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Abstract

As blood vessel imaging techniques facilitate the fundamental understanding in
vascular performance diagnosis and biomedical research improvement, we aimed
to visualize and understand the blood vessels dynamics under human skin and
their underlying mechanisms in real time. In this study, a noninvasive imag-
ing system was selected to provide an investigation of the real time oscillation
of blood vessels in vivo, using Spectral Radar Optical Coherence Tomography
(SROCT). This main goal was achieved by evaluating the precision and confi-
dence in recorded data by using a phantom made of Intralipid (IL) to mimic the
physical properties of the skin. Then, we successfully managed to visualize for
the first time the vasomotion under human skin using MatLab Image Processing
Toolbox. After that, we explored mathematically the cyclic variations of the vas-
cular area obtained from the images for a cohort of six participants. The Fourier
and wavelet transforms were applied to identify the characteristic frequencies re-
lated to the oscillations in vascular cross sectional area. Finally, we investigated
dynamical aspects of vasomotion, in response to temperature change, by using a
Melcor Thermoelectric Temperature Controller (MTTC) to produce local heating

in conjunction with Spectral Radar Optical Coherence Tomography (SROCT).
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Chapter 1

Introduction

1.1 Motivation

Studying biomedical applications of advanced technologies has attracted active
research in recent decades. Imaging techniques facilitate the fundamental un-
derstanding of disease by medical professionals and allow ongoing developments
and improvements in biomedical research. In particular, imaging blood vessels
under skin and visualization of their functional changes has potential to become a
very powerful tool for vascular performance diagnosing and biomedical research.
Therefore, the main long term goal of this work was to visualize and to study
in vivo the oscillations of the diameter of the smallest vessels in real time under

human skin.

The initial objective of this work was selecting of a non-invasive imaging method
that can provide suitable resolution images with a suitable depth to achieve the
main motivation of this work. For this particular goal, Optical Coherence To-
mography (OCT) is an instrument that was selected and worked on during this
research program. After that, the aim was to evaluate the precision and confi-
dence intervals within which the recording can be made by OCT. This essential

objective was made by measurements on a phantom which mimics the proper-
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ties of the skin. The next goal was to detect the vessel in the image obtained
by OCT and create a sequence of its contours. This included creating a video
of blood vessel motion and identification of the changing vessel cross-sectional
area as a function of time. In addition, we specifically propose to investigate
the vasomotion under human skin by plotting the changing area of the vessel as
a function of time and then analyze mathematically the time series of the data
collection by using Fourier transform and wavelet transform function. Finally,
the last objective of this work was to study the influence of external heat applied
locally to the human skin and identify changes in vascular diameter using OCT.
The achievement of this goal is very important for advancing biomedical research,
the selection of the most appropriate treatment, early detection of some diseases

related to the vascular function and thus improving the clinical outcome.

1.2 Structure of the thesis

This thesis will explore the implications of the real time oscillation of blood ves-
sels under human skin in-vivo by using Optical Coherence Tomography (OCT)
imaging. We will start by considering the physiology of human skin and present-
ing an overview of the human skin functions and structures, then we will highlight
a brief information on the vasomotion under skin. Furthermore, we will study
some of the skin optical properties in order to understand the effect of light used
in an imaging procedure to the human skin where this light was applied. At the
end of the first chapter, we will present some of the current imaging techniques
of blood vessels and make a brief comparison between several of them to figure
out the advantage of Optical Coherence Tomography (OCT) which led us to pick

it among the others.

I will then go on in the next chapter to introduce OCT and outline its main

characteristic and some of its applications, and then move on to the principles of
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operation of the system. Moreover, I will rough out the different versions of OCT
and make a brief comparison of these versions. Then, I will describe the exper-
imental set-up of the Spectral Radar Optical Coherence Tomography (SROCT)
which has been used in our research. Finally, by the end of this chapter, I will
summarize generally the theory of OCT and then move on to focus on the theory
of SROCT and then summarize the Optical Detecting Sensitivity of OCT which

is very important for analyzing the collected data.

In the third chapter, I will introduce the phantom which mimics human skin
and explain the experimental results which were obtained from the phantom to
evaluate the precision of the instrument and the way of measurement. First, I will
start by making a description of our phantom components and the experimental

set-up. Then I will move on to show some of my results by phantom as following:

1. Several phantom images with different layers which simulate vessels.

2. Evaluating the accuracy of the selected system by presenting and discussing

results of measurements on several subjects.
3. Studying changes of the intensity with depth.
4. Finding out the depth correction factor of the intensity for defined images.

5. Detecting a contour around artificial vessel and then calculating the area

of the contour.
6. Investigation of the instrumental noise level in long time series.

7. Reconstructing the three-dimensional images of the phantom.

In the final section of this chapter, I will summarize the conclusions based on all

the results from imaging human skin vessels in vivo as well as using the phantom.

In chapter 4, I will start by introducing briefly the experimental set-up for mea-

surements on human skin. Then, I will move on to apply previously elaborated
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experimental steps with the phantom on measurement of human skin and the

results will be presented in this chapter as coming:

1. Several human skin images will be presented to show the vessels of different

size recorded at different depths non-invasively and in vivo.
2. Studying the changing intensity with depth for human skin images

3. Calculating the correction factor of intensity and comparing the results with

those obtained from the phantom.

