justification to concentrate on the 

first two moments of the predictive distribution, which are 0 (7 2), if there is positional error.

Using the results E(e2) =  7 2, E(e4) =  374 and E(e6) =  I 5 7 6, we have

E[{S(x +  e) - E ( S ( x  + e))}3] = E[(e5x +  l s xx(e2 — 72) +

+ ^ S xxxx(e4 -  3y4) +  ...)3]

= ~e2S’35'xx(e2 — + . ..

=  3S3Sxi74 +  0 (7 6).

The skewness of a random variable X  is defined as

E [(X -E [X ])3]
■ 1 (Var[X))3/ 2 ’

SO

3S 2 S  v̂4 4-
Skew[S(x +  e)] = ( 5 2 +  ^ (S 2 + S S J + 7<(|  ̂  + SXSXXT +  ...)3/ 2 ' (B' 14)

Using the result

ax4(b +  cx2) -3 ^2 =  +  0 (x6),

provided \cx2 /b\ < 1, (B.14) is approximately equal to

3S^ t  + 0 ( / ) ,

provided \(S% + S S xxx)'y2 / S 2\ < 1.

B.5 The Relationship Between Error in Prediction Location 

and Error in Data Location

As a postscript to the work in Paper 2, we note the following relationship between the scenarios 

in which positional error affects only the prediction location and that in which it affects only the
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data locations.

Proposition: Consider the stationary model (3.1) with constant mean. Given known d-dimensional 

data locations X \ , X n, if the single location X p is subject to a Berkson positional error e with 

symmetric distribution F,  predictions of T  = S(X*)  based on the following are identical:

where in (B.15) X*  is fixed and in (B.16) X* is fixed. In (B.16), the integral has dimension d 

and X * \ X ~ F ( X ,  eln).

In other words, predictions are the same as if an identical (and not just identically-distributed) 

error term had been applied to each data location.

Proof: From Section B.1.1, the predictive distribution [T\Y] depends on the Xi and X p only 

through ||X* -  Xj\\ and ||Xi -  Xj\\, for i, j  =  1, ...,n. Using the representation X* = X p + e, 

we have \\X* -  Xj\\ = \\XP -  {Xj — e) || for each j .  If the distribution of e is symmetric, then - e  

has the same distribution F.  This corresponds to the identical error e being added to each data 

location. As ||(X» -  e) -  {Xj -  e)|| =  || X t -  Xf\  for all i , j ,  (B.15) and (B.16) are identical.

(B.16)

(B.15)
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Figure B.l: (Top) Realisation of a one-dimensional Gaussian Process on {0,1, ...,8 } with the 

mean of the predictive distribution plotted assuming a positional error variance of 7 2 =  0 and 

7 2 =  0.25 in the prediction location. (Bottom) Difference between the means of the predictive 

distributions (7 2 =  0.25 minus j 2 =  0), with 0 (y2) and 0 (7 4) approximations derived from 

Taylor series expansions (see Appendix B.2.2).
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Figure B.2: (Top) Realisation of a one-dimensional Gaussian Process on (0,1, ...,8 } with the 

mean of the predictive distribution plotted assuming a positional error variance of 7 2 =  0 and 

7 2 =  0.04 in the prediction location. (Bottom) Difference between the variances of the predictive 

distributions (7 2 =  0.04 minus 7 2 =  0), with 0 ( 7 ) and 0 ( 7 2) approximations derived from 

Taylor series expansions (see Appendix B.2.2).
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Figure B.3: (Top) Realisation of a one-dimensional Gaussian Process on ( 0 , 8 } with the mean 

of the predictive distribution plotted assuming a positional error variance of 7 2 =  0 in the predic­

tion location. (Bottom) Contribution to the prediction variance of various components, assuming 

a positional error variance of 7 2 =  0.04: curve a: <r2; b: -cr2i 2Qx,x; c: -<j2i 2Qq,xx’, d: 7 2a2x; e: 

7 Aaxaxxx (see Appendix B.2.2 for explanations of notation and formulae).
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Appendix C

Appendices for Paper 3

C. 1 Approximating the Kernels

In Section 4.3.3, we described a method for finding kernels which, after convolution, correspond 

to a specified set of auto- and cross-covariance functions. In the soil data application, we used 

three kernels, /c0 of Gaussian form, and fa and k2 of Matem functional form, and maximised 

over the eight parameters of, fa (i -  0 ,1 ,2) and (i = 1,2). Figure 4.4 shows the good fit of 

the approximation.

