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Abstract

A regional climate model (PRECIS) and a biogenic emission model (BVOCEM) were 

used to investigate the impact of climate changes on biogenic emissions during 

northeast monsoon (Dec-Jan-Feb, DJF) and southwest monsoon (Jun-(July)-Aug, 

JJA) in both the A2 and B2 transient climate scenarios of the IPCC in Southeast Asia. 

The investigation also explored the regional climate change and biogenic emissions 

response to future landcover changes, both alone and in combination with 

atmospheric forcing. Consequently, a tropsopheric chemistry model (CiTTyCAT) was 

used to investigate the relative impact of climate changes and biogenic emissions on 

tropospheric chemistry, particularly ozone in both seasons and climate scenarios. A 

warming across the region occurred, with the largest temperature increase apparent 

over land areas during DJF and JJA in both the A2 (3.0°C and 3.1°C) and B2 (2.6°C 

and 2.1°C) climate scenarios. These temperature changes were statistically significant 

at the 95% level in both climate scenarios across the domain with the exception 

during DJF (B2 scenario) in some areas over the South China Sea and the Philippines 

Sea. The increase in solar radiation was also reflected in the increase o f surface 

temperature and decreased cloud fraction in both seasons in the A2 and B2 scenarios. 

Future changes in other climatic variables, such as precipitation and boundary layer, 

have shown a high degree of variability. The combined effect of atmospheric forcing 

and landcover forcing was observed to increase the surface temperature significantly 

in both climate scenarios. However, the effects of future landcover forcing alone in 

both seasons in the A2 and B2 climate scenarios were observed to be small and 

produced cooling temperatures.

Projected climate changes in the present-day landcover scenario in both A2 and B2, 

with the exclusion of the CO2  activity factor, showed an increase in isoprene 

emissions by 27% (A2) and 13% (B2) in 2100 relative to 2008. In the same scenario, 

but with the inclusion of future CO2  concentrations of 560 ppm, isoprene emissions 

were found to be inhibited by 8 % (A2) and 19% (B2) respectively. The inhibitory 

effects of elevated CO2  on isoprene emissions was much larger than that of climate 

change alone. Meanwhile, the combined effects of climate change and future 

landcover forcing with the inclusion of the C 0 2  activity factor accounted for the 

decrease of future isoprene emissions by 6 6 % (A2) and 60% (B2) respectively.
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Landcover forcing alone accounted for the decrease of isoprene emissions by 5% 

(A2) and 6 % (B2) with the CO2 activity factor, and conversely the increase of 

isoprene emissions by 9% (A2) and 5% (B2) without the CO2  activity factor. The CO2  

inhibitory effect was more important than the combined effects of climate changes 

and landcover forcings on isoprene emissions. These results suggest that future 

emissions o f isoprene in the region is largely buffered by a number of competing 

factors, which is certainly an important consideration when estimating the global 

isoprene budget.

In the present-day landcover scenario, the combined impact of climate changes and 

biogenic emissions (with the CO2  activity factor) in 2100, surface O3 concentrations 

in urban (Bangkok) and remote (Danum) areas increased in both climate scenarios. In 

Bangkok, in the A2 scenario, the surface O3 increased by 16% ((January) and 21% 

(July); while in the B2 scenario, O3 increased by 15% (January) and 18% (July) 

respectively. In Danum, in the A2 scenario, the O3 increased by 43% (January) and 

28% (July); while in the B2 scenario, O3 increased by 13% (January) and 27% (July). 

In the future landcover scenario, the combined impact of climate changes and 

biogenic emissions resulted in a further increase in surface O3 concentrations in both 

seasons in the A2 and B2 climate scenarios in Danum (between 38% and 77%) and 

Bangkok (between 12% and 21%). In both locations, biogenic emissions accounted 

for a larger effect on the increase of surface O3 concentrations in both seasons in the 

A2 and B2 climate scenarios than that of climate changes. In Bangkok, the combined 

impact of climate changes and biogenic emissions in the present-day and future 

landcover scenarios were found to decrease OH concentrations in both seasons in A2 

and B2 climate scenarios. The OH suppression was largely due to the oxidation of 

isoprene by OH radicals. This OH suppression was much greater in future landcover 

scenario than in the present-day landcover sceanrio. However, in Danum, the 

combined impact of climate change and biogenic emissions in the present-day and 

future landcover scenarios were observed to increase OH concentrations in both 

seasons in the A2 and B2 climate scenarios. The increases were largely attributed to 

climate changes, although the suppression of OH concentrations was also found to be 

due to biogenic emissions.
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(B2PLC-Baseline).
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difference in comparison with the Baseline scenario 
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SRES A2: Combined effects of the atmospheric and 223
future landcover forcings on the seasonal boundary layer 
height (A2FLC) in the SRES A2 scenario, and the 
boundary layer height difference in comparison with the 
Baseline scenario (A2FLC-Baseline).
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height difference in comparison with the Baseline 
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SRES A2: Isolated effects of the future landcover forcing 230
alone on the seasonal surface temperature (A2FLC- 
A2PLC) {left panel) in the SRES A2 scenario, and the 
significant t-test plots {right panel).

SRES B2: Isolated effects of the future landcover forcing 231
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B2PLC) {left panel) in the SRES B2, and significant t-test 
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Seasonal cycle of the total precipitation (mm/day) for the 232
A2 {left panel) and B2 {right panel) climate scenarios due 
to landcover forcing alone (A2FLC-A2PLC & B2FLC- 
B2PLC), and the total precipitation changes (A2FLC- 
Baseline; A2PLC-Baseline & B2FLC-Baseline; B2PLC- 
Baseline) under the present-day and future landcover 
scenarios.

SRES A2: Isolated effects of the future landcover forcing 234
alone on the seasonal total precipitation (A2FLC-A2PLC)
{left panel) in the SRES A2 scenario, and the significant 
t-test plots {rightpanel).

SRES B2: Isolated effects of the future landcover forcing 235
alone on the seasonal total precipitation (B2FLC-B2PLC)
{left panel) in the SRES B2 senario, and the significant t- 
test plots {right panel).

Seasonal cycle of the total cloud for the A2 {left panel) 236
and B2 {right panel) climate scenarios due to the 
landcover forcing alone (A2FLC-A2PLC & B2FLC- 
B2PLC), and the total cloud changes (A2FLC-Baseline; 
A2PLC-Baseline & B2FLC-Baseline; B2PLC-Baseline) 
in the present-day and future landcover scenarios.

SRES A2: Isolated effects o f the future landcover forcing 238
alone on the seasonal total cloud (A2FLC-A2PLC) {left 
panel) in the SRES A2 scenario, and the significant t-test 
plots {right panel).

SRES B2: Isolated effects of the future landcover forcing 239
alone on the seasonal total cloud (B2FLC-B2PLC) {left 
panel) in the SRES B2 scenario, and the significant t-test 
plots {right panel).

'y
Seasonal cycle of the solar radiation (Wm’ ) for the A2 240
{left panel) and B2 {right panel) climate scenarios due to 
the landcover forcing alone (A2FLC-A2PLC & B2FLC- 
B2PLC), and the solar radiation changes (A2FLC- 
Baseline; A2PLC-Baseline & B2FLC-Baseline; B2PLC- 
Baseline) in the present-day and future landcover 
scenarios.

SRES A2: Isolated effects of the future landcover forcing 242
alone on the seasonal solar radiation (A2FLC-A2PLC)
{left panel) in the SRES A2 scenario, and the significant 
t-test plots {rightpanel).



X X V

Figure 4.35

Figure 4.36

Figure 4.37

Figure 4.38

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

SRES B2: Isolated effects of the future landcover forcing 243
alone on the seasonal solar radiation (B2FLC-B2PLC)
(ileft panel) in the SRES B2, and the significant t-test plots 
{right panel).

Seasonal cycle of the boundary layer height (m) for the 244
A2 {left panel) and B2 {right panel) climate scenarios due 
to the landcover forcing alone (A2FLC-A2PLC & 
B2FLC-B2PLC), and the boundary layer height changes 
(A2FLC-Baseline; A2PLC-Baseline & B2FLC-Baseline; 
B2PLC-Baseline) in the present-day and future landcover 
scenarios.

SRES A2: Isolated effects of the future landcover forcing 246
alone on the seasonal boundary layer height (A2FLC- 
A2PLC) {left panel) in the SRES A2 scenario, and the 
significant t-test plot {rightpanel).

SRES B2: Isolated effects of the future landcover forcing 247
alone on the seasonal boundary layer height (B2FLC- 
B2PLC) {left panel) in the SRES A2 scenario, and the 
significant t-test plots {right panel).

Framework for the investigation of climate changes- 258
biogenic emissions-tropospheric chemistry ineteractions 
in Southeast Asia. The red dotted box indicates the 
framework for the investigation of biogenic emissions 
response to the landcover and climate changes that 
covered in Chapter 5.

Annual mean of Leaf Area Index (LAI) for the present- 270
day (2008) and future (2 1 0 0 ) landcover scenarios in 
Southeast Asia.

Simulated baseline (2000-2010) and future (2090-2100) 275
decadal-average surface temperature over SEA for the 
B2 (a-c) and A2 (d-f) emission scenarios in the present- 
day (PLC) and modified future (FLC) landcover 
scenarios.

Difference in decadal-average surface temperature (°C) 276
between: (a) B2PLC and BaseB2, (b) B2FLC and 
BaseB2, (c) B2FLC and B2PLC, (d) A2PLC and BaseA2,
(e) A2FLC and BaseA2, and (f) A2FLC and A2PLC.
Note change of colour scale in panel (c) and (f).
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Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Simulated baseline (2000-2010) and future (2090-2100) 279
average PAR over SEA for the B2 (a-c) and A2 (d-f) 
emission scenarios in the present-day (PLC) and modified 
future (FLC) landcover scenarios. Compare cloud-cover 
model fields in Figure 3.32 (A2) and Figure 3.33 (B2).

Difference in average PAR (Wm'2) between: (a) B2PLC 280
and BaseB2, (b) B2FLC and BaseB2, (c) B2FLC and 
B2PLC, (d) A2PLC and BaseA2, (e) A2FLC and 
BaseA2, and (f) A2FLC and A2PLC. Note change of 
colour scale in panel (c) and (f).

9 1Isoprene: Total isoprene emissions (p,g m' hr' )with- and 286
without-CCh activity factors for the Baseline (2008) and 
future B2 (a-c) and A2 (d-f) emissions scenarios (2100) 
in the present-day landcover (PLC) scenario.

2  1 •Isoprene: Total isoprene emissions (p,g m' hr' )with- and 287
without-C0 2  activity factor due to the climate change 
forcing alone for the B2 (a & b) and A2 (c & d) scenarios.
Note the change in colour scale in panels (b) and (d).

2  1Monoterpenes: Monoterpene emissions (p,g m' h r ' ) for 288
the Baseline (2008) {top panel) and future B2 {midpanel
left) and A2 {mid panel right) scenarios. The impact of
the climate change forcing alone on the monoterpene
emissions for the both A2 and B2 scenarios are shown at
the bottom panels (c & f). Note the change in colour scale
for panels (c) and (f).

ORVOC: ORVOC emissions (p,g m'2 hr'') for the Baseline 289
(2008) {top panel) and future B2 {mid panel left) and A2
{mid panel right) scenarios. The impacts of the climate
change forcing alone on the ORVOC emissions for the
both A2 and B2 scenarios are shown at the bottom panels
(c & f). Note the change in colour scale for panels (c) and
(f).

Isoprene: Total isoprene emissions (p,g m ^hr'1) with-and 292
without-C0 2  activity factor by landcover forcing alone 
for the B2 (a & b) and A2 (c & d) climate scenarios.

Monoterpene: Monoterpene emissions (|ig m ^hr'1) by 292
landcover forcing alone for the B2 (B2FLC-B2PLC) and 
A2 (A2FLC-A2PLC) scenarios.

ORVOC: ORVOC emissions (p,g m ^hr'1) by landcover 293
forcing alone for the B2 (B2FLC-B2PLC) and A2 
(A2FLC-A2PLC) climate scenarios.



Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 5.21

Figure 5.22

xxvi i

Isoprene: Total isoprene emissions (pg m‘2 hr_1) with- and 294
without-C0 2  activity factor in the Baseline (2008) and the 
B2 (a-c) and A2 (d-f) emissions (2100) scenarios in the 
future landcover (FLC) scenario.

Isoprene: Total isoprene emissions (pg m ^hr'1) with-and 295
\vithout-CO2  activity factor due to the combined impacts 
o f climate changes and landcover forcings in the B2 (a & 
b) and A2 (c & d) scenarios.

9 1Monoterpene: Monoterpene emissions (pg m‘ h r ') due to 295
the combined impacts of climate changes and landcover 
forcings in the B2 (left panel) and A2 {right panel) 
scenarios.

ORVOC: ORVOC emissions (pg m ^hr'1) due to the 296
combined impacts of climate changes and landcover 
forcings in the B2 {left panel) and A2 {right panel) 
scenarios.

Monthly variations o f mean surface temperature (°C) and 298
PAR (Wm'2) in the Baseline (2008), and the B2 and A2 
scenarios (2100): (a) & (b) -  Temperature; (c) & (d) -  
PAR.

Figure 5.19: Seasonal variations (January and July) of 299
the total biogenic emissions fluxes (ug m ' 2  h r'1) in the 
Baseline (2008), and the B2 and A2 transient climate 
scenarios (2100): (a) & (b) -  Isoprene; (c) & (d) -  
Monoterpene; (e) & (f) - ORVOC

A2:January-Isoprene: Isoprene emissions (pg m ^hr'1) 300
with- and without-C0 2  activity factor in the Baseline
(2008) and A2 emission scenarios in the present-day and 
future landcover scenarios during January.

2  1B2:January-Isoprene\ Isoprene emissions (pg m' hr" ) 301
with- and without-C0 2  activity factor in the Baseline
(2008) and the future B2 emission scenarios in the 
present-day and future landcover scenarios during 
January.

A2:July-Isoprene\ Isoprene emissions (pg m ^hr'1) with- 302
and without-C0 2  activity factor in the Baseline (2008) 
and A2 emission scenarios in the present-day and future 
landcover scenarios during July.
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Framework for the investigation of climate change and 
biogenic emissions impact to the tropospheric chemistry 
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CiTTyCAT model framework flow chart.
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Comparison of impacts due to the combined effects o f 339
climate change and biogenic emissions, biogenic 
emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate 
scenarios in five locations in SEA. The A2 and B2
scenarios for a) A2: O3 ; (b) B2: O3 ; (c) A2: OH; (d) B2:
OH.

Comparison of impacts due to the combined effects of 340
climate change and biogenic emissions, biogenic 
emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate 
scenarios in five locations in SEA. The A2 and B2
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Comparison of impacts due to the combined effects of 341
climate change and biogenic emissions, biogenic 
emissions alone and climate change alone during January 
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emissions alone and climate change alone during January 
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B2 {rightpanel) emission scenarios under the present-day 
(PLC) and modified future landcover (FLC).
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and B2 {right panel) emission scenarios under the 
present-day (PLC) and modified future landcover (FLC) 
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Bangkok'. Simulated NO & NO 2  (ppbv) during January 350
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Bangkok: Simulated PAN during January {top panel) and 352
July {bottom panel) in the A2 {left panel) and B2 {right 
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Bangkok : Simulated HONO2  during January {top panel) 354
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{right panel) emission scenarios under the present-day 
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Bangkok: Simulated HCHO & H2 O2  (ppbv) during 356
January {top panel) and July {bottom panel) in the A2 
{leftpanel) and B2 {rightpanel) emission scenarios under 
the present-day landcover (PLC) and modified future 
landcover (FLC).

Danum: Simulated O3 (ppbv) during January {top panel) 359
and July {bottom panel) in the A2 {left panel) and B2 
{right panel) emission scenarios under the present-day 
landcover (PLC) and modified future landcover (FLC).
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{leftpanel) and B2 {right panel) emission scenarios under 
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{right panel) emission scenarios under the present-day 
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present-day landcover (PLC) and modified future 
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Chapter 1 

INTRODUCTION

1.1 Introduction

Tropospheric chemistry plays a significant role in determining the behaviour and 

composition of the troposphere. The emission of chemically active gases and aerosols 

is the main forcing agent for tropospheric chemistry. Climatically active gases can be 

grouped into two sets, namely the long-lived gaseous species (e.g. CO2 , CH4 , N 2 O, 

CFCs, etc.) and the short-lived reactive gaseous species (e.g. O3 , CO, NOx, Volatile 

Organic Compounds (VOCs), S 0 2, OH, HO2 , etc.). Apart from CO2  and water 

vapour, other greenhouse gases (GHGs) that are significantly important in climate- 

chemistry interactions are CH4 , N2O, and O3. These GHGs in the atmosphere are 

very important because they capture and recycle energy emitted by the Earth surface 

through their ability to absorb and re-emit infrared radiation, defining the primary 

characteristic of the greenhouse effect. Therefore, concentration changes o f these 

GHGs in the atmosphere can modify the balance of energy transfers between the 

atmosphere and Earth’s surface. Change in the energy available through this 

modification to the Earth-atmosphere system is measured as radiative forcing (IPCC, 

1994; 2007-Chapter 2). Other short-lived reactive gaseous species, although they do 

not produce directly radiative forcing effects, do still have the ability to influence the 

global radiation budget. For example, the chemical reactions of two precursor 

pollutants, VOCs and NOx, in the presence of ultraviolet light (sunlight) can produce 

tropospheric O3, a GHG. Tropospheric 0 3, is estimated to provide the third largest 

increase in direct radiative forcing since the pre-industrial era, behind CO2  and CH4  

(IPCC, 2007-Chapter 2; USEPA, 2002).
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Based on the its contribution to the radiative forcing from the pre-industrial (1750) to 

present time (2005) (IPCC, 2007-Chapter 2) (Figure 1.1), in term of global average, 

CO2 has been recognised as the most important GHGs (1.46 W/m2), followed by CH4 

(0.48 W/m2), 0 3 (0.35 W/m2), CFC-12 (0.17 W/m2), and N20  (0.15 W/m2) (IPCC, 

2007). Other chemically reactive gases such as CO, NOx, and NMHC are considered 

as indirect GHGs, as these species compounds are reactively involved in tropospheric 

chemistry, thus affecting some GHGs such as O3 and CH4 .
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Figure 1.1: The global mean radiative forcing of the climate system between 1750 
and 2005 {Adapted from IPCC (2007-Chapter 2)).

In the following section, the potential sources of the GHGs and their current 

emissions estimate, along with some other short-lived reactive gases such as CO, NOx 

and VOCs, will be described. Aerosol, extremely small particles or liquid droplets 

often composed of sulphur compounds, carbonaceous combustion products, crustal 

materials and other human induced pollutants, is also described as it plays important
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roles in the tropospheric chemistry-climate system through heterogenous reactions 

and its effect on the radiative transfer through the atmosphere (IPCC, 2001; 2007- 

Chapter 2).

In this work, the area of study is Southeast Asia (SEA), which is a subregion of Asia 

consisting of eleven countries, Brunei, Cambodia, Indonesia, Laos, Malaysia, 

Myanmar, Philippines, Singapore, Thailand, Timor Leste and Vietnam. The region 

total land area is about 4,855,688 km2 with a population of about 565 million in mid- 

2006 (PRB, 2006) mostly in Indonesia, Philippines, Vietnam and Thailand. Generally, 

most of the region is covered by forest with estimate coverage of about 48.6% in the 

year 2 0 0 0  (FAO, 2006).

1.2 Inventory and Emissions of Reactive Gases and Aerosols in 

South East Asia (SEA)

Chemically and radiatively active gases and aerosols are emitted both from natural 

and anthropogenic sources. Their global distributions are closely linked with 

demographic and economic development, and changes in technology. At local and 

regional scales, emissions of these gases and aerosols have been a great concern with 

regard to local and regional air quality deterioration, and its effect on the regional 

climate (IPCC, 2001; 2007-Chapter 2). In fact, there is an emerging interest and 

priority to improve the current understanding of the interaction between climate 

change and regional air quality in light of the increase of potential sources of these 

important chemical species such as biomass burning and urban development, as well 

as from natural sources (Jacob et al., 2005). Therefore, an inventory of emissions into
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the atmosphere, particularly of climatically reactive gases and aerosols, is important 

to support climate and atmospheric modelling studies, as well as observations on the 

ground.

For SEA, one of the most comprehensive emission inventories is based on Streets et 

al. (2003), though this inventory has not taken into consideration the emissions from 

natural sources. Another emission inventory data set for SEA in 2000, from EDGAR 

32FT2000 (NEAA, 2005), which is based on the EDGAR 3.2 estimates for 1995, is 

also available in various formats including in 1° x 1° gridded files. As shown in Table 

1.1, the EDGAR emission inventory has relatively higher values for all emissions, 

with the exception of Non-Methane Volatile Organic Compounds (NMVOCs), which 

is due to overestimation of emissions from burning of agricultural wastes (NEAA,

2005), and emission inventory from Streets et al. (2003a) has not considered emission 

from biomass burning.

Table 1.1 Summary of gas and aerosol emissions in SEA in 2000 (Gg/year)

Country c m N 20 NO* C O N M VO C BC O C

Brunei 50 (98) - ( 1 ) 20 (26) 1 5 (4 2 5 ) 43 (151) 0 0

Cambodia 708 (636) - ( 1 1 ) 89 (144) 1707 (3090) 305 (278) 14 89

Indonesia 6443 (10625) - ( 2 2 3 ) 1317 (2413) 23105 (43300) 6903 (6253) 206 1138

Laos 387 (470) - ( 1 4 ) 96 (269) 2547 (5840) 486 (475) 18 129

Malaysia 869 (1206) - ( 2 9 ) 494 (728) 5552 (8730) 1424 (2204) 26 151

Myanmar 2691 (2823) - ( 7 1 ) 226 (610) 8 4 4 6 (1 4 7 0 0 ) 1671(1282) 65 421

Philippines 2 5 6 3 (2 1 2 5 ) - ( 6 0 ) 326 (488) 4102 (4600) 1398 (824) 36 192

Singapore 85 (60) - ( 3 ) 185 (977) 138 (286) 81 (161) 3 2

Thailand 3567 (3670) - ( 8 3 ) 1086 (1246) 10815(9840) 3 0 5 2(1669) 72 364

Vietnam 2907 (3408) - ( 8 8 ) 283 (427) 9248 (7990) 1390(1115) 88 432

Total 20 ,270 (25 ,121) - (583) 4 ,122 (7,328) 65,675 (98,801) 16,753(14 ,412) 528 2,918

Note: BC = black carbon; OC = organic carbon : BC & OC are included in PM2.s & PMw
Source: Extracted from  Streets et al. (2003a) and in brackets (  )  from  EDGAR 32FT (NEAA, 2005)

4



1.2.1 Methane

Methane (CH4 ), which is second only to CO2 in terms of contribution to radiative 

forcing, is a chemically reactive gas that is extremely important in tropospheric 

chemistry due to its central role in atmospheric oxidation chemistry. Emissions of 

CH4 from anthropogenic sources are mainly from the harnessing of biological 

processes such as paddy fields, enteric fermentation (ruminant animals), extraction of 

fossil fuel (natural gas, coal, and petroleum), landfills, and biomass burning (IPCC, 

1995). Wetlands have been singled out as the main source of CH4 emissions from 

natural sources (Hein et al., 1997; Lelieveld et al., 1998; Houweling et al., 1999). In 

SEA, the total anthropogenic emissions of CH4 are estimated to be about 20.27 Tg in 

2 0 0 0 , mostly from rice cultivation, animals, biofuel combustion, biomass burning, 

wastewater treatment, and landfills (Streets et al., 2003a). The inventory from 

EDGAR32FT2000 (NEAA, 2005) has shown a slightly higher value of 25.12 Tg, 

which is about 8.0% of the global anthropogenic emissions. With an annual growth of 

about 0.4%, the global average of CH4 surface abundance from all sources 

(anthropogenic and natural emissions) in 1998 was 1745 ppb, corresponding to a total 

burden of about 4850 Tg CH4 (Prather et al., 2001), and slightly increasing to 1783 

ppb in 2004 (IPCC, 2007-Chapter2; WMO, 2006).

The emissions of CH4 from biological processes are assumed to be formed under 

anaerobic conditions (anoxic), but a recent proposal by Keppler et al. (2006) is that 

significant amounts of CH4 are emitted directly from plants and detached leaves under 

oxic conditions. This newly-identified source of CH4 has very significant implications 

on the global methane budget and its role in past and future climate changes. Based 

on this finding, Keppler et al. (2006) estimated the C H 4 source strength to be 6 2 -

5



236 Tg/yr for living plants, and l-7T g /y r for plant litter (1 Tg = 101 2 g). This 

proposed new source of CH4 is contentious and is not used in the present study. The 

loss of CH4 in the troposphere is predominantly through chemical processes by 

oxidation of OH, which is responsible for the removal of approximately 500 Tg 

CH4/year (almost 90% of the total sink) (Wuebbles and Hayhoe, 2002) as well as 

through soil sinks and stratospheric loss (Prather et al., 2001).

1.2.2 Nitrous Oxide

Nitrous oxide (N2 O) is also an important GHG, which is produced by microbial 

processes in soils and fertiliser application, and has a long lifetime (IPCC, 1995). N 2 O 

is believed to be responsible for 6% of the total radiative forcing from anthropogenic 

forcing (Graedel and Crutzen, 1993). The IPCC Third Assessment Report (IPCC 

2001) estimated a radiative forcing value due to N2 O of 0.15 Wm'2, which has taken 

into account the slightly increased of N2 O since the IPCC Second Assessment Report. 

Anthropogenic sources of N2 O include biomass burning, combustion of fossil fuel, 

production of industrial nitric acids, and substantial emissions from agricultural 

activities through nitrogen-based fertiliser application (Matson et al., 1999; Becker et 

al., 2000; NEAA, 2005). Substantial emissions o f N2 O are also produced from natural 

sources through microbial processes in soils (Akiyama and Tsuruta, 2003). Based on 

the EDGAR32FT2000 emission inventory, N 2O emissions from anthropogenic 

sources in SEA are estimated to be about 583 Gg/yr, which is about 4.8% of the 

global emissions (NEAA, 2005). Meanwhile, the global average surface abundance of 

N2 O from all sources was estimated to be about 314 ppb in 1998, which corresponds 

to a global burden of 1510 Tg N (Prather et al., 2001), and increased to 318.6 ppb in 

2004 at the rate of 0.8 ppb/year (WMO, 2006). The major sink of N 2O in the



atmosphere is through photodissociation in the stratosphere, which accounts for about 

90% (Volk et al., 1997; Prinn and Zander, 1999). The emissions of N2 O from soils are 

regulated by temperature and soil moisture, and therefore its variability is subject to 

climate conditions (Frolking et al., 1998; Parton et al., 1994).

1.2.3 Tropospheric Ozone

Tropospheric ozone (O3) is a radiatively active GHG produced as a secondary species 

through photochemical reactions in the atmosphere (Houghton et al., 1996; Portmann 

et al., 1997; Roelofs et al., 1997; van Dorland et al., 1997; Shine and Forster, 1999). 

Ozone plays an important role in the chemistry of the troposphere, as it controls the 

oxidation capacity of the atmosphere (Thompson, 1992; Brasseur et al., 1998; 

Fuglestvedt, 1999) and so affects the lifetimes of other GHGs such as CH4 (Prather et 

al., 2001). Due to its short lifetime in the troposphere, its temporal and spatial 

distribution is highly variable (EC, 2003; Naik et al., 2005). As the chemistry of the 

tropospheric O3 is very much dependent on its precursors, therefore the emissions o f 

the precursors are highly responsible for tropospheric O3 forcing. IPCC (2001; 2007- 

Chapter 2) has reported the annual global average value of tropospheric O3 for total- 

sky conditions is between 0.28 to 0.43 Wm'2, while the normalised forcing is between 

0.033 to 0.056 Wm'2, which in terms of magnitude is comparable with the studies by 

Berntsen et al. (1997) and Shine and Forster (1999). In the near future (2050), the 

average global tropospheric O3 forcings since pre-industrial times is projected to 

increase, particularly in Asia, due to population growth and rapid development, but 

estimate of the forcing due to differences in model input such as the latitudinal 

distributions, emissions inventories, or model processes such as transport (IPCC,

2001). For example van Dorland et al. (1997) and Brasseur et al. (1998) has projected



a higher globally averaged total tropospheric O3 forcing of 0.66 Wm ' 2 and 0.63 Wm ' 2  

compared to the earlier study by Chalita et al. (1996) of 0.43 Wm'2. In the year 2100, 

Stevenson et al. (2005) has projected a tropospheric O3 forcing of 0.48 Wm'2.

The current estimate of the tropospheric O3 burden is about 370 Tg, which is 

equivalent to a mean abundance of about 50 ppb (Prather et al., 2001; Park et a l., 

1999). From satellite measurements, it has been observed that O3 mixing ratios 

increase in the extratropical upper troposphere, indicating the high efficiency of O3 

production through photochemical reactions (EC, 2003) as well as O 3 flux from the 

stratosphere (Fehsenfeld and Liu, 1993; Murphy and Fahey, 1994; Gettelmen et al., 

1997; McLinden et al., 2000). However, recent studies based on measurements and 

modelling analyses have indicated a reduction of stratospheric O3 flux to troposphere 

of about 30% since the early 1970s to the mid 1990s (Fusco and Logan, 2003). The 

production of tropospheric O3 through photochemical reactions is very much 

dependent on the emission of its precursors, such as CO, NOx, CH4  and volatile 

organic compounds (VOCs), which are emitted primarily from anthropogenic and 

natural sources. Apart from through photolysis (see Chapter 2), tropospheric O3 is 

lost through deposition and the rate of uptake is influenced by temperature and soil 

moisture (Emberson et al., 1996; Fuhrer, 1996). The amount of tropospheric 0 3 lost 

through heterogenous chemistry (cloud chemistry) is still uncertain (Reichardt et al., 

1996; Heikes et al., 1996; Davies et al., 1998). However, loss o f O3 driven by 

heterogeneous chemistry in the marine boundary layer, correlated with BrOx radicals 

(BrOx = Br + BrO) has been observed (Barrie et al., 1988; Haussmann and Platt, 

1994).
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1.2.4 Carbon Monoxide

Carbon monoxide (CO) is not a GHG, having no significant radiative effect, but plays 

a very important role in tropospheric chemistry through reaction with OH, which 

subsequently affects the rates of production or destruction of GHGs, in particular, 

CH4 and O3 . The typical mixing ratio of CO is in the range of 40 ppb (remote)-200 

ppb (urban), with a chemical lifetime of 30-90 days (Seinfeld and Pandis, 1998). 

Most CO emissions are derived from anthropogenic sources and so are heavily 

weighetd to the northern hemisphere (Prather et al., 2001). Hauglustaine et al. (1998) 

and Bergamaschi et al. (2000) have estimated the global emissions o f CO, derived 

both from natural and anthropogenic sources, to be about 2100 Tg/yr and 2860 Tg/yr 

respectively. Based on OxComp model calculations for the year 2000, the global 

emissions of CO were estimated to be about 2780 Tg/yr (Prather et al., 2001). In the 

TAR IPCC report, emissions of CO in SEA were estimated to be about 44 Tg/yr, 

which is about 4% o f the global emissions (Prather et al., 2001). Based on the 

emission inventory in SEA by Streets et al. (2003a), CO abundance has been 

estimated to be about 65.7 Tg/yr. Meanwhile, the estimation from the 

EDGAR32FT2000 inventory has shown a higher value of about 98.8 Tg, or about 

9.1% of the global anthropogenic emissions (NEAA, 2005). The major sources of CO 

emissions in SEA from anthropogenic origins are biomass burning, combustion of 

fossil fuels, and waste burning (NEAA, 2005).

1.2.5 Nitrogen Oxides

Similarly to CO, nitrogen oxides (NOx) (NOx = N 0 2  + NO) does not directly affect 

the Earth’s radiative balance, but plays a very important role in regulating the
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production of tropospheric O3, which is a GHG. N 0 X is primarily emitted into the 

atmosphere as NO and oxidised very quickly into NO2 . The detail o f NOx chemistry 

in the troposphere is described in Chapter 2. Globally, the NOx emissions from 

anthropogenic sources in 2000 are estimated to be about 32,600 Tg N/yr, of which 

33% is emitted from fossil fuel combustions (Prather et al., 2001). In the last two 

decades, emissions from fossil fuel combustion, such as transportation activities and 

power plants, have dominated the emissions of NOx (Ehhalt, 1999; Holland et al., 

1999; Penner et a l, 1999). In the tropics, apart from the combustion of fuel, other 

important sources of emissions are biomass burning (Andreae, 1993; Lee et al., 1997; 

Prather et al., 2001), soil microbial emissions (Yenger and Levy, 1995; Jaegle et al., 

2005; Stewart et al., 2007), and lightning, which is abundant in the deep convective 

thunderstorms of the Inter-Tropical Convergence Zone (ITCZ) (Olivier et al., 1998; 

Schumann and Huntrieser, 2007) and Tropical Warm Pool of SEA. A previous study 

by Bond et al. (2002), using satellite lightning measurement from the Lightning 

Image Sensor (LIS), found that lightning NOx production in the tropics is highest over 

land masses, due to the intense convection caused by solar heating. On an annual 

basis, this study concluded that about 23% of the global NOx production by lightning 

is produced in the tropics. Lightning NOx is produced in the upper troposphere, and so 

is not considered in the atmospheric chemistry modelling reported below, which 

focuses on the planetary boundary layers.In SEA, based on emission inventories of 

Streets et al. (2003a) and EDGAR32FT2000 (NEAA, 2005), the abundance of 

anthropogenic emissions of NOx is estimated to be about 4.1Tg/yr and 7.3 Tg/yr 

respectively. Based on EDGAR32FT2000, the NOx emissions in SEA are about 5.8% 

of the global anthropogenic NOx emissions. The main sources of NOx emissions are 

biomass burning, transportation, and power plants (NEAA, 2005).
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1.2.6 Anthropogenic Non-Methane Volatile O rganic Compounds

NMVOCs play very important roles in tropospheric chemistry, particularly in the 

urban environment, where high concentrations of these compounds are observed. 

These compounds generally have short lifetimes (i.e hours to days) and therefore have 

small direct radiative forcing. However, their most important roles in tropospheric 

chemistry are their involvement in photochemistry (Derwent, 1995; Atkinson, 2000; 

Prather et al., 2001; Rappenglucka et al., 2005) and organic aerosol production

(Seinfeld and Pandis, 1998; Castro et al., 1999; Kleindienst et a l., 1999; Prather et al.,

2001), which are linked to climate change. Significant emissions o f anthropogenic 

NMVOCs are mostly concentrated in the northern hemisphere (Prather et al., 2001). 

A wide range of NMVOCs with strong diurnal and seasonal variations have been 

observed in urban environments with typical mixing ratios of 100-1999 ppb C (Singh, 

1999). In 1990, the global emissions of NMVOCs were estimated to be about 142 

Tg/yr (Middleton, 1995), and in 2000 the abundance of these compounds was found 

to increase to 186.3 Tg/yr (NEAA, 2005). The major contributor to the global 

emissions of these compounds is transport, which contributes 18% of the total 

emission. Based on the emission inventory of Streets et al. (2003a), the emission of 

NMVOCs in 2000 in SEA from anthropogenic sources was estimated to be about 16.8 

Tg/yr. Hydrocarbons from the alkane, alkene, and aromatic groups dominate the 

NMVOC emissions in SEA. The estimate from the EDGAR32FT2000 inventory is 

slightly lower, at about 14.4 Tg/yr, which is about 7.7% of the global anthropogenic 

emission (NEAA, 2005). In SEA, the main sources of emissions are from 

transportation, oil production, and biomass burning activities (Streets et al., 2003a; 

NEAA, 2005).
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1.2.7 Biogenic Volatile Organic Compounds (BVOCs)

Plants emit hydrocarbon compounds, most of which are extremely reactive in the 

troposphere with relatively short lifetimes-ranging from 1 - 2  hours to greater than a 

day (Guenther et al., 1995). Generally, biogenic emissions can be grouped into three 

categories, namely (a) isoprenoid compounds, such as hemiterpenes (e.g. isoprene), 

monoterpenes (e.g. a-pinene, limonene, etc.) and sesquiteipenes (e.g. (3-

caryophyllene); (b) other VOCs such as alkenes, aldehydes, organic acids and esters, 

alcohols, ketones, alkanes, organic sulphur, and halogenated compounds; and (c) 

other compounds that can be emitted from plants such as NO, CO and organic 

particles. Considerable studies on biogenic VOC emissions from various types of 

ecosystems have been carried out in light of the recognition of the importance of 

biogenic VOCs to tropospheric chemistry (Fehsenfeld et al., 1992; Seinfeld and 

Pandis, 1998). Isoprene and the monoterpenes, which have atmospheric lifetimes of 

considerably less than a day, are very important in tropospheric photochemistry. 

Isoprene in particular is an extremely reactive gas, and plays a dominant role in 

photochemistry and regulation of the oxidant balance of the troposphere, including O 3 

production (Poison et al., 2000; Monson & Holland, 2001). Through its capability to 

regulate the oxidant balance, it also affects the atmospheric chemical composition and 

lifetimes of many radiatively active species affecting the climate such as CH4 and 

other reactive gases such as CO (Collins et a l , 2000).

Globally, it has been estimated that about 1150 Tg C/yr of biogenic hydrocarbons are 

emitted from plants (Seinfeld and Pandis, 1998), mainly from trees although shrubs 

and non-woody plants may also emit some hydrocarbon compounds (Wiedinmyer et 

al., 2004). Isoprene has been singled out as the dominant biogenic trace gas emission,
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and is estimated to constitute half of the global biogenic emissions (Guenther et al., 

1995; Wiedinmyer et al., 2004). It has been observed that biogenic emission sources 

are concentrated in the tropics and subtropics due to the high temperature and light 

regimes, and high leaf area indices (Guenther et al., 1995; Lerdau and Keller, 1997; 

Guenther et al., 1999; Geron et al., 2002; Greenberg et al., 2004; Geron et al., 2006). 

Despite being the single largest source of biogenic VOC emissions, estimated to 

consist of more than 80% of the total global isoprene emissions (Guenther et al., 

1997; Lerdau et al., 1997), tropical ecosystems are still relatively unknown in this 

respect largely because of their extremely high species diversity, inaccessibility, and 

lack of tree canopy access facilities (Lerdau and Throop, 2000). Recent attempts to 

establish databases for tropical species have been limited to Costa Rica (Geron et al.,

2002), Panama (Lerdau & Keller, 1997; Lerdau & Throop, 2000), Puerto Rico 

(Lerdau & Keller, 1997, China (Klinger et al., 2002), central Africa (Klinger et al., 

1998, Guenther et al., 1999), and southern Africa (Guenther et al., 1996; Harley et al, 

2004). So far, in the SEA region, there is very little information available on biogenic 

VOC emissions from tropical forests. In this study I will utilise preliminary results 

from the OP3 campaign, which was based in Malasyian Borneo (Hewitt et al., 2009 

manuscript submitted), and which constitute the first comprehensive measurements in 

and above SEA rainforest.

Environmental conditions, mainly temperature, radiation, vegetation type, and foliar 

area control biogenic VOC emissions, thus making them very sensitive to climate 

change and landuse change (Lathiere et al., 2005). Urbanisation and deforestation (for 

timber extraction and agricultural expansion) have dominated the landscape in most 

tropical regions in last few decades of the 20th century. The tremendous landuse
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change in this region has significantly affected vegetation cover, distribution and type, 

thus influencing regional biogenic VOC emissions. A previous study by Ganzev.eld 

and Lelieveld (2004) on the impact of deforestation in Amazonia for grazing 

expansion has predicted a significant decrease in maximum isoprene emission fluxes, 

mainly due to a decrease in the isoprene emission factor and in the foliar density. 

However, conversion of tropical forest to other some crops (e.g. oil palm ) -  can 

result in significant increases in isoprene emissions (Owen et al., private 

communication; Hewitt et al., 2009).

1.2.8 Aerosols

Tropospheric aerosols also have anthropogenic and natural sources, and are derived 

from primary (direct emission of particles) and secondary (indirectly through gas- 

particle conversion) sources. The presence of aerosols in the troposphere is very 

important to the climate-chemistry system, as aerosols directly scatter incoming solar 

radiation; are capable of providing surface area for the reaction of reactive gases, act 

as cloud condensation nuclei (CCN), and affect primary photochemical reactions 

through scattering and absorption of radiation (Turco, 1999; Rosenfeld, 2000; Penner 

et al., 2001; Ramaswamy et al. 2001). A variety of anthropogenic aerosol types exist 

in the atmosphere such as water-soluble inorganic species (e.g sulphate), 

carbonaceous aerosols (e.g. organic carbon and black carbon), mineral dust and sea 

salt. Most of the anthropogenic aerosols originate from industrial dust and biomass 

burning, and have components such as soot, trace metals, and partially oxidized 

organic matter (Heintzenberg, 1989; Querol et al., 1995; Dickerson et al., 1997; 

Cachier, 1998). Primary biogenic aerosols, which are mainly emitted from forest 

vegetation, comprise many different types of particles such as pollen, spores, bacteria,
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algae, fungi, excrement, etc. (Artaxo et al., 1994; Andreae and Crutzen, 1997; Echalar 

et al., 1998).

In terms of aerosol abundance in the atmosphere, the total emission of aerosols 

(diameter <25 jam) from anthropogenic and natural sources are 1065-1325 Tg/yr and 

1363-3550 Tg/yr respectively (Turco, 1999). Globally, primary particles such as sea 

salt and mineral dust (soil), which are derived from natural sources, are the most 

abundant aerosols in the atmosphere, with estimated emissions of 3340 Tg/yr and 

2150 Tg/yr respectively, followed by carbonaceous aerosols (150 Tg/yr) and 

industrial dust (100 Tg/yr) (Prather et al., 2001). Carbonaceous aerosols, which are 

mainly organic carbon and black carbon, are largely emitted from biomass burning 

(Cachier et al., 1995; Artaxo et al., 1998) and fossil fuel combustion (Penner et al., 

1993; Cooke and Wilson, 1996; Echalar et al., 1998; Cooke et a l, 1999; Scholes and 

Andrae, 2000). In tropical regions such as SEA, where biomass burning occurs 

frequently every year, carbonaceous aerosol emissions are expected to be significant. 

Based on Streets et al. (2003a), the emissions of carbonaceous aerosols in term of 

organic carbon and black carbon in SEA are estimated to be about 2.9 Tg/yr and 0.5 

Tg/yr respectively, which are about 28% and 20.9 % of the total emissions o f organic 

carbon and black carbon in Asia (see Table 1.1).

Different types of aerosols have different effects on climate forcing. In modelling 

studies over East Asia by Giorgi et al (2002) using a coupled regional climate- 

chemistry/aerosol model has found that sulphate aerosols (inorganic aerosol) induce a 

negative radiative forcing at the top of the atmosphere (TOA) with maximum 

negative values of up to - 8  Wm"2 (winter) and -10 Wm 2 (summer). In other studies,
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the direct effect of organic carbon (OC) aerosols from fossil fuel was found to induce 

negative radiative forcings of -0.04Wm'2 (Penner et al., 1998) and -0.02Wm’2 (Cooke 

et al., 1999). Black carbon (BC) aerosol, on the other hand, found to induce a positive 

radiative forcing at TO A and a negative radiative forcing at the surface (Wu et al., 

2004). Earlier studies by Hansen et al. (1998) showed that BC from fossil fuel and 

biomass burning induced posititve radiative forcing of +0.27Wm'2 at TOA. Other 

studies on the assessment of BC from fossil fuel alone have found to induce positive 

radiative forcings of +0.17 Wm'2 (Cooke et al., 1999) and +0.20 Wm'2 (Grant et al., 

1999) at TOA.

1.3 Sources of Emissions in SEA

The rapid population and economic growth in the SEA region (Figure 1.2 and Figure 

1.3) will have significantly contributed to the regional and global emissions of 

reactive gases and aerosols due to increasing anthropogenic emissions (van Aardenne 

et al., 1999; Streets et al, 2002; Streets et al., 2003a), and the widespread occurrence 

of biomass burning (Crutzen and Andreae, 1990; Roths and Harris, 1996; Christopher 

et al., 1998; Goldammer, 1999; Siegert et al., 2001; Thompson et al., 2001; Streets et 

al., 2003b). Large biogenic emissions from remaining tropical rainforests (Kirchoff 

and Rasmussen, 1990; Guenther et al., 1995), may have combined with anthropogenic 

emissions to produce a greater oxidising capacity (Crutzen et al., 1985; Sanhueza et 

al., 1999). Total anthropogenic emissions of reactive gases and aerosols from Asia, 

including the SEA region, have exceeded those from North America or Europe at the 

end of the 20th century, and have now become a major source o f anthropogenic 

emissions on a global scale (Pochanart et al., 2004a).
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In tropical regions such as SEA, tropospheric chemical composition is influenced by 

monsoonal flow, associated movements of the Inter-tropical Convergence Zone 

(ITCZ) and more active photochemistry (Lobert and Harris, 2002; Pochanart et al., 

2003; Pochanart et al., 2004a). In SEA, the emissions of chemically reactive gases, 

particularly the GHGs, are mainly from anthropogenic sources (Tan, 2006). In the 

following sections, emissions of chemically reactive gases and aerosols in SEA from 

anthropogenic and natural sources are described. Though emissions from biomass 

burning are mainly due to human activities such as agricultural activities, it has been 

specifically separated, as biomass burning activities on a large scale occur 

periodically, and have a significant effect on the tropospheric chemistry in the region.
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Figure 1.2: Population growth in SEA and other regions in Asia. 
(Source: UNEP(2000); PRB (2006))
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1.3.1 Anthropogenic Emissions

The rapid development and population growth in the SEA region has led to growing 

anthropogenic emissions of trace gases, particularly NOx and hydrocarbons 

(Kunhikrishnan et al., 2004), which are capable of affecting tropospheric GHGs. The 

lack of observations with sufficient spatial and temporal resolution and modelling 

studies of anthropogenic emissions in SEA have hindered the full understanding of 

tropospheric trace gases and aerosols, particularly in relation to regional air quality 

and climate changes. The mean tropospheric NOx in the SEA region from 1997-1998 

has been calculated through numerical modelling (MATCH-MPIC) and from satellite 

observation (GOME), and was estimated to be about 2.84 x 1014 molecules/cm2 and 

3.49 x 1014 molecules/cm2 respectively (Kunhikrishnan et al., 2004). Another 

modelling study in the Asian region from January to March 1999, coinciding with the
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SW monsoon in SEA, using a chemistry general circulation model (GCM), found that 

the attribution of trace gases (i.e. CO and NOx) and aerosol emissions from SEA to 

the Indian Ocean region is minimal, particularly in the Bengal Bay (Lelieveld et al.,

2002). From the sensitivity study, the mean concentration of CO in the SEA region 

based on “only fossil fuel combustion” has a projected lower concentration value of 

between 5-30 ppbv compared with “all sources” (including biomass burning) which 

is between 100-225 ppbv (Figure 1.4). The effect of emissions from biomass burning 

on this region (Indian Ocean) is even more pronounced during the El Nino period 

(Connors et al., 1996)(See Section 1.3.2). In term of aerosols such as black carbon, 

sulphate, and organic carbon, it has been concluded that the substantial abundance of 

these aerosols in the Bengal Bay is attributed mainly to anthropogenic sources, and 

originates mainly from the Indian sub-continent (Lelieveld et al., 2002).

Fossil Fuel -  CO(%)

50 E 64E 78E 92E 106E

Figure 1.4: Percentage of CO contribution from fossil fuel combustion in SEA from 
the total anthropogenic source (note: the biomass burning emission was included as 
anthropogenic emission) (<adapted from  Lelieveld et al., 2002)
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Based on the emission inventories of anthropogenic NOx (excluding biomass burning) 

in 2 0 0 0 , the transportation sector (air, sea, and land transportation) has the highest 

share of emissions in SEA (Streets et al., 2003a; NEAA, 2005). Emissions of NOx 

from transportation sectors, mainly from automobile emissions, are known to 

contribute to local air pollution and photochemical smog. Calculations of road 

emissions with the 3-D chemical transport model MOZART-2 model show that the 

concentrations of O3 and its precursors (NOx, CO, hydrocarbons) are considerably 

enhanced in response to current surface traffic (Horowitz et a l, 2003). In polluted 

urban environments, oxidation of anthropogenic hydrocarbons in the troposphere also 

enhances the production of CO (Bruhl and Crutzen, 1999), for example through 

methane oxidation by OH (Seinfeld and Pandis, 1998). In SEA, based on the global

emissions produced by road vehicles of 381 Tg/yr CO and 25 Tg/yr NOx, a major

• 2  1 change was observed when road emissions increased to about 2-5 molecules m' s' . In

the future (2 0 1 0 - 2 0 2 0 ), under the “no further control scenario”, the transportation

sector is projected to be the dominant source of NOx emissions in SEA (van

Aardenne, 1999).

The emissions of reactive gases in the SEA region not only originate from the region 

itself, but are also transported from outside the region. During the southwest monsoon 

(summer monsoon), air masses from the Indian Ocean bring substantial amounts of 

air pollution into the region. Based on the comparison between observations o f CO 

mixing ratios on land and observations in the Indian Ocean, this has clearly indicated 

an increased concentration of CO when oceanic air is transported to continental SEA 

(Novelli et al., 1998; Lobert and Harris, 2002; Pochanart et al., 2003; Lawrence, 

2004). Similar observations were also made during the northeast monsoon (winter
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monsoon), where heavily polluted air masses from northeast Asia (China, Korea, 

Japan and Siberia) contributed to the significant increase of air pollutants in SEA 

(Newell and Evans, 2000; Porchanart et al., 2001; 2003). Figure 1.5 shows the 

schematic of pollutant transport pathways for near-surface flow over the Indian Ocean 

during SW and NW monsoons that could affect the anthropogenic emissions in SEA 

region.

30° 45° 60° 75° 90° 105° 120°

,ica\ Converge nee Zone

Figure 1.5: Pollutants transport pathways for near-surface flow over the Indian Ocean 
during summer monsoon (SW monsoon) and winter monsoon (NE monsoon) 
{adapted from  Lawrence, 2004).
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1.3.2 Biomass Burning Emissions

In SEA, there is a high variability of observed chemically reactive gases and aerosol 

emissions, both annually and seasonally, as the sources of emissions are localised. 

Furthermore, the large inter-annual variation of trace gases and aerosols from biomass 

burning, for example, is characterised by its close comiection to the El-Nino/Southern 

Oscillation (ENSO) events (Bell and Halpert, 1998; Gutman et al., 2000; Matsueda et 

al., 2002). In the tropics, biomass burning is well known as a major source of 

atmospheric pollutants (Crutzen and Andreae, 1990; Pocharnart et al., 2003).

During the intense biomass burning in Indonesia in 1997 coinciding with the dry 

season (Matsueda et al., 1999; Porchanart et al., 2004), as well as from 1993 to 1996 

(Matsueda and Inoue, 1996; Matsueda et al., 1998), a high concentration CO was 

observed in the region. During the PEM-Tropics B Campaign, CO emissions from 

biomass burning in Asia (mainly from India and SEA) accounted for about 40% of 

the global CO, and was almost four times higher than the CO emissions from fossil 

fuel combustion over the whole of Asia (Staudt et al., 2001). Modelling studies using 

a Global Chemical Transport Model (GFDL GTM) found that biomass burning in 

SEA has contributed 20-30% of CO to regional emissions over the western tropical 

pacific and eastern Bay of Bengal (Phadnis et al., 2002). From the satellite (MAPS) 

measurements, it was clearly observed that CO from biomass burning in SEA was 

enhanced in the free troposphere over the tropical Indian Ocean during the El Nino in 

1994 (Connors et al., 1996). Strong seasonality of CO injection from biomass 

burning in SEA during dry season in 1997 as well as in 1994 was observed from the 

long-term observation program using passenger aircraft of Japan Airlines (JAL) 

between Australia and Japan. For example, in October 28 in 1997, during the intense
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biomass burning in Indonesia, CO maximum level of more than 300 ppb was 

observed in SEA from a JAL airliner (Matsueda and Inoue, 1996; Matsueda et al., 

1998; Matsueda et al., 1999). Further investigation by Matsueda et al. (2002) on the 

widespread emission of CO from the biomass burning based on the major forest fire 

in Indonesia in 1997 using a 3-D global chemical transport model (CTM) developed 

by national Institute of Advanced Industrial Science and Technology (AIST) in Japan 

has concluded that biomass burning in SEA was mainly responsible for the large 

injection of CO into the upper troposphere over the western pacific in 1997 as shown 

in Figure 1.6. Similar finding has been concluded in another study on the CO 

transport in SEA using a global 3-D chemical transport model (GEOS-CHEM) for 

March 2001 by Wang et al. (2004) as shown in Figure 1.7.

250 hpa (11 km)
*0 N
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Ml S '*> I 1*0
Surface

FQ

S

Figure 1.6: Simulated CO distribution at 250 hpa and surface air on October 28, 2007 
for emission site of southern Kalimantan of Indonesia. The shaded areas indicate high 
concentration of CO up to 100 ppb (<adapted from  Matsueda et al., 2002).
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Figure 1.7: Calculated CO mixing ratios average for March 2001 in SEA using a 
global 3-D chemical transport model (GEOS-CHEM) (1° x 1° resolution) (<adapted 
from Wang et al., 2004) .

Apart from fossil fuel combustion, the seasonal occurrence of biomass burning is also 

responsible for NOx emissions into the atmosphere (Crutzen and Andreae, 1990). 

Modelling studies by Phadnis et al. (2002) have shown that about 20-30% of NOx in 

the northern Indian Ocean originated from biomass burning in South and Southeast 

Asia. Recent investigation by Tie et al. (2006) concluded that high amount of 

tropospheric NO2 column in Indonesia, Vietnam and Laos was correlated with 

biomass burning activities in Indonesia in September 2007 and Vietnam and Laos in 

April 2007. The GOME measurement of tropospheric NO2 column during those 

particular months were 5-10 x 1014 molecules/cm2 in Vietnam and Laos and 10-20 x 

1014 molecules/cm2 in Indonesia. The spatial and seasonal measurements (GOME) in 

SEA were generally found to be consistent with the model results using MOZART-2 

particularly in Vietnam and Laos (Figure 1.8). However, there were some visible
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discrepancies between the model (MOZART-2) and measurement (GOME) in 

Indonesian region but generally the differences were within 50%, which is within the 

uncertainty of both GOME measurement and MOZART-2 calculations (Tie et al.,

2006).
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Figure 1.8: Tropospheric column NO2 in SEA from the measurement (GOMES) and 
modelling calculations (MOZART-2) in April, July, September and November 2007. 
(<adapted from  Tie et al., 2006)
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The occurrence of biomass burning, combined with the modified circulation that 

occurs during the El Nino events, for example, has been attributed to the large 

enhancement of tropospheric O3 in Singapore (Yonemura, et al., 2002a), Kuala 

Lumpur, Malaysia (Yonemura et al., 2002b) and Watukosek, Indonesia (Fujiwara et 

al., 1999; Fujiwara et al. 2003) in September to November 1999. Observations in 

Singapore have recorded the highest concentration of O3 (112 ppbv) at 8  km altitude 

on 23rd October 2002. The O3 enhancement has been correlated with the 

photochemical production in the air masses from the biomass burning in the SEA 

region. During the normal period or weak La Nina period (August to September to 

1999), the tropospheric O3 averages at two observation sites in Indonesia (Watukosek 

and Kototabang) were 25.5 DU or about 6 . 8 6  x 1015 molecules/cm2 and 18.9 DU or 

about 5.08 x 1015 molecules/cm2 respectively, which are the normal values at these 

sites (Fujiwara et al., 2003) [note: 1 Dobson Unit (DU) is equivalent to a horizontal 

density o f  2.69 x 10N molecules/cm2 at standard temperature (273.16K) and standard 

pressure (101.325 kPa)]. Backward trajectory analyses using the HYSPLIT 4 

(HYbrid Single-Particle Lagrangian Integrated Trajectory) Model has also shown a 

large O3 enhancement in the SEA region during the occurrence of biomass burning 

between February and May in 1998 (Yonemura et al., 2002a).

A recent study based on GOME measurements and modelling results using 

MOZART-2 (Tie et al., 2006) has found that emission of NOx from biomass burning 

in SEA in April, July and November 1997 has significantly enhanced the 

tropospheric O3 column in the region. During the intense biomass burning in 

Indonesia in 1997, the tropospheric column O3 has been observed to increase between 

35-40 DU (or 0.9 -  1.1 x 1017 molecules/cm2). This observation has been captured
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well by MOZART-2 model as shown in Figure 1.9 despite some differences of 

between 5-10 DU, though these differences were thought to be not significant in 

recognizing the uncertainty of about 5 DU in TOMS/MLS (Tie et al., 2006). 

Observation in September 2007, when there were extensive forest fires in Indonesia, 

the total tropospheric NOx increased by more than 80% and the tropospheric column 

O3 by 30-40% (Figure 1.10). The impact of NOx emission from biomass burning to 

the enhancement of tropospheric column O3, however, was not observed in middle 

and higher latitude such as in central and eastern Asia (i.e China, Korea and Japan).

Intense aerosol emissions in the form of particulate matter have been identified as one 

of the main pollutants from biomass burning activities. It was estimated that the 

global emissions of total particulate matter (TPM) from biomass burning are 36-154 

Tg/year (Crutzen and Andreae, 1990). In SEA, during the intense biomass burning in 

the last quarter of 1997, trajectory modelling results have shown the particulate matter 

(PM 10) surge to peak at 416 pg/m 3 in Kuala Lumpur on 19 September 1997 (Koe et 

al., 2001), which exceeded the Malaysian Ambient Air Quality Guideline Standard of 

150 pg/m 3 (24-hr average). For the same period, similar trends of high concentrations 

of particulate matter were also observed in a number of trajectories, as well as at the 

ground measurements in Kuantan (Malaysia), Singapore, Jambi and Palembang 

(Indonesia). Measurements of an aerosol index from TOMS instrument-which can 

detect UV-absorbing aerosols but is less sensitive to pure scattering aerosols such as 

sea salt and sulfate aerosol and so allows a more accurate comparison for absorbing 

aerosols such as biomass carbonaceous aerosols - has shown an enhancement of 

aerosol index (> 0 .7 ) during the investigation of biomass burning emission in 

Indonesia in 1997 (Figure 1.11) (Chandra et a l , 2002; Generoso et a l , 2003).
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Figure 1.9: Tropospheric column O3 in SEA from the measurement (TOMS/MLS) 
and modelling calculations (MOZART-2) in April, July, and November 2007. 
((adapted from  Tie et al., 2006)
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Figure 1.10: Impact of biomass burning NOx emissions on tropospheric column O3 

in SEA from the modelling calculations (MOZART-2) in April, July, and November 
2007. ((adapted from  Tie et al., 2006)
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Figure 1.11: The aerosol index (Al) from the Earth-Probe TOMS in SEA during the 
intense biomass burning in Indonesia in September and October 1997. {adapted from 
Generoso et al., 2003)

1.3.3 Biogenic Emissions

Biogenic volatile organic compound (BVOC) emissions in SEA are generally 

unknown (See Section 1.2.7). So far, there is very little information available on 

biogenic emissions in the tropical region of SEA. Recent BVOC measurements on 95 

species of trees/plants in the Yunan Province in China (north of SEA), where most of 

the species are also widely found in SEA such as Elaeis guineensis (oil palm), Hevea 

brasiliensis (rubber tree), Mangifera indica (mango tree), Moraceae family (fig tree), 

Palmae (palm trees), Parashorea chinensis (hard tree), Bambusoideae family 

(bamboos), etc. have found high variability (Geron et al., 2006). Isoprene and 

monoterpene emissions from some of these species are shown in following Table 1.2. 

These studies have also indicated that the emission rates of monoterpenes such as a- 

pinene and (3-pinene from H. brasiliensis are 2-13% higher than earlier studies in 

southern China by Klinger et al. (2002).
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The oil palm (E. guineensis) and rubber tree (H. brasiliensis) are common crops in 

SEA. Malaysia and Indonesia have the largest plantations of oil palm and rubber in 

the world (FAO, 2006). Considering the large land cover of oil palms and rubber trees 

in the region, and at the same time, rapid conversion of forested area into plantations, 

there are potentially significant impacts to biogenic VOC emissions. In an earlier 

study by Steiner et al. (2002) in the northern part of SEA it was estimated that the 

human-induced land cover changes, characterised by the conversion o f about 30% of 

the forested area into cropland, led to a decrease of 30% in isoprene and 40% in 

monoterpene annual emissions.

Table 1.2 Isoprene emissions from selected plants in SEA

Families Species

(Common Name)

E F C

( H g C g ' l T 1)

E F 1 

(|ig  C  g - 'h 1)

Isoprene M onoterpene Isoprene M onoterpene

Anacardiaceae Mangifera indica 25 -130 - - -

(mango)

Arecaceae Calamus gracilis 146 - - -

Elaeis guineensis 28 - 3-22 0.0

(oil palm) 5.5* 0.15*

Euphorbiaceae Hevea brasiliensis 0.0 - 0.0 0.4-2.7

(rubber tree)

M oraceae Ficus altissima 22-118 - - -

Ficus annulata 0-57 - 4-14 0.11

Ficus auriculata 15 - 4-82 0.2-3.1

Ficus esquiroliana 98-190 - - -

Ficus fistulosa 49 - 22-31 1.2

Ficus maclelandii 49 - 28-66 0.0

Ficus microphylla 50-57 - - -

Ficus regiolosa 39-60 - - -

EF^ = Emission fa c to r determined from  the EPA cuvette and PID system
EFl  = Emission fac tor determined from  the Lancaster cuvette and GC/FID system

Source: Extracted from  G eron et al. (2006)

* = Emission fluxes above the oil palm plantation during the OP3 measurement campaign in Borneo  
Source: E xtracted from  N em itz  et al. (2008)
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1.4 Climate-Atmospheric Chemistry Models

The chemistry-climate system is controlled by a large number of complex chemical 

and physical processes in the atmosphere. In light of the complex and non-linear 

interactions between the atmospheric chemistry and climate, numerical models are 

pivotal in carrying out any study. Numerical models, which have been increasingly 

developed over the past 15 years, have tremendously improved our understanding of 

the global and regional chemistry-climate interactions. Further, in order for policy

makers to effectively address the impact of climatically reactive gases to regional and 

global climate changes and vice versa, it is important to provide accurate and reliable 

assessments that are based on accurate physical models, which account for the 

interactions between atmospheric components and climate. Tropospheric chemistry 

models are used to project emissions, transport, chemical reactions and conversions of 

tropospheric gases. Meanwhile, climate models are used to simulate the dynamics and 

thermodynamics of the atmosphere and oceans. In order for these two models to 

interact, coupling of these models is required as demanded by the physics of the 

processes involved (Wang and Prinn, 1999). Coupling can be on-line or , as in this 

study, off-line. Tropospheric climate-chemistry models are useful tools for the 

understanding of pollutant dynamics in the atmosphere, and how the climate might 

evolve or respond to the changes of future atmospheric chemical compositions and 

vice versa.

1.4.1 Climate Models

General circulation models (GCMs) with global coverage have been the primary tools 

used in climate studies. The current resolutions of GCMs of 200-500 km are capable
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of simulating the global climate of the recent past reasonably well. However, due to 

their low resolution, the model results produce apparent errors of as much as ±5°C in 

temperature, and -40% to +60% in precipitation for regional climates (IPCC, 2001; 

Leung et al., 2003; Fowell, 2006). In order to provide a more realistic response of 

regional climate changes to radiative forcings, particularly in areas with complex 

orography, coastline, and landuse patterns, higher resolution regional climate models 

should be considered (IPCC, 2001; IPCC, 2007-Chapter 11).

A regional climate model (RCM) is a higher resolution model that covers a limited 

area of the globe. RCMs are comprehensive physical models, which include the 

components of the climate system of the atmosphere and land surface, as well as the 

representation of the important processes within the climate system. In RCMs the 

physical processes that take place on much smaller spatial scale than the GCM model 

grid are taken into account using parameterizations, where the process is represented 

by relationships between the area or time averaged effect of such sub-grid scale 

processes and the large scale flow (Jones et al., 2004). In this manner, the RCMs 

produce high resolution simulations for region of interest the simulations being 

consistent with the large-scale simulations from the GCM. There are a number of 

reasons why RCMs are necessary in the investigation of regional climate change. 

(Jones et al., 2004). RCMs simulate current climate more realistically, particular in 

mountainous areas and closer to the coastline on scales of 100 km or less (Figure 1.12 

and Figure 1.13). RCMs also represent smaller islands in climate change simulations, 

and so resolve better the difference in thermal inertia between land and ocean (Figure 

1.14). Another interesting feature of RCMs is their capability to simulate better 

extreme changes of weather such as heavy rainfall events. RCMs can also provide an
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indication of mesoscale weather features such as cyclones and hurricanes, which is 

absent in the driving GCM (Figure 1.15).

2 3 5 7
Precip itation  (m m /day)

300 km GCM 50 km RCM 10 km observations

Figure 1.12: A more realistic simulation by RCM of enhanced rainfall (mm/day) over 
the mountains of the western part over Great Britain in winter (<adapted from  Hulme 
et al., 2002).

-0.5 -0.2 0 0.2 0.5 1
Precipitation (mm/day)

GCM RCM

Figure 1.13: More detail on precipitation changes in winter (between now and the 
2080s) simulated by RCM over the Pyreenees and Alps in Europe (■adapted from  
Durman et al., 2001).
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4 5 6 7
Temperature (°C)

GCM RCM

Figure 1.14: A temperature simulation by RCM in summer over southern Europe 
shows the details of simulation over islands in Mediterranean (e.g. Corsica, Sardinia 
and Sicily) in comparison with GCM simulation (■adapted from  Jones et al., 2004).

GCM RCM

998 1002 1006 1010 1014 1018 1022
Pressure (hPa)

Figure 1.15: Mesoscales weather features, such as the pressure pattern indicating a 
cyclone in the Mozambique Channel are clearly illustrated in the RCM but absent in 
the driving GCM (adapted from Hudson and Jones, 2002).
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The RCMs can be nested into a GCM either one-way or two-way, but to date the 

usual nested regional climate modelling technique consists of using initial conditions, 

time-dependent lateral meteorological conditions, and surface boundary conditions, to 

drive RCMs in one-way mode (Giorgi et al., 2001). The one-way nesting technique 

doesn’t allow feedback from the RCMs simulation to the driving GCM. Theoretically, 

the one-way nesting technique could pose limitation such as the effects of systematic 

errors in the driving fields provided by GCMs. Also the lack of two-way interactions 

between RCM and GCM can only show the feedback effects from coarse scales to 

fine scales but in the real atmosphere, feedbacks derive from different regions and 

interact with each other (Giorgi et al., 2001). Despite the setbacks in terms of 

dependency on input from the GCM driving model, the lack of two-way nesting with 

its driving model, as well as its computational cost, RCMs are still developing rapidly 

and are widely used in climate change investigations as they are capable of providing 

higher spatial and temporal resolution information for a number of climatic variables 

while still providing better representation than the GCM for some weather extremes.

Among the earliest RCMs is the NCAR Regional Climate Model (RegCM), which 

was initially built upon the PSU/NCAR Mesoscale Model version 4 (MM4) by the 

National Center for Atmospheric Research (NCAR) and nested into the NCAR 

Community Climate Model (CCM) (Dickinson et al., 1989; Giorgi and Bates, 1989). 

Since then, the model has been updated and improved with new modules added for 

use in chemistry-climate interaction studies (Giorgi et a l,  1993; 1999: 2002). 

Meanwhile, the Canadian Regional Climate Model (CRCM), which was developed 

based on the dynamic core of the Compressible Community Mesoscale model (MC ), 

is nested one way on the second generation Canadian GCM (GCMii) and with an

36



execution resolution of 45 km (Laprise et al., 1997; Caya and Laprise, 1999). This 

model has been tested and widely used in a number of regional climate studies 

(Bouchet et al., 1999; Barrette and Laprise, 2002; Anderson et al., 2003; Laprise et 

al., 2003; Girard and Bekcic, 2005). The Climate High Resolution Model (CHRM) is 

another regional climate model that has been used in a number of climate studies in 

Europe for example by Luthi et al. (1996) and Vidale et al. (2003). This model is 

developed based on the High Resolution Model (HRM) version 1.6 of the German 

Weather Service, DWD. The PRECIS RCM, which was used in the present study was 

developed by the Hadley Centre with a resolution of 25 km x 25 km is capable of 

producing a high resolution climate model with reasonable computational 

requirements (Jones et al., 2004) and has been used in a number o f climate change 

impact studies in South Asia (see Bhaskaran et al., 1998; Hassel and Jones, 1999; 

Islam and Mannan, 2005; Challinor et al., 2006; Kumar et al., 2006), East Asia (see 

Erda et al., 2005; Wang and Shallcross, 2005), Europe (see Moberg and Jones, 2004; 

Lalas et al., 2005), Africa (see Hudson and Jones, 2002; Arnell et al., 2003; Beraki, 

2005), and North America and South America (see Martineu, 2005; Marengo and 

Ambrizzi, 2006).

1.4.2 Atmospheric Chemistry Models

The integration of individual atmospheric processes and their interactions can be 

better understood through mathematical modelling. Atmospheric chemistry models 

have been widely used over the last 2 0  years for various objectives, mainly to study 

the transport and chemistry of trace gases and aerosols in the atmosphere, as well as 

to project and assess future changes in the chemical composition o f the atmosphere 

and its effect on climate change. Basically, atmospheric chemistry models are
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developed based on Lagrangian or Eulerian models (Seinfeld and Pandis, 1998). The 

Lagrangian models simulate the chemical composition of a given air parcel advected 

with the local wind. Usually no mass exchange occurs between the air parcel and its 

surroundings except for species emissions. The Eulerian models describe the 

concentrations in an array of fixed computational cells, and species emissions can 

enter and leave the cell with the wind. All atmospheric chemistry models are 

characterized by their dimensionality (Seinfeld and Pandis, 1998; Rhode, 1999).

CiTTyCAT (Cambridge Tropospheric Trajectory Model of Chemistry and Transport) 

is a zero-D Lagrangian atmospheric chemistry model that simulates the interaction of 

a range of chemical compounds in the lower atmosphere. This model, which was 

developed by Wild (1995) was used in the present work for the investigation of the 

climate changes feedback on tropospheric chemistry in SEA. This chemistry model 

has been used in a number of tropospheric chemistry simulation studies such as by 

Evans et al. (2000); Methven et al. (2001); Emmerson (2002); Donovan et al (2005) 

and Ryder (2005). Chemical Transport Models (CTMs), which typically have 

modules to treat pollutant emission, transport, chemical conversion, and removal, are 

also widely used to simulate air pollutants within 3-D and time-dependent framework 

(Russell, 1997; Roelofs and Lelieveld, 1997; Wang et al., 1998; Crutzen et ah, 1999; 

Wild and Prather, 2000; Horowitz et ah, 2003). These models also rely on 

meteorological fields generated from global climate models to drive the models for 

long-term trends and impact studies (Wang et ah, 1998; Horowitz et ah, 2003), or 

from regional climate models for simulating short-term trends and evaluating model 

performance during specific periods (Byun and Ching, 1999; Klonecki et ah, 2003). 

For example, GEOS-CHEMs, a 3-D model, is driven by assimilated meteorological
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observations from the Goddard Earth Observing System (GEOS) of the NASA Global 

Modelling and Assimilation Office (GMAO) with a temporal resolution of 6  hours 

(.http://www-as.harvard.edu/chemistry/trop/geos/ index.html). This model has been 

widely used in a number of atmospheric studies (see Bey et al., 2001; Liu, 2004; Park 

et al., 2006). STOCHEM is another 3-D CTM developed by the Hadley Centre, which 

is driven by meteorology field data from the Hadley Centre GCM. The details o f this 

model are described by Collins et al. (1997; 1999) and also widely used in a number 

of studies related to atmospheric chemistry and modelling (see Collins et al., 2000; 

Derwent et al., 2006)

1.4.3 Climate-Chemistry Models

The chemistry of the troposphere is dominated by the responses of the atmosphere to 

a variety of emission sources, both anthropogenic and natural. Emissions of 

chemically and radiatively important trace gases from these sources are crucial input 

to the climate-chemistry models. In the modelling studies, emissions of long-lived 

gases, which are the key determinant changes in radiative forcing such as CO2 , CH4 , 

N 2 O, and CFCs are included along with several short-lived trace gases such as NOx, 

SO2 , and CO. Different scenarios of emissions are normally employed in modelling 

studies to capture the atmospheric chemistry sensitivity to climate changes, which can 

also be linked to existing and/or proposed policies for control of emissions o f aerosols 

and climatically important trace gases. The output of the models can be utilised to 

drive other regional or global models (i.e. terrestrial ecosystem models, etc.) that can 

give feedback to the climate models, chemistry models, and natural emission models 

(Prinn et al., 1999).
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The most advanced climate-chemistry modelling studies use 3-D climate-chemistry 

models, where climate and atmospheric chemistry are fully coupled, and which can be 

used to simulate both the climatological and atmospheric chemical processes 

simultaneously(Adams et al., 1999; Kiehl et al., 2000; Koch et al., 2001; Jacobson, 

2001). However, one of the limiting factors to using these models is the 

computational resource requirement, which is very high. Various component of the 

models are integrated and the interactions within the climate system and chemistry 

system are executed by exchanging simulated state parameters among component 

models (Yu, 2004). The back-and-forth passing of simulated parameters between the 

models system constitutes a coupling interface, where these coupling interfaces are 

responsible for coordinating and processing information flow among component 

models and this normally require high-performance computational tools (Yu and 

Mechoso, 1999) Processing and analyzing the huge amounts of output from long-term 

simulations of coupled climate-chemistry model can also be time-consuming and 

difficult.

A recent approach in climate-chemistry modelling is to extend the GCMs to become 

Earth System Models or integrated models, where global dynamics, chemistry, 

biology, and oceans are interactively coupled. For example, the MIT Integrated 

Global System Model (IGSM), which was developed at the Massachusetts Institute of 

Technology was designed for analysing global environmental changes due to 

anthropogenic causes, quantifying the uncertainties associated with projected 

changes, and assessing the cost and effectiveness of proposed mitigation measures on 

climate change (Sokolov et a l, 2005). The model includes an economic model for 

analysis of GHGs and aerosol precursors and mitigating measure proposals, 

atmospheric chemistry and climate model, and terrestrial ecosystems model. In this
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integrated model, the emission model outputs are used to drive the coupled 

atmospheric chemistry-climate model, and meanwhile the climate model outputs are 

used to drive the terrestrial ecosystems model to project the land vegetation changes, 

land CO2 fluxes, and soil composition, which give feedback to the coupled chemistry- 

climate and natural emissions models. This modelling approach has been used to 

study the effects of ozone damage on carbon sequestration and its effect on climate 

change policies (Felzer et al., 2005) and climate changes for the 21st century in 

response to the increasing emissions o f GHGs and aerosols (Dutkiewicz et al., 2005).

1.5 Modelling Climate Changes and Tropospheric Chemistry in 

SEA

The broad focus of the present study is to investigate the regional climate changes 

based on a number of emission scenarios, and to subsequently investigate the regional 

atmospheric chemistry changes based on feedback from regional climate change 

modelling results. Further investigation of feedback from the regional climate- 

chemistry system in response to the changes of land cover and emissions are also to 

be carried out. Figure 1.16 shows the conceptual framework of this study. The study 

area covers most of the SEA region with a domain of 33° latitude x 55° longitude 

(approximately 2.20 x 107 km2) (see Figure 3.1). The domain to be studied is at the 

upper end of regional studies considering the operational definition of the “regional 

scale” as areas between 104  and 107 km 2 (Giorgi et al., 2001). Regional- and local - 

scale forcings such as complex topography, land-cover characteristics, atmospheric 

aerosols, radiatively active gases, inland water bodies, ocean-land contrast, sea ice, 

snow, and ocean current distributions, which modulate the spatial and temporal 

structure of the regional climate signal are embedded within the global scale
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circulations regimes that can influence the global scale circulation features (Giorgi et 

al., 2 0 0 1 ).

Regional Climate 
Changes CiTTyCAT

PRECIS Tropospheric
Chemistry

BVOCEM
Land Cover 

Changes

Figure 1.16: Conceptual framework of relationship between land cover-climate- 
tropospheric chemistry system. The dotted line relationships were not investigated in 
the present study.

For the projection of climate changes in the region, PRECIS-RCM (Providing 

REgional Climates for Impact Studies - Regional Climate Model), a regional climate 

modelling system developed by the Hadley Centre (Jones et al., 2004) was used. The 

PRECIS RCM was used to downscale output from the global circulation model 

(GCM), for both recent and future climates. The RCM is nested within the coarse- 

scale global model to simulate the climate over the SEA region at a finer spatial and
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temporal resolution. Emission scenarios were constructed based on the 

Intergovernmental Panel on Climate Change (IPCC) emission scenarios (IPCC, 2001) 

as an input to the PRECIS. Meanwhile, a simple chemical transport model, 

CiTTyCAT (Cambridge Tropospheric Trajectory model of Chemistry and Transport) 

was used to investigate the processes controlling the level of trace compounds, 

including aerosol components, in the SEA region model, which was developed and 

described by Wild et al (1996). The model has included a comprehensive chemical 

mechanism scheme, emissions, deposition, and mixing from the free troposphere. The 

meteorological fields data, which have been obtained and calculated offline from 

PRECIS model, were used to drive the CiTTyCAT Models.

1.5.1 Research Aims and Objectives

The SEA region is one of the most populated areas in the world with rapid 

urbanization and industrialization, and expansion of agricultural activities but yet still 

covered largely by tropical forest. Rapid changes to the general land cover of the 

region, coupled with the increase in anthropogenic emissions and naturally high levels 

of biogenic emissions have been the impetus of this study. The objective of this study 

is to project the future regional climate in SEA based on IPCC emission scenarios 

using the PRECIS regional climate model. Interactions between the regional climate 

change and tropospheric chemistry are also investigated by using the meteorological 

field output data from the regional climate model to drive CiTTyCAT, a tropospheric 

chemistry model. This study is also extended to investigate the effects of land cover 

changes on the regional climate-tropospheric chemistry system at the regional scale.
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Improved knowledge on climate-chemistry interactions in less-studied areas such as 

SEA is necessary for the evaluation of which mechanisms are important to be 

incorporated into models. These mechanisms include chemistry, emissions, land 

surface, and atmospheric dynamics. This region in particular is forecast to experience 

the largest increase of O3 forcings in association with its rapid increase of population 

and extensive economic activities (Dorland et cil., 1997; Brasseur et al., 1998). A high 

rate of land cover change, such as rainforest conversion to other types of land use 

mainly agriculture, was reported to be between 20-60% from 1981-1990 in SEA 

(WRI, 1994; O’Brien, 2000), and intensive anthropogenic land-use change in SEA 

may cause greater changes to the local radiative forcing than that of all the 

anthropogenic greenhouse gases together (IPCC, 2001).

This study is motivated by four scientific questions. First, what spatial patterns of 

climate changes are predicted by a state-of-the-art regional climate model over SEA? 

secondly, based on the projected future climate changes, what would be the projected 

spatial patterns of secondary tropospheric pollutants, especially ozone in the region? 

Thirdly, in light of the interactions between climate changes and tropospheric 

chemistry, what one-way feedbacks (climate change feedbacks on tropospheric 

chemistry) arise from the new chemical environment? Finally, what is the role o f land 

cover changes to the regional climate-chemistry system?
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1.5.2 Outline of the Study

This thesis, underlined by the abovementioned aims and objectives, is organized as 

follows:

The details of the tropospheric chemistry of the chemically reactive gases and 

aerosols, and the climate-chemistry interactions, and the effect of land surface change 

on the climate-chemistry system are discussed qualitatively in Chapter 2. Specific 

reference is made of the perturbation effects of tropospheric chemical composition on 

climate change, and also the climate change feedbacks on tropospheric chemistry. 

Chapter 3 and Chapter 4 describe the details of the regional climate model (PRECIS) 

runs used in this study, which has focused on the investigation of the regional climate 

change and the importance of land cover changes to the regional climate changes. 

Chapter 5 describes the investigations of landcover changes and climate-change 

effects to the regional biogenic emissions. In Chapter 6 , the impacts of climate 

change, landcover changes and biogenic emissions on tropospheric chemistry will be 

described. Chapter 7 summarises the main conclusions of this study and its 

implications, and discussion of future investigations.
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Chapter 2

TROPOSPHERIC CHEMISTRY AND CLIMATE 
CHANGES

2.1 Introduction

The perturbation in atmospheric abundance of climate active gases and aerosols, both 

by human and natural activities, either directly or through emissions of their 

precursors, is well recognised. Changes in the distribution of these tropospheric gases 

and aerosols through chemical transformations have been known to affect the 

dynamics o f the chemistry-climate system, such as the changes of temperature in the 

troposphere (Stevenson et a l , 2000). Conversely, climate changes affect the chemical 

and physical processes that determine atmospheric composition through changes in 

temperature, water vapour, short wave radiation, and other factors (Ravishankara and 

Liu, 2003). The emissions of GHGs, reactive gases, and aerosol have been discussed 

in Chapter 1. In this Chapter, atmospheric chemistry processes are reviewed.

2.2 Atmospheric Chemistry of Reactive Gases and Aerosols

The lifetimes of most atmospheric species are strongly affected by atmospheric 

concentrations o f oxidant species, which play vital roles in tropospheric chemistry as 

they have the capability to control the chemistry and chemical composition of the 

troposphere (Guicherit and Roemer, 2000). In polluted atmospheres, important 

oxidants, which have a greater oxidation potential than oxygen, are formed through 

chemical reactions among the primary pollutants. The abundance of oxidants such as 

tropospheric OH radicals largely defines the oxidising capacity of the atmosphere, as
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they are capable of reacting with hundreds of emissions from anthropogenic and 

natural sources (Thompson, 1992). Other reactive oxidants such as O3, nitrate (NO3) 

radicals, excited state atomic oxygen (0*D), hydroperoxyl (HO2 ) radicals, organic 

peroxy (RO2 ) radicals, hydrogen peroxides (H2 O2 ), ground state atomic oxygen (0 3P), 

and organic peroxides (ROOH) are also important to the tropospheric oxidising 

capacity (Fuglestvedt et al., 1999; Thompson, 1992).