4. Plotting several images in a sequence to visualize the changing of the vessels

with time.

5. Displaying several plotted contours of vessels taken over time to illustrate

oscillation of cross section area.

6. Analyzing the vasomotion under human skin by studying the changing area

of the contour with time.

7. Examining the time series obtained from the imaged cross sectional area
of selected vessels to investigate the frequency of vasomotion using Fourier

and wavelet transforms.

8. Detecting the instrumental noise level from the real vessel oscillations by

using Fourier and wavelet transform.

9. Reforming the three-dimensional images of human skin to investigate the

blood vessels layers under skin.

In the final section, I will conclude this chapter by outlining all the results that

were obtained from human skin.

In chapter 5, the effect of heating on blood vessels oscillation will be presented.

By applying an external heating system on human skin for a period of time , I
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will examine how the dynamics of blood vessels changes following local skin heat-
ing. Subsequently, I will carefully analyze the data collected relying on previously
researched steps in this point to figure out the effective action of the vessel oscil-
lation and the remodeling of frequencies components by using wavelet analysis.
Then, I will close this chapter by providing conclusions and remarks about this

external effect on human vasomotion.

In the last chapter, the main obtained results and achievements of this work will
be summarized and the overall conclusions will be drawn. In addition, several
possible improvements and suggestions will be discussed for any further work in

this field.

1.3 Physiology of the skin

The cardiovascular system is one of the most important systems in the body. It
serves to provide rapid transport of nutrients around the body and rapid removal
of waste products. It is made from heart, lungs and blood vessels. Blood vessels
play a vital role in cardiovascular system by networking all the organs and tissues
in the human body. The total length of the blood vessels in the circulatory system
is about 97,000 kilometers for a child and could reach 161,000 kilometers long for
an adult. This length would circle the earth four times if the blood vessels of an
adult were lined up end to end [1]. Moreover, the typical diameter of these vessels
varies between 5 and 10 pm for the smallest capillaries 2] and 2 to 3 cm for the
biggest arteries [3]. These blood vessels have the ability to expand and contract
to help control the flow of blood. There are several types of blood vessels which

are [4],[5]:

o The arteries are elastic muscular tubes that carry the blood with nutrients
from the left ventricle of the heart to all organs and human tissues. They

diverge to smaller and smaller vessels as they move away from the heart.
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e The capillaries are the smallest and most important working unit in the
blood vessels that connect the arterioles to the venules. There are about
40,000 to 100,000 kilometers of capillaries which enable the actual exchange
of nutrients and other substances, like oxygen and carbon dioxide, between

the blood and the tissues.

e The lymphatic vessels act as a reservoir for plasma and other substances
including cells that leaked from the vascular system, and transport lymph

fluid back from the tissues to the circulatory system.

Mainly, there are about 3 meters of blood vessels, around 11 kilometers of nerves
and about 1300 nerve ending in one square centimeter of the largest organ of the
human body which is the skin [8]. These vessels supply the skin that wraps all
the human body with nutrients and oxygen to help it regularly do all its functions
to maintain good health. In order to study and investigate the images of vessels
under human skin, one must first understand the functions and the structure of

the skin which will be explained in the next two sections.

1.3.1 Functions of the skin

Skin has an essential function for the human body which puts it as one of the
top organs as to the importance of their functions. It permits a stable internal
environment, not just holding the body together but to perform a lot of vital func-
tions. The following are some of the important functions that skin can perform

9],[10]:

1. Communication and sensation: Skin plays a vital role of communica-
tion between our body and outside environment. As skin contains a
variety of nerve endings, it provides a great deal of information by
the sense of touch which helps knowing more about outside environ-
ment through recognizing heat, cold, pressure, pain, tissue injury, and

emotional sensations. In addition, it helps to feel vibration, and any
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intense sensation of itching. Under physical state, skin gives aesthetic
appearance, sexual attraction, and low level of bacterial decomposi-
tion. Finally, by emotional state, it provides facial expressions, goose

bumps and color.

2. Protection: Skin protects internal organs from environmental dangers. By
immunological function, skin protects the body against microbial at-
tack or any kind of infections. Moreover, it saves the body against
allergic reaction. Skin is a defence part for human body from mechan-
ical damage, bacteria, fungi and virus; also, protecting from excessive

radiation.

3. Temperature regulation: As the core body temperature needs to be
maintained for normal physiological activities, skin is the main con-
troller to regulate the thermodynamics of the human system by giving
off heat in hot weather or conserving heat in cold weather. Even under
extreme conditions of high temperature and exercise, skin keeps body

temperature normal.

4. Maintaining fluid balance: The skin provides a relatively dry and semi-
impermeable barrier to fluid loss by controlling evaporation. In ad-
dition, it permeates an excess water by absorbing it from adherent
keratinocytes and sebum. Also, skin excretes to maintain fluid bal-

ance by disposing of waste products and salt in sweat.

5. Metabolic function: Skin acts as a means of synthesis of vitamin D by ac-
tion of Ultraviolet (UV) radiation on certain parts of the skin. Further-
more, it gives structure to proteins, glycan, lipids, signalling molecules.
Moreover, it provides a storage of several substances such as: elec-
trolytes, water, vitamins, carbohydrates, and protein. In addition,
skin plays an important role for wound healing by secreting fibronectin

and other components required for restoration.






























































































































































































































































































































































































































































































































