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A bstract

Graphene is a new two-dimensional material with interesting electronic prop

erties and a wide range of applications. Graphene epitaxially grown on the Si- 

terminated surface of SiC is a good candidate to replace semiconductors in field- 

effect transistors. In this work we investigate the properties of epitaxial monolayer 

and bilayer graphene and develop a theoretical model used to describe the charge 

transfer between graphene and donors in SiC substrate. This model is then used 

to describe the behaviour of an epitaxial graphene-based transistor and the con

ditions for its operation. We also apply our model to understand the successful 

application of epitaxial graphene in quantum resistance metrology and to describe 

the effect of bilayer patches on the resistance quantization. Finally, we study how 

the ordering of adatoms on top of mechanically exfoliated graphene due to RKKY 

interaction affects the transport properties of graphene.
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Chapter 1

Introduction

Graphene [1] is a monolayer of carbon atoms arranged in a honeycomb lattice. 

Even though graphene was theoretically studied many years ago [2], it was thought 

to be unstable with respect to scrolling and has only been discovered experimen

tally in 2004 [3]. Since then it became a subject of intensive research with many 

promising applications. Graphene belongs to the family of carbon materials which 

were studied in details long before the discovery of graphene and share a number 

of common properties: graphite (3D), carbon nanotubes (ID), fullerenes (0D) [4], 

The nature of many interesting properties of graphene lies in the electronic 

structure of the low-energy exitations, whose behaviour resembles massless Dirac 

fermions [3]. This fact presents graphene as a platform for investigating the solid 

state physics effects in the context of quantum electrodynamics (QED). One of the 

most interesting effects attributed to Dirac fermions in graphene is the anomalous 

quantum Hall effect, which reveals an unusual resistance quantization and is robust 

at room temperatures [5]. The high electron mobility in graphene and the effective 

control of its doping make graphene a promising material for the manufacturing of 

field-effect transistors (FET) [6]. It has been demonstrated that graphene-based 

FET can operate at very high frequencies [7], indicating a potential to replace 

the semiconductor-based electronics in the future. However, the absence of the 

spectral gap in graphene and the unimpeded electron transport through potential 

barriers (Klein tunneling [8]) substantially limit the achievable on-off switching



ratio of transistor [9, 10].

Since the discovery of graphene many methods of its fabrication have been 

found. Each of them has its own benefits and drawbacks and suits only a specific 

range of applications. The most commonly used method to produce graphene is 

the mechanical exfoliation from the bulk graphite [11]. It is based on the use of 

adhesive tape to separate thin layers of carbon from the graphite crystal. As a 

result, a lot of thin graphite flakes of different thickness, which are later deposited 

on a semiconductor substrate, are attached to the tape and some of them have 

the 1 atom thickness. This method usually produces large samples (~  1 mm2) of 

high-mobility graphene, but it is hard to scale the production of such samples.

Another promising approach for graphene manufacturing is the epitaxial 

growth on silicon carbide. In this method graphene is grown on a SiC surface 

heated to high temperatures (> 1000°C) at low atmosphere pressure [12]. Epitax

ial graphene samples often have smaller size (~  100 /mi2), but the growth process 

can be well controlled. This method of graphene production is discussed in detail 

in section 2 .1.

In this thesis we will investigate these two types of graphene. Even though 

the environment around graphene depends on its method of fabrication, the band 

structure of graphene depends only on a few external parameters and can be stud

ied independently of the type of graphene. In the following sections we investigate 

the band structure of monolayer and bilayer graphene.

1.1 Band structure of monolayer graphene

Monolayer graphene is a single layer of carbon atoms arranged in a honeycomb 

lattice, shown in Fig. 1.1. The crystal structure of graphene consists of two iden

tical Bravais lattices (A and B) shifted relative to each other. The translational 

properties of the lattice are defined by the lattice vectors

3-i — - ( 3 ,  V3), &2 — ^(3, v/3),

13
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where a =  I A2A  is the distance between carbon atoms. The reciprocal lattice 

vectors are
2.1T 2.7V r—

(1.2 )b I =  g ( l , ^ ) ,  b 2 =  g ( l , - V 3 ) .

The Brillouin zone has the form of the hexagon the six corners of which are pro

jected on the two inequivalent points K  and K ' .

Figure 1.1: Graphene honeycomb lattice and Brillouin zone. Adapted from [13].

We describe the band structure of graphene within the tight-binding approxi

mation, that describes the formation of a 7r-band due to covalent bonding between 

the p orbitals of the neighboring carbon atoms, which are perpendicular to the 

graphene plane. The Hamiltonian of electrons in graphene can be written as

H  =  - t ^ 2 { a \ b j  +  b]a,i) ,  

(m>
(1.3)

where t = 2.8 eV is the nearest-neighbor hopping energy, at, bj (a], St) are electron 

annihilation (creation) operators on carbon atoms z, j  of A and B sublattices 

correspondingly. The sum in Eq. (1.3) is taken over the pairs of nearest neighbors 

i and j .  The spectrum of the Hamiltonian (1.3), shown in Fig. 1.2, can be written

as

e(k) =  ± t
\

3 +  2 cos V3kyd +  4 cos | -~ - k ya \ cos ( ^ k xa ). (1.4)

The touching points of upper and lower bands, corresponding to the energy E = 0, 

are called Dirac points.
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In practical applications we are often interested in the low-energy spectrum 

of graphene (e < 0.4 eV). Thus the dispersion Eq. (1.4) can be linearized in the 

vicinities of K  and K '  points called valleys:

e(p) =  ±u|p|, k =  K (K ')+  p, |p| <  |K| (1.5)

where the Fermi velocity v =  3ta/2 ~  1 ■ 106 m /s [2].

The low-energy Hamiltonian in valleys K  and K'  can be represented in the 

form [14]

HK = ver- p, (1.6)

H k , =  Va *  ■ p , (1.7)

where p =  —i/zV is the momentum operator, cr =  (ax, ay) and cr* =  (ax, —uy) are 

Pauli matrices in the sublattice space. These equations define the Dirac nature of 

the quasiparticles in graphene.

The wavefunctions corresponding to momentum p in each valley are

t p±,K,  p  —

gipr/fi

y/2S

e

-J-g^p/2
, lp±,K' ,  p  —

I
gipr/h

V2S

( eiyp/2 

-j-e-^ p /2
( 1 .8 )

where S  is the area of the graphene sheet, ±  corresponds to the upper and lower 

bands, and p =  (pcosc/9p,psin(/?p).

The electron density in monolayer graphene has a quadratic dependence on the 

Fermi momentum (taking into account the valley and spin degeneracy)

n  =
2

P f

7T k 2
(1.9)
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Figure 1.2: Electronic dispersion of monolayer graphene. Right: zoom in of the 
energy bands close to one of the Dirac points. Adapted from [13].

1.2 Band structure of bilayer graphene

Bilayer graphene (BLG) consists of two coupled honeycomb lattices, arranged 

according to Bernal stacking, which is illustrated in Fig. 1.3(a). The two layers 

are shifted along the A l-B l direction, so that A2 sites are always located above 

B1 sites. The band structure of BLG can be described using the tight-binding 

model [15]. The main contributions to it are coming from the in-plane coupling, 

characterized by the velocity v and the inter-layer coupling e\ =  0.39 eV between 

A2 and B1 sites. Here we neglect the effect of trigonal warping produced by a 

weaker A1-B2 coupling [16]. Thus the low-energy Hamiltonian of BLG in the 

vicinity of K  and K '  points can be represented as

/ - A /2 0 0 vi

0 A /2 V7T 0

0 virJ A /2

V vir 0 - A /2  )

(1.10)

where ir = px +  ipy, 7r' =  px — ipy, £ — +1 (—1) specifies the valley K  (K '), 

A is the difference between on-site energies in the layers due to an external 

perpendicular electric field. The wave function bases in K  and K '  valleys are

16



ip = {ipAi,'ipB2,'ipA2,i>Bi) and ip =  ('ipB2,'ipAi,'tpBi,ipA2) correspondingly.

The spectrum of the Hamiltonian (1.10), shown schematically in Fig. 1.3(b), 

consists of 4 energy bands in each valley [15]

where (3 =  1, 2 is the energy band index. The low-energy band has a non-monotonic 

form, which is sometimes called a ’’mexican hat” . The bottom of this band is 

achieved at a non-zero value of momentum p, however we will approximate the

energies in the layers A also happens to be the spectral gap. The bottom of the

In the absence of an external electric field the spectral gap of BLG A =  0 and 

the spectrum of bilayer graphene in the vicinity of the Brillouin zone corners is

This limit applies to exfoliated bilayer graphene with no electric gates.

The spectral gap A can be represented as the electrostatic energy difference 

between the layers. In the presence of an external gate with carrier density ng on 

the top of graphene

where c0 =  0.3 nm is the distance between graphene layers and n x is the electron 

density of the top graphene layer. The dielectric constant of BLG is not known but 

it is supposed to be in the range between 1 and 2.4 (the value for bulk graphite)

[15]. As an approximation for the unknown value of the dielectric constant we use 

er =  1.5 , which doesn’t affect any qualitative results of this thesis.

Due to the external electric field the electron density n  of BLG is distributed

e

bottom part by the value eb)(0) =  ±A /2 . Thus, the difference between on-site

high-energy band corresponds to a much higher energy s j +  A 2/4.

[16]

(1 .12)

A  e  ° 0  (  , ^A =  -(n x +  ng),
£ q £ r

(1.13)
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(b)

Figure 1.3: The crystal lattice (a) and electron spectrum (b) of bilayer graphene. 
Adapted from [15, 17].

asymmetrically between the top (ni) and bottom (722) layers (n =  ni +  n2)

na = f a A eF, A) +  f Q+1,0 (00, A) -  f a+1,0 (00 , 0)], (1.14)
P

where or =  1,2 is the layer index,

Pt3 F A )

fa,13( e , A ) =  /  pdp
e(P) _(_ ( e ^ 2 — A~)2 -j- (—l) au2p2e^^A — idp4

7ih2e ^ ( e (/3)2 _  A l ) 2  _|_ v 2 p 2 / \ 2  _  v A p 4

(1.15)

is the contribution of the energy band (3 to the electron density, and pp(e,A) is 

the momentum corresponding to the energy e in the band with index /3 or 0 for 

energies within the spectral gap.

At small carrier densities, when the Fermi level is far from the bottom of the 

high-energy band (A <C e1; n <  e\/2ixh2v2 «  5.6 ■ 1012 cm-2), it is possible to 

neglect the effect of the high-energy band and use the approximated 2-band model

[16] with a simpler Hamiltonian

H‘2—band
1 ( 0 A )2 \ ?A ( 1 0 ^

2m
0

2
1 ° - v

(1.16)
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and the spectrum

In this approximation the carrier densities in BLG layers (Eq. (1.14, 1.15)) can be 

calculated analytically. In the undoped graphene (|e^| <  |A |/2)

( - l ) “ m A  /  2 e i \  .

whereas, for |ejr| > |A |/2,

” - ^ - ^ - ( ^ 1 )  <11S)

The results presented here will be applied in the problems investigated in the 

next chapters.
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Chapter 2

Electronic properties of epitaxial 

graphene on Si-term inated  

surface of SiC

Among the several ways of fabricating graphene [18, 19, 20], one of the promis

ing methods for the top-down manufacturing of electronic devices consists in the 

graphitization of Si-terminated surface of silicon carbide. It has been found that 

the epitaxial graphene grown onto cm-size wafers of the Si-terminated face of 

SiC [6 , 21, 22, 23, 24, 25, 26, 27] maintains structural integrity over a large area 

and demonstrates a relatively high mobility of carriers [7, 28, 29]. This makes 

graphene synthesized on SiC (G/SiC) a promising platform to build integrated 

electronic circuits, assuming one can control the carrier density in it. For transis

tor applications, bilayer graphene in G/SiC is a particularly interesting material, 

since interlayer asymmetry (e.g., induced by a transverse electric field) opens a 

minigap in its spectrum [16, 30, 31, 32, 33].

At the same time, the structure of SiC surface is modified during the epitax

ial growth which results in a high electron density ~  1 • 1013 cm-2 in graphene. 

This fact makes it harder to utilize G/SiC in electronic devices such as field-effect 

transistors (FET). To understand such systems we developed a theoretical model
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describing the electrostatic and transport properties of G/SiC in different environ

ments.

In this chapter we describe the electronic properties of epitaxial monolayer and 

bilayer graphene in zero magnetic field. Section 2.1 explains the reconstruction of 

the SiC surface due to graphitization, which results in the formation of epitaxial 

graphene. We also discuss the effect of hydrogen intercalation and spontaneous 

polarization of SiC on graphene structures. In section 2.2 we present the theory 

of the charge transfer between donors in SiC and the monolayer graphene (MLG) 

and apply this theory to calculate the doping of graphene. We also discuss whether 

G/SiC can be used as a basis for the fabrication of field-effect transistors. Then we 

apply our quantitative model to describe the electronic effects of SiC ferroelectricity 

and hydrogen intercalation. In section 2.3 we apply the charge transfer theory to 

epitaxial bilayer graphene (BLG/SiC) and use it to calculate the modification of

the band structure. The special gap opened due to the charge transfer makes

it possible to observe the carrier density pinch-off effect in BLG/SiC and the 

variable-range hopping (VRH) transport regime. Finally, we perform the similar 

calculations for quasi-free standing bilayer graphene.

2.1 Electronic structure of SiC surface

2.1 .1  Buffer layer

Epitaxial growth of graphene is based on the graphitization of SiC surface at high 

temperatures > 1000°C. A number of variants of this method performed in different 

environments produce graphene samples of various thickness and quality. One of 

the most important factors for graphene growth is the crystallographic direction 

of SiC surface -  SiC(0001) (Si-face) or SiC(OOOl) (C-face). It appears to be much 

harder to control the number of graphene layers during the growth on the C-face 

[34]. The reaction kinetics on the Si-face is slower than on the C-face because of 

the higher surface energy, which helps homogeneous and well-controlled graphene
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formation [21, 23] and explains the wide use of this method in manufacturing 

electronic devices. In this thesis we study the properties of graphene grown on the 

Si-terminated face of SiC. Below we describe the structure of the SiC surface and 

how it affects the electronic properties of graphene grown on top of it.

Fig. 2.1(a) shows the structural model of epitaxial monolayer graphene. During 

the epitaxial growth the surface of SiC(OOOl) undergoes transitions between dif

ferent structural phase states. The annealing of the surface leads to the formation 

of a (\/3 x \/3)i?30° phase at 950°C and a well ordered (6a/3 x 6a/3)A30° phase 

at 1100°C. The carbon layer partially connected with the top Si layer is called 

’dead layer’ or ’buffer layer’. Even though it has a graphene-like crystal structure 

- (6a/3 x 6a/3)jR30° superlattice illustrated in Fig. 2.1(b), this structure leads to 

heavily suppressed electron transport properties of this layer, which cannot be 

considered as graphene. The unit cell of the superlattice contains 108 Si and 108 

C atoms per SiC bilayer and covers 338 atoms in graphene layer. This structure 

was detected by a number of experimental methods including low energy electron 

diffraction (LEED) [3-5, 36] and STM measurements under certain tip conditions 

[36]. The subsequent layers grown on top of the buffer layer reveal many properties 

of graphene, though they are still affected by (6\/3 x 6\/3)i?30o reconstruction.

Topmost SiC 
substrate layer

•  •  •  Carbon layerft a a J
STM features

Quasi “6x 6 ” 
corrugation

(6V3x6 n'3)R 30“ 
unit celldangling bond

Figure 2.1: a) Structural model of MLG/SiC grown on the Si-face of SiC. b) 
Structural model of (6a/3 x  6a/3)/M0° reconstruction in top view, showing the 
relation between lattice structures of Si-C bilayers, buffer layer and graphene. 
Adapted from [12].