Gaussian kernels have been routinely used in many applications, including Higdon (1998). For 

comparison, Figure C.l presents similar results if the functional form of two or more of the ker­

nels is Gaussian. It shows the specified two auto-covariance functions and one cross-covariance 

function for the soil data (each of Matem form), and the estimates of the covariance functions 

based on kernel convolution. In the left-hand panel, each of the fa was specified as Gaussian, 

while in the right-hand panel, k0 was specified as Matem and fa and k2 as Gaussian.

The left panel shows that the approximation is poor if each of the kernels is Gaussian. In this case, 

the approximations of C2z(x) and C12{x) coincide. The right panel shows that the approximation 

is much improved if kQ is of Matem form, and is nearly as good as that shown in Figure 4.4. In 

general, the approximation will be at least as good when Matem kernels are used rather than 

Gaussian ones, as the latter are a special case of the former.
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C.2 Non-Positive Definite Kernels

In the kernel convolution representation (4.9), the kernel that corresponds to a given covariance 

function is not uniquely defined: if k(x) is a kernel used in (4 .9 ), then - k ( x )  gives rise to a 

process with the same covariance function. More generally, so does the discontinuous kernel 

k{x), where

k(x) = k(x)(—i ) I(Ha:ll>a)} 

as {k{x ) } 2 =  [k(x)}2. Here, I(-) is the indicator function, and a  is a fixed threshold, to be chosen.

To illustrate the usefulness of kernels of the form k(x), we repeated the one-dimensional exam­

ple described by Higdon (2002), Section 4.1.

We generated 30 data points at equally-spaced locations x t e [1,10] from the model

y(xi) = sin(27r^/10) + 0.2 cos(27rxj/2.5) + e*,

where the e* are independent N(0,0.01) random variables. Figure C.2 shows the raw data and 

the predictions resulting from an analysis by kernel convolution. In this analysis, we used 7 

independent Gaussian kernels with standard deviation 2, centred on 7 equally-spaced locations 

in [ - 1 , 12].

We then repeated the analysis using independent and identically-distributed kernels of the form 

k{x), for various values of a. Figure C.3 shows the results. The discontinuous nature of k(x) 

causes ugly discontinuities in the resulting predictions; this is resolved only when a  is set smaller 

than minimi -  Xj ||, i ^  j .  In this extreme case, equivalent to using -k (x ) ,  predictions are iden­

tical to those obtained using k{x).

This simple example demonstrates that, while the kernel convolution method theoretically ad­

mits non-positive definite kernels, only positive definite kernels produce plausible predictions 

in practice. Thus when approximating the covariance functions in Paper 3, we considered only 

positive definite kernels.
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C.3 Altitude

In Section 4.4.2 and Chapter 5.3, we discussed the relationship between altitude and radon ex­

posure. Here we provide further details. Figure C.4 is an altitude map of the Winnipeg region. 

Residential locations in the radon study are shown as points. Clearly visible are the Red River 

(north-south), Assiniboine River (east-west) and Red River Floodway (straight lines to the east 

of the city). There is little variation in altitude in the city of Winnipeg compared to neighbouring 

regions.

Figure C.5 is a plot of radon measurement against altitude for the 1622 homes that had complete 

radon data. The figures show the weak relationship between altitude and radon in this study. The 

sample correlations are r  =  -0.07 and r  =  -0.10 for bedroom and basement radon respectively. 

On the basis of these plots, we decided not to use the altitude covariate in the analysis in Paper 

3.
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Figure C.l: For the soil data analysis, comparison of the covariance functions (solid lines) Cu{x)  

(top), 6 2 2 (2 ) (middle) and Cu(x)  (bottom) with convolved kernel function approximations 

(dotted lines). Left panel: ko, ki and /c2 all Gaussian kernels. Right panel: ko Matem kernel, ki 

and &2 Gaussian kernels.
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Figure C.2: Realisation of a one-dimensional Gaussian process using the model described by 

Higdon (2002). The solid curve indicates predictions obtained from the kernel convolution 

method with 7 independent Gaussian kernels.
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Figure C.3: Predictions resulting from use of a non-positive definite kernel k(x), with varying 

values of the threshold parameter a.
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Figure C.5: Plot of bedroom and basement radon against altitude, with loess curves.
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