One of the most important roles played by O3 is the generation of O H  radicals, which 

are responsible for initiating the oxidation of a wide variety of atmospheric trace 

constituents (Thompson, 1992). O H  is formed when O3 undergoes photolysis to form 

excited oxygen, 0(*D) (R l). Subsequently 0 ( !D) will either be deactivated to 

ground-state oxygen 0 ( 3 P) and be rapidly oxidised to reform O3 (R2 & R3), or will 

react with vapour (H2O) to produce O H  radicals (R4) (Atkinson et a l , 1997; DeMore 

et a l, 1997).

0 3 + h v O  (*D) + O2 (Rl)

0(*D) + M 0 ( 3 P) + M (R2)

0 ( 3 P) + 0 2  + M 0 3 + M (R3)

0 ( JD) + H20  -*  20H  (R4)

Photolysis o f O 3 is the main route for OH radicals production in the atmosphere and

the OH production process itself depends on the quantum yield for O (*D) production.

In the lower troposphere, where H20  is present at mixing ratio of up to 104  ppm (1%) 

and the rate constant of reaction R4 is larger than reaction R2 by a factor of 10, most 

o f the generated 0 ( lD) reacts with H20  to produce OH (Seinfeld and Pandis, 1998). 

At room temperature (278K) and 50% relative humidity, approximately 0.2 OH
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radicals are formed per 0 ( ,D) atom generated from the O3 photolysis. As the H2 O 

mixing ratio decreases with altitudes in the troposphere, and at the same time the O3 

mixing ratio generally increases, therefore the production of OH radical concentration 

through reaction R4 will be diminished (Dentener and Crutzen, 1993).

Away from sources of reactive organic compounds and nitrogen oxides, the OH 

radicals will also react with O3 (R5) to produce HO2 , which subsequently reacts with 

O3 to reform OH radicals (R6 ), and also, the combination of two HO2  radicals will

produce H2 O2  (R7), either in the atmosphere or inside cloud droplets (Graedel and

Weschler, 1981).

OH + 0 3 -» H 0 2  + 0 2  (R5)

H 0 2  + 0 3 — OH + 2 0 2  (R6 )

H 0 2  + H 0 2 ^  H 2 0 2  + 0 2  (R7)

The OH radical is extremely reactive, and is the most important oxidizing agent in the 

gas phase (Graedel, 1978; Thompson, 1992). The concentration of OH radicals in the 

troposphere is mainly controlled by chemical cycling of the hydrogen oxide family 

and the nitrogen oxide family both of which, in turn, depend on the ratio of reactive 

organic compounds to nitrogen oxides in the air parcel. The OH radical and other 

radicals are also responsible for the transformation and initiation of the removal of 

many important tropospheric trace gases, which will be further highlighted in the 

following sections.
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2.2.1 Chemically Reactive Gases

Chemically active gaseous pollutants emitted into the lower levels of the troposphere 

can be transported for long distances in the atmosphere, and play a major role in 

atmospheric chemistry. The regional atmospheric chemistry of chemically active 

gases such as NOx, CO, and VOCs are known to affect the regional climate by 

influencing the emission rates and residence times of GHGs such as O3. In the 

following sections, important chemical reactions of reactive gases in the troposphere 

will be discussed briefly.

2.2.1.1 Chemistry of NOx in the troposphere

In the troposphere, NOx is emitted from anthropogenic and natural sources (see 

Chapter 1: Section 1.2.5). Nitric oxide (NO) is emitted to the atmosphere from 

anthropogenic and natural sources, and rapidly oxidised into NO2  by a number of 

oxidants, primarily O3 and radicals such as HO2  and RO2  (R8-R10) (Atkinson, 2000).

NO + 0 3 -* N 0 2  + 0 2  (R8 )

NO + H 0 2  N 0 2  + OH (R9)

NO + R 0 2  -> N 0 2  + RO (Rl 0)

Where RO and R 0 2  are -oxy and -peroxy radicals formed from the oxidation of 

reactive organic compounds. During daytime, N 0 2  is photolysed to reform NO and 

0 ( 3 P) (Rl 1), where 0 ( 3P) will combine rapidly with 0 2  to form 0 3 (R3):

N 0 2  + hv NO + 0 ( 3 P) (Rl 1)

0 ( 3 P) + 0 2  + M -* 0 3 + M (R3)
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So, reactions R3, R 8  and R ll  form a rapid cycle with a characteristic timescale of 

only a few minutes. These reactions define what is called the photostationary state for 

O 3 . Reactions R9 and RIO, on the other hand, produce NO2  without consuming O3 , 

and so constitute a source o f NO2  (or O3 ). When reactions R9 and RIO occur 

alongside reactions R l and R4-R7, O3 production occurs.

In polluted conditions, another important reaction involving NOx is the reaction of 

NO 2  with O3 to form nitrate (NO3) radicals (R12), which play an important role in 

night-time chemistry due to their high reactivity (Atkinson, 2000). During daytime, 

NO 3 will rapidly dissociate to NO and NO2  (R13 & R14), but at night-time, NO 3 will 

react again with NO 2  to form dinitrogen pentoxide (N2 O5 ) (R15) (Wayne et al., 1991; 

Carslaw et al., 1997; Allan et al., 1999; Atkinson, 2000; Wayne, 2000). In this case, 

the reaction with NO 3 becomes a night sink of NO2 .

N 0 2  + 0 3 N 0 3 + 0 2  (R 1 2 )

N 0 3 + hv N 0 2  + 0 ( 3 P) (R13)

N 0 3 + hv -*■ NO + 0 2  (R14)

N 0 3 + N 0 2  + M «=► N 2 O5 + M (Rl 5)

During night-time, the heterogeneous hydrolysis of N2 O5 will lead to the formation of 

nitric acid (HNO3 ) (R16) (Mentel et al., 1996), which is an alternative pathway to 

HNO3 formation, besides the gas-phase oxidation of N 0 2  by OH radicals (R17) 

during daytime (Ehhalt et al., 1991; Atkinson, 2000). Nitric acid (HONO2 ) will be 

removed in the atmosphere through wet and dry deposition, and uptake of N2 O5 by 

aerosols (Jacob, 2000; Wesley and Hicks, 2000). Additional homogeneous oxidation 

of NO by OH will lead to the formation of nitrous acid (HONO) (Rl 8 ) during night
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time, which is also attributed to the heterogeneous hydrolysis of NO2  on aerosol and 

particulate matter surfaces (Lammel and Cape, 1996; Jacob, 2000).

N 2 0 5 + H20  (aq) -> 2H N 0 3 (R16)

N 0 2  + OH + M — HNO3 + M (R17)

NO + OH + M HONO + M (R18)

Formation o f HONO provides a reservoir for OH that can be released when an air 

parcel next experiences daylight, because HONO is rapidly photolysed at visible 

wavelengths.

2.2.1.2 Chemistry of tropospheric ozone

Ozone (O3 ) has been recognised as one of the most important oxidants in the 

troposphere (Thompson, 1992). Interest in this oxidant, particularly its distribution at 

the global and regional scale, has been enormous, mainly due to its toxicity but also 

because O3 is an effective GHG in the middle and upper troposphere (Lacis et al., 

1990; Wang et al., 1980). This is in contrast to CO2  and water vapour, which are also 

GHGs, abundant in the atmosphere, but which are not chemically reactive, and 

therefore their abundance in the lower atmosphere is not defined by chemical 

processes (IPCC, 2001).

The net effect of the photostationary state for O3 is neither to generate nor destroy O3 , 

and therefore, for ozone to accumulate, an additional pathway is needed to convert 

NO to N 0 2. The photochemical oxidation of VOCs, such as hydrocarbons and 

aldehydes provides that pathway (Finlayson-Pitts & Pitts, 2000; Seinfeld & Pandis,
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1998). The degradation of VOCs (including CH4 ) will lead to the formation of 

intermediate RO 2  and HO2  radicals, which will react with NO to form NO2  (R19 & 

R9). Subsequently, photolysis of NO2 will lead to the net formation of O3 (Rl 1 & R3) 

(Atkinson, 2000; Wayne, 2000). The net result of this chain of reactions is that NOx is 

acting as a very important precursor of O3 formation in the troposphere.

R 0 2  + NO RO + N 0 2  (R l9)

H 0 2  + NO -> OH + N 0 2  (R9)

2(NOz + hv — NO + 0 ( 3 P)) (Rl 1)

2 (0 ( 3 P) + 0 2  + M -» 0 3 + M) (R3)

Net: R02 + H 0 2  + 2 0 2  — no, m , hv ^  RQ + 0 H +  2 o 3

Much of the tropospheric O3 production is balanced by other photochemical reactions 

that involve O3 destruction, mainly through catalytic destruction cycles, involving 

radicals such as O H  and HO2 (R5 & R 6 ). Photolytic destruction (Rl) is an additional 

loss process for O3 (Atkinson, 2000; Wayne, 2000). Another significant sink of 

tropospheric O3 is through uptake by vegetation, which in term of magnitude is found 

to be comparable with the influx of O3 from the stratosphere into troposphere (IPCC, 

2001). The rate of O3 uptake by vegetation is driven by environmental conditions that 

influence stomatal opening and closure (with high uptake through open stomata) and 

not merely O3 concentration. A number of studies have investigated the uptake of O3 

by various types of crops and plants (Emberson et al., 2000; Mikkelsen et al., 2000; 

Fowler et a l ,  2001; Manes et al., 2007 ) and their response to the exposure to 0 3 

concentrations ( Fuhrer et al., 1997; Tuovinen, 2000). As the scope of these studies 

are limited to certain species of plants and crops and mostly in mid- and high- 

latitude, the estimates of 0 3 uptake by vegetation are highly varied and still largely
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unknown. In the polar marine boundary layer, under certain environmental 

conditions, O3 loss is observed notably at the end of Arctic winter through reactions 

involving halogen radicals and aerosol though the contribution to the global O3 loss is 

expected to be small (Oum et al., 1998; Dickerson et al., 1999; Impey et al., 1999; 

Platt and Moortgat, 1999; Prados et al., 1999; Vogt et al., 1999).

2.2.1.3 Chemistry of tropospheric methane

In the free troposphere, the major loss of CH4  is through oxidation by OH radicals 

(R20) to form methyl (CH 3) radicals (e.g. Levy, 1971; Bruhl and Crutzen, 1999). In 

the troposphere, the methyl radicals react solely with O2  to yield methyl peroxy 

(CH 3 O2 ) radicals (R21) (e.g. Atkinson etal., 1992):

CH4  + OH CH3 + H20  (R20)

CH3 + 0 2 + M CH3O2 + M (R21)

Subsequently, methyl peroxy radicals can react with NO, NO2 , HO2  radicals, and 

other organic peroxy (RO2 ) radicals in the troposphere. In the presence of NO, the 

reaction will lead to the formation of methoxy (CH3 O) radicals (R22). The only 

important reaction involving methoxy radicals in the troposphere is the reaction with 

O2  to form HCHO and H 0 2  radicals (R23). HCHO is subsequently destroyed by 

photolysis and reaction with OH to form HCO (R24 & R25), whereby HCO is further 

oxidised to form CO (R26) (Seinfeld and Pandis, 1998)

CH3 O2  +N O  -»  CH3 O + N 0 2  (R22)

CH3 O + 0 2  HCHO + H 0 2  (R23)

HCHO + h v ^ H  + HCO (R24)
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HCHO + OH -*  HCO + H20  (R25)

HCO + 0 2 ^  CO + H 0 2  (R26)

Methyl peroxy (CH3 O2 ) radicals will also react with N 0 2  and H 0 2  to form methyl

peroxynitrate (R27) and methyl hydroperoxide (R28), which are subsequently 

photolysed, or react with OH radicals to form formaldehyde (R29-R32).

CH3O2 + N 0 2 + M +=* CH3OONO2 + M (R27)

CH3 O2  + H 0 2  CH3 OOH + 0 2  (R28)

CH3 OOH + hv — CH3 O + OH (R29)

CH3 OOH + OH -* CH3 0 2  + H20  (R30)

CH3 OOH + OH -> CH2 OOH + H20  (R31)

CH2 OOH HCHO + OH (R32)

The formaldehyde products in these chain reactions will be photolysed and react with 

OH to form formyl radicals (HCO), and subsequently this radical is oxidised by 0 2  to 

form CO. The major termination steps of the CH4  chain reactions are the formation 

of nitric acid and hydrogen peroxide (R17 & R33) (Stockwell, 1995). The termination 

reaction involves the removal of radicals from the reaction mixture.

N 0 2  + OH + M HNO3 + M (R17)

H 0 2  + H 0 2  H2 0 2  + 0 2  (R33)

2.2.1.4 Chemistry of carbon monoxide

Carbon monoxide (CO) in the troposphere mainly originates from anthropogenic 

sources (see Chapter 1: Section 1.1.4) plays an important role in the formation of 0 3.
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Carbon monoxide is also produced from the photolysis of HCHO and reaction with 

OH and its subsequent reactions (R24-R26) (DeMore et al., 1997). The most 

important removal process of CO in the troposphere is oxidation by OH radicals 

(R34). In the presence of sufficient NOx(e.g. Bangkok, see Chapter 6 ), the oxidation 

o f CO will lead to the formation of O3 (R9, R l 1 & R3):

CO + OH (+ 0 2) — C 0 2  + H 0 2 (R34)

NO + H 0 2  -»  N 0 2 + OH (R9)

N 0 2  + hv -» NO + 0 ( 3 P) (Rl 1)

0 ( 3 P) + 0 2  + M -* 0}  + M (R3)

In the presence of low concentrations o f NOx (e.g. Danum, see Chapter 6 ), O3 

destruction will dominate the chain reactions through oxidation by HO2  radicals (R 6 ) 

(Bruhl and Crutzen, 1999):

H 0 2  + 0 3 2 0 2  + OH (R6 )

In the perturbed environment where the trend of emissions of CO and CH4 are 

increasing, the resultant OH depletion has been predicted to lengthen the lifetimes of 

CO and CH4 (Wang and Prinn, 1999). The abundance of CO and CH4 in the 

troposphere therefore has a great implication on the current understanding of the CH4 

budget, as well as its importance to the tropospheric oxidising capacity.

2.2.1.5 Chemistry of biogenic volatile organic compounds (BVOCs)

Isoprene (2 -methyl-1,3-butadiene or CH2 -C(CH 3 )CH=CH2  or C5H8) is one of the 

most important BVOCs in the atmosphere (see Section 1.2.7 and Chapter 5), as it is
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an extremely reactive hydrocarbon released in huge quantities by both natural and 

anthropogenic sources. Anthropogenic sources are believed to be from transport, 

while natural emissions arise mainly from terrestrial vegetation, particularly in the 

tropics (Guenther et a l, 1995; Guenther et al., 2006). Isoprene plays an important role 

in atmospheric photochemistry, as it is a large source of hydroperoxy (HO2 ) and 

organic peroxy (RO2 ) radicals, which can react with mainly anthropogenic NOx to 

stimulate O3 production in the lower atmosphere (Levy et al., 1999; Lee and Wang, 

2006). In remote areas where NOx emissions are limited, isoprene can act as a sink of 

OH and O 3 by sequestering NOx as isoprene nitrates and thereby suppressing O3 

formation (Kang et al., 2004), and also by direct ozonolysis of isoprene (von 

Kuhlmann et al., 2004; Fiore et al., 2005). Oxidation of isoprene in the atmosphere is 

initiated by OH, O3 , NO 3 or halogen radicals and involves thousands of intermediate 

species (Saunders et al., 1997; Poschl et al., 2000), which has important implications 

to local and regional air quality, as well as to climate change through the production 

o f GHGs such as 0 3 (IPCC, 2001).

Examples o f OH-initiated reactions of the main isoprene degradation pathways are 

shown in Figure 2.2. A number of possible isomers are formed and further degraded 

in the presence of high and low NOx conditions to produce species such as peroxy 

radicals and peracetic acid, as well as multi-functional Cs-nitrates, which can 

generally be lost by dry and wet deposition (von Kuhlmann, 2001; Fan and Zhang, 

2004). Meanwhile, isoprene ozonolysis produces two primary ozonides, which are 

subsequently decomposed to yield five activated carbonyl oxides (Criegee 

intermediates — labelled as CI1-CI5 in Figure 2.2) (Zhang and Zhang, 2002; Zhang et 

al., 2002; Fan and Zhang, 2004). Initiation by N 0 3 produces nitrooxyalkyl radicals,
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which are subsequently oxidised to form eight nitrooxyalkyl peroxy radicals (labelled 

as ISON1-ISON8 in Figure 2.3), which in the presence of NO, eight nitrooxyalkoxy 

radicals are produced (labelled as ISN1-ISN8) (Fan and Zhang, 2004). Isoprene 

oxidation by halogen radicals such as Cl also produces six chloroalkyenyl peroxy 

radicals (labelled as ISOC11-ISOC16 in Figure 2.4) and subsequently leads to the 

formation of six chlorokenyl alkoxy radicals (labelled as ISC11-ISC16) in the 

presence of NO (Zhang et al., 2002; Fan and Zhang, 2004). Depending on the type of 

oxidants, (i.e. OH, O3 , NO 3 , or Cl) stable products such as methyl vinyl ketone 

(CH 3 C(0)CHCH2, MVK), methacrolein (CH2 =€(CH 3 )CHO; MACR), 3-methyl 

furan, formaldehyde, etc. are produced (von Kuhlmann, 2001; Fan and Zhang, 2004).
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Figure 2.1. Simplified schematic showing the reaction pathways of isoprene initiated 
by OH (Adapted from Fan and Zhang (2004))
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2.2.2 Aerosols

An aerosol, is a suspension of solid and concentrated liquid particles present in the 

atmosphere but distinct from the dilute water droplets and ice crystals found in clouds 

(e.g. Jacob, 2000); the atmospheric aerosol also plays important roles in atmospheric 

chemistry. Similar to gaseous pollutants, aerosols are also emitted from natural and 

anthropogenic sources; 90% of the global atmospheric aerosol flux of about 3440 Tg 

per year originates from natural sources (Andreae, 1995; IPCC, 1995). It is 

conventional to categorise atmospheric aerosols into three modes depending on the 

particles sizes (e.g Seinfeld and Pandis (1998)). In the nucleation mode (radius <0.01 

(xm), particles are formed from gas-to-particle conversion such as oxidation and
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condensation o f  SO2 , NOx, and VOCs. The accumulation mode (0.01-1 pm) arises 

from coagulation and condensational growth of nucleation mode particles. Aerosols in 

this mode have been of particular interest for a number of reasons, such as their 

tendency to remain in the atmosphere for relatively long times (i.e. a few days), their 

efficient interaction with solar radiation, and their optimum size as cloud 

condensation nuclei (CCN) and as ice nuclei (IN) (Charlson et al., 1990; Penner et a l, 

2001; Ramasamy et al., 2001). The coarse mode (radius > 1 pm), arises when aerosol 

particles are formed mechanically, such as blown dust and sea spray.

The aerosols in the atmosphere are more regional in nature due to their regional 

distribution of sources, short lifetime and variability of aerosols properties (Kaufman 

et al., 2002; 2005). By using aerosol optical thickness (AOT) as a measurement of 

aerosols concentration in the atmosphere column, Kaufman et al (2005) have shown 

the global distribution of aerosol from all sources and anthropogenic sources as 

shown in Figure 2.5. As also shown in Figure 2.6, coarse aerosol were observed at 

higher concentration in Asia (mainly in China and India) and Sahara-Saudi Arabia 

regions, which are mainly originated from urban haze and dust from the Saharan 

desert. Aerosol polarisation index was also calculated for Asia region as shown in 

Figure 2.7, which is derived from the measurement of polarisation of scattered solar 

light (data from POLDER Instrument flown on ADEOS-1, February 2007) and is 

sensitive only to the presence of fine aerosol particles. This observation has also 

indicated the high concentration of fine aerosols particle in China and India mainly 

from anthropogenic sources (Kaufman et al. 2002).
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Total Aerosols at 0.55pm Total Aerosols at 0.55pm
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0.0 0.1 0.2 0.3 0.4 0.5

Figure 2.5: Global distribution of total aerosol optical thickness (AOT) and
anthropogenic aerosols optical thickness (AOT) derived from MODIS measurements 
(Mar-Apr-May 2002 and Jun-Jul-Aug 2002) (extracted from Kaufman et al., 2005).
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Figure 2.6: The aerosol properties based on two types of analysis (AERONET and 
MODIS analyses). High concentration of fine aerosol particles were observed in 
Eastern US, Europe, Africa, South America and Southeast Asia (which also includes 
India and China), while coarse aerosols particles were observed higher concentration 
in Sahara-Saudi Arabia and Southeast Asia (includes India and China) (Extracted 
from Kaufman et al., 2002).
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Figure 2.7: Aerosol polarisation index for Asia derived from measurements of 
polarisation of scattered solar light (POLDER Instruments flown on ADEOS-1 
February 1997) and is sensitive only to the presence of fine particles (Extracted from 
Kaufman et al., 2002).
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A large fraction of the aerosols in the troposphere are emitted directly as particles, or 

formed through gas-to-particle conversion of gaseous precursors such as SO2 , NOx, 

and VOCs. Ozone formation in elevated NOx concentrations has been the most 

important mechanism of high yield aerosol production through the increase in 

oxidative capacity (Bowman et al., 1995; Hoffmann et al., 1997; Seinfeld and Pandis, 

1998). For example, in the presence of water vapour, sulphate aerosols are formed 

through the oxidation of SO2 into gas phase H2 SO4 . The increase in OH in the 

troposphere will lead to changes in the rates and production of chemicals species that 

consequently lead to more H2 SO4 , and hence sulphate aerosols (NRC, 2003) which 

play an important role in the halogen and sulphur budgets of the atmosphere (Andreae 

and Crutzen, 1997).

Production o f aerosols through oxidation of biogenic volatile organic compounds 

(BVOCs) such as terpenes into low volatility compounds has been linked to the 

indirect results of anthropogenic activities. Production of aerosols through this 

process has been estimated to consist of as much as 80% of the global organic aerosol 

production (Kanakidou, 2000). Guenther et al., (1995) have estimated that about 30% 

o f over 1000 Tg C emissions of BVOCs annually are potential aerosol precursor 

substances. Secondary organic aerosols (SOAs) are a mixture of low volatility 

products, such as a mono- or a dicarboxylic acid (e.g. pinonic acid) and a product of 

higher volatility such as carbonyl compounds (e.g. pinon-aldehyde) (Odum et a l, 

1996; Hoffman et al., 1997; Seinfeld and Pankow, 2003). The hygroscopic properties 

o f SOAs strongly affect the formation of CCN, which influences the size and 

concentration of cloud droplets and the radiative properties of the clouds (Bonn et a l ,

2004). In terms of mass production, the main precursors of SOA are believed to be 

monoterpenes (78%), followed by sesquiterpenes (22%) (Chung and Seinfeld, 2002),



which are expected to be highest in the tropics as the emissions of BVOCs (i.e. 

monoterpenes) are temperature dependent (Guenther et a l,  1995). Products of a- 

pinene oxidation such as hydroperoxides (e.g. APINAOOH-low volatiles and 

C9 6 0 0 H-high volatiles) were found to contribute about 63% of the global average of 

SOA (Bonn et al., 2004). These results are highly uncertain because the chemistry 

causing SOA production is highly uncertain.

In the unpolluted marine environment, sulphate aerosols are formed through 

heterogeneous chemical reactions o f naturally emitted marine biogenic DMS 

(Dimethylsulphide), which is also responsible for the formation of CCN (Charlson et 

al., 1987). Sea spray aerosol particles, also emitted from the marine environment, are 

a potential source of reactive gaseous halogens, which are responsible for 

photochemical hydrocarbon oxidation, O3 destruction, and are other reactions in the 

marine boundary layer (Vogt et al., 1999; Sander and Crutzen, 1996; Sander et al., 

1996; Andreae and Crutzen, 1997; Keene et al., 1998). Mineral dust aerosols 

originating from natural and anthropogenic sources can also act as a sink for acidic 

trace gases, such as SO2  and HNO3 (Dentener et al., 1996; Li-Jones and Prospero, 

1998), and at the same time, mineral dust aerosols coated with sulphate or nitrate are 

capable of forming CCN (Levin et al., 1996). The treatment in PRECIS of aerosol 

production from SO2  and DMS is discussed in Section 3.2.2.3 (Chapter 3). Cloud 

processes in PRECIS are discussed in Section 3.2.2.2.3 in Chapter 3.

In the polluted atmosphere, aerosols also have a substantial influence on smog 

chemistry. Accumulation mode aerosols (radius between 0.01-1 pm) have the ability 

to modify and scatter UV radiation very efficiently, and for this reason, in polluted 

environments, the turbidity of the atmosphere can (Dickerson et al., 1997). In the
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boundary layer, production of O3 is found to be affected by the abundance and type 

o f aerosols and by solar zenith angles. Previous study by Kondragunta et al. (1997) 

during pollution episodes over the eastern United States in summer has observed that 

O3 production in boundary layer increased by up to 23 ppb and 50 ppb for scattering 

aerosols with a single scattering albedo of 0.96 and 1.0 respectively. Conversely 

absorbing aerosols with a single scattering albedo of 0.75 were found to decrease O3 

production by up to 34 ppb; and as much as 55 ppb for highly absorbing soot aerosols 

with a single scattering albedo of 0.45. In another study in India, during severe air 

pollution, O3 pollution was found to be surprisingly low with values between 34 to 

126 ppb in New Delhi despite the NOx levels reach as high as 272 ppb due to the 

presence of light-absorbing soot aerosol particles (Singh et al., 1997). These results 

show that the O3 production is very sensitive to the aerosol loading and refractive 

index, which affects the aerosol radiative properties.

Oxidant concentrations in the troposphere are also known to alter the surface of 

aerosol particles, which in turn can affect the ability of aerosols to induce nucleation 

of droplets in the formation of clouds (Mauldin et al., 1997; NRC, 2003). Clouds 

affect tropospheric chemistry by providing surfaces for heterogeneous chemistry to 

take place (Jacob, 2000), by scavenging soluble trace gases and aerosols (Liu et al., 

2 0 0 1 ), and by scattering and absorbing incoming solar radiation that can modify the 

actinic flux, and thus, the photolysis frequency of chemical species at the upper level 

of clouds (Lefer et al., 2003; Mauldin et al., 1997). Clouds also play an important role 

in providing sources of key chemical species such as hydrogen oxide radicals in the 

upper troposphere through convective transport. In the tropics, deep convective 

clouds flush the upper troposphere and bring in a new source of NOx (lightning) 

(Pickering et al., 1998) and provide a large source of hydrogen oxides (HOx= OH +
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HO 2 ) from reservoirs such as H2 O2 , CH3 OOH and HCHO (Prather and Jacob, 1997). 

This physical process produces a photochemical imbalance and increases the net O3 

production in the upper troposphere.

Recent modelling studies by Liu et al. (2006) using a global 3-D chemical transport 

model (GEOS-CHEM) found that clouds are responsible for a small (ca. 5%) decrease 

in global mean photolysis frequencies for 0 ( lD) and NO2 in the troposphere. Earlier 

modelling studies by Tang et al. (2003) found that radical OH concentrations and the 

photolysis frequencies of NO2  decreased by 23% and 20% respectively below clouds, 

and were enhanced by about 30% and 25% respectively above 1 km in the 

troposphere in the Asian-Pacific Rim during the TRACE-P period (February-April 

2001). These results indicate that clouds play important roles in the vertical 

redistribution o f photochemical activities, thus influencing tropospheric chemistry.

2.3 Interactions between Atmospheric Chemistry and Climate

Radiative forcing is a tool to estimate the relative importance to climate change (i.e. 

changes in surface temperature, precipitation, etc.) of changes in the concentrations of 

radiatively active gases and aerosols (Ramaswamy et al., 2001; Mickley et al., 2002) 

Since the onset of industrialisation, the radiative forcing due to all well-mixed GHGs 

has been the main contributor to the positive forcing (warming) which was estimated 

to be 2.43 W/m2; radiative forcing due to GHGs also has the highest level of scientific 

understanding compared to other radiative forcings (Ramaswamy et al., 2001). For 

tropospheric O3 alone, the estimate of global annual mean radiative forcing is a few 

tenths of lW /m 2  (IPCC, 1994). A number of modelling studies to estimate the global 

average radiative forcing for O3 since pre-industrial times to 2050 projected an
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increase to 0.43 W/m2  (Chalita et al., 1996), 0.66 W/m2  (Dorland et al., 1997), 0.63 

W/m 2 (Brasseur et a l, 1998) and between 0.40 to 0.78 W/m2 (Gauss et al., 2003). It is 

also forecast that the largest increases of O3 forcings may occur in Asia, in association 

with the rapid increase in population and development (Dorland et al., 1997; Brasseur 

et al., 1998). In the tropics, the radiative forcing of tropospheric O3 is projected to 

increase by 10 to 20%, with a 40 Tg increase in CO emissions, and a 6  to 8 -fold 

increase in the case of a 1 Tg increase in NOx surface emissions (Berntsen et al., 

2002).

IPCC (1995; 2007-Chapter 2) has also reported a global mean direct forcing of -0.4 

W/m 2  for sulphates, -0.2 W/m 2  for carbonaceous biomass burning, -0.1 W/m2  for 

fossil fuel organic carbon, and +0.2 W/m2  for fossil black carbon aerosols since pre

industrial times. Meanwhile, the indirect forcing is estimated to be in the range of 0 to 

-2.0 W/m2  (Ramanathan et al., 2001). In comparison with anthropogenic GHGs 

radiative forcing of +2.5 W/m2, the anthropogenic aerosol radiative forcing appear to 

be comparable in magnitude but opposite in sign, which signifies that aerosols may 

have largely offset the warming effects of greenhouse gases (Charlson et al., 1992; 

Kiehl and Briegleb, 1993). Recent modelling studies by Giorgi et al. (2002 and 2003) 

on the direct and indirect effects of anthropogenic sulphates and fossil fuel aerosols 

on the regional climate over East Asia have estimated that direct forcing was 

dominant over the winter monsoon season, while indirect forcing was dominant in the 

summer monsoon season.
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2.3.1 Tropospheric Chemistry Effects on Climate Change

2.3.1.1 Chemically reactive gases

The increased emissions of chemically reactive gases such as CH4 , CO, NMHCs, and 

NOx are the main drivers for tropospheric changes of O3 . The production of O3 

depends non-linearly on the concentration of its precursors such as NOx, CO, and 

NMHCs. The complex nonlinear photochemistry relation between O3 , NOx and VOC 

can be illustrated by isopleth plots (Sillman, 1999) as shown in Figure 2.8. This 

diagram has indicated the two possible of regimes with different 0 3 -N0 x-V0 C 

sensitivity, namely the NOx sensitive regime (with relatively low NOx and high VOC) 

and VOC sensitive regime (NOx saturated). Under the NOx sensitive regime, O3 

increases with increasing NOx but shows little changes in response to increasing 

VOC. Meanwhile under VOC sensitive regime, O3 decreases with increasing NOx and 

increases with increasing VOC. The ridge line (dotted line) in the diagram is 

representing the maximum O3 concentration versus NOx and VOC as well as 

separating the two regimes, NOx sensitive and VOC sensitive regimes. Urban regimes 

(e.g Bangkok) are typically VOC sensitive, whilst remote rainforest regions (e.g 

Danum) are extremely NOx sensitive.

Several studies have indicated the importance of O3 as a radiatively active gas through 

interactions with short wave and long wave radiation, and through control of local 

stratospheric temperatures (Wang et al., 1980; Lacis et a l, 1990; Forster and Shine, 

1997). In the absence of dense clouds, a large fraction of the incident solar radiation 

(short wave) penetrates the atmosphere and reaches the surface. At the earth’s surface, 

most o f the radiation (long wave) emitted by the earth’s surface is absorbed by the 

atmosphere but, because the atmosphere is a good absorber, it is also a good emitter
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(K irchhoffs law) and reemits a large portion o f the absorbed energy back to the 

surface (this phenomenon is called “green house effect”). In a cloud-free, atmosphere 

absorbs solar radiation (short-wave) only weakly but at the higher altitudes, the 

shorter wavelengths are absorbed by atmospheric gases including O3. Strong 

absorption by ozone at stratopause (about 50 km) produces the temperature maximum 

at this height. The spectral absorptivities shown in Figure 2.9 clearly show the 

absorption of various atmospheric gases. An atmosphere “window” appears in the 

absorption spectrum near the peak in the spectrum of terrestrial radiation ( ~ 1 0  pm) 

allowing longwave radiation to escape to space under cloud-free conditions (Ritter, 

2006).
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Figure 2.8: Ozone isopleths (ppb) as a function of the average emission rate for NOx 
and VOC during the afternoon, with a constant emission rate, at the hour 
corresponding to maximum O3. The dashed line represents the transition from VOC- 
sensitive to NOx-sensitive conditions (Sillman, 1999)
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Figure 2.9: Little absorption for the atmosphere in the shortwave end of the spectrum 
especially in the visible light band (about 0.4-0.7 pm). The atmosphere absorbs far 
better in the longwave end of the electromagnetic spectrum, which is the region of 
maximum emission (10pm) for the Earth (<adaptedfrom  Ritter, 2006).

Apart from being a GHG itself, O 3 is capable of modifying the lifetimes of other 

GHGs such as CH 4  by controlling the oxidative capacity of the atmosphere through 

the production of hydroxyl (OH) radicals (Naik et al., 2005). The relatively short 

lifetime of O 3 , ranging from days to a number of weeks, is shorter than the 

tropospheric mixing time of several months for one hemisphere. This results in a high 

spatial and temporal variability of O 3 distribution in the troposphere (Naik et al.,

2005) ranging from less than 10 ppb over remote tropical oceans up to about 100 ppb 

in the extratropical upper troposphere (Logan, 1999). The short lifetime of O3 also 

implies that its forcing responds rapidly to changes of its precursors (Mickley, 2004). 

Variability in the vertical distribution of O 3 also contributes to the radiative forcing,
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where changes in O3 concentration near the tropopause result in the greatest radiative 

forcing efficiency on a per-molecule basis (Lacis et a l, 1990; Wang et al., 1993; 

Forster and Shine, 1997).

A number o f modelling studies have been carried out at the global scale to identify the 

consequences to climate that are specific to O3 forcing. In early investigation, 

tropospheric O3 was found to be responsible for a cooling enhancement in the lower 

stratosphere (about 20 km from the earth surface)(Ramaswamy and Bowen, 1994). A 

modelling study by Berntsen et al. (2002) also observed a cooling in the lower 

stratosphere o f between 0.2°-0.4 °C. Recent studies by Stuber et al. (2001) and Joshi 

et al. (2003) observed that the uniform increase of O3 in the upper troposphere was 

responsible for a weaker temperature response than an equivalent forcing by CO2 . 

Meanwhile, in response to the increase of O3 in the middle and lower troposphere, 

cloud feedback in a GCM was observed to be responsible for the amplification of 

surface temperature, O3 emits thermal radiation and absorbs solar radiations and this 

alters the amount of heat added to the lower and middle troposphere (Hansen et al., 

1997). An increase of O3 also allows lower troposphere the cool to space more 

effectively via the 9.6 um O3 in of the Earth’s infrared window. The cooling effects 

of O3 in the lower troposphere could lead to increases in cloud cover in the lower 

troposphere but usually expect decreased stability to increase convection and so 

increase cloud cover (Hansen et al., 1997).

Using a coupled atmosphere-ocean model, ECHAM4/OPYC3, Voss et al. (2002) 

found that the effect of a transient increase in GHG forcing contributed to an increase 

in global and annual mean surface temperature of 2.6 K from the present (1970-1990) 

to the future (2060-2089), as gauged by a time slice experiment. The warming in the
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troposphere was accompanied by a 2 . 1 % increase in global mean precipitation and 

evaporation. Modelling studies by Mickley et al. (2004) using a GCM to diagnose the 

specific climate response to a realistic change in tropospheric O3 with accompanying 

cloud feedback from pre-industrial times to the present day have found an 

instantaneous radiative forcing of 0.49 W/m2  due to the increase in O3. The changes 

have resulted in an increase in global mean surface temperature of 0.28 °C. In this 

study, the largest increase of temperature of more than 0.8 °C was observed 

downwind o f Europe, Asia, and North America in the summer.

2.3.1.2 Aerosols

From observational evidence and modelling studies, atmospheric aerosols can affect 

the climate through two basic mechanisms: directly by scattering and absorbing 

incoming solar radiation, and indirectly by modifying the scattering of light by clouds 

through variations in the concentration of cloud condensation, where aerosols are 

acting as CCN. The direct effect of light scattering by aerosols has its maximum 

effect when the size o f the aerosol particles and wavelength of the scattered light are 

of the same order, and for this reason, aerosols from SO2  emission and biomass 

burning have a comparatively stronger radiative effect than mineral dust and sea salt 

aerosols (Andreae, 1995). Aerosol absorption has the tendency to warm the Earth, 

which in turn will hinder condensation and flatten the meridional temperature gradient 

(MTG) (Hansen et a l, 1997). This phenomenon will draw less water into the 

atmosphere, producing in turn less cloud cover, a decrease in cloud albedo, and so 

will enhance further warming of the Earth system. Conversely, a cooling effect 

predominates the direct effects of non-absorbing aerosols, mainly through light 

scattering with an estimated global mean forcing of 0.4 W/m2, but with an uncertainty
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of about ±0.8 W/m2 (Shine and Forster, 1999).

Evidence of the direct effect of aerosols can be identified through the increase in 

aerosol optical depth (AOD), which is the determinant of aerosol radiative forcing 

(Angstrom, 1964), i.e. a decrease in solar radiation penetrating through the 

atmosphere. Observations through satellites such as the Advanced Very High 

Resolution Radiometer (AVHRR) have shown an enhanced AOD, mostly in industrial 

regions in the northern hemisphere, areas with active biomass burning, and dust 

regions (Durkee et al., 1991; Husar et al., 1997). Satellite imagery from MODIS 

(Moderate resolution Imaging Spectrodiometer) and ERBE (Earth Radiation Budget 

Experiment) have also shown the AOD and reflectivity signals o f regional plumes 

over continental aerosol regions (Penner et al., 2002; Yu et al., 2004). Apart from the 

observational evidence, the direct effects of aerosols have also been investigated 

through a number of modelling studies. Substantial modelling studies have been 

carried out to evaluate the direct effects of radiative forcing of sulphate aerosols, 

anthropogenic black carbon, and organic carbon aerosols (Haywood and 

Ramaswamy, 1998; Myhre et al., 1998; Jacobson, 2001b).

Meanwhile, the indirect effects of aerosols through interactions between aerosols and 

clouds can be identified from the increase in cloud reflectivity, CCN, and cloud 

droplets, and a decrease in cloud effective radius (Huang, 2005). Observations of the 

indirect effect of aerosols through measurement of CCN concentration found a higher 

concentration in relatively polluted continental air, compared to clean marine air 

(Hudson, 1991). Brebguier et al. (2000) also measured cloud reflectance from ACE-2 

(Second Aerosol Characterization Experiment) and found a higher reflectance in 

polluted air than in marine air. Satellite observations using AVHRR also found that
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smoke emissions from biomass burning in the Amazon Basin and Cerrado increased 

the cloud reflectance and reduced the droplet size (Kaufman and Fraser, 1997).

Climate responses to the direct and indirect radiative forcing of aerosols have been 

investigated in numerous studies in attempts to estimate the effects. Studies by Qian 

and Giorgi (2000) and Zhai and Pan (2003) for example have concluded that 

anthropogenic aerosols have been responsible for the significant cooling trend in the 

Sichuan Basin and some other regions in China. Karl et al. (1995) also suggested that 

in industrial regions, the decrease in diurnal temperature range (DTR) may be 

partially attributed to anthropogenic aerosols. A number of modelling studies have 

recognised that aerosol effects combined with GHGs to produce the observed surface 

temperature (Santer et al., 1995; Hansen et al., 1995; 1997; 2001).

Precipitation, another climatic response, has a strong link with the direct and indirect 

effects of aerosols through their ability to modify cloud properties. Satellite 

observations from the Tropical Rainfall Mission (TRMM) Project have indicated that 

air pollution from forest fires (Rosenfeld, 1999) and industrial pollution (Rosenfeld, 

2000) have suppressed rainfall in tropical regions. Based on large-eddy simulations, 

haze pollution is suggested to be responsible for the enhancement of cloud cover and 

suppression of nocturnal drizzle in stratocumulus clouds (Ackerman et al., 2003). 

Suppression of precipitation due to direct and indirect effects of aerosols was 

observed in modelling studies over China (Giorgi et al., 2002; 2003). Earlier studies 

by Menon et al. (2002) found two distinctive observations on the effects of 

anthropogenic aerosols over China and India, in which precipitation increased in 

southeast China, but was suppressed over northeast China. A recent study by 

Takemura et a l  (2005) on the climate response to the direct and indirect effects of
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aerosols concluded that the precipitation and cloud water changes are strongly 

affected by a variation of the dynamic hydrological cycle over the regions, where a 

large amount o f anthropogenic aerosol and cloud water co-exist.

2.3.2 Climate Change Feedback on Atmospheric Chemistry

Climate change, on the other hand, may affect atmospheric chemistry through several 

mechanisms. Atmospheric chemistry feedback arises when the consequences of 

climate change through changes in atmospheric variables and processes (i.e. 

temperature, water vapour, clouds, circulation patterns, precipitation) or through 

changes in source and sink strengths interacting with atmospheric chemistry can lead 

to the alterations of concentrations and properties of the radiatively active gases and 

aerosols, which then produce an additional climate change (NCAR, 2003). In 

response to climate changes through alterations in local temperatures and 

precipitation, the emissions of radiatively active gases such as CH4  from natural 

sources affects the lifetime of these chemical species, by modulating the abundance of 

oxidants such as OH radicals in the atmosphere. At high latitudes, CH4  concentrations 

are expected to increase when the temperature increases (Matthews, 2000; Worthy et 

al., 2000). In wetland areas, elevated temperatures will induce the additional release 

of CH4  due to the enhancement of microbial activity (Cao et al., 1998; Chapman and 

Thurlow, 1996; Christensen and Cox, 1995; Lashof et al., 1997). The increase in 

temperature due to climate change is suggested to play an important role in 

destabilizing CH4  clathrates in continental slope sediments and permafrost regions, 

resulting in the release o f CH4  (Harvey and Huang, 1995). In their modelling studies 

using a one-dimensional coupled atmosphere-ocean climate model, it was found that
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destabilisation of clathrates led to stronger increases in both CH4  and CO2 

concentrations. However, the uncertainty of this climate feedback is still great, partly 

due to the lack of knowledge of the amount of CH4  in clathrates.

Hydroxyl radical (OH) is the primary oxidant of CH4  and therefore the concentration 

of OH in the atmosphere is affected by the emission of CH4  and also in turn, 

determines the lifetime of this compound. In reaction R20, the atmospheric lifetime of 

both reactants (OH and CH4 ) are affected; and the increase of CH4  emissions in low 

NOx conditions will lead to reduced O3 levels and thereby to a longer atmospheric 

lifetime and abundance of CH4  (Eq 2.1) in the atmosphere.

k20

CH4  + OH -----► CH3 + H20  (R20)

The total lifetime of atmospheric CH4  is given by the following equation (Isaksen, 

2000):

1/  = 1/  1.
T CH, /  T OH /  T additional

+ y ,  (2 . 1 )

where, r 0H = l/(k2Q[OH]), where k2Q is the reaction coefficient for reaction R20, 

which is temperature dependent (DeMore et al, 1997). Meanwhile, t additional denotes 

the methane lifetime due to the combined minor sinks such as absorption in the soil, 

transport to the stratosphere where it will reacts with OH, Cl and 0(*D) (Isaksen, 

2000). Based on this approximation (Eq 2.1), changes in atmospheric temperature will 

alter the rate coefficient (k2 o) of the reaction of OH radicals with CH 4 , and this will 

indirectly affect the lifetime and abundance of CH4  in the atmosphere. In modelling 

studies by Fuglestvedt (1995), it was shown that when only the temperatures were 

increased, the average tropospheric annual level of OH was reduced, while the level 

of CH4  was reduced at the same time. This was mainly due to the increased reaction
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rate constant for the reaction between OH and CH4  rather than the reduction of OH 

levels.

Changes in methane lifetime is, however, uncertain due to large uncertainties in 

precursor emissions (IPCC, 2001), where counteracting effects of CO and CH4  

(reduces OH through reactions R20 and R34), and NOx and O3 (increases OH 

through reactions R6  and R9) are involved. For example, Lelieveld et al. (1998) has 

calculated that a significant reduction in OH concentration in the atmosphere has lead 

to the increase in CH4  lifetime from 6.2 yr (pre-industrial time) to 7.9 yr (1992). 

However, an earlier study by Berntsen et al. (1997) found the opposite result, where 

an increase in global OH concentration of about 6 % has lead to the decrease of CH4  

lifetime. Karlsdottir and Isaksen (2000) have used 3-D model to estimate the lifetime 

of CH4 in related to changes in global OH distribution for period from 1980 to 1996 

in nine different regions. This study shows that an increase of OH concentration of 

0.43%/yr has lead to the decrease of CH4  lifetime by 0.49%/yr. This study also 

suggested that the increasing anthropogenic emission in Southeast Asia, which 

include China, India and Japan, has been the key to the changing oxidation of CH4 . 

The global change of OH distribution and CH4  lifetime due to changes in emissions of 

CO, NOx and NMHC in SEA (China, India & Japan included) is shown in Figure 

2 . 10.
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Figure 2.10: The change in global average OH concentration (—) and CH4  lifetime,
tch (-----) from 1980 to 1996 due to changes in emissions of CO, NOx and NMHCs
(adapted from Karlsdottir and Isaksen (2000))

The change in precipitation patterns also affects the hydrological cycle at the regional 

levels (Voss et al., 2002), thus affecting soil water in wetland areas and CH4  

emissions (van den Pol-van Dasselaar et al., 1999; Hilbert et a l, 2000). A change in 

humidity through changes in water vapour in the atmosphere greatly affects the 

production of atmospheric oxidants such as OH (NRC, 2003). In the tropics, the effect 

on the hydrological cycle is further aggravated due to deforestation, where the 

regional water balance and atmospheric water vapour content are changed 

significantly. The perturbation of the hydrological cycle could change the cloudiness, 

particularly in the tropics, and affect the radiative and chemical effects of clouds on 

OH radicals (Mauldin et a l,  1997). An increase in gas phase OH radicals could lead 

to a number of homogenous and heterogeneous atmospheric chemical reactions. For 

example, OH radicals can enhance the production of other oxidants such H2 O2 , 

whereby in either homogenous or heterogeneous reactions H2 O2  can oxidise SO2  to 

produce sulphates (Seinfeld and Pandis, 1998). Consequently, the production of 

sulphates can lead to the formation of aerosols, which play important roles in cloud
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formation (see Chapter 2, Section 2.1.2). In regions with low levels of NOx, there will 

be an increase in O3 loss through reactions R5 and R6  (Fuglestvedt, 1995).

Regional differences in chemical and meteorological conditions have also been 

identified to significantly influence the variations of O3 radiative forcing (Fuglestvedt 

et al., 1999; Mickley et al., 1999; Wild and Akimoto, 2001;Bernsten et a l, 2002). 

Several climate-chemistry modelling studies have indicated that the future evolution 

of radicals, O3 , and CH4  are not only driven by increasing emissions, either 

anthropogenic or natural, but also by the changes in climate. Modelling studies on the 

response of tropospheric chemistry due to climate change have been carried out at 

global (Fuglestvedt et a l ,  1995; Brasseur et al. 1998; Johnson et a l,  1999; Lelieveld 

and Dentener, 2000; Hauglustaine and Brasseur, 2001) and regional (Forkel and 

Knoche, 2006) scales to deepen the understanding of climate-chemistry interactions. 

Earlier, a 2-D modelling study by Fuglestvedt et al. (1995) found that tropospheric O3 

is expected to decrease by about 1 0 % in response to a warmer and more humid 

climate projected for the year 2050. Another study by Brasseur et al. (1998) using the 

CCM (Climate-Chemistry Model) has projected an increase of 7% in OH abundance 

and a 5% decrease of tropospheric O3 in a global mean in the year 2050. The impact 

occurs through the temperature dependence of key reaction rates affecting the O3 and 

radical production and destruction terms. These studies have clearly shown the 

importance of climate-chemistry feedback.

Recent studies on climate change and its impact on the regional atmospheric 

chemistry in the eastern United States (Hogrefe et al., 2004) and southern Germany 

(Forkel and Knoche, 2006) found that future climate changes have significant impacts 

on the concentration and distribution of tropospheric O3 . The occurrence of high
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summertime concentrations of tropospheric O3 and other photo-oxidants is strongly 

determined by meteorological processes (i.e. the effect of cloud cover on the amount 

of solar radiation) within the planetary boundary layer. Earlier modelling studies have 

also shown that local and regional meteorological conditions such as cloud cover, 

wind speed, and mixing heights (Rao et al., 2003), and solar radiation and 

temperature (Ordonez et al., 2005) have an impact on the concentration of 

tropospheric O3. In addition to the extensive biomass burning, the modelling results of 

the increased tropospheric O3 column (TOC) in 1997 in Southeast Asia region was 

found to be equally affected by the changes in meteorological conditions (Chandra et 

al., 2002; Sudo and Takahashi, 2001).

2.4 Land Cover and Climate-Chemistry Changes Interactions

Based on a number of modelling and observation studies (see Baron et al., 1998; 

Pielke 1998; Kanae et al., 2001; Pitman etal., 2004, Asner et al. 2004; Beltran, 2005; 

Adegoke et a l ,  2007), it has become clear that changes in land cover play a 

significant role in local, regional, and global climate changes. Land cover changes due 

to deforestation and agricultural expansion, particularly in the tropics, have been of 

concern as these activities can induce carbon losses from soil and vegetation (Dale,

1997). In earlier estimations by Houghton and Skole (1990), land-use change has 

accounted for the release of 90-120 Pg C/yr. Natural wetlands are one of the most 

important sources o f GHGs including CO and CH4  (Harris et al., 1993). The 

reduction of natural wetlands has reduced carbon emissions by about 28-38% due to 

agricultural drainage (Armentano and Menges, 1986), and on the other hand, the 

expansion of wetland rice production since 1951 has increased CH4  emissions from
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this source (Neue, 1993). The emissions of N2 O into the atmosphere have increased as 

a result o f human activities such as tropical land clearing and replacement of 

agriculture (Luizao et al., 1989), biomass burning (Crutzen and Andreae, 1990; Cofer 

et al., 1991), increased use of fertilizers (EPA, 1990) and expansion of nitrogen-fixing 

leguminous plants in agriculture (Eichner, 1990).

The linkage between land cover changes and the chemistry-climate system can be 

seen in terms o f perturbation of the CO2  sinks (Lamptey et al., 2005), changes to the 

emissions o f reactive gases (Luizao et a l, 1989; Harris et a l,  1993; Neue, 1993) and 

aerosols (Bonn et a l,  2004), which play important roles in atmospheric chemistry, 

and thus climate change. Direct perturbation of BVOC emissions due to land cover 

changes affect their role in the production of tropospheric O3 with sufficient NOx 

(NRC, 1991; Fehsenfeld et al., 1992), and formation of secondary organic aerosols 

(SOA) through oxidation of BVOCs by free radicals (Hoffman et a l,  1997; Griffin et 

a l,  1999a; 1999b).

A modelling study using GENESIS and interactive BIOME vegetation models for the 

years 1700-2100 found widespread results on the response of climate change to CO2  

levels (Lamptey et a l, 2005). Simulation of the impact of land cover changes on 

climate change using the IMAGE 2 model found the greatest annual warming 

(greater than 6 °C by 2100) in the north of 60°N and south of 50°S (Alcamo et al

1998). In the same scenario, during the period of June-August, the greatest warming 

(greater than 7 K) was observed mainly over Africa and Asia. In the same study, 

precipitation in far east Asia and the northern part of SEA was observed to increase 

up to 1 . 5  mm/day over most of the land area, considering the potential vegetation 

change from needle leaf-evergreen in the year 1700 to needle leaf-deciduous in 2 1 0 0
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(Lamptey et al. , 2005). Some notable effects of land cover changes on climate change 

in other parts o f the world were also reported in a number of modelling studies (see 

Stohlgren et al., 1998; Chase et al., 2000; Zhao et al., 2001; Diffenbaugh and Sloan, 

2002, Asner et al., 2004; Pitman et a l, 2004; Adegoke et al., 2007).

Deforestation, particularly in tropical regions, is one of the important human activities 

that change the land-surface characteristics that may affect atmospheric circulation. A 

modelling study in the SEA region by Zhang et al. (1996) using the National Center 

for Atmospheric Research (NCAR) Community Climate Model (CCM1), 

incorporating the Biosphere-Atmosphere Transfer Scheme (BATSle), in investigating 

the extent of deforestation to the local and regional climate change in Southeast Asia, 

generally found daily surface-temperature increases (+0.8 K). The annual 

precipitation in SEA was found to decrease by about 8 % (-172 mm/yr). Though the 

climatic conditions of SEA are strongly influenced by Asian monsoons, the results of 

the modelling study have indicated that the modification of land cover due to 

deforestation has substantial effects on the surface energy budget, and thus 

contributes to the regional climate change. Earlier studies using GCM simulations in 

SEA also found that deforestation contributed small amounts to the regional climate 

change, in comparison with other areas such as the Amazon Basin under the same 

model scenarios (Henderson-Sellers et al., 1993; Polchar and Laval, 1994; McGuffie 

et al., 1995). It is also important to note that in a number of study on simulation of 

precipitation over SEA has found to be poorly simulated for all seasons(SW and NW 

monsoons), for example in the simulation using GFDL (see Fowell, 2006).
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2.5 Regional Chemistry and Climate Change in SEA

In the SEA region, the first detailed climate scenario was developed by the Climate 

Impact Group (1992) using four general circulation models (GCMs), namely the 

Canadian Climate Centre model (CCCJ1), the United Kingdom Meteorological Office 

model (UKMO), the Geophysical Fluid Dynamics model (GFDL), and the Australian 

CSIR09 model. Based on these models, the projected temperature in most of the 

region was projected to increase by 0.4-3.0 °C by the year 2070, which is well below 

the global average (Whetton, 1994). For the same projection year, the precipitation 

was projected to fluctuate between -5% to +15% during the northeast monsoon, and 

between 0 to +10% during the southwest monsoon. In further modelling studies in the 

region by Hulme et al. (1999) using the HadCM3 global model under the influence of 

IS92a emission scenarios, the radiative forcing was projected to increase by about 

20% (1.0 W/m2) by the year 2100. In the same studies, doubling the GHGs such as 

CO2  with no aerosol forcings caused a projected global temperature and precipitation 

increase of 3.0 K and 3.2% respectively in the 30 year averages from the present 

(1961-1990) to the future (2070-2099) periods. Using the same model, Hulme et al. 

(1999) also projected that at the regional scales, Southeast Asia will experience a 

fairly uniform progression of warming and larger precipitation by the year 2050.

Another modelling study using the same model (HadCM3) found that the simulated 

30 year averages (from 2069-2099) for temperature over Southeast Asia under the A2 

and A1F1 scenarios o f IPCC (1994) are 3.4 K and 4.1 K respectively, which are 

higher than the projected global average temperature increase of 3.2 K (Johns et al., 

2003), as shown in Figure 2.11. In terms of precipitation, four emission scenario 

experiments (B l, B2, A2, and A1F1) for the 30 year averages also found a clear and
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significant signal in both monsoon seasons, where conditions are projected to be drier 

during the NE monsoon and wetter during the SW monsoon. Corresponding with the 

SW monsoon period (June-August), the mean precipitation signals were found to be 

higher than the global average of 0.8 mm/day, namely 0.9 mm/day (B2), 1.1 mm/day 

(A2), and 1.8 mm/day (A1F1) (Johns et al., 2003), as shown in Figure 2.12.
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Figure 2.11: Annual mean changes in surface air temperature (K) averaged over years 
2070-2099) for A1F1, A2, B1 and B2 emission scenarios (adapted from Johns et al.,
2003).
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Figure 2.12: Annual mean changes in precipitation (mm/day) averaged over years 
2070-2099) for A1F1, A2, B1 and B2 emission scenarios (adapted from Johns et al
2003).

Recent studies by Hori and Ueda (2006) and Ueda et al. (2006) on the impact of 

global warming in the region of SEA using a composite of nine coupled atmosphere- 

ocean GCMS have revealed that the region will experience drier and warmer 

conditions during the northeast monsoon, coinciding with the winter monsoon in East 

Asia that spans from December to early March for the next hundred years. The 

average surface temperature in SEA (90°-140° E, 30° N -5° S) during both monsoons 

was projected to increase between 2.2°C to 2.8°C by the year 2081-2100 (30 year 

averages) (pers. communication with Matasake E. Hori). Meanwhile, the precipitation 

was also projected to fluctuate between -2.4% to 6%. This climate condition in the 

region tends to cause drier weather than the normal weather at present conditions.
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There is a general agreement from the global climate modelling results that there will 

be an increase in temperature and notable significant changes in precipitation in 

response to the increase in climatically active gases (including radiatively and 

chemically/photochemically active trace gases) and aerosols in the atmosphere, 

though there less agreement about the possible regional climate changes such as in 

SEA, even if the forcing and the global-mean sensitivity are the same. The 

disagreement has been well noted (Hulme et al., 1999; Kittel et al., 1998), and the 

fundamental differences in model designs (Hulme et al., 1999), which in turn are a 

function o f incomplete understanding of important physical processes and feedback 

(i.e. the treatment of the interactions between the atmosphere and the oceans and of 

cloud formation) have been identified as one of the attribution factors. These 

differences may be also attributed to different climate sensitivities and climate system 

unpredictability (Hulme et a l, 1999). Despite such limitations, certain regional 

responses have been shown in a number of modelling studies that have investigated 

the response to increasing climatically active gas and aerosol concentrations. The 

modelling results have also presented a strong argument that the possible future 

climate change scenarios are to be dominated by the response to the anthropogenic 

forcings (Johns et al., 2003).
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Chapter 3

REGIONAL CLIMATE CHANGE MODELLING

3.1 Introduction

A regional climate model (RCM) is a high resolutions model that covers a limited 

area of the globe. The use of the same formulation of atmospheric processes as in the 

global circulation model (GCM) is important to ensure that the climate projection is 

consistent with the GCM projection. RCMs have well-known drawbacks in terms of 

dependency on input from the GCM driving model, the lack of two-way nesting with 

its driving GCM, as well as computational cost. Nevertheless, RCMs are widely used 

in climate change investigations, where they provide higher spatial and temporal 

resolution information for a number of climatic variables while still providing better 

representation than the GCM for some weather extremes. RCMs are “comprehensive” 

physical models, which include the components of the climate system of the 

atmosphere and land surface, as well as the representation of the important processes 

within the climate system. A recently developed RCM from the Hadley Centre, UK, 

called PRECIS (Providing Regional Climates for Impact Studies) has been used in 

this study to investigate climate changes in Southeast Asia (SEA). Brief descriptions 

of the model parameterisations and the experimental design and setup for the climate 

change investigation are outlined in this chapter. The general framework of this 

investigation is shown in Figure 3.1. The main objective of this chapter is to assess 

the regional climate change due to atmospheric forcing alone.
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Figure 3.1: Framework for the investigation of climate changes-biogenic emissions- 
tropospheric chemistry interactions in Southeast Asia. The red dotted box indicates 
the framework for the investigation of climate changes under the present-day 
landcover scenario that covered in the Chapter 3.

3.2 PRECIS-Regional Climate Model

3.2.1 Model description

PRECIS is a nested regional climate model (RCM) that uses output from GCM 

simulations to provide boundary conditions and time-dependent lateral meteorological 

boundary conditions (LBC). That is, the model employs one-way nesting. The nesting 

ensures that the RCM results are consistent with the driving model GCM projection; 

the additional detail due to the increase in resolution helps interpretation of climate 

responses and impacts (Hudson and Jones, 2002; Arnell et al., 2003; Wang et al.,

2004). In this approach, the GCM is used to simulate the response of the global 

circulation to large-scale forcing, while the RCM is used to account for sub-GCM 

grid-scale forcing in a physical way (orography, landcover, etc.), and to enhance the 

simulation of atmospheric circulation and climatic variables at fine spatial scales
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(Mearns et al., 2003). The approach, however, has some limitations, as highlighted by 

Giorgi and Mearns (1999).

The PRECIS-RCM (HadRM3P) is the latest Hadley Centre model based on the 

atmospheric component of the HadCM3 climate model (Gordon et a l 2000), which 

differs from earlier versions mainly in the representation of dynamic and convective 

clouds, and thresholds associated with the formation of precipitation. PRECIS, the 

regional climate model used in this study, is an atmospheric and land surface model of 

a limited area with a horizontal resolution of 0.44° x 0.44° (50 x 50 km) or 0.22° x 

0.22° (25 x 25 km) on its own rotated latitude-longitude grid and a timestep of 5 

minutes. This model is imbedded in the atmosphere-only GCM (HadAM3P or 

ECHAM) with a resolution of 1.24° latitude x 1.88° longitude (-150 x 150 km) with a 

timestep of 15 minutes. The initial atmospheric and land surface conditions in GCM 

(HadAM3P) are interpolated from the output of lower-resolution (3.75° latitude x 2.5° 

longitude, -300 km) coupled ocean-atmosphere model (HadCM3) (Gordon et al.,

2000). Both GCM (HadAM3P) and PRECIS (HadRM3P) have 19 layers in the 

atmosphere (from the surface to 30 km in the stratosphere) and four levels in the soil 

(Hudson and Jones, 2002). PRECIS-RCM also includes a representation of the 

sulphur cycle as sulphur aerosols play an important role in the radiation in the 

atmosphere.

3.2.2 Model Parameterisation

A numerical model such as the PRECIS-RCM is used to obtain an objective 

simulation of future climates by solving a set of equations that describe the evolution 

of atmospheric variables such as temperature, wind speed, humidity, and pressure. All
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numerical models of the atmosphere are based upon the same set of governing 

equations as described in the following sections, but differ in the approximations and 

assumptions made in the application of these equations, how they are solved, and also 

in the representation of physical processes. A numerical model of the atmosphere 

consists of several components such as atmospheric dynamics, physical 

parameterisations, and sulphur cycles (Jones et al., 2004; Stensrud, 2007). The 

following sections briefly detail the major component of PRECIS-RCM.

3.2.2.1 Atmospheric dynamics

The atmospheric component of the PRECIS-RCM is a hydrostatic version of the full 

primitive equations and uses a regular latitude-longitude grid, in the horizontal, and a 

hybrid vertical coordinate. All the governing equations of the model are solved 

numerically on a discrete 3-D grid spanning the area of the model domain and the 

depth of the atmosphere. The model simulates values at discrete and evenly spaced 

points in time with a 5-minute timestep to maintain numerical stability. PRECIS- 

RCM has 19 vertical levels, which are defined by atmospheric pressure (Cullen,

1993). The evolution of atmospheric dynamics -  i.e pressure, wind, temperature, and 

moisture - is governed by three fundamental principles: conservation of momentum, 

conservation of mass, and conservation of energy.

3.2.2.2 Physical parameterisations

Physical processes in the atmosphere such as clouds and precipitation, radiation, 

convection and boundary layer exchanges, and gravity wave drag have been 

represented numerically in the PRECIS-RCM. Due to computational restraints as well

90



as shortcomings due to lack of understanding of the processes involved, assumptions 

are required for the parameterisation of these physical processes (Jones et al., 2004). 

The following sections briefly describe the parameterisation principles of the 

important physical components of the atmosphere in the model.

3.2.2.2.1 Radiation

The atmosphere is driven by solar radiation, which can be divided into short-wave 

(incoming radiation) and long-wave (outgoing radiation) components. The amounts of 

short-wave (sunlight) and long-wave (terrestrial heat) radiation that are absorbed, 

emitted, and reflected depend on the properties of the atmosphere such as 

temperature, water vapour, concentration of chemically reactive gases (such as GHG, 

trace gases, etc.), the surface (landcover types, etc.), and the frequency of the 

radiation. In PRECIS-RCM, the spectrum of radiation is split into six short-wave 

bands and eight long-waves bands, where each band has different strengths of 

interaction with atmospheric constituents such as GHGs (Jones et al., 2004). Short

wave fluxes depend principally on the solar zenith angle (varying according to 

latitude, season, and time of day), clouds, and the albedo of the surface, while long

wave fluxes depend upon the amount and temperature of the emitting medium and its 

emissivity (Edwards and Slingo, 1996). For full radiation calculations, both schemes 

require more computational expense than any other physical process, and thus longer 

timesteps of about three hours (Ingram et al., 1997).

3.2.2.2.2 Surface exchange and sub-surface processes

Constant exchanges of heat, moisture, and momentum between the atmosphere and 

the underlying surface have a crucial influence on the temperature, wind, and
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humidity of the atmosphere through the atmospheric boundary layer (Smith, 1990). In 

PRECIS, the soil and vegetation types that characterise a land grid-point are 

considered in the calculation of the heat, moisture, and momentum fluxes. At sea grid 

points, the roughness length, which is the representation of surface drag, is computed 

from local wind speed (see Charnock, 1955).

In PRECIS-RCM, the landcover type is used in the calculations to determine the 

surface albedo, surface roughness length, and hydraulic properties of the roots and the 

vegetated canopy. The HadAM3P component of PRECIS simulates the global 

atmospheric and land surface processes at a horizontal resolution of 2.5° x 3.75° using 

the Radiative Transfer Scheme (Edwards and Slingo, 1996) and Meteorological 

Office Surface Exchange Scheme (MOSES) (Cox et al., 1999). Depending on the 

local landcover types, the parameters representing “snow-free albedo” and “maximum 

deep-snow albedo” in each grid box is assigned with an appropriate value. For 

example, the albedo parameter is assigned with a higher value for open land (e.g 

grassland, pasture and cropland) and lower values for woodland and forests (Cox et 

al., 1999; Betts, 2000). Within the model, the radiative forcing due to surface albedo 

change can be calculated by performing additional sets of calculations of surface 

albedo and the shortwave radiation budget on a model timestep.

In the tropics, surface albedo change due to landcover changes may affect the climate 

via evapotranspiration, where the rate of evapotranspiration and the fluxes of sensible 

and latent heat are dependent on the parameters of rooting depth, aerodynamic 

roughness length, and canopy water holding capacity (Betts et al., 1997). In the 

MOSES simulation, all these parameters are assigned with an appropriate value in
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each grid box, where values are comparatively lower for open land compared to 

forested areas (Cox et al., 1999). In the SEA region, which consists of mostly forested 

areas, a cooling influence is anticipated as a result of the greater flux of moisture to 

the atmosphere and the larger ratio of latent to sensible heat fluxes. The transpiration 

dependence on the resistance to water vapour loss from within plant stomata is also 

represented in the MOSES simulation through explicit simulation, which is 

aggregated to a large-scale variable of canopy conductance using leaf area index 

(LAI). In forested areas, LAI, which is prescribed as a further vegetation-specific 

parameter, has larger values than open land (Betts et al., 1997). In PRECIS-RCM, the 

global datasets of the vegetation parameter values were derived using Wilson and 

Henderson-Sellers (1985) at a resolution of 1° x 1° grid. The landcover dataset 

specifies 53 landcover classes, which include 11 crop classes, 7 pasture/grazing 

classes, and 1 urban class (See Appendix 3.1). In PRECIS, the landcover dataset 

allows two classes of landcover for each grid, namely the primary landcover class if 

the coverage of the grid box is between 50-100%, and the secondary landcover class 

if the coverage is between 25-50%. These vegetation covers, which are represented in 

the HadAM3 surface parameter, are then bi-linearly interpolated to the GCM 

resolution.

For the soil, a 4-layer scheme is used to model the heat transport through the soil 

(Smith, 1996), which also includes the effects of soil water phase change and the 

influence of water and ice on the thermal and hydraulic properties of the soil (Jones et 

al., 2004). In PRECIS, the soil properties dataset provided by Wilson and Henderson- 

Sellers (1985) was used in the parameterisation of soil scheme (see Appendix 3.2). In 

MOSES, the thickness of the soil layers from the top are 0.1, 0.25, 0.65, and 2.0
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metres, which are specifically designed to resolve the diurnal and seasonal cycles with 

minimal distortion. The 4-layer scheme with appropriate values of parameters was 

found to provide good amplitude and phase response for periods of surface forcing 

between half a day and a year; which the details of the multilayer soil 

thermodynamics model can be found in Smith (1996).

3.2.2.2.3 Clouds and precipitation

The representation of clouds and precipitation in PRECIS-RCM is very important as 

clouds interact strongly with solar and infrared radiation, and of course affect the 

occurrence of precipitation. The release of latent heat during this process plays a 

critical role in the movement of air in the atmosphere. Layer cloud cover and cloud 

water content in each grid box of the model are calculated from a saturation variable 

(qc), which is defined as the difference between total water (qx) and the saturation of 

vapour pressure (see Smith, 1990). The formation of layer cloud is assumed to occur 

at any level of the 19 levels of the atmosphere, except at the 19th level (top of the 

stratosphere). In PRECIS, an assumption is made that the cloud water is in liquid 

form above 0°C, frozen below -9°C, and a mixture in between (Smith, 1990; Smith et 

al., 1998). The large-scale formation of precipitation is assumed to occur when the 

threshold values of cloud liquid water reach 1.0 x 10' (kg/kg) over land and 2.0 x 10' 

(kg/kg) over sea (Smith 1990). Large-scale formation of precipitation is dependent on 

cloud water content, with a greater efficiency of precipitation when the cloud is 

glaciated, and assumed to fall on 75% of the land surface within a grid box in the 

model regardless of layer cloud fraction (Jones et al., 2004). The large-scale cloud 

and precipitation scheme of the model treats the water transfer between clouds and 

precipitation as a result of cloud physics processes, the free fall o f ice and rain
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downwards to the earth surface, and the calculation of fractional coverage of cloud in 

each grid box of the model. The cloud physics processes that are represented in the 

scheme are: condensation of water vapour to cloud droplets and the evaporation of 

these droplets, deposition of water vapour to ice crystals or aggregates and the 

evaporation of these particles, the riming of supercooled cloud droplets by ice 

particles, melting of ice particles to produce raindrops, evaporation of raindrops, 

accretion (“sweep-out”) of cloud droplets by raindrops, the coalescence mechanism to 

form raindrops from cloud droplets, and the downward fall of ice particles and 

raindrops (Wilson and Ballard, 1999).

This model is also able to account approximately for convective precipitation 

(occurring on a local scale), which represents the convection of cumulus and 

cumulonimbus clouds. A single cloud model is used to represent a number of 

convective plumes within the grid box, and the convective precipitation is diagnosed 

within that grid box if the cloud liquid/ice content exceeds a critical amount and the 

cloud depth exceeds a critical value. The threshold values of cloud liquid water for 

convective precipitation are higher than the large-scale clouds and precipitation, being 

2 g/kg over land and 0.4 g/kg over sea. The cloud depth value is set to 1.5 km over the 

sea and 4 km over land. However, if the cloud-top temperature is less than -10°C, the 

critical depth is reduced to 1 km over land or sea. Similar to large-scale precipitation, 

the convection scheme also allows for evaporation and melting of precipitation. In 

each grid box, it is assumed that the convective precipitation falls on 65% o f the land 

surface, regardless of the convective cloud fraction (Jones et al., 2004).
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3.2.2.2.4 Gravity wave and orographic drag

In the free atmosphere, the gravity wave drag scheme parameterises the effect o f the 

mountain ranges on scales between 5 km and the model grid scale, which acts as a 

sink for momentum. Depending on the conditions of atmospheric stability and wind 

shear, air passing over the mountains may create lee waves over and to the lee of the 

mountains (Palmer et al., 1986). The fundamental elements of this scheme are the 

determination of surface stress, and the distribution of this stress through the 

atmospheric column, which is dependent on the wind speed, density, and static 

stability of the low-level flow, where the low-level flow is the layer of air that 

intersects the sub-grid scale orography (McIntyre, 1980).

Closer to the earth's surface, the orographic drag scheme parameterises the effect on 

the boundary layer of sub-grid scales of about 5 km or less, where the wind speed 

decreases due to interaction with the roughness o f the earth surface. The orographic 

drag is determined in terms of a constant drag coefficient and linearly depends on the 

silhouette area of orography, which is a measure of the slopes within a grid box 

(Jones et al., 2004). The calculation also uses an effective roughness length, which is 

a combination of the effects of the topography and vegetation within a grid box (see 

Gregory et al., 1998) but does not take into account wave reflection, trapping or 

gravity waves generated by other means such as convective storms (Wilson and 

Swinbank, 1996).
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3.2.2.3 Atmospheric aerosols (sulphur cycle)

The model has also taken into consideration the spatial distribution and life cycle of 

atmospheric sulphate (SO*-) aerosol particles in the atmosphere, as sulphate aerosol 

particles tend to give a surface cooling effect through scattering of incoming solar 

radiation (direct effect) and increasing cloud albedo due to smaller cloud droplets 

(first indirect effect). The sulphur cycle scheme includes five prognostic variables to 

simulate the distribution of sulphate aerosols, namely sulphur dioxide (SO2 ), dimethyl 

sulphide (DMS), and three modes of sulphate [i.e sulphate dissolved in cloud droplets, 

sulphate particles in Aitken mode (median radius, rAit=24 x 10'9 m), and sulphate 

particles in accumulation mode (median radius, race- 95 x 10'9 m)] (Jones et al., 2004). 

These sulphur cyle tracer variables in the model are advected using trace advection 

scheme, mixed and dry deposited in the boundary layer, mixed convectively, and wet 

scavenged by large scale and convective precipitation as the model proceeds 

(Woodage et al., 2001). This sulphur cycle can be initiated from emissions of 

anthropogenic sulphur dioxide, natural DMS (dimethyl sulphide), or volcanic sulphur.

The treatment of atmospheric chemistry of SO2 in the model includes the oxidation o f 

DMS to SO2 , and SO2 to sulphate by radicals in gas and aqueous phases. The 

oxidation of DMS and SO2 is calculated from prescribed monthly mean three- 

dimensional fields of OH, H2 O2 and HO2 , which were obtained from the simulations 

of the Lagrangian chemistry model STOCHEM (Collins et al., 1997). In dry or gas 

phase oxidation of SO2 , it is assumed that the rate of oxidation of SO2  is proportional 

to the amount of SO2 available (Eq. 4.1) and the integration of this equation gives an 

expression for the incremental change of SO2  over timestep (Eq. 4.2). 

d{S02}ldt = -k * { S 0 2} (4.1)
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A{S 0 2} = -[1 -  exp(-ifc * A?) I* {S02} (4.2)

Using the STOCHEM model (Collins et al., 1997; Stevenson et al., 1997) to obtain 

the average concentration of OH and rate constant (k), the equation for the rate of dry 

oxidation of SO2 in daylight only is as in the following Eq. 4.3, where the typical 

values of kso2 -OH are of order 10" 12 cm3/molecule.sec and OH concentrations up to 

1 0 6 molecules/cm3 which gives the dry rate (k) values of around lO 'V 1. The change 

of dry SO2 can be obtained from Eq. 4.4.

k ^ = k s o 2 -OH*[OH] (4.3)

= -  kSOi_OH * [OH] * {S02} * At ( 4.4)

For the treatment of wet or aqueous oxidation of SO2 in the model, SO2  in the cloud is 

oxidised by H2 O2  with assumption that the number of clouds a molecule of SO2  has to 

pass through before it is oxidised has a geometric distribution as shown in Eq.4.5 and 

Eq 4.6:

E(T II) = Tcto), +  Tri(We x p ( - T rf—  /2 tc)„,)//> (4.5)

E(TIO) -  Tdll,  + T ^ d / p - 0 .5 )  (4.6)

With the assumption that the probabilities of (0) and (I) are proportional to the 

number of SO2 molecules in the clear and cloudy fractions of the grid box of the 

model, the value of the rate of wet oxidation can be calculated as shown in Eq 4.7, 

where the typical values of wet rate are in the order of 1 0 'V 1. By considering the 

allowance for the depletion of H2 O2 , the change in SO2 can be expressed as in Eq. 4.8,
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where {S} is either the amount of SO2 in the gridbox or the molar equivalent amount 

of H2 O2 , whichever is the smaller (Woodage et a l , 2001)

*w, - l  I E ( T )  (4.7)

A{S02}«, = -|1 -  exp(A:,„„ * AO]* {5} (4.8)

For the treatment of DMS, in the chemistry model DMS is assumed to be oxidised by 

OH to produce SO2  and MSA (methanosulfonic acid). The exponential decay rate 

equation for the depletion of DMS is shown in Eq 4.9, where the constant rate of 9.1 x 

10' 12 cm3 /molecule.sec and the first order approximation to the exponential term (Eq 

4.9) can be made as shown in Eq 4.10.

A {DMS1} = -[1 -  exp (-DMSRATE  * AO] * {DMS} (4.9)

A {DMS} = ~kDMS_0H * [OH] * {DMS} * At (4.10)

Meanwhile, the parameterisation of three sulphate modes includes the processes of 

evaporation of dissolved sulphate in cloud-free grid boxes to form accumulation mode 

of sulphate, nucleation of accumulation mode sulphate to form dissolved SO2-, and 

diffusion of Aitken mode sulphate into cloud droplets to form dissolved SO 4- In 

PRECIS, the sedimentation of sulphate particles (Aitken and accumulation modes) 

was introduced as it is an important mechanism for long transient runs for removing 

sulphate “trapped” in the stratosphere where other scavenging processes cannot 

operate (Woodage et a l , 2001).

99



3.3 Experimental Design and Setup

3.3.1 Modelling domain

For the present study, PRECIS has been configured for a domain extending from 

30°N to 15°S and 90°E to 140°E in the Southeast Asian region with a horizontal 

resolution of 0.44° x 0.44° (Figure 3.2). The selected domain is large enough that the 

regional model can develop its own regional-scale circulations features with minimal 

“contamination” by the application of the boundary conditions, and small enough that 

the climate of the RCM deviates significantly from the GCM and that a simulation 

can be completed in a reasonable amount of time (Wanner et al., 1997).
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Figure 3.2: Domain for the investigation of climate changes in SEA.
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3.3.2 Climatological simulation scenarios

PRECIS-RCM and the driving model (GCM-HadAM3P) use emission scenarios 

developed by IPCC (2000). The following section is a listing of climatological 

simulation scenarios used in this study, which are simulated by PRECIS-RCM and 

defined in terms of the source of the boundary data and the relevant emissions data.

3.3.2.1 Baseline scenario (HadAM3P: 1961-1990)

The climate of the recent past, which is assumed as belonging to the present-day 

climate, is used as a climatological baseline or control. Good quality climatological 

data is required in order to characterise the present-day climate in the SEA region for 

a given baseline period. The baseline period of 30 years, from 1961 to 1990, as 

defined by the World Meteorological Organisation (WMO) as the normal period and 

fulfils the criteria set by the IPCC (1994) has been used in this study as the 

climatological baseline. The boundary data for this scenario is derived from three 31- 

year (1961-1990) integration of HadAMP3P (atmosphere only GCM) with 150 km 

resolution (Wilson et al., 2005). That is, this scenario is an ensemble of three 

realisations or simulations of lateral boundary conditions {note: in PRECIS the three

realisations are labelled as [addfct], [addfb], and [addfc]), each spanning from 1st DJF

1960 to l sl DJF 1991, which have been integrated using different initial conditions but 

a common observed time series of HadlSST sea-surface temperatures and sea ice for 

the same period (Moberg and Jones, 2004). The current climate conditions simulation 

is important for the evaluation of the performance of the PRECIS regional climate 

model and as a baseline for the climate change investigation.
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3.3.2.2 ECHAM4

ECHAM4 boundary data from the atmospheric general circulation model ECHAM is 

also available in PRECIS-RCM for A2 and B2 scenario experiments (1960-2100). 

This numerical model is the fourth-generation atmospheric general circulation model 

developed at the Max Planck institute for Meteorology (MPI). The model is a spectral 

transform model with 19 atmospheric layers from the surface up to lOhPa. The 

prognostic variables are vorticity, divergence, logarithm of surface pressure, 

temperature, specific humidity and mixing ratio of total cloud water. The time-step 

for dynamic and physics is 24 minutes (for T42 horizontal resolution). Meanwhile the 

solar radiation time step is 2 hours where both seasonal and diurnal cycles in solar 

forcing are simulated. The transport of water vapour and cloud water in the model is 

calculated using a shape-preserving semi-lagrangian scheme (Williamson Rasch,

1994). Parameterisations for unresolved dynamic and physical processes were 

included, such as radiation, cumulus convection, stratiform clouds, gravity wave drag, 

vertical diffusion and surface fluxes, land surface processes and horizontal diffusion.

In ECHAM4, the parameterisation of radiation has adopted the code from the 

European Centre for Medium-Range Weather Forecast (ECMWF) model (Fouquart 

and Bomel, 1980; Morcrette et al., 1986) with some modifications to the treatment of 

greenhouse gases, ozone and aerosols. The parameterisation of cumulus convection is 

based on the bulk mass flux concept by Tiedtke (1989), with the improvement 

suggested by Nordeng (1994) where the organized entrainment that relates to 

buoyancy is computed for a spectrum of clouds detraining at different heights. 

Meanwhile the stratiform cloud water content is calculated from the respective budget 

equations, including sources and sinks due to phase changes and precipitation
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formation by coalescence of cloud droplets and gravitational settling of ice crystals 

(Roeckner, 1995). The parameterisation of gravity wave drag is based on Miller et a l  

(1989), where the simulation is using directionally dependent subgrid-scale 

orographic variances obtained from a high-resolution U.S Navy dataset. For the 

turbulent surface fluxes parameterisation, a higher order closure scheme is used to 

calculate the turbulent transfer of momentum, heat, moisture and cloud water. 