The reconstruction of the SiC(0001) surface during the growth results in a 

break of Si-C bonds between buffer layer and Si atoms in the surface. The spectral
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analysis of the bonds in the buffer layer [12] revealed that almost 1/3 of these Si- 

C bonds survive the reconstruction. Angle-resolved photoemission spectroscopy 

(ARPES) measurements [37] confirm that the buffer layer has no linear spectrum 

near K  points. Substituted carbon atoms and bonds with the SiC substrate in 

various positions of a big supercell in the buffer layer create localized surface 

states with a broad distribution of energies within the bandgap of SiC (~  2.4 eV) 

[36, 38, 39, 40, 41, 42],

W ithout special growth protocols, these surface donors lead to a large electron 

density in graphene. MLG/SiC grown at low temperatures (1200 — 1600 °C) 

appears to be doped to n  ~  1013 cm-2 [43, 44], which is difficult to change [45]. 

Also, charged surface donors induce Coulomb scattering, which limits the mobility 

of electrons in such a material. On the other hand, graphene growth at higher 

temperatures, T  ss 2000 °C, and in a highly pressurised atmosphere of Ar seems 

to improve the integrity of the reconstructed buffer layer, leading to a lower density 

of donors on the surface and, therefore, a much lower initial doping of graphene 

[28, 46].

2.1 .2  H ydrogen  in terca la tion

Despite the benefits of graphene epitaxially grown on SiC(0001), in particular, the 

large size of samples and the control of its thickness, the high intrinsic doping can 

become an obstacle for using G/SiC in electronic devices. The coupling between 

30% of C atoms in the buffer layer with Si atoms of SiC(0001) surface leads to the 

(6\/3  x 6V/3)i?30° reconstruction of the surface, which in turn strongly reduces 

graphene mobility compared to exfoliated graphene. One of the most effective 

ways to break the residual Si-C bonds of the buffer layer and improve the transport 

characteristics of G/SiC is hydrogen intercalation [37]. Hydrogenation eliminates 

occasional coupling between carbon and Si atoms in the buffer layer turning the 

buffer layer into a quasi-free standing monolayer graphene (QFMLG), which is 

usually positively doped [12, 47] due to electron transfer from graphene to acceptor
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states in the H-terminated surface of SiC (Fig. 2.2). Hydrogen intercalation applied 

to MLG/SiC produces quasi-free standing bilayer graphene (QFBLG), which is 

usually highly p-doped ( n ^  ~  1013 cm-2) [37, 48, 49].

(a)
0=G0=00=G0=0©=G0=0©

(b) «

Figure 2.2: The saturation of Si bonds by hydrogen after hydrogen intercalation of 
(a) the (6\/3 x 6\/3)i?30o reconstructed buffer layer (QFMLG) and (b) an epitaxial 
monolayer graphene (QFBLG). Adapted from [12].

The mechanism of hydrogen intercalation described above was confirmed by a 

number of experimental studies. Low energy electron diffraction (LEED) images 

demonstrate the suppression of the (6\/3 x 6v/3)JR30° superlattice structure signal 

and the amplification of the graphene diffraction pattern after hydrogen interca

lation is performed [12]. Another confirmation comes from ARPES measurements 

that reveal the recovery of the linear dispersing 7r-bands in the buffer layer after 

intercalation [37]. This process appears to be completely reversible as Si-H bonds 

break at temperatures between 700-900°C.

2 .1 .3  S p on tan eou s e lectr ica l polarization  o f silicon  carbide

The crystal structure of SiC represents a stack of Si-C bilayers placed on top of 

each other according to a specific pattern. These patterns that differ by orientation 

and shift of the layers are called polytypes. The most commonly used polytypes 

are cubic (3C) and hexagonal (2H, 4H, 6H) [50], some of which are shown in 

Fig. 2.3. As a result of different stacking of bilayers many properties of SiC depend 

on the polytype, e.g., band gap, dielectric constant and spontaneous electrical 

polarization.

Spontaneous polarization (SP) of SiC is a bulk effect resulting from a charge 

polarization within the unit cell and a particular symmetry of the crystal lattice.
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In 3C polytype the SP is not observed, while it has different non-zero values in 

hexagonal polytypes. The SP is hard to determine both theoretically and experi

mentally. Its absolute value cannot be measured directly and only the modulation 

of the spontaneous polarization due to external perturbations like strain or tem

perature variation can be detected [51]. One of the effects of SP is the formation of 

an effective surface charge at the interface between different SiC polytypes, where 

different values of SP on two sides of the interface lead to a charge accumulation in 

a two dimensional electron gas (2DEG) [52]. This property was used in a number 

of theoretical methods to calculate the SP in SiC [51, 53, 54, 55]. Its value P0 

depends on the polytype and is in the range of (1 — 5) • 10-2 C /m 2.

3C-SiC 4H-SiC 6H-SiC

Figure 2.3: Stacking of Si-C bilayers in different polytypes of SiC. Open and closed 
circles denote Si and C atoms respectively. Adapted from [50].

To understand the effect of the SP on the electric properties of SiC let’s consider 

a flat SiC sample (Fig. 2.4). Since this system has no surfaces with a finite surface 

change density, the electric displacement field D =  £oE +  Po equals 0 in the bulk of 

SiC. As a result the electric field E =  —Po/eo appears and redistributes the charge 

of donors in the bulk towards the surfaces. Thus, a depletion layer of donors is 

formed near the Si-terminated surface. The capacitor formed by the two charged 

layers near the SiC surfaces charges until it compensates the electric field due to 

the SP, so that the electric field in the bulk of SiC is 0. The hole density of the 

depletion layer near the Si-terminated surface is np — Po/e. This result is used 

later in this chapter to understand the effect of the SP on the carrier density in
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G/SiC.
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Figure 2.4: The redistribution of the charge in SiC due to the spontaneous polar
ization.

2 .1 .4  F ield -effect tran sistor  based  on ep itax ia l graphene

In recent years fundamental graphene studies turned towards practical implemen

tation of this atomically thin material in electronics. Such studies are, partially, 

focused on the development of field-effect transistors based on epitaxial graphene 

[6 , 27, 29, 56], which seems to be one of the possible ways to develop a top-down 

technology of scalable graphene-based wafer-scale circuitry. The effective opera

tion of transistors based on G/SiC requires control of conductivity through the 

variation of the carrier density in graphene, which is governed by charge transfer 

between epitaxial graphene and donors in SiC [45].

Methods for precise control of the carrier density in electronic materials are 

the cornerstones of the modern semiconductor technology. Chemical methods 

ranging from direct doping to modulation doping have been developed to absolute 

perfection for semiconductors over the last half-century. Graphene can also be 

effectively doped for example by adsorption of gas molecules [57], In addition 

to permanent doping, the electronic properties of semiconductor materials and 

graphene can be changed by the electric field produced by a charged gate, as in
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a transistor, but this requires an external voltage source permanently connected 

to maintain the stored charge. Semiconductor programmable nonvolatile memory 

devices give us an inspirational example of how the carrier density of materials 

can be changed, latched and then erased. These devices are essentially transistors 

with one extra floating, isolated gate sandwiched between the control gate and 

the semiconductor channel. Charge can be transferred to the floating gate by an 

electric pulse on the control gate and stored there isolated almost indefinitely, until 

intentionally leaked through the dielectric, e.g. activated by UV light. In other 

implementations of nonvolatile memory devices UV light is used for writing [46] 

in which case thermal activation can be used for erasing.

1.2x1012 -  

1.0x1012 -  

6 .0x10" -

* £  6 .0 x 1 0 " -  
o 
c

4,0x10" -  

2 .0x10" -  

0 . 0 -

Dose, mJ/cm2

Figure 2.5: Photochemical gating of graphene. Adapted from [58].

Though, unsurprisingly, the relatively low density in the epitaxial graphene 

grown with the technology [24] briefly summarised above could be further reduced 

by applying a voltage between a metallic gate and graphene across a PMMA/MMA 

copolymer spacer, methods of non-invasive, nonvolatile and reversible charge car

rier control would be particularly important for the engineering of devices for 

metrology, where it is preferable to avoid an additional electrically controlled pa

rameter, which brings additional noise.

Substrate
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To achieve the nonvolatile control of the carrier density the metal gate can be 

replaced by a polymer layer with the ability to provide potent acceptors under deep 

UV light. The photochemical gating of graphene was demonstrated in [46] using 

ZEP520A polymer. In a sample with the initial carrier density n ss 1.1 • 1012 cm2, 

subsequent exposures to UV at 248 nm wavelength up to the dose of 330 m J/cm 2 

decreased the low-temperature electron density 50 times down to 2 • 1010 cm2 

(Fig. 2.5). The irradiated devices remained latched in their high-resistivity state 

over many months. The on/off ratio of 10 for the resistivity in the photochemically- 

gated devices is similar to the best large-area single-layer graphene transistors 

demonstrated to date [59]. Very significantly, annealing the samples at 170°C -  

just above the glass transition temperature of the polymers -  reversed the effects 

of light and returned the graphene charge carrier density to its value prior to UV 

exposure. The behaviour measured at room temperature was qualitatively the 

same as the one observed at low temperatures.

2.2 Charge transfer in epitaxial M L G /SiC

The material in this section is based on the original paper by S. Kopylov, et al. 

[45].

As discussed above, the electronic properties of MLG/SiC are strongly affected 

by the proximity of the underlying buffer layer. The local defects in the buffer layer 

created by unsaturated Si bonds serve as electron donors for graphene. Combined 

with donors from the bulk of SiC they result in high n-doping of graphene n  ~  

1013 cm-2. The high carrier density and a low responsivity to gate voltage creates 

an obstacle for using G/SiC in transistors and other electronic devices [27, 43, 

44, 60]. This underlines the importance of investigating the transfer of charge 

from surface and bulk donor states in SiC to graphene. In this section we develop 

a theoretical model which describes the charge transfer in field-effect transistors 

(FET) based on both MLG/SiC and quasi-free standing MLG (QFMLG).

The schematic structure of a FET device is shown in Fig. 2.6(a). The distance
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between graphene and the SiC surface is d «  0.2 nm. Our model takes into account 

the two types of donors in SiC, which donate electrons to graphene in order to 

achieve electrostatic balance:

a) surface donors with surface density of states 7 . These donors originate 

during graphitization process, where the surface of SiC undergoes (6\/3x6\/3)-R30o 

reconstruction and creates unsaturated Si bonds.

b) bulk donors with density p that are characterized by A  - the work function 

between graphene and distant bulk donors.

Fig. 2.6(b) shows the energy diagram of G/SiC. The saturation layer of thick

ness I near the surface of SiC with the homogeneous donor density p creates the 

parabolic energy profile in the bulk of SiC. The electric field between the SiC 

surface and the graphene layer results in a shift of the Dirac point e2d (n Jr ng)/£0.

The charge balance in this top-gated field-effect transistor is described by a 

system of two coupled equations:

A  _  e2d(n +  ng) _  '
£0

pl = n + ng, (2.1)

A  = eF + U + e^ n + n^ . (2.2)
^0

Equation (2.1) states the charge conservation in the system, with ng — CVg/e  

(e > 0) being the areal density of electrons transferred to the gate. Here, A (A) 

is the difference between the work function of graphene and the work function 

of electrons in the bulk (surface) donors in SiC, and ep is the Fermi energy in 

doped graphene relative to the Dirac point. Eq. (2.2) describes the equilibrium 

between electrons in graphene and bulk donors, with I standing for the depletion 

layer width in SiC, U = e2pl2/ ( 2xe0) being the height of the Schottky barrier (y 

is the dielectric constant of SiC), and d - the distance between the SiC surface and 

graphene layer.
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(a)

A

Figure 2.6: a) The structure of a G/SiC-based field-effect transistor, b) The band 
structure of G/SiC. The striped area shows the depletion layer of bulk donor states 
in SiC. The shaded bar under the surface of SiC shows the occupied surface donor 
states.

2.2 .1  T h e role o f quantum  capacitance o f G /S iC  surface in  

graphene dop ing

In the following, we calculate the density n  of electrons in two limits: graphene 

doping dominated by the charge transfer from

(a) surface donors, which corresponds to solving Eq. (2.1) with pi — > 0;

(b) bulk donors (e.g. nitrogen), which corresponds to solving Eqs. (2.1, 2.2) 

with 7 =  0 .

Charge transfer in a more generic situation, with arbitrary p and 7 , can be 

assessed by taking the largest of the two estimates.

Monolayer graphene has the linear spectrum e±(p) =  ±vp,  in the two valleys, 

corresponding to the non-equivalent corners K  and K' of the hexagonal Brillouin 

zone, so that eF{n) — sng(n)hv^ir\n\  (we take into account both valley and spin 

degeneracy of the electron states).

In the limit (a) pi — » 0 we find that the carrier density is

A y
n -

n 9  7 d + 7  \  7 d + 7  
A  7 d  /  I d

l A  ( l  + - jI d  J

(2.3)
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Figure 2.7: Comparison between charge transfer from SiC to MLG and BLG, with 
A measured in units of split-band energy in BLG, e1 =  0.4 eV, d — 0.3 nm for MLG 
and d =  0.5 nm for BLG. (a) Electron concentration in graphene n dominated by 
charge transfer from surface states, (b) Values 7* of the surface DoS at which 
72(7 ) saturates (71 =  ei/irffiv2). (c) Saturation density value as a function of n*, 
in units of n\. (d) Electron bulk donors density p for 7  — 0.
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£q 4 A.
J d = d< 7A =  ^ V '  ( ^

The initial density of electrons in graphene is described by Eq. (2.3) (ng =  0) with 

two characteristic regimes,

Ay, 7 < 7 * ;  
n fa  ̂ (2.5)

n*, 7 >  7*,

where n* and 7* are, respectively, the saturation value for the carrier density in 

G/SiC and the crossover value of DoS of donors on the SiC surface at which 77,(7 ) 

saturates:

7 .  =   . 2 , n .  =  - ---------A l *_-------  2 . ( 2 . 6 )

In the limit (b) we find n(p) by solving Eqs. (2.1, 2.2) numerically. The nu

merical solution shown in Fig. 2.7 (d) interpolates between the regimes of weak 

and strong graphene doping:

4 j 2EqA xp
y e2 ’ P ^  P*>

p P*i

(2.7)

'47/i _ _  , o a ,
n * —   2’ P* /--------/---- r—\ 4 ’ (2-8)

(! + yi+¥) 0 + A + i)
where

 ̂= ( 2 ' 9 )

Independent of the number of layers, the gate voltage V* needed to reach the 

neutrality point in graphene controlled by the top gate with mutual capacitance
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C is

T7* 6
V 9 «  — max

87re2 Aŷ  
X P

(2 .10)

As we can see both limits of the model have the same qualitative behaviour 

at high donor densities -  the carrier density in graphene saturates at n* or h*.

same qualitative and similar quantitative results. Thus in further calculations we 

will restrict our analysis to the limit pi -» 0 and use a simplified charge balance 

equation

In the case when the charge transfer is dominated by donors on the surface of 

SiC (limit a) with A  ~  1 eV or donors in the bulk of SiC with A  ~  1 eV, [61], 

we estimate that the saturation density of n-type doping of MLG is 1 ■ 1013 cm-2, 

which corresponds to ep ~  0.4 eV (for d ~  0.3nm). This value of carrier density

6H SiC [62]) or the surface states have DoS 7  > 7* ~  1 • 1013 cm~2-eV_1. For lesser 

doping of SiC, 7  <  7* and p < p*, one should use the larger of the estimates from 

Eqs. (2.5, 2.7). This can be compared to the data reported in the recent studies 

of epitaxial graphene indicating a substantial intrinsic level of n-type doping of 

G/SiC, very often [27] as high as 1 • 1013 c m '2. However, some particular growth 

processes produce G/SiC with a much lower doping level [28, 63], indicating that 

efficient annealing of donors on and near the SiC surface is possible.

2.2 .2  T h e effect o f  sp ontan eou s po larization  o f  SiC  on

charge transfer

In this section we incorporate the effect of charge redistribution between donors 

in SiC due to the SP (see section 2.1.3) in our charge transfer model (2.1, 2.2). 