Meanwhile the eddy diffusion coefficients are calculated as a function of turbulent 

kinetic energy, which is obtained from the respective rate equations (Brinkop and 

Roeckner, 1995). Lastly, the parameterisation of land surface processes includes the 

soil model, which comprises the budgets of heat and water in the soil, the snow pack 

over land and the heat budget of land ice. Land surface parameters such as 

background albedo, roughness length, vegetation types, leaf area index (LAI) and soil 

parameters have been compiled for ECHAM4 (Claussen et a l, 1994) and are 

consistent with the definition of ecosystem complexes given by Olsen et al. (1983).

3.3.2.3 Assimilated ERA40 (1957-2001)

ERA40 reanalyses data are fine resolution gridded data (2.5° x 2.5°), derived from 

ECMWF (European Centre for Medium-Range Weather Forecasting) Re-Analyses 

(ERA) through data assimilation into 45 years (1957-2001) that combines 

observations with simulated data from a single, consistent numerical model. ERA40 is 

the second-generation reanalysis carried out by the ECMWF following from ERA 15, 

with the objective of producing the best analysis with the availability of enhanced 

observation and computational resources (Uppala et a l , 2005). In comparison with 

ERA 15, ERA40 is produced with an improved GCM where in the assimilation, sea 

surface temperature (SSTs), and sea ice fractions are taken from a combination of the
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HadlSST and NCEP observed datasets. Also, ERA40 uses the observed values of 

various greenhouse gases for this period to provide relevant information on 

atmospheric composition, compared to ERA 15, which used only the average values 

(Jones et al., 2004). Comparatively, ERA40 can provide fields with higher horizontal 

and vertical resolutions in the planetary boundary layer and stratosphere (Uppala et 

al., 2005). Climate model output, using reanalysis datasets as input, is useful in 

describing the climatological baseline, for example in examining the relationship 

between reanalyses of upper air field and surface variables to produce regional 

climate scenarios downscaled from GCM outputs (Kaas and Frich, 1995).

3.3.2.4 Future climate scenario (HadAM3P: 2070-2100)

The Intergovernmental Panel on Climate Change (IPCC, 2000) has produced four 

emission scenario families with their coherent narrative storylines, namely SRES A l, 

SRES A2, SRES Bl, and SRES B2 (Table 3.1), reflecting different possible human 

future activities that yield different levels of greenhouse gas emissions. These 

scenarios were constructed to reflect the possible future developments in 

environmental or economic perspectives, and reflect either global or regional 

development. Each storyline describes a demographic, social, economic, 

technological, environmental, and policy future. For future climate simulations in 

SEA, a time slice from 2070-2100 was selected from 240-year transient simulations 

(1860-2100) with HadCM3. Within this time slice, two emissions scenarios were 

selected, namely SRES A2 and SRES B2, which are considered the best 

representations for future SEA emissions. SRES A2 assumes higher population 

growth, slower per capita economic growth rates, and technological change, which 

results in higher emissions of CO2 and larger emissions of other GHGs such as
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methane, nitrous oxides, and hydrofluorocarbons (HFCs) (IPCC, 2000). The 

simulation study consists of an ensemble of three realisations or simulations for 

scenario SRES A2 (note: in PRECIS these realisations are labelled as \addja\ 

[addje\, and [addjf]), and one realisation for scenario SRES B2 (note: in PRECIS this 

realisation is labelled as [addjd]) running for the period 2070-2100. The running of 

the ensemble (particularly SRES A2) is important to address the uncertainties of the 

model future simulation (see also Section 3.4).

Table 3.1: Emission scenario storylines

Scenarios Storyline Descriptions

Al
Describes a future world o f very rapid econom ic growth, global population that peaks 
in m id-century and declines thereafter, and the rapid introduction o f  new and m ore 
efficient technologies. M ajor underlying them es are convergence am ong regions, 
capacity building, and increased cultural and social interactions, w ith a substantial 
reduction in regional differences in per capita income.

A2

Describes a very heterogeneous world. The underlying theme is self-reliance and 
preservation o f  local identities. Fertility' patterns across regions converge very slowly, 
resulting in a continuously-increasing population. Economic developm ent is prim arily 
regionally-oriented, and per capita economic growth and technological change is more 
fragmented and slow er than other storylines.

B1

Describes a convergent world with the same global population that peaks in m id- 
centuiy and declines thereafter, as in the A l storyline, but w ith rapid change in 
economic structures toward a service and information econom y, with reductions in 
material intensity and the introduction o f  clean and resource-efficient technologies. The 
emphasis is on global solutions to economic, social, and environm ental sustainability, 
including improved equity, but without additional climate initiatives.

B2

Describes a world in which the emphasis is on local solutions to econom ic, social, and 
environm ental sustainability. It is a world with continuously increasing global 
population at a rate lower than A2, intermediate levels o f  econom ic developm ent, and 
less rapid and m ore diverse technological change than in B1 and A l storylines. W hile 
the scenario is also oriented towards environm ental protection and social equity, it 
focuses on local and regional levels.

A d a p ted  fro m  IP C C  (2000)

3.3.2.5 Observational datasets

Observational datasets used in this study were from the Climate Research Unit (CRU) 

(Hulme et al., 1995). The CRU mean climatology from 1961 to 1990 represents an 

advance over existing climatologies, where it observes strict temporal fidelity and
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incorporates a spatially varying dependence on elevation (Legates and Willmott, 

1990; Leemans and Cramer, 1991). CRU datasets are presented in gridded global 

time-series of surface climate variables, which are used for the evaluation of the 

ability of a regional climate model (RCM) to simulate climate variability. Another 

observational dataset that was used in this study was the European Centre for Medium 

Range Weather Forecasts (ECMWF) Re-Analysis from 1957-2001 (ERA40) (Uppala, 

et al., 2005), which was described previously in Section 3.3.2.3. But because ERA40 

is not fully an observed dataset, it is not fully independent of the model used to 

generate it. However, this re-analysis dataset can fill gaps in the areas where 

observations are missing or sparse, such as in SEA. It is also important to note that 

climate variables such as precipitation in reanalysis datasets are model results and 

must not be considered as observations. Given that precipitation is among the most 

difficult fields simulated by today’s models, the quality of re-analysis in this regard 

can be very poor (Moufouma-Okia, UK Meteorological Office, personal 

communication; Fowell, 2006).

3.3.3 Length of Simulation

For regional climate investigations in SEA, the simulation length for the current 

climate (1960-1990) and future climate (2070-2100) has been set for 30 years, 

although the minimum length requirement is at least 10 years. This length is chosen in 

order to provide a reasonable idea of the mean climate change and to better determine 

changes in higher order statistics, particularly for the analysis of climate variability 

(McGregor et al., 1999; Kato et al., 2001; Jones et al., 2004). Longer periods of 

simulation (i.e. 30 years) were found to capture about 75% of the variance of the true 

climate change signals, compared to 50% for 10-year simulations (Jones et al., 1997).
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Another study by Huntingford et al. (2003) has shown that statistically significant 

changes in extreme precipitation can be obtained using 20-30 year simulations.

3.3.4 Boundary Conditions

Normally, RCMs are driven with either the observed boundary conditions, which are 

derived from Numerical Weather Prediction (NWP) analyses, or GCM boundary 

conditions (Gibson et al., 1997; Kalnay et al., 1996). For PRECIS-RCM, the 

boundary conditions are imposed as surface and lateral boundary conditions. Surface 

boundary conditions are only required over the ocean and inland water points, where 

time series of surface temperature and ice extent are provided and are updated daily. 

Meanwhile, the lateral boundary conditions provide information on atmospheric 

dynamics at the latitudinal and longitudinal edges o f the model domain such as 

surface pressure, winds, temperature, humidity, and sulphur variables (if sulphur 

cycle is chosen) and are updated every 6 hours (Jones et al., 2004).

For the simulation study, the boundary data is obtained from the four 30-year 

integrations of the HadAM3P (atmosphere-only GCM). For the two selected future 

scenarios (A2 and B2), the sea-surface boundary conditions are derived by combining 

changes in sea-surface temperature and sea ice simulated in integrations of HadCM3 

(ocean-atmosphere GCM) with the HadlSST (observed time-dependent fields of SST 

and sea ice), which has been detailed by Moberg and Jones (2004). Meanwhile, the 

evolution of greenhouse gases (GHGs) and sulphur dioxide (from anthropogenic and 

natural sources) concentrations prescribed in the regional model over the simulated 

period are the same as in the corresponding HadCM3 experiment, which were 

calculated offline from the SRES emission scenarios data (Jones et al., 2004).
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3.3.5 Initial Conditions (Spin-up)

Land, ocean, and sea ice contribute significantly to surface forcing in regional climate 

simulations (see Giorgi et al., 1996; Pielke et a l,  1999; Maslanik et al., 2000; 

Rummukainen et al., 2001), and therefore, at the beginning of the RCM modelling 

experiment, the initialisation of surface variables, particularly soil moisture and 

temperature are not in equilibrium conditions. Since the atmosphere within the RCM 

domain takes a few model days to achieve equilibrium with its lateral boundary 

conditions, and while the temperature and moisture in the deep soil levels take many 

months to reach equilibrium, it is therefore necessary to allow the atmosphere and 

land surface to adjust or “spin-up” to a mutual equilibrium state prior to the 

commencement of climate simulation. In PRECIS, the spin-up period of 12 months is 

applied and during this period the RCM climate will experience some drift (Jones et 

al., 2004). The output during this spin-up period was not analysed or used in later 

parts of this study.

3.3.6 Land-Sea Mask

Accurate specification of land and sea grids within the PRECIS-RCM domain is 

crucial, as land and sea influence the climate evolution in a very different way 

(Wilson et al., 2005). PRECIS-RCM, used in this study, automatically creates a land- 

sea mask for the chosen domain, which is sourced from the global dataset at 10 

minutes resolution. However, modification of the land-sea mask has been performed 

on the automatically created PRECIS land-sea mask by editing the grid box into a 

land point, if at least half of the grid box area is land in reality by using the coast 

outline as a guide.
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3.3.7 Altitude

The altitude for each grid box within the domain is calculated as an average of 

topographic height of the area covered by the grid box, which is also sourced from a 

global dataset of mean topographic heights at 10 minutes resolution (Wilson et al.,

2005). For the SEA region, there was no alteration of the default altitude for a land 

grid point as no new land points have been inserted for a grid box, which is mainly 

ocean in reality. However, altitude modification has been made for inland water such 

as Toba Lake (904 m amsl) in Sumatra Island of Indonesia and Tonle Sap Lake (10- 

30 m amsl) in Cambodia (Table 3.2), where realistic heights above mean sea level 

were applied.

Table 3.2: Modification of grid box properties (altitude, soil and landcover) in
PRECIS

G rid  Box
XY

C o o rd in a te A ltitu d e  (m ) Soil
(C O D E )

L a n d c o v e r  
(S T A S H  C O D E )

Primary Secondary

Lake Toba 
(Indonesia)

35,60 904 undefined Inland w ater 
(01)

Inland w ater 
(01)

Tonle Sap 
(Cam bodia)

47,36 20 undefined Inland w ater 
(01)

Inland w ater 
(01)

3.3.8 Soil and Landcover

The geographical distributions of soil properties and landcover types for all land grid 

boxes within the domain are prescribed from the datasets created by Wilson and 

Henderson-Sellers (1985) on a 1° x 1° grid. Each grid box is covered with primary 

and secondary landcover types, which are required to be supplied in accordance to the 

landcover type integer codes as shown in Appendix 3.1. Primary landcover is marked 

by specific landcover type if the coverage of the grid box is between 50-100% and
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secondary landcover if the coverage is between 25-50% (Wilson et al., 2005). 

Meanwhile, Wilson and Henderson-Sellers (1985) have also defined 22 different soil 

types according to colour, texture, and drainage characteristics as shown in Appendix 

3.2. The default soil and landcover can be modified if the landcover types in specific 

grid boxes are in question. In this case, the global landcover datasets defined by 

Wilson and Henderson-Sellers (1985) with 1° x 1° resolution for a particular latitude 

and longitude location can be used. As mentioned in Section 3.3.7, only two grid 

boxes were modified to include the two major lakes in SEA, namely the Lake Toba 

(Indonesia) and Lake Tonle Sap (Cambodia) (Table 3.2).

3.3.9 Diagnostic O utput

By default, over 130 outputs in total are available as PRECIS-RCM runs, which are 

identified with five digit numbers called STASH codes (Appendix 3.3). A STASH 

code is a unique positive integer, which is assigned to each different output diagnostic 

variable from the RCM. For the purpose of investigation in the present work, only 

five variables (i.e temperature, total precipitation, total cloud, solar radiation and 

boundary layer) were discussed as they are subsequently used as input to the 

BVOCEM and CiTTyCAT models for the investigation of climate changes impact on 

biogenic emissions (Chapter 5) and tropospheric chemistry (Chapter 6).

3.4 Uncertainties in Regional Climate Modelling

In the investigation of climate change using a RCM, there are a number of 

uncertainties that need to be taken into consideration when discussing the simulation 

results. This section discusses briefly uncertainties in climate modelling (regional or
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global) arising from the development of climate scenarios or from the model itself, 

and how these uncertainties were addressed in PRECIS-RCM. Future emissions 

uncertainty is one of the most clearly identified major causes of uncertainty in future 

climate projection (Jones et al., 2004) and has been well documented (Morita et al.,

2001). This is due to the inherent uncertainties in key assumptions and relationships 

about future population, socio-economic development, and technology changes that 

are the basis of the IPCC SRES Scenarios (Morita et a l , 2001). In PRECIS-RCM, the 

future emissions uncertainties have been addressed by running the Hadley Centre 

GCM with a range of emission scenarios (SRES A1F1, A2, B2, and B1 emissions) 

(Jones et al., 2004).

Another important uncertainty that has been identified in RCM is the future 

concentration of GHG resulting from emissions, due to the lack of understanding of 

the processes and physics in the carbon cycle and chemical reactions in the 

atmosphere that affect the emissions-to-concentration relationships. So far, this 

uncertainty has not been yet addressed in the current PRECIS-RCM, but in the near 

future, this uncertainty will be reflected in climate scenarios by using atmosphere- 

ocean general circulation models (AOGCMs) that explicitly simulate the carbon cycle 

and chemistry of all relevant species (Jones et al., 2004). Incomplete description of 

the key processes and feedbacks in the climate models has also contributed to the 

uncertainty in the response of climate systems (Jones et al. 2004). The current GCMs, 

which contain different representations of the climate system, project different 

patterns and magnitudes of climate change for the same period and same 

concentration scenarios (Cubasch et al., 2001). In climate impact studies, this
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uncertainty can be addressed by using a number of different GCMs (Jones et al., 

2004).

Internal variability in RCM simulations, due to linear internal dynamics not 

associated with the boundary forcing, has been identified as another factor of 

uncertainty in RCM simulations (Ji and Vernekar, 1997; Giorgi and Bi, 2000; 

Christensen et al., 2001). Uncertainty of the model simulation is reflected by annual 

and decadal climate variability. This uncertainty can be quantified, and therefore can 

be addressed by running ensembles of climate projections. In PRECIS-RCM, an 

ensemble of three experiments or realisations for both Baseline (Control) Scenario 

and SRES A2 and one experiment for SRES B2 were provided (see Section 3.3.2), 

which used the same model and same emission scenarios but initiated from a different 

starting point (Jones et a l, 2004). The modelling results of the experiments will 

therefore address the internal variability of the model.

Uncertainties also arise from the regionalisation of climate change models from the 

driving GCM fields, as any errors from the GCMs are carried with them during this 

process. The inherent effect of systematic errors from the driving large-scale fields 

provided by the GCM have been observed and described in previous studies (Pan et 

al., 2001; Mearns et al., 2001; Fowell 2006). The differences in regionalisation 

techniques not only resulted in different projections, but even the use of the same 

regionalisation techniques on the same GCM projection can also give different 

projections. This uncertainty issue can be addressed by using other RCMs or by 

carrying out statistical downscaling in parallel with PRECIS (Jones et al., 2004). 

However, quantifying these uncertainties is beyond the scope of this study.
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3.5 Evaluations and Assessments of Regional Climate Model

Mearns et al. (2003) stressed that any regional climate model to b used for climate 

change studies should be capable of reproducing the present day climate of the region 

of interest; model errors should be also identifiable. Since the signals of GCM and 

RCM are often different, either at the regional or sub-regional scale, it is therefore 

important that the RCM simulations are validated and the performance of the 

simulation is verified to ensure that the model errors are identified, quantified, and 

understood, as these can help in the interpretation of the climate change simulations. 

The RCM validation is essential for a number of reasons, primarily because most of 

the PRECIS-RCM runs are over new areas where the model performance is untested, 

and also as an indicator of how much credibility the RCM results have and how the 

model should be used in impact studies (Wilson et al., 2005). Furthermore, in 

assessing the model, the discrepancies between GCM, RCM, and the real 

observations can be addressed by identifying and quantifying the systematic model 

bias (errors in the model physical formulation), spatial sampling issues (differences in 

resolution of model and observations), and observational errors (gridding issues, 

instrument-dependent errors). Generally, the validation of PRECIS-RCM can be 

performed in three separate ways: GCM vs Observations; PRECIS-RCM driven by 

GCM vs GCM; or PRECIS-RCM driven by GCM vs Observations using a number of 

statistical analyses. In this study, the validation of the model has been carried out by 

statistically comparing the output data from PRECIS-RCM driven by GCM with the 

observed data either from CRU or ERA40 datasets and PRECIS-RCM driven by 

GCM with GCM.
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A number of statistical measures were used in this study to evaluate the climate model 

results. Statistical analysis was made by means of variables such as correlation 

coefficient (R) (Eq. 3.1), fractional bias (FB) (Eq. 3.2), and normalised mean square 

error (NMSE) (Eq. 3.3), and a validation test (two tailed t-test). These statistical 

measures are widely used in meteorological and climate change investigations (see 

von Storch and Navarra, 1995). The correlation, or the correlation coefficient, is a 

normalised measure of how well the simulated and observed, or generally two series 

of data co-varies. The bias of a series of observations and their corresponding 

simulations can be interpreted as a systematic error for a given variable. If the bias is 

less than zero then the model is under predicting the mean, and if the bias is larger 

than zero then the model is overestimating the mean. The fractional bias can also be 

expressed in percentage. The typical difference between observations and model 

predictions can be estimated by using the Mean Square Error (MSE). The MSE will 

have the value zero for a perfect forecast. However, it is sensitive to only a few large 

differences between observations and predictions due to the squaring o f the 

difference. A variant of the MSE is the Root Mean Square Error defined, which can 

be interpreted as the expected error of the simulations. Another variant is the 

Normalised Mean Square Error (NMSE) that obtains a value between 0 and 1, which 

can be practical when comparing the relative efficiency between observations and 

simulation. A two-sided student t-test can be used to measure the statistical 

significance of the difference between averages of two series of datasets.

Correlation (R) (3.1)



Fractional Bias (FB) O - P (3.2)
0 .5 (0 + P)

Normalised Mean Square Error = — (3.3)

1 - 1

3.6 PRECIS-RCM Applications in Climate Change Studies

In the last 15 years, RCMs have been recognised as an excellent tool in a number of 

climate studies in smaller regions for topics such as in paleoclimate studies (Flostetler 

et al., 1994), atmospheric chemistry studies (Stevenson et al., 2005), climate impact 

studies (Jones et al., 1997; Bhaskaran et al., 1998; Hudson and Jones, 2002; 

Huntingford et al., 2003), temperature extremes (Hennessy et ah, 1998; Mearns,

2004), water resources (Wang et al., 1999; Stone et al., 2001, 2003; Wilby et al., 

1997), agriculture (Mearns et al., 1999a, 1999b; Erda et al., 2005; Challinor et al.,

2006), energy demand (Lalas et al., 2005), and forest fires (Wotton et al., 1998). 

RCMs developed by the Hadley Centre, which include PRECIS-RCM, the latest 

version RCM (third-generation), were also used in a number of climate change impact 

studies worldwide, which are briefly highlighted in the following paragraphs.

3.6.1 Asia -  South Asia

A recent study by Challinor et al. (2006) has used the meteorological output o f the 

PRECIS-RCM to study crop responses on climate change in India. Based on
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genotypic responses, this study has found that the impact of mean and extreme 

temperatures on mean yield were widespread, with more stress observed in some 

locations in India. Another study in India by Kumar et a l (2006) used the PRECIS- 

RCM to develop high-resolution climate change scenarios for the 21st century for 

various surface and upper air parameters. This study concluded that the PRECIS- 

RCM has the capability to resolve features on a higher resolution than those by GCM, 

particularly in projecting the spatial patterns of summer monsoon rainfall along the 

windward side of the Western Ghat, though notable quantitative biases (overestimate) 

have been identified, particularly in precipitation over some regions of the Indian sub

continents. Model simulations by PRECIS-RCM under scenarios of increasing GHG 

concentrations and sulphate aerosols in their study have shown marked increases in 

both rainfall and temperature towards the end of the 21st century.

Bhaskaran et al. (1998) used the earlier version of RCM developed by the Hadley 

Centre to study the intra-seasonal variability of the oscillation circulation and 

precipitation anomalies in South Asia. The study also found that the RCM model 

captured the intra-season variability more realistically than the driving GCM. Further 

investigations by Hassell and Jones (1999) for the same area concluded that a nested 

RCM captured observed precipitation anomalies in the active break phases of the 

monsoon that were not detected from the driving GCM. In Bangladesh, a study was 

carried out to validate the performance of PRECIS-RCM against the surface 

observational data of precipitation and temperature at 26 observational sites from 

1961-1990 (Islam and Mannan, 2005). Results indicated that PRECIS-RCM 

overestimated most of the precipitation and temperature in the region, though in some 

locations it provides better performance.
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3.6.2 Asia - Far East

In China, PRECIS-RCM was used by Erda et al. (2005) to investigate the future 

climate and to develop climate change scenarios for China. The results from this 

study concluded that at the end of the 21st century, depending on the level of future 

emissions, the average annual temperature was projected to increase between 3-4°C. 

Meteorological output data from PRECIS-RCM was also used to drive the regional 

crop models to investigate possible changes in yields of the main crops in China such 

as rice, maize, and wheat. The projected climate changes without carbon dioxide 

(CO2) fertilization could potentially reduce the production yields by up to 37% in the 

next 20-80 years. Wang and Shallcross (2005) also used PRECIS-RCM to simulate 

Taiwan's climate, with particular interest on time-sliced between 1979-1981 of the 

whole modelling period. The simulation results have been compared against the 

observed data, reanalysis data, and other global climate models. The PRECIS 

simulation was found to reproduce well the spatial patterns of surface precipitation as 

well as the inter-annual variability of rainfall. PRECIS-RCM was also found to 

demonstrate good capability in simulating the spatial distribution of surface 

temperature over the whole selected region, particularly over Taiwan's Central 

Mountain Range.

3.6.3 Europe

The regional climate model, HadRM3P, which is also the model used in the regional 

modelling system PRECIS, was used by Moberg and Jones (2004) to evaluate the 

simulations of daily maximum and minimum near-surface temperatures across Europe 

by comparison with the observational data for the same period. The performance of
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the model for surface temperature is generally good over the United Kingdom, and 

elsewhere between latitudes 50 and 55°N, with biases within ±0.5K. However, in 

other regions within the domain of study, seasonal biases were found to be higher and 

even biases in climatological averages were as high as ±15K. PRECIS-RCM was also 

used to investigate the regional climate model performance against the observed data 

obtained from radiosonde in Cyprus (Southeast Europe) (Hadjinicolaou et al., 2006). 

This study also concluded that the PRECIS simulation over the selected region could 

satisfactorily reproduce the temporal evolution of temperature and other 

meteorological parameters. Lalas et al. (2005) also used PRECIS-RCM in Greece to 

evaluate the regional climate change impact on the energy system in Greece. Based 

on annual analysis, results have indicated that climate change in the region has caused 

the electric energy demand to increase approximately 5% solely due to the change in 

meteorological conditions.

3.6.4 North America and South America

PRECIS-RCM has also been tested over North America by Martineu (2005) to 

investigate climate changes in the region. In terms of performance, PRECIS-RCM has 

the capability to reproduce regional climates quite satisfactory, particularly over the 

Rocky Mountains, the Cordillera, and the Caribbean islands. The spatial patterns of 

precipitation and temperature of the selected domains are coherent with the 

observational datasets, though some biases (overestimated by 6°C) exist, particularly 

on seasonal datasets over the central US in the summer of 1980. Preliminary results of 

the PRECIS-RCM application in Brazil under SRES A2 scenario have shown a large 

warming in 2070-2100 for southern Amazonia (up to 6°C)(Marengo and Ambrizzi, 

2006). In term of precipitation, the simulation has indicated a drier phenomenon



occurring in Eastern Amazonia and North East Brazil, and precipitation reduction in 

Southern Brazil and parts of Western Amazonia along the Andes. For comparison, the 

precipitation projection in Amazonia using the GFDL GCM was also found to show 

some reduction in individual locations, but the evaluation of the performance of the 

model in this region was rather poor (Fowell, 2006).

3.6.5 Africa

A number of studies have used PRECIS-RCM to investigate climate changes in the 

African continent. In one of the recent studies by Beraki (2005) over the Eritrean 

domain, the PRECIS-RCM simulation performed satisfactorily in terms of spatial 

patterns against the observed data (the correlation between the observed data was 0.88 

to 0.89). Future temperature simulations over this region were found to increase in 

both SRES A2 and B2 scenarios at the end of this century. Meanwhile, for 

precipitation, mixed signals were found, though it was expected to increase in most of 

the Eritrean region. Earlier studies by Arnell et al. (2003) used the regional climate 

model, HadRM3H with spatial resolution of 0.44 x 0.44° with two other models 

(HadCM3 and HadAM3H) to investigate the macroscale river runoff in southern 

Africa. Jones and Hudson (2002) have also used the Hadley Centre RCM, HadRM3H, 

to investigate the climate change scenario over southern Africa. The results have 

shown that the RCM is capable of resolving features on finer scales, which includes 

extreme events such as tropical cyclones, though there are indications of positive 

biases in precipitation and negative biases in surface temperature over most of 

southern Africa in summer.
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3.7 Results and Discussion

The results are presented in two parts: first, the evaluation of regional climate model 

results by comparing them with the dataset from CRU, ERA40 and the GCM; 

secondly, the investigation of climate changes under the present-day landcover (fixed 

vegetation) in the A2 and B2 climate scenarios. For the purposes of discussion, only 

variables that were used in the subsequent investigation of biogenic emissions 

(Chapter 5) and tropospheric chemistry (Chapter 6) such as surface temperature, solar 

radiation, boundary layer height and total cloud were discussed. In addition, 

precipitation was also included as it is one of the important variables in climate 

changes investigation. In this Chapter 3, discussion will be limited to the climate 

change during the northeast monsoon (NEM), which is denoted as DJF (Dec-Jan-Feb) 

and southwest monsoon (SEM), which is denoted as JJA (Jun-Jul-Aug). For 

completeness, intermediate periods appear in some tables and figures in the results but 

are not discussed; these are denoted as MAM (Mar-Apr-May), and SON (Sep-Oct- 

Nov). Other climate and hydrological variables such as latent heat, sensible heat, 

surface soil evaporation, canopy evaporation, total soil moisture, moisture 

convergence and surface pressure were also analysed and available but were not 

presented in this chapter.

3.7.1 Regional Climate Model Evaluation

This section evaluates the control or Baseline simulations of the PRECIS-RCM by 

comparison with the observed CRU data and ERA40-Reanalysis datasets for surface 

temperature, total precipitation, total clouds and solar radiation (ERA40 only). 

Evaluation of the Baseline simulation as well as the future simulation for A2 and B2
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scenarios with respect to the deviations from the simulated climate of the driving 

GCM are also carried out. Some statistical analysis of results, including the fractional 

bias (FB), normalised mean square error (NMSE) and correlation, are also provided.

3.7.1.1 Comparison with the CRU datasets

Table 3.3 summarises the seasonal response statistics (for surface temperature, total 

precipitation and total cloud) over land points for the 0.44° x 0.44° resolution of CRU 

climatology and the PRECIS-RCM for the Baseline scenario. For the analysis, the 

observed CRU data were regridded to the RCM grid, and only land points were used 

in the interpolation. It is also important to acknowledge that the CRU datasets may 

subject to errors in most area of SEA due to inadequate station coverage. In addition, 

the uneven distribution of land in the study domain means that the CRU dataset has a 

different seasonality to the ERA-40 and the whole-domain PRECIS results. The 30- 

year seasonal mean of surface temperature over land simulated from PRECIS-RCM 

compared against observed CRU datasets is shown in Figure 3.3. The mean surface 

temperatures over the land were higher in the PRECIS-RCM compared to the CRU in 

all seasons with differences of about 0.82°C (3% overestimated) during DJF and 

0.95°C (4% overestimated) during JJA. Larger differences were observed during the 

inter-monsoons (MAM and SON). In terms of correlation between the simulated 

surface temperature by PRECIS-RCM and observed (CRU), high correlations of 

about 0.7 were observed during DJF and JJA compared with other seasons (MAM 

and SON). The calculated fractional bias (FB) between the simulated (PRECIS-RCM) 

and observed (CRU) were less than zero except during inter-monsoon (SON) and the 

FB values were relatively very small. Relatively, there was less systematic error for
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the simulation of surface temperature using PRECIS-RCM for SEA. The Normalised 

Mean Square Error (NMSE) of 0.004 during DJF and 0.003 during JJA indicated a 

relatively high efficiency of the PRECIS-RCM in simulating surface temperature. 

Generally, seasonal mean surface temperature simulated by PRECIS-RCM compared 

well with the observed CRU climatology in terms of the large scale spatial features.

For total precipitation, the mean differences were relatively small, from 0.42 mm/day 

(6% overestimated) during DJF and 0.42 mm/day (11% underestimated) during JJA 

(Table 3.3). The 30-year seasonal mean in total precipitation over land from the 

simulated PRECIS-RCM and observed CRU datasets is shown in Figure 3.4. The 

correlations between the simulated precipitation (PRECIS-RCM) and observed 

(CRU) in all seasons were relatively high, between 0.6 and 0.8. The calculated values 

of Fractional Bias (FB) were also small, indicating a good performance of the 

PRECIS-RCM in simulating precipitation over the land in SEA. The relatively small 

NMSE values (between 0.009 and 0.033) also indicated a high efficiency of PRECIS- 

RCM in the regional simulation of total precipitation. The performance of PRECIS- 

RCM in simulating total clouds was good, with small differences in the total cloud 

mean for all seasons and relatively very small values of FB and NMSE. Correlation 

between the simulated and observed total cloud during both DJF and JJA was high, 

but relatively small during other seasons (MAM and SON). The 30-year seasonal 

mean in total cloud over land simulated from the PRECIS-RCM and observed CRU 

datasets is shown in Figure 3.5.
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Table 3.3: Comparison of seasonal response statistics between the Baseline scenario 
and CRU datasets over land grid points. The area-averaged mean and spatial standard 
deviation of the response are shown, together with the Fractional Bias (FB), 
Normalised Mean Square Error (NMSE), and Correlations between the Baseline and 
CRU datasets.

Variables
Baseline CRU Fractional 

Bias (FB) 
[%|

Normalised Mean 
Square Error 

(NMSE)
Correlation

Mean sd Mean sd

Surface
Temperature

C O

DJF 26.88 0.24 26.06 0.24 -3.1 0.0004 0.7
MAM 27.12 0.21 26.06 0.20 -4.0 0.003 0.4

JJA 26.59 0.15 25.61 0.16 -3.7 0.003 0.7
SON 25.36 0.34 24.11 0.46 0.3 0.004 0.5
DJF 7.53 1.10 7.11 1.10 -5.8 0.025 0.7

Precipitation MAM 6.97 0.93 6.97 0.90 0.1 0.009 0.8
(mm/day) JJA 5.73 0.94 6.46 0.87 11.9 0.033 0.7

SON 6.16 1.24 6.45 0.64 3.7 0.037 0.6

DJF 0.62 0.04 0.61 0.01 -0.9 0.004 0.9
Total Cloud MAM 0.72 0.03 0.70 0.01 -3.3 0.003 0.4

(fraction) JJA 0.67 0.04 0.65 0.01 -2.1 0.003 0.7
SON 0.61 0.04 0.62 0.02 0.4 0.004 0.5
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Figure 3.3: The 30-year seasonal mean in surface temperature (°C) over land from the
PRECIS-RCM (left panel) compared against CRU {right panel).
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Figure 3.4: The 30-year seasonal mean in total precipitation (mm/day) over land from
the PRECIS-RCM (left panel) compared against CRU {right panel).
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Figure 3.5: The 30-year seasonal mean in total cloud (fraction) over land from the 
PRECIS-RCM (left panel) compared against CRU {right panel).
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The PRECIS-RCM, driven by the GCM lateral boundary, was compared to the RCM 

forced by ERA40-Reanalysis data in order to evaluate the internal model error of the 

PRECIS-RCM. Table 3.4 shows the comparison of seasonal response statistics 

between simulations from PRECIS-RCM and RCM-ERA40 for Baseline scenarios.

Table 3.4: Comparison of seasonal response statistics between the Baseline scenario 
and ERA40. The area -averaged mean and spatial standard deviation of the response 
are shown, together with the Fractional Bias (FB), Normalised Mean Square Error 
(NMSE), and Correlations between the Baseline and ERA40.

Baseline ERA40 Fractional Normalised 
Mean Square 

Error 
(NMSE)

Variables Mean sd Mean sd
Bias (FB) 

(%)
Correlation

Surface
Tem perature

(°C)

DJF 25.24 0.15 25.39 0.15 -0.6 0.001 0.92

MAM 26.85 0.43 27.06 0.47 -0.8 0.001 0.90

JJA 27.14 0.13 27.27 0.17 -0.5 0.001 0.91

SON 26.57 0.36 26.72 0.30 -0.5 0.001 0.94

DJF 5.24 0.53 5.22 0.48 0.5 0.001 0.96
Precipitation MAM 5.46 1.29 5 33 1.08 -2.4 0.002 0.94

(m m /day) JJA 8.37 0.07 8.61 0.02 -3.0 0.001 0.72
SON 7.25 0.58 7.34 0.72 -1.3 0.001 0.89
DJF 0.61 0.03 0.60 0.01 1.2 0.001 0.96

Total Cloud MAM 0.61 0.05 0.61 0.05 0.3 0.000 0.97
(fraction) JJA 0.72 0.01 0.73 0.01 -1.0 0.001 0.88

SON 0.67 0.02 0.67 0.03 -0.8 0.001 0.97
DJF 214.69 11.91 215.99 11.34 -0.6 0.002 0.88

Solar Radiation MAM 239.24 9.83 241.14 9.83 -0.8 0.002 0.87
(W m '!) JJA 213.54 3.11 212.15 3.15 0.7 0.003 0.90

SON 220.30 5.45 220.47 5.37 -0.1 0.002 0.92

Figure 3.6 shows the comparison of seasonal mean surface temperatures between 

simulations from PRECIS-RCM and RCM-ERA40. In all seasons, the surface 

temperatures over the region simulated by PRECIS-RCM were well reproduced in 

RCM-ERA40. The correlations between the simulations were high in all seasons. The 

seasonal mean differences were relatively small, between 0.13°C and 0.15°C. The 

mean surface temperatures were underestimated by 0.6% during DJF and by 0.5% 

during JJA. The differences in surface temperature in some areas over the seas in the 

northern part of the Philippines were found to be statistically significant during DJF
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(Figure 3.7). During JJA, surface temperatures were simulated significantly (at 95% 

level) higher by PRECIS-RCM over Sumatra, Java and the northern part of Sulawesi 

compared to the RCM-ERA40 simulation.

In comparison with RCM-ERA40, most of the spatial features of the seasonal 

circulation of precipitation over SEA were well represented in PRECIS-RCM (Figure 

3.8). The total precipitation differences between PRECIS-RCM and RCM-ERA40 

were in the range of -0.02 mm/day to 0.09 mm/day. During DJF, the mean 

precipitation was overestimated by 0.5% but underestimated by 3% underestimated 

during JJA (Table 3.4). Although highly correlated, large areas over the region 

showed significant differences (at 95% level) in simulated seasonal mean of total 

precipitation between PRECIS-RCM and RCM-ERA40 (Figure 3.9). The inherited 

circulation bias from the driving GCM through the lateral boundaries of the PRECIS- 

RCM domain could be an important factor to the precipitation bias over SEA.

The simulated seasonal mean of total cloud fraction was compared to RCM-ERA40, 

as shown in Figure 3.10. Seasonal means across the region during the inter-monsoon 

periods (MAM and SON) were reproduced by PRECIS-RCM but were overestimated 

by 1.2% during DJF and underestimated by 1% during JJA (Table 3.4). Figure 3.11 

shows that, over most of the areas where the mean cloud fraction differences were 

more than 0.04, mean differences were found to be statistically significant at the 95% 

confidence level.

Similarly with other climatic variables, the seasonal mean of solar radiation simulated 

by PRECIS-RCM reproduced most of the spatial features of the seasonal circulation 

from RCM-ERA (Figure 3.12). In all seasons, the simulated seasonal mean solar
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radiation was in the range of 214 Wm'2 to 239 Wm'2 (Table 3.4). The mean solar 

radiation was underestimated by 0.6% during DJF and 0.1% during JJA. Statistically, 

mean differences were found to be significant at the 95% confidence level in some 

areas of the region, as shown in Figure 3.13.
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Figure 3.6: The 30-year seasonal mean in surface temperature (°C) from the PRECIS-
RCM {leftpanel) compared against ERA40 {rightpanel).
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3.7.1.3 Comparison with the GCM

In this section, comparisons are made between the responses of the driving GCM and 

PRECIS-RCM, averaged daily for the 30-years simulation in the Baseline, B2 and A2 

scenarios over the regional-model domain, to evaluate the errors inherited from the 

forcing GCM through the lateral boundaries. For the purpose of discussion, only four 

climatic variables are dealt with, namely: surface temperature, total precipitation, total 

cloud, and solar radiation. Table 3.5 shows the comparison of seasonal response 

statistics between simulations from PRECIS-RCM and GCM in the Baseline, B2 and 

A2 scenarios.
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3.7.1.3.1 Baseline

The pattern and magnitude of the 30-year daily mean comparison between the 

PRECIS-RCM and GCM of surface temperature, total precipitation, total cloud and 

solar radiation for the Baseline scenario are shown in Figure 3.14. The surface 

temperature over the region simulated by GCM was well reproduced by PRECIS- 

RCM. The simulated surface temperatures in PRECIS-RCM and GCM were highly 

correlated (0.92) with mean temperatures of about 26.5°C and 26.6°C respectively 

(Table 3.5). As expected, PRECIS-RCM was capable of simulating surface 

temperature with high resolution over central Borneo and some regions over Sumatra. 

The mean surface temperature differences between PRECIS-RCM and GCM were 

found to be statistically significant at 95% level in small and sporadic locations over 

SEA (Figure 3.15).

The main features of the total precipitation simulation in the region by GCM . were 

well reproduced by PRECIS-RCM. PRECIS-RCM has also shown its ability to 

capture high precipitation over the Bay of Bengal at high resolution (Figure 3.14). 

However, comparing with the driving GCM, The simulated total precipitation over 

the region by PRECIS-RCM was about 24.5% higher than that in the GCM (Table 

3.5). The simulated mean of total precipitation by PRECIS-RCM and the driving 

GCM were 1.72 mm/day and 1.35 mm/day with a lower correlation of about 0.4. 

Larger areas over the region were found to be significantly different at 95% level 

between the simulated PRECIS-RCM and driving GCM as shown in Figure 3.15. As 

a comparison, an earlier study by Fowell (2006) also found a poor simulation result 

(r2=0.54) for total precipitation over SEA at the grid cell using the GFDL-GCM 

model. The investigation by Fowell (2006) also found that the continental region of
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SEA has a large relative error, mainly due to the small observed precipitation values. 

Therefore, the model failed to simulate accurately during JJA in this region.

The daily means of the total cloud fraction simulated by PRECIS-RCM and GCM 

were 0.67 and 0.63 respectively. PRECIS-RCM was also found to simulate total cloud 

at better resolution over central Borneo (Figure 3.14). A higher correlation of 0.9 

between the PRECIS-RCM and driving GCM was also observed. However, simulated 

mean cloud by PRECIS-RCM was slightly higher, by about 6%, in comparison with 

the driving GCM (Table 3.5). Small areas over the region were found to be 

significantly different at the 95% confidence level (Figure 3.15).

Similar patterns and values of solar radiation were simulated by GCM and PRECIS- 

RCM (Figure 3.14). The simulated daily means from PRECIS-RCM and the driving 

GCM was highly correlated (0.9) with means of about 221.7 Wm"2 and 228.6 Wm"2 

respectively. In comparison with the driving GCM, the simulation by PRECIS-RCM 

was 3.1% higher. A larger area, mostly over the land, was found to be statistically 

different at 95% confidence level (Figure 3.15).
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Figure 3.14: Baseline: Comparison of the 30-year daily mean of (a) surface 
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radiation (Wm'2) between the PRECIS-RCM {left panel) and GCM {right panel) 
simulations in the Baseline scenario.
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significant t-test plots {right panel) in the Baseline scenario.
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3.7.1.3.2 SRES B2

The pattern and magnitude of surface temperature over the region in the B2 scenario 

simulated by GCM was reproduced by PRECIS-RCM (Figure 3.16). The simulated 

surface temperatures by PRECIS-RCM and GCM were highly correlated (0.85) with 

mean temperatures of about 28.64°C and 28.56°C respectively (Table 3.5). In 

comparison with the driving GCM, the simulated surface temperature by PRECIS- 

RCM was by 0.3% higher. The mean surface temperature differences between 

PRECIS-RCM and GCM were found to be statistically significant at 95% level in 

small areas across the region (Figure 3.17).

In the B2 scenario, the main features of the total precipitation simulation over the 

region by GCM were also reproduced by PRECIS-RCM. PRECIS-RCM has also 

shown its ability to capture high precipitation over the Bay of Bengal at high 

resolution (Figure 3.16). Similarly, in the Baseline scenario, by comparing with the 

driving GCM, the simulated total precipitation over the region by PRECIS-RCM was 

higher by about 13.7% (Table 3.5). The simulated mean of total precipitation by 

PRECIS-RCM and the driving GCM were 6.29 mm/day and 5.49 mm/day with a 

correlation of about 0.88. Small areas over the region were also found to be 

statistically significantly at 95% level between the simulated PRECIS-RCM and 

driving GCM as shown in Figure 3.17.

The pattern and magnitude of total cloud over the region in the B2 scenario simulated 

by GCM was reproduced by PRECIS-RCM (Figure 3.16). The simulated total cloud 

fraction by PRECIS-RCM and the driving GCM were 0.60 and 0.56 respectively. In 

comparison with the driving GCM, simulated mean cloud by PRECIS-RCM was
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7.4% higher (Table 3.5). A higher correlation of about 0.94 between the PRECIS- 

RCM and driving GCM was also observed. Statistically, there were small areas over 

the region where the total cloud simulations were significantly different, at 95% 

confidence level (Figure 3.17).

The solar radiation over the region simulated by GCM was also reproduced by 

PRECIS-RCM (Figure 3.16). The simulated daily means from PRECIS-RCM and the 

driving GCM was highly correlated (0.89) with means of about 513.01 Wm'2 and 

465.86 Wm'2 respectively. In comparison with the driving GCM, the simulation by 

PRECIS-RCM was 2.5% lower. Some areas over the land were found to be 

statistically significant at the 95% confidence level (Figure 3.17).
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3.7.1.3.3 SRES A2

Figure 3.18 shows the pattern and magnitude of the 30-year daily mean comparison 

between the PRECIS-RCM and GCM of surface temperature under A2 scenario. The 

surface temperature over the region simulated by the GCM was reproduced by 

PRECIS-RCM. The simulated surface temperatures by PRECIS-RCM and GCM were 

highly correlated (0.99) with mean temperature of about 28.97°C and 29.12°C 

respectively (Table 3.5). In comparison with the driving GCM, the mean surface 

temperature simulated by PRECIS-RCM was 0.52% lower. The mean surface 

temperatures differences between PRECIS-RCM and GCM under the A2 scenario 

were found to be statistically significant at 95% level in small areas, mainly over land 

across the region (Figure 3.19).

Similarly to the B2 scenario, the main features of the total precipitation simulation 

over the region by GCM were reproduced by in PRECIS-RCM under the A2 scenario. 

PRECIS-RCM has also shown its ability to capture high precipitation over the Bay of 

Bengal at high resolution and some other areas over some islands within the domain 

(Figure 3.18). The simulated mean of total precipitation by PRECIS-RCM and the 

driving GCM were 6.45 mm/day and 5.66 mm/day with higher correlation of about 

0.96. In comparison with the driving GCM, the simulated total precipitation over the 

region by PRECIS-RCM was 13.9% higher but lower than in the B2 scenario (Table

3.5). Some areas, mainly over the Philippines were found to be statistically 

significantly at 95% level between the simulated PRECIS-RCM and driving GCM as 

shown in Figure 3.19.
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For the total cloud, the simulated daily mean fractions by PRCEIS-RCM and GCM 

were 0.60 and 0.56 respectively. Similarly with B2 scenario, PRECIS-RCM was also 

found to simulate total cloud at better resolution over central Borneo (Figure 3.18). A 

high correlation of 0.93 between the PRECIS-RCM and driving GCM was also 

observed, although the simulated cloud by PRECIS-RCM was 6.6% higher in 

comparison with the driving GCM (Table 3.5). Small areas over Indochina were 

found to be statistically significant at 95% confidence level (Figure 3.19).

As in the B2 scenario, the simulated solar radiation by GCM was reproduced by 

PRECIS-RCM (Figure 3.18). The simulated mean of solar radiation by PRECIS- 

RCM and driving GCM were 235.4 Wm'2 and 236.1 Wm'2 respectively. The 

simulation by PRECIS-RCM was 0.27% lower in comparison with the driving GCM 

simulation. Relatively larger areas and mainly over sea, were found to be statistically 

significant at the 95% level (Figure 3.19).
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3.7.2 Climate Changes in Southeast Asia

In this section, the discussion focuses on the mean surface temperature, total 

precipitation, total clouds, solar radiation and boundary layer height response to 

climate change in the A2 and B2 climate scenarios during DJF and JJA. A statistical 

t-test is used to evaluate the significant differences between the projected future 

climate in A2 and B2 emission scenarios relative to the Baseline scenario.

3.7.2.1 Surface temperature

The simulated seasonal mean of average surface temperatures of the three member 

ensembles for the Baseline or control scenario is shown in Figure 3.20. Meanwhile, 

the seasonal cycle of surface temperature for the Baseline, A2 and B2 simulations 

from the PRECIS-RCM is shown in Figure 3.21. The results indicate that the surface 

temperature increase relative to the Baseline is smaller in the B2 simulation than in 

the A2 simulation, due to the weaker emission forcing in the B2 scenario. The surface 

temperatures simulated in the A2 and B2 scenarios suggest a linear response to the 

emission forcing. The projected future mean surface temperatures over SEA in the A2 

scenario were 28.2°C during DJF and 30°C during JJA (Appendix 3.4). Relative to the 

Baseline scenario, the A2 future scenario over SEA showed an average surface 

warming in the region of 3°C during DJF, and 3.1°C during JJA (Figure 3.22 and 

Appendix 3.4). Surface temperature changes in all seasons were statistically 

significant at 95% confidence level over the whole SEA domain (not shown). 

Comparatively, higher temperature changes were observed over the land than over the 

sea in both seasons, being the highest over southern and central Myanmar during DJF 

and over Sumatra and Borneo during JJA.
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Due to the weaker emissions forcing in the B2 scenario compared to the A2 scenario, 

the surface temperature increase relative to the Baseline was smaller in the B2 

simulation: about 2.6°C during DJF and 2.1°C during JJA (Figure 3.23 and Appendix

3.5). The temperature changes were statistically significant at 95% level in all seasons 

except in some areas in the South China Sea and the Philippines Sea during DJF (not 

shown). Warmer temperatures were also observed over the land compared to over the 

sea in both seasons in the B2 scenario, with the projected future surface temperature 

of 27.9°C during DJF and 29.3°C during JJA. The projected future mean surface 

temperatures for both A2 and B2 scenarios over SEA were found to be higher than 

those of the previous simulation by McGregor et al. (1998) using DARLAM, a fine 

resolution (44km) regional climate model following the IS92a scenario from IPCC 

(1996). In recent studies by Hori and Ueda (2006) and Ueda et al. (2006) using a 

composite of nine coupled atmosphere-ocean GCMs have revealed that SEA region 

will experience drier and warmer conditions during the northeast monsoon (DJF) and 

southwest monsoon (JJA) at the end of the 21st century (2081-2100) with projected 

temperature to increase between 2.2°C and 2.8°C.
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Figure 3.20: Baseline: Seasonal variability of surface temperature (°C) over SEA
for the Baseline (1961-1990) during DJF (December to February), JJA (June to 
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Figure 3.21: Seasonal cycle of surface temperature (°C) for the SRES B2 and SRES A2 
climate scenarios compared with Baseline scenario.
{Note: SRES- Special Report on Emissions Scenario)
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Figure 3.23: SRES B2: Atmospheric forcing effects on seasonal temperature (B2PLC) 
in the SRES B2 scenario, and the temperature difference in comparison with the 
Baseline scenario (B2PLC-Baseline).
{Note: SRES B2- Special Report on Emission Scenario B2; PLC- Present-day Landcover)
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3.1.2.2 Total precipitation

The simulated total precipitation in the Baseline scenario over SEA was markedly 

seasonal, with relatively lower precipitation over the continental region during DJF 

and higher over the sea (Andaman Sea/Bay of Bengal and South China 

Sea/Philippines Sea) during JJA (Figure 3.24). The seasonal cycle of total 

precipitation over the region for the Baseline, A2 and B2 simulations from the 

PRECIS-RCM is shown in Figure 3.25. The results indicated a larger degree of 

variability between simulations. The projected future total precipitations in the A2 

scenario were 4.8 mm/day during DJF and 8.6 mm/day during JJA (Appendix 3.4). 

Relative to the Baseline scenario, the A2 future scenario over SEA showed a small 

reduction in total precipitation of about -0.4 mm/day during DJF but a small 

increment of about 0.2 mm/day during JJA (Figure 3.26 and Appendix 3.4). These 

changes accounted for the 8% reduction (DJF) and 3% increment (JJA) of total 

precipitation over the region. Future changes in total precipitation (with less than -1 

mm/day) mostly over the sea (South China Sea, Celebes Sea and Andaman Sea) 

during DJF and over a larger area over the sea and insular region (southern Sumatra, 

southern Borneo, Mindanao, Java and Sulawesi) during JJA were found to be 

statistically significant at 95% confidence level (Figure 3.28). The largest changes 

were increases over the west Pacific Ocean and Bay of Bengal during JJA.

Similar patterns were observed in the B2 scenario, where drier conditions occurred 

over the continental region and its adjacent seas (northern South China Sea, Andaman 

Sea and Gulf of Thailand) during DJF and a relative increase in precipitation over the 

same area during JJA (Figure 3.27). Relative to Baseline, the total precipitation 

decreased by -0.4 mm/day (8%) during DJF and slightly increased by 0.1 mm/day
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(2%) during JJA (Appendix 3.5). Areas with roughly less than -1 mm/day in total 

precipitation were found to be statistically significant at 95% level in all seasons 

(Figure 3.28). Larger changes of precipitation were also observed over the west 

Pacific Ocean and Bay of Bengal during JJA. Larger changes of precipitation 

simulated using the regional climate model DARLAM were also observed over the 

west Pacific Ocean during JJA, and the South China Sea and Celebes Sea during DJF 

by McGregor et al. (1998). Studies by Hori and Ueda (2006) and Ueda et al. (2006) 

have also projected the precipitation to fluctuate between -2.4% and 6%, which is 

expected to cause drier weather than the normal weather at present conditions.
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Figure 3.24 Baseline: Seasonal variability of total precipitation (mm/day) over 
SEA for the Baseline (1961-1990) during DJF (December to February), JJA (June to 
August) and inter-monsoons (March to May, MAM; September to November, SON).
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Figure 3.25: Seasonal cycle of total precipitation (mm/day) for the SRES B2 and SRES 
A2 climate scenarios compared with Baseline scenario.
{Note: SRES- Special Report on Emissions Scenario)
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3.7.2.3 Total cloud

The simulated total cloud fraction in the Baseline scenario over SEA was also 

markedly seasonal, with relatively less cloud over the continental region during DJF 

and higher over the sea (Andaman Sea/Bay of Bengal and South China 

Sea/Philippines Sea) during JJA (Figure 3.29). The seasonal cycle of total cloud 

fraction over the region for the Baseline, A2 and B2 simulations from the PRECIS- 

RCM is shown in Figure 3.30. Comparatively, the simulated cloud fractions in the 

future scenarios (A2 and B2) were observed to have less cloud than the present-day 

simulation, with higher cloud fraction during JJA and lower during DJF. The 

projected future total cloud fractions in the A2 scenario were 0.5 during DJF and 0.7 

during JJA (Appendix 3.4). Relatively less cloud fraction was observed over the 

continent during DJF but increased during JJA. Relative to the Baseline scenario, the 

A2 future scenario over SEA showed a reduction in total cloud fractions of about - 

0.07 (12%) during DJF and -0.04 (6%) during JJA (Figure 3.31 and Appendix 3.4). 

Larger changes were observed over the west Pacific Ocean during DJF and extended 

to South China Sea and Indian Ocean between latitude 2°S and 12°N during JJA. 

Changes in total cloud fraction (roughly less than -0.04), mostly over the South China 

Sea, Indian Ocean and Celebes Sea during DJF and Indochina, the Philippines Sea, a 

large part of the South China Sea, and latitude between 10°S and 0° during JJA were 

found to be statistically significant at 95% confidence level (Figure 3.32).

Seasonally, similar patterns were observed in the B2 scenario, where there was 

relatively less cloud over the continent during DJF and more cloud over the continent 

and sea between latitude 0° and 24°N during JJA (Figure 3.31). Relative to Baseline, 

the changes of cloud fraction in the B2 scenario decreased to a similar magnitude as

163



those in the A2 scenario for both seasons (Figure 3.31 and Appendix 3.5). Future 

changes in total cloud fraction (roughly with less than -0.05), mostly over the same 

area as during DJF in the A2 scenario and mostly over the whole domain during JJA, 

were found to be statistically significant at 95% confidence level (Figure 3.32). 

Previous studies over the region by McGregor et al. (1998) observed a decrease in 

total cloud fraction of about 10% in the IS92a scenario from IPCC (1996).
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Figure 3.30: Seasonal cycle of total cloud fractions for the SRES B2 and SRES A2 
climate scenarios compared with Baseline scenario.
{Note: SRES- Special Report on Emissions Scenario)
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3.7.2.4 Solar radiation

The simulated solar radiation over SEA in the Baseline scenario was about 215 Wm'2 

during DJF and slightly higher -  about 220 Wm'2 -  during JJA (Figure 3.34 and 

Appendix 3.4). Higher solar radiation over the continent (i.e. the Indochina region) 

was observed during DJF but it was lower during JJA. The seasonal cycle of total 

cloud fraction over the region for the Baseline, A2 and B2 solar radiation simulations 

from the PRECIS-RCM are shown in Figure 3.35, each showing local minima during 

DJF and JJA. Comparatively, the simulated solar radiation in the future scenarios (A2 

and B2) was observed to be higher than that in the present-day simulation. The 

projected future solar radiation in the A2 scenario was 221 Wm'2 during DJF and 218 

Wm'2 during JJA (Appendix 3.4). Relative to the Baseline scenario, the A2 future 

scenario over SEA showed a small increase in solar radiation of about 5.6 Wm'2 (3%) 

during DJF and 4.6 Wm'2 (2%) during JJA (Figure 3.36 and Appendix 3.4). The 

increase in solar radiation was also reflected in the increase of surface temperature 

and decreased cloud fraction over the region in the A2 scenario. Reduction of solar 

radiation were observed over the west Pacific Ocean during the both seasons with a 

larger magnitude of changes during JJA. Future changes in solar radiation were not 

statistically significant in most areas of the region during DJF. However, during JJA, 

it was observed that areas with negative changes (less than -5 Wm'2) were found to be 

statistically significant at 95% confidence level (Figure 3.38), mostly over the sea (i.e. 

the west Pacific Ocean).

Similar patterns were observed in the B2 scenario, where there was relatively higher 

solar radiation over the continent during DJF but lower during JJA. Higher solar 

radiation was also observed over coastal areas and the surrounding sea over the
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insular region in both seasons. Relative to Baseline, the changes in solar radiation in 

the B2 scenario were smaller than those in the A2 scenario for both seasons (Figure 

3.37 and Appendix 3.5). The solar radiation decreased by about 3.1 Wm'2 (2%) during 

DJF and 3.8 Wm'2 (2%) during JJA. A distinctive feature in solar radiation changes 

was the significant difference between the B2 and A2 scenarios. Much more of the 

region showed a statistically significant change in the B2 scenario (Figure 3.38).
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{Note: SRES- Special Report on Emissions Scenario)
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3.7.2.5 Boundary layer

In the Baseline scenario, the simulated boundary layer heights over SEA were about 

545 m during DJF and slightly lower (515 m) during JJA (Figure 3.39 and Appendix

3.4). Higher boundary layer heights were observed over Indochina (Vietnam, 

Cambodia and Laos), the Philippines and extended over the sea between latitude 6°N 

and 24°N. A larger degree of variability of seasonal cycles of boundary layer height 

was observed over the region in the Baseline, A2 and B2 simulations from the 

PRECIS-RCM as shown in Figure 3.40. The projected future solar radiation in the A2 

scenario was 542 m during DJF and 538 m during JJA (Appendix 3.4). Higher 

boundary layer heights were projected over Indochina and a small area over the 

Philippines during both seasons. Relative to the Baseline scenario, the A2 future 

scenario over SEA showed a small decrease of about -3 m (less than 1%) during DJF 

but an increase of about 23 m (5%) during JJA (Figure 3.41 and Appendix 3.4). 

Larger changes in boundary layer height were observed over western Sumatra and 

southern Borneo in both seasons. Statistically, a larger area over the Philippines Sea 

and the west Pacific Ocean, and a smaller area over the South China Sea and the Bay 

of Bengal were found to be statistically significant at 95% level during DJF. 

Meanwhile, during JJA, boundary layer changes over the Indian Ocean, Java Sea and 

small areas of the South China Sea were statistically significant at the 95% level 

(Figure 3.43).

The boundary layer heights over the region in the B2 scenario were lower than in the 

A2 scenario. The mean boundary layer heights were 486 m during DJF and 453 m 

during JJA (Appendix 3.5). Higher boundary layer heights were observed over 

Indochina (Vietnam, Cambodia and Laos), central Sumatra and Peninsular Malaysia
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during DJF and over a larger area of Indochina during JJA (Figure 3.42 and Appendix

3.5). The boundary layer height decreased by about 5 m during DJF and 6 m during 

JJA. Larger areas over the sea in both seasons were found to be statistically 

significant at 95% level (Figure 3.43).
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Figure 3.39: Baseline: Seasonal variability of boundary layer height over SEA for
the Baseline (1961-1990) during DJF (December to February), JJA (June to August) 
and inter-monsoons (March to May, MAM; September to November, SON).

900

B aseline

J .  7 00

>. 5 0 0  ,

Apr May Aug Sep
Month

Figure 3.40: Seasonal cycle of boundary layer height (m) for the SRES B2 and SRES 
A2 climate scenarios compared with Baseline scenario.
{Note: SRES- Special Report on Emissions Scenario
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Figure 3.42: SRES B2: Atmospheric forcing effects on seasonal boundary layer height 
(B2PLC) in the SRES B2 scenario, and the boundary layer height difference in 
comparison with the Baseline scenario (B2PLC-Baseline).
{Note: SRESB2- Special Report on Emission ScenarioB2; PLC- Present-day Landcover)
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3.8 Conclusions

The present study has used a high resolution of PRECIS (5.1), a regional climate 

model developed by the Hadley Centre to examine present-day and future possible 

climates over SEA. The performance of the model was also investigated by 

comparing with observed data (CRU), ERA40 and GCM. Thus, some conclusions can 

be drawn from the results:

• The PRECIS-RCM captured the primary features of the observed data (CRU), 

ERA40-Reanalysis data and GCM circulations and the patterns of seasonal 

change, and was generally well represented for most variables.

• Due to the stronger emissions forcing in the A2 scenario, the scenario anomalies 

of surface temperature are generally larger than for the B2 scenario. Other 

climatic variables such as precipitation, total cloud, solar radiation and boundary 

layer height have high degrees of variability.

• There was a warming across the region, with the largest temperature increase over 

land areas in both A2 and B2 scenarios during DJF and JJA. According to the A2 

scenario, there was an average surface warming of 3.0°C during DJF and 3.1°C 

during JJA. In the B2 scenario, the average surface temperatures were 2.6°C 

during DJF and 2.1°C during JJA. Surface temperature changes in both A2 and B2 

climate scenarios were statistically significant at 95% confidence level for all 

seasons for the whole modelled region-domain, except in some areas over the 

South China Sea and the Philippines Sea during DJF in the B2 climate scenario.

• In both the A2 and B2 climate scenarios, the total precipitation decreased during 

DJF by about -0.4 mm/day and slightly increased during JJA by about 0.2 

mm/day (A2) and 0.1 mm/day (B2) respectively. Precipitation changes of less 

than -1 mm/day, mostly over the sea during DJF and a larger area over the sea and
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insular region during JJA were found to be statistically significant in both 

scenarios.

• The total cloud fraction in the A2 and B2 scenarios were projected to decrease 

slightly by -0.07 during DJF and -0.04 during JJA. Future changes in total cloud 

fraction in both seasons of roughly less than -0.04 in the A2 scenario and less than 

-0.05 in the B2 scenario were found to be statistically significant at 95% level.

• The projected solar radiation in the A2 climate scenario slightly increased by 5.6

2 2  • •

Wm' during DJF and 4.6 Wm' during JJA. Similarly in the B2 scenario, the 

projected solar radiation increased by 3.1 Wm'2 during DJF and 3.8 Wm'2 during 

JJA.

• In the A2 scenario, boundary layer heights were observed to decrease slightly by 

-3 m during DJF and increase by 23 m during JJA. Meanhwile, in the B2 scenario, 

the boundary layer heights were observed to decrease in both seasons, but at a 

smaller magnitude.

Regional surface temperature over Southeast Asia at the end of the century was 

projected to increase between 3.0 and 3.1°C in the A2 and 2.1 and 2.6°C in the B2 

transient climate scenarios. These increases however are relatively lower than the 

global best estimate (IPCC, 2007) of between 1.8 -  4.0°C. The combined impact of 

aerosols (sulfur cycles) and greenhouse gases (GHG) considered in the model were 

found to increase the future surface temperature in the region in both climate 

scenarios. Due to the build up of future GHGs emissions in both A2 and B2 

scenarios, it has been identified that it has affected the future changes in large-scale 

atmospheric circulation patterns. GHGs absorb and emit infrared (heat) radiation, and 

because temperature decreases with height in the troposphere, increasing GHGs cause
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emissions to space to arise from higher and colder levels, thus reducing radiation to 

space (Hansen et al., 1998). This imbalance with incoming solar energy forces the 

Earth’s surface to warm.

PRECIS-RCM projected that the increase in surface temperatures in both climate 

scenarios during DJF was consistent with lower precipitation during DJF, though 

similar trend was not observed during JJA. The slight increases in total precipitation 

during JJA in both climate scenarios, which is corresponding with the southwest 

monsoon were lower than the earlier projection for Southeast Asia (Johns et al., 

2003). Increasing temperatures tend to increase evaporation, which leads to more 

precipitation (IPCC, 2007). There is considerable uncertainty about total precipitation 

over the region (see also Section 3.7.1), as the PRECIS-RCM scenarios show an 

increase in precipitation also project warming of 3.1°C during JJA, which would 

generally cause evaporation to increase, and thus the model generally suggest that 

during JJA in the region will be drier. As suggested for future work (see Chapter 7) to 

investigate the climate extreme over the region, the extreme conditions could give 

some indication whether or not, annual or seasonal total precipitation increases, as 

many climate models projected that precipitation will occur in a small number of 

heavier storm (Titus, 2007). The changes in precipitation intensity would results both 

(increase or decrease) because the warmer atmosphere holds more water vapour, and 

because greenhouse gases considered in the model increase the radiative cooling in 

the upper atmosphere, which induces intense precipitation.

Relative to the land, surface temperature over the sea was relatively cooler (i.e South 

China Sea, west Pacific Ocean and Indian Ocean) in both the A2 and B2 climate
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scenarios. Warm air rising over the land increases evaporation and plant transpiration 

more than by the evaporation over the sea that produces rainfall (Hansen et al., 1998). 

This land-sea thermal gradient could be one of the key drivers of the Asian Monsoon 

and the meso-scale circulations over the region. These meso-circulations are very 

effective in transporting heat and moisture from the sea to the higher levels of the 

atmosphere and towards over the land. The development of the monsoon over the 

Indian Ocean, where the more usual northeast trade winds are replaced by Southeast 

Monsoon, which bring moist air and prolonged wet seasons (increase precipitation) 

over Southeast Asia during JJA in both climate scenarios.
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Chapter 4

THE EFFECT OF LANDCOVER CHANGES ON 
CLIMATE CHANGES IN SOUTHEAST ASIA

4.1 Introduction

Research on landcover change on global environmental change has been emerging in 

the last few decades with the realisation that land surface processes influence the 

dynamic ot the atmosphere and thus climate. Climate responses due to landcover 

changes and climate effects on the terrestrial ecosystem have been investigated by a 

number of studies (see Lamptey, 2005; Zhao et al., 2001, Pielke, et al. 1998; 

Stohlgren et al., 1998). There is general agreement on the complexity of the 

relationship between landcover and climate through feedbacks at the land-atmosphere 

boundary (Betts, 2000; Bonan, 2002; Doherty et al. 2000; Levis et al., 1999). 

Landcover changes may alter land surface characteristics such as surface roughness, 

albedo, and vegetation types, all of which influence the surface energy balance fluxes 

and thus affect the regional climate (Lofgren, 1995). Compared to forested areas, 

disturbed areas generally have a higher surface albedo, and can therefore lead to 

increased short wave reflection, which could result in a cooling effect (Bonana et al., 

1992; Douville and Royer, 1997). The indirect effect of landcover change on climate 

through changes in atmospheric chemistry, has been less studied and is the focus of 

the present study.

Conversion of forested areas into cropland, pasture, or grassland will reduce the 

aerodynamic roughness of the landscape and decrease both the capture of 

precipitation on the canopy and the root extraction, which leads to less evaporation
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and hence will reduce the fluxes of moisture and latent heat from the surface to the 

atmosphere, and therefore tend to increase the temperature (Lean and Rowntree, 

1993). However the effect of landcover change in different regions to climate change 

has shown varying effects. A recent sensitivity study of regional climate to landcover 

change by Diffenbaugh (2005) over the western United States by using RegCM2.5 

has observed that landcover change was responsible up to 60% of the total seasonal 

temperature response. However, investigation on the effect of landcover change on 

the regional climate over tropical West Africa, mainly due to conversion of tropical 

forest into agriculture, produce only a small effect (Lamptey, 2005). In the sensitivity 

study of Lamptey (2005), changing forest to agricultural land decreased winter (Dec- 

Jan-Feb) temperature by up to IK, increased sensible heat flux (> 3 Wm'2) and 

changed rainfall slightly (~ O.lmm/day). Meanwhile in summertime (Jun-Jul-Aug), 

the temperature change was of -  IK and rainfall increased to 1.0 mm/day. Feddema et 

al. (2005) have also observed in their modelling study using DOE-PCM that 

landcover changes under A2 scenarios of the IPCC SRES contributed to significant 

warming of more than 2°C in the Amazon region. However, the same landcover 

forcing was shown to have a minor effect over Indonesia in the Southeast Asia region. 

Study by Defries et al. (2002) concluded that the future conversion (2050) of forested 

area into agriculture in equatorial Africa and Amazon will contribute significantly to 

the average temperature increases in winter (Dec-Jan-Feb) and summer (Jun-July- 

Aug). In an earlier study, McGuffie et al. (1995) observed minimal effects of 

landcover change to climate change over Southeast Asia compared with other tropical 

region such as equatorial Africa and Amazon. However, the general level of 

understanding of the role of landcover change on climate change in terms of albedo 

effects on radiative forcing is still relatively poor (IPCC, 2001).
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A further investigation of the role of landcover change to climate change at the 

regional scale was carried out in SEA region, where anthropogenic landcover changes 

have been dramatically demonstrated in the last 30 years and are anticipated to 

continue at a higher rate in the future. So far, little regional modelling of the 

atmosphere-landcover feedbacks has been done specifically over SEA. Therefore, the 

current work is to investigate the effect of landcover change to climate change due to 

human-induced changes, such as the conversion of forested areas into agricultural 

activities (mainly to palm oil plantations), conversion of primary forest to secondary 

forest (including grassland), and the expansion of urban and suburban areas in line 

with economic and population growth in the region. The general framework of 

investigation of landcover change and climate change relationship is shown in Figure 

4.1. The objective of this chapter is to assess the impact of landcover forcing relative 

to atmospheric forcing (elevated CO2 ) to the climate change SEA. In achieving this 

objective, the investigation is guided by the three main research questions:

a) What would be the combined effect of atmospheric forcing and landcover

forcing on climate changes and how significant are these changes?

b) What would be the effect of landcover forcing alone on regional climate

changes and how significant are these changes?

c) What magnitude of differences do landcover forcings alone, atmospheric

forcing alone and combined forcing produce in the climate in SEA?
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Figure 4.1 Framework for the investigation of climate changes-biogenic emissions- 
tropospheric chemistry interactions in Southeast Asia. The red dotted box indicates 
the framework for the investigation of landcover sensitivity studies to the climate 
changes that covered in Chapter 4.

4.2 Overview of the Present Landcover in SEA

The landcover in SEA has transformed tremendously in the last four decades and has 

become an ongoing feature of development, particularly in rural areas. Within this 

period, significant transformation patterns have been observed, such as widespread 

deforestation mostly due to logging activities, followed by the expansion and 

intensification of agricultural land uses (Kummer & Tunner, 1994; Brookfield & 

Byron, 1990) to meet the needs of the growing populations and changing lifestyles. 

Also, in the past 30 years, urban populations in SEA have increased due to rapid 

population growth and migration to the cities, which have contributed to the 

expansion of built-up areas and the size of urban and sub-urban areas (UNEP, 2000). 

The combination of rapid urban and industrial growth, extensive deforestation, and
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unsustainable agriculture has lead to dramatic changes of regional landcover, which 

may be an important underlying influence on regional climate change.

Detailed and up-to-date information on the landcover of SEA is not easily available. 

Due to differences in procedure and techniques applied for the estimation of 

landcover in the region, there are substantial variations in landcover estimates in a 

number of studies. The statistical database of the Food and Agricultural Organisation 

of the United Nations (FAO, 2006) was used as a reference for the potential changes 

of future forest landcover estimates for SEA. FAO (2006) has provided a complete 

estimate of forest cover for each country in SEA, including the historical changes of 

forest cover in the region. In 2000, the forest cover in SEA was reduced from 53.9% 

to 48.6% of the land area in 1990, which is an annual reduction rate of approximately 

1.0% (see Table 4.1 & Figure 4.2). Myanmar, the Philippines, Indonesia, and 

Malaysia were found to exceed the 1% annual reduction rate. Forest cover and 

historical change estimation by FAO (2006) for Indochina (which includes Cambodia, 

Laos, Myanmar, Thailand, and Vietnam), and for insular SEA (which includes 

Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Timor Leste), were also 

compared with other studies such as Giri et al. (2001), Stibig & Malingreau (2003), 

and Gunawan & Rahmadi (2000) in order to obtain a general overview of the estimate 

variations.

Estimation of other types of landcover such as agriculture, grassland/shrubland/ 

savanna, and urban or built-up areas were gathered from various sources, though the 

information was not comprehensive and not available for all countries in the region. 

Landcover for agriculture, grassland/shrubland, and urban areas shows an annual
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positive rate as shown in Table 4.2. Large areas of agricultural landcover, mainly for 

the cultivation of oil palm, rubber, rice, and coconuts, can be found in relatively larger 

countries such as Thailand, Indonesia, the Philippines, Myanmar, Cambodia, 

Vietnam, and Malaysia. Based on the available information, 

grassland/shrubland/savanna landcovers are found mostly in Vietnam, Myanmar, the 

Philippines, and Laos. In a preliminary regional assessment of grasslands in Asia by 

Garrity et al. (1997), the Philippines was found to have the largest proportion of 

grassland landcover of about 17%, followed by Vietnam (9%), Laos (4%), Indonesia 

(4%), Thailand (4%), Myanmar (3%), Cambodia (1%), and Malaysia (<1%). In terms 

of built-up area, there is clear indication of urban expansion in the region, although 

the proportion of urban area to land area is relatively small (< 2%). For the estimation 

of potential future landcover of two other dominant features in SEA, namely 

agriculture and grassland/shrubland, estimated figures from FAO (2004); Giri et al. 

(2001); Suprapto (2000); UNCSD (1997); Mohamad & Siew (1994) were used. 

Meanwhile, estimations for the urban/built-up area were taken from the database 

provided by Demographia (2006), though the urban areas seem to be underestimated 

as only the major cities are considered. Despite this, the incorporation of urban 

landcover is important as it is expected to make the model simulation more realistic at 

the regional scale.

190



Ta
bl

e 
4.

1:
 

D
ist

rib
ut

io
n 

an
d 

ch
an

ge
s 

of 
fo

re
st 

co
ve

r 
in 

SE
A

.

Fo
re

st
 C

ov
er

G
iri

 e
t 
al 

(2
00

1)
| 

C
ha

ng
e 

|
x 

10
00

 
ha

/y
r 

(%
) oc rTT

+ +_

iT'i
00
of "7 -2

91
(-

1.
6)

-1
01

.8
(-

1.
0)

| 
19

92
/9

3
x 

10
00

 
ha

(%
)

12
93

2
(7

3.
26

)

16
99

2
(7

3.
62

)

28
93

2
(4

4.
00

)

15
41

4
(3

0.
17

)

93
09

(2
8.

60
)

| 
19

85
/8

6
x 

10
00

 
ha

(%
)

11
02

5
(6

2.
46

)

32
81

2
(4

9.
90

)

17
74

3
(3

4.
73

)

10
12

3
(3

1.
10

)

G
un

aw
an

 
&

 
R

ah
m

ad
i 

(2
00

0)
| 

20
00

x 
10

00
 

ha
(%

)

G\ ^

St
ib

ig
 

&
 

M
al

in
gr

ea
u 

(2
00

3)
I 

20
00

x 
10

00
 

ha
 

(%
)

46
5

(8
8.

2)

10
37

75
*

(5
7.

3)
 

|

18
38

2
(6

0.
0) 5  g  

?  g

F
A

O
(2

00
0)

| 
C

ha
ng

e
x 

10
00

 
ha

/y
r 

(%
) — ^T  cS IO

cn— cn 
co

CO
IO Qv

F*- C\i 
CO
cn ’■7 «o "7

'Ob
oo

O
Of)
s

-1
12

(-
0.

7) S '  
r7 '~' (N ^  

to << CO

I 
20

00
x 

10
00

 
ha

(%
)

44
2 

(8
3.

9)

93
35

 
1 

(5
2.

9)

sOOC .—.
O' Cc Tt
O  —' 12

56
1

(5
4.

4) cnOn c ̂
o6O' 34

41
9

(5
2.

3) O S
00 Ô'.
to ^

CO 

M 22 14
76

2
(2

5.
9) r -

o rv-j 98
19

(3
0.

2)
21

19
14

(4
8.

6)

| 
19

90
x 

10
00

 
ha

 
(%

)
45

2
(8

5.
8)

98
95

(5
6.

1)
| 

11
81

06
 

(6
5.

2)
13

09
1

(5
6.

7)
21

66
2

(6
5.

9)
39

58
9

(6
0.

2)

(vzz)
6L99 2

(3
.3

)
15

88
2

(3
1.

1)
53

7
(3

6.
3)

92
99

(2
8.

6)
23

52
04

(5
3.

9)

La
nd

 
A

re
a

x 
10

00
 

ha

52
7

17
65

2

18
11

57

23
08

0

32
85

5

65
75

5

29
81

7

vC

51
08

9

14
79

32
55

0

43
60

22
!

C
ou

nt
ry

B
ru

ne
i

C
am

bo
di

a

In
do

ne
si

a

L
ao

s

M
al

ay
si

a

M
ya

nm
ar

Ph
ili

pp
in

e

Si
ng

ap
or

e

T
ha

ila
nd

Ti
m

or
 

L
es

te

V
ie

tn
am

T
ot

al

o



Ta
bl

e 
4.

2:
 D

ist
rib

ut
io

n 
an

d 
ch

an
ge

s 
of 

ag
ric

ul
tu

re
, 

gr
as

sl
an

d,
 a

nd
 

ur
ba

n 
la

nd
co

ve
rs

 
in 

SE
A

o

U
rb

an
/S

ub
ur

ba
n

D
cm

og
ra

ph
ia

(2
00

6)

| 
C

ha
ng

e 
|

x 
10

00
 

lu
i/y

r 
(%

)

+7
.8

(+
4.

5)

(STI + 
) 

61 +

[y
ea

r]
 

x 
10

00
 

ha
 

(%
)

[2
00

5]
51

.8
(0

.3
)

[2
00

0]
29

1.
8(

0.
2)

[2
00

5]
 

2.6 
(< 

0
.1

)
[2

00
2[

17
4.

9(
1.

3)

[1
99

0]
 #

 
22

1.
6(

1.
7)

[2
00

4]
 

43
.5

 
(0

.1
)

12
00

0]
15

8.
3(

0.
5)

[2
00

0]
 

47
.9

 
(7

8.
5)

|2
00

3]
 

101
 

(0
.2

%
)

•

[1
99

9]
62

.1
(0

.2
)

[y
ea

r]
 

x 
10

00
 

ha
 

(%
) 'Tf ^

ss ^o •— o— n [1
98

71
+

13
1.

4(
0.

4)

rz
csc
cc
w

s
-£
3u.
5/3
■3s

*-
o

G
ir

i 
el

 
a

l 

(2
00

1)

| 
C

ha
ng

e
x 

10
00

 
ha

/y
r 

(%
)

o  ^-r —
C
8 ='+

£  ^

| 
19

92
/9

3
x 

10
00

 
ha

 
(%

)

95
3 

(5
.40

)

48
93

(2
1.

20
)

21
83

1
(3

3.2
0) *i—h C:1— ro

O' c-4 O'
ZL>o

14
32

2
(4

4.0
0)

I 
19

85
/8

6
x 

10
00

 
ha

 
(%

) 'Tt ^  O' ir-l 19
26

6 
__

__
(2

9.3
0) £ ^  O'

£  K

A
gr

ic
ul

tu
re

| 
C

ha
ng

e
x 

10
00

 
ha

/y
r 

(%
)

_  "r
+

^  2C-
OC
+

vC >0

+ t +2
7.

2
t+

ft
i) LT, ^

+ ^

+5
7

(+
1.0

)

| 
19

92
/9

3
x 

10
00

 
ha

 
(%

) \r, ^  
<-*"> Os'

OC O >1*' 
O O JC 10

50
(4

.5
5)

57
69

.2
(1

7.6
)

13
74

3
(2

0.9
0) *s- C l ^’~z r'i ^  

o  Si ^O' 0 32
45

7
(6

3.
53

)

60
87

 
(1

8.7
0)

I 
19

85
/8

6
x 

10
00

 
ha

(%
)

24
34

(1
3.7

9) ST 
§  s

11
37

6 
(1

7.3
0) ,__rs

S g ' nO' O rrj 30
00

5
(5

S.7
3)

56
31

 
(1

7.3
0)

La
nd

 
A

re
a

x 
10

00
 

ha 
^

LZS 
1

17
65

2

18
11

57

23
08

0

32
85

5

13
15

8.
7*

*

65
75

5

29
81

7

vO

51
08

9

I 
14

79
 

|
32

55
0

| 
43

60
22

 
|

C
ou

nt
ry

| 
B

ru
ne

i 
]

C
am

bo
di

a

In
do

ne
si

a

c

M
al

ay
si

a

M
ya

nm
ar

Ph
ili

pp
in

e

Si
ng

ap
or

e

T
ha

ila
nd

Ti
m

or
 

Lc
st

e
V

ie
tn

am o N
ot

e:
 

* 
in

cl
ud

in
g 

Ti
m

or
 

Lc
ste

 
(S

up
ra

pt
o.

 2
00

0)
; 

** 
Pe

ni
ns

ul
ar

 
M

al
ay

si
a 

on
ly

; 
tt M

oh
am

ad
 

& 
Sic

w 
(1

99
4)

; 
J 

FA
O 

(2
00

4)
; 

t 
U

N
CS

D
 

(1
99

7)



1181 ■ 1990 1 20 00  I  Changes

1 1000

°  800 

£
S mo 
>0
* 400
VI9
£ 200

-2 00  ■

396
M  344

-13 1

217

H  A
159 148

-1

131 126

-0.5

Indonesia M yanm ar M alaysia Thailand Laos

■ 1990 ■  2000 ■  Changes

C am bodia PhilippinesV ietnam

■ 1990 1 2 0 0 0  ■  Changes

Brunei SingaporeT im or Leste

Figure 4.2: Forest cover distribution and forest cover changes from 1990 to 2000 for each 
country in Southeast Asia.