The main effect of the SP on the charge transfer is the increased thickness of the 

depletion layer near the Si-terminated surface of SiC, which is characterized by the

A more detailed analysis shows that in most applications both limits provide the

e2d(n +  r ig)  

£0
ep = n + ng. (2 .11 )

occurs when the donor volume density is p > p* ~  1 • 1019 cm 3 (we use x  ~  10 for
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additional hole density nv =  Po/e. This density must be included in the Eq. (2.1) 

to ensure the charge neutrality of the system:

7
A  _  e2d(n +  ng) _  '

£o F
+ pi = n + n g + PQ/e. (2.12)

The second equation (2 .2) of the model remains unaffected by the SP. We can 

introduce a new parameter Aeff = A — Po/{e7 ), so that

e2d{n + ng) '
A e f f -----------   e F£0

+ pi = n + ng. (2-13)

Thus, the effect of the SP of SiC can be described by the same charge transfer

Eqs. (2.1, 2.2) with the substitution A —> A — PQ/(e/y). In the future calculations

we implicitly assume that the effect of the SP is included in the definition of A.

2 .2 .3  R esp o n siv ity  o f G /S iC  FE T

Since the intrinsic doping of G/SiC is often too high for applications in electronic 

devices, it is important to be able to reduce the doping using external gates. Here 

we discuss the feasibility of controlling the carrier density of graphene using a 

metallic gate. We characterize the effectiveness of this control using the respon

sivity factor
dn / O 1 /I \r  =  — :— . (2-14)
dng

The values r  «  1 correspond to an optimal transistor operation, when the change 

of the gate voltage results in transfer of all additional charge from gate to graphene. 

In the opposite regime, r  «  1, the carrier density of graphene is nearly impossible 

to change using a gate voltage.

34



The responsivity of MLG in G/SiC in the limit (a) is

\  - 1/2
I !  h  , 1A , 74r L _o = 1 — 1 H----- + —

7d 7
1, 7  «C 7*; (2.15)

1
1 -------    , 7 > 7 * -

V 1 +  l A / l d ,

The responsivity, r |ns=0 of MLG/SiC in the limit (b) can be described using 

Eq. (2.15), but with 7,4 replaced by 7a and the upper/lower limits corresponding 

to p <C p* and p p*, respectively.

This result indicates that the responsivity of the MLG/SiC field-effect transis

tor depends on the density of donors in the buffer layer. At small densities, which 

correspond to low initial carrier density in graphene, the responsivity is close to 

1 and the transistor operation can be controlled effectively. In contrast, at high

donor density and high graphene doping the carrier density n  is hard to change.

This result explains the motivation for reducing the carrier density in graphene by 

using metallic and polymer gates, described in section 2.1.4.

2 .2 .4  In trinsic  dop ing  o f quasi-free stan d in g  graphene  

(Q FM L G ) on H -in terca la ted  SiC

Here we develop a phenomenological theory of charge transfer between graphene 

and SiC in hydrogen-intercalated epitaxial graphene and compare two limiting 

phenomenological models for that, which differ by the form of the density of states 

of surface acceptors, 7 (e). In the m odel I we assume that 7 (e) has the shape of 

a narrow peak,

7(e) = y lk exp (~(e a^j)2) nJ{( ~ Ei)' {2-16)

where nv is the density of vacancies, Ei  is the average localized state energy, 

A <C E g — E][ is a variation of the energy level due to the imperfection of the
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crystal structure, and E q is the work function of graphene. The m odel I I  assumes 

a uniform density of states

7 (e) =  7o (2 .17 )

broadly spread over the gap in SiC. To justify the model I we notice that acceptor 

states are likely to be due to occasional unsaturated Si bonds at the locations of 

”vacancies” in the hydrogen layer, which does not experience reconstruction. The 

occasional vacancies in simple hydrogen lattice have identical properties, including 

the energy of the created acceptor states, resulting in a peak-shape of their density. 

The reason to consider the model II is that other types of defects can dominate in 

the formation of localized states with energies spread over a broad region with the 

work function smaller than that of a free-standing undoped graphene. A model 

similar to the model II has already been used to describe the charge transfer in 

epitaxial graphene on SiC without hydrogenation1 [45] with the difference that in 

that case the surface states had a work function larger than that in graphene.

Below, we apply both models to find the hole density in graphene and the re

sponsivity factor describing the effectiveness of QFMLG carrier density control by

a gate voltage in a field-effect transistor. For both models, we find that the quan

tum capacitance of graphene plays an important role in determining the charge 

transfer. The electron transfer from QFMLG to surface acceptor states is described 

by the following equation,

e(n)

n — ng — J  de7 (e); (2-18)
f̂ min

e(n) =  E g -  —  (n -  ng) +  eF(ri), (2.19)
eo

where n  is the density of holes in graphene, ng =  CVg/e (Vg is the gate voltage),

1In epitaxial graphene the buffer carbon layer, experiencing (6\/3 x 6 \/3) R30° reconstruction, 
has large unit cells (216 atoms). Occasional defects in this layer have many possible inequivalent 
positions w ithin the supercell, creating localized states with different energies. This results in a 
broadly distributed density of states, approxim ated by a uniform energy distribution.
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d is the distance between SiC and QFMLG, and Emin =  — oo for the model I and 

E min = E n  for the model II (Ejj is the work function for surface acceptor in SiC). 

Note that the integral in Eq. (2.18) is taken over the electron (rather than hole) 

energy. Each of the models is characterized by one energy parameter: A = E q — E j 

for model I and A = E g — E jj for model II. The susceptibility of the Fermi energy 

6i?(n) =  —hv^/En (relative to the graphene Dirac point), to the carrier density n 

is the reason for a strong effect of the quantum capacitance of graphene on the 

charge transfer [65, 66, 67, 68].

The value of the carrier density for non-gated structures can be obtained by 

solving Eq. (2.18) for ng = 0. In Fig. 2.8(a) we illustrate the hole density depen

dence in graphene on the amount of acceptors on hydrogenated SiC. For the model 

I, it is
4 A 2

m  =  min [nv, nb] ; n b = ---------   .. ~2 - (2 .20)
( J + C  +

At a small nv, all acceptor levels are occupied and rij — nv. As acceptor density 

nv increases, graphene doping saturates at rij ~  1 • 1013 cm-2. The model II also 

shows a saturation of the carrier density, but with a smoother crossover,

4A2
n „  = --------- ;--------  ■ — . (2 .21)

The effectiveness of using QFMLG transistors can be characterized by the 

responsivity factor, r =  dn/dng. The responsivity factors for the models I and II,

ri
2 a /1 +

r u  =  1 -  (2.23)

V 1 '

are compared graphically in Fig. 2.8b.

1 I 4 A  I  _1 i e 2 d
"t" :kH2v2 I 70 £o
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Figure 2.8: a) The dependence of the hole density n in QFMLG on the acceptor 
density (see nv axis for the model I and 70 axis for the model II). The insets show 
charge distribution between graphene and acceptor states for both models, b) 
Responsivity factor r  dependence on nv. The following parameters were used for 
both plots: d — 0.3 nm, Aj  =  0.6 eV, A =  5 meV, A n  =  0.7 eV.
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2.3 Epitaxial bilayer graphene and B L G /S iC  

transistors

In this section we investigate the electronic properties of epitaxial bilayer graphene. 

In subsection 2.3.1 we apply the charge transfer model to a BLG/SiC transistor 

and investigate the responsivity of carrier density to gate voltage. In subsection 

2.3.2 we investigate the pinch-off effect in BLG/SiC and find the conditions needed 

to achieve it. In subsection 2.3.3 we describe the electron transport properties of 

the system using the variable-range hopping model. Finally, in subsection 2.3.4 we 

study the quasi-free standing bilayer graphene (QFBLG) in the pinch-off regime.

The material in this section is based on the work by S. Kopylov, V. I. Fal’ko 

(2011).

2.3 .1  C harge transfer analysis

The charge balance in epitaxial bilayer graphene can be described by the same 

Eqs. (2 .1, 2 .2) as MLG/SiC, with d being the distance between the SiC surface 

and the middle of bilayer graphene (d —> d+c0/2). Here we analyze the two limits:

(a) p —»• 0 , when surface donor states is the dominant source of graphene doping;

(b) 7  —> 0 , when the effect of surface donors can be neglected in favour of bulk 

donors.

Due to the charge redistribution between donors in SiC, graphene layers and 

the gate, BLG is in the presence of a perpendicular electric field even when no 

gate voltage is applied. In the experiments the spectral gap A of BLG usually has 

a value in a range of a few dozen meV, which is much smaller than the bottom of 

the high-energy band in bilayer graphene (A ei). This allows us to neglect the 

gap A and use Eq. (1.12) to write

+  irh2v2n
(2.24)
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where n i =  2el/(7rH2v2) «  3 • 1013 cm 2.

In the limit (a), this gives

n  =
2A(A +  £ i)/(7tH2 v 2 )

1 +  31 +  31 +  
7d 7

\ 21 -L 21 _j_ 21 )
7d 7 /  7d 7

(2.25)

for n < ni and ng =  0. Here, 71 =  ei/ivfftv2 and 71 =  71 +  7a / 2 . For larger 

densities, n > 771,
RA2 1

(2.26)n =
irh2v2 (i+Vr+¥+¥)'

which resembles Eq. (2.3) for MLG, but with 7a —> 27,4.

Similarly to MLG, the density in BLG/SiC saturates upon the increase of the 

surface DoS of donors. The crossover to the saturated density, 77* (H) = A ^ ^ A ) ,  

occurs at

27a

\A+¥)
271

1 +  ^ + S + V ( 1 +  - )  +
2'A 
7 d

^  +  i < 2 y
Id 471

?A  +  i > 2 1 .
471

(2.27)

The dependence of 77(7 ), 7*(H) and 77*(A) on the relative size of the band splitting 

£1, and the graphene-surface donors work function A  is shown in Fig. 2.7 (a-c). The 

responsivity of the BLG to the gate voltage is high or low, depending on whether 

the saturation regime for the carrier density is reached, or not. For 7  <  7*, r ~  1. 

For 7  »  7*,

1 -  

1 -

1 _j_ IlIA  
7 d 

1

^ i  +  i < 2 y
7d 47i

Id 47i

(2.28)

(1 + 7)
In the limit (b), when n is determined by charge transfer from bulk donors in
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SiC,

n  =
n*

p « p . ;  

p >  p*;

27re2(n*/ 

XA

with n* =  n*(A), and the responsivity r ss 1 of BLG requires that p «  p*, whereas 

for p ;»  p* the responsivity is described by the same limits as in Eq. (2.28), with 

7a replaced by j a -

The results obtained in both limits 7  —» 0 and p —> 0 are qualitatively similar. 

A more detailed analysis shows that in most of the applications both sources of 

donors have similar effects on the parameters of the transistor. For the sake of 

simplicity we will perform the future calculations for BLG in the limit (a) p —> 0.

2.3 .2  P in ch -off in B L G /S iC

(a)
n g

n

gate

polymer

SiC

n j o
(b) n 2o o

t-o
\

(C)
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t,

O rO O Ol o o o
h e  c o BLG( lvO o o “o u o o o

buffer 
layer0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

SiC

Figure 2.9: a) Epitaxial bilayer graphene/polymer heterostructure, b) The struc
ture of the buffer layer, c) Bilayer graphene spectrum and charge redistribution 
between graphene and SiC.

The gap in the spectrum of BLG provides a possibility to observe the pinch-off 

effect - the total density of carriers in graphene vanishes when the Fermi level of
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carriers in BLG/SiC lies within the graphene spectral gap. We investigate this 

effect in epitaxial bilayer graphene-polymer heterostructure at small temperatures 

(T  <C A) (Fig. 2.9(a)), aiming to determine the conditions when the pinch-off of 

electronic transport in BLG takes place. In this device the BLG carrier density is 

controlled by a gate voltage Vg — —elngjeo +  ep/e. Here we perform a numerical 

study to find a range of gate voltages required to achieve the pinch-off. We use 

both the full four-band BLG spectrum in Eq. (1.11) and a simplified two-band 

model approximation for the BLG band structure to obtain analytical results.

Eqs. (1.11, 2.18, 1.13, 1.14) provide us with the complete description of the 

system. To solve equations (1.11, 2.18, 1.13, 1.14) for a given gate voltage Vg, we 

represent the densities n, ni, and tt.2 as functions of ep and A. This leaves us with 

two non-linear equations (2.18, 1.13) to find the values of ep and A, which can 

be solved numerically and, then, use them to compute the electron density n  in 

BLG. An example of a numerical solution for the system with the initial density 

n0 ~  3.1 TO12 cm-2 (at =  0) is shown in Fig. 2.10. The shaded area indicates the 

pinch-off region, where the total carrier density in BLG is zero, although separate 

layers are charged due to the redistribution of charge density in the partly polarised 

valence band states between the layers. The pinch-off regime has a finite width on 

the Vg scale due to a finite density of donor states in the SiC surface within the 

gap. The dashed line in Fig. 2.10 shows the result of the two-band approximation, 

for which we are able to get an analytical description presented later in the text.

The boundaries Vg± of the pinch-off region of gate voltages correspond to the 

Fermi energies in G/SiC crossing the band edges, i.e., ep = ±ei|A |/2-y/ef +  A2. 

The pinch-off plateau (H9_, Vg+) is shown in Fig. 2.11(a) as a function of the 

density of donor states 7 . The density dependence of the gate voltage, n(Vg) near 

the edges of pinch-off (Vg ~  Vg±) is linear,

Vg > Vg+, n OdVg — Vg+] Vg < Vg_ , 71 CX Vg ~  Vg_. (2.29)

The pinch-off plateau can be characterized by its middle value Vgo =  (V^+ +  Vg_)/2
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Figure 2.10: Carrier density n as a function of gate voltage Vg for epitaxial graphene 
for two-band and four-band models. The pinch-off area is dashed. The calculation 
was performed for I — 200 nm, d =  0.2 nm, A = I eV.

and by the width SVg =  Vg+ — Vg-,  which are shown in Fig. 2.11(b) as functions 

of the initial density n0. For small initial doping of BLG, n0 -C rriA/h2, we find 

that Vg0 oc n0 and 5Vg oc Uq. The spectral gap A max in the middle of the pinch-off 

plateau is shown in the inset in Fig. 2.11(b) and can reach the value A «  50 meV 

(for no ~  3 • 1012 cm-2).

To provide an analytical description of the pinch-off regime we use the 2-band 

approximation Eqs. (1.17-1.19), which is justified by the relation A <  ex. For 

the practical use of results, we relate the density of donor states 7  to the initial 

carrier density tiq. For that we solve the system of Eqs. (2.18, 1.13, 1.17, 1.19) 

with Vg =  0, neglecting A 2/e2F terms (which is justified a posteriori),

1
(2.30)'■y  —--------------------------------------------------------.

A / tlq — e2d/e0 -  irh2/ m

The boundaries of the pinch-off region (see Fig. 2.11(a)) are given by

Vs± ~  1 /7  -F 1/(27i)

elA/e o (2.31)
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Figure 2.11: a) The pinch-off region of gate voltages (Vg- , V g+) as a function of 
the density of surface donor states 7 . b) The middle of the pinch-off plateau Vg0, 
the width of the plateau 5Vg and the spectrum gap A max as functions of the initial 
carrier density n0 in epitaxial graphene.
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where 1 /7/  — A / n 0 — 7rh2/ m , 7C =  eQer/e 2c0  ̂ correspond to Fermi energies at the 

boundaries of the spectral gap eF =  ± |A |/2 . The spectral gap in the middle of 

the pinch-off plateau (eF = 0) is

AmoI «  -  A?Z. (2 .32)
7/

A comparison with Fig. 2.11(a) shows that the analytically determined dependence 

of the middle value Vgo and of the width 5Vg of the pinch-off plateau on the initial 

carrier density, n0, is almost indistinguishable for the simplified 2-band and the 

full 4-band model, so that one can use the 2-band analytical results for practical 

device modelling.

2 .3 .3  H opp in g co n d u ctiv ity  in B L G /S iC  in th e  p inch-off 

regim e

In the pinch-off regime the conductivity of BLG shows a strong exponential tem

perature dependence, observed experimentally in exfoliated graphene [33, 69, 70]. 

At low temperatures the experimental results are consistent with the variable- 

range hopping (VRH) model, which underlines the importance of electron jumps 

between localized states with close energies. The existence of such localized midgap 

states in exfoliated BLG was studied in [71], though there is no direct experimental 

evidence of their presence. To address this issue, an alternative transport model 

of percolation between electron and hole puddles formed by the screened disorder 

potential was suggested [72], Although the pinch-off regime transport in BLG/SiC

[73] is also affected by the inhomogenity of the electron density, the presence of 

localized surface states in a wide energy range justifies the use of the VRH model. 

Here we analyze the temperature dependence of the conductivity in both the Mott

[74] and Efros-Shklovskii [75, 76] regimes and find the crossover temperature.

In the pinch-off regime the transport properties of BLG can be described by 

the variable-range hopping model. The electron hopping between acceptor sites in
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SiC by means of phonon scattering into localized BLG states is characterized by 

the hopping rate

where Rij is the distance between acceptor sites with indices i and j ,  Eij - the 

energy difference between the corresponding levels, and a  =  ^ /m 2(A2/ 4  — e |,)/h. 

Here we utilise the technique for calculating the hopping conductivity in disor

dered systems developed in [77]. This technique is based on linearised master

where na =  7 A is the density of acceptors, ne - the density of occupied acceptor 

states, and

where (. . .) is a configurational average, p(E) is the density of localized states 

per unit area, and e «  2.71. For each temperature T, the parameter (J\{T) is 

determined from the self-consistency equation

We apply the described formalism to both the Mott and Efros-Shklovskii 

regimes, which differ by the shape of density of states p(E) near the Fermi level. 

At higher temperatures, the Mott regime characterized by a constant density of 

states p(E) = 7  is relevant [74]. At lower temperatures, the Coulomb interaction 

between localized electrons creates a soft gap in the density of states near the Fermi 

level: within the gap p(E) = A 2\E -  eF\(4:7T£0er)2/ e 4 is linear and it saturates at 

the value p{E) = 7 [75, 76]. The factor A 2 = 2/n  has been calculated in [78] and 

is thought to be universal for systems with disorder.

To solve Eq. (2.36), we first perform the integration over the distance A, by

Wij =  exp(—2aRij  -  \El3\/T) (2.33)

equations and provides the value of conductivity in the two-site effective medium 

approximation

a{T)  =  ^ n e( 1 -  ne/ n a)(R2)(Ji(T) (2.34)

R 2 p(E)dRdE
(2.35)

p(E)dRdE
(2.36)
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Figure 2.12: The transport regimes of BLG/SiC in the pinch-off regime at different 
temperatures. T* and T** represent the cross-over temperatures.

substituting y =  2aR,

+oo

m -
yd dy

1 +  A~ley

ind+1(A) 4̂ ^ 1. 
d+1 ’ A ^  ’

d\A, A < 1 .
(2.37)

After this, we find that the dominant contribution to the integral over energy E  

( v q ' > ( 7 1 , x  = E / T )
-Too

h =  J  xdd x f  > (2-38)
o

comes from the region x <E [0, ln(i/0/oi)], where A >  1 in Eq. (2.37), and arrive at

lnd+3(i/0/CTi)
h  = {d +  1 )(d +  2)(d T 3)

(2.39)

Then we take into account that the only factor in Eq. (2.34) which yeilds an 

exponential temperature dependence of a(T)  is a1} and find, with exponential 

accuracy, that

<7m  oc exp , T m  —
6emA
7r/i27

(2.40)

in the VRH Mott regime for T  > T*, and

ct e s  oc exp
TEs \ rn _  v/3ee2v/mA

; EST
(2.41)

in the VRH Efros-Shklovskii regime for T  < T*, where the cross-over temperature
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is given by
1 e6y 2h

(2.42)
327T\/3e e^e^y/mK

At higher temperatures the dominant regime of electron transport is the acti

vation hopping from the middle of the gap to the bottom of the low-energy band. 

The conductivity in this regime,

Similarly to the fabrication method of QFMLG, hydrogen intercalation can be 

applied to MLG/SiC to decouple the buffer layer from Si atoms and produce quasi- 

free standing bilayer graphene (QFBLG). This procedure improves the transport 

properties of graphene and reduces the high intrinsic carrier density. Here we find 

the gate voltages required to achieve the pinch-off regime in QFBLG.

In the case of QFBLG, unsaturated Si-bonds form a narrow peak in the density 

of acceptor states 7 (e) «  na5(e -  ea) at the energy ea, which is below the graphene 

Dirac point. We only consider the regime, where all acceptor states are occupied 

and the charge balance equation reads

The full description of QFBLG of the system is provided by Eqs. (1.11, 2.45, 

1.13, 1.14), where n = —nh (nh is the density of holes in BLG). Solving these 

equations we find the dependence of the electron density n on the gate voltage Vg 

is shown in Fig. 2.13(a). Also, we calculate the gate voltage corresponding to the

(2.43)

is achieved at temperatures above the second cross-over temperature

7T2 fi47 2 A

288e2m 2
(2.44)

2 .3 .4  C harge transfer in Q FBLG

n  +  ng +  na = 0 . (2.45)



middle of the pinch-off plateau Vgo, the width of the plateau 5Vg and the band gap 

Amax, which are shown in Fig. 2.13(b)

Uo *  S V ,«  n J e (2 y  (2.46)
7c +  S ?  1"  ( ^ )

Am„x « ------------------------------------------------------ (2.47)
7c +  In ( ^ f  )

We find that the pinch-off plateau is much narrower than in the case of BLG/SiC 

with a uniform surface density of donor states 7 . The width of the plateau 5Vg 

in the latter case is mainly determined by the change in electrostatic potential 

difference —elng/e 0 due to charge transfer between donor states and the gate in 

the pinch-off regime. These values determine the parametric regime, where the 

pinch-off in QFBLG-based FET is achieved.
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Figure 2.13: a) Carrier density n as a function of gate voltage Vg for QFBLG. b) 
The middle value of the pinch-off plateau Vg0, the width of the plateau SVg and 
the spectrum gap A max as functions of the initial carrier density n^0) in QFBLG.
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Chapter 3

Quantum Hall effect in epitaxial 

graphene

The quantum Hall effect (QHE) is one of the fundamental phenomena in solid 

state physics [79]. It was observed in two-dimensional electron systems in semi

conductor materials and, since recently, in graphene: both in exfoliated [3 , 13, 80] 

and epitaxial [28, 43, 81, 82, 83] devices. It was made possible because of the 

high quality device fabrication techniques and high graphene mobility. However, 

QHE in graphene has revealed unusual properties stemming from the massless and 

chiral nature of quasiparticles. The Berry phase, which is acquired by a quasipar

ticle moving in the magnetic field over the course of a cycle, is zero in conven

tional 2D materials, but equals 7r in single-layer [13] and 27t in bilayer graphene 

[16, 84]. That leads to the unusual sequence of plateaux in the transverse resis

tance R xy. Unlike the ordinary 2D electron gas, where R xy = ±h / (2ne2) (n > 1), 

R Xy = ± h /(4 e2(n +  1/2)), n > 0 in monolayer graphene. The resistance quanti

zation is observed when the occupation of Landau levels, that is characterized by 

the filling factor v, is v =  4 (n+  1/2), which explains the name ”half-integer QHE” 

due to the 1/ 2 shift.

The quantum Hall effect allows the international standard for resistance to be 

defined in terms of the electron charge and Planck’s constant alone. The QHE
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resistance standard is believed to be accurate (no corrections to the fraction of 

R k  = h /e2), universal (material-independent) and robust (same resistance over a 

range of magnetic field, temperature, current). However, only a very small num

ber of 2DEG structures -  Si FET and group III-V heterostructures -  satisfy these 

requirements. New materials are sought after and graphene should in principle be 

an ideal material for an implementation of a quantum resistance standard because 

of a very large spacing of the low-lying Landau levels compared to conventional 

2DEGs [85]. A direct high-accuracy comparison of the conventional QHE in semi

conductors with that observed in graphene constitutes a test of the universality of 

this effect. The affirmative result would strongly support the pending redefinition 

of the SI units based on the Planck constant h and the electron charge e [86] and 

provide an international resistance standard based upon quantum metrology [87].

In this chapter we investigate the QHE in epitaxial graphene and its applica

tions in quantum metrology. In section 3.1 we describe the spectrum of Landau 

levels in monolayer and bilayer graphene. Section 3.2 discusses the perspectives 

of using epitaxial graphene in quantum resistance metrology. In section 3.3 we 

apply the charge transfer theory to investigate the pinning of filling factor in epi

taxial graphene. These theoretical results are confirmed by the experimental tests 

described in the next section 3.4. In section 3.5 we use magneto-oscillations of car

rier density in graphene as a tool for studying the properties of QFMLG. Finally, 

in section 3.6 we investigate the transport properties of MLG/SiC Hall bar with 

bilayer patches.

The material in this section is based on the original publications by S. Kopylov, 

et al. [58, 64].

3.1 Landau levels

As with other 2D systems, the electron spectrum in graphene gets quantized in the 

presence of a perpendicular magnetic field. However, the equidistant distribution 

of Landau levels (LLs) is modified by the Dirac-type nature of electrons. The LL

52



spectrum of monolayer graphene in a perpendicular magnetic field B  can be found

by calculating the eigenvalues of the Hamiltonian

H  = vcr( p + eA) (3 .1)

with A — (—-B;0) in the Landau gauge. Using the eigenfunctions in the form 

ip(r) =  elkx(f)(y) the system resembles the 1-dimensional harmonic oscillator. Thus, 

we find the LLs in graphene [13]

E n  = sgn(N)^/2ehv2\N\B, (3.2)

where N  is an integer LL index. Each LL has a degeneracy g =  4, which takes 

into account spin and valley degeneracy. The capacity of each level is determined 

by its degeneracy and the number of flux quanta penetrating the sample

$  1 eB (* ^
nLL = 9 % s = 9 T ’ (3'3)

where $  =  B S  is the total flux through the graphene sample with the area S  and 

&0 = e/h  is the magnetic flux quantum. At high magnetic fields Zeeman splitting 

comes into effect lifting the LL degeneracy. In this thesis we do not consider this 

effect since it only reveals itself in the close vicinity of LLs (at the magnetic fields 

of interest B < 20 T) and is irrelevant to the discussed problems.

The spectrum of the Landau levels in bilayer graphene was extensively studied 

in [15, 16, 88] and is shown on Fig. 3.1. Each LL of this spectrum is 4-fold 

degenerate. The gap between the 0th and 1st LLs appears due to a perpendicular 

electric field created by the gate and charged donors. It can be calculated self- 

consistently using electrostatics and BLG band structure Eqs. (1.13, 1.17, 1.18,

1.19). For a typical carrier density n0 ~  1 • 1012 cm-2 the gap A has values of a 

few dozen meV, which is smaller than the typical distance between LLs ~  f\wc at
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B  ~  10 T. Thus the LLs of bilayer graphene can be calculated as [16]

E n  — sgn(iV)y/N ( N  — 1 )h2cj  ̂+  Z\2/ 4, o;c =  eB jm. (3-4)

The energies of LLs in BLG will be used in the further analysis to study the effect 

of BLG patches on the QHE in MLG.
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Figure 3.1: Landau level spectrum in bilayer graphene. Adapted from [16].

3.2 Precision resistance m etrology on graphene

Graphene is believed to offer an excellent platform for QHE metrology due to the 

large energy separation between Landau levels (LL) resulting from the Dirac-type 

’’massless” electrons specific for its band structure. The Hall resistance quanti

zation with an accuracy of 3 parts in 109 has been established [28] in Hall-bar 

devices manufactured from epitaxial graphene grown on the Si-terminated face of 

SiC. However, for graphene to be practically employed as a quantum resistance 

standard, it needs to satisfy further stringent requirements [87] in particular with 

respect to robustness over a range of temperatures, magnetic fields and measure

ment currents. A large measurement current, which a device can sustain at a given 

temperature without dissipation, is particularly important for precision metrology 

as it defines the maximum attainable signal-to-noise ratio.

The width of the QHE plateaux in magnetic fields in conventional 2D electron
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systems is, usually, set by disorder and temperature. Disorder pins the Fermi en- 

ergy in the mobility gap of the 2D system, and suppresses dissipative transport 

at low temperatures over a finite range of filling factors around the values corre

sponding to exactly filled LLs. These filling factors can be calculated from the 

carrier density n determined from the low-held Hall resistivity measurements and 

coincide with the maximum non-dissipative current, the breakdown current. Thus, 

the breakdown current in conventional two-dimensional semicondutors peaks very 

close to the held values where the filling factor v is an even integer [87]. Though less 

studied experimentally, the behaviour of the breakdown current on the plateaux 

for the exfoliated graphene, including the v =  2 plateau corresponding to the 

topologically protected N  = 0 LL, looks quite similar [89].

Quantum Hall plateaux have been observed in graphene hakes mechanically 

exfoliated from bulk graphite even at room temperature, albeit with an accuracy 

of 0.2% (at 45 T) [5]. The highest experimentally achieved accuracy in exfoliated 

graphene hakes -  15 parts per million (ppm) at 300 mK [90] -  is still modest by 

metrological standards. The main constraint appears to be the small area of the 

hakes, which limits the maximum non-dissipative current the system can sustain 

in the quantum Hall state. This is related both to high electrical resistance of the 

contacts and high thermal resistance of the graphene-substrate interface.

An alternative ’top-down’ approach to produce graphene consists of growing 

it epitaxially. Epitaxial growth on SiC produces large area few-[91] or monolayer 

[27] graphene, however, initial attempts to observe QHE in such samples were 

unsuccessful. The difficulty was related to the lack of atomically accurate thickness 

control during the him growth on the C-terminated face of SiC, and most probably 

to a strong variation of carrier density across the layers grown on the Si-terminated 

face [92], A breakthrough came in 2009, when several groups within days of each 

other managed to produce epitaxial material of sufficient quality to demonstrate 

the QHE features typical of monolayer graphene [28, 43, 81, 82, 83]. Here we 

review the progress in engineering and precise magnetotransport measurements
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so u rce drain

Figure 3.2: (a) Optical micrograph of a Hall bar used in the experiments, (b) 
Layout of a 7 x 7 mm2 wafer with 20 Hall bars. Adapted from [58].

on epitaxial graphene devices that followed.

The first metrologically precise measurements of the quantum Hall effect in a 

large high-quality epitaxial sample were reported in [28]. Twenty Hall bar devices 

of different sizes, from 160 /im x 35 fim down to 11.6 fim x 2 /im were produced on 

0.5 cm2 wafer using standard electron beam lithography and oxygen plasma etching 

(Fig. 3.2). Atomic force microscopy (AFM) images revealed that the graphene 

layer covers the substrate steps like a carpet, preserving its structural integrity. 

Contacts to graphene were produced by straightforward deposition of 3 nm of Ti 

and 100 nm of Au through a lithographically defined mask followed by lift-off, 

with the typical area of the graphene-metal interface of 104 /mi2 for each contact. 

This process favourably compares with a laborious contact preparation to a two- 

dimensional electron gas in conventional semiconductor technology. Using low 

magnetic field measurements, it was established that the manufactured material 

was n-doped, with the measured electron concentration in the range of (5 — 8) • 

1011 cm2, mobility about 2400 cm2/V-s at room temperature and between 4000 and 

7500 cm2/V-s at 4.2 K, almost independent of device dimensions and orientation 

with respect to the substrate terraces.

Fig. 3.3 shows the longitudinal (dissipative) Rxx and the transverse (Hall) Rxy 

resistance of a 2 gm wide Hall bar at 4.2 K and magnetic fields up to 14 T. 