193



4.3 Model and Experimental Designs

4.3.1 PRECIS-Regional Climate Change Model

PRECIS, a regional climate model (see Chapter 3) was used to investigate on the effects of 

changes in landcover on climate changes in SEA. In PRECIS-RCM, the landcover type was 

used in the calculations to determine the surface albedo, surface roughness length, and 

hydraulic properties of the roots and the vegetated canopy. The HadAM3P global model 

boundary conditions for PRECIS simulate the global atmospheric and land surface processes 

at a horizontal resolution of 2.5° x 3.75° using the Radiative Transfer Scheme (Edwards and 

Slingo, 1996) and Meteorological Office Surface Exchange Scheme (MOSES) (Cox et al., 

1999). Depending on the local landcover types, the parameters representing “snow-free 

albedo” and “maximum deep-snow albedo” in each grid box were assigned with appropriate 

values. For example, the albedo parameter was assigned with a higher value for open land 

(e.g. grassland, pasture, and cropland) and lower values for woodland and forests (Cox et al., 

1999; Betts, 2000).

In the tropics, surface albedo change due to landcover changes may affect the climate via 

evapotranspiration, where the rate of evapotranspiration and the fluxes of sensible and latent 

heat are dependent on the parameters of rooting depth, aerodynamic roughness length, and 

canopy water holding capacity (Betts et al., 1997). In the MOSES simulation, all these 

parameters are assigned with an appropriate value in each grid box, where values are 

comparatively lower for open land compared to forested areas (Cox et al., 1999). In the SEA 

region, which consists mostly of forested areas, a cooling influence is anticipated as a result 

of the greater flux of moisture to the atmosphere and the larger ratio of latent to sensible heat 

fluxes. The transpiration dependency on the resistance to water vapour loss from within plant 

stomata was also represented in the MOSES simulation, which is aggregated to a large-scale
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variable of canopy conductance using leaf area index (LAI). In forested areas, LAI, which is 

prescribed as a further vegetation-specific parameter in the model, has larger values than 

open land (Betts et al., 2007).

In representing landcover changes in the PRECIS RCM for the sensitivity studies, the global 

datasets of the vegetation parameter values were derived using the Wilson and Henderson- 

Sellers (1985) present-day landcover dataset at a resolution of 1° x 1° grid. The present-day 

landcover dataset has specified 53 landcover classes, which include 11 crop classes, 7 

pasture/grazing classes, and 1 urban class (See Appendix 3.1). As also mentioned in Section 

3.3.8 (Chapter 3), the present-day landcover dataset allows two classes of landcover for each 

grid, namely the primary landcover class if the coverage of the grid box is between 50-100%, 

and the secondary landcover class if the coverage is between 25-50%. These vegetation 

covers, which are represented in the HadAM3 surface parameter, are then bi-linearly 

interpolated to the GCM resolution. For estimations of future landcover in SEA, certain 

assumptions were specified to reflect hypothetical extreme states of future vegetation for 

sensitivity studies as described in detail in Section 4.3.2.2 in order to derive appropriate 

landcover types to be assigned to each grid box in PRECIS.

4.3.2 Development of Future Landcover Scenario for SEA

4.3.2.1 Baseline landcover for SEA in PRECIS-RCM

The studied domain with 0.44° x 0.44° resolution contained 1839 landcover grid boxes with 

an estimated area of 459,750,000 ha. The total model landcover is higher than that given in 

Table 4.1 and Table 4.2 as the selected domain includes the southern part of China. For 

present-day conditions, the dominant primary landcover is equatorial rain forest (Code 50) 

with 49% of the area. The remainder of the primary cover is made up of open tropical
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woodland (Code 23) (11%), tropical savannah/grassland (Code 37) (9%), open-water (Code 

0) (8%), paddy rice (Code 4) (5%), dense drought deciduous forest (Code 25) (5%), arable 

cropland (Code 40) (4%), open drought deciduous forest (Code 26)(3%), tropical pasture 

(Code 33) (3%), and mangrove (Code 5), tropical broadleaf forest (Code 52) and others are 

accounted for 1% respectively as shown in Table 4.3. The dominant primary landcover type 

for the present-day scenario in the region is shown in Figure 4.3. For the secondary 

landcover types, equatorial rain forest and open tropical woodland dominated the landcover 

of the region. Meanwhile, urban or built-up area was only accounted for only 0.2% for both 

primary and secondary codes.

Table 4.3: Landcover types in SEA for baseline (present-day) scenario

C ode L a n d c o v e r  T ypes E s tim a te  A rea  
(x 1000 ha)

P e rc e n ta g e

Primary Landcover Types % of Primary Codes
50 E quatorial rain forest 225,277.5 49
23 O pen tropical w oodland 50,572.5 11
37 T ropical savanna/grassland 41,377.5 9
0 O pen w ater 36,780.0 8
4 Paddy rice 22,987.5 5
25 D ense drough t deciduous forest 22,987.5 5
40 A rable  cropland 18,390.0 4
26 O pen drough t deciduous forest 13,792.5 3
33 T ropical pasture 13,792.5 3
5 M angrove 4,597.5 1

52 Tropical b ro ad leaf forest 4,597.5 1
80 U rban 919.5 0.2

O thers O thers 4,597.5 1

Secondary Landcover Types % of Secon dary Codes
50 Equatorial rain forest 137,925.0 30
23 O pen tropical w oodland 114,937.5 25
40 A rable cropland 41,377.5 9
37 Tropical savanna/grassland 36,780.0 8
26 O pen d rough t deciduous forest 22,987.5 5
0 O pen w ater 22,987.5 5

33 Tropical pasture 22,987.5 5
4 Paddy rice 18,390.0 4
25 D ense drough t deciduous forest 13,792.5 3
5 M angrove 9,195.0 2

32 Tropical g rassland/shrub 4,597.5 1
80 U rban 919.5 0.2

O thers O thers 13,792.5 3

Note: Total land area o f  SEA = 436,022,000 ha
Total grid  cell (0.44° x 0.44° or 50 km x 50 km) =1839  <=459,750,000 ha
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Figure 4.3: Present-day landcover scenario (primary landcover types) in Southeast Asia.

4.3.2.2 Future landcover scenario for SEA

For the sensitivity experiment, future landcover changes (2070-2100) have been developed 

for the SEA region. It is difficult to predict the future landcover in the region, due to the 

intricate interplay of social, economic, and demographic factors. Therefore, in prescribing 

the future landcovers for the region, assumptions were made about the reasonable reduction 

or increment of the present-day landcover types. Historical trends and annual rates of 

landcover changes as shown in Table 4.1 and Table 4.2 formed the basis of the projections 

used below. In this work, changes were made to only four types of landcover: tropical 

rainforest, agriculture, savanna/grassland, and urban/built-up areas. The first three types of 

landcover are the dominant landcover of the region; urban landcover was changed because 

urbanisation produces very large local changes to surface parameters.

The advantage of PRECIS-RCM for use in sensitivity studies is the ability to prescribe 

specific landcover types through alteration or by overriding the landcover types for each grid 

to suit the aim of the investigation. Such prescribed alterations have allowed modifications to 

the model formulation (e.g. boundary condition alterations) to test the sensitivity of the
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model’s statistics to that prescribed change. In overriding the default soil and landcover 

types, the following principles have been applied:

• For each grid box where landcover is overridden, the soil types must also be specified in 

accordance to the permissible soil types as shown in Appendix 3.2.

• For grid boxes with mixed landcover types, or where no single type is clearly dominant, 

the landcover types most accurately summarising all component landcover types were 

chosen for the primary and secondary landcover types.

In over-writing the landcover types, the soil type and both primary and secondary landcover 

types were specified in each grid using the appropriate integer codes. There are 22 soil types 

and 59 landcover types; these are listed, with their respective integer codes, in Appendix 3.1 

and Appendix 3.2. As also mentioned in Section 3.3.8, in each grid box, the landcover types 

are coded into two types: primary and secondary types, which occupy greater and lesser 

extents of a grid box respectively. If no single landcover type was clearly dominant in the 

grid box, primary and secondary types were chosen from the most appropriate of all the 

component landcover types. A special treatment was applied to the landcover in coastal land 

grid boxes, and at over-estimated or non-resolved inland waters, where the primary and 

secondary landcover types of open water (code 0) and inland water (code 1) were used.

Based on average annual change rates of 0.8% for forest cover reduction in terms of land 

area in eight major countries (excluding Brunei, Singapore, and Timor Leste) in 2000, the 

primary future forest cover was assumed to reduce to 60% of the present-day coverage, 

mainly due to conversion to agriculture or secondary forest. In this case, present-day total 

grid boxes with primary code of forest landcover (69% of the total grid boxes) was reduced 

by 60%. Meanwhile for the secondary code of forest landcover was reduced by 30%. The 

major factor of forest cover reduction is expected to be from the continuous expansion and
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intensification of agriculture activities, mainly oil palm and rubber plantations, in Indonesia, 

Malaysia, southern Thailand, and southern Philippines. In this work, the forest area that has 

been lost, was assumed to be converted into agriculture, savannah/grassland or urban 

development. It was further assumed that conversion of equatorial rain forest (natural forest) 

could be to either agriculture, savannah/grassland or other type of secondary forest (open 

tropical woodland, etc.) Other types of landcover were assumed to be the same as the 

present-day (baseline) condition. Future agriculture land was assumed to increase to 210% of 

present-day coverage. Meanwhile savannah/grassland was also assumed to increase to 197% 

of its present value. Built-up/urban area at the present-day condition is only 0.2% of the total 

grid box but it is expected that urbanisation rate will accelerate alongside with the economic 

and population growth in the region mostly concentrated in sub-urban and coastal areas. In 

this work, it was assumed the built-up/urban area would increase by 300% or about to 0.6% 

of the total number of grid boxes within the domain. The summary of landcover type 

changes between the present-day and future (2070-2100) landcover is shown in Figure 4.4 

and Table 4.4.

ED Equatorial R ainforest 

ED Oil palm

ED Tropical Savannah/G rassland 

□  Tropical Pasture 

ED A rable Cropland

Q Urban

Longitude

Figure 4.4: Modified future landcover scenario (primary landcover types) in Southeast Asia. 
Spatial distribution of landcover types can be compared with Figure 4.3 for comparison 
between the present-day and future landcover types distribution.
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Table 4.4: Modified landcover types in SEA for future scenario

L andcover
C ategory

C ode L an d co v er Types P resen t-D ay
(Baseline)

F u tu re
(2070-2100)

A rea 
(x 103 ha) 0//o

A rea 
(x 103 ha)

%
(C hanges, % )

Primary Landcover Types

Forest

50
23
25
26 
52 
5

Equatorial rain forest 
Open tropical woodland 
Dense drought deciduous forest 
Open drought deciduous forest 
Tropical broadleaf forest 
Mangrove

317,227.5 69.0 126,891.0 27.6
(-60)

Agriculture
4
40
33
51

Paddy rice 
Arable cropland 
Tropical pasture 
Tropical tree crop

51,951.8 11.3 160,452.8 34.9
(+210)

S avan nti/
Tropical
Grassland

37
32

Tropical savanna 
Tropical grassland/shrub 43,676.3 9.5 123,672.8 26.9

(+197)
Urban/
Suburban

80 Urban 919.5 0.2 2,758.5 0.6
(+300)

Others Others 45,975.0 10.0 45,975.0 10.0 
(no change)

Secondary Landcover Types

Forest

50
23
25
26 
52 
5

Equatorial rain forest 
Open tropical woodland 
Dense drought deciduous forest 
Open drought deciduous forest 
Tropical broadleaf forest 
M angrove

292,860.8 63.7 205,048.5 44.6
(-30)

Agriculture
4

40
33

Paddy rice 
Arable cropland 
Tropical pasture

82.295.3 17.9 132,408.0 28.8
(+61)

Savanna/
Tropical

Grassland

37
32

Tropical savanna 
Tropical grassland/shrub 39,998.3 8.7 74,939.3 16.3

(+88)
Urban/
Suburban

80 Urban 919.5 0.2 3,678.0 0.8
(+400)

Others Others 43,676.3 9.5 43,676.3 9.5
(no change)

Note: Total g rid  cell (0. 44° x 0.44° or 50 km x 50 km) =1839 grid  box= 459,750,000 ha 
% - the percentage o f  total land area

2 0 0



4.4 Results and Discussion

The results are presented in two parts: first, the combined impacts of landcover forcing 

and atmospheric forcing on regional climate; second, the isolated impacts of landcover 

forcing alone on regional climate. Some results of the regional climate investigations 

from Chapter 3 are also used and depicted again in this chapter to facilitate the 

investigation of effects of landcover changes on regional climate. For the purposes of 

discussion, only variables that were used in the subsequent investigation of biogenic 

emissions (Chapter 5) and tropospheric chemistry (Chapter 6) such as surface 

temperature, solar radiation, boundary layer height, and total cloud -  are discussed. In 

addition, precipitation is included as it is one of the most important variables in climate. 

Other climate and hydrological variables such as latent heat, sensible heat, surface soil 

evaporation, canopy evaporation, total soil moisture, moisture convergence, and surface 

pressure were analysed and available but were not presented in this chapter.

4.4.1 Combined Impacts of Atmospheric and Future Landcover Forcings 

on Climate Changes

A regional simulation of the combined impacts of atmospheric and future landcover 

forcings provides a sensitivity experiment to assess how regional forcing is manifested 

in SEA. The results of the combined effects produced by these forcings are presented as 

the difference between the all-forcings scenarios (atmospheric forcing and future 

landcover forcing) and the baseline scenario with present-day landcover, which are 

denoted as iiA2FLC-Baseline” for A2 and ‘̂ F L C -B aseline” for B2 climate scenarios. 

The region of SEA is noted for its monsoon climate, which is dominated by two 

monsoon seasons, namely the northeast monsoon (NEM) and southwest monsoon
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(SEM). In this chapter, the discussion will be limited to the climate change during the 

northeast monsoon, which is denoted as DJF (Dec-Jan-Feb) and the southwest monsoon, 

which is denoted as JJA (Jun-Jul-Aug). For completeness, intermediate periods appear 

in some of the tables and figures in the results but are not discussed; these are denoted as 

MAM (Mar-Apr-May) and SON (Sept-Oct-Nov).

4.4.1.1 Surface tem perature

The seasonal cycles of surface temperature for baseline and future simulations due to 

atmospheric forcing alone (A2PLC and B2PLC) and the combined effect of atmospheric 

and landcover forcings (A2FLC and B2FLC) are shown in Figure 4.5 for the A2 and B2 

climate scenario simulations. The results show the temperature increase relative to the 

baseline was smaller in the B2 simulation compared to the A2 simulation, due to the 

weaker atmospheric forcing (emissions forcing) in the B2 climate scenario. In the A2 

climate scenario, the surface temperatures due to the combined forcing (A2FLC) were 

relatively higher than due to atmospheric forcing alone (A2PLC). For the B2 climate 

scenario, there is no discernible difference in surface temperature due to the combined 

forcing (B2FLC) and atmospheric forcing alone (B2PLC). This implies that the 

magnitude of climate change from landcover change depends on the degree of 

atmospheric forcing. That is, landcover forcing and atmospheric forcing are coupled in 

the SEA region.
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i  27.0

Dec

Figure 4.5: Seasonal cycle of surface temperature (°C) for the A2 (left panel) and B2 
{right panel) climate scenarios in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

Figure 4.6 shows the pattern and magnitude of temperature increase for each season for 

the A2 climate scenario due to the effects of combined atmospheric forcing and 

landcover forcing. The future mean surface temperatures were 28.1°C and 30.0°C during 

DJF and JJA respectively (Appendix 4.1). These increased by 2.7°C during DJF and 

2.8°C during JJA compared to the baseline (Figure 4.6). Higher changes in surface 

temperature were found to occur over land in all seasons, but were notably higher in 

some areas in western parts of Sumatra and the southern part of Borneo during JJA. 

Surface temperatures increased due to the combined forcings, and were statistically 

significant at the 95% confidence level in all areas of SEA (not shown). In the B2 

climate scenario, the future mean surface temperatures were smaller than A2 climate 

scenario at 27.7°C during DJF and 28.6°C during JJA (Figure 4.7 and Appendix 4.2). 

These were increased by 2°C and 2.1°C during DJF and JJA, respectively compared to 

the baseline. Similar to the A2 climate scenario, the higher increase in surface 

temperature in the B2 climate scenario was observed over land, mainly in central 

Thailand and Myanmar during DJF and western Sumatra and southern Borneo during 

JJA. As with the A2 scenario, the increase in surface temperature due to the combined 

forcings was statistically significant at the 95% confidence level in all areas of SEA (not 

shown).
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Figure 4.6: SRES A2: Combined effects of atmospheric and future landcover forcings on 
the seasonal temperature (A2FLC) in the SRES A2 scenario, and the temperature 
difference in comparison with the Baseline scenario (A2FLC-Baseline).
(Note: SRES A2- Special Report on Emission Scenario A2; FLC- Future Landcover)
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Figure 4.7: SRES B2: Combined effects of atmospheric and future landcover forcings on 
the seasonal temperature (B2FLC) in the SRES B2 sceanrio, and the temperature 
difference in comparison with the Baseline scenario (B2FLC-Baseline).
{Note: SRES B2- Special Report on Emission Scenario B2; FLC- Future Landcover)
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4.4.1.2 Total precipitation

The seasonal cycles of total precipitation for the baseline and also the future simulations 

due to atmospheric forcing alone (A2PLC and B2PLC) with the combined forcings of 

atmospheric and landcover forcings (A2FLC and B2FLC) are shown in Figure 4.8 for 

the A2 and B2 climate scenario simulations. In both climate scenarios, it is evident that 

there was a larger degree of variability within simulations compared to surface 

temperature (Figure 4.5), which was comparatively lower than the baseline scenario. In 

both climate scenarios, it was observed that precipitation decreases during DJF and 

slightly increases during JJA for both simulations (A2 and B2).

18.0

16.0

14.0

12.0

10.0

8.0

4.0

Ja n  Feb Mar A pr May J u n  Jul Aug S ep  Oct Nov Dec

Figure 4.8: Seasonal cycle of the total precipitation (mm/day) for the A2 (left panel) and 
B2 (right panel) climate scenarios in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The pattern and magnitude of total precipitation changes for each season for the A2 

climate scenario (combined atmospheric and landcover forcings) are shown in Figure 

4.9. The impact of combined forcings on future mean precipitation was 4.8 mm/day 

during DJF, which was a decrease of about 0.4 mm/day (DJF) (Appendix 4.1). The 

lower precipitation was observed mainly in the continental region of SEA, Andaman 

Sea, Bay of Bengal, and the northern part of the South China Sea. During DJF, a 

statistically significant (95% level) increase in total precipitation is predicted in some
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areas in Java, southern Borneo, the Indian Ocean, and the Pacific Ocean. During JJA, 

future mean precipitation increased by about 8.4 mm/day compared to during DJF. In 

comparison with the baseline, mean total precipitation during JJA decreased by 0.02 

mm/day. A higher decrease in precipitation was observed in the surroundings of Java 

(northern part of Australia) and Sulawesi. A large area including the continental region, 

northern part of Borneo, Bay of Bengal, Andaman Sea, and Philippine Sea experienced 

an increase in total precipitation o f more than 2 mm/day, statistically significant at the 

95% level (Figure 4.11).

In the B2 climate scenario, future mean precipitation was similar to the A2 climate 

scenario of 4.9 mm/day during DJF and 8.5 mm/day during JJA (Figure 4.10 and 

Appendix 4.2). The mean precipitation was observed to decrease by 0.3 mm/day during 

DJF and increase by 0.1 mm/day during JJA. The higher decrease in precipitation was 

also observed in the same areas as in the A2 climate scenario. During DJF, the decrease 

in total precipitation of less than -1 mm/day in a larger area in the South China Sea and 

the Celebes Sea, and a small area in the Philippine Sea were statistically significant at 

the 95% level (Figure 4.11). Similarly during JJA, the decrease of precipitation in a 

larger area between latitude -10°S and 10°N and the northern part of the South China 

Sea, was statistically significant at the 95% level.
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Figure 4.9: SRES A2: Combined effects of atmospheric and future landcover forcings on 
the seasonal total precipitation (A2FLC) in the SRES A2 scenario, and the precipitation 
difference in comparison with the Baseline scenario (A2FLC-Baseline).
{Note: SRES A2- Special Report on Emission Scenario A2; FLC- Future Landcover)
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Figure 4.10: SRES B2: Combined effects of atmospheric and future landcover forcings on 
the seasonal total precipitation (B2FLC) in the SRES B2 scenario, and the precipitation 
difference in comparison with the Baseline scenario (B2FLC-Baseline).
{Note: SRES B2- Special Report on Emission Scenario B2; FLC- Future Landcover)
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Figure 4.11: Significant t-test plots for the combined effects of atmospheric and future 
landcover forcing on the seasonal total precipitation for the A2 (A2FLC-Baseline) (left 
panel) and B2 (B2FLC-Baseline) (right panel) climate scenarios relative to the Baseline 
scenario.
(  Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.1.3 Total Cloud

Figure 4.12 shows the seasonal cycles of total cloud for the baseline and the future 

simulations for atmospheric forcing alone (A2PLC and B2PLC) and the combined 

atmospheric and landcover forcings (A2FLC and B2FLC) for the A2 and B2 climate 

scenario. The results showed a similar decrease in total cloud relative to the baseline for 

A2 and B2 simulations. In both climate scenarios, there were no distinctive differences 

in total cloud due to the combined forcing (A2FLC and B2FLC) and atmospheric 

forcing alone (A2PLC and B2PLC). The overall change in cloud cover is a much 

stronger signal than the change in precipitation discussed above (Section 4.4.1.2). The 

effect of alndcover on future total cloud is very small, and not sensitive to the 

atmospheric forcing scenario used.
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Figure 4.12: Seasonal cycle of the total cloud for the A2 (left panel) and B2 (right panel) 
climate scenarios in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The pattern and magnitude of total cloud changes for each season in the A2 climate 

scenario due to the combined forcing of atmospheric and landcover forcings are shown 

in Figure 4.13. The combined forcing was observed to decrease future total cloud 

fraction to 0.5, a decrease of about 0.08 during DJF (Appendix 4.1). The decrease in 

total cloud was observed largely in the South China Sea and the Celebes Sea regions.
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Statistically, the future changes in total cloud in the region during DJF showed no 

significant difference relative to the baseline scenario (Figure 4.15). During JJA, the 

future total cloud was 0.7, a decrease of about 0.06. The increase in total cloud of more 

than 0.02 in some areas in the Indian Ocean, South China Sea, and Pacific Ocean were 

observed to be statistically significant at the 95% confidence level (Figure 4.15).

In the B2 climate scenario, the future mean total clouds were similar to the A2 climate 

scenario of 0.6 during DJF and 0.7 during JJA (Figure 4.15 and Appendix 4.2). The 

changes of future mean total clouds due to combined forcing were observed to decrease 

by 0.07 during DJF and 0.05 during JJA. During DJF, the increase in total cloud of more 

than 0.02 in a small area in the west Pacific Ocean, was statistically significant at the 

95% level (Figure 4.15). During JJA, significant increases (at 95% level) of total cloud 

in some areas in the Indian Ocean, South China Sea and Pacific Ocean were further 

enhanced under the B2 climate scenario.
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Figure 4.13: SRES A2: Combined effects of atmospheric and future landcover forcings 
on the seasonal total cloud (A2FLC) in the SRES A2 scenario, and the total cloud 
difference in comparison with the Baseline scenario (A2FLC-Baseline).
{Note: SRES A2- Special Report on Emission Scenario A2; FLC- Future Landcover)
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Figure 4.14: SRES B2: Combined effects of atmospheric and future landcover forcings on 
the seasonal total cloud (B2FLC) in the SRES B2 scenario, and the total cloud difference 
in comparison with the Baseline scenario (B2FLC-Baseline).
(Note: SRES B2- Special Report on Emission Scenario B2; FLC- Future Landcover)
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Figure 4.15: Significant t-test plots for the combined effects of atmospheric and future 
landcover forcings on the total cloud for the A2 (A2FLC-Baseline) {left panel) and B2 
(B2FLC-Baseline) {rightpanel) climate scenarios relative to the Baseline scenario.
(  Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.1.4 Solar radiation

The seasonal cycles of solar radiation for the baseline and future simulations for 

atmospheric forcing alone (A2PLC and B2PLC) and the combined atmospheric and 

landcover forcings (A2FLC and B2FLC) for the A2 and B2 climate scenario are shown 

in Figure 4.16. The results show an increase in solar radiation relative to the baseline in 

a similar pattern for A2 and B2 simulations, and consistent with the decrease in cloud 

cover reported in Section 4.4.1.3. In both climate scenarios, there were no distinctive 

differences in solar radiation due to the combined forcing (A2FLC and B2FLC) and 

atmospheric forcing alone (A2PLC and B2PLC) and the effect of alndcover change is 

only marginally dependent on the atmospheric forcing. The seasonal cycle patterns of 

solar radiation were observed to be in opposite cycles with the seasonal cycles of total 

clouds (Figure 4.12).

5  240

Figure 4.16: Seasonal cycle of the solar radiation (WnT2) for the A2 (left panel) and B2 
{right panel) climate scenarios in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The pattern and magnitude of solar radiation changes for each season in the A2 climate 

scenario due to the combined forcings are shown in Figure 4.17. The combined forcing 

resulted in increased solar radiation to about 221 Wm'2 during DJF, an increase of about
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26 Wm" (Appendix 4.1). Meanwhile, during JJA, solar radiation increased to about 220

2 2 Wm' , an increase of 7 Wm' from the baseline scenario. In the B2 climate scenario,

future solar radiations also increased to about 220 Wm'2 during DJF and 218 Wm'2

during JJA, an increase of 5 Wm'2 and 4.3 Wm'2 respectively (Figure 4.18 and Appendix

4.2). In both scenarios, a significant (at 95% level) decrease in solar radiation over west

Pacific Ocean was observed during JJA. Plowever, during DJF, only small areas were

found to be statistically significant at the 95% confidence level (Figure 4.19).
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Figure 4.17: SRES A2: Combined effects of atmospheric and future landcover forcings 
on the seasonal solar radiation (A2FLC) in the SRES A2 scenario, and the solar radiation 
difference in comparison with the Baseline scenario (A2FLC-Baseline).
{Note: SRES A2- Special Report on Emission Scenario A2; FLC- Future Landcover)
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Figure 4.18: SRES B2: Combined effects of atmospheric and future landcover forcings on 
the seasonal solar radiation (B2FLC) in the SRES B2 scenario, and the solar radiation 
difference in comparison with the Baseline scenario (B2FLC-Baseline).
{Note: SRES B2- Special Report on Emission Scenario B2; FLC- Future Landcover)
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Figure 4.19: Significant t-test plots for the combined effects of atmospheric and future 
landcover forcings on the solar radiation for the A2 (A2FLC-Baseline) (left panel) and B2 
(B2FLC-Baseline) {right panel) climate scenarios relative the Baseline scenario.
( Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.1.5 Boundary layer height

The seasonal cycles of boundary layer height for the baseline and the future simulations 

tor atmospheric forcing alone (A2PLC and B2PLC) and the combined forcing of 

atmospheric and landcover forcings (A2FLC and B2FLC) for the A2 and B2 climate 

scenario are shown in Figure 4.20. In both climate scenarios, it is evident that there were 

few discernible differences between the mean effects due to the combined forcing 

(A2FLC and B2FLC), atmospheric forcing alone (A2PLC and B2PLC) and the baseline 

scenario.
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Figure 4.20: Seasonal cycle of the total boundary layer height (m) for the A2 (left panel) 
and B2 {right panel) climate scenarios in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The pattern and magnitude of boundary layer height changes for each season in the A2 

climate scenario due to combined atmospheric and landcover forcings are shown in 

Figure 4.21. The combined forcing resulted in a decrease in boundary layer height to 

about 534 m during DJF, a decrease of about 11 m (Appendix 4.1). Meanwhile, during 

JJA, the boundary layer height was increased to about 526 m, an increase of 11 m from 

the baseline scenario. In both seasons, the increase in boundary layer height was 

observed over land, mainly in central Thailand and western Sumatra and southern
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Borneo (Figure 4.21). Areas where changes in boundary layer height were less than -30 

m in both seasons were statistically significant at the 95% level (Figure 4.23). These 

areas mostly occurred over the sea, suggesting that synoptic-scale changes in weather 

pattern, and hence boundary layer height, are more significant than local-scale changes 

driven directly by landcover change and surface energy balance changes.

In the B2 climate scenario, under the influence of the combined forcing, the boundary' 

layer decreased to about 543 m during DJF and increased to about 536 m during JJA 

(Figure 4.22 and Appendix 4.6). In both seasons, areas where changes in boundary layer 

height were less than -30 m were statistically significant at the 95% level (Figure 4.23). 

These areas were relatively smaller in coverage than in the A2 climate scenario.
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Figure 4.21: SRES A2: Combined effects of atmospheric and future landcover forcings 
on the seasonal boundary layer height (A2FLC) in the SRES A2 scenario, and the 
boundary layer height difference in comparison with the baseline scenario (A2FLC- 
Baseline).
(Note: SRES A2- Special Report on Emission Scenario A2; FLC- Future Landcover)
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Figure 4.22: SRES B2: Combined effects of atmospheric and future landcover forcings on 
the seasonal boundary layer height (B2FLC) in the SRES B2 scenario, and the boundary 
layer height difference in comparison with the baseline scenario (B2FLC-Baseline).
{Note: SRES B2- Special Report on Emission Scenario B2; FLC- Future Landcover)
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Figure 4.23: Significant t-test plots for the combined effects of atmospheric and future 
landcover forcings on the boundary layer height for the A2 (A2FLC-Baseline) (left panel) 
and B2 (B2FLC-Baseline) (right panel) climate scenarios relative to Baseline scenario.
(  Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.2 Impacts of Future Landcover Forcing Alone on Regional Climate

Changes

To isolate the effects produced by forcing due to the modification of future landcover 

(FLC), results are presented as the difference between the all-forcings scenarios 

(atmospheric forcing and future landcover forcing) and the atmospheric forcing with 

present-day landcover (PLC), which are denoted as A2FLC-A2PLC for A2 climate 

scenario and B2FLC-B2PLC for B2 climate scenario. Since we cannot be sure that 

landcover effects on climate are independent of atmospheric forcing (see Section 

4.4.1.1), what follows is a tentative and preliminary analysis.

4.4.2.1 Surface temperature

In the A2 and B2 climate scenarios, the impacts of landcover forcing during DJF and 

JJA were very small and produced cooling effects (Appendix 4.1 and Appendix 4.2). 

The differences in mean surface temperature between the combined forcings 

(atmospheric and landcover forcings), atmospheric forcing alone, and landcover forcing 

alone for A2 and B2 climate scenarios also becomes apparent in the seasonal cycles 

shown in Figure 4.24.
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Figure 4.24: Seasonal cycle of surface temperature (°C) for the A2 (left panel) and B2 
(right panel) climate scenarios due to the landcover forcing alone (A2FLC-A2PLC & 
B2FLC-B2PLC) and the temperature changes (A2FLC-Baseline; A2PLC-Baseline & 
B2FLC-Baseline; B2PLC-Baseline) in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

In terms of the magnitude of surface temperature changes, the perturbation of future 

landcover in SEA, mainly due to conversion of forested land into agriculture under the 

A2 and B2 climate scenarios, is relatively small compared to changes due to 

atmospheric forcing alone (see Chapter 3). However, the small domain-mean figure 

masks larger changes in some regions. In the A2 climate scenario, the impact of 

landcover forcing alone resulted in surface temperature changes in the range of -1.5°C to 

1.7°C during DJF and -1.8°C to 1.2°C during JJA (Figure 4.25). Based on the regional 

mean surface temperatures, landcover forcing alone produced a cooling effect in all 

seasons of -0.07°C during DJF and -0.13°C during JJA (Appendix 4.1). During DJF, the 

largest warming was observed in central Thailand and Myanmar, where the agricultural 

areas (mainly paddy) have been expanded. Warming was also observed in maritime 

environments, particularly in the South China Sea, presumably the results of 

teleconnection to continental areas for which landcover has been changed or synoptic- 

scale modification to circulation patterns. Areas where the mean surface temperature 

was less than -1°C, were statistically significant (95% level) during DJF, except areas in 

higher latitudes (e.g. the southern part of China) (Figure 4.25). During JJA, cooling

227



effects were observed mostly in insular regions, while warming effects were observed in 

continental regions. Only small areas where cooling effects occurred were statistically 

significant during JJA. Warming was still prevalent in central Thailand and Myanmar 

and also expanded to the middle part of Vietnam. In maritime environments, warming 

effects were observed in the Indian Ocean.

Under the B2 climate scenario, the impact of landcover forcing alone resulted in changes 

in surface temperature in the range of -1.2°C to 1.5°C during DJF and -1.5°C to 2.5°C 

during JJA (Figure 4.26). Similar to the A2 climate scenario, landcover forcing alone 

produced cooling effects in all seasons with a mean surface temperature of -0.11°C 

during DJF and -0.09°C during JJA. In all seasons, warming was observed in maritime 

environments, mostly in the South China Sea and Indian Ocean. A slightly larger total 

area compared to the A2 climate scenario had statistically significant surface 

temperature during DJF and JJA (Figure 4.26).

Relatively, the expansion of agricultural land in the future landcover scenario over SEA 

has resulted in cooling effects in both climate scenarios. A modelling study on global 

climate sensitivity due to tropical deforestation by McGuffie et al. (1995) also 

concluded that conversion of tropical forest into grassland (over a six year experiment) 

has decreased the surface temperature significantly by -0.7 K over Sumatra, Java, and 

Borneo. Modification of atmospheric circulation patterns over deforested tropical 

regions and disturbance of the Asian Monsoon were suggested as important factors in 

the decrease of surface temperature under a modified landcover scenario.

In recent studies (Polchar and Laval, 1993; Henderson-Sellers et al., 1993; Feddema et 

al. 2005) in the Indonesian region, the expansion of agricultural land in the future
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landcover scenario was found to have little impact on the future surface temperature in 

both A2 and B2 climate scenarios. Based on a multiple scale analysis, the Asian 

Monsoon circulation in the maritime environment (e.g. around Malaysia, Indonesia, 

Philippines, Brunei, Singapore, and Timor Leste) was found to be more sensitive to 

landcover changes than the continental environment (van der Molen, 2006). Landcover 

changes stimulate changes in the surface energy balance, thus developing meso-scale 

circulations due to the contrast in heating properties of land and sea (sea breeze 

circulation) or of forest and agricultural land (forest breeze circulation). These meso- 

scale circulations are known to be very effective in transporting heat and moisture to 

higher levels of the atmosphere, depending on the amount of sensible heat released at 

the surface. In maritime environments, the increase in moisture from a circulation 

change leads to an increase of evaporation, thereby compensating for decreases in latent 

heat flux by transpiration (Feddema et al., 2005).
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Figure 4.25: SRES A2: Isolated effects of the future landcover forcing alone on the 
seasonal surface temperature (A2FLC-A2PLC) (left panel) in the SRES A2 scenario, and 
the significant t-test plots (right panel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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Figure 4.26: SRES B2: Isolated effects of future landcover forcing alone on the seasonal 
surface temperature (B2FLC-B2PLC) {left panel) in the SRES B2 scenario, and the 
significant t-test plot {rightpanel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.2.2 Total precipitation

In the A2 and B2 climate scenarios, the impacts of landcover forcing in all seasons were 

relatively small compared to the impacts due to atmospheric forcing alone (see Chapter 

3) and combined forcing (see Section 4.4.1) (Appendix 4.1 and Appendix 4.2). The 

seasonal cycles of the differences in mean precipitation between the combined forcing 

(atmospheric and landcover forcings), atmospheric forcing alone and landcover forcing 

alone for A2 and B2 climate scenarios are shown in Figure 4.27.
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Figure 4.27: Seasonal cycle of the total precipitation (mm/day) for the A2 (left panel) and 
B2 {right panel) climate scenarios due to the landcover forcing alone (A2FLC-A2PLC & 
B2FLC-B2PLC), and the total precipitation changes (A2FLC-Baseline; A2PLC-Baseline 
& B2FLC-Baseline; B2PLC-Baseline) in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The impacts of future landcover forcing alone on regional precipitation due to the 

conversion of forested land into agriculture in A2 climate scenarios have resulted in 

changes in total precipitation in the range of -3.7 mm/day to 4.3 mm/day during DJF 

and in a large range of -16.1 mm/day to 7.5 mm/day during JJA (Figure 4.28 and 

Appendix 4.1). The mean precipitation was observed to increase by 0.03 mm/day during 

DJF and decrease by -0.29 mm/day during JJA. The total precipitation was significantly 

decreased (95% significant level) in regions with changes less than -2 mm/day over the 

Philippine Sea (the west Pacific Ocean) during DJF and over a larger area with changes
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in the range of 0 mm/day to -8 mm/day during JJA (Figure 4.28). In both seasons, total 

precipitation increased over most converted forested land but was not statistically 

significant except on the southern part of Sumatra and some areas on the eastern part of 

Borneo during JJA. An earlier study by McGuffie et al. (1995) during JJA (in the month 

of June) observed a significant increase of total precipitation over the east of the 

Phillipines, but the increase of total precipitation in this study was not found to be 

significant.

Under the B2 climate scenario, the impact of landcover forcing alone resulted in changes 

in total precipitation in the range of -2.3 mm/day to 3.3 mm/day during DJF and -3.6 

mm/day to 2.8 mm/day during JJA (Figure 4.29 and Appendix 4.2). Similar to the A2 

climate scenario, landcover forcing alone produced very little effect on the mean 

precipitation in all seasons, which decreased by -0.06 mm/day during DJF and JJA. 

There were small isolated areas across the region where the changes in total 

precipitation due to landcover forcing alone were statistically significant at the 95% 

confidence level during DJF (Figure 4.29). Total precipitation changes over most 

converted forested land were not statistically significant. However, during JJA, larger 

areas: were found to be statistically significant at the 95% level over the land where 

conversion of forested land into agriculture and other types of landcover took place 

(Sumatra, Borneo, Sulawesi, Irian Jaya, and continental SEA) as well as Indian Ocean, 

Andaman Sea, South China Sea, Celebes Sea, Philippines Sea, and the west Pacific 

Ocean with changes more negative than -0.1 mm/day. An increase in precipitation of 

more than 0.5 mm/day over the northern part of the South China Sea and Philippine Sea 

was observed but was not statistically significant.
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Figure 4.28: SRES A2: Isolated effects of the future landcover forcing alone on the 
seasonal total precipitation (A2FLC-A2PLC) (left panel) in the SRES A2 scenario, and 
the significant t-test plots (right panel).
(Note: FLC- Future Landcover; PLC-Present-day Landcover)
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Figure 4.29: SRES B2: Isolated effects of the future landcover forcing alone on seasonal 
total precipitation (B2FLC-B2PLC) (left panel) in the SRES B2 scenario, and the 
significant t-test plots {rightpanel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

SON: B2FL C -B 2PLC

Longitude [m m /day]

DJF: B 2FLC -B2PLC

IB 

12

6 

0

-6

90 95 100 105 1 i 0 1
Longitude

JJA : B2FLC-B2FLC

Longitude

235



4.4.2.3 Total cloud

The impacts of landcover forcing alone on the seasonal cycle of total cloud in the A2 

and B2 climate scenarios was to cause a decrease in cloudiness, although this change 

was much smaller in magnitude compared with the impacts of atmospheric forcing alone 

(see Chapter 3) and combined forcing (see Section 4.4.1) (Appendix 4.1 and Appendix

4.2). The domain-mean seasonal cycles of the differences in total cloud shown in Figure 

4.30.
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Figure 4.30: Seasonal cycle of the total cloud for the A2 (left panel) and B2 {right panel) 
climate scenarios due to the landcover forcing alone (A2FLC-A2PLC & B2FLC-B2PLC), 
and the total cloud changes (A2FLC-Baseline; A2PLC-Baseline & B2FLC-Baseline; 
B2PLC-Baseline) in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover).

The impact of future landcover forcing alone on regional total cloud in the A2 climate 

scenario is to change total cloud between -0.13 and 0.11 during DJF, and between -0.14 

and 0.11 during JJA (Figure 4.31 and Appendix 4.1). These large spatial variations 

largely compensate each other over the domain; the mean total cloud was observed to 

decrease in both seasons by just -0.01 (DJF) and -0.001 (JJA) respectively. Total cloud 

was significantly decreased (95% significant level) over the Philippine Sea (the west 

Pacific Ocean) with less than -0.02 during DJF and over a larger area during JJA (Figure 

4.31). The areas where less cloud was observed experienced less precipitation as
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described in Section 4.4.2.2. Increases in total cloud were observed to develop in the 

southern part of China and some areas in the Andaman Sea and Indian Ocean, but were 

not statistically significant.

In the B2 climate scenario, the impact of landcover forcing alone resulted in relatively 

smaller changes in total cloud than in the A2 climate scenario. Total cloud increased 

slightly by 0.003 during DJF and decreased by -0.001 during JJA (Figure 3.32 and 

Appendix 4.2). In almost all areas in the region for both seasons, the changes in total 

cloud due to landcover forcing alone were not statistically significant at the 95% level. 

Though insignificant, there was an increase in total cloud (more than 0.01) in the 

Philippine Sea (west Pacific Ocean) during DJF and JJA; and a small area in the Indian 

Ocean during DJF.
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Figure 4.31: SRES A2: Isolated effects of the future landcover forcing alone on the 
seasonal total cloud (A2FLC-A2PLC) (left panel) in the SRES A2 scenario, and 
significant t-test plots {right panel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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Figure 4.32: SRES B2: Isolated effects of the future landcover forcing alone on the 
seasonal total cloud (B2FLC-B2PLC) {left panel) in the SRES B2 scenario, and 
significant t-test plots {right panel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.2.4 Solar radiation

Solar radiation increased due to landcover changes but solar radiation changes were 

smaller in magnitude compared to the impacts of atmospheric forcing alone (see Chapter 

3) and combined forcing (see Section 4.4.1.1) (Figure 4.33; Appendix 4.1 and Appendix

4.2). Changes in solar radiation due to landcover forcing alone were more apparent 

under the A2 than the B2 climate scenarios.
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Figure 4.33: Seasonal cycle of the solar radiation (Wm'2) for the A2 (left panel) and B2 
(right panel) climate scenarios due to the landcover forcing alone (A2FLC-A2PLC & 
B2FLC-B2PLC), and the solar radiation changes (A2FLC-Baseline; A2PLC-Baseline & 
B2FLC-Baseline; B2PLC-Baseline) in the present-day and future landcover scenarios.
{Note: FLC- Future Landcover; PLC-Present-day Landcover)

The impact of future landcover forcing alone on regional solar radiation resulted in a 

small increase of solar radiation by 0.7 Wm'2 during DJF and slightly higher during JJA 

by about 2.1 Wm' (Figure 4.34 and Appendix 4.1). Solar radiation was found to 

increase mostly over the sea by more than 5 Wm'2, particularly in the Philippine Sea 

(West Pacific Ocean) and Celebes Sea during DJF. However, the increase was not 

statistically significant at the 95% confidence level. The increased of solar radiation in 

these regions is consistent with the smaller total cloud amounts shown in Figure 4.31. A 

small area in the northern part of Sumatra, where the solar radiation was observed to
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decrease (by less than -10 Wm'2), was statistically significant at the 95% level. 

Similarly, during JJA, an increase by more than 10 Wm"2 of solar radiation in larger 

areas in the Philippine Sea (west Pacific Ocean) as well as in the Andaman Sea and the 

southern part of Myanmar were observed but found to be statistically insignificant at the 

95% level. Meanwhile, solar radiation was observed to decrease in several areas 

including the northern part of the South China Sea, Gulf of Thailand, northern part of 

Sumatra, and a small area in the Bay of Bengal. These areas have changes of less than -5 

Wm" in solar radiations that were statistically significant at the 95% confidence level.

In the B2 climate scenario, the impact of landcover forcing alone resulted in changes in 

solar radiation of 2 Wm'2 during DJF and 0.5 Wm"2 during JJA (Figure 4.35 and 

Appendix 4.2). Increased solar radiation of more than 6 Wm" over the land mostly in 

Indochina, Borneo, and the southern part of Sumatra were statistically significant. 

During DJF, the impact of landcover forcing on the solar radiation changes was 

insignificant. During JJA, solar radiation decreased largely in the Philippine Sea and 

west Pacific Ocean. Some of these areas (mostly over the sea to the north of the 

Phillipines) with the decrease by less than -2 Wm"2 were found to be statistically 

significant at 95% level. Less solar radiation in this area was also reflected in high total 

cloud as shown in Figure 4.32.
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Figure 4.34: SRES A2: Isolated effects of the future landcover forcing alone on the 
seasonal solar radiation (A2FLC-A2PLC) (left panel) in the SRES A2 scenario, and 
significant t-test plots {right panel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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Figure 4.35: SRES B2: Isolated effects of the future landcover forcing alone on the 
seasonal solar radiation (B2FLC-B2PLC) (left panel) in the SRES B2 scenario, and 
significant t-test plot {right panel).
{Note: FLC- Future Landcover; PLC-Present-day Landcover)
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4.4.2.5 Boundary layer height

The impacts of landcover forcing on boundary layer height were relatively small 

compared to the impacts due to atmospheric forcing alone (see Chapter 3) and combined 

forcing (see Section 4.4.1) (Appendix 4.1 and Appendix 4.2). The differences in mean 

boundary layer height between the combined forcing (atmospheric and landcover 

forcings), atmospheric forcing alone, and landcover forcing alone for A2 and B2 climate 

scenarios is shown in Figure 4.36.
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Figure 4.36: Seasonal cycle of the boundary layer height (m) for the A2 (left panel) and 
B2 (right panel) climate scenarios due to the landcover forcing alone (A2FLC-A2PLC 
& B2FLC-B2PLC), and boundary layer height changes (A2FLC-Baseline; A2PLC- 
Baseline & B2FLC-Baseline; B2PLC-Baseline) in the present-day and future landcover 
scenarios. {Note: FLC- Future Landcover; PLC-Present-day Landcover)

Future landcover forcing alone changes regional boundary layer height by about -8 m 

during DJF and -12 m during JJA (Figure 4.37 and Appendix 4.1) in the A2 climate 

scenario. Decreased boundary layer height in the Bay of Bengal and small areas in 

Indochina, southern Borneo, and Java were found to be significant at the 95% level 

during DJF. Meanwhile, during JJA, decreased boundary layer height of less than -30 m, 

which was mainly observed between latitudes of 6°N to 18°N, was statistically 

significant at the 95% level. Meanwhile in the B2 climate scenario, the boundary layer 

height changes were increased but relatively smaller than in the A2 climate scenario.
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The mean boundary layer height increased to about 2 m during DJF and 4 m during JJA 

(Figure 4.38 and Appendix 4.2). Decreased boundary layer in areas with less than -30 m 

in both seasons were found to be statistically significant at the 95% confidence level 

(Figure 4.38). These areas were mainly found in Sumatra, Peninsular Malaysia, northern 

and eastern parts of Borneo, and some areas in Indochina and the Philippine Sea during 

DJF, and mostly in Indochina and the west Pacific Ocean to the north of Iran Jaya 

during JJA.
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4.5 Conclusions

This study explores the effects of possible future landcover forcing alone, and also the 

combined effects with atmospheric forcing, on surface climate over the end of the 21st 

century in SEA. A possible scenario for landcover in the year 2070-2100 for SEA has 

been developed, which accounts for the projections of economic activity in the region, 

particularly in the agricultural sector. Based on this scenario of future landcover, the 

regional climate model (PRECIS) was used to generate future climate scenarios under 

A2 and B2 atmospheric forcings. By comparing the projected regional climate (2070- 

2100) under various climate scenarios relative to the baseline scenario (1960-1990), we 

are able to show the importance of landcover forcing as an isolated forcing as well as in 

combination with atmospheric forcing. The inclusion of landcover forcing to the 

regional climate model has accounted for a number of additional anthropogenic climate 

impacts, particularly subsequent impacts of landcover changes and climate changes on 

regional biogenic emissions, which play an important role in atmospheric chemistry. 

This is further investigated in Chapter 5 and Chapter 6. Thus far, some conclusions can 

be drawn from the results:

a) The combined effects o f  atmospheric and future landcover forcings 

• The effect of the combined forcing was observed to increase the surface temperature 

significantly (at 95% confidence level) over all SEA by 2100 during DJF and JJA in 

the A2 and B2 scenarios. In the A2 scenario, the surface temperature increased by 

2.7°C during DJF and 2.8°C during JJA. In the B2 scenario, the surface temperatures 

increased by 2°C during DJF and 2.1°C during JJA, but the mean surface 

temperatures were relatively smaller than the A2 scenario. In terms of magnitude, 

the combined effects in both climate scenarios were slightly lower than atmospheric
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forcing alone, but the size of the landcover effect changed with the GHG scenario. 

Climate change from atmospheric forcing and landcover cover change are couple in 

the SEA, therefore.

• In both the A2 and B2 scenarios, total precipitation decreased during DJF and 

slightly increased during JJA. In the A2 climate scenario, regions in which 

precipitation increased by more than 2 mm/day during DJF, and any regions 

showing positive anomalies during JJA, were found to be statistically significant at 

the 95% level. In the B2 climate scenario, in contrast to the A2 climate scenario, 

region in which precipitation changes were less than -1 mm/day during DJF, and any 

region showing negative anomalies during JJA, were statistically significant at the 

95% level.

• The combined forcing effects were observed to decrease the total cloud relative to 

the baseline in both A2 and B2 climate scenarios. There were few discernible 

differences of total cloud between the effects of combined forcing and atmospheric 

forcing alone. Statistically, there was no significant difference of total cloud changes 

during DJF in the A2 climate scenario in the region. However, small areas with an 

increase of total cloud fraction of roughly more than 0.02 were found to be 

statistically significant during JJA. In the B2 climate scenario, an increase of total 

cloud by more than 0.02 during DJF and JJAs were found significant at 95% level.

• In both the A2 and B2 scenarios, the solar radiation increased relative to the baseline 

scenario. However, there were few discernible differences with the effects due to 

atmospheric forcing alone. In both climate scenarios, regions showing increases in 

solar radiation of more than 5 Wm'2 during DJF, and all regions showing positive 

differences during JJA, were found to be statistically significant at the 95% level.
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• Relatively, there were few discernible differences of boundary layer height between 

the effects due to the combined forcing, atmospheric forcing alone and the baseline 

scenarios. Areas where changes of boundary layer height were more negative than - 

30 m in both seasons for both climate scenarios were found to be significant at the 

95% level.

b) The effects o f  landcover forcing alone

• The effect of future landcover forcing alone during DJF and JJA for both A2 and B2 

climate scenarios were observed to be small and produced cooling temperatures 

compared to the effects due to the combined forcing and atmospheric forcing alone. 

Small and scattered areas with less than -1°C in surface temperature change due to 

landcover forcing alone were found to be statistically significant at the 95% 

confidence level during DJF and JJA for the A2 climate scenario. Similar 

observations were also found for the B2 climate scenario for both seasons.

• In the A2 climate scenario, the effect of landcover forcing alone was observed to 

cause a small increase in precipitation during DJF and a small decrease during JJA. 

The total precipitation was significantly decreased (95% confidence level) in areas 

showing changes more negative than -2 mm/day during DJF and between 0 mm/day 

and -8 mm/day during JJA. In the B2 climate scenario, landcover forcing alone was 

observed to cause a small decrease in precipitation in both seasons. Statistically, 

areas showing changes more negative than -0.2 mm/day in total precipitation in both 

seasons were found to be significant at the 95% level. These areas covered a larger 

area during JJA compared to DJF.

• Landcover forcing alone was observed to decrease total cloud in both seasons for the 

A2 climate scenario. Regions showing changes in total cloud more negative than
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-0.07 during DJF, and -0.03 during JJA, were found to be statistically significantly at 

the 95% level in both seasons. Meanwhile, in the B2 climate scenario, total cloud 

increased slightly during DJF and decreased during JJA, but almost in all areas these 

changes were not statistically significant at 95% level.

• The impact of future landcover forcing alone on regional solar radiation resulted in a 

small increase in both seasons in the A2 and B2 climate scenarios, but were not 

statistically significant at the 95% level. In both climate scenarios, decreases in solar 

radiation were observed mostly over the sea (Philippine Sea/west Pacific Ocean) and 

some areas with changes more negative than -2 Wm'2 were found to be statistically 

significant.

• The impact of future landcover forcing alone on regional boundary height has 

resulted in small decreases in both seasons in the A2 climate scenario. In the B2 

climate scenario, the boundary layer heights in both seasons were increased but 

relatively smaller in magnitude than in the A2 scenario. Decreased boundary layer 

heights in areas with less than -30 m in both seasons in the A2 and B2 climate 

scenarios were found to be statistically significant at the 95% level.

The combined of atmospheric and landcover forcings accounted for the increase of 

surface temperature by 2.7°C during DJF and 2.8°C during JJA for the A2, and 2°C 

during DJF and 2.1°C during JJA for the B2 climate scenarios. However, these increases 

were comparatively lower than the atmospheric forcing alone (see Section 3.7.2.1, 

Chapter 3). From the results, it can be concluded that atmospheric forcing and landcover 

forcing have an opposing effect with the landcover forcing showed more important role 

to the decrease in surface temperature. It was also observed that the land shows strong 

and rapid heating in the seasonal cycle than over the sea, which in turn has a large 

impact on seasonal atmospheric differential heating processes between land and sea. The

251



land surface processes (including changes in landcover), which modulate the seasonal 

heating, therefore are likely to be responsible (to some extent) for interannual variability 

of the monsoons (Yasunari, 2004). It was suggested that the increases in sensible heat 

flux and surface temperature due to landcover forcing were compensated by the increase 

of evaporation rates from the local precipitation and the sea as suggested by Feddema et 

al. (2005). Though the Asian Monsoon could have played important roles on local 

climate, large-scale landcover changes in the adjacent regions (i.e East Africa, Australia, 

southern and eastern Asia) could also affect the strength and timing of the large-scale 

Asian Monsoon circulation. Based on the numerical experiment by Yasunari et al. 

(2006), it has been suggested that in Asian monsoon region, the landcover change is 

essential for the formation of monsoon circulation and precipitation through strong 

latent heating of the atmosphere. The increase of evapo-transpiration due to landcover 

change plays significant role in forming thick moisture boundary layer and convection 

for the latent heating. It has been suggested (see Feddema et al., 2005 and McGuffie et 

al. 1995) that the impacts of landcover forcing alone on the regional total precipitation 

were strongly influenced by the Asian monsoon circulation, though the impact was 

found to be depending upon the atmospheric conditions including large-scale wind field, 

thermal stability, etc (Yasunari, 2004). In Indochina region for example, Kanae et al. 

(2001) tried to explain the reduction of total precipitation in September by linking to the 

changes in albedo, surface roughness and soil moisture conditions, and when the 

monsoon westerly flow seasonally became weak. However, in other monsoon months, 

the effect of deforestation was negligible because of the effect of strong inflow and 

convergence of moist monsoon flow was dominated over the region. Therefore, the 

possible changes to the large-scale Asian Monsoon circulation could explain the 

climatic changes in the region due to landcover change in this investigation.
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Chapter 5

THE RESPONSE OF BIOGENIC EMISSIONS TO 
CHANGES IN LANDCOVER AND CLIMATE IN 
SOUTHEAST ASIA

5.1 Biogenic Volatile Organic Compounds Emission in Relation to 
Landcover

Biogenic emissions such as isoprene (CsHg) and monoterpene (C 10H 1 6) are emitted into 

the atmosphere in large quantities by vegetation, particularly in the tropics. Apart from 

these two important compounds, plants also emit alkanes, alkenes, alcohols, esters, 

carbonyls and organic acids (Kirstine et al., 1998; Schade and Goldstein, 2001; 

Villanueva-Fierro et al., 2004). Changes in landcover either due to natural processes 

(ecological succession, fire, etc) or human activities (deforestation, agriculture, etc) affect 

the species composition and vegetation distribution and can significantly alter not only the 

micro-climate but also the biogenic emissions, and hence may also indirectly affect the 

regional tropospheric chemistry. In a previous study, it has been predicted that an increase 

in global isoprene emissions from 484 TgC/yr in the 1990s to 615 TgC/yr in the 2090s 

due to climate changes and vegetation distributions results in a predicted increase in 

ozone levels of 10-20 ppbv in some areas (Sanderson et al., 2003).

As also mentioned in Section 1.3.3, conversion of forested area into agricultural land will 

affect biogenic emissions. In the southern part of China, conversion of about 30% of the 

forested area into cropland was found to reduce annual emissions of isoprene and 

monoterpenes by 30% and 40%, respectively (Steiner et al., 2002). A study in Eastern 

Texas has also concluded that differences in landcover have significant impacts on the
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isoprene emissions, where higher emissions were observed in areas classified as Post Oak 

woods, forest, and grassland than in agricultural land (Vizuete et al., 2002). In the 

tropical region, one modelling study found that deforestation and expansion of grazing 

area in Amazonia reduced the maximum isoprene emission fluxes from 12 x 1015 to 1.2 x

15 2 210 molecules m' s' (Ganzeveld and Lelieveld, 2004). A similar result was obtained 

from a sensitivity study investigating the impact of landcover changes through 

deforestation on biogenic emissions in the Amazon, Indonesia and Central Africa, where 

50% of the forested areas were converted into agricultural area and 50% into tropical 

grasses under present-day climate conditions (Lathiere et al., 2005). Results have shown 

that massive deforestation in the tropics has a major impact on biogenic emissions, where 

isoprene and other VOCs emissions decrease by 27-30%. The decreases have been found 

to be associated with the reduction of LAI and emission factors. Recent sensitivity studies 

by Weidinmyer et al. (2006) for the Amazon region, where 25% of the current area was 

replaced by oil palm (Elaeis guineensis) and eucalyptus (.Eucalyptus sp) plantations, on 

the other hand, showed an opposite conclusion. The study concluded that the combination 

of landcover change and future climate contributed to an increase emission of isoprene by 

37%. Therefore, the type of vegetation assigned in the sensitivity studies is crucial in 

determining the effects of landcover change as well as climate change on BVOC 

emissions in the tropics. This chapter will further investigate the sensitivity of BVOC 

emissions to landcover change and climate change in the SEA region.

5.2 Biogenic Volatile Organic Compounds Emissions in Relation 
to Climate Change

A number of studies have shown that biogenic emissions are dependent on temperature 

and photosynthetic photon flux density (PPFD) incident on the leaf (Guenther et al., 1991;
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Monson et a l, 1992; Guenther et a l, 1993; Livak et al., 1996; Singsaas et al., 1999; 

Sharkey et a l, 2001; Petron et al., 2001). However, the dependency of isoprene emissions 

on these environmental conditions is not linear (Guenther et a l, 1996). The high 

temperature and the presence of light (photosynthetically active radiation) are important 

for the synthesis of isoprene from dimethylallyl pyrophosphate (DMPP) by isoprene 

synthase (Monson et al., 1992; Sliver and Fall, 1995), which was linked with carbon 

metabolism and ATP (Adenosine Triphosphate) levels within the leaf (Sharkey and 

Loreto, 1993). In earlier studies by Guenther et al. (1991) and Monson et al. (1992), the 

dependency of isoprene emission on temperature was linked to the effect of temperature 

on the enzymes that are responsible for the production of isoprene. It was also found that 

this phenomenon was consistent across plant taxa though some variability was observed 

at the species level. Most plants (tropical and temperate) have shown a maximum 

emission of isoprene at approximately 40°C (Guenther et a l, 1993). Modelling studies by 

Vizuete et al. (2002), using the GLOBEIS model to investigate the effect of temperature 

on biogenic emissions in locations with dense hardwood and coniferous forests in Eastern 

Texas have also concluded that high temperature and high PAR (photosynthetically active 

radiation) drive large biogenic emissions in the region. Other studies have suggested that 

the increase in isoprene emissions from plants is part of their mechanism of their 

protection from rapid temperature fluctuations (Sharkey and Singsaas, 1995; Singsaas et 

a l, 1999).

Based on several recent studies (Rosenstiel et a l, 2003; Possell et a l, 2005; Wilkinson et 

a l, 2008), above ambient concentrations of atmospheric CO2 were found to inhibit 

isoprene production. Heald et a l  (2009) has observed that the perturbations of CO2 to 

isoprene emissions are largely seasonal with little diurnal variability. Enhancement of
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future projection of isoprene emissions induced by the increase of temperature, and at 

some extent where the vegetation cover is expected to increase were found to be offset by 

the inhibition effect of elevated CO2 levels (Arneth et al., 2007a). These observations 

suggest that future emissions of isoprene are largely buffered by a number of competing 

factors, which are certainly considered to be important in estimating the regional and 

global isoprene budget.

5.3 The Aims of the Study

As concluded in Chapter 3, the surface temperatures in the Southeast Asian region for 

both B2 and A2 emission scenarios will increase by 2.16°C and 2.49°C respectively under 

the present-day landcover scenarios, and this is expected to lead to high biogenic 

emissions of VOCs such as isoprene. Changes in landcover through conversion of 

forested area into agriculture and grassland, as described in details in Chapter 4, has lead 

to further increase in surface temperature by 2.60°C and 3.24°C for B2 and A2 transient 

climate scenarios, thus potentially further enhancing biogenic emissions. On the other 

hand, changes in landcover could also potentially lead to a decrease in isoprene, as the 

potential emissions from most crops and grasses are much less than for woody tree types 

(Guenther et al., 1995). At present, the response of biogenic emissions to climate change 

and landcover change, particularly in the tropics is still largely unknown. In this study, the 

investigation has been focussed on the sensitivity of biogenic emissions at the regional 

scale to changes in the driving variables to gain a better understanding of their roles in the 

present and future biogenic emissions in the region. The aims of the work in this chapter 

are three fold: first, to investigate the impacts of anthropogenic landcover change on 

biogenic emissions. The investigation will focus on the effect of landcover forcing on 

biogenic emissions due to the conversion of about 60% of the forested area into other
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landcover types, mainly agriculture and grassland (see Chapter 4). Second, to investigate 

the direct effect of the combination of climate change and landcover change to biogenic 

emissions. This would also determine which of these factors are more important to the 

biogenic emissions in the region. Finally, this study will investigate the roles of the 

ambient atmospheric CO2 concentration on biogenic emissions in the region. This will 

focus on the impact on isoprene emissions due to the present-day concentration of CO2 

(360 ppm) and the doubled concentration of CO2 (560 ppm) at the end of the century.

In this work, despite the uncertainties associated with future projections of landcover and 

climate changes in the region and the simulated effects of these changes on biogenic 

emissions, this sensitivity study provides a snapshot of how an interactive model can be 

applied at the regional scale for investigating interactions of climate, landcover (biogenic 

emissions), and subsequently, tropospheric chemistry. Improved knowledge of climate- 

landcover-tropospheric chemistry interactions-particularly in SEA, where there is a major 

source of biogenic emissions, is necessary for the evaluation of which processes should be 

built into interactive models that include chemistry, emissions, land surface and 

atmospheric dynamics. This work could also provide information on the significance of 

landcover variables (i.e type and distribution of vegetation, and LAI), and climatic 

conditions (i.e. ambient temperature, and PAR) for biogenic emissions particularly 

isoprene and monoterpenes. The schematic of the work of this chapter is illustrated in 

Figure 5.1.

257



I Chapter 3 BChapter 4
Chapter 5

Chem istry
Changes

Climate
ChangePresent-Day

Landcovers
BVOCs

Tropospheric
Chemistry

Regional
Climate

BVO Cs
' Modified 
Landcovers Climate

Change
Chem istry
Changes

Figure 5.1: Framework for the investigation of climate changes-biogenic emissions- 
tropospheric chemistry ineteractions in Southeast Asia. The red dotted box indicates the 
framework for the investigation of biogenic emissions response to the landcover and 
climate changes that covered in Chapter 5.

5.4 Models and Experimental Design

5.4.1 BVOCEM to Estimate Biogenic Emissions

BVOCEM (Biogenic Volatile Organic Compounds Emission Model) was used to estimate 

biogenic emissions in SEA. This model (Lathiere et al., in press) was developed in 

Sheffield University and Lancaster University, and is based on the MEGAN model as 

described by Guenther et al. (2006). In order to quantify the net emissions of biogenic 

emissions between the atmosphere and terrestrial ecosystem at a specific location and 

time, parameterisation has considered the impact of temperatures, radiation, leaf age, soil 

moisture and canopy loss, which is given by the following equation (Eq 5.1):
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Emission = [e][y |[p] (5.1)

where e (mg m'2 h '1) is the emission factor of a compound emitted into the canopy at 

standard condition; y (normalized ratio) is an emission activity factor, which accounts for 

the emission changes due to deviation from standard conditions; and p (normalized ratio) 

is a factor which accounts for the production and loss within the canopy.

The emission factor incorporated in the model was developed for the canopy-scale model, 

though it was extrapolated from the leaf and branch-scale environment model. The 

standard conditions for MEGAN canopy-scale emission factors are shown in Table 5.1:

Table 5.1: Standard conditions for MEGAN emission factors at the canopy-scale.

P a ra m e te r S ta n d a rd  C o n d itio n s

• L ea f A rea Index (LA I) 5
• C anopy 80% m ature

10% grow ing
10% foliage

• Solar angle 60 degrees
• Photosynthetic photon flux  density transm ission (PPFD ) 0.6
• A ir tem perature 303 K
• H um idity 14 g k g '1
• W ind speed 3 m s '1
• Soil m oisture 0.3 m 3m '3
• A verage canopy environm ental conditions o f  the  past 24 to

240 hr: 297 K
Leaf tem perature 200 pm ol m 'V 1
PPFD (sun leaves) 50 p.mol m 'V 1
PPFD (shade leaves)

5.4.1.1 Emission factor at the canopy-scale (e)

Landcover changes due to either natural or anthropogenic (such as deforestation, 

agricultural expansion, urbanisation, etc) activities could affect the ecosystem in terms of 

vegetation composition, distribution, and the canopy structure, which are important 

factors for biogenic emissions. Woody types of vegetation, particularly the broadleaf
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trees are known to generally emit higher isoprene levels than non-woody plants. 

Broadleaf tree isoprene emission factors were found to be closer to the global average of

2 I12.6 mg m" hr' in most regions whereas needle deciduous tree emission levels were 

lower (Guenther et a l, 2006). In non-woody plants, the isoprene emissions were observed 

to be even lower, for example grasslands in Australia (~0.004mg m'2 hr'1) (Kirstine et al., 

1998) and grasslands in China (~0.004mg m'2 hr'1) (Bai et a l , 2006). In some regions, 

crops are known to be a major source of isoprene emissions, for example the emission 

factors were found in the range from 3 to 28 pgC g '1 hr'1 for oil palm and from 25-130 

pgC g '1 hr'1 for mango (.Mangifera indica) (Geron et al., 2006) (see Table 1.2 in Chapter 

! )•

In this study, a regional map of emission factors for seven Plant Functional Types (PFTs) 

was generated from the global map of emission factors provided by Guenther et al. 

(2006). In the MEGAN model of Guenther et al. (2006), PFTs are classified into a 

number of schemes, whose applications are dependent on the purposes of the simulation. 

For the global simulation, MEGAN usually uses the standard PFT-7 scheme, which 

includes seven PFTs namely: broadleaf evergreen trees, broadleaf deciduous trees, needle 

evergreen trees, needle deciduous trees, shrubs, crops, and grass plus other ground cover. 

Meanwhile, for the regional simulation, the PFT-REG scheme is normally used, which 

includes the details of the plant genera. In BVOCEM, the emission factors were assigned 

directly to the ecosystem types, which is similar to the PFT-7 scheme. This approach is 

generally accepted in the tropical region as this is considered the best option for areas in 

the tropical forest, which contains high species diversity (Guenther et al., 1995).
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5.4.1.2 Emission activity factor at the canopy-scale (y)

The emission activity factor describes variations due to physiological and phenological 

processes that drive the biogenic emissions rate changes. In BVOC, the total of the 

emission factor due to these processes is estimated based on the product of a set of non- 

dimensional emission activity factors that are each equal to 1 in standard conditions, as 

described by Guenther et al. (2006) in the following Eq 5.2

Y = YcE- Yage- Ysm ( 5 . 2 )

where yCE describes variation due to Leaf Area Index (LAI) and light, temperature, humidity 

and wind conditions within the canopy environment, yage makes adjustments for effects of 

leaf age, and ySM accounts for direct changes in y due to changes in soil moisture. The 

calculation of each of these factors is described in the following paragraphs.

Local climatic conditions, which affect the incident PPFD and leaf temperature are known 

to control the biogenic emissions such as isoprene from short periods (seconds to minutes) 

to longer periods (hours to weeks) of time scales (Guenther et al., 1993; Monson et al., 

1994; Sharkey et al., 2000; Geron et al., 2000; Petron et al., 2001). At the canopy level, 

the influence of leaf PPFD and temperature, yCE is estimated using Eq 5.3:

Yce = Ylai • Yp • Yt (5.3)

where

yLAI accounts for variation in LAI compared to standard conditions of 5 m2/m2.

yP for variations in radiation

yT for variations in temperature.

The corresponding emission activity factor of LAI and temperature variations in the region 

are calculated using Eq. 5.4 and Eq. 5.5 respectively:
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Y lai = 0.49 LAI/[( 1 + 0.2 . LAI2)0'5] (5.4)

Yt  =  Eopt • [ Q t2 • exp(CT1 . X)/(CT2 — CTi . (1 — exp(CT2. x)))] (5.5)

where X = Eopl and Topt = 313+[0.6 (T-297)]

For the calculation of radiation effects, the following Eq. 5.6 is used: 

r  IF a <0 or a>  180 THEN yP = 0

\  ELSE yp = sin(u)[2.46( 1 +0.0005)(Pdaily-400)((J)) -  0.9(j>2] (5.6)

where Pdaily is the daily average of PPFD in pmol photons m 'V 1, a is solar angle

expressed in degrees and cj) is the above canopy transmission calculated using the Eq. 5.7:

<j> = Pac /(sin(a). Ptoa) (5.7)

where Pac is the above canopy PPFD, Ptoa is the PPFD at the top of the atmosphere, which 

can be calculated as in Eq. 5.8:

Ptoa = 3000 + 99[cos(6.28(DOY-10)/365] (5.8)

where

DOY is the day of the year

From Eq. 5.2, the leaf age factor (yT) impact on isoprene emissions can be calculated based 

on the age of the leaf. Studies have also shown that a leafs ability to emit isoprene is 

influenced by leaf phenology. The young leaves of isoprene-emitting species do not emit 

isoprene, while the mature leaves emit at the highest capacity and the old leaves lose their 

ability to photosynthesize and produce isoprene (Guenther et al., 1991; 2006). To account 

for leaf age in the BVOC model, the parameterisation for leaf age factor as described by 

Guenther et al. (2006) was adopted and calculated using Eq. 5.9:

Yage =  Fnew-A-new +  F grow -A grow  Fm atureA m ature +  F 0 |d A 0Id ( 5 - 9 )
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where

F is foliage fraction (i.e new, grow, mature or old)

A is the relative emission rate based on the observations by Guenther et al. (1991),

Monson et al (1994), Goldstein et a l (1998), Petron et al. (2001) and Karl et al. 

(2004) (Anew^O.05, Agrow= 0.6, Amature= 1.125, Aold= 1)

For evergreen canopies, a constant value of Yage = 1 is adopted. The value for each foliage 

fraction is assigned for or calculated based on the change in LAI between the current time 

step (LAIC) and the previous time step (LAIP) (Guenther et al., 2006) as shown in Eq 5.10

to Eq 5.17.

Fnew=0, Fgrow=0.1, Fmature=0.8, Foid=0.1 for LA1C=LAIP (5.10)

Fnew~0, Fgrow—0, Fmature— 1-Foid, F0id=[(Lap-LAIc)/LAIp} for LAIP > LAIC (Eq 5.11)

In a case where LAIP < LAIC, the values of foliage fractions are assigned or calculated as 

Fold -  0 (5.12)

Fnew- 1 -  (LAIp/LAIc) for t tj (5.13)

Fnew= [ti/t][l -  (LAIp/LAIc)] for t ^ tj (5.14)

Fmature = (LAIp/LAIc) for t <; tm (5.15)

Fmature= (LAIp/LAIc) + [(t-tm)/t][ 1 -(LAIp/LAIC)] for t > tm (5.16)

Fgrow ~ 1 “ Fnew '  Fmature (5.17)

where

t is the length of the time steps (in days between one week and one month) between

LAIC and LAIp

tj is the number of days between budbreak and the induction of isoprene emission
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tm is the number of days between budbreak and the initiation of peak isoprene 

emission rates 

tg = tm for t > tm and tg=t for t < tm

As shown in Eq 5.2, soil moisture was also observed to play an important role in biogenic 

emissions through an indirect effect on stomatal conductance, which influences the leaf 

temperature. Studies by Pegoraro et al. (2004; 2005) have found that at low levels of soil 

moisture the isoprene emissions began to drop and eventually became negligible when 

plants are exposed to extended severe drought. The emission activity factor that is 

dependent on soil moisture has been calculated using the Eq 5.18 to Eq 5.20 (Guenther et 

al., 2006).

Ysm = 1 0 > 9 i (5.18)

Ysm = (6 - 0w)/A0i 0W < 0 < 0i (5.19)

Ysm  = 0 0 < 0W (5.20)

where

0 is soil moisture (m3 m"3)

0W is wilting point (the soil moisture level below which plants cannot extract

water from the soil, for which values range from 0.01 for sand and 0.38 

m3m'3 for clay soils)

A0i is an empirical parameter (A0j= 0.06 based on Pegoraro et al. (2004)), and

0i = 0W + A0i

The estimation of soil moisture from any soil depth to be used as input in the Eq 5.18 to 

Eq 5.20, uses the PFT dependent approach (Zeng, 2001) to determine the fraction o f roots 

within each soil layer and applies the weighted average of emission activity factor for 

each soil layer (Guenther et al., 2006).
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Other factors such as the availability of soil nutrients, ambient carbon dioxide 

concentration (Possell et al. 2004; 2005), C 02 (Buckley, 2001; Rosenstiel et al., 2003), 

ozone (Velikova et al., 2005), nitrogen availability (Harley et al, 1994), and physical 

stress (Alessio et al., 2004) are also known to affect the biogenic emissions particularly 

isoprene from the plants. In the BVOC model, the impact of atmospheric C 02 on isoprene 

emission was incorporated based on the function proposed by Possell et al. (2005). The 

C 02 function is based on the normalised value of 1 for a present-day atmospheric C 02 

concentration of 366 ppmv. An atmospheric concentration of 560 ppmv for the future 

scenario (2100) has a C 02 function value of 0.65.

5.4.1.3 Production and loss within canopy (p)

At the canopy level, the production of biogenic chemicals are emitted into the atmosphere 

above the canopy and at the same time there are losses through the involvement of 

biological, chemical and physical processes within the canopy atmosphere, vegetation 

surfaces and on soil. The canopy production and loss factor of these chemicals (p) has 

been taken into account in the MEGAN model as net canopy emission (Guenther et al., 

2006), which is important in model simulation of the impact of biogenic emissions such 

as isoprene on atmospheric chemistry. The net canopy emission is parameterised as a 

function of canopy depth, friction velocity and chemical lifetime (Eq 5.21) (e.g for 

isoprene), which is based on measured isoprene emission profiles and turbulence profiles 

in recent studies in the tropical forest (Karl et a l, 2004) and temperate forest (Stroud et 

al., 2005).

piso.iso= l  - D/[Xp*.T + D \ (5.21)
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where

D is canopy depth (m), X is an empirically determined parameter

p* is friction velocity (m s1)

x is the above-canopy lifetime of isoprene (s).

The assigned values for D and X in the model are dependent on the PFT in the PFT- 

schemes.

5.4.2 Monoterpenes and Other Volatile Organic Compounds

Calculations of monoterpenes and other volatile organic compounds are based on studies 

by Guenther et al. (1995), which have considered the impact of air temperature as well as 

emissions at the leaf-scale. In this case, only one emission factor for each PFT is used. 

For monoterpenes, the emission factors of 2.4 and 1.2 ugC/g dry matter/h for evergreen 

and deciduous needled-leaved trees and 0.2 ugC/g dry matter/h for agriculture were 

used. Meanwhile for other VOCs, an emission factor of 1.5 ugC/g dry matter/h for every 

PFT was used.

5.4.3 Developing Input Files for BVOCEM

5.4.3.1 Developing climate input fields

The climate data input for BVOCEM includes the temperature, PAR, and soil moisture 

content. All these climate data were obtained from PRECIS, a regional climate model, 

which was run over SEA with 50km x 50km resolution, as described in Chapter 3. The 

regional climate model was run for 10 years using ECHAM4 boundary conditions for 

both present-day (2000-2010) and future (2090-2100) for B2 and A2 IPCC emission
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scenarios (see Chapter 3). The climate scenarios were also run under modified future 

landcover of the region as described in Chapter 4 for the investigation of landcover 

change impacts on biogenic emissions in the region. For the investigation under B2 and 

A2 emission scenarios, six sets of climate datasets were prepared: two climate datasets 

were created for the present-day climate scenarios under present-day landcover scenarios 

(fixed vegetation) (hereafter called BASE-B2 and BASE-A2) and another four climate 

datasets were created for the future climate scenarios under present-day (fixed vegetation) 

and modified future landcover scenarios (hereafter called FCLIM-PLC-B2, FCLIM- 

PLC-A2, FCLIM-FLC-B2 and FCLIM-FCL-A2) as shown in Table 5.2.

Table 5.2: Climate datasets scenarios for input in BVOCEM based on climate and 
landcover scenarios in B2 and A2 transient climate scenarios

Emission Scenarios Landcover
Scenarios Climate Sceanrios

Baseline Present-day landcover 
(fixed vegetation)

BA SE-B2

BASE-A2

SRES B2

Present-day landcover 
(fixed vegetation)

FC LIM -PLC-B2

Future landcover 
(m odified vegetation)

FCLIM -FLC-B2

SRES A2

Present-day landcover 
(fixed vegetation)

FC LIM -PLC -A 2

Future landcover 
(m odified vegetation)

FC LIM -FLC -A 2

Note:
BASE-B2 : Baseline Climate - SRESB2
BASE-A2 : Baseline Climate -  SRESA2
FCLIM-PLC-B2 : Future Climate under Present-day Landcover - SRESB2 
FCLIM-FLC-B2 : Future Climate under Future Landcover -  SRESB2 
FCLIM-PLC-A2 : Future Climate under Present-day Landcover -  SRESA2 
FCLIM-FLC-A2 : Future Climate under Future Landcover - SRESA2
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5.4.3.2 PFT distribution and vegetation fraction

For the investigation of the impacts of landcover change on the BVOC emissions, two 

landcover scenarios were prepared: the present-day (baseline) and future landcover files. 

For the present-day landcover scenario, the plant functional type (PFT) distribution 

datasets for SEA were generated based on the landcover classification by Wilson and 

Henderson-Sellers (1985) with 50 km resolution, which is based on ecosystem type. This 

landcover classification was also used in regional climate change study using PRECIS 

(see Chapter 3 and Chapter 4). The landcover in the region was re-classified into six PFTs 

(i.e. tropical broadleaf trees, tropical shrubs, grassland, cropland, evergreen needle-leaf 

trees and deciduous needle-leaf trees) in order to fit the definition of PFT distribution 

used in BVOCEM. Meanwhile for the future landcover file, landcover was created based 

on the landcover used in the sensitivity study as described in detail in Chapter 4. The 

major feature of the modified future landcover was the reduction of forested area (mainly 

in area covered by tropical broadleaf trees) of about 60% and a significant increase of 

agricultural and grassland landcovers (see Table 4.5 -  Chapter 4). It is recognised that 

the modified future landcover changes were chosen arbitrarily and may not be realistic. 

However, these potential changes would allow the investigation to evaluate the 

importance of landcover changes on BVOC emissions driven by the present-day and 

future climate scenarios. Based on the modified future PFTs distribution in the SEA 

region, the future vegetation fraction for each PFTs was generated to be used in 

BVOCEM to estimate future biogenic emissions in the region.
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5.4.3.3 Leaf Area Index (LAI)

LAI, as projected leaf area per unit ground surface area, is an important variable of 

vegetation describing the structural and functional properties of plant canopy as it is 

directly related to the exchange of energy, CO2 , and water from vegetation canopies 

(Sellers et al., 1986). For the investigation of the present-day biogenic emissions (year 

2008) in this study, LAI values were obtained from the MODIS/TERRA satellite, which 

estimate LAI with almost daily global coverage. LAI values at 1 km resolutions for the 

SEA domain were obtained from NASA’s Earth Observation System Data Information 

System (http://elpdl03.cr.usgs.gov/ims-bin/pub/nph-ims.cgi/u777090). The LAI datasets 

were aggregated to 50 km resolution in order to be compatible with other input variables 

of the BVOCEM. In this study, twelve datasets of LAI were obtained, representing the 

monthly LAI datasets for the year 2008.

As there are no future LAI datasets available, the future LAI values, which are expected 

to change due to conversion of the forested land into agriculture (particularly oil palm) 

and grasslands, were estimated from the current LAI value and vegetation fraction for 

each grid. As in Guenther et al. (2006), and also adopted by Muller et al. (2008), the LAI 

of the vegetated areas are estimated by dividing the LAI obtained from MODIS by the 

vegetated fraction of the grid. The LAI values assigned for each plant functional types 

(PFTs) used as reference for the estimation are based on Lathiere et al. (2005) and 

Loveland et al. (2002) as shown in Table 5.3. For tree crops like oil palm, the LAI value 

was based on Md Noor and Mohd Haniff (2004). Paddy rice, as it is classified in the grass 

family of Gramminae, and is thus assigned the same LAI value as grass.
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Table 5.3: LAI values assigned for plant functional types (PFTs)

PFTs Description LAP
(m2/m2)

Tropical b road leaf tree 8.5
Tropical woodland 6
Tropical tree crop (oil palm tree) 5.6**
Paddy (C3 A griculture) 3
Arable cropland (m ostly C4 A griculture) 5
Tropical grassland (C3 grass) 3
Tropical savanna (C3 grass) 2.5
Tropical pasture (C4 grass) 1
Sources: * a d ap ted  fro m  L a th ie re  e t  al .  (2 0 0 5 ); L o v elan d  e t  al.  (2 0 0 2 )

** ad ap ted  fro m  M d N o o r  and  M o h d  H a n if f  (2 0 0 4 )

Based on changes to the landcover in the region mainly due to conversion of tropical 

forest (evergreen broadleaf trees) into agriculture (i.e oil palm and paddy) and other 

landcover types, the present-day (2008) LAI annual mean of 5.45 m2/m2 decreased to 3.44 

m2/m2, a reduction of 2.01 m2/m2 (36.9 %) (Figure 5.2).

^  Future L andcover  

M ean: 3.44

V  Present L andcover  

M ean: 5.45
18-18-

0) 12-12 -

- 6 -

9b
LongitudeLongitude

0 2 4 6 8 0 2 4 6 8
1 1* :̂1 1 ! I I I — II I N^iT 1 I " I" - I I m

1 3  5 7 9 1 3 5 7 9

Figure 5.2: Annual mean of Leaf Area Index (LAI) for the present-day (2008) and future 
(2100) landcover scenarios in Southeast Asia.
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5.4.4 Developing Biogenic Emission Scenarios

In order to investigate the impact of climate and landcover changes on the present and 

future biogenic emissions, it is necessary to estimate the biogenic emissions under the 

present-day (baseline) and future climate with different landcover scenarios. Atmospheric 

CO2 was also considered in these scenarios, to investigate the CCE-inhibition effect on 

isoprene emission. In this study, two sets of experiments were run, to reflect the impacts 

of regional climate and landcover changes on biogenic emissions as well as the impact of 

atmospheric CO2 . First, BVOCEM was run under the present-day landcover scenario and 

using climate datasets output from both baseline (BASE-A2 and BASE-B2) and future 

climate scenarios (PCLIM-PLC-B2 & PCLIM-PLC-A2) with- and without-C02 factor. 

Second, BVOCEM was run under modified future landcover scenario and using climate 

output datasets output from the future climate scenarios (FCLIM-FLC-B2 & FCLIM- 

FCL-A2) for with- and without-C02 factor. The investigation of biogenic emissions 

scenarios is shown in Table 5.4. Based on these scenarios, evaluations can be made on the 

response of biogenic emissions response to landcover change, climate change and the 

combination of landcover and climate changes in SEA. At the same time, the effect of 

ambient atmospheric CO2 on biogenic emissions for the present-day and future emission 

scenarios can also be investigated.
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Table 5.4: Experiment scenarios for the BVOC emissions investigation under the
influence of different landcover and climate scenarios for both with-and without-C02 
factors.

Emission Scenarios Landcover
Scenarios Climate Scenarios CO2 Factor

Baseline Present-day landcover 
(fixed vegetation)

BASE-B2
with COj
without CO 2

BASE-A2
with CO->
without CO 2

SRES B2

Present-day landcover 
(fixed vegetation)

FCLIM -PLC-B2
with CO 2

without CO2

Future landcover 
(m odified vegetation)

FCLIM -FLC-B2
with CO 2

without CO 2

SRES A2

Present-day landcover 
(fixed vegetation)

FCLIM -PLC-A2
with C 0 2
without C 0 2

Future landcover 
(modified vegetation)

FCLIM -FLC-A2
with CO 2

without CO 2

Note: BASE-B2 : Baseline Climate - SRESB2
BASE-A2 : Baseline Climate - SRESA2
FCLIM-PLC-B2 : Future Climate under Present-day Landcover -  SRESB2 
FCLIM-FLC-B2 : Future Climate under Future Landcover -  SRESB2 
FCLIM-PLC-A2 : Future Climate under Present-day Landcover -  SRESA2 
FCLIM-FLC-A2 : Future Climate under Future Landcover -  SRESA2

5.5 Results and Discussions

5.5.1 Present and Future Climate under Present-day and Modified Future 

Landcover Scenarios

5.5.1.1 Temperature

As concluded in Chapter 4, the regional baseline mean surface temperature for B2 and A2 

emission scenarios under the present-day landcover (fixed vegetation) were 26.6°C and 

27.4°C respectively (Table 5. 5). Future projections (2090-2100) of surface temperature, 

using fixed vegetation for both emission scenarios increased, to 29.2°C (B2) and 29.9°C 

(A2) respectively. Based on atmospheric forcing alone, the future surface temperature 

increased by about 2.5°C and 3.5°C for B2 and A2. In addition to atmospheric forcing, 

changes in landcover due to conversion of tropical rainforest into other landuses, mainly
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agriculture (i.e oil palm), has resulted in further increases in average surface temperatures, 

to about 29.2°C (B2) and 30.6°C (A2). The combination of atmospheric and landcover 

forcings was responsible for the increase of surface temperature by 2.6°C and 3.2°C for 

B2 and A2 emission scenarios respectively (Table 5.6). Landcover forcing alone, has 

relatively little impact on the average future surface temperature (over land), which has 

observed only a small changes of about 0.1°C for B2 and 0.7°C for A2 emission 

scenarios. The projected regional surface temperatures and temperature changes for the 

present-day and future B2 and A2 emission scenarios and the temperature changes under 

fixed vegetation and modified future landcover are shown in Figure 5.3 and Figure 5.4.

Table 5.5: Temperature (°C) in the present-day (fixed vegetation) (PLC) and future 
(modified vegetation) (FLC) landcover scenarios. The maximum (max) and minimum 
(min) values are highest and lowest decadal averages for individual pixels over land in 
SEA.

Climate
Scenario

Landcover
Scenario

Temperature (°C)
Mean Min Max

B aseline B 2 Present
(fixed vegeta tion )

26.64 13.97 31.83

B aseline A2 Present
(fixed v e g e ta t io n )

27.36 14.22 32.20

F u tu re  B2 Present
(fixed v e g e ta tio n )

29.15 16.45 34.55

F u tu re  B2 F u tu re
(m odified v e g e ta tio n )

29.24 16.44 34.61

F u tu re  A2 Present
(fixed v e g e ta tio n )

29.89 17.22 35.31

F u tu re  A2 F u tu re
(m odified v e g e ta tio n )

30.60 17.32 35.98

Note: Present-day -  10 years period between 2000-2010 
Future -  10 years period between 2090-2100
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Table 5.6 Difference in decadal-average surface temperature (°C) due to the landcover 
forcing alone and combination of atmospheric and landcover forcings in the present-day 
(PLC) and modified future landcover (FLC) scenarios.

Climate
Scenario _

Temperature Changes (°C)

Mean Min Max
B 2PLC-BaseB 2 2 .5  1 1.11 4 .02

B2FLC-BaseB  2 2.60 1.37 4 .52

B2FLC -B 2PLC  * * 0.09 -1.18 1.54

A 2PLC -B ase A 2 2.53 1.06 4.10

A 2F L C -B aseA 2 3.24 1.72 4.91

A 2FLC-A 2PLC * * 0 .7 1 -1 .28 2 .29

Note: PLC -  Present-day landcover (fixed vegetation)
FLC -  Future landcover (modified vegetation)
BaseB2 -  Baseline for B2 emission scenario 
BaseA2 -  Baseline for A2 emission scenario
B2PLC -  BaseB2: atmospheric forcing alone for B2 scenario - climate change
B2FLC -  BaseB2: atmospheric forcing + landcover forcing
A2PLC -  BaseA2: atmospheric forcing alone for A2 sceanrio -  climate change
A2FLC -  BaseA2: atmospheric forcing + landcover forcing
** -Landcover forcing alone for A2 and B2 sceanrios
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Figure 5.3: Simulated Baseline (2000-2010) and future (2090-2100) decadal-average 
surface temperature over SEA for the B2 (a-c) and A2 (d-f) emission scenarios in the 
present-day (PLC) and modified future landcover (FLC) scenarios.
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Figure 5.4: Difference in decadal-average surface temperature (°C) between (a) B2PLC 
and BaseB2, (b) B2FLC and BaseB2, (c) B2FLC and B2PLC, (d) A2PLC and BaseA2, 
(e) A2FLC and BaseA2, and (f) A2FLC and A2PLC. Note change of colour scale in 
panel (c) and (f).
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5.5.1.2 PAR

The regional baseline mean of PAR for B2 and A2 emission scenarios under the present- 

day landcover were 514 W m'2 and 517 W n f2 respectively (Table 5.7). Based on 

atmospheric forcing alone, the future projection of PAR has increased to 505 W m '2 (5%) 

and 510 W m (4%) for B2 and A2 respectively. This is due to change in average cloud 

cover (see Section 3.7.2.3). In combination with atmospheric forcing, changes in future 

landcover accounted for the decrease in PAR by 12 W m'2 for B2 and 11 W m'2 for A2 

(Table 5.8). Landcover forcing alone was responsible for the decrease of PAR in both B2 

(3 W m'2) and A2 (4 W m '2). The projected regional PAR and PAR changes for the 

present-day and future B2 and A2 emission scenarios under fixed vegetation and modified 

future landcover are shown in Figure 5.5 and Figure 5.6.

Table 5.7: Decadal-average PAR (W nf2) in the present-day (fixed vegetation) (PLC) and 
future (modified vegetation) (FLC) landcover scenarios.

Climate
Scenario

Landcover
Scenario

PAR (W m 2)

Mean Min Max
B aseline B 2 P resen t

(fixed vegeta tion )
513.81 2 4 1 .4 4 6 5 7 .3 9

Baseline A2 P resen t
(fixed v e g e ta t io n )

516.82 2 4 4 .2 6 6 4 9 .7 6

F u tu re  B2 P resen t
(fixed vegetati o n )

505 .18 2 3 8 .7 9 6 4 4 .3 8

F u tu re  B2 F u tu re
(m odified  v e g e ta tio n )

501 .98 2 3 7 .0 6 6 4 1 .0 2

F u tu re  A2 P resen t
(fixed v e g e ta tio n )

509 .72 2 2 6 .6 3 6 4 5 .6 5

F u tu re  A2 F u tu re
(m odified  v e g e ta tio n )

505.99 2 1 5 .7 8 6 4 2 .9 7

Note: Present-day -  10 years period between 2000-2010 
Future -  10 years period between 2090-2100
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Table 5.8: Difference in average PAR (Wm'2) due to the landcover forcing alone and 
combination of atmospheric and landcover forcings in the present (fixed vegetation) 
(PLC) and future (modified vegetation) (FLC) landcover scenarios.

C lim a te
S c e n a r io

P A R  C h a n g e s  (W  m '2)

M e a n M in M a x
B 2P L C -B aseB  2 -8 .63 -8 1 .5 3 7 9 .1 6

B 2F L C -B aseB  2 -1 1 .8 3 -1 2 3 .0 0 8 7 .1 5

B 2F L C -B 2P L C  * * -3 .2 0 -7 0 .0 6 4 3 .6 5

A 2 P L C -B ase  A 2 -7 .1 0 -1 17.40 9 7 .1 2

A 2 F L C -B ase  A 2 -1 0 .8 3 -1 2 3 .0 1 8 7 .1 5

A 2F L C -A 2P L C  * * -3 .7 3 -35 .11 2 4 .3 8

Note: PLC -  Present-day landcover (fixed vegetation)
FLC -  Future landcover (modified vegetation)
BaseB2 -  Baseline for B2 emission scenario 
BaseA2 -  Baseline for A2 emission scenario
B2PLC -  BaseB2: atmospheric forcing alone for B2 scenario - climate change
B2FLC -  BaseB2: atmospheric forcing + landcover forcing
A2PLC -  BaseA2: atmospheric forcing alone for A2 sceanrio -  climate change
A2FLC -  BaseA2: atmospheric forcing + landcover forcing
** -Landcover forcing alone for A2 and B2 scenarios
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Figure 5.5: Simulated baseline (2008) and future (2100) average PAR over SEA for the 
B2 (a-c) and A2 (d-f) emission scenarios in the present-day (PLC) and modified future 
(FLC) landcovers. Compare cloud-cover model fields in Figure 3.32 (A2) and Figure 3.33 
(B2).
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5.5.2 Regional emissions of biogenic volatile organic compounds

The regional biogenic emissions for a number of climate, landcover and CO2 activity 

factor scenarios for isoprene are shown in Table 5.9 and Table 5.11, and Table 5.10 and 

Table 5.12 tor Monoterpene & ORVOC. In the following sections, the discussion will 

focus on the response of regional biogenic emissions to the isolated and combined 

forcings that were considered in this study to illustrate which of these forcings are more 

important to the biogenic emissions in Southeast Asia.

Table 5.9 Total isoprene emissions (TgC yr'1) in the present (fixed vegetation) (PLC) 
(2008) and future (modified vegetation) (FLC) (2100) landcover scenarios, and with- and 
without-C02 activity factors.

Climate Landcover Isoprene
Scenario Scenario (TgC yr"1)

With C02 Without C02
Baseline B2 Present-day landcover 

(fixed vegetation) 24.62 27.10

Baseline A2 Present-day landcover 
(fixed vegetation) 27.66 29.09

Future B2 Present-day landcover 
(fixed vegetation) 21.25 30 .54

Future B2 Future landcover 19.98 32 .04(modified vegetation)
Future A2 Present-day landcover 25.39 37 .04(fixed vegetation)
Future A2 Future-landcover 24.21 40.22(modified vegetation)
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Table 5.10 Total isoprene emissions (TgC yr'1) changes in the present (fixed vegetation) 
(PLC) (2008) and future (modified vegetation) (FLC) (2100) landcover scenarios, and 
with-and without-C02 activity factors.

Isoprene
Scenario (TgC yr’1)

 [%]
with C02 without C02

B2PLC-BaseB2 -3.37 [13.69] 3.44  [12.69]

B2FLC-BaseB2 -4.64 [18.85] 4 .94  [18.23]

B2FLC-B2PLC** -1.27 [5.98] 1.50 [4.91]

A2PLC-BaseA2 -2.27 [8.21] 5.90 [27.33]

A2FLC-BaseA2 -3.45 [12.47] 7.95 [38.26]

A2FLC-A2PLC** -1.18 [4.65] 3 .18  [8.59]

Note: PLC -  Present-day landcover (fixed vegetation)
FLC -  Future landcover (modified vegetation)
BaseB2 -  Baseline for B2 emission scenario 
BaseA2 -  Baseline for A2 emission scenario
B2PLC -  BaseB2: atmospheric forcing alone for B2 scenario - climate change
B2FLC -  BaseB2: atmospheric forcing + landcover forcing
A2PLC -  BaseA2: atmospheric forcing alone for A2 sceanrio -  climate change
A2FLC -  BaseA2: atmospheric forcing + landcover forcing
** -Landcover forcing alone for A2 and B2 scenarios

Table 5.11: Monoterpenes and other volatile organic compounds (ORVOC) emissions
(TgC yr'1) in the present-day (fixed vegetation) (PLC) (2008) and future (modified 
vegetation) (FLC) (2100) landcover scenarios in the B2 and A2 climate scenarios.

Climate Landcover Monoterpene Other VOC
Scenario Scenario (TgC y r 1) (TgC yr'1)

Baseline B2 Present-day landcover 13.90 19.84(fixed vegetation)
Baseline A2 Present-day landcover 15.41 21.57

(fixed vegetation)
Future B2 Present-day landcover 12.66 17.58

(fixed vegetation)
Future B2 Future landcover 11.92 16.83(modified vegetation)
Future A2 Present-day landcover 14.29 20.36

(fixed vegetation)
Future A2 Future-landcover 13.49 19.32

(modified vegetation)
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Table 5.12: Monoterpenes and ORVOC emissions (TgC yr’1) change in the present-day 
(fixed vegetation) (PLC) (2008) and future (modified vegetation) (FLC) (2100) landcover 
scenarios in the B2 and A2 climate scenarios.

Scenarios Monoterpene
(TgCyr_1)[% ]

Other VOC 
(TgC yr'1) [% ]

B2PLC-BaseB2 -1.24 [8.92] -2 .26 [11.39]

B2FLC-BaseB2 -1.98 [14.25] -3.01 [15.17]

B2FLC-B2PLC** -0.74 [5.85] -0 .75 [4.27]

A2PLC-BaseA2 -1.12 [7.27] -1.21 [5.61]

A2FLC-BaseA2 -1.49 [12.46] -2 .25 [10.43]

A2FLC-A2PLC** -1.92 [5.60] -1 .04 [5.11]

Note: PLC -  Present-day landcover (fixed vegetation)
FLC -  Future landcover (modified vegetation)
BaseB2 -  Baseline for B2 emission scenario 
BaseA2 -  Baseline for A2 emission scenario
B2PLC -  BaseB2: atmospheric forcing alone for B2 scenario - climate change
B2FLC -  BaseB2: atmospheric forcing + landcover forcing
A2PLC -  BaseA2: atmospheric forcing alone for A2 sceanrio -  climate change
A2FLC -  BaseA2: atmospheric forcing + landcover forcing
** -Landcover forcing alone for A2 and B2 scenarios

5.5.2.1 Im pact of climate changes

The estimated present-day (baseline) total isoprene emissions for B2 and A2 emission 

scenario of the IPCC with present-day C 02 activity factor of 360 ppm were 25 TgC/yr 

and 28 TgC/yr respectively (Figure 5.7 and Table 5.9). However, if the C 02 activity 

factor is not taken into consideration, the present-day estimates for both scenarios 

increased by 10% (27 TgC/yr) and 5% (29 TgC/yr) respectively. The increase in future 

surface temperature in the region by 2.6°C (B2) and 3.5°C (A2), and without considering 

the C 02 activity factor, is responsible for an increase of isoprene emissions to 31 TgC/yr 

(13%) for B2 and 37 TgC/yr (27%) for A2, respectively. The inclusion of future C 02 

concentration of 560 ppm at the end of this century, inhibits isoprene emissions to 21 

TgC/yr (B2) and 25 TgC/yr (A2), a reduction of about 4 TgC/yr (19%) and 3 TgC/yr (8%) 

from the baseline estimates respectively. The inhibition effect of C 02 on future emissions

283



of isoprene more than offset the effects of climate change. In terms of magnitude, the 

inhibitory effect of elevated C 0 2 is much larger by about 10 TgC/yr (B2) and 2 TgC/yr 

(A2) than the effect of climate change alone of about 3 TgC/yr (B2) and 10 TgC/yr (A2) 

(Table 5.10 & Figure 5.8).

The influence of an increase in temperature, as observed in this study was also observed 

in a number studies in the past. At the global scale, despite some differences, isoprene 

emissions were predicted to increase about 35% to 70% due to factors associated with 

increased temperature (Turner et al., 1991; Sanderson et al., 2003; Wiedinmyer et al., 

2006). In an earlier study by Guenther et al. (2006), an increase in temperature in the 

year 2100 increased the isoprene emission by a factor of 2, or even higher in some 

regions. In their studies, the increase of temperature alone was found to responsible for 

the increase of 72% of annual global isoprene emissions. Meanwhile, the increase of 

PAR alone accounted for an increase of 4% of annual global isoprene emissions.

The effect of climate change on isoprene emissions in the region is compensated by the 

increase in future atmospheric C 0 2 concentration. A number of past studies have also 

shown an instantaneous inhibition of elevated C 02 on isoprene emission rates, either in 

controlled environment or under natural field growth conditions (Rosenstiel et al., 2003; 

Possell et al., 2005). The investigation by Rosenstiel et al. (2003), for example, showed 

that the inhibition of isoprene emission rate by exposure to elevated C 02 is linked to the 

increased activity of the enzyme phosphoenolpyruvate carboxylase (PEPc), which shifts 

the patterns of substrate use for cytosolic and chloroplastic and also limits the availability 

of pyruvate substrate for chloroplastic isoprene biosynthesis. Elevated C 0 2 levels are also 

linked to an increase of mitochondrial densities in some trees species (Griffin et al.,
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2001). The increases in mitochondrial densities are accompanied by increased expression 

of the PEPc gene, which is known to provide substrate to support mitochondrial 

respiration.

Under the present-day scenario with the incorporation of present-day CO2 ambient 

concentration of 366 ppm, the emissions of monoterpene and ORVOC in Southeast Asia 

was 14 TgC/yr and 20 TgC/yr for B2 ; 15 TgC/yr and 22 TgC/yr for A2 scenarios (Table

5.11 & Figure 5.9). In the future scenario, with atmospheric CO2 concentration to double 

by the year 2100, accompanied with a substantial increase of regional temperature of 

2.4°C (B2) and 3.6°C (A2) has shown a decrease in regional emissions of both 

monoterpenes and ORVOC. The decrease in both monoterpenes and ORVOC in this 

region could be due to the inhibitory effect of elevated CO2 . In an earlier study by Loreto 

et al. (2001) on Mediterranean evergreen oak, elevated CO2 was found to inhibit 

monoterpenes (a-pinene, sabinene and (3-pinene) emissions by approximately 68%. The 

inhibition of monoterpenes emissions was linked to the inhibition of monoterpene 

synthases that catalysing the formation of the three monoterpenes. Climate change impact 

alone has accounted for the decrease in monoterpenes emissions to 13 TgC/yr (B2) and 

14 TgC/yr (A2), a decrease of 9% and 7% respectively (Table 5.12 & Figure 5.10). 

Similarly, ORVOC has decreased by 11% (B2) and 6% (A2) respectively.
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5.5.2.2 Im pact of landcover changes

Direct impacts of landcover changes on biogenic emissions are seen through changes in 

types of vegetation, which relates to the emission factor and foliar density. The 

modification of future landcover considered in this study results in a regional decrease in 

total annual mean leaf area index as described in Section 5.4.3.3. Other indirect impacts 

are through changes in climate and hydrological regimes. As described in Section 5.5.1, 

landcover forcing alone was responsible for a slight increase in the regional mean surface 

temperature of about 0.1 °C (1.9%) for B2 and 0.7°C (2.3%) for A2 transient climate 

scenarios (Table 5.6). Changes in future landcover have also resulted in a very small 

decrease in PAR by 3 Wm"2(0.6%) and 4 Wm'2 (0.8%). Impacts of landcover forcing 

alone on regional isoprene emissions accounted for a decrease by 6% (1.3 TgC/yr) for 

B2 and 5% (1.2 TgC/yr) for A2 under with-C02 influence (Table 5.10 & Figure 5.11). 

However, under without the CO2 influence, the isoprene emissions were increased by 5% 

(1.50 TgC/yr) and 9 % (3.18 TgC/yr) for B2 and A2 respectively. The climate change 

forcing impact alone on isoprene emission is much larger than that by landcover forcing 

alone. The inhibitory effect of elevated CO2 on isoprene emission was about 2.8 TgC/yr 

(B2) and 4.4 TgC/yr (A2) compared to landcover forcing alone of about 0.2 TgC/yr (B2) 

and 2.0 TgC/yr (A2).

Changes in landcover due to deforestation in the tropics have an impact on biogenic 

emissions and the magnitude of changes was found to be associated with changes in PFT 

distribution. In earlier studies, at the global scale, crop expansion in the tropics was 

responsible for a decrease in isoprene and other volatile organic compounds by 27-30% , 

which has been linked to the reduction of LAI and emissions factors (Lathiere et al., 

2005). MEGAN simulations of global isoprene emissions using two different of PFT
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databases, IMAGE with more cropland area, and MAPSS-P with less cropland area, were 

found to produce a decrease of 30% of isoprene emission with IMAGE and an increase of 

6% with MAPSS-P (Guenther et al., 2006).

In the case of monoterpenes and ORVOC, changes in future landcover in the region for 

B2 and A2 climate scenarios, show a decrease in emissions when the CO2 activity factor 

is included. The estimated monoterpenes emissions due to landcover forcing alone were 

0.74 TgC/yr (6%) for B2 and 1.92 TgC/yr (6%) for A2 (Table 5.12 & Figure 5.12). 

Similar trend was also observed for ORVOC, where the emissions were decrease to 0.75 

TgC/yr (4%) for B2 and 1.04 TgC/yr for A2 (5%) respectively (Table 5.12 & Figure 

5.13).
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5.5.2.3 Combined impact of climate changes and landcover forcings

Without the CO2  activity factor, the combination impact of climate change and landcover 

forcing was found to elevate the regional isoprene emissions to 32 TgC/yr (B2) and 40 

TgC/yr (A2), an increase of 5 TgC/yr (18%) and 11 TgC/yr (38%) respectively (Table 

5.9, Table 5.10 & Figure 5.14). High concentration of ambient atmospheric C 02 in the 

future was found to significantly inhibit the isoprene emissions. Emissions of isoprene 

were observed to decrease by 12 TgC/yr (60%) for B2 and 16 TgC/yr (66%) for A2 

respectively (Figure 5.15). The magnitude of inhibitory effect of elevated C 02 is far more 

important than the combined effect of atmospheric and landcover forcings for both 

transient climate scenarios.

Combined impacts of atmospheric and landcover forcings on the future emissions of 

monoterpenes and ORVOC was found to decrease further to 12 TgC/yr and 17 TgC/yr for 

B2; 14 TgC/yr and 19 TgC/yr for A2 (Table 5.11). Effects of the combined forcing were
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responsible for the decrease in monoterpenes by 2 TgC/yr (B2) and 2 TgC/yr (A2) (Table

5.12 & Figure 5.16); and by 3 TgC/yr (B2) and 2 TgC/yr (A2) for ORVOC (Table 5.12 & 

Figure 5.17), which is a much greater impact than atmospheric forcing or landcover 

forcing alone.

Figure 5.14: Isoprene: Total isoprene emissions (pg m'2 hr'1) with- and without-C02
activity factor in the Baseline (2008) and the B2 (a-c) and A2 (d-f) emissions (2100) 
scenarios in the future landcover (FLC) scenario.
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panel) scenarios.
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Figure 5.17 ORVOC: ORVOC emissions (p.g m^hr"1) due to the combined impacts of 
climate changes and landcover forcings in the B2 (left panel) and A2 (right panel) 
scenarios.

5.5.3 Seasonal Variability of Biogenic Emissions

This study also investigates the influence of the two predominant seasonal monsoons that 

affecting the region, namely the northeast monsoon (NEM) and southwest monsoon 

(SEM) on the regional biogenic emissions. NEM occurs at the end and beginning of the 

year, running from November and March, and the SEM occurs from May to September. 

In this section, biogenic emissions investigation was focussed during January and July, 

which representing NEM and SEM respectively.

The monthly variations of mean surface temperature and PAR for the Baseline (2008) and 

future B2 and A2 transient climate scenario (2100) are shown in Figure 5.18. Relatively, 

the monthly means of surface temperature and PAR were higher in A2 than B2 

simulations due to the weaker emissions forcing in the B2 scenario climate scenarios.
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Monthly emissions fluxes of biogenic emissions for the present-day (2008) and future 

(2100) were estimated for B2 and A2 transient climate scenarios under present-day and 

modified future landcover and with and without elevated CO2 influence. A distinct 

seasonal variation in biogenic emissions was observed for all scenarios (Table 5.13 and 

Figure 5.19). Comparatively, in both months, the isoprene, monoterpenes and ORVOC 

emissions fluxes (with and without-C02 factors) for the A2 simulations were higher than 

the B2 simulations, in both landcover scenarios.

Further investigation was carried out for the month of January and July, which are 

considered the middle of both NEM and SEM, to illustrate the seasonal pattern of 

biogenic emissions in the region. Generally, higher biogenic emissions were observed in 

July compared with biogenic emissions in January. In both months, the spatial 

distributions of total isoprene emissions in both the A2 and B2 climate scenario under the 

present-day and future landcover are shown in Figure 20 -  Figure 23. Meanwhile, the 

spatial distributions for monoterpenes and ORVOC are also shown in Figure 24 -  Figure 

27 for all scenarios considered in this study. Notably, higher emission during this period 

is associated with relatively higher temperature and PAR conditions (Figure 5.18). In an 

earlier investigation on the seasonal variations in isoprene from four tropical Indian 

deciduous tree species by Singh et al. (2007) was found to be significantly high monthly 

variations in isoprene emissions. Higher isoprene emissions were observed during the 

summer and autumn months (May to November) and lower during winter and spring 

months (December to April). Higher temperature and PAR were responsible for the high 

isoprene emissions during summer and autumn.

297



(a) SR E S B2: T em perature (b) SR E S A2: T em perature

(c) SRES B2: PAR (d) SRES A2: PAR

520

Figure 5.18: Monthly variations of mean surface temperature (°C) and PAR (Wm'2) in the 
Baseline (2008), and the B2 and A2 scenarios (2100): (a) & (b) -  Temperature; (c) & (d) 
-P A R .

Table 5.13 Total biogenic emissions flux (pg/m2/hr) during January and July in the A2 
and B2 climate scenarios under the present-day (PLC) and future landcover (FLC) 
scenarios.

B aseB 2 B aseA 2 B2PLC B2FLC A2PLC A2FLC

Jan

with-
C02 1131.43 1288.21 851.7 843.27 1124.09 1228.52

Isoprene
(Hg/m2/hr)

without-
C02 1230.97 1288.76 1306.68 1292.44 1824.57 1725.57

July

with-
C02

without-
C02

1357.14

1524.31

1392.65

1568.58

1196.49

1835.65

1189.29

1819.85

1344.13

2057.55

1341.13

2057.55

Monoterpene
(fig/m2/hr)

Jan

July

with-
C02

with-
C02

635.84

797.29

686.69

808.72

523.16

696.28

528.18

700.79

608.05

753.42

643.36

763.98

ORVOC
Jan with-

C02 897.98 988.17 738.85 741.7 908.59 909.59

((ig/mVhr)
July with-

C02 1125.98 1142.13 983.33 989.71 1079.95 1078.95

Note: PLC -  Present-day landcover
FLC -  Future Landcover
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Figure 5.19: Seasonal variations (January and July) of the total biogenic emissions fluxes 
(ug m'2 h r'1) in the Baseline (2008), and the B2 and A2 transient climate scenarios (2100): 
(a) & (b) -  Isoprene; (c) & (d) -  Monoterpene; (e) & (f) - ORVOC 
Note: NEM -  Northeast Monsoon (January)

SEM -  Southeast Monsoon (July
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Figure 5.20: A2:January-Isoprene: Isoprene emissions (pg m ^hr'1) with- and without-
C 02 activity factor in the Baseline (2008) and A2 emission scenarios in the present-day 
and future landcover scenarios during January.
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Figure 5.21: B2:January-Isoprene\ Isoprene emissions (jxg m'2 hr'1) with- and without-
C 02 activity factor in the Baseline (2008) and the future B2 emissions scenarios in the 
present-day and future landcover scenario during January.
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Figure 5.22: A2:July-Isoprene: Isoprene emissions (pg m"2 hr'1) with- and without-C02
activity factor in the Baseline (2008) and the future A2 emissions scenarios in the present- 
day and future landcover scenario during July.
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Figure 5.23: B2:July-Isoprene: Isoprene emissions (p,g m"2 hr'1) with- and without-C02
activity factor in the Baseline (2008) and the future B2 emissions scenarios in the present- 
day and future landcover scenario during July.
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scenarios in the present-day and future landcover scenario during January (left panel) and 
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5.5.4 Evaluation of the Regional Biogenic Emissions

Evaluation of the biogenic emissions in Southeast Asia through comparison with other 

work, is extremely difficult due to the limited number of studies conducted for this region. 

Despite a few studies in estimating isoprene emissions in the region, there are always 

differences in domain of the studies, as well as differences in the methods and model used 

in the investigation. Despite these limitations and differences, comparing the current study 

with previous works provides a snapshot of isoprene emission estimates and provides a 

better understanding of its contribution to the global isoprene emission budget. The 

estimated isoprene emissions in Southeast Asia from this study and previous works are 

shown in Table 5.14.

In this study, the estimated baseline emissions of isoprene without-C02 were 27.1 TgC/yr 

for Baseline B2 and 29. TgC/yr for Baseline A2. These estimates are very similar to the 

posteriori estimates by Shim et al. (2005) of 29.1 TgC/year. Isoprene emissions estimated 

by Fu et al. (2007), for Indochina and Indonesia region (about 70% of Southeast Asia) 

using inverse modelling has found slightly lower (22 TgC/yr) than the current work; this 

discrepancy could be explained by the exclusion of other important source of isoprene 

emissions in the region, such as Malaysia and the Philippines. Fu et al. (2007) has also 

employed MEGAN model (Guenther et al., 2006) in their study for the same region, and 

has estimated isoprene emissions of about 27 TgC/yr. A recent study by Stavrakou et al. 

(2009) using an inverse modelling technique for Southeast Asia, has estimated about 34 

TgC/yr of isoprene emission, which is 14-20% higher than the estimate in the current 

study. Further evaluation on the isoprene emissions estimate from BVOCEM model by 

comparing with isoprene emissions flux measurement carried out at Danum Valley (a 

lowland tropical rainforest), Borneo (Malaysia) (5°N, 117.5°E) during the OP3
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measurement campaign from April-July 2008. The mean isoprene emissions flux 

measured during the OP3 campaign was 0.49 mgm’2 hr'1. At the same location, the model 

has estimated isoprene emission fluxes of 0.86 mg m’2 hi*'1 for the Baseline B2 and 0.77 

mg m 2hr 1 for the Baseline A2, which are higher by a factor of 1.8 (B2) and 1.6 (A2) 

respectively.

Table 5.14 Comparison of isoprene emissions estimate for Southeast Asia with other 
studies.

Region/Dom ain M odel Isoprene (TgC/yr)

With C 0 2 W ith ou t-C 02

This study
Southeast Asia 

10°S -  24°N 
90°E -  140°E

BVOCEM *
(2008)

Res: 0.5° x 0.5°

24.6 
(Baseline B2)

27.7 
(Baseline A2)

27.1 
(Baseline B2)

29.1 
(Baseline A2)

Stavrakou et ctl 
(2009)

Southeast Asia 
1 0 °S -5 °N . 

95°E-150°E & 
5°N -  20°N. 
90°E-110°E

Inverse M odelling 
(2006)

M EGAN-ECM W F*
(2006)

Res: l ° x  1°

31.8

40.2

Fu e ta l .  (2007)

Indochina and 
Indonesia

Inverse
M odelling/GEOS-Chem

MEGAN*
(2006)

Res: l ° x  1°

22

27

Shim et al  (2005)

Southeast Asia 
4°S -30°N

Inverse 
M odelling/GEOS-Chem  
(Sep 199 6 -A u g  1997) 

GEIA inventory** 
(1990)

29.1

38.2

Note:
* Based on MEGAN model by Guenther et al. (2006) 
** Based on algorithm by Guenther et al. (1995)
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5.6 Conclusions

This study has used the Biogenic Volatile Organic Compound Emissions Model 

(BVOCEM) to investigate biogenic emissions response to climate change and landcover 

forcings for B2 and A2 transient climate scenarios of the IPCC. A sensitivity study on the 

effect of ambient atmospheric CO2 concentration on isoprene emissions was also carried 

out for a number of combinations of climate change and landcover scenarios for both B2 

and A2. Some conclusions can be drawn from the results:

• The present-day estimate of regional isoprene emissions based on Baseline-B2 and 

Baseline-A2 climate scenarios with present-day CO2 concentration of 366 ppm 

were 25 TgC/yr and 28 TgC/yr. A sensitivity study without CO2 effects in the 

model emissions has found the isoprene emissions increased to 27 TgC/yr and 29 

TgC/yr respectively under future climate scenario (2100).

• The present-day estimate for regional emissions of monoterpene were 14 TgC/yr 

(B2) and 15 TgC/yr (A2). Meanwhile ORVOC were estimated of about 20 TgC/yr 

and 22 TgC/yr respectively.

• The increase of future (2100) mean surface temperature in the region by 2.5°C 

(B2) and 3.5°C (A2) and the decrease of PAR under present-day landcover and 

without CO2 activity factor, the isoprene emission increased to 31 TgC/yr (B2) 

and 37 TgC/yr (A2), an increase of 13% and 27% respectively. The inclusion of 

future CO2  concentration of 560 ppm in the future scenarios inhibited isoprene 

emissions to 21 TgC/yr (B2) and 25 TgC/yr (A2), a reduction of about 19% and 

8% from the baseline estimate respectively. In term of magnitude, the inhibitory 

effect of elevated C 02 is much larger than the effect of climate change alone.
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• The increase of temperature with double present atmospheric CO2 concentration in 

the future scenarios decreases the regional emissions of both monoterpene and 

ORVOC, 9% (B2) and 7% (A2) for monoterpene, and 11% (B2) and 6% (A2) for 

ORVOC.

• Changes in future landcover alone accounted for a decrease in isoprene emissions 

of 6% (B2) and 5% (A2) with the CO2 influence. Without the CO2 influence, the 

isoprene emissions increased by 5% (B2) and 9% (A2) respectively. The 

inhibitory effect of elevated CO2 on isoprene emissions was larger than that of 

landcover forcing alone. In comparison with climate change forcing, the impact of 

landcover forcing alone on isoprene emissions is much smaller.

• Emissions of monoterpenes and ORVOC due to landcover forcing alone were 0.7 

TgC/yr and 0.8 TgC/yr for B2, and 2 TgC/yr and 1 TgC/yr for A2 respectively.

• The combined effect of climate change and landcover forcings without the CO2 

activity factor, has increased the regional isoprene emissions to 32 TgC/yr (B2) 

and 40 TgC/yr (A2), an increase of 18% and 38% respectively. With the inclusion 

of the CO2 activity factor, the future emissions of isoprene were significantly 

inhibited by 60% (B2) and 66% (A2). The magnitude of CO2 inhibitory effect is 

far more important than the combination effect of climate change and landcover 

forcings on isoprene emissions.

• The combined effect of climate change and landcover forcings, on monoterpenes 

and ORVOC emissions was to decrease them further, which much greater impacts 

than climate change forcing or landcover forcing alone.

• Biogenic emissions in the region were found to be higher during July (southwest 

monsoon) and lower during January (northeast monsoon), which were due to 

higher temperatures and PAR during July.
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• Evaluation of present-day isoprene emissions by comparing with other literature 

found that the results in this study are similar or slightly lower . Differences in the 

estimates are largely attributed to differences in domain size, models, methods and 

to a major extent the model inputs.

The small effects of climate change, which is referred to changes in surface temperature 

and solar radiation in this investigation, could be linked to the enzymatic activity that 

producing isoprene in the plant. Changes in surface temperature and solar radiation due to 

climate change affects the isoprene synthase from dimethylallyl disphosphate (DMAPP) 

via methyl erythritoil 1-phosphate pathway (MEP pathway) that biosynthesized isoprene 

in plants (Schwender et al., 1997; Lehning et al., 1999). Investigation by Lehning et al.

(1999) showed that the leaf temperature-dependent enzyme under optimal condition has 

been demonstrated to account for the observed leaf isoprene emissions rates. Further 

investigation also showed that a reduction of light intensity by 50% reduced the isoprene 

synthase activity by about 60% compared with full sunlight. Investigation of the effect of 

this leaf temperature-dependent enzyme at the gene expression level by has strongly 

suggested that the increase in enzymatic activity in response to temperature and radiation 

is regulated at the transcriptional level (Sasaki et al., 2005). In the present investigation, 

small emissions of isoprene due to landcover forcing alone were closely linked to the 

reduction of emission factors, which are dependent on the PFT distribution considered in 

the model. The decrease of Leaf Area Index (LAI) in the region from the annual mean of 

5.45 m2/m2 (present-day) to 3.44 m2/m2 (future), a reduction of 2.01 m2/m2 (36.9 %) 

mainly due to the conversion of tropical forest (evergreen broadleaf trees) into agriculture 

(i.e oil palm and paddy) also accounted for the small isoprene emissions.
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Chapter 6

EFFECTS OF CLIMATE CHANGE AND BIOGENIC 
EMISSIONS ON TROPOSPHERIC CHEMISTRY IN 
SOUTHEAST ASIA

6.1 Introduction

A chemistry-transport model, CiTTyCAT (Cambridge Tropospheric Trajectory model of 

Chemistry and Transport), was used to investigate changes in tropospheric chemistry in 

SEA, in response to projected climate change predicted by PRECIS-RCM, and biogenic 

emission calculated by BVOCEM. CiTTyCAT is a zero-dimensional chemical box 

model, which follows a 3-D Lagrangian air parcel trajectory (Evans et al., 2000). The 

model was developed by Wild (1995). Box models are excellent tools in the 

understanding of atmospheric chemistry processes, as they can take several hundred 

chemical species linked by a few thousand chemical reactions into account (Granier et al. , 

1999). Box models are normally used to investigate tropospheric chemistry under specific 

conditions, to simplify complicated atmospheric chemistry schemes, to analyse 

observations of selected chemical species, and also to evaluate and parameterize sub-grid 

processes, such as fast chemistry occurring in the boundary layer with time scales shorter 

than the characteristic transport times in large scale models (Granier et al., 1999).

6.2 The Aims of the Study

Potential changes and impacts of biogenic emissions must be considered for the 

evaluation of potential future chemistry scenarios of the atmosphere. This is important to 

better understand the roles of climate change and landcover changes as drivers and their 

impacts. At the same time, it is also important for the policy maker to design air pollution
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control strategies. In Chapter 4, due to atmospheric forcing alone for the IPCC A2 and B2 

climate scenarios, temperature has been observed to increase between 2.4°C and 3.6°C for 

the period of 2090-2100 relative to 2000-2010. The combined effects of atmospheric and 

landcover forcings were observed to warm the regional surface temperature between 2 . 9  

°C to 4.3°C for the same period. Changes in landcover forcing alone, mainly through 

conversion of forested land into agricultural land, is projected to produce a warming of 

between of 0.1 °C and 0.7°C for both future climate scenarios (A2 and B2) (Note: the 

changes of surface temperatures was the results from the simulation over land masks and 

not over the whole domain). Apart from contributing to the future climate change, 

changes in the regional land cover were also found to affect the biogenic emission such as 

isoprene and monoterpene (see Chapter 5), and so are subsequently expected to affect the 

chemistry of the troposphere in the region, particularly on surface O3 concentrations. The 

schematic of the work of this Chapter 6  and its links to the previous chapter are illustrated 

in Figure 6.1.

1 1
I  Chapter 3 ■Chapter 4 Chapter 6Chapter 5

Chemistry
Changes

Climate
Change/Present-Day 

Land Covers
BVOCs

Tropospheric
Chemistry

Regional
Climate

BVOCs

Modified 
.and Covers Climate

Change
Chemistry
Changes

Figure 6.1: Framework for the investigation of climate change and biogenic emissions 
impact to the tropospheric chemistry in Southeast Asia. The red dotted box indicates the 
framework for the investigation that covered in Chapter 6 .
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The aim ot this study is to better understand the effects of tropospheric chemistry 

compositions particularly surface O3 concentrations that may occur as the results of 

changes in climate and biogenic emissions (particularly isoprene) under present-day and 

future landcover scenarios. This study has been performed to answer the following 

research questions:

a) What would be the combination effects of climate change and biogenic emissions 

to the present-day and future tropospheric O 3 concentrations and other trace gases 

and oxidants in urban and remote areas in the region under present-day landcover 

(PLC) and modified future landcover (FLC) scenarios?

b) Flow important or significant is the effect of the individual forcings on the 

tropospheric O 3 concentrations and other trace gases and oxidants in the urban 

and remote areas in the region under present-day and future landcover scenarios?

c) What would be the response of the future tropospheric O3 concentrations and other 

trace gases and oxidants to the seasonal variability (January and July) of climate 

change and biogenic emissions under different landcover scenarios?

6.3 CiTTyCAT-Atmospheric Chemistry Model

6.3.1 Model Description

The CiTTyCAT box model is a very flexible chemical model in which the physical, 

chemical, and computational schemes can be altered independently of each other, and the 

physical and chemical processes can be switched on or off as appropriate for a particular 

run. The basic framework of this model consists of three main aspects (Wild, 1996). First, 

there is chemical scheme, which consists of the kinetic parameters for the chemical 

species of interest, and the production and loss terms for each of the chemical species. 

Second, there is the photolysis scheme, which considers the effects of solar radiation on
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chemical species, mainly on the production of free radicals that play important roles in 

atmospheric chemistry. Thirdly, there is the physical scheme, which describes the non

chemical sources and sinks for chemical species, such as emission sources from the 

surface, and loss terms due to dry and wet deposition. Solving the equations in the model 

requires a time-stepping scheme for simultaneous ordinary differential equations, to 

update the condition at every time step, as shown in Figure 6.2. At each time step, the 

chemical composition is updated, considering photochemistry, emissions, depositions, 

and mixing from the free troposphere (e.g Eq. 6.1). Each process is defined by its own 

subroutines, which can be called from the main model programme.

/  \
■ C hem ical R eaction  1
I  D a ta se t I

In itia lisa tion  o f Physical 
C ond itions

D ELO A D

Initia lisa tion  o f C hem ical 
C on cen tra tio n sE m ission S cenarios

U pdate Physical 
C ond itions

U pdate E m ission/ 
D eposition 
C ond itions

Tima
Loop

U pdate Reaction 
Rates

U pdate Photolysis 
Rates

Photo lysis D ata

C alcu la te  New C o n cen tra tio n s

O u tp u tSV O D E

Tim e Scries

Figure 6.2: CiTTyCAT model framework flow chart (modified from  Wild, 1996).
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where

C 
C ’ 
P, L
E(x,y,t)
my)
kw
h(t)

is the species concentration in the boundary layer (molecules cm'J)
is the species concentration in the free troposphere (molecules cm’J)
are the chemical production and loss rates (molecules cm'3)
is the emission rate into the boundary layer (molecules cm'3)
is the dry deposition velocity for the species (cm s '1)
is the wet deposition rate for the species (molecules cm'3 s '1)
is the mixing height of the boundary layer (cm)

6.3.1.1 Chemistry scheme

A set of equations that corresponds to the production (P) and loss terms (L.C) of each 

chemical species is included in the model reaction set. These equations are solved 

simultaneously over a given time period with appropriate boundary conditions. The 

following equation (Eq. 6.2) given by Wild (1996) is integrated over a time step (At) to 

determine the chemical rate of change of the species over a specified period.

where

k , is the rate constant for the production terms for species x
kt is the rate constant for the loss terms for species x
[■*/]’[* ;]’[**] are the concentrations of reactants species i,j,k

As the reaction rate is dependent on temperature, any change in temperature will result in 

the recalculation of the reaction rate constants for bimolecular reactions at each time step

(6.2)



using the Arrhenius expression as shown in Eq. 6.3, with coefficients taken from DeMore 

et al. (1992) and Atkinson et al. (1992).

kh = A (T / 300)"" exp(-£  / RT) (6.3)

where A is the pre-exponential factor displaying a temperature dependence tabulated as 

exponent n, and the activation temperature, E/R is required. Meanwhile, for trimolecular 

reactions, effective second-order rate constants are calculated using the Troe expression 

as shown in Eq. 6.4.

I

\ + k0[M ]!k,
F ( i+ [ io g 10u „ [ M ] / ^ ) ] 2 r (6.4)

where

k0 and kx are the limiting low and high pressure rate constant (both incorporate a

temperature dependence, (T /300)""),

[M] is the atmospheric density in molecules cm'3

F is taken to be 0.6

The DELOAD programme (Nejad, 1986), a code-writing routine for selecting reactions 

and kinetics data and formatting the production and loss terms for chemical rate changes 

has been adapted for use with atmospheric reactions (Brown et al., 1993) in order to 

minimise the introduction of coding errors each time an additional reaction or chemical 

species is introduced into the chemical reaction scheme. A central database consisting of 

kinetic data for bimolecular, trimolecular, and photolytic reactions has been constructed 

based on that of DeMore et al (1992) and Atkinson et al. (1992), which can be altered as
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rate constants are revised or new reaction rates are calculated. During the integration loop, 

the production and loss terms for each chemical species considered are written in a 

separate list, which can be picked up by the model for each run. The advantage of using 

the DELOAD routine is that it is separate from the model and runs offline, and therefore 

allows the introduction of any new chemical species into the chemical scheme to be 

assessed relatively simply.

6.3.1.2 Photolysis scheme

Molecules and aerosols, as well as clouds, are known to have significant influence on 

tropospheric chemistry through modification of solar radiation that determines photolysis 

frequencies. In CiTTyCAT, absorption due to O 3 , CL, and aerosols in the atmosphere is 

calculated at each level (Wild, 1996), with the O 3 profile taken from the US Standard 

Atmosphere (NOAA-NASA, 1976) and aerosols taken as average aerosols (due to wide 

variability in the lower troposphere), which is based on that of Braslau and Dave (1973). 

The photolysis scheme models the clouds as a diffusing laminar surface between model 

levels, which both reflects and transmits light (Wild, 1996). The albedo of a cloud layer 

(low, medium, or high level), which is dependent on the angle of incidence (Taylor and 

Stowe, 1984) and hence the zenith angle, has been parameterised using the transmission 

factor of three cloud types (altostratus, altocumulus, and cirrus) (Wild, 1996).

6.3.1.3 Physical scheme

6.3.1.3.1 Boundary layer

Chemical species emission from the surface, injection from the atmosphere, and physical 

removal through deposition processes to the surface affect the composition of
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tropospheric chemical species within the model air parcel. The depth of mixing height of 

the planetary boundary layer, which is the lowest part of the atmosphere, is complicated 

by topography and meteorological conditions. In the CiTTyCAT model, the 

parameterisation of the average diurnal variation in mixing height is that of Derwent and 

Hov (1982), which assumes a nocturnal inversion layer of 300m that rises uniformly after 

dawn to a maximum altitude of 1300m, and remains steady at this height until the 

convective activity dies down at dusk and the nocturnal inversion is reformed. Convective 

activity at the lower layer leads to the rise of the mixing height and drives entrainment of 

air from the upper layer (Wild, 1996). This process leads to mixing down into the 

boundary layer and affects the chemical composition in the boundary layer through 

dilution of primary pollutants and increasing levels of chemical species, which have been 

depleted in the boundary layer.

6 .3.1.3.2 Emissions

The emission of natural and anthropogenic pollutants is one of the major driving forces 

that control the chemical composition in the troposphere. For the hydrocarbon species 

treatment, the CiTTyCAT model has used a lumping scheme where the hydrocarbon 

species are lumped based on reactivity and the number of carbon species (i.e. 3, 5. and 8), 

after taking into consideration the grouping and variation in molecular masses (Wild, 

1996). It was also assumed that the composition of hydrocarbon emissions would not vary 

significantly throughout the diurnal cycle. Emission treatment in the original scheme by 

Wild (1996) has been extended to include the emission of a number of hydrocarbon 

species including biogenic emissions as described in details by Evans (1999), Emmerson 

(2001), and Ryder (2005), which was adapted in this study but with some modifications to 

reflect the best emission scenario for SEA.
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6.3.1.3.3 Deposition

Deposition processes, either through dry or wet deposition, have been recognised as the 

main physical sinks of chemical species in the atmosphere. Dry deposition occurs actively 

in the boundary layer through take-up by plants, soils, and the ocean. Meanwhile wet 

deposition actively occurs in the free troposphere through take-up of soluble species in 

clouds (rainout) and removal in falling water droplets (washout) . For this model, the dry 

deposition scheme is assumed to occur at the planetary lower boundary (Wild, 1996), 

Therefore information such as surface type, friction velocity, roughness length, and 

atmospheric stability in this particular study area is important. The deposition velocity 

(V J calculation for this model uses the method by Isaksen et al. (1985) as shown in Eq. 

6.5. For a stationary box run, which is used in this study, friction velocity is taken from 

the global average value of 0.2 m s'1 (Wild, 1996).

V ,------------ tj  (6.5)
l + Vj(log(z)/ku )

where,

V. is the dry deposition velocity at the box centre at 1 m,

k is the von Karman constant, and

u is the friction velocity at the altitude of the centre of the box z (0.2 m s'1 for the

box run).

The roughness length is calculated from the extraction of average values from a global 

dataset at T15 resolution, interpolating the correct latitude and longitude, and the 

application of seasonal and diurnal variations, which are assumed to be sinusoidal (Wild, 

1996).
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For the wet deposition scheme, CiTTyCAT employs a first-order loss rate treatment, 

which provides an average lifetime for precipitation scavenging for soluble species (Law 

and Pyle, 1993). The lifetime of soluble species is taken as approximately 5 days close to 

the surface, and increases with altitude (Wild, 1996). HNO 3 , one of the most important 

species considered in wet deposition, is assumed to have half of this lifetime to account 

for its greater solubility. In a previous study using CiTTyCAT model by Evans et al.

(2000) the wet deposition scheme was not taken into consideration as it is assumed to be 

negligible for the case studies considered (see also Derwent and Jenkin, 1991; and 

Lindskog et al., 1992).

A treatment of dispersion is also included in the model scheme, as it this has diluting 

effects on the chemical composition in the atmosphere. In CiTTyCAT, the dispersion 

scheme uses a simple expression, which is also used in plume dispersion from point 

sources, and has included terms for some physical processes that affect air masses as 

shown in Eq. 6.6. In this model, the scheme was run using the full scheme where the 

concentrations of all species are required at every time step (Wild, 1996).

(6 .6)

where,

Ci is the plume concentration of chemical species 1 ,

C’. is the background concentration of chemical species i,

t is the time since emission,

D is the diffusion coefficient (D, 3.5 cm'2s '1).
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6.4 Experimental Setup

6.4.1 Study Sites

For the investigation of tropospheric chemistry in SEA, five sites were selected as shown 

in Table 6.1, representing urban and rural (unpolluted) areas (Figure 6.3).

Table 6.1: Study sites for the tropospheric chemistry investigations in SEA

Sites Coordinate Country Description
Clim atic Conditions*  

(Tem perature & 
Precipitation)

Bangkok 13.75°N; 100.54°E Thailand Urban 26.8°C & 4.6 mm/day

Kuala Lum pur 3.10°N; 101.72°E M alaysia Urban 26.5°C & 3.3 mm/day

Jakarta 6.20°S; 106.82°E Indonesia Urban 27.9°C & 3.3 mm/day

Danum Valley 5.00 °N; 117.6°’E Sabah, M alaysia Remote area 23.2°C & 12.2 mm/day

Koto Tabang 0.21°S 100.33°E Sumatera, Indonesia Remote area 22.2°C & 11.1 mm/day

Note: * climatic condition simulated from PRECIS-RCMfor each locations

Figure 6.3: Selected sites for the tropospheric chemistry study in SEA.

323



6.4.2 Chemistry and Photolysis Treatm ents

The CiTTyCAT model is designed to allow alterations to the chemistry scheme to suit the 

aims of the research. In this study, the extended chemistry scheme by Evans (1999), 

Emmerson (2001), Ryder (2005) and the latest modification of the chemistry scheme, 

kinetic expressions, and the reaction rate coeficients by Pugh et al. (2009, to be 

published) was used. Emmerson (2001) has extended the chemistry scheme to include 

xylene (LMxyln), toluene (CyHg), and a-pinene (bimolecular chemical reaction No. 161- 

202 in Appendix 6.1 and photolysis reaction No. 39-43 in Appendix 6.3) in her 

investigation o f the potential production o f secondary organic aerosols. Meanwhile Ryder 

(2005) has further extended the chemistry scheme o f the model by incorporating new 

species o f BVOCs such as monoterpene (d-limonene) and sesquiterpene (bimolecular 

chemical reaction No. 203 -  251 in Appendix 6.1 and photolysis reaction No.45 in 

Appendix 6.3) to investigate the roles o f these BVOCs on tropospheric chemistry in South 

East Asia. The latest update of the chemistry scheme by Pugh et al. (2009, to be 

published) has included the amendment of the isoprene oxidation mechanism, which has 

included the Mainz Isoprene Mechanism (MIM2) reaction scheme developed by Poshel et 

al. (2000). Elevated OH concentration in a pristine environment, such as tropical 

rainforest, appears to be due to an increased efficiency in the recycling o f this radical in 

the oxidation o f isoprene (Lelieveld et al., 2008), and this has also incorporated into the 

latest version o f CiTTyCAT. O f the fully extended chemistry scheme comprising 411 

gas phase reactions (including trimolecular chemical reactions as listed in Appendix 6.2), 

118 are photolysis reactions. The latest update of chemistry and photolysis scheme by 

Pugh et al. (2009, to be published) has been used by Turnock (2008) in the investigation 

of climate change influence on tropospheric ozone and air quality in Southeast Asia and 

used by Hewitt et al. (2009, manuscript submitted) to investigate the effect o f land-use
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change of rainforest to palm oil plantation on surface O3 concentrations. In the 

investigation o f climate change impact on tropospheric O3 in SEA, Turnock (2008) has 

concluded that in urban locations, in the future climate scenarios, the surface O3 

concentrations were observed to increase with anthropogenic emissions being the most 

important factor than the climate change. In all locations o f investigation (urban and 

remote locations) in SEA, climate change were generally found to exert a negative change 

in tropospheric O3 concentrations whereas increases in anthropogenic emissions exerted a 

positive change.

6.4.3 Physical Treatment

6.4.3.1 Meteorological fields and biogenic emissions

Meteorological data are required for any atmospheric chemistry model as it controls 

atmospheric circulation, which controls photochemical reactions such as temperature, 

precipitation, wind, solar radiation, humidity, and mixing height (Sillman, 1999; Gebhart, 

et al., 2001). The meteorological fields produced by the climate model, PRECIS-RCM 

(see Chapter 3) were used as input to drive the CiTTyCAT atmospheric chemistry model. 

Input variables from the climate model are the profile of surface temperature, clouds and 

mixing layer depth (boundary layer depth). Input variables datasets were prepared for 

each sites for the present-day (2008) and future (2100) investigations. For the 

investigation o f tropospheric chemistry responses to seasonal variations, input variables 

were also prepared for the month of January (Jan) and July (Jul), which are corresponding 

the northeast monsoon (NEM) and southwest monsoon (SEM) in Southeast Asia. 

CiTTyCAT climate input variables in five locations in Southeast Asia for the baseline and 

future (A2 and B2) climate scenarios during January and July are summarized in 

Appendix 6.5 (surface temperature), Appendix 6 . 6  (boundary layer depth) and Appendix
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6 . 6  (total cloud). The climate datasets were extracted for the month of January and July in 

the year 2008 and 2100 from the time slices of 2000-2010 and 2090-2100 respectively. 

Similarly, the biogenic emissions were extracted for the months of January and July for 

the same year.

6.4.3.1.1 Surface temperature

The summary o f surface temperature changes for various climate and landcover scenarios 

during January and July in five locations is shown in Table 6.2. The projected surface 

temperature at the end of the century due to atmospheric forcing alone was found to 

increase in the range of 1.4°C to 4.5°C during January and 1.9°C to 5.6°C during July in 

the A2 climate scenario (A2PLC-BaseA2). A similar trend was observed in the B2 

climate scenario (B2PLC-BaseB2), with surface temperature in the range o f 1.9°C to 

4.0°C during January and 1.7°C to 4.0°C during July. The combined impact of 

atmospheric forcing and landcover forcing in both climate scenarios (A2FLC-BaseA2; 

B2FLC-BaseB2) for surface temperature were found to be larger (between 1.5°C and 

7.5°C for A2; and 1.9°C and 5.5°C for B2) than the isolated impacts of atmospheric 

forcing or landcover forcing alone.

326



Table 6.2: Temperature changes in several locations in Southeast Asia in various climate
and landcover scenarios during January and July for present-day (2008) and future (2100)
simulations.

Scenarios

Danum

°C
I%1

Koto
Tabang

°C
l%!

Bangkok

°C
|% ]

Jakarta

°C
l°/o|

Kuala
Lumpur

°C
l%l

January July January July January July January July January July

A2PLC~BaseA2 4.45
[19.2]

1.91
[6.6]

3.38
[14.5]

2.63
[9.8]

2.82
[12.2]

2.37
[7.7]

2.96
[123]

5.64
[20.5]

1.44
[4.8]

4.54
[15.0]

A2FLC-BaseA2 4.67 3.52 4.46 2.94 6.18 7.49 4.20 6.21 1.54 4.81
[20.8] [12.2] [19.1] [10.9] [26.6] [24.4] [17.5] [22.6] [5.1] [15.9]

A2FLC-A2PLC 0.22 1.61 1.08 0.31 3.36 5.12 1.24 0.57 0.1 0.27
[0.81 [5.21 [4.01 [1-11 [12.9] [15.5] [4.61 [1-71 [0.3] [0-81

B2PLC-BaseB2 2.66 2.23 2.40 1.65 4.01 2.86 1.96 2.17 2.55 4.00
[11.6] [7.8] [10.5] [6.2] [17.6] [9.2] [8.1] [8.2] [9.8] [14.7]

B2FLC-BaseB2 3.77 2.78 2.94 1.94 4.57 4.97 2.21 5.46 3.01 4.48
[16.5] [9.8] [12.9] [7.3] [20.1] [16.0] [9.2] [20.5] [11.5] [16.5]

B2FLC-B2PLC 1 11 0.55 0.54 0.29 0.56 2.11 0.25 3.29 0.46 0.48
[4.3] [1.8] [2.1] [1.0] [2.1] [6.2] [1.0] [11.4] [1.6] [1.5]

Note: PLC-present-dciy landcover
FLC-Future landcover
A2PLC-BaseA2/B2PLC-BaseB2: Temperature changes due to atmospheric forcing alone
A2FLC-BaseA2B2FLC.-BciseB2: Temperature changes due to combination o f  atmospheric and landcover forcings  
A2FLC-A2PLC/B2FLC-B2PLC: Temperature changes due to landcover forcing alone

6.4.3.1.2 Boundary layer

The summary o f boundary layer changes for various climate and landcover scenarios 

during January and July in five locations is shown in Table 6.3. The depth o f the 

boundary layer varied for each scenario during January and July that were considered in 

this study.
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Table 6.3: Boundary layer changes in several locations in Southeast Asia in various
climate and landcover scenarios during the January and July for present-day (2008) and
future (2100) simulations.

Danum Koto Bangkok Jakarta Kuala

Scenarios
(m)

1abang  
(m) (m) (m)

Lumpur
(m)

[% ] |% ] l%l [%l [%l

January' July January July- January July January July January July

A2PLC-BaseA2 76
[9.2]

-118
[21.9]

159 7 
[18.8] [1.3]

-15
[1.8]

-10
[0.8]

-41
[8.4]

141
[30.0]

140
[13.6]

54
[9-2]

A2FLC-BaseA2 5
[0.6]

37
[6.8]

449 23 
[53.2] [4.6]

93
[11.2]

122
[10.6]

61
[12.8]

58
[11.8]

103
[10.0]

85
[14.4]

A2FLC-A2PLC
-71
17.81

155
[36.7]

290 23 
[291 [4.5]

108
[13.251

132
[11.5]

102
[23.1]

-85
[14.0]

-37
[3.2]

30.2
[4.7]

B2PLC-BaseB2 5
[0.6]

-61
[10.2]

109 2 
[13] [0.4]

15
[1.8]

178
[16.6]

-85
[14.4]

96
[19.7]

4
[0.4]

14
[2.4]

B2FLC-BaseB2
4

[0.5]
-62

[10.2]
-100 -168 

[12.2] [35.8]
-89

[10.2]
155

[14.4]
112

[19.1]
236

[48.4]
-9

[0.9]
141

[24.2]

B2FLC-B2PLC
-0.4
[0.1]

-0.2
[0.03]

-209 -170 
[22.4] [36.1]

-104
[11.8]

-23
[1.8]

-27
[5.5]

140
[24.0]

-13
[1.3]

127
[21.3]

Note: PLC-present-day landcover
FLC-Future landcover
A2PLC-BaseA2/B2PLC-BaseB2: Temperature changes due to atmospheric forcing  alone
A2FLC-BaseA2/B2FLC-BaseB2: Temperature changes due to combination o f  atmospheric and landcover forcings  
A2FLC-A2PLC/B2FLC-B2PLC: Temperature changes due to landcover forcing alone

6.4.3.1.3 Total cloud

The future projection o f total cloud during January and July for various climate and 

landcover scenarios were generally less or had no change with a few exceptions in some 

scenarios. The summary of total cloud fraction changes for various climate and landcover 

scenarios during the January and July in five locations is shown in Table 6.4.
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Table 6.4: Total cloud fraction changes in several locations in Southeast Asia in
various climate and landcover scenarios during January and July for present-day (2008)
and future (2100) simulations.

Danum Koto Bangkok Jakarta Kuala
Scenarios Tabang Lumpur

[% |1 |% ]1 \% \ I [%lI [%l

January July January July January July January July January July

A2PLC-BaseA2 -0.09
[28.1]

0.05
[11.1]

-0.09
[23.1]

0.02
[41.7]

-0.02
[7.0]

-0.11 
[15.7]

-0.09
[23.1]

0.02
[41.7]

-0.09
[28.1]

0.05
[11.1]

A2FLC-BaseA2
-0.09
[28.1

-0.01
[22.2]

-0.07
[18.0]

-0.06
[12.5]

-0.02
[7.0]

-0.15
[21.4]

-0.07
[18.0]

-0.06
[12.5]

-0.09
[28.1

-0.01
[22.2]

A2FLC-A2PLC
0.00
[0.0]

-0.06
[12.1]

0.02
[66.7

-0.08
[16.01

-0.02
[7.4]

-0.04
[6.8]

0.02
[66.7

-0.08
[16.01

0.00
[0.0]

-0.06
[12.1]

B2PLC-BaseB2 -0.37 -0.04 -0.29 0.01 -0.04 0.01 -0.29 0.01 -0.37 -0.04
[86.0] [9.3] [60.4] [2.3] [13.3] [1.6] [60.4] [2.3] [86.0] [9.3]

B2FLC-BaseB2 -0.20
[46.5

-0.05
[11.6]

-0.14
[29.2]

0.01
[2.3]

-0.05
[16.7]

-0.07
[11.3]

-0.14
[29.2]

0.01
[2.3]

-0.20
[46.5

-0.05
[11.6]

B2FLC-B2PLC
0.17
[2.8]

-0.01
[2.6]

0.15
[78.9]

0.00
[0.0]

-0.01
[3.9]

-0.08
[12.7]

0.15
[78.9]

0.00
[0.0]

0.17
[2.8]

-0.01
[2.6]

Note: PLC-present-dciy landcover
FLC-Future landcover
A2PLC-BaseA2/B2PLC-BaseB2: Temperature changes due to atmospheric forcing  alone
A2 F LC - Base A2/B2FLC-Base B2: Temperature changes due to combination o f  atmospheric and landcover forcings 
A2FLC-A2PLC/B2FLC-B2PLC: Temperature changes due to landcover forcing alone

6.4.3.1.4 Isoprene emissions

The isoprene emissions datasets for the present-day and future climate and landcover 

scenarios generated from BVOCEM (see Chapter 5) were prepared for each scenario as 

input to CiTTyCAT model. For the investigation of future tropospheric chemistry 

simulation, the generated future isoprene emissions dataset with-COz was selected in 

order to be consistent with the emission scenario in the A2 and B2 climate scenarios. 

The future isoprene fluxes in remote area like Danum and Koto Tabang were found to 

decrease in the A2 and B2 climate scenarios except during July under the present-day 

landcover in the A2 scenarios. In urban area like Bangkok, the changes of future isoprene 

fluxes relative to baseline fluxes under present-day and future landcover scenarios in A2 

and B2 scenarios were observed to increase during January but decrease during July. In 

other urban areas, including Kuala Lumpur, the isoprene emission fluxes were observed 

to decrease in all scenarios. In Jakarta, isoprene emission fluxes were observed to increase

329



in all scenarios except during January in the A2 scenario. The summary of isoprene 

emissions and changes of emissions in the present-day and future climate and landcover 

scenarios during January and July is shown in Table 6.5.

Table 6.5: Isoprene emissions and changes (pg m ' 2 h r '1) in several locations in
Southeast Asia in various climate and landcover scenarios during January and July for 
present-day (2008) and future (2 1 0 0 ) simulations.

Scenarios

Danum 

jig m"2hr‘l

[% l

Koto 
Tabang  

[xg nGhr'1
[% ]

Bangkok  

[xg m'2hr_1

I%1

Jakarta

[Ag m'hir'1 
[% ]

Kuala 
Lumpur  

p g  m'zhr'‘

I%1
January July January July January' July January July January July

BaselineA2 1222 766 960 668 320 478 921 667 1652 1155

A2PLC 724 904 942 723 600 451 875 834 1193 976

A2FLC 648 733 677 636 362 447 602 696 947 940
-498 138 -18 56 280 -27 -46 167 -459 -179

A2PLC-BaseA2 [40.8] [18.0] [1.9] [8.3] [87.4] [5.7] [5.0] [25.0] [15.4] [11.1]
-530 -33 -283 -32 42.3 -249 -319 26 -705 -215

A2FLC-BaseA2 [47.0] [4.3] [29.5] [4.7] [13.2] [35.8] [34.6] [3.9] [42.7] [18.6]
-76 -171 -265 -87 -237 -4.3 -273 -137 -246 -36

A2FLC-A2PLC [11.7] [23.3] [39.21 [13.7] [65.5] [0.96] [45.4] [19.7] [25.9] [2-51

BaselineB2 765 858 778 775 190 618 587 651 1104 1165

B2PLC 655 757 693 568 353 455 647 670 921 783

B2FLC 648 738 677 563 284 360 602 672 947 799
-110 -101 -85 -207 162 -163 60 19 -183 -382

B2PLC-BaseB2 [14.3] [11.8] [10.9] [36.5] [85.2] [26.4] [10.31 [2.9] [16.6] [32.8]

-116 -121 -101 -212 94 -258 15.3 21 -157 -366
B2FLC-BaseB2 [15.2] [14.1] [13.0] [27.4] [49.4] [41.7] [2.6] [3.2] [14.2] [31.4]

-0.01 -20 -16 -5 -68 -95 -45 2 26.5 15.8
B2FLC-B2PLC [1.0] [2.6] [2.4] [0.9] [19.4] [136] [6.9] [3.0] [2.9] [2.0]

Note: PLC-present-day landcover
FLC-Future landcover
A2PLC-BaseA2/B2PLC-BaseB2: Temperature changes due to atmospheric forcing alone
A2FLC.-BaseA2/B2FLC-BaseB2: Temperature changes due to combination o f  atmospheric and landcover forcings  
A2FLC-A2PLC/B2FLC-B2PLC: Temperature changes due to landcover forcing alone

6.4.3.2 Emissions and initial conditions

The emission inventories used in this study for the present-day emission scenario were 

updated to include the soil NOx component of the Global Emissions Activity (GEIA) 

(Yienger and Levy II, 1995), and the Regional Emissions inventory in ASia (REAS) 

(Ohara et a l ,  2007) for the anthropogenic VOCS. The soil biogenic NOx emissions, 

which formed the GEIA soil NO* inventory is based on the empirical model developed by
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Yienger and Levy (1995). Biogenic volatile organic compound (BVOC) emissions from 

tropical forests and crops such as isoprene and monoterpenes, which are important in 

tropical tropospheric chemistry, were taken into consideration in this study using the 

output from Biogenic Volatile Organic Compounds Emissions Model (BVOCEM) as 

described in Chapter 5. The regional monthly biogenic emissions fields on 0.5° x 0.5° were 

used to drive the CiTTyCAT. Meanwhile, the initial concentrations of chemical species 

such as 0 3, NOx, CH4, CO, HCHO, H2 0 2, MeOOH, PAN, C2 H6, and C3H 8 were based 

on the latitude versus height concentration fields, which were obtained from a run of the 

TO M CA T chemical transport model (CTM ) (Law et a l, 1998). All other species input to 

the model are initialised with zero concentration following of that Evans et al. (2000), 

Emmerson (2002) and Ryder (2005). Based on the IPCC Special Report on Emission 

Scenarios (SRES) for the year 2100 (IPCC, 2000), the future anthropogenic emissions 

(2070-2100) for A2 and B2 scenarios are expected to increase for SEA. However, for the 

purpose o f achieving the aims of this study, all input to the CiTTyCAT model other than 

climate (surface temperature, boundary layer and total clouds) and biogenic emissions 

were kept constant.

6.4.4 Developing Tropospheric Chemistry Scenarios for SEA

In developing tropospheric chemistry scenarios for SEA, critical consideration was given 

to the PRECIS-RCM meteorological output datasets from a number o f climate change 

scenarios (Chapter 3 and Chapter 4) and biogenic emission from BVOCEM (Chapter 5) to 

reflect the relationship between climate change, biogenic emissions and tropospheric 

chemistry. One of the major objectives of this study is to investigate the effect of climate



change and biogenic emissions on tropospheric 0 3 concentrations in SEA. For this work, 

three sets o f experiments for the CiTTyCAT run were set up. First, the CiTTyCAT was 

run using inputs o f climate variables and biogenic emissions generated for the present-day 

and future atmospheric forcings and with present-day landcover scenarios (SET 1). 

Second, CiTTyCAT was run using inputs of climate variables and biogenic emissions for 

future atmospheric forcings and modified future landcover scenarios (SET 2). Thirdly, the 

CiTTyCAT runs for the first and second sets of experiments were repeated but without 

biogenic emissions (SET 3). The later runs were carried out to evaluate the importance of 

biogenic emissions to the tropospheric 0 3 concentrations. Overall, the CiTTyCAT model 

is set up to simulate a stagnant air mass situated over the chosen locations, and for that 

reason the model runs are indicative of severe ozone pollution episodes from urban areas. 

The experimental scenarios considered in this study are summarised in Table 6 .6 .

Table 6 .6 : Tropospheric chemistry experimental scenarios under different climates
and biogenic emissions scenarios.

E x p e r im e n t
L a n d c o v e r
S c en a r io s

C l im a te
Sce n a r io s

C l im a te  Input  
S c e n a r io s

B iogen ic
E m iss ion s
S cen a r io s

T r o p o sp h e r ic
C h e m is t r y
S c e n a r io s

Baseline-B2 Baseline-B2 BVOC-BaselineB2 TropChem -
BaselineB2

SET 1

Present-day
Landcover

(PLC)

Basel ine-A2 

SRES-B2

Basline-A2

B2-PLC

BVOC-BaselineA2

BVOC-B2-PLC

TropChem -
BaseIineA2

TropChem -
A2-PLC

SRES-A2 A2-PLC BVOC-A2-PLC TropoChem -
B2-PLC

SET 2
M odified Future 

Landcover 
(FLC)

SRES-B2

SRES-A2

B2-FLC

A2-FLC

BVOC-B2-FLC

BVOC-A2-FLC

TropoChem -
A2-FLC

TropoChem -
B2-FLC

SET 3 Repeat Set 1 & Set2 No BVOC
Same as 

SET 1 & SET 2

Note: F L C - Future Landcover
PLC= Present Landcover
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6.5 Omissions and Limitations of CiTTyCAT

The chemistry scheme o f the model captures the most important known processes 

involving the production and loss of ozone, as well as for the oxidising capacity of the 

troposphere. However, some reaction rates and product yields of NMVOCs are not well 

established. Uncertainties and introduction of errors have been found to be significant, 

especially in the formation yields and atmospheric lifetimes of nitrates from higher 

hydrocarbons (von Kuhlmann, 2001). Some groups of NMVOCs are not considered in 

the current scheme, such as higher alkenes (>C3), halogens, sulphur-containing organics 

and other compounds like higher alcohols, esters, ethers, etc. Exclusion o f halogen 

chemistry for example, would likely affect the O3 prediction, particularly in the marine 

boundary layer (Read et cil., 2008; Dickerson et a l , 1999; Sander and Crutzen, 1996). The 

heterogenous reaction included in this model has been limited to three reactions. Aqueous 

phase chemistry in cloud droplets has also been omitted in this study. Cloud droplet 

chemistry through aqueous phase reactions has been found to play an important role in the 

distribution of O 3 and other trace gases in the atmosphere (Lelieveld and Crutzen, 1990; 

Lelieveld and Crutzen, 1991), although other studies found it to have a moderate effect 

(Jonson and Isaksen, 1993; Dentener, 1993) or a lesser effect (Liang and Jacob, 1997) on 

global O 3 .

In terms of the model design itself, Langrangian and trajectory models such as 

CiTTyCAT, which allow a detailed consideration of chemistry, are often used for local 

and regional scale studies that have been identified to have intrinsic difficulty that 

excludes the mixing processes, thus making their validity on longer time scales 

questionable (Granier et a l , 1999). Again, many chemical transport models, including 

CiTTyCAT, are off-line models, in which the meteorological field input to the models are
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derived trom other models, either a general circulation or a regional climate model. This 

technique can produce inconsistency, as the chemistry scheme in the model receives 

necessary meteorological intormation indirectly from the regional climate change model 

at each time step (Forkel and Knoche, 2006), and there is no opportunity for the chemistry 

to feedback in the meteorology. Emmerson (2001) has also identified that an assumption 

of instantaneous vertical mixing throughout the height o f the boundary layer in 

CiTTyCAT does not capture concentration gradient over the boundary layer in urban 

areas, and this has led to an under-prediction of concentrations near to the surface and an 

over-prediction of concentrations higher up in the boundary layer, close to heterogenous 

source region (e.g particulate matter (PM) emissions from the road traffic).

6.6 Evaluation of the Output from CiTTyCAT Model

A comparison o f output generated from the CiTTyCAT model against in-situ 

measurements in Danum during the OP3 measurement campaign in July 2008 was carried 

out earlier by Pugh et al. (2009, to be published). In their study, the CiTTyCAT model 

was run using the climate/meteorological datasets from the measurements at the site 

during the campaign, while the biogenic emissions were obtained from the run of the 

MEGAN model (Guenther et al. 2006) coupled to the CiTTyCAT model. They have 

concluded that certain outputs of the current version of CiTTyCAT were comparable with 

the measurements in Danum during the OP3 campaign during the time between 1000- 

1800. Good agreements were observed for 0 3, NO, and N 0 2. However, the modelled OH 

concentrations were underestimated by ~ 2 to 3 times during this period. The low OH 

concentrations in the model were due to the loss of about 70% at midday, which attributed 

to the oxidation o f isoprene.
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In this study, the climate variable inputs to the CiTTyCAT model were obtained from 

regional PRECIS-RCM, which was run for the time slices 2000-2010 (present-day) and 

2090-2100 (future) over SEA (See Chapters 3 & 4). Meanwhile the biogenic emissions 

were obtained from BVOCEM (see Chapter 5), which was run for 2008 (present-day) and 

2100 (future) over SEA using the climate variables input from the PRECIS-RCM outputs. 

For the purpose of evaluation, the mean-bias-error (MBE) or “bias” and root-mean-square 

error (RMSE) were calculated based on the definition as shown in Eq 6. 7 and Eq 6.8. The 

MBE provides information on the performance of the correlations by allowing a 

comparison of the actual deviation between modelled and observed values. If the bias is 

less than zero then the modelled value is underestimating the mean, and if the bias is 

larger than zero then the modelled value is overestimating the mean. The ideal value of 

MBE is “zero” . RMSE on the other hand provides information on the expected error of 

the simulations.

1 N
h 4 B E  2 -  (^ m o d  e lle d .i  ^  o bserved  . i )

N  r i

RMSE = _L V(C - C  V.  ,  / .  V mod elled ,i observedd '
N  "

( 6 . 7 )

(6 .8)
i=i

To evaluate the output from CiTTyCAT model, a comparison was also made with the 

measurement results during the OP3 campaign. The modelled concentrations have been 

compared to the OP3 measurements during the first week of July 2008. The observed and 

modelled concentrations are plotted as both a function of time and as a scatter plot for the 

Danum site as shown in Figure 6.4. Generally the modelled 0 3 concentrations were found 

to be in good agreement with the measurements, though slightly underestimated.

O o  CJ J J



Similarly, modelled NO concentrations were slightly underestimated in comparison with 

the measured concentrations. On the other hand, the modelled N 0 2 and PAN 

concentrations were overestimated compared with the measured concentrations. 

Meanwhile the modelled OH concentrations were significantly underestimated compared 

to the measured OH concentrations. Similar findings were found by Pugh et al. (2009, to 

be published) in their study in Danum, with the conclusion that the model fitting 

algorithm could possibly have overestimated the biogenic emissions fluxes, through 

which the main mechanism of the 70% loss o f OH concentrations was isoprene oxidation.



H our o f  Day

0.30

H our o f  Day

Modelled N0 ? (ppbv)H o u r o f  Day

H our o f  Day

1.6

.  RMSE : 3.6 x 105JT L.<

!::
I-
O 0.2

0.0
0.014 0.016 0.010

Modelled PAN (ppbv)H our o f  Day

Figure 6.4: Comparison of the model output for A2 (red line) and B2 (blue line)
emission scenarios with the average measurement during OP3 campaign {green line) at 
Bukit Atur (Danum). Lower and upper quartiles for the OP3 campaign measurements are 
indicated by black dots. The mean bias error (MBE) and RMS error (RMSE) are also 
given.
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6.7 Results and Discussions

The results from the uncoupled chmate-biogenic-chemistry model (PRECIS-BVOCEM- 

CiTTyCAT) tor two time slices representing the present-day (2000-2010) and the future 

(2090-2100) are presented. The results were analysed in three terms, focusing on the 

future changes of tropospheric O3 and its precursors under present-day (PLC) and future 

landcover (FLC) scenarios during July and January: (a) the combination effect o f climate 

change and biogenic emissions (isoprene); (b) the effect of climate change alone; and (c) 

the effect o f biogenic emissions alone. In this study, climate change refers to changes in 

three climate variables, namely mean surface temperature, depth of boundary layer and 

total cloudiness, which were used as input to the CiTTyCAT model.

6.7.1 Impact of Climate change and Biogenic Emissions under Present-day (PLC) 

and Modified Future Landcover (FLC)

The comparison of impacts due to the combined effect o f climate change and biogenic 

emissions, climate change alone and biogenic emissions alone for five locations 

(Bangkok, Kuala Lumpur, Jakarta, Danum and Koto Tabang) during the January and July 

under different landcover and climate scenarios are shown in Figure 6.5 (and Appendix

6.7) for 0 3, and OH; Figure 6 . 6  (and Appendix 6.7) for NO and N 0 2; Figure 6.7 (and 

Appendix 6 .8 ) for H O N 0 2 and PAN; and Figure 6 . 8  (and Appendix 6 .8 ) for HCHO and 

H20 2. For the purpose of discussion in this section, the simulation results for Bangkok 

and Danum representing urban and remote locations will be elaborated in details in the 

following section, while for Jakarta, Kuala Lumpur and Koto Tabang, the elaboration can 

be found in Appendix 6.13.
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Figure 6.5: Comparison of impacts due to the combined effects o f climate change and 
biogenic emissions, biogenic emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate scenarios in five locations in 
SEA. The A2 and B2 scenarios for a) A2: 0 3; (b) B2: 0 3; (c) A2: OH; (d) B2: OH
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Figure 6 .6 : Comparison o f impacts due to the combined effects o f climate change and 
biogenic emissions, biogenic emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate scenarios in five locations in 
SEA. The A2 and B2 scenarios for a) A2: NO; (b) B2: NO; (c) A2: NO 2 ; (d) B2: NO2 .