At high magnetic field there are two QHE plateaux, at RgJ -  R K/ 2 (n = 0) 

and R {xy =  ifo /6  (n =  1) corresponding to the filling factors v =  2 and v =  6
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respectively. In graphene v = 2 corresponds to the fully occupied zero-energy 

Landau level (n =  0) characterised by the largest separation Vy/2heB/c  from 

other Landau levels in the spectrum and hence the Hall resistance quantization is 

particularly robust. This plateau appeared in the field range of 9-12 T, depending 

on the carrier concentration (which was beyond the control in those experiments) 

and was accompanied by a vanishing Rxx. The n = 1 plateau, at v =  6 , was not so 

flat, and R xx developed only a weak minimum. There was also a trace of a structure 

corresponding to v =■ 10. The observed sequence of Hall plateaux confirmed 

that the studied material was indeed monolayer graphene. At low magnetic fields 

Shubnikov-de Haas oscillations were observed as well as a weak localisation peak 

characteristic of the phase coherence of electrons in a disordered conductor.

The magneto-transport measurements on a much bigger, 160 gm x 35 gm Hall 

bar device are also presented in Fig. 3.3. A substantial positive magnetoresistance 

at low fields, which was absent in the smaller sample, indicated that the carrier 

concentration varied along the larger sample. Because of that, the v = 6 feature 

in R xx in the bigger sample was less prominent. Nevertheless, despite the inhomo

geneity of the carrier density, the Hall resistance plateau at R$j  =  R Kf 2 (n =  0) 

was accompanied by vanishing longitudinal resistance R xx. Importantly, the large- 

area device had a low resistance R c «  1.5 Q of contacts to the graphene layer and, 

as compared to smaller devices, could sustain a much higher current before QHE 

breaks down. Contacts made with Pd yielded even lower contact resistance down 

to 0.6 Q. Since larger breakdown current affords higher precision measurements 

in the QHE regime, the measurements were performed in the larger sample. The 

choice of the field, 14 T, where the most accurate measurements were performed 

was determined simply by the limitation of the superconducting magnet. This 

limit is below B = 17.5 T where the filling factor would be exactly v =  2 for this 

sample (with n =  8.5 • 1011 cm-2 calculated from Shubnikov-de Haas oscillations).

The accuracy of the the Hall resistance quantization in graphene was estab

lished in measurements traceable to the GaAs quantum Hall resistance standard

57



a
v=2

1 0 -

v=6 
v=10 —1

of

Magnetic flux density (T)

b

A=11.6 x 2 jim 
B=160 jim x 35 jim

Magnetic flux density (T)

Figure 3.3: Transverse (a) and longitudinal (b) resistance of a small and a large 
device measured at T  — 4.2 K with 1/iA current. Adapted from [58].

using a calibrated 100 D resistor. The optimal conditions at 300 mK were ob

tained for a source-drain current of 11.6 /xA, 15% below the breakdown current 

established in the measurements of R xx. The quantization accuracy + 0 .4± 3  parts 

in 109 inferred from the measurements was a four orders of magnitude improvement 

on the previous best result in exfoliated graphene. Graphene was still accurately 

quantized at 4.2 K, however, at this temperature the measurement current had to 

be reduced to 2.3 /xA, which increased the uncertainty of the data accumulated 

over a comparable time interval.

The result readily put epitaxial graphene quantum Hall devices in the same 

league as their semiconductor counterparts. Note that it was obtained on a sam

ple, although large by graphene standards, substantially smaller than the semicon

ductor devices used for calibration and without any optimisation. The precision 

measurements were made as far inside the resistance plateau as the magnet could 

reach, but still a long way from u — 2.

3.3 Quantum  capacitance and filling factor pin

ning

Unlike the QHE in conventional 2D systems, where the carrier density is inde

pendent of magnetic field and the filling factor is determined by magnetic field,
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here specifically to G/SiC, we find that the carrier density in graphene varies with 

magnetic field due to the charge transfer between surface donor states in SiC and 

graphene. Most importantly, we find magnetic field intervals of several Tesla, 

where the carrier density in graphene increases linearly with the magnetic field, 

resulting in the pinning of v = 2 state with electrons at the the chemical potential 

occupying SiC surface donor states half-way between the TV =  0 and TV =  1 LLs in 

graphene. Interestingly, at magnetic fields above the v =  2 filling factor pinning 

interval, the carrier density saturates at a value up to 30% higher than the zero- 

field carrier density. The pinned filling factor manifests itself in a continuously 

increasing breakdown current towards the upper magnetic field end of the v — 2 

state far beyond the nominal value of B v=2 calculated from the low-field carrier 

density. Facilitated by the high breakdown current in excess of 500 fj,A at 14 T a 

precision of 3 parts in 1010 have been achieved in the Hall resistance quantization 

measurements .

The anomalous pinning of v — 4TV +  2 filling factors in G/SiC is determined 

by the dominance of the quantum capacitance [93] over the classical capacitance 

per unit area (cq >  cc, where cq =  e2j e: cc =  e0/d  and ye is the density of 

states of electrons at the Fermi level) in the charge transfer between graphene and 

surface donor states of G/SiC, that reside in the buffer layer of carbon atoms, just 

underneath graphene.

The quantum capacitance of a two-dimensional electron system is the result 

of a low compressibility of the electron liquid determined by the steps in ye. For 

electrons in high-mobility GaAs/AlGaAS heterostructures, it manifests itself in 

weak magneto-oscillations of the electron density [94, 95] which reflects the sup

pressed density of states inside the inter-Landau level gaps for the electrons in 

a magnetic field. A similarly weak effect has been observed in graphene exfoli

ated onto n-Si/Si02 substrate [96], where the influence of a larger (than in usual 

semiconductors) inter-LL gaps is hindered by a strong charging effect determined 

by a relatively large thickness of the S i02 layer. For epitaxial graphene on SiC,

59



B=0 B>0

so
~©

a

8
7
6
5
4
3
2

8 A= 0.40 cV
<1 = 0.3 nm 

y = 5.04x101* eV 'cm ’
7
6
5
4
3
2

10 1550

B (T)

Figure 3.4: (a) Schematic band-structure for graphene on SiC in zero field; (b) The 
filling of LLs at different magnetic fields. Graphical solution for carrier density as 
a function of magnetic field, n(B),  of the charge-transfer model given by Eq. 3.5 
(black line) together with lines of constant filling factor (red lines) and n(B  =  o o )-  
7 E(B,  N)  (green lines) for (c) ng = 5.36 • 1011 cm-2 and (d) ng =  8.11 ■ 1011 cm"2.
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due to the short distance, d «  0.3 — 0.4 nm, between the buffer layer hosting the 

donors and graphene, the effect of quantum capacitance is much stronger, and 

the oscillations of the electron density take the form of the robust pinning of the 

electron filling factor. A similar behaviour was observed in STM spectroscopy of 

turbostratic graphite, where charge is transferred between the top graphene layer 

and the underlying bulk layers [97]. The charge transfer in G/SiC is illustrated in 

the sketches in Fig. 3.4(a,b), for B — 0 (a) and for quantizing magnetic fields (b). 

The transfer can be described using the charge balance equation (2.11)

Graphical solutions for the charge transfer problem for two values of ng are 

shown in Fig. 3.4(c, d) for a broad range of magnetic fields. For graphene (interval 

III visible only in the case of the higher ng) the Fermi energy coincides with 

the partially filled zero-energy LL, =  0, which determines the carrier density 

n °° ~  i/7+e2d/eo ~  n2’ anc* can up to hi&her than the zero-field density 

n(0) in the same device [45]. This regime of fixed electron density is terminated 

at the low field end, at B IU =  Tr/m^/e, where the N  =  0 LL is completely 

occupied by electrons with the density n Note that for the ng presented here, 

B m  > 14 T - the maximum field in the setup. Similarly, for the magnetic field 

interval I, the Fermi level eF =  hvy/2/XB coincides with the partially filled N  = 1

limited by the field values for which the N  =  1 LL in the electron gas with the 

density n1 is emptied at the higher field end,

(3.5)

LL (Ab =  s /h feB),  and, for this interval, n '  = n„  -  The interval I is

2

' 7r
^oo 4~ 772 ( l /q  +  e2d/e0)2

v2h2
2 1 /7  +  e2d/e0

(3.6)
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and is full at the lower end,

B n  =  —

’ 6e
I v2h2 fir vhrioo +

6 ( I /7  +  e2d/e0)2 ]j 6 l / j  + e2d/e0 (3.7)

In the magnetic field interval II the chemical potential in the system lies inside 

the gap between N  = 0 and N  = 1 LL in graphene. As a result, over this entire 

interval the TV =  0 LL in graphene is full and N  =  1 empty, so that the filling 

factor in graphene is fixed at the value v =  2 , and the carrier density increases 

linearly with the magnetic field, n =  2eB/h,  due to the charge transfer from the 

SiC surface.

According to Eq. (3.5), lowering the carrier density using an electrostatic gate 

is equivalent to effectively reducing the work function difference between graphene 

and donor states by n5( l / 7  +  e2d /s0), which shifts the range of the magnetic fields 

where the pinning of the v = 2 state takes place. For instance, reducing the zero- 

field carrier density from n = 6.7 ■ 1011 cm-2 (Fig. 3.4(c)) to n = 4.6 • 1011 cm-2 

(Fig. 3.4(d)) moves the interval II from 11.5 T< B j j  < 21.6 T down to 7.7 T <  

Bji  < 15.9 T almost entirely within the experimental range.

3.4 Experim ental study of filling factor pinning

In order to verify the predictions of the theory regarding the pinning of the u =  2 

filling factor and to investigate the effect of the breakdown current on the precision 

of resistance measurements, the QHE was studied in a polymer-gated epitaxial 

graphene sample with Hall bar geometry of width W  = 35 ^m and length L = 

160 jj,m. Graphene was grown at 2000 °C and 1 atm Ar gas pressure on the Si- 

terminated face of a semi-insulating 4H-SiC(0001) substrate. The as-grown sample 

had the low-field carrier density n = 1.1 • 1012 c m '2. Graphene was encapsulated 

in a polymer bilayer, a spacer polymer followed by an active polymer able to 

generate acceptor levels under UV light. At room temperature electrons diffuse 

from graphene through the spacer polymer layer and fill the acceptor levels in
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the top polymer layer. Such a photo-chemical gate allowed non-volatile control 

over the charge carrier density in graphene. More fabrication details can be found 

elsewhere [28, 46],

Fig. 3.5(a) shows magneto-transport measurements on the encapsulated sample 

tuned to a zero-field carrier density of n — 6.7 • 1011 cm-2 - corresponding to the 

case in Fig. 3.4(c). From the carrier density we estimate that the magnetic field 

B u=2 needed for reaching the exact filling factor v =  2 in this device is ~  13.8 T. 

A well-quantized Hall plateau in pxy can be seen at v =  ±2  for both magnetic 

field directions which is more than 5 T wide, whereas the longitudinal resistivity, 

pxx, drops to zero signifying a non-dissipative state. In addition, a less precisely 

quantized plateau is present at v = ± 6, for which pxx remains finite.

Accurate quantum Hall resistance measurements require that the longitudinal 

voltage remains zero (in practice, below the noise level of the nanovolt meter) to 

ensure the device is in the non-dissipative state, which can be violated by the 

breakdown of the QHE at high current. Fig. 3.5(b) shows the determination of 

the breakdown current Ic at B = 14 T on the v = 2 plateau. Here we define Ic 

as the source-drain current, Isd, at which Vxx > 10 nV. We find for three different 

combinations of source-drain current contacts that the breakdown current for this 

value of n is approximately 50 pA. The contact resistance, determined via a three- 

terminal measurement in the non-dissipative state, is smaller than 1.5 Q.

Fig. 3.5(c) shows a precision measurement of pxy and pxx for different magnetic 

fields along the v =  2 plateau. Note that this plateau appears much shorter in 

the magnetic field range than that shown in Fig. 3.4(a) because of the ~200 times 

larger measurement current used in precision measurements. From this figure we 

determine that the mean of Apxy/pxy is -0.06 ±  0.3 • 10~9 for the data between

11.75 and 14.0 T, while at the same time pxx < 1 mfi. This result represents 

an order of magnitude improvement of QHE precision measurements in graphene, 

as compared to the earlier record [28]. Not only is QHE accurate, but it is also 

extremely robust in this epitaxial graphene device easily meeting the stringent
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Figure 3.5: (a) Transverse (pxy) and longitudinal (pxx) resistivity measurement. 
The horizontal lines indicate the exact quantum Hall resistivity values for filling 
factors v — ±2 and ± 6 . (b) Determination of the breakdown current, Ic, for
3 different measurement configurations explained in legend, (c) High-precision 
measurement of pxy and pxx as a function of magnetic field. Apxyjpxy is defined as 
(pxy( B ) - p xy{UT)) /pxy(UT)  and pxy(B) is measured relative to a 100 ft standard 
resistor previously calibrated against a GaAs quantum Hall sample [28], All error 
bars are lcr.
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criteria for accurate quantum Hall resistance measurements normally applied to 

semiconductor systems.

Using the polymer gating method [46], the zero-field electron density in 

graphene was further reduced to correspond to the solution of the charge transfer 

problem in Fig. 3.4(d), i.e., down to 4.6-1011 cm-2 as evident by magnetotransport 

measurements in Fig. 3.6(a). The breakdown current Ic was measured as a func

tion of the magnetic field on the v =  2 quantum Hall resistance plateau. Unlike 

the conventional QHE materials [87], the breakdown current in Fig. 3.6(a) contin

uously increases from zero to almost 500 fiA far beyond B u=2 ~  9.5 T calculated 

from the zero-field carrier density. This is a direct consequence of the exchange 

of carriers between graphene and the donors in the buffer layer, which keeps the 

N  =  0 LL completely filled well past B v=2-

600

10 - -400GM

O. -200 m■s.X
Cl

12 -

-10

®
-15

0.100.05*
H

B (T)

Figure 3.6: (a) Experimental pxx (black line) and pxy (red line) together with the 
measured break-down current, Ic (blue squares), (b) Hopping temperature, T* as 
a function of magnetic field. Inset: In(<rxxT)  versus T ~1//2 at 13 T. Red line is 
linear fit for 100 > T  > 5 K giving T* ~  12000 K.

The magnetic field range where the Fermi energy in G/SiC lies half-way be

tween the iV =  0 and 1 LLs determines the activation energy hy / l /2 v /X B ~  1000 K
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(at B  ~  30 T) for the dissipative transport. For such a high activation energy, 

the low-temperature dissipative transport is most likely to proceed through the 

variable range hopping (VRH) between surface donors in SiC involving virtual oc

cupancy of the LL states in graphene to which they are weakly coupled. Indeed, as 

shown in the inset of Fig. 3.6(b) the temperature dependence of the conductivity 

axx measured at B  = 13 T obeys an exp(—^/T*/T)  dependence typical of the 

VRH mechanism. The T* values determined from the measurements at different 

magnetic fields are plotted in the main panel of Fig. 3.6(b). The breakdown cur

rent rising with field to very large values in Fig. 3.6(a) corresponds to T* reaching 

extremely large values up in excess of 104 K - at least an order of magnitude larger 

than that observed in GaAs [98] and more recently in exfoliated graphene [89, 99].

Thus, we have studied the robust Hall resistance quantization in a large epi

taxial graphene sample grown on SiC. The observed pinning of the v — 2 state is 

consistent with our picture of magnetic field dependent charge transfer between the 

SiC surface and graphene layer. Together with the large break-down current this 

makes graphene on SiC the ideal system for high-precision resistance metrology.

3.5 M agneto-oscillations of carrier density in 

quasi-free standing graphene

In section 2.2.4 we have considered two limiting phenomenological models of 

the charge transfer between graphene and SiC surface in H-intercalated epitax

ial graphene (QFMLG). The model I describes the case when all acceptor states 

are created by unsaturated Si bonds with energies from a narrow window. The 

opposite limit of a wide acceptor energy distribution is covered by the model II. 