340



(a) A2: H 0 N 0 2

I Combined:A2PLC-Jan  
BioOnly:A2FLC-Jan 

I Com bined :A2PLC-Jul 
BioOnly :A2FLC-Ju I

■  Comblned:A2FLC-Jan
■  ClimOnly :A2 PLC-Jan 
® Combined:A2FLC-Jul
■  ClimOnly :A2 PLC-Jul

BioOnly:A2PLC-Jan 
■ Cl imOnly: A 2FLC-Jan 

BioOnly:A2P LC-3 u I 
1 ClimOnly: A 2FLC-Jul

Jul Jan Jul Jan Jul Jan Jul Jan Jul

1 11 .  .
1

B angkok K. Lum pur K. Tabang

(b) B2: H 0 N 0 2 •77 -2

9 Combincd:B2PLC-Jan 
BioOn ly:D2FLC-Jan 

I Combined;B2PLC-Jul 
BloOnly :B2FLC-Jul

■  C om bined: B2FLC-Jan 
m  ClimOnly;B2PLC-Jan
■ C om bined: B2FLC-Jul
■  ClimOnly: B2 PLC-Jul

BioOnly:B2PLC-Jan 
I ClimOnly:B2FLC-Jan 

BioOnly:B2 PLC-Jul 
Cl ImOnly: B2FLC-Jul

Jan j JulJan i Jul

a
Jul Jan Jul Jan Jul

B angkok K. Lum pur K. Tabang

(c) A2: PAN

I Combined:A2PLC-Jan  
BloOnly :A2F LC-Jan 

I Combined:A2PLC-Jul 
BloOnly: A2FLC-Jul

J Combined:A2FLC-Jan 
5 ClimOnly:A2PLC-Jan 

Combined :A2FLC-Jul 
I CllmOn ly :A2PLC-Jul

■3 BloOnly :A2PLC-Jan 
■  Cl ImOnly :A2'FLC-Ja n 
R BloOnly:A2PLC-Jul 
m  CllmOnly: A2FLC-Ju I

8

_5 4
CL
CL

r -n  O

-12

-1 6

I

Jul Jan

I I

Jul Jan

1

Jul Jan i Jul Jan

„  1 .

Jul

B ang <ok K. Lump ur Jak

r  i
rrta D anum  K. Ta )ang

(d) B2: PAN

I Comblned:B2PLC-Jan  
BloOnly:B2FLC-Jan 

I Combi n ed : B2PLC-J ul 
• BloOnly :3 2 FLC-Jul

I Combined:B2FLC-Jan 
t ClimOnly:B2PLC-Jan 
I Combined:B2FLC-Jul 
I Cli mOnly:B2PLC-Jul

BloOnly: B2PLC-Jan 
I ClimOnly:B2FLC-Jan 
BloOnly:B2PLC-Jul 

I ClimOnly:B2FLC-Jul

Jan Jul Jan JulJan JulJan iJulJan Jul

j j

Jakarta K. T abangD anumB angkok K. Lum pur

Figure 6.7: Comparison of impacts due to the combined effects o f climate change and 
biogenic emissions, biogenic emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate scenarios in five locations in 
SEA. The A2 and B2 scenarios for a) A2: H 0 N 0 2; (b) B2: H 0 N 0 2; (c) A2: PAN; (d) 
B2: PAN.
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Figure 6 .8 : Comparison of impacts due to the combined effects o f climate change and 
biogenic emissions, biogenic emissions alone and climate change alone during January 
(Jan) and July (Jul) under different landcover and climate scenarios in five locations in 
SEA. The A2 and B2 scenarios for a) A2: HCHO; (b) B2: HCHO; (c) A2: H2O2 ; (d) B2: 
H2O2 .

342



6.7.1.1 Bangkok

6.7.L1.1 0 3

The 24-hour averages for last day simulation of the present-day (baseline) O3 

concentration in Bangkok with baseline isoprene emissions incorporated in the model 

during January and July were 160 ppbv and 148 ppbv for BaselineA2, and 159 ppbv and 

148 ppbv tor BaselineB2 climate scenarios respectively (Appendix 6.9). The investigation 

o f the combined effects of anthropogenic emissions, climate change and biogenic 

emissions (A2PLC and B2PLC) under present-day landcover was found to increase the 

future surface O3 concentrations to 186 ppbv (January) and 178 ppbv (July) in the A2 

climate scenario (A2PLC), an increase of 26 ppbv (16%) and 31 ppbv (21%) respectively, 

relative to baseline scenario (Figure 6.5 and Figure 6.9; Appendix 6.7 and Appendix

6.10). As the anthropogenic emissions remaining constant as in baseline scenarios, the 

surface O3 concentrations changes were due to the combined effect o f climate change and 

biogenic emissions. A similar trend was also observed in the B2 climate scenario, where 

the future surface O 3 concentrations increased to 182 ppbv (January) and 175 ppbv (July), 

an increase o f about 23 ppbv (15%) and 27 ppbv (18%) respectively (Figure 6.5 and 

Figure 6.9; Appendix 6.7 and Appendix 6.10).

Climate change alone was observed to have mixed effects on future O3 concentrations for 

both climate scenarios. Under the present-day landcover scenario, climate change was 

responsible for the decrease of O 3 concentrations during January by 11 ppbv (40%) in A2 

and 1 ppb (5%) in the B2 climate scenarios. During July, climate change was responsible 

for the small increase in O3 concentrations of about 2 ppbv (7%) in the A2 and the 

decrease o f 7 ppbv (25%) in the B2 climate scenarios respectively. Compounding the 

effects of the climate change alone, the biogenic emissions alone accounted for the 

increase in future changes in surface 0 3 concentrations of about 37 ppbv (141%) during
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January and 29 ppbv (93%) during July in the A2 climate scenario relative the combined 

effect of climate change and biogenic emissions (Figure 6.5 and Appendix 6.7). In the B2 

climate scenario, biogenic emissions alone also accounted for a higher increase in future 

O3 concentrations of about 22 ppbv (95%) during January and 34 ppbv (125%) during 

July. The role of biogenic emissions in the increase of O 3 in a polluted environment like 

Bangkok could be through isoprene oxidation, which is a large source of HO2 and RCL 

radicals, which can react with NOx (Levy et cil., 1999) to produce O 3 (Trainer et cii, 

1988). Previous studies in urban areas during summer by Watson et cil. (2006) and Lee 

and Wang (2006), have also shown an increase in surface O3 concentrations in response to 

high isoprene emissions, warmer temperatures and coherence with high OH diurnal 

cycles. Despite the anthropogenic emissions remaining constant as in baseline scenarios, 

the high concentration of surface O3 in Bangkok in the future A2 and B2 climate 

scenarios were still largely contributed by anthropogenic NOx and VOCs emissions. 

These contributed about 159 ppbv (January) and 140 ppbv (July) in the A2 climate 

scenario; and 158 ppbv (January) and 142 ppbv (July) in the B2 climate scenario. 

Anticipation of an increase in future anthropogenic emissions for both climate scenarios 

as projected by IPCC (2001), the future concentrations of surface O 3 are most likely to be 

modified due to a number of competing processes, including climate change and biogenic 

emissions.

The modification of future landcover in SEA has been found to modify future climate and 

isoprene emissions in the region. In Bangkok, the modification o f future landcover has 

resulted in the surface temperature by 6 °C during January and 8 °C during July in the A2 

climate scenario (Table 6.2). In the B2 climate scenario, surface temperature increased by 

5°C during January and July. In the same scenarios, isoprene emissions were also affected 

due to climate change (Table 6.5). The combined effects of climate change and biogenic
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emissions (A2FLC and B2FLC) due to the modification of future landcover have been 

observed to increase surface O3 concentrations by 32 ppbv (20%) during January and 29 

ppbv (19%) during July in the A2 climate scenario (Figure 6.5 and Figure 6.9; Appendix

6.7) relative to the baseline scenario. Surface O 3 concentrations were also observed to 

increase in the B2 climate scenario by 20 ppbv (12%) during January and 31 ppbv (21%) 

during July respectively. Under the future landcover scenario, climate change alone was 

also observed to have mixed effects on future O3 concentrations for both climate 

scenarios. Climate change was responsible for the small increase of O 3 concentrations 

during January by 3 ppbv (10%) in A2 and 1 ppb (6 %) in the B2 climate scenarios. 

During July, climate change was responsible for the decrease in O 3 concentrations of 

about 4 ppbv (13%) in the A2 and 4 ppbv (12%) in the B2 climate scenarios respectively. 

Considering the effects o f climate change alone, the biogenic emissions alone accounted 

for the increase in future changes in surface O 3 concentrations of about 29 ppbv (89%) 

during January and 32 ppbv (113%) during July in the A2 climate scenario relative the 

combined effect o f climate change and biogenic emissions (Figure 6.5 and Appendix 6.7). 

In the B2 climate scenario, biogenic emissions alone also accounted for a higher increase 

in future 0 3 concentrations of about 19 ppbv (94%) during January and 35 ppbv (111%) 

during July. Climate change and biogenic emissions due to the modifications o f future 

landcover were observed to have mixed effects on future O 3 concentrations relative to 

changes under present-day landcover scenario.
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Figure 6.9: Bangkok: Simulated O3 (ppbv) during January (top panel) and July (bottom 
panel) in the A2 (left panel) and B2 (right panel) emission scenarios under the present- 
day (PLC) and modified future landcover (FLC).

6.7.1.1.2 OH

In Bangkok, the combined effects o f climate change and biogenic emissions were found 

to decrease the future (A2PLC and B2PLC) OH concentrations by 6.4 x 105 molecules 

cm ' 3 (37%) during January and 7.8 x 105 molecules cm ' 3 (38%) during July in the A2 

climate scenario (Figure 6.5, Figure 6.10; Appendix 6.7 and Appendix 6.10). Meanwhile, 

in the B2 climate scenario, a decrease o f OH concentrations o f about 3.9 x 105 molecules 

cm ' 3 (22%) during January and 8.9 x 105 molecules cm ' 3 (42%) during July was observed. 

The biogenic emissions impact alone accounted for a higher decrease of about 7.3 x 105 

molecules cm ' 3 (114%) during January and 9.8 x 105 molecules cm ' 3 (126%) during July 

in the A2 climate scenario (Figure 6.5; Appendix 6.7). In the B2 climate scenario,
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biogenic emissions accounted for the decrease of about 4 . 5  x 1 0 5 molecules cm ' 3 (115%) 

during January and the increase of about 1.1 x 106 molecules cm ' 3 (119%) during July. 

Suppression of OH concentrations could be linked to the oxidation of isoprene by the OH 

radical that lead to the increase o f surface O3 concentration in Bangkok. In urban 

environments, Watson et cil. (2006) have demonstrated that isoprene can act to suppress 

the OH that leads to an O 3 increase in summer. On the other hand, climate change alone 

accounted for the increase in OH concentrations by 14% (January) and 26% (July) in the 

A2; and 15% (January) and 19% (July) in the B2 climate scenarios.

An investigation into the effects of future landcover modification on OH concentrations 

due to changes in climate and biogenic emissions was found to lower OH concentrations. 

The combination o f climate change and biogenic emissions in future landcover scenarios 

was observed to decrease OH concentrations by 4.9 x l ( f  molecules cm ' 3 (28%) during 

January and 2.6 x lCf molecules cm ' 3 (13%) during July in the A2 climate scenario 

(Figure 6.5 and Figure 6.10; Appendix 6.7 and Appendix 6.10). Similarly in the B2 

climate scenario, OH concentrations decreased by 3.2 x K f molecules cm ' 3 (18%) during 

January and 5.4 x l ( f  molecules cm ' 3 (25%) during July in the B2 climate scenario. 

Comparatively, the combined effects of climate change and biogenic emissions under 

modified future landcover were observed to affect the decrease of OH concentration more 

than under present-day landcover, except during January in the B2 climate scenario. The 

additional effects on the decrease of OH concentrations were still largely contributed by 

biogenic emissions o f about 92%.
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Figure 6.10: Bangkok: Simulated OH (molecules cm '3) during January (top panel) and 
July (bottom panel) in the A2 (left panel) and B2 (right panel) emission scenarios under 
the present-day (PLC) and modified future landcover (FLC) scenarios.

6.7.1.1.3 NOx

The combined impact of climate change and biogenic emissions on future NOx (NO + 

N 0 2) under present-day landcover scenarios were also found to have mixed effects in 

Bangkok. Largely, the combined effects have lowered the NOx concentrations between 

8 % and 15% in both months in the A2 and B2 climate scenarios, with the exception of 

January in the A2 climate scenario, where NOx concentration was increased by 1.8 ppbv 

(20%) (Figure 6 . 6  and Figure 6.11; Appendix 6.7 and Appendix 6.10 -  shown as NO and 

N 0 2). Biogenic emissions alone were far more important to the decrease o f NOx in both 

months in the A2 and B2 climate scenarios than climate change alone. Biogenic emissions 

were responsible for the NOx reduction o f about 4 ppbv (194%) (January) and 0.4 ppbv
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(24%) (July) in the A2 climate scenario; and 0.5 ppbv (77%) (January) and 0.3 ppbv 

(40%) (July) in the B2 climate scenario (Appendix 6.7- shown as NO and N 0 2). Relative 

to the combined effect, climate change alone accounted for the high increase in NOx 

concentrations by 5 ppbv (294%) (January) and 0.02 ppbv (5%) (July) in the A2; and the 

decrease in NOx concentrations by 0.2 ppbv (23%) (January) and 0.5 ppbv (60%) (July) in 

the B2 climate scenario.

Perturbations to the projected climate change and biogenic emissions due to the 

modification of future landcover (A2FLC and B2FLC) in SEA have been observed to 

lower NOx concentration in Bangkok (Figure 6.11 and Appendix 6.9). Relative to the 

baseline scenario, the combined impacts o f climate change and biogenic emissions on 

NOx concentrations were observed to decrease by 2 ppbv (21%) during January and 0.6 

ppbv (11%) during July in the A2 scenario (Figure 6 .6 ; Appendix 6.7 and Appendix

6.10). Meanwhile, the combined impacts o f climate change and biogenic emissions in the 

B2 climate scenario accounted for the decrease o f NOx concentrations by 0.5 ppbv (7%) 

during January and 0.4 ppbv (7%) during July. Relative to the combined impacts, the 

biogenic emissions impact alone accounted for the decrease of NOx concentrations o f 

about 0.3 ppbv (17%) during January and 0.4 ppbv (79%) during July in the A2 scenario 

(Figure 6 . 6  and Appendix 6.7 -show n as NO and N 0 2). In the B2 scenario, biogenic 

emissions accounted for the decrease of NOx concentrations 0.4 ppbv (72%) during 

January and the increase of about 0.1 ppbv (34%) during July. On the other hand, in the 

A2 climate scenario, climate change alone accounted for the decrease o f NOx 

concentrations of about 2 ppbv (83%) during January and 0.1 ppbv (21%) during July. In 

the B2 climate scenario, climate change accounted for the decrease of about 0.2 ppbv 

(28%) during January and 0.5 ppbv (134%) during July (Figure 6 . 6  and Appendix 6.7 -
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shown in NO and NO 2). In comparison with climate change, biogenic emissions impacts 

on NOx concentrations were larger during July in the A2 and during January in the B2 

climate scenarios.
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Figure 6.11: Bangkok. Simulated NO & N 0 2 (ppbv) during January (top panel) and July 
(bottom panel) in the A2 (left panel) and B2 {right panel) emission scenarios under the 
present-day (PLC) and modified future landcover (FLC) scenarios.

6.7.1.1.4 PAN

PAN is an important reservoir for NOx and thus has a significant impact on 0 3 

production. PAN is formed in the atmosphere by reactions involving hydrocarbons and 

nitrogen oxides (Singh et al., 1986). PAN in the atmosphere was found to be strongly 

impacted by isoprene, with a contribution o f isoprene chemistry to the global annual PAN 

burden of between 22% and 32% (Pfister et al., 2008). In Bangkok, the combined effects 

of climate change and biogenic emissions on future PAN concentration (A2PLC and
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B2PLC) during both months were found to increase in Bangkok (Figure 6.12 and 

Appendix 6.9). Relative to the baseline scenario, the combined effects were responsible 

for the increase o f PAN by 10 ppbv (January) and 5 ppbv (July) in the A2 climate 

scenario; and 4 ppbv (January) and 5 ppbv (July) in the B2 climate scenario (Figure 6.7; 

Appendix 6 . 8  and Appendix 6.10). Biogenic emissions alone were found to make a larger 

contribution to the increase of PAN, compared with climate change alone. Biogenic 

emissions alone accounted for the PAN increases of about 9 ppbv (90%) during January 

and 5 ppbv (100.6%) during July in the A2 climate scenario; and 4 ppbv (100%) during 

January and 6  ppbv (108%) during July in the B2 climate scenario. Meanwhile, climate 

change alone accounted for the PAN increases of about 1 ppbv (10%) during January and 

small decreases o f about 0.03 ppbv during July. In the B2 climate scenario, climate 

change accounted for the small decrease of PAN concentrations of about 0.01 ppbv 

during January and 0.3 ppbv during July.

The combined effects of climate change and biogenic emissions under future landcover 

scenarios (A2FLC and B2FLC) were also observed to increase PAN concentrations in 

both months in the A2 and B2 climate scenarios (Figure 6.12 and Appendix 6.9). In the 

A2 climate scenario, PAN concentrations were increased by 4 ppbv (76%) during January 

and 5 ppbv (146%) during July (Figure 6.7; Appendix 6 . 8  and Appendix 6.10). In the B2 

climate scenario, PAN concentrations were increased by 3 ppbv (58%) and 4 ppbv 

(116%) during January and July respectively. Biogenic emissions under future landcover 

scenarios were also found to be more important to the increase of PAN concentrations 

than the climate change alone (Figure 6.7 and Appendix 6 .8 ). However, in terms of 

magnitude, these increases were relatively lower than the combined effects under present- 

day landcover except during January in the B2 climate scenario.
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Figure 6.12: Bangkok: Simulated PAN during January (top panel) and July (bottom 
panel) in the A2 (left panel) and B2 {right panel) emissions scenarios under the present- 
day landcover (PLC) and modified future landcover (FLC).

6.7.1.1.5 H 0 N 0 2

Another important reservoir for NOx in the troposphere is nitric acid (H 0 N 0 2), which is 

formed through an association reaction o f OH radicals with N 0 2 during the day (Hanke et 

al., 2003), and through heterogenous hydrolysis of N 20 5 and reaction with nitrate radical 

(N 0 3) during the night (Dentener et al, 1993). Relative to the baseline scenario, the 

simulation o f future H 0 N 0 2 concentrations in Bangkok (A2PLC and B2PLC) with both 

climate change and biogenic emissions considered in the CiTTyCAT model were 

observed to increase by 5 ppbv (63%) during January for the A2 climate scenario, but 

decreased by 7 ppbv (47%) during July (Figure 6.7 and Figure 6.13; Appendix 6 . 8  and
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Appendix 6.10). In the B2 climate scenario, H 0 N 0 2 decreased in both months by 6  ppbv 

(22%) during January and 7 ppbv (48%) during July respectively. Climate change alone 

accounted tor the decreases of about 3 ppbv during January and 0.2 ppbv during July 

(Figure 6.7; Appendix 6 . 8  and Appendix 6.10. However, climate change was found to 

increase HONCF concentrations in both months for the B2  climate scenario of about 0 . 5  

ppbv (January) and 0.3 pbv (July) respectively. Biogenic emissions alone were found to 

responsible for the decrease of HONO2 concentrations during both the A2 and B2 climate 

scenarios, except during January in the A 2  scenario where FIONO2 concentration was 

observed to increase by 9 ppbv. The decreases of HONO2 concentrations brought about 

by biogenic emissions largely compensated for the increase of HONO2 due to climate 

change alone. The presence of substantial isoprene emissions in urban areas and its role in 

decreasing HONO2 concentrations was also demonstrated in previous work by Watson et 

al. (2006), where the increase of isoprene by a factor of 1 0 0  was found to contribute for 

the small decrease of maximum mixing ratios of about 0.02 ppbv (7%) during summer 

(July).

Relative to the baseline scenario, the combined effects of climate change and biogenic 

emissions under future landcover scenarios (A2FLC and B2FLC) were also observed to 

increase H O N 0 2 concentrations during January by 13 ppbv and decrease during July by 8  

ppbv in the A2 climate scenarios (Figure 6.7 and Figure 6.13; Appendix 6 . 8  and 

Appendix 6.10). In the B2 climate scenario, HONO2 concentrations were decreased by 5 

ppbv during January and increased by 0.5 ppbv during July. Biogenic emissions under 

future landcover scenarios were also found to be more important to the increase of 

HONO2 concentrations than the climate change alone (Figure 6.7 and Appendix 6 .8 ). In



terms of magnitude, higher HONO2 concentrations were observed under future landcover 

than present-day landcover scenarios in both months in the A2 and B2 climate scenarios.
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Figure 6.13: Bangkok: Simulated HONO2 during January (top panel) and July (bottom 
panel) in the A2 (left panel) and B2 (right panel) emission scenarios under the present- 
day landcover (PLC) and modified future landcover (FLC).

6.7.1.1.6 HCHO and H 20 2

Formaldehyde (HCHO) is another high-yield product of isoprene oxidation. In Bangkok, 

the combined effects of climate change and biogenic emissions, under the present-day 

landcover scenario increase the HCHO concentrations by 13 ppbv during January and 7 

ppbv during July in the A2 climate scenario (Figure 6 . 8  and Figure 6.14; Appendix 6 . 8  

and 6.10). In the B2 climate scenario, the combined effects were observed to cause an 

increase of 5 ppbv and 8  ppbv during January and July respectively. Biogenic emissions 

alone were found to have larger effects on these changes than climate change alone. 

Biogenic emissions accounted for the increase of HCHO by 12 ppbv (87%) during
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January and 8  ppbv (102%) during July in the A2 climate scenarios. Similarly, biogenic 

emissions were responsible lor the increase of HCHO concentration in the B2 climate 

scenario ot about 5 ppbv (101%) during January and 8  ppbv (104%) during July. H2O2 is 

formed through oxidation of HO2 , which is a product of isoprene oxidation. Similarly 

with HCHO, the combined effect of climate change and biogenic emissions were found to 

increase H2O2 concentrations between 2 ppbv and 6  ppbv in both months in the A2 and 

B2 climate scenarios (Figure 6 . 8  and Figure 6.14; Appendix 6 . 8  and Appendix 6.10). 

Biogenic emissions were largely responsible for the increase of H2O2 concentrations of 

between 92% and 144%. Earlier studies by Watson et al. (2006) have also observed 

similar patterns for HCHO and H2O2 in an urban environment, when the isoprene 

emissions factor was increased in their two-box chemistry model.

The combined effects of climate change and biogenic emissions under the modified future 

landcover scenarios (A2FLC and B2FLC) were also observed to increase H2O2 

concentration by between 3 ppbv and 7 ppbv in both months in the A2 and B2 climate 

scenarios (Figure 6 . 8  and Figure 6.14; Appendix 6 . 8  and Appendix 6.10). Similarly to the 

present-day landcover scenario, biogenic emissions were more important than climate 

change to the increase of H2O2 under the future landcover scenarios. In terms of 

magnitude, the impacts of the combined effects of climate change and biogenic emissions 

in the future landcover scenarios were slightly higher than in the present-day landcover, 

except during July in the B2 climate scenario.
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Figure 6.14: Bangkok: Simulated HCHO & H2O2 (ppbv) during January (toppanel) and 
July (bottom panel) in the A2 (left panel) and B2 (right panel) emission scenarios under 
the present-day landcover (PLC) and modified future landcover (FLC).

6.7.1.2 Danum

6.7.1.2.1 0 3

The present-day 0 3 concentrations in Danum during January and July were lower of about 

4 ppbv and 8  ppbv for BaselineA2, and 8  ppbv and 7 ppbv for BaselineB2 (Figure 6.15; 

Appendix 6.11). By removing the biogenic emissions factor, the baseline 0 3 

concentration for BaselineA2 increased to 15 ppbv during January and July. Almost in the 

same value, 0 3 concentrations were also observed to increase in the BaselineB2 scenario. 

These increases of surface 0 3 concentrations were largely due to anthropogenic NOx and 

VOCs emissions that were considered as baseline anthropogenic emissions in the 

CiTTyCAT model input. However, the increase of surface 0 3 due to anthropogenic 

emissions were offset by high isoprene emissions (incorporated into the model during
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January and July) of about 1222 ,ug m ' 2 hr' 1 and 766 gig m' 2 hr' 1 in the A2 climate 

scenario and 765 gig m 2 hr 1 and 8 6 8  gig m ' 2 hr' 1 in the B2 climate scenarios (Table 6 .6 ). 

In this case, the low NOx and high isoprene concentrations in Danum could actually 

decrease O3 concentrations, possibly through sequestering NOx as organic nitrates. Earlier 

simulation studies by Fiore et al. (2005) in south-eastern states (USA) using MOZART-2, 

showed that isoprene increases in this region lead to decreased surface O 3 by 1 ppbv to 2  

ppbv, and were found to occur only when isoprene nitrates were converted directly into 

nitric acid. This means that the isoprene ozonolysis is an important photochemical O3 loss 

pathway only if isoprene nitrates are a sink for NO2 . Kang et al. (2003) have also 

observed that the increase of VOCs in some regions can lead to O3 reduction due to 

increased reactions with N 0 2 that produce stable organic nitrogen compounds, which result 

in a reduction of available NOx. However, as identified by Fiore et al. (2005), uncertainty 

about the chemistry of isoprene-NOx- 0 3  is still an important issue, particularly concerning 

the fate of isoprene nitrates, and warrants further investigation. Another possible 

explanation for O3 concentration decreases in the high isoprene emissions scenario is 

through OH titration, which enables a direct reaction of isoprene with 0 3. The direct 

isoprene-03 reactions could occur in areas where NOx jS limited and there are less sensitive 

changes in VOCs concentrations (Zeng et al., 2008; Tie et a l, 2005), of which Danum 

itself fits such a description. In tropical regions (i.e. the Amazon), where NOx 

concentration are lower, von Kuhlmann et al. (2004) have observed that the surface 

concentrations of 0 3 are 15% to 30% lower as a results of the lower NOx mixing ratios.

Simulation of future 0 3 concentrations due to the combined effects of climate change and 

biogenic emissions (A2PLC and B2PLC) under the present-day landcover scenario on 

surface O3 concentrations showed an increase of 6  ppbv (January) and 10 ppbv (July), and
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an increase of 2 ppbv (43%) and 2 ppbv (28%) respectively in the A2 climate scenario 

(Figure 6.5 and Figure 6.15; Appendix 6.7 and Appendix 6.12). Similarly, in the B2 

climate scenario, future surface O3 concentrations increased to 9  ppbv in both months, 

with an increase of 1 ppbv (13%) and 2 ppbv (27%) respectively. Climate change alone 

accounted tor a decrease of 0.4 ppbv (21%) during January and an increase of 0.3 ppbv 

(13%) during July in the A2 climate scenario (Figure 6.5 and Appendix 6.7). In the B2 

climate scenario, climate change alone accounted for the decrease of future O 3 

concentrations of about 0.3 ppbv (27%) during January and 0.1 ppbv (5%) during July. 

Meanwhile, the impacts of biogenic emissions alone were found to be more important 

than climate change on the future O 3 concentrations in both climate scenarios. In terms of 

magnitude, biogenic emissions completely offset the negative effect of climate change on 

O 3 concentrations. Biogenic emissions accounted for the increase of O 3 concentrations by 

2 ppbv (121%) during January and 2 ppbv (105%) during July in the A2 climate scenario 

(Figure 6.5 and Appendix 6.7). In the B2 climate scenario, biogenic emissions accounted 

for the increase of 0 3 concentrations by 1 ppbv (127%) during January and 2 ppbv during 

July respectively.

Under future landcover scenarios, the combined effects of climate change and biogenic 

emissions have resulted in a further increase in 0 3 concentrations in both climate 

scenarios. Relative to the baseline scenario, the combined effects in the A2 climate 

scenario were observed to increase O3 concentrations by 3.4 ppbv (77%) during January 

and 4 ppbv (50%) during July (Figure 6.5 and Figure 6.15; Appendix 6.7 and Appendix

6.12). Similarly, in the B2 climate scenario, the combined effects resulted in the increase 

of 0 3 concentrations by 3 ppbv (38%) and 4.1 ppbv (61%) during January and July 

respectively. Relative to the combined impact, biogenic emissions alone accounted for the
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increase ol O3 concentrations by 4 ppbv (115%) during January and 3 ppbv (77%) during 

July in the A2 climate scenario (Figure 6.5 and Appendix 6.7). Meanwhile, in the B2 

climate scenario, biogenic emissions accounted for the increase of about 3  ppbv (98%) 

during January and 5 ppbv (109%) during July. On the other hand, climate change alone 

accounted for the small decrease of O 3 of about 0.5 ppbv (15%) during January and 

increase ol about 0.9 ppbv (23%) during July in the A2 climate scenario (Figure 6.5 and 

Appendix 6.7). In the B2 climate scenario, climate change alone accounted for the small 

increase during January (0.1 ppbv) and decrease during July (0.4 ppbv). Comparatively, 

biogenic emissions were more important than climate change to the changes of future O 3 

concentrations under the future landcover scenario in both climate scenarios. It was also 

observed that the combined effects of climate change and biogenic emissions under the 

future landcover scenario were found to have a larger impact on surface O3 concentrations 

than under the present-day landcover scenario.
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Figure 6.15: Danum. Simulated 0 3 (ppbv) during January (top panel) and July (bottom 
panel) in the A2 {left panel) and B2 {right panel) emission scenarios under the present- 
day landcover (PLC) and modified future landcover (FLC).
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6.7.L2.2 OH

In remote locations such as Danum, relative to the baseline scenario, the combined effects 

of climate change and biogenic emissions on future (A2PLC and B2PLC) OH 

concentrations are predicted to increase significantly by 1 . 5  x 1 0 4 molecules cm"3 (104%) 

during January and by 1.0 x 104 molecules cm"3 (42%) during July in the A2 climate 

scenario (Figure 6.5 and Figure 6.16; Appendix 6.7 and Appendix 6.12). In the B2 climate 

scenario, the combined effects were observed to increase OH concentrations by 4.8 x 104 

molecules cm ' 3 (116%) during January and 0.7 x 104 molecules cm"J (40%) during July. 

Climate change and biogenic emissions were observed to have mixed effects on these 

increases. Biogenic emissions alone were observed to contribute largely to the increase of 

OH concentrations during July in both A2 and B2 climate scenarios, which accounted for 

about 4.0 x lO3 molecules cm"3 and 9.1 x 105 molecules cm ' 3 respectively (Figure 6.5 and 

Appendix 6.7). Meanwhile, climate change alone accounted for a small decrease in OH 

concentrations of about 3.9 x 103 molecules cm ' 3 (8 %) and 9.0 x 105 molecules cm"J (2%) 

during July in both climate scenarios. During January in both climate scenarios, biogenic 

emissions accounted for a larger decrease in OH concentrations of about 0.3 x 105 

molecules cm ' 3 (167%) in A2 and 1.3 x 103 molecules cm' 3 (275%) in B2 climate 

scenarios respectively. During January, climate change were responsible for the slight 

increase in OH concentrations by 0.4 x 103 molecules cm' 3 (1%) and 1.8 x lO3 molecules 

cm' 3 (5%) in A2 and B2 climate scenarios respectively.

Under the future landcover scenario, the combined effects of climate change and biogenic 

emissions were found to have a larger impact on the increase of OH concentrations in 

Danum. In the A2 climate scenario, the combined effects were found to increase OH by 

2.9 x 104 molecules cm ' 3 (197%) during January and 2.5 x 104 molecules cm° (108%)
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during July (Figure 6.5 and Figure 6.16; Appendix 6.7 and Appendix 6.12). Similarly, in 

the B2 climate scenario, the combined effects were observed to increase OF! 

concentrations by 5.7 x 104 molecules cm ' 3 (137%) and 2.1 x 104 molecules cm ' 3 (112%) 

during January and July respectively. It was also observed that climate change accounted 

tor a larger increase of OH concentrations, despite the offsetting effect of biogenic 

emissions.
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Figure 6.16: Danum. Simulated OH (molecules cm'3) during January {top panel) and 
July {bottom panel) for A2 {left panel) and B2 {right panel) emission scenarios under 
present-day (PLC) and modified future landcover (FLC).

6.7.1.23 NOx

In Danum, the combined effects of climate change and biogenic emissions have resulted 

in mixed responses to the future changes of NOx, and were largely responsible for the 

predicted decrease of NOx during January and an increase during July in the A2 climate
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scenario (Figure 6 . 6  and Figure 6.17; Appendix 6.7 and Appendix 6.12-shown as NO and 

NO2). Meanwhile, in the B2  climate scenario, the combined effects were responsible for 

the predicted increase ot NOx during both months. Biogenic emissions were found to 

predict an increase in NOx during January by 0.01 ppbv and 0.03 ppbv in A2 and B2 

climate scenarios respectively. During July in both climate scenarios, biogenic emissions 

were observed to decrease NOx concentration by 0.03 ppbv. Meanwhile, climate change 

alone was found to increase NOx by about 0.04 ppbv during July in both climate scenarios 

(Figure 6 . 6  and Appendix 6.7). During January, climate change alone was observed to 

decrease NOx by 0.03 ppbv and 0.01 ppbv in the A2 and B2 climate scenarios 

respectively. Comparatively, biogenic emissions alone were found to have more or less 

the same magnitude of impact as that of climate change on future changes of NOx 

concentrations.

Relative to the baseline scenario, under the future landcover scenarios, the combined 

effects of climate change and biogenic emissions were predicted to increase during 

January (0.04 ppbv) and decrease during July (0.07 ppbv) in A2 climate scenarios (Figure

6 . 6  and Figure 6.17; Appendix 6.7 and Appendix 6.12). Similarly, in B2 climate scenario, 

the combined effects resulted in the increase of NOx concentrations of about 0.04 ppbv 

during January and decrease of about 0.02 ppbv during July. In comparison, the combined 

effects of climate change and biogenic emissions under the future landcover scenarios 

have a larger impact on the increase of NOx concentrations during January and lower 

during July in the A2 and B2 climate scenarios. Meanwhile, the biogenic emissions 

effects alone were accounted for the decrease of NOx concentrations (0.02 ppbv) during 

January and increase (0.05 ppbv) during July in the A2 climate scenario (Figure 6 . 6  and 

Appendix 6.7). In the B2 climate scenario, biogenic emissions were observed to the
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increase ol 0.05 ppbv of NOx concentration during January and decrease of 0.03 ppbv 

during July.
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Figure 6.17: D anum : Simulated NO & NO2 (ppbv) during January (top panel) and July 
(bottom panel) in the A2 (left panel) and B2 (right panel) emission scenarios under the 
present-day (PLC) and modified future landcover (FLC).

6.7.1.2.4 PAN

Under the present-day landcover scenario, the combined effects of climate change and 

biogenic emissions were predicted to decrease PAN concentrations by 0.04 ppbv and 

0.02 ppbv during January in the A2 and B2 climate scenarios. During July, the combined 

effects accounted for the increase of PAN concentrations by 0.05 ppbv and 0.04 ppbv in 

the A2 and B2 climate scenarios respectively (Figure 6.7; Appendix 6 . 8  and Appendix

6.12). Climate change and biogenic emissions were also predicted to have mixed effects 

on future PAN concentrations in Danum. Biogenic emissions alone weie observed to have
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a much larger impact on PAN concentrations than climate change alone. Biogenic 

emissions accounted for the decrease of about 0.04 ppbv (97.5%) (A2) and 0.02 ppbv 

(100%) (B2) during January and the increase of about 0.05 ppbv (75%) (A2) and 0.03 

ppbv (100%) (B2) during July (Figure 6.7 and Appendix 6 .8 ). On the other hand, climate 

change alone accounted for the small changes to the PAN concentrations in both months 

for A2 and B2 climate scenarios.

Under the future landcover scenario, the combined effects of climate change and biogenic 

emissions were responsible for the decrease of PAN in both climate scenarios. In the A2 

climate scenario, the combined effects accounted for the decrease of about 0 . 0 1  ppbv 

(7.1%) during January and 0.13 ppbv (22.4%) during July (Figure 6.7 and Figure 6.18; 

Appendix 6 . 8  and Appendix 6.12). Meanwhile, in the B2 climate scenario, decreases of 

about 0.02 ppbv (18.2%) and 0.01 ppbv (2%) were observed during January and July 

respectively. In terms of magnitude, the combined impact of climate change and biogenic 

emissions under the present-day and future landcover were more or less the same. The 

effects of biogenic emission alone accounted for the small decrease of PAN 

concentrations for both months in the A2 and B2 climate scenario. It was also observed 

that the effects of biogenic emissions alone were more important than climate change 

alone to the changes of future concentrations of PAN.
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Figure 6.18: Danum : Simulated PAN during January (top panel) and July (bottom 
panel) in the A2 (left panel) and B2 (right panel) emission scenarios under the present- 
day landcover (PLC) and modified future landcover (FLC).

6.7.1.2.5 HONO 2

Future changes to the H 0N 0 2 concentrations under the present-day landcover scenario in 

Danum were predicted to be lower due to the balancing effects of climate change and 

biogenic emissions. The combined effects of climate change and biogenic emissions were 

less than 0.01 ppbv in both months in the A2 and B2 climate scenarios (Figure 6.7 and 

Figure 6.19; Appendix 6 . 8  and Appendix 6.12). Biogenic emissions alone accounted for 

the decrease of H 0 N 0 2 concentrations during January of 0.37 ppbv (A2) and 0.36 ppbv 

(B2), and the decrease during July of 0.47 ppbv (A2) and 0.43 ppbv (B2) (Figure 6.7 and 

Appendix 6 .8 ). The future changes of HON02 concentrations due to climate change alone 

were predicted to decrease by more or less the same as biogenic emissions in both the A2 

and B2 scenarios (Figure 6.7 and Appendix 6 .8 ). The net of changes in HON02
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concentrations was small, as the changes due to climate change alone were compensated 

for by biogenic emissions. Perturbations due to modifications of future landcover have 

shown that the combined effect of climate change and biogenic emissions increased the 

HONO2 , but were very small in magnitude (Figure 6 . 7  and Figure 6.19; Appendix 6 . 8  and 

Appendix 6.12). The balancing effects of climate change and biogenic emissions were 

also observed under this scenario.
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Figure 6.19: Danum. Simulated H 0N 0 2 during January (top panel) and July {bottom 
panel) in the A2 {left panel) and B2 {right panel) emission scenarios under the present- 
day landcover (PLC) and modified future landcover (FLC).
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6.7.1.2.6 HCHO andH 20 2

An opposite observation was found in terms of HCHO and H2 O2 concentrations in urban 

areas and remote areas. The combined effects of climate change and biogenic emissions 

under the present-day landcover scenario were responsible for the predicted decrease of 

HCHO concentrations by 1.5 ppbv (29%) during January and 0.6 ppbv (6 %) during July 

in the A2 climate scenario; and 0.7 ppbv (19%) during January and 0.4 ppbv (4%) during 

July in the B2 climate scenario (Figure 6 . 8  and Figure 6.20; Appendix 6 . 8  and Appendix

6.12). These changes were contributed to largely by biogenic emissions of about 1.5 ppbv 

(98%) (January) and 0.6 ppbv (100%) (July) in the A2 climate scenario, and 0.7 ppbv 

(97%) (January) and 0.4 ppbv (103%) (July) in the B2 climate scenario.

Under the future landcover scenarios, the combined effects predicted a decrease in HCHO 

concentrations than those shown under the present-day landcover scenarios (Figure 6 . 8  

and Figure 6.20; Appendix 6 . 8  and Appendix 6.12). In the A2 climate scenario, decreases 

of about 1.3 ppbv (26%) during January and 2 ppbv (23%) during July were observed. 

Meanwhile, in the B2 climate scenario, the combined effects were responsible for a 

further decrease of HCHO concentrations of about 0.8 ppbv (22%) and 2 ppbv (17%) 

during January and July respectively. Biogenic emissions played more important role in 

the future changes of HCHO concentrations than the climate change.

Similarly, for H20 2 concentrations under the present-day landcover scenario, the 

combined effects of climate change and biogenic emissions were predicted to decrease by 

0.9 ppbv (22%) during January and 0.6 ppbv (11%) during July in the A2 climate scenario 

(Figure 6 . 8  and Figure 6.20; Appendix 6 . 8  and Appendix 6.12). In the B2 climate
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scenario, the combined effects accounted for a decrease of about 0 . 5  ppbv (18%) and 0 . 8  

ppbv (13%) during January and July respectively.

Under the future landcover scenarios, the combined effects were predicted to decrease the 

H2O2 concentrations further -  by 2 ppbv (38%) during January and 0.8 ppbv (14%) during 

July in the A2 climate scenario (Figure 6 .8 ; Appendix 6 .8 ). Similarly, in the B2 climate 

scenario, H2O2 concentrations were observed to decrease by 0.7 ppbv (22%) and 2 ppbv 

(24.9%) during January and July respectively. Relatively, in terms of magnitude, the 

combined effects of climate change and biogenic emissions to the future changes of H2O2 

concentrations under the present-day landcover were smaller than under the future 

landcover scenarios. It was also predicted that the biogenic emissions were found to be 

largely responsible for the decrease of H2O2 concentrations by between 53% and 103% in 

both climate scenarios. The effects of climate change alone on the future changes of H2O2 

concentrations were comparatively smaller than the biogenic emissions alone.

368



B ase- A2 ■ A2 - P L C  11 A2 - F L C  

HCHO

B ase- A2 ■ ■ 1 A2 - P L C  —  A2 -  F L C

H2o 2

Day o f  y e a r  ( J a n u a ry )

HCHO

Day o f  y e a r  ( J a n u a ry )

 B ase- A2  A2 - P L C  — A2 - F L C
HCHO

Day o f  y e a r  (Ju ly )

HCHO

Day o f y e a r  (Ju ly )

Figure 6.20: Danum : Simulated HCHO & H20 2 (ppbv) during January (top panel) and 
July (bottom panel) in the A2 (left panel) and B2 (right panel) emission scenarios under 
the present-day landcover (PLC) and modified future landcover (FLC).

6.8 Conclusions

This study has employed the CiTTyCAT model to investigate the response of 

tropospheric O3 concentrations and some trace gases and oxidants in three urban and two 

remote areas in Southeast Asia, to the climate change and biogenic emissions in present- 

day and future land cover scenarios in both BaselineA2 and BaselineB2 climate scenarios. 

Some conclusions can be drawn from the results:

• In urban environments, the simulations of the present-day (2008) concentrations of 

surface 0 3 were observed to be highest in Jakarta (148 ppbv -  270 ppbv) followed by 

Bangkok (148 ppbv - 160 ppbv) and Kuala Lumpur (138 ppbv -144 ppbv) in both

369



BaselineA2 and BaselineB2 scenarios. Meanwhile, in two studied remote locations, 

the range ot O3 concentrations were found to be relatively smaller in Danum (4 ppbv 

- 8  ppbv) than in Koto Tabang (4 ppbv - 15 ppbv).

• In the present-day landcover scenario, the combined impact of climate change and 

biogenic emissions was observed to have a larger effect on the predicted increase of 

future surface O 3 concentrations for both months in A2 and B2 climate scenarios in 

Bangkok, and Danum. Meanwhile, in Kuala Lumpur and Jakarta the combined factors 

were observed to have mixed effects. In Kuala Lumpur, a predicted increase in future 

O 3 concentrations was also observed in both months in the A2 and B2 climate 

scenarios, except during July in B2, where a small decrease of surface O3 

concentration was observed. In Jakarta, the combined impact of climate change and 

biogenic emissions was predicted to increase surface O 3 concentrations during 

January but decrease them during July in both A2 and B2 climate scenarios. In Koto 

Tabang, the combined impact was predicted to decrease future surface O 3 in both A2 

and B2 cliamte scenarios.

• In Bangkok and Danum the impact of biogenic emissions alone accounted for the 

larger increase in future changes of surface O 3 concentrations for both months in the 

A2 and B2 climate scenarios. However, in Koto Tabang, the impact of biogenic 

emissions alone accounted for the predicted reduction of O 3 concentrations in both 

months in the A2 and B2 climate scenarios, except for a small increase during July in 

the B2 climate scenario. On the other hand, the impact of biogenic emissions on the 

future changes of surface O 3 concentrations in Kuala Lumpur and Jakarta was 

predicted to be negligible. Comparatively, the magnitude of impacts of biogenic 

emissions alone on the future changes of surface O3 concentrations in Bangkok, 

Danum and Koto Tabang were larger than the impact of climate change alone. The
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impact o f climate change alone was predicted to have a mixed effect on future 

changes o f surface O3 concentrations in all locations, and played a more important 

role in the small changes of surface O3 concentrations in Kuala Lumpur and Jakarta.

• The combined impacts of climate change and biogenic emissions under the modified 

future landcover scenario also resulted in the predicted increase of surface O3 

concentrations for both months in the A2 and B2 climate scenarios in Bangkok, and 

Danum. In comparison with the present-day landcover scenario, the surface O3 

concentrations were predicted further increased under the modified future landcover 

scenario, except for a slight decrease, which was observed during July in the A2 and 

January in the B2 climate scenarios in Bangkok. In Kuala Lumpur, relative to surface 

O3 concentration under present-day landcover scenarios, the modification of future 

landcover resulted in the predicted decrease o f O3 concentrations for both months in 

the A2 and B2 climate scenarios. Meanwhile in Jakarta, surface 03  concentrations 

were observed to increase during July in the A2 and during January in the B2 climate 

scenarios, and decrease during January in the A2 and July in the B2 climate scenarios. 

In Koto Tabang the combined impact was also predicted to decrease future surface O3 

concentrations during January and increase during July in both A2 and B2 climate 

scenarios.

• In terms o f magnitude, the impact of biogenic emissions alone on the predicted 

increase of future surface 0 3 concentrations were larger than the impact of climate 

change alone in Bangkok, Danum and Koto Tabang in both climate scenarios. In all 

locations, the impacts of climate change alone on the future changes of 0 3 

concentrations were mixed and small in magnitude for both months in A2 and B2 

climate scenarios.
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• In Bangkok, the combined impacts of climate change and biogenic emissions under 

present-day and future land cover scenarios were predicted to decrease OH 

concentrations in both months for A2 and B2 climate scenarios, and the predicted 

decreases were largely attributed to biogenic emissions. Suppression of OH 

concentrations was largely due to the oxidation of isoprene by OH radicals. The 

suppression of OH was much larger in the future land cover scenarios than in those for 

the present-day, except during January in the B2 climate scenario. However, in 

Danum, the combined effects under present-day and future land cover scenarios were 

predicted to increase OH concentrations in both months for A2 and B2 climate. The 

increases of OH concentrations were largely due to climate change, although 

suppression of OH concentrations due to biogenic emissions was also observed. In 

terms of magnitude, the increases of OH concentrations were predicted to be larger 

under future land cover than present-day land cover scenarios. In Koto Tabang, the 

combined impact of climate change and biogenic emissions under present-day and 

future land cover scenarios was found to have a mixed effect on the future changes of 

OH concentrations in both months in A2 and B2 climate scenarios, although large 

decreases of OH concentrations were widely observed. Biogenic emissions were 

found to be more important than climate change to the future changes of OH 

concentrations, in both landcover and climate scenarios. Meanwhile, in Kuala Lumpur 

and Jakarta, the combined impact of climate change and biogenic emissions was 

found to have mixed effects on the future changes of OH concentrations and these 

changes were mainly due to climate change.

• The combined impact of climate change and biogenic emissions under both the 

present-day and future landcover scenarios was observed to have a mixed effect on the 

future changes of NOx, PAN, H 0N 02, HCHO, and H20 2 concentrations in all
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locations for both climate scenarios. In Bangkok, Danum and Koto Tabang, the 

impact of biogenic emissions alone was more important to changes in these 

parameters than climate change in both landcover and climate scenarios. Meanwhile, 

in Kuala Lumpur and Jakarta, the impact of climate change were more important to 

concentration changes, as the biogenic emissions impact was found to be negligible in 

both landcover and climate scenarios.



Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

The Southeast Asia (SEA) region is one of the world’s most populated regions, with rapid 

urbanisation and industrialisation, and the large expansion of agricultural activities. The 

forcing caused by these economic activities has drastically changed the regional landcover 

over the last thirty years. Rapid changes to the general landcover over the region were 

largely due to the deforestation and conversion into agriculture (i.e oil palm plantation). 

Anticipation of further changes to the regional landcover, coupled with the increase in 

anthropogenic emissions and naturally high levels of biogenic emissions have been the 

impetus of this study, which investigates the intricate relationship of climate change- 

landcover-biogenic emissions-tropospheric chemistry systems at the regional scale over 

SEA. This was achieved through the use of PRECIS, a regional climate model, which 

used the atmospheric forcing and landcover forcing of the present-day and future climate 

scenarios (SRES A2 and B2) to simulate present-day and future climate scenarios. 

Subsequently, simulated climate scenarios were used to drive the biogenic emissions 

model (BVOCEM) to estimate the biogenic emissions over the region under various 

climate scenarios. Finally, the simulated climate and calculated biogenic emissions under 

various atmospheric and landcover forcings were used to drive the Lagrangian trajectory 

model (CiTTyCAT) to model the present-day and future changes of tropospheric 

chemistry in Southeast Asia under those forcings.

The questions posed in this study are summarised into four major research questions, 

which will be answered in turn using the evidence provided in this study:
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* What would be the pattern and magnitude of climate changes over the Southeast

Asia region based on the IPCC (2001) emission scenarios?

■ What would be the combined effect of atmospheric and landcover forcings, and 

the effect of landcover forcing alone on regional climate changes under the 

present-day and modified future landcover scenarios and the IPCC’s (2001) 

emission scenarios?

■ What would be the effect of climate change due to atmospheric and landcover 

forcings on the regional biogenic emissions under the present-day and modified 

future landcover scenarios and the IPCC’s (2001) emissions scenarios?

■ What would be the effect of climate changes and biogenic emissions changes on 

the regional tropospheric chemistry under the present-day and modified future 

landcover and the IPCC’s (2001) emission scenarios?

7.1.1 What would be the pattern and magnitude of climate changes over the

Southeast Asia (SEA) region based on the IPCC (2001) emission scenarios?

PRECIS-RCM was run for SEA with the aim of examining climate change scenarios for 

the future. The present-day simulation with the PRECIS-RCM (1961-1990) was evaluated 

including an identification of biases and some statistic responses in the PRECIS-RCM. 

The PRECIS-RCM captured the primary features of the observed data (CRU), ERA40- 

Reanalysis data and GCM circulations and the patterns of seasonal change are generally 

well represented for most variables. Due to the stronger emissions forcing in the A2 

scenario, the scenario anomalies of surface temperature are generally larger than for the
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B2 scenario. Other climatic variables such as precipitation, total cloud, solar radiation and 

boundary layer height have shown a high degree of variability.

A warming was observed across the region with largest temperature increase apparent 

over land areas in both the A2 and B2 scenarios during DJF and the JJA. Under the A2 

scenario, there was an average surface warming of 3°C during DJF and 3.1°C during JJA. 

In the B2 scenario, the average surface temperatures were 2.6°C during DJF and 2.1°C 

during JJA. Surface temperature changes in both the A2 and B2 climate scenarios were 

statistically significant, at the 95% confidence levels for all seasons for the whole 

modelled region-domain except in some areas over the South China Sea and the 

Philippines Sea during DJF in the B2 climate scenario. In both A2 and B2 climate 

scenarios, the total precipitation decreased during DJF by about -0.4 mm/day and slightly 

increased during JJA by about 0.2 mm/day (A2) and 0.1 mm/day (B2) respectively. 

Precipitation changes with less than -1 mm/day, mostly over the sea during DJF and a 

larger area over the sea and insular region during JJA were found to be statistically 

significant (at the 95% level) in both scenarios.

The total cloud fraction in the A2 and B2 scenarios were projected to decrease slightly by 

-0.07 during DJF and -0.04 during JJA. Future changes in total cloud fraction in both 

seasons of roughly less than -0.04 in the A2 scenario and less than -0.05 in the B2 

scenario were found to be statistically significant at the 95% level. Meanwhile, the 

projected solar radiations in the A2 climate scenario were slightly increased by 5.6 W m ' 2 

during DJF and 4.6 W m ' 2 during JJA. Similarly for the B2 scenario, the projected solar 

radiations were increased by 3.1 W m ' 2 during DJF and 3.8 W m‘2 during the JJA. In the 

A2 scenario, boundary layer heights were observed to decrease slightly by -3 m during
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DJF and increase by 23 m during JJA. In the B2 scenario, the boundary layer heights were 

observed to decrease by about - 6  m during DJF and -7 m during JJA. Changes in a larger 

area over the sea in both climate scenarios were found to be statistically significant at the 

95% level.

7.1.2 What would be the combined effect of atmospheric and landcover forcings, 

and the effect of landcover forcing alone on regional climate changes under 

the present-day and modified future landcover scenarios and the IPCC’s 

(2001) emission scenarios?

The combined effect of atmospheric and landcover forcings was observed to increase the 

surface temperature significantly (at the 95% confidence level) over the whole SEA 

domain during DJF and JJA in both the A2 and B2 climate scenarios. For A2, the surface 

temperature increased by 2.7°C during DJF and 2.8°C during JJA. For B2, the surface 

temperatures increased by 2°C during DJF and 2.1°C during JJA. The effects of future 

landcover forcing alone during DJF and JJA for both the A2 and B2 climate scenarios 

were observed to be small and produced cooling temperatures, compared to the effects of 

combined forcing and atmospheric forcing alone. Small and scattered areas with less than 

-1°C in surface temperature changes due to landcover forcing alone were found to be 

statistically significant at the 95% confidence level during DJF and JJA in both climate 

scenarios. In terms of magnitude, the combined effects of atmospheric and landcover 

forcings in both seasons for both climate scenarios were slightly higher than atmospheric 

forcing alone and much higher than landcover forcing alone.

In the A2 climate scenario, the combined effects have resulted in the decrease of total 

precipitation by about -0.39 mm/day and -0.02 mm/day during DJF and JJA respectively. 

The increase of total precipitation by roughly more than 2.0 mm/day during DJF, and any
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increase during JJA were found to be statistically significant at the 95% level. For B2, 

the combined effects also resulted in a decrease of -0.35 mm/day during DJF, but 

were observed to increase slightly by about 0.07 mm/day during JJA. Conversely, the 

A2 climate scenario showed decreased precipitations of less than -1 mm/day during both 

seasons, which were statistically significant at the 95% level. Meanwhile, the effect of 

landcover forcing alone in the A2 scenario was observed to cause a small increase in 

precipitation during DJF (0.03 mm/day) and a small decrease during JJA (-0.29 

mm/day). The change in total precipitation was statistically significant at the 95% 

confidence level in areas with precipitation changes of less than -2 mm/day during DJF 

and precipitation decreases of up to - 8  mm/day during JJA. For B2, landcover forcing 

alone was observed to cause a small decrease in precipitation in both seasons (-0.06 

mm/day). In areas with precipitation changes of less than -0.1 mm/day precipitation in 

both seasons were found to be statistically significant at the 95% level. In terms of 

magnitude, the combined effects of atmospheric and landcover forcings were more 

prevalent in precipitation changes in both climate scenarios.

The combined forcing effects were observed to decrease the total cloud relative to the 

baseline in both A2 and B2 climate scenarios. There were few discernible differences in 

total cloud between the effects of combined forcing and atmospheric forcing alone. The 

effect of landcover forcing alone was also observed to decrease total cloud in both 

seasons for the A2 climate scenario, while in B2 landcover forcing alone resulted in a 

small increase during DJF and a small decrease during JJA. The combined effect of 

atmospheric and landcover forcings resulted in the increase of solar radiation in both 

climate scenarios. The effect of landcover forcing alone was also observed to increase 

solar radiation in both climate scenarios, but at smaller magnitudes than that caused by
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combined forcing. For the boundary layer height, the effect of the combined forcing was 

observed to decrease during DJF and increase during JJA in both climate scenarios. The 

effect ol landcover forcing alone was also observed to decrease in both seasons in the A2 

and slightly increase in both seasons in the B2 climate scenarios. In both forcing 

scenarios, changes in boundary layer height more negative than -30 m in the A2 and B2 

climate scenarios were statistically significant at the 9 5 % level.

7.1.3 What would be the effect of climate change due to atmospheric and landcover 

forcings on the regional biogenic emissions under the present-day and 

modified future landcover scenarios and the IPCC’s (2001) emissions 

scenarios?

The present-day estimate of regional isoprene emissions based on Baseline-B2 and 

Baseline-A2 climate scenarios with present-day CO2 concentration of 366 ppm were 

25 TgC/yr and 28 TgC/yr. Sensitivity studies without the CO2 activity factor in the model 

found that the isoprene emissions increased to 27 TgC/yr and 29 TgC/yr respectively. For 

the monoterpene emissions, the present-day estimates were 14 TgC/yr and 15 TgC/yr for 

both the B2 and A2 climate scenarios. Meanwhile ORVOC emissions were estimated at 

about 20 TgC/yr (B2) and 22 TgC/yr (A2) respectively. In the present-day landcover 

scenario without the CO2 activity factor, the increase of future (2 1 0 0 ) mean surface 

temperatures in the region by 2.4°C (B2) and 3.6°C (A2), resulted in a further increase to 

the regional isoprene emissions to 31 TgC/yr (B2) and 37 TgC/yr (A2), an increase of 

13% and 27% respectively. The inclusion of future C 0 2 concentrations of 560 ppm in the 

future scenarios, was found to inhibit the isoprene emissions to 21 TgC/yr (B2) and 

25 TgC/yr (A2), a reduction of about 19% and 8 % from the baseline estimate 

respectively. The inhibitory effect of elevated CO2 on the isoprene emissions is much
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larger than that of climate change alone. Meanwhile, the increase of temperature and PAR 

with double atmospheric CO2 concentrations in the future scenarios decreased the 

regional emissions of both the monoterpene and ORVOC, accounting for 9% (B2) and 

7% (A2) of monoterpene, and 11% (B2) and 6 % (A2) of ORVOC.

Changes in future landcover alone were accounted for by a decrease in isoprene emissions 

of 6 % (B2) and 5% (A2) with the inclusion of the CO2 activity factor. However, without 

the CO2 activity factor, the isoprene emissions were increased by 5% (B2) and 9% (A2) 

respectively. The inhibitory effect of elevated CO2 on isoprene emissions was relatively 

larger in magnitude than from landcover forcing alone. In comparison with climate 

change forcing, the impact of landcover forcing alone on isoprene emissions is much 

smaller. Emissions of monoterpenes and ORVOC due to landcover forcing alone were 

0.7 TgC/yr and 0.8 TgC/yr for B2, and 2 TgC/yr and 1 TgC/yr for A2 respectively.

The combined effect of climate change and landcover forcings without the CO2 activity 

factor increased the regional isoprene emissions to 32 TgC/yr (B2) and 40 TgC/yr (A2), 

an increase of 18% and 38% respectively. With the inclusion of the CO2 activity factor, 

the future emissions of isoprene were significantly inhibited by 60% (B2) and 6 6 % (A2). 

The magnitude of the CO2 inhibitory effect was more important than the combined effect 

of climate change and landcover change on isoprene emissions. The combined effect of 

climate change and landcover forcings was found to decrease monoterpenes and ORVOC 

emissions having a much greater impact than climate change forcing or landcover forcing 

alone. Biogenic emissions in the region were also found to be higher during July 

(southwest monsoon) and lower during January (northeast monsoon), corresponding to 

higher temperatures and PAR during July.
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7.1.4 What would be the effect of climate changes and biogenic emissions changes 

on the regional tropospheric chemistry under the present-day and modified 

future landcover and the IPCC’s (2001) emission scenarios?

In an urban area like Bangkok, the present-day (2008) ozone episode concentrations of 

surface O3 were high of at about 160 ppbv (January) and 147.7 ppbv (July) in the 

BaselineA2 climate scenario; and 159 ppbv (January) and 148 ppbv (July) in the 

BaselineB2 climate scenario. In comparison with Danum, a remote site in Borneo, the 

present-day (2008) concentrations of surface O3 were lower by about 4 ppbv (January) 

and 8  ppbv (July) in the BaselineA2 climate scenario; and 8  ppbv (January) and 8  ppbv 

(July) in the BaselineB2 climate scenario. In both locations, the combined impacts of 

climate changes and biogenic emissions was predicted to increase future (2 1 0 0 ) surface 

O3 concentrations under the present-day land cover scenario in both months in both A2 

and B2 scenarios. Of the two factors considered in the model, biogenic emissions 

accounted for a larger effect than climate change on the predicted increase of surface O3 

concentrations in both months for A2 and B2 climate scenarios. In both locations, climate 

change alone was observed to have mixed effects on future surface O3 concentrations, 

typically producing a decrease of O3 concentrations, although this was completely offset 

by the effects of biogenic emissions. In Bangkok, under the future landcover scenario, the 

combined effects of climate change and biogenic emissions were observed to cause a 

slight increase in surface O3 concentrations during January in the A2, and during July in 

the B2 scenarios; as well as a small decrease during July (A2) and January (B2) relative to 

the present-day landcover scenario. In Danum, the combined effects of climate changes 

and biogenic emissions resulted in a further increase in surface O3 concentrations in both 

months for both climate scenarios. In terms of magnitude, biogenic emissions were
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predicted to have larger impacts on the changes of future surface O3 concentrations than 

climate changes in both climate scenarios with modified future landcover scenario.

In urban areas (Bangkok), the combined impacts of climate change and biogenic 

emissions under present-day and future landcover scenarios were predicted to decrease 

OH concentrations in both months in both A2 and B2 climate scenarios, and the predicted 

decreases were largely caused by biogenic emissions. Suppression of OH concentrations 

was largely due to the oxidation of isoprene by OH radicals. Decreasing OH 

concentration in these scenarios will increase the CH4 life-time, providing an indirect 

positive feedback on climate. Comparatively, OH suppression was much greater under the 

future landcover scenario than in present-day landcover scenario, except during January in 

the B2 climate scenario. However, in the remote location (Danum), the combined impacts 

of climate change and biogenic emissions under present-day and future land cover 

scenarios were predicted to increase OH concentrations in both months for the A2 and B2 

climate scenarios, and the increases were largely attributed by climate changes, although 

suppression of OH concentrations was also observed to be due to biogenic emissions 

through the oxidation of isoprene by OH radicals. In terms of magnitude, the increase in 

future OH concentrations were larger under future land cover than present-day land cover 

scenarios.

In the present-day landcover scenario, the combined impact of climate changes and 

biogenic emissions in Bangkok was observed to have a mixed effect on NOx and HONO2 

concentrations in both A2 and B2 climate scenarios. Under the future landcover scenario, 

the combined impact was predicted to decrease NOx concentrations and had a mixed 

effect on HONO2 concentrations. Biogenic emissions were found to be more important to
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these changes than climate changes in both climate scenarios under present-day and future 

landcover scenarios. In Danum, under present-day and future landcover scenarios, the 

combined impact of climate changes and biogenic emissions was observed to have a 

mixed effect on NOx concentrations but caused a small increase in HONO2 concentrations 

in both A2 and B2 climate scenarios. The balancing effects between biogenic emissions 

and climate changes on the future concentrations of NOx and H 0N 0 2 have resulted in 

small changes to the future concentrations in both climate scenarios.

In Bangkok, the combined impacts of climate changes and biogenic emissions under the 

present-day and future landcover scenarios were predicted to increase PAN concentrations 

in both months in the A2 and B2 climate scenarios. However, in Danum, the combined 

impact of climate changes and biogenic emissions under the present-day landcover 

scenario were predicted to decrease the PAN concentrations during January and increase 

during July in both climate scenarios. On the other hand, under the future landcover 

scenario, the combined impact was predicted to decrease PAN in both months in the A2 

and B2 scenarios. In terms of magnitude, biogenic emissions were more important than 

climate change to the changes in PAN concentrations.

The combined impacts of climate change and biogenic emissions under present-day and 

future landcover scenarios in Bangkok were predicted to increase HCHO and H2 0 2 

concentrations in both climate scenarios, with a large contribution from biogenic 

emissions. However, in Danum, the opposite was found, where the combined impacts of 

climate changes and biogenic emissions under present-day landcover and future landcover 

scenarios were observed to decrease HCHO and H2 0 2 concentrations in both climate 

scenarios. In both locations, biogenic emissions played a more important role in future
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HCHO and H2O2 concentrations than climate changes in both climate and landcover 

scenarios.

In other urban location such as Jakarta, the present-day ozone-episode (2008) 

concentrations of surface 0 3 were found to be higher than in Bangkok (i.e 270 ppbv 

(January) and 216 ppbv (July) in the A2 climate scenario; and 159 ppbv (January) and 

148 ppbv (July) in the B2 climate scenario). Kuala Lumpur, another urban location, was 

observed to have relatively lower ozone-episode concentrations than Bangkok and Jakarta 

(i.e 144 ppbv (January) and 142 ppbv (July) in the BaselineA2 climate scenario; and 144 

ppbv (January) and 138 ppbv (July) in the BaselineB2 climate scenario). In Jakarta and 

Kuala Lumpur, biogenic emissions were found to have negligible effects on future O 3  

concentrations under the present-day and future landcover scenarios in both months for 

the A2 and B2 climate scenarios. Climate change impacts on future surface O 3  

concentrations under the present-day and future landcover scenarios in both months for 

A2 and B2 climate scenarios were relatively small. In both cities, high surface O 3  

concentrations were largely due to anthropogenic emissions. Future changes on other 

trace gases such as OH, NOx, PAN, HONO2 , HCHO, and H2 O2 concentrations, in 

present-day and future landcover scenarios in both A2 and B2 climate scenarios were 

largely attributable to anthropogenic emissions, as the climate changes alone have a very 

small impact, while the biogenic emissions impact was found to be negligible.
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7.2 Summary of Contributions

The first contribution of the thesis is the generation of plausible climate change scenarios 

under various emission scenarios, using the first application of the latest version of a high- 

resolution regional climate model applied to SEA. Very few studies have been carried out for 

SEA, although there is a demand for fine scale (spatially and temporally) simulation within 

research communities as well as for policy makers. Fine-scale climate forecast is of societal 

benefit to stakeholders, including the scientific community and policy makers. Based on 

atmospheric forcing alone, this study has shown that SEA would experience a warming of 

temperatures in both A2 and B2 climate scenarios by the end of the century, the magnitude 

of which fall well in the range of global surface temperature changes. The results presented 

in this thesis, as well as the large number of additional parameters from the regional model 

output that are not presented, but which are also available, can be used in impact assessment 

models. The study also allows us to investigate the performance of the regional climate 

model in featuring a mix of continental and maritime environments.

Secondly, this study has also explored the role of landcover forcing on the regional climate 

change in SEA, using the available features in PRECIS-RCM that allow the prescription of 

specific landcover types for each grid point. The major finding in this investigation was that 

the combined effect of atmospheric and landcover forcing was much larger than atmospheric 

forcing alone. In most studies on climate change, only the atmospheric forcing was 

considered in the model, and landcover was assumed as fixed for the present-day and future 

simulations. Meanwhile, the investigation of the impacts of landcover forcing alone has lead 

to an observed a cooling effect, mostly over the sea/ocean. The findings in this study have 

also confirmed the variation of climate change response due to changes in landcover in 

various regions in the tropics. This study did not provide a detailed explanation of this 

observation, but its possible link with the Asian monsoon circulations warrant further 

investigation, as also mentioned in the following Section 7.3.
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The third contribution of the thesis lies in the first ever attempt to estimate the regional 

biogenic emissions over SEA using the BVOCEM model, newly developed by Lancaster 

University and Sheffield University. The investigation has explored how regional climate 

changes and landcover changes in SEA, with- and without-C02 activity factors, affect the 

biogenic emissions. Increasing future mean surface temperatures (2100) over SEA by 

2.5°C (B2) and 3.5°C (A2) and decreasing PAR in present-day landcover without the C 0 2 

activity factor was observed to increase isoprene emissions to 31 TgC/yr (B2) and 37 

TgC/yr (A2), an increase of 13% and 27%. The inclusion of future C 0 2 concentrations of 

560 ppm in the future scenarios inhibited isoprene emissions to 21 TgC/yr (B2) and 25 

TgC/yr (A2), a reduction of about 19% and 8% respectively. It was also found that the 

inhibitory effect of elevated C 0 2 is much larger than the effect of climate change alone. The 

combined effect of climate changes and landcover forcings without the C 02 activity factor 

increased the regional isoprene emissions further to 32 TgC/yr (B2) and 40 TgC/yr (A2), an 

increase of 18% and 38% respectively. With the inclusion of the C 0 2 activity factor, the 

future emissions of isoprene were significantly inhibited by 60% (B2) and 66%(A2). The 

magnitude of the C 02 inhibitory effect is far more important than the combined effect of 

climate change and lanbdcover forcings on isoprene emissions.

The final contribution of this study deals with the use of simulation results from the 

investigation of climate changes, landcover changes and biogenic emissions changes to 

investigate how climate change-landcover-biogenic emissions-tropospheric chemistry 

system interactions affect the tropsopheric chemistry at selected locations in urban and 

remote areas in SEA. Investigation in urban (Bangkok) and rural (Danum) locations have 

found that the combined impact of climate changes and biogenic emissions was observed 

to increase the future (2100) ozone-episode surface 0 3 concentrations in the present-day 

land cover scenario during January and July in the A2 and B2 climate scenarios. Of the 

two factors considered in the model, biogenic emissions accounted for a larger effect on 

the increase of surface 0 3 concentrations in both months for A2 and B2 climate scenarios.
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In both locations, climate change alone was observed to have mixed effects on future 

surface O 3  concentrations, typically producing a decrease of O 3  concentrations, although 

it was completely offset by the effects of biogenic emissions. In both locations, the 

combined effects of climate changes and biogenic emissions in the future landcover 

scenario were found to have a larger impact on the increase of surface O 3  than in the 

present-day landcover scenario except during July in Bangkok in both climate scenarios. 

In terms of magnitude, biogenic emissions were observed to have a larger impact on 

changes in future surface O 3  concentrations than that of climate changes in both climate 

scenarios under the modified future landcover scenario. For OH radicals, the combined 

impacts of climate change and biogenic emissions under present-day and future landcover 

scenarios in Bangkok were found to decrease OH concentrations in both months in both 

A2 and B2 climate scenarios. The decreases were largely attributed by biogenic 

emissions. Suppression of OH concentrations was largely due to the oxidation of isoprene 

by OH radical. However, the opposite observation was found in Danum, where the 

combined impact of climate change and biogenic emissions under present-day and future 

land cover scenarios was observed to increase OH concentrations in both months in the 

A2 and B2 climate scenarios. The increases were largely attributed by climate change, 

although suppression of OH concentrations was observed to be largely due biogenic 

emissions through the oxidation of isoprene by OH radicals. The modelled decreases in 

OH will increase the CH4 life time in these scenarios, providing an indirect positive 

feedback on climate.
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7.3 Future Work

In reflecting on the research questions addressed in this thesis, a number of other related 

issues surfaced, which warrant further investigation and evaluation. These include:

■ A high resolution regional climate model has been used to investigate the regional 

climate change over continental and islands in SEA, as past studies have also shown that 

this model has the capability to capture high climate resolution over islands. However, 

its also must be recognized that RCMs have deficiencies that need to be ameliorated. 

These include a wide range of issues that might not necessary be directly related to the 

findings in this study that warrant further investigation such as the sensitivity of RCM- 

simulated result, the resolution between nesting data and RCM, model errors or 

deficiencies of nesting data, and improvement of the nesting technique. Related to the 

scope of investigation in this thesis, it is further suggested that an assessment of the 

performance of the PRECIS-RCM is carried out using climate data on much finer 

spatial and temporal scales than is traditionally used for validating global or regional 

models. This includes running the model over the region at 0.22° x 0.22° resolution and 

to include the hourly and daily simulations. Assessing the performance of different 

RCMs over the same domain and comparing the results with the simulation of current 

climates and in their use as a dynamical downscaling tool to provide high-resolution 

climate change information is also suggested.

■ The investigation of regional climate changes in SEA can be further expanded to include 

the investigation of the occurrence of extreme weather and climatic events, as these 

climate manifestations are of paramount importance in assessing the impact of climate 

change such as flooding, forest fires and localized or regional air quality deterioration 

episodes. Analyses of the extremes, therefore, require finer spatial and temporal 

resolutions.
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■ Landcover changes are evidently important variables in the assessment of future 

climate change. Ideally, landcover change should be included in transient simulations 

of the future climate scenarios in order to strive for realistic climate projections. In 

any case, additional experiments using alternative regional climate models should be 

used to repeat this experiment in order to ascertain the extent to which the results are 

dependent on the model. It can also provide insight into the importance of landcover 

change because these models should be capable of capturing the scale of landcover 

changes. Future research to represent finer spatial scales of the updated landcover map 

of SEA will further improve the understanding about the possible effects of landcover 

changes on future climates in the region.

■ The analysis of regional climate change signals in response to future landcover 

changes in this study, and other related studies in relation to the tropics, confirms a 

wide variation in seasonal warming or cooling over SEA across scenarios. 

Meanwhile, the landcover change effects on the regional precipitation are not 

consistent. Findings on the cooling effect of landcover changes in the region, mainly 

over the sea/ocean (as observed in various other studies in the past) and a possible link 

to Asian monsoon circulations warrant further investigation. Further investigations of 

the role of landcover changes on regional climate changes should be conducted, and 

expanded to include other climatic and energy budget variables, as well as the 

hydrological variables such as specific humidity, moisture convergence, latent heat 

flux, sensible heat flux, albedo, total evaporation, evapotranspiration, canopy 

evaporation, surface runoff and soil moisture.

■ The investigation of biogenic emissions over SEA can be further improved through 

the incorporation of improve biogenic emissions factors from various vegetation
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functional types. Based on the biogenic emissions flux findings over oil palm 

plantation in Borneo during the OP3 Measurement Campaign in 2008, it is suggested 

that the existing emission factor of isoprene used in MEGAN as well as in BVOCEM 

models needs to be revised. Also, the improved and updated vegetation cover map 

over SEA is also crucial for the investigation of regional biogenic emissions. Theree is 

a critical need to confirm the CO2 inhibition effect.

■ To improve the understanding of the impact of climate changes and biogenic 

emissions on the future tropospheric chemistry, it is also suggested that future 

anthropogenic emissions are incorporated in the chemistry model. This will further 

explain the importance of anthropogenic emissions contribution to the tropospheric 

chemistry, and will also explore the combined impact of anthropogenic emissions, 

climate changes and biogenic emissions forcings on tropospheric chemistry, 

particularly on surface O 3  concentrations.
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APPENDIX 3.1

WHS land cover classes

Code Land Cover Description
00 • open w ater
01 inland w ater
02 bog or m arsh
03 ice
04 * paddy rice
05 • m angrove (tree sw am p)
10 • d e n se  n eed le lea f evergreen  forest
11 open n e e d le le a f evergreen  forest
12 • d e n s e  m ixed evergreen  + deciduou s forest
13 • open m ixed evergreen  + deciduou s w oodland
14 ev ergreen  broadleaf woodland
15 ev ergreen  broadleaf cropland
16 ev ergreen  broadleaf shrub
17 open d ec id u o u s n eed le lea f w oodland
18 • d e n s e  d ec id u o u s  n eed le lea f forest
19 d e n s e  ev erg reen  broadleaf forest
20 d e n s e  d ec id u o u s  broadleaf forest
21 open d ec id u o u s broadleaf w oodland
22 d ecid u ou s tree  crops (tem perate)
23 open tropical w oodland
24 • w oodland + shrub
25 d e n s e  drought d eciduou s forest
26 o pen  drought d ec id u ou s w oodland
27 d ecid u ou s shrub
28 thorn shrub
30 tem p erate  m ead ow  + perm anent pasture
31 tem p erate  rough grazing
32 tropical gra ss la n d  + shrub
33 tropical p astu re
34 • rough grazing + shrub
35 pasture + tree
36 sem i arid rough grazing
37 tropical sa v a n n a  (grassland + tree)
39 pasture + shrub
40 arable crop land
41 dry farm arable
42 • nursery + market gardening
43 ca n e  su g a r
44 m aize
45 cotton
46 co ffee
47 • vineyard
48 irrigated cropland
49 tea
50 equatorial rain forest
51 equatorial tree  crop
52 tropical broadleaf forest (slight season a lity )
61 tundra
62 dwarf shrub (tundra transition + high altitude w asteland)
70 sand d e ser t + barren land
71 shrub d eser t + sem i desert
73 • sem i d e ser t + scattered  trees
80 • urban
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APPENDIX 3.2

WHS Soil codes and their properties

Code Colour Texture Drainage
11 light coarse free
12 light intermediate free
13 light fine free
14 light coarse impeded
15 light intermediate impeded
16 light fine impeded
17 medium coarse free
18 medium intermediate free
19 medium fine free
20 medium coarse impeded
21 medium intermediate impeded
22 medium fine impeded
23 dark coarse free
24 dark intermediate free
25 dark fine free
26 dark coarse impeded
27 dark intermediate impeded
28 dark fine impeded
29 light — poor
30 medium — poor
31 dark — poor
34 ice — —
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APPENDIX 3.3

Standard Diagnostics: Climate Means

S T A SH
C O D E

D E SC R IP T IO N U N ITS T IM E D O M A IN

1 SURFACE PRESSURE Pa Mean Single
2 WIND U-COM PONENT (=U) (W IN D  G RID ) ms-1 Mean M LC 19
3 WIND V-COM PONENT (=V) (W IN D  GRID ) m s"1 Mean M LC 19
4 POTENTIAL TEM PERATURE (THETA) K Mean MLC 19
10 SPECIFIC HUMIDITY kg kg M ean M LC 19
10 SPECIFIC HUMIDITY kg kg M ean Col. m ean
24 SURFACE TEM PERATURE K Mean Single
24 SURFACE TEM PERATURE K M Dm ax Single
25 BOUNDARY LA Y ER  (=BL) D E PT H rn Mean Single
31 SEA ICE FRACTION (0 < x < 1) — M ean Single
58 SULPHUR DIOXIDE EM ISSIONS kg rrf2 s"1 Mean Single
59 DIM ETHYL SULPHIDE EM ISSIONS kg m"2 s"1 Mean Single
101 S 0 2  MASS M IXING RATIO kg kg Mean M LC 19
102 DIM ETHYL SULPHIDE M IX RAT kg k g '1 M ean M LC 19
103 S 04  AITKEN M ODE AEROSOL kg kg M ean M LC 19
104 S 0 4  ACCUM. M ODE AER O SO L kg kg M ean M LC 19
105 S 0 4  DISSOLVED AERO SO L kg kg Mean M LC 19
106 H2 0 2  MASS MIXING RATIO kg kg Mean M LC 19
121 NATURAL S 0 2  EM ISSIONS kg m~2 s"1 Mean M LC 19
122 OH CONCENTRATIONS molecules cm"3 Mean M LC 19
123 H 0 2  CONCENTRATIONS molecules cm ’3 Mean M LC 19
124 H2 0 2  CONCENTRATIONS kg k g "' Mean M LC 19
125 OZONE FOR SULPHUR CYCLE kg kg "' Mean M LC 19
126 HIGH LEVEL S 0 2  EM ISSIONS kg m 2 s ’ 1 Mean Single
1201 NET DOWN SURFACE SW  FLUX W in '1 Mean Single
1203 NET DOWN SW RAD FLUX: OPEN SEA W m "2 M ean Single
1204 NET DOWN SURFACE SW FLU X  BELOW  690NM W m - 2 M ean Single
1207 INCOMING SW  FLUX A T TOA W m "2 Mean Single
1208 OUTGOING SW FLUX AT TOA W m"2 Mean Single
1209 CLEAR-SKY UPW ARD SW  FLUX A T TOA W m "2 Mean Single
1210 CLEAR-SKY DOWN SURFACE SW  FLUX W m '2 Mean Single
1211 CLEAR-SKY UP SU RFA CE S W FLUX W m ’ 2 Mean Single
1221 LAYER CLD LIQ RE * LAYER CLD A M O U N T Mean M LC 18
1223 LAYER CLD AM T IN SW RA D  (M IC R O PH Y SIC S) — - Mean M LC 18
1235 T O T A L  D O W N W A R D  S U R F A C E  SW  FLUX W  m“2 Mean Single
1241 DROPLET NUM BER C O NC * CLOUD A M O U N T Mean M LC 18
1242 LAYER CLOUD LW C x CLO U D  A M O U N T Mean M LC 18
1243 S 0 4  CCN MASS CONC x COND SAM P W EIG H T Mean MLC 18
1244 CONDITIONAL SAM PLING W EIGHT — Mean M LC 18
1245 2-D EFFECTIVE RADIUS x 2-D  RE W EIGHT Mean Single
1246 W EIGHT FOR 2-D EFFEC TIV E RADIUS — Mean Single
1262 W EIGHTED SW LAYER CLO U D  EX TIN C TIO N — Mean M LC 18
1263 WEIGHTS FOR LAYER CLD  SW  EXTINCTION — Mean M LC 18
1264 WEIGHTED SW CONV. C LOUD EXTINCTION — Mean MLC 18
1265 WEIGHTS FOR CO NV .CLD  SW  EXTINCTION — Mean Single
2201 NET DOWN SURFACE LW FLUX W m’2 Mean Single
2203 NET DOWN LW  FLUX: OPEN SEA W m ’2 Mean Single
2204 T O T A L  CLO U D  FR A C T IO N  (0 < x < 1) — M ean Single
2205 OUTGOING LW FLUX AT TOA W m "2 Mean Single
2206 CLEAR-SKY UPW ARD LW  FLUX AT TO A W m '2 Mean Single
2207 TOTAL DOW NW ARD SU RFA CE LW  FLUX W m '2 Mean Single
2208 CLEAR-SKY DOW N SURFACE LW FLUX W m '2 Mean M LC 18
2262 W EIGHTED LAYER CLO U D  A B SO RPTIV ITY — Mean M LC 18
2263 WEIGHTS FOR LAYER C LO U D  A B SO RPTIV ITY — Mean M LC 18
2264 W EIGHTED CONV. C LO U D  A B SO RPTIV ITY — Mean MLC 18
2265 WEIGHTS FOR CONV. CLOUD A BSO RPTIV ITY — Mean Single

2269 ISCCP CLOUD W EIGHTS Mean M LC 7
2270 ISCCP CLOUD 0.1< i Mean M LC 7
2271 ISCCP CLOUD t <  0.1 Mean M LC 7

2272 ISCCP C L O U D 0.1 < K  1.3 Mean M LC 7
2273 ISCCP CLOUD 1.3 < t <  3.6 Mean M LC 7
2274 ISCCP CLOUD 3.6 <  t  < 9.4 Mean M LC 7

Continued on next page
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ST A SH
C O D E

D E SC R IP T IO N UNITS T IM E D O M A IN

2275 ISCCP CLOUD 9.4 < t < 23.0 M ean M LC 7
2276 ISCCP CLOUD 23.0 < t < 60.0 M ean MLC 7
2277 ISCCP CLOUD 60.0 < t M ean M LC 19
2278 OZO N E CONCENTRATION kg k g "' M ean Single
3026 ROUGHNESS LENGTH m m M ean Single
3201 HEA T FLUX THROUGH SEA ICE W m"2 M ean Single
3202 HEA T FLUX FROM SURF TO DEEP SOIL LEV W m "2 M ean MLB 5
3217 SURFACE & BL HEAT FLUXES W m -2 W m'2 M ean MLB 5
3223 SURFACE & BL M OISTURE FLUXES kg m"2 s"1 M ean Single
3224 W IND MIXING ENERGY FLUX INTO SEA W m’2 M ean Single
3225 W IND U-COM PONENT AT 10 M ETRES (W IN D  GRID ) ms"1 M ean Single
3226 W IND V-COM PONENT AT 10 M ETRES (W IN D  GRID ) ms"1 M ean Single
3228 SURFACE SENSIBLE HEAT FLUX FROM  SEA W m "2 M ean Single
3232 EVAPORATION FROM SEA kg m"2 s"1 M ean Single
3234 SURFACE LATENT HEAT FLUX W m"2 M ean Single
3236 T E M P E R A T U R E  AT 1.5 M E T R E S K M ean Single
3236 TEM PERATURE AT 1.5 METRES K M Dm in Single
3236 TEM PERATURE AT 1.5 METRES K M D m ax Single
3237 SPECIFIC HUM IDITY AT 1.5 M ETRES kg kg "' M ean Single
3245 RELATIVE HUM IDITY AT 1.5 METRES % M ean Single
3249 W IND SPEED AT 10 M ETRES (W IND GRID) m s'1 M ean Single
3249 W IND SPEED AT 10 M ETRES (W IND GRID) m s'1 M Dm ax Single
3254 TH ETA L AT 1.5 M ETRES K M ean Single
3255 Q T AT 1.5 METRES kg k g '1 M ean Single
3259 CANOPY CONDUCTANCE Mean Single
3270 S 0 2  SURFACE DRY DEP FLUX kg m"2 s"1 M ean Single
3271 S 0 4  AIT SURF DRY DEP FLUX kg m"2 s"1 M ean Single
3272 S 0 4  ACC SURF DRY DEP FLUX kg m"2 s"1 M ean Single
3273 S 0 4  DIS SURF DRY DEP FLUX kg m"2 s"' M ean Single
3296 EVAPORATION FROM SOIL SURFACE kg m"2 s"1 Mean Single
3297 EVAPORATION FROM  CANOPY RATE kg m"2 s"1 M ean Single
3298 SUBLIM ATION FROM SURFACE RATE kg m"2s"' Mean Single
3299 TRANSPIRATION RATE kg rrf2 s"1 M ean Single
3312 POTENTIAL EVAPORATION RATE kg m’2 s"1 Mean Single
3313 SOIL M OISTURE A V AILABILITY FACTOR Mean Single
4203 LARGE SCALE RAINFALL RATE kg rrf2 s"1 Mean Single
4204 LARGE SCALE SNOW FALL RATE kg rrf2 s"1 Mean Single
4205 CLOUD LIQUID W ATER CONTENT M ean M LC 19
4206 C LO U D  ICE CONTENT M ean M LC 19
4216 S 0 2  SCAVENGED BY LS PPN kg nr"2 s"1 Mean Single
4217 S 0 4  AITKEN SCAVNGD BY LS PPN kg rr f2 s"1 Mean Single
4218 S 0 4  ACCUM ULATION SCAVNGD BY LS PPN kg rrf2 s"1 Mean Single
4219 S 0 4  DISSOLVED SCAVNGD BY LS PPN kg rrf2 s”1 Mean Single
5205 CO NV ECTIV E RAINFALL RATE kg rrf2 s"1 Mean Single
5206 CO NV ECTIV E SNOW FALL RATE kg m”2 s"1 Mean Single
5209 TEM PERA TU R E (AFTER CONV ECTIO N ) K Mean Single
5209 TEM PERA TU RE (AFTER CONVECTION) K Mean Single
5212 C O NV ECTIV E CLOUD A M O U N T (0< x < 1) - Mean Single
5216 T O T A L  P R E C IP IT A T IO N  RA TE kg m"2 s"1 M ean Single
5234 G RIDBOX MEAN CONV. CLOUD W ATER PATH kg n f 2 s"1 M ean Single
5238 S 0 2  SCAVENGED BY CONV PPN kg nr"2 s"' Mean Single
5239 S 0 4  AIT SCAVENGED BY CONV PPN kg rrf2 s"1 Mean Single
5240 S 0 4  ACC SCAVENGED BY CONV PPN kg m"2 s"' Mean Single
5241 S 0 4  DIS SCAVENGED BY CONV PPN kg m"2 s"' Mean Single

8023 SNOW  M ASS kg m"2 M ean Single

8208 SOIL M OISTURE CO NTEN T IN ROOT ZO N Ei kg nr"2 Mean Single

8209 CANOPY WATER CO NTEN T kg nr 2 Mean Single

8223 SOIL M OISTURE C O NTEN T IN A LAYER kg nr 2 Mean SL 4

8225 DEEP SOIL TEM PERATURE K Mean SL 4

8229 UNFROZEN SOIL M OISTURE FRACTION (0< x < 1) - Mean SL 4

8230 FROZEN SOIL M OISTURE FRACTION (0< x < 1) - Mean SL 4

8231 SNOW  M ELT RATE (LAND) kg m"2 s"1 Mean Single

8233 CANOPY THROUGHFALL RATE kg nr”2 s"1 Mean Single

8234 SURFACE RUNOFF RATE kg rrf2 s"1 Mean Single

8235 SUB-SURFACE RUNOFF RATE kg rr f2 s”1 Mean Single

9201 LAYER CLOUD AM OUNT (0< x < 1) - Mean MLC 19

9206 CLOUD LIQUID W ATER CO NTEN T kg kg "' Mean MLC 19

9207 CLOUD ICE CONTENT kg kg "' Mean M LC 19

9282 CRITICA L RELATIVE HUM IDITY (0< x < 1) Mean MLC 19
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ST A SH
C O D E

D E SC R IPT IO N U N IT S T IM E D O M A IN

12201 WIND W -COM PONENT (=W) (WIND GRID) m s '1 Mean MLC 19
15201 WIND U-COM PONENT (=U) (WIND GRID) m s '1 M ean6 PL 17+
1 5 2 0 2 WIND V-COM PONENT (=V) (WIND GRID) m s-1 M ean6 PL 17+
1 5 2 1 4 ERTEL POTENTIAL VORTICITY K kg m 2 s~’ M ean6 TL 5
1 5 2 1 5 U xV (WIND GRID) m2 s~2 M ean6 PL 17+
1 5 2 1 6 TEM PERATURE (=T) (WIND GRID) K M ean6 PL 17+
1 5 2 1 7 U xT (WIND GRID) m s~ 1 K M ean6 PL 17+
1 5 2 1 8 VxT (WIND GRID) m s-1 K M ean6 PL 17+
1 5 2 1 9 T2 (WIND GRID) K 2 M ean6 PL 17+
1 5 2 2 0 U2 (WIND GRID) m 2 s ' 2 M ean6 PL 17+
15221 V2 (WIND GRID) m 2 s '2 M ean6 PL 17+
1 5 2 2 2 WIND W -COM PONENT (=W) (WIND GRID) m s- ' M ean6 PL 17+
1 5 2 2 3 W x T O N  (WIND GRID) m s~1 K M ean6 PL 17+
1 5 2 2 4 W x U  ON (WIND GRID) m2 s ' 2 M ean6 PL 17+
1 5 2 2 5 W x V  ON (WIND GRID) m 2 s~2 M ean6 PL 17+
1 5 2 2 6 SPECIFIC HUMIDITY (=Q) (WIND GRID) kg k g - ' Me an 6 PL 17+
1 5 2 2 7 Q xU (WIND GRID) kg kg ~ 1 m s '1 M ean6 PL 17+
1 5 2 2 8 Q x V  (WIND GRID) kg kg "1 m s-1 M ean6 PL 17+
1 5 2 3 5 Q xW (WIND GRID) kg k g '1 m s '1 M ean6 PL 17+
1 5 2 3 8 GEOPOTENTIAL HEIGHT (=Z) (WIND GRID) m M ean6 PL 17+
1 5 2 3 9 U xZ x 1 0 6  (WIND GRID) m2 s ' 1 M ean6 PL 17+
1 5 2 4 0 V xZ x10  6  (WIND GRID) m2 s ' 1 M ean6 PL 17+
1 5 2 4 2 W 2 (WIND GRID) m2 s ' 2 M ean6 PL 17+
1 6 2 0 2 GEOPOTENTIAL HEIGHT (=Z) m M ean6 PL 17+
16 2 0 3 TEM PERATURE (=T) K M ean6 PL 17+
1 6 2 0 4 RELATIVE HUMIDITY % M ean6 PL 17+
1 6 2 2 2 P R E SS U R E  AT MEAN SEA LEVEL Pa M ean6 Sin g le
1 6 2 2 4 Z2 m2 M ean6 PL 17+
1 7 2 0 3 MSA kg k g ' 1 M ean MLC 19
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Appendix 3.4

Characteristic o f climatic variables taken from the 30-year (2070-2100) seasonal mean field over 
Southeast Asia for the A2 scenario under the present-day land cover (PLC) during DJF (Dec-Jan- 
Feb), JJA (Jun-Jul-Aug) as well as during the two inter-monsoon periods (MAM and SON). The 
minimum and maximum values thus represent spatial over the seasonal mean fields.

SRES A2
clim atic  variab les

BASELINE A2PLC A2PL C -B A SE LIN E
M ean | Min | Max M ean | Min M ax M ean | Min M ax

DJF 25.28 6.73 28.82 28.23 10.81 31.65 2.95 1.78 6.03

Surface T em p eratu re  (°C)
MAM 26.88 13.64 32.78 30.00 17.27 35.69 3.12 2.08 5.54

JJA 27.14 13.20 29.97 30.23 16.78 34.23 3.09 1.83 6.82

SON 26.59 12.74 29.22 29.54 16.45 33.16 2.95 1.17 5.71

DJF 5.24 0.04 31.29 4.83 0.02 33.94 -0 .40 -5.19 8.69

Total P recip itation MAM 5.47 28.42 0.31 4.64 0.16 32.62 -0.83 -5.55 6.21

(m m /d ay) JJA 8.42 48.66 0.01 8.63 0.01 56.06 0.21 -11.24 12.51

SON 7.27 0.18 37.42 7.10 0.11 42.74 -0 .17 -6 .04 5.86

DJF 0.61 0.11 0.98 0.54 0.07 0.97 -0.07 -0.19 0.12

Total C loud Fraction
MAM 0.61 0.22 0.95 0.51 0.22 0.93 -0.11 -0.25 0.07

JJA 0.73 0.12 0.99 0.69 0.12 0.98 -0.04 -0.18 0.09

SON 0.67 0.14 0.95 0.61 0.94 0.17 -0 .06 -0 .19 0.09

DJF 215.00 81.56 317.91 220.64 81.08 313.96 5.64 -25.24 38.58

Solar R ad iation M AM 239.44 114.38 300.98 248.68 109.08 303.86 9.24 -35.98 42.41

(W in'1) JJA 213.50 57.70 300.09 218.08 53.89 284.61 4.60 -25.06 49 .4 2

SON 220.27 92.80 317.49 225.70 104.39 313.45 5.43 -28.65 35 .69

DJF 545.22 184.98 902.04 542.15 189.76 929.00 -3 .06 -105.35 200 .76

Boundary L ayer H eight MAM 495.47 173.01 765.18 488.45 152.97 787.05 -7 .02 -87.87 175.30

(m) JJA 514.82 165.78 920.72 538.06 176.14 1000.55 23.24 -163.93 278.44

SON 510.74 178.33 808.97 510.70 158.40 854.99 -0.04 -98.51 173.80
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Appendix 3.5

Characteristic of climatic variables taken from the 30-year (2070-2100) seasonal mean field over 
Southeast Asia for the B2 scenario under the present-day land cover (PLC) during DJF (Dec-Jan- 
Feb), JJA (Jun-Jul-Aug) as well as during the two inter-monsoon periods (MAM and SON). The 
minimum and maximum values thus represent spatial over the seasonal mean fields.

SRES B2
clim atic  variables

BASELINE B2PLC B2PLC -BA SELIN E
M ean i Min [ Max Mean | Min | Max M ean | Min M ax

DJF 25.28 6.73 28.82 27.92 7.57 28.28 2.64 0.84 3.94

Surface T em perature (°C)
M AM 26.88 13.64 32.78 28.93 16.04 34.68 2.05 0.79 3.85

JJA 27.14 13.20 29.97 29.27 15.66 32.66 2.12 0.91 4.53

SON 26.59 12.74 29.22 28.60 15.18 31.74 2.00 0.89 4 .5 2

DJF 5.24 0.04 31.29 4.87 -0.01 32.21 -0..36 -5.15 6 .9 9

Total Precipitation MAM 5.47 28.42 0.31 4.55 0.16 31.87 -0.92 -5.77 5.21

(m m /day) JJA 8.42 48.66 0.01 8.55 0.01 50.44 0.14 -10.19 10.22

SON 7.27 0.18 37.42 6.97 0.13 42.98 -0 .30 -6.27 6.84

DJF 0.61 0.11 0.98 0.54 0.96 0.09 -0.07 -0 .19 0.07

Total Cloud Fraction
MAM 0.61 0.22 0.95 0.51 0.21 0.94 -0.10 -0.23 0.08

JJA 0.73 0.12 0.99 0.69 0.12 0.98 -0.04 -0 .18 0.08

SON 0.67 0.14 0.95 0.61 0.94 0.17 -0.06 -0.19 0.05

DJF 215.00 81.56 317.91 218.15 80.47 312.59 3.14 -25.71 32 .2 8

Solar R adiation MAM 239.44 114.38 300.98 247.32 115.65 301.24 7.88 -35.97 56 .5 7

(Wm'1) JJA 213.50 57.7 300.09 217.32 52.13 287.31 3.82 -58.83 73 .36

SON 220.27 92.80 317.49 227.27 104.57 315.90 7.00 -30.78 6 3 .7 8

DJF 545.22 184.98 902.04 486.33 89.96 924.48 -5.89 -475.81 506 .24

Boundary L ayer H eight M AM 495.47 173.01 765.18 452.57 96.52 895.03 -4 .90 -345.13 337 .53

(m) JJA 514.82 165.78 920.72 453.10 71.69 988.43 -6.72 -510.98 354 .0 7

SON 510.74 178.33 808.97 437.69 67.66 772.15 -7.04 -385.90 344 .1 5
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Appendix 4.1

Characteristic of climatic variables taken from the 30-year (2070-2100) seasonal mean field over 
Southeast Asia for the three A2 scenario experiments under the modified future land cover (FLC) 
during DJF (Dec-Jan-Feb), JJA (Jun-Jul-Aug) as well as during the two inter-monsoon periods 
(MAM and SON). The standard deviation, minimum and maximum values thus represent spatial 
over the seasonal mean fields.

SRES A2
C lim a t ic  V a r ia b le s

A2FLC A2FLC-BASELINE A2FLC -A 2PLC
M ean | Min M ax M ean | Min | M ax M ean | Min | M ax

DJF 28.07 10.94 31.22 2.78 1.49 5.34 -0.07 -1.54 1.70

Surface T em p erature (“C)
MAM 29.75 16.88 35.76 2.84 1.73 4.72 -0.25 -1.53 0.76

JJA 30.00 16.51 33.62 2.84 1.46 5.58 -0.13 -1 .86 1.15

SON 29.39 16.49 32.58 2.76 1.49 5.34 -0.16 -2.33 1.38

DJF 4.83 0.03 32.61 -0.39 -6.33 7.56 0.03 -3.67 4.33

Total Precip itation MAM 4.62 0.16 31.69 -0.85 -6.28 5.97 0.06 2.63 5.19

(m m /d ay) JJA 8.39 0.001 51.16 -0.02 -10.71 12.01 -0.29 -16 .08 7.47

SON 7.01 0.10 39.80 -0.20 -5.70 6,39 -0.02 -5.08 7.48

DJF 0.53 0.07 0.97 -0.08 -0.19 0.06 -0.01 -0.13 0.11

T ota l C loud Fraction
MAM 0.50 0.23 0.94 -0.11 -0.25 0.10 -0.001 -0.10 0.07

JJA 0.67 0.11 0.97 -0.06 -0.21 0.06 -0.02 -0.14 0.11

SON 0.60 0.16 0.94 -0.06 -0.20 0.08 -0.02 -0.15 0.07

DJF 221.36 80.81 314.74 6.36 -60.17 41.46 0.72 -58.18 18.49

Solar R ad iation MAM 248.65 110.81 303.34 9.21 -74.40 57.31 -0.03 -71.01 41 .80

(W nT2) JJA 220.2 58.56 285.51 6.70 -72.98 77.73 2.12 -64 .60 59.06

SON 228.40 103.78 314.38 8.13 -75.50 54.92 2.70 -68.80 40 .4 0

DJF 534.04 196.50 907.28 -11.18 -129.48 240.05 -8.11 -214.3 198.3

B oundary L ayer H eight MAM 485.04 156.88 797.07 -10.43 -165.09 184.25 -3.41 -184.45 106.57

(m) JJA 526.06 926.33 172.82 11.24 -188.40 295.14 -12.00 -159.40 168.60

SON 501.81 158.99 849.34 -8.93 -181.90 168.76 -8.89 -160.58 153.05

Note: BASELINE and A2PLC values can be seen in Appendix 3.4
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Appendix 4.2

Characteristic o f climatic variables taken from the 30-year (2070-2100) seasonal mean field over 
Southeast Asia for the B2 scenario experiment under the modified future land cover (FLC) during 
DJF (Dec-Jan-Feb), JJA (Jun-Jul-Aug) as well as during the two inter-monsoon periods (MAM 
and SON). The standard deviation, minimum and maximum values thus represent spatial over the 
seasonal mean fields.

S R E S  B 2

C l im a t ic  V a r ia b le s
B 2 F L C B 2 F L C - B A S E L I N E B 2 F L C - B 2 P L C

M ean | Min Max M ean Min | Max M ean | M in | M ax

DJF 27.23 9.72 30.62 1.95 0.65 5.69 -0 .12 -1 .19 1.52

Surface T em p era tu re  (°C)
MAM 28.95 15.97 34.74 2.79 0.82 3.96 -0.15 -2.95 1.41

JJA 29.29 15.64 32.54 2.14 0.87 4.77 -0 .09 -1.47 2.47

SON 28.59 15.18 31.74 2.00 0.62 4.52 -0 .06 1.64 2.46

DJF 4.88 0.01 29.88 -0.35 -5.17 6.41 -0 .06 -2 .32 3.27

T otal P recip itation MAM 4.49 0.16 30.22 -0 .99 -6.15 5.46 -0.07 -2.31 4.65

(m m /d ay) JJA 8.49 0.02 49.76 0.07 -10.77 10.57 -0 .06 -3.55 2.82

SON 6.83 0.12 40.51 -0.44 -6.96 6.85 -0.15 -2 .90 4 .0 6

DJF 0.55 0.07 0.97 -0.06 -0.19 0.09 0.003 -0 .07 0.04

T otal C lou d  Fraction
MAM 0.55 0.21 0.96 -0.10 -0.24 0.09 -0.003 -0 .09 0.07

JJA 0.69 0.12 0.98 -0.04 -0.19 0.08 -0.001 -0.03 0.07

SON 0.61 0.14 0.95 -0.06 -0.19 0.06 -0 .004 -0.05 0.05

DJF 220.11 82.42 314.58 5.14 -55.05 34.87 1.96 -51.20 19.99

S o la r  R ad iation MAM 247.95 115.72 301.44 8.51 -73.66 57.38 0.63 -68 .70 23 .50

(W m ‘2) JJA 217.82 53.94 285.34 4.32 -72.92 74.12 0.50 -58 .50 22 .0

SON 227.80 103.64 316.23 7.52 -72.95 63.17 0.53 -66 .80 28 .70

DJF 542.70 195.41 914.25 -2.52 -137.02 230.30 1.82 -165 .90 184.02

B ou ndary L ayer H eight MAM 493.35 162.62 799.46 -2.12 -163.38 153.71 2.35 -99.22 143.85

(no) JJA 535.53 168.03 968.74 20.72 -194.17 259.15 4.01 -153.69 197.67

SON 508.51 156.60 850.60 -2.12 -187.10 169.84 -4 .30 -174.73 143.02

Note: BASELINE and B2PLC values can be seen in Appendix 3.5
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APPENDIX 6.1

Bimolecular chemical equations and 
rate constants, k (cnr3molecule‘1s'1)

No Bimolecular Reactions Rate Constant, k

2
3
4
5
6
7
8
9
10 
1 1  
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

c h 3 + 0 2
c h 3 + 0 3
EtOO + EtOO
EtOO + EtOO
EtOO + EtOO
H + h o 2
H + h o ?
H + h o 2
H + n o 2
H + 0 3
HCO + 0 2
h o 2 + HCHO
h o 2 + h o 2
h o 2 + MeOO
h o 2 + NO
h o 2 + n o 3
h o 2 + n o 3
h o 2 + 0 3
h o c h 2c h 2o o + h o c h 2
h o c h 2c h 2o o + h o c h 2
MeO + NO
MeO + 0 2
MeOO + MeOO
MeOO + MeOO
MeOO + MeOO
MeOO + NO
MeOO + 0 3
n 2o 5 + H20
NO + n o 3
NO + 0 3
n o 2 + n o 3
n o 2 + 0 3
n o 3 + c 2h 2
n o 3 + c 2h 4
n o 3 + c 3h 6
n o 3 + CO
n o 3 + HCHO
O + c 2h 2
O + c 2h 2
0 + c h 3
0 + h 2o 2
0 + HCHO
0 + h o 2
0 + h o 2n o 2
0 + h o n o 2
0 + MeCHO
0 + N 20 5
0 + n o 2
0 + n o 3
0 + 0 3
0 + OH
O(ID) + CH„
O(ID) + c h 4
O(ID) + h 2o

O(ID) + n 2
O(ID) + O?

HCHO + OH 3x1 O' 16
? 5 .1 x l0 '12exp(-210/T)
EtOH + MeCHO + 0 2 3 .2 7 x l0 '14exp(-l 10/T)
EtO + EtO + 0 2 3 .2 7 x l0 'l4exp(-l 10/T)
EtOOEt + 0 2 3.26x1 O' 14 exp(-l 10/T)
h 2 + o 2 5 .6 0 x l0 '12
OH + OH 7.20x10'"
H20  + 0 2.40x1 O' 12
OH + NO 4.00x10'loexp(-340/T)
o h  + o 2 1.40xl0 '10 exp(-480/T
CO + h o 2 5 .5 0 x l0 '12
? 6.7x10'15exp(600/T)
h 2o 2 + 0 2 2.20x 10'13exp(600/T)
0 2 +  MeOOH 3.80x10'l3exp(780/T)
o h  + n o 2 3 .7 0 x l0 'I2exp(240/T)
0 2 + h n o 3 2.15x10”12
OH + N 0 2 + 0 2 2.15x10'12
OH + 0 2 + 0 2 1.40x l0 '14 exp(-600/T)
HOCH2CH2OH + H 0CH 2CH0 + 0 2 1.50x l0 '12
H 0CH 2CH20  + H 0C H 2CH20  + 0 2 8 .3 0 x l0 '13
HCHO + HNO 4 .0 0 x l0 ' 12 (T/300)'07
HCHO + H 0 2 7.20x1 O' 14 exp(-1080/T)
MeOH + HCHO + 0 2 3 .6 7 x l0 'I4exp(365/T)
MeO + MeO + 0 2 3.67x I0'l4exp(365/T)
MeOOMe + 0 2 3.66xl0*!4exp(365/T)
MeO + N 0 2 4.20x10'12exp(180/T)
? 3 .0 0 x l0 ‘17
h n o 3 + H N 03 2 .00x 10 '21
n o 2 + n o 2 1 .80xl0 '"exp(l 10/T)
n o 2 + 0 2 1.80x 10'12exp(-1370/T)
n o  + n o 2 + o 2 4 .5 0 x l0 '14 exp(-1260/T)
n o 3 + 0 2 1.20xl0"l3exp(-2450/T)
? 1.00x1 O' 16
? 3 .3 x l0 'l2exp(-2880/T)
? 9.4x10 ' 15
n o 2 + c o 2 4 .0 0 x l0 ' 19
H N 0 3 + HCO 5 .8 0 x l0 '16
C2HO + H 1.50x 10 '" ex p (-1600/T)
c h 2 + CO 1,50x 10 ' 11 exp (-1600/T)
HCHO + H 1.40x10''°
OH + H 0 2 1.40x 10'12exp(-2000/T)
OH + HCO 3 .40x 10 ' 11 ex p (-1600/T)
o h  + o 2 2.70x1 O’" exp(224/T)
? 7.8x10'"exp(-3400/T)
OH + N 0 3 3 .0 0 x l0 ' 17
MeCO + OH 1.80x1 O'" expC-1100/T)
? 3 x l0 ' 16
o 2 + n o 6.5x10',2exp(120/T)
O2 + n o 2 1.7x10'"
o 2 + 0 2 8x10'12exp(-2060/T)
o 2 + h 2.3x10'"exp(l 10/T)
OH + CH3 1.35xlO ' 10
HCHO + H2 1.5x10'"
OH + OH 2.2xlO ' 10
o  + n 2 1.8x10'1'exp(107/T)
0  + 0 ? 3.2x10'"exp(67/T)

Continue to the next page
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No Bimolecular Reactions
57 0(1 D) + O3
58 0(1 D) + 0 3
59 OH + CH4
60 OH + CO
61 OH + h 2o 2
62 OH + HCHO
63 OH + h o 2
64 OH + HNOj
65 OH + MeOOH
66 OH + MeOOH
67 OH + NO3
68 OH + 0 3
69 OH + OH
70 OH + HONO
71 O3 + HONO
72 c 2h 6 + OH
73 C3H8 + OH
74 C4 H |0 + OH
75 C5H I2 + OH
76 C6H,4 + OH
77 EtOO + NO
78 MeCHO + OH
79 MeCHO + NO3
80 M eC 002N 0 2 (PAN) + OH
81 M eC03 + NO
82 BuOO + NO
83 EtCOMe + OH
84 MeCOOHCOMe + NO
85 HxOO + NO
86 h o c h 2c h 2o o + NO
87 C2H4 + 0 3
88 CH 3CH (00)CH ,0H + NO
89 c 3h 6 + 0 3
90
91
92 c 6h 6 + OH
93 c 7h 8 + OH
94 ArOO + NO
95 HCOCHCHCHO + OH
96 HCOCHCHCO3 + NO
97 HCOCHO + OH
98 MeCOCHO + OH
99 EtOO + h o 2
100 BuOO + h o 2
101 HxOO + h o 2
102 M eC03 + h o 2
103 MeCOOHCOMe + h o 2
104 h o c h 2c h 2o o + h o 2
105 CH3C H (00)C H 20H + h o 2
106 ArOO + h o 2
107 HCOCHCHCO3 + h o 2
108 MeOO + M eC03
109 M eC03 + M eC03

110 EtOOH + OH
111 BuOOH + OH
112 HxOOH + OH
113 MeC03H + OH
114 MVK + OH
115 MVKOO + NO

116 MVKOO + h o 2
117 MVK + 03

02 + o + 0 
0 2 +  0 2 
h 2o  +  c h 3 
h  + c o 2 
h 2o  +  h o 2
H20  + HCO
h 2o  +  0 2
H20  + N 03
h 2o  +  c h 2
H20  + MeOO 
H 02 + N 0 2
h o 2 +  0 2 
h 2o  +  o  
h 2o  +  n o 2
0 2 + HNO3
EtOO
0.33EtO O  +  0.585B u O O  
0.28EtOO +  0 .59B u O O  +  0 .1 8H xO O  
0.25EtO O  +  0 .663B u O O  +  0 .308H xO O  
0.24EtO O  +  0 .705B u O O  +  0.45H xO O  
0.985M eC H O  +  0.985H O 2 +  0.985NO-, 
M e C 0 3
MeC03 + HNO3 
HCHO + N 0 2 
MeOO + N 02
0 .9 lE tC O M e +  0 .9 lH O 2 +  0 .9 lN O 2 
M eC O O H C O M e
0.92 MeCHO + 0.92 MeC03 + 0.92 N 02 
0.96EtCOMe + 0.96EtOO + 0.96NO2 
faWCWO + Jb MeCHO + H 02 + N 0 2 
HCHO + 0.42CO + 0.12HO2 + 0.12H2 
HCHO + MeCHO + H 0 2 + N 0 2 
0.525HCHO + 0.50MeCHO + 0.33CO + 
0.23HO2 + 0.2I5MeOO + 0.095OH + 
O.O6CH4 + 0.06H2 
0.64ArOO 
0.76ArOO
MeCOCHO + H C0CH CH CH0+H 02+N 02 
HCOCHCHCO3
H C O C H O + C O + H O 2+ 3 .0 N O 2 - 2.0N O
2.00CO +  h o 2
MeC03 + CO
EtOOH
BuOOH
HxOOH
MeC03H
MeCHO + M eC03 + OH 
/aHCHO + y&MeCHO + H 02 + OH 
HCHO + MeCHO + H 02 + OH 
?
?
HCHO + 0.50 MeOO + 0.50 H 02
2.00 MeOO
0.75MeCHO + 0.75OH + 0.25EtOO
EtCOMe + OH
HxOO
MeC03
M V K O O
0.60M eC O 3 +  0 .60M eC H O  +  0.30H C H O  
+ 0.30M eC O C H O  +  0 .30H O 2 +  0 .90N O 2 
I.80CO +  0 .60H 2
0.50M eC O C H O  +  0 .50H C H O  +  0 .15M eC O 3 
+ 0.15 M eC H O + 0 .2 1H 02 +  0.20C O  + 0.06H2

Rate Constant, k
1.20x 10 
1.20x1 O' 10
3.90x10‘l2exp(-1885/T) 
1.50x10’13
2.90x 10 'l2exp(-160/T) 
8.80x10exp'l2(25/T) 
4.80x10exp*n (250/T) 
1.50x10 '13
1.00x 10exp'12( 190/T)
1,90x 10exp'l2( 190/T) 
2.30x10'"
1.90x 10exp'l2(-1000/T) 
4.2010exp'l2(-240/T) 
1.80x10'"
5.00xl0 ' 19
1.23x 10 'l2exp(-444/T) 
1.14xlO'l2exp(14/T)
1.55x 1 Oexp' 11 (-540/T) 
3.90x1 O' 12 
5 .60x l0 '12
4.87x 10exp"l2( 180/T) 
5.60xl0exp"l2(310/T)
1,40x 10exp'l2(-1860/T) 
1.20xl0exp"l2( -650/T) 
7.77x 10exp'l2( 180/T) 
4.87x 10exp'l2( 180/T) 
1.80x1 Oexp'"(-890/T) 
4.20x10exp'12(180AT) 
4.87x 10exp'l2( 180/T) 
4.20x 10exp"l2( 180/T) 
1.20xl0exp'l4(-2633/T) 
4.20x 10exp"l2( 180/T)
1.30x 10exp'l4(-2105/T)

7.57x10exp '12( -529/T)
2.1 Ox 10exp'l2(322/T) 
4.20x 10exp'12( 180/T) 
3.00x10'"
4.20x 10exp'l2( 180/T) 
1.15x10-"
1.70x10
6.50x1 Oexp'l3(6507T) 
6.50x10exp'l3(650/T) 
6.50x 10exp'13(650/T) 
6.50x 1 Oexp'I3(650/T) 
6.50x10exp'l3(650AT) 
6.50x1 Oexp'I3(650AT) 
6.50x1 Oexp‘,3(650/T) 
6.50x10 '13exp(650AT) 
6.50x10 ',3exp( 650AT) 
2.20x10 ',2exp( 490IT) 
2.80x10 '12exp(530/T) 
2.00x 10'"
2.00x 10'"
3 .00xl0 '12
5.00xl0 '12
3.00xl0 ' 12 exp(500/T) 
4.20x 10 'I2exp( 180/T)

6.50x 10 '13exp(650/T) 
4.00x 10 'l5exp(-2000/T)

Continue to the next page
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No Bimolecular Reactions Rate Constant, k
118 MACR + OH
119 MACROO + NO

120 MACROO + H 02
121 MACR + 0 3

122 ISOPRENE + OH
123 ISOPROO + NO

124 ISOPROO + HOi
125 ISOPRENE + 0 3

126 h o s o 2 + 02
127 MeOO + s o 2
128 SO + N 0 2
129 SO + 0 2
130 SO + 0 3
131 SO + OH
132 S 02 + h 2o
133 S 02 + HONO
134 S 03 + HONO
135 03 + DMS
136 OH + DMS
137 OH + NO
138 NO3 + h o 2
139 MeSCH20 0 + MeOO
140 MeSCH20 0 + MeSCH2OOH
141 MeSCHOO + N03
142 OH + 03
143 MeSCH20 0 + N 02
144 MeS + O3
145 MeS + n o 2
146 MeSO + 0 3
147 MeSO + n o 2
148 M eS02 + 0 3
149 M eS02 + n o 2
150 M eS03 + h o 2
151 M eS03 + HCHO
152 MeOO + NO3
153 M eC03 + NO3
154 EtOH + OH
155 EtOH + OH
156 c h 2c i o 2 + NO
157 c h 2c io 2 + H 02
158 c h 2c io + 0 2
159 HCOCI + OH
160 CH2C100H + OH
161 LMXYLN + OH

162 LMXYLN + NO3

163 XYLX + OH

164 XYLX + NO3

165 XYLX1 + n o 2
166 XYLX1 + h o 2
167 LMXYLY + 0H
168 LMXYLY + N O 3

169 c 7h 8 + OH

170 TOLX + OH

MACROO
0.90MeCOCHO + 0.90HCHO + 0.90HO2 + 
0.90NO2
2.20CO + 0.60H2
0.50MeCOCHO + 0.65HCHO + 0.36HO2 + 
0.35CO + 0.36H2 + 0.15NO2 - 0.15NO 
ISOPROO
0.90HCHO + 0.90HO2+ 0.90NO2 +0.45MVK 
+ 0.45MACR 
2.75CO + 0.90H2
0.50HCHO + 0.30MACR + 0.20MVK 
+ 0.20CO + 0.06HO2 + 0.06H2 
H 02 + S 03 
MeO + S 03 
S02 + N 0
502 + 0
s o 2 + o 2 
s o 2 + h
0 H  + S03
5 0 3 + 0 2
h 2s o 4
o 2 + h o n o 2 
h 2o  + n o 2
MeSCH20 0  
MeSCH20 0  + H 0 N 02 
MeS + HCHO + N 02 
MeSCH2OOH 
MeS + HCHO + MeO 
MeSCH20 0
MeSCH20 0  + HCHO + N 0 2
MeSO + 0 2
MeSO + NO
MeS02
MeS02 + NO
MeS03
MeS03 + NO
MSA
MSA + CO + H 0 2 
MeO + N 02 + 0 2 
MeOO + C 02 + N 02 
MeCHO + H 02
h o c h 2c h 2o o
CH2C10 + N 02 
CH2C100H + 0 2 
HCOC1 + H 02 
H20  + CO + Cl
c h 2c l o 2 + h 2o
0.8HCOCHCHCHO + 0.8MeCOCHO + 
0.2XYLX + H 02
0.8HCOCHCHCH + 0.8MeCOCHO + H 02 

+ HONOz + 0.2XYLX 
0.9HCOCHCHCHO + 0.9MeCOCHO + 
0.9HO2 + O.lXYLXl 
0.9HCOCHCHCHO + 0.9MeCOCHO + 
0.9HO2 + 0.9HONO2 + 0.1LMXYLY 
LMXYLY 
XYLX
HCOCHCHCHO + MeCOCHO + N 0 2 
HCOCHCHCHO + MeCOCHO + 2N 0 2 
0.8HCOCHCHCHO + 0.8HCOCHO + 
0.2TOLX + H 02
0.9HCOCHCHCHO + 0.9HCOCHO + 
0.9HO2 + 0.1TOLX1

3.86x10 exp( 500/T) 
4.20x10‘i:exp(180rT)

6.50x 10 'l3exp(650/T) 
4.40x10 '15exp(-2500/T)

1.50xl0 '"exp( 500/T) 
4.20x 10 'l2exp( 180/T)

6.50x10 'I3exp( 650/T)
7.00x 10 exp(-1900/T) 

*exp(-330/T))1 . 3 x 1 0 ' i 2 i 

5x l0 '17 
1.4x10'" 
1.4x10'131.4x 10 'l3exp(-2280/T) 
4.5x10 'l2exp(-l 170/T) 
8.6x 10'"
1x1 O'18
3x 10 '12exp(-7000/T)
6.5xl0 ' 15
5xl0 '19
1.8x10 '1'exp(-390/T)
9.6x10 '12exp(-234/T)
1.9xl0 'l3exp(520/T)
4.2x 10 '12exp( 180/T)
1.5xl0‘l3exp(1250/T)
3 x l0 '13
1.5x10'"
lxlO '12
2 x l0 '12exp(290/T)
2.1xl0 '"exp(320/T)
6x l0'13
8x l0'12
3x l0 '13
4x1 O'12
5x10'"
1.6x1 O'15 
lxl O12 
5xl0 '12
4.99x10 '13exp(532/T) 
3.18x 10 'I4exp(532/T) 
1.87x10'"
3.26x10 'I3exp(822/T) 
3x1 O'14
3.67x 10 '"exp( 1419/T)
1.9xl0 'l2exp(190/T)
1.37x10'"

3.8xl0 '16

4.6x10'"

2.0x l0'13
1.0x 10'"
1.0x 10'"
2 .7xl0‘12 
7.0x10'14
1.6xlO'12exp(335/T) + 
7.58x10 'l8T2exp(l 1/T)

3.4x10'
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No Bimolecular Reactions Rate Constant, k
171 TOLX + n o 3

172 TOLX1 + n o 2
173 TOLX1 + h o 2
174 TOLY + OH
175 TOLY + n o 3
176 ALPHAP + OH
177 a p i n o 2 + NO
178 a p i n o 2 + h o 2
179 a p i n o 2 + m
180 APINOH + OH
181 APINOOH + OH
182 PINAL + n o 3
183 PINAL + OH
184 p i n a l o 2 + NO

185 p i n a l o 2 + h o 2
186 p i n a l o 2 + m

193 APINOO + H20
194 APINOO + s o 2
195 ALPHAP + n o 3
196 NAPINO, + NO
197 n a p i n o 2 + m
198 MeCOCH3 + OH
199 MeC0CH20 2 + NO
200 MeC0CH20 2 + h o 2
201 MeC0CH20 2 + m
202 c o 2c 3o o h + OH
203 LIM + OH
204 LIM + n o 3
205 LIM + o 3

206

207
208
209

2 1 0

2 1 1
212
213
214
215

216
217
218

219

LIMP

LMP
LIMP
LIMP

LIMP

OLNN
OLNN
OLNN
OLNN
OLNN

OLNN
OLNN
OLND

OLND

+ NO

+ H 02 
+ MeOO 
+ M eC 03

+ N 0 3

+ NO 
+ N 0 3

+ h o 2
+ OLNN 
+ OLND

+ MeOO 
+ M eC03 
+ NO

+ N 0 3

0.9HCOCHCHCHO + 0.9HCOCHO +
0.9HONO, + 0.1TOLY
TOLY
TOLX
HCOCHCHCHO + HCOCHO + N 0 2 
HCOCHCHCHO + HCOCHO + 2NO, 
APIN02
PINAL + H 02 + N 0 2 
APINOOH
0.7PINAL + 0.7HO2 + 0.3APINOH 
PINAL + H 02 
PINAL + OH 
PINAL02 + HONO,
p i n a l o 2
C 023C4CH0 + MeCOCH3 + HCHO + C 0 2 
+ H 02 + N 02 + 4 0 3 
0.29O3 + PINONIC 
0.7CO23C4CHON + 0.7MeCOCH3 + 
0.7HCHO + 0.7CO2 + 0.7HO, + 2.8403 + 
0.3PINONIC

187 PINONIC + OH — ► p i n a l o 2
188 c o 23c 4c h o + OH — ► c o 23c 4c o 3
189 c o 23c 4c h o + n o 3 — ► c o 23c 4c o 3 + h o n o 2
190 C 0 23C4C 03 + NO — ► M eC03 + HCHO + CO
191 c o 23c 4c o 3 + m — ► CH3C 0 3 + HCHO + CO C 02 + 0 3
192 ALPHAP + 03 — ► 0.85CO23C4CHO + 0.85MeCOCH3 +

0.85HCHO + 0.85OH+ 0.85CO +
0.15APINOO + 3 .403
0.38PINAL + 0.38H2O2 + 0.62PINONIC
PINAL + S 03
NAPIN02
PINAL + N 02 + N 0 2 
PINAL+ N 0 2 
MeC0CH20 2 
M eC03 + HCHO + N 0 2 
C 02C30 0 H
0.6MeCO3 + 0.6HCHO + 0.4MeCOCHO
MeCOCHO + OH
LIMP
0.13OLNN + 0.87OLND 
0.04HCHO + 0.46OLT + 0.14CO +
0 .16EtOO + 0.42MeCOCH2O2 + 0.85OH + 
0.10HO2 + 0.02H20 2 + 0.79MACR + 
0.01ORA1 + 0.070RA2 
0.65HO2 + 0.4MACR + 0.25OLI + 
0.25HCHO + 0.35ONIT + 0.65NO 
OP2
1.4HCHO + 0.6MACR + 0.4OLI + 2H 02 
0.60MACR + 0.40OL1 + 0.40HCHO + H 02 
+ MeOO
0.60M A C R  + 0.40O LI + 0.40H C H O  +  H 0 2 
+ N 0 2
H 02 + ONIT +N 02 
o n i t  + h o 2 + n o 2
ONIT
2 ONIT + H 0 2
0.202H C H O  +  0 .64M eC H O  +  0 .50H O 2 +
0.149M eC O C H 3 +  1.50O N IT +  0 .50N O 2
0.75H C H O  +  H 0 2 +  O N IT
ONIT + 0.5ORA2 + 0.5MeOO + 0.5HO2
0.287H C H O  +  1.24M eC H O  +
0.464M eC O C H 3 +  2 N O 2
0.28H C H O  +  l 24M eC H O  +  M eCOCH-, +
2N O ,

)■"1-14

2.0x 10

1.0x1 O'"
1.0x 10'"
1.4x1 O' 12 
7.0x10 '14
1.2xlO'"exp(444/T) 
8 .9x l0 ',3exp(180/T) 
2.9x10 '13exp(1250/T) 
2 .8xl0 ' 13 x R 02 
2.4x110'"
2.8x 10'
3.8x10'
8.9x10'"
I.lx l0 '"exp(180/T )

4.3x10 '13exp( 1040/T) 
5.0x1 0 '12xRO2

6.2x 10
2.1x 10'"
1,4x 10‘l2exp(-1860/T) 
L lxl0 '"exp(180/T ) 
5.0x10' 12 x R 0 2

rl5exp(-732/T)1,0x 10*

1.6x l0'17
7.0xl0"14
1.2x 10 'l2exp(490/T) 
8 .9x l0 '13exp(180/T) 
2 . 8 x 1 0 ' I 4 x R O 2 

5 . 3 4 x 1 0 '18exp(-230/T) 
2 .9 x l0 'l2exp(8180/T)
1.36x 10',3exp( 1250/T) 
2.0x1 O'12 x R 0 2 
1.2 x 10'"
1.71x1 O'10 
1.22x 10'"
2.00x l0'16

4.00x10' 12

1.50x10'"
3.83xlO'13
9.63xl0 '12

1.20x1 O' 12

4.00x10'12 
1.20x1 O'12 
1.30x10'" 
2.00x l0'12 
1.22x1 O'12

1.72xl0 '12
1.15x10'"
4.00xl0*12

1.20x1 O' 12
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No
220 OLND + h o 2
221 OLND + OLND

222 OLND + MeOO

223 OLND + M eC 03

224 OLT + OH
225 OLT + N 0 3

226 OLT + o 3

227 OLTP + NO

228 OLTP + h o 2

229 OLTP + MeOO

230 OLTP + M eC03

231 OLTP + n o 3

232 OLI + OH
233 OLI + n o 3

234 OLI + 0 3

235 OLIP + NO
236 OLIP + h o 2

237 OLIP + MeOO

238 OLIP + M eC 03

239 OLIP + n o 3

240 OP2 + OH

241 X02 + h o 2

242 X02 + MeOO
243 X02 + M eC03

244 X02 + x o 2
245 X02 + NO
246 X02 + N 0 3

247 ONIT + OH
248 C,5H24 + OH
249 C,5H24 + n o 3

250 c 15h 24 + 0 3
251 c 15h 24 + n o 2

Bimolecular Reactions Rate Constant, k
ONIT
0.504HCHO + 1.21 MeCHO + 0.285MeCOCH3 
+ ONIT
0.96HCHO + 0.5HOi + 0.64MeCHO + 
0.149MeCOCH3 + 0.5NO2 + 0.5ONIT 
0.207HCHO + 0.65MeCHO + 0.167MeCOCH3 + 
0.484ORA2 + 0.484ONIT + 0.516N02 + 
0.516MeOO 
OLTP
0.43OLNN + 0.57OLND 
0.64HCHO + 0.044MeCHO + 0.37CO +
0.140RA 1+0.1 OORA2 + 0.25HO2 +
0.40OH + 0.03COCH3 + 0.03MeCOCH2O2 +
O.O6CH4 + 0.05H2 + 0.006H20 2 + 0.03C2H6 +
0.19Me00 + O.lOEtOO
0.94MeCHO + HCHO + H 02 + N 0 2 +
0.06MeCOCH3
OP2
1.25HCHO + H 02 + 0.699MeCHO + 
0.081MeCOCH3
0.859MeCHO + 0.501 HCHO + 0.501H02 + 
0.50lMeOO + 0.499ORA2 + 0.14lMeCOCH3 
HCHO + 0.94MeCHO + 0.06MeCOCH3 + 
H 02 + N 0 2 
OLIP
0.11 OLNN+ 0.89OLND
0.02HCHO + 0.99MeCHO + 0.16MeCOCH3
+ 0.30CO + 0.011H20 2 + 0.14ORA2 +
O.O74C H 4 +  0.22H O 2 +  0.63OH +  0.23M eO O  +
0.12MeCOCH202 + 0.06C2H6 + 0.18EtOO
H 02+ 1.71MeCHO + 0.29MeCOCH3 + NO2
OP2
0.755HCHO + H 02 + 0.932MeCHO +
0.313MeCOCH3
0.941 MeCHO + 0.29MeCHOCH3 + 0.51H02 
+ 0.51 MeOO + 0.49ORA2 
1.71 MeCHO + 0.29MeCOCH3 + H 02 + N 0 2 
0.44HC3P + 0.08MeCHO + 0.41 MeCOCH3 
+ 0.49OH + 0.07X02 
OP2
HCHO + H 02
MeOO
?
N 02
n o 2
HC3P + N 0 2 + H20  
PM 10 
PM 10 
PM 10 
PM 10

1.30x10'
8.50x10'

.04x10'

7.00x10'

3.06x10'
3.95x10'
1.03x10''

4.00x10

1.30x10
1.57x10

1.06x10'

1.20x 10"

7.12x10'
3.91x10'
2.58x10'

4.00x10'12 
1.30x10'" 
9 .87xl0‘13

6.63x10 '12

1.20x l0'12
6.43xl0 '12

1.30x1 O'10 
9.50x1 O'13 
6.38x l0 '12 
1.42x10"12 
4.00x1 O'12 
1.2x1 O' 12 
2.22x1 O'22 
1.97x1 O'12 
1.92x10'" 
1.20x 1 O'14 
5.00x1 O'19
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APPENDIX 6.2

Trimolecular chemical equations and 
rate constants, k (cm'3molecule'1s'1)

No Trimolecular Reactions Rate Constant, k0 Rate Constant, k„

2
3
4
5
6
7
8
9
10

12

13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31

CH3
EtOO
EtOO
H
H 0 2
h o 2
h o 2
h o 2n o 2
MeO
MeO
N20 5

NO
N 0 2
0
0
0
0(1D)
OH
OH
OH
M eC03
PAN
C2H4
c 3h 6
c 2h 2
M e02N 0 2
MeOO
0
OH
M eS02
M eS03

+ 0 2 +m 
+ N 02 + m 
+ N 02 + m 
+ 02 + m 
+ HCHO + m 
+ H 02 + m 
+ N 02 + m 
+ m
+ NO + m 
+ N 02 + m 
+ m

+ NO + m 
+ N 0 3 + m 
+ NO + m 
+ N 0 2 + m 
+ 02 + m 
+ N2 + m 
+ NO + m 
+ N 0 2 + m 
+  OH +  m 
+ N 0 2 + m 
+ m
+ OH + m 
+ OH + m 
+ OH + m 
+ m
+ N 02 + m 
+ S02 + m 
+ S02 + m 
+ m 
+ m

MeOO + m 
EtON02 + m 
E t02N 0 2+ m 
H 0 2+ m 
H0CH20 0  + m 
H20 2 + 0 2 + m 
H 02N 02 + m 
H 02 + N 0 2 + m 
MeONO + m 
MeON02 + m 
N 0 2 + N 0 3 + m

N 0 2 + N 02 + m 
N20 5 + m 
N 0 2 + m 
N 0 3 + m 
03 + m 
N20  + m 
HONO + m 
H 0 N 02 + m 
H20 2 + m 
PAN + m
M eC03 + N 0 2 + m 
H 0CH2CH20 0  + m 
HOPriOO + m 
HCOCHO + OH+ m 
MeOO + N 0 2+ m 
M e02N 02 + m 
S 03 + m 
H 0 S 0 2+ m 
MeOO + S 0 2+ m 
MeOO + S 0 3+ m

4.5xlOrTr(T/300)’3 
0.00
1.01x10'29(T/300)"6 2 
4.84x10‘32(T/300)''-6 
0.00
1.70xl0’33exp(980/T)
1.4x 10"31 (T/300)3'2 
3.90x10'<5exp(980Ar) 
1.4x10'29(T/300)'3-8 
1.1x10'28(T/300)^ 
1.72x10'3 exp 
(-11080/T)(T/300)’4 
6.93x1 O ^exp^O /T )
2.1 1x10'3O(T/300)‘3 4 
7.8x10 32(T/30)'2 
7.02x10‘32(T/300y2 
6x10'34(T/300)'2J 
3.5x10‘37(T/300).o6 
7x10'31(T/300)'2-6 
2.5x10’3°(T/300)'44 
6.24X 1 O'3 '(T/3 00)"°8 
9.7X10‘29(T/300)'56 
9.9X 10'3exp( 12100/T) 
1.5x1 O'28 (T/300)"3 5 
8xl0 '27(T/300)'3'5 
5.5x1 O'30
9xl0"5exp(9690/T) 
2.3x10_3O(T/300)"4 
3.12xlO'32exp(100/T) 
3 .12xl0"3'(T/300)’3 3

r r1.8x10 (T/300) 
1.3xl0"13 
8.8x l0"12 
7.5x10""
9.7xl0"15

4.7xl0"12
2.6x 10 l5exp(-10900/T) 
3.6xl0""(T/300)'°6 
1.6xl0’"(T/300)"1 
9.7xl0"l4(T/300)° 1 
exp(l 1080/T)

2x10"I2(T/300)' 
3x10" "(T /300)°3 
2x 10""

0.2

3.6xl0""(T/300)'° 1 
1.6x10"" (T/300)"1 7 
3x10""
9 .3 x 10"12(T/300)"15
3 .7x l0 l6exp(-13600/T)
8xlO"'2
3x10'"
8.3x10"3(T/300)2 
l . lx l  0 l6exp(-10560/T) 
8x l0"12

2x10"
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APPENDIX 6.3

Photolysis chemical equations and

No Photolysis Reactions
1 c h 4
2 CO
3 H20
4 h 2o 2
5 h o 2
6 h o 2n o 2
7 h o 2n o 2
8 h o n o 2
9 MeOOH
10 MeOOH
11 N20 5
12 n 2o 5
13 NO
14 n o 2
15 n o 3
16 n o 3
17 o 2
18 o 3
19 o 3
20 HCHO
21 HCHO
22 MeCHO
23 MeCHO
24 EtCOMe
25 HCOCHO
26 MeCOCHO
27 EtOOH
28 BuOOH
29 HxOOH
30 M eC 03H
31 PAN
32 HCOCHCHCHO
33 M e02N 0 2
34 S 0 2
35 HONO
36 CH21C1
37 HCOC1
38 APINOOH
39 PINONIC
40 PINAL
41 c o 23c 4c h o
42 c o 2c 3o o h
43 MeCOCH3
44 OP2

+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv 
+ hv

?
C + 0  
OH + H 
OH + OH 
OH + 0  
OH + N 03
h o 2 + n o 2
OH + N 02 
MeO + OH 
MeO + 0  + H 
N 0 3+ N 0 2 
N 03 + NO + 0  
N + O 
NO + 0  
N 0  + 0 2
n o 2 + o
O + O 
02+ 0 
0 2 + 0 (lD )
CO + h o 2 + h o 2 
c o  + h 2
MeOO + H 02 + CO 
CH4 + CO 
EtOO + M eC03 
?
M eC03 + H 02 + CO 
MeCHO + H 02 + OH 
EtCOMe + H 02 + OH 
EtCOMe + EtOO + OH 
MeOO + OH 
MeCOO + N 0 2 
HCOCHCHCO-, + H 02 
MeOO + N 0 2 
SO + O 
OH + NO 
CH2CI02 
H 02 + C 0 + C11 
PINAL + H 02 + OH
C 023C4CH 0 + MeCOCH3 + HCHO + C 0 2 + H 02 + OH + 4 0 3
C 023C4CH 0 + MeCOCH3 + HCHO + CO + 2H 02 + 4 0 3
M eC03 + HCHO + 2C 0 + C 0 2 + 0 3
M eC03 + HCHO + OH
M eC03 + M e02
MeCHO + H 02 + OH
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APPENDIX 6.4

Surface temperature for a number of climate and landcover scenarios during 
January and July, generated from the PRECIS-RCM (ECHAM4)

Locations Scenarios January (wet season) July (dry season)

Mean Max Min Mean Max Min

BaseA2 22.45 5.62 18.86 28.93 32.11 26.00
A2PLC 26.90 30.28 23.67 30.84 34.65 28.04

Danum A2FLC 27.12 30.83 23.43 32.45 36.525 30.43
BaseB2 22.89 25.82 19.72 28.47 31.27 26.77
B2PLC 25.55 29.20 21.69 30.70 33.97 28.97
B2FLC 26.66 30.34 22.62 31.25 34.26 29.02

BaseA2 23.38 26.46 19.85 26.91 31.11 24.91

A2PLC 26.76 31.15 22.88 29.54 32.76 27.36

Koto A2FLC 27.84 31.53 23.24 29.85 33.31 27.12
T abang BaseB2 22.88 26.01 19.79 26.49 29.28 24.73

B2PLC 25.28 28.86 21.24 28.14 30.98 26.54

B2FLC 25.82 28.31 21.12 28.43 31.43 26.79

BaseA2 23.20 27.45 19.41 30.75 34.93 26.00

A2PLC 26.02 31.84 19.16 33.12 36.06 31.62

Bangkok
A2FLC 29.38 34.35 24.56 38.24 41.68 34.81

BaseB2 22.77 26.82 17.99 31.16 34.07 29.53

B2PLC 26.78 31.92 21.99 34.02 36.92 32.17

B2FLC 27.34 31.65 23.10 36.13 39.33 33.67

Base A 2 24.05 27.38 20.66 27.52 32.36 23.89

A2PLC 27.01 30.92 23.04 33.16 36.23 31.16

Jakarta
A2FLC 28.25 32.36 23.88 33.73 36.51 31.95

BaseB2 24.12 27.49 20.30 26.58 28.65 25.20

B2PLC 26.08 29.23 22.56 28.75 31.43 26.81

B2FLC 26.33 29.85 22.55 32.04 34.06 30.72

Base A 2 30.72 33.77 27.03 30.24 32.78 28.06

A2PLC 30.18 33.53 26.43 34.78 38.22 32.88

Kuala A2FLC 30.62 33.96 26.92 35.05 37.82 33.32

Lumpur BaseB2 26.15 29.25 22.82 27.18 29.83 25.46

B2PLC 28.70 31.63 25.51 31.18 33.83 29.46

B2FLC 29.16 32.57 25.74 31.66 34.84 30.07

Note: BaseA2 -  Baseline for A2
BaseB2-Baseline for B2 
PLC -  Present-day landcover 
FLC- Modified future landcover
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APPENDIX 6.5

Boundary layer depth (m) for a number of climate and landcover scenarios 
during January and July, generated from the PRECIS-RCM (ECHAM4)

Locations Scenarios January (wet season) July (dry season)

Mean Max Min Mean Max Min

Base A 2 826.39 1331.63 562.91 540.91 936.38 310.06
A2PLC 902.19 1490.68 648.41 422.70 878.57 195.12

Danum A2FLC 831.53 1475.81 384.91 577.91 1228.71 265.58
BaseB2 806.10 1334.27 521.25 825.52 1394.02 491.90
B2PLC 810.80 1380.18 519.30 539.83 994.79 393.41
B2FLC 810.40 1427.15 375.26 539.83 994.79 393.41

BaseA2 843.28 1387.19 602.11 499.07 924.22 342.79

A2PLC 1001.97 1965.85 630.12 505.71 1089.86 224.84

Koto A2FLC 1292.20 2256.94 704.82 528.48 802.14 178.30
Tabang BaseB2 825.52 1394.02 491.90 469.77 1052.88 323.82

B2PLC 934.11 1618.03 51143 471.80 1028.63 300.16

B2FLC 725.17 1461.96 344.17 301.58 304.29 299.86

BaseA2 830.92 1461.12 549.10 1156.19 2123.48 725.83

A2PLC 815.70 1948.00 309.30 1146.63 1924.68 878.03

Bangkok
A2FLC 923.82 1969.68 508.16 1278.51 2071.62 975.48

BaseB2 866.84 1694.84 477.31 1071.33 2092.36 740.93

B2PLC 882.01 1547.60 575.80 1248.89 2163.79 1006.94

B2FLC 778.14 1413.92 466.94 1225.93 1876.30 882.75

BaseA2 479.36 876.08 318.05 470.54 909.98 301.28

A2PLC 438.89 1038.14 249.72 611.61 951.00 428.43

Jakarta
A2FLC 540.46 983.07 385.63 526.24 735.26 346.21

BaseB2 585.49 1017.33 378.20 488.42 933.02 349.23

B2PLC 501.01 853.80 279.38 488.82 933.02 349.23

B2FLC 473.59 972.38 354.72 526.24 735.26 346.21

Base A 2 1028.51 1684.95 710.36 587.80 1028.70 463.76

A2PLC 1168.02 2029.91 794.53 642.05 1347.15 441.29

Kuala A2FLC 1130.87 1820.30 791.60 672.29 1127.24 349.25

Lumpur BaseB2 1035.59 1704.97 700.22 584.40 956.30 428.69

B2PLC 1039.39 1732.62 752.08 598.34 975.32 434.76

B2FLC 1026.24 1690.55 709.12 725.68 1204.61 524.10

Note: BaseA2 -  Baseline for A2
BaseB2-Baseline for B2  
PLC - Present-day landcover 
FLC - Modified future landcover
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APPENDIX 6.6

Total cloud for a number of climate and landcover scenarios during January and
July, generated from the PRECIS-RCM (ECHAM4)

Locations Scenarios J a n u a ry  (w et season) Ju ly  (d ry  season)

M ean M ax M in M ean M ax M in

BaseA2 0.32 0.87 0.00 0.45 0.97 0.00

A2PLC 0.23 0.80 0.00 0.50 1.00 0.00

Danum A2FLC 0.23 0.72 0.00 0.44 0.90 0.00

BaseB2 0.43 0.95 0.00 0.43 0.95 0.00

B2PLC 0.06 0.21 0.00 0.39 1.00 0..00

B2FLC 0.23 0.68 0.00 0.38 1.00 0.00

BaseA2 0.39 1.00 0.00 0.48 1.00 0.00

A2PLC 0.30 0.95 0.00 0.50 1.00 0.00

Koto A2FLC 0.32 1.00 0.00 0.42 0.79 0.00

Tabang BaseB2 0.48 1.00 0.00 0.43 0.84 0.00

B2PLC 0.19 0.51 0.00 0.44 0.92 0.00

B2FLC 0.34 0.93 0.00 0.44 0.96 0.00

BaseA2 0.29 0.80 0.00 0.70 1.00 0.00

A2PLC 0.27 0.84 0.00 0.59 1.00 0.00

Bangkok
A2FLC 0.25 0.70 0.00 0.55 1.00 0.00

BaseB2 0.30 0.78 0.00 0.62 0.98 0.00

B2PLC 0.26 0.89 0.00 0.63 1.00 0.00

B2FLC 0.25 0.70 0.00 0.55 1.00 0.00

BaseA2 0.39 1.00 0.00 0.48 1.00 0.00

A2PLC 0.30 0.95 0.00 0.50 1.00 0.00

Jakarta
A2FLC 0.32 1.00 0.00 0.42 0.79 0.00

BaseB2 0.48 1.00 0.00 0.43 0.84 0.00

B2PLC 0.19 0.51 0.00 0.44 0.92 0.00

B2FLC 0.34 0.93 0.00 0.44 0.96 0.00

Base A 2 0.32 0.87 0.00 0.45 0.97 0.00

A2PLC 0.23 0.80 0.00 0.50 1.00 0.00

Kuala A2FLC 0.23 0.72 0.00 0.44 0.90 0.00

Lumpur BaseB2 0.43 0.95 0.00 0.43 0.95 0.00

B2PLC 0.06 0.21 0.00 0.39 1.00 o,.oo

B2FLC 0.23 0.68 0.00 0.38 1.00 0.00

Note: BaseA2 -  Baseline for A2
BaseB2-Baseline for B2 
PLC -  Present-day landcover 
FLC- Modified future landcover
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APPENDIX 6.9

BANGKOK. Tropospheric chemistry composition under various climate, landcover,
biogenic emissions during January and July.

With BVOC Without BVOC

Bangkok
(Thailand) ( '

January 
I'et season) 
(PPbv)

July 
(dry season) 

(P P b v )

January 
(wet season) 

(P P b v )

July 
(dry season) 

(P P b v )

M ean Min Max Mean Min M ax M ean Min Max M ean Min M ax
BaseA2 160.20 109.4 2 2 1 . 1 147.70 1 1 2 . 1 0 188.6 158.6 108.30 219 140.10 106 179.5

BaseB2 159 112.10 215.1 147.9 109.4 192 158.4 111.7 214 141.9 104.8 184.6

0 3
B2PLC 182.1 128.3 244.6 175 130 225 159.5 112.7 215.1 135.2 101.5 173.5

B2FLC 178.6 125.8 240.1 179.1 134.3 229.1 159.5 112.7 215.7 138.30 104.20 176.80

A2PLC 186 4 105.5 277.4 178.7 133.8 227.6 148 83.58 226.2 142.2 107.3 181.5

A2FLC 192.4 142.10 250.9 176.3 131.1 225.4 162 120 212.10 136.3 102.7 173.6

BaseA2 1.74E6 2.351:4 6.981:6 2.06E6 2.5704 1.706 I.78E06 2.34004 7.16E0 2.27006 2.14004 8.41016

BaseB2 1.751-6 2.14E4 7.061*6 2.1406 2 5504 7.79E6 1.7706 2.3904 7.14E6 2.3 106 2.4004 8.5406

OH
B2PLC 1.3606 2.6204 5.131:6 1.2506 2.8704 4.3106 1 831*6 2.5404 7.3806 24806 2.5204 9.16E6

B2FLC 1.431:6 2.6104 5.461:6 1.6006 2.9904 5.6IE6 1.83E6 2.4504 7.3806 2.50E6 2.5504 9.20E6

A2PLC 1.11:6 2.161*4 3.906 1.2806 2.95 E4 4.3706 1.8706 2.0304 7.3506 24706 2.5504 9.06E6

A2FLC 1.2506 2.671*4 4.77E6 1.34 06 2.9504 4.I8E6 1.7406 2.43E4 7.06E6 2.6706 2.6704 9.7906

BaseA2 0.33 0.001 1.09 0.22 7.7E-4 0.69 0.33 1.010-3 111 0.23 7.26 0.71

BaseB2 0.31 1.18-3 1.02 0.25 8.80-4 0.74 0.31 1.160-3 1.02 0.25 8.24E-4 0.77

NO
B2PLC 0.26 1.41-3 0.87 0.18 1.12-3 0.54 0.31 I.13E-3 t.01 0.24 7.710-4 0.72

B2FLC 0.27 1.36-3 0.90 0.20 8.60-4 0.61 0.3! 1.130-3 1.01 0.24 7.24E-4 0.71

A2PLC 0.33 2.16-3 1.25 0.18 1.16-3 0.55 0.57 1.850-4 1.92 0.24 7.630-4 0.72

A2FLC 0.22 1.18-3 0.76 0.18 1.25-3 0.52 0.27 9.43E-4 0.88 0.24 8.230-4 0.73

BaseA2 8.14 4.30 14.90 4.84 3.06 7.46 8.16 4.32 15.02 4.80 3.13 7.41

BaseB2 7.63 4.01 14.1 5.18 3.17 7.94 7.64 4.02 14.15 5.16 3.24 8

n o 2
B2PLC 7.05 3.75 11.66 4.43 2.66 6.63 7.49 4.05 13.72 4.68 3.17 7.03

B2FLC 7.16 3.80 12.12 4.85 2.82 7.25 7.49 4.05 13.72 4.66 3.06 6.94

A2PLC 9.91 4.32 17.02 4.46 2.67 6.75 13.26 5.18 24.16 4.81 3.18 7.29

A2FLC 6.44 3.39 10.72 4.32 2.66 6.40 6.71 3.67 12.37 4.67 3.15 6.93

BaseA2 8.14 4.30 14.90 14.06 12.01 16.35 27.88 23 89 30.66 15.17 12.98 17.65

BaseB2 27.55 23.91 30.27 13.61 11.35 16.15 27 76 24.08 30.49 14.56 12.17 17.26

h o n o 2
B2PLC 21.49 19.11 23.65 7.03 5.78 8.74 28.22 24.55 30.64 14.88 12.57 17.62

B2FLC 22.68 20.07 24.9 9.66 7.68 12.15 28.22 24.55 30.22 15.10 12.75 18.0

A2PLC 13.24 10.15 17.54 7.52 6.32 9.17 24.49 17.87 30.93 14.98 12.62 17.81

A2FLC 21.25 19.08 22.53 6.50 5.37 8.07 29.90 26.77 31.65 14.72 12.22 17.69

BaseA2 5.47 3.78 6.52 3.69 2.71 4.53 5.25 3.604 6.32 2.93 2.04 3.18

BaseB2 4.98 3.43 6.02 3.70 2.67 4.67 4.90 3.36 5.95 3.05 2.09 4.06

PAN
B2PLC 8.57 6.38 10.12 8.82 7.63 9.81 4.89 3.37 5.90 2.62 1.81 3.49

B2FLC 7.85 5 78 9.27 7.99 6.73 8.79 4.89 3.37 5.90 2.73 1.91 3.57

A2PLC 15.77 11.4 20.59 8.85 7.63 9.70 6.3 4.09 7.94 2.9 2.61 3.81

A2FLC 9.61 7.49 10.77 9.07 7.93 10.06 4.72 3.30 5.55 2.55 1.74 3.45

BaseA2 7.05 6 56 7.54 5.24 4 93 5.82 6.70 6.28 7.09 4.02 3.75 4.42

BaseB2 6.48 6.01 6.84 5.13 4.79 5.78 6.33 5.90 6.65 4.09 3.85 4.63

B2PLC 11.60 10.2 13.22 13.10 12.23 14.54 6.29 5.93 6.57 3.77 3.53 4.25

B2FLC 10.65 9.42 12.02 10.66 9.77 11.67 6.29 5.93 6.57 3.79 3.52 4.26

A2PLC 20.32 15.39 26.63 12.79 11.66 14.34 8.42 6.85 9.97 3.88 3.63 4.36

A2FLC 12.71 11.86 13.92 13.65 12.62 15.22 6.13 5.74 6.57 3.61 3.34 4.17

BaseA2 3.38 2.36 4.74 5.48 3.92 7.68 3.27 2.28 4.61 3.41 708 4.91

BaseB2 12.07 11.07 13.25 5.77 4.34 7.81 3.75 2.78 5.0 5.28 3.19 7.30

H,o, B2PLC 5.91 4.27 7.87 11.84 9.64 14.59 3.62 2.58 5.00 4.89 3.52 6.89

B2FLC 5.4! 3.91 7.22 9.79 7.77 12.39 3.62 2.58 5.00 4.97 3.46 7.19

A2PLC 6.55 3.96 9.64 11.42 8.98 14.52 1.59 1.36 2.53 5.39 3.89 7.60

A2FLC 6.97 5.07 9.26 12.70 1043 15.5 3.79 2.56 5.45 5.29 3.99 7.22

Note: BaseA2 -  Baseline for A2
B aseB2-Baseline forB 2 
PLC -  Present-day landcover 
FLC- M odified future landcover
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APPENDIX 6.10

BANGKOK: Tropospheric chemistry composition changes under various climate,
biogenic emissions and landcover scenarios January and July.

S e a s o n S c e n a r io s
o 3

ppbv
l%l

NO
ppbv
l%l

N 0 2
ppbv
|%|

OH
Molecules chi'1 

[%|

HONO:
ppbv
|%|

PAN
ppbv
|%|

HCHO
ppbv
|%|

H :0:
ppbv
l%l

A 2P L C - 26.2 0.0 1.8 -6.4E5 -5.1 10.3 13.3 3.2
BaseA 2 [16.4] [0.0] [21.7] [36.8] [62.7] [188.2] [188.2] [93.8]
A 2F L C - 32.2 -0.11 -1.7 -4.9E5 13.11 4.1 5.7 3.6
BaseA2 [20.1] [33.3] [21.4] [28.2] [161.1] [75.7] [80.3] [106.2]

A 2F L C - 6.0 -0.11 -3.5 4.3E6 8.01 -6.2 -7 .6 0.2
A 2P L C [3.2] [33.3] [35.0] [76.6] [60.5] [39.1] [37.5] [2.9]

i  t X A 2PL C - -10.6 0.2 5.1 9.0E4 -3.4 1.05 1.7 -1.4m **“ ee X B aseA 2 [6.71 [72.71 [62.51 [5.11 [12.21 [20.01 [25.71 [42.21
w I

B2PLC - 23.1 -0.05 -0.6 -3.9E5 -6.1 3.6 5.1 2.1
BaseB2 [14.5] [16.1] [7.6] [22.3] [21.9] [72.1] [79.0] [55.6]

B2FLC - 19.6 -0.04 -0.5 -3.2E5 -4.9 2.9 4.2 2.9
BaseB2 [12.3] [12.9] [6.4] [18.3] [17.7] [57.6] [64.4] [112.2]

B2FLC - -3.5 0.01 0 .1 1 7.0E4 1.2 -0.7 -1 .0 0.5
B 2PLC [1.9] [3.9] [1.6] [5.2] [5.5] [8.4] [8.2] [8.5]

X B 2P L C - 1.1 0.0 -0.15 6.0E4 0.46 -0.01 -0 .04 -0.13
X B aseB 2 [0.7] [0.0] [2.0] [3.41 [1.7] [2.0] [0.6] [3.5]

A 2P L C - 31.0 -0.04 -0.38 -7.8E5 -6.5 5.2 7.6 5.9
BaseA2 [21.0] [18.2] [7.9] [37.9] [46.5] [139.8] [144.1] [108.4]

A 2F L C -
BaseA2

28.6
[19.4]

-0.04
[18.2]

-0.52
[11.3]

-2.6E5
[12.6]

-7.6
[53.8]

5.4
[145.8]

8.4
[160.5]

7.2
[131.8]

A 2F L C -
A 2P L C

-2.4
[1.3]

0.0
[0.0]

-0.14
[3.1]

6.0E4
[4.7]

-1.02
[13.6]

0.2
[2.5]

0.9
[6.7]

1.3
[11.2]

©</> ^ X A 2PL C -
X B aseA 2

2.1
[1.51

0.01
[4.41

0.01
[0.21

2.0E5 
[8-8] ...

-0.2
[1.3]

-0.03

, .[1-92]
-0 .14
[3.5]

1.98
[58.1]

</) a 

Q
B2PLC -
BaseB2

27.1
[18.3]

-0.07
[28.0]

-0.75
[46.0]

-8.9E5
[41.6]

-6.6
[48.4]

5.1
[138.4]

8.0
[155.4]

6.1
[105.2]

B2FLC -
BaseB2

31.2
[21.1]

-0.05
[20.0]

-0.33
[5.2]

-5.4E5
[25.2]

-4.0
[29.0]

4.3
[116.0]

5.5
[107.8]

4.0
[69.7]

B 2FLC -
B2PLC

4.1
[2.3]

0.02
[11.1]

0.42
[9.5]

8.0E4
[9.01

2.6
[37.4]

-0.8
[9.4]

-2 .4
[18.6]

-2.1
[17.3]

X B 2P L C -
X B aseB 2

-6.7
[4.7]

-0.01
[4.01

-0.48
[9.3]

3.0E5
[15.21

0.32
r2.21

-0.43
[14.11

-0 .32
[7.8]

-0 .39
[7.4]

Note: PLC-present-day landcover
FLC-Future landcover
A2PLC-BaseA2/B2PLC-BaseB2: Changes due to climate changes and biogenic emissions under present-day landcover 
A 2 FLC-Base A 2/B 2 FLC-BaseB2: Changes due to climate changes and biogenic emissions underfuture-day landcover 
A2FLC-A2PLC/B2FLC-B2PLC: Changes between present-day landcover and future landcover sceanrios
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APPENDIX 6.11

DANUM: Tropospheric chemistry composition in various climate, biogenic emissions and
landcover scenarios during January and July.

W ith BVOC W ithout BVO C

Danum, Borneo 
(M alaysia)

January  
(wet season) 

(ppbv)

July 
(dry season) 

(ppbv)

January  
(wet season) 

(ppbv)

July
(dry season) 

(ppbv)

M ean Min Max Mean Min Max Mean Min Max M ean Min Max

BaseA2 4.40 2.03 6.48 7.72 1.37 13.66 15 10 13.40 16.64 14.53 9.65 19.89

BaseB2 7.62 5.56 9.35 6.68 1.19 11.82 14.97 13.32 16.47 15.04 ) 1.02 19.32

o2 B2PLC 8.59 6.55 10.30 8.45 2.16 14.16 14.71 13.03 16.23 14.95 10.38 19.68

B2FLC 10.53 8.00 11.77 10.75 4.08 16.69 15.03 13.40 16.46 14.69 9.39 20.09

A2PLC 6.31 4.34 7.94 9.84 2.38 16.55 14.70 13.18 16.04 14.80 8.84 20.88

A2FLC 7.80 4.86 10.34 11.58 5.26 17.23 14.60 12.11 17.07 15.41 11.36 19.62

BaseA2 I.45E4 533.60 4.52E4 2.27E4 536.6 6.44E4 3.43E6 2.37 I.31E07 5.23 E6 3.13E3 2.04 E07

BaseB2 4.I7E4 2.63E3 1.311*05 1.90E4 442.2 5.64E4 3.50E6 2.411 I.32E7 5.06E6 2.99E3 I.93E7

OH
B2PLC 8.971-4 2.43E3 1.32E5 2.66E4 0.85E3 7.70E4 3.68E6 2.43E3 1.36E7 4.97E6 3.01E-3 I.92E7

B2FLC 9.88E4 6.06E3 3.67E5 4.02E4 1.86E3 1.18E5 3.49E6 2.30E3 I.31E7 4.94 E6 2.90E3 1.95E7

A2PLC 2.96E4 1.69 E l 9.25E4 3.23E4 1.03E3 9.36E4 3.47E6 2.27E3 1.30E7 4.84 E6 2.80E3 1.92E7

A2FLC 4.30E4 2.16E3 1.28E3 4.72E4 2.54E3 1.40E5 4.0IE6 2.89E3 1.5IE7 4.98E6 3.01E3 I.88E7

BaseA2 0.01 593 4 0.06 0.03 1.24E-3 0.19 0.05 3.19E-4 0.15 0.14 1.94E-4 0.59

BaseB2 0.01 6 .IIE -4 0.06 0.03 I.16E-3 0.17 0.05 3.69E-4 0.14 0.11 1.71 0.45

NO
B2PLC 0.02 6.12E-4 0.06 0.03 9.83E-4 0.15 0.05 3.78E-4 0.15 0.12 1.46E-3 0.50

B2FLC 0.02 5.33E-4 0.06 0.03 9.6E-4 0.13 0.05 3.08E-4 0.14 0.13 I.26E7 0.57

A2PLC 0.01 6.24E-4 0.05 0.03 8.12E-4 0.16 0.04 3.3IE-4 0.14 0.14 I.16E-3 0.63

A2FLC 0.02 8.27E-4 0.08 0.03 9.92E-4 0.12 0.06 5.35E-4 0.20 0.11 I.5 IE -3 0.44

BaseA2 0.13 0.05 0.23 0.38 0.15 0.82 0.25 0.14 0.38 0.59 0.24 1.08

BaseB2 0.12 0.06 0.21 0.33 0.13 0.71 0.25 0.14 0.37 0.51 0.21 0.91

n o 2
B2PLC 0.12 0.05 0.20 0.34 0.15 0.70 0.24 0.13 0.36 0.54 0.22 0.98

B2FLC 0.15 0.07 0.23 0.33 0.15 0.64 0.24 0.13 0.36 0.58 0.23 1.09

A2PLC 0.11 0.05 0.19 0.39 0.17 0.80 0.23 0.13 0.34 0.63 0.24 1.17

A2FLC 0.16 0.07 0.27 0.31 0.15 0.58 0.32 0.17 0.48 0.50 0.21 0.90

BaseA2 6.82E-4 4.62E-4 9.02E-4 1.16E-3 2.66E-4 I.97E-3 0.38 0.25 0.54 0.41 0.07 0.41

BaseB2 1.93E-3 1.4 IE-3 2.59E-3 9.98E-4 3.09E-4 1.61E-3 0.36 0.25 0.52 0.41 0.11

h o n o 2
B2PLC 1.86E-3 I.32E-3 2.46E-3 1.44E-3 4.2 IE-4 2.39E-3 0.36 0.24 0.51 0.43 0.10 0.89

B2FLC 6.0E-3 4.0E-3 8.0E-3 2.2E-3 7.0E-4 3.7E-3 0.38 0.26 0.54 0.46 0.09

A2PLC I.37E-3 i.00E-3 1.77E-7 I.92E-3 4.21E-4 3.33E -3 0.37 0.26 0.52 0.47 6.08 1.020

A2FLC 1.66E-3 9.37E-4 0.49E-3 2.5E-3 9.95E4 4.I2E-3 0.33 0.17 0.55 0.43 0.13

BaseA2 0.14 0.10 0.19 0.58 0.49 0.70 0.01 7.03E-3 0.03 0.02 0.0) 0.04

BaseB2 0.11 0.07 0.14 0.50 0.42 0.60 0.01 6.68E-3 0.03 6.50

PAN
B2PLC 0.10 6.07 0.13 0.54 042 0.65 0.01 0.005 0.02 0.02 0.01 0.04

B2FLC 0.09 0.06 0.10 0.49 0.37 0.60 0.01 0.07

A2PLC 0.10 0.06 0.14 0.63 0.49 0.77 0.009 0.006 0.Q2 0.02 0.01 

7.7 IE-3

0.05

0.03
A2FLC 0.13 0.09 0.17 0.45 0.34 0.56 0.01 6.66E-3

BaseA2 5.21 4.02 6.18 9.14 8.39 10.03 0.76 0.73 0.86 0.72

0.70

0.52

0.54

1.05

BaseB2 3.52 2.95 4.03 8.95 7.98 9.87 0.75 0.86 0.99

HCHO
B2PLC 3.40 2.87 3.88 8.57 7.65 9.49 0.73 0.68 0.85 0.71

0.73

0.54

0.54

1.01

1.05
B2FLC 2.73 2.50 2.96 7.45 6.74 8.33 0.75

A2PLC 3.68 2.99 4.28 8.57 7.95 9.56 0.73 0.69 0.83

0.96

0.75 0.54 1.09

0.99
A2FLC 3.88 3.35 4.47 7.05 628 8,00 0.71

BaseA2 4.21 3.70 4.73 5.23 3.63 7.06 0.77 0.63

0.69

0.93

0.96

0.77 0.63

0.26

0.93

0.60
BaseB2 3.02 2.70 3.35 5.98 4.57 7.56

h 2o 2
B2PLC 3.06 2.74 3.38 5.22 3.73 6.88 0.87 0.75

0.69

1.00 0.35

0.29

0.19

0.12

0.58

0.54
B2FLC 2.35 2.10 2.62 4.49 3.25 5.90 0.97

A2PLC 3.28 2.93 3.64 4.68 2.88 6.66 0.84 0.72

0.56

0.99

0.79

0.31

0.39

0.52

0.23

0.17

0.63
A2FLC 2.63 2.29 2,98 4.48 3.41 5.71

Note: BaseA2 -  B aseline for A2
BaseB2-Baseline fo rB 2  
PLC -  Present-day landcover 
FLC- M odified future landcover
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APPENDIX 6.12

DANUM: Tropospheric chemistry composition changes in various climate changes,
biogenic emissions and landcover scenarios during January and July.