Here we analyse the carrier density dependence on a magnetic field in QFMLG, 

which as we show provides a way to distinguish experimentally between the two 

limiting doping models. We find that for the structures with a low acceptor den- 

sity (nv < 1012 cm-2, 7o < 1013 cm_2-eV_1) the magneto-oscillations of the hole
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density in the model II result in a wide v — 2 quantum Hall effect (QHE) plateau, 

in contrast to the model I which shows no such oscillations1 (Fig. 3.7). For the 

model I the carrier density n does not depend on magnetic field (solid line), since 

all acceptor states are occupied (Fig. 3.7, inset D). On the contrary, the model 

II reveals magneto-oscillations (dashed line), occuring due to the charge transfer 

between graphene and acceptors as the Fermi level crosses the Landau levels (LL) 

(Fig. 3.7, insets A-C). The crucial feature of this dependence is the pinning of the 

v = 2 filling factor taking place over a magnetic field interval of several Tesla. 

The widening of the v ~  2 QHE plateau has recently been observed in epitaxial 

graphene without any hydrogenation, where the charge transfer model similar to 

the model II was applied [64].

To evaluate the n(B)  dependence, such as shown in Fig. 3.7, we take into 

account the discreteness of the spectrum of Landau levels for relativistic charge 

carriers in graphene [100],

For a discrete electron spectrum in graphene, one can expect two thermodynamic 

regimes for the whole system including surface states:

a) The Fermi level is pinned to one of the Landau levels. In this case we solve 

Eq. (2.18) with eF =  EN to find the n(B)  dependence.

b) The Fermi level in the system lies in the acceptor band, between Landau 

levels. In this regime the carrier density is determined by the pinning of filling 

factor v = nh/(eB) = 41V +  2, and Eq. (2.18) can be used to find the Fermi energy. 

These regimes are illustrated in the insets A-C in Fig. 3.7. At low magnetic fields 

B  < Bi  (region A), where

lpo r high acceptor densities (nv 1012 cm "2, 7o >  1013 cm -2-eV Q, the expected pinning 
of the filling factor v  =  2 can only be observed at difficultly accessible magnetic fields B >  20 T.

E n = —y/2ehv2BN. (3.8)

2A2 (3.9)B <  Bi =

n l i 2v 2

2 ’
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the Fermi level is pinned to the 1st LL E \. At higher magnetic fields (region B),

h A
Bi < B < B 2 =  -  ' , (3.10)

2e ( i  + w )

the 1st LL becomes completely occupied and the Fermi level sticks to acceptor 

levels between the 0th and 1st LLs, providing the pinning of the filling factor 

v =  2 . We also identify an extreme region C, corresponding to high magnetic 

fields B  > B 2 , where the carrier density remains constant, since the 0th LL is 

partially occupied and the Fermi level in graphene is pinned to the Dirac point 

energy.
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Figure 3.7: The magneto-oscillations of the hole density n in QFMLG in the 
regimes of small acceptor density for both models. The energy structure in dif
ferent regimes is shown in the insets A-C (model II) and inset D (model I). The 
parameters used here were chosen for illustration purposes only.

The magnetic field dependence of the carrier density in graphene in both models 

is very different, especially in structures with a low initial p-doping, n < 1012 cm’ 2. 

As shown in Fig. 3.7, the model II features a wide v 2 QHE plateau, spread over
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several Tesla of magnetic field, while the model I produces no n(B)  dependence. 

One of the ways to detect the pinning of filling factor n =  2 is to measure the 

activation energy T* and/or breakdown current of QHE [64]. The width of the 

peak in the dependence of T* and of the breakdown current on the magnetic field 

in the vicinity of v =  2 QHE plateau determines the region of filling factor pinning. 

Alternatively, one can determine the filling factor by looking at the Landau level 

occupancy using scanning tunneling spectroscopy as was done in a top graphene 

flake of a multilayer stack [97].

3.6 Quantum  Hall transport in MLG w ith BLG  

patches

The recent improvements in sample quality [101] and the development of pho

tochemical gating [46, 58] have lead to SiC epitaxial graphene devices that give 

quantization accuracy of up to a few parts in a billion at 300mK [28], comparable 

to that found in GaAs resistance standards. However, this good quantization ac

curacy is not achieved in all SiC epitaxial graphene devices fabricated under the 

same conditions, and this has been attributed either to charge scattering at the 

step edges of the SiC substrate or the presence of bilayer patches in the device. 

Previous studies have shown an anisotropy in transport for devices oriented along 

and perpendicular to the step edges [102, 103]. These studies only compare the 

global conductance of the devices and are not set up to look at the effect of bilayer 

inclusions in the device. Here we present a local study of SiC epitaxial graphene 

devices in the quantum Hall regime. A combination of Scanning Gate Microscopy 

(SGM), Kelvin Probe Microscopy (KPM) and global magnetoresistance measure

ments was used to link the effect of morphology, in particular, the presence of 

bilayer inclusions, on transport in the quantum Hall regime. Moreover, we focus 

on the behaviour of the bilayer inclusions under two different doping conditions.

This section is based on the work C. J. Chua, M. R. Connolly, A. Lartsev, R.
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Pearce, S. Kopylov, R. Yakimova, V. I. Falko, S. Kubatkin, T. J. B. M. Janssen, 

A. Ya. Tzalenchuk, C. G. Smith, ’Effect of local morphology on charge scattering 

in the quantum Hall regime on silicon carbide epitaxial graphene” (in preparation 

for publication).

n = 5 x 1010 cm' 
g = 6000 cm/Vs 
T = 4 K

-8 -4 0 4 8
Magnetic field (T)

Figure 3.8: Magnetoresistance plot of the device shown in the atomic force mi
croscopy image in the upper left inset with a gated carrier concentration of 
m  = 5 • 1010 cm-2. The measurement set-up used is shown in the lower left 
inset. Upper right inset: Kelvin Probe Microscopy image of the device, show
ing regions of monolayer (light gray) and bilayer (dark gray) graphene. Regions 
scanned using SGM are also outlined and colour-coded with dark purple for the 
left side region, and light purple for the middle region.

Fig. 3.8 shows the magnetoresistance plot of the epitaxial graphene based de

vice, shown in the top insets, with a low gated carrier concentration of rq =  

5 • 1010 cm-2 measured from the longitudinal contacts 8-6 and the transverse con

tacts 15-8 (see left inset atomic force microscope image). The magnetoresistance 

plot peaks around zero, indicating the presence of disorder in the system. The 

asymmetry of the transverse voltage with respect to magnetic field could be due
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Figure 3.9: Top series: scanning gate images measured from contacts 15-8 while 
scanning the left region of the device. Middle: Plot of normalized standard de
viation (cr) of the amplitude of fluctuation of all the pixels per image for the left 
region SGM images (dark purple plot) and the middle region SGM images (light 
purple plot). Bottom series: scanning gate images measured from contacts 15-8 
while scanning the middle region of device.

to the proximity of some bilayers to the probing contacts. The v = 2 plateau is 

reached at approximately 1 Tesla, which suggests a low gated carrier concentra

tion that can be extracted from the Hall voltage slope at low fields, and was found 

to be approximately 5 • 1010 cm-2. The corresponding zero field mobility is then 

found to be 6000 cm2/V-s. It is observed that even deep in the u = 2 plateau, the 

longitudinal resistance does not drop to zero, which is indicative of backscattering 

of the edge states due to non-uniformity in the morphology of the device. The 

right inset shows the corresponding Kelvin Probe Microscopy image of the device, 

where light regions correspond to monolayer graphene and dark regions correspond 

to bilayer graphene. (Kelvin probe microscopy is a noncontact scanning method
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Figure 3.10: Top: Comparison of middle region of device SGM, AFM and KPM 
images, showing that regions of maximum response in the scanning gate images cor
respond to regions in the monolayer closely flanked by bilaver graphene. Bottom: 
Longitudinal resistance measured from contacts 6-8 as a function of tip voltage 
when sat above the monolayer constriction (see the narrow channel between the 
dark bilayer patches in the top right inset).

which allows to build a map of surface work function by measuring the oscillations 

of the tip.) Scanning gate images were taken from two main regions: the left hand 

side region, where there is mostly monolayer graphene, and the middle region of 

the device where bilayer graphene is predominant. (Scanning gate microscopy is a 

technique for measuring the effect of tip position and potential on the resistance 

of the sample.)

The top series of Scanning gate microscope images (see Fig. 3.9) were taken at 

varying magnetic fields and measured from contacts 15-8 while scanning the left- 

hand side region of t he device with an AC tip voltage of 2 V. It is observed that 

the highest scanning gate response occurs at around —0.8 T, on the rise before the
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v — 2 plateau, which is consistent with a non-interacting, single-particle picture 

of the quantum Hall effect, and is expected for the high source-drain bias used 

for these images. On the other hand, for scans performed at the middle region 

of the device with multiple bilayer inclusions (outlined in light purple) the ampli

tude of fluctuations was found to increase with magnetic field until a plateau was 

reached, then the amplitude was nearly independent of magnetic field throughout 

the plateau. Further investigation shows that the fluctuations originate from re

gions in the monolayer graphene that are closely flanked by bilayer graphene (see 

black outlines in the top of Fig. 3.10). The interaction between bilayer graphene 

and monolayer graphene then determines the behaviour of edge states in the quan

tum  Hall regime. In order to understand this interaction, it is useful to identify 

whether the bilayer inclusions are metallic or insulating when the rest of the device 

is in the quantum Hall regime.

For the device with the low gated carrier concentration (see Fig. 3.8) the bilayer 

inclusions are in the insulating state, because sweeping the tip voltage above the 

narrow constriction formed by the bilayer inclusions leads to significant gating 

of the carrier concentration in the constriction. Fig. 3.10 showTs the longitudinal 

resistance measured from contacts 6-8 as a function of tip voltage as the tip is sat 

above the monolayer constriction outlined and indicated by an arrow in Fig. 3.10 

top. We find tha t as the tip bias is swept from positive bias to negative bias, 

we are able to tune the longitudinal resistance from nearly zero to almost exactly 

h /e2. This suggests that at high positive bias, we are able to tune the carrier 

concentration of the spot n\ to nearly equal to rq, so that scattering of edge states 

is suppressed when both areas are on the u =  2 plateau. On the other hand, a 

resistance value of h /e2 indicates that we are measuring the longitudinal resistance 

along a series of n-p-n Hall bars. This suggests that at high negative tip bias, we 

are able to gate the monolayer constriction to p-type with a carrier concentration 

such that it reaches the v — — 2 plateau at —1.5 T. The fact that we are able to 

gate the monolayer graphene suggests that this region must consist of a narrow
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constriction of graphene flanked by insulting bilayer inclusions. By varying the tip 

bias, we are able to change the carrier concentration in the narrow constriction 

such tha t for a given magnetic field, the area under the spot can be brought in 

and out of the quantum Hall regime, and thus tuning the transmission of edge 

states/current through the narrow monolayer graphene constriction.

For the case where the gated carrier concentration is high, such as that found 

for the device shown in Fig. 3.11(a), which oriented perpendicular to the step edges, 

with a bilayer patch running directly across the device, the magnetoresistance plot 

in Fig. 3.11(b) shows a quantized Hall resistance (red plot) and a corresponding 

zero longitudinal resistance (green plot) for the same device measured between 

monolayer graphene. However, when measured across the bilayer patch, the quan

tum  Hall effect is not observed due to shunting of the edge channels by the metallic 

bilayer patch. Instead of observing zeroes in the longitudinal resistance for high 

fields (blue plot), a value close to the quantized Hall resistance is measured.

Here we perform the electrostatic modelling of the behaviour of bilayer inclu

sions on SiC epitaxial graphene samples using the charge transfer model Eq. (2.11) 

and found a good agreement with the experimental data for different gated carrier 

concentrations. Given the ungated monolayer carrier concentration no we can de

termine the density of surface donor states 7 and thus the carrier concentration n 

in graphene. The filling factor pinning for both monolayer and bilayer graphene, 

shown in Fig. 3.12, happens in the following ranges of Fermi energy:

Ei < ^ LG{y =  2) <  £ 2, (3.11)

- A /2  < eBFLG{v =  0) < A /2, (3.12)

A /2  < eBFLG{y =  4) < V2fujc, (3.13)

where A is the gap in the bilayer spectrum, determined self-consistently [15]. It is

evident that filling factor pinning for monolayer graphene and bilayer graphene at

a given gated carrier concentration do not overlap at any magnetic field at high
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gated carrier concentration. However, at low carrier concentrations, calculations 

show that a gap opens for bilayer graphene with the gap size dependent on Uq. 

For the low gated carrier concentration (rt\ = 5 • 1010 cm-2) found in the device 

in Fig. 3.8, an initial carrier concentration of nQ — 3 • 1012 cm-2 implies that the 

bilayer inclusions are within the insulating, gapped regime, while the monolayer 

graphene is in the quantum Hall regime. In contrast, for samples with a higher 

gated concentration ni,  such as that shown in Fig. 3.11, for magnetic fields where 

monolayer graphene is in the quantum Hall regime, the bilayer inclusions are in 

the metallic regime.

To further investigate the effect of the magnetic field on the scanning gate 

response, we examine the model in Fig. 3.12 for varying tip gated carrier con

centration rii with respect to the gated carrier concentration of the whole device 

n\. For a fixed magnetic field B* (see Fig. 3.13), we find tha t as the local carrier 

concentration (n 'J of the monolayer constriction underneath the tip is gradually 

increased towards ni  for positive tip bias, eventually n\ = n\,  such that the whole 

device is on the v = 2 plateau and backscattering is suppressed. The observed 

increase in scanning gate response with increasing magnetic field (see Fig. 3.9) can 

also be explained in terms of this phase diagram. If we now consider a situation 

where n[ < ri\ as shown in Fig. 3.13, for a fixed magnetic field B*. the area under 

the tip is just outside the u =  2 plateau while the rest of the device is in the 

quantum Hall regime, such tha t in this scenario, we expect to see some scanning 

gate response at the constriction. As we increase the magnetic field to B'* while 

keeping constant, we then expect the scanning gate response at the constriction 

to also gradually increase because the area under the tip is being brought farther 

away from the v  =  2 filling factor, while for this magnetic field range (B'* to B*), 

the rest of the device remains on the v =  2 plateau.

In the following we analyse the transport properties of the device shown in top 

right inset of Fig. 3.8 between different contacts in quantum Hall regime, assuming 

the bilayer patches are in the insulating regime. In that case a narrow channel
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of MLG in the center of the device determines the longitudinal resistance of the 

device. By varying the voltage of the tip placed above the pinch point we create 

a junction of graphene areas with different carrier densities and filling factors.

First we consider a n-p-n junction with filling factors v and —v' (Fig. 3.14). The 

edge currents within each area are characterized by a number of current channels 

v f v ' . These currents mix up at p-n junctions and equilibrate, changing chemical 

potentials of current channels and contact potentials. The continuity of the electric 

current dictates

2 / 2 2 VP V P  VP
-£-(V i -  V3) =  -  V2) = - ^ - (V 2 -  Vt), (3.14)

and can be used to establish a relation between transverse, source-drain and lon

gitudinal voltages:

Vtr = V3 - V 1 = V4 - V 2i (3.15)

v  +  2v'vsd =  v4 -  Vi = -----— 14,
z/

v  + i/
Vi = V2 - V 1 = V4 - V 3 = — — vtr.

(3.16)

(3.17)

Using the transverse resistance R tr — R \3 =  h/(ue2) we finally get the longitudinal 

and net resistance of n-p-n:

p(npn) _  p  _  ti, — /I ,34 —
v  +  i /  h 

vv'  e2
o(npn) _  p  _  
K sd  ~  ^ 1 4  ~

v  +  2z/ h 
vv' e2

(3.18)

A similar calculation for n-n-n juction gives

(nnn) _ \v — v'\ h 
vv' e2 ’

R {nnn) =  =  ^
f 2  ) <  V.u'eJ ’

(3.19)

These results for n-p(n)-n junction are consistent with the previous work [104] 

and can be a good approximation for the contact resistances of the whole device. 