Season Scenarios
0 3

ppbv
|%|

N O
ppbv
l%l

N O :
ppbv
l%1

O H
Molecules cmJ 

[%|

H O N O :
ppbv
|%)

P A N
ppbv
|%]

H C H O
ppbv
|% |

H jO :
ppbv
|%|

A 2P L C - 1.9 <0.001 -0.02 1.5E4 6.9E-4 -0.04 -1 .5 -0.9
BaseA2 [43.4] [<0.01] [15.4] [104.1] [100.9] [28.6] [29.4] [22.1]

A 2F L C - 3.4 0.01 0.03 2.9E4 9.8E-4 -0.01 -1.3 -1.6
BaseA2 [77.3] [100.0] [23.1] [196.6] [143.4] [7.1] [25.5] [37.5]

A 2F L C - 1.5 0.01 0.05 1.3E4 2.9E-4 0.03 0.2 -0.7
A 2P L C [23.6] [100.0] [45.5] [45.3] [21.2] [30.0] [5.4] [20.3]

I  t' X A 2PL C - -0.4 -0.01 -0.02 4.0E4 -0.01 -0.001 -0.03 0.07

s « X B aseA 2 [2.61 [20.01 [8.0] [1.2] r2.6] [10.01 [4.0] r 9 .nV) =
*3 .2 B2PLC - 0.97 0.01 0.02 4.8E3 2.6E-3 -0 .02 -0.7 -0.5

BaseB2 [12.7] [100.0] [16.7] [115.8] [132.7] [18.2] [19.3] [17.9]

B 2F L C - 2.9 0.01 0.03 5.7E4 4.0E-3 -0 .02 -0.8 -0.7
BaseB2 [38.2] [100.0] [25.0] [136.9] [206.1] [18.2] [22.4] [22.2]

B2FLC - 0.5 0.01 0.01 9.1E3 1.4E-3 -0.001 -0.11 -0.13
B2PLC [4.8] [100.0] [7.1] [10.1] [31.6] [1.1] [3.9] [5.2]

X B 2PL C - -0.3 <0.001 -0.01 1.8E5 <0.001 <0.001 -0 .02 0.06
X B aseB 2 [1.7] [0.00] [4.0] [5.11 [<0.011 [<0.011 [2.7] .  [7.4]

A 2P L C - 2.1 <0.001 0.01 9.6E3 7.6E-4 0.05 -0 .6 -0.6
BaseA2 [27.5] [0.0] [2.6] [42.3] [66.5] [8.6] [6.2] [10.5]

A 2F L C - 3.9 <0.001 -0.07 2.5E4 I.3E-3 -0.13 -2.1 -0.8
BaseA2 [50.0] [<0.01] [18.4] [107.9] [115.5] [22.4] [22.9] [14.3]

A 2FLC - 1.7 <0.001 -0.08 1.5E4 6.1E-4 -0 .18 -1.5 -0 .2
A 2P L C [17.7] [<0.01] [20.5] [46.1] [31.8] [28.6] [17.7] [4.3]

ot/i X A 2P L C - 0.3 <0.001 0.04 -3.9E5 0.06 <0.001 0.03 -0 .04

2 * X B aseA 2 [1.91 [0.00] [6.8] [7.5] [12.81 [0.001 f4.21 [12.91
(Z) J3 

w B2PLC - 1.8 <0.001 0.01 7.6E3 4.4E-4 0.04 -0.4 -0.8

BaseB2 [26.5] [<0.01] [3.0] [40.0] [44.3] [8.0] [4.2] [12.7]

B2FLC -
BaseB2

4.1
[60.9]

<0.001 
[<0.01 ]

-0.02
[6.1]

2.1E4
[111.6]

1.2E-3 
[118.4]

-0.01
[2.0]

-1.5
[16.8]

-1.5
[24.9]

B2FLC -
B2P L C

2.3
[27.2]

<0.001 
[<0.01]

-0.01
[2.9]

1.4E4
[51.0]

7.4E-4
[51.4]

-0.05
[9.3]

-1 .12
[13.1]

-0.7
[14.0]

X B 2PL C -
X B aseB 2

-0.1 
[0 6! ......

0.01
[9.1]

0.03
[5.9]

-9.0E5
[98.21

0.02
[4.9]

0.01
[100.01

0.01
[1.4]

-0 .05
[12.5]

Note: PLC-present-day landcover
FLC-Fulure landcover
A2PLC-BaseA2/B2PLC-BaseB2: Changes due to climate changes and biogenic emissions under present-day landcover 
A 2 FLC-Base A 2/B2 FLC-Base B2: Changes due to climate changes and biogenic emissions underJuture-day landcover 
A 2 FLC-A 2 PLC/B 2 FLC-B2PLC: Changes between present-day landcover and future landcover scenarios 
XA2PLC-XBaseA2/XB2PLC-XBaseb2: Changes due to climate changes alone (without biogenic emissionsj
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APPENDIX 6.13

KUALA LUMPUR, JAKARTA & KOTO TABANG :Impact of Climate 
Changes and Biogenic Emissions under Present-day and Modified Future 
Landcover (PLC) 

A6.13.1.1 Kuala Lumpur 

A6.13.1.1.1 0 3

The present-day O3 concentrations during January and July in Kuala Lumpur were relatively 

lower than in Jakarta and Bangkok by about 143.8 ppbv and 141.5 ppbv for BaselineA2, and 

143.6 ppbv and 137.8 ppbv for BaselineB2 climate scenarios (Appendix 6.14). The combined 

effects o f climate change and biogenic emissions (A2PLC and B2PLC) were observed to 

have very little impact on the increase o f future O3 concentrations, only about 0.3 ppbv 

(0.2%) during January and 0.1 ppbv (0.1%) during July in the A2 climate scenario (Figure 6.5 

and Figure A6.13.1; Appendix 6.7 and Appendix 6.15). In the B2 climate scenario, future 

surface O3 concentrations were increased by 29.4 ppbv (20.5%) during January but decreased 

by 0.5 ppbv (0.4%) during July. Similar to those observed in Bangkok and Jakarta, future 

surface 0 3 concentrations in Kuala Lumpur were also found to be higher during January than 

July in both the A2 and B2 climate scenarios.

To investigate the isoprene emissions effects on future O3 concentrations, the biogenic factor 

was removed from the CiTTyCAT model and compared with the run that had the biogenic 

emissions factor. Results were similar to those observed in Jakarta, where biogenic emissions 

have been shown to have no impact on surface 0 3 concentrations, despite relatively high 

biogenic emissions. As the anthropogenic emissions were kept constant in the future climate 

scenario simulations, the changes in surface O3 concentrations were due to climate changes 

alone. Similar to other major cities in SEA, Kuala Lumpur is an urban area with a projection 

of high anthropogenic emissions. As the impact o f biogenic emissions on future surface O3 

were negligible and the effect o f climate change was relatively minimal, anthropogenic 

emissions of NOx and VOCs could have played important roles in the increase o f 0 3 in Kuala 

Lumpur, despite the fact that anthropogenic emissions were kept constant in the future 

simulations. If future anthropogenic emissions are taken into consideration, expected to be 

higher than the present scenario (IPCC, 2000), the current simulation o f future 0 3 

concentrations will certainly be further modified due to several competing processes. Based 

on present-day inventory for anthropogenic emissions, NOx and VOCs accounted for a larger 

portion o f the future O3 production. Production of O3 through direct photolysis o f NO2 and
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subsequent teactions involving NOx and photochemical oxidation o f anthropogenic VOCs are 

the most possible pathway in an urban environment like Kuala Lumpur.

Modification o f future landcover in SEA has also shown no impact by biogenic emissions on 

the suitace O3 concentrations. Climate changes alone were observed to decrease surface O3 

by 4.9 ppbv (3.4%) and 12 ppbv (8.5%) during January and July respectively in A2 the 

climate scenario (Figure 6.5 and Figure A6.13.1; Appendix 6.7 and Appendix 6.15). In the B2 

climate scenario, climate change was responsible for the small increase o f O3 during January 

o f about 0.5 ppbv (0.4%). Comparatively, climate change impact on future O3 concentrations 

was much larger in the present-day landcover scenario.

Day o f y e a r  ( J a n u a ry )Day o f y e a r  ( J a n u a ry )

250

200

150

100

50

Day o f  y e a r  (Ju ly )0
103 192188 189 190 191166 187 1!185184

250

200

150

50

Day o f  y e q r  (Ju ly )
191189 190188185 188104

Figure A6.13.1: Kuala Lumpur. Simulated 0 3 (ppbv) during January and July for the A2 
(left panel) and B2 {right panel) emission scenarios under present-day (PLC) and modified 
future landcover (FLC).
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A6.13.1.1.2 OH

Under the present-day landcover scenarios (A2PLC and B2PLC), climate changes played a 

much laiger i ole in the future changes o f OH concentrations in Kuala Lumpur, while biogenic 

emissions weie obseived to have no impact on them (Appendix 6.14). Climate changes alone 

were responsible for the increase of OH concentrations by 1.5 x 105 molecules cm ' 3 (5 .4 %) 

during January and a decrease by 1.1 x 105 molecules cm ' 3 (4.5%) during July in A2 (Figure 

6.5 and Figure A6.13.2; Appendix 6.7 and Appendix 6.15). In the B2 climate scenario, 

climate changes accounted for the decrease o f about 4 .5  x 1 0 5 molecules cm ' 3 (16%) and 2 .0  

x 105 molecules cm"3 (0.8%) during January and July respectively.

Under the future landcover scenarios (A2FLC and B2FLC), the impact o f climate changes 

alone were observed to increase OH concentrations by between 0.4 x 105 molecules cm ' 3 and 

2.9 x 105 molecules cm ' 3 in both the A2 and B2 climate scenarios (Figure 6.5 and Figure 

A6.13.2; Appendix 6.7 and Appendix 6.15). Comparatively, larger impacts on OH 

concentrations (between 1.4% and 25.4%) by climate changes in future landcover scenarios 

were observed than under the present-day landcover scenario in Kuala Lumpur.

OH

D ay o f  y e a r  ( J a n u a ry )

OH

Day o f  y e a r  ( J a n u a ry )

OH

Day o f  y e a r  (Ju ly )

OH

Day o f  y e a r  (Ju ly )

Figure A6.13.2: Kuala Lumpur. Simulated OH (molecules cm'3) during January and July 
for the A2 {left panel) and B2 {right panel) emission scenarios under the present-day (PLC) 
and modified future landcover (FLC).
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A6.13.1.1.3 NOx

Biogenic emissions effects on future NOx concentrations in the present-day landcover 

scenarios (A2PLC and B2PLC) were also found to be negligible in Kuala Lumpur (Appendix 

6.14). Climate changes alone accounted for the increase of NOx in both months for the A2 

and B2 climate scenaiios, with the exception of July in the A2 climate scenario (Figure 6 .6  

and Figuie A6.13.3; Appendix 6.7 and Appendix 6.15). However, the impact o f climate 

changes were relatively small -  between 0.3% and 1.1%, except during January in the B2 

climate scenario, where there was an increase o f about 3.1 ppbv (6 6 %). Climate changes 

impact on NOx concentrations in the future landcover scenarios (A2FLC and B2FLC) have 

been observed to decrease by 0.6 ppbv during January and increase by 0.4 ppbv during July in 

the A2 climate scenario. In the B2 climate scenario, climate changes accounted for the 

increase o f 1.7 ppbv during January and the decrease o f 1.2 ppbv during July (Figure 6 .6  and 

Figure A6.13.3; Appendix 6.7 and Appendix 6.15).

 B ase- A2  A2 -  P L C   A2 -  F L C

n o 2

NO

Day o f y e a r  ( J a n u a ry )

Base- B2  B2 - P L C  B2 - FLC

NO; '

Base- B2  B2 - PLC  B2 - FLC

NO

Day o f y e a r  ( J a n u a ry )

NO;.

Base- B2  B2 - PLC — —B2 - FLC

NO

Day o f  y e a r  (Ju ly )

NO

NO;

Day o f  y e a r  (Ju ly )

Figure A6.13.3: Kuala Lumpur. Simulated NO & N 0 2 (ppbv) during January and July for 
the A2 {left panel) and B2 {right panel) emission scenarios under the present-day (PLC) and 
modified future landcover (FLC).
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A6.13.1.1.4 PAN

Biogenic emissions weie also found to have no impact on future PAN concentrations in Kuala 

Lumpur (Appendix 6.14). Therefore, the future changes in PAN concentrations under 

piesent—day landcover scenarios (A2PLC and B2PLC) were largely due to climate changes. 

Climate changes showed a mixture o f effects on future PAN concentrations. Climate changes 

were responsible for the small decrease of between 0.7% and 12.1% of PAN concentrations in 

both months in the A2 and B2 climate scenarios, except during January in B2, where climate 

changes were observed to increase significantly by 4.9 ppbv (113.5%) (Figure 6.7 and Figure 

A6.13.4; Appendix 6 .8  and Appendix 6.15). A similar trend was observed in future 

landcover scenarios but the impact of climate change was much larger under present-day 

landcover scenarios.

A2 - PLC  A2 - FLC

PAN

Day o f  y e a r  ( J a n u a ry )

B2 - PLC  B2 - FLC
PAN-

Day o f  y e a r  ( J a n u a ry )

Base- B2 — —  B2 - PLC ----------B2 - FLC
PANPAN -

192
Day o f y e a r  (Ju ly )Day o f  y e a r  (Ju ly )

Figure A6.13.4: Kuala Lumpur. Simulated PAN during January and July for the A2 {left 
panel) and B2 (right panel) emission scenarios under the present-day landcover (PLC) and 
modified future landcover (FLC).
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A6.13.1.1.5 H 0N 02

The effects o f climate changes in present-day landcover scenarios (A2PLC and B2PLC) on 

future changes o f HONO2 concentrations were found to be smaller in Kuala Lumpur than 

Bangkok or Jakarta in both months in the A2 and B2 climate scenarios (Appendix 6.14). 

Biogenic emissions impacts on H 0 N 0 2 were found to be negligible. In this case, climate 

changes were solely responsible for the future changes of H 0 N 0 2 concentrations. However, 

the impact o f climate changes alone only accounted for a small decrease in H 0 N 0 2 

concentrations o f about 0.1 ppbv (1%) during January and an increase by 0.2ppbv (2.9%) 

during July in the A2 climate scenario (Figure 6.7 and Figure A6.13.5; Appendix 6 .8  and 

Appendix 6.15).

In the B2 climate scenario, the impact of climate change alone was responsible for the small 

decrease in H 0 N 0 2 concentrations of about 1.1 ppbv (5.6%) and 0.01 ppbv (0.1%) during the 

January and July respectively. The impact of climate change alone, due to perturbations o f 

future landcover, was also observed to have a mixture of effects. In the A2 climate scenario, 

climate changes accounted for the small increase of HONO2 o f about by 0.4 ppbv (2 %) 

during January and a decrease of about 0.7 ppbv (8.9%) during July (Figure 6.7 and Figure 

A6.13.5; Appendix 6 .8  and Appendix 6.15). In the B2 climate scenario, a small decrease was 

observed during January (0.4 ppbv) and an increase during July (0.3 ppbv). Comparatively, 

the impact o f climate changes on HON 02 concentrations in the future landcover scenarios 

was larger than in that o f the present-day landcover scenarios, except during January in the 

B2 climate scenario.
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Figure A6.13.5: Kuala Lumpur. Simulated HONO2 during January and July for the A2 (left 
panel) and B2 {right panel) emission scenarios under the present-day landcover (PLC) and 
modified future landcover (FLC).

A6.13.1.1.6 HCHO and H2 0 2

Climate changes in the present-day landcover scenarios (A2PLC and B2PLC) also played the 

major role in the changes in future HCFIO and H20 2 concentrations in Kuala Lumpur 

(Appendix 6.14). Climate changes were responsible for the small decrease (between 0.02 

ppbv and 0.4 ppbv) o f HCFIO in the A2 and B2 climate scenarios, except for an increase of 

about 3.5 ppbv (61.3%) during January in the B2 climate scenario (Figure 6 .8  and Figure 

A6.13.6; Appendix 6 .8  and Appendix 6.15). Under future landcover scenarios, climate 

changes accounted for the small decrease o f HCHO concentrations in both climate scenarios, 

except during January in the B2 climate scenario. Relatively, the impact of climate changes in 

present-day landcover scenarios was much larger than that in future landcover scenarios, 

except during January in the B2 climate scenario.

In the present-day landcover scenarios (A2PLC and B2PLC), the climate change impacts 

have mixed effects on H20 2 concentrations in the A2 and B2 climate scenarios. In the A2 

climate scenario, climate changes were found to increase H20 2 concentrations by 0.3ppbv 

(7.4%) and 0.5 ppbv (19%) during January and July respectively (Figure 6 .8  and Figure 

A6.13.6; Appendix 6 .8  and Appendix 6.15). Meanwhile, in the B2 climate scenario, climate
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changes accounted for the decrease o f H20 2 concentration by 0 .6  ppbv (14.7%) and 0 .0 2  ppbv 

(0-9/°) during Januaiy and July respectively. In future landcover scenarios, in comparison, 

climate changes have been shown to have a larger impact on the increase o f H20 2 

concentiations in the A2 and B2 climate scenarios, except during July in the B2 climate 

scenario.
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Figure A6.13.6: Kuala Lumpur. Simulated HCHO & H20 2 (ppbv) during January and July 
for the A2 (left panel) and B2 {right panel) emission scenarios under the present-day 
landcover (PLC) and modified future landcover (FLC).

A6.13.1.2 Jakarta 

A6.13.1.2.1 0 3

The present-day 0 3 concentrations during both the January and July in Jakarta weie found to 

be higher than in Bangkok by about 270 ppbv and 216 ppbv for BaselineA2, and 244 ppbv 

and 219.0 ppbv for BaselineB2 (Appendix 6.16). The combined effects of climate change and 

biogenic emissions were observed to have mixed effects on the future simulation of suiface 

O3 concentration, and relatively little impact, which was less than 10/o. Futuie suiface 0 3
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concentrations were found to increase by 8 .6  ppbv (3 .2 %) and 16.8 ppbv (6 .9 %) during 

January in both the A2 and B2 climate scenarios respectively. Meanwhile, during July in both 

scenarios, the simulated 0 3 concentrations were decreased by 17.9 ppbv (8 .3 %) and 2 .2  ppbv 

(1.0%) respectively (Figure 6.5 and Figure A6.13.7; Appendix 6.7 and Appendix 6.17). Based 

on the sensitivity runs of the model with- and without-biogenic emissions, a distinctive 

difference between Bangkok and Jakarta was observed, where biogenic emissions in Jakarta 

were found to have negligible effects on the future changes of surface 0 3. As the 

anthropogenic emissions were kept constant in the model runs, the small changes in future 0 3 

concentrations were solely attributed by climate changes. Despite small changes to the future 

surface 0 3 concentrations, Jakarta recorded the highest concentrations of 0 3 compared with 

other locations considered in this study. Anthropogenic emissions of NOx and VOCs are most 

likely responsible for the high future 0 3 concentrations in Jakarta, which were estimated at 

about 269.3 ppbv (96.9%) and 234.5 ppbv (109.0%) during January and July in the A2 

climate scenario; and about 243.7 ppbv (93.6%) and 219 ppbv (101%) in the B2 climate 

scenario. High concentrations o f NOx during January and July in the A2 and B2 climate 

scenarios could lead to 0 3 production through direct photolysis of N 0 2 and subsequent 

reactions, involving NOx and photochemical oxidation of anthropogenic VOCs 

(Finlayson_Piyys and Pitts, 2000), which leads to the formation of intermediate R 0 2 and 

H 0 2 radicals.

An increase in surface temperature and higher mixing height, less cloud, and relatively lower 

isoprene emissions due to changes in future landcover have shown a mixture o f effects on 

future surface 0 3 concentrations. Similarly in present-day landcover scenarios, the removal o f 

biogenic emissions in the model runs for the sensitivity studies was found to have no effects 

on future surface 0 3 concentrations in future landcover scenarios. Therefore, as the 

anthropogenic emissions were kept constant in the simulations, any future changes in surface 

03 concentrations were due to climate change alone. In this case, climate changes alone 

accounted for a decrease in 0 3 concentrations by about 39.3 ppbv (14.6%) during January and 

an increase o f  about 17.2 ppbv (7.1%) during July in the A2 climate scenario (Figure 6.5 and 

Figure A6.13.7; Appendix 6.7 and Appendix 6.17). In the B2 climate scenarios, climate 

changes accounted for the small decrease o f 0 3 concentrations of about 5.7 ppbv (2.6%) and 

12 ppbv (5.5%) during Januaiy and July respectively.
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Figure A6.13.1.7: Jakarta: Simulated O3 (ppbv) during January and July for the A2 (left 
panel) and B2 (right panel) emission scenarios under the present-day (PLC) and modified 
future landcover (FLC).

A6.13.1.2.2 OH

In Jakarta, climate changes played a much larger role in the future changes o f OH 

concentrations than the biogenic emissions. Climate changes were responsible for the increase 

o f future OH concentrations by 1.3 x 105 molecules cm 3 (January) and 1.4 x 10 molecules 

cm ' 3 (July) in the A2 climate scenario (Figure 6.5 and Figure A6.13.8; Appendix 6.7 and 

Appendix 6.17). Meanwhile, climate changes accounted for the decrease o f about 1.6 x 10 

molecules cm 3 (January) and 3 x 105 molecules cm 3 (July) in the B2 climate scenario. Future 

changes in landcover have found to have no effect on biogenic emissions. On the other hand, 

climate changes accounted for the increase of OH concentrations by 6.7 x 10 molecules cm 

(29%) during January and 1.2 x 10" molecules cm (6.7%) duiing July in the A2 climate 

scenario (Figure 6.5 and Figure A6.13.8; Appendix 6.7 and Appendix 6.17). In the B2 climate 

scenario, climate changes alone accounted for the decrease of OH concentiation o f about 0.7 

x 105 molecules cm ' 3 (2.8%) during January and the increase of about 0.6 x lO3 molecules 

cm 3 (3.3%) during July. Comparatively, in the future landcover scenarios, climate changes 

were found to have a larger impact on the increase of OH concentiations than in piesent-day 

landcover scenarios except during January in the B2 climate scenario.
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Figure A6.13.1.8: Jakarta: Simulated OH (molecules cm'3) during January and July for the 
A2 (left panel) and B2 (right panel) emission scenarios under the present-day (PLC) and 
modified future landcover (FLC).

A6.13.1.2.3 NOx

The combined effects o f climate changes and biogenic emissions on future NOx 

concentrations in the present-day landcover scenario (A2PLC and B2PLC) were largely due 

to climate changes alone. Despite substantial emissions of isoprene observed in Jakarta during 

both months in both climate scenarios, it showed no changes in NOx production in without- 

biogenic emissions in the sensitivity runs (Appendix 6.16). Climate changes alone accounted 

for the increase o f NOx in both months in the A2 and B2 climate scenarios with the exception 

o f July in the A2 climate scenario (Figure 6 .6  and Figure A6.13.9; Appendix 6.7 and 

Appendix 6.17). However, the impact o f climate changes alone were relatively very small; 

only between 0.3% and 8.2% except during January in A2 with an increase o f 2.7 ppbv 

(24.8%).

Under future landcover scenarios (A2FLC and B2FLC), biogenic emissions impact on futuie 

NOx in Jakarta was also found to be negligible. Climate changes were observed to have a 

mixture o f effects on future NOx concentrations. Climate changes accounted for the 

substantial decrease in NOx: about 4.0 (38%) during January and a very small increase of
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about 0.1 ppbv (0.1%) during July in the A2 climate scenarios (Figure 6 .6  and Figure 

A6.13.9, Appendix 6.7 and Appendix 6.17). Similar trends were also observed in the B2 

climate scenaiio, wheie climate change was responsible for the increase o f about 1 .5  ppbv 

(15.3%) o f  NOx concentrations during January and the decrease of about 1.1 ppbv ( 1 1 .1%) 

during July. Comparatively there were much stronger effects from climate changes on future 

changes o f NOx concentrations during January than in July in both climate scenarios.
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Figure A6.13.9: Jakarta: Simulated NO & N 0 2 (ppbv) during January and July for the A2 
{left panel) and B2 {right panel) emission scenarios under the present-day (PLC) and 
modified future landcover (FLC).

A6.13.1.2.4 PAN

Based on the sensitivity runs, removing the biogenic emissions in the present-day landcovei 

scenarios (A2PLC and B2PLC) in the model was shown to have no effects on the future 

concentrations o f PAN as compared with the runs with-biogenic emissions (Appendix 6.16). 

Therefore, the small changes o f PAN concentrations were also solely due to climate changes. 

In Jakarta, in both months in the A2 and B2 climate scenarios, climate changes alone weie 

observed to increase the concentrations o f PAN by 4.5ppbv (A2) and 6.9 ppbv (B2) duiing 

January and to decrease by 0.2ppbv (A2) and 4.4 ppbv (B2) during July (Figuie 6.7 and 

Figure A6.13.10; Appendix 6 .8  and Appendix 6.17). Changes in the futuie climate and in
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isoprene emissions in future landcover scenarios have shown a decrease in PAN 

concentrations in both months for both A2 and B2 climate scenarios, except during January in 

the A2 climate scenaiio, where a substantial increase of PAN was observed (6.2 ppbv or 

about 28 .6 /o) (Figuie 6.7 and Figure A6.13.10; Appendix 6 .8  and Appendix 6.17).
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Figure A6.13.10: Jakarta: Simulated PAN during January and July for the A2 {left panel) 
and B2 {rightpanel) emission scenarios under the present-day landcover (PLC) and modified 
future landcover (FLC).

A6.13.1.2.5 H 0 N 0 2

The combined effects o f climate change and biogenic emissions on future changes o f HONO2 

concentrations were found to be smaller in Jakarta in both months in the A2 and B2 climate 

scenarios (Appendix 6.16). Based on the sensitivity runs, it was observed that biogenic 

emissions have no impact on HONO2 concentrations. As anthropogenic emissions were kept 

constant in the model runs, the small changes in future HONO2 concentrations weie solely 

due to climate changes. Climate changes were observed to increase HONO2 concentrations by 

2.7 ppbv (24.8%) during January and to decrease them by 0.9 ppbv (8.3%) during July in the 

A2 climate scenario (Figure 6.7 and Figure A 6.13 .ll; Appendix 6 .8  and Appendix 6.17). In 

B2 climate scenarios, climate changes alone were obseived to inciease HONO2 

concentrations by 0.6 ppbv (5.7%) and 0.1 ppbv (0.7%) during January and July lespectively. 

Climate change impact on HO N 02 concentrations in future landcover scenarios was also
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found to have a mixture of effects. Climate change accounted for the small increase o f 

H 0 N 0 2 concentrations o f between 0.14 ppbv and 1.8 ppbv in the A2 and B2 climate 

scenaiios, except foi a very small decrease of about 0.5 ppbv (0.02%) during January in the 

B2 climate scenario (Figure 6.7 and Figure A 6.13 .ll; Appendix 6 .8  and Appendix 6.17). 

Compaiatively, the lole o f climate change in the increase o f HONO2 concentrations in future 

landcovei scenarios was more profound than in present-day landcover scenarios.
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Figure A 6 .1 3 .ll: Jakarta: Simulated F10N02 during January and July for the A2 {left 
panel) and B2 {right panel) emission scenarios under the present-day landcover (PLC) and 
modified future landcover (FLC).

A6.13.1.2.6 HCHO and H20 2

Climate changes were found to be responsible for the mixed effects on the future 

concentrations o f HCHO and H20 2. In present-day landcover scenarios (A2PLC and B2PLC), 

climate changes were observed to increase HCHO by 2.5 ppbv (13.8%) duiing Januaiy and to 

decrease it by 1.8 during July in the A2 climate scenario. Meanwhile, in the B2 climate 

scenario, climate change was observed to increase HCHO concentrations by 1.7 ppbv 

(10.7%) and 0.04 ppbv (0.3%) during January and July respectively (Figure 6 .8  and Figure 

A6.13.12; Appendix 6 .8  and Appendix 6.17). In future landcover scenarios (A2FLC and 

B2FLC), HCHO concentrations were observed to decrease by 6.4 ppbv (34.4%) during 

January in the A2 climate scenario but to increase by 2.5 ppbv (18.5%) during July. In the B2 

climate scenario, climate changes were responsible for increases of about 0.7 ppbv (4.5%)
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and 1.5 ppbv (10/o) duiing January and July respectively. A mixture of effects o f climate 

changes undei the piesent-day and future landcover scenarios on future concentrations of 

H2O2 weie obseived. Climate change impacts on H2O2 concentration were slightly larger in 

the futuie landcovei scenario than in that of the present-day, except during January in the B2 

climate scenario. In terms of magnitude, the impact was relatively smaller in both landcover 

scenarios (Figure 6 .8  and Figure A6.13.10; Appendix 6 .8  and Appendix 6.17).
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Figure A6.13.12: Jakarta: Simulated HCHO & H20 2 (ppbv) during January and July for the 
A2 (ileft panel) and B2 {right panel) emission scenarios under the present-day landcover 
(PLC) and modified future landcover (FLC).

A6.13.1.3 Koto Tabang 

A6.13.1.3.1 0 3

The present-day O3 concentrations in Koto Tabang during January and July in the piesent-day 

landcover scenarios (BaseA2 and BaseB2) were about 15.2 ppbv and 5.3 ppbv for 

BaselineA2, and 25.9 ppbv and 4.2 ppbv for BaselineB2 (Appendix 6.18). Without a biogenic 

emissions factor, the baseline O3 concentration increased significantly to 59.7 ppbv (January) 

and 51.1 ppbv (July) in BaselineA2; 60.7 ppbv (January) and 54.5 ppbv (July) in BaselineB2. 

These increases o f surface 0 3 concentrations were largely due to anthropogenic NOx and
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VOCs em issions that were considered as baseline anthropogenic emissions in the CiTTyCAT 

model input. Similarly in Danum, the increases o f surface O 3 in Koto Tabang due to 

anthropogenic em issions were offset by high isoprene em issions incorporated into the model. 

In this case, the low NOx and high isoprene concentrations could actually decrease 0 3 

concentrations, possibly through sequestering NOx as organic nitrates and OH titration.

Future sim ulations to investigate the combined effects o f  climate change and biogenic 

em issions on tropospheric 0 3 concentrations found a decrease o f  6 . 7  ppbv (4 4 . 1 %) during 

January and 2.0 ppbv (36.7% ) during July in the A2 climate scenario (Figure 6.5 and Figure 

A6.13.13; A ppendix 6.7 and Appendix 6.19). In the B2 clim ate scenario during January, the 

future surface 0 3 concentration decreased by 6.3 ppbv (24.3% ) but increased slightly by 0.7 

ppbv (16.7% ) during July. The impact o f climate change alone accounted for the decrease in 

0 3 concentration by 5.4 ppbv (80.6%) during January and the increase by 2.3 ppbv (34.3 %) 

during July in the A2 climate scenario. In the B2 climate scenario, 0 3 concentrations 

decreased by 2.8 ppbv (44.2%) and 0.4 ppbv (52.9%) during January and July respectively. 

The im pact o f  biogenic emissions alone was responsible for the reduction o f  0 3 

concentrations by 1.3 ppbv (19.4%) during January and 4.3 ppbv (218%) during July in A2. 

In the B2 climate scenario, biogenic emissions accounted for the decrease o f  0 3 

concentrations by 0.4 ppbv (52.9%) during January and the increase by 1.1 ppbv during July. 

Clim ate change and biogenic emissions have shown a diverse impact on 0 3 concentrations. In 

Koto Tabang, clim ate change alone was found to play an im portant role in 0 3 concentration 

reduction during January, while biogenic emissions dominated during July in the A2 climate 

scenario. A balancing impact o f climate change and biogenic emissions on the decrease o f  0 3 

concentration was observed during January in the B2 climate scenario. D uring July in the B2 

clim ate scenario, biogenic emissions were found to contribute significantly to the small 

increase o f  0 3 concentrations -  by 1.1 ppbv (152.9%).

An investigation o f the impact o f combined factors on the surface 0 3 concentrations in future 

landcover scenarios were found to cause decreases o f  sm aller magnitude during January in 

A2 (1.9 ppbv) and B2 (1.4 ppbv) climate scenarios (Figure 6.5 and F igure A6.13.13; 

Appendix 6.7 and Appendix 6.19). During July, the com bined effects were observed to cause 

an increase in 0 3 concentrations by 0.1 ppbv (A2) and 0.5 ppbv (B2). The perturbation o f 

future landcover, climate changes alone were responsible for the decrease o f  0 3 by 1 0 . 1  ppbv 

during January and the increase by 3.8 ppbv during July in the A2 climate scenario. In the B2 

climate scenario, climate changes accounted for the increase o f about 5 ppbv duiing January 

and the decrease o f  0.4 ppbv during July. It was also obseived that the effects o f climate 

changes were offset by biogenic emissions. In the A2 climate scenario, biogenic em issions
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accounted for the increase o f  0 3  by 8.2 ppbv during January and the decrease by 3.7 ppbv 

during July. In the B2 clim ate scenario, biogenic em issions were responsible for a decrease o f 

about 6.4 ppbv and an increase o f  about 0.9 ppbv during January and July respectively.
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Figure A6.31.13: Koto Tabang'. Simulated O3 (ppbv) during January and July for the A2 
{left panel) and B2 {right panel) em ission scenarios under present-day (PLC) and modified 
future landcover (FLC).

A6.13.1.3.2 OH

In Koto Tabang, under the present-day landcover scenarios (A2PLC and B2PLC), the 

com bined effects o f  clim ate changes and biogenic em issions on future OH concentrations 

have been found to be opposite from those in Danum. The combined effects have been 

observed to decrease OH concentrations by 2.2 x 104 molecules cm ' 3 (45.4% ) during January 

and 0.6 x 104 m olecules cm ' 3 (45.9% ) during July in the A2 climate scenario (Appendix 6.18). 

M eanw hile, in the B2 climate scenario, OH concentrations decreased by 3.0 x 104 molecules 

cm ' 3 (29.7% ) during January but increased during July by 0.2 x 104 molecules cm 3 (35.7%). 

In both clim ate scenarios, the impact o f  biogenic em issions alone were observed to contribute 

significantly to the decreases o f  OH concentrations during January by 2.3 x 105 molecules cm
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(A2) and 3.3 x 10 m olecules cm 3 (B2), as well as the increases during July by 1.1 x 105 

m olecules cm (A2) and 5.2 x 105 m olecules cm 3 (B2) respectively (Figure 6.5 and Figure 

A 6.13.14; A ppendix 6.7 and A ppendix 6.19). On the other hand, clim ate changes alone 

accounted for relatively small increases in OH concentrations o f  about 2.1 x 105 molecules 

c m ' (A2) and 3.0 x 105 m olecules cm ’3 (B2) during January and decreases by 1.2 x 105 

m olecules cm ’3 (A 2) and 0.5 x 104 m olecules cm"3 (B2) during July.

In future landcover scenarios (A2FLC and B2FLC), the com bined effects have also observed 

to be mixed. The com bined effects o f  clim ate changes and biogenic em issions were observed 

to decrease OH concentration by 1.3 x 103 m olecules cm ’3 during January and increase it by 

0.6 x 103 m olecules cm ’3 during July in the A2 climate scenario (Figure 6.5 and Figure 

A 6.13.14; Appendix 6.7 and A ppendix 6.19). In the B2 climate scenario, combined effects 

were responsible for the decrease in OH concentrations by 1.4 x 104 molecules cm ’3 during 

January and 1.6 x 103 m olecules cm ’3 during July. Based on the isolated effect o f  climate 

changes and biogenic em issions, both factors were found to offset each other in both climate 

scenarios. Com paratively, under the future landcover scenarios, the combined effects were 

observed to have a larger impact on the increase o f  OH concentrations than under the present- 

day landcover scenario except during July in B2.
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Figure A6.13.14: Koto Tabang : Simulated OH (m olecules cm '3) during January and July for 
the A2 (left panel) and B2 (right panel) em ission scenarios under the present-day (PLC) and 
m odified future landcover (FLC).
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A6.13.1.3.3 NOx

In Koto Tabang, the combined effects o f  climate changes and biogenic em issions were 

observed to decrease NOx concentration in both months for the A2 and B2 climate scenarios 

(Appendix 6.18). Similarly with Danum, in terms o f magnitude o f  im pact on the future 

changes o f NOx concentrations, clim ate change and biogenic factors have a balancing effect. 

Climate changes alone have observed to decrease NOx concentrations by 0.21 ppbv and 0.1 

ppbv during January in the A2 and B2 clim ate scenarios respectively, and to  increase them  by 

0.03 ppbv during July in the B2 clim ate scenario (Figure 6.6 and Figure A6.13.15; Appendix

6.7 and Appendix 6 .19- shown as NO and N O 2 ). On the other hand, biogenic em issions alone 

were observed to increase N O x by 0.12 ppbv (A2) and 0.01 ppbv (B2) during January, and

1.01 ppbv during July in B2. D uring July in the A2 climate scenario, biogenic em issions 

accounted for the decrease in N O x concentration by 0.33 ppbv.

In the present-day landcover scenarios (A 2FLC and B2FLC), the combined effects o f  climate 

changes and biogenic emissions were observed to decrease NOx in both m onths for the A2 

and B2 climate scenarios, except during January in B2 (Figure 6.6 and F igure A6.13.15; 

A ppendix 6.7 and Appendix 6.19). In the A2 climate scenario, the combined effects 

accounted for the decrease in N O x concentrations by 0.12 ppbv during January and 0.4 ppbv 

during July. Meanwhile, in the B2 clim ate scenario, the combined effects accounted for the 

increase o f  NOx concentrations by 0.03 ppbv during January and a decrease by 1.04 ppbv 

during July. Relatively, the com bined effects in the future landcover scenarios were found to 

have a larger impact on the increase o f  N O x concentrations in B2, and on the decrease in A2, 

than in the present-day landcover scenario.
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Figure A6.13.15: K oto Tabang : Simulated N O  & N 0 2 (ppbv) during January and July for 
the A2 (ileft panel) and B2 (right panel) em ission scenarios under the present-day (PLC) and 
m odified future landcover (FLC).

A6.13.1.3.4 PAN

In the present-day landcover scenarios (A2PLC and B2PLC), the com bined effect o f  climate 

changes and biogenic em issions were responsible for the increase o f PAN concentrations by 

0.23 ppbv (37.7% ) during January and 0.04 ppbv (4.8% ) during July in the A2 climate 

scenario (Figure 6.7 and Figure A6.13.16; A ppendix 6.8 and Appendix 6.19). In the B2 

clim ate scenario, combined effects accounted for the small decrease o f  PAN concentrations 

by about 0.04 ppbv (4.8% ) during January and 0.01 ppbv (1.2%) during July. Under this 

scenario, clim ate changes and biogenic em issions were observed to have a balancing effect on 

the future changes o f  PAN in Koto Tabang. C lim ate changes alone were found to decrease 

PAN by 0.13 ppbv (56% ) during January and increase by 0.07 ppbv (175% ) during July in the 

A2 clim ate scenario. In the B2 climate scenario, clim ate changes were responsible for the 

decrease o f  PAN concentrations by 0.10 ppbv and 0.02 ppbv during January and July 

respectively. At the same time, biogenic em issions were also responsible for the increase o f 

PAN concentrations by 0.36 ppbv (156.5% ) during January and the decrease by 0.03 ppbv 

(75% ) during July in the A2 clim ate scenario. In the B2 climate scenario, biogenic emissions 

were responsible for the decrease o f  about 0.08 ppbv (44.4% ) and 0.01 ppbv (100%) during 

January and July respectively.
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Sim ilar to that o f  present-day landcover scenarios, the combined effects o f  clim ate change 

and biogenic em issions in future landcover scenarios were also observed to have mixed 

effects on PAN concentrations, and com paratively larger impacts during January than during 

July in both clim ate scenarios. In the A2 clim ate scenario, the combined effects were 

observed to decrease PAN concentrations by 0.31 ppbv (36.9% ) during January and to 

increase a small concentrations o f  PAN o f  about 0.02 ppbv (2.4%) during July (Figure 6.7 

and Figure A6.13.16; Appendix 6.8 and A ppendix 6.19). M eanwhile, in the B2 climate 

scenario, the com bined effects accounted for the increase o f  about 0.16 ppbv (16.5% ) during 

January and a small decrease during July o f  about 0.01 ppbv (1.2%). The balancing effects o f 

clim ate changes and biogenic em issions were found to be im portant to the future 

concentrations o f  PAN in Koto Tabang.

Base- A2  A2 - PLC  A2 - FLC
PAN

Day o f y e a r  ( J a n u a ry )

PAN

Day o f y e a r  ( J a n u a ry )

PAN

Day o f y e a r  (Ju ly )

A2 - PLC —  A2 - FLC

PAN

Day o f y e a r  (Ju ly )

Figure A6.13.16 K oto Tabang-. Simulated PAN during January {toppanel) and July for the 
A2 (left panel) and B2 (right panel) em ission scenarios under the present-day landcover 
(PLC) and modified future landcover (FLC).

6.13.1.3.1 H O N 0 2

The small impacts o f  clim ate change on future changes o f H O N 0 2 concentrations were 

com pensated for by biogenic emissions. Thus, the com bined effects were relatively smaller 

(Figure 6.8 and Figure A6.13.17; Appendix 6.8 and A ppendix 6.19). The combined effects o f 

climate changes and biogenic em issions on future H O N 0 2 concentrations in both months for
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the A2 and B2 clim ate scenarios were less than 0.01 ppbv. Generally the com bined effects o f 

clim ate changes and biogenic em issions in future landcover scenarios were small: less than 

0.01 ppbv in both clim ate scenarios. In future landcover scenarios, the combined effects o f  

clim ate changes and biogenic em issions on HONO 2 concentrations were observed to cause a 

slight increase com pared to the effects o f  the present-day landcover scenarios, except during 

July in the B2 clim ate scenario (Figure 6.8 and Figure A6.13.17; Appendix 6.8 and Appendix 

6.19).

Base- B2 —  B2 - PLC —  B2 - FLC 

HONOj

Day o f  y e a r  ( J a n u a ry )

HONOj

Day o f  y e a r  (Ju ly )

Figure A6.13.17: Koto Tabang : Simulated H 0 N 0 2 during January and July for the A2 (left 
panel) and B2 (right panel) em ission scenarios under the present-day landcover (PLC) and 
m odified future landcover (FLC).

A6.13.1.3.6 HCHO and H20 2

The com bined effects o f  clim ate change and biogenic em issions on HCHO and H20 2 

concentrations were found to be mixed and sm aller in m agnitude (Appendix 6.18). The 

biogenic em issions were found to be more im portant to changes in HCHO concentrations 

than climate change alone, with exception o f some balancing effects from biogenic emissions 

during January in both climate scenarios. Biogenic emissions alone accounted for the 

decrease in HCHO concentrations by 0.39 ppbv (47.6%) during July and an increase o f  1.0 

ppbv (84.2% ) during July in the A2 clim ate scenario. In the B2 climate scenario, biogenic 

em issions alone were observed to decrease HCHO concentration by 0.16 ppbv (33.3%) and

HONO,

Day o f  y e a r  ( J a n u a ry )

HONO,

107 166 169
Day o f  y e a r  (Ju ly )
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0.36 ppbv (90% ) during January and July respectively (Figure 6.6 and Figure A6.13.18; 

Appendix 6.8 and Appendix 6.19). Under the future landcover scenarios, the com bined 

effects o f  climate changes and biogenic emissions also showed a m ixture o f  effects (Figure

6.8 and Figure A6.13.18; A ppendix 6.8 and Appendix 6.19). Largely, the future changes in 

HCHO concentrations were due to biogenic em issions o f between 82%  and 95%  in both 

climate scenarios.

M eanwhile, for H 2 O2 , the com bined im pact o f climate changes and biogenic em issions in the 

present-day landcover scenarios (A2PLC and B2PLC) was found to increase in both climate 

scenarios. Combined effects accounted for the increase o f  about 1.5 ppbv (10.9% ) during 

January and 0.9 ppbv (12.2) during July in the A2 clim ate scenario. In the B2 clim ate 

scenario, com bined effects accounted for a small increase o f  about 0.4 ppbv (3.4%) and 0.03 

ppbv (0.4%) during the January and July respectively. B iogenic em issions were found to play 

a major role in the changes to future concentrations o f  H 2 O2 in Koto Tabang. The perturbation 

o f future landcover, the combined im pact o f  climate changes and biogenic em issions, were 

found to have m ixed effects on H20 2 concentrations (Figure 6.8 and F igure A 6.13.18; 

Appendix 6.8 and Appendix 6.19). In this scenario, climate changes and biogenic em issions 

were also observed to have a balancing effect on the future em issions o f  H20 2 in Koto 

Tabang.
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Figure A6.13.18: K oto Tabang: Simulated HCHO & H20 2 (ppbv) during January and July 
for the A2 (left panel) and B2 (right panel) em ission scenarios under the present-day 
landcover (PLC) and modified future landcover (FLC).
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APPENDIX 6.14

KUALA LUMPUR: Tropospheric chemistry composition in various climate
changes, biogenic emissions and landcover during January and July.

With BVOC Without BVOC

January July January July
nuaia Lumpur (wet season) (dry season) (wet season) (dry season)

(Malaysia) (ppbv) (ppbv) (ppbv) (ppbv)

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

BaseA2 143.80 115.60 174.00 141.5 86.29 203. 143.80 115.60 174.00 141.5 86.29 203.

BaseB2 143.60 117.8 171.00 137.8 79.51 203.90 143.60 117.8 171.00 137.8 79.51 203.90

B2PLC 173.0 119.9 229.8 137.3 79.55 203 173.0 119.9 229.8 137.3 79.55 203

B2FLC 144.1 115.5 174.4 131.7 84.70 184.6 144.1 115.5 174.4 131.7 84.70 184.6

A2PLC 144.10 115.50 174.40 141.6 90.82 191.9 144.10 115.50 174.40 141.6 90.82 191.9

A2FLC 138.90 114.5 164.5 129.5 74.05 194.60 138.90 114.5 164.5 129.5 74.05 194.60

BaseA2 2.80E06 3.79E04 1.08E07 2.47E6 2.46E4 9.06E6 2.80E06 3.79E04 1.08E07 2.47E6 2.46E4 9.06E6

BaseB2 2.8IE6 3.69 1.08E7 2.52E6 2.22E4 9.27E6 2.81E6 3.69 I.08E7 2.52E6 2.22E4 9.27E6

OH B2PLC 2.36E6 3.31E4 8.95 2.50E6 2.23E4 9.22E6 2.36E6 3.31E4 8.95 2.50E6 2.23E4 9.22 E6

B2FLC 2.96E6 3.87E4 1.13E7 2.64E6 2.68E4 9.84E6 2.96E6 3.87E4 1.13E7 2.64E6 2.68E4 9.84E6

A2PLC 2.95E6 3.87E4 1.13E7 2.36E6 2.73E4 8.73E6 2.95 E6 3.87E4 1.13E7 2.36E6 2.73 E4 8.73E6

A2FLC 2.99E6 3.67E4 I.14E7 2.76E6 2.15E4 1.03E7 2.99E6 3.67E4 1.14E7 2.76E6 2.15E4 I.03E7

BaseA2 0.21 0.001 0.69 0.32 0.001 1.114 0.21 0.001 0.69 0.32 0.001 1.114

BaseB2 0.19 1.13E-3 0.63 0.36 I.63E-3 1.26 0.19 1.13E-3 0.63 0.36 I.63E-3 1.26

B2PLC 0.29 1.28E-3 01.00 0.36 1.63E-3 1.26 0.29 1.28E-3 01.00 0.36 1.63E-3 1.26

B2FLC 0.22 1.20E-3 0.71 0.31 1.49E-3 1.08 0.22 1.20E-3 0.71 0.31 1.49E-3 1.08

A2PLC 0.22 I.20E-3 0.71 0.27 1.25E-3 0.89 0.22 I.20E-3 0.71 0.27 1.25E-3 0.89

A2FLC 0.19 1.10E-3 0.62 0.44 2.23E-3 1.59 0.19 1.10E-3 0.62 0.44 2.23E-3 1.59

BaseA2 4.92 3.42 7.60 7.02 4.73 9.98 4.92 3.42 7.60 7.02 4.73 9.98

BaseB2 4.55 3.17 7.08 7.67 5.15 10.98 4.55 3.17 7.08 7.67 5.15 10.98

no2
B2PLC 6.91 4.91 7.58 7.67 5.16 11.0 7.58 4.91 11.79 0.04 I.56E-3 0.27

B2FLC 4.96 3.34 7.72 6.51 4.46 9.15 4.96 3.34 7.72 6.51 4.46

A2PLC 4.96 3.34 7.72 5.99 4.07 8.70 4.96 3.34 7.72 5.99 4.07 8.70

A2FLC 4.3 3.13 6.53 8.16 4.67 12.53 4.3 3.13 6.53 8.16 4.67

BaseA2 19.03 17.09 21.46 8.18 5.48 11.91 19.03 17.09 21.46 8.18 5.48 11.91

BaseB2 19.29 17.55 21.41 7.92 5.00 12.19 19.29 17.55 12.19

B2PLC 18.22 15.0 i 21.87 0.58 0.19 1.34 18.22 15.01 21.87 0.58 0.19 1.34

hono2 B2FLC 18.9 16.87 21.36 11.96 1.15 5.55 18.9 16.87 21.36 11.96 1.15 5.55

A2PLC 18.90 16.87 21.36 8.42 6.14 11.21 18.90 16.87 21.36 8.42 6.14 11.21

A2FLC 19.41 17.66 21.67 7.45 4.13 12.49 19.41 17.66 21.67 4.13

BaseA2 4.52 3.19 5.97 7.21 5.03 9.78 4.52 3.19 5.97 7.21 5.03 9.78

BaseB2 4.30 3.03 5.70 7.22 4.94 9.98 4.30 3.03 5.70 7.22 4.94 9.98

B2PLC 9.18 6.59 11.54 7.37E-4 1.13E-4 1.47E-3 9.18 6.59 11.54 7.37E-4 1.13E-4 1.47E-3

PAN B2FLC 4.44 3.67 5.99 5.65 3.89 7.81 4.44 3.67 5.99 5.65 3.89 7.81

A2PLC 4.44 3.06 5.99 6.34 4.51 8.47 4.44 3.06 5.99 6.34 4.51 8.47

A2FLC 3.86 2.72 5.16 6.33 4.06 9.29 3.86 2.72 5.16 6.33 4.06 9.29

BaseA2 5.91 5.54 6.20 7.26 5.98 9.23 5.91 5.54 6.20 7.26 5.98 9.23

BaseB2 5.71 5.4 5.99 7.28 5.77 9.58 5.71 5.4 5.99 7.28 5.77 9.58

B2PLC 9.21 8.76 9.83 7.26 5.74 9.55 9.21 8.76 9.83 7.26 5.74 9.55

HCHO B2FLC 5.80 5.33 6.17 6.37 5.27 8.06 5.80 5.33 6.17 6.37 5.27

A2PLC 5.79 5.33 6.17 6.85 5.98 8.22 5.79 5.33 6.17 6.85 5.98 8.22

A2FLC 5.34 5.02 5.57 6.91 5.26 9.46 5.34 5.02 5.57 6.91 5.26 9.46

3.92 3.30 4.75 2.58 1.63 4.16 3.92 3.30 4.75 2.58 1.63 4.16

4.35 3.70 5.19 2.30 1.52 3.80 4.35 3.70 5.19 2.30 1.52

B2PLC 3.71 2.80 4.99 2.34 1.52 3.75 3.71 2.80 4.99 2.34 1.52 3.75

h2o2 B2FLC 4.21 3.59 4.96 2.46 1.74 3.68 4.21 3.59 4.96 2.46 1.74 3.68

A2PLC 4.21 3.59 4.96 3.07 2.18 4.5 4.21 3.59 4.96 3.07 2.18 4.5

A2FLC 4.24 3.61 5.08 2.03 1.47 3.00 4.24 3.61 5.08 2.03 1.47

Note: BaseA2 -  Baseline for A2
BaseB2-Baseline for B2 
PLC -  Present-day landcover 
FLC- Modified future landcover
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APPENDIX 6.15

KUALA LUMPUR: Tropospheric chemistry composition changes in various climate
changes, biogenic emissions and landcover scenarios during January and July.

Season Scenarios
o 3

ppbv
I%1

NO
ppbv
l%l

n o 2
ppbv
[%l

OH
Molecules dll'3 

[%]

HONOj
ppbv
!%1

PAN
ppbv
[%]

HCHO
ppbv
[%J

H jOj
ppbv
[%]

A2PLC- 0.3 0.01 0.04 1.5E5 -0.13 -0.08 -0.12 0.29
BascA2 [0.2] [4.8] [0.8] [5.4] [0.7] [1.8] [2.0] [7.4]

A2FLC- -4.9 -0.02 -0.62 1.9E5 0.38 -0 .66 -0.57 0.32
BaseA2 [3.4] [9.5] [12.6] [6.8] [2.0] [14.6] [9.7] [8.2]

A2FLC- -5.2 -0.03 -0.69 4.0E 4 0.51 -0 .58 -0.45 0.03
A2PLC [3.6] [13.6] [13.3] [1.4] [2.7] [13-1] [7.8] [0.7]

8  b XA2PLC- 0.3 0.01 0.04 1.5E5 -0.13 -0.08 -0.12 0.29

s i XBaseA2 [0.2] [4.81 [0.8] [5.41 [0.71 [1.81 [2.0] [7.4]

“  B B2PLC- 29.4 0.10 3.03 -4 .5E 5 -1.1 4.9 3.5 -0 .64
BaseB2 [20.5] [52.6] [66.6] [16.0] [5.6] [113.5] [61.3] [14.7]

B2FLC- 0.5 0.03 0.44 1.5E5 -0.39 0.14 0.09 -0 .14
BaseB2 [0.35] [15.8] [9.0] [5.3] [2.0] [3.3] [1.6] [3.2]

B2FLC- -28.9 -0.07 -2.69 6.0E5 0.68 -4.7 -3.4 0.5
B2PLC [16.7] [24.1] [34.6] [25.4] [3.7] [51.6] [37.0] [13.5]

XB2PLC- 29.4 0.10 3.03 -4 .5E 5 -1.1 4.9 3.5 -0 .64

XBaseB2 [20.5] [52.61 [66.61 rio.o] [5.6] [113.5] [61-3] [14.7]

A2PLC- 0.10 -0.05 -1.03 -1.1E5 0.24 -0.87 -0.41 0 .49

BaseA2 [0.07] [15.6] [14.7] [4.5] [2.9] [12.1] [5.6] [19.0]

A2FLC- -12.0 0.12 1.72 2.9E5 -0.73 -0.88 -0.35 -0 .55

BaseA2 [8.5] [37.5] [22.7] [11.7] [8.9] [12.2] [4.8] [21.3]

A2FLC- -12.1 0.17 2.62 4.0E 5 -0.97 -0.01 0.06 -1 .0

A2PLC [0.85] [63.0] [43.8] [17.0] [11.5] [0.16] [0.88] [33.9]

B
O XA2PLC- 0.10 -0.05 -1.03 -1 .1E 5 0.24 -0.87 -0.41 0.49
* XBaseA2 [0.071 ri5 .6 ] [14.7] [4.5] T2.9] [12.11 [5.6] r 19.01
W ——<W s
^  w B2PLC- -0.50 0.00 0.02 -2 .0E 4 -0.01 -0.05 -0.02 -0 .02
l.

Q BaseB2 [0.36] [0.00] [0.26] [0.79] [0.13] [0.69] [0.27] [0.85]

B2FLC- -6.1 -0.05 -1.21 1.2E5 0.32 -1.6 -0.91 0.10

BaseB2 [4.43] [13.9] [15.1] [4.76] [4.04] [21.7] [12.5] [4.2]

B2FLC- -5.6 -0.05 -1.25 1.4E5 0.33 -1.5 -0 .89 0.12

B2PLC [4.1] [13.9] [15.3] [5.6] [4.2] [21.2] [12.3] [5-1]

XB2PLC- -0.50 0.00 0.02 -2 .0E 4 -0.01 -0.05 -0.02 -0 .02

XBaseB2 [0.361 [0.001 [0.261 [0.791 ro.13] [0.691 ro.271 [0.85]

Note: PLC-present-day landcover
FLC-Fuiure landcover
A2PLC-BaseA2/B2PLC-BaseB2: Changes due to climate changes and biogenic emissions under present-day landcover 
A2FLC-BaseA2/B2FLC-BaseB2: Changes due to climate changes and biogenic emissions under fulure-day landcover 
A2FLC-A2PLC/B2FLC-B2PLC: Changes between present-day landcover and future landcover scenarios
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APPENDIX 6.16

JAKARTA: Tropospheric chemistry composition in various climate, landcover,
biogenic emissions during January and July.

With BVOC Without BVOC

January July January July
J a k a rta (wet season) (dry season) (wet season) (dry season)

(Indonesia) (ppbv) (ppbv) (ppbv) (ppbv)

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

BaseA2 269.9 195.3 3 5 9 . 7 216.40 134.3 330 269.90 195.3 3 5 9 .7 216.40 134.3 330

BaseB2 243.7 174.3 328.5 219 135.6 333 243.7 174.3 328.5 219 135.6 333

B2PLC 260.5 183.4 353.9 216.8 133.2 331.7 260.5 183.4 353.9 216.8 133.2 331.7

U3 B2FLC 260.9 173.6 366.2 207 132.5 308.9 260.9 173.6 366.2 207 132.5 308.9

A2PLC 278.5 160.2 421.3 198.5 120.4 306.1 278.5 160.2 421.3 198.5 120.4 306.1

A2FLC 230.6 183.9 285.7 210.7 118.3 334.6 230.6 138.9 285.7 210.7 118.3 334.6

BaseA2 2.3 IE6 4.26E4 8.77E6 1.78E6 2.57E4 7.10E6 2.31E6 4.26E4 8.77E6 1.78E6 2.57E4 7.10E6

BaseB2 2.51E6 4.3IE4 9.57E6 1.84E6 2.95E4 7.27E6 2.51E6 4.31E4 9.57E6 1.84E6 2.95E4 7.27E6

OH B2PLC 2.35E6 4.02E4 8.89E6 1.811*6 2.87E4 7.I8E06 2.35E6 4.02E4 8.89E6 1.81E6 2.87E4 7.I8E06

B2FLC 2.44E6 3.94E4 9.18E6 1.90E6 3.03E4 7.60E6 2.44 E6 3.94E4 9.18E6 1.90E6 3.03E4 7.60E6

A2PLC 2.44E6 3.38E4 9.42E6 1.92E6 2.811E4 7.69E6 2.44E6 3.38E4 9.42E6 I.92E6 2.811E4 7.69E6

A2FLC 2.98E6 4.88E4 I.14E7 1.90E6 2.61 E4 7.52E6 2.98E6 4.88E4 1.I4E7 I.90E6 2.6 IE4 7.52E6

BaseA2 0.34 8.11 E-5 1.2 0.36 6.1 IE-5 1.34 0.34 8.1 IE-5 1.2 0.36 6.11E-5 1.34

BaseB2 0.34 7.72E-5 1.27 0.36 6.04E-5 1.33 0.34 7.72E-5 1.27 0.36 6.04 E-5 1.33

B2PLC 0.34 8.11E-5 1.21 0.36 6.07E-5 1.34 0.34 8.11E-5 1.21 0.36 6.07E-5 1.34

B2FLC 0.38 9.2E-5 1.38 0.33 5.74E-5 1.25 0.38 9.2E-5 1.38 0.33 5.74 E-5 1.25

A2PLC 0.45 9.99E-6 1.74 0.361 6.15E-5 1.38 0.45 9.99E-6 1.74 0.361 6.15E-5 1.38

A2FLC 0.25 5.83E-5 0.92 0.38 6.22E-5 1.44 0.25 5.83E-5 0.92 0.38 6.22E-5 1.44

BaseA2 10.37 3.30 20.98 10.06 2.73 22.52 10.37 3.30 20.98 10.06 2.73 22.52

BaseB2 9.52 2.82 19.92 9.88 2.7 21.99 9.52 2.82 19.92 9.88 2.7 21.99

N02
B2PLC 10.08 3.17 20.65 9.95 2.68 22.23 10.08 3.17 20.65 9.95 2.68 22.23

B2FLC 10.98 3.27 23.31 8.78 2.40 19.43 10.98 3.27 23.31 8.78 2.40 19.43

A2PLC 12.91 3.81 29.33 9.21 2.35 21.01 12.91 3.81 29.33 9.21 2.35 21.01

A2FLC 6.43 2.33 12.83 10.05 2.64 22.98 6.43 2.33 12.83 10.05 2.64 22.98

BaseA2 31.79 22.95 39.48 12.76 5.816 20.19 31.79 22.95 39.48 12.76 5.816 20.19

BaseB2 28.61 19.57 35.84 13.27 6.20 20.8 28.61 19.57 35.84 13.27 6.20

hono2
B2PLC 30.51 21.47 37.45 13.20 6.12 20.71 30.51 21.47 37.45 13.20 6.12 20.71

B2FLC 28.15 17.92 36.8 13.41 6.63 20.66 28.15 17.92 36.8 13.41 6.63 20.66

A2PLC 29.25 16.15 43 12.92 5.72 21.07 29.25 16.15 43 12.92 5.72 21.07

A2FLC 33.56 26.56 39.53 13.53 5.43 23.28 33.56 26.56 39.53 13.53 5.43

BaseA2 27.74 17.11 37.14 21.21 11.96 30.71 27.74 17.11 37.14 21.21 11.96 30.71

BaseB2 21.71 12.45 30.48 21.15 11.82 30.82 21.71 12.45 30.48 21.15 11.82

PAN
B2PLC 26.17 15.82 35.65 20.94 11.65 30.62 26.17 15.82 35.65 20.94 11.65 30.62

B2FLC 27.91 16.36 38.67 17.44 9.54 25.73 27.91 16.36 38.67 17.44 9.54

A2PLC 34.64 20.64 47.42 16.82 8.88 25.29 34.64 20.64 47.42 16.82 8.88 25.29

A2FLC 14.86 8.83 20.74 20.11 10.84 29.95 14.86 8.83 20.74 20.11

BaseA2 18.47 15.87 20.7 15.35 13.98 17.88 18.47 15.87 20.7 15.35 13.98 17.88

BaseB2 16.05 13.70 17.39 15.30 13.91 17.69 16.05 13.70 17.39 17.69

B2PLC 17.76 15.4 19.64 15.26 13.84 17.73 17.76 15.4 19.64 15.26 13,84 17.73

HCHO B2FLC 18.5 16.32 19.98 13.77 12.29 15.88 18.5 16.32 19.98 13.77 12.29 15.88

A2PLC 21.01 19.33 22.53 13.52 11.96 16.07 21.01 19.33 22.53 13.52 11.96 16.07

A2FLC 12.12 10.18 13.77 14.65 12.63 17.49 12.12 10.18 14.65 n ;.49

BaseA2 3.89 2.69 5.33 2.59 1.60 3.19 3.89 2.69 5.33 2.59 1.60 3.19

BaseB2 3.52 2.55 4.61 2.61 1.58 3.99 3.52 2.55

B2PLC 3.88 2.68 5.32 2.56 1.54 3.92 3.88 2.68 5.32 2.56 1.54 3.92

h2o2 B2FLC 3.72 2.56 5.10 2.61 1.68 3.81 3.72 2.56 5.10 2.61 1.68 3.81

A2PLC 3.22 1.85 4.94 2.28 1.40 3.41 3.22 1.85 4.94 2.28 1.40 3.41

A2FLC 3.99 2.99 5.19 2.35 1.30 3.72 3.99 2.99 5.19 | 2.35 1.30 3.72

Note: B aseA 2 -B a se lin e  for A2
BaseB2-Baseline for B2 
PLC -  Present-day landcover 
FLC- Modified future landcover
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APPENDIX 6.17

JAKARTA: Tropospheric chemistry composition changes in various climate changes,
biogenic emissions and landcover scenarios during January and July.

o 3 NO n o 2 OH HONO: PAN HCHO H20 :
Season Scenarios ppbv

I%1
ppbv
1%1

ppbv
!%i

Molecules cm° 
[%1

ppbv
[%1

ppbv
1%1

ppbv
[%]

ppbv
[%1

A2PLC- 8.6 0.11 2.54 1.3E5 -2.5 6.9 2.5 -0.7
BaseA2 [3.2] [32.4] [24.5] [5.6] [8 .0] [24.9] [13.8] [17.2]
A2FLC-
BaseA2

-39.3
[14.6]

-0.09
[26.5]

-4.0
[38.0]

6.7E5
[29.0]

1.8
[5.6]

-12.9
[46.4]

-6.4
[34.4]

0.1
[2 .6]

A2FLC-
A2PLC

-47.9
[17.2]

-0.2
[44.4]

-6.5
[50.2]

5.4E5
[22 .1]

4.3
[14.7]

-19.8
[57.10]

-8.9
[42.3]

0.8
[23.9]

s _
£ ^  « u XA2PLC-

XBaseA2
8.6
[3.21

0.11
[32.41

2.54
[24.51

1.3E5
[5.61

-2.5
[8.01

6.9
[24.91

2.5
[13.81

-0.7
ri7.2]

«> a 

£  -
B2PLC-
BaseB2

16.8
[6.9]

0.0
[0 .0]

0.56
[5.9]

-1.6E5 
[6.4]

1.9
[6 .6]

4.5
[20.5]

1.7
[10.7]

0.36
[10.2]

B2FLC-
BaseB2

17.2
[7.1]

0.04
[11.8]

1.54
[15.3]

-7.0E4
[2 .8]

-0.5
[0.02]

6.2
[28.6]

2.5
[18.5]

0.2
[5.7]

B2FLC-
B2PLC

0.4
[0 .2]

0.04
[11.8]

0.9
[8.9]

9.0E4
[3.8]

-2.4
[7.7]

1.7
[6 .6]

0.7
[0.04]

-0.2
[4.1]

XB2PLC-
XBaseB2

16.8
T6.91

0.0
[0.01

0.56
[5.9]

-1.6E5
[6.4]

1.9
[6 .6]

4.5
[20.5]

1.7
[10.7]

0.36
riO.2]

A2PLC-
BaseA2

-17.9
[8.3]

0.001
[0.3]

-0.85
[8.5]

1.4E5
[7.9]

0.2
[1.3]

-4.4
[20.7]

- 1.8
[11.9]

-0.3
[12.0]

A2FLC-
BaseA2

-5.7
[2 .6]

0.02
[5.6]

-0.01
[0 .1]

1.2E5
[6.7]

0.8
[6 .0]

-1.1
[5-2]

-0.7
[4.5]

-0.2
[9.3]

A2FLC-
A2PLC

12.2
[6 .1]

0.02
[5.6]

0.84
[9.1]

-2.0E4
[1 0 ]

0.6
[4.7]

3.3
[19.6]

1.1
[8.4]

0.1
[3-1]

a©to
2

XA2PLC-
XBaseA2

-17.9
[8.3]

0.001
[0.31

-0.85
[8.51

1.4E5
[7.9]

0.2
[1.3] _

-4.4
[20.71

-1.8
[11.9]

-0.3 
[12.0] ...

V i => 
u
a

B2PLC-
BaseB2
B2FLC-
BaseB2
B2FLC-
B2PLC

XB2PLC-
XBaseB2

-2.2
[1.0]
-12
[5.5]
-9.8
[4.5]
-2.2
[1.0]

0.0
[0-0]
-0.03
[8.3]
-0.03
[8.3]
0.0

[0 .0]

0.07
[0.7]
-1.07
[ HI ]
-1.2

[11.8]
0.07
[0.71

-3.0E4
[1.6]

6.0E4
[3.3]

9.0E4
[5.0]

-3.0E4
[1.61

-0.07
[0.5]
0.14
[1.1]
0.21
[1.6]
-0.07
[0.5]

-0.2
[1.0]
-3.7

[17.5]
-3.5

[16.7]
-0.2
[10 ]

0.04
[0.3]
-1.5
[10.0]
-1.5
[9.8]
0.04
[031..

-0.05
[1.9]
0.00
[0 .0]
0.05
[2 .0]
-0.05
[1.91

Note: PLC-present-day landcover

*A2PLC-BaseA2/B2PLC-BaseB2: Changes due to climate changes and biogenic emissions under present-day landcover 
A2FLC-BaseA2/B2FLC-BaseB2: Changes due to climate changes and biogenic emissions under future-day landcover 
A2FLC-A2PLC/B2FLC-B2PLC: Changes between present-day landcover and future landcover sceanrios
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APPENDIX 6.18

KOTO TABANG: Tropospheric chemistry composition in various climate changes,
biogenic emissions and landcover scenarios during January and July.

With BVOC Without BVOC

Koto Tabang, January July January July
Sumatera (wet season) (dry season) (wet season) (dry season)

(Indonesia) (ppbv) (ppbv) (ppbv) (ppbv)

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

BaseA2 15.21 6.78 23.27 5.32 0.08 11.35 59.7 5.06 67.31 51.06 35.22 72.16

BaseB2 25.91 160.05 36.27 4.2 0.02 9.72 60.68 54.1 68.2 54.48 39.74 73.83

B2PLC 19.6*1 11.31 27.78 4.90 0.07 10.38 57.91 51.48 63.74 54.11 39.32 73.29

B2FLC 24.51 13.73 35.54 4.71 0.05 10.02 65.67 58.88 73.34 54.07 39.01 73-51

A2PLC 8.5 2.39 14.2 3.37 0.002 9.04 54.3 144.1 49.22 53.32 38.22 73.81

A2FLC 13.36 7.00 19.19 5.45 0.10 11.45 49.65 44.26 55.65 54.84 39.74 73.83

BaseA2 4.9IE04 3.02E02 1.44E05 1.22E4 131.9 3.85E4 3.42E4 2.15E4 I.35E7 3.08E6 1.99E4 1.2IE7

BaseB2 1.02E5 8.27E3 3.08E5 9.09E3 70.27 2.87E4 3.40E6 2.11E4 1.34E7 3.0IE6 1.99E4 1.I8E7

OH B2PLC 7.17E4 5.54E3 2.13E5 1.14E4 79.09 3.31E4 3.70E6 2.02E4 1.45E7 2.96E6 1.93E4 1.I6E7

B2FLC 8.80E4 6.85E3 2.62E5 1.07E4 68.49 3.13E04 3.39E6 2.32E4 1.33E7 2.94E6 1.93E4 1.15E7

A2PLC 2.68E4 869.2 7.78E4 6.64E3 42.17 2.29E4 3.63E6 1.8IE4 1.43E7 2.96E6 2.02E4 1.16E7

A2FLC 1.41E5 2.99E6 3.08E3 1.28E4 110.3 3.80E4 3.8IE6 1.66E4 1.51E7 3.03E6 1.99E4 1.18E7

BaseA2 0.03 0.001 0.12 0.42 I.99E-3 0.30 0.09 2.67E-4 0.26 0.15 5.06E-4 0.43

BaseB2 0.03 6.33E-4 0.09 0.04 1.95E-3 0.29 0.08 2.53E-4 0.25 0.13 4.04E-4 0.40

B2PLC 0.03 7.55E-4 0.10 0.04 1.56 0.27 0.08 2.48E-4 0.24 0.13 3.66E-4 0.39

B2FLC 0.03 6.89E-4 0.10 0.04 1.5IE-3 0.27 0.09 2.64E-4 0.26 0.13 3.48E-4 0.39

A2PLC 0.02 9.3 IE-4 0.14 0.05 2.62E-3 0.31 0.68 2.28E-4 0.22 0.14 3.88E-4 0.43

A2FLC 0.22 I.18E-3 0.76 0.04 1.73E-3 0.28 0.08 2.46E-4 0.23 0.13 4.04E-4 0.40

BaseA2 0.43 0.24 0.73 0.62 0.21 1.47 1.05 0.83 1.51 1.53 1.17 2,14

BaseB2 0.51 0.34 0.71 1.63 0.19 1.49 1.04 0.83 1.48 1.47 1.13 2.10

no2
B2PLC 0.42 0.26 0.65 0.58 0.19 1.34 0.94 0.78 1.33 1.43 1.13 2.04

B2FLC 0.54 0.35 0.79 0.59 0.19 1.35 1.12 0.86 1.65 1.43 1.14

A2PLC 0.35 0.16 0.66 0.69 0.20 1.67 0.85 0.72 1.20 1.57 1.16 2.25

A2FLC 6.44 3.39 10.72 0.60 0.20 1.39 0.79 0.68 1.04 1.47

BaseA2 0.008 0.005 0.01 7.35E-4 8.49E-5 1.81E-3 2.39 1.79 3.27 0.93 0.26 2.17

BaseB2 0.02 0.01 0.030 5.78E-4 7.98E-5 1.32E-3 2.47 1.85 0.34 2.17

B2PLC 0.01 8.45E-5 0.02 7.37E-4 1.13E-4 1.47E-3 2.44 1.87 3.24 1.06 0.37 2.21

hono2 B2FLC 0.02 0.01 0.03 7.11E-4 1.05E-4 1.4 IE-3 2.56 1.92 3.50 1.08 0.38 2.25

A2PLC 3.76E-3 2.68E-3 4.77E-3 4.21E-4 5.33E-5 1.12 E-3 2.45 1.94 3.17 0.95 0.29 2.10

A2FLC 21.25 19.08 22.53 7.97E-4 I.19E-4 1.71E-3 2.32 1.78 2.17

BaseA2 0.84 0.72 0.97 0.84 0.55 1.06 0.47 0.31 0.73 0.69 0.43 1.14

BaseB2 0.97 0.86 1.10 0.84 0.53 1.10 0.49 0.34 0.74 0.47

B2PLC 0.79 0.68 0.93 0.83 0.58 1.04 0.39 0.26 0.63 0.71 0.46 1.11

PAN B2FLC 1.13 1.01 1.27 0.83 0.58 1.04 0.59 0.40 0.88 0.71 0.46 1.11

A2PLC 0.61 0.52 0.71 0.88 0.49 1.21 0.34 0.22 0.54 0.76 0.48 1.23

A2FLC 9.61 7.49 10.77 0.86 0.6 1.06 0.28 0.18 0.46 0.73 0.47 1.16

BaseA2 13.02 10.22 15.23 12.64 10.71 14.67 2.53 2.29 3.07 2.98 2.15 4.63

BaseB2 12.14 9.93 14.12 13.34 11.4 15.64 2.58 2.40 3.06 3.00 2.34 4.38

B2PLC 11.66 9.38 13.78 12.94 11.41 14.64 2.26 1.97 2.81 2.96 2.34 4.24

HCHO B2FLC 13.88 11.02 16.43 12.97 U.34 14.69 2.74 2.54 3.25 2.97 2.37 4.25

A2PLC 12.20 9.57 14.14 13.84 11.32 16.99 2.10 1.88 2.58 3.17 2.43 4.71

A2FLC 12.71 11.86 13.92 13.03 11.6 14.85 1.96 1.76 2.48 3.00 2.34 4.38

BaseA2 13.38 12.35 14.54 7.46 5.27 10.14 2.90 2.55 3.36 1.38 0.94 2.09

BaseB2 12.07 11.07 13.25 8.49 6.08 11.42 2.93 2.54 3.44 1.56 1.07 2.35

B2PLC 12.490.0 11.55 13.51 8.46 6.16 11.25 3.01 2.67 3.43 1.62 1.12 2.42

h2o2
B2FLC 13.36 12.19 14.71 8.40 6.01 11.29 3.16 2.72 3.74 1.59 1.07 2.40

A2PLC 14.84 13.85 15.89 8.37 5.19 11.38 3.04 2.74 2.42 1.40 0.96 2.13

A2FLC 6.97 5.07 9.26 8.11 5.90 10.81 0.67 0.59 0.79 1.56 1.07 2.35

Note: BaseA2 -  Baseline for A2
BaseB2-BaseIine for B2 
PLC -  Present-day landcover 
FLC- Modified future landcover
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APPENDIX 6.19

KOTO TABANG: Tropospheric chemistry composition changes in various climate,
biogenic emissions and landcover scenarios during January and July.

Season Scenarios
o 3

ppbv
|%1

NO
ppbv
I%1

n o 2
ppbv
1%I

OH
Molecules cm4 

[%[

HONOj
ppbv
[%]

PAN
ppbv
[%]

HCHO
ppbv
[%]

h 2o 2
ppbv
[%]

A2PLC- -6.7 -0.01 -0.08 -2.2E4 -4.2E-3 0.23 -0.82 1.46
BaseA2 [44.1] [33.3] [18.6] [45.4] [53.0] [37.7] [6.3] [10.9]

A2FLC- -1.85 -0.01 -0.11 -1.3E3 -1.2E-3 -0.31 -3.23 -2.06
BaseA2 [12.2] [33.3] [25.6] [2.7] [15.3] [36.9] [24.8] [15.4]

A2FLC- 4.9 0.00 -0.03 2.1E5 3.02E-3 -0.08 -2.41 -3.52
A2PLC [57.2] [0 .00] [8 .6] [78.4] [80.3] [13.1] [19.8] [23.7]

© ^ XA2PLC- -5.4 -0.01 -0.20 2.1E5 0.06 -0.13 -0.43 0.14
E C3 X Base A 2 [9.1] [11.11 [19.01 [6.11 [2.51 [27.71 [17.01 [4.81
V g 

2  « B2PLC- -6.27 0.00 -0.09 -3.03E4 -0.01 -0.18 -0.48 0.42
&

£  ~ BaseB2 [24.2] [0 .00] [17.7] [29.7] [50.0] [18.6] [4.0] [3.4]

B2FLC- -1.4 0.00 0.03 -1.4E4 0.00 0.16 1.74 1.29
BaseB2 [5.4] [0 .00] [5.9] [13.7] [0 .00] [16.5] [0.14] [10.7]

B2FLC- 4.9 0.00 0.12 1.6E4 0.01 0.34 2.22 0.87
B2PLC [24.8] [0 .00] [28.6] [22.7] [100.0] [43.0] [19.0] [7.0]

XB2PLC- -3.4 0.00 -0.1 3.0E5 -0.03 -0.10 -0.32 0.08
XBaseB2 rs.6i [0.001 [9.6] [8 .8] [1.21 [20.4] [12.41 [2.7]

A2PLC- -2.0 -0.37 0.07 -5.6E3 -3.1E-4 0.04 1.2 0.91
BaseA2 [36.7] [88 .1] [11.3] [45.9] [42.7] [4.8] [9.5] [12.2]

A2FLC- 0.13 -0.38 -0.4 6.0E2 6.2E-5 0.02 0.39 0.65
BaseA2 [2.4] [90.5] [3.2] [4.9] [8.4] [2.4] [3.1] [8.7]

A2FLC- 2.08 -0.01 -0.10 6.2E3 3.7E-4 -0.02 -0.81 -0.26

A2PLC [61.7] [20 .0] [13.0] [92.8] [88 .6] [2.3] [5.9] [3.1]
CO XA2PLC- 2.3 -0.01 0.04 -1.2E5 0.02 0.07 0.19 0.02

s ^ XBaseA2 [4.41 [6.71 [2.61 [3.9] [2.21 [10.1] [6.4]] _ [1.5]
v  mm.

B2PLC- 0.7 0.00 -1.05 2.3E3 1.6E-4 -0.01 -0.40 0.03
u
o BaseB2 [16.7] [0 .00] [64.4] [25.4] [27.5] [1.2] [3.0] [0.4]

B2FLC- 0.51 0.00 -1.04 1.6E3 1.3E-4 -0.01 -0.37 -0.09

BaseB2 [12.1] [0 .00] [63.8] [17.7] [23.0] [1.2] [2 .8] [1.1]

B2FLC- -0.19 0.00 0.01 -7.0E2 -2.6E-5 0.00 0.03 -0.06

B2PLC [3.9] [0 .00] [1.7] [6 .1] [3.5] [0 .00] [0.23] [0.71]

XB2PLC- -0.37 0.00 -0.04 -5.0E4 0.04 -0.02 -0.04 0.06

XBaseB2 [0.7] [0.001 [2.71 [1.7] [3.91 [2.71 [1.31 [3.91

Note: PLC-present-day landcover
FLC-Future landcoverA2PLC-BaseA2/B2PLC-BaseB2: Changes dm to climate changes and biogenic emissions under present-day landcover 
A2FLC-BaseA2/B2FLC-BaseB2: Changes due to climate changes and biogenic emissions under future-day landcover 
A2FLC-A2PLC/B2FLC-B2PLC: Changes between present-day landcover and future landcover scenarios 
XA2PLC-XBaseA2/XB2PLC-Xbaseb2: Changes due to climate changes alone (without biogenic emissions)
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