Applying this analysis to the data in Fig. 3.10 we can conclude that the device
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operates in the n-p-n regime with v  =  — v' =  2 and i?6_8 — R 34 = h /e 2 at tip 

voltages < —2 V, and in the n-n-n regime with v — v' — 2 and i ?6_8 =  0 at tip 

voltages > 3 V.

In conclusion, we have demonstrated the im portant role tha t bilayer inclusions 

play on electron transport in a magnetic field. The effect of bilayer inclusions 

depend on their position within the device, as well as the initial and gated car

rier concentration of the graphene sample. For high gated carrier concentration 

in graphene, bilayer inclusions running across the device, perpendicular to the 

direction of transport, are in the metallic regime and shunt the quantum Hall 

edge states. In contrast, for low gated carrier concentrations the bilayer inclusions 

behave as insulating regions that, when positioned accordingly, create a gateable 

narrow channel where electron transmission can be tuned while under an applied 

magnetic field. This behaviour is in agreement with the electrostatic modelling 

based on a charge transfer model between mono/bilayer graphene and the SiC 

substrate. In this way, we are able to gate the narrow region all the way from 

p-type to n-type such tha t on the the one hand an n-p-n junction is formed in 

the device and the resistance reads nearly h /e2, and on the other hand the perfect 

transmission of edge states in the quantum Hall regime is nearly recovered. We 

conclude tha t it is best to minimize bilayer inclusion density in devices meant for 

quantum Hall resistance standards. On the other hand, the presence of bilayer in

clusions in SiC epitaxial graphene samples make it an interesting system to study 

in terms of electron quantum optics.
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(a)

Figure 3.11: a) Optical micrograph of a SiC epitaxial graphene device with gated 
carrier concentration of n\ = 1011cm-2. b) The corresponding transverse resis
tance (red) and longitudinal resistance (green) plots measured from contacts 4-6 
and 6-7, respectively. The blue plot, measured from contacts 8-7, shows shunting 
of the Hall resistance in the measured longitudinal resistance.
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Figure 3.12: Results obtained from the electrostatic model of the charge transfer 
from the SiC substrate to monolayer and bilayer graphene for a sample with initial 
ungated monolayer carrier concentration of n0 = 3 • 1012 cm-2 . Regions of filling 
factor pinning in magnetic field for both monolayer graphene (v = 2 , between red 
lines) and bilayer graphene [v =  4, between blue lines and v =  0. between green 
lines) have been plotted as a function of the gated concentration n\.
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p,=5 -lO^cm'2 n', n = 5-1010cm'2

Bilayer, v=0

~o

LL Monolayer, v=2

B'*

O) B*

Bilayer, v —

Figure 3.13: Zoom in of the low gated carrier density region of plot shown in 
Fig. 3.12, where n\ and ni are the gated carrier concentrations at and outside the 
monolayer constriction, respectively.

Vi V2 V2

— v

v3 f 3 V4
Figure 3.14: The edge currents in graphene p-n-p junction.
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Chapter 4

Ordering of adatom s on graphene

The transport properties of graphene depend on the quality of the material itself 

and of the amount of disorder in the surrounding environment, created by lattice 

defects, impurities in the substrate, adatoms from the atmosphere, etc. These 

electron scatterers introduce symmetry-breaking perturbations into the lattice and 

modify the electronic structure of graphene. These perturbations interfere with 

each other creating an interaction between adatoms which can order them in a 

particular pattern. In this chapter we investigate the effect of ordered adatoms 

on the electronic structure and transport properties of mechanically exfoliated 

graphene on SiC>2 substrate.

In section 4.1 we overview the different types of disorder and present the 

framework for describing the interaction between electrons in graphene and alkali 

adatoms. In section 4.2 we discuss the electron transport in disordered graphene. 

Section 4.3 describes the ordering of adatoms due to RKKY interaction. In section 

4.4 we calculate the resistivity of graphene in the presence of ordered adatoms. Fi

nally, in section 4.5 we obtain analytical results for the resistivity in a very close 

vicinity of the phase transition temperature.

The results presented here are based on the publication of S. Kopylov, et al.

[105],
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4.1 D isordered graphene and sym m etry  break

ing by adatom s

Even though the strong sigma-bonds between carbon atoms in graphene sustain 

a high quality of the honeycomb lattice, the electronic properties of graphene are 

affected by intrinsic and extrinsic disorder. Intrinsic disorder comes from surface 

ripples [106] and topological defects [107]. Extrinsic disorder stems from different 

sources: adatoms [108], substrate impurities [109], vacancies [110], edges [111]. 

These types of disorder can be categorized into two groups: long-range and short- 

range disorder. Surface ripples and charged substrate impurities are examples of a 

long-range disorder, which usually create an electron potential perturbation with 

a power law dependence V  oc r~a and is insensitive to the location of the impurity 

within the unit cell. In contrast, the effect of short-range disorder is localized to a 

few carbon atoms around the impurity and is sensitive to its location within the 

unit cell. Here we only consider the short-range disorder created by adatoms on 

the surface of graphene.

Controlling the atmosphere around the graphene sample allows different types 

of adsorbent atoms to reside on graphene. The interaction between electrons 

in graphene and adatoms depends on the location of the latter within the unit 

cell. Alkali atoms reside over the centers of hexagons [112]. Oxygen, nitrogen and 

boron (e-type) adatoms are positioned in the middle of carbon-carbon bonds [113]. 

Halogens and atomic hydrogen (s-type) are attached on top of carbon atoms [114]. 

The electron potential created by these adatoms has a non-trivial structure in the 

valley (KK ' )  and sublattice (AB)  spaces:

(4.1)

where a is the length of a C-C bond, r* are the coordinates of adatoms and Wi are 

4 x 4  matrices in the ['0 /yu, iPk ,b , i/>k ' ,a \ basis.
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For example, for e-type adatoms residing over the middle of C-C bonds, the 

matrix Wi has the following structure [108]:

Wi = AAi +  A ^ S Z(A • u i) +  A£2Az(S  • v/) +  Ag(A x  u / ) ( £  x  v^), (4-2)

where Ui =  (cos(27rra//3),sin(27rm^/3)) and v/ =  (cos(27rn//3), sin(27rn//3)) are 

unit vectors (mi,ni =  —1, 0 , 1). Aa1} AE*, A#2, Aq are the amplitudes of the 

potential contributions with different symmetries. Here we use the set of 4 x 4 

’’sublattice” and ’’valley” matrices £ Xj2/,z and AX)J/j2 [115, 116, 118]

£ x =  n 2 0  ax, £y =  n 2 0 (jy, £ 2 =  n 0 <8>(72, (4.3)

a x n x ^  (jzi -Ay — ® ®zi a 2 — n 2

where Oi and are Pauli matrices in the sublattice (AB) and valley ( K K r) spaces. 

All operators £* and Aj change signs upon time inversion, therefore the products 

EjAj and the potential V  are time-reversal.

In the following analysis we investigate the case of adatoms residing over the 

centers of hexagons. The Hamiltonian describing graphene covered by this type of 

adatoms has the form [115, 116, 117]

H  = hv{ p S ) +  U (r) + V{r): (4.4)

U = ^ ( r  “  r /)i ^  =  hXva X )(u/II)^(r -  r z).
i i

The £/-term does not violate the AB sublattice symmetry and scatters electrons 

without changing their valley state. The electron-adatom interaction V,  whose 

form [108, 117, 118] is prescribed by the highly symmetric position of adatoms at 

the centers of hexagons, is responsible for the intervalley scattering of electrons. 

We assume tha t the dimensionless impurity potential A is small (A < 1) and will 

treat the electron-adatom interaction perturbatively.
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4.2 Transport properties o f graphene

The high mobility and effective control of exfoliated graphene conductivity using 

an external gate has made it a promising material for use in electronic devices. 

Fig. 4.1 demonstrates how the conductivity of monolayer graphene varies with the 

gate voltage. This behaviour has two interesting properties.

The first property is the linear dependence of the conductivity on the gate volt

age (or carrier density). This goes in contradiction with the semiclassical Boltz

mann transport theory for graphene covered with short-range scatterers, which 

predicts a conductivity independent of the carrier density [119]. According to this 

theory the conductivity of graphene is [120]

a  -  e- ^ - D { e F)r(eF), (4.5)

where D(e) = 2e/(nh2v2) is the density of states in graphene and the transport 

scattering time is given by

r(e^) =  ~7T^ I  ' 0 P  I^pp'I^1 -  V ) .  (4-6)

where rii is the concentration of impurities, ippp> is the angle between the wave vec

tors p and p', Vpp> is the matrix element of disorder potential and stands for 

disorder averaging. Applied to short-range disorder Eq. (4.5) gives a result inde

pendent of the Fermi energy and thus the carrier density. This contradiction was 

solved by attributing the source of electron scattering to the long-range Coulomb 

disorder in the substrate [109], which gives a dependence o{eF) consistent with 

experiments.

Another unusual property is the finite minimal conductivity of undoped 

graphene. Originally this effect was considered to be an intrinsic property of 

graphene and a number of theoretical approaches were used to obtain the value 

of minimal conductivity yielding different results ~  e2/ h  [121, 122, 123, 124].
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The problem is that the intrinsic minimal conductivity of an undoped MLG is an 

ill-defined property, which, being a limit of the conductivity cr(T, L~1) at 

T, lj, eF,L ~ l —>• 0, depends on the order at which these limits are taken [120], The 

actual minimal conductivity observed in experiments is a result of a highly inhomo- 

geneous carrier density landscape broken up into electron-hole puddles [125]. This 

model was investigated in [126] using the random-phase approximation (RPA) and 

is consistent with experimental results.

In the following sections we apply the Boltzmann transport theory to calculate 

the conductivity of graphene covered with alkali adatoms ordered due to RKKY 

interactions.

3

2
10 K

1

0
-100 -50 0 50 100

V9 (V)

Figure 4.1: Dependence of the conductivity of exfoliated graphene on gate voltage 
Vg. Adapted from [3].

4.3 R K K Y  interaction  of adatom s in graphene  

and adatom s sublattice ordering

Impurities in metals experience a long-range RKKY interaction due to the polar

ization of the electron Fermi sea (Friedel oscillations) [127]. For surface adsorbents 

such an interaction may result in their structural ordering, repeating the pattern
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of the Friedel oscillations of the electron density [118, 128, 129, 130]. In partic

ular, a dilute ensemble of adatoms on graphene may undergo a partial ordering 

transition [108, 117, 131, 132]. Unlike other materials, the RKKY interaction 

between adatoms on graphene exists even at zero carrier density, with a charac

teristic long-range 1/ r 3 dependence, and it exhibits Friedel oscillations, which are 

commensurate with the underlying honeycomb lattice.

The intervalley scattering of the electrons by adatoms residing above the centers 

of the honeycombs V  (4.4) leads to Friedel oscillations that resemble a y/3 x 

y/3 charge-density wave superlattice. The positions of each individual adatom 

relative to such a superlattice can be characterized by one of three vectors, u  =  

(cos p p ,  sin P p ) ,  with m  =  —1,0,1. In the undoped graphene (ep = 0) the 

interaction between adatoms has a long-range sign-changing behaviour — U j-u //r3z. 

To minimize the interaction energy adatoms have to take the equivalent positions 

within the y/3 x y/3 superlattice unit cells, i.e. have the same ’’spin” values u. 

This is illustrated in Fig. 4.2, which shows the hidden ”Kekule mosaic" ordering 

characterized by adatoms occupying the hexagons of the same color. The transition 

of an ensemble of adatoms into this Kekule ordered state [117] falls in the symmetry 

class of 3-state Potts models with a long-range interaction [133].

A Monte Carlo simulation of the corresponding 1 /r3 random-bond Potts 

model [117] has revealed the ordered phase below the transition temperature 

Tc s=» 0.6A2(riia2)3/2hv/a,  where 7?j is the concentration of adatoms. Here we as

sume that the electron concentration n — 4:7t/X2f  is not high, n  <C rii, but the 

electron Fermi wavelength is shorter than its mean free path, Af  <C /. This as

sumption also implies that in the ordered phase kpT,  A <  e^. The ordering of 

adatoms is only possible if the binding energy with graphene is smaller than the 

typical RKKY interaction energy between adatoms (E^nd ^  X2 (riia2)3̂ 2hv /  a).
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Figure 4.2: Kekule mosaic ordering of alkali adatoms on the graphene lattice. 
Panels A and B show the potential landscape that an extra atom would see in 
the presence of four atoms already shown. In panels C and D the coloring of 
the atoms in introduced to reveal their position within the Kekule superlattice. 
Adapted from [117].

4.4 R esistance anom aly in the v ic in ity  o f the or

dering transition  of adatom s

Here we analyze how partial Kekule ordering of adatoms on graphene affects its 

resistivity, p, in the regime of low coverage n^a2 <C 1 (Hi is the concentration of 

adatoms, a is the lattice constant). The behaviour of the temperature dependent 

resistivity correction 6p(T) = p(T) — p(oo) is sketched in Fig. 4.3. At T  «C Tc 

(region I) the temperature dependence of the resistivity is dominated by a non

vanishing order parameter u  causing the amplified intervalley mixing and opening 

a gap A  oc u  ~  (Tc — T ) ;j at the corners of the Brillouin zone. As the temperature 

increases from T  =  0 to T  = Tc the resistivity correction monotonically decreases 

as (Tc- T ) 213. At T >  Tc, critical fluctuations of the order parameter, characterized 

by the correlation length £ oc \T — TC|_I/, preceding the formation of the ordered



phase lead to a non-monotonic feature in Sp(T). At high temperatures T  > Tc 

(region III), the constructive interference of electron waves, scattered by adatoms 

within ordered clusters of size £, enhances the resistivity. The effect, which be

comes stronger upon approaching Tc, is similar to the critical opalescence [134] 

in materials undergoing structural phase transition or resistivity anomaly in bulk 

metals with magnetic impurities undergoing a ferromagnetic transition [135]. This 

enhancement saturates when £ becomes comparable to the electron wavelength Xp, 

Xp ~  £• In the region II of temperatures T  —> Tc +  0, where £ Ap, scattering 

of electrons is affected only by the gradient of the fluctuating order parameter u. 

The resistivity is thus reduced and a cusp-shape minimum at T  — Tc should be 

expected.

0.030

•  a d a to m

n o  1.0 2.0 3.0 4.0 5.0
T /T c

Figure 4.3: The predicted anomaly in the temperature-dependent resistivity of 
graphene decorated with adatoms in the vicinity of the Kekule ordering transition. 
The inset illustrates the Kekule mosaic ordered state and the assignment of Potts 
’’spin” m  =  — 1,0,1 to various hexagons in the \/3  x y/3 superlattice.

The effects of adatoms ordering on the electron transport are encoded in the 

correlation function,

?rQ(r)n^(r') — ua(r) u^(r') =  6apg(\r — r'|), (4.7)

88



for which the theory of critical phenomena predicts the scaling form [136]

g{r) =  *{y)  =  (y) +  y 1 n2(y) ■ (4.8)

H ere, £ ~  n{ 1 2̂ |( T  — Tc) /Tc\~l/ is th e  co rre la tio n  le n g th , an d  <a, 77 an d  v  are cr itica l 

e x p o n e n ts , sa t is fy in g  th e  re la tio n s  2v =  2 — a,  2/3 =  1/ 77. It h a s b een  sh o w n  [133] 

th a t  for th e  th r e e -s ta te  P o t t s  m o d e l o n  a  sq uare la t t ic e  ol — 1/3 , (3 =  1/9, v — 5/6, 

77 =  4/15. T h e  sm a ll u n iv ersa l co rrectio n s to  th e se  v a lu es d u e  to  w eak  d isord er  

w ere d erived  b y D o tsen k o , et al. [137]. H ow ever, th e  v a lu e  o f  77 for ra n d o m -b o n d  

P o tts  m o d e ls  w ith  a lo n g -ra n g e  in te r a c tio n 1 is s t ill  u n k n o w n  [137].

In th e  cr it ica l reg ion  r  £, th e  co rre la tio n  fu n ctio n  b eh a v es  e s se n tia lly  as r~v, 

w ith  a  co rrectio n  (seco n d  term ) re la ted  to  th e  sp ec ific  h ea t a n o m a ly  C  ~  |T —TC|_Q 

[133]. A t large d is ta n c es , r £, g{r) d eca y s ex p o n en tia lly , a cco rd in g  to  th e  

O rn ste in -Z ern ik e  th e o r y  [136, 138]. O vera ll, for T  >  Tc th e  sc a lin g  fu n ctio n s  

^ 1 ,2 (2/) h ave  th e  fo llo w in g  a sy m p to tic s:

« i(2/ < l ) « c i ,  K2(y <  1) «  - c 2 (ci,c2 ~ l ) ;

Ki(y >  1) cx ~ 2_ri , K2(y >  1) ~  e~y, (4.9)

w h erea s for T <  Tc,

/ci(y < 1) «  ci, K2(y <  1) ~  c2;
e-y (4.10)

«i(y >  1) oc - 5 — , k2(t/ >  1) ~  e y.
2/ v

A t T < Tc, th e  order p a ra m eter  a lso  acq u ires a  h o m o g e n e o u s average u oc 

(Tc — T)P. A s lo n g  as u e x c ee d s  th e  f lu c tu a tio n s  o f  u (i.e . far en o u g h  from  Tc), 

th e  e lec tr o n  s ta te s , w h o se  w a v e le n g th  is larger th a n  th e  d is ta n c e  b e tw e en  a d a to m s

lrTo mention, 3-state Potts model with 1 /r3 interaction in 2D without disorder features a 
first-order phase transition, however, disorder makes it a second order transition [139].
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n i 1̂ 2, are described by the effective mean-held Hamiltonian,

H  =  hvp S  -(- nihXvaEz(uA). (4.11)

A cc o rd in g ly  th e  sp e c tr u m  e2 =  (hvp ) 2  -1- A 2  acq u ires a  gap ,

A (T )  «  m h \ v a { l  -  T / T c f , (4.12)

su ch  th a t  A (0 )  Tc. T h e  p la n e  w ave e ig e n s ta te s  o f  H  are m ix e d  b e tw e en  th e  tw o  

v a lle y s  an d  ta k e  th e  form  (for ep >  0 )

/

± l ,p )  =
3zpr

y j lS

eD±A

ePTAelifp

± fpiA iQ

£pTA pi(vp+6)

, +  iuy =  uei6 (4.13)

eP

In trava lley  an d  in te rv a lley  sc a tte r in g  d eterm in ed  b y  U(r)  an d  V'(r) in  Eq. (4.4) 

re sp ec tiv e ly  d o  n o t in terfere w ith  each  o th er. H ence, th e  to ta l  m o m e n tu m  re lax 

a tio n  ra te  is th e  su m  o f th e  tw o  e lec tr o n  sc a tte r in g  rates,

r  1 = r 0 l + T i \ (4.14)

w h ere  To an d  t* s ta n d  for in trava lley  an d  in terv a lley  m o m e n tu m  re la x a tio n  tim es. 

For th e  te m p e r a tu r e -d e p e n d e n t D ru d e  re s is t iv ity  o f th e  gra p h en e  sh e e t  (reca ll th a t  

kjsT, A  <C ep) w e th u s  h ave

P(T) (4.15)
VpTis

w h ere vp  =  hv2pp /ep  is th e  Ferm i ve lo c ity , v =  2ep/(7rh2v2) is th e  d e n s ity  o f  

s ta te s , an d  th e  Ferm i en erg y  an d  m o m en tu m  are re la ted  to  th e  e lec tro n  d e n s ity  as 

P p  —  y / T T n  an d  eF =  y/irh2v 2n +  A 2.

T h e  tem p e ra tu r e  d ep en d e n c e  p{T)  a t T  <  Tc is d o m in a ted  b y  th e  effect o f th e
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order p a ra m eter  u  on  th e  ch ira l p la n e  w ave fu n ctio n s  an d  th u s  on  th e  sc a tte r in g  

rates, in  p articu lar  Tq 1. In th e  B orn  a p p r o x im a tio n

27r
1  riip2F f  dp  _ 2  /  . p
T0 heF J  2tT

w 2 [2pF s in  ^  (1 -  cos p)rQ(p),  (4 .16 )

o
2 p  A  2(T)

rQ(p)  =  cos — +
2 (hvpF)2 ’

w h ere  w(k)  =  f  d r e lkrw ( r ) an d  p  is th e  sc a tte r in g  an g le. T h e  form -factor  r0(p)  

arises from  th e  overlap  in teg ra l b e tw e en  p la n e  w ave s ta te s  an d  re flec ts  th e  ab sen ce  

o f  b a ck sca tte r in g  for A =  0. T h u s, for T  <  Tc, w e find

S p ( T )  _  4 A 2(T) C  d V  (2P f  sin f ) sin2 f  ( 4 1 7 )
p (o o ) 7rnh2v 2 p 77 (hp u ,2 (2pp sin sin2

T h e  te m p e r a tu r e  d ep en d e n c e  p(T)  a t T  >  Tc is  d e ter m in ed  b y  th e  effect o f  

th e  ord erin g  o f  a d a to m s on  th e  in terv a lley  sc a tter in g . C on sid er  th e  sc a tte r in g  

a m p litu d e

< ir 'p '|C |/fp ) =  ^ f s i n ^ i ^ E , e i9‘. (4.18)

e, = ^fL + i p -  p')r,.

A t tem p e ra tu r es  far from  Tc, T  Tc, th e  p o s it io n s  o f  a d a to m s o n  th e  su p er

la t t ic e  are ran d om  so  th a t  mi  ta k es va lu es —1 , 0  an d  1  w ith  eq u a l p rob ab ilities.

A s a  resu lt, th e  a b so lu te  v a lu e  o f  th e  sc a tter in g  a m p litu d e  ca n  b e  e s tim a te d  as

\ {K'p' \V\Kp}\  ~  p  rii\2F. U p o n  ap p roach in g  Tc from  ab ove, c lu sters  o f  ordered  

a d a to m s w ith  a  ch a ra c ter istic  s ize  £ n~1̂ 2 s ta r t ap p earin g . In th e  su m  (4 .18 )

su ch  a  c lu ster  g en er a tes  c o n str u c tiv e  in terferen ce b e tw e en  term s w ith  th e  sam e  

va lu e o f m / p rov id ed  th a t  £ <  XF. T h is  in creases th e  sc a tte r in g  a m p litu d e , 

\ (K'p' \V\Kp)\  ~  n./£XF. A  fu rth er in crease o f th e  co rre la tio n  le n g th , £ >  XF, 

h as an  o p p o s ite  effect on  sca tter in g : e lec tro n s g e t  sc a tter ed  o n ly  b y  th e  grad ien ts  

in  th e  sm o o th ly  f lu c tu a tin g  field  u.
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The intervalley momentum relaxation rate (both at T  < Tc and T  > Tc) ri 1 

can be expressed in terms of the Fourier transform of the correlation function, 

g(k)  =  f  dr eikrg(r),

1 Hv2p 2FniX2a2
Ti 2eF

o

ri((p) =  1 +  nCg (2pF sin

/ (4‘19)

2 (hvpp)2

A t T  >  Tc (A  =  0) th e  te m p e r a tu r e  d ep en d e n c e  p(T)  co m es from  th e  correla

t io n  fu n ctio n  g(k)  in  Eq. (4.19). Far from  th e  p h a se  tr a n s it io n , \T —TC\ ~  Tc, w here  

£ <  Ap  (reg io n  III in  F ig . 4.3), e lec tr o n s  are e ffec tiv e ly  sc a tte r e d  b y  sm a ll c lu sters  

o f  ord ered  a d a to m s. In  th is  reg ion  w e a p p ro x im a te  g(k)  ~  <?(0) oc (-^ /n ^ )2-77 and  

find  th a t

f ,n iT \  ~  2 - ,  „  rh ~ " /2 j A r,m
( e V K 7 ( T - T c)Q-*»'  ( ■ 0)

w h ere C  =  (37t2/ 2) dy y l~vK{y) is a  d im en sio n less  co n sta n t.

T h e  ab o v e  c a lcu la tio n  b a sed  on  th e  B orn  a p p r o x im a tio n  is  a p p lica b le  o n ly  if  

th e  e lec tro n  en erg y  is larger th a n  th e  average sp e c tr u m  gap  a t th e  le n g th  sca le  o f  

Ajp ,  A (A f ) < hvpp , w h ere

A (L) =  hriiXvay u(r)u(r
hy/niXva . u  ( • )
   (y 'n p n in l^ , L})  77,

/ 2 \ 1 / (2—rf)
so that min{£, Xp} < ( n % a2 ) ’ which coincides with the inequality

vppTi 1, th a t is, if the resistivity of graphene is smaller than h /e2.

4.5 T he v ic in ity  o f the critical point

In the vicinity of the critical point, such that Af < £ (region II in Fig. 4.3), 

electrons experience multiple scatterings within one cluster with a small wave 

vector transfer, ~  r 1- This makes p(T) sensitive to the critical behaviour of the
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correlation function at r < £. This region is easier to analyze by performing the 

angular integration in Eq. (4.19) and expressing r^ 1 in terms of the function n(y) 

defined in Eq. (4.8):

Ti h2v 4 ni (y/niO71
1 ^  A2(0) 3pF | 2£

f iPFiy)  ■ (4.22)
o

Here, /  can be expressed in terms of Bessel functions as

f ( x )  =  — [x2Jl(x )  — x 2J 2(x) +  J 2(x) — x Jq(x )J i (x )]. (4.23)

To evaluate the integral in Eq. (4.22) we divide the integration interval [0, oo] 

into two parts, [0, y0] and [2/0, 00], where 1 y0 1 /pp£  —> 0. For the interval 

[po,oo], we use the fact tha t / ( p F£p) is a fast oscillating function, f ( x  »  1) «  

2 sin(2:r) +  3cos(2x)/(2x), and tha t

for A  1 and F ( oc) =  0. For the interval [0, yo\ in the leading order in l /p F£, 

the result is determined by the values of /•ci(O) and /^(O) in Eq. (4.9). For this, we 

expand and k2 (which vary at the scale of y ~  1) into Taylor series, evaluate 

the corresponding integrals in the leading orders in y0 <C 1, and combine with the 

contribution from the interval [?/o, 00]. As a result, the term with Ki in Eq. (4.22) 

produces a finite contribution when pF£ —> oc, and we find that

where B(x)  =  xT  (2±£) T ( l -  §) /T  ( l +  f )  T (2 +  f ) .  If (1 -  a ) /u  < 1, the

next term in the expansion K\{y) = aq(0) +  i j k ^(0) +  . . .  generates a contribution 

0 (1 / pfQ,  which, for T  —» Tc. is less relevant than the more singular (T — I n 

dependent contribution from the k,2 term in Eq. (4.22). Following the same steps,

+00

J F(y)sm(Ay)dy
F(yp) cos(Ayp) | Q 

A
(4.24)

p(Tc) -  p(00) =
Ci7T2 A 2(0) Ti; \

(4.25)
e2v2hrii
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we find that the latter term gives rise to the cusp in the p(T) dependence in the 

region II near Tc in Fig. 4.3,

p(T) -  p{Tc) c2B(r] -  27) u _a
p(Tc) -  p{0 0 ) ci£(77)(7rnf2)'

oc (T — Tc) , (4.26)

where 7  =  (1 — a)/2is, which is assumed to be 7  < 1/2 for Eq. (4.26) to be 

applicable. Otherwise (for 7  >  1/ 2) one should use

p ( T ) - p ( T c) k[ (0) B( V - 1 )  m  w  U 0 7 ,
p(Tc) - p { 00) c1B ( '? ) ( ™ { 2) 1/ 2 c> ' [ 1

The sign of the result Eqs. (4.26, 4.27) is determined by the sign of c2 (or /^(O) < 0) 

and by the values of the critical exponents, where c2 depends on the particular form 

of the correlation function g(r) and is known to be positive for the exact solution 

of the 2D Ising model on a square lattice [136]. The factor B(rj — 2y)/B(rf) has 

the same sign as (77 — 2y) and happens to be negative for the three-state Potts 

model on a square lattice. Notice that Eqs. (4.26, 4.27) are applicable only in a 

very close vicinity of Tc (£ Af) and do not influence the overall tendency that 

resistance dips in the region II.

The behaviour of Sp(T) at T  < Tc (region I in Fig. 4.3) is determined by two 

contributions. One part, Spi/p oc (Tc — js related to the specific heat

anomaly correction to the correlation function and can be obtained in the same 

way as Eq. (4.26). The other contribution, Sp2/p  oc (Tc — T )2/3, is due to the 

formation of a non-zero order parameter in the Kekule-ordered phase. The second 

correction dominates when 2(3 < min{l — ci, 1/}, which is the case for the expected 

values of the critical exponents. As a result, we attribute the rise of resistivity at 

T  < Tc near the cusp at T  = Tc to the formation of a spectral gap in graphene 

due to the Kekule mosaic ordering. The qualitative behaviour of the resistivity 

correction as a function of temperature for all three regimes is plotted in Fig. 4.3 

for ep = 0Avy/nl, riiX2a2 =  0.005, where we used the values C\ =  0.5, c2 =  0.15 

(calculating the exact values of these coefficients is outside the scope of this work).

94



In conclusion, we investigated electron transport in graphene covered by a 

dilute ensemble of adatoms residing over the centers of hexagons. We calculated 

the temperature dependence of the resistivity p(T), which appears to be non

monotonic and has a non-analytic cusp at T  = Tc. Since the form of the cusp 

depends on the critical indices a  and /3 of the phase transition, the experimental 

observation of such an anomaly may facilitate their measurements.

The form of p(T) shown in Fig. 4.3 appears to be generic for partially ordered 

dilute ensembles of adatoms with alternative positioning on the honeycomb lattice:

(i) over the sites [131, 132] and (ii) over carbon-carbon bonds [108]. Since those 

also fall into the class of Potts models [(i) - 2 value Potts model and (ii) - 3 value 

Potts model], the anomalies in p(T)  can be described using Eqs. (4.17,4.26) with 

appropriate critical indices, a  and (3.

95



Conclusions

In this thesis we covered a range of problems related to epitaxial graphene and 

mechanically exfoliated graphene. In chapter 1 we reviewed the fabrication meth

ods of graphene and the electronic structure of monolayer and bilayer graphene. 

In chapter 2 we investigated the properties of epitaxial graphene grown on Si- 

terminated surface of SiC. which is successfully used to produce field-effect tran

sistors. In section 2.2 we developed a theoretical model wdiich describes the charge 

transfer between monolayer graphene and donors in SiC and takes into account the 

spontaneous polarization of SiC. This model is consistent with the experimental 

results and explains the high doping of epitaxial graphene, which provides a chal

lenge for its applications in field-effect transistors. Hydrogen intercalation, that 

can be used to reduce graphene doping, is also described by our model. In section 

2.3 we applied the charge transfer model to describe the pinch-off effect in bilayer 

graphene and the hopping conductivity in this regime. In chapter 3 we studied the 

quantum Hall effect in epitaxial graphene, which is successfully used in quantum 

resistance metrology. Using our model we discovered the pinning of v — 2 QHE 

plateau over a range of magnetic fields of several Tesla, which is consistent with 

the high precision of transverse resistance measurements in the system. The effect 

of bilayer graphene patches on the quality of QHE measurements was studied in 

section 3.6. Finally, in chapter 4 we investigated the transport properties of exfo

liated monolayer graphene eovered by adatoms. Certain types of adatoms tend to 

arrange in ordered patterns due to RKKY interactions, affecting the conductivity 

of graphene near the phase transition temperature. We calculated the conductivity
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of graphene in the presence of such adatoms and linked it to the critical exponents 

of the transition.
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